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SUMMARY

Experimental allergic encephalomyelitis (EAE) is an autoimmune central nervous 

system (CNS) disorder which serves as a model for multiple sclerosis (MS). Although 

CNS inflammation is observed in both EAE and MS, the mechanisms underlying the 

damage and demyelination are unknown. However, several investigators have proposed a 

role for nitric oxide (NO), in disease aetiology.

The following investigation aims to further clarify NO involvement in EAE 

pathogenesis by examining NO production in the CNS throughout the disorder and 

determining the effect of pharmacological manipulation of NO on neurological disease 

development. Additionally the CNS generation of reactive oxygen species (ROS) was 

measured in the model to assess possible effects of altering NO levels on the formation of 

ROS.

CNS levels of the NO breakdown product, nitrite, were elevated throughout the 

induction and active phases of EAE. Similarly, protein expression for nitric oxide 

synthase (NOS), the enzyme which catalyses NO synthesis, was increased during the 

disease. Furthermore, ROS levels were enhanced in the CNS prior to the onset of 

symptomatic EAE. Therefore NO and ROS may function as pathogenic effector 

molecules in disease aetiology. However, CNS nitrite levels were increased during the 

recovery phase of EAE suggesting that the molecule may also act in a regulatory capacity 

during the disease process.

Following pharmacological inhibition of NO in EAE, a reduction in CNS nitrite 

content was not always associated with an abrogation of neurological disease. Thus 

suggesting that NO is not of primary importance in disease pathogenesis. By comparison, 

administration of L-arginine, with a resultant increase in CNS nitrite levels, suppressed 

EAE development implicating a protective effect of NO in disease aetiology.

In conclusion the results of this study indicate that NO may function both in a 

cytotoxic or cytoprotective capacity during EAE. However, the pharmacological 

evidence demonstrates that NO acts as a suppressive molecule during the disease process.
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1.1 Experimental Allergic Encephalomyelitis

1.1.1 Historical Background

Experimental allergic encephalomyelitis (EAE) is a paralytic autoimmune disease 

of the central nervous system (CNS), which can be readily induced in certain species of 

laboratory animals. EAE has served as a model for human demyelinating disorders, such 

as multiple sclerosis (MS), since the 1930’s when it was shown that monkeys given 

repeated injections of rabbit brain extract developed paralysis accompanied by an acute 

disseminated encephalomyelitis (Rivers et al. 1933). The use of complete Freund’s 

adjuvant (CFA), in the 1940’s, allowed EAE to be induced in susceptible animals 

following a single injection of CNS extract emulsified in adjuvant (Freund et al. 1947, 

Kabat et al. 1947). In the 1960’s passive transfer of EAE by lymphocytes obtained from 

sensitised animals was introduced by Paterson (1960) which proved that EAE was 

primarily a T cell mediated disorder.

1.1.2 Induction and Signs

EAE can be induced in several species and strains of animals using various CNS 

antigens (Martin & McFarland 1995). However, susceptibility depends on additional 

contributing factors such as age (Dal Canto et al. 1977, Fujinami & Paterson 1977, 

Ludowyck et al. 1993), sex (Jansson et al. 1994, Cua et al. 1995), and even the 

commerical source (Swanborg et al. 1994) of the animals.

The acute form of EAE, originating from the active sensitisation to CNS antigens 

has been extensively examined. This can be induced in a number of mammalian species, 

including guinea pigs, mice, monkeys, rabbits, rats and also some birds (Siller 1960, 

Paterson 1966, Anderson & Vogel 1961, Lipton & Steigman 1961). Susceptibility to 

EAE varies considerably between strains. Whereas Lewis rats are highly susceptible to 

EAE, many others, such as the Brown Norway, are markedly resistant to the disease 

(Levine & Wenk 1963). Active EAE is usually induced by subcutaneous depot injection 

of an encephalitogenic emulsion, composed of brain or spinal cord homogenate and CFA,
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into the flank, nuchal region or footpad of experimental animals. The encephalitogenic 

activity of CNS tissues was found to be mainly due to myelin basic protein (MBP), the 

main constituent of myelin (Kies 1965). Hence, purified MBP is now frequently 

substituted for CNS tissues in the induction of EAE.

Following inoculation most animals develop an acute monophasic paralytic disease 

which is terminal in the case of monkeys, rabbits, guinea pigs and mice. However, in the 

rat the disease is self-limiting and most animals recover (Paterson 1966). Animals 

sensitised for acute EAE usually develop neurological disease within 10 to 21 days of 

inoculation. Ataxic gait, pareisis or paralysis of both hind limbs, fecal impaction and 

urinary incontinence are the common manifestations of EAE. However, the type and dose 

of encephalitogenic antigen, composition of adjuvant, route of inoculation, and species 

and strain of animal sensitised all influence the course of the EAE.

A chronic-relapsing form of EAE (CREAE) can be induced in certain susceptible 

strains of guinea pigs and mice (Wisniewski & Keith 1977, Lublin et al. 1981). Induction 

of relapses in the Lewis rat model of EAE has also been achieved by administration of low 

doses of cyclosporin A (Polman et al. 1988) or cyclophosphamide (Minagawa et al.

1987).

In addition to active induction of the disease, adoptive transfer of EAE can also be 

achieved. Lymphoid cells taken from animals previously sensitised to CNS tissue are 

cultured in the presence of MBP and then injected into histocompatible recipient animals. 

Following injection the animals develop, within 8 to 10 days, a clinical disease with CNS 

lesions comparable to those obtained in active EAE (Paterson 1960).

1.1.3 Encephalitogenic Antigens

Following identification of organ specific antigens within the CNS (Witebsky & 

Steinfeld 1928) the search for encephalitogenic antigens capable of inducing CNS 

immunopathology began. Potential encephalitogenic antigens are myelin components 

which are composed of 70 % lipid and 30 % protein (Swanborg 1995). MBP was 

identified at an early stage as a major encephalitogenic antigen (Kies 1965) and for many

16



years was thought to be the only autoantigen involved in the pathogenesis of EAE. 

However, in the late 1970’s proteolipid protein (PLP), which constitutes 50 % of myelin 

protein, was also shown to induce EAE (Satoh et al. 1987). Although MBP and PLP 

appear to be the major CNS autoantigens involved in disease other myelin or non-myelin 

proteins may be of similar encephalitogenic potential to MBP. Indeed other CNS antigens 

such as myelin oligodendrocyte glycoprotein (MOG) (Amor et al. 1994), ganglioside 

(Cohen et al. 1981) and endothelial cell membrane fractions (Tsukada et al. 1987) have 

been shown to elicit EAE. Furthermore, the S 100 protein, an astrocyte-derived calcium 

binding protein, induces an autoimmune inflammatory response in the CNS (Kojma et al. 

1994).

1.1.4 Genetics Of EAE

The susceptibility to EAE is genetically determined by well characterised major 

histocompatibility complex (MHC) coded genes and other non-MHC genes (Pap Hap et 

al. 1988). Indeed the response to a particular encephalitogenic epitope is dependent upon 

the T cell receptor (TCR) repertoire and MHC class Il-restricting elements available to the 

responder animal. Thus the response of Lewis rats to MBP epitope 68-86 is restricted by 

RT-1B1, and the T cells preferentially use Va2:Vp8 in their TCR (Bums et al. 1989,

Chluba et al. 1989). However, the response of Lewis rats to MBP epitope 87-99 is 

restricted by RT-1D1 (Offiier et al. 1989) and a number of T cell V region gene products 

are used in the TCR (Sun et al. 1992).

In the PLP/J mouse, the response to MBP 1-9 is I-Au restricted and the T cells 

responding to this epitope primarily utilise Vp8.2 and Va2 or Va4 in their TCR (Zamvil & 

Steinman 1992). As the SJL/J mouse strain lacks the Vp8 TCR gene family and does not 

express I-E these animals respond to MBP 89-101 in the context of I-As, and 50 % of 

their T cell clones express the Vpl7a TCR (Sakai et al. 1988).

The responses of SJL/J mice to PLP 139-151 and 178-191 are I-As-restricted 

(Greer et al. 1992), but the responding T cells utilise diverse TCR V genes (Kuchroo et
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al. 1992). Similarly the response of Lewis rats to PLP peptides is restricted by RT-1B1 

(rat homolog of I-A), but the TCR usage has yet to be determined.

1.1.5 Role of Inflammatory Cells in EAE

1.1.5.1 T Cells

Although the CNS has been considered to be an immunologically privileged site, 

recent reports have demonstrated that activated lymphocytes can randomly enter the CNS 

(Hickey 1991). These lymphocytes carry out immunological surveillance and initiate 

inflammation during infection or autoimmune reactions. However, lymphocytes only 

remain in the CNS on recognition of their specific antigens (Hickey et al. 1991). 

Furthermore, lymphocyte expression of leukocyte function antigen (LFA)-1 and the up- 

regulation of its ligand, intercellular adhesion molecule (ICAM)-1, and addressin in brain 

endothelial cells is required, at least in part, to facilitate lymphocyte entry into the CNS.

Overwhelming evidence demonstrates that EAE is a CD4+ T cell-mediated 

disorder. However, the encephalitogenicity of MBP specific T cell clones is dependent 

upon the cytokine profile and the ability to express adhesion molecules. T cells can be 

subdivided depending on the sets of cytokines produced. The Thl cells function as 

mediators of delayed-type hypersensitivity (DTH) reactions and produce interleukin (IL)- 

2, tumor necrosis factor (TNF)-a/p and interferon (IFN)-y. On the other hand, Th2 cells 

mainly facilitate humoral immunity and produce EL-4, EL-5, EL-6, IL-10 and EL-13 

(Romagnani 1996). In EAE, Thl cells or Thl-like cytokines have been shown to promote 

the disease ( Kuroda & Shimamoto, Jacobs et al. 1991, Selmaj et al. 1991, ), whereas Th2 

cells or Th2-like cytokines suppress disease development (Olsson 1995, Cuo et al. 1995). 

Moreover, MHC class II restricted cytolytic activity has been demonstrated among 

encephalitogenic T cell lines (Sun & Weckerle 1986, Fallis & McFarlin 1989).
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1.1.5.2B Cells

In addition to T cells, a role for B cells in the pathogenesis of EAE has been 

suggested. This is demonstrated by the fact that neonatally anti-IgM treated or B cell 

deficient animals do not develop EAE (Willenborg & Prowse 1983). Moreover, anti-CNS 

serum or anti-CNS myelin serum from animals with EAE has been shown to induce 

demyelination in vitro (Seil 1994). Further evidence of a role for B cells in EAE aetiology 

is provided by the observation that EAE progression was prevented by inhibiting B cell 

activity (Gausas et al. 1982).

1.1.5.3 Macrophages

Although CD4+ T cells are of primary importance in the induction of EAE, recent 

reports suggest a pivotal role for macrophages and microglia in the effector pathway of 

EAE. Indeed in vivo depletion of macrophages has been shown to prevent EAE (Brosnan 

et al. 1981, Huitinga et al. 1990,1995). Moreover, IL-13, a potent modulator of 

macrophage function, can suppress the development of EAE without inhibiting either T or 

B cell immunoreactivity (Cash et al. 1994)

Macrophages may mediate damage in EAE through direct effects on myelin 

(Lampert 1965, Epstein etal. 1983). Furthermore activated macrophages may indirectly 

exert CNS damage through the secretion of numerous factors such as cytokines, 

proteases, reactive oxygen species (ROS) and nitric oxide metabolites (Nathan 1987), all 

of which are known to be myelinotoxic and exert cytotoxic effects on oligodendrocytes 

(Cammer etal. 1978, Konat & Wiggins 1985, Selmaj & Raine 1988).

1.1.6 Generation of the Inflammatory Lesion in EAE

The formation of inflammatory lesions during EAE, although not fully 

characterised, is known to involve several distinct processes. Initially, activated T cells 

cross the blood-brain barrier (BBB), irrespective of their antigen specificity. This is 

followed by antigen-specific interaction of invading CD4+ T cells with MHC class II 

positive antigen presenting cells in the CNS, such as microglia and astrocytes. These local
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antigen-specific interactions prime the CNS for the induction of an inflammatory response 

(Weckerle et al. 1986). Subsequently, adhesion molecule expression is upregulated on 

vascular endothelial cells and chemotactic and pro-inflammatory cytokines are released. 

This facilitates the recruitment of CD4+ T cells and activated macrophages into the CNS 

as well as increasing BBB permeability to serum proteins.

1.1.7 Histology & Pathology of EAE

Neurological EAE is associated with several characteristic histopathological 

features including breakdown of the BBB, inflammatory cell infiltration, oedema and in 

chronic forms of the disease, demyelination.

1.1.7.1 BBB Breakdown

The BBB is composed of a continuous layer of endothelial cells sealed together by 

tight junctions. Astrocytes surround the brain capillaries with their processes and attach 

to the basement membrane of the endothelial cells. Gaps exist between the astrocyte 

processes which facilitate the passage of substances across the endothelial barrier. 

Therefore, astrocytes play an important role in the maintenance of BBB homeostasis 

(Goldstein 1988). Indeed due to the complex interaction between brain microvessel 

endothelial cells and the underlying basement membrane-associated cells, such as smooth 

muscle cells, pericytes and astrocytes, the neuroendothelium is selectively permeable. 

Moreover, the endothelial cells of the cerebrovasculature possess a number of unique 

properties which contribute to the functioning of the BBB. Cerebral endothelial cells have 

intercellular tight junctions, no fenestrae and a reduced number of pinocytotic vesicles 

(Bradbury 1984). Furthermore the tight junctions which exist between brain endothelial 

cells have high electrical resistance to limit paracellular diffusion, whereas transcellular 

flux is restricted by slow-rate fluid phase endocytosis through cerebral endothelial cells 

(Fabry et al. 1994). These specialised characteristics aid the enhanced selectivity of the 

BBB allowing only the movement of vital nutrients into the CNS (Bradbury 1985, 

Goldstein & Betz 1986). Consequently exposure of neuronal tissue to vascular
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neurotoxins, ion fluxes or other deleterious factors is prevented and homeostasis within 

the cerebral microenvironment is maintained.

Disruption of the BBB occurs in several pathological conditions of the CNS 

including EAE and MS. It is thought that the loss in cerebrovascular integrity results from 

enhanced intercellular leakage caused by increased pinocytosis or tight junction opening 

(Banks & Kastin 1988). In acute models of EAE it was demonstrated that tight junctions 

were disrupted, whereas the number of pinocytotic vesicles in brain endothelial cells 

appeared normal. However, in CREAE models BBB breakdown was shown to be 

mediated by a metabolic change in the cerebral endothelial cells associated with increased 

vesicular transport (Moor et al. 1994). Furthermore the tight junctions were unaffected 

during CREAE (Hawkins et al. 1992).

Enhanced cerebrovascular disruption is an early event in EAE which is observed to 

precede the occurrence of cellular infiltration and neurological deficits (Liebowitz 1969, 

Juhler et al. 1986). Indeed it is thought that disruption of the BBB initiates a cascade of 

events such as oedema formation and inflammatory cell infiltration, which in more chronic 

disease forms ultimately culminates in demyelination.

1.1.7.2 Inflammatory Cell Infiltration

EAE is characterised histologically by the presence of many perivenular foci of 

mononuclear cell infiltrates in the spinal cord and brainstem region (Paterson et al. 1970, 

Oldendorf & Towner 1974). Low grade infiltration of T cells into the CNS is observed 

following EAE inoculation and before the onset of disease signs (Traugott et al. 1982). 

Primary invasion of the CNS is followed by widespread infiltration of large numbers of 

inflammatory cells prior to neurological disease development (Paterson 1976, Raine 

1984). Perivascular infiltrates consist mainly of lymphocytes (Taugott et al. 1982), with 

plasma cells (Lampert 1982) and macrophages (Kristenson et al. 1976, Juhler et al. 1985) 

also present.
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1.1.7.3 Oedema

Extensive vasogenic oedema develops in the CNS immediately prior to the onset 

of EAE disease signs (Liebowitz & Kennedy 1972, Oldendorf & Towner 1974). Oedema 

occurs during EAE as a consequence of BBB dysfunction and vascular permeability 

alterations (Paterson et al. 1987, Claudio et al. 1990). Moreover, in EAE paralytic 

disease signs have been shown to correlate with the extent of oedema in the CNS 

(Paterson 1976, Raine 1983). Previous studies have suggested that CNS damage during 

EAE may result from oedema-associated ischemic injury following breakdown of the BBB 

(Wajda 1972). Evidence exists indicating that an accumulation of fluid within the CNS 

compartment may cause increased pressure on nerve fibres, resulting in nerve dysfunction 

and the characteristic neurological signs of EAE (Paterson 1982, Simmons et al. 1982).

1.1.7.4 Demyelination

Another histopathological feature of EAE is demyelination. Myelin loss is minimal 

in acute models of EAE, but animals with CREAE display extensive demyelination 

(Swanborg 1995). Although the precise mechanisms through which demyelination occurs 

have yet to be established, several possible routes have been proposed. While some 

investigators have suggested that myelin destruction may be mediated by cytokines 

released during CNS inflammation (Brosnan et al. 1988), other workers have proposed 

that demyelination results from a non-specific action of plasma proteins, such as 

proteolytic enzymes or complement, which enter the CNS following BBB breakdown 

(Scolding et al. 1989). Furthermore, CD8+ T cell-mediated killing of oligodendrocytes 

(Koh et al. 1992) and autoantibody-mediated demyelination (Linington et al. 1988) have 

also been implicated as effector mechanisms in myelin disruption. Similarly, demyelination 

has been attributed to macrophage effects in the CNS. Indeed microscopy studies have 

identified two mechanisms through which macrophages may damage myelin. These are: 

de-lamination via extension of cell processes between myelin lamellae, and lysis caused by 

the release of soluble factors (Lampert & Carpenter 1965, Wisniewski & Keith 1977).
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Finally, recent studies have suggested that oligodendrocyte apoptosis may be an important 

mechanism leading to demyelination (Tsunoda & Fujinami 1996).

1.1.8 Other Features of CNS Lesions During EAE

Animals inoculated for EAE develop lesions in the CNS which consist of focal 

areas of perivascular inflammation and demyelination. Interestingly, the white matter of 

the CNS is involved more severely than the grey and lesions are often found near the 

ventricular system, in the subcortical white matter and in the brainstem and spinal cord 

(Paterson 1980). Concomitant with inflammatory cell infiltration during EAE, astrocytes 

are observed to proliferate and become hypertrophied (Smith et al. 1987). In addition, 

microglia accumulation occurs in the vicinity of the lesions (Matsumoto et al. 1986). 

Furthermore, as chronic EAE progresses gliotic scarring occurs as a consequence of 

fibrous astrocytes moving into demyelinated areas (Raine 1984, Smith et al. 1987).

1.1.9 Regulation of EAE

The loss of neurological disease signs during EAE were initially thought to result 

as a consequence of remyelination (Pender et al. 1989). However, studies have since 

demonstrated that the transience of symptoms and speed of recovery is not compatible 

with this mechanism (Simmons et al. 1981). Instead investigators have proposed that 

suppressor T cells may be involved in the regulation of EAE (Swierkosz & Swanborg 

1975). Suppressor T cells have been implicated in the spontaneous recovery and 

subsequent resistance of Lewis rats to the reinduction of EAE (Adda etal. 1977, Welch et 

al. 1980, Killen & Swanborg 1982b). These suppressor cells have been characterised as 

CD4+ T cells which produce transforming growth factor (TGF)-p (Karpus & Swanborg 

1991) and IL-4 (Karpus et al. 1992). Recently Swanborg (1995) has hypothesised that 

these CD4+ suppressor T cells are equivalent to Th2 cells, which diverts the inflammatory 

Thl cell response that is thought to initiate the autoimmune pathogenesis associated with 

EAE. In addition to CD4+ suppressor T cells, suppressor CD8+ T cells have been isolated 

from EAE recovered mice (Sun et al. 1988). However, these cells have subsequently
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been shown only to be involved in the resistance to a second induction of active EAE but 

not important in the regulation of a first episode of active disease (Jiang et al. 1992). 

Interestingly, it has recently been suggested that a defect in suppressor cell activity may be 

responsible for the relapses observed in certain animal models of EAE (Weckerle et al. 

1994, Swanborg 1995).

Alternative explanations for the recovery of animals from EAE also exist. These 

include the hypothesis that effector cells, such as T cells and macrophages, are eliminated 

from the CNS by apoptosis (Pender et al. 1992). Additionally, MacPhee et al. (1989) 

have proposed that the spontaneous recovery of Lewis rats from EAE is mediated through 

endogenous corticosteroids with increased circulating corticosterone levels observed in 

diseased animals prior to recovery. Furthermore, enhanced concentrations of 

noradrenaline have been detected during the acute stage of EAE implicating a possible 

involvement of this molecule in the recovery process (Mackenzie et al. 1989). Indeed 

neuroendocrine responses following immune stimulation appear to be important in 

influencing the course of EAE. The importance of endogenous glucocorticoids in 

modulating EAE has been further emphasised by depleting circulating steroid levels 

through adrenalectomy (MacPhee et al. 1989), or counteracting their effects by 

administration of the steroid antagonist, RU486, both of which precipitate a chronic or 

relapsing form of the disease (Bolton & Flower 1989). Although endogenous 

corticosterone release in rats with EAE plays an important role in the spontaneous 

recovery observed in this condition the subsequent inability to reinduce EAE in these 

animals is not associated with chronically elevated steroid levels (MacPhee et al. 1989). 

Interestingly, more recent studies have demonstrated that CREAE is also regulated by 

endogenous glucocorticoids with fluctuations in the systemic steroid levels coinciding with 

the relapsing-remitting phases of the disease (Bolton et al. in press).
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1.2 Multiple Sclerosis

Multiple sclerosis (MS) is a relap sing-remitting or ultimately progressive CNS 

disorder which is characterised by areas of demyelination throughout the CNS. Multiple 

lesions are present, consisting of plaques of demyelination and foci of mononuclear cell 

infiltration. Lesions develop preferentially within the brainstem, spinal cord, optic nerve 

and perivascular white matter (Moor et al. 1994). During MS neurotransmission is 

impaired as a result of myelin destruction, and this leads directly to the clinical 

manifestations of MS, which appear to be dependent upon the area of the CNS in which 

the lesions develop (Martin et al. 1992).

Although the aetiology of MS has not been elucidated, a consistent feature of the 

disease is the entry of T cells into the CNS (Fffench-Constant 1994). Therefore, it has 

been proposed that immunological mechanisms are important in the devlopment of MS 

(Martin et al. 1992).

1.2.1 Comparison of MS and EAE

As the clinical, immunopathological and histopathological features of MS are 

similar to those seen in EAE (Table 1.1), the experimental model has been widely utilised 

to gain insight into the mechanisms underlying the human counterpart. Furthermore, 

various aspects of MS can be examined by using the different models of EAE available. 

Hence, while acute EAE in the Lewis rat provides an adequate model with which to study 

the mechanisms underlying the induction and recovery phases of the disease (Weckerle 

1993), CREAE enables the immunoregulatory events leading to demyelination and relapse 

to be defined (Lassman 1983).
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Table 1.1 Comparison of EAE and MS

EAE MS

Spontaneous disease TCRa transgenic mouse +

Relapsing and chronic remitting + +

CNS demyelination + +

CNS inflammation + +

Adoptive transfer + ±

Linkage to MHC + +

CD45R-CD4 T cells in CNS + +

Neuroantigen-reactive CD4 T cell + +

Neuroantigen-sepcific CTLb + +

Modulation by cytokine + +

Restricted TCR gene usage + +

Adhesion molecule upregulation + +

Role of CD8 T cell Ts?c ?

Anti-myelin antibody + +

Role of macrophage + ?

Apoptosis in CNS + ?

a TCR: T cell receptor

b CTL: cytotoxic T cell

0 Ts: suppressor T cell

(Modified from Tsunoda & Funjinami 1996)
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1.3 Pathogenic Mechanisms in EAE

The pathogenic mechanisms involved in the aetiology of EAE are only partially 

characterised and understood (Figure 1.1). Nevertheless, a clear role for infiltrating cells 

of the lymphocyte-macrophage lineage together with resident CNS cells has been 

indicated in disease development. Moreover, invading and resident immunocompetent 

cells release a variety of inflammatory mediators, including proteases, eicosanoids, 

cytokines, ROS and nitric oxide (NO), all of which have been implicated in EAE 

pathogenesis.

1.3.1 Proteases

Proteolytic enzymes are thought to contribute to the inflammatory tissue damage 

observed in EAE. Not only have proteases been identified in the cerebrospinal fluid (CSF) 

of mice with EAE (Gijbels et al. 1993), they have also been demonstrated to mediate BBB 

breakdown (Rosenberg et al. 1992) and demyelination (Beyer & Whitaker 1985), two of 

the key processes in the pathology of EAE. A pathogenic role of proteases in EAE is also 

suggested by the ability of protease inhibitors to suppress EAE (Brosnan et al. 1980,

Smith & Amaducci 1982, Osani & Nagai 1984). Recently several investigations have 

proposed a role for matrix metalloproteinases in the pathogenesis of EAE.

Pharmacological evidence demonstrates that matrix metalloproteinase inhibitors prevent 

neurological EAE (Gijbels et al. 1994, Hewson et al. 1995, Norga et al. 1995), thus 

implicating matrix metalloproteinase formation as a pathogenic effector mechanism during 

the disease.

1.3.2 Eicosanoids

The arachidonic acid metabolites, prostaglandins and thromboxanes, derived from 

the cyclooxygenase pathway, and leukotrienes generated via the lipoxygenase pathway are 

potent inflammatory mediators (Salmon & Higgs 1987, Lewis et al. 1990). Although
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Figure 1.1 Overview of EAE pathogenesis
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CTL = cytotoxic T cell. (Modified from Tsunoda & Fujinami 1996)



the main sources of eicosanoids are macrophages, astrocytes and microglia are also 

capable of producing arachidonic acid metabolites (Fontana et al. 1987, Hartung & Toyka 

1987a,b). Arachidonic acid derivatives are known to mediate a variety of inflammatory 

responses. Indeed, eicosanoids not only function as chemoattractants for neutrophils and 

macrophages (Turner & Tainer 1983), but also promote adherence of platelets and 

leukocytes (Rivkind et al. 1989) . In addition, prostaglandins and leukotrienes enhance 

vasopermeability and promote oedema (Myers et al. 1990a) . Furthermore eicosanoids 

modulate functional activities of T cells and macrophages, thus contributing to 

immunoregulation (Somers et al. 1989) . In EAE, increased levels of prostaglandins have 

been identified in CNS tissues from animals with acute and chronic-relapsing EAE (Bolton 

et al. 1984a,b,1986). Moreover, eicosanoids have been implicated in EAE pathogenesis 

following the observation that dual cyclooxygenase and lipoxygenase inhibitors attenuated 

EAE (Weber et al. 1991, Simmons et al. 1992). Similarly, Reder et al. (1994) 

demonstrated that indomethacin administration suppressed EAE. However, previous 

work has shown that neurological development of EAE was aggravated by indomethacin 

treatment (Ovadia & Paterson 1982).

1.3.3. Cytokines

A role for several cytokines including IL-1, IFN-y and TNF-a in the aetiology of 

EAE has been postulated.

1.3.3.1 IL-1

Although IL-1 is produced predominantly by macrophages, other cell types such 

as endothelial cells, microglia and astrocytes can also secrete IL-1 upon stimulation (Arai 

et al. 1990, de Giovine & Duff 1990). IL-1 is a principal participant in inflammatory 

reactions through induction of other inflammatory metabolites such as prostaglandins, 

collagenase and phospholipase A2 (Hartung et al. 1989). In addition DL-1 acts on 

endothelial cells to promote leukocyte adhesion as well as increasing adhesion molecule 

expression on immunocompetent cells (Frohman et al. 1989, Loughlin et al. 1992).
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Furthermore, IL-1 stimulates other cells to produce various cytokines such as IL- 6  and 

TNF-a (Chung & Benveniste 1990, Bethea et al. 1992). Evidence demonstrating a role 

for IL-1 in the pathogensis of EAE is provided by the observation that levels of IL-1 were 

elevated in the CSF of diseased animals (Symmons et al. 1987). Similarly, it has been 

shown that IL-1 immunoreactivity is increased in astrocytes isolated from animals with 

EAE (Bauer etal. 1993, Rubio & Capa 1993). Moreover, immunopharmacological 

studies have established that administration of IL-1 exacerbated EAE development 

(Jacobs et al. 1991), whereas treatment with an IL-1 receptor antagonist abrogated 

disease (Jacobs etal. 1991, Martin & Near 1995) suggesting a pathogenic role of IL-1 in 

EAE.

1.3.3.2 IFN-y

IFN-y, produced predominantly by T cells also exerts a multitude of inflammatory 

effects including upregulation of MHC class II and ICAM expression on macrophages and 

astrocytes (Fierz et al. 1985, Sun 1991). Additionally IFN-y enhances vascular 

permeability and stimulates the release of ROS from macrophages (Hartung et al. 1992) . 

A pathogenic role of IFN-y in EAE was suggested following the observation that 

experimental autoimmune neuritis (EAN) was enhanced upon administration of IFN-y 

(Hartung et al. 1990). However, treatment of EAE with anti-IFN-y exacerbated the 

disease, thus suggesting an immunosuppressive effect for the cytokine (Billiau et al.

1988). Furthermore, recent studies have reinforced the cytoprotective effect of IFN-y in 

EAE (Brod et al. 1995). Therefore, the evidence to implicate IFN-y as a pathogenic 

mediator of EAE is not substantiated.

1.3.3.3 TNF-a

The major cellular source of TNF-a is from activated macrophages, but other cell 

types, including T cells, astrocytes and microglia can be stimulated to produce TNF-a 

(Benveniste 1992). The cytokine enhances endothelial cell permeability (Bredt et al.

1989), increases adhesion molecule expression (Pober et al. 1986) and facilitates
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transendothelial cell migration (Pohlman et al. 1986). In addition TNF-a stimulates 

cytokine production in other cells and modulates the expression of MHC class I and II 

molecules. Evidence implicating TNF-a as a pathogenic effector molecule in EAE is 

provided by immunopharmacological studies demonstrating that administration of the 

cytokine aggravated EAE (Kuroda & Shimamoto 1991) while treatment with anti-TNF-a 

suppressed disease development (Selmaj etal. 1991,5). Moreover TNF-a has been 

shown to be myelinotoxic (Brosnan et al. 1988, Selmaj & Raine 1988) and expression of 

TNF-a was observed to increase in the CNS during EAE (Renno et al. 1995).

1.3.4 ROS

Although ROS are generated mainly by macrophages other cells such as T cell, 

microglia, astrocytes and neurons are capable of producing ROS (Nathan et al. 1983, 

Colton & Gilbert 1987, Chan et al. 1988, Dugan et al. 1995). ROS have been proposed 

as mediators in EAE following the observation that myelin was degraded in vitro by ROS 

(Chia et al. 1983, Konat & Ofiner 1983, Konat & Wiggins 1985). Moreover, ROS may 

contribute to the CNS damage during EAE through their ability to injure endothelial cells 

thus disrupting the BBB (Beckman et al. 1990, Shukla et al. 1992, McQuaid et al. 1996). 

Additionally, pharmacological evidence exists to support a role for ROS in EAE aetiology 

as interfering with ROS formation has been shown to prevent the disease (Bowem et al. 

1984, Karlik et al. 1991, Lehmann et al. 1994, Hansen et al. 1995, Ruuls et al. 1995). 

Furthermore other studies have identified increased ROS production during EAE 

(MacMicking et al. 1992, Ruuls et al. 1995). Collectively this information provides 

evidence to substantiate the hypothesis that ROS are involved in EAE pathogenesis.

1.3.5 NO

A role for the highly toxic free radical molecule, NO, in the pathogenesis of EAE 

has been implicated (see section 1 .6 ).
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1.4 Nitric Oxide

Nitric oxide (NO) has been identified as the smallest biologically active molecule 

produced by mammalian cells. It is a gaseous free radical molecule which is soluble in 

water and has a tissue half life of 10 to 60 seconds. Due to the presence of an unpaired 

electron NO reacts readily with oxygen, superoxide and transition metals. Thus NO is 

capable of mediating a wide range of physiological and pathophysiological actions.

1.4.1 Synthesis of NO

NO is generated following a 5 electron oxidation of one of the terminal guanidino 

nitrogen atoms of L-arginine (Palmer et al. 1988a,b) through a process that incorporates 

molecular oxygen (Leone et al. 1991) and which is catalysed by the enzyme nitric oxide 

synthase (NOS) (Moncada et al. 1991). The process involves two successive 

monooxygenation reactions, with the initial yielding Nw-hydroxyl-L-arginine as an 

intermediate (Stuehr et al. 1991b) and the final reaction generating NO and L-citrulline 

(Stuehr & Griffith 1992) (Figure 1.2). Production of NO by NOS requires the presence of 

the co-substrates L-arginine, nicotinamide adenine dinucleotide phosphate (NADPH) and 

O2 as well as being dependent on the existence of a variety of enzyme co-factors. NOS 

contains 4 prosthetic groups which are involved in NO synthesis: flavin adenine 

dinucleotide (FAD) (Stuehr et al. 1991a), flavin adenine mononucleotide (FMN) (Stuehr 

et al. 1991a), iron protorphyrin IX (heme) (White & Marietta 1992) and 

tetrahydrobiopterin (BH4) (Tayeh & Marietta 1989, Kwon et al. 1989). FAD and FMN 

are involved in the transfer of electrons from NADPH to the catalytic centre (Bredt et al.

1991) whereas heme functions as a redox-active co-factor in NOS catalysis (Klatt et al. 

1992, McMillan et al. 1992). Finally BH4 is necessary for the monooxygenation steps 

performed by NOS (Stuehr & Griffith 1992).
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Figure 1.1 Proposed reaction mechanism for NO synthesis.
Molecular oxygen is incorporated into both NO and L-citrulline in at least two phases. 
The flavin cofactors FAD and FMN, and the cytochrome P450 domain of NOS may 
mediate electron transfer from 1.5 mol NADPH to molecular oxygen in one or both 
phases. Tetrahydrobiopterin (BH4) may also be involved in electron transfer and both 
flavins and BH4 may then recycle in an NADPH-dependent manner. In Phase 1, L- 
arginine is hydroxylated to OHArg which requires 1 mol of the electron donor NADPH. 
In Phase 2, the oxidation of OHArg to L-citrulline and NO requires an additional 0.5 mol 
NADPH and is dependent on BH4. (Modified from Schmidt et al. 1993).
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1.4.2 NOS

NOS activity has been demonstrated in many tissues and cells including 

endothelium (Furchgott & Vanhoutte 1987), cerebellum (Moncada 1992), macrophages 

(Nathan 1992) and neutrophils (Wright et al. 1989). The NOSs are P-450 like 

hemoproteins with a reductase domain at the COOH terminus and an oxidative domain at 

the amino terminus (Wang et al. 1993). Three isoforms of NOS have been identified, 

based on gene sequencing and cloning (Bredt et al. 1991, Janssens et al. 1992, Lyons et 

al. 1992, Michel & Lamas 1992, Sessa etal. 1992, Xie etal. 1992). The NOS isoforms 

vary considerably in their subcellular location, kinetics, regulation and functional role.

1.4.2.1 Constitutive NOS Isoforms

Two of the enzyme types are continuously present and are therefore termed 

constitutive NOS (cNOS). Activation of cNOS is calcium/calmodulin dependent and the 

resultant NO production is observed within seconds of administering a cell activation 

signal (Bredt & Snyder 1989, Forstermann et al. 1991). The NO formed by cNOS is 

usually in picomolar concentrations which are released over a short period of time (Kelm 

et al. 1988, Palmer et al. 1988b). This allows the molecule to function as a physiological 

messenger maintaining homeostasis (Moncada et al. 1991).

cNOS have been isolated from endothelial and neuronal cells. Brain NOS (bNOS) 

was first purified from rat and porcine cerebellum (Bredt & Snyder 1990, Mayer et al.

1990). bNOS is invariably a soluble, cytosolic enzyme which migrates with a molecular 

mass of 150-160 kDa on sodium dodecyl sulphate polyacrylamide gel electrophoresis 

(SDS-PAGE) (Schmidt et al. 1991). However, some particulate enzyme activity has been 

detected in the presence of added FAD (Hiki et al. 1992, Matsumoto et al. 1993). bNOS 

have been cloned from rat (Bredt et al. 1991) and human (Nakane et al. 1993) brain and 

the deduced amino acid sequences predict proteins of 160 and 161 kDa respectively. 

Furthermore, the bNOS enzyme appeared to be highly conserved between species with 93 

% homology between rat and humans. In addition to the presence of bNOS in the brain, 

the enzyme is also expressed in other tissues and cells including the spinal cord (Dun et al.
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1992), peripheral nerves (Sheng et al. 1992), epithelial cells (Schmidt et al. 1992) and 

pancreatic islet cells (Schmidt et al. 1992).

Endothelial NOS (eNOS) was initially purified from native and cultured bovine 

aortic endothelial cells and the enzyme has a molecular mass of 135 kDa on denaturing 

SDS-PAGE (Pollock et al. 1991). Unlike bNOS, eNOS is more than 90 % particulate 

(Forstermann et al. 1991) with myristylation at the N-terminal glycine as well as 

palmitylation contributing to the membrane association of the enzyme (Pollock et al.

1992, Sessa et al. 1993, Robinson et al. 1995). The cDNA’s encoding eNOS have been 

cloned from bovine (Sessa et al. 1992, Lamas et al. 1992) and human (Janssens et al.

1992, Marsden et al. 1992) endothelial cells. The deduced amino acid sequences predict 

proteins of 133 kDa molecular mass which is in good agreement with that determined by 

protein purification (Pollock et al. 1991). Amino acid sequences for bovine and human 

eNOS are 94 % identical with both enzymes having a consensus motif for N-terminal 

myristoylation (Lamas et al. 1992, Marsden et al. 1992). Although the presence of eNOS 

is relatively specific for endothelial cells it has also been detected in cells of the human 

placenta (Myatt et al. 1993) and kidney epithelial cells (Tracey et al. 1994).

I .4.2.2 Inducible NOS

The third isoform of NOS is not continuously present, instead its expression is 

induced by certain cytokines such as IL-1, TNF-a and IFN-y (Stuehr & Marietta 1985, 

Morris & Billiar 1994) and microbial products (Nussler & Billiar 1993). Therefore the 

enzyme is referred to as inducible NOS (iNOS). Although iNOS activation is not 

dependent on calcium following stimulation it takes minutes to hours before NO is 

generated (Stuehr & Marietta 1987). However, iNOS activity can persist over extended 

time periods resulting in the production of micromolar concentrations of NO. Due to the 

formation of high levels of NO, iNOS is thought to be responsible for some of the 

pathological consequences of inflammation (Moncada & Higgs 1993).

iNOS was first isolated from murine macrophages and the denatured enzyme 

possessed a mass of 125-135 kDa (Hevel et al. 1991, Stuehr et al. 1991). Although iNOS
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is predominantly soluble some particulate enzyme activity has been identified in induced 

murine macrophages (Schmidt et al. 1992). Several groups have cloned cDNA’s for 

iNOS from a variety of cells (Lyons et al. 1992, Xie et al. 1992, Adachi et al. 1993, 

Charles ef al. 1993, Geller etal. 1993 a, Nunokawa et al. 1993, Sherman etal. 1993b, 

Wood et al. 1993) and the deduced amino acid sequence predicts proteins of 130-131 

kDa. Moreover, different iNOS sequences have been demonstrated in various cells from 

the same species (Nunokawa et al. 1993, Wood et al. 1993) but, cDNA sequences were 

98 % identical.

1.4.3 Regulation of NOS

1.4.3.1 cNOS

Activity of cNOS is regulated through calcium/calmodulin dependent processes. 

cNOS is activated by elevations in intracellular free calcium (Ca2+) concentrations. 

Following receptor stimulation Ca2+ influx occurs which results in activation of kinases 

which subsequently phosphorylate and activate cNOS (Brune & Lapetina 1991, Michel et 

al. 1993, Tsukahara et al. 1993). In addition, expressional regulation of both b and eNOS 

has been identified following brain injury (Herdegen et al. 1993, Zhang et al. 1994) and 

sheer stress exposure (Nishida et al. 1992) respectively. Although the molecular 

mechanisms of this regulation are unclear it is thought that sheer stress responsive 

elements exist in the promotrr region of the eNOS enzyme gene (Marsden et al. 1993)

1.4.3.2 iNOS

In contrast to cNOS isoforms, iNOS activity is regulated on a transcriptional level 

(Kunz et al. 1994). The first agents that were found to induce iNOS expression were LPS 

and cytokines such as IL-1, IFN-y and TNF-a (Nathan 1992). However the cytokines, 

alone or in combination, that produce iNOS expression vary between species and cell 

types (Pfeilschifter et al. 1996). In addition agents other than cytokines are capable of 

inducing iNOS including cAMP-elevating agents (Gilbert & Herschmann 1993) and 

protein kinase C stimulating compounds (Hortelano et al. 1993). There are also a variety
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of compounds that prevent iNOS induction such as the inhibitory cytokines IL-4 and IL- 

1 0  (Cunha etal. 1992, Bogdan etal. 1994), monocyte chemotactic protein-1 (MCP-1) 

(Rojas et al. 1993) and TGF-J3 (Vodovotz et al. 1993). Furthermore tyrosine kinase 

inhibitors (Dong et al. 1993) and inhibitors of the activation of the transcription factor 

NF-kP (Sherman et al. 1993a, Miilsch et al. 1993) prevent iNOS induction. This 

indicates that both tyrosine kinases and NF-Kp are involved in the induction of iNOS.

It is possible to interfere with iNOS expression at several levels from modulation 

of gene expression to effects on post-transcriptional, translational and post-translational 

processes. Regulation of iNOS expression at the level of gene transcription is thought to 

proceed via effects on the promoter region of the iNOS gene (Xie & Nathan 1994). 

Indeed two regions have been identified as being involved in the induction of iNOS by 

LPS and IFN-y (Lowenstein et al. 1993b, Xie etal. 1993). Moreover, other evidence 

exists to suggest that transcription factors bind to the iNOS promoter at the NF-Kp site 

during enzyme induction (Xie & Nathan 1994).

Post-transcriptional and translational control of iNOS has been demonstrated to 

occur through actions on mRNA stability (Weisz et al. 1994). Whereas IFN-y has been 

implicated as inducing iNOS by increasing the stability of iNOS mRNA, TGF-p 

destabilises iNOS mRNA and so decreases translation (Vodovotz et al. 1993). Post- 

translational regulation of iNOS may proceed through effects on substrate and cofactor 

availability, protein turnover and product inhibition.

As L-arginine is the only substrate for NO synthesis, regulation of its availability 

could determine cellular rates of NO synthesis. Indeed L-arginine uptake has been shown 

to increase in macrophages stimulated to produce iNOS (Bogle et al. 1992a, Sato et al. 

1992). Additionally iNOS activity has been shown to be dependent on cofactor 

availability. More precisely, both BH4 and NADPH have been demonstrated as regulating 

iNOS activity (Gross & Levi 1992, Morris & Billiar 1994). iNOS may also be regulated 

via degradation or inactivation of the functional enzyme (Nathan & Xie 1994). Finally, 

NO itself has been observed to interfere with the induction of iNOS (Assreuy et al. 1993, 

Griscavage et al. 1993). Although the mechanism is not clear it is thought that
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NO may bind to and so inactivate the haem moiety of iNOS (Bastian & Hibbs 1994). 

Moreover, NO may control iNOS gene expression and thus regulate its own synthesis.

1.4.4 Molecular Targets of NO

Analysis of molecular targets of NO has enabled the elucidation of some of the 

mechanisms of action of NO in homeostasis and host defence. NO’s known targets are 

diverse and include both low molecular weight species as well as macromolecules which 

can either be activated or inhibited as a consequence of the reaction.

1.4.4.1 Haem Proteins

At low concentrations, NO reacts with Fe2+-haemoproteins to elicit many 

biological actions. For example guanylyl cyclase and cyclooxygenase interaction with NO 

leads to enzyme activation (Ignarro et al. 1982, Salvemini et al. 1993). In contrast, NO 

has been observed to inhibit other haemoproteins such as cytochrome p450 (Wink et al. 

1993b, Kharitonov etal. 1994), thromboxane synthetase, catalase and peroxidase (Gross 

1995) which are involved in the synthesis of biological mediators and redox-based cell 

signalling events. Additionally the interaction of NO with haemoglobin and myoglobin 

decreases the bioavailability of the active molecule (Furchgott & Vanhoutte 1989).

1.4.4.2 Enzymes

Endogenously produced NO is a potent inhibitor of mitochondrial respiration and 

energy metabolism (Stuehr & Nathan 1989, Hibbs et al. 1990). Moreover the ability of 

NO to interact with iron sulphur clusters in complex I and II of the mitochondrial 

respiratory chain and the citric acid cycle enzyme, aconitase, has been linked to the 

cytostatic/cytotoxic properties of the molecule (Drapier & Hibbs 1988, Stadler et al.

1991).

The important glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase is 

also a target for NO. Inhibition of this enzyme suppresses ATP generation (Molina et al.

1992). Indeed the combined inactivation of glycolysis and aerobic mitochondrial
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respiration would prevent intracellular ATP synthesis and thus facilitate cell death.

Energy depletion and cell death may also be mediated by NO through activation of poly- 

ADP ribosyl transferase (Zhang et al. 1994a).

1.4.4.3 DNA

NO has been shown to inhibit DNA synthesis. This may be due, in part, to NO- 

induced inhibition of ribonucleotide reductase (Kwon et al. 1991, Lepoivre et al. 1991), 

the rate limiting enzyme of DNA biosynthesis (Elledge et al. 1992). Moreover, 

exogenous NO and NO-generating compounds, when applied at high concentrations, may 

cause mutagenicity by deamination of DNA (Wink et al. 1991). However, this has yet to 

be demonstrated for endogenous NO.

1.4.4.4 Thiols

Interactions of NO with sulphydryls have been extensively examined (Ignarro

1990). Under aerobic conditions, free thiols react with NO forming S-nitrosothiol 

compounds (Myers et al. 1990b, Clancy & Abramson 1992). These S-nitrosothiol 

compounds provide the means for storage of bioaccessible NO (Stamler et al. 1992). S- 

nitrosylation has been shown to alter protein activity and it is thought that nitrosation of 

protein thiols may be fundamental to signal transduction processes (Stamler et al. 1992a). 

Candidate molecules for regulation by thiol-nitrosation include receptor proteins (Lei et 

al. 1992), ion channel proteins (Bolotina et al. 1994), G proteins (Lander et al. 1993b), 

protein kinases (Gopalakrishna et al. 1993), transcription activating factors (Peunova & 

Enikolopov 1993) and proteases (Devi etal. 1994). Additionally, S-nitrosothiols may 

limit the generation of toxic free radicals and protect from NO toxicity due to their ability 

to react with superoxide anions and other ROS (Stamler et al. 1992a).
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1.4.4.5 Superoxide Anion

Superoxide may be another important target of biologically derived NO. NO 

reacts readily with superoxide and initially this reaction was thought to represent a 

detoxification pathway for both molecules (Gryglewski et al. 1986). However, the 

product of this interaction is peroxynitrite which is highly reactive and capable of causing 

direct and indirect oxidation of biological molecules (Beckman etal. 1990, Beckman & 

Tsai 1994). Therefore, depending on the circumstances, the interaction of NO and 

superoxide may be cytoprotective or cytotoxic (Darley-Usmar et al. 1995).

1.4.5 Physiological Effects of NO

1.4.5.1 Cardiovascular Sysytem

NO is produced by the vascular endothelium under basal conditions, and 

formation of the molecule can be further stimulated by a variety of receptor agonists as 

well as sheer stress produced by the circulating blood. Basal NO regulates arterial blood 

flow and pressure by mediating the vasodilator tone (Rees et al. 1989). Moreover, 

vasodilatory agents such as acetylcholine and bradykinin act on endothelial cell surface 

receptors to trigger NO release and stimulate soluble guanylyl cyclase resulting in smooth 

muscle relaxation (Rapoport & Murad 1983, Rapoport et al. 1983).

The importance of endothelial NO in vascular homeostasis is not limited to its role 

as a vasodilator. Initially the effects of vascular NO were described as inhibition of 

smooth muscle contraction (Moncada et al. 1991) and prevention of platelet adhesion and 

aggregation (Mellion etal. 1981, Radomski etal. 1987). However, additional effects 

such as inhibition of leukocyte adhesion (Kubes et al. 1991), endothelin generation 

(Boulanger & Liischer 1990) and smooth muscle cell proliferation (Nakaki et al. 1990) 

are now apparent. Moreover, NO may play a role in controlling heart function. When 

generated by the coronary vasculature, NO increases coronary blood flow and hence 

myocardial blood supply (Amezcoua et al. 1989). In addition, evidence exists to suggest
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that endocardial and myocardial produced NO exerts a negative inotropic effect on heart 

contractility (Balligand et al. 1993, de Beider et al. 1993).

1.4.5.2 Respiratory System

Although NO is present in the exhaled air of humans and other mammals 

(Gustafsson et al. 1991) the cellular origin is uncertain. The vasodilator action of NO 

appears to participate in regulating ventilation-perfiision matching (Persson et al. 1990). 

Moreover, NO may also modulate the contractility of the bronchial tree (Ward et al.

1993). Indeed it has been suggested that NO is a neurotransmitter involved in 

bronchodilation in human airways (Belvisi et al. 1992). Similarly NO or an NO-like 

product is thought to play a role in nonadrenergic noncholinergic (NANC)-mediated 

tracheal smooth muscle relaxation in a number of different species (Gatson et al. 1992, 

Janson et al. 1992).

1.4.5.3 Renal System

In the renal vasculature, the basal tone of the glomerular and medullary 

microcirculation appears to be regulated by NO (Brezis et al. 1991, Zats & de Nucci

1991). Furthermore, the generation of NO in macula densa cells may mediate a 

vasodilatory component of the tubuloglomerular feedback response and control body fluid 

homeostasis (Wilcox et al. 1992).

1.4.5.4 Gastrointestinal System

NO has been proposed as the mediator of NANC relaxation of nonvascular 

smooth muscle in the alimentary tract (Bult et al. 1990). Therefore, the physiological 

regulation of peristalsis and intestinal transit may be dependent on NO generation 

(Calignano et al. 1992, Wilklund et al. 1993). Additionally, NO may exert cytoprotective 

effects in the gut against blood-borne toxins and tissue-destructive mediators (Hutcheson 

etal. 1990).
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1.4.5.5 Central and Peripheral Nervous System

In the CNS, NO is generated in response to stimulation of the N-methyl-D- 

aspartate (NMD A) subtype of glutamate receptor (Garthwaite et al. 1988, Knowles et al.

1989). NO formation occurs throughout the CNS (Dawson et al. 1992) and NO has been 

implicated in the regulation of cerebral blood flow (Faraci & Breese 1993) and synaptic 

plasticity including long-term potentiation (Shuman & Madison 1991), long-term 

depression (Shibuki & Okada 1991), hyperalgesia (Moore et al. 1991) and the 

development of morphine tolerance (Kolenshikav et al. 1992).

In the peripheral nervous system, NO has been proposed as a mediator of sensory 

transmission (Duarte et al. 1990). Moreover, NO has been postulated as a 

neurotransmitter for peripheral neurons in the oesophagus, stomach, duodenum, 

ileocolonic junction and penile corpus cavemosum (Garthwaite 1991).

1.4.5.6 Neuroendocrine and Endocrine System

Indirect evidence indicates that NO participates in neuroendocrine function. 

Indeed, NOS has been detected in the hypothalamus, posterior lobe of the pituitary gland 

and in the adrenal gland (Palacios et al. 1989, Bredt et al. 1990, Dawson et al. 1992). 

Additionally, interleukin-2 has been shown to stimulate the release of corticotrophin- 

releasing factor via a NO-dependent mechanism (Karanth et al. 1993). Therefore, NO 

may regulate hormone release. Moreover, in the presence of D-glucose, pancreatic p cell 

derived NO stimulates insulin release (Schmidt et al. 1992a,b) implicating a role for the 

molecule in endocrine stimulus-secretion coupling.
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1.5 NO in Immunity and Inflammation

1.5.1 Pro-inflammatory Properties of NO

1.5.1.1 Host Defence and Cytotoxicity

NO is widely utilised in the immune system as a cytotoxic or cytostatic agent. 

Production of NO by activated macrophages contributes to their cytotoxicity against 

tumour cells, bacteria, viruses, parasitic fungi, protozoans and helminths (Adams et al. 

1990, Liew et al. 1990, Nathan & Hibbs 1991, Karupiah et al. 1993). Interestingly this 

cytotoxic effect of NO provides non-specific immunity against invading organisms and the 

killing of tumour cells (Drapier & Hibbs 1986, Hibbs et al. 1988).

The biochemical basis for NO-induced cytotoxicity or cytostasis may be due to an 

ability to react with and inhibit iron-containing enzymes of the respiratory chain and DNA 

synthesis (Hibbs et al. 1984, Stadler et al. 1991). In addition, NO reacts with and 

depletes intracellular glutathione, thus increasing susceptibility to oxidant stress (Clancy et 

al. 1994). Furthermore, NO may interact with other free radicals to generate molecules 

such as peroxynitrite to enhance cytotoxicity (Stamler et al. 1992b).

1.5.1.2 Inflammation and Tissue Injury

Increasing evidence indicates that NO may play a part in acute and chronic 

inflammation or autoimmune tissue injury (Figure 1.3). Indeed NO production is 

enhanced in inflammatory disorders such as rheumatoid arthritis (Farrel et al. 1992), 

ulcerative colitis (Middleton et al. 1993) and diabetes (Corbett et al. 1993b). Moreover, 

treatment with NOS inhibitors prevents the development of certain immune-mediated 

conditions including arthritis (McCartney-Francis etal. 1993), diabetes (Kolb etal. 1991), 

glomerulonephritis (Weinberg et al. 1994) and chronic ileitis (Miller et al. 1993). NO 

may contribute to tissue damage through cytostatic or cytotoxic effects on the cells that 

produce it or neighbouring cells (Moncada 1992).
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Figure 1.3 Summary of the role of NO in inflammation and immunity (Modified from Maeda et al. 1994)



It has been suggested that NO is involved in both the vascular and cellular 

processes of inflammation. NO modulates the early vascular responses of acute 

inflammatory reactions as well as mediating the vasodilatation and oedema formation 

associated with inflammatory processes (Ialenti et al. 1992, Laszlo et al. 1994). 

Additionally, NO synthesised by activated immunocompetent cells may regulate the 

functions of other cells such as neutrophils (Pieper et al. 1994), lymphocytes (Albina et al.

1991) and peripheral blood mononuclear cells (Lander et al. 1993a), which are involved in 

the inflammatory response. Furthermore, NO may function as a mediator of pro- 

inflammatory cytokine dependent processes (Clancy & Abramson 1995, Moilanen & 

Vapaatalo 1995).

1.5.2 Anti-Inflammatory Properties of NO

In addition to pro-inflammatory effects, NO production may serve a protective or 

anti-inflammatory function. The continuous release of NO is important in maintaining 

vascular endothelial integrity under physiological and pathological conditions. NO 

modulates tissue blood flow and regulates interactions between the vascular endothelium 

and circulating inflammatory cells. The anti-inflammatory effects of NO may be mediated 

via an inhibition of neutrophil adhesion to the endothelium (Kubes et al. 1991), a process 

required for the development of an acute inflammatory response. Moreover, NO may 

serve a defensive function by preventing superoxide formation by activated neutrophils 

(Clancy et al. 1992). Similarly NO may also exert an anti-inflammatory effect through 

the suppression of T-lymphocyte proliferation (Albina et al. 1991).
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1.6 NO in EAE

In the CNS basal levels of NO are generated by cNOS enzymes present in 

endothelial cells (Tomimoto etal. 1994), neurons (Garthwaite 1991) and astrocytes 

(Murphy et al. 1993). However, endothelial cells, neurons, astrocytes and glial cells are 

also capable of producing large amounts of NO upon cytokine-mediated induction of 

iNOS (Boje & Arora 1992, Galea et al. 1992, Simmons & Murphy 1992, Minc-Golomb & 

Schwartz 1994). Following the CNS infiltration of immunocompetent cells during EAE 

and the initiation of a local inflammatory response, the potential for NO formation must be 

considerable. Therefore, it is possible that iNOS induction and NO production may be 

involved in the aetiology of EAE. Indeed Koprowski et al. (1993) demonstrated the 

expression of iNOS mRNA in CNS tissues during EAE. Moreover, MacMicking and co

workers (1992) identified an elevated secretion of reactive nitrogen intermediates in cells 

isolated from the CNS of EAE-diseased animals. Similarly, increased nitrite levels have 

been observed in serum samples from EAE-sensitised rats (Ludowyck et al. 1993). 

Furthermore, NO has been localised in spinal cords of mice with EAE (Lin et al. 1993).

In addition to direct evidence implicating a role for NO in EAE pathogenesis other studies 

have suggested that both oligodendrocytes and neuronal cytotoxicity are mediated via the 

production of NO (Demerle-Pallardy et al. 1993, Merril et al. 1993). Therefore further 

work was undertaken to define the precise role of NO in the pathogenic mechanisms of 

EAE.
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1.7 Aims

The following investigation aims to further define the role of NO in EAE 

pathogenesis. Using an actively-induced model of EAE in the Lewis rat the importance of 

NO in disease initiation and development was assessed. In order to accomplish this the 

following objectives had to be met:

• to devise an efficient method for measuring NO production in CNS tissues to 

determine differences between samples from normal and EAE-diseased rats.

• pharmacologically manipulate CNS levels of NO to monitor the effect on disease 

development.

• utilise specific NOS inhibitor to ascertain which isoform/s of NOS may be important in 

EAE aetiology.

• assess possible interactions occuring between ROS and NO during EAE by measuring 

CNS levels of superoxide and hydrogen peroxide in the presence or absence of drug 

administration.
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CHAPTER 2 

METHODS
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2.1 EAE

2.1.1 Animals

Male Lewis rats obtained from the University of Bath Animal House, original 

breeding colony from Bantin and Kingman (Hull), were used in all experiments. The rats 

were housed with no more than 6  rats per cage (weight range 200 - 300 g), in temperature 

controlled rooms ( 2 2  ± 2 °C) on a 12 hour light/dark cycle (light period: 6  am - 6  pm) and 

maintined on Labsure CRM rat diet (containing 0.95 % arginine) and tap water ad 

libitum. Animals were randomly grouped and transferred to the experimental room prior 

to the beginning of an experiment. A minimum of 6  rats were used per experimental 

group. All procedures were carried out in accordance with the Animal (Scientific 

Procedures) Act 1986.

2.1.2. Induction of EAE

EAE was induced using an inoculum composed of 50 mg of guinea-pig spinal 

cord, 500 pi Freund's incomplete adjuvant and 500 pi sterile, filtered 0.001 M phosphate 

buffered saline (PBS) pH 7.2, supplemented with 10 mg/ml heat killed Mycobacterium 

tuberculosis H3 7 RA. The inoculum was prepared by chopping the guinea-pig spinal cord 

in PBS with scissors and briefly homogenising the mixture by repeated trituration with a 1 

ml syringe. Following the addition ofM  tuberculosis and Freund's incomplete adjuvant, 

the mixture was vigorously shaken and then emulsified by repeated passage between two 

20 ml syringes connected by a short length of rubber tubing. The process was continued 

until the inoculum reached a thick consistency and did not disperse when a drop was 

floated on a beaker of water. For the induction of EAE, rats weighing 200-250 g received 

0 . 1  ml of the inoculum in each hind foot pad.

In some experiments control animals were injected with an inoculum in which 

sterile PBS was substituted for guinea-pig spinal cord. Thus the inoculum contained an 

emulsion of 500 pi Freund's incomplete adjuvant and 1ml sterile PBS plus 10 mg/ml M  

tuberculosis. These were referred to as complete Freund’s adjuvant (CFA) control rats.
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2.1.3. Assessment of EAE

Following inoculation animals were weighed daily and examined for neurological 

signs of EAE from day 7 post-inoculation (PI). The severity of the disease was assessed 

and graded by assigning a numerical score from 0-4 using the following criteria.

0 Animals with no signs of disease.

1 Flaccid tail was characterised by a drooping and immobile tail 

upon raising the rat briefly by the base of the tail.

2 Hind limb hypotonia was indicated by an ataxic gait and weak support of 

hind limbs.

3 Rats with only one leg completely paralysed, or both legs moving but 

neither functional were categorised as having partial hind limb paralysis.

4 Animals displaying complete hind limb paralysis.

2.2. Administration of Drugs

All drug administration was carried out by the University of Bath Animal House 

staff. A summary of drug administration is given in Table 2.1. Control animals received 

the appropriate vehicle using the applicable dosing regime.

2.2.1 Dexamethasone (DexI

EAE-inoculated animals were injected subcutaneously (s.c.) with dexamethasone 

sodium phosphate, diluted in sterile PBS, at a dose of 1 mg/kg body weight. The rats 

were dosed twice daily for 2  days from the onset of disease related weight loss.

2.2.2 Cyclosporin A (CsAI

CsA was suspended in extra virgin olive oil and administered orally at a dose of 50 

mg/kg body weight to rats inoculated for EAE. Dosing was commenced on the day of 

disease related weight loss for 2  days.
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2.2.3. N^-nitro-L-areinine Methyl Ester (L-NAME)

L-NAME was dissolved in sterile PBS and administered intraperitoneally (i.p.) to 

EAE-inoculated rats at a dose of 30 mg/kg body weight. Dosing was carried out for 6  

days commencing on day 7 P.I.

2.2.4. 7-Nitroindazole (7-NT)

EAE-sensitised animals were dosed i.p. with 7-NI at 10 mg/kg body weight 

suspended in peanut oil. The rats were dosed once daily from day 7 to 12 P.I inclusive.

2.2.5. Aminoguanidine (AG)

The selective iNOS inhibitor, AG, was prepared in sterile PBS and administered 

s.c. to EAE-sensitised animals at a dose of 200 mg/kg or 400 mg/kg body weight.

Animals were injected once daily from day 1 to 12 P.I.

2.2.6. MK-801

The non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 

was suspended in sterile PBS. EAE-inoculated rats were dosed once daily i.p. on days 7- 

12 P.I. inclusive with 0.3 mg/kg body weight MK-801.

2.2.7. L-arginine

EAE-inoculated rats were orally dosed with 300 mg/kg body weight L-arginine 

dissolved in sterile PBS. Animals were dosed once daily from day 1 to day 12 P.I. In 

addition, normal animals received either L-arginine or vehicle according to the same 

schedule.
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Table 2.1 Summary of drug administration protocols

Drug Dose Route of Vehicle Treatment Period

(mg/kg body weight) Administration (Days P.I.)

Dex

CsA

L-NAME 

7-NI 

AG 

MK-801 

L-Arginine

50

30 

10 

200, 400 

0.3 

300

s.c.

oral

i.p.

i.p.

s.c.

i.p.

oral

PBS

Extra virgin olive oil

PBS 

Peanut oil 

PBS 

PBS 

PBS

From weight loss 
for 2  days

From weight loss 
for 2  days

7 -12

7 -12

1 -  12

7 -12

1 -  12



2.3 Preparation of Samples

All blood and CNS samples were collected the day after the last drug dose.

2.3.1 Sera

Anaesthesia and the collection of blood samples was carried out by the University 

Animal House technicians. Samples were collected in the morning when plasma 

corticosterone levels are at their lowest to limit fluctuations in corticosterone caused by 

circadian variation (D’Agostino et al. 1982). The animals were anaesthetised with a 

mixture of halothane/C>2 and 5 ml of blood was collected by cardiac puncture. The rats 

were then asphyxiated with CO2 .

Blood samples were allowed to clot at 4 °C. Serum was collected following a 10 

min centrifugation at 370 g. The sera were then clarified by a further centrifugation at 400 

g for 5 min and the supernatants stored at - 2 0  °C.

2.3.2 CNS Cvtosol

Animals were killed by CO2  inhalation subsequent to cardiac bleeding under 

halothane/ 0 2  anaesthesia. The skin was cut away from the skull of each rat and the 

cranium and spinal column removed to expose the brain and spinal cord. The cerebellum, 

medulla-pons and cervical spinal cord were removed and cytosolic fractions prepared 

using the method of Fostermann et al. (1990) with minor modifications. Each CNS 

component was homogenised using a Tri-R Stir-R in 2.5 ml of 0.5 M 

Tris(hydroxymethyl)aminomethane (Tris) buffer (pH 7.8) containing 1 mM 

ethylenediaminetetraacetic acid (EDTA), 1 mM dithiothreitol and 0.32 M sucrose. 

Cytosolic fractions were obtained by centrifugation of homogenates at 100,000 g for 1 hr 

using a Beckman L8 -M ultracentrifuge. Contaminating haemoglobin was removed by 

incubating the samples, 5 % (v/v), with 10 % (w/v) cellulose phosphate (Tris buffer) for 

30 min at 4 0 C followed by centrifugation at 1000 g for 1 0  min. Supernatants were 

transferred to eppendorf tubes and further centrifuged at 1500 g for 2 min. Resulting
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supernatants were immediately assayed for nitrite, protein, superoxide and hydrogen 

peroxide.

2.4 Nitrite Detection

Nitrite, one of the stable end products of NO metabolism, was measured in rat 

CNS cytosol using an assay developed from that previously described by Green et al. 

(1982). Aliquots of 150 pi CNS cytosol, standards or blank were added, in triplicate, to 

a 96 well microtitre plate. Nitrite standards were prepared by dissolving sodium nitrite to 

200 pM in sample buffer and then serially diluting to produce 500 pi of standards ranging 

from 0.3 to 200 pM. An equal volume of Griess reagent consisting of 1 part 1 % (w/v) 

sulphanilamide in 5 % (v/v) concentrated phosphoric acid, and 1 part 0.1% (w/v) N- 

napthylethylenediamine dihydrochloride was added to each well. Following a 10 min 

incubation at room temperature absorbance was read at 550 nm using a MR5000 

platereader (Dynatech). The nitrite content of each sample was determined from a 

standard curve obtained by plotting nitrite concentration of standards against absorbance. 

A typical standard curve prepared in Tris buffer is shown in Figure 2.1. Detection range 

of the Griess reaction is 1 to 200 pM.

2.5 Protein Assay

Samples were assayed for protein using the method of Lowry et al. (1951). 

Protein standards were prepared by dissolving BSA at 5 mg/ml in sample buffer and 

diluting to provide 500 pi of standard ranging in concentration from 0.0625 to 5 mg/ml. 

Protein reagent was freshly prepared and consisted of 2 % (w/v) sodium carbonate in
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Figure 2.1 Nitrite Standard Curve
A typical curve obtained for the Griess assay.
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0.1 M sodium hydroxide, 1 % (w/v) copper sulphate and 2 % (w/v) sodium tartrate in the 

ratio 100:1:1. Forty microlitre aliquots of sample, standard or blank (appropriate sample 

buffer) were added, in duplicate, to a 96 well microtitre plate (NUNC) and 200 

fil of protein reagent added. After a 10 min incubation at room temperature 10 pi of 

Folin’s Ciocaulteau reagent, diluted 1 : 1  in distilled water immediately prior to use, was 

added to each well. Absorbance was measured at 595 nm using a MR500 platereader 

(Dynatech) following a 30 min incubation period. The protein concentration of each 

sample was calculated from a standard curve obtained by plotting protein concentration of 

standards against absorbance. A typical standard curve for standards prepared in Tris 

buffer is shown in Figure 2.2.

2.6 Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) and 

Immunoblotting

The techniques of SDS-PAGE and immunoblotting were undertaken using 

methods previously established in our laboratory.

2.6.1 Preparation Of Samples And Standards

2 .6.1.1 Rat CNS Cytosol Samples

CNS cytosol samples which had been stored at -20 °C were thawed, pooled and 

their protein content determined as described in section 2.4. Each preparation was then 

diluted to 0.6 mg/ml or 0.3 mg/ml with Tris buffer for cerebellum samples or medulla- 

pons and cervical spinal cord samples respectively.
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Figure 1.2 Protein Standard Curve
A typical curve for the Lowry protein assay with BSA standards
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2.6.1.2 Standards

Rat pituitary tumour cell lysate was used as a positive control for anti-bNOS 

antibody. The positive control for eNOS antibody comprised of human aortic endothelial 

cell lysate. Lysate prepared from mouse macrophage cell lines stimulated 

for 12 hours with EFN-y (10 ng/ml) and LPS (1 pg/ml) was utilised as a positive control 

for the presence of iNOS.

All positive control lysates were provided at a concentration of 0.4 mg protein/ml 

in SDS-PAGE buffer (62 mM Tris pH 6 .8 , 2 % (w/v) SDS, 1 % (v/v) P-mercaptoethanol, 

0.003 % (w/v) bromophenol blue, 5 % (v/v) glycerol and 1 mM sodium vanadate). 

Aliquots of control lysates were stored at -20°C.

In each case following the treatment described above the samples or standards 

were mixed in the ratio 2:1 with reducing sample buffer comprising 0.1 M Tris, 0.1 M 

N,N-bis(2-hydroxyethyl) glycine (BICINE), 2 % (w/v) sodium dodecyl sulphate (SDS), 5 

% (v/v) 2-mercaptoethanol, 10 % (w/v) sucrose and 0.05 % (w/v) bromophenol blue. 

Samples were heated at 100 °C on a hot block for 5 min and stored at -20°C prior to 

SDS-PAGE.

2.6.1.3 Molecular Mass Markers

Pre-stained molecular mass markers for immunoblotting (range 4 to 250 kDa) 

were heated at 100 °C on a hot block for 3 min and stored at 4 °C prior to SDS-PAGE.

2.6.2 SDS-PAGE

SDS-PAGE was performed essentially as described by Laemmli (1970) using a 

“Mighty Small II” vertical slab gel system (Hoefer Scientific Instruments) according to the 

manufacturers instructions.

7.5 % acrylamide resolving gels (82 x 60 x 1.5 mm) were prepared from stock 

solutions of 30 % (w/v) acrylamide/0.8 % (w/v) NN’-methylenebisacrylamide and 1 M
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Tris/BICINE. Gels were polymerised chemically by the addition of freshly prepared 10 

% (w/v) ammonium persulphate and NNN’N’-tetramethylethylene diamine (TEMED). 

Final concentrations in the gel were: 7.5 % (w/v) acrylamide, 0.2 % (w/v) NN’- 

methylenebisacrylamide, 0.1 M Tris, 0.1 M BICINE, 0.1 % (w/v) SDS, 0.05 % (w/v) 

ammonium persulphate and 0.05 % TEMED. Immediately after pouring ,0.3 ml of 70 % 

(v/v) ethanol was gently layered onto the surface of each gel. When set the gels were 

rinsed with distilled water, placed in a sealed polythene bag with some moist filter paper 

and stored at 4 °C for no longer than one week.

Electrode buffer composed of 0.1 M Tris/BICINE and 0.1% (w/v) SDS was also 

prepared from stock solutions. Stacking gels containing 7.5 % (w/v) acrylamide were 

prepared prior to use by mixing acrylamide/NN’-methylenebisacryalmide stock solution, 

distilled water and electrode buffer in the ratio 1:1:2. Stacking gels were also polymerised 

with ammonium persulphate and TEMED as before. The final concentrations in the 

stacking gels were: 7.5 % (w/v) acrylamide, 0.2 % (w/v) NN’-methylenebisacrylamide, 

0.05 M TRIS, 0.05 M BICINE, 0.05 % (w/v) SDS, 0.07 % (w/v) ammonium persulphate 

and 0.07 % TEMED. Sample wells were formed in the stacking gel by inserting a comb 

device above the resolving gel. Stacking gel was poured and once set the chamber was 

filled with electrophoresis buffer. Wells were loaded with 5 - 20 pi of prepared samples 

or standards using a 25 pi Hamilton syringe.

The gels were run at a constant current of 15 mA/gel until the samples had passed 

through the stacking gel (approximately 2 0  min) and then at 35 mA/gel until the 

bromophenol blue dye front reached the bottom of the gel (approximately 2  hr).

2.6.3 Staining Gels For The Presence Of Protein

Gels were stained for total protein using Coomassie Brilliant Blue. Following a 2 

hour incubation with an aqueous solution comprising 0.25 % (w/v) Coomassie Brilliant 

Blue, 45 % (v/v) methanol and 10 % (v/v) acetic acid, protein was visualised by destaining 

the background with several changes of a solution containing 20 % (v/v) ethanol and 7.5 

% (v/v) acetic acid.
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2.6.4 Immunoblotting

Electrophoretic transfer of proteins from unstained gels to polyvinylidene 

difluoride (PVDF) membrane was performed essentially by the method of Towbin et al. 

(1979) using a “MINI PROTEAN IIm ” electrophoretic transfer system (Biorad) 

according to the manufacturers instructions. The electrode buffer was prepared from a 

stock solution of 0.25 M Tris and 1.92 M glycine and the final solution contained 25 mM 

Tris, 192 mM glycine and 20 % (v/v) methanol.

Prior to electrophoretic transfer the PVDF membrane was pre-wet in 95 % (v/v) 

ethanol for 1 min and washed in distilled water for 2-3 min. Finally the membrane was 

equilibrated in transfer buffer. Proteins were transferred to pre-wet PVDF membranes at 

a constant voltage of 250 volts for 1 hr.

For the detection of NOS following protein transfer membranes were subjected to 

the following procedures.

1) Incubated with 5 % (w/v) milk powder for 1 hr to block non-specific 

protein binding sites.

2) Washed for 2 x 15 min.

3) Probed overnight at 4 °C with primary anti-NOS antibody. See Table

2 .2 .

4) Washed 2x15 min.

5) Incubated for 1 hr with a 1:1000 dilution of goat anti-mouse IgG.

6 ) Washed 2x15 min.

7) Incubated with 1:1500 dilution of mouse PAP for 1 hour.

8 ) Washed 1x15 min.

9) Washed 1x15 min in PBS

10) Incubated in 0.05 % (w/v) DAB plus 0.02 % (v/v) hydrogen peroxide in 

PBS until colour developed (approximately 5 to 10 min)

11) Washed 2 x 5  min in distilled water.
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Table 2.2 Primary antibodies used for immunoblotting

Antibody Type Raised Against Species Specificity Cross Reactivity

Anti-eNOS Mouse Human endothelial Human, mouse

monoclonal cell NOS and rat

Anti-bNOS Mouse Human bNOS Human, mouse iNOS

monoclonal and rat

Anti-iNOS Mouse Mouse Human, mouse

monoclonal macrophage NOS and rat

Dilution

1:5000

1:5000

1:5000



All incubations and washes were carried out at room temperature in PBS 

containing 0.1 % (v/v) Tween 20 (PBS-Tween) unless otherwise stated. The incubation 

volume was always 20 ml except for steps using antibodies where it was reduced to 5 ml 

to conserve reagents.

2.6.5 Comparison Of Immunoblotting Detection Methods

Due to the very low protein concentration of some samples used for 

immunoblotting various methods were used to enhance band intensity. Several gels were 

loaded with a range of cervical spinal cord cytosol samples. Immunoblotting was initially 

performed as described above in section 2.6.4. However, following incubation with the 

primary antibody detection was carried out using one or a combination of the 

following methods: peroxidase-anti-peroxidase, nickel and cobalt enhancement and 

enhanced chemiluminescence (ECL).

2.6.5.1 Peroxidase Anti-Peroxidase Complex

Blots were incubated at room temperature for 1 hour with goat anti-mouse IgG 

diluted 1: 1000 with PBS-Tween. Subsequently membranes were washed 2x15  min in 

PBS-Tween prior to a 1 hr incubation with a 1:1500 dilution of mouse peroxidase-anti- 

peroxidase complex. The membrane was again washed in PBS-Tween for 15 min with a 

further 15 min wash in PBS alone. After this blots were incubated with 0.05 % (w/v) 

filtered DAB plus 0.02 % (v/v) hydrogen peroxide in PBS until colour developed. Once 

colour was visible the membranes were rinsed in distilled water for 5 min before being 

allowed to air dry.

2.6.5.2 Nickel And Cobalt Enhancement

Blots were probed using the techniques described in section 2.6.5.1 followed by 

incubation with the PAP complex and rinsing in PBS-Tween and PBS, immunoreactive 

bands were visualised by the following method. A 0.05 % (w/v) solution of DAB was 

prepared in PBS. An aqueous solution of 1 % (w/v) cobalt chloride and 1 % (w/v)
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ammonium nickel sulphate (Ni/Co) was prepared and added dropwise to stirring DAB 

solution with 3 ml of Ni/Co used per 100 ml of DAB. The membranes were incubated in 

the Ni/Co/DAB solution for 10 min before being transferred to an identical mixture 

containing 0.02 % (v/v) hydrogen peroxide. Once colour had developed the membranes 

were washed for 5 min in distilled water and left to air dry.

2.6.5.3 Enhanced Chemiluminescent Detection

Membranes were incubated overnight at 4 °C with primary antibody as before. 

Following 2x15 min washes in PBS-Tween blots, were incubated for 2 hr at room 

temperature in a 1:5000 dilution of horseradish peroxidase-linked sheep anti-mouse Ig. 

Blots then underwent two further 15 min washes in PBS-Tween with a final wash in PBS 

alone for 15 min. An equal volume of Amersham ECL Western blotting reagents 1 and 2 

were mixed together to give a final volume equivalent to 0.125 ml/cm2 membrane 

according to the manufacturers instructions. Blots were incubated in ECL reagent for 1 

minute before being covered in Saran wrap. Membranes were placed within X-ray 

exposure cassettes and Kodak X-OMAT film was positioned on top of the blot. Following 

overnight exposure the film was developed using an RGB X-ray film processor (Fuji).

The combination of PAP complex with Ni/Co enhancement and ECL detection 

were found to give maximum sensitivity with acceptable background staining (Figure 2.3). 

For titration of reagents used in the PAP method a series of blots containing identical CNS 

cytosol samples were prepared. After probing with the primary antibody each blot was 

divided into strips which were incubated with a range of concentrations of 

the secondary reagent (goat anti-mouse IgG) and then developed in the normal way. 

Similarly the second blot was used to titrate the tertiary reagent (PAP complex).

Optimum dilutions of goat anti-mouse IgG and PAP were 1:1000 and 1:1500 respectively 

(Figure 2.4).
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(B)

(C)

Figure 2.3 Comparison of immunoblotting detection methods
(A) PAP
(B) PAP with Ni/Co enhancement
(C) ECL
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(A) NOS Primary Antibody

1:2500 1:5000

(B) Goat anti-mouse IgG

1:250 1:750 1:1000

(C) PAP

1:500 1:1000 1:1500

Figure 2.4 Titration of antibody reagents for immunoblotting
(A) Anti-bNOS antibody, optimum dilution 1:5000
(B) Goat anti-mouse IgG, optimum dilution 1:1000
(C) PAP, optimum dilution 1:1500
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To check the specificity of staining, control blots containing representative CNS 

cytosol samples were subjected to the same immunoblotting procedures except that the 

primary antibody was omitted and replaced with PBS.

2 .6 . 6  Estimation Of Molecular Mass

To estimate molecular mass of unknown bands on gels and blots, Rf values were

calculated for standards and unknowns using the formula:

Rf = distance moved bv band fmnri
(Ratio of fronts) distance moved by dye front (mm)

The Rf values of standards were plotted against molecular mass and the calibration 

curve used to calculate the molecular mass of unknowns. A typical standard curve for 

molecular mass markers is shown in Figure 2.5.

2.6.7 Densitometry Of Immunoblots

In order to provide a semi-quantitative assessment of NOS levels, the intensity of 

immunoreactive bands was measured using a GS-670 imaging densitometer (Biorad) and 

Molecular Analyst software (Biorad). Results were expressed as % change from normal 

values.

2.7 Superoxide Production

The production of superoxide in CNS cytosol samples was determined using the 

reduction of ferricytochrome C. One hundred microlitre aliquots of CNS cytosol sample 

or Tris buffer blank were added, in quadruplicate, to a 96 well microtitre plate. Samples 

and blank were diluted by the addition of 50 pi of ImM HBSS with 1 mM Ca2+/Mg2+. 

Ferricytochrome C was prepared in ImM HBSS with 1 mM Ca2+/Mg2+ to give a final 

concentration of 320 pM. Each well received 50 pi of this mixture and the absorbance of
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Figure 2.5 A representative standard curve of migration of protein 
standard on SDS-gel obtained using pre-stained molecular weight 
markers.
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the plate at 550 nm was determined every 5 min over a one hr period. The background 

values of the Tris buffer blank were subtracted from those of the samples and the amount 

of superoxide present per well at T3 was calculated from the extinction coefficient for the 

absorption of reduced ferricytochrome C, minus oxidised cytochrome C as read at 550 

nm, by the formula Essonm = 21 x 103 M^cm' 1 (Massey 1959). As the length of the light 

path passing through the cytochrome C solution added to the wells was less than 1 cm, a 

correction factor was introduced based on the fact that the measured length of the vertical 

light path is 6  mm, when 200 pi volumes per well are dispensed in 96 well plates.

With this correction it was calculated that the amount of superoxide produced per 

well is expressed by the formula :

n moles superoxide = P.P. x 2 0 0

12

The superoxide of each sample was corrected for protein content and expressed as 

n moles superoxide/mg protein.

The specificity of the reaction was determined by the addition of 250 U/ml 

superoxide dismutase (SOD) to CNS cytosol samples. Following addition of SOD no 

ferricytochrome C reduction was observed as spectrophotometric readings for CNS 

cytosol samples in the presence of SOD were not above background levels. This confirms 

that differences in optical density were due to the production of superoxide.

2.8 Hydrogen Peroxide Content

The level of hydrogen peroxide within CNS cytosol preparations was ascertained 

by measuring the oxidation of scopoletin to give a non-fluorescent product. Ten 

microlitre aliquots of CNS cytosol or hydrogen peroxide standard were added in triplicate 

to 96 well Fluoroplate (Titertek). Standards were prepared by diluting hydrogen peroxide 

in CNS cytosol buffer to give a concentration of 10 nM. A series of standards ranging 

from 0.5 to 6  nM were then obtained by diluting the 10 nM stock solution. Standards and
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samples then underwent a further dilution by the addition of 150 pi of distilled water. Ten

Fluorescence of the samples and standards was measured every 5 minutes for a 30 

minute period using a Titretek Fluoroscan II with excitation at 355 nm and emission at 

460 nm. The hydrogen peroxide content of each sample at T3 was determined by fitting 

an exponential curve equation (2 .1 ) to the standard hydrogen peroxide values

where x = nmol of hydrogen peroxide produced; y = remaining fluorescence after the cells 

have released hydrogen peroxide; yo, A and t are constants determined when fitting the 

standard curve. A typical standard curve is shown in Figure 2.6. The spreadsheet Excel 

(version 5) was used to manipulate the data and calculate the hydrogen peroxide produced 

from the changes in fluorescence.

Scopoletin oxidation by hydrogen peroxide in CNS samples was confirmed by the 

addition of 250 U/ml catalase to CNS cytosols prior to the assay. In the presence of

microlitres of a reaction mixture composed of 138 pg/ml scopoletin, 15 mM sodium azide, 

1 mg/ml horeseradish peroxidase, 2 mM Ca2+ and 2 mM Mg2+ was added to each well.

(2. 1)

(2.2)
A

(2.3)

(2.4)

Rearranging this equation and as x0=0 equation 2.4 becomes:

(2.5)
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Figure 2.6 Hydrogen Peroxide Standard Curve
A representative curve obtained for the scopoletin assay of hydrogen 
peroxide with standards prepared in CNS cytosol buffer.
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catalase no oxidation of scopoletin was observed thus indicating that the reaction is 

specific for determining hydrogen peroxide levels in CNS cytosol.

2.9 Histology

Dissected cervical spinal cord tissues were wrapped in aluminium foil and frozen 

on dry ice. Samples were stored at -80 °C prior to sectioning. Cervical spinal cord 

sections, 2 0  micron thick, were cut at -18 °C using a Bright cryostat, mounted onto 

glass slides coated with 1 % gelatin and 0.1% chromallum and stored at -80 °C until 

stained.

Sections were fixed prior to staining by immersing in acetone for 5 min. Air dried 

sections were stained in haematoxylin and eosin. Cervical spinal tissues were stained in 

Meyer’s haematoxylin for 3 minutes. The sections were then washed thoroughly in tap 

water for 5 minutes before staining with eosin for 3 minutes. A further 5 minute wash in 

running tap water was undertaken to allow differentiation. Slides were then dehydrated 

through graded alcohol and xylene before being mounted in DPX. The number of 

perivascular infiltrates per section was determined by light microscopy.

2.10 Radioimmunoassay for Corticosterone

Corticosterone in rat serum was measured using an ICN RSL 125I-corticosterone 

radioimmunoassay (RIA) kit obtained from IDS. The basis of this assay is that the 

corticosterone present in an unknown serum sample competes with a known quantity of 

1 25I-labelled corticosterone to bind a limited amount of specific antibody. Thus the more 

corticosterone that is present in the sample, the less radiolabelled corticosterone is able to 

bind to the antibody. The antigen-antibody complexes formed are separated from 

unbound corticosterone by precipitation and centrifugation and the amount of
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radiolabelled corticosterone complexed with the antibody is estimated by gamma-counting 

the pellet. The radioactive counts are used to calculate the percentage of 125I- 

corticosterone bound, which is inversely proportional to the amount of corticosterone in 

the sample.

The RIA has a range of 0.39 - 62 ng/ml and was performed according to the 

manufacturer’s instructions, except that serum samples were assayed at a 1 : 1 0 0  dilution 

instead of the recommended 1:20. To reduce the influence of assay to assay variation 

serum samples from the same experiment were run in the same RIA.

2.10.1 Assay Protocol

The assay was preformed in duplicate in 12 x 75 mm borosilicate disposable glass

tubes.

1) Rat serum was thawed and diluted 1:100 with steroid assay buffer.

2) 200 pi steroid assay buffer was added to non-specific binding (NSB) 

tubes and lOOpl to zero calibrator tubes (Bo).

3) 100 pi of corticosterone standards and diluted rat serum samples were 

added to appropriate tubes.

4) 100 pi of 125I-corticosterone was added to all tubes.

5) lOOpl of anti-cortiocsterone was added to all tubes except NSB.

6 ) Tubes vortexed and incubated at 4 °C overnight.

7) 100 pi of secondary precipitation antibody was added to all tubes.

8 ) Tubes vortexed and incubated at room temperature for 1 hr.

9) All tubes centrifuged at 1500 g for 15 min.

10) Supernatant in each tube was decanted, to leave pellet, and the rim of the 

tube was blotted dry on absorbent paper.

11) Precipates were counted in a LKB 1277 Gammamaster automatic 

gamma counter for 2  minutes.
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2.10.2 Calculations

Results were expressed in counts per minute (CPM) and the percentage 1 25I- 

corticosterone bound was calculated for both standards and samples using the formula:

% *Vbo = Mean CPM (sample) - Mean CPM fNSB") x 100
Mean CPM (Bo) - Mean CPM (NSB)

B /
Where: % /Bo = percentage 125I-corticosteronebound

Mean CPM (sample) = mean CPM of standard or sample

Mean CPM (NSB) = mean CPM of non-specific binding

Mean CPM (Bo) = mean CPM of standard containing 0

ng/ml corticosterone i.e. 1 0 0  % binding

A standard curve of percentage bound against log concentration was constructed 

and the corticosterone concentration of unknown samples read directly from the curve. A 

typical curve is shown in Figure 2.7. Values obtained for samples which had been diluted 

1 : 1 0 0  were corrected by multiplying by 1 0 0 .

2.11 Statistical Analysis

All results were expressed as mean values ± S.E.M., of n observations, except for 

Western blotting data which were denoted as a % change from the normal value.

Evaluation of significant differences in neurological disease parameters such as 

body weight changes, day of disease onset, peak disease severity and cellular infiltration, 

as well as in CNS levels of nitrite, superoxide and hydrogen peroxide between each group 

were performed using the Kruskal-Wallis test with post-hoc Mann Whitney U test and 

Bonferroni correction for multiple comparisons. The incidence of neurological disease 

and paralytic symptoms was analysed by the Chi-squared test. In all tests p<0.05 was 

considered significant.
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Figure 2.7 Corticosterone Standard Curve
125A representative standard curve obtained using the ICN I-corticosterone 

radoimmunoassay kit.
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3. RESULTS

3.1 Characterisation of Actively Induced EAE

Following inoculation of an encephalitogenic emulsion Lewis rats developed an 

acute monophasic paralytic disease which was self-limiting. Lewis rats sensitised for EAE 

developed disease signs within 11 to 14 days of immunisation. Initially a sudden and 

dramatic weight loss was observed (day 10 to 11 P.I.) which continued until the beginning 

of the recovery phase (day 14 to 15 P.I.) (Figure 3.1a). Weight loss was proceeded by the 

development of ascending paralysis, the extent of which was determined using a 4 point 

severity scale (Figure 3.1b). Disease severity peaked at around day 13 P.I. with recovery 

from neurological signs occurring from approximately day 14 P.I. onwards (Figure 3.1b). 

The recovery phase was complete by about day 22 P.I. (Figure 3.lb) with animals 

continuing to gain weight and display no signs of disease until the study ended on day 28 

P.I. (Figure 3.1).

3.2 Nitrite Levels in CNS Cytosol

Although a role for NO in EAE has been demonstrated by other workers 

(MacMicking et al. 1992; Koprowski et al. 1993; Lin et al. 1993) ex vivo measurements 

of NO in CNS tissues from EAE-diseased animals have not been carried out. Therefore 

nitrite levels were determined in CNS cytosol fractions from EAE-inoculated Lewis rats as 

an indicator of NO production and possible role in disease pathogenesis. Studies by us 

have shown that at day 13 P.I. EAE-sensitised rats display peak disease severity (Figure 

3.1) both CFA-inoculated and EAE-diseased animals were sampled on this day.

Nitrite content was measured in the cerebellum, medulla-pons and cervical spinal 

cord regions of the CNS as these areas are differentially affected by EAE with respect to 

inflammatory cell infiltrates and BBB permeability (Bolton et al. 1984, Paul & Bolton 

1995). Levels of nitrite in the medulla-pons and cervical spinal cords from normal animals 

were in excess of values recorded in the cerebellum tissue (cerebellum 128 ± 1 1 ,
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Figure 3.1 Characterisation of actively induced EAE.
EAE was induced in Lewis rats following inoculation with an encephalitogenic 
emulsion. Animals were assessed daily for changes in body weight (a) and 
neurological signs of disease (b). Body weight changes were expressed as mean 
body weight change (g) ± S.E.M., n = 8. Neurological disease symptoms were 
scored on a severity scale from lto 4 and results are expressed as mean 
neurological score ± S.E.M., n = 16.
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medulla-pons 178 ± 26, cervical spinal cord 202 ± 25 p moles nitrite/mg protein ± S.E.M., 

n=12) (Figure 3.2). Nitrite content in CNS tissues from CFA-inoculated rats were 

comparable to values recorded in normal rats (cerebellum 114 ± 17, medulla-pons 283 ± 

28, cervical spinal cord 247 ±15, n=10) (Figure 3.2). In contrast established neurological 

EAE, coinciding with peak disease signs, was characterised by a significant increase in the 

nitrite content of all isolated CNS preparations (cerebellum 319 ± 45, p<0.001; medulla- 

pons 481 ± 65, p<0.001; cervical spinal cord 313 ± 25, p<0.001, n=12) (Figure 3.2). 

Furthermore nitrite levels in CNS tissues from EAE-diseased animals were significantly 

elevated compared to values obtained in CFA-inoculated rats (cerebellum p<0.001, 

medulla-pons p<0.01, cervical spinal cord p<0.01).

3.3 EAE Profile of Nitrite Levels in CNS Cytosol

Following the determination of a disease specific increase in CNS cytosol nitrite 

levels in EAE-sensitised animals the possibility of a relationship between disease 

development and CNS nitrite levels was examined. EAE-inoculated Lewis rats were 

sacrificed at various timepoints throughout the disease and CNS cytosol nitrite content 

determined (Figure 3.3).

In cerebellar tissue a direct correlation between CNS cytosol nitrite content and 

disease severity was identified (Figure 3.3 a). Nitrite levels in cerebellar tissues of EAE- 

sensitised animals sacrificed 7 days P.I. were elevated compared to normal values (day 7 

P.I. 185 ± 47 vs normal 128 ± 11 p moles nitrite/mg protein ± S.E.M., n= 8 and 12 

respectively). The increase in nitrite content continued as the disease progressed (weight 

loss 234 ± 43, p<0.05, n=7) with maximal levels obtained when animals displayed peak 

disease symptoms (height of disease 337 ± 45, p<0.001, n=12) (Figure 3.3a).

Interestingly, nitrite levels in the tissue remained significantly elevated during recovery 

(recovery 269 ± 26, p<0.001, n=9) (Figure 3.3a). However, by 28 days P.I. cerebellar 

cytosol nitrite content had decreased to within normal limits (day 28 P.I. 115 ± 35, n=8) 

(Figure 3.3 a).
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Figure 3.2 Nitrite levels in CNS cytosol.
CNS cytosol nitrite levels were measured using the Griess assay and following 
protein content determination results were expressed as p moles nitrite/mg 
protein ± S.E.M. I 1 Normal Lewis rats, n = 12; HIM CFA control 
inoculated Lewis rats, sampled on day 13 P.I., n = 10 and H  EAE-diseased 
Lewis rats, sampled on day 13P.I., n = 12. ***p<0.001 Mann Whitney U test 
compared to normal animals.
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Figure 3.3 EAE profile of nitrite levels in CNS cytosol.
CNS cytosol was prepared from the a. cerebellum, b. medulla-pons and c. cervical 
spinal cord areas of each animal. Nitrite levels were measured by the Griess 
assay and expressed as g moles nitrite/mg protein ± S.E.M. I I Normal Lewis 
rats (N), n = 12; 1 \ CFA inoculated rats, sampled day 13 P.I., n = 10 and

|  EAE-sensitised Lewis rats sampled at day 7 P.I. (D7), n = 8; weight loss 
(WL), n = 7; height of disease (HOD), n = 12; recovery (REC), n = 9 and day 
28 P.I. (D28), n = 8. *p<0.05, **p<0.01, ***p<0.001 Mann Whitney U test 
compared to normal animals.
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A similar profile of nitrite levels was recorded in CNS cytosol extracts from the 

medulla-pons of EAE-inoculated rats (Figure 3.3b). Medulla-pons cytosol content 

increased as neurological deficits of EAE developed (normal 178 ± 26, n=12; day 7 P.I. 

326 ± 63, p<0.05, n=8; weight loss 346 ± 47, p<0.01, n=7) with maximal levels attained 

when peak signs of disease were demonstrated (height of disease 481 ± 65, p<0.001, 

n=12) (Figure 3.3b). Although the nitrite content of medulla-pons cytosol was 

significantly enhanced during recovery (recovery 384 ± 47, p<0.001, n=9), levels had 

returned to normal by 28 days P.I. (day 28 P.I. 199 ± 30, n=8) (Figure 3.3b).

By comparison there was no correlation between EAE disease progression and 

cervical spinal cord cytosol nitrite content (Figure 3.3c). Levels of nitrite in cervical spinal 

cord cytosol fractions were elevated throughout the induction and active phases of EAE 

with the maximum value recorded when animals displayed weight loss (normal 202 ± 25, 

n=12; day 7 P.I. 332 ± 78, n=8; weight loss 353 ± 44, p<0.01, n=7; height of disease 313 

± 25, p<0.001, n=12) (Figure 3.3c). During the recovery phase of the disease the nitrite 

content of the cervical spinal cord remained increased (319 ± 24, p<0.001, n=9).

However by day 28 P.I. cervical spinal cord cytosol nitrite levels were comparable to 

values recorded in normal animals (day 28 P.I. 196 ± 43, n=8) (Figure 3.3c).

3.4 EAE Disease Profile of NOS Expression

Although nitrite levels were elevated in the CNS cytosol samples from EAE- 

inoculated animals the mechanisms responsible for the enhancement are unknown. 

Increases in nitrite levels may arise as a result of induction of NOS enzymes. Therefore, 

cerebellar, medulla-pons and cervical spinal cord cytosol preparations were assessed 

individually for the presence of the 3 NOS enzymes, eNOS, bNOS and iNOS, using semi- 

quantitative densitometric analysis. Following separation on SDS-gels, CNS cytosol 

samples contained immunospecific bands at approximately 140 kDa, 155 kDa and 135 

kDa subsequent to immunoblotting with anti-eNOS, anti-bNOS and anti-iNOS antibodies 

respectively (Figure 3.4) which corresponds to the molecular weights of the NOS 

enzymes.
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3.4.1 EAE Disease Profile of Cerebellum NOS Protein Expression

Normal animals exhibited basal levels of eNOS, bNOS and iNOS in their cerebellar 

cytosol (Figure 3.5). Moreover, animals sensitised for EAE contained elevated amounts 

of all NOS proteins in their cerebellar tissue. However, the profile of expression differed 

for each isoform of the enzyme (Figure 3.5).

Expression of eNOS was increased during active EAE with maximal protein levels 

obtained at day 7 P.I. (139 % above normal) (Figure 3.5a). eNOS levels then decreased 

as disease signs developed, with minimum values occurring when animals exhibited peak 

disease severity (35 % above normal) (Figure 3.5a). Interestingly, eNOS expression was 

again elevated during the recovery phase (121 % above normal) although by day 28 P.I. 

the protein levels had returned to normal (3 % above normal) (Figure 3.5a). Furthermore, 

cerebellar cytosol preparations from CFA-inoculated rats also contained increased levels 

of eNOS enzyme (85 % above normal) (Figure 3.5a).

bNOS expression in cerebellum samples from CFA control animals was not 

markedly different to that of normal animals (16 % above normal) (Figure 3.5b). In 

contrast, throughout the active phase of EAE bNOS enzyme levels were elevated, with 

maximal and minimal expression produced at peak disease severity and weight loss 

respectively (height of disease 159 %; weight loss 57 % above normal) (Figure 3.5b). 

Moreover, during disease recovery bNOS expression remained enhanced (92 % above 

normal). However by day 28 P.I. bNOS protein levels had returned to CFA control levels 

(17 % above normal) (Figure 3.5b).

In cerebellar cytosol fractions of EAE-sensitised Lewis rats a direct correlation 

between iNOS expression and disease development was identified (Figure 3.5c). Levels 

of iNOS protein in the cerebellum of EAE-inoculated animals sacrificed at day 7 P.I. were 

slightly increased compared to normal values (15 % above normal) (Figure 3.5c). The 

elevation in iNOS expression continued as the disease progressed, with maximal 

levels detected at the height of disease ( weight loss 52 %; height of disease 245 % above 

normal) (Figure 3.5c). iNOS protein expression was still increased during recovery and 

even at day 28 P.I. (recovery 48 %, day 28 P.I. 21 % above normal) (Figure 3.5c). In
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Figure 3.5 EAE disease profile o f cerebellar NOS protein expression
CNS cytosol was obtained and pooled from the cerebellum o f  3 normal Lewis rats (N); 
CFA-inoculated Lewis rats (CFA)and EAE-inoculated animals at day 7 P.I. (D7); 
weight loss (WL); height o f  disease (HOD); recovery (REC) and day 28 P.I. (D28).
CNS cytosol proteins were seperated on SDS-gels and following electrophoretic transfer 
samples were blotted with (A) anti-eNOS; (B) anti-bNOS and (C) anti-iNOS antibodies. 
NOS protein was detected using ECL (A) or PAP complex (B & C). Densitometric 
analysis o f blots and SDS-gels (D) was undertaken and following correction for 
differences in total protein content NOS levels were expressed as % change from 
normal value. Results shown are representative o f  3 seperate experiments.
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contrast no marked differences were observed in iNOS protein content of CFA-inoculated 

and normal rats cerebellar cytosol (CFA 7 % below normal) (Figure 3.5c).

EAE-diseased animals displayed elevated levels of all 3 NOS-isoforms in their 

cerebellum. Therefore, the increased nitrite production observed in this CNS area (Figure

3.2 and 3.3) may not be attributed solely to enhancement of a single NOS enzyme but 

from the combined effects of all isoforms.

3.4.2 EAE Disease Profile of Medulla-Pons NOS Protein Expression

Basal levels of eNOS, bNOS and iNOS protein were identified in medulla-pons 

cytosol preparations from normal Lewis rats (Figure 3.6). By comparison, EAE- 

inoculated animals expressed increased amounts of the 3 NOS isoforms in medulla-pons 

tissue. However the profile of enzyme expression in EAE-diseased rats was different for 

each isoform (Figure 3.6).

eNOS expression in medulla-pons tissue was slightly increased in EAE-sensitised 

animals at day 7 P.I. (13 % above normal). However, eNOS protein in medulla-pons 

cytosol had decreased to normal levels when animals displayed weight loss (5 % above 

normal) (Figure 3.6a). Thereafter eNOS expression in EAE-diseased Lewis rats was 

elevated with maximal values obtained when animals had recovered (44 % above normal) 

although similar levels of eNOS protein were present in medulla-pons tissue from CFA- 

inoculated rats (30 % above normal) (Figure 3.6a). By day 28 P.I., eNOS expression had 

fallen to below normal levels (27 % below normal) (Figure 3.6a).

No correlation was observed between EAE-disease development and bNOS 

expression in medulla-pons cytosol preparations (Figure 3.6b). Indeed, although bNOS 

levels were elevated during EAE maximal levels were obtained prior to the onset of 

neurological disease signs (day 7 P.I. 25 %, weight loss 58 % above normal) (Figure 

3.6b). During recovery bNOS expression was similar to that attained at peak disease 

severity (height of disease 19 %1, recovery 16 % above normal). However following the 

loss of neurological deficits 28 days P.I. bNOS protein levels had decreased to just below 

the value obtained in normal animals (3 % below normal). In addition, CFA-control
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Figure 3.6 EAE disease profile of medulla-pons NOS protein expression
CNS cytosol was obtained and pooled from the medulla-pons o f 3 normal Lewis rats 
(N); CFA-inoculated Lewis rats (CFA) and EAE-inoculated animals at day 7 P.I. (D7); 
weight loss (WL); height o f disease (HOD); recovery (REC) and day 28 P.I. (D28).
CNS cytosol proteins were seperated on SDS-gels and following electrophoretic transfer 
samples were blotted with (A) anti-eNOS; (B) anti-bNOS and (C) anti-iNOS antibodies. 
NOS protein was detected using ECL (A & C) or PAP complex (B). Densitometric 
analysis of blots and SDS-gels (D) was undertaken and following correction for 
differences in total protein content NOS levels were expressed as % change from normal 
value. Results shown are representative o f 3 seperate experiments.
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inoculated rats expressed low levels of bNOS enzyme in medulla-pons samples (20 % 

below normal) (Figure 3.6b).

Expression of iNOS protein in medulla-pons tissue from EAE-inoculated rats 

followed a similar pattern to that of bNOS (Figure 3.6). Levels of iNOS were increased in 

medulla-pons cytosol preparations throughout active EAE. However, maximal levels 

were attained before disease signs were displayed (day 7 P.I. 87 %, weight loss 91 % 

above normal) (Figure 3.6c). Following weight loss the amount of iNOS protein 

expressed in the medulla-pons of EAE-diseased animals steadily diminished and had fallen 

to below normal levels by day 28 P.I. (height of disease 47 %, recovery 20 % above 

normal, day 28 P.I. 7 % below normal) (Figure 3.6c). By comparison, CFA-inoculated 

Lewis rats expressed increased levels of iNOS in medulla-pons preparations (17 % above 

normal) (Figure 3.6c).

3.4.3 EAE Disease Profile of Cervical Spinal Cord NOS Protein Expression

Basal levels of NOS enzymes were detected in cervical spinal cord tissues of 

normal animals (Figure 3.7). In addition, both CFA-inoculated and EAE-sensitised rats 

contained NOS enzymes in cytosol samples prepared from cervical spinal tissue. However, 

the amounts of each enzyme varied and no correlation between NOS enzyme expression 

and EAE severity could be determined (Figure 3.7).

Although eNOS expression was enhanced in the cervical spinal cord during EAE 

as the disease progressed the levels of eNOS protein present decreased (day 7 P.I. 71 %, 

weight loss 28 %, height of disease 28 % above normal) (Figure 3.7a). Furthermore, after 

day 7 P.I. eNOS expression in EAE-diseased rats was not different to that observed in 

cervical spinal cord cytosol from CFA-inoculated animals (CFA 23 % above normal) 

(Figure 3.7a). The eNOS protein levels in EAE-sensitised Lewis rats cervical spinal cord 

continued to diminish during recovery and by day 28 P.I. had fallen below normal levels 

(recovery 5 % above normal, day 28 P.I. 47 % below normal) (Figure 3.7a).

By comparison, spinal cord samples from EAE-sensitised rats contained lower 

levels of bNOS than were present in normal animals tissues with the exception of
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Figure 3.7 EAE disease profile o f cervical spinal cord NOS protein expression
CNS cytosol was obtained and pooled from the cervical spinal cord 3 normal Lewis rats 
(N); CFA-inoculated Lewis rats (CFA) and EAE-inoculated animals at day 7 P.I. (D7); 
weight loss (WL); height o f disease (HOD); recovery (REC) and day 28 P.I. (D28).
CNS cytosol proteins were seperated on SDS-gels and following electrophoretic transfer 
samples were blotted with (A) anti-eNOS; (B) anti-bNOS and (C) anti-iNOS antibodies. 
NOS protein was detected using PAP complex. Densitometric analysis o f blots and 
SDS-gels (D) was undertaken and following correction for differences in total protein 
content NOS levels were expressed as % change from normal value. Results shown 
are representative o f 3 seperate experiments.
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samples obtained 7 days P.I. in which bNOS expression was elevated (49 % above 

normal) (Figure 3.7b). In addition, CFA-inoculated animals also had lower levels of 

bNOS enzyme in their cervical spinal cord cytosols than did normal rats (22 % below 

normal) (Figure 3.7b).

iNOS protein levels in cervical spinal cord cytosol preparations were elevated 

throughout the course of EAE, with the exception of weight loss at which timepoint iNOS 

expression was comparable to that of normal animals (weight loss 7 % below normal) 

(Figure 3.7c). Maximum expression of iNOS was observed when animals displayed peak 

signs of disease (212 % above normal) (Figure 3.7c). However, iNOS levels remained 

elevated during recovery with protein expression continuing to be greater than in cervical 

spinal cord tissues of normal animals at day 28 P.I. (recovery 177 %, day 28 P.I. 19 % 

above normal) (Figure 3.7c). In contrast, CFA-inoculated rats contained similar amounts 

of iNOS enzyme in cytosol prepared from spinal tissue as were present in the same tissue 

of normal animals (8 % above normal) (Figure 3.7c).
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3. DISCUSSION

3.1 Nitrite Levels in the CNS During EAE

The precise mechanisms responsible for the CNS damage associated with chronic 

neurodegenerative diseases such as MS and EAE remain undefined. Nevertheless a clear 

role for inflammatory mediators released by invading and resident CNS immunocompetent 

cells has been identified. In particular recent attention has focused on the involvement of 

NO and ROS in disease pathology.

Studies investigating the role of NO in EAE were initiated by examining the NO 

content of CNS tissues. However, due to the short half-life of NO the nitrite breakdown 

product was measured in CNS tissues ex vivo as an indicator of NO generation. Nitrite 

content was measured in the cerebellum, medulla-pons and cervical spinal cord regions as 

these areas are differentially affected by EAE with respect to BBB permeability and 

inflammatory cell infiltration (Bolton et al. 1984, Paul & Bolton 1995). Indeed during 

EAE both the medulla-pons and cervical spinal cord develop highly permeable barriers and 

demonstrate extensive infiltrate accumulation whereas vascular and cellular changes were 

consistently less extensive in the cerebellum.

Although nitrite levels were detectable in CNS tissues from normal and CFA- 

control inoculated Lewis rats, neurological EAE was associated with a significant increase 

in CNS nitrite content. Interestingly nitrite levels have not been determined previously in 

CNS tissue during EAE. However inflammatory cells isolated from EAE-diseased 

animals have been shown to generate enhanced levels of reactive nitrogen intermediates 

(MacMicking et al. 1992). Furthermore, increased levels of reactive nitrogen 

intermediates have been identified in serum samples from EAE-sensitised rats prior to and 

during symptomatic disease development (Ludowyk et al. 1993). The results of the 

present study demonstrate that nitrite levels in CNS tissue were enhanced during both the 

induction and active phase of EAE thus suggesting a possible cytotoxic role for the 

molecule in disease development. In contrast, during the recovery phase CNS extracts 

from EAE-diseased rats continued to display increased nitrite content which indicates that
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NO has a potential role in neuroprotection. Moreover, subsequent to the loss of 

neurological deficits in EAE CNS nitrite levels returned to normal values hence providing 

further evidence of a role for NO in neurological disease development and resolution. 

Indeed the precise involvement of NO in EAE pathogenesis may be better determined by 

pharmacological manipulation of NO levels in the animal model.

3.2 NO Production in the CNS

Basal levels of nitrite can be readily generated in the CNS of normal animals 

following the activation of constitutive forms of NOS in endothelial cells, neurons, and 

astrocytes (Garthwaite 1991, Pollock et al. 1992, Murphy et al. 1993). Similarly, in the 

CNS tissue of EAE-diseased animals nitrite will be produced upon eNOS activation. 

However in addition to basal nitrite synthesis NO can be formed in EAE following the 

cytokine stimulation of iNOS in resident CNS cells such as microglia, astrocytes and the 

endothelial cells (Boje & Arora 1992, Galea et al. 1992, Simmons & Murphy 1992, Minc- 

Golomb & Schwartz 1994) together with infiltrating inflammatory cells (Stuehr & Nathan

1989). Nitrite levels varied in each CNS region examined not only in EAE-sensitised rats 

but also in normal animals. This may be accounted for, in part, by differences in NOS 

enzyme activity throughout the CNS, or may be due to variations in the amount of NOS 

enzyme present in each CNS region. Forstermann et al. (1990) have previously 

demonstrated differential activity of NOS in CNS tissues. Moreover, 

immunohistochemical studies have provided evidence of a distinctive distribution of NOS 

in the CNS (Bredt & Snyder 1990, Bredt et al. 1990). In addition, during EAE 

inflammatory cell infiltration differs between the cerebellum, medulla-pons and cervical 

spinal tissues (Bolton et al. 1984). Therefore, the relative availability of NOS may vary 

between these areas due to differences in the number of NO-generating cells present.
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3.3 NOS Expression Throughout EAE

In order to elucidate the relative contribution of each NOS isoform in the 

generation of CNS-derived NO, cytosol fractions from EAE-diseased animals were 

examined for the presence of e, b and iNOS using Western blotting techniques. While 

other investigators have demonstrated the expression of iNOS mRNA in CNS tissues 

derived from EAE-sensitised rats (Koprowski et al. 1993, Hooper et al. 1995, Okuda et 

al. 1995, Van Dam et al. 1995) NOS protein levels have not been assessed in EAE- 

diseased tissues. The EAE profile of protein expression was not only dependent on the 

CNS tissues examined but also on the NOS isoform detected. For example, while the 

iNOS levels detected in the cerebellum tissue of EAE-inoculated animals correlated with 

neurological disease development, medulla-pons and cervical spinal cord levels of iNOS 

peaked at the induction and the active/recovery phases of EAE respectively. Furthermore, 

whereas the cerebellum levels of bNOS determined during EAE corresponded to disease 

progression, no such association was apparent between EAE and the bNOS levels 

detected in the medulla-pons and cervical spinal cord regions. These variations may be 

due to differences in the cellular composition of the areas analysed throughout the disease 

process. Indeed the presence of NOS enzymes in the CNS tissues of EAE-sensitised rats 

will not only be dependent upon the availability of NOS in resident CNS cells but will also 

be determined by infiltrating inflammatory cell NOS formation. Although the levels of e, b 

and iNOS varied in each CNS region throughout EAE the NOS protein levels were 

generally greater than normal values during the induction, active and recovery phases of 

EAE. However, no difference existed between NOS protein levels in the CNS of normal 

animals and EAE-inoculated Lewis rats sampled 28 days P.I. Moreover, the NOS enzyme 

expression during EAE corresponded with the nitrite levels measured in CNS tissues of 

EAE-diseased animals as nitrite levels were also elevated throughout the induction, active 

and recovery phases but within normal limits by day 28 P.I.

In conclusion, neurological development of EAE was associated with an 

upregulation of e, b and iNOS enzyme expression. While iNOS expression in the CNS is 

known to be readily induced under certain conditions (Galea et al. 1992) protein levels for

92



e and bNOS are thought to be constitutively regulated (Brune & Lapetina 1991). 

However, recent reports have suggested that the transcription of eNOS may also be 

regulated by a variety of factors, including cytokines and sex hormones (Sessa 1994, 

Forstermann & Kleinert 1995) which may provide an explanation for the enhanced 

expression of eNOS observed in the CNS of EAE-sensitised animals. Similarly the 

expression of bNOS can be altered under certain circumstances such as cellular injury 

(Verge et al. 1992, Regidor et al. 1993), which may account for the upregulation of 

bNOS identified in CNS tissues from EAE-inoculated Lewis rats.

As e, b, and iNOS protein levels were enhanced during EAE it was not possible to 

determine which isoforms are responsible for disease development. Indeed the expression 

of NOS protein does not indicate functional activity. Therefore, in order to ascertain the 

importance of each NOS isoform in the generation of CNS derived NO during EAE 

further work is required to determine the specific enzyme activity of all 3 isoforms in CNS 

tissues of EAE-inoculated rats. Furthermore administration of isoform selective NOS 

inhibitors to EAE-sensitised animals may facilitate the elucidation of the role of individual 

NOS enzymes in EAE pathogenesis.

Several investigators have proposed a role for iNOS induction in the development 

of neurological EAE. iNOS mRNA levels correlate with the severity of EAE (Koprowski 

et al. 1993, Okuda et al. 1995), and an abundance of iNOS positive cells have been 

identified in spinal cord tissue of EAE-diseased animals (Okuda et al. 1995). In addition, 

recent studies have established that iNOS expression can be induced by encephalitogenic 

lymphoid cells and their secreted products (Misko et al. 1995, Hewett et al. 1996). 

Further evidence of iNOS involvement in the pathogenesis of EAE is provided by the 

studies of Cross et al. (1994) and Zhao and co-workers (1996) who demonstrated that 

selective inhibition of iNOS in EAE-sensitised animals prevented neurological disease 

development. However, a role for bNOS in neurodegenerative disorders has also been 

implicated by other investigators (Dawson et al. 1991).
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3.4 Cytotoxic Effects of NO in EAE

Irrespective of which isoform of NOS is activated, the resultant NO functions as a 

cytotoxic molecule is a similar fashion. Cytotoxic reactions generated by NO may be 

mediated via several mechanisms. Toxicity of NO has been attributed, at least in part, to 

the molecules ability to cause nitrosylation of iron-sulphur protein (Drapier & Hibbs 

1988). Iron-sulphur proteins are important for the functioning of enzymes involved in the 

Kreb’s cycle, the mitochondrial respiratory chain and DNA synthesis and repair (Henry et 

al. 1991, Wink et al. 1991). Furthermore interference of mitochondrial respiratory chain 

enzymes by NO has been implicated as an effector mechanism in neurodegeneration, and 

in particular EAE (Cleeter et al. 1994, Zielasek et al. 1995b). In addition to direct 

cytotoxic effects NO may react with superoxide to form the highly toxic peroxynitrite 

(Beckman et al. 1990). Peroxynitrite or its breakdown products are capable of causing 

lipid peroxidation (Radi et al. 1991) as well as mediating a loss of cellular integrity 

(Lipton et al. 1993). NO may also mediate cytotoxicity through activation of poly(ADP- 

ribose)synthetase (Zhang et al. 1994a) which depletes P-nicotinamide adenine 

dinucleotide and ATP to cause cell death (Cosi et al. 1994, Zhang et al. 1994a). 

Alternatively NO may cause neurodegeneration by increasing the susceptibility of cells to 

TNF-a toxicity via guanylate cyclase activation and cGMP accumulation (Higuchi et al.

1990).

In addition to the general cytotoxic effects of NO, CNS damage in EAE may 

occur through more disease specific mechanisms of neurotoxicity. Indeed NO has been 

shown to activate cyclooxygenase (Corbett et al. 1993a, Salvemini et al. 1993), the 

enzyme responsible for prostaglandin synthesis. Furthermore as prostaglandin formation 

has been implicated in EAE pathogenesis (Mertin & Stackpoole 1981) NO may mediate 

indirect effects on EAE development by enhancing prostaglandin production. Moreover it 

has been established that NO induces mRNA expression for TNF-a (Magrinat et al. 1992, 

Lander et al. 1993), a cytotoxic cytokine which has been associated with the aetiology of 

EAE (Ruddle et al. 1990, Selmaj et al. 1991). Therefore NO may indirectly influence the 

neurological disease development. Finally, due to the chemotactic effects of NO on

94



monocytes, NO may induce damage in EAE via the CNS recruitment of monocytes 

(Kaplan et al. 1989, Belenky et al. 1993).

Clearly the cytotoxic potential of NO production in neurodegenerative disorders is 

vast. Extensive in vitro evidence exists to implicate NO as a primary mediator of neuronal 

cell death (Boje & Arora 1992, Dawson et al. 1993, Skaper et al. 1995, Palluy & Rigaud 

1996). Additionally, NO has also been proposed as an effector molecule in microglial 

(Dawson etal. 1994, Mitrovic et al. 1994a,b, Skaper etal. 1996) and oligodendrocyte 

(Merrill et al. 1993, Mackenzie-Graham et al. 1994, Mitrovic et al. 1995) cytotoxicity.

Although substantial ex vivo evidence indicates a cytotoxic role for NO in EAE 

pathogenesis (MacMicking et al. 1992, Koprowski et al. 1993, Lin et al. 1993, Ludowyk 

et al. 1993, Hooper et al. 1995, Misko et al. 1995, Okuda et al. 1995, Van Dam et al. 

1995, Hewett et al. 1996), in vivo studies involving the pharmacological manipulation of 

NO in EAE have produced conflicting results (Cross et al. 1994, Zielasek et al. 1995a, 

Ruuls et al. 1996, Zhao et al. 1996). The remainder of this investigation attempts to 

clarify the precise role of NO in the neurological development of actively induced EAE.
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CHAPTER 4 

QUANTITATION OF ROS 

IN EAE

96



4. RESULTS

Previous studies have demonstrated that, in the absence of L-arginine, NOS can 

generate ROS such as superoxide and hydrogen peroxide (Meyer et al. 1991, Heinzel et 

al. 1992). The current study has shown that NOS enzyme expression was enhanced in the 

CNS of EAE-sensitised animals. Therefore, disease pathogenesis may be mediated by the 

formation of ROS by this enzyme. Although pharmacological evidence exists to implicate 

ROS in EAE pathogenesis (Bowem et al. 1984; Honegger et al. 1989b; Ruuls et al. 1995) 

ex vivo measurements of superoxide and hydrogen peroxide in CNS tissue from diseased 

animals have not been undertaken. Therefore, superoxide and hydrogen peroxide levels 

were determined in CNS cytosol fractions from EAE-inoculated Lewis rats to investigate 

a role for ROS in the aetiology of the disease.

4.1 Superoxide Levels in CNS Cytosol

Superoxide levels were measured in the cerebellum, medulla-pons and cervical 

spinal cord regions. Levels of superoxide in the cervical spinal cord from normal Lewis 

rats were in excess of values recorded in the cerebellum and medulla-pons (cerebellum 7 ± 

2, medulla-pons 9 ± 2, cervical spinal cord 14 ± 3 n moles superoxide/mg protein ± 

S.E.M., n=7) (Figure 4.1). Superoxide content in CNS tissues from CFA-inoculated rats 

were comparable to values recorded in normal animals (cerebellum 9 ± 2, medulla-pons 11 

± 3, cervical spinal cord 17 ± 4, n=10) (Figure 4.1). However, established neurological 

EAE was associated with a significant increase in superoxide levels in all isolated CNS 

preparations compared to basal values (cerebellum 55 ± 15, p<0.001; medulla-pons 50 ±

11, p<0.01; cervical spinal cord 45 ± 10, p<0.05, n=10) (Figure 4.1). In addition, 

superoxide levels in CNS tissue from EAE-diseased animals were significantly elevated 

compared to values obtained in CFA-inoculated rats (cerebellum p<0.01, medulla-pons 

p<0.05, cervical spinal cord p<0.05).
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Figure 4.1 Superoxide levels in CNS cytosol.
CNS cytosol samples were prepared from the cerebellum, medulla-pons and cervical 
spinal cord regions of each animal. Superoxide levels were determined in each 
sample by measuring the reduction of ferricytochrome C and expressed as n moles 
superoxide/mg protein ± S.E.M. I 1 Normal Lewis rats, n = 7; 1"" ' 1 CFA control 
inoculated Lewis rats, sampled day 13 P.I., n = 6; | H i  EAE-sensitised Lewis rats, 
sampled day 13 P.I., n = 10 . *p<0.05, **p<0.01, ***p<0.001 Mann Whitney U test 
compared to normal animals.
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4.2 EAE Profile of Superoxide Levels in CNS Cytosol

Superoxide levels were determined in CNS cytosol from EAE-sensitised animals 

sacrificed at various time-points throughout the disease process in order to establish a 

correlation between CNS superoxide levels and disease development.

Interestingly a similar profile of superoxide content was obtained in the areas of 

the CNS studied (Figure 4.2). Levels of superoxide in cerebellum cytosol preparations 

from EAE-sensitised animals sampled 7 days P.I. were not significantly different to normal 

values (day 7 P.I. 12 ± 2 vs normal 7 ± 2, n=8 and 7 respectively) (Figure 4.2a). In 

contrast, cerebellar cytosol fractions from rats sacrificed at weight loss or peak disease 

severity had significantly elevated superoxide levels (weight loss 69 ± 9, p<0.001, n=7; 

height of disease 55 ± 15, p<0.001, n=10) with maximum amounts recorded prior to the 

onset of disease symptoms (Figure 4.2a). Furthermore, cerebellar cytosol samples from 

recovered EAE animals also contained increased levels of superoxide (29 ± 8, n=7). 

However, superoxide content of cerebellar tissue had returned to normal by 28 days P.I. 

(14 ± 2, n=10) (Figure 4.2a).

Medulla-pons cytosol from EAE-inoculated animals sacrificed at day 7 P.I. 

contained elevated amounts of superoxide (day 7 P.I. 31 ± 9, n=8; normal 9 ± 2, n=7) 

(Figure 4.2b). In addition, significantly increased superoxide levels were observed in 

medulla-pons tissue from sensitised Lewis rats prior to and during the development of 

symptoms (weight loss 62 ± 8, p<0.01, n=7; height of disease 50 ± 11, p<0.01, n=10). 

Maximal superoxide content was recorded before the expression of neurological deficits 

(Figure 4.2b). During recovery from EAE, cytosol levels of superoxide in the medulla- 

pons were not significantly elevated above normal values (17 ± 3, n=7). Moreover, 

superoxide content of medulla-pons tissue at day 28 P.I. was comparable to levels 

recorded during recovery (13 ± 3, n=10) (Figure 4.2b).

In cervical spinal cord preparations, an almost identical profile of superoxide 

content and disease severity to that obtained in the cerebellum was identified (Figure 4.2). 

Superoxide levels in cervical spinal tissues from EAE-sensitised animals sacrificed at day 7 

P.I were within normal limits (day 7 P.I. 15 ± 4, n=8; normal 14 ± 3, n=7).

99



n 
m

ole
s 

su
pe

ro
xi

de
/m

g 
pr

ote
in 

n 
m

ole
s 

su
pe

ro
xi

de
/m

g 
pr

ote
in 

n 
m

ole
s 

su
pe

ro
xi

de
/m

g 
pr

ot
ein

wmmm

CFA

Figure 4.2 EAE profile of superoxide levels in CNS cytosol.
CNS cytosol was prepared from the a. cerebellum, b. medulla-pons and c. cervical 
spinal tissues from each animal. Superoxide levels were measured by 
ferricytochrome C reduction and expressed as n moles superoxide/mg protein ± 
S.E.M. 1 I Normal Lewis rats (N), n = 7; l l lf l l  CFA inoculated rats, sampled 
day 13 P.I., n = 6 and EAE-sensitised Lewis rats sampled at day 7 P.I. (D7), 
n = 8; weight loss (WL), n = 7; height of disease (HOD), n = 10; recovery (REC), 
n = 7 and day 28 P.I. (D28), n = 10. *p<005, **p<0.01, ***p<0.001 Mann 
Whitney U test compared to normal animals.
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However, during weight loss and peak disease superoxide content of cervical spinal cord 

cytosol was significantly elevated (weight loss 57 ± 8, p<0.01, n=7; height of disease 45 ± 

10, p<0.05, n=10) (Figure 4.2c). The amount of superoxide in the cervical spinal cord 

had decreased to normal limits during the recovery phase of EAE (22 ± 6, n=7) and by 

day 28 P.I. were below values recorded in normal animals (8 ± 1, n=10) (Figure 4.2c).

4.3 Hydrogen Peroxide Levels in CNS Cytosol

NO has been shown to exert a cytoprotective effect in CNS inflammation by 

scavenging superoxide radicals (Wink et al. 1994a). NO and superoxide interact to form 

peroxynitrite molecules which decompose to nitrogen dioxide and hydroxyl radicals. As 

the reaction of superoxide and NO proceeds faster than the dismutation of superoxide by 

SOD, hydrogen peroxide levels decrease in the presence of excess NO (Wink et al.

1994a). Therefore the hydrogen peroxide content of CNS cytosol fractions was 

determined to investigate whether the increased amounts of NO observed during EAE 

scavenges superoxide which would be indicated by a decrease in hydrogen peroxide 

levels.

Hydrogen peroxide content was assessed in the cerebellum, medulla-pons and 

cervical spinal tissues. Levels of hydrogen peroxide were similar in all CNS areas isolated 

from normal animals (cerebellum 2 ± 0.6, medulla-pons 2 ± 0.5, cervical spinal cord 2 ±

0.5 \i moles hydrogen peroxide/mg protein ± S.E.M., n=10) (Figure 4.3). Furthermore, 

hydrogen peroxide content of CNS tissues from CFA-inoculated rats were not 

significantly different to values recorded in normal animals (cerebellum 4 ± 2, medulla- 

pons 6 ± 2, cervical spinal cord 7 ± 3, n=7) (Figure 4.3). Neurological EAE was 

associated with a significant increase in CNS cytosol hydrogen peroxide levels (cerebellum 

10 ± 2, p<0.05; medulla-pons 9± 2, p<0.01; cervical spinal cord 5 ± 1, p<0.05, n=6) 

(Figure 4.3). However the values recorded were similar to those obtained from CFA- 

inoculated rats.
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Figure 4.3 Hydrogen peroxide levels in CNS cytosol.
CNS cytosol samples were prepared from the cerebellum, medulla-pons and cervical 
spinal cord regions of each animal. Hydrogen peroxide levels were measured in 
each sample using the oxidation of scopoletin and results were expressed as p. moles 
hydrogen peroxide/mg protein ± S.E.M. I I Normal Lewis rats, n = 10; 1 I 1 CFA 
control inoculated Lewis rats, sampled on day 13 P.I., n = 7 and H  EAE-diseased 
Lewis rats, sampled on day 13 P.I., n = 6. *p<0.05, **p<0.01 Mann Whitney U test 
compared to normal animals.
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4.4 EAE Profile of Hydrogen Peroxide Levels in CNS Cytosol

Hydrogen peroxide content was determined in CNS cytosol fractions isolated from 

EAE-inoculated Lewis rats throughout the course of disease to determine a relationship 

between hydrogen peroxide content and the occurance of symptoms.

A similar profile of hydrogen peroxide levels and disease development was 

demonstrated in all CNS areas (Figure 4.4). Hydrogen peroxide content of CNS cytosol 

samples from EAE-sensitised animals before disease onset were no different to normal 

values (Figure 4.4). By comparison, the amount of hydrogen peroxide in CNS fractions 

was significantly elevated when animals displayed peak disease signs (cerebellum 10 ± 2, 

p<0.05; medulla-pons 9 ± 2, p<0.01; cervical spinal cord 5 ± 1, p<0.05, n=6). During 

recovery the hydrogen peroxide content of CNS tissue was below normal values 

(cerebellum 1 ± 0.2, medulla-pons 1+0.1, cervical spinal cord 1 + 0.1)‘ but had returned 

to basal levels by day 28 P.I. (cerebellum 2 ± 0.5, medulla-pons 2 ± 0.5, cervical spinal 

cord 2 + 0.3, n=10) (Figure 4.4).
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Figure 4.4 EAE profile of hydrogen peroxide levels in CNS cytosol.
CNS cytosol was prepared from the a. cerebellum, b. medulla-pons and c. cervical 
spinal cord areas of each animals. Hydrogen peroxide levels were measured by 
oxidation of scopoletin and expressed as p moles hydrogen peroxide/mg protein ± 
S.E.M. I I Normal Lewis rats (N), n = 10; 1 I CFA inoculated rats, sampled 
day 13 P.I., n = 7 and H  EAE-sensitised Lewis rats sampled at day 7 P.I. (D7), 
n = 8; weight loss (WL), n = 7; height of disease (HOD), n = 6; recovery (REC), 
n = 7 and day 28 P.I. (D28), n = 10. *p<0.05, **p<0.01 Mann Whitney U test 
compared to normal animals.
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4 DISCUSSION

4.1 ROS in EAE Pathogenesis

Previous work has implicated ROS in the pathogenesis of EAE and MS (Hartung 

et al. 1992, Levine 1992). Indeed much pharmacological evidence exists to demonstrate 

that scavenging ROS (Lehmann et al. 1994, Hansen et al. 1995), enhancing ROS 

degradation (Ruuls et al. 1995), or interfering with the effector mechanisms of ROS 

production (Bowem et al. 1984, Karlik et al. 1991) prevents disease development in 

experimental models of EAE. Additional studies have identified enhanced production of 

ROS from cells isolated from the CNS of EAE-diseased animals (MacMicking et al. 1992, 

Ruuls et al. 1995). However, the relative contributions of superoxide and hydrogen 

peroxide in the overall CNS generation of ROS by EAE-sensitised rats has not been 

investigated. Thus a protocol was devised to measure CNS levels of superoxide and 

hydrogen peroxide individually.

Superoxide and hydrogen peroxide levels were determined in the cerebellum, 

medulla-pons and cervical spinal tissue from normal, CFA-control and EAE-inoculated 

Lewis rats. Detectable levels of superoxide and hydrogen peroxide were present in the 

CNS of normal animals, but the development of EAE was accompanied by a significant 

elevation in ROS content. These results are in agreement with the findings of 

MacMicking et al. (1992) and Ruuls et al. (1995) who demonstrated a significant increase 

in ROS generation by inflammatory cells isolated from the CNS of EAE-diseased animals. 

In contrast in the current study no significant difference existed between hydrogen 

peroxide levels in CNS tissue from CFA-control inoculated or EAE-sensitised Lewis rats. 

The results suggest that the elevation in hydrogen peroxide detected during EAE are not 

specifically related to disease. By comparison, Ruuls et al. (1995) demonstrated, through 

pharmacological manipulation, that hydrogen peroxide, and not superoxide, was the 

principal mediator in EAE.

Further evidence to implicate superoxide and not hydrogen peroxide in the 

pathogenic mechanisms of EAE is provided by the observation that while CNS superoxide
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content was maximal prior to disease onset, peak levels of hydrogen peroxide were 

detected at the height of neurological deficits. As superoxide decays to hydrogen 

peroxide either spontaneously or via a SOD-catalysed reaction it may be expected that 

during EAE the levels of both species would correspond. However the superoxide and 

hydrogen peroxide values recorded did not correlate suggesting an interference in the 

superoxide dismutation reaction, which may be partly explained by the interaction of NO 

with superoxide to generate peroxynitrite in a process known to limit the production of 

hydrogen peroxide (Guitierrez et al. 1996). Interestingly unlike NO levels, ROS content 

of CNS tissue is only elevated during the induction and active phase of EAE with values 

returning to normal during recovery which provides further evidence of a role for ROS in 

the neurodestructive processes of EAE.

4.2 ROS Production in the CNS

Several mechanisms of ROS production have been identified in biological tissue 

including the xanthine oxidase- (Granger et al. 1981) and NADPH oxidase- (Tauber et al. 

1979) catalysed formation of ROS. In addition, auto-oxidation of catecholamines and 

dopamine results in the synthesis of ROS (Singal et al. 1980). ROS can also be produced 

following NMD A receptor activation (Lafon-Cazal et al. 1993a,b). The reasons for an 

abundance of ROS in the CNS are that metals, which are required for the catalytic 

formation of free radicals, are present in high concentrations in the brain. Additionally, 

the CNS is rich in catecholamines and dopamine which can interact with oxygen to 

produce ROS (Lehmann et al. 1994). Furthermore antioxidant mechanisms are moderated 

in the CNS which would lead to the maintenance of ROS.
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4.3 Cytotoxic Effects of ROS

During EAE a variety of resident CNS cells including microglia, astrocytes and 

neurons (Colton & Gilbert 1987, Chan et al. 1988, Dugan et al. 1995) together with 

infiltrating macrophages and other leukocytes (Nathan etal. 1983, Nathan 1987) are 

capable of generating ROS. The resultant ROS formation may mediate neurotoxicity 

through several mechanisms. One of the primary mechanisms by which ROS are thought 

to mediate CNS damage is through the initiation of a chain reaction of lipid peroxidation 

(Radi et al. 1991). Indeed myelin, present in a lipid rich environment, is particularly 

vulnerable to peroxidation due to the abundance of iron, which catalyses free radical 

reactions (Haliwell et al. 1989). Moreover it has been reported that lipid peroxidation is 

activated during EAE (Stepanenko et al. 1984).

CNS-derived ROS may also contribute to the pathogenesis of neurodegenerative 

disorders through cytotoxic actions on oligodendrocytes (Groit et al. 1990, Kim & Kim

1991). Although the CNS production of ROS may lead to demyelination minimal myelin 

breakdown is observed in the acute EAE model utilised in the present study. Therefore 

the results strongly suggest that ROS may exert other effects in the CNS to mediate 

neurological disease development.

Breakdown of the BBB is a well recognised event in the pathogenesis of EAE 

(Liebowitz 1969). However, the precise mechanisms involved in loss of neurovascular 

integrity have not been fully elucidated. ROS have been proposed as mediators of 

cerebroendothelial disruption in non-immune models of BBB breakdown (Shukla et al. 

1993). Hence the ROS generated in the CNS during EAE may contribute to disease 

development through deleterious effects on neurovascular permeability. Similarly the 

ROS mediated vascular disruption and endothelial cell damage results in oedema 

formation (Butler et al. 1985), which has been closely associated with the aetiology of 

EAE (Wajda 1972).

ROS may also mediate CNS damage in EAE via peroxynitrite formation. 

Peroxynitrite is a powerful oxidant which is generated upon the reaction of superoxide 

with NO (Beckman et al. 1990). As endothelial cells (Beckman et al. 1990), brain cells
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(Pou et al. 1992) and inflammatory cells (Nathan 1987, Rubanyi et al. 1991) are capable 

of producing both NO and superoxide the potential for peroxynitrite formation is 

substantial. The generation of hydroxyl-radical-like oxidants is only one of several 

cytotoxic reactions carried out by peroxynitrite (Beckman et al. 1990) which may initiate 

peroxidation (Radi et al. 1991), inactivate sodium channels (Bauer et al. 1992) or react 

with transition metals to form a powerful nitrating agent (Ischiropoulos et al. 1992). In 

part, peroxynitrite production may induce EAE through effects on the BBB. Endothelial 

cell damage occurs following exposure to peroxynitrite (Beckman et al. 1990, Volk et al. 

1996) which may contribute to the neurovascular disruption and subsequent events 

involved in EAE pathogenesis.

Although the interaction of NO and superoxide is thought to result in the 

generation of a molecule with a greater cytotoxic potential than either species alone some 

studies contradict this proposal. Indeed several investigations have demonstrated that the 

reaction between superoxide and NO may exert a protective effect in pathological 

disorders (Kubes et al. 1991, Choi 1993, Wink et al. 1993a). Therefore as both 

molecules are produced in excess in EAE their precise involvement in disease 

pathogenesis cannot be confirmed in light of recent observations.
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5. RESULTS

Immunosuppressive agent such as Dex and CsA have previously been shown to 

inhibit EAE-development (Komark & Dietrich 1971, Bolton et al. 1982a,b). However, 

the precise mechanisms through which these drugs exert their effects have not been fully 

characterised. Therefore, the effects of Dex and CsA administration on CNS nitrite, 

superoxide and hydrogen peroxide levels in EAE-inoculated Lewis rats were determined.

5.1 Effect of Immunosuppressive Agents on Body Weight Loss and Neurological 

Development of EAE

EAE-sensitised Lewis rats were either injected s.c. with Dex (1 mg/kg body 

weight) twice daily or orally dosed with CsA (50 mg/kg body weight) once daily for two 

days from disease associated weight loss. The doses of Dex and CsA utilised have been 

demonstrated as effectively inhibiting EAE (Paul & Bolton 1995). Additionally, EAE- 

inoculated animals were treated with the appropriate vehicle. Dosed and undosed animals 

were observed daily for body weight changes (Figure 5.1) and neurological disease signs 

(Table 5.1).

Administration of Dex to EAE-diseased rats significantly reduced disease severity 

(p<0.01) and the development of paralytic symptoms (p<0.05) without affecting the 

incidence or onset of neurological EAE (Table 5.1). However, treatment of EAE- 

inoculated animals with PBS vehicle had no effect on the onset or development of 

neurological disease (Table 5.1). In addition, the profile of body weight changes in 

dexamethasone and vehicle treated rats were similar to fluctuations recorded in undosed 

sensitised animals (Figure 5.1a).

Treatment with CsA delayed the onset of EAE (p<0.01), alleviated disease 

severity (p<0.001) and dramatically reduced paralytic symptoms (p<0.01) (Table 5.1). By 

comparison, neurological disease parameters were unaffected by the administration of
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Figure 5.1 Effect of Dex and CsA administration on body weight changes 
Animals were weighed daily. Body weight changes were measured in g and results 
expressed as mean body weight changes ± S.E.M.
a. (—■—) EAE-diseased Lewis rats, n=6; (—O—) EAE-inoculated animals s.c. 
injected with Dex (lmg/kg body weight) twice daily for 2 days from disease 
associated weight loss, n=6; (—• —) EAE-sensitised rats injected s.c. with vehicle 
(PBS, 1 ml/kg body weight) twice daily for 2 days commencing at disease associated 
weight loss, n=6.
b. (—■—) EAE-diseased Lewis rats, n=6; (—A—) EAE-sensitised animals orally 
dosed with CsA (50 mg/kg body weight) once daily for 2 days from disease 
associated weight loss, n=9; (—A—) EAE-inoculated rats orally dosed with vehicle 
(extra virgin olive oil, 2 ml/kg body weight) once daily for 2 days commencing on 
disease associated weight loss, n=10.
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Table 5.1 Neurological symptoms in EAE-sensitised Lewis rats following treatment with Dex (1 mg/kg body weight, s.c., twice 
daily for 2 days from disease associated weight loss), Dex vehicle (PBS, 1 ml/kg body weight, s.c. twice daily for 2 days from 
disease associated weight loss), CsA (50 mg/kg body weight, orally for 2 days from disease associated weight loss) and CsA 
vehicle (extra virgin olive oil, 2 ml/kg body weight, orally for 2 days from disease associated weight loss).

Group Incidence Of EAE Mean Day Of Disease 
Onset ± S.E.M.

Mean Peak Disease 
Severity ± S.E.M.

Number Of Rats 
Paralysed/Total

EAE 9/9 11 ±0.2 3 ±0.3 6/9

Dex 6/6 12 ±0.3 1 ±0.2**** 0/6***
Vehicle 6/6 11 ±0.2 3 ±0.4 4/6

CsA 8/9 13 ±0.2**** 1 ±0.2***** 0/9**
Vehicle 10/10 12 ± 0.1 2 ±0.3 3/10

**p<0.01, ***p<0.001 compared to EAE group.
*p<0.05, **p<0.01 compared to vehicle group.
Differences in mean day of disease onset and mean peak disease severity were analysed using the Mann Whitney U test. 
Differences in the incidence of EAE and the number of rats displaying paralysis were analysed using the Chi-squared test.



vehicle (Table 5.1). Furthermore, the body weight loss experienced by CsA or vehicle 

treated rats was similar to changes observed in undosed sensitised animals (Figure 5.1b).

5.2 Effect of Immunosuppressive Agents on Nitrite Levels in CNS Cytosol

A possible mechanisms through which immunosuppressive agents exert protective 

effects in EAE could be via the inhibition of NO formation. Therefore, nitrite levels were 

determined in CNS cytosol samples from untreated EAE-sensitised animals and rats dosed 

with dexamethasone, cyclosporin A or the appropriate vehicle.

Dex administration significantly reduced nitrite levels in the cerebellum (p<0.01) 

and medulla-pons (p<0.001) of EAE-inoculated Lewis rats to within normal limits (Figure

5.2). However, no decrease in nitrite production in cervical spinal cord cytosol was 

observed following treatment with Dex (Figure 5.2). Moreover, s.c. vehicle treatment of 

EAE-sensitised animals did not significantly alter CNS cytosol nitrite levels in the 

preparations assayed (Figure 5.2).

Nitrite levels in CNS cytosol preparations from EAE-diseased rats were 

significantly diminished by CsA administration (cerebellum p<0.001, medulla-pons 

p<0.001, cervical spinal cord p<0.05) (Figure 5.3). In contrast, vehicle treatment of EAE- 

inoculated animals did not affect the nitrite content of the CNS tissues analysed (Figure

5.3).

5.3 Effect of Immunosuppressive Agents on iNOS Protein Expression in CNS 

Cytosol

Dex and CsA are thought to prevent the formation of iNOS and thus inhibit NO 

and nitrite production (Rees et al. 1990a, Conde et al. 1995). Therefore, the ability of 

these agents to inhibit the production of iNOS protein in the CNS of EAE-diseased 

animals was assessed. iNOS protein expression was determined in CNS cytosol samples 

from EAE-sensitised rats treated with Dex, CsA or appropriate vehicle.

Cytosol samples obtained from the cerebellum, medulla-pons and cervical spinal tissues 

were analysed for the presence of iNOS using SDS-PAGE and immunoblotting
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Figure 5.2 Effect of Dex administration on nitrite levels in CNS cytosol
CNS cytosol was prepared from the cerebellum, medulla-pons and cervical spinal 
cord tissues. Nitrite levels were determined using the Griess assay and 
expressed as \i moles nitrite/mg protein ± S.E.M. I 1 Normal Lewis rats, 
n = 12; EAE-diseased Lewis rats, n = 12; V/A EAE-sensitised Lewis
rats s.c. dosed with Dex (lmg/kg body weight) twice daily for 2 days from 
disease associated weight loss, n = 9; 1111 EAE-inoculated Lewis rats s.c. 
injected with vehicle (PBS, 1 ml/kg body weight) twice daily for 2 days 
commencing from disease associated weight loss, n = 7. **p<0.01, ***p<0.001 
Mann Whitney U test compared to normal animals. ## p<0.01, ### p<0.001 
Mann Whitney U test compared to EAE animals.
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Figure 5.3 Effect of CsA administration on nitrite levels in CNS cytosol
CNS cytosol was prepared from the cerebellum, medulla-pons and cervical spinal 
cord tissues. Nitrite levels were determined using the Griess assay and 
expressed as p. moles nitrite/mg protein ± S.E.M. I I Normal Lewis rats, n = 12;

EAE-diseased Lewis rats, n = 1 2 ; V/A  EAE-sensitised Lewis rats orally 
dosed with CsA (50mg/kg body weight) once daily for 2 days from disease 
associated weight loss, n = 8 ; 11111 EAE-inoculated Lewis rats orally dosed with 
vehicle (extra virgin olive oil, 2 ml/kg body weight) once daily for 2  days 
commencing from disease associated weight loss, n = 8 . **p<0 .0 1 , ***p<0 . 0 0 1  

Mann Whitney U test compared to normal animals. #p<0.05, ###p<0.001 Mann 
Whitney U test compared to EAE animals.
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techniques. iNOS protein levels were analysed semi-quantitatively and differences were 

expressed as a % change compared to normal levels.

5.3.1 Effect of Dex Administration on iNOS Protein Expression in CNS Cvtosol

NOS protein bands were observed at 135 kDa in all CNS cytosol samples blotted 

with an anti-iNOS antibody. However, the detection method utilised differed depending 

on the CNS tissue used. Different detection methods were employed due to the variation 

in sample protein content which required the use of techniques with variable sensitivities. 

Immunoreactive bands were identified in cerebellum cytosol using the PAP complex 

(Figure 5.4) whereas iNOS protein was demonstrated in medulla-pons and cervical spinal 

cord preparations following ECL detection (Figure 5.5).

iNOS expression was elevated in CNS cytosol samples from EAE-inoculated 

animals (cerebellum 27 %, medulla-pons 142 %, cervical spinal cord 29 % above normal) 

(Figure 5.4 and 5.5). Administration of Dex reduced iNOS protein levels in CNS tissues 

from diseased rats (cerebellum 6 %, medulla-pons 31%, cervical spinal cord 3 % above 

normal). However, vehicle treatment did not markedly affect CNS cytosol iNOS 

expression (cerebellum 44 %, medulla-pons 191 %, cervical spinal cord 29 % above 

normal) (Figure 5.4 and 5.5).

5.3.2 Effect of CsA Administration on iNOS Protein Expression in CNS Cvtosol

EAE-diseased Lewis rats showed increased levels of iNOS protein at 135 kDa in 

all samples assayed (cerebellum 45 %, medulla-pons 161 %, cervical spinal cord 76 % 

above normal) (Figure 5.6 and 5.7). In contrast, decreased iNOS expression was 

observed in CNS cytosol preparations from EAE-sensitised animals administered CsA 

(cerebellum 1 %, medulla-pons 53 %, cervical spinal cord 7 % above normal). Following 

vehicle treatment no changes in iNOS protein levels were detected in diseased rats tissues 

(cerebellum 41 %, medulla-pons 137 %, cervical spinal cord 50 % above normal) (Figure 

5.6 and 5.7).
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Figure 5.4 Effect of Dex administration on iNOS protein expression
CNS cytosol was obtained from the cerebellum of normal Lewis rats (N); CFA- 
inoculated rats (CFA); EAE-diseased animals (EAE) and EAE-inoculated rats 
injected s.c. with Dex (1 mg/kg body weight) or vehicle (PBS, 1 ml/kg body 
weight) twice daily for 2 days from disease associated weight loss. CNS cytosol 
proteins were seperated on SDS-gels and following electrophoretic transfer 
samples were blotted with anti-iNOS antibody. iNOS protein was detected using 
PAP complex (A). Densitometric analysis of blots was undertaken and following 
correction for differences in total protein content (B) iNOS levels were expressed 
as % above the normal value. Results shown are representative of 3 seperate 
experiments.
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Figure 5.5 Effect of Dex administration on iNOS protein expression
CNS cytosol was obtained from (A) medulla-pons and (B) cervical spinal tissue of normal 
Lewis rats (N); CFA control inoculated Lewis rats (CFA); EAE-diseased animals 
(EAE); EAE-inoculated animals s.c. injected with Dex (1 mg/kg body weight) or vehicle 
(PBS, 1 ml/kg body weight) twice daily for 2 days from disease associated weight loss 
(Dex and V). Proteins were separated on SDS-gels and following electrophoretic transfer 
were blotted with anti-iNOS antibody. Specific protein was detected using ECL (top panel). 
Densitometric analysis of blots was undertaken and following correction for differences in 
total protein concentrations (bottom panel) results were expressed as a % change from the 
normal value. Results shown are representative of 3 seperate experiments.
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Figure 5.6 Effect of CsA administration on iNOS protein expression
CNS cytosol was obtained from the cerebellum of normal Lewis rats (N); CFA-inoculated 
rats (CFA); EAE-diseased animals (EAE);and EAE-sensitised Lewis rats orally dosed with 
CsA (50 mg/kg body weight) or vehicle (extra virgin olive oil, 2 ml/kg body weight) for 
2 days commencing from disease associated weight loss (CsA and V). Proteins were 
separated on SDS-gels and following electrophoretic transfer they were blotted with 
anti-iNOS antibody. Specific protein was detected using PAP complex (A). Densitometric 
analysis of bands was undertaken and following correction for differences in total protein 
concentrations (B) iNOS levels were expressed as % above normal value. Results shown are 
representative of 3 seperate experiments.
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Figure 5.7 Effect of CsA administration on iNOS protein expression
CNS cytosol was obtained from (A) medulla-pons and (B) cervical spinal tissues of normal 
Lewis rats (N); CFA-inoculated rats (CFA); EAE-diseased animals (EAE); and EAE- 
sensitised Lewis rats orally dosed with CsA (50 mg/kg body weight) or vehicle (extra virgin 
olive oil, 2  ml/kg body weight) for 2  days commencing on disease associated weight loss 
(CsA and V). Cytosol proteins were separated on SDS-gels and following electrophoretic 
transfer they were blotted with anti-iNOS antibody. iNOSprotein was detected using ECL 
(top panel). Densitometric analysis of bands was undertaken and following correction for 
differences in total protein concentrations (bottom panel) iNOS levels were expressed as 
% above normal value. Results shown are representative of 3 seperate experiments.
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5.4 Effect Of Immunosuppressive Agents On ROS Levels

Levels of superoxide and hydrogen peroxide were measured in CNS samples from 

EAE-sensitised Lewis rats treated with Dex or CsA to determine whether the 

immunosuppressive agents inhibit EAE-development through effects on ROS.

Superoxide levels were unaltered in the cerebellum, medulla-pons or cervical 

spinal cord of EAE-inoculated animals following administration of Dex (Figure 5.8a). 

Similarly, treatment of EAE-diseased rats with vehicle had no effect on the superoxide 

content of CNS samples analysed (Figure 5.8a).

Although cerebellar cytosol hydrogen peroxide levels were unchanged in Dex and 

vehicle dosed animals, hydrogen peroxide content of the medulla-pons and cervical spinal 

cord tissues were significantly elevated (p<0.05) (Figure 5.8b).

CsA administration to EAE-sensitised rats had differential effects on ROS levels in 

CNS cytosol. Following treatment with CsA, superoxide levels were reduced in both the 

cerebella and cervical spinal cord cytosols of EAE-diseased rats (Figure 5.9a). However, 

no marked decrease in superoxide content was observed in the medulla-pons tissue of 

EAE-inoculated animals administered CsA. Moreover, vehicle treatment had a similar 

effect on CNS cytosol superoxide levels (Figure 5.9a).

Hydrogen peroxide levels were also decreased in the cerebella of EAE-sensitised 

Lewis rats dosed with CsA (Figure 5.9b). In contrast, no significant reduction in 

hydrogen peroxide was detected in medulla-pons or cervical spinal cord cytosol fractions 

from CsA treated animals (Figure 5.9b). Furthermore, vehicle administration had 

comparable effects on CNS cytosol levels of hydrogen peroxide (Figure 5.9b).

5.5 Effect of Immunosuppressive Agents on Cellular Infiltration

The ability of immunosuppressive agents to prevent inflammatory cell infiltration 

during EAE was assessed by determining the number of perivascular infiltrates in cervical 

spinal cord sections (Figure 5.10). Administration of both Dex and CsA significantly 

reduced cellular migration into cervical spinal cords of diseased animals (p<0.01). 

However, vehicle treatment had no effect on cell infiltration (Table 5.2).
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Figure 5.8 Effect of Dex administration on ROS levels in CNS cytosol
CNS cytosol was prepared from the cerebellum, medulla-pons and cervical spinal 
cord tissues.
a. Superoxide levels were determined using the reduction of ferricytochrome C 
and results were expressed as n moles superoxide/mg protein ± S.E.M.
b. Hydrogen peroxide levels were measured by the oxidation of scopoletin and 
were expressed as g moles hydrogen peroxide/mg protein ± S.E.M.
I I Normal Lewis rats, n = 7; H  EAE-diseased Lewis rats, n = 6 ;
V /A  EAE-sensitised Lewis rats s.c. injected with Dex (lmg/kg body weight) 
twice daily for 2 days from disease associated weight loss, n = 5; l l l l i  EAE- 
inoculated Lewis rats s.c. dosed with vehicle (PBS, lml/kg body weight) twice 
daily for 2 days commencing from disease associated weight loss, n = 5.
*p<0.05, **p<0.01, ***p<0.001 Mann Whitney U test compared to normal 
animals. ^p<0.05 Mann Whitney U test compared to EAE animals.
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Figure 5.9 Effect of CsA administration on ROS levels in CNS cytosol
CNS cytosol was prepared from the cerebellum, medulla-pons and cervical spinal 
cord tissues.
a. Superoxide levels were determined using the reduction of ferricytochrome C 
and results were expressed as n moles superoxide/mg protein ± S.E.M.
b. Hydrogen peroxide levels were measured by the oxidation of scopoletin and 
were expressed as p. moles hydrogen peroxide/mg protein ± S.E.M.
I I Normal Lewis rats, n = 7; H  EAE-diseased Lewis rats, n = 6 ;
V /A  EAE-sensitised Lewis rats orally dosed with CsA (50mg/kg body 
weight) once daily for 2 days from disease associated weight loss, n = 5;
11111 EAE-inoculated Lewis rats orally dosed with vehicle (extra virgin 
olive oil, 2 ml/kg body weight) once daily for 2  days commencing from 
disease associated weight loss, n = 5. *p<0.05, **p<0.01, ***p<0.001 
Mann Whitney U test compared to normal animals. p<0.01Mann Whitney 
U test compared to EAE animals.
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Figure 5.10 Effect of immunosuppressive agents on cellular infiltration during EAE
Cellular infiltration in haematoxylin and eosin stained cervical spinal cord samples from EAE-inoculated 
animals following treatment with A) Dex (1 mg/kg body weight, s.c., twice daily for 2 days from disease 
associated wieght loss), B) PBS vehicle (1 ml/ kg body weight, s.c., twice daily for 2 days from disease 
associated wieght loss), C) CsA (50 mg/kg body weight, orally, daily for 2 days from disease associated 
wieght loss) and D) Extra virgin olive oil (1 ml/ mg/kg body weight, orally, daily for 2 days from disease 
associated wieght loss). Magnification x40.



Table 5.2 Perivascular infiltrates in cervical spinal cord samples from EAE- 
sensitised Lewis rats following treatment with Dex (1 mg/kg body weight, s.c., twice 
daily for 2 days from disease asssociated weight loss), CsA (50 mg/kg body weight, 
orally, daily for 2 days from disease associated weight loss) or the appropriate 
vehicle.

Group Mean Number of Lesions*/10 mm Section 

(± S.E.M.)

EAE 53 ± 4

Dex 11 ±

Vehicle 47 ± 4

CsA 24 ± 1

Vehicle 37 ±3

a Sections were cut at one standard depth, stained with haematoxylin and eosin and the 
total number of lesions per section was determined using light microscopy (x40). Values 
are means of IB sections from 3 animals ± S.E.M. ***p<0.001 Mann Whitney U test 
compared to EAE group. Mp<0.01, H*p<0.001 Mann Whitney U test compared to vehicle 
group.
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5. DISCUSSION

The immunosuppressive actions of Dex and CsA during EAE will be considered 

with respect to modulation of NO production, ROS generation and other anti

inflammatory effects.

5.1 Immunosuppression of EAE

5.1.1 Glucocorticoids

Many studies have demonstrated the inhibitory effect of prophylactic or 

therapeutic steroid treatment on EAE disease severity (Komarek & Dietrich 1971, Levine 

& Sowinski 1980, Bolton & Flower 1989, Desari & Barton 1989). In addition to actions 

on EAE, high-dose steroid therapy has been effectively utilised for the management of MS 

(Durelli etal. 1986, Troiano etal. 1987, Compston 1988, Milanese etal. 1989, Beck et 

al. 1993, Kupersmith et al. 1994, La Mantia et al. 1994). In this study therapeutic 

administration of the glucocorticoid, dexamethasone (Dex), dramatically reduced the 

development of neurological EAE. These results are in agreement with data obtained 

previously (Paul & Bolton 1995).

Endogenous glucocorticoids also have a marked effect on EAE development. 

Apparently insignificant stressers such as animal handling have been found to elevate 

corticosterone levels and ameliorate EAE (Levine et al. 1962). Moreover endogenous 

steroids are thought to be associated with the spontaneous recovery detected in EAE- 

diseased rats and mice (Levine et al. 1962, Mackenzie et al. 1989, Bolton et al. in press). 

Corticosteroid levels are observed to increase 10 fold during the expression of peak 

disease symptoms but fall to normal levels when signs of EAE resolve (MacPhee et al. 

1989). Further evidence for the important role played by endogenous corticosteroids is 

provided by work demonstrating that adrenalectomy or treatment with the steroid
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receptor antagonist, RU38486, markedly exacerbates neurological EAE (Levine et al. 

1962, Bolton & Flower 1989, MacPhee etal. 1989).

5.1.2 CsA

Several studies have established that the immunomodulatory agent, CsA 

suppresses both actively induced (Bolton et al. 1982b, Hinrichs et al. 1983, Mustafa et al. 

1993, Branisteanu et al. 1995) and adoptively transferred EAE (Bolton et al. 1982a, 

Bolton 1992). Furthermore, CsA has been utilised in the treatment of chronic relapsing 

forms of the disease (Feurer et al. 1988, Kovarik et al. 1995). High dose CsA has also 

been used in the management of MS (Rudge et al. 1989, Ruutiainen et al. 1991), but the 

effectiveness of treatment has been associated with toxic side effects. The results of the 

present study reconfirm that administration of CsA delays the onset and decreases the 

severity of neurological deficits in EAE.

5.2 Immtinosuppresion of NO

5.2.1 Glucocorticoids

Corticosteroids have many potent anti-inflammatory and immunosuppressive 

effects (Figure 5.11), some of which may be important in EAE modulation following Dex 

treatment. For example, glucocorticoids have previously been shown to prevent NO 

synthesis by inducible isoforms of NOS (Di Rosa et al. 1990, Radomski et al. 1990, 

Brenner et al. 1994). Glucocorticoids have been shown to inhibit NO production at the 

level of enzyme expression, activity and effector function (Figure 5.12). As neurological 

development of EAE was characterised by an elevation in CNS levels of iNOS protein and 

nitrite, Dex administration may inhibit NO formation during EAE and so reduce disease 

severity. Interestingly nitrite levels in the cerebellum and medulla-pons tissues of EAE- 

diseased rats were decreased by the administration of Dex.
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5.2.1.1 Inhibition o f iNOS Expression

Dex prevents NO formation by inhibiting the expression of iNOS (Rees et al. 

1990a, McCall et al. 1991b, O’Connor & Moncada 1991, Palmer etal. 1992, Baydoun et 

al. 1993, Haddad et al. 1995). However, the site of action at which Dex prevents iNOS 

induction is unknown. Dex may inhibit the induction of NOS directly or indirectly by 

preventing the synthesis or activity of cytokines, such as TNF-a, which are responsible for 

induction of the enzyme

5.2.1. la  Direct Effects.

Direct inhibition of NOS expression by glucocorticoids can occur at the level of 

gene transcription or translation (Kunz et al. 1996). Dex was observed to prevent the 

induction of mRNA for iNOS (Geller et al. 1993b). However, the molecular mechanism 

of this effect has not been elucidated. Dex may inhibit gene expression by binding to the 

regulatory element in the 5’ flanking region of target genes and thereby block gene 

transcription (Beato 1989, Barnes & Adcock 1993). Alternatively, interactions between 

Dex and other transcription factors such as NF-kB (Mukaida et al. 1994, Van de Stolpe et 

al. 1994, Kleinert et al. 1996) or AP-1 (Jonat et al. 1990) have been suggested to mediate 

gene repression by glucocorticoids. In addition, Dex may exert post-transcriptional 

effects on the synthesis and stability of iNOS (Kunz et al. 1996).

5.2.1. lb  Indirect Effects

Indirect actions of Dex to inhibit NO formation may proceed via several 

mechanisms. For example, corticosteroids may prevent PKC-mediated NO production 

(Neary et al. 1988). Indeed, Dex inhibits PKC activity with a concomitant reduction in 

NO (Jun et al. 1994). Glucocorticoids may prevent NO formation via an inhibition of 

TNF-a (Brenner et al. 1993) which has been identified as a principal cytokine involved in 

iNOS induction (Nathan 1992). Therefore, TNF-a inhibition by Dex may indirectly 

decrease NO production. Finally work suggests the inhibition of NOS by Dex may be 

mediated via lipocortin-1 (Wu et al. 1995).
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5.2.1.2 Possible Actions in EAE

In the present investigation iNOS protein was markedly reduced in CNS tissues 

from EAE-sensitised Lewis rats administered Dex. Therefore, Dex may function to 

prevent the transcription or translation of iNOS during disease. iNOS has been implicated 

in EAE aetiology (Koprowski et al. 1993), and the protective effects of Dex treatment 

may be mediated, at least in part, via iNOS inhibition. Dex suppression of iNOS during 

EAE may occur through direct effects on protein transcription or translation. In addition, 

steroid treatment may indirectly affect iNOS as a consequence of a decrease in CNS levels 

of TNF-a. TNF-a has been implicated in the pathogenesis of EAE (Brosnan et al. 1988, 

Selmaj et al. 1988, Powell et al. 1990, Kuroda & Shimamoto 1991) and one of the 

effector mechanisms may be the induction of iNOS. Therefore Dex administration to 

EAE-diseased rats may reduce TNF-a and concomitantly decrease iNOS expression.

5.2.1.3 Other Inhibitory Effects

In addition to effects on enzyme expression Dex may directly inhibit NOS activity 

or scavenge NO to cause a reduction in nitrite levels (Cetkovic-Cvrlje et al. 1993). 

Moreover recent reports have suggested that glucocorticoids regulate iNOS through 

actions on enzyme cofactor and substrate availability (Simmons et al. 1996).

The decrease in CNS nitrite levels observed following Dex administration to EAE- 

diseased rats may occur as a consequence of limited co-factor availability, direct inhibition 

of NOS or scavenging of NO. However, further work would be required to confirm if any 

of these mechanisms are occurring.

5.2.1.4 Upregulation o f cNOS

Although Dex prevents the induction of iNOS, it has also been demonstrated to 

upregulate cNOS-dependent NO formation (Baltrons et al. 1995). Furthermore, Kiel et 

al. (1995) have reported that in vivo administration of Dex does not alter ex vivo nitrite 

levels. Therefore, under certain circumstances Dex does not inhibit NO production. 

Interestingly, in the present study, no reduction in cervical spinal cord nitrite levels were
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detected in glucocorticoid treated animals. However a reduction in iNOS protein 

expression was observed in the sample tissue. This observation may be accounted for by 

the ability of Dex to increase the activity of other NOS enzymes and so overcome the 

reduction in NO produced by iNOS. However, enzyme activity measurements would 

need to be undertaken to validate the hypothesis.

5.2.2 CsA

Although the immunosuppressive effects of CsA on EAE appear to be mediated 

primarily via T cell modification (Klaus 1981, Killen & Swanborg 1982) other 

immunomodulatory mechanisms may be involved. Indeed CsA has been shown to prevent 

NO production (Miihl et al. 1993, Conde et al. 1995, Kunz et al. 1995, Marunmo et al. 

1995). Similarly immunomodulation of EAE by CsA may proceed via NO inhibition as 

nitrite levels were decreased in the CNS of drug treated animals.

CsA may prevent NO formation through effects on the expression and activity of 

iNOS (Conde et al. 1995, Hattori & Nakaisha 1995). In contrast to inhibition of NO by 

Dex, CsA has not been identified as limiting co-factor and substrate availability (Hattori & 

Nakaisha 1995) nor has the drug been shown to directly scavenge NO. Inhibition of NOS 

expression by CsA is reported to be mediated via similar effector mechanisms to those 

elucidated for iNOS downregulation by Dex. Therefore, CsA affects iNOS expression, at 

least in part, at the level of transcription (Miihl et al. 1993, Marumoto et al. 1995). 

Furthermore, NOS induction is prevented by CsA inhibiting the activation of transcription 

factors such as NF-kB (Kunz et al. 1995, Marumoto et al. 1995). Additionally CsA may 

directly inhibit NOS activity by binding to the calmodulin site on the enzyme resulting in 

inactivation (Conde et al. 1995).

In the present study CsA was observed to decrease iNOS protein expression in 

CNS tissue from EAE-sensitised rats. The results suggest that the reduction in CNS 

nitrite levels detected in drug treated animals may result from an inhibition of iNOS 

expression. However as the effects of CsA on iNOS activity in diseased rats were not
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assessed, the decrease in CNS nitrite content may also arise from a reduction in enzyme 

activity.

5.3 Immunosuppression of ROS

5.3.1 Glucocorticoids

Although glucocorticoid effects on ROS production have been extensively 

examined, contradictory results have been reported. In vitro studies have established 

inhibitory (Rist & Naftalin 1993, Rosnel et al. 1995), stimulatory (Haar & Nielson 1988) 

or no effect (Dieter etal. 1986, Schaffner & Schaffher 1987, Cox 1995) of Dex on ROS 

production. In vivo data demonstrating the effect of glucocorticoids is scant, however, 

superoxide anion production in peritoneal inflammatory exudates was unaltered following 

corticosterone administration (Fleming etal. 1990).

The results of the present study indicate that Dex treatment did not alter CNS 

superoxide levels in EAE-diseased rats and reconfirm the previous in vivo observations of 

Fleming et al. (1990). However, hydrogen peroxide levels were significantly elevated in 

medulla-pons and cervical spinal tissue of EAE-sensitised animals administered Dex. 

Similar results were observed in vehicle treated rats suggesting a non-specific effect on 

hydrogen peroxide. Therefore, the results of this investigation implies Dex does not exert 

immunosuppressive effects on the development of EAE via ROS modulation.

5.3.2 CsA

CsA has been shown to inhibit the production of ROS in human neutrophils and 

murine macrophages (Chiara et al. 1989, Wenzel-Seifert et al. 1991, Kurokawa et al. 

1992). However, differential effects of CsA have been observed on ROS generation in 

resting and activated macrophages (Chiara & Sobrino 1991). Furthermore, the present 

data demonstrate a disparity in ROS levels in CNS tissues of EAE-diseased animals 

following CsA administration. Whereas both superoxide and hydrogen peroxide levels 

were reduced in cerebellar tissue of drug treated rats, only the superoxide content was
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decreased in cervical spinal cord following administration of CsA. Moreover, drug 

treatment did not alter superoxide or hydrogen peroxide content in other CNS areas 

examined which may be accounted for by the ability of CsA to prevent ROS production 

from resting but not activated macrophages (Chiara & Sobrino 1991). However, the 

decrease in ROS levels following drug administration may be due to non-specific effects 

as similar inhibition was observed upon vehicle treatment. Therefore, CsA does not 

appear to exert immunosuppressive effects on EAE by altering CNS levels of ROS.

5.4 Additional Immunosuppressive Actions

5.4.1 Glucocorticoids

In addition to effects on NO production Dex administration may prevent EAE 

development through inhibitory actions on several other important inflammatory 

mediators (Hartung etal. 1992, Barnes 1995) (Figure 5.11). For example, corticosteroids 

have been shown to prevent the transcription of several cytokines such as IL-1, IL-6, 

TNF-a and IFN-y which have been implicated in the pathogenesis of EAE (Laurenzi et 

al. 1990, Mustafa etal. 1991, Merril etal. 1992, Willenborg 1995). Furthermore, 

glucocorticoids inhibit the induction of genes coding for cyclooxygenase and 

phospholipase A2, both of which may play a role in EAE (Wecker et al. 1991).

5.4.1.1 Adhesion Molecules

Another group of molecules thought to be important in EAE pathogenesis which 

are inhibited by Dex are the adhesion molecules (Cannella et al. 1991, Archelos et al.

1993, Willenborg et al. 1993). Adhesion molecules play a key role in the trafficking of 

inflammatory cells into the CNS during EAE (Raine et al. 1990, O’Neil et al. 1991). 

However adhesion molecule expression can be reduced by corticosteroids.

Glucocorticoids can directly inhibit the expression of adhesion molecules at the level of 

gene transcription (Cronsterin et al. 1992, Aziz & Wakefield 1996). Furthermore, 

steroids may indirectly prevent expression via inhibitory effects on cytokines such as IL-1
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and TNF-a which invariably upregulate the expression of adhesion molecules (Hughes et 

al. 1988). As a consequence of reducing adhesion molecule expression, infiltration of 

inflammatory cells into the CNS may be prevented. Indeed, the number of perivascular 

infiltrates within the spinal cord of EAE-diseased animals was significantly decreased 

following Dex treatment. Hence Dex administration may inhibit neurological EAE by 

preventing the CNS infiltration of immunocompetent cells.

5.4.1.2 BBB Breakdown

Additionally, Dex may prevent EAE through an inhibition of BBB breakdown. 

Disruption of the BBB has been identified as a fundamental event in the development of 

EAE. Furthermore, Dex administration has been shown to reduce the cerebrovascular 

permeability associated with EAE (Paul & Bolton 1995). Such BBB permeability 

alterations may subsequently restrict the passage of immunocompetent cells into the CNS 

and so prevent the neurological development of disease.

5.4.1.3 T cells

Corticosteroids may exert a longer lasting effect to suppress the development of 

EAE by altering the cytokine profile of CD4+ T lymphocytes responsible for disease 

induction (Ramirez et al. 1996). Dex administration can induce a pattern of cytokine 

production characteristic of a Th2 response. Levels of IL-4, EL-10 and IL-13 mRNA 

were observed to increase following Dex treatment whereas IFN-y and TNF-a synthesis 

were decreased. Although the mechanisms responsible for the changes in cytokine 

expression are unknown it is possible that corticosteroids induce the differentiation of a 

Th2 response in CD4+ T cells, or that differential expansion of resident Th2 cells occurs in 

the presence of Dex (Ramirez et al. 1996).
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5.4.1.4 Lipocortins

The immunosuppressive effects of Dex during EAE may be mediated by the CNS 

induction of anti-inflammatory effector proteins termed lipocortins (Flower 1988). 

Lipocortins have previously been identified in the CNS of EAE-diseased animals (Bolton 

et al. 1990) and later studies proposed that lipocortins may be involved in typical 

corticosteroid-induced recovery from EAE (Elderfield et al. 1993). Therefore, in this 

study Dex administration may aid in the prevention of EAE by enhancing lipocortin 

production.

5.4.2 CsA

The immunosuppressive properties of CsA can be largely attributed to the 

inhibition of T cell activation (Borel etal. 1976, Cantoni etal. 1994) (Figure 5.13).

Indeed CsA interferes with the activity of a Ca2+-regulated signalling pathway in T 

lymphocytes (Morris 1994, Mattila 1996). T cells are vital for the induction of EAE. 

Therefore the drug may prevent neurological disease development by inhibiting T cell 

activation and proliferation . In addition, CsA may prevent EAE by increasing T 

lymphocyte production of IL-13 (Van der Pouw Kraan et al. 1996). IL-13 is an 

immunomodulatory cytokine which has previously been demonstrated to exert inhibitory 

effects in EAE (Cash et al. 1994). CsA may also mediate its effects on EAE via an 

inhibition of adhesion molecules (Molossi et al. 1995). A decrease in adhesion molecule 

expression may result in reduced CNS inflammatory cell infiltration. Furthermore, drug 

administration caused a significant reduction in perivascular infiltrates in the spinal cord of 

EAE-sensitised Lewis rats. Therefore, CsA may alter neurological EAE by preventing the 

CNS influx of immunocompetent cells. Inflammatory cell infiltration and subsequent 

disease development may also be inhibited through direct drug actions on the permeability 

of the BBB. Indeed, CsA administration has previously been observed to reduce 

neurovascular disruption during EAE and suppress disease development (Paul & Bolton 

1995).
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Plasma Membrane

*

Early activation: Protein tyrosine kinases, 
phospholipase C, inositol triphosphate generation
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Figure 5.13 Inhibition of T cell responses by CsA
Stimulation via the T cell receptor/CD3 complex induced activation of protein tyrosine 
kinases and phospholipase C, leading to the generation of inositol trisphosphate. (IP3).
The IP3 release increases the concentration of intracellular Ca2+ which activates calmodulin 
(CaM) and CaM-dependent enzymes. The Ca2+- and CaM-dependent phosphatase, 
calcineurin (CN) is a direct target of CsA. CN is involved in several T lymphocyte 
activation responses via dephosphorylation of critical phosphoprotein substrates. Therefore, 
the binding of CsA to CN prevents T cell activation. (Modified from Fruman et al. 1994)
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CHAPTER 6 

NOS INHIBITORS
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6. RESULTS

As established neurological EAE was characterised by a significant elevation in 

CNS cytosol nitrite levels, NOS inhibitors were administered to EAE-inoculated Lewis 

rats to determine the effect that reducing NO would have on EAE development. Animals 

sensitised for EAE were treated with one of 3 different NOS inhibitors. Each NOS 

inhibitor employed has varying selectivity for the 3 NOS isoforms. L-NAME was utilised 

as a non-selective inhibitor of both c and iNOS whereas 7-NI and AG were used to 

selectively inhibit b and iNOS respectively (Rees et al. 1990b, Griffiths et al. 1993, Moore 

etal. 1993).

6.1 Effect of NOS Inhibitors on Body Weight Loss and Neurological Development of 

EAE

All untreated EAE-inoculated rats developed neurological signs of disease with the 

majority of animals suffering paralytic symptoms (Table 6.1). Administration of the dual 

NOS inhibitor, L-NAME, had no suppressive effect on neurological disease (Table 6.1).

In contrast, treatment with i.p. vehicle significantly suppressed the development of 

paralytic EAE (p<0.05) together with the severity of disease symptoms (p<0.01) (Table

6.1). However, the profile of body weight changes in L-NAME and vehicle treated rats 

was similar to fluctuations recorded in undosed inoculated animals (Figure 6.1).

Treatment with either 7-NI or vehicle reduced the incidence of EAE, significantly 

alleviated disease severity (p<0.001) and dramatically reduced paralytic symptoms 

(p<0.001) (Table 6.1). By comparison, weight loss in 7-NI and vehicle treated animals 

were similar to changes observed in undosed EAE-sensitised rats (Figure 6.1).

Dosing animals with the iNOS inhibitor, AG or s.c. vehicle did not suppress the 

onset or development of neurological disease (Table 6.1). In addition, body weight loss 

experienced by rats receiving the drug was not typically in excess of values recorded for 

inoculated or vehicle treated animals (Figure 6.1).
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Figure 6.1 Effect of NOS inhibitors administration on body weight
Animals were weighed daily and changes in body weight were measured in g and 
expressed as mean body weight change ± S.E.M.
a. (—■—) EAE-diseased Lewis rats, n=8; (—O—) EAE-sensitised animals i.p. 
injected with L-NAME (30 mg/kg body weight) from days 7 to 12 P.I., n=l 1;
(—• —) EAE-inoculated rats injected i.p. with vehicle (PBS, 1 ml/kg body weight) 
from days 7 to 12 P.I., n=l 1.
b. (—■—) EAE-diseased animals, n=8; (—A—) EAE-inoculated Lewis rats i.p. 
injected with 7-NI (10 mg/kg body weight) from days 7 to 12 P.I., n= 14;
(—A—) EAE-sensitised rats dosed i.p. with vehicle (peanut oil, 1 ml/kg body 
weight) from days 7 to 12 P.I., n=12.
c. (—■—) EAE-diseased Lewis rats, n=8; (—O—) EAE-sensitised rats injected 
s.c. with AG (200 mg/kg body weight) from day 1 to 12 P.I., n=12;
(—♦ —) EAE-inoculated animals injected s.c. with vehicle (PBS, 1 ml/kg body 
weight) from day 1 to 12 P.I., n=12.
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Table 6.1 Neurological symptoms in EAE-sensitised Lewis rats following treatment with L-NAME (30 mg/kg body weight, 
i.p., days 7 to 12 P.I.); L-NAME vehicle (PBS, 1 ml/kg body weight, i.p., days 7 to 12 P.L); 7-NI (10 mg/kg body weight, i.p., 
days 7 to 12 P.I.); 7-NI vehicle (peanut oil, 1 ml/kg body weight, i.p., days 7 to 12 P.I.); AG (200 or 400 mg/kg body weight, 
s.c., days 1 to 12 P.I.) and AG vehicle (PBS, 1 ml/kg body weight, s.c., days 1 to 12 P.I.).

Group Incidence Of EAE Mean Day Of Disease 
Onset ± S.E.M.

Mean Peak Disease 
Severity ± S.E.M.

Number Of Rats 
Paralysed/Total

EAE 16/16 12 ± 1 3 ±0.2 11/16

L-NAME 15/15 12 ± 1 3 ± 0.21 8/15
Vehicle 23/24 12 ± 1 2 ±0.2** 7/24*

7-NI 14/18* 12 ± 1 1 ±0.2*** 2/18***
Vehicle 15/18 12 ±1 2 ±0.2*** 2/18***

AG (200) 12/12 11 ± 1 3 ±0.2 8/12
AG (400) 6/6 11±1 3 ±0.3 3/6
Vehicle 18/18 12 ± 1 2 ±0.3 6/18*

*p<0.05, **p<0.01, ***p<0.001 compared to EAE group.
*p<0.05 compared to vehicle group.
Differences in mean day of disease onset and mean peak disease severity were analysed using the Mann Whitney U test. 
Differences in the incidence of EAE and the number of rats displaying paralysis were analysed using the Chi-squared test.



6.2 Effect of NOS Inhibitor Administration on Nitrite Levels in CNS Cytosol

Nitrite levels were measured in CNS cytosol preparations from dosed and 

untreated EAE-diseased animals to confirm that NOS inhibitors did prevent NO 

formation.

Treatment of EAE-diseased animals with L-NAME decreased nitrite levels in all 

CNS extracts to within normal limits (cerebellum p<0.01, medulla-pons p<0.001) (Figure

6.2). In contrast, nitrite concentrations in samples from vehicle treated rats were 

comparable to levels recorded in tissues from undosed EAE-diseased animals (Figure 6.2).

7-NI administration significantly reduced CNS cytosol nitrite levels in EAE- 

sensitised rats (cerebellum p<0.001, medulla-pons p<0.001, cervical spinal cord p<0.01) 

(Figure 6.3). Furthermore, nitrite levels in cerebellar cytosol extracts from EAE- 

inoculated animals treated with i.p. peanut oil vehicle were significantly decreased 

(p<0.01). However, nitrite content in medulla-pons and cervical spinal cord tissue from 

vehicle dosed rats were similar to values obtained in untreated diseased animals (Figure

6.3).

EAE-sensitised Lewis rats dosed with AG had significantly diminished CNS nitrite 

levels (cerebellum p<0.05, medulla-pons p<0.01, cervical spinal cord p<0.05) (Figure

6.4). Moreover, medulla-pons cytosol samples from vehicle treated animals had 

significantly reduced nitrite levels (p<0.05). By comparison, no significant differences in 

nitrite content were recorded in cerebellar or cervical spinal cord tissue of EAE-diseased 

rats following treatment with PBS vehicle (Figure 6.4). Finally, CNS cytosol nitrite levels 

were not significantly different between AG and vehicle treated rats (Figure 6.4).

6.3 Effect of NOS Inhibitor Administration on ROS Levels in CNS Cytosol

The superoxide scavenging capacity of NO has previously been documented 

(Guitierrez et al. 1996), therefore decreasing NO synthesis may alter the production of 

ROS. Consequently superoxide and hydrogen peroxide levels were measured in CNS
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Figure 6.2 Effect of L-NAME administration on nitrite levels in CNS cytosol
CNS cytosol was prepared from the cerebellum, medulla-pons and cervical spinal 
cord tissues. Nitrite levels were determined using the Griess assay and 
expressed as p. moles nitrite/mg protein ± S.E.M. | I Normal Lewis rats, n = 12;

|  EAE-diseased Lewis rats, n = 12; V/A EAE-sensitised Lewis rats i.p. 
injected with L-NAME (30mg/kg body weight) days 7 to 12 P.I., n = 10; 
l l l i i  EAE-inoculated Lewis rats dosed i.p. with vehicle (PBS, 1 ml/kg body weight) 
days 7 to 12 P.I., n = 13. **p<0.01, ***p<0.001 Mann Whitney U test compared to 
normal animals. ##p<0.01, ###p<0.001 Mann Whitney U test compared to EAE 
animals.
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Figure 6.3 Effect of 7-NI administration on nitrite levels in CNS cytosol
CNS cytosol was prepared from the cerebellum, medulla-pons and cervical spinal 
cord tissues. Nitrite levels were determined using the Griess assay and 
expressed as p moles nitrite/mg protein ± S.E.M. I I Normal Lewis rats, n = 12;

EAE-diseased Lewis rats, n = 12; V/A  EAE-sensitised Lewis rats i.p. 
injected with 7-NI (10 mg/kg body weight) days 7 to 12 P.I., n = 12;
H il l  EAE-inoculated Lewis rats dosed i.p. with vehicle (peanut oil, 1 ml/kg body 
weight) days 7 to 12 P.I., n = 12. *p<0.05, **p<0.01, ***p<0.001 Mann Whitney 
U test compared to normal animals. ##p<0.01, ###p<0.001 Mann Whitney U test 
compared to EAE animals.
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Figure 6.4 Effect of AG administration on nitrite levels in CNS cytosol 
CNS cytosol was prepared from the cerebellum, medulla-pons and cervical spinal 
cord tissues. Nitrite levels were determined using the Griess assay and 
expressed as g moles nitrite/mg protein ± S.E.M. | | Normal Lewis rats, n = 12;

|  EAE-diseased Lewis rats, n = 12; V/A  EAE-sensitised Lewis rats s.c. 
injected with AG (200mg/kg body weight) days 1 to 12 P.I., n = 11;
1111 EAE-inoculated Lewis rats dosed s.c. with vehicle (PBS, 1 ml/kg body 
weight) days 1 to 12 P.I., n= 11. *p<0.05, **p<0.01, ***p<0.001 Mann

jj

Whitney U test compared to normal animals. p<0.05, p<0.01 Mann Whitney 
U test compared to EAE animals.
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cytosol samples from drug treated animals to determine if NOS inhibitors effect ROS 

generation in EAE-diseased Lewis rats..

6.3.1 Effect of L-NAME Administration on ROS Levels in CNS Cvtosol

Superoxide levels in the cerebellum and cervical spinal cord of EAE-diseased 

animals were unaffected by the administration of L-NAME (Figure 6.5a). In contrast, the 

superoxide content of medulla-pons cytosol fraction was significantly reduced following 

L-NAME treatment (p<0.05) (Figure 6.5a). Similarly, administration of i.p. PBS vehicle 

to EAE-sensitised rats did not significantly alter cerebellar or cervical spinal cord cytosol 

superoxide levels but significantly decreased superoxide content of medulla-pons tissue 

(p<0.05) (Figure 6.5a). No differences existed between the superoxide content of L- 

NAME or vehicle treated animals CNS cytosol (Figure 6.5a).

Administration of L-NAME significantly reduced CNS cytosol hydrogen peroxide 

levels in EAE-inoculated animals (cerebellum p<0.05, medulla-pons p<0.01, cervical 

spinal cord p<0.05) (Figure 6.5b). In addition hydrogen peroxide levels in CNS cytosol 

extracts from vehicle treated animals were reduced (Figure 6.5b).

6.3.2 Effect of 7-NI Administration on ROS Levels in CNS Cvtosol

Treatment of EAE-diseased Lewis rats with 7-NI had no effect on cerebellar 

cytosol superoxide content but significantly decreased the levels in medulla-pons and 

cervical spinal cord tissues (p<0.01) (Figure 6.6a). Furthermore, vehicle administration 

had comparable effects on the superoxide content of CNS cytosol from EAE-inoculated 

animals (Figure 6.6a).

Hydrogen peroxide levels in the cerebella of EAE-sensitised animals were 

significantly reduced by 7-NI administration (p<0.05) (Figure 6.6b). By comparison, 

medulla-pons and cervical spinal cord cytosol hydrogen peroxide content was not 

significantly altered following treatment with 7-NI (Figure 6.6b). Administration of i.p. 

peanut oil vehicle significantly decreased hydrogen peroxide levels in cerebella and 

medulla-pons tissue (p<0.05) but not in cervical spinal cord cytosol (Figure 6.6b).
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Figure 6.5 Effect of L-NAME administration on ROS levels in CNS cytosol
CNS cytosol was prepared from the cerebellum, medulla-pons and cervical spinal 
cord tissues.
a. Superoxide levels were determined using the reduction of ferricytochrome C 
and results were expressed as n moles superoxide/mg protein ± S.E.M.
b. Hydrogen peroxide levels were measured by the oxidation of scopoletin and 
were expressed as fi moles hydrogen peroxide/mg protein ± S.E.M.
I I Normal Lewis rats, n = 7; EAE-diseased Lewis rats, n = 6;
V /A  EAE-sensitised Lewis rats i.p. injected with L-NAME (30mg/kg body 
weight) on days 7 to 12 P.I., n = 7; l i t l l  EAE-inoculated Lewis rats dosed 
i.p. with vehicle (PBS, lml/kg body weight) from day 7 to 12 P.I., n = 7.
*p<0.05, **p<0.01, ***p<0.001 Mann Whitney U test compared to normal 
animals. p<0.05, p<0.01 Mann Whitney U test compared to EAE animals.
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Figure 6.6 Effect of 7-NI administration on ROS levels in CNS cytosol
CNS cytosol was prepared from the cerebellum, medulla-pons and cervical spinal 
cord tissues.
a. Superoxide levels were determined using the reduction of ferricytochrome C 
and results were expressed as n moles superoxide/mg protein ± S.E.M.
b. Hydrogen peroxide levels were measured by the oxidation of scopoletin and 
were expressed as p moles hydrogen peroxide/mg protein ± S.E.M.
I I Normal Lewis rats, n = 7; B  EAE-diseased Lewis rats, n = 6;
V /A  EAE-sensitised Lewis rats i.p. injected with 7-NI (10 mg/kg body weight) 
from days 7 to 12 P.I., n = 6; III! EAE-inoculated Lewis rats i.p. injected 
with vehicle (PBS, lml/kg body weight) from days 7 to 12 P.I., n = 6. *p<0.05, 
**p<0.01, ***p<0.001 Mann Whitney U test compared to normal animals. 
#p<0.05, ##p<0.01 Mann Whitney U test compared to EAE animals.
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6.3.3 Effect of AG Administration on ROS Levels in CNS Cvtosol

EAE-inoculated Lewis rats treated with AG showed significantly reduced 

superoxide levels in cytosol from medulla-pons tissue (p<0.05) (Figure 6.7a). However, 

superoxide content in cerebellar and cervical spinal cord tissue were unaffected by AG 

administration (Figure 6.7a). Moreover CNS cytosol superoxide levels were unaffected 

by s.c. vehicle treatment of EAE-sensitised rats (Figure 6.7a).

AG administration significantly reduced CNS cytosol levels of hydrogen peroxide 

in EAE-diseased animals (p<0.05) (Figure 6.7b). Vehicle treatment did not alter medulla- 

pons or cervical spinal cord hydrogen peroxide levels but did significantly decrease the 

content of cerbella cytosol preparations (p<0.05) (Figure 6.7b).

6.4 Effect of NOS Inhibitors On Cellular Infiltration

The ability of NOS inhibitors to alter inflammatory cell infiltration during EAE 

were assessed by determining the number of perivascular infiltrates in cervical spinal cord 

sections (Figure 6.8).

Administration of L-NAME or vehicle did not effect cell migration during EAE 

(Table 6.2). By comparison, 7-NI and peanut oil vehicle treatment significantly reduced 

cellular infiltration in EAE (p<0.01) (Table 6.2). Similarly, dosing with AG or s.c. vehicle 

decreased inflammatory cell infiltration during EAE (p<0.01) (Table 6.2). However, no 

differences existed between the number of perivascular infiltrates from drug or vehicle 

treated animals.

6.5 Effect of NOS Inhibitors on Serum Corticosterone Levels

Corticosterone levels were measured in sera samples form EAE-sensitised animals 

treated with NOS inhibitor or vehicle. EAE was associated with an increase in sera levels 

of corticosterone (Table 6.3). Administration of NOS inhibitors decreased sera 

corticosterone content. Additionally, vehicle treatment reduced sera corticosterone levels 

(Table 6.3). However, the corticosterone content of L-NAME and AG vehicle treated 

sera was slightly higher than in the respective drug treated samples (Table 6.3).
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Figure 6.7 Effect of AG administration on ROS levels in CNS cytosol
CNS cytosol was prepared from the cerebellum, medulla-pons and cervical spinal 
cord tissues.
a. Superoxide levels were determined using the reduction of ferricytochrome C 
and results were expressed as n moles superoxide/mg protein ± S.E.M.
b. Hydrogen peroxide levels were measured by the oxidation of scopoletin and 
were expressed as g moles hydrogen peroxide/mg protein ± S.E.M.
I I Normal Lewis rats, n = 7; EAE-diseased Lewis rats, n = 6;
V/A  EAE-sensitised Lewis rats s.c. injected with AG (200mg/kg body weight) 
from day 1 to 12 P.I., n =6; l i l l  EAE-inoculated Lewis rats s.c. dosed with 
vehicle (PBS, lml/kg body weight) from day 1 to 12 P.I., n = 6. *p<0.05, 
**p<0.01, ***p<0.001 Mann Whitney U test compared to normal animals.
j\i

p<0.05 Mann Whitney U test compared to EAE animals.

Cerebellum
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Figure 6.8 Effect of NOS inhibitors on cellular infiltration during EAE
Cellular infiltration in haematoxylin and eosin stained cervical spinal cord samples from EAE-senstised 
animals following administration of A) L-NAME (30 mg/kg body weight, i.p., days 7 to 12 P.I.), B) PBS 
vehicle (1 ml/kg body weight, i.p., days 7 to 12 P.I.), C) 7-NI (10 mg/kg body weight, i.p. days 7 to 12 
P.I.), D) Peanut oil vehicle (1 ml/kg body weight, i.p., days 7 to 12 P.I.), E) AG (200 mg/kg body weight, 
s.c., days 1 to 12 P.I.) and F) PBS vehicle (1 ml/kg body weight, s.c., days 1 to 12 P.I.). Magnification 
x40.



Table 6.2 Perivascular infiltrates in cervical spinal cord samples from EAE- 
sensitised Lewis rats following treatment with L-NAME (30 mg/kg body weight, i.p., 
days 7 to 12 P.I.), 7-NI (10 mg/kg body weight, i.p., days 7 to 12 P.I.) and AG 
(200mg/kg body weight, s.c., days 1 to 12 P.I.) or the appropriate vehicle.

Group Mean Number of Lesionsa/10 mm Section 

(± S.E.M.)

EAE 53 ± 4

L-NAME 52 ±3

Vehicle 45 ±3

7-NI 28 ±4***

Vehicle 37 ± 4  ***

AG 33 ± 1***

Vehicle 37 ±2**

a Sections were cut at one standard depth, stained with haematoxylin and eosin and the 
total number of lesions per section was determined using light microscopy (x40). Values 
are means of 18 sections from 3 animals ± S.E.M. **p<0.01, ***p<0.001 Mann Whitney 
U test compared to EAE group.
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Table 6.3 Serum corticosterone levels from normal, EAE-diseased and EAE- 
sensitised Lewis rats following treatment with L-NAME (30 mg/kg body weight, i.p., 
days 7 to 12 P.L), 7-NI (10 mg/kg body weight, i.p., days 7 to 12 P.I.) and AG 
(200mg/kg body weight, s.c., days 1 to 12 P.I.) or the appropriate vehicle.

Group Corticosterone (ng/ml)a 

(± S.E.M.)

Normal 52 ± 1

EAE 107 ± 23

L-NAME 56 ± 6

Vehicle 61 ± 2

7-NI 59 ±5

Vehicle 59 ±5

AG 57 ± 4

Vehicle 68 ± 4

a Corticosterone levels were measured using a commercially available RIA kit. Values are 
means of 4 animals ± S.E.M.

153



6. DISCUSSION

Several studies have provided strong evidence of a role for NO in the development 

of EAE and the pathogenesis of MS. Investigations by Bo et al. (1994) and Koprowski et 

al. (1993) have demonstrated elevated levels of NOS mRNA in the CNS of MS patients 

and EAE-diseased animals respectively. Interestingly, the observed iNOS mRNA levels 

detected during EAE correlated with disease severity. Complementary work by other 

groups has also shown that levels of NOS enzymes and related metabolites increase during 

EAE (Hooper et al. 1995, Misko et al. 1995, Okuda et al. 1995, Van Dam et al. 1995, 

Hewett et al. 1996). Furthermore, a role for NO in the occurrence of EAE and MS is 

implicated through indirect evidence demonstrating NO-mediated oligodendrocyte 

cytotoxicity, neuronal degeneration and demyelination (Merrill et al. 1993, Skaper et al. 

1995). A more direct approach to establishing the importance of NO in the aetiology of 

EAE has been undertaken in the present study by pharmacological manipulation of the 

disease with NOS inhibitors.

6.1 NOS Inhibitors in EAE

Previous work has shown a discrepancy in the effects of NOS inhibitors on the 

neurological course of EAE. For example, dosing with the c and iNOS inhibitor, L- 

NAME, either exacerbated or had no effect on disease symptoms (Zielasek et al. 1995a, 

Ruuls et al. 1996). Treatment of EAE-sensitised animals with a related non-selective 

NOS inhibitor, L-nitroarginine, either suppressed or enhanced neurological signs (Ovadia 

et al. 1994, Ruuls et al. 1994). In addition, administration of the selective iNOS inhibitor, 

AG, to EAE-inoculated rats was shown to abrogate or aggravate disease progression 

(Cross etal. 1994, Zielasek et al. 1995a, Zhao et al. 1996).

Although the results of the study examining the effect of AG on neurological EAE 

do not corroborate previous findings (Zielasek etal. 1995a, Zhao etal. 1996), effects of 

L-NAME on disease development are in agreement with the observations of Ruuls et al. 

(1996). However, the effects of 7-NI administration on neurological disease symptoms
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have not been previously assessed. The variablity of identical drugs on the development 

and severity of neurological EAE may be due to several factors including species 

difference, EAE-induction methods and dosing regimen employed in each study. Indeed 

the lack of effect of AG in this study compared to the abrogation and aggravation of EAE 

demonstrated by the studies of Zielasek et al. (1995a) and Zhao et al. (1996) may result 

from differences in the route and time course of drug administration.

Low dose administration of the selective iNOS inhibitor, AG (Griffiths et al. 1993) 

to EAE-inoculated rats did not modify disease development. Furthermore increasing the 

dose of AG failed to alter the appearance and course of EAE. Similarly, treatment of 

EAE-sensitised Lewis rats with the c and iNOS, L-NAME (Rees et al. 1990b) did not 

significantly affect the incidence or severity of disease. Interestingly, recent work by 

Ruuls et al. demonstrates that EAE is aggravated by L-NAME administration. The 

present study reconfirms these observations as disease signs in L-NAME treated rats were 

significantly exacerbated in comparison to rats administered i.p. vehicle. In contrast a 

reduction in the incidence and severity of EAE was apparent when animals were 

administered 7-NI, a selective inhibitor of bNOS (Moore et al. 1993). However the 

significance of the results becomes complicated following the unexpected modulatory 

effects of vehicle administration on disease symptoms. Support for the ability of vehicle 

treatment to modify the course of EAE is provided by the earlier study of Leonard et al. 

(1990) and more recent work described by Hewson et al. (1995). Clearly when 

determining the effects of NOS inhibitors on the development of EAE the consequences 

of vehicle administration should be adequately assessed.

Disease suppression by vehicle treatment alone may be explained, in part, by the 

production and well-established modulatory actions of endogenous glucocorticoids on the 

progression of EAE (Levine et al. 1962, Bolton & Flower 1989, MacPhee et al. 1989). 

Circulating corticosteroid levels increase during stress (Weicker & Werle 1991) such as 

undoubtedly occurs following repeated i.p. or long term s.c. injections of vehicle. 

Therefore, naturally occurring glucocorticoids may be abnormally increased during the 

induction phase of EAE and thus influence the appearance of disease symptoms.
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Preliminary data from the present study demonstrates a slight increase in serum 

corticosterone levels following vehicle treatment. However, corticosterone in vehicle rat 

serum was markedly reduced compared to undosed sensitised animals. This may be 

accounted for, in part, by experimental problems with the corticosterone detection system 

used as the radioimmunoassay employed was designed for measuring corticosterone in 

plasma and not serum samples. Furthermore, levels of corticosterone measured in diluted 

samples were at the detection limit of the assay which may lead to inaccurate 

measurements. In addition the low level of corticosterone present in the sera of vehicle 

treated rats may be due to an alteration in the steroid profile of the animal. Therefore, the 

peak steroid levels may have occurred prior to sampling. To determine the validity of this 

hypothesis corticosteroid levels would have to be determined at various timepoints 

throughout vehicle treatment.

6.2 NOS Inhibitors and NO Generation

Although other workers have utilised NOS inhibitors to modify the course of EAE 

the studies have not assessed the ability of the compounds to prevent NO formation in 

CNS tissues. Indeed NOS inhibitors are readily transported into the CNS (Bogle et al. 

1992b, Iadecola et al. 1994) where they prevent NO synthesis through effects on NOS 

activity. The present investigation has quantitatively determined the in vivo 

pharmacological effect of the NOS inhibitors, L-NAME, 7-NI and AG, and vehicle 

treatment on NO generation by CNS tissues in EAE-diseased Lewis rats. Administration 

of NOS inhibitors to EAE-sensitised animals caused a decrease in CNS cytosol nitrite 

levels indicating the functional activity of the compounds to prevent NO production.

6.2.1 L-NAME

L-NAME is a well characterised L-arginine analogue which inhibits the activity of 

both c and iNOS (Rees et al. 1990, McCall et al. 1991a). However, L-NAME is a weak 

inhibitor of NOS and requires conversion to N^nitro-L-arginine (L-NA) to become fully 

active (Pfeiffer et al. 1996). Activated L-NAME functions as a competitive inhibitor of
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the substrate binding site of NOS to prevent NO formation (Griffith & Kilboum 1996). In 

addition L-NA induces a time dependent NOS enzyme inactivation (Klatt et al. 1994) 

through conformational changes at the active site (Reif & McCreedy 1995).

The current study has shown that L-NAME administration reduced nitrite levels in 

the CNS of EAE-disease animals to within normal limits. The observation is surprising 

due to the non-specificity of NOS inhibition by L-NAME. Indeed L-NAME may be 

expected to decrease nitrite levels to below normal values due to its ability to inhibit iNOS 

as well as basal cNOS activity. However, there may be several explanations to account 

for the limited effect of drug administration on nitrite generation. Although L-NAME 

inhibits the activity of both c and iNOS enzymes a slight selectivity for the c isoform has 

been demonstrated (Furfine et al. 1993). Therefore in EAE drug treatment may only 

prevent c and not iNOS activity and so account for enhanced nitrite levels. L-NAME can 

induce the expression of iNOS (Miller et al. 1996a). Hence any inhibitory effects of the 

drug on cNOS generated nitrite during EAE would be reversed by the increased nitrite 

production by iNOS. Nitrite levels in EAE-inoculated animals may remain higher than 

expected subsequent to L-NAME administration due to the ability of the drug to act as an 

alternative substrate for NOS (Komori et al. 1994). However, further studies are required 

to determine the precise mechanisms responsible for this elevation.

6.2.2 7-NI

7-NI is a potent and selective inhibitor of bNOS (Moore et al. 1993) which has 

previously been utilised in the treatment of CNS disorders (Schulz et al. 1995). The 

activity of bNOS is inhibited by the competitive binding of 7-NI to the substrate site on 

the enzyme (Babbedge et al. 1993). In addition the drug has been identified as a 

competitive inhibitor of the tetrahydrobiopterin site (Mayer et al. 1994). There is 

evidence to suggest that 7-NI binds to the haem prosthetic site of NOS which prevents 

access of both L-arginine and tetrahydrobiopterin (Mayer et al. 1994).

In the current study dosing EAE-sensitised Lewis rats with 7-NI produced a 

decrease in CNS tissue nitrite levels to below values recorded in normal animals. Clearly
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drug administration would be expected to prevent basal NO production from bNOS and 

so reduce CNS nitrite levels to below normal limits. In addition recent investigations have 

demonstrated that 7-NI also inhibits eNOS activity in vivo (Zagvazdin et al. 1996) 

contributing to the ability of the drug to inhibit basal NOS and decrease CNS nitrite levels 

below normal values. EAE is an immunologically-mediated disorder and the majority of 

CNS nitrite may be generated by the iNOS isoform. However, iNOS is not inhibited by 7- 

NI. Therefore the results suggest that the majority of nitrite formed in the CNS of 

diseased animals is generated via cNOS isoforms. Recent in vitro studies have shown that 

7-NI has a slight inhibitory effect on iNOS (Wolff & Grisbin 1994). Hence inhibition of 

all 3 isoforms of NOS may be responsible for the observed effects in EAE.

6.2.3 AG

AG has been identified as a selective inhibitor of iNOS (Corbett et al. 1992b, 

Griffiths etal. 1993, Joly etal. 1993, Misko etal. 1993). However, more recent studies 

have identified that cNOS isoforms are also inhibited by the drug (Laszlo et al. 1995, 

Lopez-Belmonte & Whittle 1995). Inhibition of NOS by AG is mechanism based with the 

NO forming activity of the enzyme being prevented (Wolff & Lubeskie 1995).

EAE-inoculated Lewis rats were administered AG to determine the effects of 

selectively inhibiting iNOS in the model. Moreover, a reduction in CNS nitrite levels was 

detected following drug treatment. However, in view of recent investigations it cannot be 

concluded that the decrease in nitrite content is due solely to an action of AG on iNOS.

6.3 Other Effects of NOS Inhibitors

In addition to effects on NO formation, NOS inhibitors may exert other actions in 

the CNS to modify the course of EAE.

6.3.1 ROS

ROS have been identified as potential cytotoxic molecules in EAE (Bowem et al. 

1984). Furthermore the NOS inhibitors, L-NAME and AG have previously been shown
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to affect ROS generation. Whereas L-NAME administration prevents ROS formation, 

treatment with AG enhances ROS production (Heinzel et al. 1992, Ou & Wolff 1993).

By comparison 7-NI has not been shown to affect ROS generation. In the present study 

ROS levels in the medulla-pons and cervical spinal cord were reduced following NOS 

inhibitor administration. However, the decrease was not always associated with a 

reduction in disease severity. Furthermore, similar effects were detected subsequent to 

the respective vehicle treatment.

6.3.2 Cell Infiltration

NO has previously been identified as an anti-adhesion molecule, but the underlying 

mechanisms are unknown (Gaboury et al. 1993). Therefore dosing with NOS inhibitors 

may increase immunocompetent cell infiltration during EAE and subsequently exacerbate 

disease development. However, in the present study drug administration reduced the 

number of perivascular isolates in the spinal cord of EAE-inoculated rats. Vehicle 

treatment also decreased cellular infiltration. These findings indicate that NOS inhibitors 

may not specifically alter cell migration in EAE.

6.3.3 Non-Specific Effect of AG

Although L-NAME and 7-NI exert their effects through the inhibition of NOS and 

NADPH oxidation, AG is known to have a broad profile of pharmacological and 

biochemical actions. Therefore AG may affect the neurological development of EAE 

through actions on diamine oxidase, aldose reductase, polyamine metabolism and 

macrophage uptake of low density lipoproteins (Kumari et al. 1991, Ohrui et al. 1992, 

Picard et al. 1992). However, as none of these factors has an established role in EAE 

aetiology it is unlikely that AG alters EAE through effects on these components.
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7. RESULTS

NMD A receptor activation in the CNS is involved in both neurodegeneration 

(Foster et al. 1990) and ischaemic injury (Meldrum et al. 1987). One of the mechanisms 

through which NMD A receptor activation mediates CNS damage is via the production of 

NO and ROS. Nitrite and ROS levels were elevated in the CNS of EAE-diseased animals 

suggesting that NMDA receptor activation may be involved in the disease pathogenesis. 

In order to further investigate this hypothesis the effects of administration of an NMDA 

receptor antagonist, MK-801 (Wong et al. 1986), on both EAE development and other 

disease parameters were assessed.

7.1 Effect of MK-801 Administration on Body Weight Loss and Neurological 

Development of EAE

MK-801 at a dose of 0.3 mg/kg body weight was administered i.p. in PBS vehicle 

to EAE-sensitised rats once daily from day 7 to 12 P.I. Both dosed and undosed animals 

were examined daily for body weight changes (Figure 7.1) and neurological disease signs 

(Table 7.1). All untreated EAE-sensitised rats developed neurological disease with the 

majority of inoculated animals suffering paralytic symptoms (Table 7.1). However, 

administration of MK-801 not only decreased the incidence of EAE (p<0.05), but also 

significantly alleviated disease severity (p<0.001) and dramatically reduced paralytic 

symptoms (p<0.001) (Table 7.1). In addition, treatment with i.p. vehicle also curtailed 

neurological disease severity (p<0.01) and significantly suppressed the development of 

paralytic EAE (p<0.05). Although MK-801 and vehicle administration abrogated disease 

severity the extent to which this occurred was significantly different between the two 

treatments (p<0.001) (Table 7.1). The profile of body weight changes in MK-801 and 

vehicle-treated rats were similar to fluctuations recorded in undosed inoculated animals 

(Figure 7.1).
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Figure 7.1 Effect of MK-801 administration on body weight
Animals were assessed daily for changes in body weight which were measured in g and expressed as 
mean body weight change ± S.E.M. (—■—) EAE-inoculated Lewis rats, n = 6; (—A—) EAE- 
sensitised Lewis rats administered MK-801 (0.3 mg/kg body weight), i.p., once daily from day 7 to 12 
P.I., n = 6;(—A—) EAE-inoculated Lewis rats i.p. injected with vehicle (PBS, 1 ml/kg body weight) 
once daily from day 7 to 12 P.I., n = 11.

Table 7.1 Neurological symptoms in EAE-sensitised Lewis rats after treatment with MK- 
801 (0.3 mg/kg body weight, i.p., days 7 to 12 P.I.) or PBS vehicle (1 ml/kg body weight, 
i.p., days 7 to 12 P.I.).

Group Incidence Of 
EAE

Mean Day Of 
Disease Onset 

± S.E.M.

Mean Peak 
Disease Severity 

± S.E.M.

Number Of Rats 
Paralysed/Total

EAE 16/16 12 ± 1 3 ±0.2 11/16

MK-801 12/18* 13 ±1 1 ±0.3***m 1/18***

Vehicle 23/24 12 ± 1 2 ±0.2** 7/24*

*p<0.05, **p<0.01, ***p<0.001 compared to EAE group.
***p<0.001 compared to vehicle group.
Differences in mean day of onset and mean peak disease severity were analysed using the Mann 
Whitney U test. Differences in incidence of disease and number of animals displaying signs of 
paralysis were analysed using the Chi-squared test.
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7.2 Effect of MK-801 Administration on Nitrite Levels in CNS Cytosol

CNS cytosol preparations from MK-801 and vehicle treated animals were assayed 

for the presence of nitrite to determine whether the drug exerts its effects on EAE by 

decreasing NO production (Figure7.2).

Treatment of EAE-diseased Lewis rats with MK-801 decreased nitrite levels in 

cerebellar cytosol fractions to within normal limits (MK-801 173 ± 37, n=7; normal 128 ± 

l ip .  moles nitrite/mg protein ± S.E.M., n=10) (Figure 7.2). However, MK-801 

administration did not significantly alter nitrite concentrations in the other CNS areas 

examined (Figure 7.2). Furthermore, the nitrite content of CNS cytosol samples from 

vehicle treated rats were similar to levels recorded in tissues from EAE-diseased animals 

(Figure 7.2).

7.3 Effect of MK-801 Administration on NOS Protein Expression

In addition to effects on NO production, the ability of MK-801 to alter NOS 

protein expression in the CNS was examined. NOS protein expression was determined in 

CNS cytosol fractions from EAE-inoculated rats treated with MK-801 or vehicle using 

SDS-PAGE and Western blotting techniques.

8.3.1 Effect of MK-801 Administration on NOS Protein Expression in the Cerebellum

Cerebellar cytosol samples from all groups analysed contained protein bands at 

approximately 140 kDa, 155 kDa and 135 kDa following immunoblotting with anti-eNOS, 

anti-bNOS and anti-iNOS antibodies respectively. In addition the immunoreactive bands 

observed co-migrated with the positive control lysate for each antibody thereby indicating 

that the bands present correspond to each isoform of NOS (Figure 7.3).

Expression of eNOS was enhanced in the cerebellum tissue of EAE-diseased 

animals (34 % above normal) (Figure7.3A). However, following MK-801 administration 

eNOS protein levels had fallen to below normal values (15 % below normal) (Figure
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Figure 7.2 Effect of MK-801 administration on nitrite levels in CNS cytosol
CNS cytosol was prepared from the cerebellum, medulla-pons and cervical spinal 
cord tissues. Nitrite levels were determined using the Griess assay and 
expressed as p moles nitrite/mg protein ± S.E.M. 1 I Normal Lewis rats, n = 12;

|  EAE-diseased Lewis rats, n = 12; V/A EAE-sensitised Lewis rats i.p. 
injected with MK-801 (0.3mg/kg body weight) days 7 to 12 P.I., n = 7; 
l i l l l  EAE-inoculated Lewis rats dosed i.p. with vehicle (PBS, 1 ml/kg body 

weight) days 7 to 12 P.I., n = 13. **p<0.01, ***p<0.001 Mann Whitney U 
test compared to normal animals. #p<0.05 Mann Whitney U test compared to EAE 
animals.
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Figure 7.3 Effect of MK-801 administration on NOS protein expression
CNS cytosol was pooled from the cerebellum of 3 normal Lewis rats (N), CFA- 
inoculated animals (CFA); EAE-diseased rats (EAE) or EAE-sensitised Lewis 
rats i.p. injected with MK-801 (0.3 mg/kg body weight) or vehicle (PBS, 1 ml/ 
kg body weight) from day 7 to 12 P.I.(MK and V). CNS cytosol proteins were 
seperated on SDS-gels and following electrophoretic transfer samples were 
blotted with (A) anti-eNOS, (B) anti-bNOS and (C) anti-iNOS antibodies. NOS 
protein was detected using ECL (A) or PAP complex (B and C). Densitometric 
analysis of blots and SDS-gels (D) were undertaken and following correction for 
differences in total protein content NOS levels were expressed as % above 
normal value. Results shown are representative of 3 seperate experiments.

+ve
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7.3 A). By comparison, vehicle treatment did not markedly alter eNOS expression in 

EAE-sensitised rats (41 % above normal) (Figure 7.3 A).

bNOS expression was also increased in cerebellar cytosol preparations from EAE- 

inoculated Lewis rats (62 % above normal) (Figure 7.3B). Vehicle administration had 

minimal effect on cerebellar levels of bNOS in EAE-diseased animals (33 % above 

normal) but treatment with MK-801 enhanced en2yme expression in EAE-sensitised rats 

cytosol preparations (125 % above normal) (Figure 7.3B).

Levels of iNOS protein in the cerebellum of EAE-diseased animals were elevated 

(174 % above normal) (Figure 7.3C). Moreover, administration of MK-801 further 

increased iNOS expression in cerebellar cytosol preparations from rats sensitised for EAE 

(185 % above normal) (Figure 7.3C). In contrast no effect on EAE-inoculated rats 

cerebellar iNOS protein levels were observed following vehicle treatment (143 % above 

normal) (Figure 7.3C).

Although both bNOS and iNOS protein expression was enhanced in cerebellar 

tissue following MK-801 treatment of EAE-sensitised animals, nitrite levels in cerebellum 

cytosol samples were decreased (Figure 7.2). This may have resulted as a consequence of 

reduced nitrite production by the eNOS isoform as the cerebellar protein levels for this 

enzyme dropped below normal values following drug administration.

7.3.2 Effect of MK-801 Administration on NOS Protein Expression in the Medulla-Pons 

eNOS, bNOS and iNOS protein expression was identified in medulla-pons cytosol 

preparations from all experimental groups examined (Figure 7.4). Furthermore MK-801 

and vehicle administration had similar effects on NOS expression in medulla-pons tissue 

from diseased rats (Figure 7.3 and 7.4).

EAE-sensitised animals displayed elevated levels of all 3 NOS enzymes in cytosol 

samples from the medulla-pons (eNOS 180 %, bNOS 115%, iNOS 54 % above normal) 

(Figure 7.4). Moreover, administration of vehicle had no marked effect on NOS 

expression in identical tissues (eNOS 156 %, bNOS 117%, iNOS 57 % above normal) 

(Figure 7.4). However, treatment of EAE-inoculated rats with MK-801 resulted in
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Figure 7.4 Effect of MK-801 administration on NOS protein expression
CNS cytosol was pooled from the medulla-pons of 3 normal Lewis rats (N), CFA- 
inoculated animals (CFA); EAE-diseased rats (EAE) or EAE-sensitised Lewis 
rats i.p. injected with MK-801 (0.3 mg/kg body weight) or vehicle (PBS, 1 ml/ 
kg body weight) from day 7 to 12 P.I.(MK and V). CNS cytosol proteins were 
seperated on SDS-gels and following electrophoretic transfer samples were 
blotted with (A) anti-eNOS, (B) anti-bNOS and (C) anti-iNOS antibodies. NOS 
protein was detected using ECL (A and C) or PAP complex (B). Densitometric 
analysis of blots and SDS-gels (D) were undertaken and following correction for 
differences in total protein content NOS levels were expressed as % above normal 
value. Results shown are representative of 3 seperate experiments.

167



decreased expression of eNOS (89 % above normal), but enhanced bNOS and iNOS 

protein levels (bNOS 215 %, iNOS 79 % above normal) in medulla-pons preparations 

(Figure 7.4).

Despite the fact that eNOS expression is reduced in the medulla-pons of MK-801 

treated rats, nitrite levels in corresponding cytosol samples were not significantly altered. 

The decreased production of nitrite by eNOS may be overcome by enhanced nitrite 

generation from bNOS and iNOS as the expression of both enzymes was increased 

following administration of MK-801. Therefore, no overall effect on medulla-pons 

cytosol nitrite content in EAE-sensitised rats dosed with MK-801 would be observed.

7.3.3 Effect of MK-801 Administration on NOS Protein Expression in the Cervical Spinal 

Cord

All 3 NOS enzymes were identified in the cervical spinal tissue preparations 

examined (Figure 7.5). In addition, treatment of EAE-inoculated animals with MK-801 or 

vehicle had comparable effects on cervical spinal cord NOS levels as were detected in 

medulla-pons samples (Figure 7.3 and 7.4).

Increased levels of eNOS, bNOS and iNOS were present in cervical spinal cord 

cytosol fractions from EAE-diseased animals (eNOS 180 %, bNOS 194 %, iNOS 33 % 

above normal) (Figure7.5). Furthermore, vehicle treatment did not dramatically alter 

NOS expression in cervical spinal cord tissue from EAE-sensitised rats (eNOS 190 %, 

bNOS 158 %, iNOS 31 % above normal) (Figure 7.5). By comparison, administration of 

MK-801 to EAE-inoculated animals increased the expression of b and iNOS (bNOS 484 

%, iNOS 56 % above normal) but reduced levels of eNOS protein (49 % above normal) in 

cervical spinal cord preparations (Figure 7.5).

Although eNOS expression is decreased in cervical spinal cord tissue of 

EAE-diseased rats treated with MK-801 both bNOS and iNOS protein levels are 

enhanced. Therefore, differences in NO generation by each isoform may cancel each other 

out and hence explain why no significant reduction in nitrite levels incurred following drug 

administration.
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Figure 7.5 Effect of MK-801 administration on NOS protein expression
CNS cytosol was pooled from the cervical spinal cord of 3 normal Lewis rats (N), 
CFA-inoculated animals (CFA); EAE-diseased rats (EAE) or EAE-sensitised Lewis 
rats i.p. injected with MK-801 (0.3 mg/kg body weight) or vehicle (PBS, 1 ml/ 
kg body weight) from day 7 to 12 P.I.(MK and V). CNS cytosol proteins were 
seperated on SDS-gels and following electrophoretic transfer samples were 
blotted with (A) anti-eNOS, (B) anti-bNOS and (C) anti-iNOS antibodies. NOS 
protein was detected using ECL (A and C) or PAP complex (B). Densitometric 
analysis of blots and SDS-gels (D) were undertaken and following correction for 
differences in total protein content NOS levels were expressed as % above normal 
value. Results shown are representative of 3 seperate experiments.
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7.4 Effect of MK-801 Administration on ROS Levels in CNS Cytosol

In order to assess whether NMDA receptor antagonists prevent EAE by inhibiting 

the production of ROS, superoxide and hydrogen peroxide levels in CNS cytosol samples 

from MK-801 and vehicle treated rats were determined (Figure 7.6).

MK-801 administration significantly reduced EAE-diseased animals superoxide 

levels in the cerebella cytosol (4 ± 0.3 n moles superoxide/mg protein ± S.E.M., p<0.01, 

n=5) (Figure 7.6a). In addition, superoxide content of medulla-pons and cervical spinal 

cord tissue were also decreased upon treatment of EAE-inoculated rats with MK-801 

(Figure 7.6a). However, vehicle administration reduced CNS cytosol superoxide levels in 

these preparations (Figure 7.6a).

Hydrogen peroxide levels were diminished in CNS cytosol fractions obtained from 

EAE-sensitised animals treated with MK-801 or PBS vehicle (Figure 8.6b). However, 

MK-801 administration significantly reduced hydrogen peroxide levels to 

below values recorded in vehicle treated animals in the cerebella tissue (p<0.01) (Figure 

8.6b).

7.5 Cellular Infiltration

The effects of MK-801 on cellular infiltration during EAE were assessed by 

determining the number of perivascular infiltrates in cervical spinal cord sections from 

drug and vehicle-treated animals (Figure 7.7). Administration of MK-801 significantly 

reduced cellular migration during EAE (p<0.01) (Table 7.2). By comparison, vehicle 

treatment did not alter perivascular infiltration in spinal cord tissues (Table 7.2).
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Figure 7.6 Effect of MK-801 administration on ROS levels in CNS cytosol
CNS cytosol was prepared from the cerebellum, medulla-pons and cervical spinal 
cord tissues.
a. Superoxide levels were determined using the reduction of ferricytochrome C 
and results were expressed as n moles superoxide/mg protein ± S.E.M.
b. Hydrogen peroxide levels were measured by the oxidation of scopoletin and 
were expressed as p. moles hydrogen peroxide/mg protein ± S.E.M.
I I Normal Lewis rats, n = 7; H  EAE-diseased Lewis rats, n = 6;
V /A  EAE-sensitised Lewis rats i.p. injected with MK-801 (0.3mg/kg body 
weight) on days 7 to 12 P.I., n = 5; l i l l i  EAE-inoculated Lewis rats dosed 
i.p. with vehicle (PBS, 1 ml/kg body weight) from day 7 to 12 P.I., n = 7.
*p<0.05, **p<0.01, ***p<0.001 Mann Whitney U test compared to normal 
animals. #p<0.05, ##p<0.01 Mann Whitney U test compared to EAE animals.



Figure 7.7 Effect of MK-801 on cellular infiltration during EAE
Cellular infiltration in haematoxylin and eosin stained cervical spinal cord samples from EAE- 
inoculated Lewis rats following treatment with A) MK-801 (0.3 mg/kg body weight, i.p. from day 7 to 
12 P.I) or B) PBS vehicle (1 ml/kg body weight, i.p., from day 7 to 12 P.I.).

Table 7.2 Perivascular infiltrates in cervical spinal cord samples from EAE- 
sensitised Lewis rats following treatment with MK-801 (0.3 mg/kg body weight, 
i.p. from day 7 to 12 P.I) or vehicle.

Group Mean Number o f Lesions3/ 10 mm Section 
(± S.E.M.)

EAE 53 ± 4
MK-801 35 ± 2***
Vehicle 45 ± 3

a Sections were cut at one standard depth, stained with haematoxylin and eosin and the 
total number o f lesions per section was determined using light microscopy (x40). Values 
are means o f 18 sections from 3 animals ± S.E.M. ***p<0.001 Mann Whitney U  test 
compared to vehicle group.



7. DISCUSSION

7.1 NMDA Receptor Activation and EAE Pathogenesis

Neurodegeneration associated with overactivation of NMDA receptors is thought 

to be mediated by prolonged Ca2+ influx leading to a series of potentially neurotoxic 

events (Choi 1988). Influx of Ca2+ serves as a signal for the activation of the 

Ca27calmodulin-dependent NOS (Bredt & Snyder 1992). In addition, elevated cytosolic 

free Ca2+ can activate phospholipase A2 leading to the subsequent generation of ROS via 

arachidonic acid metabolism (Lafon-Cazal et al. 1993a). Both NO and ROS have been 

implicated in CNS damage (Dawson et al. 1993). Moreover, in the present study 

neurological EAE was characterised by an elevation in CNS nitrite and ROS levels. 

Therefore, NMDA receptor activation may be involved in the aetiology of EAE. Indeed, 

the presence of increased levels of NMDA receptor agonists have been reported in the 

CNS of animals during disease development (Honegger et al. 1989, Flanagan et al. 1995). 

Similarly the work of Wallstrom et al. (1996) demonstrating an inhibition of EAE 

following treatment with the glutamate receptor antagonist, memantine, provides further 

evidence of a role for NMDA receptor overstimulation in EAE. In the present 

investigation administration of the NMDA receptor antagonist, MK-801, abrogated the 

neurological development of EAE, thus reaffirming previous reports on the ability of 

NMDA receptor antagonists to alter the course of EAE (Wallstrom et al. 1996, Bolton & 

Paul in press), and suggesting an involvement of NMDA receptors in the neurological 

disease process.

7.2 Pathogenic Effects of NMDA Receptor Activation During EAE

Although other workers have proposed a role for NMDA receptor activation in 

EAE the precise pathological mechanisms involved have yet to be identified. Production 

of the cytotoxic free radical molecules, NO and ROS, following NMDA receptor 

activation may be implicated in disease pathogensis. Interestingly nitrite and ROS levels 

were significantly reduced in the cerebellum of EAE-inoculated Lewis rats treated with
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MK-801. However, no marked differences were observed in medulla-pons or cervical 

spinal cord nitrite and ROS content following administration of MK-801 or vehicle.

1.2.1 NO Formation

NO is produced in the CNS in a reaction catalysed by NOS. Activity of NOS is 

regulated by a number of factors including Ca27calmodulin availability and the presence of 

cytokines. In addition polyamines have also been shown to affect NOS activity (Morgan 

1994). Polyamines can competitively antagonise the activity of NOS as a result of their 

structural similarity to L-arginine. Activation of NMD A receptors not only increases NO 

generation but also induces the activity of ornithine decarboxylase, the enzyme responsible 

for polyamine synthesis (Porcell et al. 1991). Therefore the differential effects of MK-801 

administration on CNS nitrite levels in EAE-diseased animals may result from a direct 

action on NOS activity or arise following an alteration in polyamine regulated NO 

production.

The expression of all 3 isoforms of NOS was determined in the CNS tissues of 

EAE-sensitised rats treated with MK-801. Furthermore similar profiles of NOS 

expression were identified in all CNS areas examined. Following drug administration 

eNOS protein levels decreased whereas nNOS and iNOS expression were enhanced in the 

CNS of EAE-diseased animals. As NMDA receptors are known to regulate the 

permeability of the BBB (Keonig et al. 1992), eNOS may be involved in this process. 

Therefore upon NMDA receptor inactivation by MK-801 levels of eNOS protein may be 

diminished with a resultant decrease in neurovascular permeability. Indeed this may 

explain, at least in part, the ability of MK-801 to prevent the neurovascular disruption 

associated with EAE (Bolton & Paul in press). Inhibition of NMDA receptor activation 

also gives rise to an upregulation of nNOS expression (Baader & Schilling 1996) thus 

accounting for the elevation in CNS levels of nNOS observed following drug treatment. 

Expression of iNOS protein is prevented by the presence of polyamines (Szabo et al.

1994). However, dosing EAE-inoculated rats with MK-801 has been shown to diminish 

the polyamine content of CNS tissues (Paul et al. 1997). Hence the inhibition of
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polyamine synthesis may result in an increase in iNOS protein levels as demonstrated in 

this study. Although NOS expression was comparable in all CNS areas of EAE-sensitised 

animals following drug administration, nitrite levels were not. This implies that MK-801 

affects the activity as well as the formation of NOS enzymes.

Cerebellar tissue contains higher levels of eNOS enzymes than any other area of 

the CNS (Forstermann et al. 1989). As eNOS isoforms are activated upon NMDA 

receptor stimulation antagonism with MK-801 may produce its greatest effect on NO 

generation in the cerebellum. In addition, drug administration did not alter the cerebellum 

levels of spermine and spermidine in EAE-diseased rats (Paul et al. 1997). These 

polyamines exert the greatest inhibitory effect on NOS activity (Hu et al. 1994).

Therefore the presence in the cerebellum of inhibitory polyamines in conjunction with a 

prevention of NMDA-mediated Ca2+ influx would decrease NOS activity and result in a 

reduction in nitrite content. Another mechanism through which dosing with MK-801 

could decrease nitrite levels in the cerebellum is via a reduction in the expression of NOS. 

Although eNOS protein levels were diminished in all CNS areas following MK-801 

treatment cerebellum eNOS levels had fallen to below normal values. Hence cerebellum 

nitrite levels may be ultimately decreased.

By comparison the nitrite content of the medulla-pons and cervical spinal cord was 

not significantly altered upon MK-801 administration. This cannot be accounted for by 

differences in NMDA receptor density in various CNS areas as NMDA receptors have 

been identified in all areas of the CNS examined (Li et al. 1994, Wang et al. 1995). 

However variations in polyamine binding do exist between the CNS regions studied. 

Whereas polyamine binding sites are abundant in the medulla-pons much lower densities 

are observed in cerebellar tissue (Yoneda et al. 1991). The interaction of MK-801 and 

medulla-pons NMDA receptors may decrease polyamine formation which could prevent 

the inhibitory effects of polyamines on NO generation. Therefore nitrite production in the 

medulla-pons tissue of EAE-sensitised animals treated with MK-801 may remain elevated. 

Similarly, enhanced nitrite levels may persist in cervical spinal cord tissue due to a MK- 

801 mediated inhibition of the negative polyamine effects on NO formation. Moreover,
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polyamine levels were reduced in both medulla-pons and cervical spinal cord from MK- 

801 treated EAE-diseased Lewis rats (C. Paul unpublished observations)

Clearly the study demonstrates that MK-801 does not inhibit the neurological 

development of EAE by preventing NO production. Hence an overproduction of NO 

subsequent to NMDA receptor activation is probably not involved in the pathogenic 

mechanisms of EAE. Indeed at present much controversy surrounds the exact role played 

by NO in NMDA-mediated neurodegeneration. Whereas several investigators have 

observed that inhibitors of NOS prevent glutamate-mediated cell death (Dawson et al. 

1991, Izumi et al. 1992, Kolleger et al. 1993), other studies have not demonstrated such 

protective effects (Demerle-Pallardy et al. 1991, Pauwels & Leyson 1992, Hewett et al. 

1993). Under certain circumstances NO mediates neurotoxicity associated with 

overstimulation of NMDA receptors. However, protective effects of NO have also been 

reported in the rat CNS (Kiedrowski et al. 1992, Lei et al. 1992). Recently both the 

neuroprotective and neurodestructive effects of NO have been identified in the same 

neuronal cultures (Kashii et al. 1996). The diverse effects of NOS inhibition on NMDA 

toxicity probably reflect the multifaceted roles of NO. Therefore, NO may have a dual 

role in NMDA receptor mediated toxicity. This may be accounted for by the fact that 

although NO participates in the intracellular cascade of events following NMDA receptor 

activation which lead to cell death (Dawson et al. 1993) it is also essential for providing 

an adequate blood supply in reponse to the increased metabolic demands (Faraci & Breese 

1993). The final outcome will be dependent on the balance between these two processes 

(Globus et al. 1995). By comparison it has been proposed that the neuroprotective or 

neurodestructive ability of NO is dependent upon the redox state of the molecule with 

NO* and nitrosonium ion (NO+) mediating cytotoxic or cytoprotective effects respectively 

(Liptonefa/. 1993).
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7.2.2 ROS Production

In addition to NO formation, NMDA receptor stimulation generates ROS. 

Furthermore there is some uncertainty as to which of these free radicals plays the major 

role in NMDA mediated neuronal damage (Lafon-Cazal et al. 1993). As the protective 

effects of NMDA receptor antagonism in EAE were not mediated by a reduction in CNS 

levels of NO they may occur as a result of a decreased production of ROS. Indeed Lafon- 

Cazal and co-workers (1993b) demonstrated that oxygen radicals were the primary free 

radical involved in NMDA neurotoxicity. Moreover, MK-801 administration decreased 

the levels of both superoxide and hydrogen peroxide in the CNS of EAE-sensitised rats. 

However, similar effects were observed in the medulla-pons and cervical spinal cord 

following vehicle administration. Dosing EAE-inoculated animals with vehicle may alter 

endogenous corticosteroid levels which can in turn affect the generation of ROS

In conclusion the study demonstrates that NMDA receptor activation in EAE does 

not produce neurodegeneration via the production of free radicals. However other 

consequences of NMDA receptor activation may be implicated in the development of 

EAE. In particular NMDA induced cerebrovascular permeability alterations or polyamine 

formation may be important events in EAE aetiology.

7.2.3 BBB Breakdown

Although disruption in normal vascular permeability is a fundamental event in EAE 

little is known about the events which precipitate this loss of cerebrovascular integrity. 

NMDA receptors have been identified in the regulation of cerebroendothelial permeability 

associated with non-immune models of BBB dysfunction (Koenig et al. 1992, Dietrich et 

al. 1992, Miller et al. 1996b). Moreover, studies by other group members have 

demonstrated that administration of the NMDA receptor antagonist, MK-801, limits the 

BBB breakdown observed in EAE (Bolton & Paul in press). Neurovascular permeability 

may be decreased following antagonism of the NMDA receptor by preventing the 

formation of vasoactive agents. These include NMDA-mediated NO which is known to 

regulate cerebral blood flow and vascular tone (Faraci & Breese 1993) and has also been
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implicated in glutamate-induced BBB disruption (Mayhan & Didion 1996). Furthermore, 

eNOS levels in the CNS of EAE-diseased animals were reduced upon MK-801 

adminstration and this may facilitate the observed decrease in neurovascular permeability.

7.2.4 Polvamine Generation

Polyamine formation may also be implicated in the pathogenic mechanisms of 

NMDA receptor stimulation in EAE. EAE-sensitised animals were characterised by an 

elevation in CNS polyamine levels (Paul et al. 1997). However, these levels were reduced 

following MK-801 administration (Paul et al. 1997). This indicates an overproduction of 

polyamines in the CNS of EAE-diseased Lewis rats subsequent to NMDA receptor 

activation. Polyamines may contribute to the neurological development of EAE via two 

main mechanisms. In addition to direct cytotoxic effects in the CNS (Otsuki 1995), 

polyamines may also contribute to the BBB breakdown which initiates EAE (Koenig et al. 

1983). Interestingly polyamine-induced neurotoxicity may partially involve NMDA 

receptor activation as pre-treatment with MK-801 has been shown to prevent CNS 

damage (Doyle & Shaw 1996). Additionally NMDA-receptor stimulation may generate 

polaymines, via ornithine decarboxylase activation, which exert cytotoxic effects on 

cerebroendothelial cells and induce neurovascular disruption (Koenig et al. 1989). 

Therefore it is likely that polyamines play an important role in the aetiology of EAE.

To conclude, the results of this investigation implicates a role for NMDA receptor 

activation in EAE pathogenesis. However the neurotoxic effects of NMDA receptor 

activation are not mediated by cytotoxic actions of NO or ROS. Neither do they involve 

an alteration in infiltrating inflammatory cells as cervical spinal cord perivascular 

infiltration in EAE-inoculated animals was unaffected by MK-801 treatment. Indeed the 

most likely pathogenic effects of NMDA receptor stimulation are disruption of the BBB 

and polyamine formation. Studies are ongoing to determine the precise mode of action 

through which NMDA receptors are involved in EAE.
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CHAPTER 8 

L-ARGININE
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8. RESULTS

Inhibition of NO synthesis in the CNS of EAE-sensitised rats following 

administration of NOS inhibitors either had no effect on or aggravated neurological 

disease. Therefore, work was undertaken to determine the effect of increasing NO levels 

in the CNS on EAE. NO levels can be enhanced by administration of L-arginine substrate. 

Thus, L-arginine at a dose of 300 mg/kg body weight was administered orally in PBS 

vehicle to EAE-inoculated rats once daily for 12 days. In addition, normal animals were 

treated with L-arginine to ensure no adverse effects of increasing NO levels were induced. 

Following administration of L-arginine EAE-sensitised animals were assessed for effects 

on neurological signs and CNS levels of NO and ROS.

8.1 Effect Of L-Arginine Administration on Body Weight Loss and Neurological 

Development of EAE

L-arginine and vehicle-treated EAE-inoculated rats were examined daily for body 

weight changes and neurological disease signs (Figure 8.1 and Table 8.1). Untreated 

EAE-sensitised animals experienced a disease-related weight loss from day 10 P.I. 

onwards. This was followed by the onset of disease signs at day 12 P.I. By day 13 P.I. 

the majority of undosed EAE-diseased rats suffered paralytic symptoms (Table 8.1). 

Administration of L-arginine not only decreased the body weight loss experienced by 

EAE-inoculated animals at day 10 and 11 P.I. (p<0.01) but delayed the disease onset 

(p<0.01) (Figure 8.1. and Table 8.1). In addition, L-arginine treatment significantly 

abrogated disease severity (p<0.01) and reduced the number of animals showing paralysis 

(p<0.05) (Table 8.1). By comparison, vehicle administration had no effect on any of the 

disease parameters assessed. (Figure 8.1 and Table 8.1).
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Figure 8.1 Effect of L-Arginine administration on body weight changes
Animals were assessed daily for changes in body weight which were measured in g and expressed as 
mean body weight change ± S.E.M. (— ■—) EAE-diseased Lewis rats, n=8; (—<>—) EAE-inoculated 
Lewis rats orally dosed with L-arginine (300 mg/kg body weight) from day 1 to 12 P.I., n=6;
(—♦ —) EAE-sensitised Lewis rats orally dosed with vehicle (PBS, 1 ml/kg body weight) from day 1
to 12 P.I., n=6.

Table 8.1 Neurological symptoms in EAE-sensitised Lewis rats after treatment with L- 
arginine (300 mg/kg body weight, orally, day 1 to 12 P.I.) or PBS vehicle (1 ml/kg body 
weight, orally, days 1 to 12 P.I.).

Group Incidence Of 
EAE

Mean Day Of 
Disease Onset

± S.E.M.

Mean Peak 
Disease Severity 

± S.E.M.

Number Of Rats 
Paralysed/Total

EAE 16/16 12 ± 0.1 3 ±0.2 11/16

L-Arginine 6/6 13 ±0.3*** 1 ±0.3*** 1/6*

Vehicle 5/6 11 ±0.2 3 ±0.6 3/6

*p<0.05, **p<0.01 compared to EAE group.
*p<0.05 compared to vehicle group.
Differences in mean day of onset and mean peak disease severity were analysed using the Mann 
Whitney U test. Differences in incidence of disease and number of animals displaying signs of 
paralysis were analysed using the Chi-squared test.
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8.2 Effect of L-Arginine Administration on Nitrite Levels in CNS Cytosol

CNS cytosol nitrite levels were measured to demonstrate whether L-arginine 

administration increased NO production. Cytosol prepared from the cerebellum, medulla- 

pons and cervical spinal cord of normal and EAE-sensitised animals treated with L- 

arginine and vehicle were assayed for their nitrite content (Figure 8.2).

Administration of L-arginine to normal rats resulted in elevated nitrite levels in all 

CNS areas examined with significant increases observed in the medulla-pons and cervical 

spinal tissues (p<0.05) (Figure 8.2). In contrast treatment of normal rats with PBS vehicle 

did not significantly alter the nitrite content of CNS cytosol fractions (Figure 8.2).

Following L-arginine administration EAE-inoculated rats contained significantly 

enhanced amounts of nitrite in their CNS cytosol preparations (cerebellum p<0.01, 

medulla-pons p<0.01, cervical spinal cord p<0.01) (Figure 8.2). However, vehicle 

treatment had no marked effect on CNS nitrite levels in EAE-diseased animals (Figure 

8 .2).

8.3 Effect of L-Arginine Administration on ROS Levels in CNS Cytosol

In the absence of L-arginine substrate the NOS enzymes can produce ROS instead 

of NO (Mayer et al. 1991). Therefore, the effect of L-arginine administration on ROS 

levels in the CNS of EAE-inoculated animals was examined (Figure 8.3).

Superoxide levels in cerebellar and medulla-pons cytosol samples from EAE- 

sensitised rats dosed with L-arginine were significantly reduced compared to values 

obtained in vehicle treated animals (p<0.01) (Figure 8.3a). Although L-arginine 

administration reduced superoxide levels to within normal limits in cerbellar cytosol 

preparations, superoxide content in medulla-pons and cervical spinal cord samples 

remained above normal levels (Figure 8.3a). By comparison, no differences in superoxide 

content were observed in CNS cytosol of vehicle treated and undosed EAE-inoculated 

Lewis rats (Figure 8.3a).

Similar effects were observed on CNS cytosol hydrogen peroxide levels in 

EAE-inoculated animals following treatment with L-arginine (Figure 8.3b).

182



p 
m

ol
es

 n
itr

ite
/m

g 
pr

ot
ei

n

1200 n

1000

800

600

400

200

I I Normal 
EAE
Normal +L-arg 

H 3  Normal + Vehicle 
EAE + L-arg 

M® EAE + Vehicle

##
* * *

* * *

* * *

Cerebellum Medulla-Pons Cervical Spinal Cord

Figure 8.2 Effect of L-arginine administration on nitrite levels in CNS cytosol
CNS cytosol was prepared from the cerebellum, medulla-pons and cervical spinal 
tissues. Nitrite levels were determined using the Griess assay and expressed 
as p moles nitrite/mg protein ± S.E.M. following protein content estimation.
I I Normal Lewis rats, n = 12; | | H  EAE-diseased Lewis rats, n = 12;
LvVj Normal Lewis rats orally dosed with L-arginine (300 mg/kg body weight) 
for 12 days, n = 4; [ I Normal Lewis rats orally dosed with vehicle (PBS, 1 
ml/kg body weight) for 12 days, n =4. V /A  EAE-sensitised Lewis rats orally 
dosed with L-arginine (300 mg/kg body weight) from day 1 to 12 P.I., n=6;
11111 EAE-inoculated Lewis rats orally dosed with vehicle (PBS, 1 ml/kg body 

weight) from day 1 to 12 P.I., n=6. *p<0.05, **p<0.01, ***p<0.001 Mann Whitney 
U test compared to normal animals. #p<0.05, ##p<0.01 Mann Whitney U test 
compared to EAE animals.

* * *
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Figure 8.3 Effect of L-arginine administration on ROS levels in CNS cytosol
CNS cytosol was prepared from the cerebellum, medulla-pons and cervical spinal 
cord tissues.
a. Superoxide levels were determined using the reduction of ferricytochrome C 
and results were expressed as n moles superoxide/mg protein ± S.E.M.
b. Hydrogen peroxide levels were measured by the oxidation of scopoletin and 
were expressed as p moles hydrogen peroxide/mg protein ± S.E.M.
1 I Normal Lewis rats, n = 7; EAE-diseased Lewis rats, n = 6;
V/A EAE-sensitised Lewis rats orally dosed with L-arginine (300mg/kg body 
weight) from day 1 to 12 P.I., n =6; 11111 EAE-inoculated Lewis rats orally 
dosed with vehicle (PBS, 1 ml/kg body weight) from day 1 to 12 P.I., n = 6. 
*p<0.05, **p<0.01, ***p<0.001 Mann Whitney U test compared to normal 
animals. #p<0.05, #^)<0.01 Mann Whitney U test compared to EAE animals.
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Administration of L-arginine to EAE-sensitised Lewis rats decreased hydrogen peroxide 

content in the CNS (Figure 8.3b). Moreover, hydrogen peroxide levels in L-arginine 

treated animals cerebellar and medulla-pons tissue were significantly reduced compared to 

values recorded in vehicle control rats (p<0.05). L-arginine administration reduced the 

amount of hydrogen peroxide in CNS cytosol from EAE-diseased rats cerebellar and 

cervical spinal tissues to within normal limits, however, medulla-pons hydrogen peroxide 

content continued to be greater than normal values (Figure 8.3b). In contrast, treatment 

of EAE-inoculated animals with PBS vehicle did not alter CNS cytosol hydrogen peroxide 

levels (Figure 8.3b).

8.4 Effect of L-arginine Administration on Cellular Infiltration

The effects of L-arginine on cellular infiltration during EAE were assessed by 

determining the number of perivascular infiltrates in cervical spinal cord sections from 

drug and vehicle treated animals (Figure 8.4). Administration of L-arginine or vehicle 

significantly reduced cellular infiltration during EAE (p<0.05) (Table 8.2). However, cell 

migration was significantly decreased in cervical spinal cord sections from animals dosed 

with L-arginine compared to samples from vehicle treated rats (p<0.001) (Table 8.2).
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Figure 8.4 Effect of L-arginine administration on cellular infiltration during EAE
Cellular infiltration in haematoxylin and eosin stained cervical spinal cord samples from EAE- 
inoculated animals following treatment with A) L-arginine (300 mg/kg body weight orally from day 1 
to 12 P.I) or B) PBS vehicle (1 ml/kg body weight, orally from day 1 to 12 P.I.)

Table 8.2 Perivascular infiltrates in cervical spinal cord samples from EAE- 
sensitised Lewis rats following treatment with L-arginine (300 mg/kg body weight, 
orally from day 1 to 12 P.I) or vehicle.

Group Mean Number of LesionsVlO mm Section
(± S.E.M.)

EAE 53 ± 4
L-arginine 20 ± i***m

Vehicle 42 ±3*

a Sections were cut at one standard depth, stained with haematoxylin and eosin and the 
total number of lesions per section was determined using light microscopy (x40). Values 
are means of 18 sections from 3 animals ± S.E.M. *p<0.05, ***p<0.001 Mann Whitney 
U test compared to EAE group; *** P<0.001 Mann Whitney U test compared to vehicle 
group.



8. DISCUSSION

8.1 Increasing NO Levels During EAE

As neurological EAE was unaffected or exacerbated following the reduction of 

NO by NOS inhibitor treatment, the effect of increasing CNS levels of NO on disease 

development was ascertained. NO levels can be enhanced by the administration of an NO- 

donor such as sodium nitroprusside or S-nitro-N-acetylpenicillamine (SNAP) (Baughton- 

Smith et al. 1990, Kubes & Granger 1992). However, due to the short half-life of these 

NO-donors this method of increasing NO was not appropriate for using in the EAE 

model. Therefore another method was devised to elevate CNS levels of NO. As L- 

arginine has been shown to reverse the competitive inhibition of NO (Whittle et al. 1995) 

and can be easily administered to animals via the oral route, rats were dosed with L- 

arginine to produce a model in which CNS levels of NO were increased. Indeed the 

ability of the drug to elevate NO was confirmed in the study by the observed enhancement 

in nitrite content of CNS tissues from normal animals treated with L-arginine.

In addition to effects on NO, L-arginine was administered to EAE-diseased rats to 

alter ROS production. Generation of ROS by NOS enzymes has been identified in the 

absence of adequate L-arginine substrate (Mayer et al. 1991, Heinzel et al. 1992). Since 

neurological EAE was associated with an elevation in the ROS content of the CNS, and 

increased levels of nNOS protein it was postulated that excess ROS may be produced by 

NOS as a consequence of an L-arginine deficiency during EAE. Therefore, examining the 

effects of L-arginine administration on EAE development and CNS levels of nitrite and 

ROS may allow better understanding of the precise role played by NO in the pathogenesis 

of EAE.

Interestingly, L-arginine treatment curtailed the onset and progression of 

neurological EAE. Furthermore nitrite levels were significantly elevated in the CNS of 

EAE-sensitised animals dosed with L-arginine. Therefore rather than being a cytotoxic 

molecule during EAE, NO may function in a neuroprotective capacity. Indeed other 

workers have also provided evidence for an immunosuppressive role for NO in EAE
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pathogenesis (Ruuls et al. 1996). NO may prevent EAE progression through effects on 

key processess involved in the initiation of the disease. One of the characteristic features 

of EAE is the CNS infiltration of immunocompetent cells such as macrophages and 

lymphocytes (Brosnan et al. 1981). However, as NO functions as an anti-adhesion 

molecule excessive levels of NO may prevent the cellular infiltration observed in EAE 

(Kubes et al. 1991, Gaboury et al. 1993). Moreover, the number of perivascular 

inflitrates in spinal cord tissue from EAE-diseased rats was significantly reduced following 

L-arginine administration. Hence, the production of NO during EAE may limit the disease 

by altering the inflammatory cell composition of the CNS. In addition to effects on cell 

trafficking NO also prevents lymphocyte proliferation (Denham & Rauland 1992) and 

mast cell activation (Gaboury et al. 1996). As encephalitogenic T lymphocytes and mast 

cells play an important role in the aetiology of EAE (Bo et al. 1991, Levi-Schaffiier et al.

1991, Bebo et al. 1996) inhibition of their proliferation and activation by NO respecively 

may prevent disease development. Clearly NO may suppress EAE through effects on the 

inflammatory cells implicated in disease pathogenesis.

8.2 Cytoprotective Role of NO Against Oxidant Injury

NO has also been observed to serve a protective role in pathological events 

associated with the excess production of ROS. Several studies have shown that 

stimulation of endogenous NO production or exogenous administration of NO inhibits 

oxidant-mediated tissue injury (Kubes etal. 1991, Choi 1993, Wink et al. 1993). 

Moreover, inhibition of NO synthesis enhanced injury in some models emphasising the 

protective role of NO in oxidant mediated cytoxicity (Payne & Kubes 1993, Kavanagh et 

al. 1994). Pharmacological evidence exists implicating ROS in EAE pathogensis (Bowem 

etal. 1984, Honegger etal. 1989, Lehmann et al. 1994, Ruuls etal. 1995). Furthermore 

the present investigation and other studies have demonstrated increased ROS production 

in tissues and cells isolated from the CNS of EAE-diseased animals (MacMicking et al.

1992, Ruuls et al. 1995, Scott et al. 1996). Therefore, the neuroprotective effects
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observed in EAE as a consequence of L-arginine administration may result from an action 

of NO on ROS-dependent cytotoxicity.

In biological systems NO readily reacts with superoxide to yield highly toxic 

peroxynitrite (Beckman etal. 1990). However, interactions between NO and superoxide 

have also been observed to result in antioxidant activities (Kanner et al. 1991, Guitierrez 

et al. 1996). Indeed the outcome of this reaction appears to be critically dependent on the 

relative concentrations and rates of production of the two molecules (Darley-Usmar et al.

1995). Thus a ratio of 1:1 generates peroxynitrite and induces lipid peroxidation and 

cytotoxicity whereas an excess of NO can prevent this by scavenging peroxyl radicals 

(Rubbo et al. 1994).

8.3 Neuroprotective Effects of L-Arginine Administration

The neuroprotective effects observed in EAE upon increasing endogenous NO 

formation by L-arginine treatment may occur through several mechanisms. Endogenous 

NO may exert a cytoprotective effect by reacting with haem, iron-sulphur and other 

metalloproteins to prevent the formation of powerful oxidant molecules which occurs as a 

result of the interaction between hydrogen peroxide and metals (Wink et al. 1994). In 

addition, NO may divert superoxide-mediated toxic reactions to other less damaging 

oxidative pathways (Gutierrez et al. 1996). Moreover, the diversion of superoxide 

through the peroxynitrite oxidation and decomposition pathways would also limit the 

accumulation and subsequent reactions of hydrogen peroxide by reducing the availability 

of superoxide for spontaneous or SOD-catalysed dismutation (Guitierrez et al. 1996). 

Interestingly, hydrogen peroxide levels were decreased in the CNS tissues of EAE- 

sensitised Lewis rats treated with L-arginine. Therefore, the endogenous NO formed in 

EAE-diseased animals upon the administration of L-arginine may reduce disease 

development by a suppression of hydrogen peroxide production. Additional effects of NO 

to prevent ROS-mediated cytotoxic reactions may occur via an inhibition of oxidant- 

induced lipid peroxidation (Rubbo et al. 1994). Finally NO may transcriptionally activate
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expression of antioxidant enzymes and so reduce the toxic potential of ROS (Gutierrez et 

a l 1996).

In addition to its ability to enhance NO production and scavenge ROS to prevent 

pathological effector mechanisms, L-arginine administration may also reduce ROS toxicity 

through NO-independent effects. It has been previously shown that in the absence of L- 

arginine ROS are generated by NOS (Heinzel et al. 1992, Xia et al. 1996). Therefore, the 

enhanced CNS production of ROS observed in EAE may occur as a consequence of L- 

arginine depletion. The availability of adequate L-arginine substrate for the NOS 

catalysed formation of NO may be diminished in EAE due to the recently reported 

increased synthesis of polyamines (Paul et al. 1997). Although the precursor for 

polyamine biosynthesis is ornithine this may be derived from L-arginine (Morgan 1994). 

Hence during EAE the enhanced synthesis of polyamines may lead to an indirect reduction 

in L-arginine. Administration of exogenous L-arginine would therefore counteract this 

depletion and consequently decrease ROS generation by NOS. Indeed the CNS 

production of both superoxide and hydrogen peroxide were reduced in EAE-diseased rats 

following treatment with L-arginine. Although this decrease in CNS levels of ROS may 

occur as a consequence of enhanced NO formation, as discussed above, it may also result 

from the increase in endogenous L-arginine availability preventing ROS formation upon 

NOS activation.

Clearly the results of this study demonstrate that enhanced endogenous NO and 

decreased ROS levels contribute to limiting the neurological development of EAE. Hence 

this work suggests that NO production in EAE exerts a cytoprotective rather than a 

cytotoxic effect which complicates pharmacological investigations into the role of NO in 

EAE. Indeed further work must be undertaken to identify the precise role played by NO 

and ROS in EAE pathogenesis.
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CHAPTER 9 

CONCLUSIONS
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9.1 NO and EAE

The present investigation was undertaken to clarify the role of NO in EAE 

pathogenesis . Initially the importance of NO in disease aetiology was determined by 

examining nitrite levels and NOS protein expression in the CNS at various stages of EAE. 

Nitrite and NOS protein levels were elevated in CNS tissues from EAE-sensitised rats 

throughout the induction and effector phases of the disease indicating a possible 

involvement of NO in EAE pathogenesis. However, CNS nitrite content and protein 

expression were also increased during the recovery stage of EAE which suggests that NO 

may be important in disease regulation. Therefore, the results of the study indicate that 

NO may have a dual role in EAE.

NO may exert cytotoxic effects in the pathogenesis of EAE via several 

mechanisms. Toxicity of NO in the CNS may be due to inhibition of cellular 

mitochondrial respiration (Cleeter et al. 1994, Zielasek et al. 1995) or DNA synthesis and 

repair (Cosi et al. 1994). Alternatively, NO formation may contribute to 

neurodegeneration by activation of cyclooxygenase (Corbett et al. 1993) or stimulation of 

TNF-a production (Magrinat et al. 1992). Furthermore, NO may react with superoxide 

to form the highly toxic molecule, peroxynitrite (Beckman et al. 1990) which can cause 

CNS damage via lipid peroxidation (Radi et al. 1991) or loss of cellular integrity (Lipton 

etal. 1993).

Neuroprotective effects of NO during EAE may be mediated through various 

mechanisms. NO may suppress EAE through effects on the inflammatory cells implicated 

in disease pathogenesis. More specifically NO may prevent T lymphocyte proliferation 

(Denham & Rauland 1992) and mast cell activation (Gaboury et al. 1996), both of which 

may be important in EAE (Bo et al. 1991, Levi-Schafiner 1991, Bebo et al. 1996). 

Recently Okuda et al. (1997) have proposed that NO may exert immunosuppressive 

effects in EAE by the elimination of CNS inflammatory cells through apoptosis. 

Additionally NO may serve a protective role in EAE by reacting with ROS. Although the 

reaction between NO and superoxide yields peroxynitrite (Beckman et al. 1990) 

interactions between these two molecules have also been observed to result in antioxidant
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activities (Kanner et al. 1991). Indeed the outcome of the reaction appears to be 

dependent on the relative concentrations and rates of production of NO and superoxide 

(Darley-Usmar et al. 1995) with a ratio of 1:1 generating cytotoxic peroxynitrite and an 

excess of NO preventing toxicity by scavenging peroxyl radicals (Rubbo et al. 1994).

9.2 Pharmacological Manipulation of NO in EAE

In order to further define the precise role of NO in the aetiology of EAE the 

effects of pharmacological manipulation of CNS NO levels on disease development were 

assessed. Interestingly administration of immunosuppressive agents such as Dex or CsA 

inhibited nitrite production in the CNS and abrogated EAE strongly indicating an 

involvement of NO in disease pathogenesis. However, treatment of EAE-inoculated rats 

with specific NOS inhibitors, while decreasing CNS nitrite levels, had variable effects on 

neurological disease signs. Administration of the bNOS inhibitor, 7-NI, prevented EAE, 

the iNOS inhibitor, AG, had no effect on disease development. Moreover, appropriate 

vehicle treatment elicited similar responses. By comparison, dosing sensitised animals 

with the non-selective NOS inhibitor, L-NAME, aggravated EAE suggesting a 

suppressive role for NO in the disease. The involvement of NO in EAE pathogenesis was 

further complicated following the administration of the NMDA receptor antagonist, MK- 

801, to EAE-inoculated rats. Although MK-801 inhibited EAE the drug did not decrease 

nitrite formation in all areas of the CNS indicating that the suppressive effects of MK-801 

treatment on disease development may not be mediated via NO inhibition. Finally, EAE- 

sensitised animals were dosed with L-arginine to determine the effect of increasing CNS 

levels of NO on neurological disease progression. L-arginine administration both 

enhanced CNS nitrite content and abrogated EAE thus providing additional evidence for a 

suppressive role of NO in disease pathogenesis.
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9.3 Interactions Between ROS and NO During EAE

The proposed dual effects of NO as a cytotoxic or cytoprotective molecule during 

EAE may be due to interactions of the molecule with ROS. Therefore, the ROS content 

of CNS tissues from EAE-diseased animals was determined in the presence and absence of 

drug administration to elucidate the effect of altering NO levels on ROS production. 

Although both superoxide and hydrogen peroxide levels were elevated in the CNS of 

sensitised animals only the superoxide increase appeared to be a disease specific effect. 

Interestingly, superoxide content of the CNS was only enhanced prior to the onset of EAE 

suggesting a possible role for superoxide as a pathogenic effector molecule in the disease 

process. Furthermore, as CNS tissue nitrite content was also increased prior to 

neurological disease development it may be that the NO and superoxide react to form 

cytotoxic peroxynitrite thus accounting for some of the cytotoxic properties of NO in 

EAE. Indeed recent work by Hooper et al. (1997) has implicated peroxynitrite in EAE 

pathogenesis. In contrast the interaction of NO and superoxide during EAE may serve a 

neuroprotective function. Although superoxide levels were reduced in the CNS during 

the active and recovery phases of EAE, nitrite content of the tissue was enhanced. 

Therefore the excess NO in the CNS may scavenge superoxide and so prevent cytotoxic 

reactions.

During EAE the potential exists for the interaction of NO and ROS to result in 

cytotoxic or cytoprotective effects. To ascertain whether NO scavenges superoxide 

during EAE the consequences of inhibiting CNS production of NO on ROS levels were 

assessed. The results could not be clearly interpreted due to the ability of the 

pharmacological agents employed to prevent ROS formation in addition to inhibiting NO 

synthesis. However the inhibitory effects of L-arginine administration on EAE 

development were associated with an increase in CNS nitrite levels but a reduction in 

ROS content of the tissue implicating that NO may scavenge superoxide during the 

disease.
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9.4 Future Directions

Although the present investigation provides evidence demonstrating a potential 

role for NO as an effector molecule in both the development and resolution of EAE 

further work is required to elucidate the importance of these actions in the overall disease 

aetiology. The relative contribution of NO as a cytotoxic or cytoprotective molecule in 

the CNS during EAE may be defined completing the following objectives:

• devise a reliable method for measuring peroxynitrite production in CNS tissues to 

determine differences between samples from normal and EAE-diseased animals.

• administer peroxynitrite inhibitors/scavenger such as uric acid, nicotinic acid and 

desferoxamine to EAE-sensitised rats and assess the effect on disease development.

• measure L-arginine concentrations, by HPLC, in the CNS during the disease 

progression to ascertain if a deficiency in the NOS substrate contributes to the 

generation of cytotoxic ROS in EAE.

• utilise more selective NOS inhibitors, such as S-methyl-thiocitrulline, N°-nitro-L- 

arginine and L-N6-(l-iminoethyl)lysine and measure NOS activity in the CNS to define 

which isoform/s of NOS are important in the disease.

• examine the possible mechanisms through which NO may exert immunosuppressive 

effects during EAE by assessing the lymphocyte proliferation and mast cell activation 

following administration of NOS inhibitor.
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MATERIALS

Material Source

P-mercapthoethanol BDH, Poole, UK

7-Nitroindazole Lancaster, Lancashire, UK

Acetic acid Fisons, Loughborough, UK

Acetone Fisons, Loughborough, UK

Acrylamide BDH, Poole, UK

Ammonium nickel sulphate Sigma, Poole, UK

Ammonium persulphate BDH, Poole, UK

anti-bNOS antibody Affiniti Research Products Ltd, Exeter, UK

anti-eNOS Antibody Affiniti Research Products Ltd, Exeter, UK

anti-iNOS antibody Affiniti Research Products Ltd, Exeter, UK

BICINE Sigma, Poole, UK

Bovine serum albumin Sigma, Poole, UK

Bromophenol blue Fisons, Loughborough, UK

Calcium chloride Fisons, Loughborough, UK

Catalase Sigma, Poole, UK

Cellulose phosphate Sigma, Poole, UK

Cobalt chloride Sigma, Poole, UK

Coomassie brilliant blue Sigma, Poole, UK

Copper sulphate Sigma, Poole, UK

Cyclosporin A gift from Sandoz, Switzerland

Dexamethasone Organon Laboratories, Cambridge, UK

Diaminobenzidine Sigma, Poole, UK

Dithiothreitol Sigma, Poole, UK

ECL reagents Amersham, Buckinghamshire, UK

EDTA Sigma, Poole, UK
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Eosin Sigma Diagnostics, St. Louis, USA

Ethanol Fisons, Loughborough, UK

Extra virgin olive oil J Sainsubrys, UK

Ferricytochrome C Sigma, Poole, UK

Folin’s Ciocaulteau reagent BDH, Poole, UK

Freund’s incomplete adjuvant Difco, Detroit, USA

Glycine Sigma, Poole, UK

Goat anti-mouse IgG DAKO, Denamrk

Haematoxylin Sigma Diagnostics, St.Louis, USA

Halothane Rhone Merieux Ltd., Harlow, UK

Horseradish peroxidase Sigma, Poole, UK

Horseradish peroxidase linked sheep anti

mouse Ig

Amersham, Buckinghamshire, UK

Human aortic endothelial cell lysate Affiniti Research Products Ltd, Exeter, UK

Hydrogen peroxide Sigma, Poole, UK

L-arginine Sigma, Poole, UK

L-NAME Sigma, Poole, UK

Magnesium chloride Fisons, Loughborough,UK

Methanol Fisher Scientific Int., Loughborough, UK

Milk powder Marvel, Premier Beverages, Stafford,UK

MK-801 gift from Merck Sharp & Dohme, UK

Mouse macrophage cell lysate Affiniti Research Products Ltd, Exeter, UK

Mouse monoclonal PAP Sigma, Poole, UK

Mycobacterium tuberculosis Difco, Detroit, USA

N-naphthylethylenediamine

dihydrochloride

Sigma, Poole, UK

NN’ -methylenebisacrylamide BDH Ltd., Poole,UK

Peanut oil Sigma, Poole, UK
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Phosphate buffered saline Sigma, Poole, UK

Phosphoric acid Sigma, Poole, UK

PVDF membrane Millipore, Watford, UK

Rat pituitary tumor cell lysate Affiniti Research Products Ltd, Exeter, UK

Scopoletin Sigma, Poole, UK

Sodium azide Sigma, Poole, UK

Sodium carbonate BDH Ltd., Poole, UK

Sodium hydroxide Fisons, Loughborough, UK

Sodium dodecyl sulphate Sigma, Poole, UK

Sodium nitrite Sigma, Poole, UK

Sodium sulphate Sigma, Poole, UK

Sodium tartrate Sigma, Poole, UK

Sucrose Fisher Scientific Int., Loughborough, UK

Sulphanilamide Sigma, Poole, UK

Superoxide dismutase Sigma, Poole, UK

TEMED Sigma, Poole, UK

Tris Sigma, Poole, UK

Triton X-100 Sigma, Poole, UK

Tween 20 Sigma, Poole, UK

Xylene BDH Ltd., Poole, UK
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