PHD

On-line identification investigation

Ture, M.

Award date:
1992

Awarding institution:
University of Bath
University of Bath

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

ON-LINE IDENTIFICATION INVESTIGATION

Submitted by M. Türe, M.Sc., B. Sc. for the degree of PhD of the University of Bath 1992

COPYRIGHT

'Attention is drawn to the fact that copyright of this thesis rests with its author. This copy of thesis has been supplied on condition that anyone who consult it is understood to recognise that its copying rests with its author and that no quotation from the thesis and no information derived from it may be published without the prior written consent of the author.'
'This thesis may be available for consultation within the University Library and may be photocopied or lent to other libraries for the purpose of the consultation.'

UMI Number: U042311

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI U042311
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346
-

1
" In the name of sllah. Most Enacious , Most Merciful. "

SUMMARY

In this study, on-line system identification methods are investigated for the continuous time model. The well known discrete time methods are reviewed for indirect methods. The transformation methods from discrete system to continuous system are given. Direct continuous model identification methods are explained and the quasilinearization of the Newton-Raphson method is implemented for the identification of the parameters of an aircraft.

The aircraft dynamics are reviewed to simulate the flight model. This review shows why the aircraft requires auto-control. The relations between the adaptive control for non-minimum phase and unstable systems and the identification are illustrated. The atmospheric turbulence effect on the identification is shown.

The hardware and the software of the implementation are developed for real time estimation. A personal computer and a TMS320C30 Digital Signal Processor are used for the flight modelling and the identification circuit, respectively.

CONTENTS

SUMMARY i
CONTENTS ii
LIST OF SYMBOLS vii
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 ON-LINE SYSTEM IDENTIFICATION 5
2. 1 Introduction 5
2.2 On-line Identification Methods for Discete Time Models 7
2.2.1 Least Square 7
2.2.2 Generalized Least Square 11
2.2.3 On-line Maximum Likelihood Method 20
2.2.4 Instrumental Variable Method 25
2.2.5 Identification of Linear Multivariable Method 27
2. 3 On-line Identi:fication Methods for Continuous Time Model 33
2.3.1 Indirect Methods 33
2.3.2 Direct Methods 37
2.3.2.1 Quasilinearization 38
2.3.2.1.1 The application of time-invariant system 44
2.3.2.1.2 Time-varying system 51
2. 4 Conclusion 52
CHAPTER 3 AIRCAFT DYNAMICS 54
3.1 Introduction 54
3.2 The equations of Motions 54
3. 3 Longitudinal Dynamic Stability 63
3. 4 Lateral Dynamic Stability 69
3.5 Conclusion 75
CHAPTER 4 OPTIMAL ADAPTIVE CONTROL 77
4.1 Introduction 77
4. 2. Model Reference Adaptive Systems 78
4.2.1 Model-following Design 78
4.2.2 Adjustment Mec:hanism 82
4. 3 Self-Tuning Reigulator 84
4.3.1 Expilicit Self--Tuning Regulators 85
4.3.1.1 Pole-Placement method 86
Example 4.1 88
4.3.2 Implicit Self-Tuning Controller 89
4.3.2.1 Pole-Placement Method 89
4.3.2.2 Minimum Variance 97
4.3.2.3 Generalized Minimum Variance 98
4.4.4. Linear Quadratic Self Tuning Controllers 100
4.5 Conclusion 110

CHAPTER 5 IMPLEMENTATION OF IDENTIFICATION

5.1 Introduction 112
5.2 Flight Modelling 112
5.3 The Design of the Identification Routine 115
5.4 Design of the Interface 119
5.5 The Identification Result 119
5.5.1 Time invariant system without noise 119
5.5.2 The Time-variable parameters 120
5.5.3 The Identification of the Noisy System 121
5.6 The Random Tuubulence Effect on the Identification 123
5.7 Conclusion 125
CHAPTER 6 THE HARDWARE OF THE IDENTIFICATION 127
6.1 Introduction 127
6.2 Personal Computer 127
6.3 The I/O Interface Card 131
6.4 The Communication Interface Card 132
6.5 TMS320C30 Digital Signal Processor 136
6.5 .1 Central Processing Unit (CPU) 136
6.5.2 Memory Map 137
6.5.3 The TMS320C30 Circuit 137
6.6 Conclusion 137

CHAPTER 7 THE SOFTWARE OF THE IDENTIFICATION

7.1 Introduction 139
7.2 Personal Computer Software 139
7.3 Communication Protocol 140
7.4 Read and Write Operation with P.C. 142
7.5 TMS320C30 Software 143
7.5.1 The Initialization of the TMS320C30 143
7.5.2. I/O Program 146
7.5.2.1 Floating Point Conversation 147
7.5.3 The Identification Program 149
7.5.3.1 Matrix Addition and Subtraction 149
7.5.3.2 Matrix Multiplication 152
7.5.3.3 The inverse of the Floating Point Number 153
7.5.3.4 The Integration Algorithm 154
7.5.3.5 The Matrix Inversion 155
7.5.3.6 Flow Chart of the Identification Program 158
7. 6 Conclusion 160
CHAPTER 8 CONCLUSION AND SUGGESTION FOR FURTHER WORK 161
8.1 Conclusion 161
8.2 Suggestion for Further Work 165
ACKNOWLEDGEMENT 166
REFERENCES 167
APPENDIX 1 174
A. 1.1. 175
A. 1.2. 177
A. 1. 3 179
A. 1. 4. 185
A. 1.5. 186
A. 1.6. 187
A. 1.7. 188
A. 1. 8. 189
A. 1.9. 190
A. 1. 10 191
A. 1. 11 193
A. 1. 12 198
A. 1. 13. 204
A. 1.14 235

LIST OF SYMBOLS

The following symbols are used in the chapter 3 and 5.

Symbol	Meaning
A	Aircraft attitude
A	Aspect ratio, b^{2} / S
a	Aircraft lift curve slope, $\mathrm{d} C_{L} / \mathrm{d} \alpha$
b	Wing span (tip to tip)
$C_{\text {d }}$	Drag $/ \frac{1}{2} \rho V^{2} S$
C_{L}	Lift $/ \frac{1}{2} \rho V^{2} S$
$C_{\text {LT }}$	Tailplane lift $/ \frac{1}{2} \rho V^{2} S$
C_{1}	Rolling moment about $0 x / \frac{1}{2} \rho_{e} V_{e}^{2} S b$
$C_{\text {m }}$	Pitching moment about $0 y / \frac{1}{2} \rho V^{2} S \overline{\bar{c}}$
C_{n}	Yawing moment about $O z / \frac{1}{2} \rho_{e} V_{e}^{2} S b$
$C_{\mathrm{x}}, C_{\mathrm{z}}$	Non-dimensional force coefficient
	$X / \frac{1}{2} \rho V^{2} S, \quad Z / \frac{1}{2} \rho V^{2} S$
c	Wing chord
$\overline{\bar{C}}$	Mean aerodynamic chord of wing
D	Drag
D	Differential operator, d/dt
\hat{D}	Differential operator, $\mathrm{d} / \mathrm{d} \hat{\mathrm{t}}$
e_{x}	$-I_{z x}{ }^{\prime} I_{x}$

e_{z}	$-I_{z x}{ }^{\prime} I_{z}$
G	Transfer function
g	Acceleration due to gravity
\hat{g}	$m g / \frac{1}{2} \rho_{\mathrm{e}} V_{\mathrm{e}}^{2} \mathrm{~S}=C_{\mathrm{L}} \sec \Theta$
g_{x}, g_{y}, g_{z}	Component of gravitational acceleration
$g_{\theta}, g_{\psi}, \cdots$	Non-dimensional autopilot parameters
g_{1}	$g \cos \theta_{e}$
\hat{g}_{1}	$\hat{g} \cos \theta_{e}$
g_{2}	$g \sin \theta_{e}$
\hat{g}_{2}	$\hat{g} \sin \theta_{e}$
I_{x}	Moment of inertia about longitudinal (rolling) axis $O x$
I_{y}	Moment of inertia about lateral (pitching) axis Ox
I_{z}	Moment of inertia about yawing axis Oz
$I_{x y}$	Product of inertia about $O x$ and $O y$
$I_{y z}$	Product of inertia about Oy and Oz
$I_{z x}$	Product of inertia about $O z$ and $O X$
i_{x}	$I_{x} / m b^{2}$
${ }^{i}{ }_{y}$	$I_{\mathrm{y}} / m \overline{\bar{c}}^{2}$
i_{z}	$I_{z} / m b^{2}$

Symbol	Meaning
i_{z}	$I_{2 x}{ }^{\prime} m b^{2}$
i_{1}	$\left(I_{z}-I_{x}\right) / I_{y}$
i_{2}	$\left(I_{y}-I_{x}\right) / I_{z}$
L	Lift
L_{H}, L_{T}	Wing lift, tail lift
L	Rolling moment about $O x$
$\mathcal{L}_{P}, \mathcal{L}_{r}, \mathcal{L}_{\nu}, \mathcal{L}_{\xi}, \mathcal{L}_{\zeta}$	Rolling moment derivatives, $\delta L / \delta p, \delta L / \delta r$, $\delta L / \delta v, \delta L / \delta \xi, \delta L / \delta \zeta$
$L_{\text {P }}$	Non-dimensional rolling moment derivative due to rate of roll, $\dot{L}_{p} / \frac{1}{2} \rho_{e} V_{e} S b^{2}$
L_{r}	Non-dimensional rolling moment derivative due to rate of yaw, $\mathcal{L}_{r} / \frac{1}{2} \rho_{e} V_{e} S b^{2}$
L_{v}	Non-dimensional rolling moment derivative due to rate of sideslip, $\mathcal{L}_{\mathrm{v}} / \frac{1}{2} \rho_{\mathrm{e}} \mathrm{V}_{\mathrm{e}} S b$
L_{ξ}	Non-dimensional rolling moment derivative due to rate of ailerons, $\mathcal{L}_{p} / \frac{1}{2} \rho_{e} V^{2}{ }_{e} S b$
${ }^{L}{ }_{\zeta}$	Non-dimensional rolling moment derivative due to rate of rudder, $\dot{L}_{\zeta^{\prime}} \frac{1}{2} \rho_{e} V_{e}^{2} S b$
1	Distance of aerodynamic centre of tail plane aft of aeraerodynamic centre of aircraft without tail

Symbol	Meaning
1_{F}	Distance of aeodynamic centre of fin aft of c.g. of aircraft
${ }_{1}$	Distance of aerodynamic centre of
	tailplane aft of c.g. of aircraft
$l_{\text {p }}$	$-L_{p} / i_{x}$
1_{r}	$-L_{r} / i_{x}$
$1{ }_{v}$	$-\mu_{2} L_{v} / i_{x}$
${ }^{1}{ }_{\xi}$	$-\mu_{2} L_{\xi} /{ }^{i}{ }_{x}$
${ }^{1}$	$-\mu_{2} L_{\zeta} / i_{x}$
M	Pitching moment about Oy
$\stackrel{\circ}{M}_{q}, \stackrel{\circ}{M}_{u}, \stackrel{\circ}{M}_{w}, \stackrel{\check{M}}{\dot{w}}^{M_{\eta}}$	Pitching moment derivatives, $\delta M / \delta q, \delta M / \delta u$, $\delta M / \delta w, \delta M / \delta \dot{w}, \delta M / \delta \eta$
$M_{\text {q }}$	Non-dimensional pitching moment derivative due to rate of pitch, $\check{M}_{p} / \frac{1}{2} \rho_{e} V{ }_{e} S \overline{\bar{c}}^{2}$
M_{u}	Non-dimensional pitching moment derivative
	due to velocity increment along O_{x}, $\stackrel{M}{u}_{u} / \frac{1}{2} \rho_{\mathrm{e}} V \mathrm{e}_{\mathrm{e}} \mathrm{S}^{2}$
M_{w}	Non-dimensional pitching moment derivative
	$\AA_{w} / \frac{1}{2} \rho_{e} V{ }_{e} S \overline{\bar{c}}^{2}$
$M_{\text {w }}$	Non-dimensional pitching moment derivative due to rate of change of $w, \dot{H}_{\dot{w}} / \frac{1}{2} \rho_{e} V e S \bar{C}^{2}$

Symbol	Meaning
M_{η}	Non-dimensional pitching moment derivative due to elevator, $\stackrel{\circ}{\eta}_{\eta}^{\prime} \frac{1}{2} \rho_{e} V e S \overline{\bar{c}}^{2}$
m	Aircraft mass
m_{q}	$-_{M}{ }_{q} / i_{y}$
${ }^{m}$	$-\mu_{1} M_{u} / i_{y}$
$m_{\text {w }}$	$-\mu_{1} M_{w} / i_{y}$
${ }_{\text {m }}^{\text {w }}$	$-M_{\dot{W}} / i_{y}$
m_{η}	$-\mu_{1} M_{\eta} /{ }^{i}{ }_{y}$
N	Yawing moment about Oz
$\stackrel{\circ}{N}^{\prime}, \stackrel{\circ}{N}^{\prime}, \stackrel{\circ}{N}_{V}, \stackrel{\circ}{N}^{\prime}, \stackrel{\circ}{N}^{\prime}$	Yawing moment derivatives, $\delta N / \delta p, \delta N / \delta r$, $\delta N / \delta v, \delta N / \delta \xi, \delta N / \delta \zeta$
$N_{\text {P }}$	Non-dimensional yawing moment derivative due to rate of roll, $\stackrel{\circ}{N}_{p} / \frac{1}{2} \rho_{e} V_{e} S b^{2}$
N_{r}	Non-dimensional yawing moment derivative due to rate of yaw, $\stackrel{\circ}{N}_{r} / \frac{1}{2} \rho_{e} V_{e} S b^{2}$
N_{v}	Non-dimensional yawing moment derivative due to rate of sideslip, $\stackrel{\circ}{N}_{\mathrm{v}} / \frac{1}{2} \rho_{\mathrm{e}} V_{\mathrm{e}} S b$
N_{ξ}	Non-dimensional yawing moment derivative due to rate of ailerons, $\AA_{p} / \frac{1}{2} \rho_{e} V^{2}{ }_{e} S b$
${ }^{N} \zeta$	Non-dimensional yawing moment derivative due to rate of rudder, $\stackrel{\circ}{N}_{\zeta}^{\prime} \frac{1}{2} \rho_{\mathrm{e}} V_{\mathrm{e}}^{2} S b$

u
\hat{u}
V

V
V
v
\hat{v}
W
W
W_{e}
w

W
X
$\stackrel{\circ}{X}_{q}, \stackrel{\circ}{X}_{u}, \stackrel{\circ}{X}_{w}, \stackrel{\circ}{X}_{\dot{w}}, \stackrel{\circ}{X}_{\eta}$
$U-U_{e}$
u / V_{e}
Velocity component of c.g. along $O y$ in disturbed flight

Resultant velocity of c.g. in disturbed
longitudinal flight
Resultant velocity of aircraft c.g. in datum steady flight

Component of velocity increment of c.g.
along $O y$ in disturbed flight.
$V / V_{e}(=\beta$, for small angles of sideslip)
Aircraft weight, mg
Velocity component of c.g. along $O z$ in disturbed flight

Velocity component of aircraft c.g. in datum steady flight

Component of velocity increment of c.g.
along $O y$ in disturbed flight.
$w / V e$
Force component along $O X$
Force component derivatives, $\delta X / \delta q, \delta X / \delta u$,
$\delta X / \delta w, \delta X / \delta \dot{w}, \delta X / \delta \eta$

Symbol	Meaning
x_{q}	Non-dimensional force derivative due to rate of pitch, $\dot{X}_{q} / \frac{1}{2} \rho_{e} V e S \overline{\bar{c}}$
X_{u}	Non-dimensional force derivative due to velocity increment along $O X, \dot{x}_{u} / \frac{1}{2} \rho_{e} V{ }_{e} S$
X_{w}	Non-dimensional force derivative due to velocity increment along $O X, \AA_{W} / \frac{1}{2} \rho_{e} V_{e} S$
$\chi_{\text {w }}$	Non-dimensional force derivative due to rate of change of $w, \dot{X}_{\dot{w}} / \frac{1}{2} \rho_{e} S \overline{\bar{c}}$
x_{η}	Non-dimensional force derivative due to elevator, $\dot{x}_{\eta}{ }^{\prime} \frac{1}{2} \rho e_{e} V^{2} S b$
OX	Axis through aircraft c.g. fixed in the aircraft in the forward direction in the plane symmetry. (For wind axes, in the steady state, $O x$ coincides direction of motion of c.g.)
${ }_{\text {¢ }}^{\text {q }}$	$-X_{q} / \mu_{1}$
x_{u}	$-x_{u}$
x_{w}	$-X_{w}$
${ }_{\text {x }}$.	$-\chi_{\dot{W}} / \mu_{1}$
x_{η}	$-x_{\eta}$
Y	Force component along Oy

Symbol	Meaning
$\stackrel{\circ}{Y}_{p}, \stackrel{\circ}{Y}^{\prime}, \stackrel{\circ}{Y}_{v}, \stackrel{\circ}{Y}_{\xi}, \stackrel{\circ}{Y}_{\zeta}$	Force component derivatives, $\delta Y / \delta p, \delta Y / \delta r$, $\delta Y / \delta v, \delta Y / \delta \xi, \delta Y / \delta \zeta$
Y_{p}	Non-dimensional force derivative due to rate of roll, $\dot{Y}_{p} / \frac{1}{2} \rho_{e} V_{e} S b$
Y_{r}	Non-dimensional force derivative due to rate of yaw, $\dot{Y}_{r} / \frac{1}{2} \rho_{e} V_{e} S b$
Y_{v}	Non-dimensional force derivative due to sideslip, $\stackrel{Y}{Y}_{V} / \frac{1}{2} \rho_{e} V_{e} S$
Y_{ξ}	Non-dimensional force derivative due to ailerons, $\stackrel{\circ}{Y}_{\xi} / \frac{1}{2} \rho_{e} V_{e}^{2} S$
Y_{ζ}	Non-dimensional force derivative due to rudder, $\stackrel{Y}{Y}_{\zeta}^{\prime} \frac{1}{2} \rho_{e} V_{e}^{2} S$
Oy	Axis through aircraft c.g. fixed in the aircraft in the lateral direction, perpendicular to the plane of symmetry and positive to starboard.
$y_{\text {p }}$	$-Y_{p} / \mu_{1}$
y_{r}	$-Y_{r}$
y_{v}	-Y ${ }_{v}$
${ }^{\prime}{ }_{\xi}$	$-_{\xi}{ }^{\prime} / \mu_{1}$
${ }^{\prime}{ }_{\zeta}$	${ }^{-} Y_{\zeta}$
z	Force component along Oz

 $\delta Z / \delta w, \delta Z / \delta \dot{w}, \delta Z / \delta \eta$
$Z_{q} \quad$ Non-dimensional force derivative due to rate of pitch, $\stackrel{\circ}{Z}_{q} / \frac{1}{2} \rho_{e} V_{e} S \overline{\bar{c}}$
Z_{u}
Z_{w}
z_{q}
z_{u}
z_{w}
$z_{\dot{w}}$
z_{η}
α
$Z_{\dot{w}} \quad$ Non-dimensional force derivative due to rate of change of $w, \hat{Z}_{\mathbf{w}^{\prime}} \frac{1}{2} \rho_{e} S \overline{\bar{c}}$
Non-dimensional force derivative due to elevator, $\mathcal{L}_{\eta}, \frac{1}{2} \rho_{e} V_{e}^{2} S$
Axis through aircraft c.g. fixed in the
aircraft in the downward direction and elevator, $\mathcal{L}_{\eta}, \frac{1}{2} \rho_{e} V_{e}^{2} S$
Axis through aircraft c.g. fixed in the
aircraft in the downward direction and elevator, $\dot{Z}_{\eta}, \frac{1}{2} \rho_{e} V_{e}^{2} S$
Axis through aircraft c.g. fixed in the
aircraft in the downward direction and perpendicular to $O x$ and $O y$.
Non-dimensional force derivative due to velocity increment along $O x, \AA_{u}^{\prime} \frac{1}{2} \rho_{e} V_{e} S$
Non-dimensional force derivative due to velocity increment along $O z, \mathcal{Z}_{w} / \frac{1}{2} \rho_{e} V_{e} S$
$-Z_{q} / \mu_{1}$
$-Z_{u}$
$-Z_{w}$
$-Z_{i} / \mu_{1}$
$-Z_{\eta}$
Incidence (angle of attack) of mean
aerodynamic chord of wing

Symbol	Meaning
α_{e}	Incidence of $O x$ to the flight path in the
	steady state (positive upwards)
	($\alpha=0$ for wind axes)
β	Angle of sideslip (the angle the direction
	of the motion of the aircraft c.g. makes
	with th plane of the symmetry $0 x z$)
δ	Displacement
F, η, ζ	Angular displacements of ailerons
	elevator and rudder, respectively
$\bar{\eta}$	Elevator angle to trim
η^{\prime}	Increment elevetor angle from trimmed
	position
Θ_{e}	Inclination of $O x$ to the horizantal in the
	datum steady flight (positive upwards)
θ	Angle of pitch
μ_{1}	Longitudinal relative density parameter
	$m / \frac{1}{2} \rho_{e} S \overline{\bar{c}}$
μ_{2}	Lateral relative density parameter
	$m / \frac{1}{2} \rho_{e} S b$
ρ	Air density
ρ_{e}	Air density in datum steady flight
τ	Magnitude of time unit

ϕ	Angle of bank
ψ	Angle of yaw

CHAPTER 1. INTRODUCTION

A new period of control theory was started with the introduction of the adaptive control in 1960's. Adaptive control was first proposed as a model reference controller by Whitaker and his colleagues [1]. Then, many researches were done to develop the adaptive system theory . In 1970's, the self tuning controller was presented to adaptive control by Aström [2]. Self tuning regulators (STRs) are very suitable to optimize the adaptive system, especially non-minimum phase and unstable systems.

On-line determination of process parameters is a key element in the adaptive control. It is an important part of a self tuning controller. It is also used in implicit model reference adaptive system. Therefore the identification methods have been developed in parallel with the adaptive control. Some old estimation methods have been progressed for the on-line systems. Generally, the identification method have been developed based on the discrete model of the systems because of the sampled data. The discrete model was very suitable for the first microprocessors, which were very slow and primitive when compared with todays. In the application, rather accurate process model are required for very sensitive systems. The continuous model can represent the system as a theoretical model [3]. Therefore the continuous model parameter
estimation was used to begin the research. Some identification methods for the continuous time used the indirect approach via using the discrete-time model identification. This approach has the advantage of using the parameter estimation methods, but it requires extensive computation. Some of the identification methods are presented in this study.

An aircraft dynamics can change very rapidly and needs a more accurate model to control it. It is also desirable to avoid the use of special inputs for the identification.

In this study, an aircraft continuous model identification method in a real-time is developed and implemented. This implementation involved the integration of electronic components as well as a software simulation. This work is explained in the chapters as follows.

In the second chapter, the well known on-line discrete model identification algorithms are discussed. The transfer method from the discrete model to the continuous model and its accuracy is inquired with an example. The direct continuous model is reviewed via boundary value problem approaching.

In the third chapter, the aircraft dynamic is given to learn the parameters and its effect on the system. It is shown that the
aircraft can not be controlled by only pilot unless auto pilot is engaged.

In the fourth chapter, the model reference adaptive system and self-tuning controller and their development are presented to control the system. The non-minimum phase and unstable systems are considered to optimize the adaptive control. A non-minimum aircraft adaptive control is given as an example.

In the fifth chapter, the continuous model aircraft identification is implemented for the different parameters values which are time constant and time variable. This method is used for the noise-mixed system as well as noise-free system. Its result for different noise level are given in this chapter. The gust response and its effect on the dynamic response and the identification are reviewed. All this operation are achieved as a real time simulation.

In the sixth chapter, the electronic circuits of the implementation are presented in detail. The aircraft is modelled by a computer, and it is identified by an identification board. The electronic circuit of the communication board between the model computer and the identification board is also given. In addition, other electronic circuit boards and their principals are given in detail.

Abstract

In the seventh chapter, the model computer software and the identifier processor software are explained for subsequent use by other users. The necessary matrix operations and all programmes are discussed and are given full assemble code.

In the eighth chapter of this work, the result are described and some further studies are recommended.

CHAPTER 2: ON-LINE SYSTEM IDENTIFICATION

2.1. INTRODUCTION

In this chapter, on-line system identification and its methods are considered by different algorithms. An identification method may be classified as an "on-line" method if it satisfies the following criteria [4]:
(i) it must not require the application of a special input to the process in order that it can be used with the process under operation,
(ii) it does not require the storage of all the data
(iii) it uses a recursive algorithm so that one does not have to wait for the accumulation of large amounts of data to make the identification possible, but may start with an initial estimate of the parameters even after the first set of data has been obtained, and then keep on updating the estimate as more data arrives
(iv) the amount of computation required for each iteration of the recursive algorithm must be such that it can be carried out within one sampling interval.

The systems to be identified are divided into two types ; continuous-time and discrete time. In many practical situation: the identification of a continuous-time system is desired from samples of input-output data.

There are two approaches to the identification of a continuous-time-model. In the so-called indirect approach a discrete time model is obtained from samples, and then an equivalent continuous model is determined. The other approach attempts to obtain the continuous model directly.

Continuous-time systems are studied in later chapters. Although discrete time identification algorithms will also be mentioned because of the indirect method.

A continuous-time system is represented by the equation

$$
\dot{x}=A x+B u
$$

$$
y=C x+w(t)
$$

where x is an (nx1) state variables vector, A is ($n x n$) coefficient vector, B is ($n x m$) control vector, C is transient vector, $W(t)$ is noise.

If the assumption is that the inputs are held constant during the sampling interval, the discrete time model is

$$
x(k+1)=F x(k)+G u(k)
$$

The relationship between A, B and F, G will be explained later.

Firstly, discrete time algorithms are reviewed because the same algorithms can be used for continuous-time systems.

2.2. ON-LINE IDENTIFICATION METHODS FOR DISCRETE TIME MODELS

Many different identification and parameter estimation methods for dynamic processes have been described in the literature. The relationships between many of these methods are relatively well known as far as the theoretical background is concerned. Only some algorithms of those which are well known, are considered.

2.2.1. LEAST SQUARES

It is assumed that a linear process can be described by the model

$$
\begin{equation*}
y(k)+a_{1} y(k-1)+\ldots+a_{m} y(k-m)=b_{1} u(k-d-1)+\ldots+b_{m} u(k-d-m) \tag{2.1}
\end{equation*}
$$

respectively by

$$
y_{k} a=u_{k-d} b
$$

with

$$
\begin{aligned}
& y_{k}=\left[\begin{array}{llll}
y(k) y(k-1) & \ldots y(k-m)
\end{array}\right] \\
& u_{k-d}=\left[\begin{array}{lll}
u(k-d-1) & u(k-d-2) \ldots u(k-d-m)
\end{array}\right] \\
& a^{T}=\left[\begin{array}{lllll}
1 & a_{1} & a_{2} & \ldots & a_{m}
\end{array}\right]
\end{aligned}
$$

$$
b^{T}=\left[\begin{array}{lllll}
b_{1} & b_{2} & b_{3} & \cdots b_{m}
\end{array}\right]
$$

or by the pulse transfer function

$$
\begin{align*}
\mathrm{G}_{\mathrm{m}} & =\frac{Y(z)}{U(z)}=\frac{B_{m}\left(z^{-1}\right)}{A_{m}\left(z^{-1}\right)} \tag{2.2}\\
& =\frac{b_{1} z^{-1}+b_{2} z^{-2}+\ldots+b_{m} z^{-m}}{1+a_{1} z^{-1}+\ldots+a_{m} z^{-m}} z^{-d} \tag{2.3}
\end{align*}
$$

Taking the measured input $u(k)$ and measured output $y(k)$ of the real process the generalized error used for parameter estimation is defined as

$$
\begin{align*}
& e(k)=y(k)+ a_{1} y(k-1)+\ldots+a_{m} y(k-m) \\
&-b_{1} u(k-d-1)-\ldots-b_{m} u(k-d-m) \tag{2.4}\\
& e(k)=y(k)-y_{M}(k) \tag{2.5}
\end{align*}
$$

where

$$
\begin{equation*}
y_{M}(k)=\Psi(k) \Theta \tag{2.6}
\end{equation*}
$$

is the prediction of $y(k)$ of the model based on the observation $y(k-m), \ldots, y(k-1)$ with

$$
\begin{aligned}
& \Psi(k)=\left[\begin{array}{lllll}
-y(k-1) & \ldots & y(k-m) & u(k-d-1) \ldots u(k-d-m)
\end{array}\right] \\
& \Theta^{T}=\left[\begin{array}{llllll}
a_{1} & a_{2} & \ldots & a_{m} & b_{1} \ldots & b_{m}
\end{array}\right]
\end{aligned}
$$

Minimising the cost function

$$
\begin{equation*}
V=\sum_{k=m+d}^{N+m+d} e^{2}(k)=\sum_{k=m+d}^{N+m+d}(y(k)-\Psi(k) \Theta)^{2} \tag{2.7}
\end{equation*}
$$

and using the notation

$$
\begin{aligned}
& y^{T}=[y(m+d) y(m+d+1) \ldots y(m+d+N)]
\end{aligned}
$$

The cost function can be rewritten as

$$
\begin{align*}
V & =\left(y-y_{M}\right)^{T}\left(y-y_{M}\right) \tag{2.8}\\
& =(y-\Psi \Theta)^{T}(y-\Psi \Theta) \\
& =y^{T} y-y^{T} \Psi \Theta-\Theta^{T} \Psi^{T} y+\Theta^{T} \Psi^{T} \Psi \Theta \tag{2.9}
\end{align*}
$$

Since the matrix $\Psi^{T} \Psi$ is always nonnegative definite, the function V has a minimum. The loss function is quadratic in Θ. By completing the square, it is possible to find the minimum.

$$
\begin{aligned}
V=y^{T} y & -y^{T} \Psi \Theta-\Theta^{T} \Psi^{T} y+\Theta^{T} \Psi^{T} \Psi \Theta \\
& +y^{T} \Psi\left(\Psi^{T} \Psi\right)^{-1} \Psi^{T} y-y^{T} \Psi\left(\Psi^{T} \Psi\right)^{-1} \Psi^{T} y
\end{aligned}
$$

$$
=y^{\mathrm{T}}\left(\mathrm{I}-\Psi\left(\Psi^{\mathrm{T}} \Psi\right)^{-1} \Psi^{\mathrm{T}}\right) y+\left(\Theta-\left(\Psi^{\mathrm{T}} \Psi\right)^{-1} \Psi^{\mathrm{T}} y\right) \Psi^{\mathrm{T}} \Psi\left(\Theta-\Psi\left(\Psi^{\mathrm{T}} \Psi\right)^{-1} \Psi^{\mathrm{T}} y\right)
$$

The first term on the right-hand side is independent of Θ. The second term is always positive. The minimum is obtained for

$$
\begin{align*}
& \Theta=\hat{\Theta}=\left(\Psi^{\mathrm{T}} \Psi\right)^{-1} \Psi^{\mathrm{T}} y \tag{2.10}\\
& P=\left(\Psi^{\mathrm{T}} \Psi\right)^{-1} \tag{2.11}\\
& \hat{\Theta}=P \Psi^{\mathrm{T}} y \tag{2.12}
\end{align*}
$$

For recursive computations,

$$
\begin{equation*}
P^{-1}(k+1)=P^{-1}(k)+\Psi(k+1) \Psi^{T}(k+1) \tag{2.13}
\end{equation*}
$$

The least-squares estimate $\Theta(k+1)$ is given by

$$
\begin{align*}
\hat{\Theta}(k+1) & =P(k+1)\left(\sum_{i=1}^{k+1} \Psi(i) y(i)\right) \tag{2.14}\\
& =P(k+1)\left(\sum_{i=1}^{k} \Psi(i) y(i)+\Psi(k+1) y(k+1)\right)
\end{align*}
$$

$$
\begin{align*}
\sum_{i=1}^{k} \Psi(i) y(i) & =P^{-1}(k) \hat{\Theta}(k) \\
& =\left(P^{-1}(k+1)-\Psi(k+1) \Psi^{T}(k+1)\right) \hat{\Theta}(k) \tag{2.15}
\end{align*}
$$

$$
\begin{align*}
\hat{\Theta}(k+1) & =\hat{\Theta}(k)-P(k+1) \Psi(k+1) \Psi^{T}(k+1)+P(k+1) \Psi(k+1) y(k+1) \\
& =\hat{\Theta}(k)+\hat{P}(k+1) \Psi(k+1)\left(y(k+1)-\Psi^{T}(k+1) \hat{\Theta}(k)\right) \tag{2.16}
\end{align*}
$$

Applying matrix inversion lemma to $P(k+1)$ and using Eq(2.13) gives [5]

$$
\begin{align*}
& P(k+1)=P(k)-P(k) \Psi(k+1)\left(I+\Psi^{T}(k) P(k) \Psi(k+1)\right)^{-1} \Psi^{T}(k+1) P(k) \tag{2.17}\\
& \hat{\Theta}(k+1)=\Theta(k)+P(k) \Psi(k+1)\left(I+\Psi^{T}(k+1) P(k) \Psi(k+1)\right)^{-1} \tag{2.18}
\end{align*}
$$

2.2.2. GENERALIZED LEAST SQUARES

The generalized least square algorithm was introduced by CLARKE (1967)[6]. It is developed from least squares for the case when white noise is present. Algorithm for on-line generalized least squares estimation have been developed by HASTING-JAMES and SAGE (1969)[7]. The system to be explained for this algorithm is shown in Fig. 2.1.

The noise-free output $y(k)$ of the process at any time is given as a weighted sum of the past process outputs,

```
y(k-1),y(k-2), ..., y(k-n)
```

and past process inputs

$$
u(k-1-1), u(k-1-2), \ldots, u(k-1-n)
$$

where n is the order of the process, and 1 represents the pure time delay of the process in terms of an integral number of sampling intervals.

Thus

$$
\begin{aligned}
y(k)= & -a_{1} y(k-1)-a_{2} y(k-2)-\ldots-a_{n} y(k-n) \\
& +b_{1} u(k-1-1)+b_{2} u(k-l-2)+\ldots+b_{n} u(k-1-n)
\end{aligned}
$$

The shifting operator z is defined as seen below

$$
z^{-1} y(k)=y(k-1)
$$

The process transfer function can be written ;

$$
\begin{equation*}
\left[1+A\left(z^{-1}\right)\right] y(k)=z^{-k} B\left(z^{-1}\right) u(k) \tag{2.19}
\end{equation*}
$$

The output from the noise process filter ε_{k} at any time k is given by a weighted sum of past outputs.

$$
\varepsilon(\mathrm{k}-1), \quad \varepsilon(\mathrm{k}-2), \ldots, \quad \varepsilon(\mathrm{k}-\mathrm{p})
$$

and past and present inputs to the filter

$$
\xi(\mathrm{k}), \quad \xi(\mathrm{k}-1), \quad \xi(\mathrm{k}-2), \ldots, \xi(\mathrm{k}-\mathrm{p})
$$

Thus as above
$\left[1+F\left(z^{-1}\right)\right] \varepsilon(k)=\left[1+G\left(z^{-1}\right)\right] \xi(k)$

The measured process output is given by

$$
v(k)=y(k)+\varepsilon(k)
$$

and therefore from Eq(2.19)

$$
\begin{equation*}
\left[1+A\left(z^{-1}\right)\right] v(k)=z^{-k} B\left(z^{-1}\right) u(k)+e(k) \tag{2.20}
\end{equation*}
$$

where

$$
\begin{equation*}
e(k)=\frac{\left[1+A\left(z^{-1}\right)\right]\left[1+G\left(z^{-1}\right)\right]}{\left[1+F\left(z^{-1}\right)\right]} \xi(k) \tag{2.21}
\end{equation*}
$$

In order to write the process equation (2.20) in the standard vector-matrix notation of regression analysis, consider a sequence of observation $\{u, v$ \} to have been made of the process input and process output variables. Then

$$
\begin{aligned}
v(k)=-a_{1} v(k-1) & -a_{2} v(k-2)-\ldots-a_{n} v(k-n) \\
& +b_{1} u(k-1-1)+\ldots+b_{n} u(k-1-n)+e(k) \\
v(k+1)=-a_{1} v(k) & -a_{2} v(k-1)-\ldots-a_{n} v(k-n+1) \\
& +b_{1} u(k-1)+\ldots+b_{n} u(k-1-n+1)+e(k+1)
\end{aligned}
$$

$$
\begin{aligned}
& v(k+N)=-a_{1} v(k+N-1)-a_{2} v(k+N-2)-\ldots-a_{n} v(k+N-n) \\
& +b_{1} u(k+N-1-1)+\ldots+b_{n} u(k+N-1-n)+e(k+N)
\end{aligned}
$$

This can be written

$$
\begin{equation*}
\mathrm{v}=\mathrm{X} \Theta+\mathrm{e} \tag{2.21}
\end{equation*}
$$

where

$$
\begin{aligned}
& X=\left[-z^{-1} v:-z^{-2} v: \ldots:-z^{-n} v:: z^{-1-1} u: z^{-2-1} u: \ldots: z^{-n-1} u\right] \\
& \Theta^{T}=\left[a_{1} a_{2} a_{3} \ldots a_{n} b_{1} b_{2} \ldots b_{n}\right]
\end{aligned}
$$

and v, u and e are the output, input and noise vector, respectively. The jth element of each vector represents the sampled value of the respective variable at the $k+j$ th sampling instant.

The residual errors are now minimized between the measured plant output and the output predicted by the model over the set of data being considered. On taking a cost function (see Fig.2.1.) $\eta^{T} \eta$ and minimizing with respect to parameter vector Θ, the least squares estimate of Θ is given by

$$
\begin{equation*}
\hat{\Theta}_{L S}=\left[X^{T} X\right]^{-1} X^{T} v \tag{2.22}
\end{equation*}
$$

This estimate of Θ can be shown to be biased, for since

$$
v=y+\varepsilon
$$

Eq(2.22) leads to

$$
\begin{equation*}
\hat{\Theta}_{L S}=\left[X^{T} X\right]^{-1} X^{T} y+\left[X^{T} X\right]^{-1} X^{T} e \tag{2.23}
\end{equation*}
$$

From Fig. 2.1.

$$
\begin{equation*}
y=X \Theta \tag{2.24}
\end{equation*}
$$

so eq(2.23) reduced to

$$
\begin{equation*}
\Theta_{L S}=\Theta+\left[X^{T} X\right]^{-1} X^{T} e \tag{2.25}
\end{equation*}
$$

showing that the bias on the least-squares estimate of Θ is given by $E\left\{\left[X^{T} X\right]^{-1} X^{T} e\right.$. E the is expectation operator. Therefore noise parameters are sought by system parameters.

The prediction error can be written by

$$
\begin{equation*}
\hat{\mathrm{e}} \cong \eta=\mathrm{v}-\hat{\mathrm{X}} \tag{2.26}
\end{equation*}
$$

The $\mathrm{Eq}(2.26)$ is a valid approach, since in limit, as $\hat{\Theta}$ approaches Θ, η approaches the corrupting noise e. The corrupting noise e is desired to represent by a autoregressive model. The model used is
$\left[1+C\left(z^{-1}\right)\right] e(k)=\xi(k)$

Thus, the assumption is made that

$$
\begin{equation*}
\left[1+C\left(z^{-1}\right)\right] \cong\left[\frac{\left[1+A\left(z^{-1}\right)\right]\left[1+G\left(z^{-1}\right)\right]}{\left[1+F\left(z^{-1}\right)\right]}\right]^{-1} \tag{2.28}
\end{equation*}
$$

Eq(2.27) is rewritten in a vector matrix form as

$$
\begin{equation*}
e=-E C+\xi \tag{2.29}
\end{equation*}
$$

where

$$
E=\left[z^{-1} e: z^{-2} e: \ldots: z^{-m} e\right]
$$

and

$$
C^{T}=\left[\begin{array}{l:l:l:l}
C_{1} & : & C_{2} & \ldots \\
C_{m}
\end{array}\right]
$$

The least-square estimate of c is given by

$$
\begin{equation*}
C_{L S}=-\left[E^{T} E\right]^{-1} E^{T} e \tag{2.30}
\end{equation*}
$$

This estimate is unbiased, as the element of E are independent of ξ, the uncorrelated error term $\mathrm{Eq}(2.29)$.

This estimation of noise parameters allows the desired transformation of the data u and v to be made which leads in the limit, as \hat{C} approaches C, to an unbiased estimate of Θ. This can be seen by replacing the elements of u and v by

$$
\begin{equation*}
u^{F}(k)=\left[1+C\left(z^{-1}\right)\right] u(k) \tag{2.31}
\end{equation*}
$$

$$
v^{F}(k)=\left[1+C\left(z^{-1}\right)\right] v(k)
$$

Eq(2.19) can be written using Eq(2.30),

$$
\begin{equation*}
\left[1+A\left(z^{-1}\right)\right] v^{F}(k)=z^{-k} B\left(z^{-1}\right) u^{F}(k)+\xi(k) \tag{2.32}
\end{equation*}
$$

because of Eq(2.29).

Eq(2.32) is rewritten in vector form

$$
\begin{equation*}
\mathrm{v}^{\mathbf{F}}=\mathrm{X}^{\mathbf{F}} \Theta+\xi \tag{2.33}
\end{equation*}
$$

where X^{F} is the regression matrix of filtered data, is written in notation form by

$$
X^{F T}=\left[-z^{-1} v^{F}:-z^{-2} v^{F}: \ldots:-z^{-n} v^{F}: i z^{-1-1} u^{F}: \ldots i z^{-n-1} u^{F}\right]
$$

An unbiased estimate of Θ is now available as

$$
\begin{equation*}
\Theta=\left[X^{F T} X^{F}\right]^{-1} X^{F T} v^{F} \tag{2.34}
\end{equation*}
$$

Thus, by obtaining a least-square estimate of Θ to start the procedure with $\mathrm{Eq}(2.22)$ and then iterating between the estimates of the noise and process parameters \hat{C} and $\hat{\Theta}$, using Eqs(2.26), (2.30), (2.31) and (2.34), unbiased estimates of the system parameters can be obtained. The iteration is continued until the minimum error is achieved.

$$
u^{F} \text { and } v^{F} \text { are described as }
$$

$$
\begin{align*}
& u_{N+1}^{\mathrm{F}}=\left[1+C\left(z^{-1}\right)\right] u_{\mathrm{N}+1} \tag{2.35}\\
& \mathbf{v}_{\mathrm{N}+1}^{\mathrm{F}}=\left[1+C\left(z^{-1}\right)\right] v_{\mathrm{N}+1}
\end{align*}
$$

for recursive estimation.

The effect of the new data on the present process parameter estimate $\hat{\Theta}$ can be seen by writing $\operatorname{Eq}(2.33)$ in the partitioned form.

$$
\left[\begin{array}{l}
v^{F} \tag{2.36}\\
u_{N+1}^{F}
\end{array}\right]=\left[\begin{array}{l}
X^{F} \\
\chi_{N+1}^{F T}
\end{array}\right] \Theta+\left[\begin{array}{l}
\xi \\
\xi_{N+1}
\end{array}\right]
$$

$$
\chi_{N+1}^{F T}=\left[-v_{N}^{F}:-z^{-1} v_{N}^{F}: \ldots:-z^{-n} v_{N}^{F}:: z^{-1} u_{N}^{F}: \ldots: z^{-n-1} u_{N}^{F}\right]
$$

$$
\hat{\Theta}_{N+1}=\left(\left[\begin{array}{c}
X^{F} \tag{2.37}\\
\chi_{N+1}^{F T}
\end{array}\right]^{T}\left[\begin{array}{c}
X^{F} \\
\chi_{N+1}^{F T}
\end{array}\right]\right)^{-1}\left[\begin{array}{c}
X^{F} \\
\chi_{N+1}^{F T}
\end{array}\right]^{T}\left[\begin{array}{c}
v^{F} \\
v_{N+1}^{F T}
\end{array}\right]
$$

$\left[X^{T} X+\chi \chi^{T}\right]=\left[X^{T} X\right]^{-1}-\frac{\left[X^{T} X\right]^{-1} \chi \chi^{T}\left[X^{T} X\right]}{1+\chi^{F T}\left[X^{T} X\right]^{-1} \chi}$

Eq(2.38) is written according to Hasting-Sage (1969)[7]. (2.37) is rewritten with using (2.38),

$$
\begin{equation*}
\hat{\Theta}_{N+1}=\hat{\Theta}_{N}+\frac{\left[X^{F T} X\right]^{-1} \chi_{N+1}^{F}\left(v_{N+1}^{F}-\chi_{N+1}^{F T} \hat{\Theta}_{N}\right)}{1+\chi_{N+1}^{F T}\left[X^{F T} X^{F}\right]^{-1} \chi_{N+1}^{F}} \tag{2.39}
\end{equation*}
$$

Equations (2.26) and (2.29) are also rewritten as

$$
\begin{gather*}
\hat{e}_{N+1}=v_{N+1}-\chi_{N+1}^{T} \hat{\Theta}_{N+1} \tag{2.40}\\
{\left[\begin{array}{l}
\hat{e} \\
e_{N+1}^{T}
\end{array}\right]=-\left[\begin{array}{l}
E \\
\varepsilon_{N+1}^{T}
\end{array}\right] C+\left[\begin{array}{l}
\xi \\
\xi_{N+1}
\end{array}\right]} \tag{2.41}
\end{gather*}
$$

with $\varepsilon_{N+1}^{T}=\left[\begin{array}{l:l:l}e_{N} & e_{N-1}: \ldots & e_{N-M+1}\end{array}\right]$.
The recursive estimation noise parameters can be described by using (2.38).

$$
\begin{equation*}
\hat{C}_{N+1}=\hat{C}_{N}-\frac{\left[E^{T} E\right]_{N}^{-1} \varepsilon_{N+1}\left(e_{N+1}+\varepsilon_{N+1}^{T} \hat{C}_{N}\right)}{1+\varepsilon_{N+1}^{T}\left[E^{T} E\right]_{N}^{-1} \varepsilon_{N+1}} \tag{2.42}
\end{equation*}
$$

The inverse of matrices is obtained using equation (2.38)

$$
\begin{align*}
& {\left[X^{F T} X^{F}\right]_{N+1}^{-1}=\left[X^{F T} X^{F}\right]_{N}^{-1}-\frac{\left[X^{F T} X^{F}\right]_{N}^{-1} \chi_{N+1}^{F} \chi_{N+1}^{F T}\left[X^{F T} X^{F}\right]_{N}^{-1}}{1+\chi_{N+1}^{F T}\left[X^{F T} X^{F}\right]^{-1} \chi_{N+1}^{F}}} \\
& {\left[E^{T} E\right]_{N+1}^{-1}=\left[E T_{N}^{T} E\right]_{N}^{-1}-\frac{\left[E E^{T} E\right]^{-1} \varepsilon_{N+1} \varepsilon_{N+1}^{T}\left[E^{T} E\right]_{N}^{-1}}{1+\varepsilon_{N+1}^{T}\left[E^{T} E\right]_{N}^{-1} \varepsilon_{N+1}}}
\end{align*}
$$

Hasting and Sage have developed Eqs(2.39) and (2.42) by using an
exponential weighting factor. This equations have been changed with the weighting factor as seen below,

$$
\begin{align*}
& \hat{\Theta}_{N+1}=\hat{\Theta}_{N}+\frac{\left[X^{F T} X\right]_{N+1}^{-1} \chi_{N+1}\left(v_{N+1}^{F}-\chi_{N+1}^{F T} \hat{\Theta}_{N}\right)}{\rho+\chi_{N+1}^{F T}\left[X^{F T} X^{F}\right]_{N+1}^{-1} \chi_{N+1}^{F}} \tag{2.45}\\
& \hat{C}_{N+1}=\hat{C}_{N}-\frac{\left[E^{T} E\right]_{N}^{-1} \varepsilon_{N+1}\left(e_{N+1}+\varepsilon_{N+1}^{T} \hat{C}_{N}\right)}{\delta+\varepsilon_{N+1}^{T}\left[E^{T} E\right]_{N}^{-1} \varepsilon_{N+1}} \tag{2.46}
\end{align*}
$$

where $0<\rho<1$ and $0<\delta<1$.
The inverse matrices are changed with the same weighting factors.
$\left[X^{F T} X^{F}\right]_{N+1}^{-1}=\frac{1}{\rho}\left(\left[X^{F T} X^{F}\right]_{N}^{-1}-\frac{\left[X^{F T} X^{F}\right]_{N}^{-1} \chi_{N+1}^{F} \chi_{N+1}^{F T}\left[X^{F T} X^{F}\right]_{N}^{-1}}{\rho+\chi_{N+1}^{F T}\left[X^{F T} X^{F}\right]^{-1} \chi_{N+1}^{F}}\right)$
(2.47)
$\left[E^{T} E\right]_{N+1}^{-1}=\frac{1}{\delta}\left(\left[E^{T} E\right]_{N}^{-1}-\frac{\left[E^{T} E\right]^{-1} \varepsilon_{N+1} \varepsilon_{N+1}^{T}\left[E^{T} E\right]^{-1}}{\delta+\varepsilon_{N+1}^{T}\left[E^{T} E\right]^{-1} \varepsilon_{N+1}}\right)$
(2.48)

Eqs $(2.35),(2.36), \quad(2.47), \quad(2.45), \quad(2.40),(2,41),(2.48)$ and
(2.46) are used for recursive estimate iterations.

2.2.3. ON-LINE MAXIMUM LIKELIHOOD METHOD

The on-line maximum likelihood identification method was
described by Aström and Bohlin [8]. It gives good estimates even when the noise level is quite high for off-line identification. Gertler and Banyasiz [9] developed an algorithm based upon maximum likelihood method for on-line identification.

The process model is assumed to be as in Fig.2.2.. Input-output relationship is thought to be as below

$$
M(z)=\frac{1}{\left(1+H\left(z^{-1}\right)\right)\left(1+D\left(z^{-1}\right)\right)}
$$

therefore

$$
y(k)=\frac{G\left(z^{-1}\right)}{1+H\left(z^{-1}\right)} u(k)+\frac{1}{\left(1+H\left(z^{-1}\right)\right)\left(1+D\left(z^{-1}\right)\right)} e(k)
$$

G, H and D are polynomials.
The parameter vector is now
$\Theta^{T}=\left[g^{T} h^{T} d^{T}\right]$

The noise is obtained

$$
e(k)=\left[1+D\left(z^{-1}\right)\right]\left\{\left[1+H\left(z^{-1}\right)\right] y(k)-G\left(z^{-1}\right) u_{k}\right\}
$$

The partial derivatives of the noise with respect to the various parameters are given by

$$
\begin{aligned}
& \frac{\partial e(k)}{\partial g_{j}}=-\left[1+D\left(z^{-1}\right)\right] z^{-j} u(k)=-u^{F}(k-j) \\
& \frac{\partial e(k)}{\partial h_{j}}=\left[1+D\left(z^{-1}\right)\right] z^{-j} y(k)=y^{F}(k-j) \\
& \frac{\partial e(k)}{\partial d_{j}}=z^{-j}\left(\left[1+H\left(z^{-1}\right)\right] y(k)-G\left(z^{-1}\right) u(k)\right)=-\mu(k-j)
\end{aligned}
$$

where

$$
\begin{aligned}
& u^{F}(k)=\left[1+D\left(z^{-1}\right)\right] u(k) \\
& y^{F}(k)=\left[1+D\left(z^{-1}\right)\right] y(k)
\end{aligned}
$$

and

$$
\mu(k)=G\left(z^{-1}\right) u(k)-\left[1+H\left(z^{-1}\right)\right] y(k)
$$

These derivatives are generated by moving-average filtering and shifting. The vector of the first noise derivatives is built up as
$\underline{V}(k)=\left[\begin{array}{c}-u_{F}^{F}(n+1) \\ y^{F}(n) \\ -u(n)\end{array}\right]$
where

$$
\underline{u}^{F}(n+1)=\left[\begin{array}{c}
u^{F}(k) \\
u^{F}(k-1) \\
\cdot \\
u^{F}(k-n)
\end{array}\right], \dot{y}^{F}(n)=\left[\begin{array}{c}
y^{F}(k+1) \\
\cdot \\
\cdot \\
y^{F}(k-n)
\end{array}\right], \underline{u}(n)=\left[\begin{array}{c}
u(k-1) \\
u(k-2) \\
\cdot \\
\dot{u}(k-n)
\end{array}\right]
$$

The nonzero second order derivatives are

$$
\begin{aligned}
& \frac{\partial^{2} e(k)}{\partial g_{j} \partial d_{m}}=-z^{-(j+m)} u(k)=-u(k-j-m) \\
& \frac{\partial^{2} e(k)}{\partial h_{k} \partial d_{m}}=z^{-(k+m)} y(k)=y(k-j-m)
\end{aligned}
$$

The second derivatives are generated simply by double shifting. The matrix of the second derivatives is

$$
W(k)=\left[\begin{array}{lc}
0 & x(k) \\
x^{T}(k) & 0
\end{array}\right]
$$

where

$$
X(k)=\left[\begin{array}{c}
-U(k-1)_{n, n+1} \\
Y(k-2)_{n, n}
\end{array}\right]
$$

and the double subscript indicates the respective number of previous consecutive values in the columns and rows of the matrix.

The on-line equivalent of the iterative equation is

$$
\hat{\Theta}(k)=\hat{\Theta}(k-1)-R^{-1}(k, n, \hat{\Theta}(k-1)) q(k, n, \hat{\Theta}(k-1))
$$

where

$$
\begin{aligned}
& q(k, N, \hat{\Theta}(k-1))=\left(\frac{\partial}{\partial \Theta^{T}}\left(e^{T}(k)_{N} e(k)_{N}\right)\right)_{\Theta=\Theta(k-1)}^{T} \\
& R(k, N, \hat{\Theta}(k-1))=\left|\frac{\partial}{\partial \Theta} q(k, N)\right|_{\Theta=\hat{\Theta}(k-1)}
\end{aligned}
$$

N indicates a vector of N previous consecutive values. Introducing conditional arguments for the sake of brevity

$$
\begin{align*}
& \hat{\Theta}(k)=\hat{\Theta}(k-1)-R^{-1}(k ; k-1, N) q(k ; k-1, N) \tag{2.49}\\
& q(k ; k-1, N)=q(k-1 ; k-2, N-1)+V(k) e(k) \tag{2.50}\\
& R(k ; k-1, N)=R(k-1 ; k-2, N-1)+V(k) V^{T}(k)+W(k) e(k) \tag{2.51}
\end{align*}
$$

Introducing a filtering factor $\lambda(0<\lambda<1)$ to suppress exponentially previous measurements, the last equations are rewritten as

$$
\begin{align*}
& q(k ; k-1, N)=\lambda q(k-1 ; k-2, N-1)+V(k) e(k) \\
& R(k ; k-1, N)=\lambda R(k-1 ; k-2, N-1)+V(k) V^{T}(k)+W(k) e(k) \tag{2.53}
\end{align*}
$$

$$
(2.52)
$$

We may use matrix inversion lemma to obtain the inverse of matrix in Eq(2.49);

$$
\begin{equation*}
R^{-1}(k ; k-1, N)=R_{I}^{-1}(k ; k-1, N)\left(I-W(k) e(k) R_{I}^{-1}(k ; k-1, N)\right) \tag{2.54}
\end{equation*}
$$

where

$$
\begin{align*}
R_{I}^{-1}= & \frac{1}{\lambda} R^{-1}(k-1 ; k-2, N-1) \\
& -\frac{R^{-1}(k-1 ; k-2, N-1) V(k) V^{T}(k) R^{-1}(k-1 ; k-2, N-1)}{\lambda+V^{T}(k) R^{-1}(k-1 ; k-2, N-1) V(k)} \tag{2.55}
\end{align*}
$$

Eqs(2.49), (2.52), (2.55) and (2.54) form is an on-line algorithm for maximum likelihood identification.

2.2.4. INSTRUMENTAL VARIABLE METHOD

This method is nearly the ordinary least-squares method. The considered system equation is taken as well as other methods.
$x(k)+a_{1} x(k-1)+\ldots+a_{m} x(k-m)=b_{1} u(k-1)+\ldots+b_{m} u(k-m)$

The measured output is

$$
\begin{equation*}
y_{k}=\Psi_{k} \Theta+v_{k} \tag{2.57}
\end{equation*}
$$

Eq(2.57) becomes to Eq(2.58) by premultiplying both side of the equation with W_{k}^{T} matrix,

$$
\begin{equation*}
W_{k}^{T} y_{k}=W_{k}^{T} \Psi_{k}^{\Theta}+W_{k}^{T} v_{k} \tag{2.58}
\end{equation*}
$$

where W is called instrument matrix which satisfies

$$
\begin{equation*}
E\left[W_{k}^{T} v_{k}\right]=0 \tag{2.59}
\end{equation*}
$$

$E\left[W_{k}^{T} \Psi_{k}\right]$ is nonsingular.

The elements of W_{k} therefore are chosen to be uncorrelated with residuals $\mathbf{v}_{\mathbf{k}}$. Then from Eq(2.57),

$$
\begin{equation*}
\hat{\Theta}_{k}=\left(W_{k}^{T} \Psi_{k}\right)^{-1} W_{k}^{T} y_{k} \tag{2.60}
\end{equation*}
$$

The main problem of this method is that of finding W_{k} matrix. The method proposed by Wong, Polak [10] and Young [11]. This is illustrated in Fig.2.3.

It consists of taking the instrumental variables as the disturbed output, h_{k}, of an auxiliary model to which the same input, u_{k}, is applied. This $\left\{h_{k}\right\}$ will be correlated with $\left\{u_{k}\right\}$ but uncorrelated with $\left\{\mathrm{n}_{\mathrm{k}}\right\}$ and, therefore, with $\left\{\mathrm{v}_{\mathrm{k}}\right\}$. The matrix W_{k} then takes the form,

$$
W_{k}=\left[\begin{array}{ccccccc}
u_{0} & u_{-1} & \cdots & u_{1-m} & -h_{d} & -h_{d-1} & \cdots \tag{2.61}\\
u_{1} & u_{0} & u_{2-m} & -h_{d+1} & -h_{d} & \cdots & -h_{d+1-n} \\
\vdots & & & & & & \\
u_{d+2-n} & u_{k-2} & u_{k-3} & -h_{d+k-1} & -h_{d+k-2} & -h_{d+k-n}
\end{array}\right]
$$

A recursive algorithm of $\mathrm{Eq}(2.60)$ is obtained analogous to Eqs(2.17) and (2.18).

$$
\begin{align*}
\hat{\Theta}(k+1)=\Theta(k)+ & {\left[\Psi(k+1) P(k) w^{T}(k+1)+1\right]^{-1} } \\
& * p(k) W^{T}(k+1)[y(k+1)-\Psi(k+1) \hat{\Theta}(k)] \tag{2.62}
\end{align*}
$$

$$
\begin{align*}
& P(k+1)=P(k)\left(I-\Psi(k) W^{T}(k+1) P(k)\left[\Psi(k+1) P(k) w^{T}(k+1)+1\right]^{-1}\right) \tag{2.63}\\
& P(k)=[W(k) \Psi(k)]^{-1} \tag{2.64}\\
& W(k)=\left[u_{k-1} u_{k-2} \ldots u_{k-m}-h_{k-d-1}-h_{k-d-\dot{2}} \quad-h_{k-d-n}\right] \tag{2.65}
\end{align*}
$$

Then, Young (1972) [12] introduced a time delay and low-pass filter before updating the auxiliary model, to ensure that the auxiliary model parameters are not correlated with $v(k)$ at the same instant and to smooth the estimates. This low-pass may be of the form

$$
\begin{equation*}
\hat{\Theta}_{\mathrm{aux}}(k)=(1-v) \hat{\Theta}_{\mathrm{aux}}(k-1)+v \hat{\Theta}(k) \tag{2.66}
\end{equation*}
$$

where $v=0.03$ to 0.05 has to be chosen to prevent instability in the estimation. The initial matrix $P(0)$ can be chosen as a diagonal matrix with elements as large as possible. The initial values of the parameter vector $\hat{\Theta}(0)$ of the model and of $\hat{\Theta}(0)$ aux of the auxiliary model can be zero. A new block diagram of the method is shown in Fig. 2. 4.

2.2.5. IDENTIFICATION OF LINEAR MULTIVARIABLE SYSTEMS

A multivariable system can be represented by some types of models. Generally, the state-space model is considered, because it may be transformed to the continuous time model in the next step. The state-space model can be definition by the equations

$$
\underline{x}(k+1)=F \underline{x}(k)+G \underline{u}(k)
$$

(2.67)

$$
\underline{y}(k)=H \underline{x}(k)
$$

where $x(k)$ is n dimensional state vector F, G and H are $n \times n, n \times m$ and $p \times n$ constant matrices, respectively.

The total number of the parameters of the matrices F, G, and H are

$$
N=n(n+m+p)
$$

The identification of the matrices F, G and H are not unique. Several canonical forms of the state-space have been developed for the identification purpose. The linear multivariable system identification in the state-space form is much more difficult. Budin (1971) [13] has proposed a method for the realization of the system with minimum calculation. The system equation is rewritten for explanation of this method.

$$
x(k+1)=\left[\begin{array}{ll}
F, & G
\end{array}\right]\left[\begin{array}{l}
x(k) \tag{2.68}\\
u(k)
\end{array}\right]
$$

$y(k)=H x(k)$

If H is identity matrix $y(k)=x(k)$, equation (2.68) becomes

$$
y(k+1)=\left[\begin{array}{lll}
F, & G
\end{array}\right]\left[\begin{array}{l}
x(k) \tag{2.69}\\
u(k)
\end{array}\right]
$$

F and G can be obtained only if both sides' dimensions are the same. In this condition equation(2.69) can be rewritten

$$
\sum_{k=1}^{N}[y(k+1) \ldots y(k+n+m)]=[F, G] \sum_{k=1}^{N}\left[\begin{array}{lll}
y(k) & \ldots & y(k+n+m-1) \tag{2.70}\\
u(k) & \ldots & u(k+n+m-1)
\end{array}\right]
$$

F and G that can be solved equation(2.70), are not state-vector. They are for input-output form. Firstly, the selector matrix must be introduced for state-space form.

A selector matrix S is a ($k \times \ell$) matrix ($k \leq \ell$) with the property that when multiplying an $(\ell \times m)$ matrix A the resulting ($k \times m$) matrix $S A$ consist of k of the rows of A ordered as they are in A. From this definition it follows that;

1) $s_{i j}=0$ or $1, \quad \forall i, j$;
2) $\forall i$, there is one only one value of j, j_{i} such that
$S_{i j_{i}}=1$
3) $j_{1}<j_{2}<\ldots<j_{k}$.

It also follows that if a $p \times q$ matrix R has rank m then there are two selector matrices $S_{1}(a n m \times p)$ and $S_{2}($ an $m \times q)$ such that $S_{1} R S_{2}^{T}$ is nonsingular. If $m=q$ then $S_{2}=I$ and if $m=p$ then
$S_{1}=I$.

The notation $S\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ is used to specify the selector matrix which deletes the rows $i_{1}, i_{2}, \ldots, i_{k}$ from the matrix it multiplies.

Budin has also shown that for a completely observable system there exists an $n \times n^{*} p\left(n^{*}=n-\right.$ rank of $\left.H+1\right)$ selector matrix, S, such that

$$
\begin{equation*}
\mathrm{SW}=\mathrm{T} \tag{2.71}
\end{equation*}
$$

is nonsingular, where W is the observability matrix of the system. It can be assumed that $T=I$ since a linear transformation of the state vector will not effect the input-output description.

Using any selector matrix that satisfies equation(2.71), the following direct input-output relation for a completely observable system is obtained.

$$
\operatorname{Sy}_{n^{*}}(k+1)=[F, R]\left[\begin{array}{c}
S_{y_{y}}(k) \tag{2.72}\\
\bar{u}_{n^{*}}(k)
\end{array}\right]
$$

where

$$
\begin{equation*}
\bar{y}_{n^{*}}(k)=\left[y^{T}(k), y^{T}(k+1), \ldots, y^{T}\left(k+n^{*}-1\right)\right] \tag{2.73}
\end{equation*}
$$

$$
\begin{array}{r}
\bar{u}_{n^{*}}(k)=\left[u^{T}(k), u^{T}(k+1), \ldots, u^{T}\left(k+n^{*}-1\right)\right] \tag{2.74}\\
\mathrm{R}=-\operatorname{FSS}\left(p n^{*}+1, p n^{*}+2, \ldots, \ldots p n^{*}+p\right) R_{n^{*}}^{*} \\
+\operatorname{SS}(1,2, \ldots, \ldots) R_{n^{*}}
\end{array}
$$

(2.75)

(2.76)

Using equation(2.72), we have

$$
\begin{aligned}
& \mathrm{S}\left[\mathrm{y}_{n^{*}}(\mathrm{k}+1) \cdots^{*} \mathrm{y}_{n^{*}}(\mathrm{k}+n+m n)\right]=
\end{aligned}
$$

which can be written more compactly as

$$
\mathrm{SA}_{n}^{*}(\mathrm{k}+1)=\left[\begin{array}{llll}
\mathrm{F} & \mathrm{R} \tag{2.78}
\end{array}\right] \varphi_{\mathrm{n}^{*}}(\mathrm{k})
$$

where the correspondence is obvious. φ is an $\left(m n^{*}+n\right) \times(m+p) n^{*}$ selector matrix. A unique solution for $[F ; R]$ exits whenever
$\mathscr{S}_{n^{*}}(\mathrm{k})$ is nonsingular. Budin has proved that $\mathrm{B}_{n}{ }_{n}(\mathrm{k})$ must have rank $n+m n^{*}$ for $\varphi_{G^{*}}(k)$ to be nonsingular.

This method is applied using the following steps :

1) Construct the $\mathrm{B}_{\mathrm{N}^{*}}(\mathrm{k})$ matrix, where $\mathrm{N}^{*}=\mathrm{N}+1$ - rank of H , and N is upper upper bound of minimal dimension. $\mathrm{B}_{\mathrm{N}^{*}}(\mathrm{k})$ is given by

$$
\mathrm{B}_{\mathrm{N}^{*}}(k)=\left[\begin{array}{cccc}
\underline{u}(k) & \ldots & \ldots & \ldots \\
\underline{y}(k) & \ldots & \ldots & \ldots \\
\vdots & \ldots & \dot{y}\left(k+n+m N^{*}-1\right) \\
\vdots & \vdots & & \\
\underline{u}\left(k+N^{*}-1\right) & \ldots & \underline{u}\left(k+m+m N^{*}-1\right) \\
\underline{y}(k) & \ldots & \ldots & \ldots \\
y & \underline{y}\left(k+n+m N^{*}+N^{*}-2\right)
\end{array}\right]
$$

2) Obtain $\mathbb{S}_{1}\left[\mathrm{~B}_{\mathrm{N}^{*}}(\mathrm{k})\right.$] The $m \mathrm{~N}^{*}$ rows of $\mathrm{B}_{\mathrm{N}}{ }^{*}(\mathrm{k})$ consisting of input observations will be among the independent rows, and m of the first of $p n^{*}$ rows of $B_{N}{ }^{*}(k)$ consisting of output observations will complete the set of the independent rows.
3) Determine the order of the minimal realization is given by
$\mathrm{n}=$ number of the independent rows of $\mathrm{S}_{1}\left[\mathrm{~B}_{\mathrm{N}}{ }^{*}(\mathrm{k})\right]-\mathrm{mN}{ }^{*}$
4) Construct the $\left(p n^{*} \times n\right)$ submatrix K of $S_{1}\left[B_{N}{ }^{*}(k)\right]$ consisting of the first $p n^{*}$ output rows and first n columns not containing 1 's associated input rows.
$S=K^{T}$
5) Construct the matrices $A_{n}{ }^{*}(k+1), B_{n}^{*(k)}$ and φ and obtain F from the equation.
$[\mathrm{F}: \mathrm{R}]=\mathrm{SA}_{n} *(\mathrm{k}+1)\left[\varphi_{\mathrm{B}_{n}}^{*}(\mathrm{k})\right]^{-1}$
6) Obtain G from the equation
$G=R_{0}+F R_{1}+\ldots+F^{n^{*}-1} R_{n-1}^{*}$
$R=\left[\begin{array}{llll}R_{0} & R_{i}\end{array} \ldots R_{n-1}^{*}\right]$

2.3. ON-LINE IDENTIFICATION METHODS FOR CONTINUOUS-TIME MODEL

2.3.1. INDIRECT METHODS

To obtain a continuous-time model from discrete-time, equivalents have been introduced for economical research. The indirect method via discrete-time model identification has also attracted some attention in control theory. Sinha (1973) [14] has obtained a continuous-time model from the equivalent discrete-time model by using bilinear z transform. More recently Sinha and Lastman (1981) [15] have proposed a transformation algorithm from discrete-time model to continuous time model.

A linear continuous-time system is described by the equation,
$\dot{\mathrm{x}}=\mathrm{Ax}+\mathrm{Bu}$
$y=C x+w(t)$

The identification of A, B and C are determined samples $u(k T)$ and
$y(k T)$ of the measured input and output vectors. The equivalent discrete-time model of $\mathrm{Eq}(2.67)$ is given by

$$
\begin{aligned}
& x(k+1)=F x(k)+G u(k) \\
& y(k)=C x(k)
\end{aligned}
$$

where

$$
\begin{align*}
& F=e^{A T}=I+A T+\frac{1}{2!}(A T)^{2}+\frac{1}{3!}(A T)^{3}+\ldots \tag{2.81}\\
& G=\int_{0}^{T} e^{A T} B d t=\left(I T+\frac{1}{2!} A T^{2}+\frac{1}{3!} A^{2} T^{3}+\ldots\right) B \tag{2.82}
\end{align*}
$$

It will be assumed that the sampling rate is satisfactory and the spectral norm of AT satisfied the following inequality;

$$
\begin{equation*}
|\lambda T| \leq 0.5 \tag{2.83}
\end{equation*}
$$

where λ is the eigenvalue of the continuous-time system farthest away from the origin of the complex plane.

The Sinha \& Lastman transformation algorithm which was mentioned, is given by

$$
\begin{align*}
(A T)^{(k+1)} & =(A T)^{k}+F^{-1}\left(F-F^{(k)}\right) \\
& =(A T)^{k}+I-F^{-1} F^{(k)} \tag{2.84}
\end{align*}
$$

where (AT) ${ }^{\mathbf{k}}$ is the value of $A T$ at k th iteration and

$$
\begin{equation*}
F^{(k)}=e^{(A T)^{(k)}} \tag{2.85}
\end{equation*}
$$

which can be calculated using the power series similar to Eq(2.81). This method requires that the spectral radius of $A T$ and F be less than one. Eq(2.83) is enough for both this conditions.

Initial guess can be taken

$$
\begin{equation*}
(A T)^{0}=\frac{1}{2}\left(F-F^{-1}\right) \tag{2.86}
\end{equation*}
$$

After AT has been obtained, the matrix b can be obtained from the relationship

$$
\begin{equation*}
B=R^{-1} G \tag{2.87}
\end{equation*}
$$

where

$$
\begin{equation*}
R=\left[I+\frac{1}{2!} A T+\frac{1}{3!}(A T)^{2}+\ldots\right] T \tag{2.88}
\end{equation*}
$$

This algorithm is best shown by an example;

$$
A=\left[\begin{array}{rrr}
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & -2 & -3
\end{array}\right] \quad \text { and } \quad T=0.1
$$

$$
\lambda_{1}=-0.22324
$$

$\lambda_{2,3}=-0.0338 \mp \mathrm{j} 0.0562$

$$
F=e^{A T}=\left[\begin{array}{rrr}
0.99984527 & 0.09968661 & 0.00452788 \\
-0.00452788 & 0.99078950 & 0.08610296 \\
-0.08610926 & -0.17673381 & 0.73248062
\end{array}\right]
$$

$$
\mathrm{F}^{-1}=\left[\begin{array}{rrr}
1.00017977 & -0.09964488 & 0.00553055 \\
-0.00553055 & 0.98911866 & -0.11623654 \\
0.11623654 & 0.22694252 & 1.33782828
\end{array}\right]
$$

$$
(A T)^{0}=\frac{1}{2}\left(F-F^{-1}\right)
$$

$$
(\mathrm{AT})^{0}=\left[\begin{array}{rrr}
-0.00016725 & 0.99665748 & -0.00050133 \\
0.00050133 & 0.00083541 & 0.10116975 \\
-1.01169753 & -0.21018381 & -0.30267384
\end{array}\right]
$$

$$
(\mathrm{AT})^{1}=(\mathrm{AT})^{0}+I-\mathrm{F}^{-1} \mathrm{~F}^{0}
$$

$$
F^{0}=e^{(A T)^{0}}
$$

$$
F^{0}=\left[\begin{array}{rrr}
0.99971053 & 0.09940703 & 0.00410266 \\
-0.00410266 & 0.99150520 & 0.08709903 \\
-0.08709903 & -0.17830073 & 0.73020810
\end{array}\right]
$$

$(A T)^{1}=\left[\begin{array}{rrr}0.00001538 & 0.10002553 & 0.00003577 \\ -0.00003577 & -0.00005617 & 0.09991802 \\ -0.09991802 & -0.19998718 & -0.29998102\end{array}\right]$
$F^{1}=\left[\begin{array}{rrr}0.99845551 & 0.09968705 & 0.00452853 \\ -0.04528531 & 0.99078848 & 0.08610146 \\ -0.08610146 & -0.17673145 & 0.73248441\end{array}\right]$
$(A T)^{2}=\left[\begin{array}{rrr}0.00001503 & 0.10002481 & 0.00003495 \\ -0.00003495 & -0.00005488 & 0.09991993 \\ -0.09991993 & -0.19987482 & -0.29981468\end{array}\right]$

The maximum error which can be shown, is less than 10^{-3}.

All discrete-time identification methods which are appropriate for the system, can be used to obtain discrete-time model for transformation to the continuous-time model.

When F is taken below, AT is calculated and given by

$$
\begin{aligned}
F & =\left[\begin{array}{rrr}
0.9950 & 0.09990 & 0.00450 \\
-0.0045 & 0.99500 & 0.08630 \\
-0.0860 & -0.17700 & 0.73000
\end{array}\right] \\
\text { AT } & =\left[\begin{array}{rrr}
0.0054 & 0.0998 & -0.0470 \\
-0.0001 & 0.0036 & 0.1001 \\
-0.1002 & -0.1532 & -0.3062
\end{array}\right]
\end{aligned}
$$

2.3.2. DIRECT METHOD

Some identification methods of continuous-time have been suggested for the calculation of the parameters, directly. In this study, the quasilinearisation approach method is considered because
of more accuracy.

2.3.2.1. QUASILINEARIZATION

The quasilinearization approach was first introduced by BELLMAN and KALABA [16], [17] for solving boundary value problems arising in nonlinear differential equation. Its application to the identification of parameters of nonlinear systems is mainly due to Kumar and Sridhar, Sage and Eisenberg [18], [19], [20], Detchmond and Shridar [21].

Quasilinearization is in essence a method for transforming a nonlinear multi-point boundary value problem which is basically stationary into a linear nonstationary such problem. It is applicable to continuous and to discrete process. The quasilinearization approach is of an iterative nature and requires no special inputs, this being suitable for on-line application.

Consider a vector differential equation

$$
\begin{equation*}
\dot{x}=f(x, a, u, t) \quad t_{0} \leq t \leq t_{T} \tag{2.89}
\end{equation*}
$$

be given with boundary condition.

$$
\begin{aligned}
& \left\langle a\left(t_{i}\right), x\left(t_{i}\right)>=b_{i} \quad \mathbf{i}=1,2, \ldots, n\right. \\
& t_{0} \leq t_{1} \leq t_{2} \leq \ldots \leq t_{T}
\end{aligned}
$$

where a is an unknown parameter, x is the state variable and b is the known initial condition. It is assumed that (2.89) and (2.90) have a unique solution on $\left(t_{0}, t_{T}\right)$.

Consider the parameter a to be a function of time that satisfies the differential equation

$$
\begin{equation*}
\dot{\mathrm{a}}=0 \tag{2.91}
\end{equation*}
$$

Let $x_{0}(t)$ be an initial guess to solution of (2.89) on [t_{0}, t_{T}]. Eq(2.89) is linearized around the k th approximation by expanding the function f in a Taylor series and retaining only the linear terms. The $(k+1)$ st approximation is

$$
\begin{equation*}
\dot{x}_{k+1}=f\left(x_{k}\right)+J\left(x_{k}\right)\left(x_{k+1}-x_{k}\right) \tag{2.92}
\end{equation*}
$$

where $J(x)$ is the Jacobian matrix with elements

$$
\begin{equation*}
\underset{i}{J}=\frac{\partial f_{i}}{\partial x_{j}} \tag{2.93}
\end{equation*}
$$

The components of the initial approximation vector $x_{0}(t)$ constants, suitably chosen function of time, polynomials in t, etc. The first approximation $x_{1}(t)$ is obtained as a solution of

$$
\begin{equation*}
\dot{x}_{1}=f\left(x_{0}, t\right)+J\left(f\left(x_{0}, t\right)\right)\left(x_{1}-x_{0}\right) \tag{2.94}
\end{equation*}
$$

$$
\begin{equation*}
=J\left(f\left(x_{0}, t\right)\right) x_{1}+f\left(x_{0}, t\right)-J\left(f\left(x_{0}, t\right)\right) x_{0} \tag{2.95}
\end{equation*}
$$

satisfying (2.90).

Let $h(t)$ be the homogeneous solution matrix

$$
\begin{equation*}
\dot{h}=J(f(x, t)) h \tag{2.96}
\end{equation*}
$$

Let $p(t)$ be the particular solution vector of

$$
\begin{equation*}
\dot{p}=J\left(f\left(x_{0}, t\right)\right) p+f\left(x_{0}, t\right)-J\left(f\left(x_{0}, t\right)\right) x_{0} \tag{2.97}
\end{equation*}
$$

Then the solution of (2.91) is written as

$$
\begin{equation*}
x_{k+1}(t)=h(t) a_{k+1}+p(t) \tag{2.98}
\end{equation*}
$$

The unknown parameter a is calculated by minimizing the sum of Q :

$$
\begin{equation*}
Q=\sum_{i=1}^{N}\left[x\left(t_{i}, a\right)-b_{i}\right]^{2} \tag{2.99}
\end{equation*}
$$

where all variable were described with Eq(2.90). Eq(2.98) is placed into Eq(2.99), and it becomes

$$
\begin{equation*}
Q=\sum_{i=1}^{N}\left[p\left(t_{i}\right)+a_{k+1} h\left(t_{i}\right)-b_{i}\right]^{2} \tag{2.100}
\end{equation*}
$$

The condition for minimum Q is given by

$$
\begin{equation*}
\frac{\partial Q}{\partial a_{k+1}}=2 \sum_{i=1}^{N} h\left(t_{i}\right)\left[p\left(t_{i}\right)+a_{k+1} h\left(t_{i}\right)-b_{i}\right]=0 \tag{2.101}
\end{equation*}
$$

sclving for a_{k+1} gives

$$
\begin{equation*}
a_{k+1}=\frac{\sum_{i=1}^{N}\left[b_{i}-p\left(t_{i}\right)\right] h\left(t_{i}\right)}{\sum_{i=1}^{N} h^{2}\left(t_{i}\right)} \tag{2.102}
\end{equation*}
$$

When the observable value is c, the initial conditions can be taken as below,
$x(0)=c$
$p(0)=c$
$H(0)=0$
p and h are integrated and stored from $t=0$ to $t=t$. The unknown parameter a_{k+1} is solved by using Eq(2.102). This iteration is repeated until a_{k} approaches a_{k+1}.

The equations (2.90) to (2.102) are for the first order system. For higher order system, however, state vector replaces by state variable and unknown parameters vector is found as seen

$$
\begin{align*}
& {[a]_{k+1}=\left(\sum_{i=1}^{N}[h(t)]^{T}[h(t)]\right)^{-1} } \\
& \sum_{i=1}^{N}\left[h\left(t_{i}\right)\right]^{T}\left\{\left[b\left(t_{i}\right)\right]-\left[p\left(t_{i}\right)\right]\right\} \tag{2.103}
\end{align*}
$$

J.K.M.MacCORMAC [22] has approached that calculation by using Newton-Raphson algorithm. In this method, a particular system which has same structure with actual system, is chosen. It is represented by

$$
\begin{equation*}
p(t)=g(p, \hat{a}, u, t) \tag{2.104}
\end{equation*}
$$

The particular system initial condition has to be equal to the actual system initial condition and integrated from initial time t_{0} to the next observed time or to the desired time t_{T}. The actual system result is achievied by adding the product of the homogeneous system result and quantity constant to the particular system result. For this operation, the homogeneous system is described by the Jacobian of the particular system. It can be written by

$$
\begin{equation*}
\dot{h}(t)=J[g(p, \hat{a}, u, t)] h \tag{2.105}
\end{equation*}
$$

The homogeneous system initial condition is zero because the particular system initial condition is same as the actual system. The homogeneous system is integrated between boundary of particular
system. The results of integrations is given

$$
\begin{equation*}
x_{k+1}\left(t_{T}\right)=p\left(t_{T}\right)+c_{k+1} h\left(t_{T}\right) \tag{2.106}
\end{equation*}
$$

where c is called quantity constant. The next step particular parameter is obtained:

$$
\begin{equation*}
\hat{a}_{k+1}=\hat{a}_{k}+c_{k+1} \tag{2.107}
\end{equation*}
$$

The unknown quantity constant can be solved from Eq(2.106) in reference [22]. It gives
$c=\frac{x_{k+1}\left(t_{T}\right)-p\left(t_{T}\right)}{h\left(t_{T}\right)}$
c is placed in to Eq(2.107):
$\hat{a}_{k+1}=\hat{a}_{k}+\frac{x_{k+1}\left(t_{T}\right)-p\left(t_{T}\right)}{h\left(t_{T}\right)}$
J.K.M.MacCORMAC has also shown that this method approaches the actual value in the second iteration. Eq(2.109) can be changed for the identification of higher order system:

$$
\begin{equation*}
[\hat{a}]_{k+1}=[\hat{a}]_{k}+\left[h\left(t_{T}\right)\right]^{-1}\left\{\left[x\left(t_{T}\right)\right]-\left[p\left(t_{T}\right)\right]\right\} \tag{2.110}
\end{equation*}
$$

The calculation of quantity constant has been developed for a system with noise present by approaching Eq(2.102) that has improved by KALABA (1983) [23]. In this situation, equation(2.108) becomes:

$$
c_{k+1}=\frac{\sum_{i=1}^{N}\left[b_{i}-p\left(t_{i}\right)\right] h\left(t_{i}\right)}{\sum_{i=1}^{N} h_{i}^{2}(t)}
$$

It is changed for higher order system,
$\left[\begin{array}{lll}c &]_{k+1} & =\left(\sum_{i=1}^{N}\left[h\left(t_{i}\right)\right]^{T}\left[h\left(t_{i}\right)\right]\right)^{-1}, ~\end{array}\right.$

$$
\begin{equation*}
\sum_{i=1}^{N}\left[h\left(t_{i}\right)\right]^{T}\left\{\left[b\left(t_{i}\right)\right]-\left[p\left(t_{i}\right)\right]\right\} \tag{2.111}
\end{equation*}
$$

This method is explained further with following application.

2.3.2.1.1. THE APPLICATION OF TIME-INVARIANT SYSTEM

Considered system can be taken by

$$
\begin{align*}
& \dot{x}=A x+B u \tag{2.112}\\
& \dot{x}=f(x, a)
\end{align*}
$$

The system may be canonical form or another form, but the state variable must be observed. The controllable canonical form was chosen for the explanation. Another form will be discussed in the next chapters. When the system equation is written in the notation
form.

$$
\left[\begin{array}{l}
x_{1} \\
\dot{x}_{2} \\
\dot{x}_{n}
\end{array}\right]=\left[\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
& & & & \\
-a_{1} & -a_{2} & -a_{3} & \ldots & -a_{n}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{n}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
a_{1}
\end{array}\right] \begin{aligned}
& \text { (2.113) } \\
& u
\end{aligned}
$$

$$
\begin{align*}
& f_{1}=\dot{x}_{1}=x_{2} \\
& f_{2}=\dot{x}_{2}=x_{3} \tag{2.114}
\end{align*}
$$

$$
f_{n}=\dot{x}_{n}=-a_{1} x_{1}-a_{2} x_{2}-\ldots-a_{n} x_{n}+a_{1} u
$$

$$
\dot{a}_{1}=0
$$

$$
\dot{a}_{2}=0
$$

$$
\dot{a}_{\mathrm{n}}=0
$$

The Jacobian matrix from the definition (2.93)

$$
J=\left[\begin{array}{ccccc:cccc}
0 & 1 & 0 & \ldots & 0 & : & 0 & 0 & \ldots \tag{2.115}\\
0 & 0 & 0 & \ldots & 0 & : & 0 & 0 & \ldots \\
0 \\
\cdot & & & & & & & 0 \\
\cdot & & & & & & & 0 \\
-a_{1} & -a_{2} & -a_{3} & \ldots & -a_{n} & \left(u-x_{1}\right) & -x_{2} & \ldots & -x_{n} \\
\hdashline & & & & & : & & \\
& & & & : & 0 & \\
& & & & : & &
\end{array}\right]
$$

Equation (2.92) can be rewritten

$$
\begin{aligned}
& +f\left(x_{N}\right)
\end{aligned}
$$

The particular system can be chosen as below,

$$
\left[\begin{array}{c}
\dot{p}_{1} \\
\dot{p}_{2} \\
\cdot \\
\cdot \\
\cdot \\
\dot{p}_{n}
\end{array}\right]=\left[\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & & 0 \\
\cdot & & & & \cdot \\
\cdot & & & & \cdot \\
\cdot & & & & \cdot \\
-\hat{a}_{1} & -\hat{a}_{2} & -\hat{a}_{3} & \ldots & -\hat{a}_{n}
\end{array}\right]\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\cdot \\
\cdot \\
\cdot \\
p_{n}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
\cdot \\
\cdot \\
\cdot \\
a_{1}
\end{array}\right] u(t)
$$

The initial conditions are
$[p(t)]=[x(t)]=[b(t)]$.
Homogeneous systems are

$$
\begin{aligned}
& {\left[\begin{array}{c}
\dot{h}_{1} \\
\dot{h}_{2} \\
\cdot \\
\cdot \\
\vdots \\
h_{n}
\end{array}\right]_{1}=\left[\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & & 0 \\
\cdot & & & & \cdot \\
\cdot & & & & \cdot \\
\cdot \hat{a}_{1} & -\hat{a}_{2} & -\hat{a}_{3} & \ldots & -\hat{a}_{n}
\end{array}\right]\left[\begin{array}{c}
h_{1} \\
h_{2} \\
\cdot \\
\cdot \\
h_{n}
\end{array}\right]_{1}+\left[\begin{array}{c}
0 \\
0 \\
\cdot \\
\cdot \\
u-x_{1}
\end{array}\right]} \\
& {\left[\begin{array}{c}
\dot{h}_{1} \\
\cdot h_{2} \\
\cdot \\
\cdot \\
h_{n}
\end{array}\right]_{2}=\left[\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & & 0 \\
\cdot & & & & \cdot \\
\cdot & & & & \cdot \\
\cdot \hat{a}_{1} & -\hat{a}_{2} & -\hat{a}_{3} & \ldots & -\hat{a}_{n}
\end{array}\right]\left[\begin{array}{c}
h_{1} \\
h_{2} \\
\cdot \\
\cdot \\
\cdot \\
h_{n}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
\cdot \\
\cdot \\
\cdot \\
-x_{2}
\end{array}\right]}
\end{aligned}
$$

$$
\left[\begin{array}{c}
\dot{h}_{1} \tag{2.117}\\
\dot{h}_{2} \\
\cdot \\
\cdot \\
\vdots \\
h_{n}
\end{array}\right]_{N}\left[\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & & 0 \\
\cdot & & & & \cdot \\
\cdot & & & & \cdot \\
\cdot \hat{a}_{1} & -\hat{a}_{2} & -\hat{a}_{3} & \ldots & -\hat{a}_{n}
\end{array}\right]\left[\begin{array}{c}
h_{1} \\
h_{2} \\
\cdot \\
\cdot \\
h_{n}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
\cdot \\
-x_{n}
\end{array}\right]
$$

The considered system for application was taken as seen below,

$$
\left[\begin{array}{c}
\dot{x}_{1} \tag{2.118}\\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
3
\end{array}\right] u
$$

The state variables are observed, and represented by

$$
\left[\begin{array}{l}
b_{1} \tag{2.119}\\
\\
b_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\eta\left[\begin{array}{l}
\xi_{1} \\
\xi_{2}
\end{array}\right]
$$

where η is the amplitude of noise and $\xi_{1,2}$ are pseudo-random noises. The particular system can be described and homogeneous systems can be obtained from it as seen below:

$$
\begin{align*}
& {\left[\begin{array}{c}
\dot{p}_{1} \\
\dot{p}_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-\hat{a}_{1} & -\hat{a}_{2}
\end{array}\right]\left[\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
\hat{a}_{3}
\end{array}\right]} \\
& {\left[\begin{array}{l}
\dot{h}_{11} \\
\dot{h}_{12}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-\hat{a}_{1} & -\hat{a}_{2}
\end{array}\right]\left[\begin{array}{c}
h_{11} \\
h_{12}
\end{array}\right]+\left[\begin{array}{c}
0 \\
-x_{1}
\end{array}\right]} \tag{2.121}\\
& {\left[\begin{array}{l}
\dot{h}_{21} \\
\dot{h}_{22}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-\hat{a}_{1} & -\hat{a}_{2}
\end{array}\right]\left[\begin{array}{c}
h_{21} \\
h_{22}
\end{array}\right]+\left[\begin{array}{c}
0 \\
-x_{2}
\end{array}\right]} \\
& {\left[\begin{array}{l}
\dot{h}_{31} \\
\dot{h}_{32}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-\hat{a}_{1} & -\hat{a}_{2}
\end{array}\right]\left[\begin{array}{l}
h_{31} \\
h_{32}
\end{array}\right]+\left[\begin{array}{l}
0 \\
u
\end{array}\right]} \\
& H=\left[\begin{array}{lll}
h_{11} & h_{21} & h_{31} \\
h_{12} & h_{22} & h_{32}
\end{array}\right] \tag{2.122}
\end{align*}
$$

(2. 120)

Initial conditions are

$$
\begin{aligned}
& p_{1}\left(t_{0}\right)=x_{1}\left(t_{0}\right)=b_{1}\left(t_{0}\right) \\
& p_{2}\left(t_{0}\right)=x_{2}\left(t_{0}\right)=b_{2}\left(t_{0}\right)
\end{aligned}
$$

$$
h_{i j}\left(t_{0}\right)=0 \quad i=1, \ldots, n, j=1, \ldots, n+1
$$

The particular and homogeneous systems are integrated and replaced in Eq(2.106).

$$
\left[\begin{array}{l}
b_{1} \tag{2.123}\\
b_{2}
\end{array}\right]_{t=t_{i}}=\left[\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right]_{t=t_{i}}+\left[\begin{array}{lll}
h_{11} & h_{21} & h_{31} \\
h_{12} & h_{22} & h_{32}
\end{array}\right]_{t=t_{i}}\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]
$$

From the rank of the homogeneous matrix, it can easily be seen that it is not satisfactory to solve quantity vector. Quantity values are constant, therefore next-step solution of particular and homogeneous systems and next-step observed value are added to Eq(2.123).

$$
\left[\begin{array}{l}
b_{1}\left(t_{i}\right) \tag{2.124}\\
b_{2}\left(t_{i}\right) \\
b_{2}\left(t_{i+1}\right)
\end{array}\right]=\left[\begin{array}{l}
p_{1}\left(t_{i}\right) \\
p_{2}\left(t_{i}\right) \\
p_{2}\left(t_{i+1}\right)
\end{array}\right]+\left[\begin{array}{lll}
h_{11}\left(t_{i}\right) & h_{21}\left(t_{i}\right) & h_{31}\left(t_{i}\right) \\
h_{12}\left(t_{i}\right) & h_{22}\left(t_{i}\right) & h_{32}\left(t_{i}\right) \\
h_{12}\left(t_{i+1}\right) & h_{22}\left(t_{i+1}\right) & h_{32}\left(t_{i+1}\right)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]
$$

The second variables of the next step can be added to Eq(2.123). Because first variables depend on the previous step second variables in the system can be represented with canonical form.

The application results that are illustrated in Fig.2.5. are for the different noise amplitude. Initial particular values were
chosen:

$$
\hat{a}_{1}=\hat{a}_{3}=1, \hat{a}_{2}=8
$$

2.3.2.1.2. TIME-VARYING SYSTEM

For the identification of time varying systems it is assumed that the parameters are constant during the identification period. Therefore the identification time depends on the rate of change of the system parameters. When many samples can be taken in this time, Eq(2.111) may be used for identification. Otherwise Eq(2.101) must be used. The system used to demonstrate the method was

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-a_{1}(t) & -a_{2}(t)
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
a_{1}(t)
\end{array}\right] u
$$

Sample time was 50 milliseconds and control input was unit-step function. The particular system was

$$
\left[\begin{array}{c}
\dot{p}_{1} \tag{2.126}\\
\dot{p}_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-1 & -7
\end{array}\right]\left[\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] \mathrm{u}
$$

Results are illustrated in Fig. 2.6. with time axis.

2.4. CONCLUSION

Some discrete-time identification methods have been discussed in this chapter. It can easily be seen that all methods are for input-output model and single variable. In practice, systems will have more than one variable. The application of these methods becomes much more difficult, when the system is a multivariable.

The continuous-model algorithm results seem to be more accurate than those of the discrete-time model, when they are compared as shown by ISERMANN (1974) [24] and SARIDIS (1974) [25]. It seems to take more time because of the integration of the models, although it does produce the actual values of the system parameters in the state-space form.

The transformation algorithm from the discrete-model to continuous-model is only valid for the state-space models. Its results are very good if the identification error is zero. When the discrete-time identification result is carrying 1 or 2 percent error, it reflects more than 25 percent error on the continuoustime models.

The impression that the continuous-time model seems to take more time is not true, because the discrete-time algorithms include many matrix inversion and matrix multiplication. This is true especially
for the multivariable system where the algorithm is applied for each iteration and the result converted to the state-space form and at least it is transformed to continuous-time model. The matrix inversion takes the longest time in this operations. The continuous-time algorithm requires only one matrix inversion per iteration. The integration does not require more computation time. It can be suggested that the continuous-time algorithms preferable for on-line identification.

Fig.2.1. The block diagram of Generalized Least Square Method

Fig.2.2. The Process Model

Fig.2.3. Block diagram of Instrumental Variable Method

Fig.2.4. Block Diagram of the Istrumental Variable Method

$$
\eta=0
$$

$$
\eta=0.1
$$

Fig.2.5. The results of the identification for various noise amplitude.

$$
\eta=0.2
$$

$$
\eta=0.4
$$

Fig.2.5. (continued)

Fig.2.5. (continued)

Fig.2.5. (continued)

Fig.2.5. (concluded)

Fig.2.6. The results of the identification of time-varying parameter

Fig.2.6. The results of the identification of time-varying parameter

CHAPTER 3. AIRCRAFT DYNAMICS

3.1. INTRODUCTION

In this chapter, we will discuss equations of motion of an aircraft, stability of longitudinal dynamics and stability of lateral dynamics. First of all, we will define axes systems. In general, the axes, which are called as "body axes", are fixed in the aircraft and move with the aircraft. This is chosen as a rectangular axes $0 x y z$ where 0 is the centre of gravity of the aircraft. It is shown Fig. 3. 1.

The equations of motion of the aircraft will be determined according to the axes system. The stability of dynamics will be investigated.

To discuss all detail about the aircraft dynamics is not possible in one chapter, therefore we will try to give a summary of them and the main idea.

3.2. THE EQUATIONS OF MOTION

The Fig.3.1. is considered to explain forces, moments and motions. In Fig. 3.1., U, V, W are velocity components of the centre of gravity $O x, O y, O z$ respectively. p, q, r are the components are
angular velocity of the axes frame $0 x y z$ about $0 x, 0 y, O z$ respectively. External forces are defined along $0 x, O y, O z$ with respect X, Y, Z. The moments of external forces about $0 x, 0 y, O z$ are L, M, N respectively.
$m, I_{\mathrm{x}}, I_{\mathrm{y}}, I_{\mathrm{z}}, I_{\mathrm{xy}}, I_{\mathrm{xz}}, I_{\mathrm{yz}}$ represent the mass of the aircraft, the moments of inertia of the aircraft about $0 x, 0 y, O z$, the products of inertia with respect to $0 x y, 0 x z, 0 y z$. According to this definition, the motion of the aircraft is defined as given by

$$
\begin{array}{r}
\text { Motion parallel to } 0 x: m(\dot{U}-r V+q W)=X \\
\text { parallel to } 0 y: m(\dot{V}-p W+r U)=Y \\
\text { parallel to } 0 z: m(\dot{W}-q U+p V)=Z \tag{3.3}
\end{array}
$$

Angular motion about $O x$:

$$
\begin{align*}
& L=I_{\mathrm{x}} \dot{p}-\left(I_{\mathrm{y}}-I_{\mathrm{z}}\right) q r-I_{\mathrm{yz}}\left(q^{2}-r^{2}\right)-I_{\mathrm{zx}}(\dot{r}+p q)-I_{\mathrm{yx}}(\dot{q}-r p) \tag{3.4}\\
& M=I_{\mathrm{y}} \dot{q}-\left(I_{\mathrm{z}}-I_{\mathrm{x}}\right) r p-I_{\mathrm{zx}}\left(r^{2}-p^{2}\right)-I_{\mathrm{xy}}(\dot{p}+q r)-I_{\mathrm{yz}}(\dot{r}-p q) \tag{3.5}\\
& N=I_{\mathrm{z}} \dot{r}-\left(I_{\mathrm{x}}-I_{\mathrm{y}}\right) p q-I_{\mathrm{xy}}\left(p^{2}-q^{2}\right)-I_{\mathrm{yz}}(\dot{q}+r p)-I_{\mathrm{zx}}(\dot{p}-q r) \tag{3.6}
\end{align*}
$$

A.W. Babister [26] has shown that the second order terms can be neglected for small disturbance of a symmetric aircraft. He has also rewritten the Eqs (3.1) to (3.6) as seen below,

$$
\begin{align*}
& m\left(\dot{u}+q W_{\mathrm{e}}\right) \quad=X=X_{\mathrm{a}}+X_{g} \\
& m\left(\dot{V}-p W_{e}+r U_{e}\right)=Y=Y_{a}+Y_{g} \tag{3.8}\\
& m\left(\dot{w}-q U_{\mathrm{e}}\right) \quad=Z=Z_{\mathrm{a}}+Z_{\mathrm{g}} \\
& I_{\mathrm{xy}}=\sum \mathrm{xy} \delta m=0 \\
& I_{y z}=\sum y z \delta m=0 \\
& L_{\mathrm{a}}=I_{\mathrm{x}} \dot{p}-I_{\mathrm{zx}} \dot{r} \\
& M_{\mathrm{a}}=I_{\mathrm{y}} \dot{q} \tag{3.13}\\
& N_{\mathrm{a}}=-I_{\mathrm{zx}} \dot{p}+I_{\mathrm{z}} r \tag{3.14}
\end{align*}
$$

The angle of pitch θ, the angle of yaw ψ and the angle of bank ϕ need to be defined for the explanation of the relationship with p, q and r.
θ, ψ and ϕ can be derived with using Fig. 3.2. It assumed that the steady axes are $0 x_{0}, O y_{0}, O z_{0}$. Firstly, we rotate the axes about $O z_{0}$ in a clockwise direction (Fig. 3.2.a). ψ is defined the angle of yaw that is between $0 x_{0} y_{0} z_{0}$ axes and $0 x_{1} y_{1} z_{0}$ axes. In the second step, the axes $0 x_{1} y_{1} z_{0}$ is rotated about $0 y_{1}$ in a clockwise
direction (Fig.3.2.b). θ is called the angle of pitch that is between $0 x_{1} y_{1} z_{0}$ axes and $0 x y_{1} z_{2}$. Finally, $0 x y_{1} z_{2}$ axes is rotated about $0 x$ clockwise. ϕ is named the angle of bank (or roll) that is between $\mathrm{Oxy}_{1} z_{2}$ axes and $0 x y z$ axes.

The components of the angular velocity of the axes 0xyz have been defined p, q and r about $O x, O y, O z$ respectively. We can write the relations between the angles and the components of the angular velocity as

$$
\begin{align*}
p & =\dot{\phi}-\dot{\psi} \sin \theta \tag{3.15}\\
q & =\dot{\theta} \cos \phi+\dot{\psi} \cos \theta \sin \phi \tag{3.16}\\
r & =-\dot{\theta} \sin \phi+\dot{\psi} \cos \theta \cos \phi \tag{3.17}
\end{align*}
$$

In reference [26], second order quantities has been shown to neglect for small disturbance. According this neglecting, the Eqs (3.15) to (3.17) are rewritten ;

$$
\begin{array}{ll}
p=\dot{\phi} & \\
q=\dot{\theta} & \\
r=\dot{\psi} & \text { (rate of roll) of pitch) } \tag{3.20}\\
r & \\
\text { (rate of yaw) }
\end{array}
$$

The gravitational forces are determined by using the angle that is between $0 x$ axis and horizontal as seen in Fig.3.3.

$$
\begin{equation*}
X_{g}=m g \sin _{e}=m g_{2} \tag{3.21}
\end{equation*}
$$

$$
\begin{equation*}
Z_{g}=m g \cos _{\mathrm{e}}=m g_{1} \tag{3.22}
\end{equation*}
$$

The aerodynamic forces and moments cause to change the incidence and velocity components of the aircraft. Therefore, the equations of the response of the aerodynamic forces and moments can be written for small disturbances by using the component of the velocity of the aircraft without second order term as seen below,

$$
\begin{equation*}
M_{\mathrm{a}}=\stackrel{\circ}{M}_{\mathrm{u}} u+\stackrel{\circ}{M}_{\mathrm{v}} v+\stackrel{\circ}{M}_{\mathrm{w}} w+\stackrel{\circ}{M}_{\dot{w}}^{\dot{w}}+\stackrel{\circ}{M}_{\mathrm{p}} p+\stackrel{\circ}{M}_{\mathrm{q}} q+\stackrel{\circ}{M}_{\mathbf{r}} r+\stackrel{\circ}{M}(t) \tag{3.27}
\end{equation*}
$$

$$
\begin{equation*}
N_{\mathrm{a}}=\stackrel{\circ}{N}_{\mathrm{u}} u+\stackrel{\circ}{N}_{\mathrm{v}} v+\stackrel{\circ}{N}_{\mathrm{w}} \mathrm{w}+\stackrel{\circ}{N} \cdot \dot{\mathrm{w}}+\stackrel{\circ}{N}_{\mathrm{p}} p+\stackrel{\circ}{N}_{\mathrm{q}} q+\stackrel{\circ}{\mathrm{N}}_{\mathrm{r}} r+\stackrel{\circ}{N}(t) \tag{3.28}
\end{equation*}
$$

The coefficient of the components in Eqs(3.23) to (3.28) are called aerodynamic derivatives which are given in the list of symbols. $\stackrel{\circ}{X}_{a e}, \stackrel{\circ}{Y}_{a e}, \AA_{a e}$ are the steady state values of X_{a}, Y_{a}, Z_{a}. In the equations (3.23) to (3.25),

$$
\begin{align*}
& Y_{a}=\stackrel{\circ}{Y}_{a e}+\stackrel{\circ}{Y}_{u} u+\stackrel{\circ}{Y}_{v} v+\stackrel{\circ}{Y}_{w} w+\stackrel{\circ}{Y}_{\mathbf{w}} \dot{W}+\stackrel{\circ}{Y}_{p} p+\stackrel{\circ}{Y}_{q} q+\stackrel{\circ}{Y}_{r} r+\stackrel{\circ}{Y}^{(}(t) \tag{3.24}
\end{align*}
$$

$$
\begin{align*}
& \stackrel{\circ}{\mathrm{X}}_{\mathrm{ae}}=m g \sin _{\mathrm{e}} \tag{3.29}\\
& \stackrel{\circ}{\mathrm{Z}}_{\mathrm{ae}}=-m g \cos _{\mathrm{e}} \tag{3.30}\\
& \stackrel{\circ}{Y}_{\mathrm{ae}}=0 \tag{3.31}
\end{align*}
$$

In reference [26], it has been shown that a symmetric disturbance can not cause an asymmetric reaction in the steady rectilinear flight with no roll or yaw. In this condition $\stackrel{\circ}{Y}_{u}, \stackrel{\circ}{Y}_{\mathbf{u}}$, $\stackrel{\circ}{Y}_{\mathbf{w}}, \stackrel{\circ}{Y}_{q}, \stackrel{\circ}{L}_{\mathbf{u}}, \stackrel{\circ}{L}_{w}, \stackrel{\circ}{L}_{\dot{w}}, \stackrel{\circ}{L}_{q}, \stackrel{\circ}{N}_{\mathbf{u}}, \stackrel{\circ}{N}_{w}, \stackrel{\circ}{N}_{\mathbf{w}}$ and $\stackrel{\circ}{N}_{q}$ must all be zero. It has also shown that all symmetric forces and moments arising from asymmetric disturbances such as sideslip, rate of roll and rate of yaw are zero, when the second order terms are neglected. Therefore, $\stackrel{\circ}{X}_{v}, \stackrel{\circ}{X}_{p}, \stackrel{\circ}{X}_{r}, \stackrel{\circ}{M}_{v}, \stackrel{\circ}{M}_{p}, \stackrel{\circ}{M}_{r}, \stackrel{\circ}{Z}_{v}, \stackrel{\circ}{Z}_{p}$ and $\stackrel{\circ}{Z}_{r}$ are all zero, We can now rewrite Eqs (3.23) to (3.28),

$$
\begin{align*}
& X_{a}=\stackrel{\circ}{X}_{a e}^{\circ}+\stackrel{\circ}{X}_{u} u+\stackrel{\circ}{X}_{w} w+\stackrel{\circ}{X}_{\dot{w}} \cdot \dot{W}+\stackrel{\circ}{X}_{q} q+\stackrel{\circ}{X}(t) \tag{3.32}\\
& Y_{a}=\stackrel{\circ}{Y}_{a e}+\stackrel{\circ}{Y}_{u} u+\stackrel{\circ}{Y}_{w} w+\stackrel{\circ}{Y}_{\mathbf{w}} \dot{W}^{+} \stackrel{\circ}{Y}_{q} q+\stackrel{\circ}{Y}(t) \tag{3.33}
\end{align*}
$$

$$
\begin{align*}
& L_{\mathrm{a}}=\stackrel{\circ}{L}_{\mathrm{v}} v+\stackrel{\circ}{\mathrm{L}}_{\mathrm{p}} p+\stackrel{\circ}{L}_{\mathrm{r}} r+\AA^{L}(t) \tag{3.35}
\end{align*}
$$

$$
\begin{equation*}
M_{\mathrm{a}}=\stackrel{\circ}{M}_{\mathrm{v}} v+\stackrel{\circ}{M}_{\mathrm{p}} p+\stackrel{\circ}{M}_{\mathrm{r}} r+\stackrel{\circ}{M}(t) \tag{3.36}
\end{equation*}
$$

$$
\begin{equation*}
N_{a}=\stackrel{\circ}{N}_{v} v+\stackrel{\circ}{N}_{p} p+\stackrel{\circ}{N}_{r} r+\stackrel{\circ}{N}(t) \tag{3.37}
\end{equation*}
$$

The equations (3.32) to (3.37) can be divided two parts;
a) the symmetric forces and moments that are the Eqs (3.32), (3.33) and (3.36),
b) the asymmetric forces and moments that are the Eqs (3.3.4), (3.35) and (3.37).

The symmetric forces and moments are derived with respect to the longitudinal plane of symmetry. Therefore they are called The Equations of The Longitudinal Motion. The other equations of them are called The Equations of The Lateral Motion.
a) The equation of the longitudinal motion for small disturbance;

$$
\begin{align*}
& m \dot{u}-\stackrel{\circ}{X}_{\mathbf{u}} u-\stackrel{\circ}{X}_{\mathbf{w}} w-\stackrel{\circ}{X}_{\dot{w}} \dot{w}+\left(m W_{e}-\stackrel{\circ}{X}_{\mathrm{q}}\right) q+m g_{1} \theta=\stackrel{\circ}{X}(t) \tag{3.38}\\
& -\dot{Z}_{\mathbf{u}} u+\left(m-\dot{Z}_{\dot{w}}\right) \dot{W}-\stackrel{\circ}{Z}_{\mathbf{w}} w-\left(m U_{\mathrm{e}}+\dot{\circ}_{\mathrm{q}}\right) q+m g_{2} \theta=\circ_{Z}(t) \tag{3.39}\\
& -\stackrel{\circ}{M}_{\mathbf{u}} u-\stackrel{\circ}{M}_{\mathbf{w}}^{\dot{W}}-\stackrel{\circ}{M}_{\mathbf{w}}^{w}+I_{\mathbf{y}} \dot{q}-\stackrel{\circ}{M}_{q} q=\stackrel{\circ}{M}(t) \tag{3.40}
\end{align*}
$$

where $\quad q=\theta . U_{\mathrm{e}}$ and W_{e} are steady state values.
b) The equation of the lateral motion for small disturbance;

$$
\begin{equation*}
m \dot{V}-\stackrel{\circ}{Y}_{\mathrm{v}} \mathrm{~V}-\left(m W_{\mathrm{e}}+\stackrel{\circ}{Y}_{\mathrm{p}}\right) p+\left(m U_{\mathrm{e}}^{-\stackrel{\circ}{Y}_{\mathrm{r}}}\right) r-m g_{1} \phi-m g_{2} \psi=\stackrel{\circ}{Y}(t) \tag{3.41}
\end{equation*}
$$

$$
\begin{align*}
& \stackrel{\circ}{L}_{\mathbf{v}} v+I_{\mathrm{x}} \dot{p}-\stackrel{\circ}{L}_{\mathbf{p}} p-I_{\mathrm{zx}} \dot{r}+\stackrel{\circ}{L}_{\mathbf{r}} r=\stackrel{\circ}{L}(t) \tag{3.42}\\
& -\stackrel{\circ}{N}_{\mathbf{v}} v-I_{\mathrm{zx}} \dot{p}-\stackrel{\circ}{N}_{\mathrm{p}} p+I_{\mathrm{z}} \dot{r}-\stackrel{\circ}{N}_{\mathrm{r}} r=\stackrel{\circ}{N}(t) \tag{3.43}
\end{align*}
$$

where $p=\dot{\phi}$ and $r=\dot{\psi}$.

The equations of motion, which are both the longitudinal and lateral, depend on aerodynamic derivatives. We can change aerodynamic derivatives with aeronormalized non-dimensional derivatives that are given by a list of symbols, which are written according to the notation of the Engineering Data Sheets.

The equation of the longitudinal symmetric motion for small disturbance can be recorded in non-dimensional form by multiplying Eqs(3.38) and (3.39) by $1 / \frac{1}{2} \rho V_{e} V^{2} S$ and multiplying Eq(3.47) by $\mu_{1} / \frac{1}{2} \rho_{\mathrm{e}} V_{\mathrm{e}}{ }^{2} S \overline{\bar{c}}_{\mathrm{y}}{ }_{y}$. In addition, some definition, which are included by the list of symbols, are used to simplify as follow,

$$
\begin{align*}
& x_{\mathrm{u}}=-X_{\mathrm{u}}, x_{\mathrm{w}}=-X_{\mathrm{w}}, x_{\mathrm{w}}=-X_{\mathrm{w}} / \mu_{1}, x_{\mathrm{q}}=-X_{\mathrm{q}} / \mu_{1} \\
& z_{\mathrm{u}}=-Z_{\mathrm{u}}, z_{\mathrm{w}}=-Z_{\mathrm{w}}, z_{\mathrm{w}}=-Z_{\mathrm{w}} / \mu_{1}, z_{\mathrm{q}}=-Z_{\mathrm{q}} / \mu_{1} \\
& m_{\mathrm{u}}=-\mu_{1} M_{\mathrm{u}} / i_{\mathrm{y}}, m_{\mathrm{w}}=-\mu_{1} M_{\mathrm{w}} / i_{\mathrm{y}}, m_{\mathrm{w}}=-M_{\mathrm{w}} / i_{\mathrm{y}}, m_{\mathrm{q}}=-M_{\mathrm{q}} / i_{\mathrm{y}} \\
& x_{\eta}=-X_{\eta}, z_{\eta}=-Z_{\eta}, m_{\eta}=-\mu_{1} / M_{\mathrm{n}} i_{\mathrm{y}} \tag{3.44}
\end{align*}
$$

Now, we can write Eqs (3.38) to (3.40) with new notation;

$$
\begin{align*}
& \left(\hat{D}+x_{\mathrm{u}}\right) \hat{u}+\left(x_{\mathbf{w}} D+x_{\mathrm{w}}\right) \hat{w}+x_{\mathrm{q}} q+\hat{g}_{1} \theta+x_{\eta} \eta^{\prime}=0 \tag{3.45}\\
& z_{\mathrm{u}} \hat{u}+\left[\left(1+z_{\mathbf{w}}\right) \hat{D}+z_{\mathbf{w}}\right] \hat{w}+\left(z_{\mathrm{q}}-1\right) \hat{q}+\hat{g}_{2} \theta+z_{\eta} \eta^{\prime}=0 \tag{3.46}\\
& m_{\mathrm{u}} \hat{u}+\left(m_{\mathbf{w}} \hat{D}+m_{\mathbf{w}}\right) \hat{W}+\left(\hat{D}+m_{\mathrm{q}}\right) \hat{q}+m_{\eta} \eta^{\prime}=0 \tag{3.47}
\end{align*}
$$

where

$$
\begin{aligned}
& \hat{D}=\frac{\partial}{\partial t}, \hat{q}=\hat{D} \theta, \hat{g}=m g / \frac{1}{2} \rho_{\mathrm{e}} V_{\mathrm{e}}^{2} S=C_{\mathrm{L}} \sec \Theta_{\mathrm{e}} \\
& \hat{g}_{1}=\hat{g} \cos _{\mathrm{e}}=C_{\mathrm{L}} \\
& \hat{g}_{2}=\hat{g} \sin _{\mathrm{e}}=C_{\mathrm{L}} \tan _{\mathrm{e}}
\end{aligned}
$$

Similarly, the equation of the lateral assymmetric motion for small disturbances can be expressed in non-dimensional form by multiplying Eq (3.41) by $1 / \frac{1}{2} \rho_{\mathrm{e}} V_{\mathrm{e}}^{2} S$, Eq (3.42) by $\mu_{2} / \frac{1}{2} \rho_{\mathrm{e}} V_{\mathrm{e}}^{2} \mathrm{Sbi} \mathrm{i}_{\mathrm{x}}$ and Eq (3.43) by $\mu_{2} / \frac{1}{2} \rho_{\mathrm{e}} V^{2} \mathrm{e}^{2} \mathrm{~S}_{\mathrm{z}}$.

We can also use the simplified equations, which are expressed in the list of symbols, as seen below,

$$
\begin{aligned}
& y_{\mathbf{v}}=-Y_{\mathbf{v}}, y_{\mathrm{p}}=-Y_{\mathrm{p}} / \mu_{2}, y_{\mathrm{r}}=-Y_{\mathrm{r}} / \mu_{2} \\
& l_{\mathrm{v}}=-\mu_{2} L_{\mathrm{v}} / i_{\mathrm{x}}, \quad l_{\mathrm{p}}=-L_{\mathrm{p}} / i_{\mathrm{x}}, l_{\mathrm{r}}=-L_{\mathrm{r}} / i_{\mathrm{x}}
\end{aligned}
$$

$$
\begin{align*}
& n_{\mathrm{v}}=-\mu_{2} N_{\mathrm{v}} / i_{\mathrm{x}}, n_{\mathrm{p}}=-N_{\mathrm{p}} / i_{\mathrm{x}}, n_{\mathrm{r}}=-N_{\mathrm{r}} / i_{\mathrm{x}} \\
& \mathrm{y}_{\xi}=Y_{\xi},{ }_{\xi}=-\mu_{2} L_{\zeta} /{ }_{\mathrm{x}}, n_{\xi}=-\mu_{2} N_{\xi} / i_{\mathrm{z}} \\
& \mathrm{y}_{\zeta}=Y_{\zeta},{ }^{1}{ }_{\zeta}=-\mu_{2} L_{\zeta} / i_{\mathrm{x}}, n_{\zeta}=-\mu_{2} N_{\zeta} / i_{\mathrm{z}} \tag{3.48}
\end{align*}
$$

The equations of the lateral motion are rewritten using the simplified equations.

$$
\begin{align*}
& \left(\hat{D}+y_{\mathbf{v}}\right) \hat{v}+y_{\mathrm{p}} \hat{p}+\left(1+y_{\mathbf{r}}\right) \hat{r}-\hat{g}_{1} \phi-\hat{g}_{2} \psi+y_{\xi} \xi+y_{\zeta} \zeta=0 \tag{3.49}\\
& 1_{\mathbf{v}} \hat{v}+\left(\hat{D}+l_{\mathrm{p}}\right) \hat{p}+\left(e_{\mathbf{x}} \hat{D}+l_{\mathbf{r}}\right) \hat{r}+1_{\xi} \xi+1_{\zeta} \zeta=0 \tag{3.50}\\
& n_{\mathbf{v}} \hat{v}+\left(e_{z} \hat{D}+n_{\mathrm{p}}\right) \hat{p}+\left(\hat{D}+n_{\mathbf{r}}\right) \hat{r}+n_{\xi} \xi+n_{\zeta} \zeta=0 \tag{3.51}
\end{align*}
$$

where \hat{D} is differential operator;

$$
\begin{aligned}
& \hat{D}=\frac{\partial}{\partial t}, \hat{p}=\hat{D} \phi, \hat{r}=\hat{D} \psi, \\
& e_{x}=-i_{z x} / i_{x}=I_{z x} / I_{x}, \quad e_{z}=-i_{z x}^{\prime} i_{z}=I_{z x} / I_{z}(3.52)
\end{aligned}
$$

3.3. LONGITUDINAL DYNAMIC STABILITY

We consider the Eqs(3.45) to (3.47) for the analyses of stability. It is assumed that $\eta^{\prime}=0$ is taken for stick fixed dynamic stability. Therefore the elevator is kept fixed in trimmed
position. We transfer the Eqs (3.45) to (3.47) from the time domain to Laplace domain to review the stability of the motion of the aircraft.

$$
\left[\begin{array}{ccc}
s+x_{u} & x_{\dot{w}} s+x_{w} & x_{\mathrm{q}} s+\hat{g}_{1} \tag{3.53}\\
z_{u} & {\left[\left(1+z_{\dot{w}}\right) s+z_{w}\right]} & {\left[\left(z_{\mathrm{q}}-1\right) s+\hat{g}_{2}\right]} \\
m & m_{\dot{w}} s+m & \left(s^{2}+m_{\mathrm{q}} s\right)
\end{array}\right]\left[\begin{array}{c}
\hat{u}(s) \\
\hat{w}(s) \\
\theta(s)
\end{array}\right]=0
$$

The only non-zero solution of the simultaneous eçuations requires that the determinant of the coefficient be zero. Thus

$$
\begin{align*}
& \left|\begin{array}{cc}
s^{+} X_{\mathrm{u}} & x_{\dot{W}} s+x_{\mathrm{w}} \\
z_{\mathrm{u}} & {\left[\left(1+z_{\dot{W}}\right) s+z_{\mathrm{w}}\right]} \\
m & {\left[\left(z_{\mathrm{q}}-1\right) s+\hat{g}_{1}\right]} \\
m_{\mathrm{w}} s+m & \left(s^{2}+\mathrm{g}_{\mathrm{q}} s\right)
\end{array}\right|=0 \tag{3.54}\\
& \mathrm{~A} s^{4}+\mathrm{Bs} s^{3}+\mathrm{Cs}^{2}+\mathrm{D} s+\mathrm{E}=0 \tag{3.55}
\end{align*}
$$

where

$$
\begin{aligned}
& \mathrm{A}=1+z_{\dot{w}} \quad, \quad \mathrm{~B}=x_{\mathrm{U}}\left(1+z_{\dot{w}}\right)+z_{\mathbf{w}}-x_{\dot{w}} z_{\mathrm{U}}+\left(1+z_{\dot{w}}\right) m_{\mathrm{q}}+\left(1-z_{\mathrm{q}}\right) m_{\dot{w}}, \\
& C=x_{u} z_{w}-x_{w} z_{u}+\left[x_{u}\left(1+z_{\dot{w}}\right)+z_{w}-x_{\dot{W}} z_{u}\right] m_{q}+\left[x_{u}\left(1-z_{q}\right)+x_{q} z_{u}-\hat{g}_{2}\right] m_{\dot{w}}+ \\
& +\left(1-z_{\mathrm{q}}\right) m_{\mathrm{w}}-\left[x_{\mathbf{w}}\left(1-z_{\mathrm{q}}\right)+x_{\mathrm{q}}\left(1+z_{\mathbf{w}}\right)\right] m_{\mathrm{u}},
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{D}= & \left(x_{u} z_{w}-x_{w} z_{u}\right) m_{q}+\left(\hat{g}_{1} z_{u}-\hat{g}_{2} x_{u}\right) m_{w}+\left[x_{u}\left(1-z_{q}\right)+x_{q} z_{u}-\hat{g}_{2}\right] m_{w}- \\
& -\left(x_{w}\left(1-z_{q}\right)+x_{q} z_{w}+\hat{g}_{1}\left(1+z_{\mathbf{w}}\right)-\hat{g}_{2} x_{w}\right] m_{u}, \\
E= & \left(\hat{g}_{1} z_{u}-\hat{g}_{2} x_{u}\right) m_{w}-\left(\hat{g}_{1} z_{w}-\hat{g}_{2} x_{w}\right) m_{u} .
\end{aligned}
$$

The transient response of \hat{u}, \hat{w}, θ are in the same form because of the Eqs (3.53). Their amplitudes are not necessary to review the stability. The changing of the transient response is given according to the roots of the Eqs(3.55) in Fig. 3. 4.

The equation (3.55) can be written with two quadratic factors.

$$
\begin{align*}
& \mathrm{A} s^{4}+\mathrm{B} s^{3}+\mathrm{C} s^{2}+\mathrm{D} s+\mathrm{E}=0 \tag{3.55}\\
& \left(\alpha s^{2}+\beta s+\gamma\right)\left(s^{2}+\sigma s+\xi\right) \tag{3.56}
\end{align*}
$$

$\left.\begin{array}{l}\alpha=\mathrm{A} \\ \beta+\alpha \sigma=\mathrm{B} \\ \gamma+\beta \sigma+\alpha \xi=\mathrm{C} \\ \beta \xi+\alpha \sigma=\mathrm{D} \\ \gamma \xi=\mathrm{E}\end{array}\right\}$

The coefficient D and E are usually small compared with C and C^{2}. Therefore σ and ξ are small compared β and α. Thus, we may take as a first approximation
$\beta=B$

$$
\begin{align*}
& \gamma=C \\
& \sigma=E / \gamma=E / C \\
& \xi=\frac{\gamma D-\beta E}{\gamma^{2}}=\frac{C D-B E}{C^{2}} \tag{3.58}
\end{align*}
$$

The Eq(3.56) can be rewritten with using the Eq(3.58),
$\left(A s^{2}+B s+C\right)\left(s^{2}+\frac{C D-B E}{C^{2}} s+\frac{E}{C}\right)$

In reference [27], Lin's Method has been used for obtaining the two quadratic factors. This method is done using the following steps ;
i) First trial divisor is found by dividing the coefficients of the last three terms by the coefficient of s^{2} term.
ii) The characteristic function is divided by the first trial divisor.
iii) Second trial divisor is taken by dividing the coefficients of the remainder by the coefficient of s^{2} term of it.
iv) The characteristic function is divided by the second trial divisor.
v) Each dividend is a quadratic factor.

BLAKELOCK [27] has given an example where the characteristic equation is given by

$$
\begin{equation*}
97.5 s^{4}+79 s^{3}+128.9 s^{2}+0.998 s+0.667=0 \tag{3.60}
\end{equation*}
$$

Two quadratic factors are found by using Lin's method as seen below,

$$
\begin{equation*}
\left(s^{2}+0.806 s^{2}+1.311\right)\left(s^{2}+0.00466 s+0.0053\right)=0 \tag{3.61}
\end{equation*}
$$

We can apply the $\operatorname{Eq}(3.59)$ to $E q(3.60)$ and find the $E q(3.62)$.
$\left(s^{2}+0.8102 s^{2}+1.322\right)\left(s^{2}+0.00457 s+0.00525\right)=0$

Eqs(3.61) and (3.62) are nearly same. Therefore we can use both of them.

The characteristic modes for nearly all aircraft in most flight conditions are two oscillations: one of short period with relatively heavy damping, the other of long period with very light damping. Short oscillation is called the "short period mode". It may require autostabilisation. It is the first quadratic factor in the Eq(3.59). The long period oscillation is called the "phugoid mode". Its period is very long and the pilot can damp the phugoid successfully even if it is divergent or unstable.

In general, the exact values of the roots of the characteristic equation is not necessary to show whether or not the aircraft is stable. We shall use the short period mode in the next chapters, therefore we have shown how we could find the roots of it.

The stability of the characteristic equation can be reviewed with using Routh-Hurwitz method. Firstly the Routh Table is done.

$$
\mathrm{As}{ }^{4}+\mathrm{B} s^{3}+\mathrm{C} s^{2}+\mathrm{D} s+\mathrm{E}=0
$$

s^{4}	A		C	E
s^{3}	$K_{1}=B$		D	
s^{2}	$\mathrm{K}_{2}=\frac{\mathrm{BC}-\mathrm{AD}}{\mathrm{~B}}$		E	
s	$\mathrm{K}_{3}=\left(\frac{B C-A D}{B} D-B E\right) /$	$\left(\frac{B C-A D}{B}\right)$		
s^{0}	$\mathrm{K}_{4}=\mathrm{E}$			

Secondly, Hurwitz determinants are found,

$$
\begin{array}{l|l}
s^{4} & H_{0}=A \tag{3.64}\\
s^{3} & H_{1}=K_{1}=B \\
s^{2} & H_{2}=\frac{K_{1}}{K_{2}}=B C-A D \\
s^{0} & H_{3}=\frac{K_{2}}{K_{3}}=B C D-A D^{2}-B^{2} E \\
H_{4}=\frac{K_{4}}{K_{3}}=E\left(B C D-A D^{2}-B^{2} E\right)
\end{array}
$$

Routh-Hurwitz criteria are
i) it is necessary that all Routh discriminations' (K_{i} 's) sign must be same,
ii) it is efficiency that all Hurwitz determinations (H_{i}) must be bigger than zero.

In this condition,
B > 0 ,
$\mathrm{K}_{2}>0$,
$K_{3}>0$,
E>0,
$\mathrm{H}_{2}>0$,
$\mathrm{H}_{3}>\mathrm{O}$.
B and D are always positive for a conventional aircraft. D is known that is very small compared with $\mathrm{C} . \mathrm{K}_{2}, \mathrm{~K}_{3}, \mathrm{H}_{2}$ and H_{3} are bigger than zero when C is positive. E value is a critical point of the stability. If $E>0$, there is no positive real root. Then all roots correspond either to subsidence or to oscillations. E=0 represents a zero root that is a state of natural stability. If $E<0$, there is minimum one positive real root. It represents the divergence.

3.4. LATERAL DYNAMIC STABILITY

The equations of the lateral motion, which are Eqs(3.49) to (3.51), are transferred from time domain to Laplace domain for the analysis of the stability. Then, they are expressed for the stick
fixed lateral dynamics that we assume $\xi=\zeta=0$.

$$
\left[\begin{array}{ccc}
s+y_{v} & y_{p} s-\hat{g}_{1} & \left(1+y_{r}\right) s-\hat{g}_{2} \tag{3.65i}\\
l_{v} & s^{2}+1_{p} s & e_{x} s^{2}+1_{r} s \\
n_{v} & e_{z} s^{2}+n s & s^{2}+n_{r} s
\end{array}\right]\left[\begin{array}{l}
\hat{v} \\
\phi \\
\psi
\end{array}\right]=0
$$

The determinant of the coefficient matrix must be zero for the solution of non-zero \hat{v}, ϕ and ψ. The determinant value equation is written

$$
\begin{equation*}
\mathrm{a} s^{5}+\mathrm{b} s^{4}+c s^{3}+\mathrm{d} s^{2}+\mathrm{e} s=0 \tag{3.66}
\end{equation*}
$$

The order of the Eq(3.66) can be reduced by eliminating s. The new equation is given by

$$
\begin{equation*}
\mathrm{a} s^{4}+\mathrm{b} s^{3}+\mathrm{c} s^{2}+\mathrm{d} s+\mathrm{e}=0 \tag{3.67}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{a}=1-e_{\mathrm{x}} e_{\mathrm{z}}, \quad \mathrm{~b}=l_{\mathrm{p}}+n_{r}-e_{\mathrm{x}} n_{\mathrm{p}}-e_{\mathrm{z}} l_{r}+\left(1-e_{\mathrm{x}} e_{\mathrm{z}}\right) y_{v}, \\
& c=l_{p} n_{r}-l_{r} n_{p}+\left(l_{p}+n_{r}-e_{x} n_{p}-e_{z} l_{r}\right) y_{v}+\left[e_{x}\left(1+y_{r}\right)-y_{p}\right] l_{v}- \\
& -\left[1+y_{r}-e_{x} y_{p}\right] n_{v}, \\
& \left.\mathrm{~d}=\left(l_{\mathrm{p}} n_{\mathrm{r}}-l_{\mathrm{r}} n_{\mathrm{p}}\right) y_{\mathrm{v}}+\left[n_{\mathrm{p}}\left(1+\mathrm{y}_{\mathrm{r}}\right)-n_{\mathrm{r}} y_{\mathrm{p}}+\hat{g}_{1}-e \hat{e}_{\mathrm{g}}\right]_{\mathrm{v}}\right] l_{\mathrm{v}}- \\
& -\left[I_{p}\left(1+y_{r}\right)-1_{r} y_{p}-\hat{g}_{2}+e \hat{g}_{1}\right] n_{v},
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{e}=\left(\hat{g}_{1} n_{r}-\hat{g}_{2} n_{\mathrm{p}}\right) l_{v}-\left(\hat{g}_{1} l_{r}-\hat{g}_{2} l_{\mathrm{p}}\right) n_{\mathrm{v}} . \tag{3.68}
\end{equation*}
$$

The $E q(3.67)$ has a root zero, which has been eliminated for simplicity. This root represents a neutral stability. The corresponding solution of it is given by

$$
\begin{align*}
\hat{v} & =\rho_{1} \tag{3.69}\\
\phi & =\rho_{2} \tag{3.70}\\
\psi & =\rho_{3} \tag{3.71}
\end{align*}
$$

where ρ_{1}, ρ_{2} and ρ_{3} are constant.

When we calculate \hat{v}, ϕ and ψ from Eq(3.65), they become
$\hat{v}=0$
$\hat{g}_{1} \phi+\hat{g}_{2} \psi=0$

The simplified equations for the Eqs(3.45) to (3.47) are also used for the Eq(3.73)

$$
\begin{equation*}
\phi \cos _{e}+\psi \sin \Theta_{e}=0 \tag{3.74}
\end{equation*}
$$

The component of gravity Y_{g} along $0 y$ is zero, therefore there is no sideslip in the lateral motion, but the angles of roll and yaw are small constant. The lateral aerodynamic forces and moments depend on the velocity of the sideslip and the angular velocities
of bank and yaw but not the angles of bank and yaw. The angles of bank and yaw do not depend on the aerodynamic characteristics in the neutral stability.

On the other hand, if $\mathrm{Eq}(3.67)$ is considered by the relations between the other roots and the coefficient. For conventional aircraft, the coefficient 'a' is approximately unity, the coefficient ' b ' is much bigger than 'a'. 'e' is much smaller than 'd'. In this situation, we can use some approximations for to find the roots values according to reference [26].

First approximation :
The characteristic equation (3.67) has a large negative root because of the coefficient b.

$$
\begin{equation*}
s \cong-b \tag{3.75}
\end{equation*}
$$

Second approximation :
The Eq(3.67) has also a very small root according to small 'e' and much bigger 'd' compared with 'e'.
$s \cong-e / d$

Third approximation :
The other roots are a pair of complex roots. Its oscillation increases or decreases due to the sign of the real part of complex roots that is positive or negative.

$$
\begin{equation*}
s=u \mp i v \tag{3.77}
\end{equation*}
$$

We use these three approximations and write the characteristic equation,
$(s+\mathrm{b})\left(s+\frac{\mathrm{e}}{\mathrm{d}}\right)(s+\mathrm{r}+\mathrm{iv})(s+\mathrm{r}-\mathrm{iv})=0$

The motions in the Eq(3.78) are called Dutch roll or lateral oscillation, the rolling subsidence and the slow spiral motion in respect of the $\mathrm{Eq}(3,75)$, the $\mathrm{Eq}(3.76)$ and the $\mathrm{Eq}(3.77)$.

The Routh-Hurwitz criteria is applied as well as the equation of the longitudinal motion. Tables are the same but only small letters are used instead of capital letters.

The Routh discrimination are,

s^{4}	a	c
s^{3}	$\mathrm{~K}_{1}=\mathrm{b}$	e
s^{2}	$\mathrm{~K}_{2}=-\frac{\mathrm{bc}-\mathrm{ad}}{\mathrm{b}}$	d
s^{2}	$\mathrm{~K}_{3}=\left(\frac{\mathrm{bc}-\mathrm{ad}}{\mathrm{b}} \mathrm{d}-\mathrm{be}\right) /$	$\left(\frac{\mathrm{bc}-\mathrm{ad}}{\mathrm{b}}\right)$
s^{0}	$\mathrm{~K}_{4}=\mathrm{e}$	

The Hurwitz determinants are

$$
\begin{array}{l|l}
s^{4} & \mathrm{H}_{\mathrm{O}}=\mathrm{a} \tag{3.80}\\
s^{3} & \mathrm{H}_{1}=\mathrm{K}_{1}=\mathrm{b} \\
s^{2} & \mathrm{H}_{2}=\frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}=\mathrm{bc}-\mathrm{ad} \\
s & \mathrm{H}_{3}=\frac{\mathrm{K}_{2}}{\mathrm{~K}_{3}}=\mathrm{bcd}-\mathrm{ad}^{2}-\mathrm{b}^{2} \mathrm{e} \\
s^{0} & \mathrm{H}_{4}=\frac{\mathrm{K}_{4}}{\mathrm{~K}_{3}}=\mathrm{e}\left(\mathrm{bcd}-\mathrm{ad}^{2}-\mathrm{b}^{2} \mathrm{e}\right)
\end{array}
$$

The critical points are H_{4} and $\mathrm{K}_{4}, ~ \mathrm{~K}_{4}$ depends on only e. H_{4} depends on e and $R=b c d-a d^{2}-b^{2} e$. If $e<0$, the slow spiral motion is divergence. If $R<0$, Dutch roll is an increasing oscillation. If $R>0$, Dutch roll is a damped oscillation.

In reference [27], another example has been given for the lateral motion and its characteristic equation is shown below,

$$
\begin{equation*}
s^{5}+2.44 s^{4}+2.51 s^{3}+3.68 s^{2}-0.0152 s=0 \tag{3.81}
\end{equation*}
$$

Its solution has also been given by

$$
\begin{equation*}
s\left(s^{2}+0.380 s+1.813\right)(s+2.09)(s-0.004)=0 \tag{3.82}
\end{equation*}
$$

where the slow spiral is ($s-0.004$) and roll subsidence ($s+2.09$).We can find the the slow spiral and the roll subsidence with by the
approximation.

The slow spiral $:\left(s+\frac{\mathrm{e}}{\mathrm{d}}\right)=(s-0.0041)$

The roll subsidence : $(s+\mathrm{b})=(s-2.44)$

3.5.CONCLUSION

An attempt has been made to explain the aircraft dynamics and stability by using the equation of the aircraft motion. Some terms have been neglected according to the references. The characteristic equation has been derived for the purpose of the stability. Therefore each aerodynamic derivative was not discussed in detail.

The longitudinal dynamic motion was divided into two modes ; the short time mode and phugoid mode. The short time mode is important for the control because it may not be controlled by the pilot without autostabilization. However the phugoid mode can be controlled by the pilot, even if it is divergent or unstable.

The lateral motion has also been reviewed for the stability. The slow spiral mode is not very important, because this root value is very small and controllable by the pilot. The roll subsidence is not dangerous for the stability that it is recognized from its name. Dutch roll must be considered for the lateral motion. It can
be a divergence oscillation or a subsidence oscillation.

Abstract

The approximations, which are used for the analysis of the stability of the longitudinal and the lateral motion, have been supported the numerical examples.

The longitudinal short period mode and the Dutch roll are most important for pilot handling and it is the identification of these parameters which is required for adaptive or optimal control.

Fig.3.1. Body axes of an aircraft.

Fig.3.2. The determination of angles.

Fig.3.3. The gravitational forces.

Fig.3.4. The responses of characteristic equation

CHAPTER 4. OPTIMAL ADAPTIVE CONTROL

4. 1. INTRODUCTION

Adaptive control can be defined as a kind of control where the system performance approximates to the desired system performance by the application of the suitable control signals. The aim is to approximate the process output to the desired output in the minimum time. In this chapter, how the adaptive systems are realized will be discussed. Two main approaches will be discussed: model reference adaptive systems and self-tuning controllers.

The model reference systems control strategy, its development, its disadvantage and its stability will be discussed briefly. They will be given by the equations and the block diagrams.

The self-tuning regulators will be the bases on the adjustment mechanism of Model Reference Adaptive System (MRAS). Self-tuning controllers are studied in two methods namely, explicit and implicit. They will be explained in detail. The optimal controller methods will be studied by Linear Quadratic (LQG) methods which requires either the solution of the Riccati equation or analysis of some special spectral factorization methods.

4.2. MODEL REFERENCE ADAPTIVE SYSTEMS

This method was originally developed by Whitaker and his colleagues in 1958 [1]. This original Model Reference Adaptive System (MRAS) is given by Fig. 4.1.. The MRAS consists of a process, a reference model, a regulator and adjustment mechanism , which adjusts the parameters of the regulator according to the difference between the model outputs and the process outputs. The model is chosen to satisfy the desired performance of the process. The main problem in MRAS is the design of the regulator and the adjustment mechanism. The regulator tries to approximate the process output to the model output by changing its structure, which contains the adjustable parameters. This regulator operation is called the model-following. Åström [28] has used the pole placement design to solve the model-following problem.

4.2.1. Model-following Design

Single input, single output system transfer function is given below as:

$$
\begin{equation*}
y=\frac{B}{A} u \tag{4.1}
\end{equation*}
$$

where y is the output signal, u is the control input and A, B are
polynomials which are written in the Laplace domain. On the other hand, the reference model can be written as Eq(4.2)

$$
\begin{equation*}
y_{\mathrm{m}}=\frac{B_{\mathrm{m}}}{A_{\mathrm{m}}} u_{\mathrm{c}} \tag{4.2}
\end{equation*}
$$

where u_{c} is the common reference input signal, A_{m} and B_{m} are polynomials. In reference [28], the regulator has been described as seen

$$
\begin{equation*}
R u=T u_{c}-S y \tag{4.3}
\end{equation*}
$$

where R, T and S are polynomials. The control signal of the process can be rewritten from Eq(4.3);

$$
\begin{equation*}
u=\frac{T}{R} u_{c}-\frac{S}{R} y \tag{4.4}
\end{equation*}
$$

when u is eliminated in the $E q(4.1)$ the closed loop system can be found as:

$$
\begin{align*}
& (A R+B S) y=B T u_{c} \tag{4.5}\\
& y=\frac{B T}{A R+B S} u_{c} \tag{4.6}
\end{align*}
$$

Since eq(4.6) must be equal to Eq(4.2)

$$
\begin{equation*}
\frac{B_{\mathrm{m}}}{A_{\mathrm{m}}}=\frac{B T}{A R+B S} \tag{4.7}
\end{equation*}
$$

There are many approaches to choose the polynomials R, S and T. In reference [28], Aström has suggested the pole-zero cancellation for perfect model-following. The open-loop process zeros, given by $B=0$, will also be the closed-loop zeros unless they are cancelled by corresponding closed-loop poles. Only, the stable zeros of B may be cancelled, the polynomial is factored as

$$
\begin{equation*}
B=B^{-} B^{+} \tag{4.8}
\end{equation*}
$$

where B^{+}includes zeros that can be cancelled, and B^{-}includes the remaining factor of B. On the other hand, B^{-}must be factors of B_{m} otherwise the solution is not possible. Hence,

$$
\begin{equation*}
B_{\mathrm{m}}=B^{-} B_{\mathrm{m}}^{\prime} \tag{4.9}
\end{equation*}
$$

Since B^{+}is a factor of $A R+B S$, it follows that it is also a factor of R.

$$
\begin{equation*}
R=B^{+} R^{\prime} \tag{4.10}
\end{equation*}
$$

Eq(4.7) can be rewritten as

$$
\frac{B^{+} B^{-} T}{A B^{+}+B^{+} B^{-} S}=\frac{B^{-} B_{\mathrm{m}}^{\prime}}{A_{\mathrm{m}}}
$$

$$
\begin{align*}
& \frac{B^{+} B^{-} T}{B^{+}\left(A R^{\prime}+B^{-} S\right)}=\frac{B^{-} B_{\mathrm{m}}^{\prime}}{A_{\mathrm{m}}} \\
& \frac{T}{A R^{\prime}+B^{-} S}=\frac{B_{\mathrm{m}}^{\prime}}{A_{\mathrm{m}}} \tag{4.11}
\end{align*}
$$

From Eq(4.11) one can conclude that A_{m} is a factor of $A R^{\prime}+B^{-} S$. The observer polynomial A_{0}, which may be used to cancel the desired stable process poles, is also a factor of $A R^{\prime}+B^{-} S$. Thus, the new equation is obtained as :

$$
\begin{align*}
& A R^{\prime}+B^{-} S=A_{\mathrm{o}} A_{\mathrm{m}} \tag{4.12}\\
& T=B_{\mathrm{m}}^{\prime} A_{\mathrm{o}} \tag{4.13}
\end{align*}
$$

The closed-loop characteristic equation becomes

$$
\begin{equation*}
A R+B S=B^{+} A_{\mathrm{o}} A_{\mathrm{m}} \tag{4.14}
\end{equation*}
$$

In reference [28], Aström has proposed that there exist a solution to $\mathrm{Eq}(4.14)$ which gives a continuous-time or discrete-time control law :

$$
\begin{equation*}
\operatorname{deg} A_{\mathrm{o}} \geq 2 \operatorname{deg} A-\operatorname{deg} A_{\mathrm{m}}-\operatorname{deg} B^{+}-1 \tag{4.15}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{deg} A_{\mathrm{m}}-\operatorname{deg} B_{\mathrm{m}} \geq \operatorname{deg} A-\operatorname{deg} B \tag{4.16}
\end{equation*}
$$

4.2.2. ADJUSTMENT MECHANISM

Many different systems have been used for the adjustment mechanism. We will discuss only the gradient approach because many of MRAS have been developed using the gradient approach.

The Gradient Approach :

This approach was used in the original MRAS by Whitaker and his colleagues. It is also called the M.I.T. rule because it was done at Massachusetts Institute of Technology. Let e denote the error between the process output and the model output and θ the parameters. The loss function is defined as

$$
\begin{equation*}
J(\theta)=\frac{1}{2} e^{2} \tag{4.17}
\end{equation*}
$$

To reduce the loss it is reasonable to change the parameters in the direction of the negative gradient of J, therefore

$$
\begin{equation*}
\frac{\mathrm{d} \theta}{\mathrm{~d} t}=-k \frac{\partial J}{\partial \theta}=-k e \frac{\partial e}{\partial \theta} \tag{4.18}
\end{equation*}
$$

The Eq(4.18) can be written, if the parameters change much more slowly than the other variables. The M.I.T. rule performs well when
the parameter k is small. Otherwise, the M.I.T. rule can give an unstable closed-loop. But the M.I.T. rule can become more convenient by using some modified adjustment rules, which have been obtained from stability theory. Some approaches are used to prevent instability . For example, one approach is to make a normalization and replace the M.I.T. rule by [5]

$$
\begin{equation*}
\frac{\mathrm{d} \theta}{\mathrm{~d} t}=-k \frac{e \frac{\partial e}{\partial \theta}}{\alpha+\left[\frac{\partial e}{\partial \theta}\right]^{\mathrm{T}}\left[\frac{\partial e}{\partial \theta}\right]} \tag{4.19}
\end{equation*}
$$

where $\alpha>0$ is replaced to avoid a possible division by zero. In addition, a limit is determined to guarantee stability.

$$
\begin{align*}
& \frac{d \theta}{d t}=-k \operatorname{sat}\left[\frac{e \frac{\partial e}{\partial \theta}}{\alpha+\left[\frac{\partial e}{\partial \theta}\right]^{\mathrm{T}}\left[\frac{\partial e}{\partial \theta}\right]}, \beta\right] \tag{4.20}\\
& \operatorname{sat}(x, \beta)=\left[\begin{array}{rr}
-\beta & x<\beta \\
x & |x| \leq \beta \\
\beta & x>\beta
\end{array}\right.
\end{align*}
$$

Parks [29] has reviewed the stability of the M.I.T. design by using a Lyapunov function. He has also developed a stable approach as

$$
\begin{equation*}
\frac{\mathrm{d} \theta}{\mathrm{~d} t}=-k u_{c} e \tag{4.21}
\end{equation*}
$$

Fig.4.2. and Fig.4.3. show the M.I.T. rule and Lyapunov approach systems. The MRÂS, which is given by Fig. 4.3. needs a compensator for which the closed loop transfer function is strictly positive real. Its block diagram can be given as in Fig. 4.4. . According to the passivity theorem, the compensator will include derivatives [30] when the degree of the closed loop polynomial is more than 1. The augmented error model has been developed to avoid the derivation of the signal [31]. An augmented error signal, which is obtained using the error and the compensator, is used instead of the error signal as in Fig. 4.5. An adjustment law can be obtained from the general transfer function. The transfer function can be factored as:

$$
\begin{equation*}
G=G_{1} G_{2} \tag{4.22}
\end{equation*}
$$

where G_{1} is strictly a positive real function and G_{2} is the remaining factor of G. The parameter adjustment rule is then

$$
\begin{align*}
& \frac{\mathrm{d} \theta}{\mathrm{~d} t}=-k \varepsilon\left(G_{2} u_{c}\right) \tag{4.23}\\
& \varepsilon=e+G_{1}\left(\theta G_{2} u_{c}\right)-G\left(\theta u_{c}\right) \tag{4.24}
\end{align*}
$$

The block diagram of this adjustment law is shown in Fig. 4.6..

4.3. SELF TUNING REGULATOR

The purpose of design of a self-tuning regulator (STR) is same as the MRAS. But the method is different. In the STR, the regulator automatically adjust itself due to the output of the process. Fig. 4.7. helps to explain the system. The regulator structure depends on the regulator design algorithm, which determines the regulator parameter to control the desired output of the process. The design algorithm requires the process parameters. When the process parameters are known, the regulator design algorithm specifies a set of desired controller parameters. Therefore, the unknown parameters are estimated on-line by using a recursive estimation method. Many different estimation schemes can be used as we discussed in Chapter 2. The design algorithm simply accepts the results of the estimation and ignores the uncertainties of the estimation. This is called the certainty equivalence principle [6].

The STR are classified according to the estimation of the regulator and the process parameters. If the process parameters are estimated and the regulator parameters are calculated by the design algorithm, this system is called explicit. If the controller parameters are estimated directly this is called implicit self-tuning control. Its block diagram is given in the Fig.4.8.. Fig. 4.7. represents the explicit self-tuning control system.

4.3.1. Explicit Self-Tuning Regulators

4.3.1.1. Pole-Placement Method

An explicit self-tuning controller design algorithm is used for pole-placement by using the estimation result. The regulator structure is exactly the same as in section 4.2.1.. The process is described by the single input, single output system as:

$$
\begin{equation*}
A(q) y(t)=B(q) u(t)+C(q) e(t) \tag{4.25}
\end{equation*}
$$

where y is the output, and u is the input of the process. A and B are polynomials in the forward shift operator q. The design algorithm is obtained in the following form [5]
Data : The desired system transfer operator $\frac{B_{\mathrm{m}}}{A_{\mathrm{m}}}$ and a desired observer polynomial A_{0} are given Step 1 : The coefficients of transfer polynomials A, B and C are estimated by the on-line method.

Step 2 : The polynomials A and B are replaced and solve Eq(4.12) to obtain R^{\prime} and $S . R$ and T are calculated by the Equations (4.10) and (4.13).

Step 3 : The control signal of the process is calculated from the Eq(4.4).

The Steps 1, 2, and 3 are repeated for each sampling period.

This method is not suitable for the non-minimum phase system,
because the control input goes to infinite value. But this method can still be used without zero cancellation. The Eq(4.7) is rewritten as

$$
\frac{y}{u_{c}}=\frac{B T}{A R+B S}
$$

The open-loop system zeros, which are determined by the dead-time, are remained on the closed-loop system by selecting $T=1$. " $A R+B S$ " consists of the closed-loop system poles that can be done to be equal to the desired system poles.

$$
\begin{align*}
& A R+B S=A_{\mathrm{o}} A_{\mathrm{m}} \\
& R=\frac{A_{\mathrm{o}} A_{\mathrm{m}}-B S}{A} \tag{4.26}
\end{align*}
$$

An appropriate S brings all poles of R and all zeros of R on the left hand side of the complex plane (inside the unit circle in discrete-time). In addition, the steady state of the closed-loop system output can be made close to the steady state of the desired system output by recalculating T.

$$
T=\frac{\lim _{t \rightarrow \infty} \frac{B_{\mathrm{m}}}{A_{\mathrm{m}}}}{\lim _{t \rightarrow \infty} \frac{B}{A_{\mathrm{m}}}}
$$

$$
T=\underline{\prod^{\operatorname{zeros}\left(B_{\mathrm{m}}\right)}}
$$

$\Pi \operatorname{zeros}(B)$

The pole placement algorithm for the minimum phase can be used for the non-minimum phase system by using the Eqs(4.26) and (4.27). The Eqs (4.26) and (4.27) are also valid for unstable system with an appropriate S.

Example 4.1.

The aircraft attack angle function is modelled as

$$
\alpha=\frac{b_{0} s-b_{1}}{s^{2}+a_{1} s+a_{0}} \eta
$$

where α is the angle of attack and η is the angular displacement of the elevator. The desired model is given as Appendix 1.14

$$
\alpha_{m}=\frac{1.17 \times 10^{-3} s-0.42}{s^{2}+1.938 s+1.203} \eta
$$

where η is assumed to be unit step function. The steady state values of the process output and desired output can be determined as follows:

$$
\begin{aligned}
& \alpha_{f i n}=\lim _{t \rightarrow \infty} \alpha(t)=\lim _{s \rightarrow 0} \alpha(s)=\lim s_{s \rightarrow 0} \frac{b_{0} s-b_{i 1}^{\prime}}{s^{2}+a_{1} s+a_{0}} \frac{1}{s} \\
& \alpha_{\text {fin }}=-\frac{b_{1}}{a_{1}} \\
& \alpha_{\text {mfin }}=\lim _{t \rightarrow \infty} \alpha_{m}(t)=\lim _{s \rightarrow 0} \alpha_{m}(s) \\
&=\operatorname{lims}_{s \rightarrow 0} \frac{1.17 \times 10^{-3} s-0.42}{s^{2}+1.938 s+1.203} \frac{1}{s}=-0.357 \\
& T=\frac{0.357 a_{0}}{b_{1}}
\end{aligned}
$$

The value of b_{1} may not be the same as the model value but it is not very different from the model value. However, taking $S=1$ can guarantee that the $\operatorname{Eq}(4.26)$ will not have any zeros or poles in the right half side of complex plane. R is calculated from the Eq(4.26) and the outputs and the control input are shown in Fig. 4.9. This example has been used and resulted in an unstable system result as given Fig. 4.10.

4.3.2. Implicit Self-Tuning Controller

4.3.2.1.Pole-Placement Method

The design of the regulator parameters in the explicit method
consumes an additional time for the identification. The regullator parameter can be estimated by using the equation where the system is described by S and R. This equation can be obtained by multiplying both sides of $\mathrm{Eq}(4.12)$ by the output y .

$$
\begin{align*}
y\left(A_{0} A_{\mathrm{m}}\right) & =\mathrm{y}\left(A R^{\prime}+B^{-} S\right) \\
& =R^{\prime} A y+B^{-} S y \\
& =R^{\prime} B u+B^{-} S y+R^{\prime} C e \\
& =B^{-}(R u+S y)+R^{\prime} C e \tag{4.28}\\
& =\bar{R} u+\bar{S} y+R^{\prime} C e \tag{4.29}\\
\bar{R}=B^{-} R \quad & \text { and } \quad \bar{S}=B^{-} S
\end{align*}
$$

where all variables and polynomials were explained in section 4.2.1.. Direct or implicit self-tuning regulator algorithm can be given by the following steps, Step 1 : The parameters of the polynomials \bar{B} and \bar{S} are identified from the Eq(4.29).

Step $2: R$ and S are obtained from \bar{B} and \bar{S}.
Step 3 : The control signal is calculated from Eq(4.4)
Steps 1, 2, and 3 are repeated at each sampling period.

This algorithm can be applied to both of the Eqs (4.28) and (4.29). The identification of the parameters by using Eq(4.29) involves more calculation than using Eq(4.28). The Eq(4.28) represents a nonlinear model unless B^{-}is a constant [5]. This algorithm avoids the nonlinear estimation problems. Hence, B^{-}is assumed to be constant
$\left(B^{-}=b_{0}\right)$. In this case the estimation of the eq(4.28) can be simplified as below

$$
\begin{align*}
& y(t)\left(A_{0} A_{\mathrm{m}}\right)=b_{0}(R u(t)+S y(t))+R^{\prime} C e(t) \\
& y(t)=\frac{b_{0}}{A_{0} A_{\mathrm{m}}}(R u(t)+S y(t))+\frac{R^{\prime}}{A_{0} A_{\mathrm{m}}} C e(t) \tag{4.28}\\
& y(t)=R^{*} u(t)+S^{*} y(t)+\frac{R^{\prime} C}{A_{0} A_{\mathrm{m}}} e(t) \tag{4.30}
\end{align*}
$$

on the other hand, the Eq(4.6) can be rewritten as:

$$
\begin{aligned}
\frac{\mathrm{y}}{u_{\mathrm{c}}} & =\frac{B T}{A R+B S} \\
& =\frac{b_{0} B^{+} T}{A R+B S}=\frac{B_{\mathrm{m}}}{A_{0} A_{\mathrm{m}}}=\frac{\mathrm{y}_{\mathrm{m}}}{u_{\mathrm{c}}}
\end{aligned}
$$

where B^{+}includes all zeros that can be cancelled. In this case ;

$$
\begin{align*}
& A_{\mathrm{o}} A_{\mathrm{m}} \mathrm{y}=b_{\mathrm{o}} T u_{\mathrm{c}} \\
& y=\frac{b_{0} T}{A_{0} A_{\mathrm{m}}} u_{\mathrm{c}}=T^{*} u_{\mathrm{c}} \tag{4.31}
\end{align*}
$$

The following algorithm can be used for the simplified equations.
Step 1 : The parameters of the polynomials R^{*}, S^{*} and T^{*} are
identified from the Eqs (4.30) and (4.31).
Step 2 : The control signal is calculated from Eq(4.4)
Steps 1 and 2 are repeated at each sampling period.

These direct adaptive pole placement models which are given by Eq(4.28), Eqs(4.30) and (4.31) are suitable only for minimum phase and stable system. The pole placement method for the non-minimum phase systems has been developed by Elliot [32]. He has studied the system with a partial state and the non-adaptive linear control strategy. The transfer function is determined by the Eq(4.1) as:

$$
\begin{equation*}
A(s) y(t)=B(s) u(t) \tag{4.32}
\end{equation*}
$$

The following priori information is assumed about the process.
i) $A(s)$ is a monic polynomial of degree n.
ii) $\operatorname{deg} B \leq \operatorname{deg} A$
iii) $A(s)$ and $B(s)$ are relatively prime so that the Eq(4.32) is a minimal realization.

This system can be represented by using the partial state z as seen below

$$
\begin{align*}
& A(s) z(t)=u(t) \tag{4.33}\\
& y(t)=B(s) z(t) \tag{4.34}
\end{align*}
$$

Initially, a nonadaptive linear control law which can be used to
assign the poles of the Eq(4.32) that $A(s)$ and $B(s)$ are assumed to know is derived. Consequently it will be converted to ar adaptive strategy assuming $A(s)$ and $B(s)$ to be unknown. An observable polynomial A_{c} of degree n is defined and the considered compensator for the Eq(4.32) is characterized by the equations

$$
\begin{align*}
& A_{0}(s) G(t)=S(s) y(s)+R(s) u(t) \tag{4.35}\\
& u(t)=G(t)+v(t) \tag{4.36}
\end{align*}
$$

'where $v(t)$ is an external reference input, and $S(s)$ and $R(s)$ are polynomials of degree $n-1$ of the form

$$
\begin{align*}
& S(s)=\sum_{i=0}^{n-1} S_{i} s^{i} \tag{4.37}\\
& R(s)=\sum_{i=0}^{n-1} R_{i} s^{i} \tag{4.38}
\end{align*}
$$

Putting Eqs(4.33) to (4.36) in to Eq(4.32)

$$
\begin{align*}
{\left[A_{0}(s) A(s)-S(s) B(s)-R(s) A(s)\right] z(t) } & =A_{0}(s) v(t) \tag{4.39}\\
y(t) & =B(s) z(t) \tag{4.40}
\end{align*}
$$

The polynomial $A_{m}(s)$ represents the desired closed-loop poles.
These can be assigned in order that $S(s)$ and $R(s)$ satisfy

$$
\begin{equation*}
S(s) B(s)+R(s) A(s)=A_{0}(s)\left[A(s)-A_{\mathrm{m}}(s)\right] \tag{4.41}
\end{equation*}
$$

When Eq(4.41) holds Eq(4.40) simplifies to

$$
\begin{align*}
A_{\mathrm{m}}(s) A_{0}(s) z(t) & =A_{\mathrm{o}}(s) v(t) \tag{4.42}\\
y(t) & =B(s) z(t) \tag{4.43}
\end{align*}
$$

In this case the transfer function is

$$
\begin{equation*}
\frac{y(t)}{v(t)}=\frac{B(s)}{A_{\mathrm{m}}(s)} \tag{4.44}
\end{equation*}
$$

This scheme can be slightly simplified if the process is known to be characterized by a strictly proper transfer function that is $\operatorname{deg} B \leq$ $\operatorname{deg} A-1$. In this condition, $A_{0}(s)$ can be chosen to be of degree $n-1$ and $R(s)$ can be chosen to be of degree $n-2$. When the plant is unknown, the following adaptive version of the Eqs (4.35) and (4.36) can be implemented as follows:

$$
\begin{array}{rlr}
A_{0}(s) \tilde{y}_{i}=s^{i} y(t), & 0 \leq i \leq n-1 \\
A_{0}(s) \tilde{u}_{i}=s^{i} u(t), & 0 \leq i \leq n-1 \\
u(t)=\sum_{i=0}^{n-1}\left(s_{i}^{*}(t) \tilde{y}(t)+R_{i}^{*}(t) \tilde{u}(t)\right)+v(t) \tag{4.47}
\end{array}
$$

For the resulting closed-loop system to converge to Eq(4.39) thee adjustable gains S_{i}^{*}, R_{i}^{*} must satisfy

$$
\begin{array}{ll}
\lim _{t \rightarrow \infty} S_{i}^{*}(t)=S_{i} & 0 \leq i \leq n-1 \tag{4.48}\\
\lim _{t \rightarrow \infty} R_{i}^{*}(t)=R_{i} & 0 \leq i \leq n-1
\end{array}
$$

where S_{i}, R_{i} satisfy Eqs(4.38) and (4.39). The Bezout identity is defined by as:

$$
\begin{equation*}
P(s) B(s)+Q(s) A(s)=1 \tag{4.50}
\end{equation*}
$$

where $P(s)$ and $Q(s)$ are the filter polynomials of the output and the input.

$$
\begin{equation*}
P(s)=\sum_{i=0}^{n-1} P_{i} s^{i}, \quad Q(s)=\sum_{i=0}^{n-1} Q_{i} s^{i} \tag{4.51}
\end{equation*}
$$

When $\mathrm{Eq}(4.50)$ is substituted into $\mathrm{Eq}(4.41)$

$$
\begin{equation*}
S(s) B(s)+R(s) A(s)=A_{\mathrm{o}}(s)\left\{A(s)-[P(s) B(s)+Q(s) A(s)] A_{\mathrm{m}}\right\} \tag{4.52}
\end{equation*}
$$

The degree of the right side of $\mathrm{Eq}(4.52)$ is greater than the left side to satisfy the Eqs(4.41) and (4.42). The coefficients of $R(s)$, $S(s), P(s)$ and $Q(s)$ are estimated to establish the adaptive control which is obtained by Eq(4.41). The coefficients are identified by the filtering signals that depend on the known and the measurable values. The relationships between the filter function and the
filtered signals are defined as:

$$
\begin{aligned}
& \bar{u}(t)=\frac{1}{F(s)} u(t) \\
& \bar{y}(t)=\frac{1}{F(s)} y(t) \\
& \bar{z}(t)=\frac{1}{F(s)} z(t) \\
& \bar{u}_{i}(t)=s^{i} \bar{u}(t), \quad \bar{y}_{i}(t)=s^{i} \bar{y}(t), \quad 0 \leq i \leq n-1
\end{aligned}
$$

\bar{z} is not a real system state therefore it is eliminated by multiplying Eq(4.52) and using Eqs(4.33) and (4.34). We have

$$
\begin{align*}
S(s) \bar{y}(t)+R(s) \bar{u}(t) & =A_{0}(s) \bar{u}(t)-P(s) A_{0}(s) A_{m}(s) \bar{y}(t) \\
& -Q(s) A_{0}(s) A_{m}(s) \bar{u}(t)+\gamma_{1} \tag{4.53}
\end{align*}
$$

where γ_{1} is an exponentially decaying signal for the nonzero initial conditions. The equation (4.53) can be written in the estimation form

$$
\begin{aligned}
& \theta \bar{x}(t)=A_{0}(s) \bar{u}(s)+\gamma_{1}(t) \\
& \theta=\left[S_{1} \ldots S_{n-1}, R_{1} \ldots R_{n-1}, P_{1} \ldots P_{n-1}, Q_{1} \ldots Q_{n-1}\right]
\end{aligned}
$$

$\bar{x}(t)=\left[\begin{array}{llllll}\bar{y}_{0}(t), & \ldots, & \bar{y}_{\mathrm{n}-1}(t), & \bar{u}_{\mathrm{o}}(t), & \ldots, & \bar{u}_{\mathrm{n}-1}(t),\end{array} A_{\mathrm{o}}(s) A_{\mathrm{m}}(s) \bar{y}_{\mathrm{o}}(t)\right.$,
$\left.\ldots, A_{0}(s) A_{\mathrm{m}}(s) \bar{y}_{\mathrm{n}-1}(t), A_{\mathrm{o}}(s) A_{\mathrm{m}}(s) \bar{u}(t), \ldots, A_{\mathrm{o}}(s) A_{\mathrm{m}}(s) \bar{u}_{\mathrm{n}-1}(t)\right]$

The direct adaptive algorithm for non-minimum phase systems can be given as follows:

Step 1) The coefficients of the S, R, P and Q polynomials are estimated via the Eq(4.54).

Step 2) The control input u is found from the Eq(4.47).
Step 1 and step 2 are repeated for each sampling period.

4.3.2.2. Minimum Variance

The minimum variance method has been designed for a stochastic system whose output must follow the e. It is assumed that the reference input $u_{c}=0$ and also the optimal observer polynomial $A_{0}=C$. The minimum variance algorithm for the minimum phase system is given as:

$$
\begin{align*}
& R^{*} u(t)+S^{*} y(t)=0 \\
& u(t)=\frac{S^{*}}{R^{*}} y(t) \tag{4.55}
\end{align*}
$$

R^{*} and S^{*} have been defined in the Eq(4.30). In reference [2], the identity diophantine equation has been described by

$$
\begin{equation*}
C=A R+q^{-k} S \tag{4.56}
\end{equation*}
$$

with $k=\operatorname{deg} A-\operatorname{deg} B$. Multiplying both side of $\operatorname{Eq}(4.56)$ by the output term $y(t)$ we obtain the direct adaptive estimation equation.

$$
\begin{aligned}
& C y(t)=A R y(t)+q^{-k} S y(t) \\
&=R(B u(t-k)+C e(t))+q^{-k} S y(t) \\
& y(t)=\frac{1}{C^{*}}\left(R^{*} u(t-k)+S^{*} y(t-k)\right)+R_{1}^{*} e(t) \\
& C=B C^{*}, \quad R=B R^{*}, \quad S=B S^{*}
\end{aligned}
$$

The condition $k=\operatorname{deg} A-\operatorname{deg} B$ must be satisfied to cancel all zeros If the process is non-minimum phase, no zeros are cancelled and k is equal to $\operatorname{deg} A$. This controller can be called a Moving Average Controller. The minimum variance or the moving average controller algorithm can be applied in the following form, Step 1) The coefficients of the polynomials R^{*} and S^{*} are identified from the Eq(4.57).

Step 2) The control signal is calculated from the Eq(4.55)
Repeat the step 1 and step 2 for each sample period.

If the system delay k_{o} is smaller than half of the sample time, the minimum variance controller can work with a minimum phase system [5].

4.3.2.3. Generalized Minimum Variance

The minimum variance method has been extended by using the filtered signal. The filtered output has been defined by

$$
y_{f}=\frac{1}{P} y(t)
$$

where P is an arbitrary stable polynomial. In addition, the reference input u_{c} and a user-specified transfer function Q hass been introduced by Clarke and Gawthrop [33].

$$
\begin{equation*}
u(t)=\left[u_{c}-\left(R^{*} u(t)+S^{*} y(t)\right)\right] / Q\left(q^{-1}\right) \tag{4.58}
\end{equation*}
$$

One objective of the use of Q is to reduce the excessive control activity associated with minimum variance control with small sample time, for if $u_{1}(t)$ is the required to achieve exact model-following the Eq(4.58) can be shown to produce a control [34]

$$
\begin{equation*}
u_{1}(t)=\left(R^{*}+\frac{Q}{r_{0}}\right) u(t) \tag{4.59}
\end{equation*}
$$

When the Eq(4.58) is asserted, the closed-loop satisfies

$$
\begin{align*}
& (P B+Q A) y(t)=B u_{c}(t-k)+\left(Q A_{o}+R^{*} B\right) e(t) / A_{o} \\
& (P B+Q A) u(t)=A u_{c}(t)-S^{*} e(t) / A_{o} \tag{4.60}
\end{align*}
$$

If $P=1, Q=0$ and $u_{c}=0$ are assumed, it can easily be seen that the generalized minimum variance becomes the minimum variance. The loss function of the generalized minimum variance is :

$$
\begin{equation*}
I=E\left\{P^{2}\left(\mathrm{y}-u_{\mathrm{c}}\right)^{2}+Q^{2} u^{2}\right\} \tag{4.61}
\end{equation*}
$$

Clarke and Gawthrop used $P=1$ and $Q=\lambda$. In this case the model and its loss function becomes

$$
\begin{align*}
& (B+\lambda A) y(t)=B u_{c}(t-k)+\left(\lambda C+R^{*} B\right) e(t) \\
& (B+\lambda A) u(t)=A u_{c}(t)-S^{*} e(t) \tag{4.62}\\
& I=E\left\{\left(y-u_{c}\right)^{2}+\lambda r_{0} u^{2}\right\}
\end{align*}
$$

The stabilization of the non-minimum phase system can be achieved by the appropriate choice of P and Q which are determined by the polynomial of $(P B+Q A)$. The unstable system can also be stabilized with a suitable choice of P and Q.

4.4.4. Linear Quadratic Self-Tuning Controllers

This method has been developed to obtain the optimal controller via the cost function of the adaptive control system. The cost function can be given by

$$
\begin{equation*}
J=\sum_{i=t}^{t+N}\left(y(i)-y_{m}(i)\right)^{2}+\lambda u^{2}(i) \tag{4.63}
\end{equation*}
$$

The first optimal regulator has been introduced with state-space
realization. The system has been considered by

$$
\begin{equation*}
A\left(q^{-1}\right) y(k)=B\left(q^{-1}\right) u(k)+C\left(q^{-1}\right) e(k) \tag{4.64}
\end{equation*}
$$

It can be transferred in the state-space observable form as [35]

$$
\begin{align*}
x(t+1) & =A_{\mathrm{I}} x(t)+B_{\mathrm{I}} u(t)+\operatorname{Ke}(t) \tag{4.65}\\
y(t) & =C_{\mathrm{I}} x(t)+e(t)
\end{align*}
$$

where

$$
\begin{aligned}
& A_{I}=\left[\begin{array}{ccc}
-a_{1} & & \\
-a_{2} & I_{n+k-1} \\
\cdot & & \\
-a_{n} & & \\
\cdot & & \\
0 & \ldots & \\
0
\end{array}\right] \\
& B_{I}=\left[\begin{array}{lllllll}
\begin{array}{lllll}
0 & \ldots & 0 & b_{0} & b_{1}
\end{array} \ldots & b_{n}
\end{array}\right]^{T} \\
& \left.K=\left[\begin{array}{llllll}
c_{1}-a_{1} & c_{2}-a_{2} & \cdots & c_{n}-a_{n} & 0 & \ldots
\end{array}\right] \quad\right]^{T} \\
& C_{\mathrm{I}}=\left[\begin{array}{lllll}
1 & 0 & \ldots & 0
\end{array}\right]^{\mathrm{T}} \\
& n=\max (\operatorname{deg} A, \operatorname{deg} B, \operatorname{deg} C)
\end{aligned}
$$

The model (4.65) is called innovation model and K is the optimal
steady-state gain in a Kalman. The cost function in state-space form is obtained as;

$$
\begin{align*}
& J=x^{\mathrm{T}}(t+N) S x(t+N)+\sum_{i=t}^{t+N} x^{\mathrm{T}}(i) Q x(i)+\lambda u^{2}(i) \tag{4.66}\\
& S=Q=C_{I}^{T} C_{I}
\end{align*}
$$

The optimal controller is given by

$$
u(t)=-L(t) x(t)
$$

where $L(t)$ is Kalman control gain which can be obtained from the iterative solution of the Riccati equation :

$$
\begin{align*}
& L(t)=\left(\lambda+B_{\mathrm{I}}^{\mathrm{T}} P(t+1) B_{\mathrm{I}}\right)^{-1} B_{\mathrm{I}} P(t+1) A_{\mathrm{I}} \\
& P(t)=Q+A_{\mathrm{I}}^{\mathrm{T}} P(t+1) A_{\mathrm{I}}-A_{\mathrm{I}}^{\mathrm{T}} P(t+1) B_{\mathrm{I}}\left(\lambda+B_{\mathrm{I}}^{\mathrm{T}} P(t+1) B_{\mathrm{I}}\right)^{-1} B_{\mathrm{I}} P(t+1) A_{\mathrm{I}} \tag{4.67}
\end{align*}
$$

$$
P(t+N)=S
$$

The Riccati equation is iterated backwards to converge at every sampling instant by starting from terminal conditions $P(t+N)=S$. In this case, the stage number N must be chosen greater than time-delay k, otherwise cost minimization is meaningless. It has been shown [5] that a limiting controller is

$$
\bar{L}=\lim _{t \rightarrow \infty} L(t)
$$

The closed-loop characteristic equation is

$$
\begin{equation*}
P(q)=\operatorname{det}\left(q-A_{I}+B \bar{L}\right)=0 \tag{4.699}
\end{equation*}
$$

The LQG method via the solution of the Riccati equation can be applied to the adaptive control by the given specific λ value and the following steps,

Step 1) The coefficients of the polynomials A, B and C are estimated from the eq(4.64).

Step 2) The Riccati equation is solved and \bar{L} is obtained.
Step 3) The control signal is calculated from $u(t)=-L^{T}(t) x(t)$.
These steps are repeated for each sampling period.

Different approaches were used to solve the Riccati equation by some researchers. On the other hand, Aström and Wittenmark have developed the spectral factorization method for the design of an LQG self-tuner. They have considered the Eq(4.25) when $A(q)$ and $C(q)$ have degree $n . C(q)$ is assumed to be strictly positive and it has no common factor with $A(q)$ and $B(q)$. The polynomial $A_{2}(q)$ is the greatest common divisor of $A(q)$ and $B(q)$ and A_{2}^{-}of deg m which is the factor of A_{2} has all its zeros outside of the unit circle of complex discrete time space..

$$
A(q)=A_{1}(q) A_{2}(q)
$$

$$
B(q)=B_{1}(q) A_{2}(q)
$$

The cost function for $\lambda>0$ is minimized by the control law :

$$
\begin{equation*}
R(q) u(t)=-S(q) y(t)+T(q) y_{m}(t) \tag{4.70}
\end{equation*}
$$

where the polynomials R and S satisfy the diophantine equation

$$
\begin{equation*}
A(q) R(q)+B(q) S(q)=P(q) C(q) \tag{4.71}
\end{equation*}
$$

where

$$
\begin{gathered}
\operatorname{deg} R(q)=\operatorname{deg} S(q)=m+n \\
A_{2} \operatorname{divides} R(q) \\
\operatorname{deg} S^{*}(q)<n
\end{gathered}
$$

The desired polynomial $P(q)$ is given by

$$
\begin{align*}
& P(q)=q^{m} P_{1}(q)_{2} A(q) \tag{4.72}\\
& P_{1}(q) P_{1}\left(q^{-1}\right)=\lambda A_{1}(q) A_{1}\left(q^{-1}\right)+B(q) B\left(q^{-1}\right) \tag{4.73}\\
& T(q)=t_{0} q^{m} C(q) \\
& t_{0}=P_{1}(1) / B(1)
\end{align*}
$$

The application of this method for a specific value of λ is shown below:

Step 1) The coefficients of the polynomials A, B and C are estimated from the eq(4.25).

Step 2) The polynomial $P(q)$ is obtained from the eq(4.73).
Step 3) The diophantine equation (4.71) is solved.
Step 4) The control signal is calculated from the eq(4.70)
This operation is continued for each sampling period.

Another spectral factorization method based on LQG control law has been developed by Grimble [37], [38]. He has considered the system model in the form :

$$
\begin{equation*}
y(t)=\frac{B\left(z^{-1}\right)}{A\left(z^{-1}\right)} u(t)+\frac{C\left(z^{-1}\right)}{A_{\mathrm{d}}\left(z^{-1}\right)} \zeta(t)+\frac{D\left(z^{-1}\right)}{A_{1}\left(z^{-1}\right)} v(t) \tag{4.74}
\end{equation*}
$$

where $v(t)$ is measurable load disturbance. The measurable disturbance $v(t)$ and the reference signal $r(t)$ are generated by the linear systems :

$$
\begin{align*}
& r(t)=\frac{E\left(z^{-1}\right)}{A_{\mathrm{e}}\left(z^{-1}\right)} \varepsilon(t) \tag{4.75}\\
& v(t)=\frac{F\left(z^{-1}\right)}{A_{\mathrm{f}}\left(z^{-1}\right)} \xi(t) \tag{4.76}
\end{align*}
$$

The control input is described by

$$
\begin{equation*}
u(t)=-\frac{C_{1 \mathrm{n}}}{C_{1 \mathrm{~d}}} \mathrm{y}(t)+\frac{C_{2 \mathrm{n}}}{C_{2 \mathrm{~d}}} r(t)-\frac{C_{3 \mathrm{n}}}{C_{3 \mathrm{~d}}} v(t) \tag{4.77}
\end{equation*}
$$

Tracking error is defined by

$$
\begin{equation*}
e(t) \triangleq r(t)-y(t) \tag{4.78}
\end{equation*}
$$

It is assumed that the following conditions are satisfied :
i) ζ, ξ and ε are mutually uncorrelated stochastic squences
ii) The process transfer function $\frac{B}{A}$ does not include unstable hidden modes. The reference and disturbance subsystems ($\frac{C}{A_{\mathrm{d}}}, \frac{D}{A_{1}}$, $\frac{E}{A_{\mathrm{e}}}, \frac{F}{A_{\mathrm{f}}}$, are asymptotically stable.
iii) The reference and disturbance models can without loss of generality be assumed inverse stable.
iiii) All system polynomials without B and D are monic.

The cost function is to be minimized by the following equation :

$$
\begin{equation*}
J=\frac{1}{2 \pi j} \oint_{|z|=1}\left(Q_{\mathrm{c}}\left(z^{-1}\right) \Phi_{\mathrm{ee}}\left(z^{-1}\right)+R_{\mathrm{c}}\left(z^{-1}\right) \Phi_{\mathrm{uu}}\left(z^{-1}\right)\right) \frac{\mathrm{d} z}{z} \tag{4.79}
\end{equation*}
$$

where $\Phi_{e e}\left(z^{-1}\right)$ and $\Phi_{u u}\left(z^{-1}\right)$ represent the spectral densities of the signals $e(t)$ and $u(t)$, respectively. Q_{c} and R_{c} are the weighting
elements that are strictly positive on the unit circle.

$$
\begin{equation*}
Q_{\mathrm{c}} \triangleq \frac{Q_{\mathrm{n}}}{A_{\mathrm{q}}^{*} A_{\mathrm{q}}}, \quad R_{\mathrm{c}} \triangleq \frac{R_{\mathrm{n}}}{A_{\mathrm{r}}^{*} A_{\mathrm{r}}} \tag{4.80}
\end{equation*}
$$

where $A_{\text {qc }}$ and $A_{r c}$ are strictly monic polynomials.
The coefficients polynomials of $y(t), r(t)$ and $v(t)$ in (4.77) can be defined as follows

$$
\begin{array}{ll}
C_{1 \mathrm{n}}=G A_{\mathrm{r}}, & C_{1 \mathrm{~d}}=H A_{\mathrm{q}} \\
C_{2 \mathrm{n}}=M A_{\mathrm{r}}, & C_{2 \mathrm{~d}}=A_{\mathrm{q}} H E \\
C_{3 \mathrm{n}}=\left(X D_{\mathrm{f}}-F D G\right) A_{\mathrm{r}}, & C_{3 \mathrm{~d}}=A_{\mathrm{q}} H F A_{\mathrm{l}} \tag{4.83}
\end{array}
$$

The polynomials G, H are the minimal degree solutions with respect to Z of the coupled diophantine equations

$$
\begin{align*}
& D_{\mathrm{c}}^{*} G z^{-\mathrm{g}}+Z A A_{\mathrm{q}} A_{\mathrm{d}}=B^{*} A_{\mathrm{r}}^{*} Q_{\mathrm{n}} D_{\mathrm{f}} z^{-\mathrm{g}} \tag{4.85}\\
& D_{\mathrm{c}}^{*} H z^{-\mathrm{g}}-Z B A_{\mathrm{r}} A_{\mathrm{d}}=A^{*} A_{\mathrm{q}}^{*} R_{\mathrm{n}} D_{\mathrm{f}} z^{-\mathrm{g}} \tag{4.86}
\end{align*}
$$

where $g \triangleq \max \left(n_{D}, n_{B}+n_{A_{r}}+k, n_{A}+n_{A_{q}}\right)$.
The minimal degree solution of the polynomial M with respect to N can be found from the following diophantine equation :

$$
\begin{equation*}
D_{\mathrm{c}}^{*} z^{-\mathrm{g} 1} M+N A_{\mathrm{q}} A_{\mathrm{e}}=B^{*} A_{\mathrm{r}}^{*} Q_{\mathrm{n}} E z^{-\mathrm{g} 1} \tag{4.87}
\end{equation*}
$$

where $g 1 \hat{\triangleq} \max \left(n_{D_{C}}, n_{B}+n_{A_{r}}+k\right)$.

The minimal degree solution of the polynomial X with respect to Y can be found via the diophantine equation :

$$
\begin{equation*}
D_{\mathrm{c}}^{*}{ }_{\mathrm{z}} \mathrm{~g}^{\mathrm{g} 2} \mathrm{X}+\mathrm{Y} A_{\mathrm{q}} A_{\mathrm{f}} A_{\mathrm{l}}=B^{*} A_{\mathrm{r}}^{*} Q_{\mathrm{n}} F Z^{-\mathrm{g} 2} \tag{4.88}
\end{equation*}
$$

where $g 2 \triangleq \max \left(n_{D_{C}}, n_{B}+n_{A_{r}}+k\right)$

The polynomials D_{c} and D_{f} which appear in the above diophantine equations are defined by

$$
\begin{align*}
& D_{\mathrm{c}}^{*} D_{\mathrm{c}}=B^{*} A_{\mathrm{r}}^{*} Q_{\mathrm{n}} A B+A_{\mathrm{r}}^{*} A_{\mathrm{q}}^{*} R_{\mathrm{n}} A_{\mathrm{q}}^{*} A \tag{4.89}\\
& D_{\mathrm{f}}^{*} D_{\mathrm{f}}=A A^{*} C C^{*} \tag{4.90}
\end{align*}
$$

The Z is eliminated between equations (4.85) and (4.86), and the new diophantine equation appears as:

$$
\begin{equation*}
A A_{\mathbf{q}} H+A_{\mathbf{r}} B G=D_{\mathbf{f}} D_{\mathbf{c}} \tag{4.91}
\end{equation*}
$$

The eq(4.91) is the characteristic equation of the closed-loop system. The stability of the closed-loop system is guaranteed because of the definitions; of D_{c} and D_{f}. All controllers, which are
C_{1}, C_{2} and C_{3}, can adjust their zeros due to the A_{r} weighting term and their poles due to the A_{q} weighting term. All these theories and properties are to be found in the references [37] and [38]. The estimation equation is given by

$$
\begin{align*}
& \hat{y}(t)=\hat{\Theta}^{\mathrm{T}}(t-1) \Phi(t) \tag{4.92}\\
& \varepsilon(t)=y(t)-\hat{y}(t) \tag{4.93}
\end{align*}
$$

where

$$
\begin{align*}
& \hat{\Theta}^{T}(t)=\left[a_{1} \ldots a_{n_{A}} ; b_{0} \ldots b_{n_{B}} ; d_{f_{1}} \ldots d_{f_{n D f}} ; a_{d_{1}} \ldots a_{d_{n A d}} ;\right. \\
& \left.d_{0} \ldots d_{n_{D}} ; a_{1_{1}} \ldots a_{1_{n A l}}\right] \tag{4.94}\\
& \Phi^{T}(t)=\left[-r(t-1) \ldots-r\left(t-n_{A}\right) ; u(t-k) \ldots u\left(t-k-n_{B}\right) ;\right. \\
& \bar{\varepsilon}(t-1) \ldots \bar{\varepsilon}\left(t-n_{\mathrm{Df}}\right) ;-s(t-1) \ldots-s\left(t-n_{\mathrm{Ad}}\right) ; \\
& \left.v\left(t-k_{\mathrm{D}}\right) \ldots v\left(t-k_{\mathrm{D}}-n_{\mathrm{D}}\right) ;-q(t-1) \ldots-q\left(t-n_{\mathrm{A} 1}\right)\right] \tag{4.95}
\end{align*}
$$

where

$$
\begin{align*}
& q(t)=\frac{\hat{D}\left(z^{-1}\right)}{\hat{A}_{1}\left(z^{-1}\right)} v(t), \tag{4.96}\\
& r(t)=y(t)-q(t) \tag{4.97}\\
& s(t)=\hat{A}\left(z^{-1}\right) r(t)-\hat{B}\left(z^{-1}\right) u(t) \tag{4.98}\\
& \bar{\varepsilon}(t)=\frac{\hat{A}_{d}\left(z^{-1}\right)}{\hat{D}_{f}\left(z^{-1}\right)} s(t) \tag{4.99}
\end{align*}
$$

The application of this method to the adaptive control for a chossen cost function weight can be given by the following steps,

Step 1) The coefficients of the polynomials A, B, A_{d}, A_{1}, D and D_{f} are identified with a suitable recursive estimation method.

Step 2) The spectral factor D_{c} is calculated.
Step 3) The controller polynomials the eqs(4.81) to (4.83) are calculated.

Step 4) The control signal is calculated from the eq(4.77)
The steps 1 to 4 are repeated each sampling period.

4.5. CONCLUSION

In this chapter, the MRAS and the STR systems have been discussed. Because we want to review the adaptive control of non-minimum phase and unstable systems. MRAS has only been mentioned briefly. Many MRAS algorithm involve pole-zero cancellation, therefore the non-minimum phase plant causes instability. When the stability of the MRAS is considered, one of the assumptions for stability is that the system is minimum phase [39]. The M.I.T. rule is valid for the small difference between the process and the desired process. The Lyapunov redesign method gives strictly positive real closed-loop but it needs some derivatives for high order system. However, the augmented error model avoids the derivation problem.

The self-tuning method has been explained with two categories, explicit and implicit. Both of them are used for non-minimum phase or the unstable plants, but the implicit method may not distinguish whether the system is non-minimum phase or not. When the system is known to be non-minimum phase, it can be controlled by the implicit method as well as the explicit method.

The LQG method can give an optimal controller. The LQG method is stable for every condition of the process. However, the self-tuning controller cost function value is not very different from an optimal controller, which has been shown for some systems in reference [5]. The LQG method is an optimal method but its application is more difficult than STR. Hence, the STR can be used for this application.

Fig.4.1. The original Model Reference Adaptive System

Fig.4.2. The M.I.T. Design Adaptive Controller

Fig.4.3. The Lyapunov Redesign MRAS

Fig.4.4. The strickly positive real MRAS

Fig.4.5. The MRAS with an Augment Error Signal

Fig.4.6. An application of the augment signal on MRAS

Fig.4.7. Explicit Self-tuning Regulator

Fig.4.8. Implicit Self-tuning Regulator

Fig.4.9. The outputs before adaptive control, adaptive control and model and control input in example 4.1.

Fig.4.10. The outputs for the unstable system in example 4.1.

CHAPTER 5. IMPLEMENTATION OF IDENTIFICATION

5.1. INTRODUCTION

A solution of an aircraft identification problem is presented in this chapter. Firstly, the essential equations of the aircraft motion are introduced and simplified. Subsequently, this motion is simulated with a suitable model as a real aircraft. The model system has been identified in real time and the block diagram of the realization is given by Fig.5.1.

The longitudinal equations of the aircraft motion and the lateral equations of the aircraft motion were defined in chapter 3. The longitudinal equations of motion are again reviewed to include atmospheric turbulence.

The results of the parameter estimation have calculated for the different parameter structure and for different environmental conditions including noises and gusts etc.

5.2. FLIGHT MODELLING

The aircraft is assumed to be in a trimmed position with a constant speed. Therefore the angular displacements of elevator,
ailerons and rudder are zero. It has been shown in chapter 3 that the longitudinal motion only depends on the elevator. On the other hand, the lateral motion is independent from the elevator movements. Thus the flight modelling during landing can be represented by the equation of the longitudinal motion. Eqs(3.45) to (3.47) are rewritten as:

$$
\begin{align*}
& \left(\hat{D}+x_{\mathbf{u}}\right) \hat{u}+\left(x_{\mathbf{w}} D+x_{\mathbf{w}}\right) \hat{w}+x_{\mathbf{q}} q+\hat{g}_{1} \theta+x_{\eta} \eta^{\prime}=0 \tag{5.1}\\
& z_{\mathbf{u}} \hat{u}+\left[\left(1+z_{\mathbf{w}}\right) \hat{D}+z_{\mathbf{w}}\right] \hat{w}+\left(z_{\mathrm{q}}-1\right) \hat{q}+\hat{g}_{2} \theta+z_{\eta} \eta^{\prime}=0 \tag{5.2}\\
& m_{\mathbf{u}} \hat{u}+\left(m_{\mathbf{w}} \hat{D}+m_{\mathbf{w}}\right) \hat{w}+\left(\hat{D}+m_{\mathrm{q}}\right) \hat{q}+m_{\eta} \eta^{\prime}=0 \tag{5.3}
\end{align*}
$$

\hat{u} is defined by $\frac{u}{V_{e}}$ where u represents the difference between the disturbed flight velocity and the steady flight velocity along $O x$ and V_{e} is the aircraft speed in steady flight. According the initial condition assumption \hat{u} can be omitted on the equations (5.1) to (5.2) [26]. The term ${\hat{g_{2}}}_{2} \theta$ can also be neglected in comparison other term. In this case, Eqs (5.2) and (5.3) are rewritten as:

$$
\begin{align*}
& {\left[\left(1+z_{\mathbf{w}}\right) \hat{D}+z_{\mathbf{w}}\right] \hat{w}+\left(z_{\mathrm{q}}-1\right) \hat{q}+z_{\eta} \eta^{\prime}=0} \tag{5.4}\\
& \left(m_{\mathbf{w}} \hat{D}+m_{\mathbf{w}}\right) \hat{w}+\left(\hat{D}+m_{\mathrm{q}}\right) \hat{q}+m_{\eta} \eta^{\prime}=0 \tag{5.5}
\end{align*}
$$

where \hat{D} is the differential operator $\left(\hat{D}=\frac{\mathrm{d}}{\mathrm{dt}}\right), \hat{\mathrm{w}}$ is the attack
angle, which is equal to $\frac{w}{V_{\mathrm{e}}}, \hat{q}$ is the aircraft angular velocity in pitch, η^{\prime} is the increment in elevator angle from trimmed position. Other coefficients are aerodynamic derivatives of the aircraft that can change with flight condition. Therefore the aircraft dynamics change because of the change in coefficients. During the landing time, the parameters of the dynamic can be assumed to be constant because the landing time is small in comparison with the parameter varying time. Although, we reviewed to identification for time-varying parameters. The considered aircraft model is given as Eqs (5.4) and (5.5):

$$
\begin{align*}
& \left(a r_{11} \frac{d}{d t}+a r_{12}\right) \alpha-0.9892 a r_{11} q=b r_{1} \eta^{\prime} \tag{5.6}\\
& \left(a r_{21} \frac{d}{d t}+a r_{22}\right) \alpha+\left(a r_{23} \frac{d}{d t}+a r_{24}\right) q=b r_{2} \eta^{\prime} \tag{5.7}
\end{align*}
$$

where α is equal to w. This system has been identified by direct continuous method where the quasilinearization method has been used as discussed in chapter 2. For this purpose, Eqs (5.6) and (5.7) were written the state space form as:

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left[\begin{array}{c}
\alpha \tag{5.8}\\
q
\end{array}\right]=\left[\begin{array}{lc}
a_{11} & 0.9892 \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
\alpha \\
q
\end{array}\right]+\left[\begin{array}{c}
b_{1} \\
b_{2}
\end{array}\right] \eta^{\prime}
$$

where η^{\prime} includes a first order lag which was given 0.1 sec by the manufacturer. This model was simulated by using the fourth order

Runge-Kutta integration method on a personal computer. The step time is equal 40 msec which is determined according to the telemetry of the aircraft. The desired performance coefficients values which is given as Appendix 1.14

$$
\frac{d}{d t}\left[\begin{array}{l}
\alpha \\
q
\end{array}\right]=\left[\begin{array}{cc}
-0.0142 & 0.9892 \\
-1.244 & -1.924
\end{array}\right]\left[\begin{array}{c}
\alpha \\
q
\end{array}\right]+\left[\begin{array}{c}
1.17 \mathrm{e}-03 \\
-.434
\end{array}\right] \eta^{\prime} \quad(5.9)
$$

Experiences on the simulation of $\mathrm{Eq}(5.8)$ were done for different kind of parameters and noises which will be given next sections.

5.3. THE DESIGN OF THE IDENTIFICATION ROUTINE

The quasilinearization method was used to identify the parameters. This method was given in chapter 2 but it is briefly given here again. The identified system has been considered as :

$$
\begin{align*}
\frac{d}{d t} x(t) & =A x(t)+B u(t) \tag{5.10}\\
\dot{x}(t) & =f(x, u, a, b, t)
\end{align*}
$$

where A and B are the parameter matrices, whose element can be time varying, x is state variable matrix and u is control input matrix. The state observable values is defined by

$$
\begin{equation*}
s_{i}(t)=p_{i}(t)+\sum_{k=1}^{n} c_{k} h_{k i} \tag{5.11}
\end{equation*}
$$

where s is the vector of the observable values of the process state variable, p is the vector of the state variables of the estimation model, h_{k} is the vector of the sum of the homogeneous variables and n is the number of the unknown parameters. c_{k} will be used to modify initial estimation of unknown parameters.Firstly, an estimation model and homogeneous models are described respectively. The estimation model was chosen to have exactly the same structure as the flight model but all coefficients were assumed to be equal to 1 as:

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{dt}} p(t)=\hat{A} p(t)+\hat{B} \eta^{\prime} \tag{5.12}\\
& \frac{\mathrm{d}}{\mathrm{dt}}\left[\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0.9892 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right]+\left[\begin{array}{l}
1 \\
\\
1
\end{array}\right] \eta^{\prime} \tag{5.13}
\end{align*}
$$

The homogeneous systems are defined for each unknown parameter which are given as :

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}} h_{\mathbf{k}}(t)=\hat{A} h_{\mathbf{k}}(t)+\frac{\partial f}{\partial a_{\mathbf{k}}} \tag{5.14}
\end{equation*}
$$

When $\frac{\partial f}{\partial a_{k}}$ are calculated, the homogeneous systems are found as:

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{dt}}\left[\begin{array}{l}
h_{11} \\
h_{12}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0.9892 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
h_{11} \\
h_{12}
\end{array}\right]+\left[\begin{array}{c}
s_{1} \\
0
\end{array}\right] \tag{5.15}\\
& \frac{d}{d t}\left[\begin{array}{l}
h_{21} \\
h_{22}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0.9892 \\
& \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
h_{21} \\
h_{22}
\end{array}\right]+\left[\begin{array}{l}
0 \\
s_{1}
\end{array}\right] \tag{5,16}\\
& \frac{\mathrm{d}}{\mathrm{dt}}\left[\begin{array}{l}
h_{31} \\
h_{32}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0.9892 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
h_{31} \\
h_{32}
\end{array}\right]+\left[\begin{array}{l}
0 \\
s_{2}
\end{array}\right] \tag{5.17}\\
& \frac{\mathrm{d}}{\mathrm{dt}}\left[\begin{array}{l}
h_{41} \\
h_{42}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0.9892 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
h_{41} \\
h_{42}
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] \eta^{\prime} \tag{5.18}\\
& \frac{\mathrm{d}}{\mathrm{dt}}\left[\begin{array}{l}
h_{51} \\
h_{52}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0.9892 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
h_{51} \\
h_{52}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] \eta^{\prime} \tag{5.19}
\end{align*}
$$

The control input vectors of $h_{4}(t)$ and $h_{5}(t)$ were found according the derivation of $\frac{\partial f}{\partial b_{i}}$. Eq(5.11) must be written in matrix form to solve the elements of the c matrix. In this problem, the number of variables is 2, the number of the unknown parameters (c_{k}) is 5 , therefore we need to add enough observations In this case, Eq(5.1.1)
can be rewritten in the matrix form as :

$$
\begin{align*}
& {\left[\begin{array}{l}
s_{1}(t) \\
s_{2}(t) \\
s_{1}(t+1) \\
s_{2}(t+1) \\
s_{2}(t+2)
\end{array}\right]=\left[\begin{array}{l}
p_{1}(t) \\
p_{2}(t) \\
p_{1}(t+1) \\
p_{2}(t+1) \\
p_{2}(t+2)
\end{array}\right]+} \\
& +\left[\begin{array}{llll}
h_{11}(t) & h_{21}(t) & h_{31}(t) & h_{41}(t) \\
h_{21}(t) & h_{22}(t) & h_{32}(t) & h_{42}(t) \\
h_{11}(t+1) & h_{21}(t+1) & h_{31}(t+1) & h_{41}(t+1) \\
h_{51}(t+1) \\
h_{21}(t+1) & h_{22}(t+1) & h_{32}(t+1) & h_{42}(t+1) \\
h_{21}(t+2) & h_{22}(t+2) & h_{32}(t+2) & h_{42}(t+2) \\
h_{52}(t+2)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4} \\
c_{5}
\end{array}\right] \tag{5.20}
\end{align*}
$$

The c matrix can be solved from $\mathrm{Eq}(5.20)$. The c matrix is corresponded with the unknown parameter as :

$$
\begin{align*}
& \hat{a}_{11}(k+1)=c_{1}+\hat{a}_{11}(k), \quad \hat{a}_{21}(k+1)=c_{2}+\hat{a}_{21}(k), \\
& \hat{a}_{22}(k+1)=c_{3}+\hat{a}_{22}(k) \\
& \hat{b}_{1}(k+1)=c_{4}+\hat{b}_{1}(k), \quad \hat{b}_{2}(k+1)=c_{5}+\hat{b}_{2}(k) \tag{5.21}
\end{align*}
$$

All of the identification operations were done with TMS320C30 Digital Signal Processor. The lag on the elevator response was also considered in the identification operation. The essential software and hardware will be discussed in the next sections.

5.4. DESIGN OF THE INTERFACE

Abstract

The identification board clock frequency was different from the clock frequency of the personal computer which was used for the flight modelling. Therefore a synchro-communication between PC and the identification board was not possible. Hence an interface was inserted between them in order to realize the asynchro-communication. This interface provided parallel communication. Its detail will also be given in a subsequent chapter.

5.5. THE IDENTIFICATION RESULT

5.5.1. Time Invariant System Without Noise

The noise-free time invariant system can be represented as

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{x}(t)=A x(t)+B u(t) \\
& s(t)=C x(t)
\end{aligned}
$$

where C is unit matrix, because the identification method uses the state variables directly. It has been seen from Eq(5.20) that the identification operation needs three step results after initial
condition. In addition one step is necessary because of the dymamics of the elevator response. Therefore first result: is obtained at the fourth step after the initial condition. The results of the identification are given in Fig.5.2. and Fig.5.3. The Fig. 5.2. and Fig.5.3. illustrate the parameters which were identified between the initial condition zero and the last observable values. The Fig. 5. 5. and Fig.5.6. show the parameters which were identified between the last observable values and previous three steps values. It can be shown that the identification is possible to each boundaries before the steady state of the outputs. The unit step function was applied to the process (flight modelling) and its outputs, which were used in the parameter estimation, are shown in Fig. 5.4.

5.5.2. The Time-variable Parameters

This estimation method can be used for the time-invariant system. When the observer time is chosen as short as possible then the parameters can be assumed to be constant during identification interval and the identification can be possible. Three observation steps are good enough to calculate the unknown parameters in our study. This time is acceptable and the coefficients are constant. The parameters can be found as Eq(2.139):

$$
\begin{equation*}
\hat{a}_{i}(N+1)=\hat{a}_{i}(N)+c_{i}(N+1) \tag{5.23}
\end{equation*}
$$

$$
\begin{equation*}
c(N)=[h(N)]^{-1}[s(N)-p(N)] \tag{5..24}
\end{equation*}
$$

where h, s and p matrices include $(N+1)$ th and ($N+2$)th steps' results. Eq(2.138) was not used because the system was assumed to be free of noise. The results are shown in Figs.5.7. to 5.9.. The identified parameters of $\hat{a}_{22}, \hat{b}_{1}$ and \hat{b}_{2} are slightly fluctuated, because their rate of change is not very small according to step time.

5.5.3. The Identification of Noisy System

The system representation Eq(5.22) is rewritten for the measurement with noise as;

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{dt}} x(t)=A x(t)+B u(t) \tag{5.25}\\
& s(t)=C x(t)+\xi(t)
\end{align*}
$$

Where $\xi(t)$ is zero-mean random function, representing the noise. Eq(2.140) can be used for identification with noise. It can be rewritten as ;
$\left[\begin{array}{lll}c &]_{k+1} & \left(\sum_{i=1}^{N}\left[h\left(t_{i}\right)\right]^{T}\left[h\left(t_{i}\right)\right]\right)^{-1} *\end{array}\right.$

$$
\begin{equation*}
\sum_{i=1}^{N}\left[h\left(t_{i}\right)\right]^{\mathrm{T}}\left\{\left[s\left(t_{\mathrm{i}}\right)\right]-\left[x\left(t_{\mathrm{i}}\right)\right]\right\} \tag{5.26}
\end{equation*}
$$

It will be shown that the requirements of step numbers increase due to the amplitude of noise. The identifications were performance for different amplitudes of the random function. The identification results are given by Fig.5.12 to Fig.5.40. For $N=30$, the identification board was used to collect the data during the first 30 steps. Therefore the first estimation results are available after 30 samples time. The identification board can calculate the parameters with two iterations in one sample time. Hence, each step identification can be done recursively after 30 steps. This must be considered when choosing the initial estimation, because the particular system outputs may cause the processor to overflow in 30 samples time. However the initial estimation values were taken to be the same as the first estimation value when the control input was changed completely. The system outputs, from which we tried to identify the parameters in this project, are not measured with a very good resolution. The maximum measurement error is around 0.007 which can be represented as a random signal amplitude. When $N=30$, the identification is possible with a small error which is less than 20 percent. When the noise amplitude is bigger than 0.01 , estimation
error increases more than 50 percent. Therefore the number of N must be increased. The identification is possible until the noise amplitude is 0.1 with $N=60$. The noise amplitude 0.1 means that the noise is bigger than 30 percent of the signal, which can be seen in Fig. 5. 38. .

5.6. The Random Turbulence Effect On The Identification

In chapter 3 and the previous sections of this chapter, the atmosphere was assumed to be uniform. It is necessary to recognize the existence of atmospheric wind or gust and its effect. We discuss only the gust effect on the pitching. The magnitude of the vertical gust can be represented with w_{g}. The effect of the gust is to change the angle of attack of the aircraft; and since an updraft causes a positive change in the angle of attack, $\alpha_{g}=-w_{g} / U$, where w_{g} is considered negative for an updraft [27]. The longitudinal equations can be obtained by adding $z_{w} \alpha_{g}$ and ${\underset{w}{w}}^{\alpha}$ to the right-hand sides of Eqs (5.4) and (5.5). Then they become [2]

$$
\begin{align*}
& {\left[\left(1+z_{\mathbf{w}}\right) \hat{D}+z_{\mathbf{w}}\right]_{\hat{w}}+\left(z_{\mathbf{q}}-1\right) \hat{q}+z_{\eta} \eta^{\prime}=-z_{\mathbf{w}} \alpha_{\mathbf{g}}} \tag{5.27}\\
& \left(m_{\mathbf{w}} \hat{D}+m_{\mathbf{w}}\right) \hat{w}+\left(\hat{D}+m_{\mathbf{q}}\right) \hat{q}+m_{\eta} \eta^{\prime}=-m_{\mathbf{w}} \alpha_{\mathbf{g}} \tag{5.28}
\end{align*}
$$

intensity $\bar{\sigma}$. Turbulence intensity is of ten described qualitatiwely as light, severe, etc.; such term are here in related to specific values of the reference intensity $\bar{\sigma}$ according to Table 1 [40]:

In reference [40], the reference intensity $(\bar{\sigma})$ has been shown to vary smoothly with altitude above $75 \mathrm{~m}(250 \mathrm{ft})$ and remains constant below 75 m . The rms intensities of the u, v and w components of turbulence are related to $\bar{\sigma}$. Von Karman and Dryden have described differently as:

Von Karman:
$\frac{\sigma_{u_{g}}}{\left(\mathrm{~L}_{\mathrm{u}}\right)^{1 / 3}}=\frac{\sigma_{v_{g}}}{\left(\mathrm{~L}_{\mathrm{v}}\right)^{1 / 3}}=\frac{\sigma_{w_{g}}}{\left(\mathrm{~L}_{\mathrm{w}}\right)^{1 / 3}}=\frac{\bar{\sigma}}{(750)^{1 / 3}}$

Dryden:

$$
\begin{equation*}
\frac{\sigma_{u}}{\left(L_{u}\right)^{1 / 2}}=\frac{\sigma_{v_{g}}}{\left(\mathrm{~L}_{v}\right)^{1 / 2}}=\frac{\sigma_{w_{g}}}{\left(\mathrm{~L}_{w}\right)^{1 / 2}}=\frac{\bar{\sigma}}{(750)^{1 / 2}} \tag{5.30}
\end{equation*}
$$

Above 750 m (2500 ft), these simplify to

$$
\begin{equation*}
\sigma_{u_{g}}=\sigma_{V_{g}}=\sigma_{W_{g}}=\bar{\sigma} \tag{5.31}
\end{equation*}
$$

Below 750 m , the changing of the rms intensities of turbulence velocity are given both in reference [40], [41]. They imply that the rms intensities approach the reference intensities by decreasing the measurement time.

The flight model under the gust was realized by the Eqs(5.27) and (5.28). The $\sigma_{\alpha_{g}}$ was calculated by using Table 1 and Eq(5.31) and Fig. 5.41. The speed U was given 160 Knots in the system. For example, for the moderate gust,

$$
\begin{aligned}
& \sigma_{w} \cong \bar{\sigma}=1.8 \mathrm{~m} / \mathrm{s}=6 \mathrm{ft} / \mathrm{s} \\
& \sigma_{\alpha_{g}}=-\frac{\sigma_{W}}{U} \cong-0.022
\end{aligned}
$$

α_{g} was represented with intensities and zero mean random function as given Fig.5.42. The identification was performed different gust intensities. Eqs (5.27) and (5.28) are rewritten in a matrix form as Eq(5.8)

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left[\begin{array}{l}
\alpha \tag{5.32}\\
q
\end{array}\right]=\left[\begin{array}{lr}
a_{11} & 0.9892 \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
\alpha \\
q
\end{array}\right]+\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right] \eta^{\prime}-\left[\begin{array}{l}
a_{11} \\
a_{21}
\end{array}\right]{ }^{\alpha_{g}}
$$

where $z_{w} \cong a_{11}, m_{w} \cong a_{21}$ are assumed. It can be seen from Eq(5.32) that gust affects the control vector parameters. The system with the different atmospheric turbulences, where the intensities have been chosen from Table 1, have been identified and the results are given in Fig.5. 42 to Fig.5.67.

5.7. CONCLUSION

Even if the parameters are time-variable, noise free identification can be done accurately. The identification accuracy with noise mixed measurement depends on the noise amplitude. The identification board can identify the system within the transient response time without using a special input. The same algorithm with the noise mixed measurement can be used for the gust effect.

Only the a_{11} value can not be identified from noise mixed observations. This is because its effect on the observation value is smaller than the noise every time. When the atmospheric effect is assumed to be constant, only control vector parameters are affected. If the atmospheric turbulence is modelled by its intensity and a random function, all parameters are changing. However the identified parameter can represent the system very well as seen in Fig. 5. 67.

Grades of Turbulence and

Reference Intensities

Nominal grade of turbulance	Values of reference intensity, $\bar{\sigma}$	
	m / s	ft / s
Light	0.9	3
	1.8	6
Severe	3.7	12
Extreme	7.3	24

Table 5.1.

Fig.5.1. Block diagram of the identification on real-time simulation

The following figures 5.2 and 5.3 show how the identification is achieved in a short time for the noise free system. The calculations are done between initial condition and the present time. Figures 5.5. and 5.6 show identification parameter values calculated using the input and output values from the last three steps. Fig. 5.5 and 5.6 indicate that when the derivative of the signals approach zero the errors of the identification increase. These cause small fluctuations in the parameter values but they can be ignored in the transient response time.

Fig.5.2. The identification results for time invariant system are shown for the noise-free observation. The parameter values can approach to the actual values in a few steps.

Fig.5.3. The identification result of the control parameter for time invariant system are shown for noise-free observation.

Fig.5.4. The outputs of the process

Fig.5.5. The identification results with each three steps. Identification error incerase with aproaching to the steady state.

Fig.5.6. The identification of the control parameters with each three steps. Identification error incease with approaching to the steady state.

Fig.5.7. The identification of the time-varying parameters

Fig.5.8. The identification of time-varying parameters. The reason of fluctuation of the parameter values are explained in section 5.5.2..

Fig.5.9. The identification of time-varying parameters

The following figures 5.10 to 5.24 help to give an idea about the relation between the identification feasibility and the noise. It can easily be seen from the figures that increasing noise causes the error to increase. But the identification is still feasible until the noise level reaches to 0.01 . Only a_{11} identification is impossible, because its effect on the system is much more smaller than the other. The identification routine is based on noise elimination with time averaging, but the noise effect can not be made smaller than the a_{11} effect in 30 steps.

The figures 5.25 to 5.40 show that the step number increasing from 30 to 60 is enough to elimination the noise effect. The a_{11} effect on the system output is so small that even 60 steps noise elimination is not enough to sense it.

(Times 1E-1)

Fig.5.10. The control input and output observation for the noise free system.

Fig.5.11. The identification of parameters for noise-free observation. Parameter values can be identified after 30th step, correctly. This operation has been done with data of Fig.5.10.
(Times 1E-2)

Fig.5.12. The identification of the control parameters for noise-free observation. Data are the same with Fig.5.11.

(Times 1E-1)

Fig.5.13. Output observations for noise amplitude 0.001
Fig.b. is the enlarging wiev of Fig.a.

(Times 1E-2)

Fig.5.14. The identification of the system parameter with 30 step block data. Data are mixed with noise as Fig.5.13. a_{11} estimation is more affected from noise than other parameter.

(Times 1E-2)

Fig.5.15. The control parameter identification with observation of Fig.5.13. Both of them are not affected from noise.

(Times 1E-1)

Fig.5.16. The system outputs for noise amplitude 0.003
Fig.b. is the enlarging wiev of Fig.a.

(Times 1E-2)

Fig.5.17. System parameter identification result.a a_{11} value may be wrong. But other dominant parameters can be identified.

(Times 1E-2)

Fig.5.18. The control parameter identification for noise amplitude 0.003 .

(Times 1E-1)

(Times 1E-1)

Fig.5.19. Output observation for noise amplitude 0.007
Fig.b. is the enlarging wiev of Fig.a.

(Times 1E-1)

Fig.5.20. The identification of the system parameter with 30 step block data. It has been done with Fig.5.19. data. Error increases for all parameter.

Fig.5.21. The identification of the control parameters. Error is still ignorant. Identification has been achieved with Fig.5.19. data
(Times 1E-1)

(Times 1E-1)

Fig.5.22. Output observation for noise amplitude 0.01
Fig.b. is the enlarging wiev of Fig.a.

Fig.5.23. The identification error increase up to 50% for 30 step time-averaging with noise amplitude 0.01 .
(Times 1E-2)

Fig.5.24. The identification of control parameters. Error is still less than 25% for the observation of Fig.5.22.

Fig.5.25. The identification results of noise-free system with 60 step time-averaging. Identification is achieved accurately after 60th step.

Fig.5.26. The identification of the control parameters of noise-free system with 60 step time-averaging.

(Times 1E-1)

Fig.5.27. The identification result for the noise 0.01 with 60 step time-averaging. It can be seen that dominant parameter can be identified, accurately. It was not possible with 30 step data.

(Times 1E-2)

Fig.5.28. The control parameter identification for noise 0.01 with 60 step time-averaging. Error decreases from 25% to $1-2 \%$, when it is compared with 30 step time averaging.

(Times 1E-1)

Fig.5.29. Output observation for noise amplitude 0.03 . Fig.b. is the enlarging of Fig.a.

(Times 1E-1)

Fig.530. The identification results for noise amplitude 0.03 with 60 step time-averaging method.

Fig.5.31. The control parameter identification for noise amplitude 0.03 with 60 step data.

(Times 1E-1)

Fig.5.32. Output observations for noise amplitude 0.05
Fig.b. is the enlarging wiev of Fig.a.

(Times 1E-1)

Fig.5.33. The idenfication of the system for noise 0.05 with 60 step block data.

(Times 1E-2)

Fig.5.34. The identification of the control parameters for noise 0.05 60 step block data. Error is still ignorant.

(Times 1E-1)

Fig.5.35. Outputs abservations for noise amplitude 0.07 .
Fig.b is the enlarging view of Fig.a.

(Times 1E-1)

Fig.5.36. The identification of the system parameter with 60 step block data. Error incerases on the dominant parameters, but it is still around 10%. Noise amplitude is 0.07 .

Fig.5.37. The identification of the control parameters for noise 0.07 Error of b_{2} is still less than 10%.

Fig.5.38. Output observations for noise amplitude 0.1
Fig.b is the enlarging view of Fig.a.
(Times 1E-1)

Fig.5.39. The identification of the parameters for noise amplitude 0.1 , the error of dominant parameter is still less than 20%.

(Timles 1E-1)

Fig.5.40. The control parameters identification for noise amplitude 0.1 , the error of b_{2} is still less 10%.

Fig.5.41. The attack angle definition

Fig.5.42. The gust changing around the intensities.

The figures 5.43 to 5.66 show the effect of air turbulence on the system identification. The stationary air velocity, which is represented by a constant α_{g} in the figures, has no effect on these system parameters which are coefficients of the variables, it affects only the control parameters. Random turbulence effects all parameters. Noise effect is the same with the normal identification. Different turbulence intensities effects, which are given in Table 5.1 , have been shown in the figures 5.43 to 5.66 . Each figure has denoted a different air velocity.
(Times 1E-1)

Fig.5.43. The observation and the identification result for atmospheric turbulence effect on the attack angle $\alpha_{g}=0.025$

Fig.5.44. The identification results with Fig.5.43. data

Fig.5.45. The observation and the identification result for atmospheric turbulence effect on the attack angle $\alpha_{g}=0.025^{*}\left(1+0.5^{*}\right.$ random func.)

Fig.5.46. The identification results with the observation of Fig.5.4 43

Fig.5.47. The observation and the identification result for atmospheric turbulence effect on the attack angle $\alpha_{g}=0.025$ and observations are $\mathrm{s}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}+0.01^{*}$ random func.

Fig.5.48. The identification results with the observation of Fig.5.43 Both of them are changled with noise and turbulence effect.

(Times 1E-1)

Fig.5.49. The dbservation and the identification result for atmospheric turbulence effect on the attack angle $\alpha_{g}=0.025^{*}\left(1+0.5^{\star}\right.$ random func.) and observations are $\mathrm{s}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}+0.01^{*}$ random func.

(Times 1E-2)

Fig.5.50. The identifivation results with the observation of Fig.5.5.49

(Times 1E-1)

Fig.5.51. The observation and the identification result for atmospheric turbulance effect on the attack angle $\alpha_{g}=0.05$

Fig.5.52. The identification results with the observation of Fig.5.511

Fig.5.53. The observation and the identification result for atmospheric turbulemce effect on the attack angle $\alpha_{g}=0.05^{*}\left(1+0.5^{*}\right.$ random func. $)$

Fig.5.54. Theidentification results with the observation of Fig.5. 53
(Times 1E-1)

Fig.5.55. The observation and the identification result for atmospheric turbulence effect on the attack angle $\alpha_{g}=0.05$ and observations are $\mathrm{s}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}+0.01$ *random func.

Fig.5.56. The identification results with the observation of Fig.5.55

(Times 1E-1)

Fig.5.57. The observation and the identification result for atmospheric turbulence effect on the attack angle $\alpha_{g}=0.05^{*}\left(1+0.5^{*}\right.$ random func.)
and observations are $s_{i}=x_{i}+0.01$ *random func.

Fig.5.58. The identification results with the observation of Fig.5.57

Fig.5.59. The observation and the identification result for atmospheric turbulence effect on the attack angle $\alpha_{g}=0.1$

(Times 1E-3)

Fig.5.60. The identification results with the observation of Fiig.5.59

(Times 1E-1)

Fig.5.61. The observation and the identification result for atmospheric turbulence effect on the attack angle
$\alpha_{\mathrm{g}}=0.1^{*}\left(1+0.5^{*}\right.$ random func.)

Fig.5.62. The identification results with the observation of Fig.5.61
(Times 1E-1)

Fic.5.63. The observation and the identification result for atmospheric turbulence effect on the attack angle $\alpha_{g}=0.1$ and observations are $\mathrm{s}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}+0.01$ *random func.

Fig.5.64. The identification results with yhe observation of Fig.5.63
(Times 1E-1)

Fig.5.65. The observation and the identification result for
atmospheric turbulence effect on the attack angle
$\alpha_{g}=0.1^{*}\left(1+0.5^{*}\right.$ random func.)
and observations are $\mathrm{s}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}+0.01^{*}$ random func.

Fig.5.66. The identification results with the observation og fig.5.65

(Times 1E-1)

Fig.5.67. The outputs of the systems.
$\alpha_{g}=0.1^{*}\left(1+0.5^{*}\right.$ random func) and observations
$s_{i}=x_{i}+0.01^{*}$ random func were taken for the
(Times 1E-1)

Fig.5.67. The outputs of the systems.
$\alpha_{g}=0.1^{*}\left(1+0.5^{\star}\right.$ random func) and observations
$s_{i}=x_{i}+0.01^{*}$ random func were taken for the comparision

CHAPTER 6. THE HARDWARE OF THE IDENTIFICATION

6.1. INTRODUCTION

The block diagram of the system identification has been given in Fig. 5.1. In this chapter, the hardware of each block hardware is discussed. The flight modelling block is divided into sub-blocks as shown in Fig.6.1.. The processors' architecture are also discussed .

6.2. Personal Computer

A COMPAQ personal computer has been used for the modelling of the aircraft as well as for communicating with the identification board. It uses Intel 80386 microprocessor that has got 32-bit architecture and $16-\mathrm{MHz}$ processor speed. It is also compatible with $8-\mathrm{MHz} 80286$ hardware and software. A 16-bit expansion bus has also been built for the P.C. to provide an interface fully compatible with I/O designed for an existing $8-\mathrm{MHz} 80286$ based system.

Intel 80386 microprocessor has 32 register resources in the following categories [42].

- General Purpose Registers
. Segment Registers
- Instruction Pointer and Flags
. Conttrol Registers
. System Address Registers
- Debug Registers
- Test Registers

All of the 80386 base architecture registers, which include the general data and address registers, flag registers and instruction pointer, are shown in Fig.6.2.. The other types of registers control, system address, debug and test are primarily used by the system software.

The 80386 processor includes eight general purpose registers of 32 bits to hold data or address quantities. They can be used with 1 , 8, 16,32 and 64 bits. The 32 bit registers are called EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP. They can also be used with the least 16 bits and are named $A X, B X, C X, D X, S I, D I, B P$, and $S P$. The least significant 8 bits of 16 bits or the most significant 8 bits of 16 bits can be used separately. The lowest bytes are named AL, BL, CL and DL and higher bytes are named $\mathrm{AH}, \mathrm{BH}, \mathrm{CH}$ and DH , respectively. All of them are illustrated in Fig.6.3.. SI, DI, BP and SP can not be addressed as single byte quantities but 8086 and 80286 programmers are used to this [43]. The usage of the general purpose registers is shown Fig.6.4..

The instruction pointer, which is a 32 -bit register, holds the
offset of the next instruction to be executed. It can also be used for 16 biit addressing that is named IP. The offset is always relative tio the lbase of the code segment CS.

The flag register is a 32-bit register which is called EFLAGS. The flag bits and bits field are shown in Fig.6.5.. The least significant 16 bits of EFLAGS is named FLAGS, which is used for 8086 and 80286 code. The flag bits meaning are given below.

CF (Carry Flags) : This bit is set when the operation result generates a carry or a borrow. Otherwise CF is zero. It is changed according to all operation code, 8-bit, 16 -bit or 32 -bit.

PF (Parity Flag) : This flag considers only low order 8 bits of the operation. If the low order 8 bits have an even parity, this flag is set. Otherwise it resets.

AF (Auxiliary Carry Flag) : The auxiliary flag is like a half-carry flag, which is set if the operation resulted in a carry out of bit 3 (addition) or borrow into bit 3 (subtraction). AF is affected by bit 3 only, regardless of overall operand length.

ZF (Zero Flag) : ZF is set, when all bits are zero, otherwise it is reset.

SF (Sign Flag) : If the most significant bit of operation is set, SF is set. It will reflect the state bit of $7,15,31$ according to the length of operation

TF (Trap Enable Flag) : This bit enables to single step operation. If this bit is 1 , the program executes exactly one step. The single-step continues until this bit becomes zero.

IF (Interrupt Enable Flag) : If this bit is set, external interrupts are recognized otherwise external interrupts are ignored. But (NMI) nonmaskable interrupt can operate independently.

DF (Direction Flag) : This flag determines whether ESI or EDI registers postdecrement ($\mathrm{DF}=1$) or postincrement ($\mathrm{DF}=0$) during the string operation.

OF (Overflow Flag) : This flag is set when the arithmetic operation result is too small or too large which indicates a register length is exceeded

IOPL (Input Output Privilege Level) : This two bit level is peculiar to the Protected mode of operation, and so first appeared on the 80286. It holds the privilege level from 0 to 3, at which your code must be running in order to execute any $1 / 0$ related instruction.

NT (Nested Flag) : This flag applies to Protected mode. It is used for multitasking operation.

Abstract

RF (Resume Flag) : This flag is related to the debug operation. By setting it, some exceptions can be masked selectively while debugging.

VM (Virtual 8086 Mode Flag) : When this flag is set, the 80386 is essentially converted into high speed 8086 until the bit is cleared again.

For more information see, for example, references [42] to [45].

6.3. The I/O Interface Card

The COMPAQ computer I/O is compatible with an 80286 microprocessor as mentioned in the previous section. I/O is possible via a 16-bit Expansion Bus which is given in Fig.6.6.. The pins' functions are given by Table 6.1. [44]. Table 6.1. indicates that some pins should be driven by 20 mA . In practice, each address or data line of the processors can not give 20 mA . In this case, a drive interface is needed to put between the 16-bit I/O Expansion Bus and the communication interface. This interface also protects the 16-bit I/O Expansion Bus of the processor from I/O device and
bus faults. A prototype card has been designed for this purpose. It has been placed between 300 h and 31 Fh address line. This standard address bus has been designed by the manufacturers [45]. The prototype card circuit diagram is given by Fig.6.7. It has been connected to the 80386 processor via a 16-bit I/O Expansion Bus Connector and also been connected to the communication interface via a D-type connector, which can be seen in Fig.6.8..

6.4. The Communication Interface Card

The communication between the Personal Computer and TMS320C30 Digital Signal Processor Board has been realized by a 16-bit parallel communication. The communication interface card has been designed to make the communication between the different systems, because both systems operate at different speeds and with different signals. A protocol is also necessary for two-way communications. This interface card has been built on the same board as the TMS320C30 DSP. Its circuit diagram is given in Fig.6.9.. The communication interface operation can be explained by the following steps:

Step 1) The data transmitted from the P.C. via the 300 H address line is connected to the latch input (IC 74AS652). Simultaneously, 300 H address and I / O commands: are solved and DINL is generated by the COMP I/O (PAL PLS153), which is programmed as in Fig.6.21.. The DINL signal is provided before the data bus line. On the other
hand, the latch I.C. is triggered by raising edge. In this case, DINL transfers the 3-state to latch. Therefore DINL is delayed for the suit transfer. These signals are given in Fig.6.10..

Step 2) The P.C. sends data via the 304 H address line in order to point the communication direction from P.C. to the identification board. The COMP I/O recognizes this data and modifies the XFO through D-flip flop (IC 74F74).

Step 3) When data is to be read from the latch by the TMS320C30, XFO is checked firstly. If data is ready to read, XFO has already been set in step 2. TMS320C30 reads data from the 804000 H address line. At the same time, TMS I/O (PAL PLS153), which has been programmed as in Fig.6.22., generates DINEN and data appears on TMS320C30 data line.

These three steps are used for the data transfer from COMPAQ to TMS320C30. The other direction transfer can be made with the same method by using DOUTL, $\overline{\mathrm{DOEN}}$ and XF1 and IC 74F244. DOUTL, which can be seen in Fig.6.20.. Acknowledgement signals are assumed to be $\overline{\mathrm{CFEN}}$ and CFDL. After the transfer, flags are cleared by $\overline{\mathrm{CFCLR}}$ and $\overline{\mathrm{CFDCR}}$.

6.5. TMS320C30 Digital Signal Processor

The identification board has been built with only TMS320C30 Digital Signal Processor without an external memory. TMS320C30 is a high performance CMOS 32-bit DSP. It contains a 32-bit
floating-point Central Processing Unit, 2 K 32-bit on-chip RAM, 64 32-bit instruction cache, 2 serial ports, 2 timers and Direct Memory Addressing Unit (DMA). Its speed is up to 33 MHz . A 4 K 32 -bit on-chip ROM option is available [46], but off-chip (external) EPROM has been used on the identification board.

6.5.1. Central Processing Unit (CPU)

The CPU consists of the Arithmetic Logic Unit (ALU), two Auxiliary Register Arithmetic Units (ARAUs), a multiplier and 28 registers.

The ALU performs single-cycle operations on a 32-bit integer, 32-bit logical and 40-bit floating point data, including single-cycle integer and floating point conversions. ALU also includes a barrel shifter which is used to shift up to 32 bits left or right in one cycle.

ARAUs can generate two addresses in a single-cycle. They can also be used for arithmetical and logical operations between auxiliary registers. They operate in parallel with the ALU and the multiplier. They support different addressing modes.

The multiplier performs multiplication integer and floating points values. It can multiply 24 -bit integer and 32-bit floating
points values in a single-cycle. The results of the multiplier are in 32 -bit integer or 40 -bit floating point format.

The TMS320C30 includes 28 registers for addressing, data, control and stack purposes, which are given in Fig.6.11.. Eight of them (RO-R7), which are named extended precision registers, are capable of storing and operations. They are 40 bits registers, which can be used for 32 -bit integer or 40 -bit floating point operations. The bits 39-32 are not changed in integer operation which is either signed or unsigned.

Auxiliary registers (ARO-AR7), which are 32-bit registers, are used for addressing by the $C P U$ and modified by the ARAUs. They can be used for different purposes, such as a loop counter. They generate 24-bit address, but they can be used as a 32-bit general purpose register; for example, an extended precision register by multiplier.

The 32-bit index registers (IRO, IR1) are used by the ARAUs for the address indexing. The 32 -bit block size register BK is also used by ARAUs for circular addressing to specify the data block size.

The system stack pointer SP is a 32-bit register which points the top of the system stack. The status register ST shows the state of CPU. Fig.6.12. illustrates the bit field and bit names which are
explained in Table 6.2..

CPU/DMA interrupt enable register $I E$ determines which CPU or $\mathbb{D M A}$ external interrupts can be recognized or ignored. If any bit is 1, this external interrupt will be recognized otherwise it will be ignored. All external interrupts can be masked. IE bit names and bit fields are shown in Fig.6.13. and explained in Table 6.3..

The CPU interrupt flag IF indicates which interrupt is set. The IF bit is set to 1 when an interrupt occurs. Register bit names and functions are given by Fig.6.14. and Table 6.4..

I/O flag register IOF controls the external pins XFO and XF 1. This register and the pin configuration are shown in Fig.6.15. and Table 6.5.

Repeat Counter register $R C$ is a 32-bit register and contains the repeat number of the block operation. 32-bit repeat starting address register $R S$ shows the block operation starting address. The block operation ending address is shown by 32-bit repeat end address register RE.

Program Counter PC is a 32-bit register containing the address of the next instruction to be fetched.

6.5.2. Memory Map

The TMS320C30 can address 16 M memory space. The usages of memory are shown in Fig. 6.16. . First 192 locations are for reset, interrupt vectors, trap vectors and a reserved place. Reserved memory space should not be read and written, otherwise the TMS320C30 may be halted and required a system reset to restart.

6.5.3. The TMS $320 C 30$ Circuit

The TMS320C30 circuit has been designed according to external interface categories. These categories can be illustrated by Fig.6.17.. The EPROM has been connected to the primary bus line ($\mathrm{COH}-\mathrm{OFFFH}$). The reading signals of the EPROM device are shown in Fig. 6. 19.. TMS I/O, which generates data latch and clear flag, is connected to the expansion bus addresses $804000 \mathrm{H}-804004 \mathrm{H}$. XFO and XF1, which are used to point to the direction of communication and are tied to the interface communication board. The expansion bus circuit diagram has already been given with the communication circuit diagram in Fig.6.9. The primary bus circuit diagram is given by Fig.6.18. All memory and device are suitable to work with zero wait state.

6.6. Conclusion

The communication between two microprocessors, and the
identification board design have been given in this chapter. Also the processors' architectures have been given briefly. Two different interfaces are used to communicate between two processors. Because the 16-bit I/O Expansion Bus Connector of the 80386 requires a drive interface which has already been built. The purpose of the other, which is called the communication interface, is to achieve the communication between the processors. The PAL devices have been programmed to code and decode the signals. It has to be considered that the COMP I/O device decodes the COMPAQ's address line and produces the latch enable signal before the COMPAQ's data.

Signal Name	Description
IOCHK	This input signal is used to signal the CPU about parity or other serious errors on expansion memory boards plugged into expansion bus. This signal should be driven low by an open-collector type output capable of sinking 20 mA when an uncorrectable
system error occurs.	

Table 6.1. The 16-Bit Expansion Bus Signals

NOWS	This input signal indicates the No Wait System. This pin must be pulled low before the falling edge of BCLK. It should be driven by an open-collector device capable of sinking 20 mA .
SMWTC	This output signal is Standart Memory Write that is active (low) for an address between 000000 h and 0FFFFFh.
SMRDC	This output signal is Standart Memory Read that is active (low) for an address between 000000 h and OFFFFFh.
IOWC	When this output signal (I/O Write) is low, data is assumed to accept by an I/O device.
IORC	When this output signal (I/O Read) is low, data is assumed to send to data bus by an I/O device.
REFRESH	This output signal indicates (when low) a refresh cycle in progress.
BCLK	It is 8 Mhz clock signal which is synchronize with main processor clock.
T/C	This output signal indicates that terminal count of a DMA operation has been reached. It should be decoded with appropriate DAK line.
BALE	This output signal (when high) indicates that a valid address is present on the LAxx address line. This line is always high when a DMA or bus master operation is occurring.
OSC	This is a clock signal for timing operation. Its frequency is 14.31818 Mhz with a 50 percent duty cycle.
SBHE	This is System Bus High Enable signal which indicates 16 -Bit data transfer.
LA17-LA23	They are Latchable Address signals which decode memory according to 0 or 1 wait states. They are valid only BALE is high.
MRDC	This Memory Read signal is low, when a memory device is to send data to data bus with any address of the entire adress space of the system.

Table 6.1. The 16-Bit Expansion Bus Signals
(Continued)

MRDC	This Memory Write signal is low, when a memory device is to accept data from data bus with any address of the entire adress space of the system.
M16-	This input signal (Memory is 16 bits) notifies the system that the addressed memory is capable of transferring 16 bits of data at once. When this line is made active during a memory read or write, the standart, 1-wait-state memory cycle is run. This line should be derived from the LAxx address lines. It should be driven by an open-collector device capable of sinking 20 mA .
I016-	This input signal (I / O is 16 bits) notifies the system that the addressed I/O device is capable of transferring 16 bits of data at once. When this line is made active during an $1 / 0$ read or write, the standart, 1-wait-state $1 / 0$ cycle is run. It should be driven by an open-collector device capable of sinking 20 mA .
GRAB	This input signal indicates that a board-mounted bus master is controlling the bus.
GND	These lines are connected to the system DC ground. The maximum current allowe on any single contact is 1.5 A .
$\begin{array}{ll} +5 & \text { VDC } \\ -5 & \text { VDC } \\ +12 & \text { VDC } \\ -12 & V D C \end{array}$	These lines are connected to the essential power supplies.

Table 6.1. The 16-Bit Expansion Bus Signals
(Concluded)

BIT	NAME	FUNCTION
0	C	Carry flag
1	V	Overflow flag
2	Z	Zero flag
3	N	Negative flag
4	UF	Floating-point underflow flug
5	LV	Latched overflow flag
6	LUF	Latched floating point underflow flag
7	OVM	Overflow mode flag. This flag affected only the integer operation. When this flag is zero, overflow is normal. When $O V M=1$, integer results overflowing are set to the most positive 32-bit two's complement number (7FFFFFFFh) or the most negative two's complement number according the result's sign.
8	RM	Repeat mode flag. If this flag is set, the PC is modified reaeat operations.
9	Reserved	Read as 0
10	CF	Cache Freeze.
11	CE	Cache Enable
12	CC	Cache Clear
13	GIE	Global Interrupt enable. If the GIE=1, the CPU responds to an enabled interrupt. If the GIE $=0$, CPU does not respond to an enabled interrupt.
14	Reserved	Read as 0.
15	Reserved	Read as 0.
16 31	Reserved Reserved	Value undefined.

Table.6.2. Status Register Bits Summary.

BIT	NAME	FUNCTION
0	EINTO	Enable external interrupt 0 (CPU)
1	EINT1	Enable external interrupt 1 (CPU)
2	EINT2	Enable external interrupt 2 (CPU)
3	EINT3	Enable external interrupt 3 (CPU)
4	EXINTO	Enable serial port 0 transmit interrupt (CPU)
5	ERINTO	Enable serial port 0 receive interrupt (CPU)
6	EXINT1	Enable serial port 1 transmit interrupt (CPU)
7	ERINT1	Enable serial port 1 receive interrupt (CPU)
8	ETINTO	Enable timer 0 interrupt (CPU)
9	ETINT1	Enable timer 1 interrupt (CPU)
10	EDINT	Enable DMA controller interrupt (CPU)
11-15	Reserved	Value undefined
16	EINTO	Enable external interrupt 0 (DMA)
17	EINT1	Enable external interrupt 1 (DMA)
18	EINT2	Enable external interrupt 2 (DMA)
19	EINT3	Enable external interrupt 3 (DMA)
20	EXINTO	Enable serial port 0 transmit interrupt (DMA)
21	ERINTO	Enable serial port 0 receive interrupt (DMA)
22	EXINT1	Enable serial port 1 transmit interrupt (DMA)
23	ERINT1	Enable serial port 1 receive interrupt (DMA)
24	ETINTO	Enable timer 0 interrupt (DMA)
25	ETINT1	Enable timer 1 interrupt (DMA)
26	EDINT	Enable DMA controller interrupt (DMA)
27-31	Reserved	Value undefined

Table 6.3. IE Register Bits

BIT	NAME	FUNCTION
0	INTO	External interrupt 0 flag
1	INT1	External interrupt 1 flag
2	INT2	External interrupt 2 flag
3	INT3	External interrupt 3 flag
4	XINT0	Serial port 0 transmit interrupt flag
5	RINT0	Serial port 0 receive interrupt flag
6	XINT1	Serial port 1 transmit interrupt flag
7	RINT1	Serial port 1 receive interrupt flag
8	TINT0	Timer 0 interrupt flag
9	TINT1	Timer 1 interrupt flag
10	DINT	DMA channel interrupt flag
$11-31$	Reserved	Value undefined

Table 6.4. IF Register Bits

BIT	NAME	FUNCTION
0	Reserved	Read as 0
1	I/OXFO	If $\overline{\mathrm{I}} / \mathrm{OXFO}=0$, XFO is configured as a general input pin. If $\overline{\mathrm{I}} / O X F O=0$, XFO is configured as a general output pin.
2	OUTXFO	Data output on XFO
3	INXFO	Data input on XFO. A write has no effect.
4	Reserved	Read as 0
5	$\overline{\mathrm{I}}$ /0XF1	If $\overline{\mathrm{I}} / \mathrm{OXF} 1=0$, XF1 is configured as a general input pin. If $\overline{\mathrm{I}} / \mathrm{OXF} 1=1, \mathrm{XF} 1$ is configured as a general output pin.
6	OUTXF1	Data output on XF1
7	INXF1	Data input on XF1. A write has no effect.
8-31	Reserved	Read as 0

Table 6.5. IOF Register Bits

Flight Modelling

Fig.6.1. The Block Diagram of The Identification

GENERAL DATA ANDI ADDRESS REGISTERS

31			0
		AX	EAX
		BX	EBX
		CX	ECX
		DX	EDX
		SI	ESI
		DI	EDI
		BP	EBP
		SP	ESP

SEGMENT SELECTTOR REGISTER
150

Fig.6.2.80386 Base Architecture Registers

$31 \quad 16$	$16 \quad 15$	87		EAX
	AH	AX	AL	
	BH	BX	BL	EBX
	CH	CX	CL	ECX
	DH	DX	DL	EDX
		SI		ESI
		DI		EDI
		BP		EBP
		SP		ESP

Fig.6.3. General Purpose Registers

Registers	EAX	EBX ECX EDX ESI EDI EBP ESP
General storage		
String operations		
Loop counter		
I/O address		
Multiply		
Divide (dividend)		
Divide (remainder)		
Base register		
Index register		
XLAT pointer		
I/O data		
String source		
String destination		

Fig.6.4. Register usage

Fig.6.5. Flag Register

SAO	$\bigcirc 0$	Do
SA1	$\bigcirc 0$	D1
SA2	$\bigcirc 0$	D2
SA3	$\bigcirc 0$	D3
SA4	$\bigcirc 0$	D4
VO Dec	$\bigcirc \bigcirc$	D5
IORC	$\bigcirc 0$	D6
OE (SDO-SD7)	$\bigcirc 0$	D7
OE (SD8-SD15)	$\bigcirc 0$	D8
D15	$\bigcirc 0$	D9
D14	$\bigcirc 0$	D10
D13	\bigcirc	D11
IOWC	\bigcirc	D12
BUSRDY	\bigcirc	N/C
N/C	\bigcirc	N/C
+12 Vdc	\bigcirc	N/C
Signal Ground	$\bigcirc 0$	+5 Vdc
$-12 \mathrm{Vdc}$	\bigcirc	GROUND
N/C	$\bigcirc 0$	$-5 \mathrm{Vdc}$
N/C	$\bigcirc 0$	N/C

COMPAQ I/O D-type connector Communication Interface connector

Fig.6.8. The Interface Connectors Pins

Fig.6.10. Transfer Signals from COMPAQ to Latch

RS
RE

RC

Fig.6.11. CPU Registers

Fig.6.12. Status Register

$\begin{aligned} & 3 \\ & 1 \end{aligned}$	$\begin{aligned} & 3 \\ & 0 \end{aligned}$	$\begin{aligned} & 2 \\ & 9 \end{aligned}$	8		$\begin{aligned} & 2 \\ & 6 \end{aligned}$	$\begin{aligned} & 2 \\ & 5 \end{aligned}$	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 9 \end{aligned}$	$\begin{aligned} & 1 \\ & 8 \end{aligned}$	$\begin{aligned} & 1 \\ & 7 \end{aligned}$	$\begin{aligned} & 1 \\ & 6 \end{aligned}$
x \times	x ${ }^{\text {a }}$	${ }^{2} \times$	x ${ }^{\text {r }}$	20	EDINT	EINT1	$\begin{aligned} & \text { EINTO } \\ & \text { (DMA) } \end{aligned}$	$\begin{aligned} & \text { ERINT1 } \\ & \text { (DMA) } \end{aligned}$	$\begin{aligned} & \mathrm{EXINT1} \\ & (\mathrm{DMA}) \end{aligned}$	$\begin{aligned} & 1 \text { RINTI } \\ & \text { (DMMA) } \end{aligned}$	$\begin{aligned} & \text { EXINTD } \\ & (\mathrm{DMA}) \end{aligned}$	$\begin{aligned} & \mathrm{EINT3} \\ & \text { (DMA) } \end{aligned}$	$\begin{aligned} & \text { EINT2 } \\ & \text { (DMA) } \end{aligned}$	$\begin{aligned} & \mathrm{EINT1} \\ & (\mathrm{DMA}) \end{aligned}$	EINTO

1 5	1 4	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	2		$\begin{aligned} & 1 \\ & 0 \end{aligned}$	9	8	7	6	5	4	3	2	1	0
x	2x	Px	x ${ }^{\text {a }}$	xx	$\begin{aligned} & \text { EDINT } \\ & \text { (CPU) } \end{aligned}$	$\begin{aligned} & \text { EINT1 } \\ & \text { (CPU) } \end{aligned}$	$\begin{aligned} & \text { ETNTO } \\ & \text { (CPU) } \end{aligned}$		$\begin{aligned} & 1 \text { EXINT1 } \\ & \text { (CPU) } \end{aligned}$	$\begin{aligned} & 1 \text { ERINTd } \\ & \text { (CPU) } \end{aligned}$	$\begin{aligned} & \text { DXINTD } \\ & \text { (CPU) } \end{aligned}$	$\begin{aligned} & \mathrm{EINT} 3 \\ & \text { (CPU) } \end{aligned}$	$\begin{aligned} & \mathrm{EINT} 2 \\ & \text { (CPU) } \end{aligned}$	$\begin{aligned} & \text { EINT1 } \\ & \text { (CPU) } \end{aligned}$	$\begin{aligned} & \text { EINTO } \\ & \text { (CPU) } \end{aligned}$

RM RW RW RW RW RN RN RM RMW RM RW RW RM
$x x=$ reserved bit, read as 0
$R=$ read, $W=$ write

Fig.6.13. CPU/DMA Interrupt Enable Register

$\begin{aligned} & 3 \\ & 1 \end{aligned}$	$\begin{aligned} & 3 \\ & 0 \end{aligned}$	$\begin{aligned} & 2 \\ & 9 \end{aligned}$	$\begin{aligned} & 2 \\ & 8 \end{aligned}$	$\begin{aligned} & 2 \\ & 7 \end{aligned}$	$\begin{aligned} & 2 \\ & 6 \end{aligned}$	2	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	0	$\begin{aligned} & 1 \\ & 9 \end{aligned}$	$\begin{aligned} & 1 \\ & 8 \end{aligned}$	$\begin{aligned} & 1 \\ & 7 \end{aligned}$	$\begin{aligned} & 1 \\ & 6 \end{aligned}$
x ${ }^{\prime}$	xx	ox	rx	sx	mor	rox	nox	${ }^{20}$	x x	x \times	xx	$x \times$	x \times	xor	xx

-1
1
5

RNW RNW RW R/W RNW RW RW RNW RN RW RW RNW RMW

$$
\begin{aligned}
& X X=\text { reserved bit, read as } 0 \\
& R=\text { read }, W=\text { write }
\end{aligned}
$$

Fig.6.14. CPU Interrupt Flag Register IF

$\begin{array}{r} 3 \\ \hline 1 \end{array}$	$\begin{aligned} & 3 \\ & 0 \end{aligned}$	$\begin{aligned} & 2 \\ & 9 \end{aligned}$	$\begin{aligned} & 2 \\ & 8 \end{aligned}$	$\begin{aligned} & 2 \\ & 7 \end{aligned}$	$\begin{aligned} & 2 \\ & 6 \end{aligned}$	$\begin{aligned} & 2 \\ & 5 \end{aligned}$	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$		$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 9 \end{aligned}$	$\begin{aligned} & 1 \\ & 8 \end{aligned}$	$\begin{aligned} & 1 \\ & 7 \end{aligned}$	$\begin{aligned} & 1 \\ & 6 \end{aligned}$
m \times	xx	x x	xx	*x	sox	rax	xa	x x	xx	sx	x^{x}	sx	xa	sor	x ${ }^{\text {a }}$

$\begin{aligned} & 1 \\ & 5 \end{aligned}$	$\begin{aligned} & 1 \\ & 4 \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$			9	8	7	6	5	4	3	2	1	0
x x	x x	x	x x	x x	xx	x x^{\prime}	$20 \times$	INXF1	OUTXF1	VOXF1	xo	INXFO	OUTXFO	VOXFO	x ${ }^{\text {a }}$

$x x=$ reserved bit, read as 0
$R=$ read, $W=$ write

Fig.6.15. I/O Flag Register IOF

Fig.6.17. External Interfaces on the TMS320C30

A23-0
$\overline{S T R B}$

D31-0

Fig.6.19. The Primary Bus Read Operation Timing

Fig.6.20. Expansion Bus Interface to Latch

COMPIO PAL

LOGIC EQUATIONS

/ODEN =/(/A1 * /A2 * /A3 * /A4 * IOD * IOR) /CFEN=/(A1 * /A2 * /A3 * /A4 * IOD * IOR) DINL=/A1 * /A2 * /A3 * /A4 * IOD * IOW (CFCLR=/(A1 * /A2 * /A3 * /A4 * IOD * IOW) CFOIRL= /A1 * A2 * /A3 * /A4 * IOD * IOW

UNIVERSITY OF BATH			
Titie	COMPIO VERSION 1.0 PAL		
Size	Document Number		
A	FIGURE 6.21	REV	
Date: January 16.1992	Sheet	Of	

TMSIO PAL

LOGIC EQUATIONS

poutL=/XA® * /XA1 * /XA2 * IOSTRB * /XR/ \bar{W} $O F D=X A \varnothing$ * $/ X A 1$ * $/ X A 2$ * IOSTRB $* / X R / W$ ($O C R=/(/ X A \varnothing$ * XA1 $* / X A 2 *$ IOSTRB $* / X R / \bar{W})$ UNEN $=/ X A \varnothing * / X A 1 * / X A 2 * \operatorname{IOSTRB} * X R / \bar{W}$

CHAPTER 7. THE SOFTWARE OF THE IDENTIFICATION

7.1. Introduction

Abstract

Two different processors work for the application of the identification as discussed in previous chapters. Their softwares are different as well as their hardwares, which were explained in the previous chapter. Programs run independently except during the communication. The flow charts of the programs are given in Fig.7.1.. They represent all different options, which have been given in chapter 5. They are explained in detail in this chapter.

7.2. Personal Computer Software.

In the P.C. flow chart blocks 1, 3, 5 and 6 are operated with a high level language FORTRAN 77. Blocks 2 and 4 are processed using assembly language, directly, because, addresses of the I/O port cannot be accessed by standard FORTRAN 77 . The assembly code can be called from a high level language as a subroutine. So, the flight modelling with a high level language and the communication with low level language have been achieved in the P.C.. Block 6 has been realized due to Eq.5.7. by fourth order Runge-Kutta integration routine. Blocks 2 and 4 can be done according to a protocol, which will be given in the next section. The Runge-Kutta algorithm is
written in FORTRAN 77 . The assembly language codes relating to thee read-write are given in appendix A.1.1. and A.1.2. It has beeen ${ }^{2}$ mentioned that the P.C. uses 80386 processor, but its 16 -bit $\mathrm{I} / \mathrm{O}^{\mathrm{O}}$ expansion bus is compatible with the 80286 as discussed the section 6.2. .
N value of the block 1 has been described due to the kind of parameter value. Its value has been taken to be equal to 3 for the noise-free system. It has been increased with noise level. The results of identification for $\mathrm{N}=30$ and $\mathrm{N}=60$ were given in chapter 5. Before the Nth step there is no response from the identification board, therefore there is no reading. However, before the Nth step, the program writes the results into a file where all parameters are equal to 1. The flow chart 7.1. can be applied with another approach that $P . C$. reads data from the ready data file instead of calculating each step values, Because, the data creation and communication in 40 msec, which is the step time, may not be possible. That is if the COMPAQ is to slow in similarity the aircraft.

7.3. Communication Protocol

The communication between the 80386 and TMS320C30 is performed via the latch circuit and flags as discussed before. This communication can only be conducted in one direction at any time. The external flag of TMS320C30 (XF1) determines the direction of the
communicattion. Both directions protocols are given below:

When data is written on the 300 h address line by COMPAQ, the COMPIO PAL decoder, which was shown in the previous chapter, produces the latch trigger signal. So data is written the latch circuits. Then the COMPAQ sends any data to 302 h address line, which causes the XFO external bit of TMS320C30 to be high. After $\mathrm{XFO}=1$,
the TMS320C30 reads data from the latch via the 804000 h addiress line. Them the TMS32030 sends data to 804002 h address line to cllear XFO signal. Later, it writes any data to 804002 h address line to send an acknowledgement to the COMPAQ. This signal causes the bit 0 of the 302 h address of COMPAQ to be equal to 1 . When the COMPAQ senses the acknowledgement, it continues to the next operation. However, the COMPAQ checks the XF1 before each operation. The TMS320C30 changes XF1 to start a write operation. The TMS320C30 writes to the 804000 h address line to transfer data to the latch circuit. Simultaneously, the TMSIO PAL decoder which was shown in the previous chapter, produces the latch trigger signal. The TMS320C30 writes any data to the 804001 h address line to alert the COMPAQ. In this condition, 0003h is shown on the 302 h address line of COMPAQ. Bit 0 and bit 1 represent the data ready flag and the direction flag, respectively. The COMPAQ reads data from 300h address line after the data ready flag. Then, it writes data to clear the data ready flag. Finally, it writes the data to send the acknowledgement to the TMS302C30, which causes to XFO=1. Then, the TMS320C30 clears the direction flag via the 804002 h address line.

7.4. Read and Write Operation with P.C.

The transfer values from the P.C. to the board have been in real mode. They are in 32-bit floating point format, but I/O bus is only 16 bits. Therefore, 32-bit floating point value is assumed to be

32-bit integer value and transferred as two 16 -bit. FFor this purpose, initially, the starting address of the variable is determined. Subsequently, low significant 16 -bit of 32 -bit is sent. After the sensing of acknowledgement, it is cleared and then high significant 16 -bit of 32 -bit is sent. So, the 32 -bit data is written or transferred to TMS320C30 board.

Reading of the data also follows the same procedure. For this case the OUT command is replaced by the IN command with appropriate control signals. The Read and Write operation program is given in appendix with GO and COMEP names, respectively.

7.5. TMS320C30 Software

The TMS320C30 sof tware is much more complex than the P.C.'s I/O software. This program controls all the board operations, initialization of the processor, identification operation, I/O operation and the data conversation and acquisitions. Each operation control will be given in the following sub-sections.

7.5.1. The Initialization of the TMS320C30

The processor should be initialized with a reset operation before the start of the execution of the program. When resset is activated, the TMS320C30 DSP goes to reset vector, which iis the
contents of the memory location 0 . Firstly, the starting address of the initialization program should be described. Secondly, memory mapped registers [46] and interrupt structure should be initialized. Then, all memory must be filled with zero and the operation program variables must be defined. In this work, the initialization has been programmed so that the processor reaches the operation program via the primary bus and the I/O via the expansion bus. The processor uses only the on-chip memory for storage. The interrupts have not been considered because of the communication protocol. The initialization program is given in appendix A.1.3..

The reset vector is described in initialization as follow

| | .sect "init" | ; Named section |
| :--- | :--- | :--- | :--- |
| RESET | word | INIT |

This description is not enough in order to point the vector address name. The address of the initialization program should be described with ROM address in the linker command file. The variables address, the stack space and data space should be written in the linker ccmmand file. An example is given below

```
/* SAMPLE COMMAND FILE FOR LINKING C3O PROGRAMS
*
/* File Name: EDS.CMD
```



```
EDS. OBJ
/* SPECIFY THE SYSTEM MEMORY MAP */
MEMORY
{
    VECS: org = Oh len = 040h /* INTERRUPT VECTORS */
    ROM: org = OCOh len = 07FFF40h /* PROGRAM CODE */
    IOM: org = 0800000h len = 02000h /* -MSTRB I/O */
    IO: org = 0804000h len = 02000h /* -IOSTRB I/O */
    RAMO: org = 0809800h len = 0400h /* RAM BLOCK 0 */
    RAM1: org = 0809COOh len = 0300h /* RAM BLOCK 1 */
    STACK: org = 0809F00h len = 0100h /* SYSTEM STACK */
}
```


/* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */

SECTIONS

```
\{
vectors: \{\} > VECS /* INTERRUPT VECTORS */
stk_init: \(\}>\) STACK /* INITIAL STACK POINTER */ .text: \{\} > ROM /* CODE */ .data: \{\} > RAM1 /* ROM-RESIDENT TABLES \& CONSTANTS */ .bss: \{\} > RAMO /* BSS DATA */ \}
```

The variables, which are used by the program, are put into suitable locations of the memory. This operation is performed by the initialization program and the linker command file. At first, their location in the memory are declared. In the second part, which has been described in the RESET declaration by INIT section, the
contents of the variables (initial values) are filled with the iinitialization program. The on-chip RAM of the processor is considered as memory which may not be sufficient unless the code is in an optimal form. For example, when $N=60$ is selected, the address space of data must be enlarged from 400 h to 600 h . Thus, the resident table and constants must be squeezed in the 100 h memory space. Its linker command file is given in appendix A.1.4. The memory usage of t.he $\mathrm{N}=60$ identification routine is also given in appendix A.1.5..

7.5.2. I/O Program

The processor can recognize the data by the XFO external flag. It can be controlled by the IOF register. The data is assumed to be integer as in the other processor. Therefore, they are transferred to the temporary memories. A typical reading program is given below:

READ	LDI	@PRLIO, AR1	Load the device address to AR1
	LDI	@PRLIOO, AR2	Load the temporary address to AR2
	LDI	20H, IOF	Configure the external flags
	LDI	5, RC	Load the data number
	RPTB	DV	Start to read
XFO	LDI	IOF, R1	Check the IOF register
	AND	8, R1	
	BZ	XFO	Wait until data is ready
	LDI	*AR1, R2	Read data
	STI	R2, *AR2++(1)	Store data
	STI	RO, *+AR1 (2)	Clear flag
DV	STI	RO, *+AR1 (1)	Send acknowledgement and wait new data
	RETS		Return to main program.

Data length is 16 -bit during the transfer. It will be converted to

32-bit floating point TMS format. The name of this program is DMAA in the main program, which is given in appendix A.1.13.

Writing by the processor is similar to reading. The 32-bit floating point values are converted to 16 -bit integer vaiues and stored in other temporary memories before writing. This program sends only two 16 -bit integer data. Its source assembly form is given below:

WRITE LDI @PRLIO, AR1 ; Load the device address to AR1
LDI @OUTPUT,AR2 ; Load the data address to AR2
LDI 60 H, IOF ; Configure the external flags
LDI *AR2++(1),R2 ; Load data to register
STI R2,*AR1 ; Send data(low 16-bit) to latch
STI R1,*+AR1(1) ; Send the flag to P.C.
CV LDI IOF,R1 ; Check acknowledgement
AND 8,R1 ;
BZ CV ; Wait acknowledgement
STI R0,*+AR1(2) ; Clear flag
LDI *AR2++(1),R2 ;
STI R2, *AR1 ; Send high 16-bit
STI R1,*+AR1 (1) ;
CV1
LDI IOF,R1 ;
AND 8,R1
B2 CV1
STI RO,**AR1 (2) ;
LDI RO, IOF ;
RETS ; Return to main program

7.5.2.1. Floating Point Conversion

The TMS320C30 floating point format is different from P.C.. floating point format as mentioned before. The TMS320C30 floatingg
point format is:

8	1	23
e	s	f

The first 8 bits correspond to the exponent, which is expressed in two's complement format. The following one bit is for the sign of mantissa and the 23 bits are for mantissa itself. Actually, the sign bit includes the information for the mantissa, therefore the mantissa is represented by 24 bits.

$2^{e^{*}}(01 . f)$	if $s=0$
$2^{e^{*}}(10 . f)$	if $s=1$
0	if $e=-128$.

For example, 1 is described by 00000000 h and -1 is described by FF000000h.

The P.C. uses the IEEE floating point format, which is as:

1	8	23
s	e	f

The first bit of data is sign bit, the following 8-bit is exponent
aind the remaining 23 -bit is the mantissa. In this format, the miantissa is represented by 24 -bit. Because the integer part of mantissa is assumed to be 1.23 -bit represents only fractional piart. So ffloating point number is:

```
s* 2-127* (1.f)
```

where s represents only the sign of the mantissa. The exponent value is shifted with 127 to be actual value. In this case minimum exponent is 0 , maximum exponent is 7 Fh .

IEEE to TMS320C30 floating point format conversion and TM320C30 to IEEE floating point format conversion assemble source programs are given in appendix A.1.6. and A.1.6. by TMSC and CMPQ names.

7.5.3. The Identification Program

The identification operation consists of complex matrix operations. Therefore, all matrix operations in the assemble source should be defined. The matrix addition and multiplication, the inverse of the floating point number, the integration and the inverse of the matrix are given with detail, in the following sub-sections.

7.5.3.1. Matrix Addition and Subtraction

It is very well known that only matrices of the same dimenssion can be added or subtracted. The assemble source program is a llow level program, therefore checking of the dimension is made by the programmer. A matrix addition can be represented as

$$
\begin{gathered}
C(i, j)=A(i, j)+B(i, j) \quad i=1,2, \ldots, P, j=1,2, \ldots, N \\
{\left[\begin{array}{cccc}
a(1,1) & a(1,2) & \ldots & a(1, N) \\
a(2,1) & a(2,2) & \ldots & a(2, N) \\
\vdots & & & \vdots \\
a(P, 1) & a(P, 2) & \ldots & a(P, N)
\end{array}\right]+\left[\begin{array}{cccc}
b(1,1) & b(1,2) & \ldots & b(1, N) \\
b(2,1) & b(2,2) & \ldots & b(2, N) \\
\vdots \\
b(P, 1) & b(P, 2) & \ldots & b(P, N)
\end{array}\right]=} \\
{\left[\begin{array}{cccc}
c(1,1) & c(1,2) & \ldots & c(1, N) \\
c(2,1) & c(2,2) & \ldots & c(2, N) \\
\vdots & & & \vdots \\
c(P, 1) & c(P, 2) & \ldots & c(P, N)
\end{array}\right]}
\end{gathered}
$$

We must define the address of each element of matrices in the programming. If we assume the starting addresses of $x x$, $y y$ and $z z$ for the matrices A, B and C, respectively, the addresses other elements are as follows:

$x x$	$\leftrightarrow a(1,1)$,	$y y$	$\leftrightarrow b(1, \mathbb{1})$
$x x+(N-1)$	$\leftrightarrow a(1, N)$,	$y y+(N-1)$	$\leftrightarrow b(1, N)$
$x x+\mathbb{N}$	$\leftrightarrow a(2,1)$,	$y y+N$	$\leftrightarrow b(2,1)$
$x x+\mathbb{N}^{*}(i-1)$	$\leftrightarrow a(i, 1)$,	$y y+N^{*}(i-1)$	$\leftrightarrow b(i, 1)$
$x x+\mathbb{N}^{*}(i-1)+(j-1)$	$\leftrightarrow a(i, j)$,	$y y+N^{*}(i-1)+(j-1) \leftrightarrow b(i, j)$	
$x x+\left(P^{*} N\right)-1$	$\leftrightarrow a(P, N)$,	$y y+\left(P^{*} N\right)-1$	$\leftrightarrow b(P, N)$

$z z$	$\leftrightarrow c(1,1)$
$z Z+(\mathrm{N}-1)$	$\leftrightarrow c(1, N)$
$z Z+\mathrm{N}$	$\leftrightarrow c(2,1)$
$z Z+\mathrm{N}^{*}(i-1)$	$\leftrightarrow c(i, 1)$
$z Z+\mathrm{N}^{*}(i-1)+(j-1)$	$\leftrightarrow c(i, j)$
$z z+\left(\mathrm{P}^{*} \mathrm{~N}\right)-1$	$\leftrightarrow c(\mathrm{P}, \mathrm{N})$

$c(i, j)=a(i, j)+b(i, j)$ and their addresses are
$z z+N^{*}(i-1)+(j-1), x x+N^{*}(i-1)+(j-1)$ and $y y+N^{*}(i-1)+(j-1)$, respectively. It is easily seen that all addresses are identical. They can be reached from the starting addresses by the same number of shifting. Last addresses are found with shifting ($P^{*} N$) -1. In this case, each element of C matrix can be calculated and placed in their correct location. The related assemble program is given in appendix A.1.8.. It can be shown that each element of matrices is used only one time during the operation. Therefore, if A or B matrix is not needed any more, the memory space for the C matrix is not required. This is an advantage for the restricted memory usage. This
facility has been used in the main program.

The matrix addition program was used for the matrix subtraction. The Subtraction command is used instead of addition command via checking the control flag, which is MINUS variable in the program.

7.5.3.2. Matrix Multiplication

Matrix addition and required memory arrangements have been shown in the previous section. But multiplication is more complex than addition. A matrix multiplication is defined as:

$$
A(P, N) * B(N, R)=C(P, R)
$$

$$
c(i, j)=\sum_{\mathbf{k}=1}^{\mathbf{N}} \mathrm{a}(i, k) * \mathrm{~b}(k, j)
$$

N times scalar multiplications are necessary to obtain each element of the resultant matrix. Calculating an element of the resultant matrix is explained by an example as follows:

Step 1) Set $c(i, j)$ to zero
Step 2) Find the starting addresses of elements of matrices A and B, which are the first element of ith line of A and the first element of j th colon of B.

Step 3) Multiply $a(i, k)$ by $b(k, j)$ and add result to $c(i, j)$.
Step 4) Increase the memory address of the element of A matrix by
one. Increase the memory address of the element of B by R.
Step 5) Go to step 2. Continue this operation until Nth step.

These steps are applied for all elements of the resultant matrix. Its assemble source program is given in appendix A.1.9..

7.5.3.3. The Inverse of Floating Point Number

The TMS320C30 processor does not have a division command. The integer division operation can be performed by using the Subtract Integer Conditionally command. A software for the inverse of the floating point number is developed in reference [46]. This program is based on the following iterative algorithm. At the ith iteration, the estimate $x(i)$ of $1 / v$ is computed from v, and the previous estimate of $x(i-1)$ according to the formula:

$$
x(i)=x(i-1) *\left[2.0-v^{*} x(i-1)\right]
$$

An initial estimate $x(0)$ is required to start the operation. $v=a * 2^{e}$ is given a good initial estimate in [46]:

$$
x(0)=1.0 * 2^{-\mathrm{e}-1}
$$

In this algorithm, the accuracy of $2^{-23}=1.192 e^{-7}$ can be achieved wih 5 iterations. 10 times iterations are applied in this study.

The full assemble code is given in appendix A.1.10..

7.5.3.4. The Integration Algorithm

The particular system and the homogeneous systems modelling need an integration operation. The Runge-Kutta algorithm, which is well known and is most widely used, is programmed for integration in this study. This algorithm calculates the next values of the variable of of the differential equation from the previous values. The algorithm is given as:

$$
\begin{aligned}
& \frac{d}{d t} x(t)=f(x, t) \\
& x_{n+1}=x_{n}+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) \\
& k_{1}=h f\left(x_{n}, t_{n}\right) \\
& k_{2}=h f\left(x_{n}+0.5 k_{1}, t_{n}+0.5 h\right) \\
& k_{3}=h f\left(x_{n}+0.5 k_{2}, t_{n}+0.5 h\right) \\
& k_{4}=\operatorname{hf}\left(x_{n}+k_{3}, t_{n}+h\right)
\end{aligned}
$$

All parameters are assumed to be constant between two consecutive steps. The integration program was written as a subroutine. The system function was considered as:

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& \dot{x}=A x+C \quad C=B u
\end{aligned}
$$

The beginning addresses of matrices x, A and C were stored in the variables VAR, FAR and CONT before calling the integration subroutine. In the first step, the values of \dot{x} vector are obtained lby calling the matrix multiplication and matrix addition ssubroutines. k_{1} vector, which is called by MK1, is obtained by multiplying \dot{x} vector with the step time. Then, MK1 is divided by 2 and added to the variable vector. In the following steps, MK2, MK3, MK4 are solved. The next step variable vector is found as

$$
x_{N+1}=x_{N}+0.1666^{*}(M K 1+2 * M K 2+2 * M K 3+M K 4)
$$

This subroutine is called for three different systems which are the response to the of actual system input, the particular system and the homogeneous systems. The assemble program of all this operation is given in appendix A.1.11.

7.5.3.5. The Matrix Inversion

Matrix inverse is done with using the Gauss-Jordan elimination algorithm. The $n \times n$ unity matrix is added to original matrix right side. So, the matrix becomes to $n \mathrm{x} 2 n$ matrix. When the left $n \times n$ part of the matrix is converted to identity matrix via elimination, the right $n \times n$ part of the matrix becomes the inverse of the original matrix [47]. The Gauss -Jordan scheme is given by following routine:

Step 1) i is selected 1 to start.
Step 2) Rows are interchanged to make the value of $a_{i i}$ the largest magnitude of any coefficient in the ith column. New row is divided by $a_{i \mathrm{i}}$.

Step 3) All other values of the i th column are made zero by subtracting $a_{j i} / a_{i i}$ times the i th row from the j th row. j is changed from 1 to n except i.

Step 4) Increase the i and go to step 2.
Step 5) Continue this operation until i reaches to N.
In step 2, the rows that are before i th row, are not considered to interchange.

The $n \times 2 n$ space is needed to use this algorithm. In the programming, i th column is changed with i th column of the identity matrix after step 3 as the identity matrix is not considered to interchange. Only $I_{i i}$ is 1 and other elements are zero in the identity matrix. Therefore, the space of the unity matrix is not needed to share in the memory. Finally, the columns are interchanged according to the rows' interchanging. So, the inverse operation can be achieved by $n \times n$ space.

The inverse of the matrix A can be solved with an assembly source p:ogram. In the first step, some auxiliary variable vectors which are $\operatorname{IPIVOT}(N)$ and $\operatorname{INDEX}(N, 2)$ are described for control and index. Tieir values are set to zero. IPIVOT(I) describes whether the ith
rosw has already been interchanged. INDEX(I, 1) and INDEX(II, í2) 'deescribe the maximum coefficient's row and column numbers in for i th column. The maximum coefficient of ith column jis found without using interchanged rows. The maximum coefficient's row number and the vallue of i are noted to $\operatorname{INDEX}(I, 1)$ and $\operatorname{INDEX}(I, 2)$. IPIVOT(I) value is: increased by one. The row which includes the maximum coefficient in the i th column is interchanged with the ith row. In this case, a(i,i) becomes the maximum coefficient. $a(i, i)$ is stored to PIVOT variable. In here, ith column is thought as ith column of the identity matrix. Therefore, $a(i, i)$ is taken to equal 1. Then all elements of row are divided by PIVOT. In the next step, the i th element of j th row $a(j, i)$ is stored to a temporary address and $a(j, i)$ is taken to equal zero, because all other elements of i th collumn of identity matrix are zero. Then, the temporary value (the old value of $a(j, i)$) times i th row is subtracted from j th row. It corresponds to Step 3 of Gauss elimination. This operation is performed for all rows except i th rows. Thus, one column operation is finished and the next column is started. The maximum coefficient is found by starting from (i+1)th row. This elimination is performed for all columns. The resultant matrix is the inverse of the original matrix but it still needs to be interchanged, because, some rows rave been interchanged. Interchangings were not considered, when the ith column was thought as the ith column of the identity matrix. INDEX vector determined which rows are interchanged. The columns are interchanged according the rows interchanging. Hence, the inverse of
matrix is obtained with $n \times n$ space. Its assembly source program is given in appendix A.1.12.

7.5.3.6. Flow Chart of Identification Program

The flow chart of the operation is given in Fig.7.1.. Initially, the input data is read. Then the control input is delayed via integration program. Subsequently, the homogeneous systems' control inputs are obtained from the input data. Then, the particular and the homogeneous systems outputs are found for the next step by using the Runge-Kutta subroutine. Program returns to the input. The same routine is repeated until the third step. Then the homogeneous outputs are collected in the general homogeneous system matrix $h\left(t_{i}\right)$ as seen below.

$$
\left[\begin{array}{lllll}
h_{11}(t) & h_{21}(t) & h_{31}(t) & h_{41}(t) & h_{51}(t) \\
h_{21}(t) & h_{22}(t) & h_{32}(t) & h_{42}(t) & h_{52}(t) \\
h_{11}(t+1) & h_{21}(t+1) & h_{31}(t+1) & h_{41}(t+1) & h_{51}(t+1) \\
h_{21}(t+1) & h_{22}(t+1) & h_{32}(t+1) & h_{42}(t+1) & h_{52}(t+1) \\
h_{21}(t+2) & h_{22}(t+2) & h_{32}(t+2) & h_{42}(t+2) & h_{52}(t+2)
\end{array}\right]
$$

The transpose of the homogeneous system $\left[h\left(t_{i}\right)\right]^{T}$ are obtained. Then the last three step input data are collected in BTI matrix.

$$
\mathrm{BTI}=\left[\begin{array}{l}
b_{1}(t) \\
b_{2}(t) \\
b_{1}(t+1) \\
b_{2}(t+1) \\
b_{2}(t+2)
\end{array}\right]
$$

The particular outputs are collected in PTI matrix as BTI.

$$
\mathrm{PTI}=\left[\begin{array}{l}
p_{1}(t) \\
p_{2}(t) \\
p_{1}(t+1) \\
p_{2}(t+1) \\
p_{2}(t+2)
\end{array}\right]
$$

Eq(5.26) is rewritten to guide to program:
$\left[\begin{array}{lll}c &]_{k+1} & =\left(\sum_{i=1}^{N}\left[h\left(t_{i}\right)\right]^{T}\left[h\left(t_{i}\right)\right]\right)^{-1} * ~\end{array}\right.$

$$
\sum_{i=1}^{N}\left[h\left(t_{i}\right)\right]^{T}\left\{\left[b\left(t_{i}\right)\right]-\left[p\left(t_{i}\right)\right]\right\}
$$

The value of first parenthesis of the right side of equation is placed in a matrix whose starting address is described by the SPAYDA. The starting address of the second parenthesis is described by SUMPAY. Both parenthesis initial values are already set with the initialization program. New values of $\left\{\left[h\left(t_{i}\right)\right]^{T}\left[h\left(t_{i}\right)\right]\right\}$ and $\left[h\left(t_{i}\right)\right]^{\mathrm{T}}\left\{\left[b\left(t_{\mathrm{i}}\right)\right]-\left[p\left(t_{\mathrm{i}}\right)\right]\right\}$ are calculated and added to SPAYDA and SUMPAY. It can be seen that the matrix inverse and multiplication of
the parenthesis are not done before Nth the observation. After the Nth step identification is realized and the identified parameter:s are replaced in the particular system matrix. All particular outputs and all thomogeneous outputs and $\operatorname{Eq}(5.26)$ are calculated for the same input. Thus, two iterations are completed. Then, the preparation of the next step is initiated. All inputs are shifted back for the new inputs to be Nth. All identification results are converted to COMPAQ format and sent to the COMPAQ. The program returns to read new data. This main program assembly code is given in appendix A.1.13.

7.6. Conclusion

The identification operation was programmed in the assembly code of TMS320C30 DSP. It occupies less than 1.5 k program memory and uses less than $2 k$ RAM. The floating point precision is maintained throughout. Even the floating point inversion is iterated 10 times and 40-bit extended registers are operated. In addition, the integration is solved by a fourth order method. This program can iterate two times for 40 step averaging in a 40 msec sampling period. All assenbly source program has been originally developed for this work. Only, the floating point inversion program has been taken from reference [46].

Fig.7.1. Flow Charts of the Processors Programs

CHAPTER 8. CONCLUSION AND SUGGESTION FOR FURTHER WORK

8.1. Conclusion

Abstract

The on-line identification of the continuous model of an aircraft by a direct method has been studied in a real-time simulation. Dettailed information and conclusions have been presented for each chapter, but the overall conclusions are as follows.

In chapter 2, a review and literature survey of well known on-line identification methods were presented for the continuous model. Indirect methods and the transfer from the discrete-model to the continuous model were explained in detail. The disadvantage of transfer methods from the discrete model to the continuous model was given by an example. The quasilinearization of Newton-Raphson method were presented as the direct identification methods.

In chapter 3 , the dynamics of an aircraft were explained to show which parameters dominate the aircraft system. The complexity of the aircraft motion was simplified by ignoring second order effect. The necessity of auto control of the aircraft has been reviewed using stability criteria.

In chapter 4, the model reference adaptive control and its stability have been given briefly with respect to the controller
dessign. Self tuning regulator design was also presented with diffferent application methods. Both control methods were reviewed for the non-minimum phase systems and unstable systems. It was found that the model reference controller was inapplicable, but the self tuming method was applicable and also suitable to optimize the comtroller, because the regulator design could be implemented without zero cancellation in the self tuning system was given this opportunity. Newly developed spectral factorization methods were introduced. An example of the non-minimum phase aircraft system control was given.

In chapters 5,6 and 7 the direct continuous model identification of the aircraft dynamics was implemented as a real-time simulation.

In chapter 5, the Newton-Raphson method was used as an identification method. The equations of the longitudinal motion of the aircraft were redefined in this chapter. The time-constant parameters and the time-varying parameters were identified in the noise-free systems. Then, the parameters were estimated with noise on the measured responses. In the next step, atmospheric turbulence and affects were included in the equations of the aircraft dynamics. The identification algorithm was applied to the gust affected aircraft motion. The effect of the measurement noise and atmospheric turbulence on the parameter identification were reviewed for different amplitudes. The ratio of the noise to the signal was changed from 0 to 0.3 . The gust was represented with a random
function with specific amplitudes, which were given in Table.5.1.. The gust is not a controllable input, therefore identification was carried out between the controllable input and gust affected output. Thus, the parameters were not the actual parameters of the system, but they could represent a system according to system input. However, the actual parameter could be solved from equations, which were given in this chapter.

The identification method used in this work successfully estimated the necessary parameters within the transient period. This provides an opportunity to adapt the controller of the attack angle of the aircraft. The use of a fourth order numeric integration method instead of the linear integration filter increased the accuracy of the result. Even under high noise and turbulence affects, this method can be used to identify the system in 60 sanples. When this method is compared with other estimation methods, which were given in chapter 2, very good performance was obtained with the limited samples and high noise level.

In chapter 6, the identification board, the model computer and the interfaces between them were given with circuit diagram. The cortrol signals of the communication were given with time diagram. Twc PAL were programmed to obtain the control signals with minimum delay. 32 -bit data was transferred as 2×16-bit by an asynchrone parallel communication method because the computer could communicate with 16-bit.

CHAPTER 8. CONCLUSION AND SUGGESTION FOR FURTHER WORK

8.1. Conclusion

The on-line identification of the continuous model of an aircraft by a direct method has been studied in a real-time simulation. Detailed information and conclusions have been presented for each chapter, but the overall conclusions are as follows.

In chapter 2, a review and literature survey of well known on-line identification methods were presented for the continuous model. Indirect methods and the transfer from the discrete-model to the continuous model were explained in detail. The disadvantage of transfer methods from the discrete model to the continuous model was given by an example. The quasilinearization of Newton-Raphson method were presented as the direct identification methods.

In chapter 3 , the dynamics of an aircraft were explained to show which parameters dominate the aircraft system. The complexity of the aircraft motion was simplified by ignoring second order effect. The necessity of auto control of the aircraft has been reviewed using stability criteria.

In chapter 4, the model reference adaptive control and its stability have been given briefly with respect to the controller
design. Self tuning regulator design was also presented with different application methods. Both control methods were reviewed for the non-minimun phase systems and unstable systems. It was found that the model reference controller was inapplicable, but the self tuning method was applicable and also suitable to optimize the controller, because the regulator design could be implemented without zerc cancellation in the self tuning system was given this opportunity. Newly developed spectral factorization methods were introduced. An example of the non-minimum phase aircraft system control was given.

In chapters 5, ϵ and 7 the direct continuous model identification of the aircraft dyramics was implemented as a real-time simulation.

In chapter 5, the Newton-Raphson method was used as an identification method. The equations of the longitudinal motion of the aircraf: were redefined in this chapter. The time-constant parameters and the time-varying parameters were identified in the noise-free systems. Then, the parameters were estimated with noise on the measured responses. In the next step, atmospheric turbulence and affects sere included in the equations of the aircraft dynamics. The identification algorithm was applied to the gust affected aircraft motion. The effect of the measurement noise and atmospheric turbulence on the parameter iclentification were reviewed for different anplitudes. The ratio of the noise to the signal was changed fron 0 to 0.3 . The gust was represented with a random
function with specific amplitudes, which were given in Table.5.1.. The gust is not a controllable input, therefore identification was: carried out between the controllable input and gust affected outputt. Thus, the parameters were not the actual parameters of the system, but they could represent a system according to system input. However, the actual parameter could be solved from equations, which were given in this chapter.

The identification method used in this work successfully estimated the necessary parameters within the transient period. This provides an opportunity to adapt the controller of the attack angle of the aircraft. The use of a fourth order numeric integration method instead of the linear integration filter increased the accuracy of the result. Even under high noise and turbulence affects, this method can be used to identify the system in 60 samples. When this method is compared with other estimation methods, which were given in chapter 2, very good performance was obtained with the limited samples and high noise level.

In chapter 6, the identification board, the model computer and the interfaces between them were given with circuit diagram. The control signals of the communication were given with time diagram. Two PAL were programmed to obtain the control signals with minimum delay. 32 -bit data was transferred as 2×16-bit by an asynchrone parallel communication method because the computer could communicate with 16-bit.

In chapster 7, the identification board was programmed in assemble code of the TMS320C30 DSP. The operations of the identification algorithm in the assemble code were developed. The source program is given in appendix. The model computer input and output were programmed in assembly code of the 80286 microprocessor. All the necessary processor ssoftware was developed by the author..

The on-line continuous time model identification attempted in this thesis is intemded to apply to aircraft systems where it is desired to control auto-landing. It has been achieved as a real time simulation for different environment including high level measurement noise and different atmospheric turbulence conditions. In this study, all the data used was for a RAVEN 201 pilotless aircraft. Therefore the results are suitable for real applications and the implementation may used for the auto-landing of the RAVEN 201 aircraft.

8.2. Suggestion for Further Work

The possibility of on-line identification of an aircraft was shown in this work. A parallel communication link and its interface were used between the identification board and the model computer. As an alternative a serial communication system for the application could be developed. The TMS3:20C3:0 is suitable for both serial communication and modem connection.

It has been shown how the identification time is dependent on the measurement noise level. On the other hand, early estimation of the parameter is necessary in order to apply it to an adaptive control system. Therefore, the identification time should be as short as possible to increase the sensitivity of the measurement system.

Assembly routines given here can be used for the adaptive control of an aircraft in future studies.

ACKNOWLEDGEMENTS

I would like to thank the following people;

Mr. J.K.M.MacCORMAC for his supervision and encouragement during my studies at the Bath University.

My friends, Ramazan Tasaltun and Safak Aksoy for their help in English.

My wife for her patience during the my studies.

I would also like to thank "ULUDAG UNIVERSITY" for their financial support to this study.

20- SAGE, A.P. Optimum Systems Control, Prentice-Hall, Englewood Cliffs, n. j. , 1968.

21- DETCHMENDY, D.M. and SHRIDAR, R. "On the Experimentall Determination of the Dynamical Characteristics of Physical Systems,"' Proc. National Electronics Conf. , pp.522-530, Chicago, 1965.

22- MacCORMAC, J.K.M. "The Use Of Hybrid Computation In An On-line Identification Scheme," IFAC,Budapest,1968,

23-. KALABA, R. AND SPINGARN, K. "On The Rate of Convergence of The Quasilinearization Method," IEEE Trans. Aut. Control Vol.10, pp. 798-799, 1983.

24- ISERMANN, R., BAUR, U., BAMBERGER, W., KNEPPO, P. and SIEBERT, H. "Comparision of Six On-Line Identification and Parameter EStimation Methods," Automatica, Vol.10, pp.81-103, 1974.

25- SARIDIS, G.N., "Comparision of Six On-Line Identification Algorithms," Automatica, Vol.10, pp.69-79, 1974.

26- BABISTER, A.W., Aircraft Dynamic Stability and Response, Pergamon Press Ltd., U.K., 1980.

35- CLARKE, D.W. , KANJILAL, P.D. and MOHTADI, C. " A Generalized LQG Approach to Self-Tuning Control ", Part I., Int. J. Control , 1985, Vol.41, No.6, pp 1509-1523.

36- ASTRÖM, K.J. and WITTENMARK, B. "LQG Self Tuner", IFAC Symposium on Adaptive Control, 1983, Sanfransisco, U.S.A.

37- GRIMBLE, M.J. , "Controllers for LQG Self-Tuning Applications with Coloured Measurment Noise and Dynamic Costing", IEE Procedings, 1986, Vol.133, Pt.D, No.1, pp 19-29

38- HUNT, K.J. , GRIMBLE, M.J. and JONES, R.W., IFAC 10th Triennial World Congress, Munich, FRG, 1987, pp 169-174

39- GOODWIN, G.C. and MAYNE, D.Q. ," A Parameter Estimation Perspective of Continuous Time Model Reference Adaptive Control " Automatica, Vol23., 1987, pp.57-70

40- ROSENBERG, K., Private Communication, 1991

41- ETKIN, B., Dynamics of Atmospheric Flight, John Wiley \& Sons, Inc. , 1972

42- INTEL, 803836 High Performance 32-Bit Microprocessor with

REFERENCES :

1- WHITAKER, H.P. , YAMRON, J. and KEZER, A., Design of Model Referance Adaptive Control System, Report R-164, 1958; Instrumentation Laboratory, M.I.T, Cambrigde

2- ASTRÖM, K.J. and WITTENMARK, B. "On Self Tuning Control," Automatica, Vol.9, 1973, pp.185-199.

3- ISERMANN, R., "Process Fault Detection Based on Modelling and Estimation Method - \mathbb{A} Survey," Automatica, Vol.20, No.4, pp.387-404, 1984

4- SINHA, N.K. and KUSZTA, B. " On-line Identification of Discrete-Time Systems," in Modelling And Identification of Dynamic System. Van Nostrad Rieinhold Comp. England (1983).

5- ASTRÖM, K.J and WIITTENMARK, B., Adaptive Control, Addison Wesley Publishing, U.S.A., 1.989.

6- CLARKE, D.W. "Generalized Least-Square Estimation of The Parameters of A Dynamic Model," Preprints of The First IFAC Symposium On Identification. Prague, Czechoslovakia, (1967).

7- HASTING-JAMES, R. and SAGE, M. W. "Recursive Generalized Least

APPENDIX 1

Square Procedure For On-line Identification Of Process Parameters," Proc. IEE 116, pp. 2057-2062, 1969.

8- ASTRÖM, K.J. and BOHLIN, N.T. "Numerical Identification Of Linear Dynamic Systems From Normal Operating Records," Proc. IFAC Symposium On Self-Adaptive Control Systems, 96-110 Teddington, England, 1965.

9- GERTLER, J. and BANYASIZ, C. "A Recursive (On-line) Maximum Likelihood Identification Method," IEEE Trans. Aut. Control, Vol. AC-19, pp. 816-820, 1974.

10- WONG, K.Y. and POLAK, E. " Identification Of Linear Discrete Tine Systems Using The Instrumental Variable Methods," IEEE Trans. Aut. Control, Vol. AC-12, 707, 1967.

11- YOUNG, P.C. " An Instrumental Variable Method For Real-Time Identification Of A Noisy Process," Automatica vol.6, pp. 271-287, 1970.

12- YOUNG, P.C. Lectures On The Parameter Estimation, Summer School: Theory And Practice Of Systems Modelling and Identification. Toulouse, 1972.

13- BUDIN, M.A. " Minimal Realization Of Discrete Linear Systems Fram Input-Output Observation," IEEE Trans. Aut. Control, Vol.

27- BLAKELOCK, J.H., Automatic Control of Aircraft and Missile:s, John Wiley \& Sons, Inc., U.S.A., 1965.

28- ASTROM, K.J. and WITTENMARK, B., Computer Controlled Control Systems, 1984

29- PARKS, P.C. "Lyapunov Redesign of Model Reference Adaptive Control Systems", IEEE Trans. Auto. Cont. , Vol. AC-11, No 3, 1966, pp 362-367.

30- LANDAU, Y.D. Adaptive Control : The Model Reference Approach , Markel Decker, Inc., 1979.

31- MONOPOLI, R.V. "Model Reference Adaptive Control with An Augment Error Signal", IEEE Trans. Auto. Cont. , 1974, pp 474-483

32- ELLIOT, H. "Direct Adaptive Pole Placement with Application to Nonminimum Phase Systems", IEEE Trans. Auto. Cont. , 1982 , pp 720-722.

33- CLARKE, D.W. and GAWTHROP, P.J. "Self Tuninig Controller", IEE Proc., 1975, Vol.122, No.9, pp 929-934.

34- CLARKE, D.W. "Self Tuning Control of Nonminimum Phase System", Automatica, Vol. 20, 1985, No. 5, pp. 501-517

Integrated Memory Management, Intel Corp., 1986

43- TURLEY, J.L., Advanced 80386 Programming Techniques, Mc Graw-Hill, Berkeley, California, 1988.

44- COMPAQ DESKPRO 386 Technical Reference Guide, COMPAQ Computer Corp., 1986.

45- MUELLER, J. and WANG, W., Microsoft Macro Assembler 5.1: Programming in the 80386 Environment, Windcrest Books, 1990.

46- Third-Generation TMS320 User's Guide, Texas Instrument Corp., 1988

47- GERALD, C.F. and WHEATLEY, P.O., Applied Numeric Analysis, Addision-Wesley Publishing Comp., 1989.

```
A.1.1.
```

$\ddot{7}$
;GO - Data values to parallel link at 300 H
万
. 286C
i
F_GO STRUC ;
PARMLINE DD ? ;address word for start of data
F_GO ENDS ;
\#
STACK SEGMENT PARA 'STACK' ;
STACK ENDS ;
i
D_GO SEGMENT 'DATA' ;
SP_SAVE DW 0 ;
DD GO ;
DD 0 ;
D_GO ENDS
$\stackrel{i}{C}$
C_GO SEGMENT 'CODE' ;
ASSUME CS:C_GO,DS:D_GO
DW SEG D_GO ;
GO PROC FAR
PUBLIC GO
MOV AX,D_GO
MOV DS,AX
MOV SP_SAVE,SP
MOV AX,0300H
MOV DX,AX ; save the output port to DX
SUB AX,AX
PUSH DS ; save DS onto stack
LDS SI,ES:PARMLINE[BX] ; load address of first argument ;into DS:SI
MOV AX,[SI] ; load the first part of data
OUT DX,AX ;send data to output port
MOV DX,0304H
OUT DX,AX ;write 304h for flag
MOV DX,0302H
IN AL,DX
AND AL,01 ;check acknowledgement
JZ GB ;if no, wait it
OUT DX,AX ;if yes clear the flags
MOV DX,0300H
ADD SI,0002H
MOV AX,[SI] ;load the second part of data
OUT DX,AX ; send data to output port
MOV DX,0304H
OUT DX,AX ;write 304 h for flag
MOV DX,0302H
NOP
NOP

GB1 :	IN	AL, DX	
	AND	AL, 01	; check acknowledgement
	JZ	GB1	;if no, wait it
	OUT	DX, AX	;if yes clear the flags
	POP	DS	;restore DS
	RET		; return to fortran
; ${ }_{\text {G }}$ ENDP			
C_GO			
	END		

(Concluded)

A.1.2.

```
;COMEP - inputs data values from parallel link at 300H
.286C
m
\begin{tabular}{|c|c|c|c|c|}
\hline & MOV & AX, 0302H & \begin{tabular}{l}
; load address of software \\
; port into AX
\end{tabular} & handshake \\
\hline & MOV & DX, AX & ; copy AX into DX & \\
\hline & SUB & AX, AX & ; get zero in AX & \\
\hline & PUSH & DS & ; save DS onto stack & \\
\hline & LDS & SI, ES: P & BX] ; load address of first ;into DS:SI & argument \\
\hline HJ : & IN & AL, DX & & \\
\hline & CMP & AL, 03 & ; is data ready ? & \\
\hline & JNZ & HJ & ;if no, wait it & \\
\hline & MOV & DX, 0300H & & \\
\hline & IN & AX, DX & ;input data value from port & 0300H \\
\hline & MOV & DX, 0302H & & \\
\hline & OUT & DX, AX & ; clear flag & \\
\hline & MOV & DX, 0304H & & \\
\hline & OUT & DX, AX & ; send acknowledgement & \\
\hline & MOV & [SI], AX & ; save the low part of data & \\
\hline & MOV & DX, 0302H & & \\
\hline HJ 1 : & IN & AL, DX & & \\
\hline & CMP & AL, 03 & ; is data ready ? & \\
\hline & JNZ & HJ1 & ;if no, wait it & \\
\hline
\end{tabular}
```

MOV	DX, 0300H	
IN	AX, DX	; input data value from port 0300 H
MOV	DX, 0302H	
OUT	DX, AX	; clear flag
MOV	DX, 0304H	
OUT	DX, AX	; send acknowledgement
ADD	SI, 0002H	
MOV	[SI], AX	; save the high part of data
POP	DS	; restore DS
RET		; return to fortran
; ${ }^{\text {a }}$		
COMEP ENDP		
C_COMEP	ENDS	
END		;

(Concluded)

A.1.3.

* THIS IS INITIALIZATION PROGRAM FOR IDENTIFICATION.
 * STEP NUMBER VARIABLE STEPN CAN BE VARIED DUE TO DESIRED VALUE
 * RAM BLOCK 1 DIVIDED THREE PART. FIRST 200H MEMORY SPACE IS ADDED * TO RAM BLOCK 0, 100H MEMORY IS FOR VARIABLES, 100H MEMORY IS FOR* * STACK.

. option X .global BEGIN, INIT .sect "init" ; Named section

RESET			Named section
RESEI	.data	INIT	RS- loads address INIT to PC
MASK	. word	OFFFFFFFFF	
BLKO	. word	0809800H	; Beginning address of RAM block 0
BLK1	. word	0809COOH	; Beginning address of RAM block 1
STCK	. word	0809F00H	; Beginning of stack
CTRL	. word	0808000H	Pointer for peripheral-bus memory map
NEGONE	. word	OFFFFFFH	; Minus value
N	. word	0000002H	; $\mathrm{N}, \mathrm{P}, \mathrm{R}$ are dimension variable.
P	. word	0000002H	; R
R	. word	0000001H	

```
* * * * * * * TEMPORARY VARIABLES
```

*

I .word 0000000 H
$\mathrm{K} \quad$. word 0000000 H
L .word 0000000 H
L1 .word 0000000 H
INDEX .word 080981DH
IROW .word 0000000H
ICOL .word 0000000 H
DEGROW . word 0809830H
NA .word 0000000 H
DEG .word 0000000 H
DEG1 .word 0000000H
DEG2 .word 0000000H
NIPIVO . word 0809813H
NINDEX . word 080981DH
NDEGRO .word 0809830H
NPIV .word 0809809H
NAMAX .word 0809852H
D .word 0000000 H
THUN . word 0000000H
NTT . word 0000000 H
DEGSPC .word 0000000 H
TT .word 0000000 H
MINUS .word 0000000 H
NN .word 0000000 H
NM1 .word 0000000 H

NM2	. word	0000000H	
NM3	. word	0000000H	
NPR	. word	0000000H	
NR	. word	0000000H	
NLI	. word	0000000H	
KR	. word	0000000H	
TR	. word	0000000H	
MNR	. word	0000000H	
T	. word	0000000H	
PN	. word	0000000H	
NP	. word	0000000H	
AMAX	. word	0809852H	; AMAX is for matrix inverse
M5	. word	0809853H	; M5 is temporary matrix
M6	. word	0809887H	; M6 is temporary matrix
M7	. word	08098BBH	; M7 is for power supply
MK1	. word	08098COH	; All MK* are for integration
MK2	. word	08098C4H	
MK3	. word	08098C8H	
MK4	. word	08098CCH	
XSMAT	. word	0809900H	; XSMAT is observed values.
TIME	. word	0809A30H	; TIME is step size.
PMAI	. word	0809A02H	; PMAT is particular matrix.
XPMAT	. word	0809A08H	; XPMAT is particular system ; output matrix.
UP	. word	0809A06H	; Particular system control vector
XHMAT	. word	0809A50H	; Homogeneous system output vector
UHMAT	. word	0809A52H	; Homogeneous system control vector
ITA	. word	0809BBOH	; Actual system control input
ITA	. word	0809BD8H	; Delayed input.
AD	. word	0809ADOH	; $\mathrm{AD}=$ The general homogeneous matrix
PAR	. word	0000000H	
VAR	. word	0000000H	
CONT	. word	0000000H	
PRLIO	. word	0000000H	; The communication port address.
PRLIOO	. word	0000000H	; Temporary input memory.
ERR1	. float	0.001000	
PMA	. word	08098D0H	
HO	. word	0000000H	
OUTPUT	. word	0808082H	
CHEK	. word	0000000H	
MISTA	. word	0000000H	
LAS[. word	0000000H	
INPJT	. word	0000000H	
TIME1	.float	0.989200	
STE	. float	0.040000	
TEMPM	. word	0809D80H	
SABI T	. word	0809800H	; The constants of the conversion.
SABI T1	. word	0809802H	; The constants of the conversion.
BTI	. word	0809'950H	; The sum vector of the observations
PTI	. word	0809'955H	; The sum vector of the particular ; outputs.
XHM	. word	080995AH	; The sum vector of the homogeneous ; outputs

(Continued)

(Continued)

STI	RO, * + ARO (0)	Init DMA control
STI	RO, * +ARO (32)	; Init timer 0 control
STI	RO, * + ARO (48)	; Init timer 1 control
STI	RO,*+ARO (64)	; Init serial 0 global control
STI	RO, * +ARO (66)	Init serial 0 xmt control
STI	RO, * +ARO (67)	; Init serial 0 rcv control
STI	RO, * +ARO (68)	; Init serial 0 timer control
STI	R0, * +ARO (80)	; Init serial 1 global control
STI	R0, * + ARO (82)	; Init serial 0 xmt control
STI	R0, * + ARO (83)	; Init serial 0 rcv control
STI	RO, * +ARO (84)	; Init serial 0 timer control
STI	RO, * +ARO (96)	; Init parallel interface control
STI	RO, * +ARO (100)	; Init I/O interface control
LDI	@STCK, SP	; Initialize the stack pointer
OR	2000H, ST	; Global interrupt enable
BR	BEGIN	; Branch to beginnig of the ;application.

* This part of initialization places the values in the variable.

```
.text
global BEGIN
```

BEGIN . set \$
LDI @BLKO, ARO
LDI @BLK1,AR1
LDI @MASK,R1
STI R1,*+AR1(5) ; NEGONE = FFFFFFFFH
LDI 2,R1
STI R1,*+AR1 (6) ; N = 2
STI R1,*+AR1(7) ; $P=2$
LDI 1,R1
STI R1,*+AR1 (8) ; R = 1
STI ARO,**AR1 (80) ; SABIT $=809800 \mathrm{H}$
ADDI 2,ARO
STI ARO, ${ }^{*}+$ AR1 (81) $;$ SABIT1 $=809802 \mathrm{H}$
ADDI 7,ARO
STI ARO, ${ }^{*}+$ AR1 (25) $;$ NPIV $=809809 \mathrm{H}$
ADDI 10, ARO
STI ARO, *+AR1 (22) ; NIPIVO $=809813 \mathrm{H}$
ADDI 10, ARO
STI ARO,*+AR1 (23) ; NINDEX $=80981 \mathrm{DH}$
STI ARO,*+AR1 (14) ; INDEX $=80981 \mathrm{DH}$
ADDI 19, ARO
STI ARO,* ${ }^{*}$ AR1 (24) ; NDEGRO $=809830 \mathrm{H}$
STI ARO, ${ }^{*}+$ AR1 (17) $; \quad$ DEGRO $=809830 H$
ADDI 34,ARO
STI ARO, * + AR1 (26) ; NN $=$ NAMAX
STI ARO, * + AR1 (46)
ADDI 1,ARO
STI ARO,* + AR1 (47) $; M 5=809853 \mathrm{H}$

ADDI	R2, R1	
STF	R1,*+AR1 (77)	; $P(1,2)=0.9893$
LDF	0.04,R1	
LDI	070AH, R2	
LSH	8,R2	
ADDI	R2, R1	
STF	R1,*+AR1 (78)	; STEP $=0.04 \mathrm{sec}$
LDI	@CTRL, R2	
SUBI	4000H, R2	
STI	R2, *+AR1 (67)	; PRLIO $=804000 \mathrm{H}$
ADDI	5DDOH,R2	
STI	R2, *+AR1 (68)	; PRLIIO $=809 \mathrm{DDOH}$
ADDI	10H, R2	
STI	R2,*+AR1 (72)	; OUTPUT $=809 \mathrm{DEOH}$
LDI	@TIME, AR1	
LDF	@STEP,R1	
STF	R1,*AR1	; TIME $=0.04$
LDI	@SABsIT, AR2	
LDI	OFFH, R2	
LSH	24,R2	
STI	R2,*AR2	; FFOOOOOOH
LDI	80H, R1	
LSH	16, R1	
STI	R1,*+AR2 (1)	; 00800000H
STI	R1,* + AR2 (3)	
SUBI	1, R1	
STI	R1,* +AR2 (4)	; 007FFFFFH
LSH	8, R 1 i	
ADDI	OFFH, R1	
STI	R1,*+AR2(2)	; 7FFFFFFFH
STI	R0,@TT	; $\mathrm{TT}=0$
STI	R0,@LAST	; 0
BR	MAINPROGRAM	


```
A. 1.4.
```

```
ノ* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **/
COMMAND FILE FOR LINKING C30 PROGRAMS
/* File Name: GES.CMD */
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **/
GES.OBJ /* GES - System Identification Pogram */
/* SPECIFY THE SYSTEM MEMORY MAP */
MEMORY
{
    VECS: org = 0h len = 040h /* INTERRUPT VECTORS */
    ROM: org = OCOh len = 07FFF40h /* PROGRAM CODE */
    IOM: org = 0800000h len = 02000h /* -MSTRB I/O */
    IO: org = 0804000h len = 02000h /* -IOSTRB I/O */
    RAMO: org = 0809800h len = 0400h /* RAM BLOCK 0 */
    RAM1: org = 0809E00h len = 0100h /* RAM BLOCK 1 */
    STACK: org = 0809F00h len = 0100h /* SYSTEM STACK */
}
/* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */
SECTIONS
{
    vectors: {} > VECS /* INTERRUPT VECTORS */
    stk_init: {} > STACK /* INITIAL STACK POINTER */
    .text: {} > ROM /* CODE */
    .data: {} ; RAM1 /* ROM-RESIDENT TABLES & CONSTANTS */
    .bss: {} > RAMO /* BSS DATA */
}
```


Abstract

A. 11.5 .

*******804000H * * * * * * * * * *
$804000 \mathrm{H} \quad$ PRLIO

* * * * * * 809800H

$809800 \mathrm{H}-01 \mathrm{H}$	SABIT
$809802 \mathrm{H}-04 \mathrm{H}$	SABIT1
$809813 \mathrm{H}-18 \mathrm{H}$	IPIVOT
$80981 \mathrm{DH}-27 \mathrm{H}$	INDEX
$809830 \mathrm{H}-34 \mathrm{H}$	NDEGRO
809852 H	AMAX
$809853 \mathrm{H}-58 \mathrm{H}$	M5
$809887 \mathrm{H}-8 \mathrm{DH}$	M6
$8098 \mathrm{BBH}-\mathrm{BFH}$	M7
$8098 \mathrm{COH}-\mathrm{C} 3 \mathrm{H}$	MK1
$8098 \mathrm{C} 4 \mathrm{H}-\mathrm{C} 7 \mathrm{H}$	MK2
$8098 \mathrm{C} 8 \mathrm{H}-\mathrm{CBH}$	MK3
$8098 \mathrm{CCH}-\mathrm{CFH}$	MK4
$8098 \mathrm{DOH}-\mathrm{D} 1 \mathrm{H}$	PMA

809900H

$809900 \mathrm{H}-\mathrm{C} 7 \mathrm{H}$	XSMAT
$8099 \mathrm{C8H}-\mathrm{CCH}$	BTI (XS)
8099CDH-D1H	PTI (XP)
8099D2H-EAH	XHM (XH)
8099EBH-A03H	XHMT (XHT)
809A04H-1CH	SUMPAY (SIGMA (BI=PI))
809A1DH	TIME
809A1EH-21H	PMAT
809A22H-23H	UP
809A24H-EBH	XPMAT

* * * * * * * 809A00H

809AECH-BFFH	XHMAT \& UHMAT
809COOH-C7H	ITAD
809CC8H-D8FH	ITA
809D90H-AFH	TEMPM
809DBOH-CFH	SPAYDA
809DDOH-DFH	PRLIIO
809DEOH-EFH	OUTPUT

809E00H
809E00-56H VARIABLES
809FOOH
S TACK

A.1.6.

* THIS PROGRAM CONVERTS THE FLOATING-POINT NUMBER FROM TMS320C30
* FORMAT TO IEEE FORMAT.
* (AR1 (0)) $=\mathrm{FF} 000000 \mathrm{H}$
* (AR1 (1)) $=00800000 \mathrm{H}$
* (R5) = DATA

TMSC LDI *+AR1(1), R2
LSH 8,R2
SUBI R5,R2 ; Is data zero ?
BZ ZO ; If yes, go to end of the program.
AND3 R5,*AR1,R1 ; Obtain the exponent of TMS320C30 format
ASH -24, R1
LDI R1,R2
AND $1, \mathrm{R} 2$
ADDI $1, \mathrm{R} 1$
ASH -1, R1
SUBI 1,R1
ADDI $40 \mathrm{H}, \mathrm{R} 1$
LSH 24,R1 ; IEEE exponent
PUSH R5
POPF R5 ; Is the floating point value negative ?
BN TO ; If yes, go to TO
CMPI $0, \mathrm{R} 2$; Is the exponent odd ?
BZ T1 ; If yes, go to T1.
LSH -8,R5 ; Mantissa is found.
OR R1,R5 ; Add exponent.
RETS ; Conversion is completed, Go back to ; main program.
T1 LSH -8, R5
OR *+AR1(1),R5 ; Put 1 to the 23th bit.
OR R1,R5 ; Add exponent.
RETS ;Conversion is completed, Go back to ; main program.
TO NEGI R5
LSH -8, R5
OR R1,R5
CMPI 0,R2
BZ T3
LDI $80 \mathrm{H}, \mathrm{R} 2$
LSH 24,R2
OR R2,R5
RETS -; Conversion is completed, Go back to ; main program.
T3 OR * + AR1 (1), R5
OR R1,R5
LDI $80 \mathrm{H}, \mathrm{R} 2$
LSH 24,R2
OR R2,R5
RETS ; Conversion is compileted, Go back to ; main program.
20 LDI 0,R5
RETS ; There is no need to comversion. Go back ; to main program.
A. 1.7.

```
* THIS PROGRAM CONVERTS THE FLOATING-POINT NUMBER FROM IEEE FORMAT*
* TO TMS32OC30 FORMAT.
* ( AR2(0) = FF000000H
* ( AR2(1) = 00800000H
* ( AR1(0) = 7FFFFFFFH
* (AR1(1) = 00800000H
* ( AR1 (2) = 007FFFFFH
CMPQ
    BZ Z3 ; If yes, go to Z3.
    AND3 R5,*AR1,R1
    AND3 R5,*+AR1(1),R2
    LSH -24,R1
    SUBI 40H,R1
    ADDI 1,R1
    LSH 1,R1
    CMPI 0,R2
    BNZ GO
    SUBI 1,R1
GO LSH 24,R1 : Exponent is converted.
    LDI *+AR1 (2),R3
    AND3 R5,R3,R2 ; Mantissa is obtained.
    CMPI 0,R5 ; Is mantissa negative ?
    BN GK ; If yes, go to GK.
    OR3 R1,R2,R5 ; Add exponent to mantissa.
    RETS ; Conversion is completed. Go back to
    ; main program.
GK PUSH R2
    POPF R2
    NEGI R2,R2 ; Add sign to mantissa.
    BNZ KRL
    SUBI 1,R1
    AND *AR2,R1
    LDI 80H,R2
    LSH 24,R2
KRL LSH -8,R2 ; Exponent is obtained.
    0R3 R1,R2,R5 ; Add exponent to mantissa.
    RETS ; Conversion is completed. Go back to
                    ; main program.
Z3 LDI **AR1(1),R1
    LSH 8,R1
    LDI R1,R5
    RETS ; Conversion is completed. Go back to
                    ; main program.
```

A.1.8.

* THIS PROGRAM CAN AAKE THE ADDITION OF TWO MATRIX AND THE
* SUBRACTION OF TWO MATRIX.
* THEIR DIMENSION I (PxN) .
* NM1 INCLUDES FIRS MATRIX STARTING ADDRESS.
* NM2 INCLUDES SEICOID MATRIX STARTING ADDRESS.
* NM3 INCLUDES SUM IATRIX STARTING ADDRESS.
* MINUS POINTS EI'THER THE ADDITION OR THE SUBTRACTION.
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

MAD	LDI	@P,R2
	MPYI	@N,R2

SUBI 1,R2
STI R2,@PIN
LDI @NM1, IAR
It is the maximum shifting value.
; Load starting address of A matrix
LDI Load starting address of B matrix
LDI @NM3, AR 3 ; Load starting address of C matrix
LDI @PN,RCC
LDI @MINUS,11
BNZ NEGA
RPTB A1
LDF *AR1++(:),R1
ADDF *AR2++(:),R1
A1 STF R1,*AFR3-+
RETSU
NEGA RPTB A2
LDF *AR1+4 (:) , R1
SUBF *AR2持 (.) , R1
STF R1, *ARR3-+
RETSU
A. 1.9.

* THIS IS THE MATRIX MULTIPLICATION PROGRAM
* NM1 POINTS THE STARTING ADDRESS OF A MATRIX (PXN)
* NM2 POINTS THE STARTING ADDRESS OF B MATRIX (NXR)
* NM3 POINTS THE STARTING ADDRESS OF C MATRIX (PXR)

MAT LDI @N,R1
STI R1,@DEG1 ; DEG1=N
LDI @R,R1
STI R1,@NR ; NR=R
SUBI 1,R1
STI R1,@KR ; KR=R-1
LDI @P,R1
STI R1,@NPR ; NPR=P
LDI @N,R1
MPYI @R,R1
SUBI 1,R1
STI R1,@DEG ; DEG=N*R-1
STI R1,@MNR ; MNR=N*R-1
LDI @NR, IRO
LDI @NM1, AR1 ; Load starting address of A matrix
LDI @NM2,AR2 ; Load starting address of B matrix
LDI @NM3, AR3 ; Load starting address of C matrix
LDI @N,R1
STI R1, @NN ; NN=N
NEW LDF $0.0, R 5 \quad ; c_{1 j}=0$
BAS MPYF3 *AR1++(1),*AR2++(IRO),R4
ADDF R4,R5 $\quad ; c_{i j}=\sum a_{i k} * b_{k j}$
LDI @NN,R1
SUBI 1,R1
STI R1, @NN
BP BAS
STF R5, *AR3++(1)
SUBI @MNR, AR2
LDI @N,R1
STI R1,@NN
SUBI @DEG1,AR1
LDI @NR,R1
SUBI 1,R1
STI R1,@NR
BP NEW ; Go to start another c value.
ADDI @R,R1
STI R1,@NR
LDI @NM2, AR2
ADDI @DEG1,AR1
LDI @NPR,R1
SUBI 1,R1
STI R1,@NPR
BP NEW
RETSU ; Go back to main program.
A. 1.10 .

```
* * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * *
* THE INVERSE OF A FLOATING-POINT NUMBER
* THE FLOATING POINT-NUMBER v IS SRORED IN R3. AFTER THE *
* COMPUTATION IS COMPLETED, \(1 / v\) IS ALSO STORED IN R3. *
* ARGUMENT ASSIGMENTS:
* ARGUMENT : FUNCTION
```



```
* R3 \(: v=\) NUMBER TO FIND THE RECIPROCAL OF (UPON THE CALL)
* R3 : \(1 / \mathrm{v}\) (UPON THE RETURN)
* REGISTER USED AS INPUT : R3
* REGISTERS MODIFIED : R3, R1, R2, R6
* REGISTER CONTAINING RESULT : R3


MPYF R1,R3,R2
SUBRF 2.0,R2
MPYF R2,R1
MPYF R1,R3,R2
SUBRF 2.0,R2
MPYF R2,R1
; \(\mathrm{R} 1=\mathrm{x}[9]=\mathrm{x}[8] *\left(2.0-\mathrm{v}^{*} \mathrm{x}[8]\right)\)

RND R1 ; This minimizes error in the LSBs
MPYF R1,R3,R2
SUBRF 1.0,R2
MPYF R1,R2
; \(\mathrm{R} 1=\mathrm{x}[9]{ }^{*}\left(1.0-\mathrm{v}^{*} \mathrm{x}[9]\right)\)
ADDF R2,R1
\(; R 1=x[10]=x[9] *\left(1.0-v^{*} x[0]\right)+x[9]\)

RND R1,R3 ; Round since this is follow by a MPYF
NEGF R3,R2
LDF R6,R6 ; This set condition flags.
LDFN R2,R3 ; If \(v_{1}<0\), then R3 \(=-\mathrm{R} 3\)
RETS ; Return to main program.
(Concluded)
A. 1. 11 .

\(\begin{array}{ccc}* * * & * & * \\ \text { RUNGE } & \text { LDI } & \text { @PAR,R1 } \\ & \text { STI } & \text { R1, @NMI }\end{array}\)
LDI @VAR,R2
STI R2, @NM2
LDI @CONT,R3
LDI @M5,R5
STI R5,@NM3
PUSH R1
PUSH R2
PUSH R3
PUSH R5
CALL MAT ; Find \(A{ }^{*} X_{n}\)
POP R5
POP R3
POP R2
STI R3, @NM
STI R5, @NM2
STI R5,@NM3
LDI @R,R4
STI R4,@N
PUSH R2
PUSH R3
PUSH R5
CALL MAD ; Find [( \(\left.\left.A * X_{n}\right)+\left(B^{*} U_{n}\right)\right]\)
POP R5
POP R3
POP R2
LDI @TIME, AR3
LDI R5, AR1
LDI @MK1, AR2
LDI \(1, R C\)
RPTB HI
LDF *AR1 + + 1 ), E 4
MPYF *AR3, R
HI STF R4, *AR2++(1) ; MK1 incluides \(k_{1}\) of algorithim
LDI @MK1, AR1
LDI @M6, AR2
LDI \(1, \mathrm{RC}\)
RPTB H1
LDF *AR1++(1), I4
MPYF 0.5,R4
STF R4,*AR2+\#(:)
STI R2, @NM
LDI @M6,R4
STI R4,@NM?



\(\cdots\)
\(\cdots\)
\(\square\)
0
0
\(>\)
3
\(x\)
\(; X=X_{n}+\left(0.5 * K_{1}\right)\)
```

 STI R4,@NM3
 PUSH R2
CALL MAD ; X = X X + 0.5* K
POP R2
POP R1
STI R1,@NM1
STI R5,@NM3
LDI @M7,R4
STI R4,@NM2
LDI @P,R4
STI R4,@N
PUSH R1
PUSH R2
PUSH R3
PUSH R5
CALL MAT ; Find A * X
POP R5
POP R3
POP R2
STI R3,@NM1
STI R5,@NM2
STI R5,@NM3
LDI @R,R4
STI R4,@N
PUSH R2
CALL MAD ; Find [(A* X) + (B* U)]
POP R2
LDI @TIME,AR3
LDI R5,AR1
LDI @MK3,AR2
LDI 1,RC
RPTB HI2
LDF *AR1++(1),R4
MPYF *AR3,R4
HI2 STF R4,*AR2++(1) ; K K =0 [(A * X) + (B * U U)] * h
LDI @MK3,AR1
LDI @M6,AR2
LDI 1,RC
RPTB H12
LDF *AR1++(1),R4
H12
STF R4,*AR2++(1)
STI R2,@NM1
LDI @M6,R4
STI R4,@NM2
LDI @M7,R4
STI R4,@NM3
PUSH R2
CALL MAD ; X = X X + K K
POP R2
POP R1
STI R1,@NM1

```
```

 STI R5,@NM3
 LDI @M7,R4
 STI R4,@NM2
 LDI @P,R4
 STI R4,@N
 PUSH R1
 PUSH R2
 PUSH R3
 PUSH R5
 CALL MAT ; Find (A* X)
POP R5
POP R3
POP R2
POP R1
STI R3,@NM1
STI R5,@NM2
STI R5,@NM3
LDI @R,R4
STI R4,@N
PUSH R2
CALL MAD ; Find [(A* X) + (B* U)]
POP R2
LDI @TIME,AR3
LDI R5,AR1
LDI @MK4,AR2
LDI 1,RC
RPTB HI3
LDF *AR1++(1),R4
MPYF *AR3,R4
STF R4,*AR2++(1) ; K K = [(A* X) + (B* * U)] * h
LDI R5,AR1
LDI @MK1,AR2
LDI @MK2,AR3
LDI @MK3,AR4
LDI @MK4,AR5
LDI 1,RC
RPTB HI4
LDF *AR2++(1),R1
LDF *AR3++(1),R6
MPYF 2,R6
LDF *AR4++(1),R3
MPYF 2,R3
LDF *AR5++(1),R4
ADDF R6,R1
ADDF R4,R3
ADDF R3,R1
MPYF 0.1656666,R1

```

```

STI R2,@NMI
LDI @INPJT,R6
BNZ W1

	LDI	@HO,R6	
	BZ	WRN	
	MPYI	14H,R6	; This is for the homogeneous systems
	ADDI	R6, R2	
	STI	R2, @MM3	
	STI	R5, @NM2	
	CALL	MAD	; $X_{n+1}=X_{n}+K$
	LDI	@P, R1	
	STI	R1, @	
	RETSU		; Go back to main program
W1	LDI	1, R6	; This is for the particular system
	ADDI	R6, R2	
	STI	R2, @M3	
	STI	R5, @MM2	
	CALL	MAD	; $X_{n+1}=X_{n}+K$
	STI	RO, @INPUT	
	RETSU		; Go back to main program
WRN	ADDI	R7, R2	; This is for the input system
	ADDI	R6, R2	
	STI	R2, @MM3	
	STI	R5, @MM2	
	CALL	MAD	; $X_{n+1}=X_{n}+K$
	LDI	@P, R1	
	STI	R1, @	
	RETSU		; Go back to main program

1A. 1. 12 .

```
** THIS PROGRAM IS FOR THE MATRIX INVERSE
** AD is the starting address of matrix A(N\timesN)
* * * * * * * * * * * * * * * * * * * * * * ***********)
HINVER LDI @AD,P1 ; Store the startimg address of the
                ; matrix
    LDI @INDEX,R1
    STI R1,@INDEX ; Store the startimg address of the
                ; index
    LDF 0.0,PO
    LDI @NIP:VO,AR1
    RPTS @N ; The dimension of the matrix is n\timesn
    STI RO,*|R1++(1) ; All IPIVOT = 0
    LDI 1,R1
    STI R1,@: ; I = 1
IYIRMI LDI @NA,UR1 ; ( AR1 ) = NA
    LDI @N,R:
    STI R1,@UP
    STI R1,@DEGSPC
    LDI @N,Rá
    MPYI3 R2,R2, R4
    SUBI 1,R4
    STI R4,@NN ; NN=N**2-1
IYUZ LDI @DEGSPC,ARO
    LDI 1,R1
    STI R1,@!
    LDI @N,Rj
    STI R1,@NR
    LDI @NAMAX,AR2
    STF RO,*/R2 ; AMAX = 0
    LDI @J,R]
    SUBI 1,R1
    ADDI @NIPJVO,R1
    STI R1,@DEG
    LDI @DEG,AR5
    LDI *AR5,R1
    CMPI 1,R1 ; Has this row been checked ?
    BN ADON ; If no, go to check it.
    BNZ ICON]
    BR JCONT ; If yes, go to next row.
AADON LDI @NAMAX,AR2
    LDF *AR2,R6 ; Load AMAX to the R6
    LDF *AR1,R7 ; Load A(J,I) to R7
    ABSF R6
    ABSF R7
    CMPF R6,R7 ; Check [abs( A(J,I) ) - abs(AMAX)]
    BN JCONT ; If AMAX is bigger, then go to next row.
(CHANGE LDI @I,R1 ; If A(J,I) is bigger, then change AMAX
    STI R1,@]COL ; with A(J,I) and store I to ICOL and J
    LDI @J,R1 ; to IROW
    STI R1,@JROW
    LDF *AR1,R1
```

```
        STF R1,*AR2
JCONT ADDI ARO,AR\mathbb{I}
    LDI @J,R:
    ADDI 1,R1
    STI R1,@J
    LDI @NR,R1
    SUBI 1,R1
    STI R1,@IR ; Have all rows been checked ?
    BP DON ; If no, go to next row.
CAIPIV LDI @ICOL,R1 ;
    SUBI 1,R1
    ADDI @NIPIVO,R1
    STI R1,@IEG
    LDI @DEG,AR4
    LDI *AR4,R1
    ADDI 1,R1
    STI R1,*AR4 ; Write this row has been checked.
    LDI @ICOL,R1
    SUBI @IROW,R1 ; Is J equal I ?
    BZ CAINIE ; If yes, go to write to index.
SATIR LDI @IROW,R1 ; If no, check the next row.
    SUBI 1,R1
    STI R1,@LEG
    LDI @N,R2
    MPYI R2,R1
    ADDI @NA,R1
    STI R1,@DEG
    LDI @DEG,AR3
    LDI @NDEGRO,AR4
    SUBI 1,R2
    STI R2,@DEG1
    LDI @DEG1,RC
    RPTB KRT
    LDF *AR3++(1),R1
KRT STF R1,**A34++(1)
    LDI @ICOL,R1
    SUBI 1,R1
    STI R1,@DEG2
    LDI @DEG2,R2
    MPYI @N,R2
    ADDI @NA,R?
    STI R2,@DEG2
    LDI @DEG2,AR3
    LDI @DEG,AR4
    LDI @DEG1,RC
    RPTB KRT1
    LDF *AR3++(1),R1
KRT1 STF R1,*ARt++(1)
    LDI @NDEGR0,AR3
    LDI @DEG2,\R4
    LDI @DEG1,RC
    RPTB KRT2
```

```
    LDF *AR3+(1),R1
KRT2 STF R1,*AR4++(1) ; The row, which has maximum coefficient,
CAINDE LDI @NINDEX,AR4 ; Calculate the index numbers.
    LDI @IROW, R1
    STI R1,*AR4++(1) ; INDEX(I,1) = IROW
    LDI @ICOL,R2
    STI R2,*AZ4++(1) ; INDEX(I,2) = ICOL
    STI AR4,@NINDEX
    SUBI 1,R2
    STI R2,@DEG
    LDI @N,R3
    MPYI3 R2,R3,R1
    ADDI R2,R1
    ADDI @NA,Rl
    STI R1,@DEG
    LDI @DEG,AR3
    LDI @NPIV,AR4
    LDF *AR3,R1 ; R1 = A(ICOL,ICOL)
    STF R1,*AR4
    LDF 1.0,RL
    STF R1,*AR3 ; A(ICOL,ICOL) = 1.
    LDF *AR4,R3 ; PIVOT = A(ICOL,ICOL)
    BZ FT ; If PIVOT=0, then go to end.
    CALL INVF ; Calculate 1/PIVOT
    LDI 1,R1
    STI R1,@L ; L = 1
    LDI @ICOL R1
    SUBI 1,R1
    MPYI @N,R1
    ADDI @NA,R:
    STI R1,@DLG
    LDI @DEG,AR3
INEWCO LDF *AR3,R2 ; R2 = A(ICOL,L)
    MPYF3 R2,R3,R4 ; R4 = A(ICOL,L) / PIVOT
    STF R4,*|R3++(1)
    LDI @L,R:
    ADDI 1,R1
    STI R1,@L
    CMPI @N,R:
    BP ANY
    BR NEWCOL
|ANY LDI 1,R1
    STI R1,@L? ; L1 = 1
AANADON LDI @L1,Rj
    CMPI @ICOL,R1 ; Is this row ICOLth row ?
    BZ FIVEN\sharp ; If yes, go to next row.
    SUBI 1,R1
    LDI @N,R2
    MPYI R2,R1
    ADDI @ICOL,R1
    SUBI 1,R1
    ADDI @NA,R;
```

 STI R1,@DEG1
 LDI @DEG1,AR3
 LDF *AR3,R1
 STF R1,@NTT ; T = A(L1,ICOL)
 STF R0,*AR3
 LDI 1,R1
 STI R1,@L ; L=1
 LDI @ICOL,Rí
 SUBI 1,R1
 STI R1,@DEG1
 LDI @L1,R1
 SUBI 1,R1
 STI R1,@DEG2
 LDI @N,R2
 MPYI @DEG1,R2
 ADDI @L,R2
 ADDI @NA,R2
 SUBI 1,R2
 STI R2,@DEG1
 MPYI @N,R1
 ADDI @L,R1
 SUBI 1,R1
 ADDI @NA,R1
 STI R1,@DEG2
 LDF @NTT,R2
 LDI @DEG1,AR3
 LDI @DEG2,AR4
 DONGER MPYF3 *AR3++(1),R2,R4 ; R4 = A(ICOL,L) * T
LDF *AR4,F11 ; R1 = A(L1,L)
SUBF R4,R1 ; R1 = A(L1,L) - A(ICOL,L) * T
STF R1,*AFR4++(1)
LDI @L,R1
ADDI 1,R1
STI R1,@L
CMPI @N,R1
BLS DONGER
FIVENN LDI @L1,R1
ADDI 1,R1
STI R1,@L1
CMPI @N,R1
BLS ANADON
ICONT LDI @I,R1
ADDI 1,R1
STI R1,@I ; Increase the row number
LDI @NP,R1
SUBI 1,R1
STI R1,@NP
BZ SON ; Have all rows been eliminated ?
SUBI @NN,AR1 ; If no, start the next row.
BR YUZ
LDI @N,R1 ; If yes, check the column with INDEX
SUBI 1,R1
STI R1,@DEG2

```
```

 STI R1,@NTT
 LDI 1,R1
 STI R1,@I
 NEWL LDI @N,R1
SUBI @I,R1
ADDI 1,R1
STI R1,@L
SUBI 1,R1
MPYI 2,R1
ADDI @INDEX,R1
STI R1,@DEG1
LDI @DEG1,AR1
LDI *AR1++(1),R1
SUBI *AR1--(1),R1 ; Is INDEX(L,1) equal to INDEX(L,2)
BZ NZERO ; If yes, check to next index.
LDI *AR1++(1),R1 ; If no, change the column.
STI R1,@IROW ; IROW = INDEX(L,1)
LDI *AR1++(1),R1
STI R1,@ICOL ; ICOL = INDEX(L,2)
LDI 1,R1
STI R1,@J
CHCOL LDI @J,R1
SUBI 1,R1
STI R1,@DEG1
LDI @N,R7
MPYI3 R7,R1,R4
ADDI @IROW,R4
SUBI 1,R4
ADDI @NA,R4
STI R4,@DEG1
MPYI3 R7,R1,R4
ADDI @ICOL,R4
SUBI 1,R4
ADDI @NA,R4
STI R4,@DEG2
LDI @NDEGRO,AR2
LDI @DEG1,AR3
LDI @DEG2,AR4
LDF *AR3,R1
STF R1,*AR2 ; NDEGRO = A(J,IROW)
LDF *AR4,R1
STF R1,*AR3 ; A(J,IROW) = A(J,ICOL)
LDF *AR2,R1
STF R1,*AR4 ; A(J,ICOL) = A(J,IROW)
LDI @J,R1
ADDI 1,R1
STI R1,@J
CMPI @N,R1
BLS CHCOL
INZERO LDI @I,R1
ADDI 1,R1
STI R1,@I
CMPI @N,R1

```

BLS NEWL
RETS ; Return the main program
LDI 5,R1
STI R1,@MISTA ; Write " divided by zero "
RETS
; Return the main program (Concluded)
\begin{tabular}{|c|c|c|c|}
\hline & \begin{tabular}{l}
. optio \\
globa
\end{tabular} & \begin{tabular}{l}
\[
\text { n } X
\] \\
1 BEGIN, INIT
\end{tabular} & \\
\hline & \begin{tabular}{l}
.globa \\
. sect
\end{tabular} & \[
\begin{aligned}
& \text { ll BEGIN, INIT } \\
& \text { "init" }
\end{aligned}
\] & Named section \\
\hline RESET & . word & INIT & ; RS- loads address INIT to PC \\
\hline & . data & & \\
\hline MASK & . word & OFFFFFFFFH & \\
\hline BLKO & . word & 0809800H & Beginning address of RAM blok 0 \\
\hline BLK1 & . word & 0809COOH & ; Beginning address of RAM blok 1 \\
\hline STCK & . word & 0809F00H & ; Beginning of stack \\
\hline CTRL & . word & 0808000H & \begin{tabular}{l}
; Pointer for peripheral-bus memory \\
; map
\end{tabular} \\
\hline NEGONE & . word & OFFFFFFH & \\
\hline N & . word & 0000002H & \\
\hline P & . word & 0000002H & \\
\hline R & . word & 0000001H & \\
\hline I & . word & 0000000H & \\
\hline J & . word & 0000000H & \\
\hline K & . word & 0000000H & \\
\hline L & . word & 0000000H & \\
\hline L1 & . word & 0000000H & \\
\hline INDEX & . word & 080981DH & \\
\hline IROW & . word & 0000000H & \\
\hline ICOL & . word & 0000000H & \\
\hline DEGROW & . word & 0809830H & \\
\hline NA & . word & 0000000H & \\
\hline DEG & . word & 0000000H & \\
\hline DEG1 & . word & 0000000H & \\
\hline DEG2 & . word & 0000000H & \\
\hline NIPIVO & . word & 0809813H & \\
\hline NINDEX & . Word & 080981DH & \\
\hline NDEGRO & . word & 0809830H & \\
\hline NPIV & . word & 0809809H & \\
\hline NAMAX & . word & 0809852H & \\
\hline D & . Word & 0000000H & \\
\hline THUN & . word & 0000000H & \\
\hline NTT & . word & 0000000H & \\
\hline DEGSPC & . word & 0000000H & \\
\hline TT & . word & 0000000H & \\
\hline MINUS & . word & 0000000H & \\
\hline NN & . word & 0000000H & \\
\hline NM1 & .word & 0000000H & \\
\hline NM2 & .word & 0000000H & \\
\hline NM3 & .word & 0000000H & \\
\hline NPR & . word & 0000000H & \\
\hline NR & .word & 0000000H & \\
\hline NLI & .word & 0000000H & \\
\hline KR & .word & 0000000H & \\
\hline TR & .word & 0000000H & \\
\hline MNR & . word & 0000000H & \\
\hline T & .word & 0000000H & \\
\hline PN & .word & 0000000H & \\
\hline NP & .word & 0000000H & \\
\hline AMAX & .word & 0809852H & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline M5 & & . word & 0809853H \\
\hline M6 & & . word & 0809887H \\
\hline M7 & & . word & 08098BBH \\
\hline MK1 & & . word & 08098С0Н \\
\hline MK2 & & . Word & 08098C4H \\
\hline MK3 & & . word & 08098C8H \\
\hline MK4 & & . word & 08098CCH \\
\hline XSMAT & & . word & 0809900H \\
\hline TIME & & . word & 0809A30H \\
\hline PMAT & & . word & 0809A02H \\
\hline XPMAT & & . word & 0809A08H \\
\hline UP & & . word & 0809A06H \\
\hline XHMAT & & . word & 0809A50H \\
\hline UHMAT & & . word & 0809A52H \\
\hline ITAD & & . word & 0809BB0H \\
\hline ITA & & . word & 0809BD8H \\
\hline AD & & . word & 0809ADOH \\
\hline PAR & & . word & 0000000H \\
\hline VAR & & . word & 0000000H \\
\hline CONT & & . word & 0000000H \\
\hline PRLIO & & . word & 0808081H \\
\hline PRLIOO & & . word & 0808080H \\
\hline ERRM & & .float & 0.001000 \\
\hline PMA & & . word & 08098D0H \\
\hline HO & & . word & 0000000H \\
\hline OUTPUT & & . word & 0808082H \\
\hline CHECK & & . word & 0000000H \\
\hline MISTA & & . word & 0000000H \\
\hline LAST & & . word & 0000000H \\
\hline INPUT & & . word & 0000000H \\
\hline TIME1 & & .float & 0.989200 \\
\hline STEP & & .float & 0.040000 \\
\hline TEMPM & & . word & 0809D80H \\
\hline SABIT & & . word & 0809800H \\
\hline SABIT1 & & . word & 0809802H \\
\hline BTI & & . word & 0809950H \\
\hline PTI & & . word & 0809955H \\
\hline XHM & & . word & 080995AH \\
\hline XHMT & & . word & 0809973H \\
\hline SUMPAY & & . word & 080998CH \\
\hline SPAYDA & & . word & 0809DAOH \\
\hline \multicolumn{2}{|l|}{} & . word & 0000000H \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
STEPN \\
FIRSAT
\end{tabular}} & . word & 0000000H \\
\hline \multicolumn{2}{|l|}{SAY} & . word & 0000000H \\
\hline SAY1 & & . word . word & 0000000H \\
\hline \multicolumn{2}{|l|}{TCDD} & . word & 0000000H \\
\hline \multicolumn{4}{|l|}{*} \\
\hline \multirow{5}{*}{INIT} & \multicolumn{3}{|c|}{. text} \\
\hline & LDI & 80H & , DP \\
\hline & LDI & 1800 & OH, ST \\
\hline & LDI & 080 & 9H, AR1 \\
\hline & LSH & 4, AR & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
ADDI & 8,AR1 \\
LSH & \(8, A R 1\)
\end{tabular}

STI AR1,@BLK0
LDI \(600 \mathrm{H}, \mathrm{R} 6\)
ADDI R6,AR1
STI AR1, @BLK1
LDI AR1,R5
ADDI \(100 \mathrm{H}, \mathrm{R} 5\)
STI R5,@STCK
SUBI \(100 \mathrm{H}, \mathrm{R} 5\)
LDI \(-1, \mathrm{R7}\)
STI R7,@MASK
RPTS 4
SUBI R6,R5
STI R5,@CTRL
LDI @MASK, IE
LDI @BLKO, ARO
LDI @BLK1,AR1
ADDI 5,AR1
LDF 0.0,RO
RPTS 1023
STF RO, *ARO++(1)
RPTS 511
STF RO, *ARO++(1)
RPTS 506
STI RO, *AR1++(1)
LDI @CTRL,ARO
STI RO,*+ARO (0)
STI RO, \({ }^{*}+\) ARO (32)
STI RO,* + ARO (48)
STI RO,*+ARO (64)
STI RO,*+ARO (66)
STI RO,*+ARO (67)
STI RO, \({ }^{*}+\) ARO (68)
STI RO,**ARO (80)
STI RO,*+ARO (82)
STI RO,* + ARO (83)
STI RO, \({ }^{*}+\) ARO (84)
STI RO,*+ARO(96)
STI RO,*+ARO (100)
LDI @STCK,SP
OR 2000H,ST
BR BEGIN
.text
.global BEGIN
BEGIN
.set \$
LDI @BLKO,ARO
LDI @BLK1,AR1
LDI @MASK,R1
STI R1,*+AR1 (5)
LDI 2,R1
( Continued)
\begin{tabular}{|c|c|}
\hline STI & R1, * + AR1 (6) \\
\hline STI & R1, * + AR1 (7) \\
\hline LDI & 1, R1 \\
\hline STI & R1, * + AR1 (8) \\
\hline STI & ARO, * + AR1 (80) \\
\hline ADDI & 2, ARO \\
\hline STI & ARO, * + AR1 (81) \\
\hline ADDI & 7, ARO \\
\hline STI & ARO, * + AR1 (25) \\
\hline ADDI & 10, ARO \\
\hline STI & ARO, * + AR1 (22) \\
\hline ADDI & 10, ARO \\
\hline STI & ARO, * + AR1 (23) \\
\hline STI & ARO, * + AR1 (14) \\
\hline ADDI & 19, ARO \\
\hline STI & ARO, * +AR1 (24) \\
\hline STI & ARO, * + AR1 (17) \\
\hline ADDI & 34, ARO \\
\hline STI & ARO, * + AR1 (26) \\
\hline STI & AR0,* \({ }^{\text {+AR1 ( } 46 \text { ) }}\) \\
\hline ADDI & 1, ARO \\
\hline STI & ARO, \({ }^{+}\)+AR1 (47) \\
\hline ADDI & 34H, ARO \\
\hline STI & ARO,*+AR1 (48) \\
\hline ADDI & 34H, ARO \\
\hline STI & ARO, * + AR1 (49) \\
\hline ADDI & 5, ARO \\
\hline STI & ARO, * + AR1 (50) \\
\hline ADDI & 4, ARO \\
\hline STI & ARO, * + AR1 (51) \\
\hline ADDI & 4, ARO \\
\hline STI & ARO, * + AR1 (52) \\
\hline ADDI & 4, ARO \\
\hline STI & AR0, * + AR1 (53) \\
\hline ADDI & 4, ARO \\
\hline STI & ARO, *+AR1 (70) \\
\hline ADDI & \(30 \mathrm{H}, \mathrm{ARO}\) \\
\hline STI & ARO, * +AR1 (54) \\
\hline ADDI & 0C8H, ARO \\
\hline STI & AR0, * + AR1 (82) \\
\hline ADDI & 5, ARO \\
\hline STI & ARO, * + AR1 (83) \\
\hline ADDI & 5, ARO \\
\hline STI & ARO, \({ }^{*}+\) AR1 (84) \\
\hline ADDI & 19H, ARO \\
\hline STI & ARO, * + AR1 (85) \\
\hline ADDI & 19H, ARO \\
\hline STI & ARO, * + AR1 (86) \\
\hline ADDI & 19H, ARO \\
\hline STI & ARO, * +AR1 (55) \\
\hline ADDI & 1H, ARO \\
\hline STI & ARO, * + AR1 (56) \\
\hline ADDI & 4, ARO \\
\hline
\end{tabular}
```

STI ARO,*+AR1 (58)
ADDI 2,ARO
STI ARO,*+AR1 (57)
ADDI OC8H,ARO
STI ARO,**AR1 (59)
ADDI 2,ARO
STI ARO,*+AR1 (60)
ADDI 114H,ARO
STI ARO,*+AR1 (61)
ADDI 0C8H,ARO
STI ARO,**AR1 (62)
ADDI OC8H,ARO
STI ARO,*+AR1 (79)
ADDI 10H,ARO
STI ARO,*+AR1 (87)
LDI 3CH,R5
STI R5,*+AR1(88)
ADDI 30H,ARO
STI ARO,*+AR1 (63)
LDF 0.9892,R1
LDI 0C36H,R2
LSH 8,R2
ADDI R2,R1
STF R1,*+AR1(77)
LDF 0.04,R1
LDI 070AH,R2
LSH 8,R2
ADDI R2,R1
STF R1,*+AR1(78)
LDI @CTRL,R2
SUBI 4000H,R2
STI R2,*+AR1 (67)
ADDI 5DDOH,R2
STI R2,*+AR1 (68)
ADDI 10H,R2
STI R2,*+AR1(72)
LDI @TIME,AR1
LDF @STEP,R1
STF R1,*AR1
LDI @SABIT,AR2
LDI OFFH,R2
LSH 24,R2
STI R2,*AR2
LDI 80H,R1
LSH 16,R1
STI R1,*+AR2(1)
STI R1,*+AR2(3)
SUBI 1,R1
STI R1,**AR2(4)
LSH 8,R1
ADDI OFFH,R1
STI R1,*+AR2(2)
STI RO,@TT

```

CALL DMA
LDI @PRLIOO,AR4
LDI *AR4++(1),R1
LSH 16,R1
LSH -16, R1
LDI *AR4++(1),R2
LSH 16, R2
ADDI3 R2,R1,R5
LDI @SABIT1,AR1
LDI @SABIT,AR2
CALL CMPQ
LDI @SAY1,R1
BNZ DEV
PUSH R5
POPF R5
CMPF 10.,R5
BNZ FIRR
STI R5, @SAY1
STI RO,@TT
STI RO,@SAY
LDI @PMAT, AR1
LDF 1.00,R1
LDF @TIME1,R2
STF R1,*AR1++(1)
STF R2,*AR1++(1)
RPTS 3
STF R1,*AR1++(1)
LDI @ITA, AR1
STF RO,*AR1
BR ESK
FIRR LDI @SAY,R1
BNZ YETER
BR ESK
DEV LDI @SAY,R1
CMPI 10,R1
BP YETER
LDI @TT,R2
BNZ R11
LDI @ITAD, AR1
ADDI R2,AR1
LDI @XSMAT, AR3
LDI @XPMAT,AR6
PUSH R5
```

 POPF R5
 STF R5, **R1
 LDI *AR4++(1),R1
 LDI *AR4++(1),R2
 LSH 16,R2
 ADDI3 R1,R2,R5
 LDI @SABIT1,AR1
 CALL CMPQ
 PUSH R5
 POPF R5
 STF R5,*AR3++(1)
 :: STF R5,*AR6++(1)
LDI *AR4++(1),R1
LDI *AR4++(1),R2
LSH 16,R2
ADDI3 R1,R2,R5
CALL CMPQ
PUSH R5
POPF R5
STF R5,*AR3++(1)
:: STF R5,*AR5++(1)
BR R12
**
R11 LDI @ITAD,AR1
ADDI R2,AR1
LDI @XSMAT, AR3
ADDI @TT,AR3
ADDI @TT,AR3
PUSH R5
POPF R5
STF R5, *AR1
LDI *AR4++(1),R1
LDI *AR4++(1),R2
LSH 16,R2
ADDI3 R1,R2,R5
LDI @SABIT1,AR1
CALL CMPQ
PUSH RS
POPF R5
STF R5,*AR3++(1)
LDI *AR4++(1),R1
LDI *AR4++(1),R2
LSH 16,R2
ADDI3 R1,R2,R5
CALL CMPQ
PUSH R5
POPF R5
STF R5,*AR3++(1)

```
* THE CONTROL INPUT IS DELAYED
R12 LDF 0,RO


\begin{tabular}{ll} 
MPYI & R2,R3,R4 \\
ADDI & R4,R1 \\
STI & R1,@VAR \\
ADDI & \(2, R 1\) \\
STI & R1,@CONT \\
LDI & @NTT,R1 \\
ADDI & \(1, R 1\) \\
STI & R1, @NTT \\
LDI & 2,R7 \\
CALL & RUNGE \\
LDI & @NTT,R1 \\
SUBI & 5,R1 \\
BN & GERI \\
\(* * *\)
\end{tabular}
* CONTROL FOR THREE STEPS

LDI @TT,R1
ADDI 1,R1
STI R1,@TT
CMPI 3,R1
BN SENBAK
SUBI @STEPN,R1
BZ YT
CALL TANICI

* CONTINUE TO NEXT ITERATION

\section*{SENBAK STI R1,@TCDD}

LDI @CHECK,R2
BZ DIGER
BNZ RETRY
NOP
NOP
DIGER LDI @SAY,R3
BZ ESK
BNZ RETRY
YT CALL TANICI
CALL IDEN
LDI @MISTA,R1
BNZ YETER
LDI @M6,AR2
LDI @PMAT,AR1
LDF *AR2++(1),R1
STF R1,*AR1++(2)
LDF *AR2++(1), R1
STF R1,*AR1++(1)
LDF *AR2++(1),R1
STF R1,*AR1++(1)
LDI @UP,AR1
( Continued)
```

 LDF *AR2++(1),R1
 STF R1,*AR1++(1)
 LDF *AR2++(1),R1
 STF R1,*AR1++(1)
 YT1 LDI @CHECK,R1
ADDI 1,R1
STI R1,@CHECK
CMPI 1,R1
BP YETER
LDI @SUMPAY,ARO
LDI @SPAYDA,AR1
RPTS 4
STF RO,*ARO++(1)
RPTS 24
STF RO,*AR1++(1)

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* PREPERATION FOR NEXT STEP
* * * * * *
*

LDI @XSMAT,AR1
LDI @XPMAT,AR2
LDF *AR1++(1),R1
STF R1,*AR2++(1)
LDF *AR1++(1),R1
STF R1,*AR2++(1)
LDI @XHMAT,AR4
RPTS 12H
STF RO,*AR4++(1)
STI RO,@TT
STI RO,@TCDD
BR RETRY
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* SEND THE IDENTIFICATION RESULTS
YETER LDI @PMAT,AR6
LDI OFFFH,R7
LSH 4,R7
ADDI OFH,R7
LDI R7,R6
LSH 16,R6
LDI 5,RC
RPTB OUT
LDI @OUTPUT,AR7
LDI @SABIT,AR1
LDF *AR6++(1),R.5
PUSHF R5
POP R5

```
( Contimued)

```

 LDF *AR1++(1),R1
 STF R1,*AR2++(1)
 LDI @XHMAT,AR4
 RPTS 12H
 STF RO,*AR4++(1)
 LDI @TT,R6
 SUBI 1,R6
 STI R6,@TT
 LDI 15,R4
 STI R4,@FIRSAT
 LDI @SAY,R6
 ADDI 1,R6
 STI R6,@SAY
 CMPI 20,R6
 BP BUYET
 BR ESK
 NOP
 NOP
 BUYET STI RO,@SAY1
BR ESK
DUR IDLE

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* IDDENTIFICATION SUBROUTINE
IDEN LDI @N,R1
ADDI 3,R1
STI R1,@NN
STI R1,@P
STI R1,@N
LDI @AD,AR1
STI AR1,@NA ; NA INCLUDES THE BEGINING ADDRESS OF [h(t)]
LDI @SPAYDA,AR2
LDI 24,RC
RPTB AKTAR
LDF *AR2++(1),Rl3
AKTAR STF R3,*AR1++(1)
CALL INVER
LDI @MISTA,R1
BNZ JOHN
LDI @AD,R1
STI R1,@NM1
LDI @SUMPAY,R1
STI R1,@NM2
LDI @M6,R1
STI R1,@NM3
STI RO,@MINUS
CALL MAT
LDI @M5,AR1
LDI @PMAT,AR2

```
        LDF *AR2++(2),R1
    STF R1,*AR1++(1)
    LDF *AR2++(1),R1
    STF R1,*AR1++(1)
    LDF *AR2++(1),R1
    STF R1,*AR1++(1)
    LDI @UP,AR2
    LDF *AR2++(1),R1
    STF R1,*AR1++(1)
    LDF *AR2++(1),R1
    STF R1,*AR1++(1)
    LDI @M6,R1
    STI R1,@NM1
    LDI @M7,R2
    STI R1,@NM3
    LDI @M5,R1
    STI R1,@NM2
    STI RO,@MINUS
    LDI 1,R1
    STI R1,@N
    STI R1,@R
    CALL MAD
JOHN LDI @P,R1
    SUBI 3,R1
    STI R1,@P
    STI R1,@N
    RETS
    ***** * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
    * INTEGRATION SUBROUTINE
    *
RUNGE LDI @PAR,R1
    STI R1,@NM1
    LDI @VAR,R2
    STI R2,@NM2
    LDI @CONT,R3
    LDI @M5,R5
    STI R5,@NM3
    PUSH R1
    PUSH R2
    PUSH R3
    PUSH R5
    CALL MAT
    POP R5
    POP R3
    POP R2
    STI R3,@NM1
    STI R5,@NM2
    STI R5,@NM3
    LDI @R,R4
    STI R4,@N
\begin{tabular}{|c|c|c|}
\hline & PUSH & R2 \\
\hline & PUSH & R3 \\
\hline & PUSH & R5 \\
\hline & STI & RO, @MINUS \\
\hline & CALL & MAD \\
\hline & POP & R5 \\
\hline & POP & R3 \\
\hline & POP & R2 \\
\hline & LDI & @TIME,AR3 \\
\hline & LDI & R5, AR1 \\
\hline & LDI & @MK1, AR2 \\
\hline & LDI & 1,RC \\
\hline & RPTB & HI \\
\hline & LDF & *AR1++(1), R4 \\
\hline & MPYF & * \(\mathrm{AR} 3, \mathrm{R} 4\) \\
\hline HI & STF & R4, *AR2++(1) \\
\hline & LDI & @MK1, AR1 \\
\hline & LDI & @M6, AR2 \\
\hline & LDI & 1, RC \\
\hline & RPTB & H : \\
\hline & LDF & * \({ }_{\text {AR }}\) +++(1) , R4 \\
\hline & MPYF & 0.5, R4 \\
\hline H1 & STF & R4, *AR2++(1) \\
\hline & STI & R2, @NM1 \\
\hline & LDI & @h6,R4 \\
\hline & STI & R4, enM2 \\
\hline & LDI &  \\
\hline & STI & Rt, @NM3 \\
\hline & PUSH & R: \\
\hline & PUSH & R3 \\
\hline & PUSH & RS \\
\hline & CALL & M \(\mathrm{D}^{\text {D }}\) \\
\hline & POP & RS \\
\hline & POP & R3 \\
\hline & POP & R: \\
\hline & POP & R \\
\hline & STI & R ,@NM1 \\
\hline & STI & Ri,@NM3 \\
\hline & L.DI & @7, R4 \\
\hline & STI & \(\mathrm{R}_{\mathrm{t}}\), @NM2 \\
\hline & L.DI & @, R4 \\
\hline & STI & Ri, @N \\
\hline & PUUSH & R \\
\hline & PUUSH & R' \\
\hline & PIUSH & R3 \\
\hline & PUUSH & R \\
\hline & C.ALL & MT \\
\hline & PIOP & R \\
\hline & PIOP & R3 \\
\hline & P'OP & R \\
\hline & STII & R3, @NM1 \\
\hline & STI & B, @NM2 \\
\hline & SJTE & P5, @NM3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & LDI & @R,R4 \\
\hline & STI & R4,@N \\
\hline & PUSH & R2 \\
\hline & CALL & MAD \\
\hline & POP & R2 \\
\hline & LDI & @TIME, AR3 \\
\hline & LDI & R5, AR1 \\
\hline & LDI & @MK2,AR2 \\
\hline & LDI & 1, RC \\
\hline & RPTB & HI 1 \\
\hline & LDF & *AR1++(1),R4 \\
\hline & MPYF & *AR3,R4 \\
\hline HI 1 & STF & R4, *AR2++(1) \\
\hline & LDI & @MK2,AR1 \\
\hline & LDI & @M6, AR2 \\
\hline & LDI & 1, RC \\
\hline & RPTB & H11 \\
\hline & LDF & *AR1++(1), R4 \\
\hline & MPYF & 0.5, R 4 \\
\hline H11 & STF & R4, *AR2++(1) \\
\hline & STI & R2, @M1 \\
\hline & LDI & @M6, R4 \\
\hline & STI & R4, @NM2 \\
\hline & LDI & @M7,R4 \\
\hline & STI & R4, @NM3 \\
\hline & PUSH & R2 \\
\hline & CALL & MAD \\
\hline & POP & R2 \\
\hline & POP & R1 \\
\hline & STI & R1,@NM1 \\
\hline & STI & R5, @N43 \\
\hline & LDI & @M7, R4 \\
\hline & STI & R4, @N42 \\
\hline & LDI & @P,R4 \\
\hline & STI & R4, @N \\
\hline & PUSH & R1 \\
\hline & PUSH & R2 \\
\hline & PUSH & R3 \\
\hline & PUSH & R5 \\
\hline & CALL & MAT \\
\hline & POP & R5 \\
\hline & POP & R3 \\
\hline & POP & R2 \\
\hline & STI & R3, @NM1 \\
\hline & STI & R5, @N42 \\
\hline & STI & R5, @N43 \\
\hline & LDI & @R,R4 \\
\hline & STI & R4,@N \\
\hline & PUSH & R2 \\
\hline & CALL & MAD \\
\hline & POP & R2 \\
\hline & LDI & @TIME, AR3 \\
\hline & LDI & R5, AR1 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline & LDI & @MK1, AR2 \\
\hline & LDI & @MK2, AR3 \\
\hline & LDI & @MK3, AR4 \\
\hline & LDI & @MK4, AR5 \\
\hline & LDI & 1, RC \\
\hline & RPTB & HI4 \\
\hline & LDF & *AR2++(1), R1 \\
\hline & LDF & *AR3++(1), R6 \\
\hline & MPYF & 2, R6 \\
\hline & LDF & *AR4++(1),R3 \\
\hline & MPYF & 2,R3 \\
\hline & LDF & *AR5++(1), R4 \\
\hline & ADDF & R6,R1 \\
\hline & ADDF & R4, R3 \\
\hline & ADDF & R3, R1 \\
\hline & MPYF & 0.1666666, R1 \\
\hline HI4 & STF & R1,*AR1 ++(1) \\
\hline & STI & R2, @NM1 \\
\hline & LDI & @INPUT,R6 \\
\hline & BNZ & W1 \\
\hline & LDI & @HO, R6 \\
\hline & BZ & WRN \\
\hline & MPYI & 14H, R6 \\
\hline & ADDI & R6, R2 \\
\hline & STI & R2,@NM3 \\
\hline & STI & R5, @NM2 \\
\hline & CALL & MAD \\
\hline & LDI & @P,R1 \\
\hline & STI & R1,@N \\
\hline & RETSU & \\
\hline W1 & LDI & 1, R6 \\
\hline & ADDI & R6, R2 \\
\hline & STI & R2, @NM3 \\
\hline & STI & R5, @NM2 \\
\hline & CALL & MAD \\
\hline & STI & R0, @INPUT \\
\hline & RETSU & \\
\hline WRN & ADDI & R7, R2 \\
\hline & ADDI & R6, R2 \\
\hline & STI & R2, @NM3 \\
\hline & STI & R5, @NM2 \\
\hline & CALL & MAD \\
\hline & LDI & @P,R1 \\
\hline & STI & R1, @N \\
\hline & RETSU & \\
\hline
\end{tabular}
* MATRIX INVERSE SUBRIOUTINE

INVER LDI @AD, R 1
STI R1,@N.A
( Continuerd)
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{8}{*}{} & LDI & @INDEX, R1 \\
\hline & STI & R1,@NINDEX \\
\hline & LDF & 0.0, RO \\
\hline & LDI & @NIPIVO, AR1 \\
\hline & RPTS & @N \\
\hline & STI & RO,*AR1++(1) \\
\hline & LDI & 1, R1 \\
\hline & STI & R1, © 1 \\
\hline \multirow[t]{8}{*}{YIRMI} & LDI & @Nh, AR1 \\
\hline & LDI & @N,R1 \\
\hline & STI & R1,@NP \\
\hline & STI & R1,@DEGSPC \\
\hline & LDI & @N,R2 \\
\hline & MPYI3 & R2,R2,R4 \\
\hline & SUBI & 1, R4 \\
\hline & STI & R4,@NN \\
\hline \multirow[t]{7}{*}{YUZZ} & LDI & @DEGSPC, ARO \\
\hline & LDI & 1, P1 \\
\hline & STI & R1,@J \\
\hline & LDI & @N,R1 \\
\hline & STI & R1,@NR \\
\hline & LDI & @N/MAX, AR2 \\
\hline & STF & RO, *AR2 \\
\hline \multirow[t]{10}{*}{DON} & LDI & @J,R1 \\
\hline & SUBI & 1, P1 \\
\hline & ADDI & @NJPIVO, R1 \\
\hline & STI & R1,@DEG \\
\hline & LDI & @DEG, AR5 \\
\hline & LDI & *AR5, R1 \\
\hline & CMPI & 1, F1 \\
\hline & BN & ADON \\
\hline & BNZ & ICONT \\
\hline & BR & JCONT \\
\hline \multirow[t]{7}{*}{ADCON} & LDI & @NAMAX, AR2 \\
\hline & LDF & *AR2, R6 \\
\hline & LDF & *AF1, R7 \\
\hline & ABSF & R6 \\
\hline & ABSF & R7 \\
\hline & CMPF & R6,R7 \\
\hline & BN & JCONT \\
\hline \multirow[t]{6}{*}{CH/ANGE} & LDI & @I, R1 \\
\hline & STI & R1,@ICOL \\
\hline & LDI & @J,R1 \\
\hline & STI & R1,@IROW \\
\hline & LDF & *AR1, R1 \\
\hline & STF & R1, *AR2 \\
\hline \multirow[t]{7}{*}{JCCONT} & ADDI & AR0, AR1 \\
\hline & LDI & @J,R1 \\
\hline & ADDI & 1,R1 \\
\hline & STI & R1,@J \\
\hline & LDI & @NR,R1 \\
\hline & SUBI & 1, R1 \\
\hline & STI & R1.@NR \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & BP & DON \\
\hline \multirow[t]{11}{*}{CAIPIV} & LD. I & ©ICOL, R1 \\
\hline & SUIBI & 1, R1 \\
\hline & ADDI & CNIPIVO, R1 \\
\hline & STI & R1, @DEG \\
\hline & LDI & @DEG, AR4 \\
\hline & LD I & *AR4, R1 \\
\hline & ADDI & 1,R1 \\
\hline & STI & R1,*AR4 \\
\hline & LDI & @ICOL, R1 \\
\hline & SUBI & @IROW, R1 \\
\hline & BZ & CAINDE \\
\hline \multirow[t]{14}{*}{SATIR} & LDI & @IROW, R1 \\
\hline & SUBI & 1,R1 \\
\hline & STI & R1,@DEG \\
\hline & LDI & @N, R2 \\
\hline & MPYI & R2, R1 \\
\hline & ADDI & @NA,R1 \\
\hline & STI & R1,@DEG \\
\hline & LDI & @DEG, AR3 \\
\hline & LDI & @NDEGRO, AR4 \\
\hline & SUBI & 1, R2 \\
\hline & STI & R2,@DEG1 \\
\hline & LDI & @DEG1,RC \\
\hline & RPTB & KRT \\
\hline & LDF & *AR3++(1), R1 \\
\hline \multirow[t]{13}{*}{KRT} & STF & R1, *AR4++(1) \\
\hline & LDI & @ICOL,R1 \\
\hline & SUBI & 1,R1 \\
\hline & STI & R1,@DEG2 \\
\hline & LDI & @DEG2,R2 \\
\hline & MPYI & @N, R2 \\
\hline & ADDI & @NA, R2 \\
\hline & STI & R2,@DEG2 \\
\hline & LDI & @DEG2, AR3 \\
\hline & LDI & @DEG, AR4 \\
\hline & LDI & @DEG1,RC \\
\hline & RPTB & KRT1 \\
\hline & LDF & *AR3++(1), R1 \\
\hline \multirow[t]{6}{*}{KRT1} & STF & R1, *AR4++(1) \\
\hline & LDI & @NDEGRO, AR3 \\
\hline & LDI & @DEG2, AR4 \\
\hline & LDI & @DEG1,RC \\
\hline & RPTB & KRT2 \\
\hline & LDF & *AR3++(1), R1 \\
\hline KRT2 & STF & R1, *AR4++(1) \\
\hline \multirow[t]{7}{*}{CAINDE} & LDI & @NINDEX, AR4 \\
\hline & LDI & @IROW, R1 \\
\hline & STI & R1, *AR4++(1) \\
\hline & LDI & @ICOL, R2 \\
\hline & STI & R2, *AR4++(1) \\
\hline & STI & AR4, @NINDEX \\
\hline & SUBI & 1, R2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{8}{*}{} & STI & R2, @DEG \\
\hline & LDI & @N, R3 \\
\hline & MPYI3 & R2,R3,R1 \\
\hline & ADDI & R2, R1 \\
\hline & ADDI & @NA, R1 \\
\hline & STI & R1,@DEG \\
\hline & LDI & @DEG, AR3 \\
\hline & LDI & @NPIV, AR4 \\
\hline & LDF & *AR3, R1 \\
\hline & STF & R1, *AR4 \\
\hline & LDF & 1.0,R1 \\
\hline & STF & R1, *AR3 \\
\hline & LDF & *AR4, R3 \\
\hline & BZ & FT \\
\hline & CALL & INVF \\
\hline & LDI & 1,R1 \\
\hline & STI & R1, @L \\
\hline & LDI & @ICOL,R1 \\
\hline & SUBI & 1,R1 \\
\hline & MPYI & @N, R1 \\
\hline & ADDI & @NA, R1 \\
\hline & STI & R1, @DEG \\
\hline & LDI & @DEG, AR3 \\
\hline \multirow[t]{9}{*}{NEWCOL} & LDF & *AR3, R2 \\
\hline & MPYF3 & R2,R3, R4 \\
\hline & STF & R4, *AR3++(1) \\
\hline & LDI & @L, R1 \\
\hline & ADDI & 1,R1 \\
\hline & STI & R1,@L \\
\hline & CMPI & @N, R1 \\
\hline & BP & ANY \\
\hline & BR & NEWCOL \\
\hline \multirow[t]{2}{*}{ANY} & LDI & 1, R1 \\
\hline & STI & R1, @L1 \\
\hline \multirow[t]{19}{*}{ANADON} & LDI & @L1,R1 \\
\hline & CMPI & @ICOL, R1 \\
\hline & BZ & FIVENN \\
\hline & SUBI & 1,R1 \\
\hline & LDI & @N, R2 \\
\hline & MPYI & R2,R1 \\
\hline & ADDI & @ICOL,R1 \\
\hline & SUBI & 1,R1 \\
\hline & ADDI & @NA, R1 \\
\hline & STI & R1, @DEG1 \\
\hline & LDI & @DEG1, AR3 \\
\hline & LDF & *AR3, R1 \\
\hline & STF & R1, @NTT \\
\hline & STF & R0, *AR3 \\
\hline & LDI & 1, R1 \\
\hline & STI & R1,@L \\
\hline & LDI & @ICOL, R1 \\
\hline & SU3I & 1,R1 \\
\hline & STI & R1,@DEG1 \\
\hline
\end{tabular}

Continued)
```

 LDI @L1 R1
 SUBI 1,R:
 STI R1,@DEG2
 LDI @N,R2
 MPYI @DEG1,R2
 ADDI @L,R2
 ADDI @NA,R2
 SUBI 1,R2
 STI R2,@DEG1
 MPYI @N,R1
 ADDI @L, R1
 SUBI 1,R1
 ADDI @NA,R1
 STI R1,@DEG2
 LDF @NTT,R2
 LDI @DEC1,AR3
 LDI @DEG2,AR4
 DONGER MPYF3 *AF3++(1),R2,R4
LDF *AR4,R1
SUBF R4,R1
STF R1,*AR4++(1)
LDI @L,R1
ADDI 1,R1
STI R1,@L
CMPI @N,R1
BLS DONGER
FIVENN LDI @L1,R1
ADDI 1, R1
STI R1,@L1
CMPI @N,R1
BLS ANADON
ICONT LDI @I,R1
ADDI 1,R1
STI R1,@I
LDI @NP,R1
SUBI 1,R1
STI R1,@NP
BZ SON
SUBI @NN,AR1
BR YUZ
:SON LDI @N,R1
SUBI 1,R1
STI R1,@DEG2
STI R1,@NTT
LDI 1,R1
STI R1,@I
NEWL LDI @N,R1
SUBI @I,R1
ADDI 1,R1
STI R1,@L
SUBI 1,R1
MPYI 2,R1

```
\begin{tabular}{|c|c|c|}
\hline & ADDI & @INDEX, R1 \\
\hline & STI & R1, @DEG1 \\
\hline & LDI & eDEG1, AR1 \\
\hline & LDI & *AR1++(1), R1 \\
\hline & SUBI & *AR1--(1), R1 \\
\hline & BZ & NZERO \\
\hline & LDI & *AR1++(1), R1 \\
\hline & STI & R1, @IROW \\
\hline & LDI & *AR1++(1), R1 \\
\hline & STI & R1,@ICOL \\
\hline & LDI & 1,R1 \\
\hline & STI & R1,@J \\
\hline CHICOL & LDI & @J,R1 \\
\hline & SUBI & 1,R1 \\
\hline & STI & R1, @DEG1 \\
\hline & LDI & @N, R7 \\
\hline & MPYI3 & R7,R1, R4 \\
\hline & ADDI & @IROW, R4 \\
\hline & SUBI & 1,R4 \\
\hline & ADDI & @NA, R4 \\
\hline & STI & R4, @DEG1 \\
\hline & MPYI3 & R7,R1,R4 \\
\hline & ADDI & @ICOL, R4 \\
\hline & SUBI & 1,R4 \\
\hline & ADDI & @NA, R4 \\
\hline & STI & R4,@DEG2 \\
\hline & LDI & @NDEGRO, AR'2 \\
\hline & LDI & @JEG1, AR 3 \\
\hline & LDI & @DEG2,AR4 \\
\hline & LDF & *AR3, R1 \\
\hline & STF & R1, *AR2 \\
\hline & LDF & *AR4, R1 \\
\hline & STF & R1, *AR3 \\
\hline & LDF & *AR2, R1 \\
\hline & STF & R1, *AR4 \\
\hline & LDI & @J, R1 \\
\hline & ADDI & 1, R1 \\
\hline & STI & R1, @J \\
\hline & CMPI & @N, R1 \\
\hline & BLS & CHCOL \\
\hline NZERO & LDI & @I, R1 \\
\hline & ADDI & 1, R1 \\
\hline & STI & R1, @I \\
\hline - & CMPI & @ \({ }^{\text {, R1 }}\) \\
\hline & BLS & NEWL \\
\hline & RETS & \\
\hline FT & LDI & 5, R1 \\
\hline & STI & R1, @MISTA \\
\hline & RETS & \\
\hline
\end{tabular}
```

**

* SUBROUTINE FOR THE MATRIX MULTIPLICATION
*

MAT LDI @N,R1
STI R1,@DEG1 ; DEG1=N
LDI @R,R1
STI R1,@NR ; NR=R
SUBI 1,R1
STI R1,@KR ; KR=R-1
LDI @P,R1
STI R1,@NPR ; NPR=P
LDI @N,R1
MPYI @R,R1
SUBI 1,R1
STI R1,@DEG ; DEG=N*R
STI R1,@MNR ; MNR=N*R
LDI @NR,IRO
LDI @NM1,AR1
LDI @NM2,AR2
LDI @NM3,AR3
LDI @N,R1
STI R1,@NN ; NN=N
NEW LDF 0.0,R5 ; IRO A GORE GEREKENLERI DEGISTIR
BAS MPYF3 *AR1++(1),*AR2++(IRO),R4
ADDF R4,R5
LDI @NN,R1
SUBI 1,R1
STI R1,@NN
BP BAS
STF R5,*AR3++(1)
SUBI @MNR,AR2
LDI @N,R1
STI R1,@NN
SUBI @DEG1,AR1
LDI @NR,R1
SUBI 1,R1
STI R1,@NR
BP NEW
ADDI @R,R1
STI R1,@NR
LDI @NM2,AR2
ADDI @DEG1,AR1
LDI @NPR,R1
SUBI 1,R1
STI R1,@NPR
BP NEW
RETSU

```

```

* SUBROUTINE FOR THE MATRIX ADDITION

```

```

MAD LDI @P,R2
MPYI @N,R2
SUBI 1,R2
STI R2,@PN
LDI @NM1,AR1
LDI @NM2,AR2
LDI @NM3,AR3
LDI @PN,RC
LDI @MINUS,R1
BNZ NEGA
RPTB A1
LDF *AR1++(1),R1
ADDF *AR2++(1),R1
A1 STF R1,*AR3++
RETSU
NEGA RPTB A2
LDF *AR1 ++(1),R1
SUBF *AR2++(1),R1
STF R1,*AR3++
RETSU
**********************)

```
INVF LDF R3,R6
    ABSF R3
    PUSHF R3
    POP R1
    ASH -24, R1
    NEGI R1
    SUBI 1,R1
    ASH 24,R:1
    PUSH R1
    POPF R1
    MPYF R1,R:3, R2
    SUBRF 2.0, IR2
    MPYF R2,R:1
    MPYF R1,R:3, R2
    SUBRF 2.0, IR2
    MPYF R2,R:1
    MPYF R1,R:3,R2
    SUBRF 2.0,R2
    MPYF R2,R. 1
```

MPYF R1,R3,R2'
SUBRF 2.0,R2
MPYF R2,R1
MPYF R1,R3,R2'
SUBRF 2.0,R2
MPYF R2,R1
MPYF R1,R3,R2
SUBRF 2.0,R2
MPYF R2,R1
RND R1
MPYF R1,R3,R2
SUBRF 1.0,R2
MPYF R1,R2
ADDF R2,R1
RND R1,R3
NEGF R3,R2
LDF R6,R6
LDFN R2,R3
RETSU

```
* TMS320C30 TO IEEE FLOATING POINT FORMAT CONVERSION

TMSC LDI *+AR1(1),R2
LSH 8,R2
SUBI R5, R2
BZ ZO
AND3 R5, *AR1,R1
ASH -24, R1
LDI R1,R2
AND \(1, \mathrm{R} 2\)
ADDI 1,R1
ASH -1, R1
SUBI 1,R1
ADDI 40H,R1
LSH 24,R1
PUSH R5
PO?F R5
BN TO
CMPI \(0, \mathrm{R} 2\)
BZ T1
LS: \(-8, R 5\)
```

	OR	R1, R5
	RETS	
T1	LSH	-8, R5
	OR	* AR1 (1) , R5
	OR	R1,R5
	RETS	
T0	NEGI	R5
	LSH	-8,R5
	OR	R1, R5
	CMPI	0,R2
	BZ	T3
	LDI	80H, R2
	LSH	24, R2
	OR	R2,R5
	RETS	
T3	OR	*+AR1 (1) , R5
	OR	R1,R5
	LDI	80H, R2
	LSH	24, R2
	OR	R2,R5
	RETS	
Z0	LDI	0, R5
	RETS	

```

```

* IEEE TO TMS320C30 FLOATING POINT FORMAT CONVERSION
* * * * * * * * * * * * * * * * * * * * * * * * * * * * *

CMPQ CMPI 0,R5
BZ Z3
AND3 R5, *AR1, R1
AND3 R5, * + AR1 (1) , R2
LSH -24, R1
SUBI 40H,R1
ADDI 1,R1
LSH 1,R1
CMPI 0,R2
BNZ GO
SUBI 1,R1
GO LSH 24,R1
LDI **AR1 (2),,R3
AND3 R5, R3, R2
CMPI 0,R5
BN GK
OR3 R1,R2,R5
RETS
PUSH R2
POPF R2
NEGI R2, R2
BNZ KRL
SUBI 1,R1
AND *AR2,R1
LDI $80 \mathrm{H}, \mathrm{R} 2$
(Continued)

```
\begin{tabular}{|c|c|c|}
\hline \multirow{3}{*}{KRL} & LSH & 24, R2 \\
\hline & LSH & -8, R2 \\
\hline & OR3 & R1, R2, R5 \\
\hline & RETS & \\
\hline \multirow[t]{4}{*}{: 23} & LDI & * + AR1 (1), R1 \\
\hline & LSH & 8, R1 \\
\hline & LDI & R1, R5 \\
\hline & RETS & \\
\hline
\end{tabular}
```

*

```

TANICI LDI @XHM,AR1
LDI @XHMAT, AR2
LDI RO,R5
ULUDAG LDI 4,RC
RPTB XHOMO1
LDF *AR2++(1),R1
STF R1,*+AR1 (0)
LDF *AR2++(3),R1
STF R1,* +AR1 (5)
XHOMO1
ADDI 1,AR1
-ADDI 5, AR1
CMPI 1,R5
BZ BAZEN
ADDI 1,R5
BR ULUDAG
BAZEN LDI 4,RC
RPTB XHOMO3
LDF *AR2++(4),R1
XHOMO3 STF R1,*AR1 \(++(1)\)

*
* TRANSPOSE OF HOMOGENEOUS MATRIX *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

LDI @XHMT,ARO
LDI RO,R5
IYIAL LLI @XHM,AR1
ALDI R5,AR1
LLI 4,RC
RFTB TRANSP
LLF *AR1++(5), R1
TRANSP STF R1,*ARO++(1)
ALDI 1,R5
CNPI 5,R5
BN IYIAL


```

*
* READ FROM COMPUTER VIA COMMUNICATION INTERFACE
*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

DMA LDI @PRLIO,AR1
LDI @PRLIOO,AR2
LDI 20H,IOF
LDI 5,RC
RPTB DV
XFO LDI IOF,R1
AND 8,R1
BZ XFO
LDI *AR1,R2
STI R2,*AR2++(1)
STI RO,*+AR1(2)
DV STI RO,*+AR1(1)
RETS

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* WRITE TO COMPUTER VIA COMMUNICATION INTERFACE
* WRITE TO COMPUTER VIA COMMUNICATION INTERFACE *

```
DMAO LDI @PRLIO, AR1
            LDI @OUTPUT,AR2
            LDI \(60 \mathrm{H}, \mathrm{IOF}\)
            LDI *AR2++(1),R2
            STI R2,*AR1
                STI R1,*+AR1 (1)
CV LDI IOF,R1
            AND 8,R1
            BZ CV
                STI RO,*+AR1 (2)
                LDI *AR2++(1),R2
                STI R2,*AR1
                STI R1,*+AR1 (1)
CV1 LDI IOF,R1
            AND 8,R1
                BZ CV1
                STI RO,*+AR1 (2)
                LDI RO, IOF
                RETS

\section*{A.1.14. Longitudinal Transfer Functions of Raven 201}

Assumed conditions (Sea-level, ISA \(+0^{\circ}\) ):
```

Mass = 75 kg
Speed = 25 m/s
Flap = 30

```

Propeller effect and small descent gradient for \(\theta \cong 0^{\circ}\) are assumed to be negligible.

The equations of the longitudinal motion have been given with Eqs (3.38) to (3.40)
\[
\begin{align*}
& -\stackrel{\circ}{M}_{\mathbf{u}} u-\stackrel{\circ}{M}_{\mathbf{w}} \dot{\mathbf{W}}-\stackrel{\circ}{M}_{\mathbf{w}}^{w}+I_{\mathbf{y}}^{\dot{q}}-\stackrel{\circ}{M}_{q} q=\stackrel{\circ}{M}(t) \tag{3.40}
\end{align*}
\]

Non-dimensional aerodynamic dervatives have been calculated and put in the Eqs(3.38) to (3.40)
\[
270 \frac{\partial}{\partial t} \hat{u}+0.21 \hat{u}-0.705 \alpha+1.06 \theta=0
\]
\(2.12 \hat{u}+268.6 \frac{\partial}{\partial t} \alpha+3.85 \alpha-265.7 \frac{\partial}{\partial t} \theta=-0.312 \eta^{\prime}\),
\(2.8 \alpha+4.36 \frac{\partial}{\partial t} \alpha+2.22 \frac{\partial^{2}}{\partial t^{2}} \theta+13.2 \frac{\partial}{\partial t} \theta=-0.96 \eta^{\prime}\)```

