

University of Bath

PHD

Concurrent object-oriented execution of OPS5 production systems

Odeh, Mohammed Hosni

Award date:
1993

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

Concurrent Object-O riented
Execution of OPS5 Production

System s
subm itted by

Mohammed Hosni Odeh
for the degree of Ph.D .

of the

University of Bath

1993

Attention is drawn to the fact that copyright of this thesis rests with its author. This

copy of the thesis has been supplied on the condition that anyone who consults it is

understood to recognise that its copyright rests with its author and that no quotation

from the thesis and no information derived from it may be published without the prior

written consent of the author.

This thesis may be made available for consultation within the University Library

and may be photocopied or lent to other libraries for the purposes of consultation.

Signature of Author

Mohammed Hosni Odeh

UMI Number: U051448

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com plete manuscript
and there are missing pages, th ese will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U051448
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

................t r i v r^v u r« < 5 ^srT rK Q acg fljfc .

y£i-'-:1V 0? OATH f

[22-I 11 nrr '"93;
C c»3»'L«i»pw»'- ' _ _ -•

 P k ^ Z J

S o l 7-^ I

Sum m ary

Over the last decade, Artificial Intelligence (AI) has been the aim of many researchers in

the field of expert systems and particurally the issue of knowledge representation. The

0PS5 production system represents a model that is widely used in real applications of

expert systems. Unfortunately, most production systems suffer one inherent problem in

that they are not fast enough to be used in critical environments where quick response

time is an issue. The primary goal of this thesis is to improve the performance of 0PS5

production systems through concurrent execution. The thesis reports the experience

of taking a well-known and quite a complex problem—the 0PS5 inference engine—

and reconstructing it with objects in significant depth by means of Booch’s object-

oriented development methodology. Unlike previous research attem pts at improving the

performance of 0PS5 production system programs, the use of object-oriented technology

resulted in constructing a software architecture that is parallelisable, extensible and does

not rely on special-purpose hardware. This has led to synthesize a new object-oriented

inference engine which has been named, 00P S 5.

0 0 P S 5 employs a new algorithm to execute 0PS5 production system programs

which utilises an important principle in that it avoids the recomputation of join be

tween condition elements of the same production. A significant corollary from the use

of objects is that productions may be added incrementally and matched by the existing

configuration of WM elements whereas the Rete network requires the recompilation of

the give production system program. The performance of the serial 0 0 P S 5 is compa

rable with that of Rete for large and real applications of expert systems.

The concurrent 0 0 P S 5 uses the futures model of concurrency and shows that

0 0 P S 5 is suitable for parallel implementations. Moreover, the empirical results of

the concurrent 0 0 P S 5 seem to be in line with published simulations of intra-node and

action level parallelism rather than the simulation speed-ups of special architectures.

This makes 0 0 P S 5 a real, rather than simulated, contribution to the parallel execution

of 0PS5 programs. In conclusion, 00P S 5 is a concurrent object-oriented platform to

experiment with various ideas in concurrent processing which may contribute further to

improving the performance of production systems.

2

A cknow ledgem ents

I would like to thank my supervisor, Dr. Julian Padget for his guidance, encouragement

and support during the various stages of this research and in particular during my

illness. Thanks are also extended to Professor John Fitch for his valuable advises and

support especially in the initial stage of this research. I would also like to thank the past

and present members of the computing group at the University of Bath and especially

Dave Hutchinson, Icarus Sparry and Pete Broadbery.

This research has been partially supported by Arab Petroleum Investments CORPo-

ration (APICORP). I am very grateful to Dr. Nurredin Farrag, the general manager of

APICORP, for his continuous support, sincere encouragement and continuous interest,

especially during my illness. Special thanks are also extended to Mr. Galal Osman for

his support and appreciation of research. I must also mention Mr. Farouq Hassan for

his valuable advises and comments and Mr. Maher Elbouhi for his great help in the

administrative work.

I am very grateful to Mr. Khader Herzallah and his son Hatem—a childhood friend—

for their encouragement and support. I would like to thank Mr. Mohammed Khulaif,

my English language teacher, for his teaching of the language and his continuing in

terest since then. I would also like to thank all my friends in Bath and especially Dr.

Mohammed Dulaime and his family for their support of my family and making them

feel home in the difficult circumstances.

I am grateful to my brothers Hani and Yasser whose support, care and criticisms

are never-ending and particularly Hani. And, not to forget my sisters for their prayers

and good wishes for me and my family. I also thank my father in-law for his care and

attention and my brothers in-law for their valuable comments especially Mohammed

Hajj.

Last, but not least, my sincere gratitude to my wife who sacrificed her time and

helped in bringing this research to a safe conclusion. To her and my children Omar,

Abdul-Rahman and Ha.mzah is my deep appreciation for their patience and sacrifice.

3

To my beloved parents

who spent their lives until their death educating me, my sisters and brothers.

May all the mercy of Allah be upon them.

4

Contents

1 Introduction 12

1.1 Overview Of Production Systems Architecture .. 13

1.1.1 Working Memory (W M)... 14

1.1.2 Production Memory (P M) .. 15

1.1.3 Inference E n g in e .. 16

1.2 Organisation of the t h e s i s .. 17

2 A Survey on AI Production System s Perform ance 19

2.1 Uniprocessor environments .. 19

2.1.1 Rete Match A lgorithm .. 20

2 .1.2 OPS5 based on B L IS S .. 26

2.1.3 O P S 83 .. 27

2.1.4 The TREAT A lg o r ith m ... 27

2.1.5 RISCF Production System M ach in e :.. 28

2.1.6 Comparative Analysis Of Computer Architectures 29

2.2 Shared Memory M ultiprocessor.. 31

2.2.1 Parallelism in Production S y s te m s .. 32

2.2.2 Production System M achine... 35

2.3 Non-Shared Multiprocessor E n v iro n m en ts .. 36

2.3.1 OPS5 Production Systems on IL L IA C -IV .. 36

2.3.2 The DADO m a c h in e .. 37

2.3.3 NON-VON M a c h in e .. 42

5

'2.3.4 Oflazer’s W o r k .. 43

'2.3.5 PESA-1 Production System M achine... 49

'2.3.6 Parallel Firing M echanism ... 51

2.4 C onclu sion :... 53

3 O bject-O riented Execution o f OPS5 P roduction S ystem s 55

3.1 Object-Oriented Programming B a c k g ro u n d ... 55

3.2 Object-Oriented Execution of Productions S y s tem s...................................... 56

3.2.1 Identification of o b je c t s .. 60

3.2.2 Identify behaviour part of each o b j e c t .. 65

3.2.3 An Example of Object-Oriented Execution 79

3.2.4 Interface and visibility of o b je c ts .. 85

3.2.5 Im plem entation.. 85

3.3 D iscussion... 86

3.4 Conclusion ... 88

4 Perform ance o f OOPS5 89

4.1 Static M easurem ents... 89

4.1.1 Distribution of Objects ... 90

4.1.2 Distribution of Production Objects with respect to T y p e 92

4.1.3 Distribution of Constant Tests over C E -O bjects.............................. 96

4.1.4 Distribution of AVL Trees over C E -O b je c ts 96

4.1.5 Distribution of Actions over P roductions.. 97

4.2 Dynamic M easurem ents:... 100

4.2.1 State Transitions of Production O b je c ts ... 100

4.2.2 Movements into and out of the C o n flic t-S e t..................................... 106

4.2.3 Analysis of the Cost per C y c l e .. 110

4.2.4 Results of the Different Implementations of Inference Engines in

OPS5 ... 115

4.3 Conclusion .. 118

6

5 C oncurrent Execution o f O O PS5 121

5.1 Overview of Futures Concurrent Abstraction ... 121

5.2 Concurrent Execution of 0 0 P S 5 .. 123

5.2.1 CE-Object Level Parallelism ... 123

5.2.2 Join Level P a ra lle lism ... 130

5.2.3 Combined CE-Object and Join Level P a ra lle lism 135

5.2.4 Addition of Action-Level P ara lle lism .. 137

5.3 Conclusion ... 147

6 C onclusion 149

6.1 The M ethodology... 150

6.2 The Lise of Object-Oriented T echno logy .. 151

6.3 The Static and Dynamic Measurements .. 151

6.4 The Concurrent Execution of OOPS5 .. 153

6.5 Directions for Future Research .. 154

A Lem m as in chapter 5 156

Bibliography 166

7

List of Figures

1-1 Architecture of Production Systems M odel... 14

1-2 Example of an 0PS5 production ... 16

2-1 Rete Network of Productions mbl and m b 3 .. 23

2-2 Architecture of the Production System M achine................................... 35

2-3 Application of DADO Original A lg o r ith m ... 39

2-4 Architecture of the NON-VON M a c h in e .. 43

2-5 Oflazer’s Parallel Processor S y s te m .. 48

2-6 PESA -1 Production System M ach ine .. 50

3-1 Object-Oriented Transformation and Execution of OPS5 Production Sys

tems 58

3-2 An example of an OPS5 rule-set ... 59

3-3 Details of Processing in join-nonjoin m e t h o d ... 72

3-4 Details of Processing in solve-positive-join m e t h o d 74

3-5 Details of Processing in update-match-knowledge..................................... 77

3-6 Algorithmic Description of the fire Method .. 80

3-7 Interaction between classes of objects in a transformed Object-Oriented

OPS5 p r o g r a m ... 86

4-1 Distribution of Positive Joinable CE-Objects over Productions 94

4-2 Distribution of Positive NonJoinable CE-Objects over Productions . . . 95

4-3 Distribution of Negative Joinable CE-Objects over P ro d u c tio n s 95

4-4 Distribution of Negative NonJoinable CE-Objects over Productions . . . 96

8

4-5 Distribution of Constant Tests over C E -O bjec ts... 97

4-6 Distribution of AVL Trees over C E -O b je c ts ... 98

4-7 Distribution of Make after splitting of Modify ... 98

4-8 Distribution of Remove after splitting of Modify 99

4-9 State Transition Diagram for MAB, WALTZ, M APPER and RUBIK . 102

4-10 State Transitions per Cycle for M A B .. 103

4-11 State Transitions per Cycle for W A L T Z .. 103

4-12 State Transitions per Cycle for M A P P E R ... 104

4-13 State Transitions per Cycle for RUBIK .. 104

4-14 Movements into and out of the Conflict-Set in M A B 107

4-15 Movements into and out of the Conflict-Set in W A LTZ.............................. 107

4-16 Movements into and out of the Conflict-Set in M APPER 108

4-17 Movements into and out of the Conflict-Set in R U B IK 108

4-18 Analysis of Cost per Cycle for M A B .. 112

4-19 Analysis of Cost per Cycle for W A LTZ... 112

4-20 Analysis of Cost per Cycle for M A P P E R ... 113

4-21 Analysis of Cost per Cycle for R U B IK ... 113

5-1 Algorithm employed in implementing CE-Object level Parallelism 128

5-2 Application of Join Level Parallelism with Positive C E -O b je c ts 131

5-3 Application of Join-Level Parallelism with Negative C E -O bjects............. 132

9

List of Tables

*2.1 Speed-up obtained by TREAT over R e te ... 28

4.1 Distribution of O b jec ts ... 91

4.2 Distribution of Production Objects with respect to Type and Joinability 92

4.3 Distribution of CE-Objects with respect to T y p e .. 93

4.4 Movements into and out of the C o n flic t-S e t.. 106

4.5 Summary of the Total C o s ts ... 115

4.6 Execution Results of Different Im plem entations... 116

4.7 Speed-up of TREAT and OOPS5 over OPS5 ... 117

5.1 Average number of CE-Objects per type related to a WM-Distributor . 126

5.2 Speed-up obtained from CE-Object Level Parallelism over serial OOPS5

and serial O P S 5 ... 127

5.3 Percentage of Join and Pre-Join computation of the total cost for MAB,

WALTZ, MAPPER and RUBIK ... 129

5.4 Speed-up Obtained from Join-Level Parallelism over serial OOPS5 and

serial O P S 5 .. 133

5.5 Speed-up Obtained from Combined CE-Object and Join Level Parallelism

over serial OOPS5 and serial O P S 5 .. 136

5.6 Speed-up Obtained from Combined CE-Object and Join Level Parallelism

over CE-Object Parallelism with respect to O O P S 5 136

5.7 Speed-up Obtained from Combined CE-Object and Join Level Parallelism

over Join Level Parallelism with respect to O O P S 5 136

10

5.8 Speed-up Obtained from action-level parallelism combined with CE-Object

and join Level parallelism over serial 0 0 P S 5 and serial 0 P S 5 145

5.9 Speed-up Obtained when using (n + 1) over n processors in Table 5.8 . 145

11

Chapter 1

Introduction

Over the last decade, Artificial Intelligence (AI) has been the aim of many researchers

and particularly in the field of expert systems or knowledge-based systems. Among

the main issues that have been investigated in expert systems research is knowledge

representation. In particular, the production system represents a model of knowledge

representation that is mostly applied in real applications of expert systems such as

MYCIN [41], for diagnosing bacterial infections of blood, DENDERAL [4] for deducing

chemical structures from mass spectrometry data, R1 [28] as an automatic configurer

of VAX computer systems and others. Davis and King [7] suggested that production

systems can be used in problem domains where knowledge is diffuse, independent from

the way it is to be used and processes can be represented as a set of independent actions.

Moreover, Rychener [39] proposed that production systems are appropriate for problem

domains where a given task can be viewed as a transition from one state to another in

a problem space which may be simulated by one or more production firings.

Unfortunately, most production systems suffer one inherent problem in tha t they

are not fast enough to be used in critical environments where quick response time is an

issue. The primary goal of this research is to improve the performance of production rule

systems through concurrent execution. There has been much work on this [15, 31] with

an emphasis on the insertion of parallel constructs into an existing, relatively sequential,

program.

In this research, a new approach has been proposed and implemented to execute

12

production systems based on object-oriented transformation of such systems so as to

establish a platform for concurrent object-oriented execution of production systems.

0PS5 [10], which is a production system building language, is used in this research for

two reasons. First, many expert system applications have been written using OPS5;

secondly most of the research being carried out towards improving performance of pro

duction systems model is based on OPS5.

In this research, instead of starting from the existing program, namely OPS5, we

began from a specification of that program derived from an informal analysis of the

semantics of OPS5 rule sets and applied a well-known object-oriented methodology to

define classes and methods on them to reconstitute an OPS5 interpreter.

A significant corollary of the use of objects is that productions may be added incre

mentally and matched with the current configuration of WM elements, whereas OPS5’s

original match algorithm (i.e. Rete) cannot match these productions with the previ

ously added working memory elements because this requires recompilation of the rule

set.

Static and dynamic measurements have been done to evaluate this implementation

and one of the main conclusions drawn is that production systems may have different

behaviours at run-time mainly because of the different static characteristics of their

productions and the wav they are programmed.

Also, this research addresses the future message passing mechanism through the use

of the futures construct in EuLisp [34] to implement the concurrent execution of the

object-oriented implementation of the OPS5 production rule system which has been

named OOPS5.

1.1 Overview Of Production System s Architecture

In general, the architecture of the production systems model consists of three compo

nents, Production Memory (PM), Working Memory (WM) and an Inference Engine as

shown in Figure 1-1. Since many of the production systems applications are written

in OPS5 [10, 3], which is a production system shell, and many of the efforts towards

13

Working
M e m o r y
(W M)

Inference Engii

Figure 1-1: Architecture of Production Systems Model

improving production systems performance are based on this language, 0PS5 will be

used as a tool to present each of these components in detail.

1 .1 .1 W o rk in g M e m o ry (W M)

In 0PS5, Working Memory! WM) consists of a set of ordered pairs, each having the

following form:

<timet.ag, WM element>

where timetag is an integer associated with each WM element to indicate when it was

inserted into WM. A WM element is a list of elements, where the first element is a

class name of a certain entity (e.g. Employee, Book) and the rest of the elements are

attribute-value pairs of that class. A class is normally defined at the beginning of an

0PS5 production system program using the l i t e r a l i z e statement. For example, the

Monkey entity in the Monkey and Bananas production system program [3] is defined as

follows:

(l i t e r a l i z e Monkey a t on holds)

where a t. on and holds are attributes of the Monkey class. Each of the attribute-

value pairs in a WM element is of the following form:

attribute value

14

where,

indicates to 0PS5\s interpreter that the following symbol is an attribute of a class.

attribute is the name of an attribute that belongs to a certain entity defined previously

using a l i t e r a l i z e statement.

value should be either a symbolic or numeric constant

For example, the following is a WM element of the Monkey class:

(monkey “a t 5-7 “on couch “ho lds banana)

1 .1 .2 P r o d u c tio n M em o r y (P M)

Production Memory (PM) consists of a set of productions. The representation of a

production stems from the natural conditional If-Then statement. As a result, a pro

duction has two parts: antecedent and consequent, or in other terminology Left-Hand

Side (LHS) and Right-Hand Side (RHS). The antecedent consists of a number of con

dition elements and the consequent consists of a number of actions as shown below:

C\ Sz C'2 Hi. C 3 Sz . . . C n ------- .4i ; .4o ; .4 3 5 . . . Am.

In 0PS5, each condition element is a list of elements, where the first element is a

class name of a certain entity defined as shown in the previous section and the rest of

the elements are attribute-predicate-value triples. Each of these triples in a condition

element of a. particular production has the following form:

“ attribute predicate value

where,

attribute is the name of an attribute that belongs to a certain entity.

predicate is one of the following:

15

(p mbl7
(goal “s ta tu s a c t iv e "type on “o b je c t <o>)
(o b je c t “name <o> “a t <p>)
(monkey “a t <p> “ho lds n i l)

— >

(w rite (c r l f) climb onto <o>)
(modify 3 “on <o>)
(modify 1 “s ta tu s s a t i s f i e d))

Figure 1-2: Example of an 0PS5 production

= to denote numeric or symbolic equality

<> to denote numeric or symbolic inequality

> to denote the numeric equality “greater than"

< to denote the numeric equality “less than”

>- to denote the numeric equality “greater than or equal to”

<= to denote the numeric equality “less than or equal to”

<=> to denote not same type predicate

value can be of two types: (1) Constant as either numeric or symbolic (2) Variable

which is represented by a symbolic atom preceded by a "<” character and followed

by “>” a character (e.g. <x>).

In 0PS5, actions in the RHS of productions are of three types: (1) WM actions

such as adding, removing or modifying a WM element. (2) I/O actions (3) other actions

such as function calls. Figure 1-2 presents an example of an 0PS5 production, namely

production mbl7 of the well known Monkey and Bananas program [3].

1 .1 .3 In feren ce E n g in e

The inference engine is that part of the production system interpreter tha t executes pro

ductions. 0P S 5’s inference engine executes productions in a cycle known as Recognize-

Act [8]. This cycle consists of three phases: matching, conflict-resolution and action,

where recognize refers to the first two. The following is a summary of the processing

performed by each of these three phases:

16

(1) Match Phase: In this phase, the inference engine evaluates condition elements

of all productions against the current contents of WM according to a predefined match

algorithm. 0PS5 uses the Rete match algorithm [8]. The resulting matched productions

along with WM elements matching each production are collectively referred to as the

conflict set or as productions instantiations.

(2) Conflict-Resolution Phase: The output of the match phase is the input to this

phase, where one production instantiation is selected for firing (i.e. to be executed)

according to a predefined confiict-resolution strategy. 0PS5 offers two conflict-resolution

strategies LEX and MEA which are based on recency of WM elements (i.e. with respect

to time tags of WM elements) and specificity of WM elements (i.e. number of constant

and variable tests in the LHS of a production). For more details, see [10]. If the conflict

set is empty then execution halts.

(3) Act Phase: The selected production instantiation from phase 2 is fired by exe

cuting its RHS. If any of the RHS actions specify halt, then the inference engine stops.

Otherwise, the inference engine executes another Recognize-Act cycle.

1.2 Organisation of the thesis

This thesis is divided into six chapters in a way to give the reader a. consistent and

gradual view of the work that has been carried out.

After the introduction to the thesis and the overview of the architecture of the pro

duction system model in this chapter, a survey on the efficiency of production systems

is presented in chapter 2 to summarize most of the efforts made by researchers to date

to improve the performance of production systems in both uniprocessor and multipro

cessor environments. Research in the uniprocessor environment may be summarised

as either trying to find better algorithms (e.g. Rete [8], TREAT [31]) or exploiting

better architectures (e.g. RISC’F [24]). On the other hand, research in multiprocessor

environments may be described as exploiting parallelism in OPS5 production systems

by proposing parallel architectures along with parallel algorithms to be run on them.

Chapter 3 presents a new method that has been implemented for executing pro

17

duction systems based on object-oriented transformation of such systems. To help in

understanding, building and presenting this transformation, an object-oriented design

methodology proposed by Booch [1] has been followed step by step. This has resulted

in developing an object-oriented transformation engine which accepts as an input an

0PS5 production system and produces as an output an object-oriented system to be

executed in an object-oriented environment. This approach has been implemented and

executed using the EuLisp [34] language.

Chapter 4 presents the results of executing a set of well-known 0PS5 production

systems of varying characteristics to verify this new approach. Each of these systems

was transformed into an object-oriented system and then two types of measurements

were gathered, static and run-time. Static measurements are concerned with static

information which is gathered during the transformation of 0PS5 production system

programs into object-oriented ones. Dynamic measurements refer to measurements that

are gathered during the execution of the object-oriented transformed 0PS5 production

system programs. One of the main results of these measurements is a set of perfor

mance measurement tools that are valuable for understanding the bottlenecks in the

performance of production systems and are easy to implement.

Chapter 5 discusses the concurrent object-oriented execution of 0PS5 production

system programs using the future message passing mechanism to implement the fol

lowing four levels of parallelism: condition-element parallelism, join-level parallelism,

a combination of condition-element parallelism and join-level parallelism, and finally

a combination of action-level parallelism, condition-element parallelism and join-level

parallelism.

Finally, chapter 6 discusses the conclusions from the research carried out in this

thesis and presents various issues related to future research work.

18

Chapter 2

A Survey on AI Production

System s Performance

Efficiency of production systems has been a. major issue studied by many researchers.

As a result, the work that has been done towards the speed-up in the execution of the

Recognize-Act cycle is clearly architecture dependent. In other words, research in this

area, falls into two environments, uniprocessor and multiprocessor environments. In the

uniprocessor environment, most efforts have been directed towards acceptable execution

speed in real-time environments. Elsewhere, the focus has been the parallel execution of

the Recognize-Act cycle and in particular the match phase. In this chapter, section 2.1

summarises research 011 uniprocessor performance, and sections 2.2 and 2.3 summarize

that on shared and distributed memory multiprocessor environments, respectively.

2.1 Uniprocessor environments

Many software techniques have been investigated to speed up the execution of 0PS5

based production systems and particularly in the match phase of the Recognize-Act

cycle, since it is estimated that on average 90% of the time spent executing this cycle is

spent in the match phase [8]. As a baseline, it is worth noting tha t the OPS5 inference

engine in Franz Lisp runs at around 8 WM changes per second — about 3 production

firings per second — on a VAX —11/780 machine.

19

2 .1 .1 R e te M atch A lg o r ith m

The Rete match algorithm represents the evolution of indexing algorithms exploited by

some researchers such as McCracken, McDermott and Rychener [27, 30, 39]. Briefly,

when a WM element is inserted into the WM, some features are extracted and used

to generate a set of productions that are partially satisfied. Subsequently, condition

elements related to each production in this set is examined to check whether a produc

tion is to be instantiated or not. In addition, memory support was exploited in these

algorithms to count the number of patterns in any WM element inserted into the WM.

Conversely, deletion of a WM element decreases the count by the number of patterns

in the element.

The Rete match algorithm [8] can be viewed as the engine of the match phase where

WM changes are inputs to this engine and productions instantiations its output. Rete

can be also thought of as a data-flow network compiled from the left hand sides of the

productions. Rete exploits two im portant characteristics of most production systems,

Temporal Redundancy and Structural Similarity as described below:

(1) T em p o ra l R e d u n d an c y : This refers to the relatively small number of WM

changes that are to be executed on every production system cycle run (i.e. Recognize-

Act Cycle). This entails storing results of previous production system cycles so as to

use them in subsequent cycles.

(2) S tru c tu ra l S im ilarity : Often, productions exhibit structural similarities between

two or more condition elements in one or more productions. This similarity is rep

resented by similar condition elements classes and attribute-predicate-value triples in

different condition elements. Exploiting such a characteristic results in sharing common

tests and hence improving performance.

B uild ing th e R e te N e tw o rk

One way to understand the building of the Rete network is to consider its inputs and

outputs. Since a WM change is supposed to add, delete or modify a WM element, WM

changes propagate through the root node from the network as tokens of the following

form:

20

< tag, WM data elements part >
The tag is either + to indicate addition to WM or - to indicate deletion from WM.

Hence, adding a WM element is performed by sending the following token:

< +, WM element to be added >
and deleting a WM element is performed by sending the following token:

< -, WM element to be deleted >
Modification of a WM element is performed in two steps, namely a deletion followed

by an addition.

To generate the Rete network for a typical production system program, each pro

duction is analysed to identify Intra-Condition tests and then Inter-Condition tests as

follows:

Intra-C ondition Tests: These tests appear as direct successors of the root of the Rete

network. These are called constant test nodes. These have one input and one output;

in addition, the following steps are performed when compiling each condition element

of a production:

1. Build a constant node corresponding to the class of each condition element if there

is no node of that class immediately below the root of the network.

2. Then, build a. node for each constant test attribute. As above, these nodes only

need be built if 110 nodes exist with the same features (i.e. attribute-predicate-

value) in the Intra-Condition tests portion of the Rete network.

3. Build constant test nodes for multiple occurrences of the same variable in a condi

tion element to check for consistent variable binding within a condition element.

When a token is propagated from the root, the class of the WM element in the data

elements part of the token is compared to one of the constant nodes immediately below

the root node and then if one of these tests succeeds, it is sent to subsequent constant

tests. If any of the constant tests fail, the token is rejected. If the token passes all the

constant tests, the token is stored in a new node type called an alpha memory node,

which holds tokens satisfying a particular condition element (i.e. satisfied all its constant

21

tests). This alpha, memory support in Rete relieves the inference engine of computing

matching WM elements relevant to different condition elements on subsequent cycles.

Note that a WM element is said to be relevant to a condition element if it satisfies all

its constant tests.

In te r-C o n d itio n T ests: Inter-Condition tests are performed to check for consistent

variable bindings across multiple condition elements. These tests are implemented in

Rete as two-input memory nodes. When a token U arrives at either the left or right input

of a two-input memory node, it is compared with the tokens available in the opposite

memory to check for consistent variable bindings. Tokens that satisfy consistent variable

bindings are paired with token /, and passed to a new memory node called a Beta-

Memory node which may serve as a. left input to another two-input node. It is worth

noting that left inputs of two-input nodes are always either alpha or beta memory nodes,

whereas right inputs are always alpha memory nodes. Moreover, there are two types of

two-input nodes, and-nodes which compute consistent variable bindings between positive

condition elements of the same production and not-nodes which compute consistent

variable bindings for negated condition elements.

Finally, the result of the output of the last two-input node which holds tokens

satisfying all condition elements of a specific production is stored in a new node called

a terminal node or a production node having the production’s name as the name of the

node.

To demonstrate how 0P S 5’s inference engine works using the Rete match algorithm,

a Rete network of productions mbl and mb3, shown below, of the monkey and bananas

production system program [3] is constructed. Then four WM actions are used to

demonstrate how tokens are formulated and processed. Figure '2.1.1 shows how the

LHS of these two productions are compiled into a corresponding Rete network.

(p mbl

(goal " s ta tu s a c tiv e "type ho lds "o b je c t <w>)

(o b je c t "name <w> "a t <p> "on c e i l in g)

— >

(make goal " s ta tu s a c tiv e “type move "o b je c t la d d e r " to <p>))

'22

CLASS CLASS
IKKY)AL

ON
C FIU N l

ONNAME
SAD D Rl tDKI

PS

anti-2

m b l CO NFU CT SET m bS

Figure 2-1: Rete Network of Productions m bl and mb3

(p mb3

(goal " s ta tu s a c tiv e "type holds "o b jec t <w>)

(o b jec t "name <w> "a t <p> "on c e ilin g)

(o b jec t "name ladder "a t <p>)

(monkey "on ladder)

- - >

(make goal " s ta tu s a c tiv e "type holds "o b jec t n i l))

Now, consider what happens when executing the following WM actions:

(1) : (make goal " s ta tu s ac tiv e "type holds "o b jec t banana)

23

(2): (make object "name banana "at 5-7 "on ceiling)
(3): (make object "name ladder "at 5-7)
(4): (make monkey "on ladder)

For the purpose of demonstrating the Recognize-Act cycle, each of the above WM

actions is assumed to require a single production system cycle. When the first WM

action is executed, a new production system (PS) cycle is initiated to start the match

phase. Hence, tokenl is formed as follows:

tokenl: < + , (goal "status active "type holds "object banana) >

tokenl is then sent to the root of the Rete network from where it is broadcast to

all successor nodes. All the tests fail except for class=goal which forwards tokenl to

its successor constant test node status=active. tokenl passes this test and is sent to

the successor constant test node type=holds which it passes also, tokenl is then sent

to the successor node a t memory node which stores tokenl and passes a copy of it to

the left input of an d -1. At this stage, the right memory of and-1 (i.e. a 2) is empty and

hence processing of tokenl is suspended. This implies the termination of the current

PS cycle because the conflict-set is empty.

Now, the second WM action is executed and a match phase of a subsequent PS cycle

is initiated. Hence, token2 is formed as follows:

token2: < + , <object "name banana "at 5-7 "on ceiling) >

token2 is then sent to the root of the Rete network and is broadcast to its successors.

token2 passes the constant test class=object and sends token2 to on=ceiling which

it also passes and is sent to a 2 which stores it and sends a copy to the right input of

and-1. At this stage, token2 is checked against all tokens in the left memory of and-1
for consistent variable binding of variable w. At this moment, only tokenl exists in the

left input memory of and-1. As a result, token2 is checked against tokenl where the

consistency check succeeds and w is bound to banana. Hence tokenl and token2 are

paired to form token3 as follows:

24

token3: < + , (goal " s ta tu s a c t iv e "type ho lds " o b je c t b an an a),

(o b je c t "name banana " a t 5-7 "on c e i l in g) >

token3 is then passed to both (3i memory node and mbl production node (i.e. termi

nal node). When token3 reaches mbl node, it is sent as m bl’s production instantiation

to the conflict set. When token3 reaches /31? it is stored and then a copy of it is sent

to the left input of and-2 . However, the right memory of and-2 is empty at this stage

and hence processing of token3 at and-2 is halted.

At this stage, the conflict-set holds m bl’s production instantiation, and 0 P S 5’s

inference engine enters the conflict-resolution phase of the current PS cycle. Since one

production instantiation exists in the conflict-set, then m bl’s instantiation is selected

for firing regardless of the conflict-resolution strategy being applied. As a result, a new

PS cycle is initiated; consequently, a match phase is initiated and token4 is formed

from the action in the RHS of mbl production as follows:

token4: < + , (goal " s ta tu s a c tiv e " type move " o b je c t la d d e r " to <p>) >

Then, token4 is passed to the root of the Rete network of productions mbl and mb3

in Figure 2-1. Although it passes the tests c la ss= g o a l and s ta tu s = a c t iv e , it fails at

type=holds and processing halts ending the current PS cycle.

When the third WM action is executed, a new PS cycle is initiated and token5 is

formed as follows:

token5: < + , (o b je c t "name la d d e r " a t 5-7) >

token5 satisfies c la ss= o b je c t and name=ladder and hence it is sent to a 3 where

it is stored and a copy is sent to the right input of and-2. token5 is now compared

against all tokens in the left memory of and-2, in this case only token3, from an earlier

cycle, for a consistent variable binding of variable p. As a result, p is bound to 5-7 and

token5 and token3 are paired to form token 6 as follows:

token 6 : < + , (goal " s ta tu s a c t iv e " type ho lds "o b je c t banana),

(o b je c t "name banana " a t 5-7 "on c e i l in g)

(o b je c t "name la d d e r " a t 5-7) >

25

token6 is then sent to (32 beta memory which stores it and sends a copy to the left

input of and-3 where processing of token6 is terminated because and-3’s right input

is empty.

The fourth WM action is executed and token7 is formed:

token7: < + , (monkey "on ladder) >

This passes class=monkey and on=ladder, reaching a 4 where it is stored a copy

is passed to an d -3 ’s right input. token7 is paired with all tokens of the left input

memory of and-3 (token6) since no consistent variable bindings are to be computed

at this node and hence token8 is formed and sent to mb3 production node.

token8: < + , (goal "status active "type holds "object banana)
(object "name banana "at 5-7 "on ceiling)
(object “name ladder "at 5-7)
(monkey “on ladder) >

Production node mb3 sends token8 to the conflict set as an instantiation of mb3.
Then, the conflict-resolution phase is started, where mb3 production is selected and
fired. token9 is formulated from the action in RHS of mb3 as follows:

token9: < + , (goal “status active "type holds "object nil) >

This passes class=goal, status=active and type=holds and reaches Qi where it is

stored and passes a copy to the left input of and-1 for consistent variable bindings with

tokens in the right memory of an d -1. Consistent variable binding test fails at and-1
since its right memory, « 2i has one token, token2 with variable w bound to banana while

it is bound to nil in token9 of o^. As a result, processing of token9 is terminated.

The inference engine now stops because there are no more WM actions to be executed

and the conflict-set is empty.

2 .1 .2 O P S 5 b ased on B L ISS

0PS5/LISP was followed by 0PS5/BLISS [11] in which 0PS5 was rewritten in a sys

tems programming language, called BLISS. Performance was about 5 times faster than

26

0PS5/LISP. This speed-up was a. result of changing the representation of the important

data structures and adding special code to handle common cases efficiently.

2 .1 .3 O P S 8 3

In another attem pt to improve the performance of OPS interpreters, OPS83 was devel

oped. In OPS83, left hand sides of productions are compiled into native machine code.

OPS83 was about 4 times faster than its predecessor OPS5/BLISS [11] giving around

200 WM changes per second.

2 .1 .4 T h e T R E A T A lg o r i th m

TREAT [31] stands for Temporally REdundant Associative Tree algorithm and was

initially developed to run on the DADO machine [43], details of which will be given

later. TREAT was originally intended as a parallel algorithm but a serial algorithm

was derived later for temporally and non-temporally redundant production systems. In

addition to supporting condition membership and memory support, TREAT utilises a

conjecture made in McDermott et. al [30] with respect to conflict-set support:

“It seems highly likely that for many production systems, the retesting cost

will be less than the cost of maintaining the network of sufficient tests.'1'1

TREAT further utilises conflict-set support by using it as a tool to reduce the number

of comparisons required to compute consistent variable bindings. To exploit conflict-set

support, a distinction must be made between processing positive and negative condition

elements.

P ro cessin g P o s i t iv e C ond ition Elem ents: Adding WM elements that match pos

itive condition elements may result in new production instantiations which are added

to the conflict set. Deleting a WTM element that matches a positive condition element

is handled by removing the resulting production instantiations including that WM el

ement from the conflict set directly without the need to compute consistent variable

bindings as in Rete.

27

Table 2.1: Speed-up obtained by TREAT over Rete

Order MAB MUD MESGEN MAPPER WALTZ
Lexical 1.48 0.77 2.22 1.14 0.65
Sorted 1.67 1.96 2.22 1.14 1.48

Processing Negative Condition Elements: Adding WM elements which match neg

ative condition elements may result in removing some productions instantiations from

the conflict set. However, TREAT handles this case by temporarily transforming a

negative condition element into a positive one and then removing productions instanti

ations from the conflict set that would be added as a result of this transformation. On

the other hand, removing a WM element is handled in the same way as if the condition

element had been positive and the WM element had been just added.

In contrast to Rete. while TREAT computes constant tests and stores matching

tokens in memory nodes like Rete, it partitions alpha memories into old, new-add and

new-delete which hold WM tokens of previous cycles, new WM elements to be added

and new WM elements to be deleted, respectively. Moreover, TREAT does not build

beta memories nor does it store computations of consistent variable bindings. Instead,

TREAT utilises a database approach in joining relations with respect to their increasing

cardinality1 [46]. In summary, a WM element matching a specific condition element is

used as a seed to initiate the join procedure between different alpha memories of one

production ordered with respect to increasing cardinality. Table 2.12 shows the speed

up obtained bv TREAT over Rete using both the lexical ordering and seed ordering join

of alpha memories in a number of programs.

2.1.5 R IS C F P ro d u ct io n S y s te m Machine:

Forgy [8] originated the idea of exploiting RISC (i.e. Reduced Instruction Set) [35]

architectures to implement the Rete match algorithm which was later studied by Lehr

[24]. The main motive behind exploiting RISC architectures in executing production

d e f e r s to number of tuples in a relation
2Figures in this table are extracted from the graph in Figure 4-11 in [31]

28

systems using Rete-based 0PS5 interpreters is that the Rete match algorithm does not

require arithmetic operations nor sophisticated addressing modes. Typical instructions

performed by Rete when compiled into assembly language are load, compare and jump.

Rete RISC, named RISCF, was a special purpose architecture to execute Rete based

OPS interpreters and has five classes of instructions: jump, subroutine calls, memory

reference, immediate and register to register classes, where each instruction is encoded

in 32 bits. RISCF has also four addressing modes, absolute, indirect, base register plus

displacement and register.

A study of applying branch and prediction strategy of RISCF to Rete was conducted

by Lehr [24]. The branch and prediction strategy in RISCF relies on two bits in the

instruction one of which is used to predict a branch and the other one to inform the

processor that the next instruction is jump class. So if a branch is taken one machine

cycle is saved.

Since the success of the branch and prediction strategy depends heavily on the

amount of available branching in a typical program, Rete-based production system

programs are expected to gain when such a strategy is utilised because constant test

nodes, memory nodes, and-nodes and not-nodes will probably lead to branching. As

a result the gain in performance when utilising such a strategy varies from one OPS

production system to another. Lehr [24], concluded that for the six 0PS5 production

systems studied in [12], the average speed-up obtained when utilising such a strategy

at constant-nodes, memory nodes, and-nodes and not-nodes is 15% based on run time

measurements obtained bv G upta and Forgy [12].

2 .1 .6 C o m p a r a t iv e A n a ly s is O f C o m p u te r A r c h ite c tu r e s

A survey was conducted by Quinlan [36] to improve production systems performance

by means of comparing different computer architectures. The following six diverse

computer architectures were investigated:

1. A cu s to m m icro-coded m achine: The two main features of this architecture

are the large general purpose register file and the fact that each instruction rep

resents an operation on either an entire node or large part of a node.

29

2. R IS C F P ro d u c tio n S ystem M achine: RISCF is a custom-designed RISC

machine for executing Rete based OPS production system programs as described

in section 2.1.5.

3. R IS C II C o m p u te r: This machine features a reduced instruction set that resides

on a single chip.

4. T h e V A X -11/780: This machine is the basis of many of the studies that have

been conducted to improve OPS production systems performance. This machine

features a large instruction set where instructions are of variable length format,

but only a small number of registers.

5. T h e P y ra m id 90x C o m p u te r: This machine features a large instruction set

of fixed format.

6 . A C o m p u ta tio n a l M odel: A computational model was developed to establish

an upper bound on the execution of production system programs based on the

following metrics when executing a typical program:

(a) The minimum amount of information required to do an operation and hence

calculate the number of instruction bytes read from primary memory.

(b) The number of bytes of data transferred between the processor and main

memory.

(c) The number of computations required of the processor such as ALU opera

tions. data address calculations and branch address calculations.

The results of the survey conducted on these six architectures were based on re

sults obtained by Gupta and Forgy [12] regarding six production systems and can be

summarised as follows:

1. On average, the micro-coded machine requires one half of the CPU-Memory traffic

required of the others due to the large register file.

30

2 . On average, the RISCF machine required the lowest number of machine cycles

due to the branch and prediction strategy exploited in this architecture. RISCF

machine comes second to the micro-coded machine for CPU-Memory traffic.

3. The use of hash tables to store tokens instead of linked lists as in 0PS5, resulted

in a reduction of CPU-Memory traffic by between 0.75 and 5.88 for the six sample

inputs. This shows that an increase or decrease in performance is program depen

dent if hash tables are to be used to store tokens instead of linked lists. Moreover,

using hash tables, the study showed that adding and deleting WM tokens takes

50-80% of the total CPU-Memory traffic independent of the production system

being used.

4. The computational capabilities of a CPU executing production systems are mainly

data loading and storing.

As a result, Quinlan [36] concluded that the micro-coded machine is the best CPU

architecture in this survey to execute production system programs due to resulting

heavy CPU-Memory traffic. On the other hand, the RISCF machine may be a good

candidate if a cache memory is to be incorporated to reduce CPU-Memory traffic and

provided the cycle time is small enough to rival that of the micro-coded machine.

2.2 Shared Memory M ultiprocessor

In an attem pt to improve the performance of production systems, Gupta. [15] in his

Ph.D. studied the parallelism available in OPS5 production systems that are based on

Rete. The results of this study formed the basis of the strategies behind the design of

the Production System Machine (PSM). First, a summary of the results of parallelism

in production systems is presented in section 2 .2.1 and then the architecture of the

Production System Machine (PSM) is presented in section 2.2.2.

31

2.2 .1 P a ra lle l ism in P r o d u c t io n S y s te m s

The processing clone in the match phase can be broken into two parts [33]: selection and

state-update. The first involves obtaining the set of condition elements that are satisfied

by a new WM change (i.e. the task of performing intra-condition tests in Rete). The

state-update part is concerned with obtaining new production instantiations as a result

of updating state associated with satisfied condition elements in the selection part and

then performing inter-condition tests.

Gupta studied parallelism in the match phase with respect to state-update based on

run-time statistics for six-well known production systems, VT [26], ILOG [29], MUD [20]

, DAA [22], R.l-SOAR [38] and EP-SOAR [23]. These showed 75-95% of the processing

time is spent in performing the state-update part. Gupta studied the following kinds of

parallelism within state-update:

Production-Level Parallelism

Production-level parallelism entails partitioning a production system program into sev

eral partitions of productions, where in the extreme case each production is assigned to

its own processor. Simulation results obtained from production-level parallelism show

that the speed-up obtained seems bounded by a factor of 1.9. G upta attributed this

limited speed-up to the following reasons:

1. The average number of affected productions per WM change is small compared

to number of productions in a typical production system. However, for the six

production systems mentioned above, the average size of the affected set is 26.

This will result in underutilisation of the processors in the machine being used if

the number of processors is much larger than the size of the affected set.

2. The variance in processing requirements of the affected set of productions.

3. The loss of sharing in the Rete network.

32

N ode-Level Parallelism

In an attem pt to reduce the variance in processing requirements of the affected set

of productions as explained above, node-level parallelism was explored. Node-level

parallelism refers to the processing of activations of two-input nodes in parallel regardless

of whether the two-input nodes belong to the same production or different productions in

the Rete network. Simulation results indicate that, on average, a speed-up of 1.5 may

be obtained over production-level parallelism if node-level parallelism is used. Since

node-level parallelism requires a massive amount of communication, a shared memory

architecture is preferred.

Gupta, noted two disadvantages of node-level parallelism, known as the long chain

and the cross product effects. The long chain effect is characterised by a long chain

of dependent two-input nodes. Productions having such a characteristic may take a

long time to process the activation of such a chain of two-input nodes. Therefore, this

may result in variance in processing of affected productions. To resolve this, G upta

proposed the use of binary Rete network. Using such a technique, simulation results

showed a a gain in performance for SOAR but a loss for others. The gain for SOAR

OPS-like programs is due to large number of condition elements in productions of such

programs. Alternatively, the loss in performance in other OPS programs is due to the

small number of condition elements in productions of such programs because the cost

of updating state in the binary Rete network is much higher than in the linear Rete

network. The cross product effect refers to the situation when an incoming token to

one input of a two-input node is to be matched with large number of tokens in the

opposite memory. As a result, a large number of tokens may be sent to the successor

nodes which are processed sequentially. Hence, productions suffering from this effect

take more time to be processed and affect the overall speed-up. To resolve this, G upta

proposed intra-node-level parallelism described below.

Intra-Node Level Parallelism

Intra-node level parallelism is the processing of multiple activations of two-input nodes

in parallel in an attem pt to reduce the impact of the cross product effect described

33

above. Simulation results obtained by G upta show that on average a speed-up of 1.3

may be obtained when using intra-node level parallelism over node-level parallelism.

However, the use of intra-node level parallelism may lead to incorrect results in two

cases as follows:

• When the opposite memory of a two-input node is unstable. That is, process

ing of deletions or additions of tokens in the opposite memory while processing

activations from the other memory of the same two-input node.

• Processing of conjugate tokens in parallel. This refers to a situation where the

same token being inserted is also being deleted.

G upta suggested sequential processing of the first case because of the assumption in

the Rete network that while a two-input node is being processed, the opposite memory

should stay stable. He also noted that there is no simple way to ensure that the opposite

memory stay stable and it would be expensive to detect and delete duplicates leaving

two-input nodes3. In the second case, Gupta proposed the use of an extra-deletes-list to

store earlier deletes associated with two-input nodes so as when a new token is inserted,

a check is first made whether there was an earlier request for its deletion or not. G upta

did not comment on maintaining this list from cycle to cycle as this is expected to grow

significantly during the life of a production system (i.e. during its execution).

Action-Level Parallelism

Action-level parallelism refers to the concurrent processing of WM changes. Simulations

showed that speed-up factors of 1.5, 1.85 and 3.9 may be obtained over production-

level parallelism, node-level parallelism and intra-node level parallelism, respectively

when combined with action level parallelism. Hence, the upper bound on the speed-up

obtained from using parallelism is around a factor of 10 over uniprocessor Rete-based

OPS interpreters.

3m ore e laboration on this case is presented in section 5.2.4

34

H a rd w a re
S ch ed u le r

S m a ll
R am

S m all
R am C ache

S m all
Ram

S h a re d
M em ory

S h a re d
M em ory

S h a re d
M em ory

C ache C ache

Figure '2-2: Architecture of the Production System Machine

2.2.2 P rod u ct ion S y s te m Machine

The Production System Machine (PSM) is a result of the research carried out by

Gupta [15] in his Ph.D. to study parallelism as discussed above. PSM is a shared-

memory multiprocessor architecture as shown in Figure ‘2-2 with the following charac

teristics:

• The number of processors is chosen between 32 and 64 based on the simulation re

sults obtained when production-level parallelism was explored [15], which showed

that the size of the affected set of productions is relatively small. Also, his simu

lations showed that using more than 32 processors does not produce an additional

speed-up.

• Individual processors are high performance RISC processors each with a small

amount of RAM and cache memory. The use of RISC processors is based on

results obtained bv Quinlan in section 2.1.5.

• Processors should be connected to shared memory by one or more shared buses.

However, simulations obtained by Gupta show that a single high speed bus is

capable of dealing with the load put on it by 32 processors.

• A hardware task scheduler is to be connected to the shared buses to schedule

processing of different node activations as well as assigning such activations to

idle processors. This scheduler has to be very fast so as not to be a. bottleneck

bearing in mind that node activations are very small tasks.

The suggestion to use shared memory architecture is an attem pt to solve two prob

lems: first, when adapting the Rete network to a multiprocessor system using node-level

or intra-node level parallelism there is huge amount of communication between nodes;

second, to simplify the load distribution problem which would result in a non-shared

memory architecture when, for example, assigning node activations to different proces

sors. The assignment of productions to processors in the general case is shown to be

NP-complete [33].

The estimated performance of the PSM machine when running the adapted Rete

algorithm is 11.000 WM changes per second using 32 processors each rated at 2 MIPS.

2.3 Non-Shared M ultiprocessor Environments

Research towards improving the performance of production systems has led some re

searchers to propose specialised distributed memory architectures and the following is

a survey of that research.

2 .3 .1 O P S 5 P r o d u c t io n S y s te m s on IL L IA C -IV

ILLIAC-IV is a parallel processor consisting of 64 processing elements (PE) running

in SIMD (Single Instruction Multiple D ata stream) mode. Forgy [9], described an al

gorithm to exploit these SIMD PEs in executing production systems. This algorithm

entails that a production system be partitioned into 64 sub-production systems corre

sponding to each PE. Each PE is assigned one of these partitions and constructs its

own Rete network for that set of productions. The execution of the match phase is con

strained by the SIMD nature of this machine such tha t no processor starts processing

nodes of further types unless all other processors finish processing current node type.

In other words, constant-test nodes are processed first by all processors and then alpha

memory nodes are to be processed next and so on. Due to this constraint, PEs which

finish early stay idle till the last processor finishes processing the current evaluation of a

36

particular node type. This constraint has been reported as the most serious limitation

and it may be concluded that SIMD machines are not good candidates for executing

production systems especially Rete-based ones. It has also been proposed tha t pro

ductions that possess structural similarity be put in one partition as a one remedy to

minimise the time some processors stay idle. However, this is a static solution to load

balancing and does not consider the dynamic problem. Finally, no estimates have been

reported with respect to speed-up expected from this approach.

2.3 .2 T h e D A D O m ach in e

DADO is a special-purpose machine designed to achieve high performance in executing

rule-based systems based on a very large scale parallel architecture [43]. DADO has a

binary tree topology and is comprised of very large number of processing elements(PEs).

Each PE has its own processor, memory and a specialised I/O switch.

This flexible architecture supports MSIMD (Multiple Single Instruction Multiple

Data streams) processing mode. Each PE is able to operate in two modes, SIMD and

MIMD(Multiple Instruction Multiple Data streams). A PE in SIMD mode receives

instructions from some ancestor PE but operates on different sets of data residing in

its own local memory. On the other hand, a PE in MIMD mode executes instructions

in its local memory independent of other PEs in the tree. The root of the tree is a

single processor that controls the entire operation of the tree. In practice, the DADO

machine can be configured in such a way so that one or more PEs become the root(s)

of one or more subtree(s) in the tree, where the root of a subtree operates in MIMD

mode and PEs of this subtree operate in SIMD mode. As a result, the DADO machine

can be divided into logically distinct partitions, where each partition executes a certain

task. Communication between physically adjacent PEs (i.e. parent and children) is

handled by a specialised I/O switch that contains a combinatorial circuit to manage

rapid selection of a candidate PE in the conflict-resolution phase of the Recognize-Act

cycle.

A number of algorithms have been proposed to exploit DADO’s binary topology and

parallel architecture in executing production systems. The following is a summary of

37

these algorithms.

A lgorithm 1: Full Distribution of Production M em ory

In this algorithm, a production system program is to be partitioned into an equal number

of partitions corresponding to the number of PEs in the DADO machine. Each PE has

its own set of productions, a naive match algorithm and a set of WM elements relevant4

to its set of productions. WM changes are broadcast to all PEs and hence each PE

computes match and conflict-resolution. Selection of a winning production among all

PEs is performed by the max-resolve circuit of the DADO machine. As stated in [43],

the performance of this algorithm depends on the nature of the match algorithm being

used. However, since the local memory of each PE is quite small (e.g. 16KB), the

use of a sophisticated match algorithm such as Rete [8] may cause memory contention

problems and this will be exacerbated when the size of a P E ’s local WM is large.

A lgorithm 2: Original D A D O Algorithm

In this algorithm, the DADO machine is logically divided into three levels: Production

Memory(PM) level, upper tree level and WM level subtrees as shown in Figure 2-3. The

selection of the PM-level is based on any of the following two strategies. One is based on

assigning one PE per production in the PM-level and thus selecting a PM-level that has

a number of PEs that are at least equal to the number of productions in PM. The other

is based on subdividing the PM and distributing it to the PEs in the PM-level. Thus,

selecting the PM-level is based on finding a level in the tree that has a minimum number

of PEs equal to the number of partitions of a typical production system. Each of the

PM-level PEs operates in MIMD mode while their successors constitute WM-subtrees

level and operate in SIMD mode.

Processing starts by broadcasting WM changes to each PE in the PM-level and

this concurrently determines the relevancy of the WM-changes broadcast. If a WM

change specifies addition, it is added to a free PE in a subtree rooted at a PM-level

4 A working m em ory elem ent is said to be relevant to a production if it satisfies all co n sta n t te sts of
one o f the condition e lem en ts that production.

38

Upper
Tree
PE*

WM Subtree* PE*

Figure '2-3: Application of DADO Original Algorithm

PE. On the other hand, deleting a WM change is performed associatively using the

content addressable hardware of DADO. Each condition element of a production stored

in PM-level PEs is broadcast to the WM-subtree below its PM-level PE for consistent

variable binding testing. Local conflict sets of productions are formed and stored within

relevant WM-subtrees. Upon termination of the match phase and starting of the select

phase, PM-level PEs synchronise with the upper-tree level and conflict-resolution is

performed using the max-resolve circuit of DADO. Resulting production instantiations

are reported to the root of the tree to be fired and resulting WM changes are broadcast

to the PM-level PEs to start a new cycle.

This algorithm does not seem suited for temporally redundant production system

programs (i.e. many WM changes are to be executed on every production system cycle)

because of the recomputation of the match results done in the previous cycles. In

addition, a large number of changes to WM may cause memory contention because of

the small size of the PE RAM and particularly in asynchronous production systems

[40], where WM changes are input both from external sensors and as a result of firing

productions. No details regarding implementation or performance of this algorithm has

been seen so far.

39

A lgorithm 3: TR EAT

The TREAT algorithm described previously for a uniprocessor was initially proposed

to run on DADO. In the full distribution algorithm, tlhe match routine is replaced

by TREAT on each PE. On the other hand, TREAT wa ŝ a refinement of the original

DADO algorithm with respect to state saving and particularly the construction of alpha

memory nodes (recall that the DADO original algorithrru does not save state between

production system cycles).

TREAT has been implemented (in C) with the full distribution algorithm. The

program fits into 8KB of RAM leaving 8KB for productions and WM elements (each

DADO node has only 16KB of RAM). Testing with a sample of four production systems

showed it was up to 7 times faster than Rete. Miranker [311] also estimated the speed-up

obtainable from TREAT with PM-level distribution to Ibe 3 to 14 times faster than

Rete. He did this by dividing the speed-up from TREAT with full-distribution by that

from partitioning production memory across the PM-level PEs. Miranker concluded

that a DADO machine of 32 to 127 processors, each with larger memories would be a

better configuration for the DADO architecture because current PE memory is too small

to store large numbers of WM elements and because production systems have limited

amount of parallelism. This conclusion confirms one of the intuitions behind the design

of the Production System Machine despite the fact that both PSM and DADO differ in

both architecture and topology.

A lgorithm 4: Fine-grain R ete algorithm

Under this scheme, Rete is mapped on to DADO from the bottom-up. Hence, DADO

is divided into three levels as in the original DADO algorithm but the upper tree which

represents the leaves of the DADO binary tree is responsible for computing constant tests

and storing alpha, memory tokens. The PM-level stores production nodes (i.e. terminal

nodes) of the Rete network. The levels of the tree close to the root are responsible for

computing conflict resolution. As a result, a winning production is propagated to the

root and then fired. WM changes that result from firing are broadcast to all PEs in the

upper tree.

40

This suggested implementation of Rete on DADO was studied by G upta [14] who

suggested the following:

• The sharing feature in Rete match algorithm should be turned off.

• Constant test nodes leading to an alpha memory node are to be stored in the same

PE.

• Memory nodes that are inputs to two-input, nodes are to be stored in the same

PE along with their respective two-input node so as to reduce communication

overhead when processing two-input nodes.

• The binary tree structure of DADO is to be exploited instead of the linear structure

of Rete networks. This approach resembles that taken to solve the long chain effect

in node level parallelism as was explained in section 2 .2 .1.

G upta analysed the performance of this implementation and estimated 12 production

firings per second. Although this algorithm seems to be better than the original DADO

algorithm, it still suffers from some problems such as the limited size of PE memory

and the performance of production systems running this algorithm may be governed by

the variance in processing requirements of some productions.

A lgorithm 5: Using D A D O as Associative Processors

An attem pt was made by Gupta [14] to respond to the deficiencies of DADO’s fine-

grain Rete algorithm by partitioning a production system into K partitions equal to

the number of PEs in a particular level of the DADO tree chosen as the PM-level. The

selection of the value of K depends on production level parallelism analysis as shown in

section 2.2.1 which showed that on average the size of the affect set is 26. As a result,

a separate Rete network for each of the K partitions is to be constructed. However,

the performance of this algorithm depends on the success of the partitioning strategy

and whether PE memories are large enough to contain sufficient WM elements. The

performance of this algorithm was estimated to be 67 production firings per second.

41

This algorithm takes advantage of DADO’s binary tree topology, which also allows

division into sub-machines, each rooted by a single PE. Although DADO has a large

scale parallel architecture, it certainly suffers some drawbacks: (1) PEs used are not

powerful enough (2) PE memory is too small to hold sophisticated match routines such

as Rete or others. (3) Underutilisation of PEs, in a sense that a large number of PEs

may stay idle during the match phase due to variance in processing requirements of

productions.

In conclusion, we observe that although there have been many attem pts at parti

tioning the problem to fit the DADO architecture, this remains a problem for which an

optimal solution is yet to be found.

2 .3 .3 N O N - V O N M ach ine

NON-VON was designed at Columbia University [17] and is a highly parallel tree struc

tured architecture designed initially for applications in symbolic information process

ing. NON-VON is comprised of two basic parts: primary processing subsystem and

secondary processing subsystem with a front end connection to a host as depicted in

Figure 2-4. The primary processing subsystem has a binary tree structure consisting of

a very large number of small processing elements (SPEs) that operate in SIMD mode.

Each SPE has an 8 bit ALU and a very small RAM in the range of 32 to 256 bytes and

communication links to its right and left neighbours via its parent. Leaf SPE nodes are

interconnected to form a. two-dimensional orthogonal mesh. Large processing elements

(LPEs) operating in multiple-SIMD mode, are supposed to root the SPEs at the fifth

to the tenth level of the primary processing subsystem. The secondary processing sub

system consists of a number of disc drives where each one is connected to one LPE in

the primary processing subsystem via an intelligent head unit.

An algorithm was proposed for executing 0PS5 on NON-VON which appears to be a

modification of G upta’s algorithm ‘'Using DADO as a Multiple Associative Processors” .

The proposed algorithm is to run on a prototype consisting of 32 LPEs corresponding

to the number of partitions recommended by Gupta for production level parallelism as

shown in section *2.2.1, and 16,000 SPEs. Each LPE receives a subset of productions

42

LPE N ETW O RK

n i» h

Figure '2-4: Architecture of the NON-VON Machine

and builds a corresponding Rete network but contents of memory nodes are stored in

the many SPEs of which the LPE is the root. Since the memory of the SPE is very

small, a WM token is processed by many SPEs at the same time. The host processor

is responsible for both executing both the select and act phases.

The estimated performance of this algorithm for this prototype using 3 MIPS LPEs

(Motorola 68020) with a program of 910 productions is 850 production firings per second.

Clearly, the distinction between DADO machine and NON-VON machine with re

spect to performance lies in the very powerful LPEs processors and the massive number

of SPEs rooted by each LPE. However, it may be concluded that NON-VON machine is

a better candidate for executing very large production systems employing large numbers

of WM changes.

2.3.4 Oflazer’s Work

Ofla.zer in his Ph.D. thesis [33] investigated some issues related to parallel processing of

production systems and particularly OPS based ones. The main issues investigated are:

(1) Implementation of an OPS5 parallel interpreter (2) Partitioning of productions (3) A

new parallel algorithm for production systems execution (4) A new parallel architecture

to support this algorithm. The following summaries the major results obtained,

Im plem entation o f a Parallel OPS5 Interpreter

A parallel 0PS5 interpreter was developed by Oflazer to run on a VAX—11/784 multi

processor system comprising four processors connected to a large shared memory. This

interpreter exploits production level parallelism [15] and hence a production system pro

gram which is executed using this interpreter ought to be partitioned among the four

processors. In general, the structure of such an interpreter reduces to a set of heavy

weight processes derived from a functional partitioning of the Recognize-Act cycle. In

this implementation, processors communicate using UNIX operating system kernel fa

cilities. More precisely, this interpreter is comprised of one control process and N match

processes for a multiprocessor system comprised of (iV + 1) processors. The control pro

cess is responsible for interfacing with the user, initiating the match processes, receiving

partial conflict set entries from the match processes, computing final conflict resolution

and then sending WM changes of the winning production, if any, to the match processes.

On the other hand, each of the match processes is responsible for performing match on

the subset of productions assigned to it, computing local conflict resolution and then

sending the local winning production to the control process. Implementation results of

this interpreter resulted in a speed-up factor of 1.1 to 1.7 for some production systems

and loss in performance for some others compared to Forgy's 0PS5 interpreter [10].

The loss in performance in some production systems and the little speed-up in some

others can be attributed to the following reasons:

• Variance in processing requirements of productions in the affect set as a result of

exploiting production-level parallelism.

• Communication overhead due to the fact that it is handled through UNIX kernel

instead of a hardware bus.

• Sequential transmission of WM changes from the control process to the match

processes instead of by broadcast.

Partitioning of Production System s

The partitioning problem related to production systems can be defined as:

44

uGiven a set. of K processors, each allocated its own memory, and a pro

duction system comprised of N productions, find a method, to assign the N

productions to the I\ processors such that the load on these K processors is

uniformly distributed.”

In selecting a. partitioning strategy for production systems, one has to consider two

m atters that are inherent in production systems. First, state of production systems

changes from one cycle to the next. Second, processing requirements of productions

vary.

In studying the partitioning problem, Oflazer noted the following strategies:

1. R an d o m A ssignm en t: Self explanatory!

2. R o u n d -R o b in A ssignm ent: assign productions to processors in a round robin

manner such that the ith production is to be assigned to processor (i mod (k + 1)),

where k is the number of processors. The essence behind this type of assignment

is that productions that are close to each other in a production system program

are expected to interact with each other more often than others. Hence, such an

assignment may help if production systems are written with this in mind.

3. C o n te x t-b a se d A ssignm ent: assign productions with related contexts in a

round robin manner based on the assumption that productions with similar con

texts can be active at the same time when processing a WM change having the

same context (i.e. class of WM change is the same as class of some condition

elements of some productions). However, this assumption may not help since pro

duction systems possess structural similarity and such partitioning will depend on

a small number of classes.

These partitioning methods have one common characteristic in that they are all

static. Later, Oflazer proposed a new heuristic method based on run time behaviour of

production systems and proposed an algorithm to support it. This algorithm accepts

the following inputs:

1. Number of productions in a. typical production system.

45

2 . Number of processors (or number of partitions)

3. The affect set5.

4. The processing cost of each production in the affect set to be gathered in a par

ticular run.

The performance of this algorithm was 1.1 to 1.25 times faster when compared to

other partitioning strategies. Additionally, Oflazer recast the partitioning problem as a

minimisation problem and showed that it was NP-complete.

T he highly-parallel state processing algorithm

In an attem pt to reduce variance in processing requirements of affected productions

resulting from exploiting production level parallelism, Oflazer proposed a new highly

parallel algorithm for the state update partb of the match phase. This algorithm is based

on the strategy of storing tokens that match all the condition elements of a particular

production rather than a fixed combination as in Rete. To support such an assumption,

Oflazer suggested that the state of a production is represented by a set of Instance

Elements (IEs), each having the following structure:

< (< 1 , W i M * 2, “>'),••••, UmW,;) (tCiWc) >

where

c is the number of condition elements in a production.

t{ is the tag associated with working memory Wi matching condition element i to help

in controlling the generation of redundant IEs.

Wi is WM element relevant to condition element i

In addition a special WM element X is introduced as a null WM element that satisfies

all condition elements.

5R ecall tlia t the affect set. refers to the set of productions affected by W M change in a particular
cycle

6O flazer divided the m atch phase into tw o parts: select and s ta te up date . In the se lect part, condition
e lem en ts th a t are satisfied by a WM change are determ ined. In the u p date s ta te part, the s ta te o f the
condition e lem en ts obtained in the select, part is updated.

46

This algorithm works in two steps. First, Instance Elements corresponding to each

production are processed concurrently on an available set of processors. This implies

another level of parallelism in addition to production level parallelism. Second, Instance

Elements modified or generated as a result of processing performed in the first step are

checked for redundancy sequentially. The need for a redundancy check stems from the

fact that redundant instance elements produce incorrect match results when deleting

WM elements unless they are removed.

This algorithm suffers from three potential problems. First, the state associated

with some productions may quickly grow very large and hence a large number of pro

cessors will be required to update its state in order for these productions not to be

a bottleneck. As a solution, Oflazer suggested splitting such productions into two or

more productions where one calls the others in a specific order by sending messages

upon firing. However, this solution has some disadvantages: (1) it enforces sequential

processing of such productions: (2) it creates extra overhead in splitting productions

both at run time and for the production system programmer; (3) it splits knowledge

between several productions which is contrary to the production system philosophy of

one rule for each chunk of knowledge. Second, the redundancy check being a sequential

process hampers the parallelism attained from the concurrent processing of instance

elements. Third, Gupta. [15] reported that exploiting action level parallelism in this

algorithm is difficult because it requires sequential processing of multiple changes to

the slots of instance elements of a production. As a result, multiple changes to WM

which may affect the same set of productions entail their instance elements be able to

maintain several changes to their slots.

Finally, this algorithm does not seem to be appropriate for production systems that

have one or more of the following features:

• Productions with a large number of condition elements.

• A WM element being inserted or modified matches two or more condition elements

of the same production at the same time.

• Intra-condition tests among condition elements are not sufficiently selective lead-

47

Controller

Figure ‘2-5: Oflazer’s Parallel Processor System

ing to a growing production state (i.e. large number of IEs).

T he P ara lle l A rch itec tu re

Oflazer proposed a non-shared memory tree-structured architecture to execute the par

allel algorithm presented above. Processors are located at the leaves of the tree, where

each processor has its own memory and operates in MIMD mode. Switches, which are

simple processors, each having a small ALU, control unit and three bidirectional com

munication paths, are placed at the interior nodes to constitute a network that connects

processors at the leaves to the front-end controller processor and other leaf processors

as shown in Figure 2-5. Oflazer suggested the following mapping of PS programs to this

proposed parallel machine in implementing the parallel state algorithm:

1. Every single production is to be assigned to a subset of processors. Hence, each

leaf processor is allocated a subset of productions in a typical PS program.

2. As a result, the task of each processor is to process IEs related to a subset of

productions and update the state of their respective IEs.

3. The interior switches serve as bidirectional data paths. First, they are responsible

for bidirectional communication during the redundancy check phase. Second, they

are responsible for sending productions instantiations to the front-end controller

processor. Third, they are responsible for broadcasting WM changes from the

front-end controller processor to the leaf nodes.

48

Oflazer used four PS programs to simulate the execution of the parallel state algo

rithm on his proposed parallel architecture using a simulator built on top of a Lisp-based

interpreter running on a VAX-11/780. The results of this simulation showed that using

‘239-308 processors, it is possible to get a speed of '2200-7000 WM actions per second7

However, despite these performance figures, it can be easily shown that on average, the

redundancy check time utilises 36-77% of the total time spent in processing IEs state

per cycle8.

2 .3 .5 P E S A -1 P r o d u c t io n S y s te m M ach ine

PESA-1 [37], an acronym for Parallel Expert System Architecture, is a. dedicated parallel

architecture proposed for concurrent execution of production systems. PESA-1 possesses

a bus-based, pipelined and dynamic data flow architecture. The basic idea, behind the

design of PESA-'l is to map the Rete discrimination network into a. physical structure.

However, this mapping is different from other approaches in that it partitions the Rete

network into logical levels. Then, each of these logical levels is to be mapped into a

physical level in PESA-1. A logical level in a Rete network represents a set of alpha and

beta memory nodes. To support such a mapping, the following architecture depicted in

Figure '2-6 was proposed:

• Four physical levels are to be used in the mapping process. However, no justifica

tion is given for the selection of four levels. It is probably because there are four

to five condition elements per production on average and hence three to four joins

are required on average.

• Level 1 to represent the host and each of the levels 2, 3 and 4 has many processing

elements.

• Five busses are used to interconnect the PEs in the three levels and the host as

shown in Figure 2-6, such that a PE at level i gets its input from bus i and its

7T h is im plies that for a certain PS program , a certain num ber o f processors is a llocated to it de
pending on the num ber o f IEs to be processed every cycle and hence a certain speed w as obtained .

8T h is redundancy check ratio's range was ca lcu lated bv the author based on figures in tab le 8-7 of
O flazer’s P h .D . thesis.

49

Bus 0

Figure 2-6: PESA-1 Production System Machine

output may be sent to any of the buses, (?' — 1), i, (i -f 1) raoc/5

PESA -1 D is tr ib u ted R ete A lgorithm

This algorithm can be divided into two parts: compile-time and run-time. The first

generates the Rete network, partitions it into levels and then processes allocated to

each partition are assigned to each PE in that level. At run-time, WM changes are

generated asynchronouslv as tokens by the host. At level 1, each PE computes intra

condition tests which correspond to constant tests stored in the PE’s local memory. If

they are successful, tokens are sent to the levels below.

When a token is received at bus i such that i > 1, it is broadcast to all PEs on

that level such that each PE searches the data structure, join-list, from the PE’s local

memory to determine which tokens in its memory should be joined with the received

token. If the result of computing consistent variable bindings in join-list is successful, a

new token is formed and sent to the appropriate bus. If at any instance, a token is sent

to level 0 , the match phase is terminated and the conflict resolution phase is started.

One interesting feature of this algorithm is that sharing in the Rete network is not

lost as a result of distributive^ constructing the network. Moreover, no partitioning

algorithm was proposed to partition nodes among PEs of a particular level. The esti

mated performance of the proposed algorithm on PES A-1 is 20.000 production firings

50

per second. It may also be a good idea to investigate the application of node-level and

intra-node level parallelism using such an architecture.

2 .3 .6 Paralle l F ir in g M ec h a n ism

Unlike previous approaches attem pted to improve performance of the match phase, the

parallel firing mechanism [18] proposes a new parallel execution model where multiple

productions are to be fired concurrently. This model is assumed to be implemented on

a multiprocessor system that consists of a control processor (CP) and a large number

of processing elements (PEs), where each PE has its own local memory. Although this

mechanism was proposed to be implemented on DADO, it can be applied to both shared

and distributed memory architectures since no particular inter-process communication

is assumed. The processing performed in the Recognize-Act cycle is modified in order

to support this mechanism as follows:

M atch P h ase : Productions are to be distributed between CP and PEs where produc

tions having I/O operations are allocated to the CP. Each of the CP and PEs are to

perform the match productions in parallel, where productions matched by the PEs are

to broadcast to the CP.

C onflic t-R eso lu tion P h ase : The CP selects one or more of the matched productions.

The selection is no longer dependent on conflict resolution strategies, LEA and MEA.

Alternatively, productions are selected based on their interference, where rule A is said

to interfere with rule B if firing both produces contradictory results.

A ct P h ase : Each PE executes concurrently the actions of the production assigned to

it by CP. Resulting WM changes are supposed to be accessed by all PEs regardless of

whether the system is being executed on a shared or a distributed memory multipro

cessor system.

Ishida and Stolfo [18] noted two problems with respect to implementing this model:

synchronisation of productions firings and decomposition (or partitioning) of produc

tions.

51

Synchronisation Problem

Synchronisation of production firing under the parallel firing mechanism means avoiding

interference between any two productions in a production system cycle. To help detect

such an interference between productions, a data dependency graph is to be constructed

for all productions, where two types of nodes exist: production nodes P-node and WM-

nodes, that are connected by directed edges. A directed edge from a P-node to a WM-

node indicates that the RHS of the production in P-node adds or deletes a certain class of

WM elements and is labelled + / —, in consequence. On the other hand, a directed edge

from a WM-node to a P-node indicates that the LHS of a P-node references WM class of

WM-node and is labelled + / — for positive or negative condition elements, respectively.

This type of graph can be used to produce synchronisation sets for every production if

there exists a WM-class that satisfies any of the following criteria:

1. A WM-node of a class indicates addition or deletion by one production and neg

ative or positive reference by some other rule(s).

2. A WM-node of a class indicates addition or deletion by one rule and deletion or

addition by some others.

Decom position Problem

Ishida and Stolfo proposed a decomposition algorithm to partition productions among

processors. This algorithm has two phases. In the first, a tree of productions is to be

constructed based on two heuristics: descending order of tokens and linked order of

tokens9. In the second phase, partitions are created by selecting a suitable layer of the

production tree.

Simulation of the parallel firing mechanism using 32 processors using the M anhattan

M APPER [25] production system showed a speed-up of 7.5 over Rete-based 0PS5 on

a uniprocessor system.

9T okens have the follow ing form in this approach: (p ro d l, prod2, p (p ro d l,p ro d 2)), where p r o d l,
prod2 are any two productions and p (p ro d l. prod2) is the parallel executab ility o f production prod l
and prod2 defined as the num ber of cycles saved if prodl and prod2 are placed on two d istin ct processors.
T he value o f p is to be obtained from production system run traces.

52

2.4 Conclusion:

The result of this survey can be classified into research on uniprocessor and on shared

or distributed memory multiprocessor systems.

Research in the uniprocessor environment may be summarised as either investigating

better algorithms (e.g. Rete, TREAT) or exploiting new architectures (e.g. RISCF ma

chine). While Rete is the most well-known, efficient and tested uniprocessor algorithm,

it lacks the ability to match newly-created productions with the current configuration

of working memory. Although TREAT can remove productions instantiations from the

conflict-set whose positive condition elements were matched by WM elements tha t have

already been removed, it cannot remove those instantiations whose negative condition

elements have been matched by a newly inserted WM elements without recomputations

of consistent variables bindings. Thus, TREAT partially utilised the conflict-set sup

port conjectured in McDermott et. al [30]. In addition, Rete and TREAT rely heavily

on state held in global variables which can have an impact on the degree of potential

parallelism.

Research in the multiprocessor environment may be described as exploiting paral

lelism in a relatively sequential algorithm (i.e. Rete) by proposing parallel versions of it

to run on special-purpose parallel hardware (e.g. DADO and PESA-1). The exception

is the NON-VON machine which was used for parallel production system research but

was designed as a. general-purpose parallel symbolic architecture. The following are the

main observations on these efforts:

• Only one of these algorithms has been implemented10, hence all rest of the perfor

mance figures are from simulations. The exception is the full distribution version

of TREAT on the DADO machine. However, this suffers some serious drawbacks

in that it tries to exploit production level parallelism, which is now known to be

of limited value, bv allocating a PE for each production or set of productions, but

the amount of memory per node is insufficient to hold the WM elements to be

matched by these productions.

10as far as the author is aware

53

• Although there has been some attem pts at partitioning the production memory

across PM-level PEs to fit the DADO architecture this remains a problem for

which an optimal solution is yet to be found.

• The highly parallel algorithm of Oflazer has two serious problems: (i) the redun

dancy check of instance elements has to be done serially; (ii) saving state in the

instance elements requires vast amount of resources which led Oflazer to propose

his parallel architecture.

• The parallel firing mechanism is concerned with the multiple firing of rules (i.e.

fire phase of the Recognise-Act cycle), whereas the bottleneck in the execution of

production systems lies in the match phase. In addition, there is no real implemen

tation of this mechanism to validate its performance and correctness compared to

the traditional OPS-like programs.

• Although many schemes have been proposed for parallel architectures for produc

tion systems, it seems unlikely that such machines could ever be commercially

viable given their limited applicability. Thus, it is more practical and realistic to

think of algorithms that utilise the available parallel hardware.

In conclusion, a case may be formulated that there is a need for a software archi

tecture that is parallelizable. extensible and does not need a special purpose designed

parallel architecture to execute production system programs as will be discussed in the

succeeding chapters.

54

Chapter 3

O bject-O riented Execution of

OPS5 Production System s

The primary goal of this research is to improve the performance of production systems.

But, unlike the previous attempts summarised in the last chapter, the main aspect here

is that instead of starting from the existing program, namely the OPS5 interpreter, we

began from a specification of that program derived from an informal analysis of the

semantics of 0PS5 rule sets and applied object-oriented software development tech

niques to define classes and methods on them to synthesize a new object-oriented 0PS5

interpreter.

In this chapter, section 3.1 presents a brief background to object-oriented program

ming (OOP), section 3.2 demonstrates a uniprocessor object-oriented model for execut

ing 0PS5 production system programs. Section 3.3 is a discussion of the various aspects

of this approach and is followed by a conclusion in section 3.4.

3.1 Object-Oriented Programming Background

Object-oriented programming can be traced back to SIMULA [6] when the concept of

the object was first introduced as a program that has its own data and actions. Later,

the concept of object was refined in SMALLTALK [13] to be an entity that has its

own private memory (i.e. attributes and their values) and a set of operations defined

55

on it. Hence, an object-oriented system reduces to a set of objects that communicate

together by exchanging messages. Moreover, each object in an object-oriented system

is an instance of some class, where a class can be defined as an entity that has its own

private memory, interface and methods or procedures. Thus, an object which is an

instance of some class, shares the interface and methods parts of that class but has its

own private memory which may be copied (e.g partially or fully) or assigned to when it

is created.

Object-oriented languages are based on two fundamental concepts, message sending

and specialisation [42]. Message sending is not only the means by which objects com

municate but supports an important principle, namely data abstraction. This principle

provides the control by which state and methods may be accessed. On the other hand,

specialisation or hierarchy refers to the use of class inheritance to ease the creation of

objects and structuring them in a hierarchy. Hence, this enables us to create subclasses

that inherit some characteristics and behaviour (methods) of some superclasses.

3.2 Object-Oriented Execution of Productions System s

An initial reaction might be “why use objects?” . The answer to that is simple: object-

oriented systems have a number of features that motivated the approach of object-

oriented execution of production systems. These features are :

First, object-oriented systems are dynamically configured which when exploited re

lieves the execution process from being restricted by a fixed path as in the case of the

Rete network [8]. As a result, this would make object-oriented systems more responsive

to changes in their problem domains, which may be contrasted to production systems,

where changes to WM are a continuous process during the execution of a production

system.

Second, objects offer greater degree of encapsulation which has the following two

implications :

• a correspondence between the production system representation of knowledge and

the object notion when considering that each production has its own condition

56

elements and actions that, are independent from the condition elements and actions

of other productions.

• a higher degree of potential parallelism. The original 0PS5 program relies very

heavily on state held in global variables and, indeed, on the use of Lisp’s eval

function to access data stored by name. This should also reveal why we preferred

to start from the idea rather than the program.

Thirdly, objects in object-oriented systems closely match our perception of our en

vironment (i.e. how humans, things, etc. communicate) in which it leads to a better

understanding of a problem domain as will be shown later when identifying the objects

and their relationships to construct an object-oriented model of production systems.

Fourthly, object-oriented systems represent one of the platforms for parallel process

ing especially when considering the research being carried out in the field of concurrent

OOP. Hence, transforming a production system into an object-oriented one enables

much of the ideas explored in concurrent OOP to be explored in production systems

execution.

However, studying the execution of production systems, it is obvious that the key

initiators of a production system cycle (i.e. Recognize-Act cycle) are changes to WM

which imply adding, deleting or modifying a WM element. Modifying a WM element is

nothing more than the spawning of the two actions remove and make. A remove action

removes a particular WM element, while a make action puts back the removed WM

element along with the changes specified by the original modify action. As a result, one

can conclude that it is make and remove messages that initiate a production system

cycle if a production system is to be executed in an object-oriented environment.

The object-oriented execution of 0PS5 production systems proposed and imple

mented in this research is a two phase process as shown in Figure 3-1. First, in order

for a production system program to be executed in an object-oriented environment, it

has to be transformed into a system comprised of a set of objects. This transforma

tion is a kind of compilation which corresponds to building the Rete network in the

traditional implementation. Thus in effect an object-oriented compiler (or an object-

57

<^0PS5 PS Program^- Transformation
Engine

(Object-Oriented "n
V--- PS Prnnrara---^

Phase 1

WM Change
Messages t

i
Object-Oriented
Run-Time

▼
HALT

Figure 3-1: Object-Oriented Transformation and Execution of 0PS5 Production Sys
tems

oriented transformation engine) for 0PS5 rules has been built and so it should occasion

no surprise to learn that the semantics of 0PS5 are preserved. Coupled to this is an

object-oriented run-time system to handle WM-Change messages and initiate the exe

cution of the transformed object-oriented system. The transformation engine has been

developed using EuLisp[34] and. to be more precise, the EuLisp object system known

as TEAOE[2].

Prior to the design process, a well-known object-oriented development methodology,

the one described by Booch [1], was used to design the new implementation of 0PS5,

which we have named 00PS5. The five stages Booch identifies for the design process

are:

1. Identification of the objects and their attributes;

2. Identification of the behaviour of each object;

3. Establish visibility of each object:

4. Establish interface of each object:

5. Implement each object.

58

(l i t e r a l i z e c l e l l c l2)

(l i t e r a l i z e c2 c21 c22)

(l i t e r a l i z e c3 c31 c32)

(p pi
(c l “e l l 2 ~c22 <x>)

- (c2 “c21 <y> ~c22 <x>)
- (c3 “c31 50 'c32 100)

— >

(make c2 "c21 3 “c22 5)
(make c3 “c31 50 ‘ c32 100)
(remove 1))

(p p2
(c l “e l l 2 “c22 <x>)

- (c2 "c21 <y> “c22 <x>)
— >

(wri te p2 i s s u c c e s s f u l))

(p p3
(c l ~ c l l 2 ~c22 <x>)

- (c3 “c31 50 “c32 100)
— >

(wri te p3 i s s u c c e s s f u l))

(p p4
(c l ‘ e l l 2 “c22 <x>)

— >

(wri te p4 i s s u c c e s s f u l))

Figure 3-2: An example of an 0PS5 rule-set

Note that for the purposes of this discussion, it has been chosen to be consistent

with the terminology of Booch in referring to objects and attributes, although these

are probably more widely referred to as classes and slots, respectively. Similarly, the

suffered methods refer to methods that may be invoked by other objects and required

methods to methods invoked bv an object on itself, rather than the public and private

nomenclature of C++ for example.

We present the application of Booclrs methodology in the order of the steps he

defines with the addition of examples to illustrate the first and second steps.

59

3 .2 .1 Id en tifica tio n o f o b je c ts

This step is usually preceded by a requirements analysis phase to clarify the problem

domain. However, understanding the theory of production systems and their execution

is assumed to suffice. The example of Figure 3-2 is used to show how a given rule-set

(a small production system program written by the author to show the key features of

0 0 P S 5) is transformed into respective objects. The following are the six objects used

by 00 P S 5 : Productions, Condition-Elements Objects (CE-Objects), WM-Distributors,

Conffict-Resolution (CR) Manager, Working Memory (WM) and WM-Clock.

P roductions

Each production rule of the original program is considered as an object that serves two

purposes. First, it controls the computation of consistent variable bindings between

condition elements of the same production and hence contributes indirectly to the in

sertion of its instantiation into the conflict-set. Second, it is responsible for firing the

actions in its right hand side.

This object has four attributes. The way in which a production is used depends

heavily on the form of the left hand side conditions. It is convenient to have one

attribute to indicate whether the condition elements are all positive, negative, or a

mixture. This is called the c l a s s i f i c a t i o n attribute.

The match knowledge of a production is information associated with each condition

element consisting of (i) a unique identifier naming the condition element, which is con

structed from the production name, the class of the condition element and its sequence

number within the production (ii) a flag to indicate whether the condition element is

joinable or nonjoinnble (the term joinable is used to denote whether a condition ele

ment computes consistent variable bindings with one or more condition elements of the

same production whereas the term nonjoinable refers to the opposite) (iii) whether this

particular element is positive or negative (iv) a count of the number of WM elements

matched by this condition element in processing a new WM change.

The right hand side of a production is the a c t io n s attribute. The last attribute

is the r a t i n g , which is a count of the constant and variable tests in all the condition

60

elements of the production.

The following are the production objects of the rule-set in Figure 3-2:

1. Production p i has the following attributes:

(p l - c l - 1 J P 0)
match-knowledge: (p l-c 2 -2 J N 0)

(p l-c 3 -3 N N 0)
c l a s s i f i c a t i o n : mixed

ra t in g : 6—obtained bv counting the number of tests in the left hand side.

2. Production p2 has the following attributes:

match-knowledge: (p 2 - c l - l J P 0)
(p2-c2-2 J N 0)

c l a s s i f i c a t i o n : mixed

a c t io n s : (w r i te p2 i s su c c e s s fu l)

r a t in g : 4

3. Production p3 has the following attributes:

c l a s s i f i c a t i o n : mixed

a c t io n s : (w r i te p3 i s su c c e ss fu l)

r a t in g : 4

4. Production p4 has the following attributes:

match-knowledge: (p 4 - c l - l N P 0)

c l a s s i f i c a t i o n : p o s i t i v e

a c t io n s : (w r i te p4 i s s u c c e ss fu l)

r a t in g : 2

a c t io n s :
(make c2 ~c21 3 ~c22 5)
(make c3 ~c31 50 ~c32 100))
(remove 1))

match-knowledge: (p 3 - c l - l N P 0)
(p3-c3-2 N N 0)

61

C ondition E lem ents

The condition elements of a production are represented as objects in this formulation

rather than as paths through a network as in the Rete algorithm. It is this change

of representation that makes incremental addition of rules possible at run-time. These

objects are also referred to in this work as CE-objects. The role of a CE-Object is to

store WM elements satisfying its constant and variable tests and to hold some control

information to be utilised when joining it with other CE-objects. A unique name is

constructed for each CE-object as described above. This name represents an instance of

the CE-object class. Each CE-object has the following six attributes described below.

A type attribute is used to record whether this particular condition is either positive

or negative. The C E - t e s t s - l i s t attribute is a. list of tuples corresponding to the

constant and variable tests in a condition element. Each tuple comprises a type, a

p r e d ic a te and a value. In a condition the type is taken to be a constant test (c), a

join variable (jv), or a free variable (fv), that is a non-join variable that is used either

for binding on the right hand side, or as a dummy variable. The predicate is one of the

defined OPS5 predicates. The value field gives the actual constant or variable name, as

specified by the type field.

Whether a condition element has join variables or not is an important feature of a

condition element, and so this is recorded in the jo i n attribute.

WM elements matching a condition element are stored as tuples in an AVL tree [21],

where their keys are time stamps generated by the WM-Clock object (see later). This

attribute is called WM-AVL-tree. The selection of AVL trees to store matching WM

elements is based on two important points. First, AVL trees are good at information

retrieval if few insertions or deletions are performed. Empirical measurements reported

in [15] on the rate of change of working memory — that is the number of additions

and deletions to working memory — is between 2 and 4 actions per recognize-act cycle,

which is sufficiently small to support the choice of AVL trees. Second, some 0PS5

production system programs require initial loading of very high number of working

memory elements — for example. Mapper [25] requires an initial configuration of 576

WM elements — and hence using AVL trees would be beneficial at retrieval time.

62

An additional AVL t ree is used for each join variable in a particular condition element

to store the values of join variables associated with working memory elements matching

that condition element. The CE-AVL-trees attribute associates the names of these trees

with their corresponding join variables.

A CE-Object is said to be unique if there does not exist any other CE-Object that

has the same C E - t e s t s - l i s t , same type and same joinability. The significance of this

uniqueness is that it avoids creating redundant CE-Objects. The name or names of

the productions), of which the condition element is part of is recorded in the object

as the p roduc tions attribute. As a result, p l - c l -1 and p l - c 2 - 2 replace p2 - c l - l and

p2 - c 2 - 2 , respectively, in the match-knowledge of production p2 . Also, p l - c 3 -3 replaces

p3-c3-2 in the match-knowledge of production p3 whereas p 3 - c l - l replaces p 4 - c l - l

in the match-knowledge of production p4.

Following the uniqueness concept introduced above, the CE-Objects of the rule-set

in Figure 3-2 are:

1. p l - c l -1

productions: p i p2

type: p o s i t i v e

jo in : jo in

WM-AVL-tree: () (initially)

CE-AVL-trees: (x equal p l - c l - l x)

C E - t e s t s - l i s t : (1 . (c equal 2)) (2 . (jv equal <x>))

2 . p l - c 2-2

productions : p i p2

type: n eg a t iv e

jo in : jo in

WM-AVL-tree: () (initially)

CE-AVL-trees: (x equal p l-c2 -2x)

CE-tests-list: (1 . (fv equal <y>)) (2 . (jv equal <x>))

3. pl-c3-3

productions: pi p3

type: negative

join: non-join

WM-AVL-tree: () (initially)

CE-AVL-trees: ()

CE-tests-list: (1 . (c equal 50)) (2 . (c equal 100))

4. p3-cl-l

productions: p3 p4

type: positive

join: non-join

WM-AVL-tree: () (initially)

CE-AVL-trees: ()

CE-tests-list: (1 . (c equal 2)) (2 . (fv equal <x>))

W M distributor

Instances of the WM-Distributor class serve as distributors of working memory change

messages to CE-Objects instances of a particular entity. Instances of the WM-Distributor

class have names that correspond to the objects defined in literalize statements in

the original 0PS5 program. A WM-Distributor object has one attribute, namely the

CE-Objects-list. This attribute maintains a list of all the CE objects which belong

to this particular instance. The WM-Distributors of the rule-set in 3-2 correspond to

the entities defined in the OPS5 literalize statement of this rule set, which are cl,
c2 and c3 where each is assigned ((pl-cl-1) (p3-cl-l)), (pl-c2-2) and (pl-c3-3)
as values of their CE-Objects-list attribute, respectively.

64

C onflict-R esolution M anager

This object is responsible for maintaining the conflict set and computing the conflict-

resolution. One attribute is the resolution-strategy — either LEX or MEA1. The

other is conflict-set, which is a list of instantiations of productions resulting from

the match phase of the recognize-act cycle being tuples of (i) a production instance,

(ii) variable bindings, (iii) timestamps associated with each working memory element

matching a positive CE-object and (iv) the rating of the production. It is assumed that

there is one conflict-resolution manager, called Managerl.

W orking M em ory (W M)

The WM object is used to store all the working memory elements ever inserted. This

object has one attribute, namely WM-vector, which is treated as a two-dimensional

array. Access uses the timestamp of WM element as the first key and the indices of its

attributes as the second key. There is only one instance of WM, namely WM1.

W M -C lock

When a WM element is to be inserted into WM it has to have a timestamp to indicate

the time at which it was inserted which has implications for the overall execution process

and specifically on the computation of conflict-resolution and movements of production

instantiations into and out of the conflict set. Hence, there is a need for a clock that

keeps and advances WM time. This implies using it to generate timestamps for each

WM element to be stored in the WM-vector attribute of the WM object. This clock

object has one attribute, WM-Clock-time, which is an integer representing WM-Clock’s

time at any instant during execution. The only instance of WM-Clock is WM-Clockl.

3 .2 .2 Id en tify b eh a v io u r part o f each o b je c t

The behaviours of objects can be further segregated into static, being the methods

defined on an object, and dynamic, being time or space constraints on an object [1]. In

^ e e [10] for details o f these conflict-resolution strategies.

65

i

this exposition we describe these two aspects together. For ease of presentation in this

work, a message sent to an object is assumed to have the following form:

=> T a rg e t-O b jec t M e th o d -N am e : parm l1 parm 2i ... ,parmn

To help present the underlying algorithm that controls the execution of a derived

object-oriented production system program, the behaviour of each of the objects intro

duced earlier is given here in the order of execution, where possible. In the preceding

section, it was preferred to use a top-down order of presentation hoping that giving both

offers a more intuitive understanding of the structure of the system to the reader in the

differing circumstances.

W M -C lo ck

There is only one method that characterises the behaviour of this object, namely

retrieve-WM-time. This is a suffered (that is externally called) method on the WM-

Clock object which returns the result of advancing WM-clock-time by one unit. Sending

a message to WM-Clock object requesting the retrieval of WM time is done both in the

initial step of the overall execution process and prior to sending a message to WM object

requesting an insertion of a WM element.

W ork ing M e m o ry O b jec t

The behaviour of the working memory (WM) object is characterised by three methods,

two of which are suffered and the third is a. required one. The suffered methods are

insert-wme and re tr ie v e -w m e -e n t i ty and the required one is retrieve-wme.

A request for the WM object to execute its insert-wme method is done at two

places: either at the top level when loading the system with the initial WM elements

or when a production object executes its f i r e method (see below). The processing

accomplished bv this method depends on the type of working memory action:

1. If it specifies insertion of a new WM element (argument), then insert it into

WM-vector attribute of the WM object using a timestamp (argument) as an in

dex, after resolving all variable bindings in this WM element using f r e e - l i s t

66

(argument). Note that a free-list is a property list that includes variable bindings

of a production's instantiation.

2 . Otherwise, if it specifies a modification to an existing working memory element

in the WM-vector attribute, then a message is sent to WM object requesting the

execution of the required method retrieve-wme which returns a WM element

from the WM-vector using timestamp (argument) as an index. Then, a message

is sent to WM-Clock object to get a new timestamp which is used to insert a

new WM element which is constructed from the old one (the one just retrieved)

and the modifications (argument). The free-list (argument) is used to resolve any

variable binding in the modifications.

Retrieve-wme-entity is called by the WM object as a result of being called by the

production object while executing the fire method and specifically when processing a

modify action. This method returns the class2 of a WM element in the WM-vector using

a timestamp (argument) as an index. This method uses the retrieve-wme required

method in retrieving this WM element.

W M -D istributor

WM-distributor has one suffered method, broadcast-WM-change, with two arguments.

The first indicates the kind of working memory change (either addition or deletion)

which is required, and the second is a. timestamp. If the change is an addition, a

match-insert message is sent to each CE-Object in the list maintained in the distrib

utor. If the change is a deletion, a remove-from-cs-timestamp message is sent to the

conflict resolution manager telling it to remove any production instantiations from the

conflict set that have a WM element stamped with the given timestamp. In addition, a

remove message is sent to each CE-object in the CE-Objects-list.

2T he class is m eant to be the one defined in the l i t e r a l i z e sta tem en t

67

C ondition Elem ents

Condition elements have three suffered methods, match-insert, remove and join, and

have five required methods one of which is the join method. The other four methods are:

join-join, join-nonjoin, solve-positive-join and solve-negative-join. The

required methods are only discussed in passing here when they are used by the suffered

methods.

The match-insert method: compares the results of computing the constant tests

stored in the CE-tests-list attribute against the corresponding values in a WM ele

ment with a given timestamp (argument). The WM element will just have been inserted

into the WM-vector of the WM object. If the tests are successful two property lists are

constructed: (i) the free-list which associates variables (join or non-join) and their values

(ii) the join-li.st, which associates a join-variable with a tuple of a predicate and a value.

Then the balanced trees, WM-AVL-tree and those of CE-AVL-trees, of the CE-Object

are updated as follows:

1. Construct a WM-tuple, which comprises the given time-stamp, free-list and join-

list, and insert into WM-AVL-tree using the time-stamp as the key.

2. For each join variable, construct a list of timestamp, free-list and join-list and

insert it into the AVL tree of this join variable in CE-AVL-Trees3 attribute using

the join variable's value as a key. However, if this key exists, the timestamp in

the value is updated with the new timestamp.

Finally, the method sends update-match-knowledge to the production stored in the

production attribute of the condition element. Details of the processing accomplished

by the update-match-knowledge and its parameters will be described at the time of

describing the behaviour of the production objects.

Consider for example that p l - c l -1 CE-object4 receives the following message :

=i> pl-cl-1 match-insert: T)

Then, match-insert performs the following steps:

3Recall that each join variable has a corresponding AVL tree in C E -A V L -trees
4O btained from the transform ation o f the rule-set. in Figure 3-2

68

1. =s> WM1 re trieve-w m e: T)

(assuming that the WM element (make c l '‘e l l 2 ~c l2 5) has already been

inserted by insert-wme method and was given the timestamp T\)

2. The evaluation of the constant tests stored in p l - c l -1 returns true and hence the

following two lists are constructed:

f r e e - l i s t : ((x . 5))

j o i n - l i s t : ((x . (equal . 5)))

3. WM-AVL-tree of p l - c l -1 is updated with the tuple ((x . 5) (x . (equal .

5))) using T\ (timestamp) as a key.

4. There is only one AVL tree in CE-AVL-trees of p l - c l -1 associated with the join

variable x namely, p l - c l - l x l which gets updated with the tuple: (7\ ((x .

5)) ((x . (equal . 5)))) using 5 (value of x) as a key.

5. Update the match-knowledge of the corresponding productions in productions

attribute of p l - c l -1 by sending the following messages :

p i update-match-knowledge: +1 , p l - c l - 1 , T),

CC . p l - c l - 1) , ((x . 5)) , ((x . (equal . 5)))

=4* p2 m a tc h - in s e r t : +1 p l - c l - 1 , T) ,

(Ti . p l - c l - 1) , ((x . 5)) , ((x . (equal . 5)))

The remove method: This method gets called by a CE-Object as a result of receiv

ing a remove message from a. WrM-Distributor to process the removal of a WM element

of timestamp T (argument). Hence, this entails undoing the effect of matching this WM

element when it was processed by a m a tc h - in se r t method. This involves undoing the

updates on the balanced trees of the CE-Object and the effects on its respective produc

tion object(s) as a. result of processing an update-match-knowledge method (see later).

Undoing both of these effects is to be carried out only if a WM-tuple of timestamp T

exists in the WM-AVL-tree of the CE-Object being operated on and is done as follows:

1. Remove WM-tuple stored in WM-AVL-tree of CE-Object using T as a key.

69

2 . Use values of join variables in join-list of the removed WM-tuple to update corre

sponding CE-AVL-trees.

3. Send update-match-knowledge message to corresponding production object(s).

Arguments to this message are: -1 (to indicate a removal of a WM element) and

the name of the CE-Object being operated on.

For example, if p l - c l -1 CE-Object receives a message to remove WM-tuple of

timestamp T\ that was inserted above in the example of the m a tch - in se r t method,

then the following steps are executed by the remove method:

1. WM-tuple ((x . 5) (x . (equal . 5))) of timestamp 7\ is removed from

WM-AVL-tree of p l - c l - 1.

2. The only tree in CE-AVL-trees of p l - c l -1 is the one associated with the join

variable x which is bound to 5 in the join-list of the WM-tuple. Hence, tuples in

this tree that a has a value of 5 (key) and a timestamp of 7) (argument to remove)

gets updated by removing the tuple: (7\ ((x . 5)) ((x . (equal . 5))))

from this tree using 5 (value of x) as a key.

3. Update the match-knowledge of the corresponding productions in production at

tribute of p l - c l -1 by sending the following messages :

= > pi update-match-knowledge: - 1 , p l - c l -1

= > p2 update-match-knowledge: - 1 , p l - c l -1

The jo in method: The purpose of this method is to control joining WM tuples

that matched CE-Objects of the same production (i.e. in Rete terminology, this means

computing consistent variable bindings between different condition elements of a pro

duction). Initially, this message is sent by a production object while executing either

t e s t - j o i n - p o s i t i v e or te s t - jo in -m ix e d methods in order to notify one of its CE-

Objects to start the join process. Later this method becomes a required one in a sense

that one CE-Object. sends join messages to another one in the CE-Objects-join-list

(argument). The parameters passed to this method are:

70

production : Name of production whose C’E-Objects are to compute join.

timestamps: The accumulated list of timestamps of WM-tuples satisfying the join of

the CE-Objects of a production.

CE-Objects-timestamps: A property list associating a CE-Object with a timestamp

of a WM-tuple satisfying the current join in the CE-Object’s WM-AVL-tree.

free-list: The incremental union of the free-lists related to WM-tuples in WM-AVL-

trees of CE-Objects of a production satisfying the current join.

j o i n - l i s t : The incremental union of join-lists related to WM-tuples in WM-AVL-trees

of CE-Objects of a. production satisfying the current join.

CE-Objects-join-list: A list of the CE-Objects of a production—except the CE-

Object affected by the initial WM change—ordered as positive joinable before

negative joinable before positive nonjoinable.

The processing done by this method depends on whether the CE-Object is joinable

or not as follows:

P rocessing o f N on-Joinable C E-O bjects

This task is handed off to the jo in -n o n jo in required method. It computes a dummy

join between WM-tuples in WM-AVL-tree of the CE-Object (C E O \) being sent a join-
non jo inmessage and free-list (argument of join-nonjoin). The term “dummy join” intro

duced here means no computation of consistent variable bindings between CE-Objects

as opposed to the classification of these CE-Objects as non-joinable ones. The result of

such a join is the union of each of the free-lists in WM-tuples of (.CEO i) and free-list

(argument) with the result of recursing on the rest of CE-Obj ects-join-list. When
CE-Objects-join-list is empty, join-nonjoin sends a insert-into-conflict-set
message to the conflict resolution manager. Details of processing in this method is

shown in Figure 3-3. Note that parameters passed to this method are the same as the

parameters passed to the jo in method.

71

1. Z/o '— CE-Object,s-join-list.

2. For each WM-t.uple of timestamp T in WM-AVL-tree of CE-Object being operated on
do;

(a) Perform SET UNION operation on free-list of WM-tuple of T and free-lisi (argument
to join-nonjoin) method. Name the resultant set F\.

(b) Construct a pair comprised of current CE-Object and T and then insert it into
CE-Objects-timestamps (argument).

(c) Insert T into timestamps (argument).

(d) If Lq is empty, construct a production instantiation of production object (argument)
and send insert-into-conflict-set message to CR-Manager object and EXIT.

(e) Otherwise, do the following :

i. Ol - POP(Lo)
ii. =>■ O] join-nonjoin: . timestamps. CE-Objects-timestamps, F\, jotn-ltsi, Lq

(f) Enddo.

Figure 3-3: Details of Processing in jo in -n o n jo in method

Processing o f Joinable C E-O bjects

The task of this method is to compute an incremental join between joinable CE-objects

of the same production in order to complete the processing of joinable CE-objects in

C E - O b je c t s - jo in - l i s t (argument), while processing of nonjoinable ones is passed off

to the jo in -n o n jo in method, if any. However, if there are no nonjoinable CE-objects,

an i n s e r t - i n t o - c o n f l i c t - s e t message is sent to the CR-manager to insert an instan

tiation of the production (argument) using these CE-objects. Basically, this incremental

join deals with the computation of consistent variable bindings between variable bind

ings in join-list (argument) and the join-lists of WM-tuples matching the CE-Object

being operated on.

The basic strategy employed in carrying out this type of join is based on finding a join

variable in j o i n - l i s t (argument) corresponding to join variables in a CE-AVL-trees

attribute of a CE-object being operated on. Satisfying this condition is dependent on

whether this CE-Ob ject is positive or negative. If it is positive, then one join variable

is assumed to suffice. Alternatively, if it is a negative one, then all join variables in

CE-AVL-trees attribute should have corresponding ones in the join-list (argument).

72

The reason behind this is that the semantics of negative joinable CE-Objects require

that no WM elements that match them have variable bindings that are consistent with

positive CE-Objects of the same production. However, this condition is satisfied by

default for negative CE-Objects because of the definition of join order introduced in

this thesis, where positive joinable C’E-Objects are joined first then negative joinable

ones (if any) and then positive non-joinable ones (if any). Hence, by the time negative

joinable CE-Objects are to be processed by this method all their join variables must

have corresponding ones in join-list (argument).

But, what happens if a join variable of a positive CE-Object does not have a cor

responding one in join-list (argument)? This implies that no join computations can

be performed between join-list (argument) and any of the balanced trees of the CE-

Object being operated on. Thus, it is necessary to search for a positive C'E-Object in

CE-Objects-join-list (argument) to find a one that has a corresponding join variable in

join-list (argument). However, if there are no more positive CE-Objects to be joined or

the search for such a join variable fails, then the current CE-Object being operated on

(which has already failed to have a join variable) performs a dummy join between its

join-lists and join-lists of WM-tuples stored in its WM-AVL-tree and the join-list (argu

ment). This results in sending a number of jo in messages to to the next CE-Object in

CE-Objects-join-list (argument) that are equivalent to the number of the WM-tuples.

Alternatively, if a join variable is found, then the processing below takes place as if the

CE-Object found to have a join variable is the current CE-Object being operated on.

The purpose of finding a join variable is to run a query on its associated AVL tree.

The type of this query depends on the predicate associated with that join variable.

There are six kinds of queries5 used here corresponding to the six predicates defined in

0PS5. The concept of query is used here to get a set of tuples of different timestamps.

However, if running such a query results in no tuples, then depending on whether

the CE-Object being operated on is positive or negative, the processing is terminated

or a join message is sent to the next CE-Object in CE-Objects-join-list (argument),

5Each query lias a worst case perform ance o f O (lo g n) , where n is the num ber of tup les in th e AVL
tree.

73

1. L q C E -O b je c t.s -jo in -lis t

2. For each tuple of timestamp T* in tuples of query

(a) Compute consistent variable bindings between join-list of Ti and join-list (argument).
If that computation succeeds and returns a new join-list, then go to next step,
otherwise EXIT.

(b) Insert free-list of tuple Tt into free-list (argument).

(c) Construct a pair comprised of current CE-Object and Ti and then insert it into
CE-Objects-timestamps (argument).

(d) Insert Ti into timestamps (argument).

(e) If Lq is empty, construct a production instantiation of production object (argument)
and send insert-into-conflict-set message to CR-Manager object and QUIT.

(f) O t h e r w i s e , d o t he f o l lo w in g :

i. O i - P O P (L o)

ii. = > 0 \ join: . timestamps. CE-Objects-timestamps, free-list, new join-list, Lq

(g) Enddo.

Figure 3-4: Details of Processing in solve-positive-join method

respectively. Otherwise, each of these tuples has its own join-list (as it was stored while

processing match-insert method) which it needs to be checked against consistent vari

able bindings of the join-list (argument). At this stage this method hands off this type

of computation to either solve-positive-join or solve-negative-join for positive

or negative CE-objects. respectively.

The computation handed off to the solve-positive-join method is a complete
delegation of processing. In other words, the join-join method does not need any
feedback from solve-positive-join method. Arguments passed to this method are
the same as the ones passed to the join-join method but with an extra argument. This

argument is the list of tuples resulting from running the query (as explained above),

where each tuple is a list comprising timestamp, join-list and free-list. Details of the

processing done in this method is described in Figure 3-4.

On the other hand, the computation handed off to the solve-negative-join method

returns a logical answer to the j o i n - j o i n method as to whether there exists at least

one tuple in YVM-tuples (argument) that has join variable bindings in its join-list that

74

satisfy the join variable bindings in join-list (argument). If this answer is true, then pro

cessing in j o i n - j o i n method is terminated. Otherwise, a jo i n message is formulated

and sent to the next CE-Object in CE-Objects-join-list, if any.

C onflict-R esolution M anager

A Conflict-Resolution Manager (CR-Manager) object is considerably more complex,

and suffers six methods.

The first, i n s e r t - i n t o - c o n f l i c t - s e t adds a production instantiation (argument)

to the conflict-set. A production instantiation comprises the following elements: (i) pro

duction object’s name, (ii) bindings of variables (join-list), (iii) a list of the timestamps

associated with each WM element matching a positive condition element and (iv) the

rating of the production object.

The method remove-from-cs-timestamp handles the removal of production in

stantiations from the conflict-set whose list of timestamps contain timestamp of a WM

element removed that was matched by a positive CE-Object. In this way and similar

to TREAT algorithm, no join recomputations are needed as a result of this removal be

cause previous join computations were not saved as in the case of beta memories in the

Rete algorithm. This method is called after finishing the processing related to removing

of a WM element and specifically after the end of processing of remove messages in the

broadcast-wm-change method.

The method rem ove-from -cs-production is called after finishing matching of a

newly inserted WM element that matches a negative nonjoinable CE-object of a mixed

production, Pr . This method removes production instantiations of Px and hence this

avoids any join recomputations as in the cases of both Rete and TREAT algorithms.

The method check-rem oval-o f-p roduc tion deals with the effect of adding a new

WM element that matches a negative joinable CE-object by removing any production

instantiations of a production (argument) that have bindings of join variables that satisfy

the constraints on the bindings of the same variables in a given join-list (argument).

For the definition of join-list see m a tch - in se r t .

In summary, the two methods rem ove-from -cs-production and check-removal-

75

o f-p ro d u c tio n make a major algorithmic shift from TREAT and Rete in that the

methods avoid join recomputations as a result of inserting a WM element that matches

a negative condition element.

Computing the conflict resolution according to the strategy attribute of the CR-

manager is done by compute-conflict-resolution; the strategy is either LEX or

MEA following [8].

It is possible to switch the strategy attribute from LEX to MEA or vice versa, by

using the change-strategy method. Note however that this operation should only be

done at top-level and before processing compute-conf lict-resolution.

Productions

A Production object suffers two methods, update-match-knowledge and f i r e . It also

has three required methods, one of which is the suffered f i r e method. The other two

are t e s t - j o i n - p o s i t i v e and te s t - jo in -m ix e d . The following is a description of the

processing performed by each of these methods:

The main purpose of the update-match-knowledge method is to update the match

knowledge of a corresponding CE-Object. The CE-object is an argument passed to

this method that has just been processed by either match-insert or remove messages.

Details of the processing in this method and reasons behind decisions at critical points

are given in Figure 3-5. The method is also passed a tag to indicate whether the

WM-tuple has just been added (+ 1) to or removed (— 1) from the WM-AVL-tree of a

CE-Object and the timestamp of the WM-tuple that has just been inserted. In addition,

three property lists are provided to the method, the first, CE-Objects-timestamps,
associating the CE-Object and timestamp, and the second, free-list, consisting of

elements that were initially extracted from a WM-tuple matching CE-Object, of free

variables and their values. The last property list, join-list associates the join variables

with the predicate and value, extracted from WM-tuple of timestamp.
The required methods t e s t - j o i n - p o s i t i v e and te s t - jo in -m ix e d control the join

ing of CE-Objects as they decide not only whether to carry out this join but in which

order it should be carried out. These methods utilise knowledge available in the match-

76

1. previous-count this-count (The value of this-count is extracted from the match-
knowledge of the CE-Objeci (argument).

2. Increment/Decrement this-count value in the match-knowledge of CE-Objeci denoting
insertion and deletion of WM-tuple, respectively. Hence, match-knowledge of CE-Objeci
is updated.

3. If CE-Objeci is negative, then do the following :

(a) If indicator = +1, then if CE-Objeci is joinable, then send test-join-mixed
to production itself to test its eligibility to compute join and then send
check-removal-of-production to Managerl. Otherwise, (i.e. if CE-Object is non-
joinable), do the following:

i. If previous-count = 0, which implies the following: (1) There were no W M -
tuples in WM-AVL-tree of CE-Objeci before insertion of WM-tuple of times
tamp, T. (2) There exists currently WM-tuple in WM-AVL-tree of CE-Objeci as
a result of having WM-tuple of timestamp T been inserted into WM-AVL-Tree
of CE-Objcci. Then send remove-from-cs-production message to the CR-
Manager, to remove any productions instantiations having current production
object.

ii. If p rev io u s -co u n t > 0, which implies the following: (1) There exists currently
WM-tuples in CE-Object's WM-AVL-Tree. (2) There existed WM-tuple(s) in
CE-Objeci's WM-AVL-Tree as a result of previous WM-tuple(s) inserted. As a
result, processing is terminated.

(b) Else if (i.e. indicator=-l), then send test-join-mixed message to production object
itself to test its eligibility to compute join as a result of this removal.

4. Else if CE-Objeci is positive, then do the following

(a) If indicator = -i, then terminate processing of update-match-knowledge because
WM-tuple of timestamp T has already been removed from WM-AVL-Tree of CE-
Object and any no further invocations of join method are needed for the follow
ing reasons: (1) A remove-from-cs—timestamp message will be sent later (see
broadcast-wm-change method) to Managerl (CR-Manager) to remove all produc
tions instantiations having timestamp T, (2) In this approach, as in TREAT, no
state is saved with respect to previous computation of consistent variable binding
between CE-Objects as is done in Rete.

(b) Else, if this-count > 0, then depending on classification of production object
whose match-knowledge is being processed, send test-join-positive message to
this production object if it is positive or test-join-mixed message if it is mixed or
negative.

Figure 3-5: Details of Processing in update-match-knowledge

knowledge of a production as well as some heuristics.

T est-Join-Positive

The purpose of this method is to decide whether to carry out join between CE-Objects of

a positive production and in which order to do it. Parameters passed to this method are

the same as passed to update-match-knowledge except the ta g parameter is normally

omitted. The steps carried out by this method are:

1. If any CE-Object has a value of 0 for its th i s - c o u n t field in the match-knowledge

of a production, then processing in this method is terminated. This is because the

CE-Object. (positive) is not matched by any WM element.

2. Otherwise, construct C E -O b je c t s - jo in - l i s t which is a list of all CE-Objects of

the production being operated on except the CE-Object (argument). The joinable

CE-Object. precede the nonjoinable one in this list. Then, a jo in message is then

sent to the first. CE-object in CE-Objects-join-list.

Test-Join-M ixed

This method decides whether a join should be carried out between CE-Objects of a

mixed or negative production. Parameters passed to this method are the same as for

update-match-knowledge. It works as:

1. If at least one nonjoinable and negative CE-Object has a th i s - c o u n t value greater

than zero, then finish processing.

2. If at least one positive CE-Object has a th i s - c o u n t value of zero, then finish

processing.

3. Otherwise, do the following:

(a) If CE-Object (argument) is negative and joinable and ta g indicates an addi

tion of WM element, then send a check-rem oval-o f-p roduc tion message

to Managerl (CR-Manager).

78

(b) Otherwise, construct, C E -O b je c ts - jo in - l i s t in which the CE-Objects are

ordered with positive joinable before negative joinable before positive non

joinable except for the C'E-Object (argument). Then, send a jo i n message

to the first CE-Object.

Unlike Rete which assumes a fixed order path in the Rete network, the join compu

tation here does not assume any predefined order but a dynamic ordering at execution

time6. In carrying out join between CE-Objects of the same production either of two

strategies were employed: (1) positive joinable CE-Objects are joined to negative join-

able ones, if any, and then to positive non-joinable if any (2) same as the first strategy

except that CE-Objects are ordered in increasing size of their WM-AVL-trees within

each group of joinable CE-Objects (i.e. positive joinable dr negative joinable). The

performance of these two strategies is compared in the next chapter.

The last method is f i r e , which is both suffered and required. However, it is suffered

only once, prior to executing the first production system cycle and required thereafter.

The f i r e method corresponds to the act phase in the Recognize-Act cycle but the

way actions are executed differs. Parameters passed to this method are f r e e - l i s t and

CE-Obj ec ts - t im estam p s , which are as described for the parameters of jo in . Figure 3-6

is an algorithmic description of the processing of this method.

3 .2 .3 A n E x a m p le o f O b jec t-O r ien ted E x e c u tio n

This section demonstrates the interaction between the objects obtained from the rule-set

in Figure 3-2 when the following action is used to initiate execution:

(make cl ~cll 2 ~cl2 5)

The following messages are to be sent to initiate execution:

1. = > WM-Clock retrieve-wm-time
This results in retrieving a timestamp, call it T\.

6Section 3.3 d iscusses the reasons behind this ordering.

79

1. For each a c t io n in a c t io n s attribute DO;

(a) If action is MAKE, then do the following:

i. Bind variables in MAKE, if any, to their corresponding values in free-List and
then send retrieve-wme-timestamp message to WM-Clockl to get timestamp
T of WM element to be newly added.

ii. Send insert-wme message to WM1 object to insert new WM element in
WM-vector using timestamp T as an index.

iii. Send broadcast-WM-change message to corresponding WM-Distributor object
whose name is the entity name of the WM element in the MAKE action.

(b) Else, if action is MODIFY, then do the following:

i. Use free-List to bind variables in MODIFY if any.
ii. Use CE-Objects-timestamps to get corresponding timestamp, T\ of WM-tuple

that is to be modified and then send retrieve-wme-entity message to WM1
object to get entity of that WM-tuple using T\ timestamp.

iii. Send a broadcast-WM-change message to corresponding WM-Distributor ob
ject, whose name is the entity of the WM element being modified, asking it to
remove WM-tuple of T\ timestamp.

iv. Send an insert-wme message to WM1 object to insert a new WM element that
is composed of WM-tuple of Ti timestamp and the new modifications included
in the MODIFY action.

(c) Else if a c t io n is REMOVE, then do the following :

i. Use CE-Objects-TimeStamps to get corresponding timestamp, T\ of WM-tuple
that is to be removed and then send retrieve-wme-entity message to WM1
object to get class name of that WM-tuple using T\ timestamp.

ii. Send a broadcast-WM-change message to corresponding WM-Distributor ob
ject. whose name is the entity of the WM element to be removed, asking it to
remove WM-tuple of T\ timestamp and all its side-effects.

(d) Else if a c t io n is HALT, then execution is terminated.

(e) Otherwise, perform the function required as either an I/O function or others using
free-List to bind values to parameters in functions, if any.

(f) End DO

2. Send compute-conf lict-resolution message to Managerl, the local conflict resolution
manager object.

3. If there is a production instantiation to be fired, then the f i r e method is called to execute
this production instantiation. Otherwise, execution is terminated.

Figure 3-6: Algorithmic Description of the fire Method

80

2. = > WM1 insert-wme: T it (make c l ~ c l l 2 '‘c l2 5)

This results in inserting this WM element into WM-vector at index T\.

3. =>• c l broadcast-WM-change: T \, make

At this stage, no more messages are to be sent by the user to initiate the execution

unless another WM element is to be considered to initialise the execution. As a result

of this message, c l WM-Distributor responds by sending m a tc h - in s e r t messages to

p i —c l -1 and p 3 - c l - l CE-Objects as follows:

1. => p l - c l - 1 m a tc h - in s e r t : T\

The processing of this message was done while discussing the m a tc h - in s e r t

method and resulted in sending update-match-knowledge messages to p i and

p2 productions as follows:

(a) ==> p i update-match-knowledge: +1 ', p l - c l - 1 8, 7 \ ,

(7\ . p l - c l - l) f', ((x . 5)) 10, ((x . (equal . 5))) 11

As a result. p i ’s match-knowledge is updated with respect to p l - c l - 1 and

because p i is a mixed production, it sends t e s t - jo in -m ix e d message to p i.

Since, p l-c 2 -2 and p l- c 3 -3 CE-Objects in the match-knowledge of p i are

negative and not matched by any WM-tuples, then p i is eligible to compute

join. But. since p i has one positive CE-Object, then this leads to send

i n s e r t - i n t o - c o n f l i c t s e t t o Managerl to insert the following instantiation

of p i into conflict-set:

= > Managerl i n s e r t - i n t o - c o n f l i c t - s e t :

p i , ((x . 5)) , (^ . p l - c l - 1) , 6

(b) ==s> p2 update-match-knowledge: +1, p l - c l - 1 , 7 \ ,

(7\ . p l - c l - 1) , ((x . 5)) , ((x . (equal . 5)))

‘ ind icator for insertion of a WM elem ent
8C E -O b ject used in the insertion
9 C E -O b jects- tim estam ps

10free-list
11 jo in -list

81

In consequence, p2 responds by updating match-knowledge of pl-cl-1 and

because p2 is a. mixed production, it sends itself the test-join-mixed mes

sage. Since, p l-c 2 -2 CE-Object in the match-knowledge of p2 is negative

and not matched by any WM-tuples, then p2 is eligible to compute join.

Noting that p2 has one positive CE-Object, this leads to send Managerl an

insert-into-conf lict-set message to insert the following instantiation of

p2 into conflict-set:

=>• Managerl insert-into-conf lict-set:
p2, ((x . 5)), (Ti . pl-cl-1), 4

2. ==> p3-cl-l match-insert: T\

The p3-cl-l CE-Object responds by evaluating the constant tests stored in CE-

tests-list. which return true. Since this C-E-Object is nonjoinable, then WM-AVL-tree
is updated with the tuple ((x .5)) where ((x . 5)) is the free-list12. By the

same reasoning, no AVL trees exist in CE-AVL-trees attribute and hence no more

AVL trees are to be updated. Finally, update-match-knowledge messages are

sent to p3 and p4 productions as follows:

(a) = > p3 update-match-knowledge:
+ 1, p3-cl-l, Xj , (Ti . p3-cl-l), ((x . 5)), ()13

As a result, p3*s match-knowledge is updated with respect to p3-cl-l and

because p3 is a mixed production, it sends a test-join-mixed message to

itself. Since, pl-c3-3 CE-Object in the match-knowledge of p3 is negative

and not matched by any WM-tuples, then p3 is eligible to compute join. Since

p3 has one positive CE-Object, then insert-into-conf lict-set message is

sent to Managerl to insert the following instantiation of p3 into conflict-set:

= > Managerl insert-into-conflict-set:
p3, ((x . 5)), (71! . p3-cl-l), 4

12T here is no need to construct, a jo in -list since p 3 - c l - l is nonjoinable
13jo in-list is () because p 3 - c l - l is nonjoinable

82

(b) ==> p4 update-match-knowledge:
+1, p3-cl-l, T x , (Tj . p3-cl-l), ((x . 5)), ()

Production p4 responds by updating the match-knowledge of p3-cl-l and

because p4 is a positive production, it sends itself test-join-positive mes

sage. Since, p3-cl-l is the only CE-Object in p4 and positive, then p4 is
eligible to compute join. This leads to send insert-into-conf lict-set
message to Managerl to insert the following instantiation of p4 into conflict-

set:

Managerl insert-into-conflict-set:
p4, (Cx . 5)), (T] . p3-cl-l), 2

Now, since no more WM actions are to be executed, then Managerl is sent compute-
conf lict-resolutionwhich results in selecting14 pi’s instantiation leaving p2, p3 and

p4 instantiations in the conflict-set. As a result, pi is fired by executing its actions
(attribute of pi) as follows:

1. Executing the first action: (make c2 ~c21 3 ~c22 5)

This is initiated by obtaining a new timestamp (retrieve-wme-time), call it T2,

and then inserting this WM element into WM-vector (insert-wme) at index T2.

The c2 WM-Distributor sends match-insert message to pl-c2-2 (broadcast-WM-change)
which results in successful constant tests computations and hence the balanced

trees of pl-c2-2 are updated. Later, match-knowledge of pi and p2 are up

dated (update-match-knowledge). Then, each of these productions executes

test-joinmixedwhich shows that each of them is eligible to compute join and

since p l - c 2 - l is a negative joinable CE-Object, then a check-removal-of-production
message is sent to Managerl to remove pi and p2 instantiations whose variable

bindings are consistent with the join-list (argument) of the newly matched WM-

tuple of timestamp T2.

14p i is selected here because it has the highest rating (i.e. 6) over p2, p3 and p4 who all have the
sam e tim estam p (i.e. T\) as P i-

83

Examining the conflict-set shows that there does not exist any pi instantiations

but there is an instantiation of p2 which has the list of variable bindings ((x
.5)). Computations of consistent variable bindings of this list and the join-list

of T2 (((x . (equal 5)))) are successful and hence this instantiation of p2 is
removed from the conflict-set.

2. Executing the second action: (make c3 ~c31 50 “032 100)

This is initiated by obtaining a new timestamp (retrieve-wme-time), call it T3,

and then inserting this WM element into WM-vector (insert-wme) at index T3.

The c3 WM-Distributor sends match-insert message to pl-c3-3 (broadcast-WM-change)
which results in successful constant tests computations and hence the balanced

tree of pl-c3-3 is updated. Later, match-knowledge of pl-c3-3 productions pi
and p3 are updated (update-match-knowledge). Then, pi and p3 send Managerl
remove-from-cs-production message to remove their respective instantiations

from the conflict-set, if any.

Examining the conflict-set. reveals that there are no P i instantiations but there

exists an instantiation of p3 which is then removed in consequence.

3. Executing the third action: (remove 1)

This entails removing the WM element of timestamp Ti, the WM element matched

by p l - c l - 1. In consequence, the following steps are executed:

(a) Send broadcast-wm-change message to the WM-Distributor, cl, which in

turn sends remove messages to all its CE-Objects. Since pl-cl-1 is the only

CE-Object in the CE-Objects-list attribute of cl, then a remove message

is sent to pl-cl-1.

(b) When pl-cl-1 processes remove, then its balanced trees are updated with

the removal of the WM-tuple of timestamp T\. In addition, productions pi
and p2 are asked to update their match-knowledge (update-match-knowledge)
of pl-cl-1. Processing is then terminated in that method because this is

a case of a removal of a WM element matching a positive CE-Object and

84

control is returned to the broadcast-wm -change method.

(c) At this stage, c l sends rem ove-from -cs-tim estam p to Managerl to remove

production instantiations from the conflict-set who have T\ timestamp. In

this case, there is only one production instantiation that has this times

tamp, namely p4 instantiation which is removed from the conflict-set in con

sequence.

Since no more actions are to be executed while firing p i and no production instan

tiations exist in the conflict-set of Managerl, then execution is terminated.

3 .2 .4 In terface and v is ib i l ity o f o b jec ts

Following Booclrs methodology [1] we next need to: (i) establish the visibility of each

object to others and (ii) establish the interface of each object to the others. The purpose

of these steps is to examine dependencies among objects or classes of objects in an object-

oriented system. To understand this dependency better, a graphical representation is

borrowed from Booch’s methodology but with a small enhancement which clarifies one

aspect of object interaction. An ellipse represents a class of objects, a solid arrow

indicates a message requesting the execution of a. suffered method and a dotted arrow

indicates a. message requesting the execution of a required method. Moreover, a label

on an arrow represents a method that is either required of an object or suffered by it.

Figure 3-7 shows interaction between classes of objects in the model of object-oriented

execution of 0PS5 programs.

3 .2 .5 Im p le m e n ta t io n

With the four stages of the methodology complete it is possible to consider the imple

mentation. We have constructed a representation of the classes of objects and their

interface using TEAOE, which is the EuLisp Object System [34]. The implementation

is sufficiently complete to allow the running of a number of production system applica

tions, and to experiment with some of the parallel processing facilities of Eulisp as will

be discussed in chapter 5.

85

WM
Distributors

WM-Clock

S olv8-P os-J°in

Figure 3-7: Interaction between classes of objects in a. transformed Object-Oriented
0PS5 program

3.3 D iscussion

This approach can be viewed as another example of attempting to improve the perfor

mance of Rete-based 0PS5 interpreters on uniprocessor platforms. This approach is

similar to TREAT [31] in some respects but in some significant respects it differs. On

the one hand, it is like TREAT with respect to the following: (i) it processes a removal

of a WM element that matches a positive condition element by examining instantiations

of the conflict-set that have the timestamp of the WM element which is to be removed,

(ii) it does not store intermediate results of join tests between condition elements, which

is done using beta memories in the Rete algorithm.

It differs from TREAT in the following ways:

1. The use of object-oriented technology to synthesize an object-oriented inference

engine to execute 0PS5 production system programs.

2. The distinction between joinable and nonjoinable condition elements resulted in

important implications on the execution of 0PS5 production systems as will be

86

discussed in the succeeding steps.

3. It avoids the unnecessary computation of join between condition elements of the

same production if a WM element is inserted tha t matches a negative condition

element. The way it is handled here is dependent on whether the CE-Object being

matched is joinable or nonjoinable by sending remove-from-cs-production or

check-removal-of-production messages, respectively, to the CR-Manager.

4. 0 0 P S 5 uses a dynamic ordering strategy at run-time. In that strategy, positive

joinable CE-Objects are joined first then negative joinable, if any, and then pos

itive nonjoinable ones, if any. The reason behind computing join with joinable

CE-Objects first instead of nonjoinable ones is that if the la tte r15 are used, then

this may lead to loss of join computations if some or all of joinable CE-Objects

fail consistent variable binding computations in succeeding joins. Hence, joining

joinable CE-Objects first avoids unnecessary join computations. In addition, join

ing negative joinable CE-Objects after positive joinable ones is constrained by the

semantics of negative joinable CE-Objects which entail that all join variables be

resolved before considering a later join.

5. It has the concept of unique1" CE-Objects. In consequence, we have constructed

one implementation with unique CE-objects and one with non-unique CE-objects.

The performance of these two schemes is compared in section 4.2.4. However, it

is worth mentioning that this concept of uniqueness is at a higher level compared

to the sharing of tests in Rete algorithm in the sense that this implementation

classifies a condition element as an entity and then looks at its tests, type and

join ability.

15R ecall th a t nonjoinable C E -O b jects com pute dum m y join.
16R ecall th a t a CE-O bject, is said to be unique if there does not ex ist any other C E -O b ject th a t has

the sam e C E -te sts -list, sam e type (i .e. positive or negative) and sam e joinability

87

3.4 Conclusion

We have reported our experience in applying Booch’s methodology for object-oriented

design to the reconstruction of a program based on an analysis of the behaviour required

to execute production rule systems. The methodology was easy to use in practice and

matches with the natural way of looking at problems from an object-oriented perspec

tive.

Booch does not address explicitly questions of concurrency, although aspects of con

currency are present in the dynamic behaviour of objects. Nevertheless, the method

ology assisted in the design and development of a concurrent object-oriented platform

for executing 0PS5 production systems—but only after the introduction of timestamps

into the model to control the order of operations.

Object-oriented technology has made it easier to develop a better solution to exe

cuting 0PS5 rule sets. 00P S 5 is better because

• It can add rules and match them with current configuration of WM elements at

run-time, which previously required a total recompilation of the network in Rete.

This will encourage the construction of reflective systems.

• It allows more efficient handling of adding a WM element that matches a negative

CE-object. TREAT changes the condition element into a positive one, recomput

ing the join and then examining the conflict set for production instantiations that

have the same timestamp as the WM element being added. Rete requires the

recomputa.tion of consistent variable bindings of the WM element, which requires

examination of the relevant parts of the network, but does not examine the conflict

set directly.

• It supports the writing of right hand side actions, other than WM or I/O actions,

as methods related to productions instead of functions as in 0PS5. Hence, 0 0 P S 5

is more comprehensive with respect to regarding a production describing a chunk

of knowledge.

Chapter 4

Performance of OOPS5

The object-oriented transformation and execution of 0PS5 production system programs

presented in the previous chapter has been implemented using EuLisp, which is an

object-oriented language [34]. To test and evaluate this implementation, four well-known

0PS5 production system programs have been transformed and executed successfully

using this new approach.

This chapter describes the characteristics of these programs when turned into an

object-oriented form and then executed in that environment. In the first part of this

chapter, the static measurements which are obtained from the object-oriented trans

formation phase are presented in detail. The second part of this chapter describes the

execution behaviour of these systems in an object-oriented environment. Finally, the

last part presents a summary of both static and dynamic measurements.

4.1 Static M easurements

Static measurements are concerned with static information which is gathered during the

transformation of 0PS5 production system programs into object-oriented ones. How

ever, some of this information is extracted from 0PS5 PS programs directly and the

rest comes from the object-oriented approach described in the previous chapter.

First, the four 0PS5 production system programs that have been used in evaluating

this new approach and gathering measurements are briefly described below in ascending

89

order of the number of objects that are the product of the transformation phase:

1. M onkey and B an an as (M A B): MAB is a small and well-known 0PS5 produc

tion system program. The task of MAB is that when given a description of objects

and their locations in a room, it produces a sequence of instructions to the monkey

in order for it to grab the bananas. MAB consists of 53 objects when transformed

using unique CE-Objects strategy described previously and 73 objects otherwise.

2. W A LTZ: The task of WALTZ is that when given a two dimensional picture of

blocks of World image, it produces a three dimensional labelling information based

on Waltz’s original method of constraint propagation [45]. WALTZ is comprised

of 99 objects when transformed using unique CE-Objects strategy and 175 objects

otherwise.

3. M A P P E R : The task of MAPPER is that when given a starting and ending lo

cations in the city of New York in the USA, along with some constraints such as

means of travel (e.g. subway) number of blocks to walk, weather and time, MAP

PER produces a suggested optimal way of travelling. M APPER takes 418 objects

when transformed using unique CE-Objects strategy and 570 objects otherwise.

4. R U B IK : The task of RUBIK is that when given a certain configuration of the

RUBIK cube, it produces a series of instructions which when followed, will restore

the RUBIK cube to the right state where each face of the cube has only one

colour. RUBIK takes 430 objects when transformed using unique CE-Objects and

707 objects otherwise.

The following sections present the various static characteristics of these four OPS5

production system programs when transformed into object-oriented ones.

4.1 .1 D is tr ib u t io n o f O b jec ts

When an OPS5 production system program is transformed into an object-oriented one

using the approach detailed in the previous chapter, the total number of objects that

90

Table 4.1: Distribution of Objects

Object Type MAB WALTZ MAPPER RUBIK
Productions 19 34 117 70

Unique CE-Objects 27 57 240 376
Non-Unique CE-Objects 47 131 392 647

% of Unique/Non-Unique CE-Object 57.45% 43.51% 61.22% 58.11%
WM-Distributors 4 5 58 11

CR-Manager 1 1 1 1
WM 1 1 1 1

WM-Clock 1 1 1 1
Total with Unique CE-Objects 53 99 418 460

is to be obtained is the sum of the number of production objects, CE-Objects, WM-

Distributors, Conflict-Resolution Manager, WM and WM-Clock. Table 4.1 presents

a breakdown of the objects for the four 0PS5 production system programs described

above.

One very important observation of this distribution is that the ratio of the number of

unique1 CE-Objects compared to the number of non-unique ones is considerably smaller

for this sample of four programs. The impact of utilising the unique C'E-Objects strategy

should have a significant effect on the performance for the following reasons:

• Saving of redundant computations of constant tests for redundant CE-Objects.

• Saving of redundant updates on WM-AVL-trees for the redundant CE-Objects.

• Saving of redundant updates 011 AVL trees for each join variable in the CE-AVL-trees

attribute of the redundant CE-Objects.

These observations reinforces the insights which led to the Rete algorithm, in par

ticular the sharing of constant tests and memory nodes. However, 0 0P S 5 possesses a

conservative approach with respect to sharing which is attributable to the information

hiding characteristic of object-oriented systems and hence this allows more room for

concurrency.

R e c a ll that, a C E -O bject is said to be unique if if there does not exist any other C E -O bject that
has the sam e tests in CE-tests-list attribute, sam e type and sam e joinability.

91

Table 4/2: Distribution of Production Objects with respect to Type and Joinability
Type MAB WALTZ MAPPER RUBIK

Positive 100% 76% 63% 57%
Mixed 0 24% 37% 43%

Joinable 15 24 49 65
Nonjoinable 4 10 68 5

4.1 .2 D is tr ib u tion of P rod u ction O bjects w ith resp ect to T y p e

Table 4/2 shows the breakdown of the percentages of productions with respect to

type whether being positive or mixed and joinability as being joinable or nonjoinable.

The figures in this table show that the number of positive productions is higher than the

mixed ones and is sometimes the only one. Hence, this strengthens the decision behind

the type of classification which led to assign the two methods test-join-positive
test-join-mixed for positive and mixed production objects, respectively. As a result,

this leads us to investigate deeper into the controllers of these classifications and more

specifically the CE-Objects distribution with respect to productions as either being

positive, negative, joinable, nonjoinable, positive joinable, positive nonjoinable, negative

joinable and negative nonjoinable. The first part of table 4.3 shows the average number

of CE-Objects of these categories per production object, whereas the second part shows

the percentages of theses categories of CE-Objects over the total CE-Objects for the

test suite.

From this table, the following remarks were deduced :

• MAB, WALTZ and MAPPER tend to have fewer of these classifications of CE-

Objects compared to RUBIK. This shows that RUBIK has more complex left hand

sides than other systems and hence it may be concluded that production system

programs display variation in complexity of the left hand sides in general.

• Most CE-Objects of these systems are positive and hence this leads us to conjec

ture that most CE-Objects in production systems are positive.

• Most C'E-Objects are joinable except in the case of MAPPER which has almost

a balance between joinable and nonjoinable ones. Joinability of CE-Objects is an

92

Table 4.3: Distribution of CE-Objects with respect to Type

Type MAB WALTZ MAPPER RUBIK
Positive 2.47 3.62 •2.92 8.29
Negative 0 0.24 0.43 0.96
Joinable *2.05 2.68 1.53 8.66

Non-Joinable 0.42 1.18 1.74 0.56
Positive Joinable •2.05 2.53 1.27 7.8

Positive Nonjoinable 0.42 1.09 1.65 0.47
Negative Joinable 0 0.15 0.26 0,86

Negative Nonjoinable 0 0.09 0.09 0.09
Total CE-Objects •2.47 3.85 3.35 9.24

% positive/total 100% 94.02% 87.16% 89.71%
% negative/total 0% 5.98% 12.84% 10.29%
% joinable/total 83% 69.61% 45.67% 93.72%

% nonjoinable/tota.1 17% 30.39% 54.33% 6.28%
% positive joina.ble/total 83% 65.71% 37.91% 84.42%

% positive nonjoinable/total 17% •28.31% 49.25% 5.08%
% negative joinable/total 0% 3.90% 7.76% 9.31%

% negative nonjoinable/total 0% 2.34% •2.69% 0.97%

important issue in that if a CE-Object is joinable then this may imply that it

is less selective (i.e. may have more working memory elements to match it than

nonjoinable ones) and hence this has two effects. First, in productions that have

high number of joinable C’E-Objects. cost of updating their AVL trees will be

higher compared to nonjoinable ones. Second, cost of joining these joinable CE-

Objects will also be considerable especially if there there large number of working

memory elements matching them.

• The number of positive joinable and negative joinable C'E-Objects is higher than

positive nonjoinable and negative nonjoinable ones, respectively. This strengthens

the policy adopted bv 00P S 5 with respect to the order in which CE-Objects of

a production are joined as positive joinable ones are joined to negative joinable

ones followed by positive nonjoinable ones. As a result, this reduces the effect of

the cross-product.' effect, since the number of WM-tuples used in the join may be

2A term used by G upta [15] to refer to the case where a single token in the left or right m em ory of

93

Pe
rc

en
t

of
Pr

od
uc

tio
ns

50 t

45 -

40 -

35 -
M A B30 -

25 ~ WALTZ

20 - M A PPE R

15 -
RUBIK

10 - -

o o
CM

O COCO

Number of Positive Joinable CE-Objects

Figure 4-1: Distribution of Positive Joinable CE-Objects over Productions

narrowed down as the join process progresses from one CE-Object to the next.

Although the average value of C'E-Objects of each classification per production has

proved to be a good indicator for comparing the complexity of the left hand sides of

the four production systems in general, it does not seem to be a good indicator of this

complexity on the level of the individual production system program. Moreover, this

finding was not addressed by Gupta, who studied only the breakdown of positive and

negative condition elements over production but did not study their joinability (i.e. we

believe that the study of the joinability of condition elements is novel). To support

this argument. Figures 4-1, 4-2. 4-3 and 4-4 give a closer look at the complexity of the

left hand sides of productions in these systems. These Figures show the percentages of

positive joinable. positive nonjoinable, negative joinable and negative nonjoinable CE-

Objects per production. One valuable observation with respect to RUBIK is that some

small percentage of productions have considerably high number of positive joinable (e.g.

a two-input node in the Rete network finds many tokens in the right or left memory, respectively. In
O O PS5, this refers to a W M -tuple m atching a C E -O bject that joins w ith m any W M -tuples that m atch
the next C E -O bject in the join sequence.

94

Pe
rc

en
t

of
Pr

od
uc

tio
ns

Pe

rc
en

t
of

Pr
od

uc
tio

ns

100

60 - M A B

50 f
WALTZ

40 -
M A PPE R

30 -
RUBIK

10 -

2 81 3 54

Number of Positive Non-Joinable CE-Objects

Figure 4-2: Distribution of Positive Nonjoinable CE-Objects over Productions

25 r

20 -

M A B

WALTZ

 M A PPE R

RUBIK

1 52 3 4

Number of Negative Joinable CE-Objects

Figure 4-3: Distribution of Negative Joinable CE-Objects over Productions

95

Pe
rc

en
t

of
C

E
-O

bj
ec

ts

9

8

7 - M A B

6 -
WALTZ

5 f

RUBIK

 ♦------ M A P PE R

4 -

3 -

2 -

0
2

Number of Negative Non-Joinable CE-Objects

Figure 4-4: Distribution of Negative Nonjoinable CE-Objects over Productions

15, 16. 26. 35) and negative joinable CE-Objects. It is these CE-Objects that will have

an impact on performance during a production system cycle. Also, it is these types of

productions that have higher processing requirements compared to other productions if

considered during a cycle.

4.1 .3 D is tr ib u tion of C onstan t Tests over C E -O b jects

Figure 4-5 shows the number of constant tests (i.e. stored in ce-tests-list attribute

of a CE-Object) per (’E-Object. Although computations of constant tests is cheap

compared to the other computations in the execution process, it is worth observing that

most CE-Objects tend to have one to two constant tests for the four production system

programs except in some small percentages of CE-Objects in RUBIK.

4.1 .4 D istr ib u tion of AVL Trees over C E -O b jects

Figure 4-6 shows the distribution of the number of AVL trees with respect to joinable

CE-Objects. These AVL trees3 are the ones that are used to store bindings of join

3T hese AVL trees are stored in the CE-A V L-trees attribute of a CE-Object..

96

Pe
rc

en
t

of
C

E
-O

bj
ec

ts

80.00

70.00

60.00

50.00
M A B

40.00
WALTZ

30.00
 M A PPE R

20.00 RUBIK

10.00

0.00
0 8 9 102 3 5 74 6

Number of Constant Tests

Figure 4-5: Distribution of Constant Tests over C'E-Objects

variables as a result of a working memory element has been successfully matched by a

joinable C'E-Object. The number of such AVL trees reflect the complexity of joinable

C'E-Objects and the impact on performance for updates of these AVL trees.

The graph in this Figure shows that the majority of CE-Objects have between two

to three AVL trees and hence this strengthens the decision of using AVL trees to store

bindings of join variables. Moreover, on average there is 0.96, 1.65, 1.43 and 1.82 AVL

trees per CE-Object for the four production systems. This may lead us to conjecture

that C'E-Objects tend to have low number of AVL trees in general.

4.1.5 D is tr ib u t io n of A ction s over P ro d u ct io n s

For the purpose of efficiency of production systems, the types of actions that have been

investigated are the ones that deal with addition, modification and deletion of a working

memory element. However, modifying a working memory element is the spawning of

a removal of a working memory element and then an insertion of a new one. Hence,

studying the distribution of actions reduces to actions that deal with addition and

deletion of working memory elements.

97

Pe
rc

en
t

of
Pr

od
uc

tio
ns

Pe

rc
en

t
of

C
E

-O
bj

ec
ts

50.00

45.00

35.00

30.00 M A B

25.00
WALTZ

 M A PPE R

RUBIK10.00

5.00

0.00
8 9 100 71 2 3 5 64

Number of AVL Trees

Figure -1-6 : Distribution of AVL Trees over CE-Objects

60 1

50 -1
M A B

WALTZ

30
M A P PE R

20 - WALTZ

10 -

to
CM

O
CMCO

CMO LO o I''-
CMCM

Number of Make Actions after Splitting of Modify

Figure 4-7: Distribution of Make after splitting of Modify

98

Pe
rc

en
t

of
Pr

od
uc

tio
ns

80 T
♦

60 --

50 --

M A B40 --

WALTZ30 -
M A PPE R

RUBIK

&CO m co
CM

Number of Remove Actions after Splitting of Modify

Figure 4-8: Distribution of Remove after splitting of Modify

Figure 4-7 and 4-8 show the distribution of actions that add and delete work

ing memory elements, respectively for the four production systems. On average these

production systems have 1.37, 1.82, 1.49 and 11.19 actions that add working memory

elements and 0.84, 1.74, 1.12 and 2.96 actions that delete working memory elements

per production, respectively. RUBIIv has higher number of both types of actions on

average compared to the other systems and, more specifically, some of its productions

have a very high number of these actions (e.g. 31 addition and 22 deletion actions).

Productions that have such high number of actions have the following implications if

they get fired at some stage:

1. Addition or deletion of working memory elements that match joinable CE-Objects

would imply high number of updates on respective AVL trees of CE-Objects.

2. High number of additions of working memory elements that match negative CE-

Objects benefits from the policy adopted in 00P S 5 only by removing respective

productions instantiations from the conflict-set if any4.

4see r em o v e-f r o m -c s -p r o d u c t io n and c h e c k -r e m o v a l-o f -p r o d u c t io n m ethods discussed in the last

99

3. Likewise, a high number of deletions of working memory elements that match

positive CE-Objects also benefits from the approach taken by OOPS5 which is

similar to the TREAT algorithm in removing production instantiations that have

the timestamp of the WM just added5.

In summary, although RUBIK has the highest number of these actions compared to

other systems, one may conjecture that production systems tend to have fewer actions

tha t delete working memory elements than those that add them. This strengthens the

approach followed in this research with respect to addition of working memory elements

that match negative CE-Objects which is handled through direct examination of the

conflict-set.

4.2 Dynamic Measurements:

Dynamic measurements refer to measurements that are gathered during the execution

of the object-oriented transformed 0PS5 production system programs. One of the

advantages of this approach is the ease of monitoring the behaviour of such systems.

4 .2 .1 S ta te T ran sit ion s o f P r o d u c t io n O b jec ts

Studying the behaviour of production objects right from the beginning of the firing of

a new production system cycle, a production object encounters some state transitions

in that cycle. In this section, first these states are described in a manner to show how

a production object transfers from one state to another in order to be inserted into the

conflict-set attribute of CR-Manager object and then a detailed analysis is presented on

the state transitions of productions objects during the execution of the four production

systems:

Static State: Initially and right before the firing of a new cycle, every production ob

ject is said to be in static state and hence this set is referred to as the Static Productions

(SP) set.

chapter for production w hose negative nonjoinable and negative jo inable C E -O b jects get m atched by a
working m em ory elem ent, respectively.

5see rem ove-from -cs-tim estam p m ethod in the last chapter.

100

Affect State: The concept of referring to the state of production object to be in the

affect state is extracted from the definition of the affect-set6 [15] with the difference here

in that after a static production object changes to affect state, it may continue to the

next state or stay in the affect state for the duration of a cycle. This new distinction

refers to a state rather than a set. The pattern of change of state from static to affect

can be easily monitored in 0 0 P S 5 by following the result of sending a m a tc h -in se r t

message to a CE-Object by a corresponding W M -Distributor object and as a result it

succeeds in computing a match and passes a message to a corresponding production

object to update its match-knowledge (i.e calling update-m atch-know ledge method).

Dormant State: The set of static productions tha t are not in the affect state are

referred to as dormant and they remain dormant for the duration of a cycle.

Join State: A production object is said to be in the join state if it transfers from

the affect state and is eligible to compute a join. Recall that from previous chapter

that a production object is said to be eligible to compute a join if each of its positive

CE-Objects has some working memory element matching it and each of its negative

nonjoinable CE-Objects does not have any working memory elements matching it. A

production object which executes t e s t - j o in - p o s i t i v e or te s t- jo in -m ix e d method

but passes these join eligibility conditions is said to be in the join state. The set of

productions objects in the join state are referred to as the join set. A tighter definition

of the join set definition is used by Miranker in his TREAT algorithm in referring to

a production to be active when each of its positive condition elements is matched by

at least one working memory element. However, the definition of the join set here is

more comprehensive in including negative nonjoinable condition elements and is further

extended to denote a state in the duration of a production system cycle.

Conflict State: This is the final state and succeeds the join state to this state.

This state reports the success of the join between the CE-Objects of a production in

the join state which is triggered in 00P S 5 as an insertion of an instantiation of this

production object into conflict-set when an in s e r t - in to - c o n f l i c t - s e t message is sent

6 Recall th a t a production is said to be affected by a change to working m em ory if at least one o f its
condition e lem ents is satisfied by this change [15]

101

i)MAB

Dormant S
10 94

2.38 Affect Set Join S et) ^^Conflnct SeĈ

ii) WALTZ
Dormant Set

tfect Se Join S et Conflict Set25 31

iii)MAPPER

Dormant Set
107 3

12 I 3 ^ w (^ A ffec t S et''Ns--------------^ ^ J o i n S e t \ ----------------. ^ / C o n f l i c t SeT 'N

iv)RUBIK

Figure 4-9:

to CR-Manager object.

The pattern of change of states is fixed. That is to say that a production charges

from static to dormant or from static to affect to join to conflict states. These states

were monitored during the execution of the four production systems and two types of

presentations for the results are introduced.

First, a state transition diagram showing the average sizes of these sets appears in

Figure 4-9. where nodes represent states and arcs between any two states represent a

ratio between the average value of productions in predecessor state to average value of

productions in the successor state in a. cycle.

Second, a plotting of the sizes of the static, dormant, affect, join and conflict sets

per cycle is presented in Figures 4-10, 4-11, 4-1*2 and 4-13 for the four production

system programs, respectively.

The following are remarks were deduced from these Figures:

A conjecture may be made that production system programs that have high num-

Affect S et
— 19 45

2 19 v Conflict Set

State Transition Diagram for MAB. WALTZ. MAPPER and RUBIK

102

N
um

be
r

of
El

em
en

ts

No
.

of
E

le
m

en
ts

16

14

12

10

8

6

4

2

0
oo o -oo o CM

Cycle

Figure 4-10: State Transitions per Cycle for MAB

Conflict Set

Join Set

Affect Set

Dormant Set

35

oo
30 ♦o

25

20

15

10

5 <x>oooc<>ooc<xxxxxx>6*

0
r— io O oo r*>.
CM CM CM CO cO

— too o•— co O co ^ ^ m lo

— ■— Conflict Set

Join

-♦— Affect

-o— Dormant

Cycle

Figure 4-11: State Transitions per Cycle for WALTZ

103

N
o.

 o
f

E
le

m
en

ts

120

V)

cd)
£(D

Conflict Set

Join Set

U i ♦ Affect Set
O
o
z

Dormant Set

— co OlO lO -O Or'v co o to —■— — (\l (O Is- CO o iOto 7̂ ^ m •— r̂ - oo o as<5 O oo 8 8 *— co O to
CN CN CO CO ^

Cycle

Figure 4-12: State Transitions per Cycle for MAPPER

70
65
60
55
50
45

40
35
30
25

20

15

10

5

0
CN CO uO >0 0 0 O O C \ l c o ^ T i O > O r ^ c O O O CN

Cycle

-----■----- Conflict Set

Join Set

-------0-------

AttGCT bet

Dormant Set

Figure 4-13: State Transitions per Cycle for RUBIK

104

ber of productions tend to have the majority of its productions in dormant state

(e.g. 91.75% and 7*2.12% for MAPPER and RUBIK, respectively) which implies

the opposite of this conjecture for the case of the affect state. Hence, Gupta’s ob

servation that the number of affected productions are independent from the total

number of productions in a production systems program may have to be amplified

to the following statement:

“The number of affected productions in a production system are in

dependent of the total productions but systems with many productions

may have a smaller affect set than those with a few productions”

In fact, this conjecture has been found to be valid for both the production systems

being studied here and the six production systems studied by Gupta.

• Considering that the cost of deciding on joinability of a production is not high

compared to the cost of joining its CE-Objects and that the size of the join set

is small compared to the size of the affect set, this leads us to concentrate on the

characteristics of the productions in the join set which utilise most of the cost in

a production system cycle as will be discussed in section 4.2.3. Hence, this leads

us to conclude that the size of the join set may be a better indicator of production

level parallelism than the affect set chosen by Gupta. Consequently, this questions

G upta’s reliance on the affect set in choosing the number of processors in the

Production System Machine (PSM) he proposed.

• The ratio of join set to conflict set is higher than the ratio of affect set to join set

which leads us to say that the join set has closed the gap between the affect set

and the conflict set.

• On average, the upper bound on the size of the conflict set for the four production

system programs seems to be 2 which implies that searching the conflict set cannot

be an expensive operation, especially when considering the heavy dependence of

00P S 5 on direct removal of production instantiations from the conflict-set7.

' Recall that this done when a working memory elem ent is removed or added that m atches a positive

105

Table 4.4: Movements into and out of the Conflict-Set

Production System Program MAB WALTZ MAPPER RUBIK
Insertion 1.56 3.08 2.54 2.64

Positive Removals 0.63 1.8 0.49 0
Negative Join Removals 0 0.28 0.12 0.41

Negative Non-Join Removals 0 0 0.94 0.64
Ratio of Insertions to Removals 2.48 1.48 1.63 2.51

In summary, the state transitions diagram for a production system run is considered

to be a valuable performance analysis tool in that it describes briefly the behaviour of

production systems at run-time irrespective of the underlying algorithm being employed

by the inference engine.

4.2 .2 M o v em en ts into and out o f th e C onflic t-Set

The conflict-set attribute of the CR-Manager object suffers one insertion and three

types of deletions of productions instantiations. The insertion into the conflict-set is

done through the in s e r t - i n to - c o n f l ic t - s e t method. The three types of deletions8

are:

Positive Removal: This is the removal of a production instantiation that has got a

positive CE-Object matched bv working memory element of a certain timestamp.

Negative Join Removal: This is the removal of a production instantiation that has

got negative but joinable CE-Object that has already been matched by a newly inserted

working memory element.

Negative Non-Join Removal: This is the removal of a production instantiation that

has got a negative but non-joinable CE-Object that has already been matched by a

newly inserted WM element.

The monitoring of these movements was recorded for the four production system

programs on cycle by cycle basis and the results are presented in Figures 4-14, 4-15,

or negative a C E -O bject, respectively.
8These removals are handled bv rem o v e-fro m -cs-tim esta m p . c h e c k -r e m o v a l-o f -p r o d u c t io n and

r e m o v e -fr o m -c s -p r o d u c tio n m ethods of the CR-M anager object.

106

No
.

of
E

le
m

en
ts

4

3.5

3

2.5

2

1.5

1

0.5

0
o o LO OCsl CO ^ lO -O CM COCO

Insertion

Pos. Rem.

Cycle

Figure 4-14: Movements into and out of the Conflict-Set in MAB

00

C d)
E
0)

LU

o
o
z

70

65

60

55

50

45
Insertion

Pos. Rem.40

35 Neg. Join Rem.

Neg Non-Join Rem.25

20
15

10

5

0
\ **as *

-— oo lO O
CM CN C \ l CN CN

Cycle

Figure 4-15: Movements into and out of the Conflict-Set in WALTZ

107

N
um

be
r

of
E

le
m

en
ts

Insertion
</>
c<D
£<u

Pos. Rem.

Neg. Join Rem.

Neg. Non-Join Rem.
LIJ
0
oz

imi
mu■ ■■■ lima

0 itattffgrfngni
«— c O l O C N O ' O c o O r ^ ' O - - — co ifl CN O' O W

>— C N I C M c O ^ T L O L O - O r ^ - ^ Q O O O - O ' —

■mi

«— CO LO CM O NT *3 lO O 'OO -̂ TCM CNI co

Cycle

Figure 4-16: Movements into and out of the Conflict-Set. in MAPPER

12

Insertion
10

Pos. Rem.
8 Neg. Join Rem.

Neg. Non-Join Rem.6

4

2

0
CO O O— <— CN

— CN CN CNCO O OCN CN CO

Cycle

Figure 4-17: Movements into and out of the Conflict-Set in RUBIK

108

4-16 and 4-17. respectively. Table 4.4 lists the average number of insertions, positive

removals, negative join removals and negative non-join removals for these systems which

has led to conclude the following:

• The failure of TREAT to handle removal of production instantiations from the

conflict-set as a result of the addition of a WM element that matches negative

joinable or non-joinable CE-Objects has a high impact on performance if a join

computation has to be recomputed as in TREAT and Rete. This impact was

found to be a factor of 1.16, 0.33, .20 and 0 over total cost of join for RUBIK,

WALTZ, MAPPER and MAB, respectively.

• The average number of negative removals (i.e. join or non-join) is 1.06, 1.05,

.028, 0 compared to 0.49, 0, 1.80, 0.63 on average in the case of positive removals

for MAPPER. RUBIK, WALTZ and MAB, respectively. This has led us to con

clude that production systems tend to have a high potential number of negative

removals.

• The average number of negative non-join removals tends to be higher than the

negative join ones then provided that the cost associated with the former is less

than the la tter9, this supports the approach adopted by OOPS5 with respect to

classifying CE-Objects into joinable and nonjoinable.

• The impact on performance had a positive removal been eliminated and replaced

by a recomputation of join was found to be a factor of 6.47, 2.64, 0.0074 and 0

over the total cost of join for MAPPER, WALTZ, MAB and RUBIK, respectively.

This supports the strategy employed by both OOPS5 and TREAT with respect

to positive removals for MAPPER and WALTZ.

• The ratio of insertion into and removal from the conflict-set (see line 5 in table

4.4) has been discovered to be a valuable figure since it gives the programmer

an indication of unnecessary production instantiations. If this ratio is high, then

9Recall that negative join rem oval requires checking consisten t variable bindings betw een th e join-
list o f a production instantiation and the join-list. o f a negative C E -O b ject being m atched by a working
m em ory elem ent (see c h e c k -r e m o v a l-o f -p r o d u c t io n m ethod o f C R -M anager ob ject in section 3 .2 .2)

109

this suggests that the programmer should reduce this ratio by making produc

tions more specific by either adding more condition elements to such productions

or putting more restrictions on the tests in a condition element (e.g. using more

predicates to narrow selectivity of matching working memory elements). Hence,

this ratio is an im portant finding with respect to improving performance of pro

duction systems in general which was not investigated previously.

In summary, for an inference engine to avoid the recomputation of the join between

the CE-Objects of a production as a result of: (i) removing a working memory ele

ment that matches a positive CE-Object or (ii) adding a working memory element that

matches a negative CE-Object, such an inference engine has to consider direct removal

of production instantiations from the conflict-set. Hence, 0 0 P S 5 ’s novel solution to the

problem is a major advance over the approaches in TREAT and Rete.

Moreover, the ratio of insertion to removal from the conflict-set is an important

indicator for improving the performance of real-time production system programs irre

spective of the underlying algorithm used by the inference engine.

4 .2 .3 A n a ly s is o f th e C ost p er C yc le

The analysis of the total cost of running a production system using OOPS5 is analysed

based on dividing the cost per cycle into four categories as follows :

1. Computations of constant tests was monitored by summing the total time spent in

processing the m a tc h -in se r t method prior to updating AVL trees of CE-Objects

per cycle.

2 . Computations related to updating AVL trees of CE-Objects at both times when

inserting or deleting WM-tuples into or from AVL trees of a CE-Object. This

type of computation was monitored in m a tc h - in se r t and remove methods.

3. Computations related to updating match-knowledge of productions per cycle was

monitored by summing the cost of processing the update-m atch-know ledge per

cycle.

110

4. Computations related to joining CE-Objects of the same production per cycle

which were monitored from the time when the update-m atch-know ledge method

hands off computation to t e s t - j o in - p o s i t i v e or te s t - jo in -m ix e d methods for

positive or (negative or mixed) productions, respectively, until the end of current

cycle for that production.

To analyse the cost involved in executing the four production system programs based

on the above cost categories, it was best found to consider this analysis on the level of

the individual production system program. As an aid in this analysis, a graph is used

for each of these systems to show the following:

• Percentage of the total cost of a cycle10 over total execution time.

• Percentage of the cost of constant tests computations over the total cost in a cycle.

• Percentage of the cost of updating AVL trees over total cost in a cycle.

• Percentage of the cost of updating match-knowledge of productions over the total

cost in a cycle.

• Percentage of the cost of join over the total cost in a cycle.

Figure 4-18 shows the different percentages of cost for MAB, from which one can

deduce two facts. First, for a small production system program like MAB, it is more

likely that the computations of constant tests, AVL trees updates and match-knowledge

updates tend to be higher than the cost of join which can be attributed to: (1) small

number of actions in the right hand side of a production, (2) small number of WM-

tuples stored in the AVL trees of CE-Objects and (3) small number of CE-Objects per

production. Second, there is not a great magnitude of change of cost from cycle to cycle.

WALTZ and MAPPER, share the same characteristic in that few cycles are respon

sible for most of the total cost which can be revealed from Figures 4-19 and 4-20 for

these two systems, respectively. In the case of WALTZ, 24% of the cycles (i.e. cycles 21

10T ota l cost is assum ed to be the sum of the cost of con stan t tests, AVL trees u p dates, m atch-
know ledge updates and join com putations.

I l l

Pe
rc

en
t

of
To

ta
l

C
os

t
Pe

rc
en

t
of

To
,a

l
C

os
t

20 Constant
18

AVL
16

Update-Match14

Join12

10 Total
8

6
4

2

0
2 3 4 5 7 8 96 10 1 1 12 13 14 15 16

Cycle

Figure 4-18: Analysis of Cost per Cycle for MAB

10 -

Constant

AVL

Update-Match

Join

Total

CM O CO ■ ^ r - ' - O c O O O C N I i O c O ' —
•— - - C M C N I C N C N C O C O C O ^ T

CO O O CM LO co <—lo in lo -o o o re
cy c le

Figure 4-19: Analysis of Cost per Cycle for WALTZ

112

«/>o
O
o
o

c(1)o
a>a.

45 t

40 -

35 -

30 -

25 --

20 -

15 -

10 -

5 -

0
CM

Constant

AVL

Update-Match

Join

Total

tort
O O CO O r-̂ NT •— aO CO CM O O CO

■— C M c O c O ' ^ t L O L O ' O r ^ r ^ . o o o

Wrt>)totototo>toto>Wrt/rti>>totototototo>tototo)»toto>>toto>rtt4to>toto»
r ^ v r — o o l O C M O - O c o O O ' — C M C M c o ^ J ^ J L O ' O r ^

Cycle

Figure 4-20: Analysis of Cost per Cycle for MAPPER

Constant

AVL

Update-Matcht/)
o
o

JoinooI—
Totalo

c<b
o
a>

CL.

0 W “ " 1--------- A --------- T—

c n co l o -o
-w

•— CM
CM CMO "q- uo ooo o CM OO OO

Cycle

Figure 4-21: Analysis of Cost per Cycle for RUBIK

113

to 38) is responsible for 70% of the total cost and 3% of the cycles (i.e. cycles 77, 80,

87, 92, 93) is responsible for 96.56% of the total cost in the case of MAPPER. In these

few cycles, most of the cost is utilised in computing join. This is due to the fact the

number of WM-tuples involved in the join are higher in these cycles compared to the

remaining cycles. More specifically, these WM-tuples tha t matched negative joinable

CE-Objects in the case of WALTZ (i.e. 32 WM-tuples on average) whereas in MAPPER

they matched positive joinable CE-Objects (e.g. 326 on average in cycle 80). Moreover,

the number of these tuples that match negative CE-Objects in the case of WALTZ is

much higher than the ones that match positive joinable CE-Objects and vice versa in

the case of MAPPER. This leads us to conclude that using parallelism at this level (i.e.

join level) may lead to some speed-up by spreading the cost of join over more than one

processor and hence this requires formulating a strategy to deal with joining negative

and positive CE-Objects as will be discussed in the next chapter.

RUBIK tends to exhibit more complex behaviour than WALTZ and MAPPER as

shown in Figure 4-21. Examining this Figure reveals that 30% of the cycles (i.e. cycles 4,

6 , 8 , 10, 19, 2'1, 22) are responsible for 95.81% of the total cost. Four of these cycles (i.e.

cycles 4,6,8,22) have their cost almost uniformly distributed over AVL trees updates,

match-knowledge updates and join computations which when combined together result

in 57.17% of the total cost. However, examining the productions involved in these cycles

reveals that these productions have a high number of CE-Objects (e.g. 41) which have

a high number of AVL trees and large large number of actions in the right hand side.

These three factors imply a large number of updates on AVL trees, match-knowledge

and high join cost. The other cycles (i.e. 10, 19, 21) which are responsible for 38.64% of

the total cost have most of the cost taken in join computations of WM-tuples satisfying

positive CE-Objects similar to the case of M APPER except tha t the number of WM-

tuples is far less in RUBIK (e.g. 10) than in MAPPER.

As a result, to improve on the performance of production systems such RUBIK

exploiting action level parallelism combined with join level parallelism may be considered

as a remedy. Moreover, this leads us to conclude that OOPS5 and TREAT may not

perform better than Rete with respect to production systems that have high number

114

Table 4.5: Summary of the Total Costs

Production System Program MAB WALTZ MAPPER RUBIK
Constant Tests 30.53% 3.08% 2.23% 4.84%

AVL trees updates 13.74% 14.31% 0.80% 19%
Match-Knowledge updates 31.30% 25.44% 0.87% 18.65%

Join 24.43% 57.17% 96.1% 57.51%

of condition elements and high number of actions in the left and right hand sides,

respectively.

To summarize on the different types of costs involved in executing the four produc

tion system programs, table 4.5 presents percentages of these costs over the total cost

of execution for theses systems. The first line in the table shows that despite the loss

of sharing in 0 0 P S 5 compared to high degree of sharing in Rete, the computation of

constant tests seems to be bounded by 5% of the total cost as in Rete [11] except in

the case of MAB which is a small production system program. The last row shows

that the majority of time utilised is involved in join computations except in the case of

MAB. The updates on AVL trees and match-knowledge in WALTZ and RUBIK utilised

39.75% and 37.65% of the total cost, respectively compared to 1.67% in M APPER which

reflects the complexity of the left and right hand sides in RUBIK and the responsiveness

of CE-Objects in WALTZ to working memory changes.

4 .2 .4 R esu lts o f th e D ifferen t I m p le m e n ta t io n s o f In feren ce E n g in e s

in O P S 5

To investigate the possible speed-up that may be obtained using 0 0 P S 5 as an

inference engine in 0PS5, three different implementations of 0 0 P S 5 have been used

to evaluate the performance of 0 0 P S 5 compared to Rete based 0PS5. These three

implementations are: (1) Relaxing the concept of uniqueness of CE-Objects (2) Using

unique CE-Objects and the default ordering of CE-Objects of the same production

when carrying out join (3) same as second implementation but ordering of CE-Objects

when carrying out join is according to their increasing size of WM-AVL-trees of the

115

Table 4.6: Execution Results of Different Implementations
Production System Program MAB WALTZ M APPER RUBIK

0PS5 1.55 101.62 2041.23 147.35
0 0 P S 5 Non-Unique CE-Objects 2.09 280.80 2236.42 349.48

0 0 P S 5 Unique CE-Objects (not sorted) 1.59 181.50 2171.02 205.25
0 0 P S 5 Unique CE-Objects (sorted) 1.51 165.43 2147.13 172.73
Speed-up using Unique-CE-Objects 1.31 1.55 1.03 1.7

Degree of Uniqueness 1.74 2.30 1.72 1.63
Average Size of Affect Set 8.06 25.31 9.65 19.45

CE-Objects of a production. Table 4.6 gives execution times in seconds for these three

implementations (first four lines).

Relaxing the concept of uniqueness of CE-Objects degrades the performance of

OOPS5 and is especially observed in production systems that have high degree of unique

ness of CE-Objects11 and large size of affect set. On the one hand, the higher the degree

of uniqueness — which is a. static measure — of CE-Objects in a production system, the

higher the tendency of tha t system to save redundant computations of constant tests

and updates on AVL trees of CE-Objects had the non-uniqueness approach is taken

instead. On the other hand, the size of the affect set — which is a dynamic measure

— is supporting evidence for uniqueness. For example, systems like MAB, WALTZ and

RUBIK benefited from the uniqueness of CE-Objects approach in obtaining speed-up

factors of 1.31, 1.55 and 1.7, respectively, which are higher than the speed-up factor

of M APPER which is attributed to the small size of M APPER’s affect set. Hence,

this leads us to conclude that the uniqueness of CE-Objects approach has an impact

on improving the performance of 0 0 P S 5 and in most cases this impact may be quite

significant.

Although we were unable to obtain a TREAT based 0PS5 interpreter to run under

EuLisp, it is fortunate that Miranker used MAB, WALTZ and M APPER production

system programs for his comparison of TREAT against Rete. Table 4.7 presents the

speed-up factors of TREAT12 over Rete and of 0 0 P S 5 over Rete in the cases of both

11 Obtained by dividing the number of CE-Objects when uniqueness is relaxed by the the number of
CE-Objects under the unique strategy.

12These factors were calculated by the author of this thesis when studying performance figures ob-

116

Table 4.7: Speed-up of TREAT and 0 0 P S 5 over 0PS5

Production System Program MAB WALTZ M APPER RUBIK
TREAT (not sorted) 1.48 0.65 1.14 not tested

TREAT (sorted) 1.67 1.48 1.14 not tested
TREAT’S Speed-up Factor 1.12 2.28 0.94 not tested

0 0 P S 5 (not sorted) 0.97 0.56 0.94 0.72
0 0 P S 5 (sorted) 1.03 0.61 0.95 0.85

0 0 P S 5 ’s Speed-up Factor 1.06 1.09 1.01 1.18

sorted and non-sorted join sequence. From this table it can be seen tha t, in general,

there is agreement between TREAT and 0 0 P S 5 in concluding that sorting of condition

elements of production according to the respective sizes of their AVL trees results in some

speed-ups. However, the speed-up factor obtained when WALTZ was executed using

TREAT is much higher than the 00P S 5 . Recall that 0 0 P S 5 uses the same approach

of TREAT in that it examines the conflict set when a WM element that matched a

positive CE-Object is removed. Noting that RUBIK and M APPER have more complex

CE-Objects and many more WM elements matching CE-Objects than than WALTZ,

we conjecture that the greater speed-up obtained by TREAT over 0 0 P S 5 in the case

of WALTZ is attributable to a different initial configuration of working memory.

Sorting of a production’s CE-Objects in ascending order of the size of their AVL

trees before carrying out join has benefited MAB, WALTZ, and RUBIK much more than

M APPER (see speed-up factors in line 6 of table 4.7). This is attributed to the fact

that these systems have more joinable CE-Objects than nonjoinable ones and especially

in the case of RUBIK as was discussed in section 4.1.2. Hence, this implies that this

approach of sorting helps in narrowing down the number of WM-tuples used in the join

as the join process progresses from one CE-Object to the next.

M APPER which is the largest rule set used and takes the longest time to execute

has shown a very similar performance to Rete which is mainly attributed to the power of

the AVL queries used on the large size of AVL trees (e.g. 576 WM-tuples) of respective

CE-Objects and the direct examination of the conflict set in both cases when a working

tained by Miranker.

117

memory element that matches a positive or negative CE-Object that is either removed

or added.

4.3 Conclusion

In this chapter, static and dynamic performance measurements tools were used to assist

in studying characteristics of production systems and their behaviour at run-time and

particularly from the perspective of the object-oriented transformation and execution

of 0PS5 production systems. One very im portant fact found when implementing the

performance measurements tools was the ease of embedding them in 0 0 P S 5 which is

attributable to the object-oriented design and style of programming.

The static tools were mainly used to deal with issues related to the complexity of the

left and right hand sides of productions have been found to be variable from program to

program. But, in general, production systems have been found to agree on the following

observations:

• The number of positive CE-Objects is higher than negative ones and this was

considerably higher in the case of RUBIK.

• The number of joinable CE-Objects is higher than nonjoinable ones and this was

also considerably higher in the case of RUBIK.

• The advantages of classification of CE-Objects into joinable and nonjoinable ones

has found its fruits in join and direct examination of conflict set.

• The number of working memory actions in the right hand sides of productions that

add working memory elements are higher than the ones that delete them after the

splitting of modify action into a delete followed by an insert action. RUBIK has

displayed the extreme of this observation by having an average of 11.19 addition

actions per production compared to 2.96 deletion actions on average.

• The degree of uniqueness of CE-Objects has been found to be high and had an

impact on improving the performance of production systems and in the majority

118

of the systems this impact was found to considerable and on average the speed-up

factor was found to be 1.40.

The dynamic measurements tools introduced in this chapter have been found to be

very helpful in understanding the behaviour of OPS5 production systems in general

and OOPS5 in particular. The following observations are a summary of the behaviour

obtained by using these tools.

• The state transition diagram for a particular run of a production system program

may be considered as a valuable tool in that it describes briefly and deeply such

a behaviour in a particular run irrespective of the underlying algorithm employed

by the inference engine. This tool may be very beneficial in real-tim e systems

where production systems constitute a major role in the run-time behaviour of

such systems. Moreover, the discovery of the join set has closed the gap between

the affect set and the conflict set, led us to concentrate on the characteristics of

the productions in the join set to improve performance and has suggested using

this set as it is a better indicator of production-level parallelism than the affect

set used by Gupta irrespective of the underlying algorithm used by the inference

engine.

• The movements into and out of the conflict set tool have led us to find a valuable

ratio which may be of great importance to the programmer in tha t it points out

the lost computations and as a remedy it was suggested to make left hand sides

of productions more specific. Also, this tool has led us to conclude that for an

inference engine to avoid the recomputation of the join between CE-Objects of

a production as a result of one of these CE-Objects either positive or negative

matched by WM element that has been removed or added, respectively, this in

ference engine has to employ the direct examination of the conflict set. Hence,

OOPS5’s novel solution to this problem is a major advance over the approaches in

TREAT and Rete, considering the fact that there is a potential number of these

incidents found in the four production system program studied in this thesis.

119

• The majority of the time utilised in executing 0 0 P S 5 is involved in join compu

tations and is the majority in the case of M APPER which is the largest and most

complex rule set.

In general, 0 0 P S 5 turned to be slower than Rete for production systems which have

either small rule-sets (MAB) or artificial problem domains (RUBIK, WALTZ), but offers

comparable performance with a large realistic system (M APPER).

This chapter has laid out the bottlenecks in production systems performance in

general, and in 0 0 P S 5 in particular, so as to lay the ground for the concurrent object-

oriented execution of 0PS5 production systems.

120

Chapter 5

Concurrent Execution of OOPS5

In the previous chapter, we presented the various static and dynamic measurements that

are concerned with the object-oriented execution of 0PS5 production system programs

and observed that production objects which belong to the join set (i.e. very small

number) take a long time either to succeed or fail in entering the conflict set and have at

least one of the following characteristics: a high number of joinable CE-Objects and high

number of tuples stored in the AVL trees of corresponding CE-Objects. In this chapter,

the future message passing mechanism is utilised to improve the performance of 00P S 5

in particular, and production system programs in general, to harness different levels of

parallelism. Section 5.1 presents an overview of the future concurrency abstraction and

its creation control strategy in EuLisp. Section 5.2 reports the implementation of the

various levels of parallelism using 0 0P S 5 . Section 5.3 is an assessment of the major

results obtained.

5.1 Overview of Futures Concurrent Abstraction

Futures was first implemented in Multilisp [16]. The aim of the future construct is

to allow concurrent evaluation of expressions by relaxing the precedence constraints

imposed on them lexically. In EuLisp as well as in Multilisp, the evaluation of (future
expression) returns a data object called a future which is a place holder for the value of

expression until its evaluation is completed. Hence, this allows the concurrent execution

121

of the process evaluating expression as well as the process which called future. However,

if any process tries to access the value of a future, then if the process evaluating that

future has not finished evaluation yet, the caller process is blocked until future evaluation

is completed. Otherwise, the caller process proceeds when the value of the future is

completed. In EuLisp, a request for the value of a future object is performed using the

construct (fu tu re -v a lu e future-object) .

Using the future construct outlined above implies creating a new task every time a

call to the future construct is encountered. This is referred to as Eager Task Creation

(ETC) in the original semantics of futures in Multilisp. The crucial advantage of futures

is that it allows dynamic partitioning of tasks but there has to be control over future

creation in order not to swamp the system and to reduce the total overhead from the

use of futures. Two strategies have been proposed, Lazy Task Creation (LTC) and Load

Based Partitioning (LBP) [32].

LTC entails that a call to (fu tu re expression) should start evaluating expression

in the current process and save some information about its parent process so that its

continuation can be moved to another process should any processor becomes idle.

Using LBP, the decision to create tasks is based on the number of tasks being queued

in the system’s task queue. In EuLisp, the number of active futures is bound to a

global variable that can be obtained by calling the function (a c t iv e - f u tu r e s - c o u n t) .

Consequently, to control the load threshold, one has to compare the number of active

futures, F, against a. predetermined threshold value T such that F < T. In the case

that F >̂ T« then no more futures can be created and execution of tasks requesting

futures proceed sequentially. With respect to the concurrent execution of 0 0 P S 5 in

this research, the load threshold is set to (P + 1), where P is the number of physical

processors that are to be used in carrying out the concurrent experiments, using the

same sample of production system programs used for obtaining the measurements in

chapter 4. The advantage of using such a limitation is two-fold. First, each processor

has a task to perform when it finishes with its current task. Second, it reduces the

overhead of forking many futures, which are large objects in EuLisp, since this would

consume a lot of memory and hence cause the system to do frequent garbage collections

122

especially in cases which lend themselves to the divide-and-conquer algorithmic model

of computation.

5.2 Concurrent Execution o f OOPS5

One of the main issues that arise at first glance when considering the concurrent execu

tion of 0 0 P S 5 is the concurrent movements into and out of the c o n f l i c t - s e t attribute

of the CR-Manager object. As a solution to this problem, the conflict-set is enclosed in

a critical region and a boolean semaphore is used to control access. To implement this,

a new attribute, namely c o n flic t-s e t-se m a p h o re , is added to the CR-Manager class.

In EuLisp, the construct: (make-semaphore) returns a semaphore object, (open-semaphore

sem) corresponds to the P(sem) standard operation which implies that any process

that encounters such an operation should wait if the value of sem is 0 and continue oth

erwise, (close-sem aphore sem) corresponds to also the standard operation V(sem)

which sets the value of sem to 1.

The objective here is to allow one process at a time to update the conflict-set. To do

that, whenever a call is made to any of the following three methods: in s e r t - in to - c o n f l i c t - s e t ,

rem ove-from -cs-production or ch eck -rem oval-o f-p roduc tion , the updates on the

conflict-set in these methods is controlled by the conflict-set-sema.phore.

The following sections discuss the implementation of the following four levels of

parallelism: (i) CE-Object, (ii) Join, (iii) Combination of CE-Object and Join level

parallelism, (iv) Combination of Action , CE-Object and Join level parallelism. The

implementation of these levels was carried out using FEEL, the implementation of Eu

Lisp, that is currently running on the Stardent machine. The Stardent employs a shared

memory architecture with 4 processors sharing 64 MB of RAM.

5.2 .1 C E -O b jec t L evel P a ra lle l ism

When a WM action is executed, a set of CE-Objects are sent either m a tc h - in s e r t—

denoting addition—or remove—denoting deletion— messages by the same WM-Distributor

object. If either the computation of constant tests of a WM element being matched by

123

a CE-Object is successful or a WM element to be removed is found in the WM-AVL-tree

of a CE-Object, then the following tasks are to be performed by such a CE-Object.

1. Updating of the AVL trees

2. Updating of match-knowledge of the corresponding productions

3. If necessary, compute the join between this CE-Object and the rest of the CE-

Objects of the production1.

CE-Object parallelism is then defined as the concurrent processing of the compu

tations performed by each CE-Object of the same WM-Distributor (i.e. same entity)

when it is asked to process addition or deletion of a WM element. In this way, CE-

Object parallelism serves two goals: concurrent updates of the balanced trees of each

CE-Object of the same WM-Distributor and concurrent computations of the join that

may be performed in consequence, per WM change.

But, what is the implication of CE-Object level parallelism on the correctness of the

execution? To study that, one has to consider the following four cases:

1. W hat happens when a WM element is added that matches a positive CE-Object?

2. W hat happens when a. WM element is removed and is already matched by a

positive CE-Object.?

3. W hat happens when a WM element is added that matches a negative CE-Object?

4. W hat happens when a WM element is removed but has been matched already by

a negative CE-Object?

In the first case, a strategy to implement CE-Object level parallelism has to avoid

two situations which may lead to incorrect instantiations entering the conflict set:

• Redundant, production instantiations entering the conflict-set. Consider, for ex

ample, if C'i and Cj are positive CE-Objects of the same WM-Distributor and of

Recall that testing for eligibility of join and then initiating it is done by te s t - jo in -p o s i t iv e for
positive productions and test-join-mixed for negative or mixed productions.

124

the same production. Px. which have updated their AVL trees with the WM-tuple,

Ts. If C'i computes join with C j , then the join-list of Ts may be consistent with

the join-list of Ts in Cj and hence a Px instantiation enters the conflict-set. Like

wise, when Cj computes join with Cj, an additional but incorrect Px instantiation

enters the conflict-set.

• The possibility of an incorrect join computation if Ct is computing join while CjS

AVL trees are being updated.

In the second case, 0 0 P S 5 does not perform any join computations, but instead

it searches the conflict-set. for productions instantiations having the timestamp of the

WM element to be deleted and updates AVL trees of corresponding CE-Objects that

are already matched by that element. Hence, parallelism of CE-Objects entails tha t no

process can update the AVL trees of a positive CE-Object if another process is reading it

and vice versa, to prevent any system errors or an incorrect join. Clearly, the concurrent

update of the AVL trees must be prevented and this is simply solved by enclosing the

updating of the AVL trees of positive CE-Objects in a critical region. This has led to

the addition of an attribute to the CE-Object, namely, av l-trees-sem ap h o re .

In the third case. 0 0 P S 5 does not do any join computations but the situation could

arise where AVL trees of a negative CE-Object are being updated with a newly added

WM element at the same time as this element matches a positive CE-Object and is

being used to compute consistent variable bindings with WM-tuples of the negative

CE-Object. The side effect of this is the same as in the second case and hence the

updates on AVL trees of negative CE-Objects are also enclosed in a critical region as in

case 2 .

In the fourth case, the same two situations to be avoided in the first case apply.

For example, if two negative CE-Objects of the same WM-Distributor and of the same

production update their AVL trees and then compute join with a positive CE-Object.

To help in executing cases 1 and 4 concurrently, two new sets of CE-Objects are

defined: parallel and mutual. A CE-Object is said to be mutual if there exists at least

one CE-Object of the same WM-Distributor belonging to the same production. The

125

Table 5.1: Average number of CE-Objects per type related to a WM-Distributor

Type of CE-Object MAB WALTZ M APPER RUBIK
Positive 6.75 9.8 3.52 31.73
Negative 0 1.6 0.71 2.45

Parallel Positive 4 1.4 1.98 5.82
Parallel Negative 0 1.6 0.66 0.64
Mutual Positive 2.75 8.4 1.55 25.91
Mutual Negative 0 0 0.05 1.82

set of CE-Objects which conform to this criterion is referred to as the mutual set and

the ones which do not conform are the parallel set. Each of these sets is further divided

into positive and negative yielding the following four sets: parallel positive, parallel

negative, mutual, positive and mutual negative. On the one hand, this would imply

concurrent processing of the insertion of WM elements into the trees of the parallel CE-

Objects belonging to the same WM-Distributor or the removal of WM elements from

the trees of parallel negative CE-Objects of the same WM-Distributor. On the other

hand, the computations related to mutual positive or mutual negative CE-Objects must

be processed sequentially to avoid the side effects of cases 1 and 4.

To process cases 2 and 3 concurrently, new sets are identified which contain positive

and negative CE-Objects of the same WM-Distributor. These sets are named, positive

and negative CE-Objects. Hence, this would imply concurrent processing of the addition

(or removal) of a WM element matching positive (or negative) CE-Objects of the same

WM-Distributor.

As a result, this has led to add the following six new attributes to the WM-

Distributor class: (1)parallel positive CE-Objects,(2) parallel negative CE-Objects,
(3) mutual positive CE-Objects, (4) mutual negative CE-Objects, (5) positive
CE-Objects and (6) negative CE-Objects. These sets are all formed at transformation

time and there is no overhead at run-time in their creation. Table 5.1 presents the av

erage number of positive, negative, parallel positive, parallel negative, mutual positive

and mutual negative CE-Objects per WM-Distributor for MAB, WALTZ, M APPER

and RUBIK.

126

\

Table 5.2: Speed-up obtained from CE-Object Level Parallelism over serial 0 0 P S 5 and
serial 0PS5

No. of Processors MAB WALTZ MAPPER RUBIK
1 0.75 (0.77) 0.95 (0.65) 0.98 (0.93) 0.92 (0.78)
2 0.89 (0.91) 1.07 (0.73) 1.02 (0.93) 1.16 (0.99)
3 0.89 (0.91) 1.09 (0.74) 0.99 (0.94) 1.27 (1.09)
4 0.86 (0.89) 1.13 (0.77) 0.98 (0.94) 1.28 (1.10)

Figure 5-1 presents the algorithm used to implement CE-Object parallelism using

these sets where concurrent execution is initiated in the broadcast-w m -change method.

From this algorithm, it is obvious that the bound on the speed-up obtainable is the time

needed to execute the sequential computations in either step l.c or 2 .c. Since the number

of negative C'E-Objects is much less than positive ones (as can be seen in rows 1 and

2 of table 5.1), it is expected that computations related to mutual positive CE-Objects

are the main factor affecting the time taken.

Despite the sequential steps in l.c and 2.c, it is worth reiterating that the approach

taken by OOPS5 of removing production instantiations from the conflict-set in cases 2

and 3 not only benefits the sequential execution of OOPS5—and is also an advantage

over OPS5 where it is necessary to recompute join to update the beta-memories—but

also its concurrent execution.

Table 5.2 presents the speed-up factors obtained from implementing CE-Object

parallelism over serial 0 0 P S 5 using the sorted unique CE-Object strategy and over

serial OPS5. Thus. a. figure less than 1.0 indicates slow-down and greater than 1.0 is

speed-up.

RUBIK and WALTZ benefited from CE-Object parallelism whereas MAB and MAP

PER did not. The speed-up obtained in these systems is mainly attributable to the

concurrent processing of the removal of a WM element matching a large number of

positive CE-Objects—especially in RUBIK. M APPER did not benefit because of the

completely different bottleneck it suffers from which was attributed to join computa

tions in section 4.2.3. The performance of MAB degraded because of the small number

of WM-tuples stored in the balanced trees and the small number of remove actions.

127

1. If a WM action specifies deletion of a WM element, then do the following:

(a) Fork futures f p p i , f p p 2 , • •, f pPi , • •, fpPn> 1 < * < n, to process the removal of
this element from AVL trees of the positive CE-Objects, Ci, C 2 , • • , C,, • ■ , Cn ,
1 < i < n, respectively using the remove method.

(b) Fork futures f p n 1 , f p n 2 , , f p r i j , • •, f p n m, 1 < i < m, to process the removal of
this element from AVL trees of parallel negative CE-Objects, Ci, C 2 , • • •, C j , • • •,
Cm, respectively using the remove method.

(c) Process computations related to the removal of this element from AVL trees of
mutual negative CE-Objects, sequentially using remove method.

2. Else, If the WM action specifies addition of a WM element, then do the following:

(a) Fork futures f p p i , fppi* • f p p i , < f PPn , 1 < i < n, to process computations
related to matching this WM element to positive CE-Objects, C 1 , C 2 , • • •, Cj, • • •,
C n , respectively using the m a tch - in se r t method.

(b) Fork futures f p n 1 , f p n -2 , . f p n j , . f p n m , 1 < / < m, to process computations
related to matching this WM element to parallel negative CE-Objects, CE-Objects,
Ci, Co. • .Cj, . Cm, respectively using the m a tc h - in se r t method.

(c) Process computations related to matching this W M element to mutual negative
CE-Objects, sequentially using m a tch - in se r t method.

In all the above cases, each CE-Object forks futures to update the match-knowledge of corre
sponding productions (in produc tions attribute of this CE-Object) and computing join related
to CE-Objects of these productions if they are eligible for join. Forking of these futures is done
before executing an update-match-knowledge method and are forced to be evaluated before
forcing the evaluation of the forked futures f p p 1 , f p p 2 , • , f p p i , • . fPPn and f p n \ , f pno , ■ ■ •,
f p n j , • • •, f p n m, 1 < / <»» . , 1 < i < n.

Figure 5-1: Algorithm employed in implementing CE-O bject level Parallelism

128

Table 5.3: Percentage of Join and Pre-Join computation of the total cost for MAB,
WALTZ, M APPER and RUBIK

Computation MAB WALTZ M APPER RUBIK
Pre-Join 75.57% 42.83% 3.9% 42.49%

Join 24.43% 57.17% 96.1% 57.51%

To establish an idea of the maximum speed-up tha t may be obtained when CE-

Object parallelism is exploited, one has to note tha t this parallelism is not concerned

with join computations. Hence, the total speed-up obtained is affected only by the

speed-up obtained from the concurrent processing of a single WM change prior to com

puting join related to that action, if any. To obtain a formula for the speed-up obtained

from CE-Object parallelism, assume the following:

C, is the total cost of execution of 0 0 P S 5 sequentially.

C s = Ctp + C'fj where C sp is the total cost of computations prior to join computations

and C\j is the total cost of join computations sequentially.

Cp is the total cost of execution of 0 0 P S 5 using CE-Object level parallelism.

Cp = Cpp-\-Csj where C pp is the total cost of computations prior to join computations

using CE-Object parallelism.

Then, the speed-up obtained from CE-Object parallelism over the sequential 0 0 P S 5 is:

c . p .
C,, Cjp -I- C-sj c,j Csp

~ c i r — c p p i 1 - r
p p p ' ^ i - i ^ p p

assuming that C , p > C pp. Hence, the speed-up obtained from CE-Object parallelism

is bound by C pp
‘ To have a feeling of the upper bound on the speed-up that may be obtained using CE-

Object parallelism in the cases of WALTZ and RUBIK if more processors are employed,

the cost of computations prior to join is given in table 5.32. If we ignore the prior to join

2T h e cost o f com putations prior to join are obtained by sum m in g the percentages in tab le 4 .5 o f
section 4 .2 .3 related to the cost o f constant tests com putations, the u p d a tes on AVL trees and the
updates on m atch-know ledge o f productions

129

cost, then the maximum speed-up obtained is 1.75 and 1.743 for WALTZ and RUBIK,

respectively.

In summary, it may be concluded that the speed-up obtained from CE-Object paral

lelism is bound bv the sequential computations related to mutual CE-Objects and more

specifically the cost of join computations. This leads us to investigate parallelisation of

these join computations in the next section.

5 .2 .2 Jo in L evel P a ra lle l ism

In section 4.2.3, it was concluded that the majority of the time utilised in executing

production systems using 0 0 P S 5 is concerned with join computations and, in particular,

this was related to positive and negative joinable CE-Objects.

Join related to Positive CE-Objects

In 00 P S 5 . when a WM-tuple Wj matching a CE-Object, C;, is to be joined with WM-

tuples of a positive CE-Object, Cj, of the same production, then the subsequent pro

cessing depends on whether Cj is joinable or not. If it is joinable, then an AVL query

is run on the AVL tree corresponding to a join variable in the join-list of w,-. If this

query is successful, then this results in the set of WM-tuples, Wji, ivj2, • • •, Wjs, • • *, Wjn,

1 < s < n. At this stage, join level parallelism entails the following:

1. Parallel computation of consistent variable bindings of the join-list of wt- and join-

list Of Wj!, I V j o, ... Wjs, ... Wjn, 1 < s < n.

2. If the consistency check is successful between w,- and any iujs, 1 < 3 < n, then a

join-list is formed and is used as a seed to compute join with WM-tuples of the

next CE-Object in parallel. The subsequent processing is then dependent on the

type and joinabilitv of the CE-Object.

On the other hand, if the CE-Object, Cj, is nonjoinable, join level parallelism entails

parallel computation of dummy join4.

3T h ese speed-ups were obtained by dividing 1 by the percentage o f join cost (e .g . 1 by 0.5717 in
W ALTZ)

4see j o in - n o n j o in m ethod in section 3.2 .2 betw een u>, and all W M -tuples o f C 3 .

130

CE-Object i

CE-Object j

CE-Object k '

CE-Object I •'

 ► Create a Future 1 Return Futures Values O J°in *-*st ® WM-Tuple

Figure 5-2: Application of Join Level Parallelism with Positive CE-Objects

In the cases, of both joinable and nonjoinable CE-Objects, join-level parallelism fits

well with the divide-and-conquer paradigm. Hence, using futures to implement this type

of parallelism implies expanding the task tree in figure 5-2 breadth-first by forking join

processes until all processors are busy and then expansion proceeds depth-first with the

process allocated a single processor. This technique of future creation was referred to

as Breadth-first Until Saturation then Depth-first (BUSD)[32j. The way this saturation

is controlled is through the use of LBP strategy and hence tasks required by the join

level parallelism are dynamically partitioned.

Join Related to Negative CE-Objects

The semantics of negative joinable CE-Objects entail that all WM-tuples Wji, Wj2, • • •,

Wj3, • • •, Wjn, 1 < s < ii that result from running a query on an AVL tree of a CE-Object

Cj should fail the variable bindings consistency check in order for the join process not

to be terminated5. This puts some restrictions on the parallelism that may be obtained,

because the join process working on Cj is blocked until one of the following is true:

1. A future returns and signals the success of the variable binding consistency check

and in which case the join process is terminated.

5 see s o l v e - n e g a t i v e - j o i n m ethod in section 3.2.2

131

Negative Joinable
CE-Object

Positive Nonjoin able or
Negative Joinable

" " Return Futures Values O Join List • WM-Tuple

Join-Level Parallelism with Negative CE-Objects

2. Or. all forked processes have failed this check and hence the join process continues

with the next CE-Object. if any.

In this way, the forked futures which finish early are of no help unlike in the case

of positive CE-Objects because the longest executing future represents an upper bound

on the parallelism that may be obtained as shown in figure 5-3.

Although intra-node level parallelism6 is specific to the Rete network and works at

finer grain than join-level parallelism, the following two observations are noted when

comparing the latter to the former. First, join-level parallelism is more limited than

intra-node level parallelism because it is limited to the set of productions sharing a CE-

Object', whereas the latter is not. Second, Gupta seemed to overlook the limitations

inherent in the parallel processing of not-nodes and generalised on two-input and-nodes

as if they were the only class of two-input nodes.

Table 5.4 presents the speed-up factors obtained when implementing join-level par

allelism using 1 to 4 processors for the four production systems. The following are the

remarks concerning this implementation for each of these systems:

6Recall from section 2.2.1 that intra-node parallelism im plies parallel processing of activations of
tw o-input nodes in the Rete network affected bv a single WM change.

'T h ese productions are the ones in the p r o d u c t io n s attribute of the C E -O bject

Create a Future

Figure 5-3: Application of

132

Table 5.4: Speed-up Obtained from Join-Level Parallelism over serial 0 0 P S 5 and serial
0PS5

No. of Processors MAB WALTZ M APPER RUBIK
1 0.90 (0.92) 0.97 (0.67) 0.88 (0.84) 0.97 (0.83)
2 0.89 (0.92) 1.26 (0.87) 1.52 (1.44) 1.04 (0.88)
3 0.86 (0.89) 1.38 (0.96) 1.94 (1.85) 1.06 (0.90)
4 0.83 (0.85) 1.44 (1.00) 2.36 (2.24) 1.04 (0.89)

• M APPER has the highest speed-up factors, 2.36 and 2.24 over serial 0 0 P S 5 and

serial 0PS5, respectively, using 4 processors. This has resulted in CPU utilisation

of 0.59 and 0.56 for OOPS5 and OPS5, respectively. This speed-up is attributed

to the concurrent computation of join between WM-tuples of positive CE-Objects.

Using more processors is very likely to achieve higher speed-ups given the fact that

the average number of WM-tuples used in the join of the bottleneck productions

is 326®.

• The maximum speed-up obtained in the case of WALTZ is 1.44 and 1.00 using 4

processors over OOPS5 and OPS5, respectively. Although a factor of 1.30 is ob

tained using 2 processors over 1 and a factor of 1.04 is obtained using 4 processors

over 3, additional processors are unlikely to achieve a significant speed-up for the

following reasons:

1. In section 4.2.3, it was concluded that the bottleneck in the join process

concerning WALTZ was related to the large number of WM-tuples matching

negative CE-Objects (i.e. 32 on average). In consequence, the speed-up that

may be obtained is bound bv either the longest future in the case of failure of

computation of consistent variable binding or the earliest future resulting in

the success of this computation. In support for this argument, it was found

that 90% of the join computations resulted in failure of this computation and

hence it was required to wait till the longest future finishes this computation.

8see section 4 .2 .3

133

2. Join computations constituted approximately 57.15% of the total cost and

hence it entails combining this level of parallelism with the CE-Object par

allelism to improve on the performance of join level parallelism in the case

of WALTZ as will be discussed in the next section.

• In the case of RUBIK, the maximum speed-up obtained using 4 processors is 1.04

over OOPS5 and 0.89 (i.e. slow down) over OPS5. Using more processors is not

expected to achieve speed-up for the following reasons:

1. The average number of WM-tuples used in the join is small (i.e. 10 on

average) compared to WALTZ and MAPPER.

2. As discussed in the case of WALTZ, the cost of join constitutes only 57.31% of

the total cost and the rest of this cost is taken in updating AVL trees of CE-

Objects and the corresponding match-knowledge of their productions which

is shared among large number of WM changes. Hence, this implies combining

this level parallelism with CE-Object parallelism or action-level parallelism

might improve the performance of such programss as will be discussed in the

succeeding sections.

• In the case of MAB, the performance degraded because the number of WM-tuples

used in the join process is small, just 1 or 2 , and the nature of computation of

consistent variable bindings is cheap. In this case, it is obvious that the overhead

of creating futures and scheduling them is higher than executing the join tasks

themselves.

To conclude this section: join-level parallelism is expected to benefit production

system programs whose CE-Objects are matched by very large number of WM-tuples.

This is very much the case if records in the database in a real-time system represent

the initial configuration of WM of a typical production system program whose task is

to implement what-if models (e.g. financial applications). In addition, systems tha t are

temporally redundant (i.e. small number of WM changes per cycle) are also expected

to benefit from this level of parallelism. In the case of joining negative CE-Objects,

134

the speed-up that may he obtained is dependent on either the longest future processing

this join in the case of failure of consistency check or the earliest future returning the

success of this computation.

5 .2 .3 C o m b in ed C E -O b je c t and Jo in L evel P a ra lle l ism

To combine the speed-up obtained as a result of the concurrent updates on AVL trees of

CE-Objects and match-knowledge of production9 with the speed-up obtained from using

join-level parallelism, CE-Object parallelism is combined with join-level. A corollary is

that the scope of join-level parallelism is extended from being applied on the level of

the set of productions sharing a single mutual CE-Object that has been affected by a

single WM change to the sets of productions sharing parallel CE-Objects affected by a

single WM-change. The following is a summary of the parallelism obtained from this

combination:

1. Concurrent processing of the computations related to removal of a single WM ele

ment that is already matched by positive CE-Objects of the same WM-Distributor.

2. Concurrent, processing of the computations related to addition of a single WM

element that match negative CE-Objects of the same WM-Distributor.

3. Concurrent processing of the computations related to addition of a single WM

element that match parallel positive CE-Objects of the same WM-Distributor. If

any of these objects computes join with other CE-Objects of the same production,

then join-level parallelism is applied.

4. Concurrent processing of the computations related to the removal of a single WM

element that is already matched by parallel negative CE-Objects and if this results

in computing join between CE-Objects of the same production, then join-level

parallelism is applied.

5. Concurrent processing of join related to productions whose mutual positive CE-

Object is matched by a single WM element added. Each of these productions

9see section 5.2 for details on the situ ation s where these u p dates are applicable

135

Table 5.5: Speed-up Obtained from Combined CE-Object and Join Level Parallelism
over serial 0 0 P S 5 and serial 0PS5

No. of Processors MAB WALTZ MAPPER RUBIK
1 0.76 (0.78) 0.94 (0.64) 0.90 (0.85) 0.92 (0.79)
2 0.89 (0.91) 1.38 (0.95) 1.57 (1.50) 1.23 (1.05)
3 0.90 (0.93) 1.42 (0.97) 2.09 (1.98) 1.37 (1.17)
4 0.88 (0.91) 1.71 (1.18) 2.31 (2.19) 1.39 (1.19)

Table 5.6: Speed-up Obtained from Combined CE-Object and Join Level Parallelism
over CE-Object Parallelism with respect to 0 0 P S 5

No. of Processors MAB WALTZ M APPER RUBIK
1 1.01 0.99 0.91 1
2 1.00 1.29 1.54 1.06
3 1.01 1.30 2.11 1.08
4 1.02 1.51 2.36 1.09

computes this join between its CE-Objects using join-level parallelism.

6 . Concurrent processing of join related to productions whose mutual negative CE-

Object is already matched by a single WM element. Each of these productions

computes this join between its CE-Objects using join-level parallelism.

Table 5.5 presents the speed-up factors obtained when applying the combination of

these two level parallelism over 0 0 P S 5 using the unique sorted CE-Objects and 0PS5.

Tables 5.6 and 5.7 present the speed-up factors obtained when applying the combination

of CE-Object and join levels over CE-Object and join level, respectively. The following

Table 5.7: Speed-up Obtained from Combined CE-Object and Join Level Parallelism
over Join Level Parallelism with respect to 0 0 P S 5

No. of Processors MAB WALTZ MAPPER RUBIK
1 0.84 0.97 1.02 0.95
2 1.00 1.10 1.03 1.18
3 1.05 1.03 1.08 1.29
4 1.06 1.19 0.98 1.34

136

are the main remarks deduced from these tables:

• It is clear that the combination of CE-Object and join level parallelism performed

better over all. Hence, it may be concluded that this combination can be expected

to benefit production system programs that have one or more of the following

characteristics: (1) large number of CE-Objects per production (e.g. RUBIK),

(2) CE-Objects are matched by very large number of WM elements (e.g. MAP

PER) (3) are temporally or non-temporally redundant (i.e. all programs in the

sample).

• Systems that benefited from CE-Object parallelism alone and also benefited from

applying join level parallelism alone have benefited from applying both of these

two levels together. RUBIK and WALTZ are good examples of this case.

• Using these two levels resulted in obtaining a speed-up factor of between 1.19 and

2.19 over 0PS5, ignoring MAB, and a factor of between 1.39 and 2.31 over 0 0 P S 5

using 4 processors.

• The loss in performance in MAPPER when using the combination of CE-Object

and join level parallelism over join-level parallelism is mainly because M APPER

did not benefit from CE-Object parallelism alone.

• Although, simulations of intra-node parallelism done by G upta is specific to the

Rete algorithm, the speed-up he obtained— a factor of 3.9 on average using 32

processors for the six production systems he studied—is in line with the speed-up

obtained from the combination of the two levels studied here if considering the

case of MAPPER which requires experimenting with a larger number of processors

than used here.

5 .2 .4 A d d it io n o f A c t io n -L ev e l P a ra lle l ism

In the previous section, using CE-Object and join level parallelism imposed two con

straints. First, sequential processing of computations required by mutual CE-Objects.

137

Second, the processing of WM actions is done sequentially. This section presents a

highly parallel algorithm that avoids these constraints.

In an effort to investigate the parallel processing of activations of two-input nodes in

the Rete network, G upta identified four cases which he recommended not be processed

in parallel:

1. Multiple insertion from the left and right sides of a two-input node in the Rete

network.

2. Multiple insertions from left input of a two-input node and multiple deletions from

the right input of this node.

3. Multiple deletions from left input of a two-input node and insertions from the

right input of this node.

4. Multiple deletions from the left and right inputs of a two-input node.

G upta attributed the inability of processing these cases in parallel to the fact that

the Rete algorithm assumes that while a two-input node is being processed, the opposite

memory should stay stable. He also noted that there is no simple way to ensure that the

opposite memory stay stable and it would be expensive to detect and delete duplicates

leaving two-input nodes.

Although the four cases mentioned above are specific to the Rete algorithm, analo

gous cases have been identified in OOPS5 and resulted in the following three categories:

1. Cases which do not require join between two CE-Objects of the same production.

These are: (1) deletion from two positive CE-Objects of the same production or

(2) addition of WM-tuples to WM-AVL-trees of two negative CE-Objects of the

same production or (3) deletion of a WM-tuple matching a positive CE-Object and

addition of a WM-tuple matching a negative CE-Object of the same production.

2 . Cases of two CE-Objects where one must compute join with the other but not

vice versa. These cases are: (1) adding WM-tuples to WM-AVL-tree of positive

CE-Object and then computing join with another CE-Object that updates its

138

WM-AVL-tree but does not compute join, or (2) removing WM-tuples matching

negative CE-Objects while AVL trees of other positive CE-Objects of the same

production are being updated.

3. Cases which require join between two CE-Objects of the same production simulta

neously. These are: (1) addition of WM elements tha t match positive CE-Objects

while WM elements are removed that match negative CE-Objects of the same

production or (2) addition of WM elements matching positive CE-Objects while

WM elements are added that match another positive CE-Object of the same pro

duction.

In the first category, no join computations are performed, but semaphores are used

to protect updates on AVL trees of CE-Objects to ensure that one process at a time

updates AVL trees of the same CE-Object.

In the first, case of the second category, where one CE-Object computes join with

another one which is concurrently updating its AVL trees, the resulting (incorrect) join-

list may lead to the incorrect insertion of production instantiation into the conflict-set.

This is because the associated join-list was a result of a negative CE-Object matched

by a newly added WM element or a positive CE-Object was matched by a WM element

which has been removed. In the second case of this category, redundant production

instantiations may enter the conflict-set as a result of processing of multiple removals of

WM elements matching a negative CE-Object. Consider for example, if a production,

Px, has CE-Objects Ci and Cj which are positive nonjoinable and negative nonjoinable,

respectively. If iui and tv2 are the only WM elements in AVL trees of Cj and are removed

in parallel, then the join between Cj and C,- would lead to a number of Px instantiations

equivalent, to twice the number of the WM-tuples stored in the WM-AVL-tree of Ci

while the correct outcome of this join is a number of Px instantiations equivalent to

the number of WM-tuples in the WM-AVL-tree of C,. The solution to this case will be

addressed later.

To study the implications of the cases in the third category, let us recapitulate how

join is initiated in 00P S 5 . Join happens only as a result of either of the following

139

two cases: (1) A WM element has been added that matched a positive CE-Object

and its corresponding production(s) is (are) eligible to compute join or (2) A WM

element that has been removed but matched a negative CE-Object and its corresponding

production(s) is (are) eligible for join. The following two cases are formulated to show

that if action level parallelism is to be applied, care has to be taken in processing these

cases concurrently:

1. One or more newly added WM elements matching a positive CE-Object, C,, are to

be joined with WM-tuples matching a positive CE-Object, Cj while newly added

WM elements matching Cj are to be joined with WM-tuples stored in AVL trees

of Ci.

2 . One or more newly added WM elements matching a positive CE-Object, C,, are

to compute join with WM-tuples matching a negative CE-Object, Cj while one

or more WM-tuples are being removed from C /s AVL trees.

In both cases, concurrent join computations may lead to redundant production in

stantiations entering the conflict-set. Consider for example, if Ci and Cj are the only

CE-Objects of productions, Px, and if Ci and Cj have updated their AVL trees with

two WM elements, then redundant instantiations of Px enter the conflict-set.

We can eliminate the side effects of the concurrent join computations utilising the

following observation:

“If WM elements are processed concurrently up to the stage where all CE-

Objects matched by these elements have updated their AVL trees and the

match-knowledge of their corresponding productions, then concurrent com

putation of join between (i) positive CE-Objects of the same production in the

same cycle should not use those newly added WM-tuples that have already

been used in earlier joins with other CE-Objects or (ii) negative CE-Objects

should compute the join with those newly removed WM-tuples that have al

ready been used earlier in initiating join with other CE-Objects”

This tactic can be realized in initiating the join of a production, Px, by saving the

timestamps of WM-tuples incrementally in a list for each cycle. Using this list whenever

140

Px decides to initiate join it has to terminate any subsequent join computations related

to all WM-tuples of a positive CE-Object identified by the timestamps in that list. On

the other hand, Px should compute join with those elements in that list in the case of

negative CE-Objects.

To implement this new approach in 00 P S 5 , a new attribute is added to the produc

tions class to hold this list of timestamps and it is named, initial-join-timestamps.
A semaphore is added to the production class to allow one process at a time to read and

update initial-join-timestamps and is named initial-join-timestamps-semaphore.
The implementation of the case related to computation of join with negative CE-

Objects is more complex than the positive one. This stems from the semantics of

negative CE-Objects and is facilitated by the ability to distinguish between joinable

and nonjoinable negative CE-Objects. In the case of joinable ones, a new attribute is

added to the CE-Object class to hold the list of WM-tuples10 deleted. This attribute

is called deleted-WM-tuples and is protected by a boolean semaphore, namely the

deleted-WM-tuples-semaphore to allow one a process at a time to update this list

of deleted tuples. The case of nonjoinable CE-Objects is simpler and requires only

checking whether there exist timestamps in the initial-join-timestamps or not. If

there are any, then this means that the negative CE-Object has WM-tuples stored in

its trees and hence the semantics of negative nonjoinable CE-Objects entail terminating

subsequent join computations.

To establish an upper bound on the number of productions instantiations that may

enter the conflict-set incorrectly, if we did not take account of the above observation,

we use the three lemmas in Appendix A to find a bound, utilising the assumption

that CE-Objects are positive and nonjoinable. We choose positive nonjoinable CE-

Objects because this maximizes the upper bound since this kind of CE-Objects computes

a dummy join. The following two theorems are obtained using the three lemmas in

appendix A.

T h eo re m 1 If a production, Px, has C i, Co, • • •, Ct, • • •, Cn 1 < i < n positive

nonjoinable CE-Objects and there are uq , ivn, • • •, w,, • • •, wn WM elements to be added

10RecaJl that, a YVM-t.iipie consists o f a tim estam p , a free-list and a join-list.

141

that match C\, Co, ■ • Cj, •••, Cn, respectively, then the number of Px instantiations

to enter the conflict-set is the same as the ones that result from processing W y , io2j • • •,

W{, • • •, wn sequentially or in parallel using the incremental save of timestamps strategy.

P ro o f: From lemmas 1 and 3, it is obvious that the number of production instantiations

th a t enter the conflict-set are the same and are: (S -f l) n — S n

where S is the average number of WM-tuples matching a CE-Object, C,, before pro

cessing W { .

Theorem 2 I f a production, Px , has Cy, C 2, * * •> Ci , • • •, C n 1 < i < n positive

nonjoinable CE-Objects and there are i v y , iu2, • • •. it;,-, • • •, wn WM elements to be added

that match C\, Co, • • •. Ci, • • •, Cn, respectively, then the upper bound on the number

of Px instantiations to be discarded from the conflict-set that result from processing W y ,

iv2, • ■ •. Wj. • ■ •, w„ in parallel when the incremental save of timestamps strategy is not

used is:

n (S + l) n- 1 - (S + l) n + S n

where S is the average number of WM-tuples matching a CE-Object, Ct , before pro

cessing IV i.

P ro o f: This formula is directly obtained by subtracting the number of Px instantiations

obtained in lemma 1 from those obtained in lemma “2 .

C om bin ing A ction , Jo in an d C E -O b jec t level P a ra lle lism

In combining these, the inference engine executes WM changes in two phases: update

and join. In the update phase, WM changes are processed concurrently up to testing

for eligibility of productions affected by these changes. In the join phase the tests are

carried out concurrently and then join-level parallelism is used as discussed in section

5.2.2. The last production computing this join signals the start of conflict-resolution

computations. The following is a description of the processing tha t takes place in these

phases.

142

(1) T h e U p d a te P h a se

Fork futures / j . / 2, • • •. /,;, • • •, f n, 1 < i < «, to execute the WM changes in the a c t io n s

attribute of a production being operated on in the f i r e method. When a forked future

1 < i < n, executes the broadcast-wm -change method of a W M-Distributor, W D X,

then a set of futures / t l , / t2, • ■ •, f i j , • • •, / ,m, 1 < j < m , where m is the number of

CE-Objects in C E -O b je c ts - lis t attribute of W D X, are forked to do the following:

1. If the WM change in /, will add a new WM element, then f a 1 < j < m,

1 < i < n, executes the m a tc h - in se r t method on the corresponding CE-Object.

If the computations of constant tests are successful, then update AVL trees and

fork futures / (jl, / ij2, • • •, f i jk, ■ • / nm<7, 1 < k < q, where q is the number of

productions stored in the productions attribute of the CE-Object being operated

on, to update the match-knowledge of these q productions.

2. If the WM change in fi will remove a WM-tuple, then fij 1 < j < m, 1 < i < n,

executes the remove method on the corresponding CE-Object. If the WM-tuple to

be removed exists in the WM-AVL-tree of this CE-Object, then update AVL trees

and fork futures / (Ji, / lj2, • • •. f i jk, ■ • •, / nm9, 1 < k < q, where q is the number of

productions stored in the productions attribute of the CE-Object being operated

on, to update the match-knowledge of these q productions.

In this phase, updates on AVL trees of a CE-Object are protected by the a v l-tree s -sem ap h o re

to allow one process at a time to read and update these trees. Likewise, the update on

the match-knowledge of a. production is protected using the newly added attribu te to

the production class, namely, the match-knowledge-sem aphore.

(2) T h e Jo in P h a se

In this phase, all forked futures in the update phase are forced to return their values in

order to start joining CE-Objects of the same production that has one of its CE-Objects

affected by one or more WM changes if that production is eligible to compute this join.

1. Force futures /,;il. / lj2, ■ • •, f ijk, ■ ■ -, f nmq, 1 < k < q, 1 < j < m, 1 < i < n to

return. A future f i jk returns either of two values: null or information related to

143

carrying out the join. On the one hand, the null value implies no join computation

is needed because one of the following cases has been encountered: either a removal

of a WM element matching a positive CE-Object or addition of a new WM element

tha t matched a negative nonjoinable CE-Object. On the other hand, information

returned to test a production’s eligibility to compute join consists of the following:

(a) name of method to carry out this join (i.e. either test-join-positive or
test-join-mixed).

(b) the timestamp of the processed WM element

(c) name of production

(d) join-list

(e) free-list

The initial-join-timestamps-semaphore attribute of a join-eligible production

is consulted to obtain access to read and update initial-join-timestamps as

follows:

(a) Obtain a copy of initial-join-timestamps and attach it to the arguments

list of either test-join-positive or test-join-mixed method.

(b) Update initial-join-timestamps with the new timestamp already pro

cessed so as the next process consulting this list of timestamps should ex

clude or include the WM-tuples identified by these timestamps depending on

whether the subsequent join is positive or negative, respectively.

Now, fork futures / 2, .., //, .., / p, 1 < / < where p is the number of

productions to tests their eligibility to carry out this join. Throughout the join

computations, whether computing dummy join or not, a check is made to ensure

that no WM-tuple, wx , is to be used in the join if its exists in the the copy of

in i t ia l - jo in - t im e s ta m p s (argument to these methods). If it exists, then the

join process using wx is terminated.

On the other hand, if a negative join is computed, then the WM-tuples in deleted-WM-tuples
attribute of the negative CE-Object are to be considered in computing join if the

144

Table 5.8: Speed-up Obtained from action-level parallelism combined with CE-Object
and join Level parallelism over serial 0 0 P S 5 and serial 0PS5

No. of Processors MAB WALTZ M APPER RUBIK
1 0.42 (0.43) 0.61 (0.63) 0.91 (0.86) 0.39 (0.33)
2 0.61 (0.63) 0.89 (0.62) 1.17 (1.11) 0.57 (0.49)
3 0.71 (0.73) 1.19 (0.83) 1.48 (1.41) 0.63 (0.54)
4 0.74 (0.76) 1.72 (1.20) 1.81 (1.72) 0.67 (0.57)

Table 5.9: Speed-up Obtained when using (n + 1) over n processors in Table 5.8

Processors MAB WALTZ M APPER RUBIK
2-1 1.45 1.75 1.68 1.46
3-2 1.16 2.33 1.27 1.11
4-3 1.04 1.44 1.23 1.06

following two conditions are true: (1) The WM-tuples in one of the balanced

trees of the CE-Object have failed all variable binding consistency checks with

join-list (argument to s o lv e -n e g a tiv e - jo in method) (2) timestamps of WM-

tuples in deleted-W M -tuples exist in the in i t ia l - jo in - t im e s ta m p s (argument

to s o lv e -n e g a tiv e - jo in method).

All join computations between CE-Objects of the same production are performed

using join level parallelism.

At this stage, it is time to compute conflict resolution and hence the forked futures

/ i i /?? ••• //■ ••• /,.* 1 < / < p, are forced to return their values.

Table 5.8 presents the speed-up factors obtained over serial 0 0 P S 5 and serial 0PS5

when implementing this combination of parallelism. It is clear that as the number of

processors increases, more speed-up is obtained. The factors in Table 5.9 show this

tendency calculating the speed-up factors obtained from using (n -f 1) processors over

n for n = 1, 2. 3. The following remarks have been deduced from these tables:

• Systems that are temporally redundant (i.e. have large number of actions per

cycle) are expected to benefit from this algorithm and the speed-up obtained may

145

rival the speed-up obtained from the combination of CE-Object and join level

parallelism. Note in particular the figures for RUBIK.

• The combination of action, CE-Object and join level of parallelism is not suitable

for execution on systems with a small number of processors. Hence, it is concluded

tha t the combination of CE-Object and join level parallelism is the best for such a

configuration over the uniprocessor version of OOPS5 and 0PS5 based inference

engines.

• Systems that benefit from join-level parallelism alone are expected to need a fair

number of processors to achieve the same speed-up obtained from just join-level

parallelism.

Although the combination of action, CE-Object and join level of parallelism displays

a high potential degree of parallelism on the surface11, we conjecture that the speed-up

will not be significant over that obtained from combining CE-Object and join level of

parallelism for the following reasons:

1. The cost of the update phase is small—and sometimes the cost of join is the

dominant factor, for example in M APPER—hence, the speed-up obtained from

concurrent processing of the update phase saturates much faster than the speed-up

obtained from the join phase. YVe beleive that using more processors will benefit

the join phase since we do not see saturation so early as in the update phase.

2. The speed-up that can be obtained from the join phase is from computing join

initiated by more than one WM change. But, since the size of the join-set12 per

cycle is small (e.g. 2.13 to 4.59 on average for the four programs used here),

then the addition of action-level parallelism to the combination of CE-Object and

join level parallelism is unlikely to achieve significant speed-up unless the size of

the join-set is sufficiently large. WALTZ is an example of a program that had a

11 T h is is because t his com bination concurrently processes m atch ing o f WM elem en ts, up dates on AVL
trees o f C E -O b jects . up dates on m atch-know ledge o f productions and join o f C E -O b jects o f the sam e
production.

12R ecall that the join-set. refers to the num ber o f production o b jec ts eligible to com pute join.

146

relatively large join-set (i.e. 4.59 on average per cycle) compared to the others

and did show some benefit from action-level parallelism over the combination of

CE-Object and join level parallelism.

Although the ideas in this section were developed recently, there has been a fair

amount of work done to present these ideas and test their implementation on a small

number of powerful processors. It is intended to study the behaviour of the parallelism

discussed in this section using more processors as part of future work.

5.3 Conclusion

The concurrent execution of 0 0 P S 5 studied and implemented in this thesis has led us to

arrive at two conclusions. First, the architecture of 0 0 P S 5 is highly suitable for parallel

implementation. Second, the degree of speed-up obtained is highly program-dependent

mainly because of the intrinsic bottlenecks in the sequential execution of production

system programs which has led to the use of parallelism in an attem pt to remedy them.

The following are the major findings of using this parallelism in 0 0 P S 5 :

• The application of CE-Object level parallelism resulted in speeding up systems

whose productions have a large number of positive condition elements and have a

large number of remove actions in its fired productions.

• The application of join-level parallelism benefited systems whose CE-Objects use

large number of WM-tuples in join computations.

• The combination of CE-Object and join level parallelism benefited all production

system programs studied in this research and was found to be the best in com

parison with serial 0 0 P S 5 and serial 0PS5 using a small number of processors.

• As a further development we attem pted to combine action-level and CE-Object

and join level parallelism, which should suit production system programs which are

non-temporally redundant, have large number of CE-Objects per production and

their CE-Objects use large number of WM-tuples in join computations. Produc

tion system programs which have a large join-set per cycle are expected -to benefit

147

from this combination of parallelism over the combination of just CE-Object and

join level parallelism.

The empirical results of the concurrent execution of OOPS5 seem to be in line with

G upta’s simulations of intra-node and action level parallelism (he obtained a maximum

speed-up of 10 over serial OPS5) rather than the simulation speed-ups of PESA -1 (1600)

and NON-VON (170). The main reason behind the limited but significant speed-up (e.g.

M APPER) obtained by OOPS5 is attributable to the limited parallelism available in

OPS5 production system programs and the different intrinsic sequential bottlenecks.

As a result, it would be misleading to generalise on the speed-up obtained by con

current OOPS5 or any other parallel implementation over serial OPS5 because this

speed-up is program dependent. It is more accurate to say that OOPS5 is suitable for

parallel implementation and a significant speed-up may be obtained over serial OPS5

for systems that use large number of WM-tuples in join computations. Such systems

may be viewed as more realistic applications of expert systems (e.g. expert database

systems) which use large search space of short-term knowledge. Hence, it may be con

cluded that concurrent OOPS5 utilising action, CE-Object and join level parallelism is

a real rather than a simulated contribution to the parallel execution of OPS5 production

system programs.

148

Chapter 6

Conclusion

This research reports the experience of taking a well-known and quite a complex problem—

the 0PS5 inference engine—and reconstructing it with objects in significant depth by

means of Booch’s object-oriented development methodology. This has resulted in the

construction of a software architecture that is extensible and not constrained by special-

purpose hardware as in the cases of DADO and PESA-1. The following are the main

outcomes of the use of such technology:

• A new object-oriented inference engine, 00 P S 5 , has been synthesized to execute

0PS5 production system programs.

• A new algorithm has been developed to execute such programs. This algorithm

utilises an im portant principle in that it avoids the recomputation of join between

condition elements of the same production in the following situations: (1) a WM

element is to be removed that was matched by a positive condition element (2) a

WM element element has been added and matched a negative condition element.

It worth mentioning that while the TREAT algorithm cannot avoid the join re

computations in the second case, Rete cannot avoid it in both cases.

• The construction of a concurrent object-oriented platform for executing 0PS5

production systems to utilise the available concurrency abstractions. In particular,

this thesis exploited the futures abstraction in EuLisp.

149

• 0 0 P S 5 is highly suitable for parallel implementations which was demonstrated by

the significant speed-up obtained from exploiting the combination of CE-Object

and join levels of parallelism.

• It is possible now to resolve the four cases in Rete which G upta recommended not

be solved in parallel. These cases were contrasted to 0 0 P S 5 and a solution was

obtained and is summarized below.

• The empirical results of the concurrent execution of 0 0 P S 5 seem to be in line

with G upta’s simulations of intra-node and action level parallelism rather than

the simulation speed-ups of PESA-1 and NON-VON machines. In conclusion,

the combination of action, CE-Object and join-level parallelism is a real rather

than simulated contribution to the parallel execution of 0PS5 production system

programs.

The following sections summarize briefly the main results of applying Booch’s method

ology, the use of object-oriented technology to execute 0PS5 production system pro

grams, the performance of 0 0 P S 5 sequentially and the concurrent execution of 0 0 P S 5 .

6.1 The M ethodology

The thesis reported the experience of applying Booch’s methodology for object-oriented

development to synthesise an object-oriented 0PS5 inference engine, namely 0 0 P S 5 .

On the methodology side, the following are the main remarks:

• The methodology was easy to use in practice and matches with the natural way

of looking at problems from an object-oriented perspective.

• The methodology assisted in the design and development of concurrent object-

oriented platform for concurrent execution of production systems only after the

introduction of timestamps and embedding the aspects of concurrency into the

dynamic behaviour of objects.

150

6.2 The Use o f Object-Oriented Technology

Object-oriented technology has made it easier to develop a better solution to executing

0PS5 rule sets because:

• 0 0 P S 5 allows creation of new rules and matching their condition elements with

current configuration of WM elements at run-time and this will support the con

struction of reflective systems.

• A distinction is made between joinable and nonjoinable condition elements had

implication for the execution of 0PS5 rule sets. First, the processing of removals

of production instantiations as a result of inserting a WM element matched by a

negative CE-Object is dependent upon the joinability of the negative CE-Object.

On the one hand, if it is joinable. then this entails computing consistent variable

bindings between join-list of the newly matched WM element and the variable

bindings of the respective production instantiations in the conflict-set. On the

other hand, if it is nonjoinable, then this entails just searching the conflict-set for

production instantiations of the negative CE-Object and then removing them, if

any. Second, the joining of joinable CE-Objects first followed by the nonjoinable

ones avoids the unnecessary join computations that may result if nonjoinable CE-

Objects are joined first.

• The concept of uniqueness of condition elements is promoted at a higher level

than in Rete with respect to sharing of tests in the sense that 0 0 P S 5 classifies a

condition element as an entity and then looks at its tests, type and joinability.

The resulting performance of 0 0 P S 5 serially is comparable to that of Rete for large

and realistic rule-sets (e.g. M APPER).

6.3 The Static and Dynam ic M easurements

Static and dynamic measurements tools were introduced to study the characteristics

and the behaviour of 0PS5 production systems, respectively. One of the major findings

151

of the static measurements is the degree of uniqueness of CE-Objects introduced in this

research has been found to be high and has considerable impact on the performance.

On average, the speed-up factor obtained over the non-uniqueness was found to be 1.40

for the four production systems used in this research. On the other hand, the dynamic

measurements resulted in obtaining the following tools:

• Production system programs displayed different behaviour at run-time but agreed

in one respect in that join computations constitute most of the cost of a cycle and

in some cases is the dominant component (e.g. M APPER).

• The state transition diagram is a valuable tool in that it describes briefly and

deeply the behaviour of the execution of production system programs irrespective

of the underlying algorithm employed by the inference engine. In this diagram,

the join-set is a valuable finding in that it is a better indicator of production-

level parallelism than the affect-set chosen by Gupta. This is because the join-set

represents the real number of productions computing join whereas the affect-set

is the number of productions affected by a WM change.

• The ratio of the movements of production instantiations from and to the conflict

set per cycle is a good indicator of how much computations lost in that cycle.

As a remedy, it was suggested that if this ratio is high, then the left hand sides

of respective productions instantiations leaving the conflict-set (though not as a

result of conflict-resolution) should be made more specific.

• For an inference engine to avoid the recomputation of the join between the CE-

Objects of a production as a result of: (i) removing a working memory element

that matches a positive CE-Object or (ii) adding a working memory element that

matches a negative CE-Object, such an inference engine has to consider direct

removal of production instantiations from the conflict-set. Hence, OOPS5’s novel

solution to this problem is a major advance over the approaches in TREAT and

Rete.

152

6.4 T h e C oncurrent E xecu tion o f O O P S 5

In summary, the results of the concurrent execution of 0 0 P S 5 have led us to conclude

two things. First, 0 0 P S 5 is highly suitable for parallel implementations. Second, the

amount of speed-up obtained is program dependent. The following is a brief summary

of the major findings from exploiting parallelism using OOPS5:

• The combination of CE-Object and join-level parallelism benefited all production

system programs studied in this research and was found to be the best in com

parison with serial OOPS5 and serial 0PS5. The speed-up obtained here does

not saturate rapidly as in CE-Object parallelism and is mainly dependent on the

WM-tuples used in the join computations.

• The addition of action level parallelism to the combination of CE-Object and join

level parallelism benefited production system programs which have large join-set

and are non-temporally redundant.

• We have been able to resolve the four cases tha t G upta recommended not be

processed in parallel. These cases which deal with parallel processing of multiple

activations of two-input nodes form both the left and right hand sides. New cases

were formulated when contrasting these four cases to 0 0 P S 5 and a solution was

found based 011 the following: (i) positive CE-Objects of the same production in

the same cycle should not use those newly added WM-tuples that have already

been used in earlier joins with other CE-Objects or (ii) negative CE-Objects should

compute the join with those newly removed WM-tuples that have already been

used earlier in initiating join with other CE-Objects.

• The empirical results of the concurrent execution of 0 0 P S 5 seem to be in line

with G upta’s simulations of intra-node and action-level parallelism rather than

the simulation speed-ups of PESA-1 and NON-VON.

• It would be misleading to generalise on the speed-up obtained by the concurrent

0 0 P S 5 or any other parallel implementation over serial 0PS5 because this speed

up is program dependent. It is more accurate to say tha t 0 0 P S 5 is suitable

153

for parallel implementations and a significant speed-up may be obtained from

parallelism through exploiting join level parallelism.

6.5 D irections for Future Research

Although many issues regarding the sequential and concurrent object-oriented execu

tion of 0PS5 production systems have been addressed in this thesis, several issues still

remain. This section discusses them briefly.

On the expert database systems side, 0 0 P S 5 ’s capability to create productions and

match their condition elements with existing working memory elements of the same

W M-Distributor (i.e. entity) at run-time is valuable if 0 0 P S 5 is used as an inference

engine on systems involving a large database (e.g. medical, or financial, etc.) to execute

what-if models which may lead to the deduction of new knowledge from the database.

In section '2.3.6, the parallel firing mechanism was discussed and one of the problems

presented was the synchronisation problem. This problem required constructing a data

dependency graph for all productions. The two kinds of nodes in this graph are the

WM-node and the P-node which if compared with 0 0 P S 5 , the WM-node corresponds to

the WM-Distributor object and the P-node corresponds to the production object. The

CE-Objects-list, attribute holding CE-Objects of a particular entity is further divided

into positive and negative CE-Objects (as was done while discussing CE-Object level

parallelism). The importance of this segregation is to establish the synchronization

sets for every production. Hence, all the information required by this graph is readily

available in 0 0 P S 5 statically. The only addition is a new attribute in the production

class to hold the synchronisation sets for a. production object. Given, the fact that

the information needed to form the synchronisation sets is available in 0 0 P S 5 and the

parallel firing mechanism does not constrain itself to any matching algorithm, 00P S 5

offers a fertile ground for implementation of such a mechanism which has only been

simulated to date. This demonstrates the extensibility of 0 0 P S 5 to capture other

models of concurrent execution of production system programs.

Load Based Partitioning (LBP) was used in this research to control futures creation

154

dynamically when executing 0 0 P S 5 concurrently. It would be interesting to see the

behaviour of 0 0 P S 5 when executed concurrently using Lazy Task Creation (LTC) and

compare performance given the fact that LTC will always perform at least as well as

LBP.

Another future research issue is the use of the Linda [5] concurrency abstraction

to store WM-tuples matching each CE-Object in a tuple space to replace the AVL

trees attributes of the CE-Object class. The out operation is used to store WM-tuples

matching a CE-Object while the in operation is used to remove WM-tuples matching

a CE-Object. In addition, the rd operation is to be used to run queries on the tuple

space of a CE-Object being joined with other CE-Objects of the same production. In

this way, it is possible to have a large scale concurrent object-oriented system employing

the fu tu re s and Linda concurrent abstractions.

An obvious direction for further work is to implement the concurrent execution of

00P S 5 on a distributed memory multiprocessor system. Such an implementation will

bring light to an interesting issue, namely, the application of the timewarp mechanism

[19] as a synchronisation tool. One possible way of using this mechanism is to fire

the first production that gets into the conflict-set either at once or after waiting for a

set period of time. In the case that more productions arrive later in the conflict-set

but within the same cycle and do not compete with the already-fired production, then

time has been saved. Otherwise, the side effects of the already-fired production can be

undone by using the rollback mechanism of timewarp. It is worth noting that the cost

of this rollback is expected to be higher if the Rete algorithm is used instead of 00P S 5 .

This is because of the large number of computations required to remove the effects on

the beta memory nodes used as inputs to two-input nodes in the Rete network.

155

A p p e n d ix A

L em m as in c h a p te r 5

Lem m a 1 If a production. Px . has C\ . C2 , • • \ C ,, • • •. Cn, 1 < i < n. positive

nonjoinable CE-Objects and there are W\, w2> • • *. Wi, • • •, wn WM elements to be added

that match C\. C • • •. C, . • • •. Cn, 1 < i < n respectively, then if each Wj is processed

sequentially, then the number of instantiations of Pr entering the conflict-set is:

(S + I f ~ S"

where S is the average number of WM-tuples matching a CE-Object. Ci, before process

ing Wi.

Proof:

When processing «?,. then the number of Px instantiations is:

n — 1
✓ ~ s

1 x S x S x • • • x S

= 5 n_1

When processing w2, then the number of Px instantiations is:

n — 2

1 x (S + 1) x S x $ x ■ • • x S

156

= (S + 1) x 5 " “ 2

When processing tu3, then the number of Px instantiations is:

n — 3

1 x (S + 1) x (S + 1) x 5 x S x - * * x S

= (5 + l)2 x S n~3

When processing tun_i, then the number of Px instantiations is:

1 x (.5+ 1) x (5 + 1) x x (S + 1) x S

= (s+ i r -2 x s

When processing wn, then the number of Px instantiations is:

rt — 1

1 x (5 + 1) x (S + 1) x ■ • • x (5 + 1)

= (5 + 1) n-1

Hence, the total number of Px instantiations resulting from processing w i, tuo, ^ 3,

wn sequentially is:

S " - 1 + (5 + l)5 " - 2 + (5 + l) 25 " - 3 + --- + (5 + l) " - 25 + (5 + I) " - 1

(5 + 1) (5 + 1) - (5 + 1)3 (5 + I)"’ 2 (5 + I)"*1,
I ' o * o n ' o n ' # * * 15 5 2 5 3 5 " - 2 5"->

= 5 ’- ' E
" - ‘ (5 + 1)'

,=0

157

i (5+l)n
= S’- 1[- r ^ r]

1 S

_ sn~i ~{s +1r s - ^ s 5- 1

* -
55"->-(S + n n

_ s_____
5 —(5+1)

5

= (S + l) n - S n

L em m a 2 If a production, Px, has C\, Co, • • C,, • • *, Cn, 1 < i < n, positive

nonjoinable CE-Objects and there are wlf Wo, • • •, u;,-, • • ■, wn WM elements to be added

that match C\, Co. • • •, C ,. •••, C„, then if the AVL trees of each C\ are updated in

parallel, then processing join computations of w, and WM-tuples of Crl_,+i, Cn_t+o, • • *,

Cn_t+j, • • \ C„_,+„_! where 1 < j < n — 1. 1 < / < n in parallel residts in the following

number of instantiations of PT entering the conflict-set:

n(S + I T ' 1

where S is the average number of WM-tuples matching a CE-Object. Ci, before process

ing Wi.

Proof:

When processing wi, then the number of Px instantiations is:

n — 1
1 x (S + 1) x (S + 1) x • • • x (S + 1)

= (S + I)71” 1

When processing u»o. then the number of PT instantiations is:

n — 1

1 x (S + 1) x (S + 1) x • • • x (S + 1)

= (.S’ + l)7l_1

158

When processing u?a, then the number of Px instantiations is:

71-1

1 x (5 + 1) x (5 + 1) x • • • x (S + 1)

= (S + l)n_1

W hen processing w n_ H then the number of Px instantiations is:

a — 1

1 X (5 + 1) x (5 + 1) x • • • X (5 + 1)

= (S + 1)’*-'

When processing wn, then the number of Px instantiations is:

71- 1

1 X (S + 1) X (5 + 1) X • • • X (5 + 1)

= (S + 1)n_1

Hence, the total number of Px instantiations resulting from processing W\, w2, w3, * •

wn concurrently is:

n(S + 1),l_1

Lem m a 3 If a production. Px , has C\, C2, • • •, Ct, • • •, Cn 1 < i < n positive nonjoin

able CE-Objects and there are w\. w2, • • •. w,, • • •. wn WM elements to be added that

match C i, C-2 - • • *• C , , • • •. C'n. respectively, then if the AVL trees of each Ci is updated

with Wi in parallel, then processing join computations of Wi and WM-tuples of Cn~i+\,

Cn-»+2j • • •- Cn-,+j, ■ • C'n_ , w h e r e 1 < j < n — 1, 1 < i < n in parallel using the

incremental save of timestamps strategy results in the following number of instantiations

of Px entering the conflict-set:

159

h(.S' + I) " -1

where S is the average number of WM-tuples matching a CE-Object, Ci, before process

ing Wi.

Proof:

When each C, CE-Object is updated with Wi for i = 1,2,3, • • •, n, then the size of each

of Ci is (5 + 1)

Let T denote the set of timestamps of WM-tuples that are used in initiating join incre

mentally. T is initialized to nil.

Assume that /| gets into T and hence the number of Px instantiations that will enter

the conflict-set is:

n- 1

1 x (5 + 1) x (5 + 1) x x (5 + 1)

= (5 + I)'1" 1

When Wn initiates join, the set T is checked and t\ is found in it and if any subsequent

join computations find the WM-tuple of <1? then these computations are terminated.

T gets updated with t n . Hence, U is to be joined with C i, C3, • • •, Cn where each

use (5 + 1) WM-tuples in this join except C i which uses 5 WM-tuples because t\ is

discarded. Hence the number of Pr instantiations is:

r> — 2

1 X 5 X (5 + 1) X (5 + 1) x ••• X (5 + 1)

= 5 (5 + I)" " 2

When iv3 initiates join, the set T is checked and t r and U are found in it and hence any

subsequent join computations that find WM-tuples of t x and t n , then these computations

are terminated. T gets updated with t 3 . Hence t 3 is to be joined with Ci, Cn, • • •, C„

where each use (5 +1) WM-tuples in this join except for C\ and Cn which use 5 because

160

t\ and tn are discarded. Hence the number of Px ins tan tia tions is:

l x 5 x 5 x (5 + l) x (5 + l) x * " X (S + l)

= S2(S + 1)”“3

When wn initiates join, the set T is checked and t u t2, t3, • • •, tn_i are found in it and if

any subsequent join computations that find the WM-tuples of these timestamps, then

these computations are terminated. T gets updated with tn. Hence, tn is to be joined

with Ci, Co, C3. • • •. C„_i where each use .S' WM-tuples since *i, to, t3, • • ■, tn_ t are

discarded. Hence the number of Px instantiations is:

Hence, the total number of Px instantiations resulting from processing W\, w2, w3, • •

wn concurrently is:

(S + l) " -1 + S'(S + I)”"2 + S*(S + I)”’ 3 + • • ■ + .S’”" 1

(S + l) :

(S + i y

= (5 + l) n - -S'”

161

Bibliography

[1] G. Booch. Object-Oriented Development. IEEE Transactions On Software Engi

neering, SE-12(2):211—2*21, February 1986.

[2] H. Bretthauer, H. Davis, J. Kopp. and K. Play ford. Balancing the EuLisp Metaob

ject Protocol. In Proc. of International Workshop on New Models for Software

Architecture. Tokyo, Japan, Nov 1992.

[3] L. Brownston. R. Farrell. E. Kant, and N. Martin. Programming Expert Systems

in 0PS5. Addison Wesley, Reading, Mass., 1985.

[4] B. Buchanan and E. Feigenbaum. DENDRAL and Meta-DENDRAL: Their Appli

cations Dimensions. Artificial Intelligence, 11, 1976.

[5] N. Carriero and Gelernter D. Linda in Context. Communications of the ACM,

32(4), 1989.

[6] J. Dahl and I\. Nygaard. SIMULA: an Algol based simulation language. Commu

nications of the ACM, (9). 1966.

[7] R. Davis and .J. King. An Overview of Production Systems. In Machine Intelligence.

John Wiley, New York, 1976.

[8] C. L. Forgv. On the Efficient Implementation of Production Systems. PhD thesis,

Department of Computer Science, Carnegie-Mellon University, 1979.

[9] C. L. Forgy. Notes on Production Systems and ILLIAC-IV. Technical Report

CMU-CS-80-130, Carnegie-Mellon University, Pittsburgh, 1980.

162

[10] C. L. Forgy. OPS5 Users's Guide. Technical Report CMU-CS-81-135, Carnegie-

Mellon University. Pittsburgh, 1981.

[11] C. L. Forgy. The OPS83 Report. Technical Report CMU-CS-84-133, Carnegie-

Mellon University, Pittsburgh, 1984.

[12] C. L. Forgy and G upta A. Measurements on Production Systems. Technical Report

CMU-CS-83-167, Carnegie-Mellon University, Pittsburgh, 1983.

[13] A. Goldberg and D. Robson. Smalltalk-80: The language and its implementations.

Addison-Wesley, Reading, Massachusetts, 1983.

[14] A. Gupta. Implementing OPS5 Production Systems on DADO. In IEEE Interna

tional Conference on Parallel Processing, 1984.

[15] A. Gupta. Parallelism in Production Systems. PhD thesis, Dept, of Computer

Science, Carnegie-Mellon University, 1987.

[16] M. Halstead. Multilisp: A Language for Concurrent Symbolic Computations. ACM

Transactions on Programming Languages and Systems , 7(4), October, 1985.

[17] B. K. Ilillyer and D. E. Shaw. Execution of OPS5 Production Systems on a Mas

sively Parallel Machine. Journal of Parallel and Distributed Computing, 3(2), June

1986.

[18] T. Ishida and S. Stolfo. Towards the Parallel Execution of Rules in Production

System Programs. In Proceedings of the International Conference on Parallel Pro

cessing, 1985.

[19] D. Jefferson. Virtual Time. ACM Transactions on Programming Languages and

Systems. 7(33). 1985.

[20] G. Kahn and J. McDermott. The MUD System. In First Conference on Artificial

Intelligence Apllications. IEEE Computer Society and AAAI, December 1984.

[21] D. E. Knuth. Sorting and Searching. Addison-Wesley, 1973.

163

[22] T. Kowalski. The VLSI Design Automation Assistant: A Knowledge-Based Ex

pert System. PhD thesis, Dept, of Computer Science, Carnegie-Mellon University,

Pittsburgh, April 1984.

[23] J. E. Laird. P. S. Rosenbloom. and Newell A. Towards Chunking as a General

Learning Mechanism. In A A A I National Conference on Artificial Intelligence.

AAAI, 1984.

[24] T. F. Lehr. The Implementation of a Production System Machine. M aster’s thesis,

Department of Electrical and Computer Engineering, Carnegie-Mellon University,

1985.

[25] M. Lerner and J. Cheng. The M anhattan Mapper Expert Production System.

Technical report. Departement of Computer Science, Columbia University, May

1983.

[26] S. Marcus. J. McDermott, 11. Roche. T. Thompson, T. Wang, and G. Wood. Design

Document for VT. Technical report, Carnegie-Mellon University, Pittsburgh, 1984.

[27] D. McCracken. .4 Production System Version of the Hearsay-II Speech Under

standing System. PhD thesis. Department of Computer Science, Carnegie-Mellon

University. 1978.

[28] J. McDermott. RL: A Rule-based Configurer of Computer Systems. Technical

Report CMU-CS-80-119. Carnegie-Mellon University, Pittsburgh, April 1980.

[29] J. McDermott. Extracting Knowledge from Expert Systems. In International Joint

Conference on Artificial Intelligence, 1983.

[30] J. McDermott, A. Newell, and J. Moore. The Efficiency of Certain Production

System Implementations. In Pattern-directed Inference Systems. Academic Press,

New York, 1978.

[31] D. P. Miranker. TREAT: A New and Efficient Match Algorithm for A I Produc

tion Systems. PhD thesis. Graduate of School of Arts and Science, University of

Columbia. New York. 1987.

[32] K. Mohr. Dynamic Partitioning of Pamllel Lisp Programs. PhD thesis, Department

of Computer Science, Yale University, October, 1991.

[33] I\. Oflazer. Partitioning in Parallel Processing of Production Systems. PhD thesis,

Department of Computer Science, Carnegie-Mellon University, 1987.

[34] J. Padget, G. Nuyens, and H. Bretthauer. An Overview of EuLisp. Lisp and

Symbolic Computation, 6(1-2), 1993.

[35] D. Patterson and C. Sequin. A VLSI RISC. IEEE Computer, 15(9):8—21, September

1982.

[36] J. Quinlan. A Comparative Analysis of Computer Architectures for Production

System Machines. M aster’s thesis, Department of Electrical and Computer Engi

neering, Carnegie-Mellon University, 1985.

[37] R. Ramnarvan, G. Zimmermann, and S. Krolikoski. PESA-1: A Parallel Architec

ture for 0PS5 Production Systems. In Proceedings of the Nineteen Annual Hawaii

International Conference on Systems Sciences, 1986.

[38] P. Rosenbloom. J. Laird, J. McDermott, A. Newell, and E. Orciuch. R1-S0AR:

An Experiment in Knowledge-Intensive Programming in a Problem-Solving Archi

tecture. In IEEE Workshop on Principles of Knowledge Based Systems , 1984.

[39] M. Rychener. Production Systems as a Programming Language for Artificial Intel

ligence. PhD thesis. Computer Science Department, Carnegie-Mellon University,

1976.

[40] A. Sabharwal. S. Iyengar, C. Weisbin, and F. Pin. Asynchronous Production Sys

tems. Knowledge-Based Systems, 2(2), June 1989.

[41] E. Shortliffe. Computer Based Medical Consultations: MYC1N. Elsevier, New

York, 1976.

[42] M. Stefik and D. Bobrow. Object-Oriented Programming: Themes and Variations.

The A I Magazine. 1984.

165

[43] S. Stolfo. Five Parallel Algorithms for Production Systems Execution on the DADO

machine. In A A A I National Conference on Artificial Intelligence, 1984.

[44] S. Stolfo and D. Shaw. DADO: A Tree-Structured Machine Architecture for Pro

duction Systems. In A A A I National Conference on Artificial Intelligence, 1982.

[45] P. H. Winston. Learning Structural Descriptions From Examples. The Psychology

of computer vision, 1972.

[46] M. Zloof. Query-by-Example : A D ata Base Language. IBM Systems Journal,

16(4), 1977.

166

