

University of Bath

PHD

Computing global configuration-space maps using multidimensional set-theoretic
modelling

Wise, Kevin D.

Award date:
2000

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

COMPUTING GLOBAL
CONFIGURATION-SPACE MAPS

USING MULTIDIMENSIONAL
SET-THEORETIC MODELLING

Submitted by Kevin D Wise
for the degree of

Doctor of Philosophy
of the University of Bath

2000

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with its author.
This copy of the thesis has been supplied on condition that anyone who consults
it is understood to recognise that its copyright rests with its author and no
information derived from it may be published without the prior written consent
of the author.

This thesis may be made available for consultation within the University library
and may be photocopied or lent to other libraries for the purposes of consultation.

10 2 . ° ° °

UMI Number: U124B38

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U124BB8
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

UNIVERSITY OF BATH f
LIBRARY \

Abstract

This thesis describes two ways that multidimensional set-theoretic modelling can
be used to compute global maps of the C-space for a system of rigid bodies.

The first combines workspace dimensions and degrees of freedom to construct a
multidimensional model which contains information regarding every interaction
which occurs as the moving object (or system of objects) exercises its degrees
of freedom. When interference regions within this multidimensional model are
projected into the C-space they map out the C-space obstacles. Five heuristic
algorithms are presented which compute an approximate C-space map via this
projection. All have been successfully implemented and have been shown to be
inherently general.

The second method of C-space mapmaking presented is the precise representation
of C-space obstacles by formulating contact surfaces analytically. Algorithms
are described which exploit several properties of multidimensional set-theoretic
modelling which suit it to this task. These algorithms have been implemented,
resulting in a mapmaker which has been shown to compute valid precise global C-
space maps for three dimensional objects with six degrees of freedom. Moroever,
the algorithm for a single moving object extends in a straightforward manner to
handle multiple independent moving objects and to manipulators. A mapmaker
has therefore been implemented which has computed precise global C-space maps
for up to six independent objects with eighteen degrees of freedom, and precise
global C-space maps for a robot manipulator with up to six revolute joints.

A number of possible future work directions are outlined, including the combina­
tion of the two approaches into a hybrid C-space mapmaker.

Acknowledgem ents

I would like to acknowledge that Adrian is laid-back, Dave is cool, my mum is
great and my dad is missed by everyone who knew him.

I would also like to thank EPSRC for funding this research, Southco Ltd. for
their industrial input, and G-mod for their support and friendship.

Finally, I would like to thank Ann for, er, everything.

1

C ontents

1 Introduction 17

1.1 An an ecdo te .. 17

1.2 The configuration-space approach to spatial p la n n in g 18

1.3 Multidimensional geom etry.. 21

1.4 Set-theoretic m odelling... 22

1.5 Computing global C-space maps using multidimensional set-theoretic
m o d e llin g .. 25

2 A survey of configuration-space techniques for a single nomad in
a static environment 27

2.1 In troduction .. 27

2.2 Modelling the nomad and its e n v iro n m e n t...................................... 28

2.3 C-space map re p re se n ta tio n .. 31

2.4 Mapmaking techniques for a nomad in a static environment . . . 44

2.5 Mapmaking techniques for a single manipulator in a static envi­
ronment 50

2

2.6 Classification ta b le s ... 54

2.7 Summary k, co n c lu sio n s ... 54

3 Set-theoretic modelling at Bath 62

3.1 In troduction .. 62

3.2 sv L is .. 63

3.3 H ypersvlis... 71

3.4 svLis-m .. 73

3.5 Summary & co n c lu s io n s .. 78

4 Orienteer— a tool for C-space map validation 80

5 Creating an approximate C-space map via projection of an ‘om-
nim odel’ 82

5.1 In troduction ... 82

5.2 Degrees of freedom as d im ensions.. 83

5.3 Omnimodel co n stru c tio n ... 85

5.4 The effect of d iv is io n ... 90

5.5 Overview of projection into the C-space... 90

5.6 co llD etP o in t: Collision detection at discrete configurations . . . 93

5.7 collDetBox: Collision detection for resolution-sized C-space boxes 97

3

5.8 collDetBSD: Collision detection for recursively sub-divided C-space
boxes.. 99

5.9 isotropicBSD: Isotropic binary spatial division of the omnimodel 101

5.10 L-collDetBSD: ‘Learning’ collision detection for recursively sub­
divided C-space boxes ...I l l

5.11 Complexity analysis.. •...............................113

5.12 Experimental r e s u l t s ... 115

5.13 Summary &; co n c lu s io n s ...138

6 Computing precise C-space maps using set-theoretic modelling 140

6.1 In troduction ... 140

6.2 The Minkowski sum of closed convex polygons using set-theoretic
m o d e llin g ..141

6.3 Computing C-space obstacles for translational cases of closed con­
vex polygons.. 145

6.4 Incorporating ro ta tio n s ..145

6.5 Handling unbounded po lygons.. 150

6.6 From polygons to p o ly h e d ra ..157

6.7 Handling non-convex poly t o p e s ... 160

6.8 Handling curved su rfaces.. 162

6.9 Complexity analysis.. 163

6.10 Test r e s u l t s ...170

6.11 Summary k co n c lu s io n s .. 170

7 C-space mapping for multiple nomads 176

7.1 In troduction ... 176

7.2 Calculating the C-space obstacles caused by static obstacles . . . 177

7.3 Calculating the C-space obstacles caused by other nomads 177

7.4 Handling unbounded objects, non-convex objects and three-dimensional
o b je c ts ..178

7.5 Complexity analysis.. 179

7.6 Experimental r e s u l t s ...180

7.7 Summary k co n c lu s io n s .. 181

8 C-space mapping for a manipulator arm 184

8.1 In troduction ...184

8.2 Combining C-space mapping with constraint m o d e llin g 185

8.3 Direct computation of T 1 Z 8 S S V A C S ... 189

8.4 Complexity analysis..196

8.5 Experimental r e s u l t s ...198

8.6 Applying the omnimodel approach to a m anipu lator.........................199

8.7 Summary k co n c lu s io n s ..200

5

9 Future work 202

9.1 In troduction ..202

9.2 Implementing an alternative representation of r o t a t i o n202

9.3 Improving omnimodel projection ...203

9.4 A hybrid m apm aker...207

9.5 Mapmaking for a dynamic environm ent... 208

9.6 Using the C-space maps p roduced ...209

9.7 Incorporating parameterised m odels... 213

9.8 A mechanism design t o o l ...214

9.9 Summary &; co n c lu s io n s ...217

10 Summary &; conclusions 218

A Implementation of a rotational sweep 221

B Tables of data for Section 5.12 223

References 224

6

List o f Figures

1.1 An illustration of C-space mapping... 19

1.2 An illustration of C-space mapping for a manipulator, af­
ter Simeon [91]... 20

1.3 Illustrations of halfspaces.. 23

1.4 Some typical primitives used by a set-theoretic modeller. 23

2.1 An illustration of hierarchical approximation, after Faver-
jon and Tournassoud 1988 [30]... 30

2.2 A taxonomy of C-space representation schemes................... 32

2.3 Minkowski operations... 33

2.4 Contact types for polygons............ 35

2.5 Illustration of contact conditions for a polygonal case after
Brost 1989 [13]... 36

2.6 Contact types for polyhedra.. 37

7

2.7 The C-space obstacle which a static polyhedron causes to
a polyhedron which can translate in a fixed orientation is
a patchwork of contact surfaces of Type A (green), Type
B (red) and Type C (pink). The snapshots around the
perimeter show example configurations corresponding to
some of the contact patches... 38

2.8 An illustration of the types of contact constraint for a
polygon with translational and rotational freed o m 39

2.9 Illustration of the slice projection technique, after Lozano-
Perez 1983 [63]... 46

2.10 Illustration of the shape decomposition technique of Lin
and Chang 1993 [59]... 49

2.11 An illustration of the hybrid division scheme of Shiller
and Gwo 1993 [90]... 53

3.1 Images of svLis m odels... 63

3.2 The implicit representation of a h a lfsp a c e 65

3.3 A cylinder primitive is represented as a tree......................... 66

3.4 Pruning a set-theoretic tree to a box....................................... 70

3.5 The effect of placing a halfspace and a point into a higher
dimensional space.. 75

3.6 The set-tree of a six-dimensional s e t 78

3.7 A six-dimensional set sliced to three d im e n sio n s 79

4.1 A snapshot of the Orienteer C-space validation tool 81

8

5.1 Illustration of an omnimodel for a one-dimensional system . 84

5.2 Introducing rotation to a two-dimensional linear halfspace 87

5.3 Roll-Pitch-Roll Euler Angles ... 89

5.4 The two-dimensional omnimodel used to illustrate omni­
model p r o jec tio n .. 91

5.5 Projecting into a one-dimensional C-space using ray-tracing 95

5.6 Comparison of results from collDetPoint and collDetBox 98

5.7 Comparison of results from collDetBSD and collDetBox . . 100

5.8 An illustration of isotropic binary spatial d iv is io n102

5.9 Comparison of C-space maps produced by isotropicBSD
and collDetBSD— note they are identical despite taking
completely different ro u tes.. 106

5.10 Exaggerated omnimodels which illustrate the strengths
and weaknesses of isotropicBSD... 107

5.11 An illustration of collDetBSD coarsely projecting a com­
plicated omnimodel with fine d e t a i l ..108

5.12 An illustration of isotropicBSD coarsely projecting a com­
plicated omnimodel with fine d e t a i l ..109

5.13 An illustration of collDetBSD coarsely projecting a simple
omnimodel containing a large intersection reg ion 109

5.14 An illustration of istotropicBSD coarsely projecting a sim­
ple omnimodel containing a large intersection region . . . 110

5.15 Test cases referred to by graphs in this chapter 118

9

5.16 A comparison of the maps computed by the five algo­
rithms for the 2-D ‘Gen-poly touch-latch’ case w ith two
translational degrees of freedom... 120

5.17 Omnimodel projection has been used to compute the C-
space map for a case with two nomads with one transla­
tional degree of freedom each.. 121

5.18 Omnimodel projection has been used to compute the C-
space map for a simple mechanism consisting of two com­
ponents with one rotational degree of freedom each. . . . 122

5.19 C-space maps produced at different reso lu tion s...................... 125

5.20 Percentage CONTACT by volume vs. resolution for the
2-D ‘Gen-poly touch-latch’ case with 2 D O F s 126

5.21 Time taken vs. resolution for the 2-D ‘Gen-poly touch-
latch’ case with 2 DOFs (note the scale is logarithmic) . . 126

5.22 Max. memory usage vs. resolution for the 2-D ‘Gen-poly
touch-latch’ case with 2 DOFs ... 127

5.23 Percentage CONTACT by volume vs. resolution for the
2-D ‘Medium spheres’ case with 2 D O F s 127

5.24 Percentage CONTACT by volume vs. resolution for the
2-D ‘Medium spheres’ case with 2 DOFs (note the scale
is logarithmic) .. 128

5.25 Time taken vs. resolution for the 2-D ‘Medium spheres’
case with 2 DOFs (note the scale is logarith m ic)................... 128

5.26 Max. memory usage vs. resolution for the 2-D ‘M edium
spheres’ case w ith 2 DOFs ... 129

10

5.27 Time vs. resolution for the 2-D ‘Small spheres’ case with
2 DOFs (note the logarithmic s c a le) ... 129

5.28 Time vs. resolution for the 2-D ‘M edium spheres’ case
with 2 DOFs ...131

5.29 Time vs. resolution for the 2-D ‘Big spheres’ case with 2
D O F s .. 131

5.30 Time vs. complexity of the obstacle for two sizes of nomad 132

5.31 The effect on L-collDetBSD of swapping the obstacle and
nomad sets when one is significantly l a r g e r133

5.32 The effect on isotropicBSD of swapping the obstacle and
nomad sets when one is significantly more complicated . . 134

5.33 Time (on an SG origin) vs. resolution for the 2-D ‘Med
spheres’ case w ith two translational DOFs (note the log­
arithmic s c a l e) ..136

5.34 Time (on an SG origin) vs. resolution for the 3-D ‘Med
spheres’ case w ith two translational DOFs (note the log­
arithmic s c a l e) ..136

5.35 Time (on an SG origin) vs. resolution for the 3-D ‘Med
spheres’ case with three translational DOFs (note the log­
arithmic s c a l e) ..137

6.1 An example Minkowski sum of two p o ly g o n s142

6.2 One halfspace from NOM, translated by each of the vertices
o f OBS ...143

6.3 Computing a Minkowski sum for a convex polygon 144

11

6.4 Computing the constraint surface for a Type A interaction
for a translation-only convex polygonal c a s e 146

6.5 If the nomad is rotated, the face-vertex constraint surface
rotates by the same a m o u n t... 147

6.6 Computing the constraint surface for a vertex-face inter­
action for a translation-only convex polygonal case 148

6.7 A C-space obstacle for two rectangles. The horizontal
plane represents the two translational degrees of freedom;
the vertical axis represents rotation.. 151

6.8 An illustration of C-space obstacle com putation for closed
convex p o ly g o n s ...152

6.9 The same algorithm fails if one of the polygons is unbounded 153

6.10 Constructing an ‘applicability cone’ for a two-dimensional
vertex-edge in tera c tio n ...154

6.11 A divide-and-conquer approach to problem (a) would lead
to a subproblem (b) where no interaction is applicable. . 156

6.12 An illustration of a non-convex 3-D translational case . . 161

6.13 An illustration of a non-convex 3-D case w ith six degrees
of fre ed o m ... 162

6.14 An illustration of a convex 2-D 3-DOF c a s e171

6.15 An illustration of a non-convex 2-D 3-DOF c a s e171

6.16 An illustration of a convex 3-D 6-DOF case (i)172

6.17 An illustration of a convex 3-D 6-DOF case (i i)172

12

7.1 Orienteer explores the C-space of a case w ith six 2-D no­
mad with three DOFs each ...181

7.2 Time taken plotted against the number of nomads for con­
vex and non-convex cases ..182

7.3 Max. memory requirement plotted against the number
of nomads for convex and non-convex c a s e s 183

8.1 A 2-D approximation of a 2-link m an ip u lator186

8.2 A set-tree representing a geometric c o n s tr a in t188

8.3 A ‘wire’ formed by intersecting thin s h e e t s 188

8.4 The obstacles are placed into the model space of LINKi . . 190

8.5 The C-space map for a manipulator similar to that of Fig­
ure 8.1, ignoring link-link interactions 192

8.6 A 2-D approximation of a 3-link m an ip u lator193

8.7 The C-space map for a manipulator similar to that of Fig­
ure 8.1, including link-link in teraction s..................................... 195

8.8 Orienteer is used to explore the six-dimensional C-space
map of a six-link 2-D revolute manipulator............................... 199

8.9 A six-link 2-D revolute manipulator with non-convex links 200

8.10 Time taken plotted against the number of links for convex
and non-convex links, both with and without incorporat­
ing link-link in te r a c tio n s ... 201

9.1 A poor choice of division plane is in effic ien t......................... 204

13

9.2 The behaviour of a mechanism corresponds to a path
traced through the C - s p a c e ...211

9.3 The potential field around an object is distorted by inter­
sections ...212

9.4 A simple parameterised m o d e l ...213

9.5 A schematic for a mechanism design tool based on in­
tegrating applications of multidimensional set-theoretic
modelling ...215

14

List o f Tables

2.1 Abbreviations used in Tables 2.2 and 2.3.................................. 55

2.2 C-space mapmakers for a single nomad in a static envi­
ronment (cont .) .. 56

2.2 (cont.) C-space mapmakers for a single nomad in a static
environment... 57

2.3 C-space map-makers for a manipulator in a static envi­
ronment (cont .) .. 58

2.3 (cont.) C-space map-makers for a manipulator in a static
environment... 59

6.1 Set-tree com position for constraint su r fa c es166

6.2 Set-tree composition for applicability c o n e s166

6.3 Set-tree com positions for C-space obstacles for convex ob­
jects ..167

6.4 Set-tree com position for two specific cases— rectangles in
two dimensions (n = m = 4) and cuboids in three dimen­
sions (n = m = 6) ...169

6.5 Test cases for the analytical C-space mapping algorithms 174

15

6.6 Test results for the precise C-space mapping algorithms
for a single n o m a d ..175

B.l Tim e taken (s .) vs. resolution for the 2-D ‘Medium
spheres’ case with 2 DOFs.. 223

B.2 Tim e taken (s .) vs. resolution for the 2-D ‘Big spheres’
case with 2 DO Fs... 223

B.3 Tim e (on an SG origin) vs. resolution for the 3 3-D ‘Med
spheres’ case with three translational D O F s223

16

Chapter 1

Introduction

1.1 An anecdote

In January 1865, English aristocrat George Beecham, known for his sense of ad­
venture and fearless disposition and inspired by the exploits of David Livingstone,
set off from Southampton on a voyage to Africa taking only a big hat, two spare
shirts and some smalls. Beecham shrugged off suggestions that he should take
a map, declaring that as bold a man as he could deal with anything that he
could come across and besides, he continued, so much more could be achieved in
life if you concentrated on where you were, rather than where you were going.
Less than a week into his trek across the continent, however, he stumbled across
quicksand into which, despite his protestations, he sank without trace.

The moral of this story is that no m atter how much fun it is to concentrate on
where you are, having a map of where you can and cannot go will allow you to
plan ahead and avoid areas that could get you in all sorts of trouble. This thesis
describes methods which, for a given system of rigid objects, will compute a
global map of the configuration space of that system—that is, a representation of
the set of positions and orientations that system of objects can adopt, identifying
which of those configurations are prohibited (since they would result in overlap
with one or more other objects) and which are safe.

17

1.2 The configuration-space approach to spatial
planning

Few concepts have played a greater role in the study of rigid-body kinematics
than the configuration space approach to spatial planning, as formally defined
by Lozano-Perez 1983 [63]. A configuration of an object or group of objects is
a set of parameters sufficient to position every point in the object (s) in space.
Thus, for a rigid three-dimensional body with a full six degrees of freedom, a
configuration is a six-tuple which specifies the position and orientation of the
body relative to (arbitrary) reference values1. Similarly, the configuration of a
system of rigid bodies with a total of n degrees of freedom may be defined by an
an n-tuple.

The configuration space (or C-space) for a system of rigid objects is the space of
all its possible configurations and is therefore an n-dimensional space bounded by
upper and lower limits on each of the degrees of freedom. Since two solid objects
cannot overlap, configurations of such a system can fall into three categories:
prohibited (or forbidden) configurations, in which objects would overlap; safe (or
free) configurations in which no overlap occurs; and contact configurations in
which two or more objects touch each other in one or more places.

Throughout this thesis I use the term C-space map to refer to a geometric model
which partitions the C-space into these three categories. The prohibited regions
in such a map are commonly referred to as C-space obstacles and the safe regions
as free-space (although this term is also sometimes used in the literature to refer
to the complement of the obstacles in the workspace). The boundary between
the C-space obstacles and the free-space is referred to as the contact surface.

On the subject of terminology, throughout this thesis I use the term £nomad’
to refer to a rigid-body object which has degrees of freedom which are dimen­
sions of the configuration-space; I use the term ‘obstacle’ to refer to an object
which a nomad must avoid overlapping with, and I refer to the two- or three-
dimensional space in which the nomad and obstacles exist as the workspace. The

Tn fact, the configuration of a three-dimensional body might by parametrised by seven
values since its orientation might be parameterised by a quaternion which is a four-tuple. For
simplicity, throughout this thesis I assume that the configuration of an object with n degrees
of freedom is parameterised by n values, which is the minimum.

18

notation CSOBS refers to the set of prohibited configurations, and more specif­
ically, is used to refer to the C-space obstacle which obstacle OBS
causes to nomad NOM. The notation T'R£SSVACE refers to the set of safe
configurations.

The relationship between workspace and C-space is illustrated in Figures 1.1
and 1.2—the first considers the simple case of a two-dimensional translating ob­
ject, whilst the second shows an example of C-space mapping for a manipulator,
after Simeon [91].

b) A set of obstacles. 0 ^ 2 ,3 .
defined in the coordinate-
system of planar world W.

a) An object. A, defined in a
coordinate system

c) Som e exam ple configurations
w hen A is free to translate in W.

d) The configuration sp ace o f A
translating within W. The shaded
regions are the C -sp ace o b stacles
to A caused by 2 ,3 -

Figure 1.1: An illu s tra tio n of C-space m apping .

Generating a C-space map—that is, transforming a problem from the workspace
into the configuration space—is a far from trivial task for all but the most elemen­
tary problems. Indeed, in the worst case the amount of information contained
in a C-space map increases exponentially with the number of degrees of freedom
(for an in-depth study of the complexity of C-space mapping and related issues
see for example Reif 1979 [82], Hopcroft, Schwartz and Sharir 1984 [41], Canny

19

(b) The obstacles in the 2 -D configuration
space.

(a) A polygonal model of a 2-DOF
manipulator in an environment with
obstacles.

Figure 1.2: A n illu s tra tio n of C-space m apping for a m an ip u la to r, a fter
Sim eon [91].

1988 [15], Cesati and Wareham 1995 [16]). A second disadvantage of the C-space
approach is that it relies on an a priori knowledge of the geometry of the ob­
jects involved. However there is a strong motivation for performing the C-space
mapping step whenever possible: a continuous path of the system of rigid objects
through the 2- or 3-dimensional world corresponds to a path for a O-dimensional
point through the C-space map. This means that the need for 2- or 3-dimensional
collision detection has been removed and the path planning problem is reduced
to finding a curve which connects the initial and goal configurations without
entering a prohibited region.

For this reason, C-space maps are most commonly used in robotics path plan­
ning where optimal global paths are achieved by arranging a decomposition of
the free-space (and/or contact surface) into a graph and then applying a graph-
search algorithm such as the A*(Hart, Nilsson and Raphael 1968 [37]). This
method is not restricted to the case of a single robot in a static environment—
C-space techniques have been developed to model both mobile robots and ma­
nipulators in environments which change predictably (for example Fujimura and
Samet 1993 [31]) and systems where multiple nomads share an environment (for
example Parsons and Canny 1990 [76]).

Beyond robotics, C-space maps have also been applied successfully in the areas of
packing and nesting (for example Adamowicz and Albano 1976 [2]), automated

20

assembly planning (for example Schweikard and Wilson 1995 [88]) and mechanism
analysis. In the latter area, researchers have exploited the effectiveness of C-
space maps to capture the kinematic constraints imposed upon a set of rigid
objects by their geometry and to describe every change of contact between the
components of a mechanism. C-space maps have thus been seized upon as a key
link between shape and behaviour and have been used successfully for reasoning
about kinematic behaviour (for example Faltings 1987 [28]), kinematic simulation
(for example Joskowicz and Sacks 1993 [85]), design classification and retrieval
(for example Murakami and Gossard 1992 [70]) and automated innovative design
(for example Subramanian and Wang 1995 [95]).

Applications of C-space techniques beyond the realm of a single robot in a static
environment are discussed in Wise and Bowyer [106].

1.3 M ultidimensional geom etry

Throughout this thesis I refer to multidimensional objects as defined :

“M u ltid im e n s io n a l. . . adj. of or involving more than three dimen­
sions”

The Concise Oxford Dictionary, Ninth Edition

Note that this contrasts with the definition used by some authors (for example
Regli et al. [81], Vanecek [99]), which refers to representations of objects of mixed
dimensionality where users are able to work with entities of different dimension­
alities associated with a single object (for example a model of a printed circuit
board may contain user-editable objects of both two and three dimensions).

Despite the development of various tools (see for example Inselberg and Dims-
dale [45]) objects with more than three dimensions are astonishingly difficult to
visualise. Whereas three-dimensional solids have two-dimensional surfaces which
are joined by one-dimensional edges which meet at zero-dimensional vertices, an
n-dimensional solid has (n — 1)-dimensional hypersurfaces which are joined at

21

(n — 2)-dimensional hypersurfaces which meet at (n — 3) dimensional hypersur­
faces. .. and so on until one-dimensional edges are reached which meet at zero­
dimensional vertices. Topological considerations clearly become complicated.

Perhaps surprisingly, it is not necessary to read a weighty treatise on multidimen­
sional geometry in order to understand the research described in this thesis—so
for that the interested reader is referred to texts such as Abbot [1], Woods [108],
Kendall [51] and Coxeter [20]. As explained in the next section, certain proper­
ties of set-theoretic modelling and the way we implement it at Bath make the
leap from three-dimensions to many dimensions straightforward, and little mul­
tidimensional visualisation is required. In particular, a t this stage it is sufficient
to understand that an n-dimensional space is one which has n perpendicular axes
and that a point in such a space may move an arbitrary distance parallel to any
one of those axes without changing its coordinate in any other dimension.

1.4 Set-theoretic modelling

Since its emergence in the early 1980’s, the field of Geometric Modelling has been
dominated by two very different competing data structures— boundary represen­
tation (commonly referred to as B-rep) and set-theoretic modelling (also known
as constructive solid geometry or CSG).

B-rep, the prominent structure in both industry and research institutions, explic­
itly stores a description of the surface of an object and uses a convention such
as ‘surface normals point to the exterior’ to define which side of each surface is
‘solid’. The B-rep structure has two parts (Hoffman [40]):

• A representation of the topology of the object, typically a graph structure
which stores the connectivity between vertices, edges and faces.

• A representation of the geometry of the object, which explicitly locates each
vertex, edge and face in space. Edges and faces are typically stored using
parametric curves and surfaces.

The other scheme, set-theoretic modelling, represents objects as a set-theoretic

22

expression. This typically takes the form of a tree with boolean operators (most
commonly union, intersection and complement) as the internal nodes and primi­
tives (building block shapes) as the leaves. Primitives are halfspaces—they divide
the space in which they are embedded into two regions (solid and air) with a third
zero-thickness (surface) region dividing them. This is illustrated in Figure 1.3
whilst Figure 1.4 shows some of the primitives typically used by a set-theoretic
modeller.

SOLID

AIR

x *
(a) A disc halfspace in a two-dimensional space.
The clear AIR region is separated from the hatched
SOLID region by a circular one-dimensional
SURFACE region (shown in grey).

AIR

y

X

(b) A planar halfspace in a three-dimensional
space. SOLID and AIR are separated by a flat
two-dimensional SURFACE region (shown
in grey).

Figure 1.3: Illu s tra tio n s of halfspaces.

(a) Planar halfspace
(model box shown for clarity)

(b) Sphere (c) Cylinder

(d) Cone (e) Torus

Figure 1.4: Some typical p rim itives used by a se t-th eo re tic m odeller.

In contrast to B-rep, the set-theoretic representation does not contain an explicit
representation of the surface of the object: the primitives are usually defined using
implicit polynomials (see Section 3.2.5) and the surfaces, edges and vertices which
result from the boolean operations are not evaluated.

23

The B-rep and CSG schemes both have strengths and weaknesses. In particular,
the strengths of B-rep are that:

• The explicit nature of B-rep makes it possible to generate images directly,
whilst an intermediate step is required to locate the surface of an unevalu­
ated CSG tree. This is arguably the primary reason for the dominance of
B-rep.

• Popular parametric representations for sculptured surfaces (such as Bezier
surfaces and NURBS2) are easily incorporated into B-rep, whilst their lack
of a straightforward inside/outside and their parametrically bounded na­
ture make their incorporation into CSG non-trivial (although strides in this
direction have been made—see Berchtold [9]).

• The local (that is, finite and explicitly spatially located) nature of B-rep
vertices, edges and faces makes it easy to implement ‘tweaking’ operations
which allow the user to make small changes to the object in real time via a
graphical user interface.

On the other hand:

• Although surfaces and edges are represented implicitly in set-theoretic mod­
elling, solidity is represented much more explicitly than it is in B-rep.
Boolean operations on point sets are mathematically well-defined and many
of the topological issues which B-rep has to deal with are sidestepped. For
this reason, the set-theoretic scheme is inherently more numerically stable.

• Testing whether a point is in a solid, air or surface region of a model—
particularly important in configuration-space analysis for example—is faster
and more accurate in a set-theoretic modeller. This property also makes
volume information (and thus mass properties) more readily available (using
Monte-Carlo methods for example).

• Since a CSG implementation does not require connectivity information or
the explicit representation of complicated curves and surfaces, models typ­
ically require less memory than the B-rep equivalent.

2Non-Uniform Rational B-Splines.

24

The research described in this thesis exploits one specific property of set-theoretic
modelling:

The notational structure of an object defined set-theoretically is in­
dependent of the dimensionality of that object.

Since an n-dimensional hypersolid contains 0-D vertices, 1-D edges, 2-D faces, 3-D
solids . . . (n — 1)-D hypersolids, introducing extra dimensions to the B-rep struc­
ture quickly makes the topological representation intractable. However, intro­
ducing extra dimensions to the set-theoretic scheme requires only that additional
variables are introduced to the implicit polynomials which define the primitives—
the set-theoretic tree is independent of dimensionality. This makes it tractable to
implement a dimension-independent set-theoretic modelling kernel—indeed, such
an implementation lies at the heart of this research and is described in Section 3.4.

1.5 Com puting global C-space maps using mul­
tidim ensional set-theoretic modelling

This thesis investigates the application of multidimensional set-theoretic mod­
elling to the problem of generating global configuration-space maps. Two imple­
mented approaches are described: The first is an inherently general method for
computing approximate C-space maps, based on a novel idea originally applied to
feature recognition; the second approach computes C-space maps precisely using
analytical techniques which exploit several properties of set-theoretic modelling.
The potential for these two approaches working together in a hybrid solution is
discussed in Future Work (Chapter 9).

Note that the focus is specifically on the computation of global configuration
space maps. Although Chapter 9 touches upon the operations supported by the
C-space maps generated by my algorithms, and how the maps could ultimately
be used, the development of any practical applications is the beyond the scope
of the current work. It is also worth noting that the aim is to demonstrate the
application of multidimensional set-theoretic modelling to the area of C-space

25

mapping in a wide range of contexts—correspondingly, the focus is on breadth,
rather than depth.

26

Chapter 2

A survey o f configuration-space
techniques for a single nomad in
a static environm ent

2.1 Introduction

Over the past twenty years an enormous amount of research has gone into the
mapping from workspace to C-space, resulting in a raft of techniques which can be
combined to suit specific applications. Some of these are described in textbooks
on robotics (for example Latombe 1993 [53]) and in surveys on the wide field of
motion planning (for example Hwang and Ahuja 1992 [44], Hwang 1995 [43]).
However, the literature does not appear to contain a comprehensive examination
of C-space techniques available to those interested in using a C-space method for
their chosen application.

This chapter (which will appear in a slightly different form in Wise and Bowyer [104])
aims to provide an overview of the techniques developed to date to map the global
C-space for two of the most fundamental classes of problem—a single nomad or a
manipulator in a static environment. Papers concerned with the use, as opposed
to the generation, of C-space maps (for example Cheng and Cheng 1996 [19]) are
not mentioned hereafter, and likewise for papers which map either a small subset
of the C-space (for example Kavraki, Kolountzakis and Latombe 1996 [50]) or

27

an alternative space (for example Schwartz and Sharir 1983 [87]). For a treatise
of the mathematical structure of C-space (including topological and differential
properties) and a detailed discussion of algebraic and geometric properties relat­
ing to the mapping of C-space obstacles, see Latombe 1993 [53].

The rest of the chapter is organised as follows: Section 2.2 examines issues con­
cerning how the workspace modelled, including a look at how approximations
can be used to ease the C-space mapping, whilst Section 2.3 describes the range
of schemes used to represent a C-space map. Sections 2.4 and 2.5 discuss the
key techniques used to generate a C-space map for a single nomad and manipu­
lators, focusing on the range of techniques rather than on individual papers. In
contrast, Section 2.6 contains tables which list some fifty mapmaking papers, clas­
sifying each according to the criteria identified in Sections 2.2 and 2.3. Finally,
Section 2.7 draws some conclusions from the findings of the survey.

2.2 M odelling the nomad and its environment

2.2.1 G eom etry o f the objects involved

Three key aspects of the geometry of objects in the workspace affect the difficulty
of the C-space mapping:

D im en sio n a lity Clearly, three-dimensional problems are more difficult than
two-dimensional problems. In particular, new types of contact between ob­
jects are introduced—for example, edge-edge contacts must be considered
between polyhedra whilst between polygons such contacts are singularities
which do not need attention. Also increasing the dimensionality of the
problem affects the potential dimensionality of the C-space.

C onvex ity For most algorithms, non-convex objects are much more difficult to
handle than convex objects. Analytical representation of the contact sur­
face is harder to formulate because contact between two non-convex objects

28

may occur simultaneously at multiple discrete points. Also distance com­
putations (commonly used by divide-and-classify approaches) are far less
complicated between convex objects. The general problem of decompos­
ing an arbitrary solid object into convex parts is very difficult (see Bajaj
1988 [6], Requicha 1983 [83]) but is possible for polyhedra and other prac­
tical cases. When this can be done the C-space obstacles can be generated
piecewise by exploiting the fact that C-space mapping is distributive over
set union, that is:

CSOBSlUB = CSOBSi U CSOBSl

It is also worth noting that if two objects are convex then the C-space
obstacle which one causes to the other will itself be convex.

Surface a lgeb ra ic degree Increasing the algebraic degree of the surfaces of
the input models increases the difficulty of the C-space mapping for both
analytical methods and most divide-and-classify approaches. The result,
as will be seen in Section 2.6, is that the majority of mapmaking systems
restrict their interest to polygonal or polyhedral input models. For most
robotics applications this is practical since objects should not get close
enough for their precise geometry to be important, but this is not true in
other applications such as mechanism analysis.

As a compromise between polytopes and arbitrary geometry, some map-
makers handle generalised polytopes which, in addition to flat surfaces, con­
tain simple curved shapes —circular arcs in two dimensions and parts of
spheres or cylinders in three.

2.2.2 Representation schemes

By far the most common representation scheme for the workspace is the boundary
representation (B-rep), whereby the surfaces of the objects are represented by
lines or patches, which may be parametric (for a description of this and other
solid-modelling representations see, for example, Woodwark 1986 [109]). Such a
representation can be used as input for analytical, divide-and-classify or hybrid
algorithms (see Section 2.3).

29

The other common representation scheme is discretisation into axially-aligned
rectangloid cells (pixels in two dimensions or voxels in three), which may employ
a tree-structure such as the binary- or 2n-tree. This has the disadvantage that it
limits the mapmaker to discrete methods but has the advantage that the objects’
representations can sometimes be obtained in real-time directly from sensor data.

Despite the dimension-independent property of set-theoretic modelling, my sys­
tem (Wise and Bowyer 1996 [105]) is the only mapmaker surveyed to exploit that
representation.

Divide-and-classify mapmakers commonly employ a hierarchical approximation
method which could be implemented using any of the above methods. Objects
are represented by a tree in which each level is a successively simple and more
conservative approximation of the real shape (as illustrated in Figure 2.1); tests
for intersection can then begin by doing fast tests on the simple representations
and only progress up to the slower more accurate ones if necessary. Lozano-Perez
credits Marr and Nishihara 1977 [68] with this idea.

Simple,
conservative

model
Accurate

model

Figure 2.1: A n illu stra tio n of hierarchical app rox im ation , a fte r Faverjon
and Tournassoud 1988 [30].

2.2.3 Introduction of approximation

Performing the C-space mapping precisely is so difficult that a key question is
whether or not to ease the burden by introducing approximation at the object-
modelling or C-space mapping stages. The classification tables in Section 2.6 use
the following definitions for the four possible strategies:

30

P rec ise o b jec t m odels, p recise C -space m ap The objects are modelled as
shapes more complicated than generalised polytopes using a ‘continuous’
scheme such as B-rep or CSG; precise analytical representations of the C-
space obstacles are obtained (e. g. Bajaj 1990 [7]).

P rec ise o b jec t m odels, ap p ro x im a te C -space m ap The objects are mod­
elled as shapes more complicated than generalised polytopes using a ‘con­
tinuous’ scheme such as B-rep or CSG; the C-space mapping stage makes
approximations such as using axially aligned discrete cells (e. g. Bellier,
Laugier, Mazer and Troccaz 1992 [8]).

A p p ro x im a te o b jec t m odels, p rec ise C -space m ap The objects are mod­
elled approximately (for example as polytopes, generalised poly topes or
discretised cells); the C-space mapping makes no further approximations—
either precise analytical representations of the C-space obstacles are ob­
tained (e. g. Avnaim, Boissonnat and Faverjon 1988 [4]) or discrete methods
are used without introducing significant further approximations (e. g. Kavraki
1993 [48]).

A p p ro x im a te o b jec t m odels, A p p ro x im a te C -space m ap The objects are
modelled approximately (for example as polytopes, generalised polytopes or
discretised cells); the C-space mapping introduces further approximations
such as using slice-projections1 (e. g. Lozano-Perez and Wesley 1979 [62]) or
transferring to a different discretised space (e. g. Tso and Liu 1993 [97]).

2.3 C-space map representation

Central to any C-space mapping system is the method it uses to represent the
map. The various choices of representation scheme can be arranged in a taxonomy
as shown in Figure 2.2. As illustrated, the methods—any of which can be used
to decompose the C-space into a set of connected regions which can subsequently
be arranged in a graph—can be split into three main sub-groups: analytical
methods, division-and-classification methods and hybrid methods. Every scheme
has strengths and weaknesses and the choice of scheme will depend on a number
of application-specific factors such as the available data, the number and types

1 Slice-projections are described in Section 2.4.2.

31

of degrees of freedom, the relative importance of speed or accuracy, and the way
in which the final map will be used.

Note that I use the term divide-and-classify to refer to algorithms which de­
compose the C-space into discrete cells, each of which is then classified as safe,
prohibited or contact. Divide-and-classify is therefore a specific example of the
more general approach of divide-and-conquer (discussed later), which breaks a
complicated problem into a (typically large) number of simpler problems.

Analytical

Grid Rasters

Square Rectangular

2n-tree

Global C-space
map representation

I
Division and
classification

\
Axially
aligned
boxes

/ \
Blind Adaptive

/ \ / \
Bin-tree Special

Hybrid

Special

Figure 2.2: A taxonom y of C-space rep resen ta tio n schem es.

2.3.1 Analytical methods

Analytical methods are characterised as using algebraic techniques to obtain a
precise representation of the C-space obstacles, often using the same representa­
tion for the C-space obstacles as for the objects in the workspace. Within this
survey they are subdivided into two types—obstacle growing methods and contact
surface methods.

O bstacle-grow ing

In his seminal 1983 paper [63] Lozano-Perez demonstrated how, for a nomad
translating without rotation, the C-space obstacle could be generated precisely by
growing the workspace obstacles using Minkowski point-set operations. Minkowski

32

sum, monadic minus and difference are defined on sets of points (equivalently vec­
tors) in A,B as follows:

A © B = {fl -|- b\a G A , b G

e B = { - b \ b e B }

A 0 B — { o — b\a G A , b G 13 } = A © (0 5)

These operations are illustrated in Figure 2.3.

Set A Set B

Note: A is shown in
black for clarity.
A © B is the union
of the black and
grey regions.

A ® B

QB A®B

Figure 2.3: M inkowski operations.

Lozano-Perez observed that if B is a nomad which translates and is obstructed by
obstacle A, the C-space obstacle to B caused by A is given by A Q B. Thus a C-
space obstacle for a translating nomad can be generated by reflecting the nomad
in the origin and swelling the obstacles by the result. This can be achieved for

33

convex polytopes by reflecting each nomad vertex in the origin and adding the
result to each vertex of the obstacle; the C-space obstacle is the convex hull of
the resulting point set.

On the subject of an n-dimensional convex polytope, Gouzenes 1984 [35, p. 59]
observed the following:

• It is bounded by at least n + 1 hyperplanes, each defined by n + 1 coefficients.

• Inclusion requires an operation that is 0 (n 3).

• The generalisation of 3-D B-rep modelling (the faces-edges-vertices struc­
ture) involves 0(n\) pointers for a simple convex object.

Gouzenes also points out that a quadratic boundary representation of an n-
dimensional C-space obstacle requires 0 (n 2) coefficients per hypersurface and
does not easily support the operations needed for collision avoidance: point mem­
bership testing, inclusion and intersection.

C o n tac t-su rface

Obstacle growing by Minkowski difference holds for three-dimensional cases and
for objects of arbitrary shape, but does not extend intuitively to rotations. How­
ever, a precise analytical representation of the C-space obstacles is still achievable
since the boundary of any C-space obstacle is a patchwork of surfaces, each of
which corresponds to a contact condition (Brost 1989 [13])—that is, a specific
interaction between an element of the moving object and an element of an ob­
stacle. For example, in the case of a polygonal nomad moving amidst polygonal
obstacles, the contact-surface will be a patchwork of two types of nomad-obstacle
contact:

T y p e A co n tac t Where an edge of the nomad makes contact with a vertex of
the obstacle (Figure 2.4 (a)).

T ype B co n tac t Where a vertex of the nomad makes contact with an edge of
the obstacle (Figure 2.4 (b)).

34

Note that there is not a contact type corresponding to the singularities where
vertex-vertex contact occurs—although such configurations are identifiable in a
contact surface representation of C-space as the vertices of C-space obstacles
(i.e. where two contact surfaces meet).

Figure 2.5 (adapted from Brost 1989 [13]) illustrates how specific contact condi­
tions correspond to faces of a C-space obstacle.

Polyhedral cases give rise to three contact types, illustrated in Figure: 2.6:

T ype A con tact Where a face of the nomad makes contact with a vertex of the
obstacle (Figure 2.6 (a)).

T ype B contact Where a vertex of the nomad makes contact with a face of the
obstacle (Figure 2.6 (b)).

Type C contact Where an edge of the nomad makes contact with an edge of
the obstacle (Figure 2.6 (c)).

Note that contacts such as vertex-vertex, vertex-edge, edge-face and face-face are
not classified but correspond to edges and vertices of a C-space obstacle—for
example, configurations in which a vertex interacts with an edge correspond to
edges of the C-space obstacle where a Type C contact face meets a Type A or
Type B contact face.

Nomad
Nomad

Obstacle Obstacle

(a) ‘Type A’ contact (b)‘Type B’ contact

Figure 2.4: C on tac t types for polygons.

35

y
Obstacle

M oving)) , -
object ̂ X

An example polygonal problem

\< S 7

The contact conditions corresponding to the edges
of the translation-only C-space obstacle.

The translation-and-rotation C-space obstacle
with facets which correspond to contact conditions.

Figure 2.5: I llu s tra tio n of con tac t conditions for a polygonal case a fte r
B ro st 1989 [13].

Figure 2.7 (generated using an algorithm described in Chapter 6) illustrates how
specific contact conditions correspond to faces of a C-space obstacle for the case
of a translating polyhedron. The C-space obstacle to a polyhedron which is free
to fully rotate as well as translate has a five-dimensional surface consisting of a
patchwork of contact surfaces of type A, B and C.

The key steps in obtaining a configuration space map using a contact-surface
approach are:

Form ulating th e co n stra in t im posed by each con tact condition For a no­
mad to be in contact with an obstacle in a specific contact condition (e. g.
for a specific nomad vertex to be in contact with a specific obstacle face)
the nomad’s configuration is constrained to lie on a surface embedded in
the C-space, formulated in terms of all of the degrees of freedom of the

36

(a) Type A (face-vertex) (b) Type B (vertex-face)

(c) Type C (edge-edge)

Figure 2.6: C o n tac t types for po lyhedra.

object. For translation only cases, each of these constraints is a flat sheet
in the C-space: for type A and B contact conditions the contact constraint
will be parallel to the edge or face involved; for type C contact conditions
the constraint surface will be perpendicular to both edges involved.

For polygonal cases where the nomad translates and rotates in the plane,
each type A contact condition is a helicoid (Figure 2.8 (a)), and the con­
straint for each type B contact condition is a sinusoid (Figure 2.8 (b)).

For polyhedral cases which incorporate rotation as well as translation, all
constraint surfaces are ruled surfaces —slicing any surface at a fixed orien­
tation will result in a flat sheet since it corresponds to a translation-only
constraint. Constraint surfaces for type A and type B contacts are mul­
tidimensional extensions of the helicoid and sinusoid respectively; type C
constraints are more complicated since they are defined as having a surface

37

Figure 2.7: T he C-space obstacle w hich a s ta tic po lyhed ron causes to a
po lyhedron w hich can tra n s la te in a fixed o rien ta tio n is a patchw ork of
con tac t surfaces of T ype A (green), T ype B (red) an d T ype C (pink).
T he snapsho ts a ro u n d th e p e rim e te r show exam ple configurations cor­
respond ing to some of th e con tac t patches.

normal perpendicular to both edges which cause the constraint, and the
nomad edge rotates according to the orientation parameters. For details of
my implementation of a contact-surface representation, see Chapter 6.

Iden tify ing w hich side corresponds to p ro h ib ited configurations This is
non-trivial for type C conditions since the edges which are constrained to
be in contact have no solid side.

F orm ulating an app licab ility condition for each con tac t condition The con­
tact constraint corresponding to a specific contact condition is only appli­
cable for a certain range of orientations—outside of that range the contact
cannot occur without the nomad and obstacle interpenetrating. If the no­
mad is translating in a fixed orientation, each contact constraint is either

38

(a) Each type A contact (where a side of the
nomad interacts with an obstacle vertex) results
in a helicoid. For clarity this illustration shows
the model box and the helicoid is intersected with
a cylinder).

(b) Each type B contact (where a vertex of
the nomad interacts with an obstacle side)
results in a sinusoid. For clarity, this
illustration shows the model box, and the
sinusoid is intersected with that box.

Figure 2.8: A n illu s tra tio n of th e types of con tac t co n stra in t for a poly­
gon w ith tran s la tio n a l and ro ta tio n a l freedom

applicable or it is not. If the nomad can rotate, each contact constraint
has an applicability condition associated with it, formulated in terms of the
orientation parameters (i.e. the rotational dimensions of the C-space). A
contact condition is only applicable in orientations in which the applicabil­
ity condition is met—this bounds the patch in the rotation dimensions.

2.3.2 Division and classification

An alternative to precise analytical methods is to discretise the C-space into a
number of cells and then to use some test to classify each one as safe, prohibited
or contact.

D ivision s tra teg ies

The literature describes a number of different division strategies:

A g rid The C-space is immediately quantised into small axially-aligned boxes
of a specified resolution. These pixel-like cells are often approximated by a
configuration point (the centroid) during the cell classification stage. The
resolution may be equal in each degree of freedom (an isotropic grid in our
taxonomy of Figure 2.2) or the division may be finer in some degrees of
freedom than others; for example the rotational freedom of the base link of
a revolute manipulator may be divided more finely than those higher up.

Grid-based mapmaking systems tend to handle more general geometry than
other systems. A second advantage is that they tend to be ideal for paralleli-
sation which means that they can be run on a dedicated parallel architecture
very quickly indeed.

Clearly, the drawback to the approach is the exponential growth in the
memory requirement with the number of dimensions; in practise this cur­
rently limits grid-based systems to three degrees of freedom.

R a s te rs A one-dimensional C-space map may be represented by a ray that is di­
vided into safe and prohibited segments. A two-dimensional C-space map,
instead of being chopped into pixels, can be approximated by a stack of
rasters (rays with a finite thickness) divided in the same way. A three-
dimensional C-space map can be built by stacking resolution-thick 2-D
maps, and so on. This approach, which was demonstrated by Lozano-
Perez 1987 [64], increases the smallest cell from being an approximation
to a (0-D) point to being an approximation to a (1-D) line. As discussed
in Section 2.5.3, rasters are especially appropriate for mapping revolute
manipulators. An example of this by Red and Truong-Cao 1985 [80] was
illustrated in Figure 1.2.

A xially -a ligned boxes An n-dimensional configuration space can be recursively
chopped into axially aligned boxes and a classification test can be performed
on each box as a whole. In some schemes (for example a 2” tree, which is
a quad-tree in two dimensions and an oct-tree in three) once the decision
to chop has been made the position of the chopping hyperplanes is fixed.
This is referred to as blind division (Zhu and Latombe 1991 [111]). Other
schemes are adaptive—the position of the chopping hyperplanes is deter­
mined by the contents of the box. An adaptive division strategy will tend to
bound the C-space obstacles tighter with fewer cells—but this improvement
must be weighed against the computational expense of working out where
to chop. A bin-tree, which divides into two at each recursion regardless of

40

dimensionality, can be either blind (chopping the longest degree of freedom
in half, for example) or adaptive.

As a method of C-space representation, a tree of axially aligned boxes has
the following characteristics:

M em o ry re q u ire m en t In practical cases the memory requirement for a
box tree may be orders of magnitude less than that of a grid of the
same resolution since a large region of safe or prohibited C-space may
be represented by a single cell.

I so tro p y All degrees of freedom are treated equally, unlike methods such
as that of Lozano-Perez 1981 [65] which treat rotations differently from
translations.

K now n efficient a lg o rith m s As Gouzenes observed (1984 [35, p. 59]), a
box supports 0 (n) algorithms for membership, inclusion and intersec­
tion. Efficient algorithms are also available to perform these operations
(and other boolean operations) on hierarchical trees of boxes.

R efin ab ility The resolution of a C-space map can be increased locally by
adding to (not recomputing) the existing representation (Paden et al.
1989 [73]).

R eg u la r ity A regular division (such as a 2n tree) has the advantage that
a cell’s neighbours can be visited without maintaining an explicit con­
nectivity graph (Faverjon and Tournassoud 1988 [30, p. 100]). This
can account for a considerable memory saving.

A clue to re la tiv e safe ty o f cells since large safe cells are sufficiently
far from the C-space obstacles, a gross motion which remains far from
the obstacles can be obtained quickly by searching for a path which
traverses only large cells (Faverjon and Tournassoud 1988 [30, p. 100]).

A safe ty m arg in The configuration space approach to spatial planning
relies on the accuracy of the models of the nomad and the obstacles
and on the ability of a nomad to trace a trajectory accurately. Clearly
there will be errors in the system, so there is an argument that one of
the weaknesses of a divided C-space—that it is always a conservative
approximation—is useful in practical applications.

Special Some schemes divide the C-space into cells which are not axially aligned.
For example see Lozano-Perez 1981 [65] or Shiller and Gwo 1993 [90].

41

C ell classification schem es

Ascertaining whether a C-space cell is safe, prohibited or a mixture of both can
be achieved in a number of ways:

Sw elling th e n o m ad A fast method which can be used as the first step in
classifying a C-space cell is to swell the nomad by the maximum distance
any part of it can move (which, in the case of a manipulator, is not trivial
to determine—see Lozano-Perez 1987 [64]). This swollen nomad can then
be tested for intersection with the obstacles.

S w ep t vo lum es A more accurate alternative to swelling the nomad is to calcu­
late the volume it sweeps out as it moves. This technique can be particularly
effective in conjunction with the raster-di vision method for manipulator
mapping (as described in Section 2.5.3). This is because, as observed by
Gouzenes 1984 [35], the shape of the swept volume of a particular link ex­
ercising its full range of motion is constant—only its position is dependent
on the joint angles of the previous links. Verwer 1990 [100] uses a swept
volume scheme which employs bubble hierarchies whereby the objects and
swept volumes are approximated by increasingly accurate arrangements of
spheres; this is useful since intersection testing between two spheres is so
trivial.

In v erse k in em atics Warren 1989 [102] and Adolphs and Nafziger 1990 [3] both
divide the C-space of a manipulator into a uniform grid and then map dis­
crete configurations of the end effector into that grid via inverse kinematics.
Adolphs and Nafziger store the mapping from workspace to joint space in
a look-up table so that changes in the environment can be mapped into the
C-space quickly.

B o u n d ed Jaco b ian s Avoiding obstacles places a bound on the Jacobians of
points on the nomad or manipulator—this observation can be used to clas­
sify cells (Faverjon and Tournassoud 1988 [30],Paden et al. 1989 [73]).

C o n ta c t cond itions In addition to representing the boundary of a C-space ob­
stacle precisely, analysis of contact conditions can be used to classify a
C-space cell such as a raster (see Red and Truong-Cao 1985 [80] and Lozano-
Perez 1987 [64]).

42

D istan ce ca lcu la tio n s A C-space cell can be classified by calculating the dis­
tance to contact between the nomad or manipulator and the obstacles when
it is in the centroidal configuration (which will be negative if that config­
uration is prohibited). If the modulus of the distance calculated is greater
than half of the length of a diagonal of the cell, then the cell can be classi­
fied as safe or prohibited according the sign. One method to calculate this
distance is to use the Minkowski difference operation (Simeon 1988 [91]).

Ralli and Hirzinger 1996 [78] employ a different distance technique to map
the C-space of a manipulator. As a pre-mapmaking step, the workspace is
filled with a grid and wavefront propagation is used to label each cell with
the distance from it to the nearest obstacle. A map of the C-space is then
plotted into a grid by using forward kinematics to position each of the links
and then only using collision detection if the distance value of the midpoint
of each link is less than half of the link’s length.

O th e r usefu l tech n iq u es

Several other useful techniques have been developed for use with the divide-and-
classify representation:

C lassification p ro p ag a tio n This is possible when the classification for one cell
enables nearby cells to be classified. For example, Simeon 1988 [91] and
Laumond et al 1988. [56] both classify a C-space cell by calculating the
distance-to-contact for the centroid of tha t cell: this information is prop­
agated to any other cells which are contained within a ball with radius of
the returned distance.

R e s tru c tu r in g th e d iv ision Sometimes the representation can be improved by
a post-division process which merges cells of the same classification. This
can be particularly helpful if the original cells are long thin rasters. Systems
which do this include Lozano-Perez 1987 [64], Simeon 1988 [91] and Faverjon
and Tournassoud 1988 [30]. Recent research has also demonstrated how
smoother paths can be planned through a grid C-space map after Kohonen-
map (Ralli and Hirzinger 1997 [79]) based reorganisation has increased the
resolution of the free-space (Ralli and Hirzinger 1996, 1997 [78, 79]).

43

S elected re fin em en t The cost of global path planning for a manipulator with
many degrees of freedom is minimised by only refining the C-space map
where a path is likely to proceed. This idea was used by Lozano-Perez
1981 [65] and is fundamental to many of the later planners (Hasegawa and
Terasaki 1988 [38], Verwer 1990 [100], Duelen and Willnow 1991 [26], Bellier
et al. 1992 [8], Chen and Hwang 1992 [18]).

C -space o b s tac le labelling Simeon 1988 [91] labels each C-space obstacle cell
to indicate which obstacle(s) in the workspace caused it. Then, the C-
space map does not need to be recomputed if an obstacle in the workspace
is removed—the path planner is simply told to treat as safe all C-space
obstacle cells caused only by the removed obstacle.

2.3.3 Hybrid

A third and final approach to representing a global C-space map is to create
a hybrid representation which combines elements of those described above. As
an example of this, during the mapmaking process described by Lozano-Perez
1987 [64] obstacles are grown using a Minkowski sum, the C-space is recursively
divided into a series of rasters, and cells are merged to result in an adaptively-
divided axially-aligned-box representation.

2.4 Mapmaking techniques for a nomad in a
static environment

Dealing with a single moving nomad (such as a mobile robot) in a static environ­
ment is not only the most simple C-space problem, it is the most fundamental—
techniques developed here provide the building blocks for all other C-space map-
makers.

44

2.4.1 Founding work

One of the characteristics of the C-space approach to spatial planning is that it
isolates the kinematic constraints caused by the shapes of objects, leaving other
constraints to be dealt with later. As a result, a C-space mapping algorithm may
ignore the non-holonomic constraints imposed by the steering mechanism of a
mobile robot, for example, and treat it as a free-floating body. Moreover, since
most mobile robots are limited to moving on a flat floor and the shapes of the
obstacles are approximated as having a constant horizontal cross-section, mobile
robot problems are commonly modelled as two-dimensional.

A unconstrained two-dimensional object has three degrees-of-freedom, (two trans­
lational and one rotational) resulting in a C-space which is the three-dimensional
manifold 3ft2 x S 1 (where 5 1 is the unit circle) and which may be represented by
the Cartesian space 3ft2 x 3ft/(27tZ). A configuration is parameterised by (x ', y \ 9),
where (x',y') G 3ft2 and 9 G [0, 2tt). An unconstrained three-dimensional object
(which might be a robot in space or a component of a mechanism) has three trans­
lational and three rotational degrees of freedom, resulting in a six-dimensional
C-space (or a seven-dimensional one if quaternions are used to parameterise ro­
tation).

The Minkowski obstacle-growing technique implemented by Lozano-Perez (1983 [63])
was able to handle both two- and three-dimensional polytopes, but was unable
to handle either rotations or more general geometry. Examining how these two
limitations have been overcome provides a convenient way of examining C-space
mapmaking techniques for a single nomad.

2.4.2 Handling rotations

Early attempts to handle rotations (for example, Lozano-Perez 1983 [63] and
Jarvis 1983 [46]) considered the problem of a polygonal nomad translating and
rotating amidst polygonal obstacles, and treated the rotational degree of freedom
differently to the others. The range of rotational values 9 was divided into k
smaller ranges, and for each 0-range (or 0-slice) a polygonal approximation to
the area swept out by the nomad as it rotated was calculated (called a slice-

45

projection); the workspace obstacles were then grown by each slice-projection.
This resulted in k sets of grown obstacles (called 9-slices) which, when stacked
together, approximated the three-dimensional C-space map for the problem. This
scheme, which is illustrated in Figure 2.9, has the drawback that the non-isotropic
map only allows motions which alternate between translations and rotations.

v A '

The area swept out by A as it rotates through
a range of 0-values is approximated by a
polygon called a ‘slice projection’.
For each 0-slice, the obstacles are grown by
the polygonal projection

A

□

[=□

b) A representation of the 3 -D C-space is
obtained by stacking the grown obstacles
for each 0-slice. Paths are planned through
this stack of 2 -D obstacles.

Figure 2.9: I llu s tra tio n of th e slice p ro jec tion technique, afte r Lozano-
P erez 1983 [63].

The technique of recursive subdivision-and-classification of C-space was intro­
duced by Brooks and Lozano-Perez 1985 [12], who describe an adaptive division
scheme which sits on top of a precise boundary representation calculated using
contact conditions. Laumond et al. 1988[56] also demonstrate an adaptive division
scheme, this time classifying each cell by calculating the distance to contact. A
third adaptive division technique was developed by Zhu and Latombe 1991 [111]
which, like that in [12], sits on top of an accurate representation of the C-space

46

obstacles. Zhu and Latombe introduce bounded and bounding approximations of
C-space obstacles (an approach previously used in computer graphics) and show
how they can be used to get a tight decomposition of the C-space obstacles faster
than the quad-tree approach.

The majority of C-space mapping research concerned with translating and rotat­
ing nomads has concentrated on developing boundary representations of C-space
obstacles using the contact condition observation mentioned in Section 2.3.

For example, Donald 1985, 1987 [24, 25] implemented a path planner for a polyhe­
dral object with a full six degrees of freedom based on algebraically representing
all contact surfaces, computing their intersections, and defining operators which
slide along and jump between one-, two-, three-, four-, five- and six-dimensional
surfaces in C-space. Similarly, by formulating the constraints in terms of quater­
nion parameters and deriving predicates for C-space obstacles as a conjuction
(intersection) of constraints, Canny 1988 [15] was able to represent free-space as
a semi-algebraic set. Canny then produced a 1-D subset (skeleton) similar to a
Voronoi skeleton which captured connectivity and performed path planning using
this ’roadmap’. Meanwhile, Avnaim and Boissonnat (on their own 1988 [4] and
with Faverjon 1988 [5]) concentrated on the three degrees of freedom of a polygon
translating and rotating, developing an efficient and exact path planner (based on
the mapping of contact-condition patches) with which they obtained very impres­
sive results. Brost 1989 [13] did similar work and attached contact information to
each facet which defined the C-space obstacle—an important step towards kine­
matic analysis of physical interaction. A new approach was introduced by Liu
and Onda 1993 [60] who analysed each contact condition for interacting polygons
in a local coordinate frame and then plotted the result into a grid representation
of the global C-space.

In contrast to all these new analytical methods, Lengyel et al. 1990 [58] attacked
the 3-DOF polygon problem using exactly the same method as Lozano-Perez
1983 [63] but was able to deal with a finer resolution in the rotation dimension
up by using parallel dedicated graphics hardware which represented each 0-slice
of the C-space obstacles by a rasterised bitmap. A more recent paper by Solano
Gonzalez and Jones 1996 [93] also uses the slice-projection technique to investi­
gate the benefits of parallel computation for C-space mapping.

47

2.4.3 Handling more general geom etry

The first paper to map the C-space of a nomad more complicated than a polygon
appears to be that of Laumond 1987 [55], which extended the Minkowski differ­
ence obstacle-growing technique from polygons to generalised polygons. Bajaj
and Kim also took up the challenge of generalising obstacle-growing but they
focused on three-dimensional objects: in [6] (1988) they grow arbitrarily-shaped
three-dimensional obstacles by a moving sphere and then in [7] (1990) they grow
convex three-dimensional obstacles of arbitrary complexity by an object in that
same class. A more recent paper by Kohler and Spreng 1995 [52] also grows
convex B-rep objects of (near) arbitrary complexity by each other, only this time
back in the two-dimensional domain. Kohler and Spreng’s contribution is the
development of an efficient obstacle-growing method which, by subdividing the
boundary segments of the interacting objects, obtains a precise representation
of the grown obstacle without relying on a computer algebra system (unlike the
methods of Bajaj and Kim) [52, p. 590].

In 1996 [39], Heegaard suggests that if the objects in the workspace are repre­
sented by convex parametric curves, the contact surface can be obtained more
efficiently by plotting it in to an alternative kind of C-space. If two interacting
planar bodies are represented by parametric curves in terms of parameters ei
and C2 , Heegaard observes that the contact surface for both translating and ro­
tating motion can be easily formulated in terms of ci, e2 and dn, where dn is the
distance between the closest points on the two objects. Note that although the
space €i€2dn is not defined in terms of degrees of freedom, it is still a valid con­
figuration space for the specific domain of objects defined by convex parametric
curves, since any point within it is sufficient to specify the location of every point
in the system.

Finally, at the other end of the C-space representation spectrum, a number of
C-space mapping systems have emerged which deal with arbitrary geometry by
using a grid division:

• Dehne et al. 1989 [22] use a parallel computer architecture of a type usually
used for image processing.

• Kavraki 1993 [48] uses the fast Fourier transform. This technique is based

48

on the observation that the Minkowski difference of two point-sets which are
discretised into two-dimensional arrays is a convolution which can achieved
by taking the Fourier transform of the two arrays, multiplying the two
transforms pointwise, and then taking the inverse Fourier transform of the
result. As a result, the computational cost of this method depends only
on the resolution of the grid- the geometry of the objects involved has no
effect. Curto and Moreno 1997 [21] have since applied the same technique
to map the C-space of a planar revolute manipulator.

• Lin and Chang 1993 [59] create a grid representation of a C-space map using
mathematical morphology (which is similar but not identical to Minkowski
operations) and a shape decomposition step which breaks arbitrarily com­
plicated shapes down into simpler elements, as illustrated in Figure 2.10.

B1 B2 B3

(0, -2 0) (0, -3 0)

B l= ---- —

B2 = - © |

B3 = J ©

Figure 2.10: Illustration of the shape decom position technique of Lin
and Chang 1993 [59].

• Chan et al.1994 [17] attack the problem using neural networks.

49

2.5 Mapmaking techniques for a single manip­
ulator in a static environment

2.5.1 Founding work

The links of a manipulator are modelled as a series of connected rigid moving
objects each of which has one or more degrees of freedom relative to the link
below. The degrees of freedom of a particular link are specified by the controlled
joint—which is usually prismatic or revolute—and the degrees of freedom of the
whole manipulator (which define the configuration space) are the sum of the
degrees of freedom of the parts. The C-space of a manipulator with n revolute
joints and m prismatic ones is the (n + ra)-dimensional manifold x (S l)n (or
a subset of that space when the motion of each joint it limited by mechanical
stops, Latombe 1993 [53]).

The first path planner of any kind to use the configuration space approach is
widely regarded as that of Udupa 1977 [98] which maps the C-space for a ma­
nipulator, even though the author did not refer to it in those words2. Udupa
plans the path of a polar-coordinate manipulator by mapping the problem into
a space where the manipulator is reduced to a point, beginning by approximat­
ing the links of the manipulator as cylinders and growing the obstacles by their
radius. This quick and easy method of reducing the links to line segments has
been adopted by many other systems (for example Faverjon 1984 [29], Hasegawa
and Terasaki 1988 [38], Warren et al. 1989 [102] and Hwang 1990 [42]). Udupa’s
work is also notable for its use of two C-space mappings—one of which considers
the orientation of the highest link and one of which does not; this idea has since
been returned to by others (for example Faverjon 1984 [29] and Hasegawa and
Terasaki 1988 [38]).

A second founding work for manipulator C-space mapping is that of Lozano-
Perez 1981 [65] in which he outlines several ideas which have played major roles
in C-space mapping research ever since, including hierarchical approximations
(described in Section 2.2.2), selective refinement (Section 2.3.2) and the idea
of representing a manipulator as a tree structure where each level restricts one

2Instead, Udupa used a delightfully Trekesque vocabulary of his own including ‘sectoroids’,
‘pascs’ and, my personal favourite, ‘pgram motion’.

50

degree of freedom. Lozano-Perez goes on to describe an application of the 9-
slice scheme outlined in Section 2.4 to the case of a Cartesian manipulator. The
system still uses projected swept volumes but introduces a hybrid representation
of C-space consisting of a tree where some nodes are axially-aligned boxes and
others are arbitrary convex polyhedra.

The rest of this section on C-space mapping for a manipulator is divided according
to the representation scheme used for the C-space map.

2.5.2 Analytical representations

The combination of multiple rotational degrees of freedom and the fact that
moving a link moves every higher link makes it difficult to represent the boundary
of the C-space obstacles for a revolute manipulator. In [32, 33] (1989), however,
Ge and McCarthy go some way to achieving this by representing the configuration
of the end effector using dual quaternions in the image space. The set of possible
configurations for the end effector is bound by two constraints: the reachability
constraint, determined by the links of the manipulator and the contact constraint
determined by contact between the effector and the obstacles. Ge and McCarthy
exploit the fact that both types of constraint can be represented by algebraic
and parametric forms in the image space which can then be intersected easily.
When this intersection is parameterised piecewise in terms of the joint angles
by using inverse-kinematics, the result is an explicit representation of the C-
space obstacles to the end-effector. This method is noteworthy, but the collisions
between the links and the obstacles are not considered so the C-space obstacles
do not represent a true C-space map for the manipulator.

A true mapmaker which uses an analytical boundary representation is that of
Hwang 1990 [42] who approximates a three-dimensional revolute manipulator as
linked cylinders, and convex polyhedral obstacles as a collection of planar trian­
gular facets. Hwang reduces the manipulator links to lines (like Udupa 1977 [98])
and calculates the intersection conditions between the first link and each tri­
angular patch, unioning the results to derive boundary equations for the first
joint variable. He goes on to show how the boundary equation of each higher
joint variable can be solved explicitly in terms of the lower joint variables. Inter­
estingly, Hwang confesses that although a precise representation of the C-space

51

obstacles can be obtained in this way, the computational expense of intersecting
the boundary equations means that any practical path planner must first convert
the map into a representation that is easier to work with.

Discretisation of the obstacles is taken one step further by Zhao, Farooq and Bay-
oumi 1995 [110] and Ma, Li, Yang and Chang 1995 [66] who treat the obstacles as
a discrete set of points. Zhao, Farooq and Bayoumi [110] discretise the workspace
into a grid and then, for each cell which contains the surface of an obstacle, use
a variation on inverse-kinematics to obtain parametric equations for the C-space
obstacles caused to the manipulator by a point-obstacle at the cell’s centroid;
the C-space obstacle for the complete obstacle set is obtained by unioning the
results. Ma, Li, Yang and Chang 1995 [66] use a similar approach, but, dealing
with obstacles composed of axially-aligned boxes, reduce the amount of contact-
surfaces generated by isolating the “fundamental points”—the small number of
points on the surface of the obstacle set whose C-space obstacles contribute to
the final result.

2.5.3 D ivision and classification

Most of the divide-and-classify techniques which have been used to generate a
C-space map for a manipulator been covered in previous sections. However, one
domain-specific technique exploits the tree nature of a manipulator to obtain a
raster representation (see, for example Lozano-Perez 1987 [64]):

Starting at the base joint,

1. Determine what ranges of joint angles (if any) are completely safe from in­
terference regardless of what joint angles the higher links take. One method
of achieving this is by calculating the volume swept out by the higher links
then checking that volume for intersection with the obstacles.

2. Discretise the complement of those safe ranges into equal-sized intervals of
the desired resolution.

3. For each of these ranges of angles, consider the manipulator when the joint
is fixed at the centroid value of that interval. Then consider the effect of

52

the next joint by recursively entering this process at step (1).

2.5.4 Hybrid

Shiller and Gwo 1993 [90] present a mapmaking system which uses a hybrid repre­
sentation. The authors establish an analytical representation of two-dimensional
C-space obstacles, then divide the C-space using an adaptive division strategy.
The safe leaf cells which result are bounded by axially-aligned lines on some
sides but the precise C-space obstacle surface on the others (as illustrated in Fig­
ure 2.11). Significantly, the entire boundaries of the C-space obstacles are not
evaluated—the only evaluations are of intersections and tangency points with
axially aligned rays.

(0 P 0 2 : revolute joint angles)

Safe
cell

Safe j f | \ Safe
cell , cell

<

Safe
cell

0 2n

Figure 2.11: An illu stra tio n of th e hybrid division schem e of Shiller and
Gwo 1993 [90].

2.5.5 Related techniques

Finally in this section, a brief mention of some techniques that have emerged for
non-exhaustive-mapping which may be applicable to the global C-space mapping
problem:

53

‘B uck p assin g ’ The SANDROS planner described by Chen and Hwang 1992 [18]
plans a path by mapping the C-space only until a more efficient local plan­
ner can handle the situation adequately. The result is a system which the
authors claim gives a performance time proportional to task difficulty.

Topology analysis Maciejewski and Fox 1993 [67] borrow techniques from the
analysis of kinematically redundant manipulators to extract information
about the topology of the configuration space obstacles for a three-DOF
manipulator.

C o n to u r tra c in g Tso and Liu 1993 [97] map the boundary of a two-dimensional
C-space obstacle by finding a configuration on the surface and then using
contour information to trace the boundary around the perimeter of the
obstacle.

2.6 Classification tables

Table 2.1 explains the abbreviations used in the following tabular summary of
the C-space mapmaking literature:

T able 2.2 C-space mapmakers for a single nomad in a static environment.

T able 2.3 C-space mapmakers for a manipulator in a static environment.

2.7 Summary & conclusions

In summary, the key decisions to be made regarding how the nomad and its
environment are modelled are:

W h a t lim its a re p laced on th e shapes o f th e o b jec t m odels Two-dimensional
problems are much easier to handle than three-dimensional ones. Polytopes
are easier to handle than generalised poly topes, which are easier than more

54

Criteria Abbreviation Meaning
Any (. . .) The researcher(s) suggest that the method could

be applied to the bracketed case, but details of the
application are not given—eg. 2D(3D) indicates
that the paper states that 3-D problems can be
solved, but only details a 2-D solution.

Degrees of freedom («) The researcher(s) suggest that the method could
be extended to an arbitrary number of degrees of
freedom.

C-space degrees of PM Only a partial map is made
freedoms

Allowable geometry conv- convex
cyl cylindrical
poly polytopes
gen-poly generalised polytopes
arb more general than generalised polytopes

Approximation P-P Precise models, precise C-space mapping
strategy P-A Precise models, approximate C-space mapping
(see Section 2.2.3) A-P Approximate models, precise C-space mapping

A-A Approximate models, approximate C-space map­
ping

C-space representa­ grown-obs A B-rep of the translation-only C-space is used.
tion

c-surface A B-rep of a C-space containing rotations is used.
adapt-div An adaptive division strategy is used.
grid A uniform grid division is used.
raster A raster representation is used.
repl/rep2 Both repl and rep2 are used.

Table 2.1: A bbrev ia tions used in Tables 2.2 and 2.3.

Dimens- Rotations Allowable geometry Approx. C-space
Paper -ionality allowed? Nomad Obstacle strategy rep.

Lozano-Perez and
Wesley, 1979 [62]

2D(3D) yes for
2D

conv-
p°iy

conv-
poly

A-A grown-obs
/grid

Jarvis, 1983 [46] 2D(3D) yes for
2D

poly conv-
p°iy

A-A grown-obs
/grid

Lozano-Perez,
1983 [63]

2D(3D) yes for
2D

poly poly A-A grown-obs
/grid

Gouzenes,
1984 [35]

2D(3D) yes poly
(arb)

poly
(arb)

A-A adapt-div
/ raster

Brooks and
Lozano-Perez,
1985 [12]

2D yes poly poly A-A adapt-div
/c-surface

Donald, 1985 [24] 3D yes poly poly A-P c-surface

Laumond,
1987 [55]

(2D) (no) (gen-
poly)

(gen-
poly)

A-P (grown-obs)

Avnaim,
Boissonnat and
Faverjon, 1988 [5]

2D yes poly poly A-P c-surface

Avnaim and
Boissonnat,
1988 [4]

2D(3D) yes for
2D

poly poly A-P c-surface

Bajaj and Kim,
1988 [6]

3D no sphere arb A-P grown-obs

Laumond et al.,
1988 [56]

2D yes poly poly A-A adapt-div

Brost, 1989 [13] 2D yes poly poly A-P c-surface

Dehne,
Hassenklover and
Sack, 1989 [22]

2D no conv-arb arb A-P grid

Paden, Mees and
Fisher, 1989 [73]

(2D) (no) (gen-
poly)

(gen-
poly)

A-A (2n-tree)

Bajaj and Kim,
1990 [7]

3D no conv-arb conv-arb P-P grown-obs

Lengyel et al.,
1990 [58]

2 |D
(3D)

about 1
axis

poly Poly A-A grown-obs
/strips/grid

Verwer, 1990 [100] (3D) (yes) (poly) (poly) (A-A) (2n-tree)

Table 2.2: C -space m apm akers for a single nom ad in a s ta tic env iron­
m ent (co n t.).

56

Paper
Dimens- Rotations Allowable geometry Approx. C-space
-ionality allowed? Nomad Obstacle strategy rep.

Zhu and Latombe,
1991 [111]

2D yes poly poly A-A adapt-div
/c-surface

Halperin,
Overmars and
Sharir, 1992 [36]

2D yes L-shape poly A-P c-surface

Kavraki, 1993 [48] 2D (3D) yes
2D

for arb arb A-P grid

Lin and Chang,
1993 [59]

2D (3D) no arb arb A-P grid

Liu and Onda,
1993 [60]

2D (3D) yes
2D

for poly poly A-A grid

Chan, Tam and
Leung, 1994 [17]

2D yes conv-arb arb A-A grid

Kohler and
Spreng, 1995 [52]

2D no conv-arb conv-arb P-P grown-obs

Heegaard,
1996 [39]

2D yes conv-arb conv-arb P-P c-surface

Wise and Bowyer,
1996 [105]

2D(3D) no (yes) gen-poly
(arb)

gen-poly
(arb)

A-A bin-tree
(/c-surface)

Curto and
Moreno, 1997 [21]

2D yes arb arb A-P grid

Table 2.2: (con t.) C-space m apm akers for a single nom ad in a s ta tic
env ironm ent.

57

Paper

Dimens­ DOFs Allowable geometry Approx.

CS-repionality Nomaa CS-
map

Nomad Obstacle Strategy

Udupa, 1977 [98] 2D
(3D)

3 3 cyl poly A-A grown-obs

Lozano-Perez,
1981 [65]

3D 4(7) 4(7)PM conv-
p°iy

conv-
p°iy

A-A grown-obs
/adapt-div

Faverjon,
1984 [29]

3D 6 3 conv-
gen-poly

conv-
gen-poly

A-A grown-obs
/grid
/ 2 n-tree

Gouzenes,
1984 [35]

2D
(3D)

3 3 poly
(arb)

poly
(arb)

A-A adapt-div
/raster

Laugier and Ger­
main, 1985 [54]

3D 6 4 conv-
p°iy

conv-
poly

A-A adapt-div

Red and Truong-
Cao, 1985 [80]

2D 2 2 poly poly A-A raster

Lozano-Perez,
1987 [64]

3D 6 (n) 4 (n) conv-
p°iy

poly A-A grown-obs
/raster
/adapt-div

Faverjon and
Toumassoud,
1988 [30]

3D 6 3 gen-poly
(arb)

gen-poly
(arb)

A-A raster
/ 2 n-tree

Hasegawa and
Terasaki, 1988 [38]

3D 6 3 gen-poly gen-poly A-A grid

Simeon, 1988 [91] 3D 4 4 poly poly A-A raster
/adapt-div

Paden, Mees and
Fisher, 1989 [73]

2D 2 2 gen-poly gen-poly A-A 2 n-tree

Warren, Danos
and Mooring,
1989 [102]

3D 2 2 cyl conv-
poiy

A-A grown-obs
/grid

Adophs and
Nafziger, 1990 [3]

3D 6 3 poly? poly? A-A grid

Branicky and
Newman,
1990 [11]

3D 3 3 conv-
poly

poly A-A grid

Table 2.3: C-space m ap-m akers for a m an ip u la to r in a s ta tic env iron­
m ent (co n t.).

58

Paper

Dimens­ DOFs Allowable geometry Approx.

CS-repionality Nomaa CS-
map

Nomad Obstacle Strategy

Ge and McCarthy,
1990 [33]

3D 6 6 PM conv-
p°iy

conv-
p°iy

A-P c-surface

Hwang, 1990 [42] 3D 2 (») 2 (n) cyl poly A-A c-surface

Verwer, 1990 [100] 3D 5 5 PM poly poly A-A 2 n-tree

Newman and
Branicky,
1991 [72]

3D 3 3 gen-poly gen-poly A-A grid

Bellier et al.,
1992 [8]

3D 6 3 arb arb P-A 2 n-tree

Chen and Hwang,
1992 [18]

3D 6 6 PM poly poly A-A grid
/adapt-div

De Pedro and
Rosa, 1992 [23]

2D 2 2 line points A-A grid

Shiller and Gwo,
1993 [90]

3D 2 (n) 2 (n) poly poly A-P c-surface
/adapt-div

Tso and Liu,
1993 [97]

3D 3 3 PM conv-
poly

conv-
poly

A-P c-surface

Ma et al.,
1995 [6 6]

3D 6 (n) 6 (n) cyl axially-
aligned
boxes

A-P c-surface

Zhao, Farooq
and Bayoumi,
1995 [110]

3D 3 (n) 3 (n) cyl poly A-P c-surface

Ralli and
Hirzinger,
1996 [78]

3D < 6 < 6 cyl arb A-A grid
(with
Kohonen
reorgani­
sation)

Duelen and Will-
now, 1991 [26]

3D 5 (n) 5 (n)
PM

gen-poly gen-poly A-A 2 n-tree

Table 2.3: (con t.) C-space m ap-m akers for a m an ip u la to r in a s ta tic
env ironm ent.

59

arbitrary geometry. Convex objects are much easier to handle than non-
convex objects—but the distributive nature of the C-space mapping makes
it possible to handle non-convex problems if the objects can be broken into
convex components.

W h ich re p re se n ta tio n schem e to use The most common representation schemes
for the nomad and environment are B-rep and pixel/voxel decomposition.
B-rep is more flexible since it can be used in both analytical and divide-
and-classify C-space mapping algorithms, but the choice will depend on
the available data—for example, a discrete representation may be available
directly from sensors.

W h e th e r to in tro d u ce ap p ro x im a tio n The computational expense of C-space
mapping may be eased by introducing approximation at the object mod­
elling stage and/or the C-space mapping stage.

The most central decision regarding the C-space mapmaking algorithm is which
representation scheme to use for the map itself. The most common options are:

A n a ly tica l re p re se n ta tio n A precise analytical representation of a C-space
obstacle is achievable by performing Minkowski operations if the nomad
is a translating object, or otherwise by calculating patches of the contact
surface corresponding to specific contact conditions. Such representations
tend to be both compact and fast to compute. However, operations such as
membership testing, inclusion and boolean operations may be expensive.
A greater restriction is that precise solutions have only been implemented
for arbitrary-shaped objects for the case of a single object translating in a
fixed orientation, although they are available for unconstrained objects and
manipulators if the objects are modelled as polytopes.

D iv ide-and-classify The approach of dividing the C-space into discrete cells
and classifying each as safe, prohibited or contact is applicable to a wide
range of problems and there are a host of different division strategies, cell-
classification schemes and other useful techniques. Discretising the C-space
into a grid enables algorithms such as the fast Fourier Transform to be
used which are independent of the shape of the object represented, but the
memory requirement grows exponentially with dimensionality of C-space.

60

H y b rid schem es A common approach is to develop a hybrid representation.
For example, some mapmakers use a boundary representation in the trans­
lation dimensions but discretise the rotation dimensions.

The state of the art of C-space mapping for a single nomad is that a precise
C-space map can be obtained for precise object models for both two- and three-
dimensional cases if the nomad translates in a fixed orientation and can be broken
into convex pieces (Bajaj and Kim 1990 [7]). Rotations make a boundary rep­
resentation much more difficult, but a precise C-space map can be made for the
two-dimensional case as long as the objects are approximated by poly topes (for
example Avnaim and Boissonnat 1988 [4]) or as a collection of discrete cells (for
example Kavraki 1993 [48]). Six-dimensional C-space obstacles are so difficult to
represent th a t only one paper (Donald 1985 [24]) obtains a global C-space map
for a three-dimensional floating object with full degrees of freedom, and that map
only enables paths to be planned which slide along on the contact-surface.

C-space mapmaking for manipulators has not been concerned with accurate ob­
ject models since in practical applications the manipulator should not get close
enough to the obstacles for precise geometry to play a role—instead the focus has
been on increasing the dimensionality of the C-space maps. This has mainly been
achieved by using increasingly intelligent adaptive divide-and-classify techniques
and selective refinement of the map, culminating in C-space maps of up to six
dimensions (for example Chen and Hwang 1992 [18]). Precise C-space maps have
also been obtained for manipulators by representing the links as cylinders and
treating obstacles as a collection of facets (Hwang 1990 [42]) or points (Ma et
al. 1995 [66], Zhao, Farooq and Bayoumi 1995 [110])—this has also enabled six
dimensional C-space maps.

In conclusion, the literature demonstrates that C-space mapmaking is an ongoing
area of research, driven by the wide range of applications and the challenge of
increasing the dimensionality of the maps and range of allowable geometry taken
as input. One significant goal is to produce precise C-space maps of six dimensions
or more which support efficient operations for membership testing, ray-tracing
and path-planning through safe as well as contact regions.

61

Chapter 3

Set-theoretic m odelling at B ath

3.1 Introduction

This chapter provides important background to this thesis: it gives an overview of
the way set-theoretic modelling is implemented by the group at the University of
Bath (of which I was a member) and shows the evolution of the multidimensional
geometric modeller used to implement the algorithms described in later chapters.

Three set-theoretic geometric modelling kernels are described, each of of which
is a library of classes and procedures implemented in C++: svLis, the three-
dimensional modeller which was the inspiration for the other two modellers; hy­
pers vLis a pseudo nine-dimensional extension to svLis which was developed for
an initial investigation into the omnimodel approach described in Chapter 5; and
svLis-m, the multidimensional modeller I helped develop during the course of this
research. The modellers are compared and contrasted in terms of the motivation
behind them and their use of the following: dimensions, points and boxes, linear
halfspaces, other primitives, sets, models, interval arithmetic, and pruning and
recursive division.

62

3.2 svLis

3.2.1 Motivation

SvLis (Bowyer [10]) is a three-dimensional geometric modelling kernel which uses
a purely set-theoretic representation. It was developed by Adrian Bowyer (with
contributions from members of the Bath Geometric Modelling group) as a tool
with which to perform research into set-theoretic modelling techniques, and to
provide a set-theoretic kernel which higher-level systems could use to store their
geometry (all current commercial CAD systems rely on B-rep kernels). SvLis is
distributed by the University of Bath and Information Geometers Ltd; the latest
version is available free from: h t t p : //www. b a th . a c . u k /~ ensab/G _m od/Svlis/svlis. h tm l.

Since svLis itself is not intended as a CAD system it does not supply a sophis­
ticated user interface for building and editing objects. However, a model can be
viewed—either as a series of facets in a polygon display program (Figure 3.1 (a))
or as a ray-traced image (Figure 3.1 (b)).

(a) A wireframe view of a piano (b) A ray-traced image of the Great Bath, Bath
(modelled in svLis by (modelled in svLis by David Lavender)

David.Eisenthal)

Figure 3.1: Im ages of svLis m odels.

63

3.2.2 Dim ensions

All svLis objects are explicitly placed in a three-dimensional Euclidean space,
{xyz}. Since svLis is a geometric modeller as opposed to merely a solid modeller,
objects of zero thickness such as wires and sheets can be represented as well
as solids. Boxes which have zero thickness in one or more dimensions can be
constructed and have sets placed in them, but two-dimensional models are not
fully supported.

3.2.3 Points and boxes

Points and vectors are implemented using a class which explicitly stores x, y and
z coefficients; axially-aligned boxes are defined by explicit intervals in the x, y
and z dimensions.

3.2.4 Linear halfspaces

In svLis, planes are defined in the implicit form:

A x + B y + C z + D — 0(A, B , C , D const.)

This is stored as a vector (A, B ,C)T, which is the plane’s normal, and a real,
D, which is the offset (the smallest distance between the plane and the origin).
Thus a planar halfspace is represented by the form:

A x + By + Cz + D < 0

The meaning of the coefficients are illustrated in Figure 3.2 which shows the
two-dimensional equivalent.

64

Figure 3.2: T h e im plicit rep resen ta tio n of a halfspace

Note the following properties of this representation:

• The vector (A, B , C)T is the plane’s normal, pointing from the SOLID re­
gion into AIR.

• For any point p = (px,Py,Pz) , the signed distance, d, from p to linear
halfspace H (with normal Hnormai = (HA, HB, HC)T and offset Ho) is given
by:

d = Ha-Px + HB-Py + HcPz + Hp = P-Hnorrnai + (3.1)

• The magnitude of d is the Euclidean distance between the point and the
surface. Even more significantly, the sign of d indicates which region of
space the point is in relative to the halfspace—a negative value indicates
that the point is in the SOLID region, a positive value indicates AIR, and
zero indicates the surface.

This sign convention provides the representation of all solids in
svLis, hyper svLis and svLis-m.

• Adding or subtracting a constant to a halfspace has no effect on the surface
normal, but changes the value of D , which corresponds to the signed dis­
tance of origin with respect to the halfspace. Thus subtracting a constant
E from a halfspace will offset the surface by a distance \E\; if E is positive
(resp. negative) the solid region is increased (resp. decreased).

65

3.2.5 O ther prim itives

Planar halfspaces are not only the most simple primitive—they are the building
blocks for all others, which are built by combining planar halfspaces and reals us­
ing arithmetic and transcendental operators—svLis supports primitive addition,
subtraction, division (by a real), multiplication, exponentiation (to a positive in­
teger power), sine, cosine and signed square root (that is, the square root of the
absolute value of the primitive, with the original sign re-attached). This method
of representation, which I refer to as the linear-halfspace-basis (a generalisation of
the planar basis) can be used to construct any object with an implicitly defined
surface—svLis supplies five standard primitives (cylinder, sphere, cone, torus and
cyclide) and users may build any other they wish.

Within svLis, primitive are stored as a tree with operators at the internal nodes
and halfspaces and reals as the leaves (Figure 3.3). It is worth noting that the
implementation of this structure (and the equivalent for sets) is strictly a graph
since a reference scheme is used whereby many of the nodes are simply a pointer
to another node—although this is an implementation detail it is this scheme
which makes the approach practicable.

h 2

K,: >vV X ' XX.4
| K ■ \X X> > u
V. \ • ' ' \ ''

/ X a X X /
KXXXaX --

(a) Planar halfspaces H t, H2
are used to construct a cylinder
halfspace H3 (which extrudes
into the z-dimension).

/ \
+ r

/ \
pow pow

/ \
H, 2 H2 2

(b) Cylinder H3 is represented
internally as a tree with operators
at the internal nodes and the
halfspaces and a real (the radius)
at the leaves.

Figure 3.3: A cylinder prim itive is rep resen ted as a tree .

For any primitive, a potential value can be obtained for a specific point by com­
puting the signed distance of that point relative to each planar halfspace at the
leaves, then combining the results according to the operators in the primitive
(for example, the potential value for an addition node is the sum of the values

66

for the two children). As with a single planar halfspace, the sign of the result
indicates which region of space the point is in with regard to the primitive, with
the convention that negative values indicate SOLID. Thus, testing which region
a point is in with respect to a primitive (called a point membership test opera­
tion) is achieved by computing the potential value of the point with respect to
the primitive, and examining the sign of the result. Note, however, that in the
general case the magnitude of the potential value is not the Euclidean distance
to the surface since the arithmetic and transcendental operators distort the field.

In addition to enquiries about the potential value of a primitive, enquiries can
be made about the gradient of the potential field. The x , y and z components
of the gradient vector are each themselves a primitive, into which a point or box
can be fed to obtain the appropriate value or range. Enquiries about the range of
gradients within a box enable facetted images to be produced with appropriate
shading (see Figure 3.1 (a)).

3.2.6 ‘T hin’ primitives

As pointed out earlier, svLis and its relatives are geometric modellers as opposed
to solid modellers since they are able to represent non-manifold objects such as
sheets of zero-thickness. These are obtained by applying the ‘abs’ operator to a
primitive—which makes the potential field of the primitive return the absolute
value of what it was previously. This forces the potential field to be positive
everywhere except the surface, thus making a ‘th in’ set. These have a number
of applications, particularly when geometric constraints are modelled (see Eisen-
thal [27]).

3.2.7 Sets

Sets are built by combining primitives with the boolean operators union (u),
intersection (fl) and complement(!). Difference and symmetric difference are also
available to the user, but these are internally represented as combinations of the
first three. Sets are stored as a tree with operators as the internal nodes and
primitives at the leaves.

67

A point membership test against a set can be achieved by testing the point
against each primitive in the tree and combining the results according to the
operators, where the union operator means the minimum value from the two
children is taken, intersection means take the maximum value, and complement
means negate the value of the child.

In general it is not necessary to test the point against every primitive in the tree
since any set intersected with AIR is AIR so as soon as a child of an intersection
operator is found to have an positive (AIR) value, the point is known to be AIR
with respect to the whole set tree. Similarly, any set unioned with SOLID is
SOLID. To take maximum advantage of this, svLis arranges the tree such that
the most simple branches (which are most likely to evaluate to SOLID or AIR)
are evaluated first.

3.2.8 M odels

A svLis model is a list of sets embedded in an axially aligned box. The box
locates the set in space, defining a region of interest. Primitives which lie entirely
outside of the box are removed from the set tree using a process called pruning
which exploits interval arithmetic.

3.2.9 Interval arithmetic

Arithmetic operators are well defined for intervals (for a treatise see Moore [69]),
and appropriate interval equivalents can be defined for each of the transcendental
operators supported by svLis; maximum and minimum are also well defined for
intervals. Consequently, a range of potential values can be obtained for an axially-
aligned box in the same way a single value is obtained for a point: The re, y , and
2: intervals are placed into Equation 3.1 for each of the planar halfspaces at the
leaves of the primitives, and the ranges of values are combined using the rules
described above until a range is obtained representing all the values which points
in the box have with respect to the set.

Note that in general interval arithmetic may cause the result interval to grow

68

larger than it should. If a set contains only planar halfspaces or quadric surfaces
arranged in canonical form (Voiculescu [101, p. 22]), the answer will be precise,
but in other cases the range obtained for a primitive may grow to include zero—
indicating that the surface of the primitive passes through the box—when in
reality it does not. However, interval arithmetic is always conservative—although
it might erroneously indicate surface, if it indicates SOLID or AIR then the
surface is guaranteed not to pass through the box.

Current algorithms systematically reduce inaccuracies by recursively dividing the
box (see below) which is relatively computationally cheap due to the efficiency
of the algorithms. Meanwhile, research into methods to improve the accuracy of
interval arithmetic, along with alternatives, are under way (Voiculescu [101]).

3.2.10 Pruning Sz recursive division

Note the following identities:

• anything n AIR is AIR

• anything U SOLID is SOLID

• anything U AIR is itself

• anything D SOLID is itself

Armed with these and interval arithmetic, it is possible to (conservatively) re­
move from the set tree every primitive whose surface lies completely outside of
the model’s box. Depending on the operator above it, each set which has a poten­
tial range which is all negative or all positive is either removed from the tree, or
enables the whole tree to be reduced to SOLID or AIR respectively. Only prim­
itives which have a potential value which straddles zero (indicating SURFACE)
remain in the set tree.

This process, called pruning the set to the box is illustrated in Figure 3.4.

Pruning enables a complicated model to be systematically broken into more sim­
ple pieces by recursive division. Typically this takes the form of binary spatial

69

r
i
i

(a) Set S to be pruned to box B

(b) The halfpianes used to define S
(hatching indicates the SOLID side
of the surface)

n

n |
n %

H 1 H 2 / \ “ 6
H4 h5

(c) The complete set-theoretic tree for S

/n
/ \ iPj

A H3
: » , • h2

/ \

A H<
h4 h5

(d) The pruning algorithm walks the tree ‘down
and to the left’, so the first halfspace evaluated
is Hi. Interval arithmetic using B’s coordinates
indicates that B contains some surface of Hi
so the tree remains unaltered.

H

n
✓ \

H

I

/

■ : H2j

?
i
n
/ \

A He
Ha He

/>•%
h , ; h3 «

l
n

/ \
A Hfi

h4 h5
(e) The pruning algorithm backtracks up the
tree, and then encounters H2 . Interval arithmetic
shows that B is entirely SOLID with respect to H2 .
Since anything intersected with SOLID is
itself, H2 has no effect within B so it can be cut
from the tree.

(0 The next halfspace B is evaluated against is
H3 . B contains some surface of H3 so the tree
cannot be reduced.

nf'%
I
n

/ \

;H4;H5

(g) After backtracking and walking down the
tree again, the procedure evaluates B
against halfspace H4 and finds that it contains
entirely AIR. Anything intersected with AIR
is AIR and the complement of AIR is SOLID,
so the right hand side of the tree is SOLID.
Anything intersected with SOLID is itself, so
the complement operation can be pruned away
as well.

n
/ \

H, H,

(h) The resulting pruned set-theoretic tree
for S within B. Note from (a) and (b) that
this is a correct representation.

Figure 3.4: P ru n in g a se t-th eo re tic tre e to a box.

division (BSD), whereby:

70

1. The sets in a model are pruned to the model’s box.

2. If any of the sets are still considered too complicated and the box is larger
than a pre-defined minimum size the box chopped into two along some
axially-aligned plane.

3. The model’s sets are placed into each of the two boxes created, to make
two children models, and the process recurses.

Before such division begins, the user defines what constitutes a set being ‘too
complicated’ and how small a box gets before it is considered to small to chop
again. A method for deciding where the axially-aligned chop is positioned must
also be defined—a simple decision procedure is to chop the longest dimension in
half.

Note that an alternative to binary division is 2n division, whereby in two-dimensions
the model is chopped into four cells and in three-dimensions it is chopped into
eight. A tree representing a space divided by the 2n scheme will typically have
less internal nodes than its binary-tree equivalent (since several chops effectively
occur simultaneously), but more leaf nodes (since it has less freedom to adapt
to the contents of the space). Since svLis models typically have leaves which
are large in memory terms compared to the internal nodes, binary division is
preferred. For svLis-m, where the leaves are multidimensional models which are
more complicated, the advantage of binary division is even greater. The memory
requirement of the two schemes in multidimensional cases is discussed further in
Wise [103].

3.3 Hypersvlis

3.3.1 M otivation

The omnimodel concept to be described in Chapter 5 originated as the basis of a
novel method of feature recognition which was first devised by John Woodwark.
To implement this method Parry-Barwick and Bowyer [74] developed hyper-
svLis [75, ppl68-178], a pseudo-nine-dimensional extension to svLis specifically

71

designed to represent the three dimensions of ordinary space and six dimensions
corresponding to the degrees of freedom of an unconstrained three-dimensional
object.

hypersvLis is not truly nine-dimensional since it only stores ordinary three dimen­
sional svLis sets (the multidimensional effect is achieved through special enquiry
functions as described below). It did, however, play an important role in the
initial research into applications of multidimensional set-theoretic modelling.

3.3.2 Dimensions

Since hypersvLis was developed specifically to represent what I refer to as an om­
nimodel (Chapter 5), its nine dimensions are hard-coded to represent the three
dimensions of ordinary space and the six degrees of freedom of an unconstrained
three-dimensional object (three for translation and three for orientation imple­
mented using Euler angles).

3.3.3 Points and boxes

hypersvLis points and boxes explicitly store values in the nine dimensions men­
tioned above.

3.3.4 Linear halfspaces, other prim itives and sets

hypersvLis does not provide classes for halfspaces, other primitives or sets—it
uses ordinary svLis objects, attaching a label to each object to indicate if it is
static or has degrees of freedom. The multidimensional effect is achieved via
the enquiry procedures, such as those which membership test a nine-dimensional
point or calculate the potential value range for a nine-dimensional box. If an
object is labelled as static, these procedures ignore the values in the dimensions
relating to degrees of freedom and test the remaining three dimensional point or
box using the ordinary svLis procedures. If, however, a set is labelled as ‘moving’,
the signed distance function for each halfspace is evaluated by a special procedure

72

which takes into account the rotation and translation transformations which the
degrees of freedom perform on the original halfspace1. These halfspace procedures
occur at the leaves of the primitive and give an answer formulated in terms of
all nine dimensions of the point or box. The results are then fed back up the
primitive and set trees according to the rules described in Sections 3.2.5 and 3.2.7
respectively, and the effect is to supply enquiries about multidimensional sets in
an omnimodel.

3.3.5 M odels, interval arithm etic, pruning & recursive di­
vision

A hypersvLis model associates a list of sets (each labelled as static or moving)
with a nine-dimensional hyperbox. The enquiry functions described in the pre­
vious section enable interval arithmetic and pruning to be used in an identical
manner to svLis, which in turn enables recursive division (although, as discussed
later, the cost of division can increase exponentially with the number of dimen­
sions).

3.4 svLis-m

3.4.1 M otivation

hypersvLis was used to implement not only Woodwark’s method of feature recog­
nition, but also novel methods for obtaining images of Minkowski sums and for
nesting arbitrary shapes (Parry-Barwick [75]). Further application areas for om­
nimodel analysis and general multidimensional modelling also became apparent
but the hard-coded nature of hypersvLis did not fully exploit the multidimen­
sional property of set-theoretic modelling and limited it to a subset of these
applications. Thus, Adrian Bowyer, David Eisenthal and I developed a new mul­
tidimensional modeller called svLis-m (short for svLis-multidimensional).

1 These transformations are detailed in Chapter 5 which describes how they axe handled
using svLis-m.

73

svLis-m uses the same modelling approach as svLis (with slight variations, see
below) and can be used in conjunction with its three-dimensional relative; svLis
models can be used as input and then swept into additional dimensions, and
multidimensional svLis models can be sliced down to three or less dimensions
and fed to svLis (to obtain graphical output, for example). However, svLis-m
can be used as a stand-alone kernel.

3.4.2 Dim ensions

Dimensions are represented by a svLis-m class which associates with each one
a name, description, and any other information the user wants to attach. Di­
mensions are created as and when the user requires them, up to a limit which is
currently set as 32 (raising this upper limit requires only one class to be changed,
but would result in additional computational cost for each operation).

Note th a t it is often useful to regard svLis-m as an algebra system in which the
dimensions are the variables. Indeed, the line between an algebra system and a
geometric modeller is a hazy one: however we regard svLis-m as on the latter
side due to its exploitation of the linear halfspace basis (p. 66), its explicit rep­
resentation of spatial locality using boxes and its use of automatic simplification
via pruning.

3.4.3 Points and boxes

The svLis-m point/vector class can explicitly store a coordinate value for any
number of the existing dimensions (including zero). Since a point is a zero-
dimensional entity regardless of the space in which it is embedded, a point em­
bedded in a space which contains dimensions which are not explicitly represented
in the point implicitly takes a coordinate of zero in each of those unspecified
dimensions. Thus, a point which does not have an explicit coordinate in any
dimension is the origin regardless of which space it is placed in. Boxes behave
in a similar manner—they can explicitly store an interval in any number of the
existing dimensions, and will implicitly have the interval [0,0] in every dimension
that is not explicitly represented.

74

3.4.4 Linear halfspaces

As with svLis (p. 64), a linear halfspace is represented as a normal vector (which
is normalised) and an offset value. Like any point or vector, the normal vector to
a linear halfspace may have any number of explicitly specified coordinates so, for
example, a linear halfspace might only have an x coordinate (which normalisation
will force to have magnitude 1), even if it is going to be embedded in a three
dimensional space. This makes sense since unlike points, the dimensionality of a
halfspace is not fixed—it depends upon the dimensionality of the space in which
it is embedded. For example, if a third dimension was introduced to the space
illustrated in Figure 1.3 (a) (p. 23), the disc halfspace would extrude into a
cylindrical halfspace whose axis is parallel to the third axis. Likewise, if a linear
halfspace which has a normal vector with an explicit coordinate in x alone is
embedded in x, y, z space, it will project parallel to the y and z axes to give
a perfectly well-defined linear halfspace in three dimensions. In mathematical
terms, the addition of a dimension causes a halfspace to project into the Cartesian
product of the original halfspace and the extra dimension.

The effect of placing halfspaces and points into a higher dimensional space is
illustrated in Figure 3.5.

H P

3 5 X

(a) A halfspace H is defined with a
normal vector which has a coordinate
of 1 in the X dimension, and no other
explicit coordinates. H has a
one-dimensional solid region
(illustrated as the two-dimensional
hatched region) and a
zero-dimensional surface. Point P
also has a coordinate in X alone. P is
zero-dimensional, but is illustrated
as a tick.

Figure 3.5: T he effect of placing a halfspace and a po in t in to a h igher
dim ensional space.

x
(b) When H is place into a 3 dimensional
space, it projects into a halfspace with a
three dimensional solid region and a two
dimensional surface. P, however,
remains zero-dimensional and implicitly
has coordinates o f 0 in the y and z
dimensions.

75

3.4.5 Other primitives

Unlike svLis, svLis-m does not have a primitive class which is distinct from the
set class—instead, svLis-m supports arithmetic and transcendental operators on
sets in order to remove svLis’ restriction that arithmetic operators cannot occur
above boolean operators in the tree. Although it is difficult to imagine how such
freedom could be exploited2 svLis-m was designed with maximum flexibility in
mind on the basis that new applications may continue to become apparent with
unpredictable requirements.

Note that svLis-m does not supply standard primitives or set equivalents. Al­
though it is possible to define n-dimensional versions of primitive shapes (an
n-dimensional sphere is trivial to define, for example) each instance would be di­
mension specific. As discussed in the previous section, svLis-m halfspaces project
into their Cartesian product if they are placed in a higher dimensional space—
thus an object originally defined as a sphere would become a cylinder and the
special tag attached to it would become misleading.

3.4.6 Sets

As mentioned above, svLis-m sets incorporate the functionality of primitives.
Since union and intersection operations introduce discontinuities to the surface
of a set, any set which contains such an operator has an undefined gradient. For
those sets which contain only arithmetic and transcendental operators (equivalent
to a svLis primitive), the gradient consists of a set for each dimension that has a
value explicitly set in a normal of a halfspace in the set tree.

Apart from this voluntary departure, the representation of multidimensional sets
within svLis-m is identical to svLis—fully exploiting the dimension-independent
property of the set-theoretic notation.

2 Unfortunately at the time of publication images of the results cannot be obtained since
svLis-m relies on svLis for graphical output. However, since a ray-tracer has now been developed
for use with C-space exploration, images should be available in the near future.

76

3.4.7 M odels, interval arithm etic, pruning &: recursive di­
vision

As with svLis, A svLis-m model is a list of sets which is associated with a box
which defines a region of interest. Interval arithmetic, pruning and recursive di­
vision are implemented in an identical manner to that described in Sections 3.2.9
and 3.2.10 and are used extensively to break complicated models into simpler
pieces.

3.4.8 ‘T hin’ sets

Like svLis, svLis-m supplies an ‘abs’ operator which, by forcing the potential field
positive everywhere except the surface, makes a set ‘th in ’ (of zero thickness). This
operator can be applied to any set.

3.4.9 Slicing svLis-m objects

svLis-m objects can be sliced to any lower dimensionality by fixing each unwanted
dimensions at a value, then replacing all references to th a t dimension by the fixed
value. For example, consider a model consisting of the simple six-dimensional set
represented in Figure 3.6 in a box with intervals ([x : —1, 1], [y : —1, 1], [z :
-1 ,1], [x' : -1 ,1], [y' : -1 ,1], [z' : -1,1]).

This model can be sliced to a three-dimensional model by fixing three of the
dimensions at specific values—for example Figure 3.7 shows the set if it is sliced
at the point (x' : 1.8, y ' : 0.3, x' : —0.4).

The sliced model consists of this set inside a box with intervals ([x : — 1,1], [y :
—1,1], [z : —1,1]). Note that the sliced box, unlike the sliced set, is independent
of the coefficients of the slice-point—only the dimensions of that point have an
effect.

In this illustration, the six dimensional set is a translational omnimodel (Chap-

77

po w

0.6
po w

po w po w

Normal: (*: 1)
Offset: 0

Normal: (y: 1)
Offset: 0

Normal: (z: 1)
Offset: 0

Normal: (x': 1)
Offset: 0

Normal: (y ’: 1)
Offset: 0

Normal: (z': 1)
Offset: 0

Figure 3.6: The se t-tree of a six-dim ensional set

ter 5) representing a sphere which was initially centred on the origin. The sliced
set is a copy of the original, translated by the values of the slice point. Indeed,
given the values illustrated, the sliced model will be the empty set since for those
translation values the sphere has left the region of ‘world’ being examined.

Here, slicing had an intuitive and uninspiring effect. However, with a more subtle
choice of slice-point it can lead to interesting and useful results as will be seen
later—especially in Chapter 8 (C-space mapping for a manipulator arm). It also
enables three dimensional models to be obtained which can be fed to svLis such
as for graphical display.

3.5 Sum m ary & conclusions

This chapter has outlined the set-theoretic modelling approach adopted by the
Geometric Modelling group at the University of Bath. The two key features of
this approach, are:

78

p o w

0.6
p o w

p o w p o w
- 0.4

1.8 0 3

Normal: (y: 1)
Offset: 0

Normal: (x l)
Offset: 0

Normal: (z '■ 1)
Offset: 0

Figure 3.7: A six-dim ensional set sliced to th re e dim ensions

• Use of the linear halfspace basis which represents all primitives as expres­
sions in terms of linear halfspaces—any solid with an implicitly defined
surface can be represented in this way. Our modellers support some tran­
scendental operators in addition to arithmetic and boolean operators.

• Extensive use of interval arithmetic, which enables sets to be pruned to an
axially aligned box. This in turn enables recursive division to systematically
break a complicated model into more simple pieces.

Since both of these extend directly to any number of dimensions, we have de­
veloped svLis-m—a set-theoretic modelling kernel which can represent objects of
near-arbitrary dimensionality. svLis-m has been designed to be a general geomet­
ric modelling tool and to be useful as a stand-alone kernel, independent of svLis.
However it can be used in conjunction with its three dimensional relative—for
example svLis objects can be used as input and svLis’ graphics utilities can be
used to examine slices of multidimensional sets.

79

Chapter 4

Orienteer— a tool for C-space
map validation

In order to enable even multidimensional C-space maps to be validated, I de­
veloped a C-space map exploration tool, called O rien teer, which acted as a
graphical user interface to the svLis-m C-space maps produced by the mapmak-
ing algorithms. Figure 4.1 shows a snapshot.

Features of O rien tee r include:

• Any system of two- or three-dimensional bodies can be displayed (subject
to the maximum number of dimensions allowed by svLis-m, currently 32).

• Each nomad can be controlled by either

- A ‘DOF controller’ panel, with which the user can specify either an
absolution configuration or a relative step.

- A six-degree-of-freedom controller (we used a Magellan SpaceMouse [61])
which can be used to control any combination of the nomad’s degrees
of freedom.

• A ‘Membership test’ mode in which, before the display is updated to rep­
resent a specific configuration, that configuration is tested against the cor­
responding C-space map. The classification (safe, prohibited or contact) is
displayed.

80

£He Controllers Spacemouse Display CS-m ap division Help

Sp acem ou se controlling:
TL catch

Enabled DOF’s

B ’xl 0> No rotation

S fy t <$> One rot DOF

□ rt <3> Full rol DOF?

Sensitivity level

Close Help

Dolly

==J Control Ier for TL catch
Facetting
Now not acting soiic
Reset spacemouse ser
Now acting solid.
Now not acting soiic
Now acting solid.

dor Config. D.O.F. Step
0 Mem test

bd Act solid Rot dim 1

Value 0.03654
Trans In x

LLi

H6.74361 -0.05138
Trans in y

Abs move Step

Dismiss

Figure 4.1: A snapshot of the Orienteer C-space validation tool

• An ‘Act solid’ mode in which the display will only be updated to a specified
configuration if that configuration is classified as safe or contact in the C-
space map.

Thus, a C-space map for a mechanism can be validated by loading the geometry
of the mechanism and the C-space map into Orienteer, moving the parts into an
interesting region of the C-space map (perhaps by temporarily disabling the ‘Act
solid’ mode, in order to move to a disconnected component of free-space) and
then observing if the objects ‘hit each other’ and stop moving in the appropriate
configurations.

81

Chapter 5

Creating an approxim ate C-space
map via projection of an
‘om nimodeP

5.1 Introduction

This chapter describes how, for any system of nomads, a static multidimensional
model can be constructed which represents every interaction that occurs as the
nomads exercise their degrees of freedom. It then discusses five algorithms which
orthogonally project such a model (referred to as an omnimodel) into the C-space
to obtain an approximate global map of the C-space, namely:

• Collision detection at discrete configurations (collDetPoint)

• Collision detection for resolution-sized C-space boxes (collDetBox)

• Collision detection for binary spatially subdivided C-space boxes (collDetBSD)

• Isotropic binary spatial division (isotropicBSD)

• ‘Learning’ collision detection for recursively-subdivided C-space boxes (L-collDetBSD

82

5.2 Degrees o f freedom as dimensions

The omnimodel concept originates from a method of feature recognition devised
by John Woodwark and implemented by Adrian Bowyer and Stephen Parry-
Barwick [74]. The key idea is to represent each mechanical degree of freedom of
a system of rigid parts as an additional geometric dimension and to combine this
with the geometry of the parts. This is best explained by initially considering
one-dimensional models in which solid objects are closed intervals along an axis,
x, say.

Consider the nomad and obstacle sets shown in Figure 5.1 (a). When the nomad
is placed in its initial configuration in the space of the obstacles, it results in the
one-dimensional model shown in Figure 5.1 (b).

The omnimodel concept introduces to this model a second dimension which,
instead of being independent to the first, represents the motion of the nomad along
its translational degree freedom. The resulting two-dimensional model is shown
in Figure 5.1 (c). As the value of the x-translation dimension (x') increases, the
nomad slides in the direction of increasing x, sweeping out the diagonal region.
In contrast, the position of the obstacle is unaffected by the translation of the
nomad, so it projects orthogonally in the new dimension.

The model shown in Figure 5.1 (c) is an omnimodel and contains information
regarding every interaction that occurs as the nomad exercises it degree of free­
dom between the values x'lo and x'hi. Omnimodels can be analysed for a number
of purposes, including its original application, feature recognition—for details of
recent work in this area see Eisenthal [27].

The genesis of this thesis was my observation that i f the intersection of
the swept nomad and the obstacle is projected parallel to the x dimen­
sion, the resulting intervals in the x.' dimension are the configuration
space obstacles that the obstacle causes to the nomad.

This is illustrated in Figure 5.1 (d).

For the one dimensional example shown, computing the configuration-space ob­
stacles directly from the original models is trivial. However the method of creating

83

Nomad

-H*----------------0
Obstacle

(a) One dimensional models (the
solid regions are intervals, shown
as two dimensional hatch).

Nomad Obstacle

(b) The nomad, placed in its initial
configuration into the space of the
obstacle.

x'i

0

(c) An omnimodel is constructed
by introducting a dimension to
represent the degree of freedom of
the nomad.

X 'h,

1

0 0 *

(d) When the intersection o f the
two sets in the omnimodel is
orthogonally projected into the
C-space, is represents the C-space
obstacles caused by the obstacle to
the nomad

Figure 5.1: I llu s tra tio n of an om nim odel for a one-dim ensional system .

an omnimodel and projecting the intersection into the configuration space is in­
herently general and can be applied to much more difficult problems. Two- and
three-dimensional systems of parts can be handled, and an additional dimension
can be incorporated to represent each degree of freedom of the system—with
rotations handled in a similar way to translations.

Note that for simplicity, this chapter refers to a single nomad throughout—
however, the omnimodel method works in principle for systems of any number of
nomads of the same dimensionality. The workspace dimensions are shared by all
nomads, whilst each additional degree of freedom of a nomad adds an additional
dimension—so an omnimodel representing two three-dimensional nomads with
full degrees of freedom would be fifteen-dimensional. Where multiple nomads are

84

involved, the C-space is obtained by projecting all regions of intersection between
objects. Thus the set which is examined each time an omnimodel is pruned is
the union of the pairwise intersections between objects.

5.3 Omnimodel construction

For a 6-dimensional system of rigid parts with a total of c degrees of freedom,
the omnimodel has a (6 + c)-dimensional box. The bounds on the workspace
dimensions must be large enough to contain the region in which interactions will
occur; the bounds on the C-space dimensions (which define the configuration
space) limit the degrees of freedom of the nomad (s).

Into the omnimodel box are placed the obstacle set (which may consist of multiple
obstacles unioned together) and a list of nomad sets. The obstacle set is merely
a svLis set which has been converted to svLis-m; the halfspaces at the leaves
will have normals with explicit values only in the workspace dimensions so, as
described in Section 3.4.4, these orthogonally project into (6-t-c) dimensions when
they are placed into the omnimodel box. In contrast, each nomad set must be
swept into the additional dimensions such that it represents the nomad exercising
its degrees of freedom.

Remember that we represent every set as a tree which has constants and linear
halfspaces at the leaves (Sections 3.2.4- 3.2.7). This use of the linear halfspace
basis allows us to sweep nomads of arbitrary complexity simply by sweeping each
linear halfspace at a leaf—the tree of arithmetic, transcendental and boolean
operators which defines the the shape of the object remains constant. Omnimodel
construction therefore requires the creation of multidimensional ruled surfaces
corresponding to swept linear halfspaces.

5.3.1 Incorporating translational degrees o f freedom

In order to introduce a dimension (x ') to represent translation in workspace
dimension x, each halfspace leaf of the form ^4x + B y -1- C z -1- D < 0 is replaced

85

with a tree with the following form (which corresponds to the rigid transformation
matrix for a translation):

A (x — x 7) -f B y + Cz + D < 0

(A , B , C , D const.)

This is a four-dimensional linear halfspace which sweeps diagonally in the new
dimension like the two-dimensional nomad in Figure 5.1 (c) (p. 84).

In the same way, additional degrees of freedom can be introduced to represent
translation in y and z. These transformations can be performed in any order,
and any combination of the three possible degrees of freedom can be obtained.

5.3.2 Incorporating rotational degrees of freedom

R otation in the plane

Consider a linear halfspace embedded in xy-space (Figure 5.2 (a)) which is rep­
resented by an implicit polynomial of the form:

^4x + B y + D < 0(A, B, D const.)

If a third dimension (9) is introduced to represent the rotation of that plane about
the origin, the offset of the halfspace from the origin (D) remains constant, whilst
the surface normal vector (Ag, Bg) at any value of 9 can be obtained by applying
the matrix for rotation in the plane to the surface original normal vector (^4, B) .

The result is:

(A cos9 — B sin0)x + (Asin9 + B cos9)y + D < 0

86

Thus, in order to give a two-dimensional nomad set one rotational degree of
freedom about the z-axis, each leaf halfspace is replaced by a tree of the form
illustrated in Figure 5.2, which shows the transformation on a particular planar
halfspace (or flat) F. Note that each leaf of the sweep set is still either a constant
or a linear halfspace: the constants are pulled out from the original halfspace rep­
resentation whilst the other leaves (Fx, Fy and Fq) are half-spaces with normals
parallel to the x, y and 6 axes respectively.

Normal: (x:0.45, y :-0 .89)
Offset: 6.9

6.9

0.45 sin0.45 cos -0.89 sin -0.89 cos

Normal: {x: 1)
Offset: 0

Normal: (y: 1)
Offset: 0

Normal: (0: 1)
Offset: 0

Figure 5.2: In tro d u cin g ro ta tio n to a tw o-dim ensional linear halfspace

A plane swept in this way produces a helicoid, like the one illustrated in Figure 2.8
on page 39.

87

Param eterising rotation in three-dim ensional space

Rotational freedom in three dimensions is typically parameterised using Euler
angles, quaternions or rotation vectors. I chose to implement the omnimodel
methods (and thus all my algorithms) using Euler angles since those parame­
ters correlate more intuitively to degrees of freedom than the axis and angle
parameters of the other schemes. Note however that despite the conceptual dif­
ficulties, all of the algorithms described in this thesis could be implemented us­
ing quaternions—indeed, such an implementation is discussed as future work in
Chapter 9. Of the various flavours of Euler angles I chose to use Roll-Pitch-
Roll since a sample of robotics textbooks (Spong and Vidyasagar [94], Paul [77],
N-Nagy and Siegler [71], Snyder [92], Selig [89]) suggested that to be the most
common. Thus, halfspaces are given full rotational freedom by introducing three
dimensions, <f> (corresponding to rotation about the original z axis,), 9 (corre­
sponding to rotation about the new y axis after the first rotation) and ip (rotation
about the z axis after it has been transformed by the first two rotations). This
is illustrated in Figure 5.3.

The rotational configuration space (the set of all orientations) is bound by the box
<p: [0,27r), 9 : [0,7r), ip : [0, 2tt). The 9 interval has an upper limit of 7r instead of
27r to reduce redundancy—if the full range was covered, every configuration could
be achieved using at least two different combinations of parameters. Note that
despite this precaution, the scheme still includes some redundancy in that if 9 is
zero, (j) and ip correspond to rotations about the same axis, so any combination
of <p and ip values with the same sum result in an identical orientation. In
implementations of Euler angles this problem is handled by forcing ip to zero
whenever 9 is zero such that all rotation is parameterised by (p.

It should be noted then, that this implementation of rotation only allows two
types of rotational freedom to be represented efficiently—either rotation in the xy
plane, or a full three degrees of freedom. Not only is rotation about an arbitrary
axis impossible to represent, rotation about the x-axis cannot be represented by
a single dimension since it can only be achieved by a combination of rotation
about the z and y axes; and rotation about the y axis cannot be represented by
the 9 parameter alone, since tha t parameter is restricted to [0, n).

This restriction is one reason why alternative parameterisations are discussed in

88

J>2 =

Figure 5.3: R oll-P itch-R oll E u ler Angles

Future Work (Chapter 9).

In tro d u c in g th ree-d im ensional ro ta tio n to an om nim odel

When a plane is swept into a six dimensional space, where the extra dimensions
correspond to these Euler angles, it sweeps out a five-dimensional ruled surface,
which might be considered a ‘hyper-helicoid’. Although this surface is difficult
to visualise, its equation is obtained in the way described above for rotation in
the plane: the offset remains constant whilst the surface normal is obtained by
multiplying the original normal vector by the rotation matrix formulated in terms
of Euler angles:

 ̂ cos(0) cos(0) cos(^) — sin(</>) sin(^) — sin(</>) cos(0) cos(^) — cos(<f>) sm(ip) sin(0)cos(^) \
cos (<f>) cos (6) sin (ip) + sin(<£) cos(^>) —sin (0) cos(0) sin(^) + cos(^) cos(^) sin(0) sin(xp)

\ — cos((f>) sin(0) sin(0) sin(0) cos(0) J

89

The svLis-m implementation of this sweep is worth mentioning for two reasons.
Firstly, despite the length of the expanded expression, the code performing the
transformation (which is included as Appendix A) is relatively compact. Sec­
ondly, the use of reference counting in svLis-m (Section 3.2.5) means tha t a
significant proportion of the tree corresponding to the full expression is not
required—repeats of sub-trees are each replaced by a pointer to the original.
The latter implementation detail reduces the memory requirement and, when
combined with lazy evaluation, significantly reduces the evaluation times.

Note that:

• The rotations about each axis must be performed in a fixed order.

• The rotation transformation must be performed before any translation de­
grees of freedom are introduced since the transformation is based on the
nomad sitting at the origin.

5.4 The effect of division

As described in Section 3.2.10, our approach to set-theoretic modelling makes
extensive use of recursive division and pruning. To understand how this is used
to analyse the omnimodel it is helpful to consider the effect of chopping the
omnimodel in half by splitting one of the sides. If the side split is a workspace
dimension (one of x, y, z), each child model focuses on interactions which occur
in one half of the workspace while the nomad moves with the same amount
of freedom. Conversely, if a configuration space side is chopped in half, each
sub model contains information about what happens in the same region of the
workspace, but when the nomad is restricted to move half as much in the chosen
degree of freedom.

5.5 Overview of projection into the C-space

To recap, we have established the following:

90

1. Using set-theoretic modelling, a multidimensional omnimodel can be con­
structed which represents every interaction that occurs as a nomad exercises
its degrees of freedom. For a one-dimensional workspace, where objects are
intervals and the nomad has one degree of translational freedom, the omn­
imodel can be illustrated as shown in Figure 5.4.

2. If all the parts of the omnimodel where objects overlap are projected orthog­
onally into the C-space dimensions, the result corresponds to the C-space
map for the system being analysed.

3. Using orthogonal division and pruning, an omnimodel can be broken into
sub-omnimodels which are typically simpler. Thus, divide-and-conquer
methodologies can be employed which recursively divide until sub-omnimodels
are reached which are either sufficiently simple, or smaller than a pre-defined
resolution.

Figure 5.4: T he tw o-dim ensional om nim odel used to illu s tra te om ni­
m odel p ro jection

The remainder of this Chapter focuses on five ways recursive division of an om­
nimodel can be used to obtain an approximate C-space map within which cells
are classified as safe, prohibited or contact. In each case, the terminating con­
dition for the divide-and-conquer (that is, the definition of ‘sufficiently simple’)

91

is an omnimodel which is either completely solid or completely air with respect
to overlap between objects. Note that Chapter 9, Future Work, discusses the
possibility of less dividing and more conquering by combining the algorithms in
this chapter with the precise analytical solutions described later (Chapter 6).

5.5.1 Resolution boxes

The C-space maps produced by the algorithms described in this chapter are
determined by two resolution boxes:

The C-space resolution box

This specifies the terminating condition for division in the C-space dimensions—
i. e. the stage at which division ceases and C-space regions which have not been
classified as safe or prohibited are classified as contact. The size and shape of this
resolution box will be evident in the final C-space map produced.

For cases involving only translational degrees of freedom, the resolution C-space
box will typically have the same length in each dimension; in contrast, for
cases involving manipulators with rotational joints, each resolution-sized C-space
box would typically have longer sides in dimensions which correspond to higher
joints—since reorientation of those joints has less effect on the manipulator po­
sition. For cases involving a mixture of translational and rotational freedoms,
setting the relative sidelengths is a non-trivial m atter discussed in the Test Re­
sults section of this chapter and also in Future Work.

The workspace resolution box

The second resolution box specifies the terminating condition for division in the
workspace dimensions. For translation-only cases, an obvious default is for this
box to have intervals of the same length as the C-space resolution box—but the
use of other values is discussed in the Test Results section. For cases involving
rotational degrees of freedom, setting an appropriate workspace resolution is a

92

non-trivial m atter and is discussed in Future Work.

5.5.2 Cell merging

Note that three of the five algorithms described below store the C-space map as
a binary tree with leaves classified as safe, prohibited or contact Owing to the
nature of the algorithms, each of them produce C-space maps which can benefit
from cell merging, whereby sibling cells which have the same classification are
merged into a single cell. This can take place either during the construction
of the map or as a post-processing step. Unless stated otherwise, figures show
maps produced with cell merging disabled so that more information regarding
the construction of the map is evident.

5.6 collDetPoint: Collision detection at discrete
configurations

5.6.1 M ethod

Perhaps the most intuitive approach to projecting the omnimodel shown in Fig­
ure 5.4 is to imagine a set of rays with their bases in the C-space, spaced apart
by the resolution distance, fired across the workspace dimensions. Each ray that
hits an overlap between objects results in a resolution-sized prohibited box in the
C-space, centred upon that ray’s base. Conversely, rays which miss the inter­
section completely result in a safe region. Contact rays are also possible, since
division in the workspace dimension may not be able to separate the nomad and
obstacle sets.

When set-theoretic geometry is used, ray-tracing is can be implemented by re­
cursively dividing the ray to establish if and where the ray hits an object. In the
case of Figure 5.5 the ray is parallel to the workspace dimension, so the ray can
be classified by:

93

1. Slicing the omnimodel to the configuration point (see Section 3.4.9) to leave
a one-dimensional model.

2. Recursively dividing the resulting model in the remaining (workspace) di­
mension, pruning the intersection set to the box at each step.

3. If a solid region is found, the ray must pass through the intersection, so the
configuration tested is prohibited.

4. If all the boxes along the ray are pruned to nothing, the ray misses the
intersection so the configuration is safe.

5. If no solid regions are found, but some resolution-sized regions are reached
which still have some contents, the configuration is classified as contact.

Figure 5.5 illustrates this method of projection, showing the rays which are fired
across the omnimodel, and the divisions along those rays which result from binary
division in the workspace dimension. In Figure 5.5 (a), the resolutions in both the
workspace and the C-space lead to four cells along each side, whilst in Figure 5.5
(a), the workspace resolution is set to a finer value. In both cases, the 1-D C-space
map which results is shown on the left.

Note that the change of workspace resolution has a very significant effect—close
examination of ray 1 reveals a solid piece of intersection, indicating that the
ray hits the intersection, so the C-space cell associated with it is classified as
prohibited. In contrast, closer ray 3 is found to miss the intersection, so that
C-space cell is classified as safe. This ‘more accurate’ classification means that
a C-space obstacle falls completely between the rays there is nothing in the map
to indicate its existence.

When this approach is applied to a case with a two-dimensional workspace, the
‘ray’ fired at each discrete configuration becomes a two-dimensional plane (paral­
lel to the workspace) which is classified in precisely the same way—slicing followed
by recursive division. The same applies for a three-dimensional workspace, where
the ‘ray’ is a three-dimensional cuboid, ‘parallel’ (or the multidimensional equiv­
alent) to the original workspace, but offset in the C-space dimensions. This is
the approach that was used by Parry-Barwick [75] to obtain images of Minkowski
sums via an omnimodel.

94

C-space
map Omnimodel

1 , r

2

3

4

(a)

C-space
map Omnimodel

1

2

3

I4 , , i -

(b)

Key for C-space maps: safe prohibited \ \ contact

Figure 5.5: P ro jec tin g into a one-dim ensional C-space using ray-tracing

In all cases, the process of classification is exactly equivalent to collision detec­
tion—the nomad is fixed in a specific configuration and the workspace is recur­
sively divided to establish if any overlap occurs with the obstacles.

95

5.6.2 Strengths and weaknesses

Though naive, co llD etP o in t does have some strengths:

• Since the boxes being pruned to only have thickness in the workspace di­
mensions, fewer intervals are involved in the arithmetic. Thus the contact
region (that is the layer of contact boxes between the safe and prohibited
regions) is shallower than for the other projection methods. As with all
methods, coarsening the workspace resolution makes the proportion of con­
tact tend towards 100%. However, for typical parameters the contact region
will tend to be just one box deep.

• Since each cell in the resulting C-space map is a uniform size and shape
with one of three states, each cell can be represented by one byte or less; if
contact cells are treated as either safe or prohibited, only one bit is needed,
and memory requirement can be reduced further by employing compression
algorithms. This makes a regular grid a relatively compact option for C-
space maps which are two-dimensional and or of a low resolution.

• Membership testing is simply a lookup operation in an n-dimensional array
so it is extraordinarily fast.

Conversely, collision detection at discrete points suffers from two primary weak­
nesses:

• Since only discrete points are tested, the result is not conservative. As
illustrated above, cells can mistakenly be classified as safe when they con­
tain some prohibited configurations, and ultimately C-space obstacles can
be overlooked altogether.

• An n-dimensional regular grid with a resolution of d cells in each dimension
has dn cells. Although storage requirement might be reduced by compres­
sion techniques, dn collision detection operations must be performed.

96

5.7 collDetBox: Collision detection for resolution­
sized C-space boxes

5.7.1 M ethod

The problem of obstacles falling between rays can be overcome by using ad­
ditional interval arithmetic to check for collision for a range of configurations
instead of discrete configurations. The C-space is divided into a regular grid of
resolution-sized boxes, each box is then projected across the workspace dimen­
sions and classified as safe, prohibited or contact by recursively dividing across
the workspace dimensions, exactly as before:

1. If an omnimodel is found in which the intersection of obstacle and nomad
is solid, then every configuration in the C-space box being considered must
cause an overlap, so so the whole C-space box can immediately be classified
as prohibited, regardless of what other regions of the workspace contain.

2. If all the omnimodels created by dividing in the workspace are pruned to
nothing, no overlap can occur, so the C-space box can be classified as safe.

3. If no solid regions are found, but some resolution-sized regions are reached
which still have some contents, the C-space box is classified as contact.

Figure 5.6 compares the results from co llD etP o in t and collDetBox on a simple
case where the obstacle and nomad are identical discs and shows that contact
region is indeed thicker for collDetBox as discussed.

5.7.2 Strengths and weaknesses

The main strengths of collDetBox are:

1. Testing C-space boxes instead of discrete configurations achieves the im­
portant characteristic of conservatism. In particular this means that even
infinitesimal obstacles can be detected since they result in a contact region.

97

x '

CollDetPoint
x '

CollDetBox
Key:

I S°fe lillJ Prohibited \ \ Contact

Figure 5.6: Comparison of results from CollDetPoint and collDetBox

2. The advantages of fast membership testing, and compact memory require­
ments for two-dimensional C-spaces, are maintained.

The primary weaknesses of this scheme are:

1. The additional interval arithmetic involved in this method means that, for
the same resolution boxes, the proportion of the map classified as contact
will be greater than for CollDetPoint. This is also true of the collDetBSD,
isotropicBSD and L-collDetBSD, since they produce equivalent maps to
collDetBox.

2. An n-dimensional C-space at a resolution of d cells in each dimension still
requires dn cells to be stored and, more significantly, dn cell classifications
to be performed.

98

5.8 collDetBSD: Collision detection for recursively
sub-divided C-space boxes

5.8.1 M ethod

As pointed out above, a regular grid division of an n-dimensional C-space map
which is divided to a resolution of d cells along each side results in dn cells being
classified and stored, regardless of the C-space contents. However, in all but the
most pathological of cases, the configuration space will contain large contiguous
safe and prohibited regions so an adaptive division scheme such as the binary
tree or 2n-tree is often able to store a large proportion of the C-space as a smaller
number of larger cells. Indeed, as the division becomes finer, the number of
cells in such adaptive division schemes becomes proportional to the size of the
(n — l)-dimensional surface of the object (Samet [86][p. 10-11]). Thus, employing
a binary spatial division scheme instead of a regular grid would enable the number
of cell classifications to be reduced from dn to 0(d^n~^).

A recursively subdivided C-space map can be obtained from the following simple
algorithm:

Starting with the whole C-space box,

1. Classify the C-space box using the same method as the previous algorithm—
recursive subdivision in the workspace dimensions.

If the workspace resolution is reached and the C-space region cannot be
classified as prohibited or safe, check if the C-space box is smaller than the
C-space resolution. If it is smaller, classify the C-space box as contact,
as before. However, if the current C-space box is larger than the C-space
resolution, recurse as follows:

(a) Divide the C-space region being studied into two—for example, by
chopping the omnimodel in half along the longest C-space dimension.

(b) For each of the two submodels created, recurse by re-entering the al­
gorithm at Step 1, the classification step.

99

(c) The result for the current C-space box is a binary tree where each
child node is the result from mapping a child omnimodel.

The C-space map produced from this algorithm is a binary spatially divided
tree, as illustrated in Figure 5.7 (which repeats the equivalent map produced by
collDetBox for comparison).

CollDetBSD CollDetBox
Key:

I Safe Prohibited Contact

Figure 5.7: Comparison of results from collDetBSD and collDetBox

5.8.2 Strengths and weaknesses

As mentioned above, the advantage of the adaptive division algorithm over the
regular grid version is that the number of cells being classified is typically re­
duced from dn to 0 (S n~1̂). Since an exponential term is reduced, the expected
saving in classification and storage rapidly becomes more important as the di­
mensionality of the C-space (n) increases. The advantage of adaptive division
also increases as the dimensionality of the workspace increases, since classifying
each C-space region becomes more expensive, making the time saving due to less
cell classifications more significant.

However, a fundamental weakness of the above algorithm is that for each non-leaf
node of the result tree, effort is expended dividing the workspace dimensions to
classify the C-space box, only to find a classification cannot be made.

100

5.9 isotropicBSD: Isotropic binary spatial divi­
sion of the omnimodel

5.9.1 M ethod

The virtues of adaptive division suggest that instead of alternating between a
single division in a C-space dimension and a complete division in the workspace
dimensions only, a good projection algorithm could be obtained via a ‘pure’
binary spatial division of the omnimodel which treated all dimensions equally.
In order to do this, the fourth projection algorithm, isotropicBSD, works in a
fundamentally different manner from the others.

In the other algorithms, each time a C-space classification is made, it is based
on what is going on in the whole workspace. Consequently, any point or box in
the C-space only needs to be successfully classified exactly once—unsuccessful
attempts to classify a parent (larger) box may be made, but as soon as a box has
been successfully classified as safe, prohibited or contact, that box is no longer
examined. All the boxes which have been successfully classified form the leaves
of the divided C-space map.

In contrast, when the omnimodel is divided isotropically, each C-space box which
is classified may be classified multiple times, each focusing on a specific region
of workspace. Every time the omnimodel is split in a workspace dimension,
the algorithm builds two complete maps for the same C-space box and then
superimposes these maps. The rules for the superimposition are that prohibited
takes precedence over contact, which in turn takes precedence over safe.

This is illustrated in Figure 5.8. Examination of cell 6 classifies the C-space region
associated with it as safe, however when cell 12 (which is concerned with the
same region of C-space) is examined, a classification of contact is made because
a resolution box is reached which is still complicated. The contact classification
overrides the safe classification—however, when cell 14 is examined, that contact
classification is overridden with prohibited. When cell 22 is examined, the same
piece of C-space is found to be safe again, but that classification does not affect
the C-space map.

101

15

19
29

28

31

30

36

35
37

16
18 25 27 33

34
17 24 26 32

4
6 12 14 22

23

24
5 11 13 21

1
3 8 10

20
2 7 9

Cells are numbered in the order they are reached in the
bottom -left-first algorithm

Figure 5.8: An illu stra tio n of iso tropic b inary spatia l division

A naive version of isotropicBSD would proceed as follows:

1. Examine the contents of the omnimodel with respect to intersection between
objects.

2. If the omnimodel is solid, then return a completely prohibited C-space box
as the result.

3. If the omnimodel is empty, then return a completely safe C-space box as
the result.

4. If the omnimodel contains surface of the intersection, check if both the
C-space box and the workspace box are smaller than their respective res­
olutions. If they are smaller, return a contact box as the result. If the
omnimodel is bigger than resolution size, recurse as follows:

(a) Divide the omnimodel into two—for example, by chopping the longest
side in half.

(b) Classify each submodel by recursing to Step 1.

102

(c) If the chopped dimension is a C-space dimension, then, as with pre­
vious algorithms, the results from the two sub-omnimodels are inde­
pendent maps of different C-space regions. The result for the current
C-space box is a binary tree, with each child node being a map ob­
tained from a child omnimodel.

(d) If the chopped dimension is a workspace dimension, the C-space maps
from the two sub-omnimodels are maps of the same C-space region.
The result for the current C-space box is the superimposition of these
two maps, obtained by calling a tree-merging algorithm which obeys
the superimposition rule described above.

In practise, such an algorithm would be exceedingly inefficient. In particular,

1. Every time the multidimensional omnimodel is chopped in a workspace
dimension, two maps of the complete C-space must be merged

2. The superimposition rule (p. 101) means that once a specific C-space box
has been classified as prohibited by examining one part of the workspace,
that C-space region need not be examined again for any other part of the
workspace. This is not exploited in the above algorithm.

Both of these inefficiencies are avoided by introducing the notion of a known map.
Each time the algorithm successfully classifies a C-space box as safe, prohibited
or contact, that information is added to the known map, which is a record of what
has been learned so far. Each time the algorithm divides in a C-space dimension,
analysis of each child is based not only on what the omnimodel contains, but
also what has been learned about that region of C-space already. Crucially, the
algorithm makes sure that at any time, the part of the known map corresponding
to the current C-space box is available. This approach means that:

1. The known map corresponding to the current C-space is instantly checked.
If analysis of another part of the workspace has already classified it as
prohibited, the current omnimodel does not need to be analysed.

2. The algorithm gradually makes local changes to the known map, such that
the result returned from each omnimodel analysis is a combination of new

103

results and what was known before. The algorithm no longer merges com­
plete C-space maps.

More specifically, the improved algorithm for isotropicBSD is as follows:

1. Initialise the known map as a safe region which covers the total C-space
box, then send it in (along with the complete omnimodel) to the following
recursive algorithm:

(a) Check the known map sent in (which always corresponds to the C-
space box of the omnimodel sent in) to see if it is all s<z/e, all prohibited,
all contact or a divided tree.

(b) If the known map is all prohibited, no further analysis of the current
omnimodel is required—return the known map as the result. Other­
wise, continue.

(c) Examine the contents of the omnimodel with respect to overlap be­
tween objects. If the omnimodel is solid, then return a completely
prohibited C-space box as the result.

If the omnimodel is empty of overlap, then no new information has
been gained. Return the known map (which may be a divided tree) as
the result.

Otherwise, continue.

(d) If the omnimodel contains surface of the intersection, check if both the
C-space box and the workspace box are smaller than their respective
resolutions. If they are smaller, return a contact box as the result.
Note: the superimposition rule (p. 101) is enforced since if the known
map had been prohibited in this region, the contact classification would
not have been made (see Step lb) whilst if the known map had been
safe, it will now be replaced with contact

(e) If the omnimodel covers a region which has not yet been classified as
prohibited, and contains surface of the intersection, and is big enough
to divide, recurse as follows:

i. Divide the omnimodel into two by chopping the longest side in
half.

104

ii. If the chopped dimension is a workspace dimension, classify each
child omnimodel by recursively entering the algorithm at Step la.
Both omnimodels will be used to classify the same region of C-
space.
For the first child, the known map is the same as was sent in for
the current omnimodel, so pass that in. However, analysis of the
first child will return a new C-space map, which is a more educated
map of the current C-space box. This map becomes known map
sent in when the algorithm is re-entered at Step la to analyse of
the second child omnimodel.
Note that the C-space map obtained from the second child omni­
model will have already taken the known map into account, so it
will encapsulate everything learned so far.

iii. If the chopped dimension is a C-space dimension, each omnimodel
can be analysed independently. However, the known map will be
different for each—each will get the appropriate half of the current
known map.
As with the other algorithms, the C-space map for the current
omnimodel is a binary tree—each branch is the result from a child
omnimodel.

Although it takes a completely different route, this algorithm produces C-space
maps which are identical to those produced by collision detection on recursively
subdivided C-space boxes, once cell merging (Section 5.5.2) is enabled. This is
illustrated in Figure 5.9 which compares output from the two algorithms. Note
that maps produced using isotropic division always have cell merging enabled
since, in contrast to collision detection on recursively subdivided C-space boxes,
this significantly improves the performance. This is because if the known map
for the current omnimodel is stored as a large prohibited box, there is a clear
indication that the omnimodel need not be examined; if that prohibited region
was stored as a divided tree, then either the current omnimodel would be treated
as needing examination, or the whole tree would have to be examined to check if
all the leaves are prohibited.

105

y'k

tx
isotropicBSD CollDetBSD

Key:

| Safe Prohibited Contact

Figure 5.9: Comparison of C-space maps produced by isotropicBSD and
collDetBSD— note they are identical despite taking com pletely different
routes

5.9.2 Strengths and weaknesses

In order to compare isotropicBSD with collDetBSD, consider the problem of
projecting the two exaggerated omnimodels shown in Figure 5.10—(a) contains
a lot of features which are small compared to the omnimodel box, whilst (b)
contains a large contiguous region of overlap.

Figure 5.11 illustrates the division which takes place when collDetBSD is used
to project Figure 5.10 (a) into the x' dimension, to coarse resolutions in the
workspace and C-space. The fine details of the omnimodel means that every
attempt to classify a C-space box by dividing the workspace fails.

Since the number of internal nodes in a binary tree is always one less than the
number of leaves, the total number of attempts to classify a C-space box is
(2db - 1), where d is the resolution along each side, and b is the dimensionality
of the C-space. Similarly, the number of nodes in the workspace division tree is
(2da — 1), where a is the dimensionality of the workspace. Thus, the total number
of omnimodels examined is (2da — 1)(2db — 1).

As Figure 5.12 shows, isotropicBSD also fails to make classify any regions of

106

Figure 5.10: Exaggerated om nim odels which illustrate the strengths and
weaknesses of isotropicBSD

the C-space as safe or prohibited. However, pure division only results in one tree
division (dividing in all dimensions), so the total number of omnimodels examined
is 2d(a+V - 1.

Thus, the ratio of the total number of omnimodels examined in the worst case is

worst case isotropicBSD _ 2d̂ a+b ̂ — 1
worst case collDetBSD (2da — 1)(2db — 1)

For practical values of a, b and d the constant terms are negligible giving:

worst case isotropicBSD 2d̂ a+b^
worst case collDetBSD (2da)(2db)

rfia+b)

2 dadb
1

Now consider projection of the the second exaggerated omnimodel, Figure 5.10
(b), into the x' dimension. As illustrated in Figure 5.13, collDetBSD success­
fully classifies the whole region as prohibited on the first attempt. However,

107

(a) The attempt to classify the whole (b) The same occurs when each
C-space region fails - indeed, every child region o f C-space is divided ...
workspace region contains surface
of the intersection.

(c) ... and again with each (d) ... and again when the C-space
classification in the next level o f resolution is reached.
C-space division ...

Figure 5.11: An illustration of collDetBSD coarsely projecting a com pli­
cated omnimodel with fine detail

isotropicBSD (Figure 5.14) wastes effort adapting to the surface of the intersec­
tion region, only for cells classified later to reveal that the whole region is pro­
hibited. Since the surface of the intersection may be multidimensional, mapping
that surface with resolution-sized boxes can represent an enormous inefficiency.

In conclusion then, when the resolutions are coarse compared to the regions of in­
tersection in the omnimodel, isotropicBSD is up to twice as fast as collDetBSD.
However, when the omnimodel contains contiguous regions of intersection which
are large with respect to the resolutions, isotropicBSD can be very inefficient due
to its painstaking mapping of the surface of the intersection, which is unnecessary

108

Isotropic division never reaches a
simple omnimodel, so the leaves
are a regular grid.

Figure 5.12: An illustration of isotropicBSD coarsely projecting a com­
plicated om nim odel with fine detail

Division of the workspace across
the complete C-space region
reveals a solid box, indicating that
the complete region is prohibited.

Figure 5.13: An illustration of collDetBSD coarsely projecting a simple
omnim odel containing a large intersection region

for projection.

109

The leaves are numbered to indicate
the order they are reached in the
bottom-left-first division.

Note how division is wasted
adapting to the edge of the
intersection region, only for later
cells (11, 21, 26, 28) to result in the
whole region being classified as
prohibited.

Figure 5.14: An illustration of istotropicBSD coarsely projecting a simple
om nim odel containing a large intersection region

110

5.10 L-collDetBSD: ‘Learning’ collision detection
for recursively sub-divided C-space boxes

5.10.1 M ethod

Remember that the weakness of collDetBSD was tha t effort was expended per­
forming a full division of the workspace for C-space boxes which turned out to
be too big to be successfully classified. L-collDetBSD is an improved version of
collDetBSD which aims to take advantage of the ‘unsuccessful’ workspace divi­
sion by handing on any information that was gained to help with classification
of the child C-space regions.

Each time a region of C-space is classified, L-collDetBSD maintains a record
of what parts of the workspace were found to be free from intersection for the
parent C-space model; since both omnimodels created are concerned with subsets
of the parent’s C-space, regions which are known not to contain intersection for
the parent cannot contain intersection for the children, so it is not necessary to
repeat the workspace division in those areas. This is achieved as follows:

• As a preparation step (before division of the C-space commences) the com­
plete omnimodel is recursively divided in the workspace dimensions, re­
sulting in a model which I refer to as a predivModel. Each leaf in the
predivModel is classified as c o l l i s io n - f r e e (where interval arithmetic
was able to rule out any possible interference between objects) or possible-
collision (where division in the workspace dimensions terminated before
such a classification could be made). Internal nodes are classified as mixed
indicating that some part of the workspace represented is known to be
collision-free.

• After the pre-division step, a C-space map is produced as before—by re­
cursively chopping in half the region of C-space being considered, and clas­
sifying each region by dividing in the workspace dimensions. However, the
classification stage benefits from the predivModel as follows:

— If the current predivModel is classified as collision-free, no further
division of that part of the workspace is required—it contributes safe

111

to the classification of the C-space box.

— If the current predivModel is classified as mixed, don’t bother pruning
the omniset to the current part of the workspace; immediately divide
the workspace and examine the two children. This action is taken since
it is known that some of the box is collision free (for example half of it
might be). Stepping immediately to smaller workspace boxes avoids
expending energy on those already-classified parts of the workspace.

— If the current predivModel is classified as possible-collision, prune the
omniset to the current omnimodel to see if the last division in a C-
space dimension has made it possible to classify the current C-space
box. If a classification as safe, prohibited or contact is not possible,
workspace division is required. However, instead of calculating a divi­
sion plane then constructing two child workspace boxes, the two child
boxes of the current predivModel are used. Each new omnimodel
child is constructed by combining a child of predivModel with the
current C-space intervals.

• Note that at each stage during the workspace division process, the current
predivModel has the same workspace box as the current omnimodel being
considered; each time the workspace is divided in half, the algorithm sends
in the appropriate child of the predivModel as the current predivModel.

5.10.2 Strengths and weaknesses

The strengths of this scheme are that

• It maintains the ability of collDetBSD to spot large prohibited regions
if the omnimodel contains intersections which are large compared to the
resolutions.

• Wasted division in the workspace dimensions is reduced since as the motion
of the nomad is limited, the amount of workspace which has to be examined
shrinks.

However, this improvement does little or nothing to help when the resolutions
are coarse compared to the intersections in the omnimodel.

112

5.11 Com plexity analysis

We know that for pathological cases (like the one illustrated in Figure 5.10 (a)
on page 107),

• All of the omnimodel projection algorithms examine 0 (d a+b) cells, where d
is the resolution in each dimension, a is the dimensionality of the workspace
and b is the dimensionality of the C-space.

• collDetBSD and L-collDetBSD will examine twice as many cells as CollDetPoint,
collDetBox or isotropicBSD. CollDetPoint and collDetBox examine less
cells because they jump straight to the resolution-sized leaves without clas­
sifying nodes higher up the tree; isotropicBSD examines less cells because
its division strategy is unfettered by full division in the workspace dimen­
sions at each step.

We also know that as the C-space resolution becomes finer, the number of leaves
in the C-space map produced by collDetBSD, L-collDetBSD and isotropicBSD
tend towards being 0 (d b~1) instead of 0 (d b), since the division adapts to the
surface of the C-space obstacles. For the same reason, the total number of cells
examined by isotropicBSD will tend towards 0 (d a+b~l).

Beyond these assertions, complexity analysis is very difficult because of the heuris­
tic nature of the algorithms and the large number of factors which affect the com­
putational time and memory requirement. These factors can can be arranged into
three groups:

5.11.1 The geom etry of workspace objects

Factors include:

• The dimensionality of the workspace.

• The number of primitives used to define each object.

113

• The total number of linear halfspaces at the leaves.

• The maximum or average degrees of the surfaces.

• The volume, surface area or crinkliness of the objects.

• The orientation and location of the objects. (Adaptive division can be
sensitive to both, since the depth of division depends upon the location of
the object surface relative to the hyperplanes uses to divide the model.).

• The relative complexities of the obstacle and nomad sets. Is the complexity
of the nomad a more significant factor than the complexity of the obstacle,
or vice-versa, or is there no difference?

• The size and shape of the contiguous solid regions within the objects. Algo­
rithms which terminate when a solid region in the omnimodel is found will
perform more effectively if the objects have large contiguous solid regions.

5.11.2 The C-space map being produced

• The number of degrees of freedom (clearly this sets the dimensionality of
the C-space and is a major contributor).

• The types of degrees of freedom (translational, rotation, or a combination).
The types of degrees of freedom affect the shape of the swept omnimodel
set and the number of halfspaces used to define it—these in turn affect the
depth of division required and the time spent in pruning.

5.11.3 The resolution boxes

• The size and shape of the C-space resolution box.

• The size and shape of the workspace resolution.

• The relationship between the two.

114

5.12 Experimental results

5.12.1 Test platform

All of the C-space mapping algorithms described in this chapter were imple­
mented in C++ using the svLis-m geometric modelling kernel. Except where
stated, tests reported below were executed on a Silicon Graphics Onyx worksta­
tion, with two 150 MHz MIPS R4400 processors and 256 MB of memory. Results
labelled ‘Executed on an SG Origin’ were executed on a Silicon Graphics Origin
server with twenty 196 MHz MIPS R10000 processors and 6 GB of memory.

5.12.2 Performance criteria

Performance of the mapmaking algorithms is measured in terms of three criteria:

P e rce n tag e volum e classified as contact The proportion of the result which
is classified as contact is a measure of the uncertainty of the map.

C P U tim e The total amount of time spent executing in user mode, obtained
using the Unix library routine ge trusage (3). Note that timings obtained
in this way include operation system overhead, such as the time required
to spawn a new process. Such overhead is not constant since it depends
on operating system activity at the time, and thus errors are introduced
into the experimental results. This error is particularly significant for very
small execution times.

M ax m em ory a llo ca ted The maximum resident set size utilised by the pro­
cess, obtained using the library routine g e tru sag e (3). Again, this method
of measurement introduces errors into the results since the operating system
may allocate a larger block of memory to a process than it requires. Thus,
the results define an upper limit on the memory requirement, and at low
memory requirements this may be significantly larger than that actually
required.

115

5.12.3 Resolution box properties

For the experiments reported, the resolution boxes had the following properties:

• The workspace resolution box has an aspect ratio of one. This is not always
true of the workspace—indeed, since some sidelengths of the starting box
may be more than twice as long as others, some dimensions may be divided
to a greater depth than others.

• The resolution sidelength for translational degrees of freedom is equal to
the sidelength of the workspace resolution box1.

• The C-space resolution box has an aspect ratio of one in sides of the same
type (for example, all sides which correspond to a translational degree of
freedom are of equal length).

• Resolutions are measured in terms of the maximum depth of the division
tree—that is, the maximum number of times a side of the original workspace
or C-space box had to be chopped in half to make it smaller than the
corresponding side of the resolution box.

5.12.4 Test results

Clearly, the input criteria which affect the performance of the algorithms them­
selves define a highly dimensional space. Since the focus of this thesis is on
breadth rather than depth, it was decided that instead of attempting an exhaus­
tive exploration of this multidimensional space, a small set of cases would be
tested to provide basic insights into the performance of the algorithms.

Some of the test cases are illustrated in Figures 5.15. Note that the tests predom­
inantly used spherical obstacle and nomad sets. Although uninteresting in some
senses, such cases have the advantages that the effect of orientation and location

1In order to ensure every part of the nomad is able to travel to every part of the workspace,
the translational box is typically obtained by computing the Minkowski difference of the obstacle
and nomad workspace boxes. As a result, the sidelength of each translational side is typically
twice as long as the corresponding workspace side—so the maximum depth of division in the
C-space is typically one greater than the maximum depth of division in the workspace.

116

are minimised and that interactions within the multidimensional omnimodel can
be imagined relatively easily.

The findings can be summarised as follows.

117

OBSTACLE

a) ‘G en-poly touch-latch’ case

OBSTACLE NOMAD

b) ‘Big spheres’ case

OBSTACLE NOMAD

c) ‘Medium spheres’ case

OBSTACLE NOMAD

d) ‘Small spheres’ case

Figure 5.15: Test cases referred to by graphs in th is chap ter

118

Confirm ation o f correct behaviour

All of the algorithms compute an approximate map of the C-space correctly,
as illustrated in Figure 5.16 for the 2-D £Gen-poly touch-latch’ case, which is a
generalised-polytope approximation of two components of a touch-latch mech­
anism. The maps produced by collDetBox, collDetBSD, L-collDetBSD and
isotopicBSD contain identical regions, whilst the maps produced CollDetPoint
have a thinner layer of contact2.

In addition to translation-only C-space maps for a single nomad, the algorithms
have been used to compute maps for two nomads with one translational degree of
freedom each (Figure 5.17) and two nomads with one rotational degree of freedom
each (Figure 5.18).

2Note that the maps produced by isotopicBSD appear to show a different division structure
because of the additional merging which occurs—however, the maps are identical to those
produced by collDetBSD and L-collDetBSD when cell-merging is enabled in those algorithms.

119

(c) collDetBSD

(d) isotropicBSD

(e) L-collDetBSD

In each case, the max. depth of division in the C-space dimensions is 7 and the
resolution in the workspace is the same as that in the C-space.

Figure 5.16: A com parison of th e m aps com puted by th e five algorithm s
for th e 2-D ‘G en-poly to u ch -la tch ’ case w ith tw o tran sla tio n a l degrees
of freedom .

120

Nomad 2

0 1 *

Nomad 1

Obstacles

(a)

o
Translation of nomad 1 along x

The light grey lines show the divisions in the
divided tree structure. The dark grey cells are
PROHIBITED, the black are CONTACTand
the white are GO.

(b)

i
Translation of nomad 1 along x

(C)

Figure 5.17: O m nim odel p ro jec tio n has been used to com pute th e C-
space m ap for a case w ith two nom ads w ith one tran sla tio n a l degree
of freedom each.

121

Clockwise rotation of disc

Key:

| Safe Prohibited □ Contact

(a) (b)

(a) An example two-dimensional mechanism - each object has one rotational
degree of freedom.

(b) The C-space map for the mechanism in (a), computed using an omnimodel
projection algorithm.

Figure 5.18: O m nim odel p ro jec tio n has been used to com pute th e C-
space m ap for a sim ple m echanism consisting of tw o com ponents w ith
one ro ta tio n a l degree of freedom each.

122

The effect o f C-space resolution on performance

Figure 5.19 shows the C-space map for the 2-D £Gen-poly touch-latch’ case with
two translational degrees of freedom, at four different resolutions; Figures 5.20-
5.22 plot percentage contact (by volume), time, and memory against division
depth for the same case. Figures 5.23-5.26 show the equivalent graphs for the
2-D ‘medium spheres’ case3.

Notice firstly that for the touch latch case, the amount of contact falls slowly and
erratically, as the resolution becomes fine enough to find solid boxes in increas­
ingly narrow parts of the irregular intersection in the omnimodel. In contrast, for
the ‘medium spheres’ case where the intersection is a more regular shape (akin to
a skew four-dimensional cylinder) the percentage contact falls quickly in a fashion
which a logarithmic scale confirms to be exponential (Figure 5.24).

In terms of time taken, different algorithms perform better in each case (Fig­
ures 5.21 and 5.28). For the ‘medium spheres’ case, the three algorithms which
recursively divide the C-space perform better than the regular grid algorithms,
which is to be expected since they are able to identify large regions of safe and
prohibited early in the division. However, for the ‘Gen-poly touch-latch’ case, the
thin sides of the obstacle prevent those algorithms from identifying prohibited cells
until low in the division tree. As a result, the collDetBSD and L-collDetBSD
algorithms, which waste division in the workspace dimensions looking for pro­
hibited', are slower than the naive regular grid approach. The most significant
property illustrated in these graphs, however, is that the linear curves on a log­
arithmic scale indicate that all of the algorithms take time exponential in the
resolution. Only in benevolent cases do the more sophisticated algorithms gain
more than an order of magnitude in time over the naive grid-based collDetBox
(the time-resolution graph for such a case—‘small spheres’, where the C-space is
almost entirely safe—is shown in Figure 5.27).

Regarding maximum memory usage, the pattern is the same for the two cases
(Figures 5.22 and 5.26): memory requirement grows slowly for all algorithms
except L-collDetBSD, which stores a record of the known map at each node.
Note that in both cases, the memory usage curve is erratic for low depths of
division, stabilising at a depth of six. These results appear to be due to the

3The data shown in Figure 5.25 is also provided in Table B .l in Appendix B for reference.

123

errors introduced by the method of measurement, as described in Section 5.12.2.

124

(a) Max. depth of C-space division = 6

(b) Max. depth of C-space division = 7

(c) Max. depth of C-space division = 8

(d) Max. depth of C-space division = 8

C-space maps computed by the L - c o l l D e t B S D algorithm for the ‘Gen-poly
touch-latch’ case at different resolutions. At each level, the workspace resolution
box is the same size as the C-space resolution box.

Figure 5.19: C-space m aps p roduced a t different resolutions

125

254859

Comparison of omnimodel-projection algorithms for the 2-D 'Gen-poly touch-latch' case with two translational DOFs Percentage contact (by volume) vs. max. depth of division
(Resolution in world dimensions fixed to resolution in C-space dimensions)

4 S 6 7 8 9

Max. depth of division

■ collDetPoint2d
collDetBox2D,
collDetBSD,
isotropicBSD,
L-collDetBSD

Figure 5.20: P ercen tage C O N TA C T by volum e vs. reso lu tion for th e 2-D
‘G en-poly to u ch -la tch ’ case w ith 2 DOFs

Comparison of omnimodel-projection algorithms for the 2-D 'Gen-poly touch-latch' case with two translational DOFs Time vs max. depth of division
(Resolution in world dimensions fixed to resolution in C-space dimensions)

10000

1000

100

10

1

2 3 5 6 7 8 9
Max depth of division

9 collDetPoint
collDetBox

▼ collDetBSD
isotropicBSD
L-collDetBSD

Figure 5.21: Time taken vs. resolution for the 2-D ‘Gen-poly touch-latch’
case with 2 DOFs (note the scale is logarithmic)

126

Comparison of omnimodel-projection algorithms for the 2-D 'Gen-poly touch-latch1 case with two translational D O F s
Max. memory usage vs. max. depth of division

(Resolution in world dim ensions fixed to resolution in C -space dimensions)

25

20

15

10

5

0
2 4 6 8

Max. depth of division

collDet Point
collDetBox

▼ collDetBSD
-*7 . isotropicBSD

L-collDetBSD

Figure 5.22: M ax. m em ory usage vs. reso lu tion for th e 2-D ‘G en-poly
to u ch -la tch ’ case w ith 2 DOFs

Comparison of omnimodel-projection algorithms for the 2-D 'medium spheres' case with two translational DOF s
Percentage contact (by volume) vs. max. depth of division

(Resolution in world dimensions fixed to resolution in C-space dimensions)

i f
03 3

100

80

60

40

20

0
2 3 4 5 6 7 8

Max. depth of division

collDet Point
collDetBox,
collDetBSD,
isotropicBSD,
L-collDetBSD

Figure 5.23: P ercen tage C O N TA C T by volum e vs. reso lu tion for th e 2-D
‘M edium spheres’ case w ith 2 D O Fs

127

Comparison of omnimodel-projection algorithms for the 2-D 'medium spheres' case with two translational DO F s
Percentage contact (by volume) vs. max. depth of division

(Resolution in world dimensions fixed to resolution in C-space dimensions)

100

10

1
2 3 4 5 6 7 8

Max. depth of division

collDetPoint
collDetBox,
collDetBSD,
isotropicBSD,
L-collDetBSD

Figure 5.24: P ercen tage C O N TA C T by volum e vs. reso lu tion for th e 2-D
‘M edium spheres’ case w ith 2 D O Fs (note th e scale is logarithm ic)

Comparison of omnimodel-projection algorithms for the 2-D 'medium spheres' case with two translational D O F s
Time vs max. depth of division

(Resolution in world dimensions fixed to resolution in C -space dimensions)

10000

1000

100

10

1
2 3 5 6 7 8 94

Max depth of division

collDetPoint
collDetBox

▼ collDetBSD
■*7 isotropicBSD
-m - L-collDetBSD

Figure 5.25: Time taken vs. resolution for the 2-D ‘Medium spheres’ case
with 2 DOFs (note the scale is logarithmic)

128

Comparison of omnimodel-projection algorithms for the 2-D 'medium spheres' case with two translational D O F s
Max. memory usage vs. max. depth of division

(Resolution in world d im ensions fixed to resolution in C -space dim ensions)

16

14

12

10

8
6
4

2
02 4 6 8

Max. depth of d i v i s i o n ______________
— collDetPoint

collDetBox
▼ collDetBSD

— m isotropicBSD
- m - L-collDetBSD

Figure 5.26: Max. memory usage vs. resolution for the 2-D ‘Medium
spheres’ case with 2 DOFs

Comparison of omnimodel-projection algorithms for the 2-D 'small spheres' case with two translational D O F s
Time v s max. depth of division

(Resolution in world dim ensions fixed to resolution in C -space dimensions)

0)
100

o>o

a>
Ei-

2 3 5 6 7 8 94

Max depth of division

collDetPoint
collDetBox

▼ collDetBSD
- V - isotropicBSD

L-collDetBSD

Figure 5.27: Time vs. resolution for the 2-D ‘Small spheres’ case with 2
DOFs (note the logarithmic scale)

129

The effect o f the size of the workspace objects

As has been seen above, the shapes of the obstacles and nomad have a consider­
able effect on the performance of the algorithms. Figures 5.28 and 5.29 compare
the time taken by each algorithm for the ‘medium spheres’ and ‘big spheres’
cases4. Although all the curves grow exponentially with resolution, the scales
for these graphs are linear for clarity. Note that the increase in the sizes of the
objects has two significant effects: firstly, most of the algorithms take approx­
imately three times as long; secondly, isotropicBSD performs significantly less
well—indeed, its speed advantage over co llD etP o in t is lost.

The latter effect can be accounted to the fact that isotropicBSD wastes time
mapping the multidimensional surface of the interference region—which will be
significantly larger for the larger case. The former effect is not surprising for
the algorithms which recursively divide the C-space, since the surface area of the
C-space obstacle (which determines the number of contact leaves in the result) is
twice as large for the ‘big spheres’ case. W hat is surprising, however, is that the
effect is almost as large on the regular grid algorithm. The significant increase in
time, despite the constant number of tests, suggests that collision detection takes
more time to identify prohibited cells than safe ones.

4 The data shown in both these figures are also provided in tabular form in Appendix B for
reference.

130

Comparison of omnimodel-projection algorithms for the 2-D 'medium spheres' case with two translational D O F s
Time vs max. depth of division

(Resolution in world dimensions fixed to resolution in C-space dimensions)

6000

_ 4000

2000

1000

2 3 4 5 6 7 8 S

Max depth of division

collDetPoint
collDetBox

T collDetBSD
— i isotropicBSD
- m - L-collDetBSD

Figure 5.28: T im e vs. reso lu tion for th e 2-D ‘M edium spheres’ case w ith
2 D O Fs

Comparison of omnimodel-projection algorithms for the 2-D 'big spheres' case with two translational D O F s
Time vs max. depth of division

(Resolution in world dim ensions fixed to resolution in C -space dimensions)

1 c n n n

14000

12000

-g 10000
c

6000

2000

7 92 3 4 5 6 8
Max depth of division

collDetPoint
collDetBox

V collDetBSD
— isotropicBSD

L-collDetBSD

Figure 5.29: Time vs. resolution for the 2-D ‘Big spheres’ case with 2
DOFs

131

The effect of obstacle com plexity

Figure 5.30 plots time taken against obstacle complexity for the three main algo­
rithms (collDetBox, isotropicBSD and L-collDetBSD). The obstacle is a 2-D
slice of a ‘medium sphere’, which has an increasing number of randomly placed
tiny spheres subtracted from it, such that each one takes a tiny bit from its
perimeter. Thus, its surface area and volume is approximately constant, whilst
its complexity increases. Results are plotted for two nomads—‘small sphere’,
which is so small that at the specified resolution no prohibited cells can be found,
and ‘medium sphere’, which is the same size as the obstacle.

Note that in both cases for all algorithms, the time taken is linear in the number
of primitives used to define the obstacle.

Comparison of omnimodel-projection algorithms
for the 2-D 'bitten sphere-sphere1 case with two translational DOFs

for two different sized nomads
Time vs. num ber of sp h e re s subtracted from the obstacle

(Resolution in C-space dimensions fixed to 7. world resolution fixed to resolution in C-space dimensions)

35000

30000

25000

¥ 20000

15000

10000

5000

0
0 200 400 600 800 1000 1200

Number of sp h e re s subtracted

— collDetBox (small nomad)
isotropicBSD (small nomad)

▼ I-collDetBSD (small nomad)
— collDetBox (medium nomad)
— isotropicBSD (medium nomad)
—O • L-collDetBSD (medium nomad)

Figure 5.30: T im e vs. com plexity o f th e obstacle for two sizes of nom ad

132

The effect of swapping obstacle and nomad sets

For translation-only C-space maps, the size and shape of the C-space obstacles
are independent of which set is the obstacle and which is the nomad0. However,
it is reasonable to expect the computation times to be affected by swapping the
obstacle and nomad since, for example, the intersection region in the omnimodel
between a tiny nomad and a large obstacle has different properties for projection
than a large nomad with a tiny obstacle. Also, the omnimodel will require more
halfspaces to define it if the nomad being swept is more complicated, since the
transformation replaces each halfspace in the nomad with a tree (Section 5.3).

Figure 5.31 confirms that if the nomad and obstacle are of the same complexity
but different sizes, swapping the sets makes a difference—but not a very sig­
nificant one. L-collDetBSD and isotropicBSD (not shown) are slightly more
effective when the nomad is bigger, which is to be expected since an intersection
region which is thin in the workspace dimensions but wide across the C-space
allows large prohibited regions to be identified sooner than the other way around.

The effect of sw apping the obstacle and nom ad se ts
for th e 2-D 'big sphere-m ed sp h e re ' c a se with two translational DOFs

Tim e vs. m ax. d ep th of division
(Resolution in world dim ensions fixed to resolution in C -space d imensions)

L-collDetBSD algorithm

10000

1000

100

10

1
2 3 5 6 7 8 94

M ax. d ep th of division

—# - Bigger obstacle
0 Bigger nom ad

Figure 5.31: The effect on L-collDetBSD of swapping the obstacle and
nomad sets when one is significantly larger

Figure 5.32 shows a more significant bias, indeed all of the algorithms which
recursively divide the C-space are considerably less effective when the nomad is

5This is not true for C-spaces involving rotation— consider for exam ple the case where one
object is a sphere whilst the other is a long thin cuboid.

133

more complicated. As suggested above, this is due to the increased complexity
of the omnimodel, which increases the cost of the pruning operations.

The effect of swapping the obstacle and nomad sets
for the 2-D 'med sphere bitten x1024-med sphere' case with two translational DOFs

Time vs. max. depth of division
(Resolution in world dimensions fixed to resolution in C-space dimensions)

isotropicDetBSD algorithm

1000

100

2 3 4 5 6

Max. depth of division

—# — Complicated obstacle
O Complicated nomad

Figure 5.32: The effect on isotropicBSD of swapping the obstacle and
nomad sets when one is significantly more complicated

134

T he effect o f workspace and C-space dim ensionalities

Figures 5.33 and 5.34 compare the time vs. resolution curves for two- and three-
dimensional versions of the ‘Med spheres’ case, both with two translational de­
grees of freedom, whilst Figure 5.35 introduces a third translation degree of free­
dom to the three-dimensional case6.

These results lead us to the following observations7:

• The move from two to three dimensions does not favour collDetBSD and
L-collDetBSD since their repeated division of the workspace is more expensive—
indeed, L-collDetBSD becomes slower than the naive collDetBox algo­
rithm.

• When the the number of degrees of freedom increases, adaptive division
of C-space starts to pay dividends so the L-collDetBSD is faster than the
regular grid approach.

However, these observations are restricted by the low depths of division studied—
as illustrated in Figure 5.25, the more sophisticated algorithms gain advantage
as higher division depths are reached.

The reason for the restriction to low division depths is, of course, the most sig­
nificant limitation of the projection approach to computing C-space maps: since
computation time is exponential in both the dimensionalities and the depth of
division, computation times soon become impractical. As an example, the three-
dimensional ‘Med spheres’ case with three translational degrees of freedom, the
C-space map (which is a three-dimensional equivalent to the map shown in Fig­
ure 5.7 on p. 100) took approximately an hour and a quarter on an SG origin.

6The data shown in Figure 5.35 is also provided in tabular form in Appendix B for reference,
disregarding the apparently high times for very low depth of division in Figure 5.33,

which appear to be due to errors introduced by the measurement process, as described in
Section 5.12.2.

135

Comparison of omnimodel-projection algorithms
for the 2-D 'medium spheres' case with two translational D O F s

Time vs max. depth of division
(Resolution in world d im ensions fixed to resolution in C -space dim ensions)

Executed on an SG Origin

10

0.1

2 3 4 5 6

Max depth of division

collDetPoint
collDetBox

▼ collDetBSD
—<7 - isotropicBSD

L-collDetBSD

Figure 5.33: T im e (on an SG origin) vs. reso lu tion for th e 2-D ‘M ed
spheres’ case w ith two tran sla tio n a l D O Fs (no te th e logarithm ic scale)

Comparison of omnimodel-projection algorithms for the 3-D 'medium spheres' case with two translational D O F s
Time vs max. depth of division

(Resolution in world dimensions fixed to resolution in C -space dimensions)

Executed on an SG Origin

100
S

<DE

3 5 6 74

Max depth of division

m collDetPoint
collDetBox

T collDetBSD
—*7" isotropicBSD

L-collDetBSD

Figure 5.34: T im e (on an SG origin) vs. reso lu tion for th e 3-D ‘M ed
spheres’ case w ith two tran sla tio n a l D O Fs (no te th e logarithm ic scale)

136

Comparison of omnimodel-projection algorithms for the 3-D 'medium spheres' case with three translational DOFs
Time vs max. depth of division

(Resolution in world dimensions fixed to resolution in C -space dimensions

10000

1000

100

10

1

2 3 5 6 74

Max depth of division

collDetPoint
collDetBox

▼ collDetBSD
isotropicBSD
L-collDetBSD

Figure 5.35: T im e (on an SG origin) vs. reso lu tion for th e 3-D ‘M ed
sph eres’ case w ith th ree tran sla tio n a l DO Fs (note th e logarithm ic
scale)

137

5.13 Summary & conclusions

This chapter has demonstrated how multidimensional set-theoretic modelling can
be used to construct a static model (referred to as an omnimodel) which represents
every interaction that occurs as a nomad (or system of nomads) exercises its (or
their) degrees of freedom. When the interference regions within this model are
projected into the configuration space, they map the C-space obstacles to the
nomad or system of nomads.

Five heuristic algorithms have been described which compute approximate C-
space maps via projection in this way. All of these have been implemented, and
some limited experimental results lead to the following conclusions:

• All of the algorithms are inherently general, and correctly compute maps
for several different types of problem (a single moving nomad, multiple
translational nomads, and multiple rotating nomads) and for workspaces of
both two and three dimensions.

• Each of the five algorithms has its own strengths and weaknesses. However,
disappointingly, despite the use of adaptive division and the introduction
of some caching of information, none of the algorithms are more than an
order of magnitude faster than the naive regular grid approach for the cases
tested.

• The time complexity of all the algorithms is exponential in both the resolu­
tion and the dimensionality of the combined workspace and C-space. This
makes the approach impractical (on its own) for cases where the combined
workspace and C-space dimensionality is greater than four—at which di­
mensionality computation of a map with a resolution in each dimension
of approximately 1% of the original length would take approximately 30
minutes on a contemporary PC.

However,

• The time and memory complexities of the algorithms are linear in the num­
ber of halfspaces defining the objects. This contrasts with the analytical

138

methods described in the next chapters, and suggests tha t the omnimodel
framework might complement those methods by enabling complicated prob­
lems to be broken into simple subproblems which the analytical methods
can solve very effectively.

139

Chapter 6

C om puting precise C-space maps
using set-theoretic m odelling

6.1 Introduction

As described in the literature review (Section 2.4.2), Donald [24] derives pred­
icates for contact surfaces and applicability conditions which he formulates in
terms of Euler angles; he then demonstrates how the use of simplification and
canonical forms enables trajectories to be intersected with the free-space. Using
the same predicates, Canny [15] formulates contact surfaces using quaternions
and is thus able to obtain a semi-algebraic expression for the free-space which
he uses as the basis for a path planning algorithm using a Voronoi-style skele­
ton. Describing this approach, Latombe [53] [p. 122] comments that the predicate
method “does not provide an explicit representation of the boundary of the C-
obstacle . . . such as a list of faces, edges and vertices, with both their equations
and topological adjacency relation.” .

This chapter describes how, by exploiting properties of both the set-theoretic
representation and Minkowski operations, I have implemented algorithms which,
using the same approach as Donald and Canny, obtain precise analytical repre­
sentations of C-space obstacles for a common group of cases. It is interesting
to note that since the set-theoretic representation is used, it is not necessary to
obtain an explicit representation of the boundary surface and both topological

140

and adjacency computations are avoided. It is also interesting to note that the
algorithms which compute complicated multidimensional configuration space ob­
stacles are derived from principles demonstrated in the solutions to very simple
cases. For that reason, this chapter describes the simple algorithms in some depth
then incrementally increases the complexity of the cases handled. Finally, note
that

Throughout this chapter terms are used which were introduced in Section 2.3.1.

6.2 The Minkowski sum of closed convex poly­
gons using set-theoretic m odelling

In the general case, Minkowski sums are non-trivial to compute—for examples of
work in the area see Bajaj and Kim [7], Ghosh [34], Kaul and Farouki [47] and
Lee, Kim and Elber [57]. However, for the special case of two convex polygons, the
situation is much simplified and there is a well known boundary representation
solution (Lozano-Perez [63]) which has a running time of 0 (n -I- m), where m and
n are the number of vertices of the convex polygons taken as input.

Now, since conversion between the boundary-representation and the set-theoretic
representation is straightforward for such cases, the Minkowski sum of set-theoretically
defined convex polygons could be obtained via B-rep and Lozano-Perez’ method.
However, a concise algorithm can be obtained by exploiting the following prop­
erties of the set-theoretic representation and Minkowski sums:

• The Minkowski sum of two polytopes is itself a polytope.

• The Minkowski sum of two convex objects is itself convex.

• A convex polytope is equivalent to the intersection of a list of linear halfs­
paces.

The combination of these properties means that computing the Minkowski sum
of two convex polygons corresponds to a mapping from two lists of intersected

141

linear halfspaces to a third list of intersected linear halfspaces. This in turn means
that once a halfspace which forms an edge of the Minkowski sum is identified,
that halfspace can be intersected with the rest—it is not necessary to compute
vertices, adjacency information or even a set-theoretic tree.

Computing a Minkowski sum OBS® N O M is equivalent to calculating the shape
swept out by N O M as its origin visits every point in OBS. From this analogy
(and from examining an example such Figure 6.1) it is clear that some edges of
O BS® N O M correspond to the path swept out by a vertex of N O M as its origin
slides along an edge of OBS, whilst the other edges of O B S © N O M correspond
to the imprint made by an edge of N O M as its origin reaches a vertex of OBS.
In both cases, the halfspace required to form the edge corresponds to a halfspace
from one of the input objects translated by a vector corresponding to a vertex of
the other input object.

B0A

Figure 6.1: An exam ple M inkowski sum of tw o polygons

If O BS is an m-gon and N O M is an n-gon, there are 2mn such halfspace-vertex
combinations while O BS © N O M only has (m + n — p) sides, where p is the
number of halfspaces in O B S which have a coincident surface normal with a
halfspace in NOM. Thus, the problem is identifying which of the 2mn combina­
tions are used to define the Minkowski sum. In [63], Lozano-Perez suggests two
methods which solve the B-rep equivalent of this problem: one of these exploits
an ordering of the vertices around each polygon and is thus only applicable to
the two-dimensional case; the other generates every possibility then employs a
convex hull computation. For closed poly topes, the set-theoretic representation
allows a very simple solution:

142

1. For each of the n halfspaces of N O M

(a) For each of the m vertices of OBS, translate the N O M halfspace by
the OBS vertex.

(b) Union together the m halfspaces which are generated in this way. Since
they are all parallel (as illustrated in Figure 6.2) their union is equal
to the one of them which is ‘most solid’. Although all m halfspaces
remain in the tree, pruning (Section 3.2.10) will remove the redundant
halfspaces during evaluation.

2. Intersect the n sets obtained in this way to obtain a convex polygon,
RESU LT a (Figure 6.3 (a)).

3. Repeat the above process for each halfspace of OBS, translating each one
by each vertex of NOM. Intersect the unions of the resulting halfspaces,
to obtain a convex polygon RESU LT b (Figure 6.3 (b)).

4. Intersect RESU LT a and RESU LT b to obtain the convex polygon O B S ©
N O M (Figure 6.3 (c)).

Figure 6.2: One halfspace from NOM, tra n s la te d by each of th e vertices
of OBS

Note that instead of unioning together the different translations of a halfspace,
the algorithm could identify which translated version is the ‘most solid’ and
discard the others. This identification is trivial: the halfspaces each have the
form Ax + By + D < 0 and since each instance is parallel, they will only differ
in the D term; the one with the lowest D coefficient (which corresponds to the

143

RESULT RESULT,

(a) (b)

yi

r " \

(c)

Figure 6.3: C om puting a M inkowski sum for a convex polygon

signed distance of the origin relative to the surface) is the most solid. Performing
this identification avoids both redundant halfspaces and coincident halfspaces
(which occur if p (defined above) is non-zero). However, the unioning scheme
avoids the comparison computation and has properties which can be exploited
when rotational freedoms are introduced.

Regarding complexity, the unioning algorithm takes time 0 (m n), which compares
poorly to the 0 (n + m) algorithm mentioned earlier. However, with extra code
to handle the type C interactions, (Section 6.6) the unioning algorithm outlined
above algorithm can be applied to the three dimensional case. Moreover, once
rotations are introduced, the convexity of the objects ensures that every one of
the 2mn contact conditions results in a contact surface which is applicable for
some range of orientations. Thus, when the unioning algorithm is extended to

144

handle rotations, its complexity (which is still 0 (m n)) is optimal.

6.3 Com puting C-space obstacles for translational
cases of closed convex polygons

Section 2.3.1 described how, for a single nomad N O M which translates in a fixed
orientation amidst obstacles O B S , obstacles in the configuration-space corre­
spond to O B S © N O M = O B S © (Q N O M), where (Q N O M) is N O M inverted
(reflected in the origin). Now, if an object is defined set-theoretically using the
linear halfspace basis, it is trivial to invert it—each leaf linear halfspace is replaced
by its reflection in the origin and the set-theoretic expression remains unchanged.
Thus, for translational cases of closed convex polygons, a precise analytical rep­
resentation of the C-space obstacles can be obtained by inverting nomad in this
way and then using the algorithm described in the previous section. This method
was used by Cameron and Culley [14] to compute a C-space obstacle, enabling
them to compute the minimum distance between two convex polyhedra.

Note that although configuration space constraints are embedded in a different
space than the objects to which they correspond, the following sections, for sim­
plicity, illustrate and compare the surfaces as if they were embedded in the same
space.

6.4 Incorporating rotations

6.4.1 Face-vertex contact constraints

Figure 6.4 illustrates the construction of a contact surface corresponding to a
Type A interaction, where a face of the nomad makes contact with a vertex of
of the obstacle. Note that the contact surface has the same surface normal as
the reflected nomad halfspace (c)—the surfaces are parallel and the prohibited
side (shown hatched) corresponds to the solid side of the reflected halfspace (also
shown hatched).

145

(a) Nomad N O M (b) N O M in a Type A contact
with O B S (shown in cyan)

(d) The C -sp ace obstacle,
O B S Q N O M . O B S shown in cyan.

(c)Q N O M

y

x

x t

Figure 6.4: C om puting th e con stra in t surface for a T ype A in teraction
for a tran sla tio n -o n ly convex polygonal case

When the nomad edge is rotated by some angle the C-space obstacle edge rotates
by the same angle (Figure 6.5). Thus, when rotation in the plane is introduced
to the convex polygonal case, each face-vertex contact results in a helical contact
surface equal to the reflection of the nomad halfspace rotating around the obstacle
vertex (as illustrated earlier in Figure 2.8 (a)).

An implicit representation of this helical halfspace is trivial and can be obtained
using the algorithm which constructs an omnimodel with one rotational degree
of freedom (see Section 5.3.2).

146

(a) N O M ^ u (= N O M rotated rc/12 about the origin), (b) The C -sp ace obstacle, O B S Q N O M ^ u
shown in blue. NOM show n in grey. show n in red. OBS shown in cyan, O B S © NOM

shown in grey.

Figure 6.5: If th e nom ad is ro ta te d , th e face-vertex co n stra in t surface
ro ta te s by th e sam e am ount

6.4.2 Vertex-face contact constraints

Figure 6.6 illustrates the construction of a contact constraint corresponding to a
Type B interaction, where a vertex of the nomad makes contact with a face of
the obstacle. Note that in this case the contact constraint has the same surface
normal as the obstacle halfspace—the surfaces are parallel, and the prohibited
side corresponds to the solid side of the obstacle. The contact surface is offset
from the obstacle by some signed distance V, where a positive value increases the
solid region (as is the case in Figure 6.6 (d)) and a negative value decreases the
solid region.

The value of V is equal to the signed distance (Section 3.2.4) of the nomad vertex
v relative to the obstacle halfspace H when the nomad’s reference point sits on the
obstacle surface. Thus, using the offset property described in Section 3.2.4, the
contact constraint can be obtained by subtracting V from the obstacle halfspace:

CS = H - V (6.1)

V varies sinusoidally as the nomad rotates and is given by:

147

i y
J t

\ \
\ \ \ \ \

. \
"V X

x t
(a) Nomad N O M (b) N O M in a Type B contact

with O B S (shown in cyan)

i y
,yt

V \ X

77/ 7/ ^ ^ / y
x t

(c)Q N O M (d) The C -sp ace obstacle,
O B S © N O M . O B S shown in cyan.

Figure 6.6: C om puting th e con stra in t surface for a vertex-face in te rac­
tio n for a tran sla tio n -o n ly convex polygonal case

V = v * cos(0 + 6q) (6.2)

Where v is the length of the line between the nomad’s reference point and the
vertex involved, and 0o is the angle that this line makes with the origin when the
nomad is in its initial orientation.

An example of a sinusoidal constraint surface constructed in this way was illus­
trated earlier (Figure 2.8 (b)).

Equation 6.2 gives an appropriate surface for the two-dimensional case, but what
would the equivalent be when the objects are three-dimensional and orientation
is defined in terms of three parameters?

148

To derive an alternative solution which can be extended intuitively to all cases,
let us remember from Equation 3.1 that the signed distance d, from a point p
to a halfspace H is given by H A.px + H b -Pv + Ho, where H narm is the surface
normal of the halfspace and Ho is the signed distance of the origin relative to
the halfspace. In this case, since the nomad’s reference point is on the obstacle
surface, H d is zero. Thus, the signed distance of vertex v to the halfspace is
given by

V = H a .vx + HB.vy (6.3)

Substituting 6.3 in 6.1, each contact surface for a type B interaction is given by

C S b = H — (H a .vx + H B.vy) (6.4)

This is significant because if a rotation parameter 9 is introduced, the x and y
coordinates of vertex v can be obtained by expanding the rotation matrix to give

vx = Ha c o s 9 — H b sin 9vy = H A sin 9 + H B cos 9 (6.5)

Thus the implicit representation of a type B contact constraint can alternatively
be obtained by substituting 6.5 into 6.1. This gives an unnecessarily complicated
solution but, intuitively, this new solution can be extended to three dimensional
rotation by simply replacing the two-dimensional rotation matrix by its three-
dimensional equivalent.

6.4.3 Combining the contact constraints

For the case of a closed convex nomad which has full rotational freedom as it
translates amidst closed convex obstacles, a precise representation of the C-space
obstacles can be obtained by combining the contact constraints in exactly the
same way as described in Section 6.2.

149

The closed convex nature of the objects ensures that every contact constraint is
applicable for some range of rotations and ceases to be applicable when a contact
constraint of another kind becomes applicable.

Unioning together all the contact constraints which involve a specific halfspace
ensures that, for any orientation, the applicable constraint (which is the most
solid of the constraints involving that halfspace) is correctly represented, whilst
the others are redundant. As the rotation parameter varies through its range,
the helicoid and sinusoid contact constraints each pass through each other, such
that each one rises through the surface of the others when it becomes applicable,
and sinks underneath for the remaining orientation. Type A contact constraints
are bound by Type B contact constraints and vice-versa1.

Figure 6.7 shows a C-space obstacle computed in this way for a case where the
obstacle and nomad are rectangles.

6.5 Handling unbounded polygons

Consider the closed convex polygons shown in Figure 6.8 (a). The C-space ob­
stacle which obstacle A B C causes to nomad D E F can be computed using the
algorithm described in the previous section. Figure 6.8 (b) shows each of the
edge-vertex contact surfaces which involve the nomad halfspace e, all sliced at a
rotation value of zero. These are unioned together so that, for the rotation value
shown, e-A and e-B are redundant, whilst e-C is intersected with other contact
surfaces to form part of the complete C-space obstacle (Figure 6.8 (c)).

Now consider the same problem after halfspace b is removed from the obstacle,
leaving it unbounded (Figure 6.9 (a)). Since the new obstacle has one vertex,
only one Type A contact surface is generated (Figure 6.9 (b)). When this is
intersected with the other contact surfaces it forms an erroneous contact surface,
contributing to an incorrect representation of the C-space obstacle (Figure 6.9

(c)) .

^ o th Type A and Type B contact constraints can be bound by coincident contact con­
straints, which result when a nomad halfspace and an obstacle halfspace have coincident surface
normals.

150

Figure 6.7: A C-space obstacle for two rectangles. The horizonta l plane
rep resen ts th e two tran sla tio n a l degrees of freedom ; th e vertical axis
rep resen ts ro ta tio n .

This problem is significant since although all objects in the real world are closed,
unbounded objects will be very common if a problem is divided as part of a
divide-and-conquer methodology, as discussed in Section 9.4.

The solution is to test every contact surface against an applicability condition
such that only contacts which are applicable contribute to the C-space obstacle.
This test can be formulated as a point-membership test as follows:

1. For each of the two halfspaces which meet at the vertex involved (?;), create
a halfspace which goes through the origin and has a surface normal pointing
down the edge away from the vertex.

151

e - .

(a) Two closed convex polygons - (b) The three edge-vertex contact
obstacle A B C and nomad D E F surfaces involving edge e when the

rotation parameter is zero.

(c) The complete C -space obstacle,
sliced at a rotation parameter value
o f zero. e -C is shown dotted to
illustrate its contribution.

Figure 6.8: An illu stra tio n of C-space obstacle com p u ta tio n for closed
convex polygons

2. Intersect the halfspaces created in this way to produce an applicability cone.

3. A contact involving v is applicable if and only if the surface normal of the
edge involved lies within the applicability cone.

Figure 6.10 illustrates this algorithm for a vertex-edge interaction. Note that
when the applicability condition is tested against in the extended Minkowski
sum algorithm the inverted nomad model is used.

For translation-only cases, interactions which do not meet applicability condition

152

e - B

(a) The obstacle is made open when (b) Only one edge-vertex contact
haifspace b is removed. surface is generated.

F - c

F - a

,e -B

(c) The erroneous C -space obstacle
computed using the previous
algorithm. Contact surface e - B is
shown dotted to illustrate its
contribution, as are the vertex-edge
contact surfaces f - C and f - a , which
are intersected with it.

Figure 6.9: T he sam e a lgorithm fails if one of th e polygons is unbounded

need not be introduced into the C-space obstacle representation. However, when
rotation is introduced, each contact constraint is applicable for some range of
orientations and not for the remainder. This is modelled by in te r s e c t in g ea c h

c o n ta c t c o n s t r a in t a g a in s t i t s a p p lic a b i l i ty c o n d i t io n in th e c o n f ig u r a t io n sp a c e .

This cuts the contact constraint away when it is not applicable.

153

X

(a) Nom ad N O M

\ \ \

(c) The applicability cone

Figure 6.10: C o nstruc ting an ‘app licab ility cone’ for a tw o-dim ensional
vertex-edge in terac tion

6.5.1 Type A applicability conditions

In edge-vertex interactions, the vertex involved is stationary whilst the edge ro­
tates. The applicability condition is represented as follows:

1. The surface normal of the nomad halfspace is multiplied by the appropriate
rotation matrix to obtain the x and y components in terms of the (constant)
initial values and the rotation parameter (see Section 5.3.2).

2. Membership testing a point p against a set S places the coordinates of p
into the implicit halfspace equations at the leaves of 5, combines the results
according to the operators, and identifies if the value reached is less than or
equal to zero—which indicates the point is inside the set. This operation

154

is formulated as a set by placing the expressions for the normal’s x and y
coordinates into the leaf halfspaces of the applicability cone. Since the only
variable left in the tree is the rotation parameter, this set is embedded in
configuration space; it is SOLID for the configurations in which the contact
constraint is applicable, and AIR elsewhere

3. Each contact constraint is intersected with its applicability condition.

6.5.2 Type B applicability conditions

In vertex-edge interactions, the vertex involved rotates whilst the edge is station­
ary. The applicability condition is represented as follows:

1. The applicability cone is swept into the rotation dimension using the method
described in Section 5.3.2.

2. The membership test is expanded in the way described for Type A appli­
cability conditions—the coefficients of the obstacle halfspace normal (con­
stants) are placed into the applicability cone to obtain a set in configuration
space.

3. Each contact constraint is intersected with its applicability condition as
before.

6.5.3 Handling cases where no interactions are applicable

Consider the case shown in Figure 6.11 (a) where the obstacle and nomad have
both irregular shapes and polygonal segments, and the nomad is free to translate
in a fixed orientation. A divide-and-conquer approach to solving this problem
might reach the subproblem shown in Figure 6.11 (b)), focusing on the interaction
between the polygonal segments of the objects. The unbounded objects of the
subproblem are such that, in the fixed orientation of the nomad, no interactions
are applicable.

W hat is the correct C-space map for subproblems like this?

155

Nomad

Obstacle

(b)

Nomad

Obstacle

(a)

Figure 6.11: A d ivide-and-conquer approach to problem (a) would lead
to a subprob lem (b) w here no in te rac tio n is applicable.

If each unbounded object as infinite, the correct result is a completely prohib­
ited map. However, since one of my goals is to enable a divide-and-conquer
methodology, and the framework for that methodology is the omnimodel divi­
sion algorithm outlined in Chapter 5, the handling of unbounded objects must
fit in with with that algorithm. Remember (page 97) that as soon one part of
the workspace is found to contain a prohibited interaction, the recursion is ter­
minated and the associated C-space box is classified as prohibited. Thus, if the
subproblem of Figure 6.11 (a) is assigned a completely prohibited map, the whole
problem (Figure 6.11 (b)) will be assigned a prohibited map—which is incorrect.

Thus, to fit in with omnimodel division, a subproblem which does not contain any
applicable interactions should not contribute to the C-space map for the whole
model—which can be achieved by returning a safe classification. The cost of this
policy is that if a whole stand-alone problem contains an unbounded object, the
completely safe C-space map which results is incorrect.

A simple solution which meets these conflicting demands is to assume that all
cases being analysed start out as bounded, and that unbounded objects only
occur as sub-problems. This assumption can be safely made if all input objects
are forced to be bounded by intersecting them with a cuboid set constructed out
of their model’s box.

156

6.6 From polygons to polyhedra

The dimension-independent characteristic of the set-theoretic representation means
that the only significant extension required for the algorithms described above
to handle polyhedra is that contact constraints and applicability conditions must
be formulated for Type C (edge-edge) interactions.

6.6.1 Type C interactions for translation-only cases

As with Types A and B, all Type C contact constraints are ruled surfaces—for
any fixed orientation the surface is a linear halfspace. The surface normal,n of
this halfspace is perpendicular to both edges which cause the constraint, so it is
given either by:

n = ei x e 2 (6.6)

or its opposite

n = - (e i x e2) (6.7)

Since the contact constraint has prohibited and safe sides, and the edge vectors
give no indication as to which side should be which; either direction could be the
correct surface normal.

Also, since edge-edge constraints are not generated in groups of parallel surfaces,
the unioning scheme described for Types A and B is not appropriate—each con­
tact surface must be tested for applicability even for the case of closed convex
polyhedra.

These two complications are handled as follows:

For each edge-edge interaction,

157

1. The surface normal obtained from the cross product is tested for applica­
bility against each edge.

2. If the surfaces normal meets the applicability condition for both edges, the
normal is correct and the constraint is applicable.

3. If the constraint fails to meet either of the conditions then a second con­
straint is generated, with the normal in the opposite direction. If this
second constraint meets both the applicability conditions it is correct and
applicable—otherwise neither constraint is applicable.

4. When a correct and applicable surface normal is identified, all that is re­
quired to compute the contact constraint is a point on the surface. From
the definition of Minkowski sum, every point on the contact constraint sur­
face is the sum of a point on one edge and a point on the other edge, so
such a point can be obtained by adding arbitrary points from each of the
edges.

5. Testing if a contact constraint is applicable to an edge can be reduced to
testing if a two-dimensional Type A or Type B constraint is applicable. This
is achieved by setting up a local coordinate system where the third axis is
parallel to the edge so that the two halfspace forming the edge project into
lines which form a vertex, and the contact constraint halfspace projects into
a line. The applicability cone algorithms described earlier can therefore be
used.

6.6.2 Type C interactions incorporating rotations

Rotations are incorporated into the Type C contact constraints as follows:

1. Each nomad edge vector is multiplied by the rotation matrix (p.89) to
obtain each coordinate in terms of the rotation parameters, as described
earlier.

2. The cross product is formulated as a set-tree representing its expanded
form. The cross product, c of a and b is given by:

158

C j ---- Q iybz byQig

Cy — bxaz Q>xbz

cz — QtxVb bx&y (6.8)

3. The obstacle edge vector coordinates (constants) and the nomad edge vec­
tor coordinates (set-trees) are substituted into the leaves of the expanded
cross-product to obtain a set for each coordinate of a vector which is per­
pendicular to both edges as the nomad rotates.

4. Testing each applicability condition corresponds to membership testing the
normal vector against an applicability cone. As before, this is formulated

by

(a) Making applicability cones for nomad edges rotate by using the ex­
panded rotation matrix.

(b) Expanding the membership test operation into a set-tree, and placing
the expressions for the coordinates of the normal into the leaves. This
generates an applicability condition in terms of a set in configuration-
space.

(c) Intersecting each contact constraint with its applicability condition.

6.6.3 Type A and Type B interactions

Type A and Type B interactions (which are now face-vertex and vertex-face,
respectively) are handled identically to the two-dimensional case except that:

• All halfspaces take the form A x -1- B y + Cz + D < 0.

• The rotation matrices used to compute the contact constraints and appli­
cability conditions are expanded to incorporate the z dimension and any
additional rotation parameters.

• Each applicability cone is defined by as many halfspaces as meet at the
vertex—which can be any number greater than or equal to three.

159

Figure 2.7 (page 38) shows a configuration-space obstacle (for a translation-only
problem) computed using this method.

6.7 Handling non-convex polytopes

As stated at the outset, the algorithm built up over the previous sections is only
applicable to cases where both polytopes are convex. However, Minkowski sums
are distributive over union:

A © (B U C) = {A © B) U (A © C) (6.9)

Therefore, cases of non-convex polytopes can be handled by breaking each object
into convex pieces, solving each combination and unioning the results.

The general problem of convex decomposition is beyond the scope of this thesis.
However, a simple solution is to rewrite each set in disjunctive form which repre­
sents an object as the union of a finite number of possibly-overlapping products,
each of which is the intersection of primitives (in the polytope case, all linear
halfspaces). This is achieved by recursively applying this identity to the set-tree:

A n (B U C) = (A n B) U (A D C) (6.10)

In the worst case, the number of products generated by this simple decomposition
grows exponentially: if the original set-tree contains 2K linear halfspaces and
has intersection operators everywhere except the K lowest internal nodes, the
disjunctive form will contain 2K product terms, each of which is the intersection
of K halfspaces (Rossignac [84]). However, it is practical for many interesting
cases, so it is sufficient for our purposes. Moreover, the algorithms described here
are independent of the method used to obtain a convex decomposition, making
it easy to plug-in a more efficient decomposition algorithm.

Figure 6.12 shows a configuration-space obstacle computed using this method for

160

a translation-only case involving non-convex polyhedra; Figure 6.13 illustrates a
non-convex polyhedral case for which a six-dimensional C-space map has been
computed.

(a) Two non-convex polyhedral components

F a c e t t i n g done.
Reset spacemouse sensitivity.
Now not acting solid.
Now acting solid.
R e se t spacem ouse s e n s i t i v i t y .

(b) Two views of the polyhedral C-space
obstacle when one component is free to
translate relative to the other in a fixed

orientation

(c) Orienteer is used to validate the
C-space map by checking the objects
behave correctly. It confirms the map is
correct, and also demonstates that mating
between the parts is just possible.

s i o r ie n te e r

£He Controllers Spacemouse Qisplay QS-map division

Value |

Figure 6.12: A n illu s tra tio n of a non-convex 3-D tran s la tio n a l case

161

(a) (b)

(c) (d)

An example illustrating a non-convex three-dimensional case for which a precise
six-dimensional C-space map has been computed. Let the configurations of the
(red) nomad in (a) and (b) define the start and end configurations of a linear path
through the C-space. If the nomad was to move along that path, it would first
make contact with the obstacle (blue) at the configuration shown in (c) and would
stop overlapping the obstacle at the configuration shown in (d). These
configurations were computed by representing the path as a ray through the
six-dimensional C-space and computing where that ray entered and exited the
C-space obstacle. Note that computing these configurations without computing a
global C-space map would be non-trivial.

»
Figure 6.13: A n illu s tra tio n of a non-convex 3-D case w ith six degrees
of freedom

6.8 H andling curved surfaces

Latombe [53, p. 149] proposes that if obstacle A and nomad B are represented as
semi-algebraic sets, the C-space obstacle that A causes to B can be formulated
as a Tarski sentence—it is therefore a semi-algebraic subset of the configuration
space. This suggests that, in theory, a precise configuration-space map can be

162

obtained using the set-theoretic representation for problems involving practically
arbitrary geometry. This significant challenge is left for Future Work, Chapter 9.

6.9 Com plexity analysis

In contrast to the omnimodel projection algorithms described in Chapter 5, for
each of the analytical C-space mapping algorithms described in this chapter it
is possible to formulate the composition of the resulting set tree in terms of the
composition of the input objects2. The tables below describe the composition of
the set-trees constructed in terms of three criteria:

N u m b er o f fla ts This is a measure of the size of the complete set tree. Since all
of the C-space mapping algorithms are concerned only with constructing
this tree (no pruning takes place, for example) the size of the set tree
produced is not only a measure of how complicated the C-space obstacle is,
it is a good measure of the time and memory requirement of the algorithm3.

Note that due to system of reference pointing implemented in svLis-m
the number of flats stored in memory will be considerably less than this
number—a large proportion of the flats in the tree (implemented as a graph)
will merely be pointers to other nodes.

Note also that the numbers shown in the table are upper limits—some of the
algorithms give simpler results if the input objects contain axially-aligned
planes. This stems from the fact that svLis-m treats an axially-aligned
plane as a one-dimensional set regardless of the space it is embedded in
(Section 3.4.4).

N u m b er o f p rim itiv es This is a count of the number of differentiable sets (sets
which do not contain boolean operations and are the equivalent of svLis
primitives). The larger this number is as a proportion of the number of

2 For the three-dimensional translation-only case this is not quite true—only applicable type
C interactions will be introduced into the result set, the number of which will depend on the
shape and orientation of the input objects. The tables provided quote the number of Type C
contact surfaces considered, which in any case more accurately reflects the time complexity of
the algorithms.

3The only case where the size of the result tree does not reflect the amount of work carried
out is the three-dimensional translation only case, where effort is expended considering all
edge-edge interactions but only applicable ones are introduced to the result

163

flats, the more effective pruning will be, since recursively subdividing a
model containing one very complicated primitive will have no effect, whilst
division of a set containing many simple primitives will result in a number
of simpler models.

M ax im u m p rim itiv e co n ten ts This is the highest number of flats within a
single primitive in the result. This is a measure how complicated the most
complicated surface type is, which will affect the accuracy of interval arith­
metic if the C-space map is recursively divided.

Analysis of the analytical C-space mapping algorithms is provided in the following
tables:

T ab le 6.1 - co m p o sitio n o f each ty p e o f co n tac t co n s tra in t Note that for
Type C contact constraints, the set tree required to represent the applica­
bility cone is also incorporated since that applicability cone is required even
when the input objects are known to be bounded.

T ab le 6.2 - co m p o sitio n o f a T y p e A o r B ap p licab ility cone Note that the
size of the applicability cone will depend upon the number of edges meeting
at the vertex involved (k , say).

T able 6.3 - co m p o sitio n o f a com plete C -space ob stac le These results are
for a convex nomad with n faces and a convex obstacle with m faces.

Note that for the three-dimensional case, it is assumed that every vertex
has three edges meeting at it (k = 3). This enables the number of edges
(e) and the number of vertices (v) to be formulated in terms of the number
of faces (/) , via the Euler-Poincare formula for an object which does not
contain holes:

/ + v — e = 2 (6 .11)

Therefore,
e = 3 (/ — 2) (6.12)

and
v = 2 (f - 2) (6.13)

164

Note also that if both input objects are known to be bounded, the C-space
obstacle for cases involving rotation can be defined using fewer flats, since
applicability conditions are not required for Type A and Type B contact
conditions.

T able 6.4 Example set-tree results for two specific input cases—rectangles in
two dimensions (n = m = 4) and cuboids in three dimensions (n = m = 6).

From these tables, the following observations can be made:

• Type C interactions are by far the most expensive to compute and repre­
sent. Indeed, closer examination reveals that in the cuboidal case where the
nomad has a full six degrees of freedom, approximately 98% of the C-space
obstacle’s set tree is used to represent edge-edge interactions.

• For the three-dimensional case, moving from one rotational degree of free­
dom to three rotational degrees of freedom does not change the number
of primitives (since the same number of constraints and applicability cones
are required). However, since all of these become more complicated, the
number of flats increases by a factor of approximately four.

• Although unbounded cases require applicability cones to be introduced for
Type A and Type B contacts, these are small compared to set required to
represent Type C contacts, so the set tree only increases by about 6%.

• A three-dimensional case with a full six degrees of freedom results in a
set-tree approximately four hundred times bigger than the two-dimensional
equivalent with a full three degrees of freedom.

Note that although some of the values in Table 6.4 for cases involving rotation
may seem large, they are optimal in that none of primitives which define the
contact constraints or the applicability conditions are redundant. A more effi­
cient representation could only be achieved by representing each primitive more
efficiently, for example by using an alternative parameterisation of rotation such
as quaternions.

165

Constraint
typ e

Dimen
-sions

DllFs Input Output

Trans. Rot. Nom Obs
Number

of
flats

Number
of

prims

Max
prim

contents

Type A 2 x'y' - l f 1 V l 1 1

” 2 * v e 1 f 1 V 6 l 6

” 3 x'y' z' - 1 f 1 V 1 1 1

Y> 3 x'y' z' e l f 1 V 7 1 7

Yi 3 x'y' z' <t>0rp l f 1 V 23 1 23

Type B 2 x'y' - 1 V 1 f 1 l 1

” 2 x'y' e 1 V 1 f 2 1 2

3 x'y' z' - 1 V 1 f 1 l 1

3 x'y' z' 6 1 V 1 f 5 1 5

» 3 x'y' z' 1 V 1 f 2 1 1 2 1

Type C 3 x'y'z' - 1 e 1 e 1 1 1

n 3 x'y' z' e 1 e 1 e 126 1 0 23

» 3 x'y'z' < 1 e 1 e 606 1 0 103

Table 6.1: S e t-tree com position for co n stra in t surfaces

Applicability
cone

D im en
-sions

D O F s In p u t O utput

Trans. Rot. Nom Obs
N um ber

o f
fla ts

N um ber
o f

p rim s

M ax
p rim

conten ts

Type A 2 x'y' e 1 f 1 V 8 2 4

n 3 x'y' z' e l f 1 v, k e 4 k k 4

» 3 x'y'z' <t>6\b 1 f 1 v, k e 20k k 2 0

Type B 2 x'y' e 1 V 1 e 8 2 4

” 3 x'y' z' e l v , i c e 1 e 4 k k 4

» 3 x'y' z' 1 v, A: e 1 e 20k k 2 0

Table 6.2: S e t-tree com position for app licab ility cones

166

Dimen
-sions

DOFs Input Output
C-space
obstacle Trans. Rot. Nom Obs

Number
of

flats

Number
of

prims

Max
prim

contents

Bounded con­
vex case

2 x'y' - n-gon m-gon 2 mn 2 mn l

» 2 x'y' e n-gon m-gon 8 mn 2 mn 6

n 3 x'y' z' n-hedra m-hedra 13mn —
2 2 n
22m -1- 36

13 mn —
2 2 n
22m + 36

1

n 3 x'y'z' 0 n-hedra m-hedra 1158mn —
2296n
2288m +
4536

94 mn —
184n
184m + 360

23

3 x'y'z' n-hedra m-hedra 5542mn —
llOOOn
10992m +
21816

94 mn —
184n —
184m + 360

103

Unbounded
convex case

2 x'y' - n-gon m-gon 2 mn 2 mn 1

” 2 x'y' 0 n-gon m-gon 24 mn 6 mn 6

r> 3 x'y'z' n-hedra m-hedra 13 m n —
2 2 n
22m + 36

13 mn —
2 2 n
22m + 36

1

n 3 x'y' z' 9 n-hedra m-hedra 1206mn —
2344n
2336m +
4536

106mn —
196n —
196m + 360

23

3 x'y' z' 4>0i!) n-hedra m-hedra 5782mn —
11240n
11232m +
21816

106mn —

196n
196m - f 360

103

Table 6.3: S e t-tree com positions for C-space obstacles for convex o b jec ts

167

Finally, note that Tables 6.3 and 6.4 correspond to convex cases. For cases where
the nomad consists of i convex products, and the obstacle has j convex products,
the C-space obstacle will consist of i j products where the complexity of each
product can be calculated from the above table.

168

Operation Dimen
-sions

DO Vs Input Output

Trans. Rot. Nom Obs
Number

of
flats

Number
of

prims

Max
prim

contents

CS-obs for
bounded convex
case

2 x'y' - rectangle rectangle 32 32 1

” 2 x'y' e rectangle rectangle 128 32 6

3 x'y'z' - cuboid cuboid 240 240 l

» 3 x'y' z' e cuboid cuboid 18720 1536 23

» 3 x'y' z' < p 6 ip cuboid cuboid 89376 1536 103

CS-obs for un­
bounded convex
case

2 x'y' - rectangle rectangle 32 32 1

» 2 x'y' e rectangle rectangle 256 96 6

n 3 x'y'z' - cuboid cuboid 240 240 1

n 3 x'y' z' e cuboid cuboid 19872 1824 23

n 3 x'y' z' < p 6 ip cuboid cuboid 95136 1824 103

Table 6.4: S e t-tree com position for two specific cases— rectang les in two
d im ensions (n = m = 4) and cuboids in th re e dim ensions (n = m = 6)

169

6.10 Test results

All of the precise global C-space mapping algorithms described above were im­
plemented in C++ using the svLis-m geometric modelling kernel. None of the
algorithms have been optimised, and in particular a significant proportion of the
times given are used in printing information regarding the construction process.

Table 6.6 reports the CPU time and maximum memory requirement for a number
of tests. Tests were executed on a Silicon Graphics Onyx workstation, with
two 150 MHz MIPS R4400 processors and 256 MB of memory, except where an
asterisk (*) accompanies the result, which indicates the test was executed on a
Silicon Graphics Origin server with twenty 196 MHz MIPS R10000 processors
and 6 GB of memory.

The column headed £B’ indicates whether or not the mapmaker was given the hint
that the objects were bounded—a ‘B’ entry indicates the mapmaker was given .
such a hint, a ‘U’ indicates the mapmaker had to treat the objects as though
they were unbounded.

Where images of the C-space map were unobtainable, results are illustrated by
snapshots from an exploration of the C-space map using O rien teer (Chapter 4).
In each case, two snapshots are providing, showing two configurations which
are very close together. Notice the indicator in the bottom left corner of each
snapshot which shows green when a configuration has tested safe in the C-space
map, and red when the configuration has tested prohibited. In each case, one of
the two configurations is safe and the other prohibited, showing that the surface
of the C-space obstacle in the C-space map is correctly located.

6.11 Summary & conclusions

This chapter has described an implemented algorithm for computing a precise rep­
resentation of configuration-space obstacles for a significant subset of problems—
polytope cases in two or three dimensions for which a relatively small convex
decomposition can be obtained.

170

F a c B t t l i

Figure 6.14: An illu stra tio n of a convex 2-D 3-DOF case

Facetting done.
Reset spacemouse sensitivity
N: I.,' ■Vi1' ’ ' !.____ _

Facetting done.
Reset spacemouse sensitivity.
Nou not acting solid.__________

Figure 6.15: A n illu stra tion of a non-convex 2-D 3-D O F case

It is clear that the set-theoretic representation has many properties which suit it
to analytical C-space mapping:

• The equivalence of convexity and intersection makes it straightforward to
compute the C-space obstacle caused by one convex object to another.

171

Facetting done.
&eset spacemouse sensitivlti
Now not acting sol id.

Facetting done.
Reset spacemouse s e n s i t i v i t y .
Nod n o t a c t in g s o l id .3 Mem test

Figure 6.16: An illu stra tio n of a convex 3-D 6-D O F case (i)

Facetting done.
Reset spacemouse sensitivity.
Nou> not acting solid.

Facetting done.
Reset spacemouse sensitivity.
Nou not acting so)id.

Figure 6.17: A n illu stra tion of a convex 3-D 6-D O F case (ii)

• The implicit property of set-theoretic modelling makes it unnecessary to cal­
culate the intersection between contact constraints and applicability conditions—
which may be complicated multidimensional surfaces. The computation of
adjacency information, which is also very expensive in multidimensional
space, is also avoided.

• The dimension-independent notation enables multidimensional C-space ob­
stacles to be computed using straightforward extensions to the algorithms
designed for simpler cases.

• An implicit representation can be obtained for each contact constraint

172

which occurs in a polytope case by substituting expanded rotation matrices
into the linear halfspace basis.

• The disjunctive form offers a simple solution to convex decomposition which
is practical for some interesting cases (although, in the worst case the num­
ber of products is exponential in the number of leaves in the original).

Indeed, at the outset I pointed out that the ease of conversion between the set-
theoretic representation and B-rep (for polytopes) meant that our set-theoretic
modeller could use the B-rep algorithms. In contrast, the success of the algo­
rithms described in this chapter—which have been implemented to obtain pre­
cise global C-space maps of a higher dimensionality than those demonstrated
in the literature—suggests that B-rep modellers might consider converting to a
set-theoretic representation to compute such maps.

173

Case name Work­
space

Obstacle
composition
(products x flats)

Nomad
composition
(productx flats) Illustration

Rectangles 2-D 1 x 4 1 X 4 Figure 6.14

2-D Housing &
catch (simpli­
fied)

2-D 1 x 5,10 x 4 2 x 5,2 x 4 Figure 6.15

2-D Housing &
catch (polygo-
nised)

2-D 1 x 7,5 x 4,5 x 3,2 x
2 , 2 x 1

2 x 14,2 x 5 -

Cuboids 3-D 1 x 6 1 x 6 Figure 6.16

3-D Plunger
head & shaft
head

3-D 1 x 9 1 x 13 Figure 6.17

3-D Plunger &
shaft

3-D 1 x 13,2 x 6 5 x 6 Figure 6.12

3-D Housing &:
catch (simpli­
fied)

3-D 1 x 7,10 x 6 2 x 7,2 x 6 -

3-D Housing &
catch (polygo-
nised)

3-D 1 x 9,5 x 6,5 x 5,2 x
4,2 x 3

2 x 16,2 x 7

Table 6.5: Test cases for th e analy tica l C -space m apping algorithm s

174

Case DOFs B? CPU
time

Max.
memory

usage
Illustration

Cuboids x'y'z' B 0.28 s. 0.6 MB -

Cuboids x'y'z' U 0.42 s. 1.3 MB -

3-D Plunger &:
shaft

x'y'z' B 9.69 s. 1.3 MB -

3-D Plunger &
shaft

x'y'z' U 15.42 s. 5.6 MB Figure 6.12

Rectangles x'y'O B 0.42 s. 3.7 MB -

Rectangles x'y'6 U 0.46 s. 5.5 MB Figure 6.14

2-D Housing &
catch (simpli­
fied)

x'y'O U 10.76 s. 8.2 MB Figure 6.15

2-D Housing &
catch (polygo-
nised)

x'y'O u 25.45 s. 7.6 MB

Cuboids x'y'z'O u 6.14 s. 3.6 MB -

Cuboids x'y' z'tfrOip u 12.90 s. 16.3 MB Figure 6.16

3-D Plunger
head & shaft
head

x'y' z'<j>Qip u 70.90 s.* 76.8 MB * Figure 6.17

3-D Plunger &
shaft

x'y'z'<t>0ip u 98.37s. * 301.2 MB * -

3-D Housing &
catch (simpli­
fied)

x'y'z'4>0ip u 131.81 s. * 354.1 MB * -

3-D Housing &:
catch (polygo-
nised)

x' y' z'cfrOip u 416.99 s. 881.6 MB *

Table 6.6: Test resu lts for th e precise C-space m apping algorithm s for
a single nom ad

175

Chapter 7

C-space mapping for m ultiple
nomads

7.1 Introduction

A survey of C-space applications beyond single robot problems (Wise and Bowyer [106])
revealed that very few papers have focussed on C-space mapping for multiple in­
dependent objects, which is inevitable given the difficulties in representing highly
dimensional C-space obstacles. However, as described in Chapter 5, the omni­
model approach works (in principle at least) independently of the number of
objects.

Moreover, this Chapter describes how the analytical methods described in Chap­
ter 6 have been used to obtain global C-space maps for problems involving a
greater number of nomads than any found in the existing literature.

These results are significant to the long-term goals of our research (discussed
in Section 9.8) since a rigid-body mechanism is equivalent to a multiple-nomad
problem.

176

7.2 Calculating the C-space obstacles caused by
static obstacles

The configuration space for multiple nomads is the product of all the degrees
of freedom of the nomads. The C-space obstacle caused by a static obstacle,
OBS to an individual nomad, NOMj, can be calculated using the appropriate
algorithm from Chapter 6, as if NOMj was the only nomad. C<S05<SjJoMi is then
embedded into the higher dimensional C-space. Since none of the flats which form

C<S0&S{}oMi kave coefficients in the dimensions relating to the degrees of freedom
of the other nomads, C<S(9#<Sj2oMi Ŵ 1 extrude orthogonally into those additional
dimensions. When a configuration point or box is tested against CSO&Snqm;, the
values in the additional dimensions have no effect on the potential value returned.

The C-space obstacle caused to each nomad by the set of static obstacle is cal­
culated individually and all the results are unioned.

7.3 Calculating the C-space obstacles caused by
other nomads

Consider a problem with m nomads, NOM0, N O M i , . . . NOMm_2, NOMm_i. The
C-space obstacles that the nomads cause to each other are computed as follows:

1. For each nomad, NOMj, compute the C-space obstacles caused by interac­
tions with each NOMj where j = i + 1, i + 2 , . . . , m — 2, m — 1.

Each C<SC?#<SjjoMi computed as follows:

(a) The appropriate algorithm from Chapter 6 is used to compute the
C-space obstacle caused by NOMj when it is a static obstacle in its
initial configuration. This C-space obstacle is formulated in terms of
the degrees of freedom of NOMj.

(b) The resulting is made to move as NOMj moves, by per­
forming the same rotational and translational sweeps which are used
to make an omnimodel. The dimensions used to represent the extra

177

degrees of freedom are the ones already used to represent the degrees
of freedom of NOMj. Thus, the new swept version of C<S(9#<S]J]omJ
formulated in both groups of degrees of freedom.

(c) If NOMj has any rotational degrees of freedom, will cur­
rently be incorrect since as NOMj rotates, the orientation of NOMj

relative to NOMj changes—thus the C-space obstacle changes shape
as well as rotating. This is taken into account by replacing all the
absolute orientation values with relative orientations—for example,
within the set tree, each instance of 0nomj at a leaf is replaced by

(0|\IOMi — 0NOMj)-
The resulting CSCJ&sJJomJ models the C-space obstacle the two no­
mads cause each other; it is formulated in terms of the degrees of
freedom of NOMj and NOMj, and is embedded into the higher dimen­
sional C-space of the complete problem, where it projects orthogonally
in the additional dimensions.

2. All the computed in this way are unioned together and placed
into a box which bounds all the degrees of freedom of the nomads. The
result is a complete and accurate C-space map of the multiple-nomad prob­
lem.

7.4 Handling unbounded objects, non-convex ob­
jects and three-dim ensional objects

The above algorithm for computing a C-space map for a multiple nomads extends
in exactly the same way as the single-nomad algorithm described in Chapter 6—it
therefore has the same strengths and weaknesses:

H an d lin g u n b o u n d ed o b jec ts Every CSO BS computed in the algorithm is
based on a C SO BS computed using the single-nomad algorithm. Thus,
unbounded objects can be handled by introducing applicability conditions
as sets. These ensure correct results and introduce the possibility of a
divide-and-conquer methodology. However, as before, these typically more
than double the number of flats in the result.

178

H an d lin g non-convex o b jec ts Non-convex objects are broken into convex pieces
using the Disjunctive Form and each interaction is modelled in a pair-wise
fashion. As before this is tractable for relatively simple cases, but in the
worst case the Disjunctive Form generates an exponential number of prod­
ucts.

H an d lin g th ree -d im en s io n a l ob jec ts For translations and rotations about
the z axis, the multiple-nomad algorithm extends to three-dimensional en­
vironments simply by making calls to the three-dimensional version of the
single-nomad algorithm. As before this is expensive because there are typ­
ically more Type A and Type B interactions than the two-dimensional
equivalent, and type C interactions, which are particularly complicated,
are introduced.

Note that Step lc of the algorithm incorporates the relative orientation of
one nomad to another into a set tree. If the nomads have full rotational
freedom in three dimensions, the relative orientation corresponds to the
product of two rotation matrices, so the expression becomes considerably
more complicated. This is discussed in future work.

The composition of each of these C-space obstacles can be calculated from Sec­
tion 6.9, and independent of the number of nomads. Thus, the multiple nomad
algorithm is 0 (m 2) in the number of nomads.

7.5 Com plexity analysis

A case involving a convex obstacle set and m convex nomads requires

C-space obstacles to be computed, where:

179

7.6 Experimented results

7.6.1 Test platform

The multiple-nomad algorithm described in this chapter has been implemented
(using the svLis-m geometric modelling kernel) for cases involving 2-D nomads
with three degrees of freedom. All tests reported were executed on a Silicon
Graphics Onyx workstation, with two 150 MHz MIPS R4400 processors and 256
MB of memory.

7.6.2 Test results

Confirmation of correct behaviour

Figure 7.1 shows snapshots from a session using O rien tee r (Chapter 4) to explore
the C-spaces of a case with six independent 2-D nomads with three degrees of
freedom each. Note that in (a) the indicator in the bottom left indicates that the
configuration is safe whilst in (b), where one of the nomads has been moved to
overlap one of the others, the indicator correctly indicates prohibited.

Thus, precise, global C-space maps have been constructed of up to eighteen di­
mensions, and have been demonstrated to be correct.

The effect of the number of nomads

Figures 7.2 and 7.3 plot time and memory requirement against the number of no­
mads for two cases—one involving convex nomads, the other non-convex. These
results show that even in an unoptimised form, the algorithm can compute a
precise global eighteen-dimensional C-space map in approximately a minute, re­
quiring approximately 30 MB of memory.

180

Facetting

(b)

Figure 7.1: O rien teer explores th e C-space of a case w ith six 2-D nom ad
w ith th re e DO Fs each

7.7 Sum m ary & conclusions

The precise C-space mapping algorithm for polytopes described in Chapter 6
extends to multiple-nomads in a straightforward manner: the C-space obstacle
which nomad B causes to nomad A is computed as if B is a static obstacle,
then that C-space obstacle is swept in the multidimensional space such that it
effectively moves as B moves. After applying this sweep, which uses the same
transformations as those used to construct an omnimodel, allowance is made for

Global C-space maps for multiple 2-D 3-DOF nomads
Time vs number of nomads

50

(/)■o
cop
0
3
0
£
i-

3 41 2 5 6

Number of nomads

— Convex nomad (8 planes)
Non-convex nomads (union of 8 & 4 planes)

Figure 7.2: T im e taken p lo tte d against th e num ber of nom ads for convex
and non-convex cases

the relative orientation between two nomads, which depends upon both sets of
rotational degrees of freedom.

This approach has been tested by implementing the algorithm for two-dimensional
cases with three degrees of freedom. The algorithm, which was straightforward
to implement using svLis-m, has successfully computed precise global C-space
maps with up to eighteen dimensions (higher than any global map found in the
literature) and only takes approximately a minute to do so.

182

M
ax

.
m

em
or

y
us

ag
e

(M
B

)

Global C-space maps for multiple 2-D 3-DOF nomads
Max. memory usage vs. number of nomads

30 -

25 -

20 -

15 -

10 -

2 3 4 5 61

Number of nomads

Convex nomad (8 planes)
Non-convex nomads (union of 8 & 4 planes)

Figure 7.3: M ax. m em ory req u irem en t p lo tted against th e num ber of
nom ads for convex and non-convex cases

183

Chapter 8

C-space m apping for a
m anipulator arm

8.1 Introduction

As mentioned earlier, the links of a robotic manipulator can be treated as a
series of connected rigid objects, each of which has one or more degrees of freedom
relative to the link below it (typically, each link will have one prismatic or revolute
degree of freedom). The degrees of freedom of the whole manipulator (which
define the configuration space) are the sum of the degrees of freedom of all links.

As the literature survey shows, more papers focus on mapping the C-space for
a single robotic manipulator in a static environment than any other C-space
mapping domain. Most of the algorithms surveyed divided the C-space into
axially-aligned cells (regular grids or 2n-trees), whilst techniques which produce
only a partial map are playing an increasing role.

This Chapter describes three approaches which can be used to map the configuration-
space of a robotic manipulator using multidimensional set-theoretic modelling:

1. The C-space can be mapped for the links as if they were multiple indepen­
dent nomads (Chapter 7), and then each link can be constrained relative

184

to the previous link by introducing constraint sets into the C-space (Eisen-
thal [27]).

2. By taking a change of perspective, the mapmaking techniques from Chap­
ters 6 and 7 can be adapted such that the C-space map for the manipulator
can be computed directly.

3. The omnimodel method of Chapter 5 can be extended by taking the same
‘change of perspective’ as the second approach.

As shown later (Chapter 8.5) an implementation of the second approach has
produced, for polygonal environments, C-space maps which are complete, precise
and of higher dimensionality than any of those found in the existing literature.
Results have also been obtained for polyhedral environments where all joints are
rotational about the z axis.

8.2 Combining C-space mapping w ith constraint
modelling

Consider the two-dimensional approximation of a simple manipulator illustrated
in Figure 8.1 (a). Each of the two polygonal links, LINK0 and LINKl5 have one
rotational degree of freedom each, 0O and 6i respectively„and the manipulator
operates in a polygonal environment. Figure 8.1 (b) shows the manipulator in
its initial (reference) configuration whilst (c) and (d) show each link in its own
model space (that is, its local coordinate system). Notice that the reference point
for each link has been chosen as the point where the link will be attached to the
previous link. Notice also that LINKo has an upper joint location, uq, associated
with it—that is where L IN K \ will be attached.

Figure 8.1 (e) shows the static obstacles, including the base. The point where
LINKo is attached to the base is labelled b.

The C-space obstacles caused by the static obstacles to LINK0 can be computed
easily:

185

y i

1 LINK,

o 1

O B S---------

J

LINKo

X

(a) (b)

JC
LINK, OBS

(C) (d) (e)

Figure 8.1: A 2-D approx im ation of a 2-link m an ipu la to r

1. Using one of the algorithms described in Chapter 6, CSOBSlî k0 is com­
puted as if LINKq was an independent nomad with a full three degrees of
freedom.

2. The two translational degrees of freedom, x'0 and y(), (which LINK0 does
not have since it is attached to the base at point b) are removed. This is
achieved by slicing the svLis-m model representing the C-space map at the
point (x'o : x b,y'Q : yb) (see Section 3.4.9).

3. The result is a model of the one-dimensional C-space. This consists of an
interval and a set-tree whose leaf flats are all one-dimensional flats (i. e. they
all have a normal of (0O : 1) or (#o : — !))•

Clearly, although LINKi has the same relative degree of freedom as LINK0, com­
puting the C-space obstacles caused to it by the static obstacles is less straight­
forward. The translational degrees of freedom cannot be sliced away in the same
fashion since, in order to reach configurations such as that shown in Figure 8.1 (a),

186

Link 1 must translate as well as rotate from its initial configuration (Figure 8.1
(d)). However, the set of safe configurations for the link (and consequently the
manipulator) can be obtained by treating the manipulator as a hybrid problem
involving C-space and geometric constraints.

As detailed by Eisenthal [27], svLis-m can be used to model multidimensional
geometric constraints by treating them as sets which are intersected in the con­
figuration space. For example, consider the constraint that the rotational joint
between LINKo and LINKi imposes on LINK^ it fixes the reference point of LINKx

to always coincide with uq. So, for all valid configurations:

The position of uq can be formulated in terms of the one degree of freedom of

where uq is the modulus of uq when LINKo is in its initial configuration:

(8.1)

LINK0:

X u ° = U o COS 9 q

y Uo = sin 0o

(8 .2)

Combining 8.1 and 8.2 tells us that at valid configurations:

Xj = u 0 c o s 9 q

= > x 'x — U q COS # 0 = 0

187

This constraint can be represented in svLis-m by the tree shown in Figure 8.2
where the ‘abs’ operator (Section 3.2.6) forces the potential value of the set to
be positive everywhere except for the surface—forming a sheet of zero thickness.

abs
l

/ " \
F*. X

_ / \
u0 cos

Fe,

Normal: (jr/'l)
Offset: 0

FeDo
Normal: (90: 1)
Offset: 0

Figure 8.2: A se t-tree rep resen ting a geom etric constra in t

When this sheet is intersected with the equivalent constraint on y'x, the result
is a one-dimensional helical wire embedded in a three-dimensional C-space, as
illustrated in Figure 8.3.

Figure 8.3: A ‘w ire’ form ed by in tersecting th in sheets

So, by applying the multiple-nomad algorithm to the manipulator links we have

188

obtained a four-dimensional C-space map, and by modelling explicit constraints
we have obtained a one-dimensional wire (embedded in a three-dimensional C-
space) which represents valid configurations. A representation of the T V X E SV A C E
of the manipulator can now be obtained by placing the constraint ‘wire’ into the
four-dimensional C-space (where it projects orthogonally in the additional di­
mension to form a sheet) and intersecting it with the complement of the C-space
obstacles.

This representation of T'REESVACE is complete and precise, and can be ex­
plored by sliding the configuration around the sheet using a variety of methods
(see Eisenthal [27]).

8.3 Direct com putation of T1ZE8SVACE

8.3.1 M apmaking from a different perspective

Although complete, the representation of T ltE E SV A C E obtained by the previous
method is inefficient because of the artificially high dimensionality. The problem
is th a t the additional dimensions cannot be removed since a model can only be
sliced to a point (by fixing chosen dimensions at specific values), not to a helical
wire.

To explain how this problem is sidestepped by taking a ‘change of perspective’ let
us reconsider the problem of computing the C-space obstacles which the obstacles
cause to LINKi for the case illustrated in Figure 8.1.

We want to remove the translation dimensions and y'x from our final C-space
map by slicing it at a point ((x'x : 0 ^ : 0), say) but doing so has the effect of
treating LINKi as though it does not translate from its initial configuration. We
must therefore construct the C-space obstacles as if LINKi stays still and, where
necessary, move everything else relative to it. The procedure is:

1. Translate the obstacles by a vector — (b + uq) to place them into LINKi’s

189

model-space1. This is necessary since when LINKi is in the manipulator’s
initial position (Figure 8.1 (d)) it is translated by (6 + uo).

This gives the model illustrated in Figure 8.4.

Figure 8.4: T he obstacles are placed into th e m odel space of LINKi

2. Compute C SO BS°bnsKi as if LINKi is an independent nomad using the usual
algorithm (Chapter 6). This C-space obstacle set will contain and
which will be removed later but are left in place for now.

3. Incorporate the effect of LINK0’s rotation (#o)> As 9q increases, LINKi
rotates counter-clockwise about a joint which is positioned at (—u0) relative
to the reference point of LINKi. To fulfil this movement, LINKi has to
translate—which we must avoid. Instead, we treat LINKX as static and
make the obstacle move relative to it. Specifically, as 0O increases we make
C S O B S rotate clockwise, about point (—u0). This rotational sweep is
achieved in the usual way except that:

(a) Since the centre of rotation is not the origin, we must:

i. Temporarily translate the model such that the centre of rotation
coincides with the origin.

ii. Perform the rotational sweep.

iii. Translate the model back again.

1 W here LINKi’s model-space refers to a model of the workspace in which the reference point
of LINKi is at the origin, and the rest of the objects have the correct relative position to LINKi.
It can be considered as the workspace modelled from that particular link’s perspective.

190

(b) The direction of rotation is reversed (to clockwise) by replacing all
instances of 0$ m the set tree with (—Oq).

4. In the set-tree of C S O B S replace all instances of 9i (introduced at
Step 2) with (Oi + 0o)- This is necessary since as 0o changes, so does the
orientation of LINKi relative to the static obstacles.

C S O B S is now a correct representation of the C-space obstacles that
the obstacles caused to LINKi formulated in x'l5 y'l5 0O» and 6\.

5. Slice CSOBS®^Kl at the point (x^ : 0 ,y i : 0) to leave a two-dimensional
C-space obstacle. The result is still a correct representation of the C-space
obstacles, since we took care to ensure that LINKi was treated as if it did
not translate.

6. Union CSOBS°mki w^h C S O B S l^k0 (computed as described in Section 8.2),
and place it in a box bounding both degrees of freedom (Figure 8.5). This
is a C-space map for the manipulator (ignoring link-link interactions). To
illustrate how the C-space map corresponds to the robot in the workspace,
Figure 8.5 shows the robot in three configurations corresponding to key
points in the map. In configuration (a), the orientation of LINKi places the
maximum limit on the anti-clockwise rotation of LINKo—rotating LINKi in
either direction gradually allows LINK0 to rotate anti-clockwise further. The
orientation of LINKi also effects the limit on the clockwise motion of LINKo-

However, the placement of the obstacle is such that LINKi can only interfere
with the obstacle for a small range of rotation—between configurations (b)
and (c).

8.3.2 M odelling additional links

Consider the introduction of an additional link, LINK2, as illustrated in Figure 8.6.

C<S(9#<Sli5 k0 anc ̂ can be computed exactly as before. Computing
C S O B S requires only minor adaptations:

1. In order to place the obstacles into the model space of LINK2, they must
be translated by — (b 4- uq + Ui) (where Uk is the upper joint location of

191

0 Anti-clockwise rotation of LINKo 2n

Key: Safe Prohibited

Figure 8.5: The C-space m ap for a m an ip u la to r sim ilar to th a t of Fig­
u re 8.1, ignoring link-link in teractions

LINKk, that is, the point in the model space of LINK|< where LINK^+i will
be attached).

192

LINK.

Figure 8.6: A 2-D approx im ation of a 3-link m an ipu la to r

2. As before, compute C<S(9£kSp|NK2 as if LINK2 is an independent nomad.

3. Sweep C SO B S® ^2 clockwise as 90 increases. The centre of rotation of this
sweep is now the point — (uo + U\) since that is the offset from joint 0 to
the reference point of LINK2 in its initial configuration.

4. As an additional step, sweep CSOBS®^K2 clockwise as 9\ increases, with
the centre of rotation at point — (tti).

5. In the set-tree of CSOBS®^Kl, replace all instances of 92 (introduced at
Step 2) with (92 + 9\ + 90).

6. Slice CSOBS®^k2 at the point (x2 : 0,y2 : 0) to leave a three-dimensional
C-space obstacle.

The C-space map for the manipulator (ignoring link-link interactions) is obtained

by unioning CSOBS®^sK2 with an<̂ ^ ^ ^ l i n k 0» an<̂ placing the
result in a box bounding the three degrees of freedom.

Further links are added in the same manner—the C-space obstacle is computed,
swept around the joint of each lower link, altered to allow for the cumulative
affect of the joints on the link’s orientation, and sliced.

193

8.3.3 Incorporating link-link interactions

Few of the surveyed C-space mapping papers incorporate link-link interactions.
However, avoiding such collisions can be a significant problem, especially for
manipulators with a high number of links. To obtain a C-space map which
includes link-link interactions, the above algorithm is extended as follows:

1. Model link-link interactions in a pairwise fashion, that is, for each link,
LINKi, compute the C-space obstacle caused to it each lower link LINKj (

for all j < i). Each is computed by:

(a) treating LINKj (in its initial configuration) as a static obstacle.

(b) During this computation, the manipulator is modelled as if it only has
the links LINKj+1, LINKj+2 , . . . ,LINKj_i,LINKj—any links below LINKj

are ignored because they do not affect the relative position of LINKj

to LINKj .

2. All the are unioned together, along with all the CSOBS^Sm ,

Figure 8.7 shows a C-space computed in this way—the constraint that the shape
of LINKq places on LINKi results in a horizonal stripe of constaint height across
the C-space map. Note that this constraint means that LINKx can only touch the
obstacle (and thus contribute to the C-space obstacle) for a very small amount
when LINKq is at its most clockwise configuration.

8.3.4 H andling unbounded objects, non-convex objects
and three-dim ensional objects

Clearly, like the multiple-nomad algorithm, the manipulator algorithm is build
around the single-nomad algorithm described in Chapter 6. Thus, cases involving
unbounded objects, non-convex objects and three-dimensional objects can be
solved, but with associated computational expense.

194

0 A nti-clockw ise rotation o f LINK0 2k

Ke?: tM sa fe Prohibited

Figure 8.7: The C-space m ap for a m an ipu la to r sim ilar to th a t of Fig­
u re 8.1, including link-link in teractions

8.3.5 Handling other joint types

The manipulator algorithm has been implemented for two- and three-dimensional
manipulators with revolute joints which rotate about the z axis. In principle,
the algorithm extends to handle other joint types (revolute joints which rotate
about the x or y axes, prismatic joints, and spherical joints) in a straightforward
manner. However, these extensions are left for future work so they are discussed
in Chapter 9.

It is worth noting that implementing the algorithm for revolute joints which rotate

195

about the x or y axis would be particularly easy, were it not for a limitation of
the particular flavour of Euler angles we use to represent rotations: remember
(Section 5.3.2) that no single parameter in Roll-Pitch-Roll Euler angles can be
used to represent a rotation about either of these axes.

8.4 Com plexity analysis

In order to analyse the complexity of the above algorithms in terms of the number
of links of the manipulator, consider the case where all links are identical.

8.4.1 Ignoring link-link interactions

As described above, the first link of the manipulator is modelled by computing
the C-space obstacle which one 3-DOF object causes to another, and then slicing
the C-space obstacle such that the translational degrees of freedom are removed.
Let c refer to the time/memory requirement for the combined construction and
slicing operations2.

When the second link is introduced, the C-space obstacle computed for the first
link is still required, and that is added to by computing a second C-space obstacle
in the same way. However, the second obstacle must have a rotational sweep
performed on it, to account for fact tha t the orientation of the first link changes
the position of the second. Let r refer to the time/memory requirement for the
rotational sweep operation.

When a third link is introduced, the increase in time/memory is the same except
two rotational sweeps must be performed to account for the two lower links.

Thus, for N links, the time/memory requirement for the algorithm is given by:

2 Note that since all the work done by the algorithm is in constructing a tree representation
within memory, time and memory complexity are the same.

196

Thus, the time complexity of the algorithm is 0 (N 2).

8.4.2 M odelling link-link interactions

When link-link interactions are modelled, each time a link is added, the algorithm
computes the C-space obstacle which each lower link causes to it. Thus, when
the ith link is added, i — 1 C-space obstacles must be computed.

LINKj has exactly one degree of freedom relative to LINKj_! (i.e. the joint be­
tween them)), whilst each successively lower link has one more relative degree of
freedom. Thus, computing the C-space obstacle each link causes to LINK; is like
computing the C-space obstacles the static obstacles cause to manipulator—each
link has a corresponding C-space obstacle which undergoes one more rotational
sweep than the previous.

Since each additional link requires as much work as the whole manipulator did
previously, the complexity of the algorithm which models link-link interactions
can be given as:

Y22c + 0 - 1)r
i=lj'=l

= S ^ (2 c + (* - 1)r)
2 = 1

N N N

= Y.ic+l1Li2r-¥ E ,ir
2= 1 2 = 1 2 = 1

The most significant term of this is ̂J2iLi which is 0 (n 3) (Toft [96, p. 5]).

8.5 Experimental results

8.5.1 Test platform

The manipulator algorithm described in this chapter has been implemented (us­
ing the svLis-m geometric modelling kernel) for cases involving 2-D and 3-D ma­
nipulators with revolute joints which rotate in the xy-plane. All tests reported
were executed on a Silicon Graphics Onyx workstation, with two 150 MHz MIPS
R4400 processors and 256 MB of memory.

Confirmation of correct behaviour

Figure 8.8 shows snapshots from a session using O rien tee r (Chapter 4) to ex­
plore a C-spaces for a 2-D manipulator with six convex links connected by rev­
olute joints. A precise, global six-dimensional C-space maps was constructed
which incorporated link-link interactions, and was demonstrated to be correct by
displaying the correct behaviour of the manipulator. Figure 8.9 illustrates that
the algorithm has been tested on manipulators with non-convex links.

In both cases, note that the indicator in the bottom left corner shows that the
surface of the C-space obstacle has been correctly mapped since configurations
which cause a small amount of overlap are correctly differentiated from those
which are just safe.

Figure 8.10 plots the time taken against the number of nomads for the convex
and non-convex cases shown, both with and without incorporating link-link in­
teractions into the C-space map. These results show that, without optimisation,
the implemented algorithm takes about 4 minutes and uses approximately 50 MB
to compute a precise global C-space map for a 2-D six-degree-of-freedom revolute
manipulator.

198

0
8 f
0
0

w

\

■■Hi -___________ Facetting dona. ■ ■ ■ ■ [Facattlng dona.

iM B Facetting 3one. MMj M. ,

%

r \ i \

K
p . ' . , ,
\ \ \ \
u A

H Fecotting 3cm#. ■ 1 tacatting dona. Facattlng .. dona

^ u
H Facall Ing done. HHI Facetting dona. a°~--------

Figure 8.8: O rien teer is used to explore th e six-dim ensional C-space m ap
of a six-link 2-D revolu te m an ipu la to r.

8.6 A pplying the om nim odel approach to a m a­
nipulator

As mentioned earlier, the omnimodel approach of introducing an additional di­
mension for each degree of freedom can be used for multiple nomad problems; it
could also be used to model a manipulator by introducing the sweeps described in

199

Figure 8.9: A six-link 2-D revolu te m an ip u la to r w ith non-convex links

the above algorithm. In practice, however the large dimensionality would make
recursive subdivision of the omnimodel intractable for all but the most simple
problems. For that reason it has not been implemented.

8.7 Sum m ary & conclusions

Multidimensional set-theoretic modelling offers three methods to map the C-
space for a robotic manipulator. The most efficient of these adapts the analytical
algorithms described in earlier chapters by effectively keeping each link static and
sweeping the world around it. An implementation of this method has produced,
for polygonal environments, complete and precise C-space maps of higher dimen­
sionality than any of those found in the existing literature. The manipulator
algorithm can handle unbounded sets, non-convex objects and three-dimensional
cases, with the same strengths and weaknesses as the single-nomad algorithms.

200

Global C-space maps for 2-D manipulators with revolute joints
With and without modelling of link-link interactions

Time vs number of links

250

200 -

CO~Gcoo
CD
CO

CD
E
H

50 -

61 2 3 4 5

Number of links

Links NOT m odelled, convex links (8 planes)
Links NOT m odelled, non-convex links (union of 8 & 4 planes)

T Links ARE modelled, convex links (8 planes)
—V Links ARE modelled, non-convex links (union of 8 & 4 planes)

Figure 8.10: T im e taken p lo tted against th e num ber of links for convex
and non-convex links, b o th w ith and w ith o u t inco rpo ra ting link-link
in te rac tions

Partly due to a limitation of our implementation of rotations, the algorithm has
currently only been implemented for manipulators with revolute joints which
rotate about the z axis. However in principle the algorithm itself extends to
additional joint types in a straightforward manner—this is discussed in Chapter 9,
Future Work.

201

Chapter 9

Future work

9.1 Introduction

This thesis has provided a broad investigation into how multidimensional set-
theortic modelling can be used to compute global C-space maps. The focus
on breadth rather than depth has meant that some of the algorithms described
require further tuning, while the expanse of C-space applications means that not
all application areas have been touched upon. In short, this thesis has raised as
many questions as it has answered.

This chapter highlights some key issues which have been touched upon during
the current research and which require further investigation.

9.2 Im plem enting an alternative representation
of rotation

Perhaps the most significant improvements to the existing algorithms could be
obtained by using an alternative representation for rotational degrees of freedom
in three-dimensional space. •

202

The most restrictive shortcoming of the current parameterisation (Roll-Pitch-Roll
Euler angles) is that pure rotation about the x or y axes cannot be represented
efficiently. This could be overcome by switching to the Roll-Pitch- Yaw variant of
Euler angles (where the parameters correspond to rotation about the x, y and z
axes) and by allowing all three parameters to take the range [0, 2tt) (at the cost
of introducing redundancy).

Alternatively, the quaternion parameterisation could be used, which uses four
parameters (corresponding to a three-dimensional axis vector and an angle). Al­
though the introduction of an additional dimension would introduce additional
work if the C-space is to be divided, the quaternion scheme would avoid the need
for sin and cos operations since contact constraints and applicability conditions
could be formulated as semi-algebraic sets (Canny [15]). Also, the axis-and-angle
representation would allow rotation about an arbitrary axis to be modelled di­
rectly as one additional dimension.

The geometry of an omnimodel which is constructed using the quaternion rep­
resentation is even harder to imagine than the Euler-angle equivalent. However,
the principles behind omnimodel construction and projection are independent of
the parameterisation used, so the approach described in Chapter 5 would still
hold. The precise effect of the alternative representation on the algorithms would
be a fascinating area to investigate.

9.3 Improving omnimodel projection

The omnimodel projection algorithms described in Chapter 5 will never, of course,
avoid the exponential time and memory requirements associated with increasing
dimensionality. However, performance could be improved by fine-tuning in two
key areas—the division strategy which determines how the omnimodel is chopped,
and the resolution values which determine when division is terminated.

203

9.3.1 D iv ision strategies which are m ore adaptive

All of the omnimodel projection algorithms described above are based on recursive
division—either in the workspace dimensions, the C-space dimensions, or both.
The versions described in this thesis are adaptive in that they adapt to the surface
of the object being examined, but are blind in that when division is deemed
necessary, the division plane is based soley on the box (specifically, the midpoint
of the longest side) and not on the set contents.

As Figure 9.1 illustrates, a poor choice of division plane can be inefficient, un­
necessarily replacing one model by two models of the same complexity as the
first.

(a) (b) (c)
When model (a) is divided in the longest dimension, neither of the submodels
(b) are any simpler than the parent - so nothing has been gained. In contrast,
dividing in the other dimension resuls in one of the submodels being
simplified to ’SOLID’ which requires no further investigation.

Figure 9.1: A poor choice of division plane is inefficient

One approach to minimising this waste is to examine the range of surface normals
exhibited by a set within a box, and to chop in the dimension which has the
smallest range of normals. This test can be performed by substituting the box’s
intervals into the expressions obtained by partially differentiating the sets which
respect to each of the dimensions. A second approach is to try more than one
possible division plane, measure the effectiveness of each choice by pruning the
contents to the potential submodels, then choose the best one before proceeding.
It would be interesting to investigate if and when the additional cost of such
look-ahead is justified.

204

The relationship between workspace, translation and rotation resolu­
tions

As discussed in Section 5.5.1, the optimal relationship between resolutions in the
workspace, translation and rotation dimensions is non-trivial to determine and
requires further investigation. For example, given a target rotational resolution,
what value should the workspace resolution be fixed at? Since translational
C-space is isomorphic to the workspace (the property which enables a solution
using Minkowski operations), an obvious default for the resolution in translational
dimensions is an equivalence to the workspace resolution. However, this default
is not necessarily optimal—dividing to a finer resolution in the workspace enables
more leaf C-space cells to be classified as safe or prohibited so the thickness of
the contact region is reduced.

9.3.2 Increasing the scope of analytical mapmaking

Chapters 6-8 show how I have exploited properties of set-theoretic geometric to
produce precise global C-space maps of up to 18 dimensions for several application
areas. This work could be extended in several directions.

Implementation of all DOF combinations

Using the techniques described in this thesis, algorithms have been implemented
to compute precise global C-space maps for a wide range of cases. However, not
every permutation of degrees of freedom has been implemented—for example,
multiple nomad cases assume that all nomads have the same types of degrees of
freedom.

M ultiple nomads with full 3-D rotation

A key step in the algorithm described in Section 7.3 is to sweep the C-space
obstacle which one nomad causes to another in order to incorporate the relative

205

orientation of the second nomad to the first. With one rotational degree of free­
dom each, the relative orientation is simply the difference between the rotation
parameters for the two nomads; with full rotational freedom in three-dimensions,
the relative transformation is obtained via manipulation of their rotation matri­
ces. Although tractable, this has not yet been implemented so multiple nomad
cases are restricted to one rotational degree of freedom per nomad.

Additional manipulator link types

The algorithm described in Chapter 8 demonstrates that multidimensional set-
theoretic geometric modelling offers an elegant solution to computing precise
global C-space maps for manipulators. In particular, the algorithm shows that,
by making effort to keep the interesting link still and ‘moving the world around
i t ’, redundant dimensions can be sliced away cleanly. The implementation of
this algorithm shows that this approach works for two- and three-dimensional
manipulators which have revolute joints, all of which rotate in the xy plane.

I hypothesise that the principles demonstrated in the algorithm extend to arbi­
trary joint types and that other types could be introduced as follows:

1. Spherical joints could be handled once relative three-dimensional orienta­
tions are formulated, as discussed in the previous point.

2. Revolute joints in other planes could also be introduced once relative three-
dimensional orientations are implemented. However, the limitation of Roll-
Pitch-Roll Euler angles mean that a more efficient implementation could
be obtained once an alternative representation of rotation is introduced, as
discussed above.

3. Prismatic joints should be straightforward to introduce to the current imple­
mentation, by applying the principles with translational degrees of freedom
instead of rotational.

206

Mapmaking for multiple manipulators

By combining the principles of Chapter 7 and 8, it should be a straightforward
m atter to compute precise global C-space maps for cases involving multiple ma­
nipulators sharing a workspace.

Analytical solutions for semi-algebraic workspaces

In Section 6.8 I pointed out that Latombe [53, p. 149] proposes that if obstacle
A and nomad B are represented as semi-algebraic sets, the C-space obstacle that
A causes to B can be formulated as a Tarski sentence—it is therefore a semi-
algebraic subset of the configuration space. This suggests that, in theory, a precise
configuration-space map can be obtained using the set-theoretic representation
for problems involving practically arbitrary geometry.

9.4 A hybrid mapmaker

This thesis demonstrates two very different ways multidimensional set-theoretic
modelling can be used to obtain global C-space maps: The heuristic framework
offered by omnimodel construction and projection is inherently general, but also
inherently computationally expensive; analytical techniques allow a precise rep­
resentation to be obtained quickly and compactly, even for cases with a highly
dimensional C-space, but the method is only applicable to polygons and polyhe-
dra, and since convex decomposition is required, it is only tractable for a subset
of cases.

One goal of the research described here is to enable a novel hybrid mapmaker
which combines the two approaches in a divide-and-conquer solution. In the
proposed algorithm, an omnimodel would be constructed and then recursively
divided until subomnimodels are reached which are simple enough for the ana­
lytical mapmaker to be applied; all the results of the subproblems would then
be combined to solve the complete problem. In its purest form, the hybrid algo­
rithm would use one of the algorithms described in Chapter 5 for all parts of the

207

omnimodel which represented interactions between curved geometry. However,
since the projection algorithms introduce a contact region, an equally accurate
C-space map might be obtained by applying analytical solutions in all cases—by
approximating the objects by facetted versions as soon a tractable number of
facets (and convex pieces) could be fitted to the objects. Division of the omni­
model would also provide an approach to decomposing problems into interactions
between convex objects.

In summary, set-theoretic modelling would provide a flexible framework for inves­
tigating the trade-off between dividing and conquering. This fascinating avenue
is left for future work.

9.5 Mapmaking for a dynamic environment

One property of the configuration space approach to spatial planning is that
a C-space map itself is independent of time; constraints upon the velocity or
acceleration of an object can be ignored even during the path planning stage
(although non-holonomic constraints such as the turning arc on a car-like vehicle
must be considered). However, as discussed in my survey of C-space applications
beyond a single robot in a static environment Wise [106], an extended version of
C-space, which incorporates time as a dimension, can be used to plan paths in
environments where obstacles move in a predictable manner.

Introducing a time dimension would be a marked deviation from the existing
algorithms and specific characteristics of time would require special attention—
for example, trajectories traced through the C-space become restricted by velocity
and acceleration constraints. However, the computation of configuration-time-
space maps should be straightforward.

Consider, for example, a two-dimensional model which translates such that at
time t its reference point has an x coordinate given by /(x) .

A three-dimensional model representing that object over the period of time
[tlo^hi] is obtained by transforming the model in the same way described in
Section 5.3.1, except that

208

1. The x ' term is replaced by the tree for /(x)

2. The omnimodel box has the interval [t0,ti] instead [x ^ x y

Extending this approach, a four-dimensional model could be constructed to repre­
sent a three-dimensional object with planned motion in six degrees of freedom—
each degree of freedom would be parameterised in terms of t, and the expression
would be placed into the expanded tree instead of the dimension representing
that degree of freedom.

Remember that the sweeps performed during omnimodel construction are the
same ones used by the analytical mapmakers described in Chapters 6-8—so
configuration-time-space maps could be produced by either the omnimodel pro­
jection algorithms or, more likely, analytical methods.

9.6 Using the C-space maps produced

This thesis has focussed specifically on the task of computing global C-space
maps. Clearly, this is only a worthwhile task if the maps produced can be usefully
employed. Here I outline two applications of the maps—analysis of behaviour
using ray-tracing, and path planning.

9.6.1 C-space map analysis using ray-tracing

The current implementation of Orienteer enables C-space maps to be explored via
a series of membership tests for discrete configurations. Although this is usually
sufficient to validate a C-space map, very thin C-space obstacles can be ‘jumped
over’ if the step length is not sufficiently small. An im portant improvement, then,
is the introduction of ray tracing such that the path is checked between each
start and end configuration. Multidimensional ray-tracing has been implemented
in svLis-m, so its introduction into Orienteer is a minor task.

A more significant challenge for future work is to investigate how ray-tracing
could be used to automate the design validation process. The starting point for

209

this investigation is that an input motion to a mechanism corresponds to a ray
fired in to the C-space, and the mechanism’s behaviour given that input motion
can be predicted by tracing that ray as it passes through safe configurations and
slides along contact surfaces. To illustrate this, consider the simple mechanism
shown in Figure 9.2 (a), with a driving motion of an anti-clockwise rotation of
the bar.

Figure 9.2 (b) shows the rotation as a ray tracing through the C-space map of the
mechanism—Figure 9.2 (c) ‘zooms in’ to show the ray ‘sliding’ along the contact
surface. Note that the ray can continue its upward motion if and only if it drifts
to the right, corresponding to a clockwise rotation of the disc. After the disc
has rotated approximately 7r/4, the bar disengages from the disc and the ray can
continue vertically through a safe region of the C-space. However, at the other
side of the safe region, the ray strikes a surface which is perpendicular to it, so
the motion halts. This corresponds to the configuration shown in Figure 9.2 (d).
The failure of the ray to continue through the C-space map indefinitely whilst
periodically rotating the disc, indicates that the mechanism does not function as
an indexing mechanism like a Geneva wheel.

9.6.2 Path planning

As highlighted in Chapter 1, the most common motivation for computing a C-
space map is that it reduces path planning for an object (such as a robot) to a
search for a line through the C-space map which connects start and goal configura­
tions without entering prohibited regions. The maps produced by the algorithms
described in this thesis offer two approaches to path-planning:

O p tim a l p lan n in g v ia a g rap h -search The binary spatial trees produced
by the omnimodel projection algorithms discretise the C-space into connected
cells. The same divided structure can be achieved by recursive subdivision of the
precise C-space maps produced by the analytical methods. In either case, once
neighbour information has been collated for each cell, a graph search algorithm
such as the A* algorithm (Hart, Nilsson and Raphael 1968 [37]) can be used to
find an optimal path for a specified criterion such as minimum distance. Path
planning in this way is complete in that if a safe path through the discretisation

210

Clockwise rotation of disc

Key:
| Safe m Prohibited □ Contact

(a) (b)

(c) (d)

(a) An example two-dimensional mechanism - each object
has one rotational degree of freedom.
(b) The C-space map for the mechanism in (a), computed
using an omnimodel projection algorithm.
(c) A magnified illustration of the path traced through the
C-space as the bar rotates anti-clockwise from the initial
configuration
(d) The deadlock configuration which results when the bar
impinges upon the disc

Figure 9.2: T he behaviour of a m echanism corresponds to a p a th tra ced
th ro u g h th e C-space

exists, it will be found. However, the algorithmic complexity of such exhaustive
searches means they are only practical for C-spaces of low dimensionality (up to
four dimensions).

211

P a th planning in h igh-dim ensional C-spaces using probab ilistic roadm aps
One method for path planning in high-dimensional spaces is to construct and
search a probabilistic roadmap [49]. This technique combines global and local
search techniques by establishing a number of safe configurations, randomly dis­
tributed throughout the C-space, and then connecting these configurations by
a network of safe paths by using local search techniques (such a potential field
method) between those configurations.

Now, remember that the C-space maps produced by the analytical techniques
of Chapters 6-8 are set-theoretic models of the same form as the input. As
described in Chapter 3, the set-theoretic representation is effectively based on
a potential field which is zero on the surface of the objects, negative inside the
objects, and positive outside. In its original form, this potential field is not ideal
for path planning—for example, since intersection is implemented by taking the
maximum of two distance functions, the potential field is distorted around vertices
even when objects are defined by linear halfspaces (Figure 9.3). Although there
would be difficulties to overcome, an investigation of potential field techniques
using multidimensional set-theoretic modelling is a potentially fruitful area for
future work.

The dotted lines illustrate iso-values with
respect to the potential field which defines solid
region. Potential-field approaches to
path-planning typically mimick a repulsive
force from the obstacles - in this case, the
potential field at point p is an inappropriate
repulsion.

Figure 9.3: T he p o ten tia l field around an o b jec t is d is to rted by in te r­
sections

212

9.7 Incorporating param eterised m odels

Consider the simple two-dimensional model illustrated in Figure 9.4 (a), which
is defined by the set-theoretic tree illustrated in Figure 9.4 (b).

V ////////Z

(a)

n
/ \

f n
/ \

n
/ \

F 3 F«

Normal: (y:l)
Offset: -3

Normal: (y:—1)
Offset: 0

Normal: (x:l)
Offset: -2

Normal: (x:-l)
Offset: 1

(b)

/ \
/ \

Normal: (/:—1)
Offset: 0

Normal: (y:-l)
Offset: 0

Normal: (r l)
Offset: -2

Normal: (x:-l)
Offset: 1

(C)

Figure 9.4: A sim ple p aram eterised m odel

Now consider the introduction of a parameter, /, corresponding to the length of
the object in the y dimension. A parameterised version of the part can be repre­
sented by the set-theoretic tree in Figure 9.4 (c). If I is bound to some interval
[ho, lh i\, the result is a three dimensional model like that shown in Figure 9.4 (d),

213

which encapsulates all the versions of the part which have a length in y between
the two bounds.

In [75], Parry-Barwick used parametric models represented in this way in con­
junction with the omnimodel method described in Chapter 5 to perform feature
recognition which identified not only where a parametrically defined part matched
a template, but also what value of the parameter gave the best fit.

The same approach could be applied to the C-space algorithms described in this
thesis. Instead of modelling the interactions between objects of fixed geometry,
additional dimensions could be introduced to represent design parameters. The
maps produced would be parameterised in both degrees of freedom and those
design parameters, such that they could be sliced at any value of the design
parameters to give the C-space map for that specific design.

9.8 A mechanism design tool

In [107], Adrian Bowyer, David Eisenthal and I describe the long term goal of
this research—a mechanism analysis tool which facilitates mechanism design by
calculating which design parameters provide the best mechanical performance.

Figure 9.5 illustrates how the proposed system would integrate several applica­
tions of multidimensional set-theoretic modelling, using configuration space as
the common framework to encapsulate mechanism behaviour. The user would
provide two inputs to the system: set-theoretic models of the components of a
mechanism, and hints as to explicit constraints on the parts (for example, if two
components are connected by a rotational joint, they can be labelled as having
one rotational degree of freedom relative to each other, instead of treating each
part and the connecting pin as having six degrees of freedom each). Feature
recognition, an application of multidimensional set-theoretic modelling currently
being investigated by Eisenthal [27], would then be used to spot further explicit
constraints imposed by features of the components (such as a mating tongue
and groove). Both sets of constraints (user-supplied and automatically-detected)
would then be fed to a constraint modelling system—another application of mul­
tidimensional set-theoretic modelling being investigated by Eisenthal [27]. In

214

addition to constraints imposed by lower kinematic pairs such as joints and mat­
ing features, the behaviour of the parts is restricted by their shape and the fact
they cannot overlap; these constraints would be modelled by the C-space mapping
algorithms described in this thesis.

svLis
part

models

Constraint
GUI

Feature
recognition

C-space
mapping

Constraint
modelling

C-space
map

Manual ' Automatic
validation validation

via via
C-space C-space

exploration analysis
(Orienteer (path

GUI) i tracing)

\
Tolerance
analysis

Parameter
optimization

Part
tolerance

specifications

Optimized
part

specification

Figure 9.5: A schem atic for a m echanism design too l based on in teg ra t­
ing app lications of m ultid im ensional se t-th eo re tic m odelling

215

Constraint modelling and C-space mapping both represent the interactions be­
tween parts as a geometric model embedded in the configuration space. The
C-space map obtained by combining the results would encapsulate the kinematic
behaviour of the mechanism, and this could be analysed to aid the design process
in several ways. The first, which is already possible using Orienteer, would be to
explore the C-space in a graphical user interface to observe if the desired mech­
anism behaviour can be realised by the specified geometry of the parts. ‘Virtual
prototyping’ in this way could be taken one step further if a simple model of
dynamics is introduced to the simulation. In [85], Sacks and Joskowicz establish
such a model, which makes simplifications such as:

• Forces impart a constant linear or angular velocity on a component along
a fixed translational axis or around a rotational axis.

• There is no inertia—the velocity drops to zero the instant the force stops
acting.

• Collisions among parts are perfectly inelastic.

• Falling objects instantaneously reach terminal velocity.

• A spring with one end fixed is modelled as a constant force and the free
end never oscillates.

• Friction constrains the relative motion of touching parts; every surface has
a coefficient of friction of zero (smooth) or one (sticky); friction acts solely
between touching pairs of sticky faces.

The encapsulation of kinematic behaviour provided by a C-space map potentially
enables a more automated method of design validation. Since a specific behaviour
of a mechanism corresponds to a path through the C-space, and paths through
a C-space can be predicted via ray-tracing (Section 9.6.1), there is potential for
automatically identifying if a specific design gives a desired behaviour by testing
if the desired path is traced.

Further possibilities are introduced if the models provided to the mechanism anal­
ysis tool are parameterised—ultimately a configuration-design-space map, which
has dimensions corresponding to both degrees of freedom and design parame­
ters, could be used to automatically determine what range of parameters define a

216

working mechanism. Going even further than identifying viable parameters, the
analysis system could compute an optimal design using criteria such as maximum
average tolerance, and minimum total volume of material. Although this is an
ambitious target, some insights into how this might be achieved are provided
in [107].

9.9 Summary & conclusions

The research described in this thesis has a highlighted a wide range of avenues
which might be fruitfully investigated in the future. Continuing the focus on the
computation of global C-space maps, the short term priorities are to:

• Implement the quaternion parameterisation of three-dimensional rotation,
which would enable efficient treatment of rotation about an arbitrary axis
and would enable omnimodels and precise contact surfaces to be represented
as semi-algebraic sets.

• Increase the scope of the analytical methods by

— Increasing the types of manipulator joint types handled

— Extending the current algorithms to cases involving dynamic obstacles
and multiple manipulators

— Formulating precise contact constraints and applicability conditions
for some curved objects, such as spheres and cylinders

• Integrate the omnimodel and analytical approaches as a hybrid divide-and-
conquer algorithm

Changing focus to applications of C-space techniques, the maps produced by
the algorithms described in this thesis have properties which could be exploited
for path planning, mechanism analysis and ultimately, with the introduction of
parametric models, mechanism design optimisation.

217

Chapter 10

Summary &; conclusions

C-space mapmaking is an ongoing area of research, driven by the wide range of ap­
plications and the challenge of increasing the dimensionality of the maps and/or
the range of allowable geometry accepted as input. As part of that research,
this thesis investigates the computation of global configuration-space maps using
multidimensional set-theoretic modelling. Specifically, I apply a set-theoretic geo­
metric modelling approach which employs the linear halfspace basis (representing
all primitives as expressions in terms of linear halfspaces) and makes extensive
use of interval arithmetic. Since both of these extend in a straightforward man­
ner to any number of dimensions, my colleagues and I have developed svLis-m—a
set-theoretic modelling kernel which can represent objects of near-arbitrary di­
mensionality.

I describe two ways svLis-m can be used to compute global C-space maps. The
first combines workspace dimensions with degrees of freedom to construct a static
model which represents every interaction that occurs as a nomad (or system of
nomads) exercises its degrees of freedom. When the interference regions within
this model are projected into the configuration space, they map the C-space
obstacles to the nomad or system of nomads. I describe five heuristic algorithms
which perform this projection to obtain an approximate map of the C-space. All
have been successfully implemented, and they are inherently general. However,
they are also inherently computationally expensive so they are not appropriate
for computing highly dimensional C-spaces to a practical resolution.

218

The second approach to computing global C-space maps using svLis-m is to for­
mulate precise analytical representations for the contact surfaces which result
when polygons or polyhedra interact. Set-theoretic modelling has several prop­
erties which suit it to this task:

• The strong relationship between convexity and intersection makes it straight­
forward to compute the C-space obstacle caused by one convex object to
another.

• The implicit property of set-theoretic modelling makes it unnecessary to
calculate the intersection between contact constraints and applicability con­
ditions, or to compute neighbourhood information.

• The dimension-independent notation enables multidimensional C-space ob­
stacles to be computed using straightforward extensions to the algorithms
for designed for simpler cases.

• All of the contact constraints and applicability conditions can be formulated
by expanding elements of the rigid body matrix and expressing the result
as a tree in the linear halfspace basis (this approach is also used to compute
the omnimodels mentioned above).

By exploiting these properties, I have implemented a precise global C-space map-
maker which can handle three-dimensional objects with a full six degrees of free­
dom. Moreover, I have shown that these analytical algorithms can be extended to
incorporate multiple independent nomads and then to manipulators. These ex­
tension have also been implemented, resulting in validated precise C-space maps
of up to eighteen dimensions.

The focus on breadth rather than depth has meant that this thesis has had
to leave many avenues for future work. I suggest that the following would be
particularly interesting and potentially fruitful:

• An implementation of the quaternion parameterisation of three-dimensional
rotation, as an alternative to the current Roll-Pitch-Roll Euler angles, which
have several shortcomings.

• Extensions to the analytical methods to encompass

219

— Additional manipulator joint types

— Dynamic obstacles and multiple manipulators

— Some curved objects, such as spheres and cylinders

• An integration of the omnimodel and analytical approaches as a hybrid
divide-and-conquer algorithm.

if you would like to get in touch to discuss any issues raised in this thesis, please
e-mail kevindwise@hotmail.com. Thanks for your attention.

220

mailto:kevindwise@hotmail.com

A ppendix A

Im plem entation o f a rotational
sweep

The C++ code below is the svLis-m implementation of a rotational sweep. As
described in Section 5.3.2, this creates a six-dimensional helicoid set representing
the original flat as it exercises three rotational degrees of freedom (parameterised
by Roll-Pitch-Roll Euler angles).

Each of the sets sent in (x, y , z , p h i, th e ta and p s i) is a 1-D flat with a
normal pointing in the dimension identified.

221

SvmSet wdkEulerRotate(
const SvmFlatfe orig,
const SvmSet& phi,
const SvmSet& theta,
const SvmSetfe psi,
const SvmSetft x,
const SvmSetfe y,
const SvmSet& z

)
i

SvmReal x_init = orig.normal().val(x.space().dim(0)):
SvmReal y_init = orig.normal().val(y.space().dim(0));
SvmReal z_init = orig.normal().val(z.space().dim(0));

// Temps used to build the tree.
SvmSet temp_x, temp_y, temp_z;

SvmSet x_coeff = x_init;
SvmSet y.coeff = y_init;
SvmSet z_coeff = z_init;

SvmSet cos_phi = svmCos(phi);
SvmSet sin_phi = svmSin(phi);
SvmSet cos_theta = svmCos(theta);
SvmSet sin_theta = svmSin(theta);
SvmSet cos_psi = svmCos(psi);
SvmSet sin_psi = svmSin(psi);

// Rotate by psi about z.
temp_x = (x_coeff * cos_psi) + (y_coeff *-sin_psi);
temp_y = (x_coeff * sin_psi) + (y_coeff * cos_psi);

x_coeff = temp_x;
y_coeff = temp_y;

// Postmultiply by theta about y.
temp_x = (x_coeff * cos_theta) + (z_coeff * sin_theta);
temp_z = (x_coeff *-sin_theta) + (z_coeff * cos_theta);

x_coeff = temp_x;
z_coeff = temp_z;

// Postmultiply by phi about z.
temp_x = (x_coeff * cos_phi) + (y_coeff *-sin_phi);
temp_y = (x_coeff * sin_phi) + (y_coeff * cos_phi);

x_coeff = temp_x;
y_coeff = temp_y;
z_coeff = temp_z;

SvmSet result = x_coeff*x + y_coeff*y + z_coeff*z + orig.distance();

return (result);
}

222

A ppendix B

Tables of data for Section 5.12

Resolution collDetPoint collDetBox collDetBSD isotropicBSD L-collDetBSD
4 1 2 4 1 2
5 8 10 15 7 10
6 38 52 62 34 37
7 181 242 225 164 124
8 808 1032 781 653 424
9 3634 4781 2727 2553 1501

Table B.l: T im e taken (s .) vs. reso lu tion for th e 2-D ‘M edium spheres’
case w ith 2 D OFs.

Resolution collDetPoint coll Det Box collDetBSD isotropicBSD L-collDetBSD
3 0 1 2 1 1
4 4 6 12 8 8
5 25 34 56 34 34
6 125 177 194 171 114
7 557 773 699 670 402
8 2322 3198 2378 2611 1449
9 10935 14164 7834 10579 4752

Table B.2: T im e taken (s.) vs. reso lu tion for th e 2-D ‘Big spheres’ case
w ith 2 D O Fs.

Resolution collDetPoint collDetBox collDetBSD isotropicBSD L-collDetBSD
3 18 23 33 11 18
4 217 322 571 225 332
5 2286 3960 6287 3011 3431
6 23407 40785 57278 32518 30193

Table B.3: T im e (on an SG origin) vs. reso lu tio n for th e 3 3-D ‘M ed
spheres’ case w ith th ree tra n s la tio n a l D O Fs

223

References

[1] E. A. Abbot. Flatland. Alden Press, 1884.

[2] M. Adamowicz and A. Albano. Nesting two-dimensional shapes in rectan­
gular modules. Computer Aided Design, 8(1):27, 1976.

[3] P. Adolphs and D. Nafziger. A method for fast computation of collision-free
robot movements in configuration space. In IEEE International Workshop
on Intelligent Robots and systems, Tokyo, Japan, July ^-6, pages 5-12,
1990.

[4] F. Avnaim and J. D. Boissonnat. Polygon placement under translation and
rotation. Springer’s Lecture Notes in Computer Science Series, 294:323-
333, 1988.

[5] F. Avnaim, J. D. Boissonnat, and B. Faverjon. A practical exact mo­
tion planning algorithm for polygonal objects amidst polygonal obstacles.
Springer’s Lecture Notes in Computer Science Series, 391:67-86, 1988.

[6] C. Bajaj and M. S. Kim. Generation of configuration space obstacles —
the case of a moving sphere. IEEE Journal of Robotics and Automation,
4(l):94-99, 1988.

[7] C. Bajaj and M. S. Kim. Generation of configuration space obstacles: Mov­
ing algebraic surfaces. International Journal of Robotics Research, 9(1) :92-
112, 1990.

[8] C. Bellier, C. Laugier, E. Mazer, and J. Troccaz. Planning/executing six
DOF robot motions in complex environments. Proc 91 IEEE R SJ Interna­
tional Workshop Intelligence Robots Systems IRO S 91, pages 91-96, 1992.

[9] Jakob Berchtold and Adrian Bowyer. Bezier surfaces in set-theoretic geo­
metric modelling. In CSG98 Set-theoretic geometric modelling: techniques
and applications, pages 1-16. Information geometers, April 1998.

[10] A. Bowyer. Svlis—Introduction and User Manual Information Geometers,
second edition, 1995. www.bathiiac.uk/~ensab/G_mod/Svlis.

224

http://www.bathiiac.uk/~ensab/G_mod/Svlis

[11] M. S. Branicky and W. S. Newman. Rapid computation of configuration
space obstacles. Proc 1990 IEEE International Conference Robotics Au­
tomation, pages 304-310, 1990.

[12] R. A. Brooks and T. Lozano-Perez. A subdivision algorithm in configura­
tion space for findpath with rotation. IEEE Transactions on Systems Man
and Cybernetics, 15(2):224—233, 1985.

[13] R. C. Brost. Computing metric and topological properties of configuration-
space obstacles. International Conference Robotics Automation 1989,
1:170-176, 1989.

[14] J.M. Cameron and R. Culley. Determining the minimum translational dis­
tance between two convex polyhedra. In IEEE Conf Robotics and Au­
tomation, San Francisco, April 1986, pages 591-596. IEEE, Piscataway,
NJ, USA, 1986.

[15] J. F. Canny. The Complexity of Robot Motion Planning. MIT Press, Cam­
bridge, Mass., 1988.

[16] M. Cesati and H. T. Wareham. Parameterized complexity analysis in robot
motion planning. In Proceedings of the 1995 IEEE International Conference
on Systems, Man and Cybernetics. Part 1 (O f 5), Vancouver, BC, Can,
Oct 22-25 1995, (Conf. Code 4-4-222), volume 1, pages 880-885. IEEE,
Piscataway, NJ, USA, 1995.

[17] R. H. T. Chan, P. K. S. Tam, and D. N. K. Leung. Solving the motion
planning problem by using neural networks. Robotica, 12(4):323-333, 1994.

[18] P. C. Chen and Y. K. Hwang. SANDROS: a motion planner with perfor­
mance proportional to task difficulty. Proceedings — IEEE International
Conference on Robotics and Automation, 3:2346-2353, 1992.

[19] H. Cheng and H. D. Cheng. Feasible map algorithm for path planning.
Robotics and Autonomous Systems, 17(3):149-170, 1996.

[20] H. S. M. Coxeter. Introduction to Geometry. John Wiley and Sons, 1963.

[21] B. Curto and V. Moreno. Mathematical formalism for the fast evaluation
of the configuration space. In Proceedings of the 1997 IEEE International
Symposium on Computational Intelligence in Robotics and Automation,
Cira, Monterey, CA, USA, Jul 10-11 1997, (Conf. Code 46973)Record -
85, pages 194-199. IEEE, Piscataway, NJ, USA, 1997.

[22] F. Dehne, A. L. Hassenklover, and J. R. Sack. Computing the configuration
space for a robot on a mesh-of-processors. Parallel Computing, 12(2):221-
231, 1989.

[23] M. T. Depedro and R. G. Rosa. Robot path planning in the configuration
space with automatic obstacle transformation. Cybernetics and Systems,
23(3-4) :367-378, 1992.

225

[24] B. R. Donald. On motion planning with 6 degrees of freedom: Solving
the intersection problems in configuration space. Proc IEEE International
Conference on Robotics and Automation, pages 536-541, 1985.

[25] B. R. Donald. A search algorithm for motion planning with 6-degrees of
freedom. Artificial Intelligence, 31 (3) :295—353, 1987.

[26] G. Duelen and C. Willnow. Path planning of transfer motions for industrial
robots by heuristically controlled decomposition of the configuration space.
In S. G. Tzafestas, editor, Robotic Systems: Proceedings of the 1991 EU-
RISCON Conference, Korfu, pages 217-224. Kluwer Academic Publishers,
1991.

[27] D. C. R. Eisenthal. Applications of multidimensional set theoretic geometry.
Technical Report 054/97, Dept, of Mechanical Engineering, University of
Bath, December 1997.

[28] B. Faltings. Qualitative kinematics in mechanisms. In Proceedings of
IJCAI-87 , pages 436-442, 1987.

[29] B. Faverjon. Obstacle avoidance using an octree in the configuration space
of a manipulator. In Proceedings of the IEEE Int. Conf. Robotics, Atlanta,
GA, pages 504-512, March 1984.

[30] B. Faverjon and P. Tournassoud. Motion planning for manipulators in
complex environments. Geometry & Robotics, in Springers ’ Lecture Notes
in Computer Science Series, 391:87, 1988.

[31] K. Fujimura. Motion planning amidst dynamic obstacles in three dimen­
sions. 1993 International Conference on Intelligent Robots and Systems,
page 1387, 1993.

[32] Q. Ge and J. M. McCarthy. Equations for boundaries of joint obstacles for
planar robots. International Conference Robotics Automation, 1:164-169,
1989.

[33] Q. J. Ge and J. M. McCarthy. An algebraic formulation of configuration-
space obstacles for spatial robots. Proc 1990 IEEE International Conference
Robotics Automation, pages 1542-1547, 1990.

[34] PK Ghosh. A unified computational framework for minkowski operations.
Computing & Graphics, 17(4):357-378, 1993.

[35] L. Gouzenes. Strategies for solving collision-free trajectories problems for
mobile and manipulator robots. International Journal of Robotics Research,
3(4):51, 1984.

[36] D. Halperin, M. H. Overmars, and M. Sharir. Efficient motion planning for
an L-shaped object. SIAM Journal on Computing, 21(l):l-23, 1992.

226

[37] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions Systems, Science
and Cybernetics, SSC-4(2):100, 1968.

[38] T. Hasegawa and H. Terasaki. Collision avoidance — a divide-and-conquer
approach by space characterization and intermediate goals. IEEE Trans­
actions on Systems Man and Cybernetics, 18(3):337-347, 1988.

[39] J. H. Heegaard. Efficient parametrization of the configuration space for
rigid multi-body contact and impact. In Proceedings of the 1996 ASM E
International Mechanical Engineering Congress and Exposition, Atlanta,
GA, USA, Nov 17-22 1996, (Conf Code 45867), volume 33, pages 431-
432. ASME, New York, NY, USA, 1996.

[40] C. M. Hoffmann. Geometric & Solid Modeling: an Introduction. Morgan
Kaufmann Publishers, Inc., 1989.

[41] J. E. Hopcroft, J. T. Schwartz, and M. Sharir. On the complexity of motion
planning for multiple independent objects: P-space-hardness of the ’’ware­
houseman’s problem”. International Journal o f Robotics Research, 3(4):76,
1984.

[42] Y. K. Hwang. Boundary equations of configuration obstacles for manipula­
tors. Proc 1990 IEEE International Conference Robotics Automation, page
298, 1990.

[43] Y. K. Hwang. Current status and future research in motion planning. In
Proceedings, IEEE International Symposium on Assembly and Task Plan­
ning, Pittsburgh, PA, USA, 10-11 Aug. 1995, pages 431-432, 1995.

[44] Y. K. Hwang and N. Ahuja. Gross motion planning — a survey. ACM
Computing Surveys, 24(3):219—291, 1992.

[45] A. Inselberg and B. Dimsdale. Parallel coordinates: a tool for visualizing
multi-dimensional geometry. IEEE — ?, page 361, 1990.

[46] R. A. Jarvis. Growing polyhedral obstacles for planning collision-free paths.
Australian Computer Journal, 15(3): 103-110, 1983.

[47] A. Kaul and R. T. Farouki. Computing minkowski sums of plane-curves. In­
ternational Journal of Computational Geometry & Applications, 5(4):413-
432, 1995.

[48] L. Kavraki. Computation of configuration-space obstacles using the Fast
Fourier Transform. In Proceedings IEEE International Conference on
Robotics and Automation, volume 3, pages 255-261, 1993.

[49] L. E. Kavraki. Probabilistic roadmaps for path planning in high­
dimensional configuration spaces. IEEE Transactions on Robotics and Au­
tomation, 12(4):566-580, 1996.

227

[50] L. E. Kavraki, M. N. Kolountzakis, and J. C. Latombe. Analysis of proba­
bilistic roadmaps for path planning. In Proceedings of the 1996 IEEE ISTh
International Conference on Robotics and Automation. Part 4 (O f 4), Min­
neapolis, MN, USA, Apr 22-28 1996, (Conf. Code 44943), volume 4, pages
3020-3025. IEEE, Piscataway, NJ, USA, 1996.

[51] M. G. Kendall. A course in the geometry on n dimensions. Griffin, 1961.

M. Kohler and M. Spreng. Fast computation of the C-space of convex 2-d
algebraic objects. International Journal of Robotics Research, 14(6) :590-
608, 1995.

J. C. Latombe. Robot Motion Planning. Kluwer Academic Publ., 1993.

C. Laugier and F. Germain. An adaptative collision-free trajectory planner.
International Conference Advanced Robotics, pages 33-41, 1985.

J. P. Laumond. Obstacle growing in a nonpolygonal world. Information
Processing Letters, 25(l):41-50, 1987.

J. P. Laumond, T. Simeon, R. Chatila, and G. Giralt. Trajectory planning
and motion control for mobile robots. Geometry & Robotics, in Springers
Lecture Notes in Computer Science Series, 391:133, 1988.

I. K. Lee, M. S. Kim, and G. Elber. Polynomial/rational approximation
of minkowski sum boundary curves. Technical Report PIRL-TR-97-005,
Computer Graphics Lab., PIRL, POSTECH, San 31, Hyoja Dong, Pohang
790-784, South Korea, June 1997.

J. Lengyel, M. Reichert, B. R. Donald, and D. P. Greenberg. Real-time
robot motion planning using rasterizing computer graphics hardware. Com­
puter Graphics (ACM), 24(4):327-335, 1990.

P. L. Lin and S. H. Chang. A shortest path algorithm for a nonrotating
object among obstacles of arbitrary shapes. IEEE Transactions Systems,
Man and Cybernetics, 23(3):825, 1993.

Y. H. Liu and H. Onda. Constructing an approximate representation of a
configuration space without using an intersection check. 1993 International
Conference on Intelligent Robots and Systems, pages 644-651, 1993.

LogiCad. The magellan/SPACE MOUSE ’’classic” . World-Wide Web, 1999.
http://www.spacemouse.com/products/.

T. Lozano-Perez. An algorithm for planning collision-free paths among
polyhedral obstacles. Communications of the ACM, 22(10):560, 1979.

T. Lozano-Perez. Spatial planning: a configuration space approach. IEEE
Transactions on Computers, 32(2): 108-119, 1983.

[53

[54

[55

[56

[57

[58

[59

[60

[61

[62

[63

228

http://www.spacemouse.com/products/

[64] T. Lozano-Perez. A simple motion-planning algorithm for general robot
manipulators. IEEE Journal of Robotics and Automation, 3(3):224-238,
1987.

[65] T. Lozano-Perez. Automatic planning of manipulator transfer movements.
IEEE Transactions on Systems, Man and Cybernetics, 11(10):681, 81.

[66] C. Ma, W. Li, Y. Yang, and L. Chang. Robot motion planning with many
degrees of freedom. In Proceedings of the 1995 IEEE International Con­
ference on Systems, Man and Cybernetics. Part 1 (O f 5), Vancouver, BC,
Can, Oct 22-25 1995, (Conf Code 44222), volume 1, pages 892-897. IEEE,
Piscataway, NJ, USA, 1995.

[67] A. A. Maciejewski and J. J. Fox. Path planning and the topology of
configuration-space. IEEE Transactions on Robotics and Automation,
9(4):444-456, 1993.

[68] D. Marr and H. K. Nishihara. Representation and recognition of the spa­
tial organization of three-dimensional shapes. Technical Report AIM-416,
Artificial Intell. Lab, MIT, Cambridge, Mass., May 1977.

[69] Ramon E. Moore. Interval analysis. Prentice Hall, 1966.

[70] T. Murakami and D. C. Gossard. Mechanism concept retrieval by behav­
ioral specification using configuration space. ASM E Design Engineering
Division (Publication): Design Theory and Methodology, 42:343-350, 1992.

[71] F. N-Nagy and A. Siegler. Engineering foundations of robotics. Prentice-
Hall, 1987.

[72] W. S. Newman and M. S. Branicky. Real-time configuration space trans­
forms for obstacle avoidance. International Journal of Robotics Research,
10(6):650-667, 1991.

[73] B. Paden, A. Mees, and M. Fisher. Path planning using a Jacobian-based
freespace generation algorithm. Proceedings IEEE International Conference
on Robotics and Automation, pages 1732-1737, 1989.

[74] S. Parry-Barwick and A. Bowyer. Multidimensional set-theoretic feature
recognition. Computer-Aided Design, 27(10):731-740, 1995.

[75] S. J. Parry-Barwick. Multi-dimensional Set-theoretic Geometric Modelling.
PhD thesis, Dept, of Mechanical Engineering, University of Bath, 1995.

[76] D. Parsons and J. Canny. A motion planner for multiple mobile robots.
Proc 1990 IEEE International Conference Robotics Automation, 1:8, 1990.

[77] R.P. Paul. Robot Manipulators. MIT press, 1982.

229

[78] E. Ralli and G. Hirzinger. Global and resolution complete path planner
for up to 6dof robot manipulators. In Proceedings of the 1996 IEEE 13Th
International Conference on Robotics and Automation. Part 4 (Of 4), Min­
neapolis, MN, USA, Apr 22-28 1996, (Conf Code 44^43)Record - 26, vol­
ume 4, pages 3295-3302. IEEE, Piscataway, NJ, USA, 1996.

[79] E. Ralli and G. Hirzinger. Efficient c-space modelling using kohonen
maps. In Proceedings of the 1997 8Th International Conference on Ad­
vanced Robotics, I car’97, Monterey, CA, USA, Jul 7-9 1997, (Conf Code
46955)Record - 74, pages 433-438. IEEE, Piscataway, NJ, USA, 1997.

[80] W. E. Red and H. V. Truong-Cao. Configuration maps for robot path plan­
ning in two dimensions. ASM E Journal of Dynamic Systems, Measurement
and Control, 107(4) :292—298, 1985.

[81] P. Regli, K. Lamboglia, G. Garreton, M. Neeracher, M. Westermann,
N. Strecker, and W. Fichtner. Multidimensional geometric modeling for
3d tcad. Microelectronic Engineering, 34(1):101—115, 1996.

[82] J. H. Reif. Complexity of the mover’s problem and generalizations. Pro­
ceedings of the 20th Symposium on the Foundations of Computer Science,
pages 421-427, 1979.

[83] A. Requicha and H. Voelcker. Solid modeling: Current status and research
directions. IEEE Computer Graphics Applications, pages 25-37, 1983.

[84] J.R. Rossignac. Processing disjunctive forms directly from CSG graphs. In
CSG 94 Set-theoretic Solid Modelling: Techniques and Applications, vol­
ume 4, pages 55-70. Information Geometers, Winchester, 1994.

[85] E. Sacks and L. Joskowicz. Automated modeling and kinematic simulation
of mechanisms. Computer Aided Design, 25(2):106—118, 1993.

[86] H. Samet. Spatial data structures. In W. Kim, editor, Modem Database
Systems: The Object Model, Interoperability, and Beyond, pages 361-385.
Addison Wesley/ACM Press, 1995.

[87] J. T. Schwartz and M. Sharir. On the piano movers’ problem I: The case of
a two-dimensional rigid polygonal body moving amidst polygonal barriers.
Comm on Pure & Applied Maths, 36:345, 1983.

[88] A. Schweikard and R.H. Wilson. Assembly sequences for polyhedra. Algo-
rithmica, 13:539-552, 1995.

[89] M. Selig. Introductory robotics. Prentice-Hall, 1992.

[90] Z. Shiller and Y. R. Gwo. Collision-free path planning of articulated ma­
nipulators. Journal of Mechanical Design, 115(4):901-908, 1993.

230

[91] T. Simeon. Planning collision-free trajectories by a configuration space
approach. Geometry & Robotics, in Springers Lecture Notes in Computer
Science Series, 391:116-132, 1988.

[92

[93

[94

[95

[96

[97

[98

[99

[100

[101

[102

[103

W.E. Snyder. Industrial Robots. Prentice-Hall, 1985.

J. Solano Gonzalez and D. I. Jones. Parallel computation of configuration
space. Robotica, 14(pt2):205-212, 1996.

M.W. Spong and M. Vidyasagar. Robot Dynamics and Control John Wiley
& Sons, 1989.

D. Subramanian and C. S. E. Wang. Kinematic synthesis with
configuration-spaces. Research in Engineering Design- Theory Applications
and Concurrent Engineering, 7(3):193—213, 1995.

L. Toft. Definitions and formulae for students. Pitman, 1951.

S. K. Tso and K. P. Liu. Fast motion planner based on configuration space.
1993 International Conference Intelligence Robotics Systems, pages 1401-
1408, 1993.

S. M. Udupa. Collision detection and avoidance in computer controlled
manipulators. Proceedings of the 5th International Joint Conference on
Artificial Intelligence, pages 737-748, 1977.

G. Vanecek, Jr. Brep-index: A multidimensional space partitioning tree.
In J. Rossignac and J. Turner, editors, ACM Symposium on Solid Model­
ing Foundations and CAD/CAM Applications (Austin, Tex., pages 35-44.
ACM Press, New York, 1991.

B. J. H. Verwer. A multiresolution work space, multiresolution configura­
tion space approach to solve the path planning problem. Proc 1990 IEEE
International Conference Robotics Automation, pages 2107-2112, 1990.

I. D. Voiculescu. Motion planning with six degrees of freedom. Techni­
cal Report TR-32/98, Department of Mechanical Engineering, Faculty of
Engineering and Design, University of Bath, 1998.

C. W. Warren, J. C. Danos, and B. W. Mooring. An approach to manipula­
tor path planning. International Journal o f Robotics Research, 8(5):87—95,
1989.

K. D. Wise. Generalized comparison of bintree and 2n-tree storage re­
quirements. Technical Report 053/97, Dept, of Mechanical Engineering,
University of Bath, December 1997.

[104] K. D. Wise and A. Bowyer. A survey of global configuration-space mapping
techniques for a single robot in a static environment. International Journal
of Robotics Research. Accepted. Awaiting publication.

231

[105] K. D. Wise and A. Bowyer. Using CSG models in many dimensions to map
where things can and cannot go. In Proceedings from CSG 96 Set-theoretic
Solid Modelling: Techniques and Applications, pages 359-376, 1996.

[106] K. D. Wise and A. Bowyer. Configuration-space mapping for multiple
moving objects: a survey of techniques and applications. Technical Re­
port 09/98, Dept, of Mechanical Engineering, University of Bath, February
1998.

[107] K. D. Wise, D. Eisenthal, and A. Bowyer. Design optimization of rigid-
body mechanisms via multidimensional CSG, 1998. Presented at the 1997
ASME Design For Manufacturing Symposium, to be published in the 1998
ASME Design For Manufacturing Symposium.

[108] F. N. Woods. Higher Geometry. Dover Publications Inc, 1922.

[109] J. R. Woodwark. Computing Shape. Butterworths, 1986.

[110] C. S. Zhao, M. Farooq, and M. M. Bayoumi. Analytical solution for con­
figuration space obstacle computation and representation. In Proceedings
of the 1995 IEEE 21st International Conference on Industrial Electron­
ics, Control, and Instrumentation., volume 2, pages 1278-1283. IEEE, Los
Alamitos, CA, USA, 1995.

[111] D. J. Zhu and J. C. Latombe. New heuristic algorithms for efficient hier­
archical path planning. IEEE Transactions on Robotics and Automation,
7(1):9—20, 1991.

232

