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Abstract

In video coding, temporal redundancy can be reduced by predicting subsequent 
frames from a reference frame. In many practical video codecs this is carried out 
using block matching techniques to generate a motion description (usually a mo­
tion vector field) from a pair of frames which is used to form a prediction of the 
current frame. As the predicted frame is only an approximation of the true current 
frame and to improve its similarity a residual or error image is generated and en­
coded. While the number of bits used for the residual image is made scalable by 
using a lossy compression scheme, the bit allocation for the motion description is 
fixed. As a consequence, the optimal bit allocation between the motion descrip­
tion and the residual image cannot be achieved. This thesis investigates methods 
for controlling the bandwidth allocated to the motion description in order to more 
closely achieve the optimal allocation of bits between the description and the re­
sidual. Several new techniques are introduced in order to attempt to control the 
bandwidth. The Extended Block Algorithm produces a smoother field with the 
higher correlation leading to greater compression. The Embedded Quad-tree Mo­
tion Estimation technique describes the motion field using an embedded stream 
that can be truncated depending on the desired quality/cost criteria. Building on 
the observation that motion vector fields offer better compression when there are 
fewer unique vectors in the field, a number of strategies for controlling the number 
of unique vectors are proposed and evaluated. The List/Mapping Motion Descrip­
tion (LMMD) is an alternative representation of the vectors generated by these 
techniques. Combinations of the vector selection and encoding methods are then 
evaluated within an H.263 based codec and compared to the standard encoder. At a 
higher bit-rate (128 kbits/s) the vector selection strategies show an improvement in 
PSNR when compared with the standard codec. At the lower bit-rates (32 kbits/s 
and 64 kbits/s) an improvement is shown when the motion description generated 
by the vector selection strategies is encoded using the LMMD.
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Chapter 1

Introduction to Digital Video 

Encoding

One of the key components of digital video coding is that of motion compensation. 
This allows modem codecs to take advantage of the temporal redundancy which 
exists between neighbouring frames in a video sequence by producing a descrip­
tion of the motion which occurs between frames. The bandwidth used to encode a 
frame of motion compensated video is distributed between the motion compens­
ation data and a compressed residual image. The more bandwidth used by the 
motion compensation the less is available to the residual and vice versa.

One problem associated with motion compensation is the complexity involved. 
Much research has been done into techniques which reduce this complexity whilst 
retaining acceptable performance. However, there is another issue to be addressed 
which is concerned with the distribution of bandwidth between the the motion 
compensation data and the residual.

The greater the bandwidth which is allocated to the motion description the 
more accurate the motion compensated image will be. This increase in bandwidth 
will be at the expense of the quality of the residual image which will be less able 
to correct errors in the compensated image, or to add image data due to revealed 
occlusions. The converse also applies, reducing the bandwidth available to the 
motion description allows gives a less accurate compensated image but a higher 
quality residual.

Traditional video codecs have only allowed the bandwidth of the residual to be 
controlled; they would be allocated the bandwidth not used by the motion descrip­
tion. This work proposed method which give greater control over the bandwidth

1



CHAPTER 1. INTRODUCTION TO DIGITAL VIDEO ENCODING

used by the motion description. By varying both the motion description and the 
residual it should be possible to find a more optimal distribution of bandwidth and 
therefore improve the overall quality of the encoded sequence.

It is also worth noting that the method described in this work are not designed 
to be low complexity. However the complexity of the various techniques are com­
pared and discussed.

1.1 Digital Image Representation

In order to capture an image on a digital device such as a computer, the infinitely 
complex information which comprises the real image must be broken down into 
discrete pieces of data which the computer is able to process.

A computer can describe an image as a two-dimensional array of points, also 
known as pels (picture elements) or pixels. Although pixels can be rectangles of 
arbitrary dimensions they are usually considered to be square. Each of these pixels 
contains the information needed to describe the colour of that particular part of the 
image. This information varies depending upon the type of image to be stored.

Binary Image The pixel is either on or off. Each pixel only requires one bit of 
storage to represent its binary state.

Indexed Image The pixel contains an index which references a lookup table con­
taining the actual pixel colour information. In this kind of image the total 
number of colours in an image is limited by the number of indices (which is 
usually <  256).

Greyscale Image The pixel contains the brightness. The pixel is usually stored 
using one byte (8 bits) which allows 256 different levels of grey to be ex­
pressed. In some cases, such as medical imaging [2] greater discrimination 
between grey levels may be required. Such applications may use 12 bits per 
pixel.

Colour Image The pixel contains three components of a given colourspace. These 
are usually expressed as a triplet of bytes, one byte for each component.

2



CHAPTER I. INTRODUCTION T

1.2 Colourspaces and Image Planes

Due to the tri-stimulus theory of the Human Visual System (HVS) a particular per­
ceived colour requires three values to describe it. In a colour image these three 
values are usually represented as three distinct image planes, which are superim­
posed to produce the complete image. The exact contents of each image plane 
depends upon the particular colourspace which is used to describe the colour of 
each pixel.

The RGB colourspace is one of the most familiar. Its name is derived from the 
Red, Green and Blue components into which the colour is split. This colourspace is 
analogous to that used by the human eye and is used in modem Cathode Ray Tubes 
(CRTs) which use phosphors to give off red, green and blue light[3]. In digital 
systems each of the three components is usually specified as an integer between 
0 and 255, where RGB(0,0,0) represents black, RGB(255,255,255) is white and 
RGB(jt,jt,jt) are the intermediate grey levels. Figure 1.1 shows an image which has 
been split up into red, green and blue planes.

G reenOriginal

R ed

Figure 1.1: Colour images are made up of different ‘planes’ depending upon the 
colourspace used. In this example the image has been split into the three planes of 
the RGB colourspace.

In the RGB colourspace the luminance information is spread across all three 
planes. In many image processing applications it is useful to have direct access to 
the luminance data. Suppose we have a luminance component which we denote 
as Y and that is is some function of the three primaries of the RGB colourspace, 
Y =  /(/? , G,B). We can now subtract this component from the RGB primaries to 
give (R -  Y), (G — Y) and (B — Y). Due to the fact that Y is a function of R , G 
and B only two of these differences are needed. Suppose we choose (B — Y) and 
(R — Y) which we call Q  and Cr respectively [4, 5]. We now have the three values 
which form the basis of the YCbCr colourspace, Y, C\, and Cr. The Y component

3



CHAPTERl. INTRODUCTION TO DIGITAL VIDEO ENCODING

can be represented as an integer between 0 and 255, with 0 being black and 255 
being white. Cr and C& are also represented as integers between 0 and 255 with 
128 indicating no colour difference.

A greyscale image only contains luminance data which is stored in a single 
image plane. This plane corresponds to the Y plane in the YCbCr colourspace.

1.2.1 Colourspace conversion

Video data often has to be converted from one colourspace to another, for example, 
after decoding an H.263 data stream[l], the images are presented in YCbCr col­
ourspace. In order to display such images on an RGB CRT a colourspace con­
version needs to be performed. A suitable RGB to YCbCr conversion is given 
equation 1.1 with the inverse given in equation 1.2 [4].

Y ' 16 '
1

+  256

65.738 129.057 25.064 ' '  R '

cb = 128 -37.945 -74.494 112.439 G
Cr 128 112.439 -94.154 -18.285 B

R '
1

“  256

’ 298.082 0.000 408.583 ' / ' Y ' 16 ' \
G 298.082 -100.291 -208.120 cb — 128
B 298.082 516.411 0.000 \ . Cr . . 128 .

(1.2)
Although this pair of transforms are mathematically reversible, the limited pre­

cision of floating point arithmetic used in computers can cause losses which in 
some applications are unsuitable. In these cases the following integer only approx­
imations can be used,

cb = B - G

Cr = R - G

Y = G +
Cb +  Cr

G

B

= Y - Cb +  Cr

= Cb + G

4



CHAPTER 1. INTRODUCTION TO DIGITAL VIDEO ENCODING

R =  Cr +  G

In this thesis [jcJ will indicate the floor of jt, that is, x  rounded down to the next 
integer.

For a more detailed discussion of colour and colourspaces in digital video 
see [6, 7,4].

1.3 Image Representation

The size of a digital image is usually measured in pixels. In this thesis we will 
take the origin of the image to be at the top left hand comer of the image, which 
is traditional in image processing. The width of an image (/width) is defined as the 
number of pixels in the horizontal dimension and the height (/height) as the number 
of pixels in the vertical dimension. Values of pixels are specified using horizontal 
and vertical offsets into the image, with the top left pixel having the offset (0,0) 
(see figure 1.2). Thus the range of values (jc,y) for referencing a general pixel 
inside the image is

0  ^  X  <  /width; 0  ^  y <  /height-

Width

(0. 0)

(X,y)

Figure 1.2: The origin of an image is taken to be in the top-left comer. Image 
pixels are referenced as offsets from this origin.

There are certain image sizes which are frequently used in digital video processing[8]. 
These have been given names and are summarised in table 1.1.
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Name Width in pixels Height in pixels
sub-QCIF 128 196
QCIF 176 144
CIF 352 288
4CIF 704 576
16CIF 1408 1152

Table 1.1: Different image sizes

1.4 Video Sequence Representation

A digital video sequence is simply a temporal sequence of digital images, which 
are usually referred to as frames. These frames are displayed at a regular frequency 
which varies depending upon the application, but for smooth, high quality video, is 
usually 25Hz or 30Hz. These values are inherited from analogue video standards, 
which vary across the globe. Unlike analogue video, digital video is not usually in­
terlaced which is why the frequencies are half of those used in traditional analogue 
broadcasting, (usually 50Hz or 60Hz).

When stored in a raw format it is straightforward to determine the storage 
required for uncompressed digital video. For example 30 minutes of CIF size 
(roughly VHS resolution) video running at 25 Hz contains,

(30 x 60) seconds x 25 frames/second =  45,000 frames. (1.3)

If each frame is stored as three separate red, green and blue colour planes then 
each frame requires,

(352 x 288) pixels/frame x 3 bytes/pixel =  304,128 byes/frame. (1.4)

So the total storage required would be,

45,000 frames x 304,128 bytes/frame =  13.7 x 109 bytes (13.7GB). (1.5)

Even with the current increased availability of large, cheap computer storage, 
this is still unacceptably large. As well as the storage requirements it is also worth 
considering the time taken to transmit this data between computers on a network.

6
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Video compression techniques have been developed in order to facilitate both the 
transmission and storage of digital video.

1.5 Sources of Redundancy in Digital Video

Any form of compression relies on the fact that the data to be compressed contains 
redundant information [9]. This implies that the data is in some way correlated.

1.5.1 Spatial Redundancy

In natural images there is often substantial correlation between pixels in a local 
neighbourhood. For example, if a particular pixel is part of a blue sky, neighbour­
ing pixels are also likely to be a similar shade of blue. This spatial redundancy 
is used by intra-frame coding techniques to compress individual frames of a se­
quence. Figure 1.3 shows an enlarged 16 x 16 block from a natural image. This 
clearly shows that there is correlation between the values of neighbouring pixels.

Figure 1.3: This is a 16 x 16 block taken from a natural image. The shade of each 
pixel is frequently similar to those around it.

7
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1.5.2 Temporal Redundancy

There is also a high level of temporal redundancy within a video sequence. That is 
to say that one frame is usually very similar to the next. In order to take advantage 
of such similarity inter-frame coding techniques are used. These methods often 
try to describe a frame in a sequence in terms of a previously transmitted frame or 
frames. Figure 1.4 shows two frames from the Carphone sequence. It can be seen 
that there is a large amount of redundant information between the two frames.

Figure 1.4: Two frames from Carphone sequence (frames 100 and 104). It is clear 
that there is a great deal of temporal redundancy between the frames.

1.5.3 Psychovisual Redundancy

The nature of the Human Visual System (HVS) leads to a further type of redund­
ancy known as psychovisual redundancy. For example, the human eye is less sens­
itive to spatial variation in chrominance than it is in luminance. As a result the 
chrominance planes of an image can be transmitted at a lower resolution than that 
of the luminance.

1.5.4 Coding Redundancy

The video compression process can be thought of as transforming the input video 
sequence into a stream of symbols. Often, some of these symbols are statistically 
more likely to appear than others. It therefore makes sense to use fewer bit to 
encode the more frequent symbols, even if it at the expense of using more bits for 
infrequent symbols. This coding redundancy is usually exploited using entropy 
encoding techniques.
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1.6 Video Coding Techniques

In general compression techniques fall into two categories, lossless compression [10] 
and lossy compression. As its name implies, in lossless compression, the com­
pressed representation of the data contains all the information contained in the 
original, so when decompressed the original data can be recovered exactly. This is 
vital for many types of data such as binary executable files, text files and many med­
ical images. However, because all the information must be retained, the amount of 
compression which can be obtained is limited. In certain cases it is acceptable for 
the compression process to cause the original data to be subject to a certain amount 
of degradation. In this case the recovered data is similar, although not identical 
to the original. This is known as lossy compression and lends itself well to data 
which is analogue in origin and is intended for ‘consumption’ by humans. Di­
gital images, video and audio data is ideal for this type of compression. As some 
information is discarded during the compression process higher rates of compres­
sion can be achieved when compared with lossless techniques. There is a sub­
set of lossy coding which is known as visually-lossless coding, or more generally 
perceivably lossless coding. In this case the decompressed signal has still been 
degraded with respect to the original, but the difference is imperceivable to an ob­
server (or listener).

One further feature of lossy coding is that the amount of compression can often 
be controlled. Compression is increased by throwing away more of the information 
present in the original data, however, the greater the compression the greater the 
degradation of the output data.

1.7 Lossy Image Compression

The Transform Coding Model (TCM) is popular in the field of still image com­
pression as it is able to take advantage of much of the spatial and psychovisual 
redundancy found in natural images. The addition of an entropy encoder also ex­
ploits any coding redundancy in the system. The underlying principle of transform 
coding is to remove the correlation in the input data by transforming it into a differ­
ent domain. The general form of the transform coding model is shown in figure 1.5.

Six of the eight elements in the model form pairs of complementary processes, 
in which one half of the pair is the inverse of the other. The entropy coding 
pair must form a completely reversible transform, (the entropy codec must not

9
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Original Data Decompressed Data

Preprocess Postprocess

\

M
t

Forward Transform Inverse Transform

\ t
Quantise M Dequantise

- * *  _  ■

Entropy Encode M Entropy Decode

 ► Compressed Data --------

Figure 1.5: The Transform Coding Model.

cause data to be lost). Ideally the same is true for the transform pair, although in 
practice many transforms work with floating point numbers, so small inaccuracies 
due to lack of arithmetic precision are often introduced. The final pair, quant­
isation/dequantisation is not at all reversible. It is at this stage that information is 
irrevocably discarded, allowing greater compression of the information. As a result 
of this the model represents a lossy compression technique.

1.7.1 Preprocessing/Postprocessing

Many systems which acquire digital signals are susceptible to introducing noise 
into the signal. Such noise is unwanted and due to the fact that it often contains 
high frequency components, can be very costly to encode. Video compression 
systems often contain a preprocessing step which aims to reduce the amount of 
noise in an image without affecting the quality of the image itself. There are many 
types of noise reduction methods which use a variety of techniques [11, 12].

The preprocessing stage may also be used to convert the data into a more con­
venient form for encoding. For example, many video compression systems require 
the images to be represented using the YCbCr colourspace, so RGB images would 
have to be converted before they could be processed.

10
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Sometimes the video compression process can produce ‘artifacts’ in the output 
sequence. These artifact are unsightly aberrations which become more pronounced 
as the amount of compression is increased. Common artifacts are blocking where 
the image appears to be divided into blocks and ringing where phantom edges ap­
pear to echo away from a true edge. Figure 1.6(a) shows part of an image which has 
been heavily compressed with the Joint Photographic Expert Group (JPEG) [13] 
algorithm; the artifacts are clear. Applying postprocessing techniques (smoothing 
and sharpening) on this image produces the image seen in figure 1.6(b) in which 
the artifacts have been reduced.

(a) (b)

Figure 1.6: In (a) we seen part of an image which has been heavily compressed 
using the JPEG algorithm. Applying smoothing and sharpening filters results in 
(b) in which the artifacts have been reduced.

Pre and post processing techniques often rely on the properties of the HVS and 
aim to exploit psychovisual redundancy.

1.7.2 Transforms

In images it is the edges which convey much of the information to the observer. 
Conversely, large flat regions contain very little information. It would therefore be 
desirable for a video encoding system to distinguish between such areas, and more 
accurately describe those which are high in information content.

The transform stage of the Transform Coding Model (TCM) is designed to 
achieve this. It exploits the spatial redundancy within an image and attempts to 
order the data so as to identify those parts which contain the most useful visual 
information.

There are two main transforms used in image processing which are the Discrete 
Cosine Transform (DCT) and Discrete Wavelet Transform (DWT). We shall briefly

11
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examine these to see how they are used in the context of image processing.

1.7.2.1 The Discrete Cosine Transform

The Discrete Cosine Transform (DCT) [14] is related to the Fourier Transform and 
Discrete Fourier Transform and aims to decorrelate data by transforming it into the 
frequency domain. In image processing the DCT is performed in a two dimensional 
fashion, by first applying the transform in the horizontal direction, then the vertical.

Suppose we have anN x  N  block of data, f (x ,  y) we can transform to F(w, v) 
using,

, . v—r v—\ . . C2x -|- l)u7t (2y +  l)v7t
F{u, v) =  CUCV ^ 2  ^ 2  f ( x >y)co s 2N  C0S 2N ’ ( ^

X=Q y = 0

where Ca = y / l / N  if a = 0, \ / 2 / N  otherwise.
The inverse transform is similar and is given by,

, v v > ,n „  N (2x 4- \ ) uk (2y +  l)v7t
f & y )  = 2 2  2 2 c uCvF(u,v) cos  —  co s — -----. (1.7)

x = 0  y = 0

Due to the computational cost it is impractical to carry out the DCT over the 
whole image. Many types of compression such as JPEG and H.263 take N  = & 
and spilt the image the image up into 8 x 8  blocks. The DCT is performed of each 
of these blocks independently. The 2D DCT basis functions for N = 8 are shown 
in figure 1.7.

1.7.2.2 The Discrete Wavelet Transform

Wavelets represent a multiresolutional approach to image processing. The found­
ations of wavelet theory were proposed by Gabor in 1946 [15], but it is the last 
decade which has seen an explosion in research in the subject [16,17, 18,19]. In 
the same way that Fourier transforms can lead to the DCT the DWT can be de­
rived from wavelet theory [20,21]. The replacement for the current JPEG standard 
JPEG2000 [22] uses wavelet transforms to replace the DCT of the original. As 
with the DCT the job of the DWT is to transform the image data into a domain 
where there is less correlation. This leads to the exploitation of the spatial redund­
ancy in the data. One important difference between Fourier transforms and wavelet 
transforms is that the basis functions for wavelet transforms are finite in their ex-
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Figure 1.7: The 64 basis functions for the two dimensional DCT for a block size 
of 8 x 8.

tent, (unlike the infinite sinusoids used by Fourier transforms). There are an infinite 
variety of wavelets with different wavelets being useful in different applications.

Like the DCT the two dimensional wavelet transform is composed of two sep­
arable one dimensional transforms, one horizontal, one vertical. Each application 
of the transform divides the data into two components, one which is an approxim­
ation of the original signal and the other the detail which is evident at the given 
resolution. The transform is reversible, so these two components can be recom­
bined to retrieve the original data. The transform is usually recursively applied to 
the approximated data to extract details at different resolutions.

Figure 1.8 shows an image which has undergone one level of wavelet decom­
position. (In this case the wavelet used was the Haar wavelet.) The top left comer 
contains an approximation of the original image but at half the resolution. The 
other three quadrants contain the detail which has been removed from the approx­
imation. It is clear that most of the detail lies along the edges of the original image. 
The top right quadrant contains information about the vertical edges, where as the 
horizontal edge detail is mainly contained in the lower left quadrant.

Further recursive decompositions are shown in figure 1.9.
In a similar way to the DCT the low frequency information has been moved 

towards the top left of the image, leaving the higher frequency information towards 
the bottom right.

13

9244



CHAPTER 1. INTRODUCTION TO DIGITAL VIDEO ENCODING

Figure 1.8: On the left is the original image, and on the right, the same image 
having undergone one level of wavelet decomposition.

Figure 1.9: Further wavelet decomposition of the image in figure 1.8.
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1.7.3 Quantisation

During quantisation information is discarded from the original data; it is this stage 
which makes the compression lossy. Although there are more complicated quant­
isation schemes [23, 24], quantisation is usually achieved using integer division. 
Suppose we have a value x  which we wish to quantise. Dividing x  by a quantisa­
tion parameter Q and discarding the remainder would yield the quantised value y, 
(equation 1.8).

In order to obtain an estimate of the original value we can simply multiply y by 
Q to obtain xq, (equation 1.9).

However xq will always be a lower bound of the range of values in which x 
originally lay, so it is usual to employ the process of half adjusting to move this 
estimate to the middle of the range. This is done by adding half of Q to xq,

Embedded coding using a difference approach to quantisation. In an embedded 
stream all the original data is encoded, so that in its entirety the stream contains 
a losslessly compressed version of the original data. However, the stream is con­
structed in such a way that the most significant data is placed towards the beginning 
of the stream. As a result the more of the stream which is transmitted/stored the 
greater the fidelity of the reconstructed data. In this case quantisation is achieved 
by terminating the stream at a particular place. The earlier it is terminated the 
higher the compression, but the harsher quantisation results in poorer quality out­
put. Shapiro’s Zerotree [25, 26] is an excellent example of an embedded stream.

1.7.4 Entropy Encoding

In [27,28] Shannon states that for an alphabet of N  symbols in which each symbol 
appears with probability pi, i = 0 , 1 , . . . ,  N — 1, the cost in bits per symbol H  is 
given by,

(1.8)

xq =  y-Q (1.9)

(1.10)
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N - \

H = - ^ 2 p i lo g 2(Pi)‘ (1.11)
/=o

This value is also known as the entropy of the data and represents the statistical 
lower limit to the cost in bits required to encode the data.

In video encoding we often have data which is represented as a set of symbols 
from an alphabet. Entropy encoding techniques allow us to losslessly compress 
such data in such a way as we can approach the limit presented by equation 1.11.

Suppose we have an alphabet composed of the 8 symbols, A,  B, C, V , £, IF, Q 
and TL. These it is known that these symbols occur with the probabilities given in 
table 1.2.

Symbol Probability
A 1/32
B 4/32
C 11/32
V 3/32
£ 3/32
F 7/32
G 2/32
H 1/32

Table 1.2: The symbols in our alphabet and their corresponding probabilities.

Since 8 =  23 each of these symbols can be encoded with a 3 bit code, so a 
message of length N  would require 3N bits to encode. Let us assume we have a 
message which is 32 symbols long and contains each symbol in proportion to their 
probability. Using our naive, 3 bit, coding system we would need 32 x 3 =  96 bits 
to encode our message. However, if we use the data from table 1.2 in equation 1.11 
we find that the expected cost per symbol is in fact 2.59 bits. Using this we would 
expect our 32 symbol message to cost only 82.88 bits. Entropy encoders allow us 
to encode data in such a way as we can approach this theoretical cost.

1.7.4.1 Huffman Coding

Huffman Coding [29] provides a method for determining code words for symbols 
based on the frequency in which they appear in a message. It produces the most 
optimal encoding for situations where each symbol is encoded independently of 
the others.
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Producing Huffman codes is a straightforward process and is best described by 
means of an example. Using our alphabet from table 1.2 we list our symbols in 
order of increasing probability.

Symbol A H Q D E B F C  
p rob i i i i l A I l l32 32 32 32 32 32 32 32

We then combine the two symbols with the smallest probabilities, in this case 
A  and H,  to produce an aggregate symbol ( AH)  which is assigned the sum of the 
probabilities. The list is then resorted to ensure the new set of symbols is still in 
order of increasing probability. After this first step we have,

Symbol ( AH)  G V  E B 
Prob.

T  C
2_
32

1  1  i  4 1  11
32 32 32 32 32 32

The process is then repeated, each time combining the two symbols with the 
lowest probabilities and resorting the fist.

Symbol D E B  ( (AH)G)  T  C
Prob -1 -1 A.r r u u * 32 32 32

4_
32

1_ i i  
32 32

Symbol B ((AH)G) (DE) T  C
Prob. ^2

±
32

_6_
32

2. 11 
32 32

Symbol (DE) T  (B((AH)G)) C
Prob. £2 32

8_
32

11
32

Symbol (B((AH)G)) C ((VE)F)
Prob. _8_

32
11
32

11
32

Symbol ((DE)T) ((B((AH)G))C)
Prob. 11

32
12
32

Symbol (((VE)F)((B((AH)G))C))  
Prob. 32

32

The final aggregate symbol (((DE)T)((B((AH)G))C))  can be represented as 
a binary tree with the original symbols as the leaf nodes, and each aggregation 
resulting in an internal node, (figure 1.10). From this tree we can create variable 
length codes for each symbol by starting at the route of the tree and tracing a path
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Figure 1.10: The Huffman tree for the aggregate {((VS)F)((B((AH)G))C)) .

Symbol Huffman Code
A 10100
B 100
C 11
V 000
S 001
T 01
Q 1011
n 10101

Table 1.3: The Huffman codes for the example alphabet given in table 1.2.
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to the leaves. For each left hand branch we traverse we add a 0 bit to the code, and 
each right hand branch adds a 1 bit.

If we now use these codes to encode our 32 symbol message we find we only 
need 84 bits, which is much closer to theoretical entropy limit of 82.88 bits. An­
other interesting thing to notice about Huffman codes is that they have the unique 
prefix property. This means that no code is the prefix of a longer code. This is a 
great aid in decoding the data.

The problem with Huffman coding is that each symbol requires at least a 1 bit 
code. If we have an alphabet with two symbols we would still require N  bits to 
encode a message of length N  even if one of the symbols was much more frequent 
that the other. One of the solutions to this problem is to use arithmetic encoding.

1.7.4.2 Arithmetic Encoding

Arithmetic encoding [30, 31] maps messages of symbols from a given alphabet 
into a single floating point number which lies in the range [0,1). Longer, more 
complicated messages require more accuracy in the floating point number, and 
therefore require more bits. To see how the encoding process works let us consider 
an alphabet of two symbols, X  and y  which occur with probabilities 0.2 and 0.8 
respectively. We can express these probabilities as intervals over the range [0,1) as 
shown in figure 1.11(a).

Suppose we wish to encode y x y y .  The first symbol in this message is y  so 
we restrict our range to [0.2,1.0). We then subdivide this range using the same 
proportions as for our original range (figure 1.11(b)). Our second symbol is X  so 
the range [0.20,0.36), is chosen to be subdivided further. Selecting y  twice more 
(figures 1.11(c) and (d)) leaves us with the range [0.2576,0.3600). Any number in 
this range will describe our intended message. It should be clear that each symbol 
added to the message causes the range to narrow. The narrower the range the more 
accuracy is required to describe a number within the range and therefore more bits 
are needed to encode the message.

Practical implementations of arithmetic encoding [30,32] can be written which 
use integer arithmetic and produce output as a binary fraction. Such methods can 
approach the statistical bit limit even more closely than Huffman coding.
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Figure 1.11: An example of arithmetic encoding.

1.8 Measuring Image Quality

In image processing we often want to numerically compare two images to see 
how similar (or different) they are. The comparison is normally performed on the 
luminance of the pixel values as this is usually the most dominant aspect of the 
perceived image.

Although there are many types of image quality measures[33] this work will 
concentrate on several commonly used ones. These give a numerical indication of 
the quality of the image using statistical means.

In the following equations /(jc, y) and g(x, y) represent the value of the pixel at 
coordinates (jc, y) in the images /  and g respectively. The area to be compared has 
dimensions M  x N  pixels and is located at an offset of ( / / , / / )  into image /  and 

( igjg)  into image g.
The Mean Square Error (MSE) between two frames is defined as

M - l N - l

MSE = MN^  Y l \ f ( x  + ‘f ’y  + i f )  S(x +  ig, y +  (1-12)
*=0 y=0
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Another commonly used metric is the Root Mean Square Error (RMSE). This 
is easily defined in terms of the Mean Square Error (MSE).

RMSE =  V'MSE (1.13)

The Peak Signal-to-Noise Ratio (PSNR) of a signal with peak signal power 

sL x is

PSNR =  101ogIO ( | | | V  (1.14)

In video coding, image planes are often 8  bits deep, giving a signal range from 
0-255. As a result Smax =  255 is often used in this context, giving

PSNR*, =  1 0 1 o g , „ ( g )

=  2 0 1 - ( ^ ) -  ( U 5 )

In many video encoding applications comparisons between images, or parts 
of images, can account for a significant percentage of the total computation time. 
For this reason even small increases in efficiency can yield considerable perform­
ance increases. The Sum of Absolute Difference (SAD) metric only contains the 
computationally cheap addition, subtraction and absolute value operations and re­
moves the need for the more expensive multiply. It is also an integer only metric 
which can lead to faster computation.

M —\ N —\

SAD =  ^ 2 ^ 2  abs(/(*  +  */>? +  Jf) ~  g{* +  *g,y + Jg))• (1*16)
x = 0  y = 0

While the SAD is very useful in the computationally intensive core of compres­
sion algorithms its dependence on the block area makes it unsuitable as a general 
comparison metric. However, dividing by this area yields the Mean of Absolute 
Differences (MAD) which is a ‘per-pixel’ metric and therefore useful for more 
general comparisons.

MAD =  —7 —SAD. (1.17)
MN

The Peak Signal-to-Noise Ratio (PSNR) is unique in the above metrics as it is
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the only one in which a higher value indicated a closer match. All the others are
measures of error so lower values correspond to closer matches.

It is sometimes useful to have a visual representation of the differences between 
two images. We can create a difference image D by simply subtracting correspond­
ing pixels from each image plane of our image pair /  and g.

D(i, j ) = f ( i , j )  -  g(i, y)V(i\ j )  e  0 ^  i < M, 0 <  j  < N. (1.18)

Suppose we perform this action on the luminance planes of two images. Since 
the pixel values in each of these planes lie between 0 and 255, the values in the 
resulting difference image will lie between -255 and 255. In order to visualise this 
image we need to overcome two problems.

1. The dynamic range requires more than the 8-bits provided by standard grey- 
level image formats.

2. Some of the pixels have negative values.

If we take the absolute value of all the differences we solve both of these prob­
lems,

This is convenient if we are just interested in the magnitude of the difference. 
However, this method fails to preserve the direction of the difference. We no longer 
know how image /  changed to produce image g. We can use an alternative trans­
formation to preserve this information.

Here we first make sure all values are positive by adding 256 and then reduce 
the dynamic range by dividing by two (discarding any remainder). The disad­
vantage of this approach is that we have lost some of our ability to discriminate 
between different levels of difference. It is also interesting to note that if using 
equation 1.19 zero difference is represented by 0 (black) whereas in equation 1.20 
is becomes 128 (mid-grey).

Figure 1.12 shows two images from the Carphone sequence. Subtracting the

Dabs{i,j) =  abs(D(i,j)). (1.19)

( 1.20)
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two images using equation 1.18 and applying both the above visualisation ap­
proaches gives us the difference images shown in figure 1.13.

Figure 1.12: Two frames from Carphone sequence (frames 220 and 224). The 
interior of the car is stationary and the actor moves very slightly. The scenery 
passing the window accounts for most of the motion between these two images.

Figure 1.13: Visualisation of the absolute difference on the left, and with the
magnitude preserved on the right. These images represent a PSNR of 25.41. The 
differences caused by the moving scenery are clearly visible in each case.

1.9 Temporal Redundancy in Digital Image Sequences

At its most basic level encoding video sequences can involve no more than simply 
encoding a series of separate images using a still image codec such as JPEG. In 
video coding a frame which is encoded without any reference to other frames is 
known as an INTRA frame, or I-frame.
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Using only I-frames to encode a sequence fails to capitalise on the temporal 
redundancy which can yield huge gains in compression if properly exploited. One 
solution is to try and exploit this temporal redundancy by using a previously trans­
mitted image to predict the image we are trying to encode. We can measure the 
quality of our prediction by examining the differences between the prediction and 
the frame it is supposed to predict.

Consider the two frames of the Salesman sequence shown in figure 1.14. They 
look remarkably similar; in fact there is no perceptible change in the background 
at all and even the salesman himself has hardly moved.

Figure 1.14: Two frames from Salesman sequence (frames 20 and 24). The back­
ground remains static and there is very little movement in the foreground.

Suppose we simply use the first image as the prediction for the second one. 
The error in our prediction is defined as the difference between our predicted image 
and the actual second image. This error is shown in figure 1.15, both visually and 
numerically. From this figure we can see that the prediction was very good indeed. 
The MAD of 2.97 implies that on average each predicted pixel is less than three 
greylevels away from its actual value.

What happens if we apply our simple prediction scheme to a a pair of frames 
containing more complicated motion, such as those in figure 1.16? In this case the 
results (figure 1.17) are a lot less satisfactory.

The problem with the Rugby sequence is that there is much more movement 
than in the Salesman sequence. Just using the first frame as the prediction has failed 
to capitalise on the redundancy between the two frames. We need a method which 
can form a better prediction which can take into account the movement which has 
occurred between the two frames.
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■
 MAD = 2.97 

RMSE = 6.69 
PSNR =31.62

Figure 1.15: The difference between the two frames in figure 1.14.

Figure 1.16: Two frames from Rugby sequence (frames 0 and 4). The shot has 
panned to the left a little, and of course, the players have moved.

MAD =30.66 
RMSE = 43.92 
PSNR = 15.28

Figure 1.17: The difference between the two frames in figure 1.16.

25



CHAPTER 1. INTRODUCTION TO DIGITAL VIDEO ENCODING

Suppose we devise a technique which when presented with two input frames, 
attempts to determine the motion which occurs between them. This motion de­
scription could then be applied to the first frame to produce a prediction of the 
second. This process is called motion estimation and is one of the key concepts in 
this thesis.

Figure 1.18 shows such a predicted image produced by a motion estimation 
technique which will be introduced later1. This visual representation indicates that 
prediction is much better than the one which produced figure 1.17. This is borne 
out by the numerical comparisons as well.

MAD = 4.94 
RMSE = 9.54 
PSNR = 28.54

Figure 1.18: On the left is the predicted image which was generated by applying 
a motion description to the first frame from figure 1.16. The error in this predic­
tion is shown on the right and shows it performs much better than the non-motion 
compensated prediction technique.

Now that the concepts of image prediction have been explained we can review 
and formalise some of our definitions. The frame we are trying to predict is called 
the input or current image. The image from which the prediction is formed is 
known as the reference image. These two images act as the inputs to a motion 
estimator which produced a motion description. The motion description can then 
be applied to the reference image to produce the predicted image, this is known as 
motion compensation. Finally, the difference between the current image and the 
predicted image is known as the residual and is an indication of the accuracy of the

'For the curious, the method used was the ESA with a block size o f 4 x  4  and a search range of 
32 x  32.
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prediction. This process and nomenclature is summarised in figure 1.19.

— Mot i on D escrip tio n  j

M otion  D e sc rip tio n

Im a g e  D iffe re n ce

M otion
C o m p e n s a to r

M otion E s tim a to r

R e s id u a l

P re d ic te d  Im a g e

P re d ic te d  Im a g e

R e fe re n c e  Im a g e

R e fe re n c e  Im a g e

R e fe re n c e  Im a g e

In p u t Im a g e

Figure 1.19: The image prediction process.

The combination of the motion description and the residual together make an 
INTER frame which is also known as a Predicted frame, (or P-frame). Due to the 
fact that they are able to take advantage of temporal redundancy P-frame are more 
efficient at coding digital video than I-frames.

A typical combination of I and P-frames is shown in figure 1.20. Here an I- 
frame is followed by three P-frames, each predicted from the temporally previous 
frame. The periodic insertion of I-frames ensures that any errors introduced by 
the transmission process are not allowed to propagate indefinitely through the se­
quence. It is also useful to insert I-frames when a scene change has occurred, as 
there will be no correlation between the reference frame and current frame, and the 
prediction process will not produce meaningful results.
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I P P P I P P P

GOP GOP

Figure 1.20: A typical ordering of I and P-frames in a compressed video sequence. 
The arrows indicate which frame was used as the reference frame for each of the 
P-frames.

The series of frames IPPP form a unit which can be decoded without reference 
to external data. Such a unit is often referred to as a Group Of Pictures, or GOP[8].

Some video codecs use a third type of frame called a Bidirectional frame, or 
B-frame. These are predicted from a pair of I or P-frames, one of which comes 
before the B-frame and one after, (see figure 1.21. Due to this B-frames are not 
transmitted in strict temporal order, as they must be sent after both frames upon 
which they depend. However this thesis will concentrate on image prediction using 
P-frames.

In some cases it is appropriate to use a single I-frame followed by P-frames 
until a scene change occurs. This produces better results when transmission errors 
are very unlikely to occur, but it does have the drawback that the sequence must 
always be decoded from the initial I-frame even if only a portion of the frames are 
of interest.

Figure 1.22 shows the process involved in transmitting a P-frame from the 
encoder to the decoder. One key thing to note from this diagram is that a P-frame 
is transmitted in two ‘parts’; the motion description and the residual. As a result 
the bit cost for a P-frame is,
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Figure 1.21: 
quence.

I B B P B B P

GOP

A typical ordering of I P, and B-frames in a compressed video se-
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CHAPTER 1. INTRODUCTION TO DIGITAL VIDEO ENCODING

f̂ total — -fimd “I" -®res; (1.21)

where £ totai is the total number of bits in the P-frame, 2?md is the number of 
bits required for the motion description and BTQS the number of bits used to encode 
the residual. The motion description is compressed using lossless methods, so in 
general the total number of bits is altered by adjusting the quality of the residual 
which is compressed in a lossy manner.

In the case where £ totai is fixed there is a trade off between Bmd and Bres. The 
more bits allocated to one reduces the number of bits available to the other. For 
example, increasing the number of bits given to the motion description should im­
prove its accuracy, leading to a less complicated residual to encode. This inter­
action between the motion description and residual is very interesting and will be 
explored in greater detail later in this thesis.
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Chapter 2

Motion Estimation in Digital 
Video

In this chapter we will introduce the idea of optical flow and how it is used in digital 
video encoding. We shall explore some of the techniques used to produce motion 
descriptions (motion vector fields in particular) and investigate the advantages and 
problems of different approaches.

2.1 Techniques for Measuring Optical Flow

Measurement of optical flow (also known as image velocity) involves mapping the 
3d velocities of objects in the image into the 2d image domain. According to [34] 
techniques for measuring optical flow can be divided into 4 broad categories;

Differential techniques These methods use derivatives of the image intensity to 
calculate the image velocity [35]. Such techniques tend to assume that the 
intensity of a point does not change as it moves through the scene. They also 
rely on the fact that the intensity field is differentiable. For this reason the 
image is often filtered (smoothed) before the intensity gradients are calcu­
lated.

Region based matching techniques This class of optical flow measurement di­
vides the image into distinct regions. The velocity of a region is defined 
as the vector which yields the best fit (according to some metric) between 
different image regions at different times.
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Energy based methods As an object travels through space, its motion can be de­
scribed as spatio-temporal tilt [36]. Fourier techniques using velocity tuned 
filters can be used to measure the energy of these contours and thus derive 
the motion of the object.

Phase based techniques These methods find the optical flow by analysing the 
phase behaviour of band pass filter outputs. The general approach requires 
correlation surfaces to be found for a pair of temporally adjacent image re­
gions, (usually the luminance plane of the image is used to generate the 
surface). The peaks in the correlation surface would indicate potential mo­
tion vectors for objects within the regions [37]. These vector could then be 
used as candidate vectors for region based matching algorithms and applied 
to various sub-regions (even down to the pixel level).

Interpolation of the correlation surface, along with using curve fitting tech­
niques to establish the location of the peaks, allow this method to produce 
sub-pixel motion vectors.

2.2 Motion Estimation in Digital Video

Of the four methods mentioned above, region based matching techniques are by 
far the most prevalent for determining optical flow for use with digital video com­
pression. In such cases the general regions are usually replaced by a more specific 
two-dimensional array of blocks; as a result the methods are also known as Block 
Matching Algorithms.

The strengths of such methods lie in their compatibility with the way motion 
descriptions are used in digital video compression. In nearly all cases one of the 
main aims is to reduce the power in the residual image as much as possible. This 
is equivalent to using the reference image to produce the best prediction of the 
image to be transmitted. Block matching techniques produce a motion description 
based on this image difference and are therefore inherently coupled with the goals 
of video compression. Other methods may well produce more accurate description 
of motion within the image, but at the expense of increasing residual power, which 
is not beneficial to the compression process.

Phase based techniques are also used [38], but often as a precursor to a block 
matching algorithm, usually to identify a suitable set of candidate vectors.

Finally it is worth mentioning warping techniques [refs]. These treat the ori­
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ginal image as a rubber sheet and distort or warp it by moving control points on 
the image.

2.3 Block Matching in Digital Video

A block is just a particular region of an image. In order to describe a block we need 
two pairs of values. The first of these are the block dimensions (M ,N ). In most 
current video encoding applications these are usually equal (the block is square) 
and often take the value of 2N with 4, 8,16 and 32 being the most common values. 
The second pair of values specify where in the image the block is. This offset is 
given as the displacement of the top left hand comer of the block from the image 
origin and is denoted (/, j) , (figure 2.1).

(0, 0)

j

i N

M

Figure 2.1: A block is defined by four values, the block dimensions (M,N)  and 
its offset (i, j).

Suppose we start with an empty predicted image and split it into a regular array 
of blocks as shown in figure 2.2. We have to ensure that out block size divides 
exactly into the image dimensions so that we can cover the entire image in (non­
overlapping blocks). We can then construct the predicted image by ‘filling in’ the 
empty blocks in our array with blocks from the reference frame. We would like to 
chose the blocks which result in the best predicted image. Choosing these blocks is 
the job of a block matching algorithm. The displacement between the block in the 
predicted image and the selected block in the reference frame is known as a motion
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vector. For example, if the offset of the block in the predicted frame is (16,32) and 
the block selected from the reference frame is at (22,24) then the motion vector 
(v) would be

v =  ( 2 2 -  1 6 ,2 4 -3 2 )

= (6, - 8)

Figure 2.2: Block matching algorithms split the predicted image up into a regular 
array of blocks. These are then ‘filled in’ using blocks from the reference frame.

It follows that each block can have its own motion vector and it is this array 
of vectors which make up the motion vector field. A typical motion vector field is 
shown in figure 2.3.

For each block in the predicted image there is a motion vector (or perhaps 
vectors) which will minimise the prediction error for that block according to a 
specified metric. This is known as the optimal vector for that block. If every block 
in the predicted image has its optimal vector then the resulting motion vector field 
is also optimal1.

One possible modification to the basic Block Matching Algorithm (BMA) is 
Longterm (or Multi-reference) block matching [39]. This enhances the technique 
described above by providing a number of different reference frames from which

‘it is important to note that optimal fields generated using different error metrics are unlikely to 
be the same.
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Figure 2.3: A typical motion vector field. Each image block is assigned its own 
motion vector.

to choose the most appropriate block. This has the great advantage of being able 
to more easily deal with occlusions which occur between frames.

Another issue with the basic BMA is that it can only produce motion vectors 
accurate to the nearest pixel. This can cause problems in sequences where the 
motion doesn’t lie on pixel boundaries, (which is the case for most sequences). 
The solution to this is to perform block matching to sub-pixel accuracy. This 
involves interpolating the image before carrying out the BMA. It is worth noting 
that this leads to an increase in the computational cost of most algorithms. To work 
at half-pixel accuracy the number of pixels is increased fourfold with the equivalent 
increase in computation time.

One solution to this problem is to first perform a traditional full pixel motion 
description. Each motion vector in the description is then refined by considering 
only the sub-pixel positions surrounding this vector. In the case of half-pixel ac­
curacy this would only involve an additional eight comparisons per motion block.

2.4 The ESA

The Exhaustive Search Algorithm (ESA)[40] will produce the optimal vector field 
for the current image from a given reference image, (for a specified search region). 
Each block in the search region is compared with the block from the current image
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and the best one is selected. As each candidate block needs to be tested this method 
is very computationally intensive.

The Exhaustive Search Algorithm (ESA) uses a brute force method to achieve 
an optimal block matching result. The first stage in the process is to split the input 
image into an array of rectangular blocks. For each of these blocks a set of can­
didate blocks is obtained from the reference frame. The larger this set, the greater 
the chance of finding a good match, but at the cost of increased computation. For 
this reason the candidate blocks are usually restricted to the locality of the input 
block, (see figure 2.4). This is a fair restriction to make when the motion between 
the input and reference frames is small.

Input Block

Input Frame

Reference Frame: Global Scan Range Refernce Frame: Local Scan Range

Figure 2.4: For a given input block it is unusual to use the entire reference frame 
for the candidate blocks, (this is due to the associated increase in computational 
load). More often the candidate blocks come from a region local to the input block.

The first candidate block is used as the initial guess for the best matching block, 
and the corresponding vector used as the best vector. The quality of this match is 
then established using a comparison metric such as RMSE, or SAD. Next, the 
input block is compared to each of the remaining candidate blocks in turn (using 
the same metric). The order in which the candidate blocks are processed is only 
important if two of them produce the same, most favourable metric. In most cases
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raster scan order is used. If the quality of the match is better than the current best 
match then the block becomes the new current best match. In the case of a better 
match the best vector is also updated.

When all the candidate blocks have been considered the resulting best vector is 
assigned to the block from the input frame.

The pseudo-code below represents this algorithm.

split input frame into blocks 
for each block in the input frame

choose candidate blocks from reference frame

best match = first candidate block
best vector = vector from input block to candidate block

for each remaining candidate block 
compare blocks using metric
if input block is a better than current best match 
best match = candidate block
best vector = vector from input block to candidate block 

end if 
end for 

end for

Having explained the ESA it is possible to look at some of the issues it raises. 
Consider the case where the only motion in the image it due to the camera track­
ing. This should lead to a motion field in which all the block are assigned the same 
motion vector. However, if this were the case then some of the edge blocks would 
need to reference source block which would lie partly outside the image. There are 
two solutions to this problem. The first is to simply prohibit blocks from having 
vectors which point outside the image. This approach is straightforward to imple­
ment, but can lead to some less than optimal results. Consider the two synthetic 
images shown in figure 2.5a which have been displaced with respect to one another. 
The vector field (as found by the ESA) is shown in figure 2.5b.

The field is almost entirely uniform except for the vectors along the bottom 
and left edges. As these are unable to take the same vector as the rest of the blocks 
as this would require them to reference vectors outside the image. As a result 
they must find a block within the image which produces the best match. This is
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(a) Original Images
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(b) Motion Vector Field

Figure 2.5: Motion vectors at the edge of the image.
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unfortunate, as the inability to reference even a few pixels outside the image means 
that the block cannot chose a vector for which the majority of pixels would produce 
a perfect match. This is clearly unsatisfactory, and is resolved by assigning artificial 
values to pixels outside the image using a process called padding.

2.5 Padding

Padding allows us to extend the image beyond its boundaries by adding extra 
pixels. In video coding padding is most useful when the padded pixels are rep­
resentative of those near the padded edge. We will briefly describe three of the 
more common methods used to pad an image, zero padding, extrusion padding and 
symmetric padding.

2.5.1 Zero Padding

One of the most simple ways to pad and image is to surround it with pixels with 
the value 0. This method is fast but in most cases the padded pixels will bear no 
relationship to the pixels within the image and as a result are unlikely to match. An 
example of zero padding is given in figure 2.6 (a).

2.5.2 Extrusion Padding

In this case the edge pixels are extruded away from the edge to determine the pixel 
values in the padded area. Comer regions are filled with the value of the comer 
pixel. An example of extrusion padding is given in figure 2.6 (b). There are many 
different ways to determine the value of the pixels to be extruded. One simple 
methods is just to use the value at the image edge. However, it is often possible 
to get a more representative pixel by choosing the median pixel from a group of 
pixels close to the edge, (this of course incurs additional computational costs).

2.5.3 Symmetric Padding

Symmetric padding involves filling the padded are with pixels reflected from the 
image. There are two ways of doing this; one with the edge pixels repeated and 
one where the edge pixels are not repeated. Examples are shown in figures 2.6 (c) 
and (d).

40



CHAPTER 2. MOTION ESTIMATION IN DIGITAL VIDEO

Figure 2.6: Figure (a) shows an example of zero-padding, (b) extrusion padding, 
(c) even-symmetric padding and (d) odd-symmetric padding. In each case the top- 
left comer is shown enlarged.
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2.5.4 Comparing Padding Methods

The different padding method each have different levels of complexity and pro­
duce different results. Zero padding is the least complex but makes no attempt to 
correlate the extended region with the image itself. A slightly better approach is 
to pad the image with a 50% grey colour which is statistically more likely to be 
’representative’ of the image.

Extrusion padding is more complex than zero padding, but has the large advant­
age creating an extension which related to image content. It can cause problems 
due if the stripy pattern it produces intrudes into the image (during motion com­
pensation) and is not adequately corrected by the residual.

Both types of symmetric padding have the advantage that they duplicate texture 
into the extended region. This reduces the chance that artifacts will be introduced 
when the extended region is copied into the image during motion compensation.

2.6 The Computational Expense of Block Matching

One of the main problems with the ESA as a block matching technique is that it 
is incredibly computationally intensive. Consider a CIF size image (352 x 288) 
divided into (16 x 16) blocks. There would be 22 x 18 =  396 such blocks in the 
image and comparing a single pair of blocks requires 16 x 16 =  256 pixel compar­
ison calculations. Even a modest search range of ±8 pixels at full pixel resolution 
gives 17 x 17 =  289 possible candidate vectors for each block. Combining these 
gives 396 x 256 x 289 »  30 million pixel comparison calculations. It is also im­
portant to remember that for real-time encoding this process needs to be carried 
out up to 30 times a second, and that it is only part of the encoding process. It is 
clear that reducing the computational cost of block matching would be beneficial, 
allowing encoding to be carried out faster, by less powerful computers.

The three contributing factors to the total cost were the number of blocks, the 
block size and the number of candidate vectors. There are approaches which try to 
reduce each of these values.

One way to reduce the first value (number of blocks in the image) would be to 
increase the size of each block. However, this would lead to a proportional increase 
in the number of pixels per block leaving the total pixel comparison calculations 
unchanged. Instead some techniques find the exact motion vector for only a subset 
of the blocks [41,42], (for example every other block as shown in figure 2.7). The
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vectors for the remaining blocks can then be inferred from the surrounding blocks 
using an averaging technique.

j Vectors found directly

□ Vectors found by 
interpolation

Figure 2.7: To reduce computational cost vectors are only found for every other 
block.

Another way to reduce the computational load is to match fewer pixels within 
each block [43]. As with the blocks in the image, one sensible approach would be 
to use every other pixel. This takes advantage of the fact that pixels will be locally 
correlated.

One final method would be to perform the matching algorithm on a scaled 
down version of the image, (for example by reducing a (352 x 288) CIF sized 
image to a (176 x 144) QCIF sized one). Although this can once again provide 
reduced computational cost, it does to at the expense of the accuracy of the motion 
vectors obtained. However, this method can be extended to produce a whole range 
of hierarchical methods [44, 45].

However, by far the most common method is to try and reduce the number of 
candidate vectors, and hence the number of matches performed. The following 
four approaches, (The Three Step Search, Four Step Search, Diamond Search and 
Circular Zonal Search) all try to achieve this in different ways.

2.7 The Three Step Search

The Three Step Search (TSS) [46] is a sub-optimal motion estimator which uses 
a coarse to fine approach. As the name suggests the search is performed in three 
steps. The search patterns for each of the steps is shown in figure 2.8. For the first 
step the pattern is centred on the (0,0) vector and the a match is evaluated at each 
of the nine indicated positions. The position which produces the most favourable
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match is used as the centre for the second step of the search. Once again each 
of the nine positions indicated by the step 2 pattern is considered2. Once again 
picking the most favourable match yields the centre for the third and final pattern 
of matches. The result of this match gives us the final motion vector.

Center of Pattern

■ Searched Position

□ Ignored Position

□ □ □ □ □ □ □ □ □ □ □

□ □ □ □ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □ □ □ □  □ □ □ □ □ □ □

□ □ □ □ □ □ □ □ □ □ □  □ □ □ □ □ □ □  □ □ □ □ □
□ □ □ □ □ □ □ □ □ □ □  □(■)□ ■ □ □ ■ ■ ■ □
□ □ □ □ □ □ □ □ □ □ □  □ □ □ □ □ □ □  □ ■(■)■ □

□ □ □ □ □ □ □ □ □ □ □  □ □ □ □ □ □ □  □ □ □ □ □
Step 1 pattern Step 2 Pattern Step 3 Pattern

Figure 2.8: The search pattern used in the Three Step Search. The patterns become 
successively finer in order to ‘home in’ on the motion vector.

Figure 2.9 shows an example of the Three Step Search (TSS) in operation. 
In this example the first step indicates that the position with vector (4,4) gives the 
best match. After the second step the centre has moved to vector (6,4) and the final 
step produced the motion vector (7,3). The dotted box indicates the total possible 
extent of the search, which is (±7, ±7) giving 225 difference possible matches. 
However, the TSS has only had to evaluate 25 of these in order to produce a motion 
vector. As a result the TSS is almost ten times as fast as the ESA. Due to the coarse 
to fine nature of the search

2.8 The Four Step Search

The Four Step Search (FSS) [47] uses a similar method to the TSS to find a pre­
dicted block within a (±7, ±7) search window. Although there are four steps, there 
are only two distinct search patterns which are used; these are shown in figure 2.10. 

The procedure is best described in terms of pseudo code;

s e t  t h e  p a t t e r n  c e n t r e  t o  t h e  ( 0 ,  0 )  v e c t o r

The centre o f the pattern is still considered although there is no need to recalculate the error 
metric.
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Figure 2.9: An example application of the TSS. Only 25 of the possible 225 search 
positions are evaluated in order to find the motion vector.

f o r  i = l  t o  3

A p p l y  p a t t e r n  A a t  t h e  c h o o s e  a  n e w  c e n t r e  b a s e d  o n  

t h e  m o s t  f a v o u r a b l e  m a t c h

i f  t h e  n e w  c e n t r e  i s  t h e  sa m e  a s  t h e  o l d  c e n t r e  

s k i p  t o  l a b e l  : : f i n a l : :  

e n d  i f  

e n d  f o r

: : f i n a l : :

A p p l y  p a t t e r n  B .  T h e  m o t i o n  v e c t o r  i s  g i v e n  b y  t h e  m o s t  

f a v o u r a b l e  m a t c h .

As the above code shows pattern A is applied between one and three times, and 
is then followed by the application of pattern B. Although pattern A contains nine 
positions, the second and third applications of these patterns will overlap somewhat 
with previously searched positions. As a result each such application requires a 
maximum of five additional matches to be performed.

The total number of matches lies between 17 and 27, the exact number de­
pends upon the location of the final best match, with smaller vectors requiring 
fewer matches. This technique seems more appropriate for sequences when the
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magnitude of the motion is small.

□ □ □ □ □ □ □

□ 9 □ 9 □ 9 □

□ □ □ □ □ □ □ □ □ □ □ □

□ 9 □ □ 9 □ □ 9 9 9 □

□ □ □ □ □ □ □ □ 9 ( ! ) 9 □

□ 9 □ 9 □ 9 □ □ 9 9 9 □

□ □ □ □ □ □ □ □ □ □ □ □
Pattern A Pattern B

|  j Center of Pattern |  Searched Position □  Ignored Position

Figure 2.10: The two search patterns uses in the Four Step Search.

2.9 The Diamond Search Algorithm

The Diamond Search Algorithm (DSA)[48, 49] can be used to quickly produce 
an approximation to the optimal motion field. It makes the assumption that most 
motion vectors are small, and are therefore close to the (0,0) vector.

The Diamond Search Algorithm (DSA) uses two search patterns which are 
shown in figure 2.12. Initially search pattern 1 is applied with the centre at (0,0) 
and the motion vectors for each of the nine search positions are evaluated. If the 
minimum is found to be at the centre of the pattern, pattern 2 is then used, and 
the resulting best vector is selected to be used. If however the best vector did not 
lie at the centre of pattern 1, the pattern is reapplied, with the centre shifted to the 
recently located minimum. This process of shifting pattern 1 is repeated until the 
minimum is found to lie at the centre, at which point search pattern 2 is used to 
make the final choice of vector.

Tourapis[50] showed that the performance of the DSA could be improved by 
predicting a possible value of the motion vector based on the surrounding vectors, 
(see section A .l). Instead of placing the initial search pattern 1 at the origin, it 
was placed using this predicted vector. If the central point provided the minimum,

46



CHAPTER 2. MOTION ESTIMATION IN DIGITAL VIDEO

□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ Ignored

□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ ■ S te p  1 s e a rc h

□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ ■ S te p  2 s e a rc h

□ □ □ □ □ □ □ □ ■ □ ■ □ ■ ■ m □ □ ■ S te p  3 s e a rc h

□ □ □ □ □ □ □ □ □ □ □ □  , m □ □ □ □ S te p  4 s e a rc h

□ □ □ □ □ □ ■ □ ■ □ 'E - -r f  □ □ □ □

□ □ □ □ □ □ □ □ □ /D □ □ □ □ □ □

□ □ □ □ □ □ ■ □  I 1 □ ■ □ ■ a ■ □ □

□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
□ □ □ □ □ □ ■ □ ■ □ ■ □ □ □ □ □ □
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

Figure 2.11: An example application of the FSS. Only 25 of the possible 225
search positions are evaluated in order to find the motion vector. Unlike the TSS 
the number of matches evaluated is not fixed and can range from 17 to 27.

□ □ □ □ □ □ □

□ □

□■□

□ □

□ □ ■  □  ■ □ □ □

□□□

□

□ ■ □ ® □ ■ □ □ □  ■  □ □

□ □ ■  □  ■ □ □ □ □ ® C e n te r  of P a tte rn

□ □

□■□

□ □ □

□■□

□ ■ S e a r c h e d  P osition

□ □ □ a □ □ □ □

□□□

□ □ Ig n o red  P osition
S e a r c h  P a tte rn  1 S e a r c h  P a tte rn 2

Figure 2.12: The search patterns used by the Diamond Search Algorithm.
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pattern 2 was applied there to give the final result. If however, the initial application 
of pattern 1 produced a minimum around the edge of the pattern the next step would 
be to apply pattern 1 at the origin.

Evaluation of this pattern would lead to two cases. In the first case, the overall 
minimum would be found in the pattern centred at the origin. In this case the 
algorithm would proceed as in the original DSA. If however the overall minimum 
was found to lie within the original pattern (placed at the predicted vector) pattern 
2 is immediately used around this point to produce the final vector.

Tourapis concludes that this method outperforms the original DSA (and other 
similar techniques) especially in sequences with a lot of motion (where more be­
nefit would be derived from the predictive step).

2.10 The Circular Zonal Search Algorithm

The Circular Zonal Search (CZS)[51] algorithm uses a series of concentric zones 
around a central point. The first six zones are illustrated in figure 2.13. These and 
further zones can be created using the following formula,

r =  round(^/6J +  8J) +  1, (2.1)

where r is the zone index, and 8*, 8y represent the horizontal and vertical dis­
tances from the zone centre respectively. The round function rounds to the nearest 
integer.

0000000
0 H Ell 0 0 0 0 S! 0 

0E00BEB0H00 
0B0B0H0B0B0 
0EBB000B0B0 
0B0BS00B0E0 
BBE10BBB0HS10 

0BSi0000i!0 
0E00000 

00000

Figure 2.13: The first six zones used by the Circular Zonal Search.
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These zones are centred around a predicted vector, which is taken from the 
block to the left of the block under inspection. (If there is no block to the left, then 
the predicted vector is taken as (0,0)).

In the first stage of the algorithm, M  zones are constructed around the predicted 
point. Starting with the innermost zone, the MAD is found for each point in the 
zone. If the minimum of these MADs is lower than a predefined threshold (7i), 
the selection is complete, and the point which provided the lowest MAD used to 
determine the motion vector. If the threshold is not met, then the next zone is 
considered. If after searching all M  zones a suitable vector has yet to be found, the 
algorithm proceeds to a second stage.

Now the pattern is centred around the origin, and N  zones are constructed. Two 
thresholds (72 and 7 3 ) are used in this case. After each zone has been searched the 
minimum MAD (m) is compared to 72. If m <  72 then the search is complete and 
the position which resulted in m is used as the motion vector. If 72 < m < T3 

then the next zone will be the final zone considered in the search, after which the 
position resulting in the lowest MAD will yield the vector. Otherwise the search 
continues with the next zone. If, after all N  zones have been considered, there are 
no positions which satisfy the threshold criteria, the position with the lowest MAD 
is used to determine the vector.

2.11 Prediction Accuracy and Optimal Solutions

One of the problems with the methods detailed above is that there is no guarantee 
that they will find the same optimal solution as the ESA. There may be situations 
(such as off-line encoding) where it would be beneficial to have the optimal solu­
tion, but it would also be nice not to incur the full cost of the ESA. The Successive 
Elimination Algorithm (SEA) is an algorithm which fulfils both these criteria. It 
manages to do so by rejecting some candidate blocks without having to do a full 
pixel by pixel comparison.

2.12 The Successive Elimination Algorithm

If the metric to be used is the Sum of Absolute Difference (SAD) then the Suc­
cessive Elimination Algorithm (SEA)[52] can be used to reduce the computational 
load incurred by the ESA. As with the ESA the algorithm iterates each block from 
from the input frame over a set of possible candidate matched from the reference
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frame. However, using the triangle inequality it is possible to dismiss some of the 
candidate blocks as better matches based only upon the sum of the pixel values in 
the candidate block, the sum of the pixel values of the input block, and the SAD of 
the current best matching candidate block.

The algorithm which forms the heart of the SEA stems from the mathematical 
inequality ||#| — |6|| ^  \a — b\ which can be rewritten as

\a \ - \b \  ^  \a — b\ (2.2)

\b\ — \a\ ^  \a — b\. (2.3)

Suppose a =  /(/, j)  represents the intensity of the pixel at coordinates (/, j)  in 
the input frame and b = R(i — x , j  — y) the intensity of a corresponding pixel in the 
reference frame, which has been offset by the motion vector (x , y).

Making these substitutions into equations 2.2 and 2.3 and summing over all the 
pixels in a block of size M  x N  gives

M N M N

X  X  l7̂  i ) l~XX I
i=l j = \  i = l  j = 1

M N

< XXI 7(*>̂ < 2-4)
» = i  j = i

M N M N

X  X  w* "^/ -r f i -EX i7̂’’
i=l j = \  i=l j = l

M N

1=1 7=1

The first sum in equation 2.4 is the sum of the pixel intensities in the block from 
the input frame, which will be denoted by /• Similarly the second sum represents 
the sum of pixel intensities of a candidate block from the reference frame, with the 
motion vector (jc,y) denoted by R(x,y). The expression on the right hand side 
of the equation represents the SAD between the two blocks, and is denoted by 
SAD(jc,y). With these definitions equations 2.4 and 2.5 become

] T / - £ K ( x , y )  <  SAD(*,y) (2.6)
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£ * ( * , ? ) - £ ; /  <  SAD(*,y). (2.7)

Suppose that for a motion vector (m, n) an initial candidate block with SAD(m, n) 
has been found. A block with the motion vector (jc, y) would prove to be a better 
match if the following criteria was satisfied

SAD(x,y) ^  SAD(m, n). (2.8)

Substituting this into equations 2.6 and 2.7 and combining them yields

^  /  — SAD(m, n) ^  ^  R(x, y) ^  I  +  SAD(m, n). (2.9)

This is the key to the SEA algorithm. It states that, given a current matching 
candidate block with vector (m, n), the search for better matches is confined to 
those blocks which satisfy equation 2.9.

Precalculating all the block sums for the input frame is straightforward, as each 
pixel is part of only one block. However for the candidate blocks a naive approach 
could negate the advantages of using the SEA. However [52] also gives a method 
for fast calculation of the candidate blocks.

Suppose the dimensions of the image are W x H  pixels, and that the block size 
is A x B pixels. The first step involves calculating column sums for each column
in the image. Each column sum is initially made up of the first B pixels in each
column.

Once these have been calculated the sum for the first block is simply the total 
of the first A column sums. The sum for the second block can now be found by 
taking the sum from the first block, subtracting from it the first column sum and 
adding column sum A +  1. This process of subtracting and adding column sums 
in conjunction with the sum of the horizontally previous block can be continued to 
find sums for all the subsequent blocks in the first row, (see figure 2.14).

Before calculation of the second row of blocks can begin the column sums need 
to be updated. This new value is obtained by subtracting the first pixel from the 
column sum and adding pixel B +1. Once this is done the block sums can be found 
using the same method as for the first row. The process can then be repeated to find 
the block sums of all the blocks in subsequent rows.

The pseudo-code for this algorithm is shown below. It is very similar to that 
for the ESA except for the precalculation of the block sums and an additional com-
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1) A d d  t h e s e  c o lu m n  s u m s  to  g e t  t h e  s u m  fo r  t h e  f irs t b lo c k .

C o lu m n  S u m

2 ) S u b t r a c t  th i s  c o lu m n  s u m  a n d  a d d  th i s  o n e  to  g e t  t h e  s u m  fo r  t h e  n e x t  b lo c k .

Figure 2.14: The Column Sums

parison within the inner loop. With these additions it would appear that the SEA 
could in fact have a worse performance than the ESA. This is possible but unlikely. 
The most computationally intensive part of the algorithm is the metric comparison. 
The SEA allows this to be avoided in cases where there is no chance of a better 
match being obtained. The more blocks which can be discarded this way, the faster 
the algorithm.

As the SEA comparison is always made against the current best guess block, 
an initial good guess is very important, as it can reduce the number of metric com­
parisons considerably. This initial guess is often taken to be the vector from the 
previously matched, neighbouring input block, or the vector obtained from match­
ing the input block in the previous frame.

s p l i t  i n p u t  f r a m e  i n t o  b l o c k s  

c a l c u l a t e  b l o c k  su m s  f o r  i n p u t  f r a m e  

c a l c u l a t e  b l o c k  su m s  f o r  r e f e r e n c e  f r a m e  

f o r  e a c h  b l o c k  i n  t h e  i n p u t  f r a m e

c h o o s e  c a n d i d a t e  b l o c k s  f r o m  r e f e r e n c e  f r a m e

b e s t  m a t c h  = i n i t i a l  g u e s s  c a n d i d a t e  b l o c k

b e s t  v e c t o r  = v e c t o r  f r o m  i n p u t  b l o c k  t o  c a n d i d a t e  b l o c k
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for each remaining candidate block
if candidate block satisfies SEA equation 

compare blocks using SAD
if input block is a better than current best match 
best match = candidate block
best vector = vector from input block to candidate block 

end if 
end for 

end if 
end for

2.13 Comparison of Techniques

One way of comparing the computational cost of the various block matching tech­
niques is to look at the number of block matches required to find the motion 
vector for a single image block. If the search range is restricted to ±7 there are 
(2 x 7 +  l ) 2 =  225 possible positions to search in order to find the optimal vec­
tor. The ESA, by definition, has to search all of these. The sub-optimal motion 
estimators only search a subset of these positions. The TSS evaluates 25 positions, 
whereas the Four Step Search (FSS) uses between 17-27 positions depending on 
the steps used.

The DSA does not have a fixed range but typically uses between 13-30 to 
cover the ±7 region. In a similar fashion the number of positions searched by 
the Circular Zonal Search (CZS) varies depending upon the accuracy of the initial 
predicted vector. A good prediction could yield a vector in as few as 10 matches 
whereas a poor prediction could require all 255 positions to be evaluated. (This 
depends on the thresholds chosen for the search.)

The SEA also has a variable number of matches depending on the nature of 
the sequence being used. In[52] the authors claim the SEA can reduce the number 
of matches by 85%. During this work the values seemed to range between 40% 
and 60%. Although this is much higher than the other methods discussed in this 
chapter is it important to remember that the SEA is able to produce the optimal 
solution without necessarily checking all match positions.
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2.14 Compression of Vector Fields

One of the most important aspect of vector field compression is that it must be 
done in a lossless fashion. It is essential that the encoder and the decoder both 
use exactly the same vector field to construct the predicted image. If this were 
not the case then there would be no guarantee that the transmitted residual would 
accurately represent the difference between the prediction and the actual image.

A common way to transmit motion vector data is by means of a predictive 
scheme. The motion vector to be transmitted is predicted from previously trans­
mitted neighbouring vector (spatially or temporally), and the difference between 
this prediction and actual vector is losslessly encoded. A good example of such 
a scheme is given by H.263 and is described in appendix A.l. A consequence 
of such a scheme is that smoother field tend to compress more efficiently as the 
prediction error is smaller.

It is possible to provide a coarse degree of control over the cost by changing 
the size of the blocks used to describe the field. The larger the block size the fewer 
blocks each image will be split into, and therefore less vectors in the field. A vector 
field with fewer vectors should cost less to encode, at the expense of producing a 
less accurate predicted image.

Using the pair of images shown in figure 2.15 (which were QCIF sized) the 
ESA was used to produce vector fields with the following block sizes, 2 x 2 ,4  x 4, 
8 x 8  and 16 x 16. In each case the scan range was 16 x 16. The motion vector 
fields for each of these block sizes was compressed with the H.263 coder, (see 
section A.1) and the MAD of the predicted image was found. Finally the residual 
image produced in each case was compressed with a standard JPEG encoder.

The results are shown in table 2.1. Additionally, the motion fields produced are 
shown in appendix B.

It is worth noting that the number of pixels matches is not related to the size of 
the blocks used, but is directly related to the number of search positions. Smaller 
blocks require less pixel matches to be evaluated, but there are proportionally more 
blocks to find matches for.

Firstly it is important to note the correlation between the MAD error in the 
residual and the cost of compressing it. This demonstrates that in this case the 
greater the MAD the greater the cost of transmitting the residual at a given quality.

As expected, decreasing the block size allows a more accurate predicted image 
to be produced. This is accompanied by a rapid increase in the cost of encoding
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Figure 2.15: A pair of frames from the rugby sequence.

JPEG

Block Size
Number 

of Blocks

MVF
Cost
(bits)

Cost per 
Block 
(bits)

MAD 
Error in 
Residual

Cost of 
Residual 

(bits)
2 x 2 6336 76308 12.04 2.190 5792
4 x 4 1584 10304 6.51 4.841 13952
8 x 8 396 2162 5.46 7.410 19096

16 x 16 99 508 5.13 10.304 22728

Table 2.1: The effect which varying the block size has on the bit cost of the motion 
description and the error in the residual.
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the vector field. However, it would be unrealistic to claim that this method gave 
any fine control over the number of bits used by the vector field. Suppose we 
were encoding a sequence at 25fps for transmission at a bit rate of 64kb/s. This 
would allow just over 2,600 bits per frame. In the example above, only the 8 x 8 
and 16 x 16 block sizes could be used, as any smaller block sizes causes the bit 
allocation for the vector field to dramatically exceed the bit allowance.

There are also rate-constrained approaches [5 3] which often rely on Lagrangian 
techniques [54] to produce a locally optimised motion field. These do not provide 
direct control over the cost of the motion vector field, and are often closely related 
to other parts of the encoding system.

2.15 Conclusion

In this chapter we have looked at various techniques used to produce motion vec­
tor fields suitable for digital video encoding. Many of these stem from the ESA 
which can be considered the grandfather of block matching algorithms. Each set 
of techniques was designed to overcome limitations or failings in earlier methods. 
However, none of the methods examined so far are able to control the number of 
bits given to a motion vector field in any reliable way. It would be useful to do so 
as this would allow both terms on the right hand side of equation 1.21 to be easily 
varied. If this were the case then it would be possible to find the trade off in the bit 
distribution between the motion description and the residual which resulted in the 
optimum image quality.

In the next chapter we will examine techniques which move towards the aim of 
having more control over the cost of the motion description, and the effect this has 
on coding efficiency.
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Chapter 3

Bandwidth Controllable 
Motion Estimation

Previously we have seen that existing methods for producing motion vector fields 
fail to give a great deal of control over the cost of encoding the vector field. As 
a result they are unable to find the optimal trade-off between the cost of the MVF 
and the residual. In this chapter we will examine two novel methods for which aim 
to address this problem.

The first method, the Extended Block Algorithm (EBA) attempts to do so by 
controlling the smoothness of the field, the smoothness implying correlation which 
in turn leads to increased compression. The second method, Embedded Quad­
tree Motion Estimation (EQME) aims to produce an embedded representation of 
the motion description. This embedded nature means that the more data which is 
transmitted, the more accurate the motion description. However, it is possible to 
truncate the stream at certain points, and therefore control the cost of the motion 
description.

3.1 The Extended Block Algorithm

The Extended Block Algorithm (EBA) aims to produce a smooth motion field 
which also is more likely to reflect the true motion of the scene. Finding the vectors 
which describe the true motion can have several advantages. In textured areas such 
as grass or sky, some techniques produce motion vectors which can have a very 
chaotic, random appearance. Figure 3.2 shows a motion field produced using tra­
ditional block matching techniques (the frames used to generate this field, shown
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in figure 3.1, contain a large amount of grass). Such a field has high entropy and is 
difficult to compress.

Figure 3.1: The frames used to produce the vectors in figure 3.2.

Finding the true motion of the scene would yield a more correlated field, which 
would aid in compression. Another advantage of a true motion field is that it be­
comes meaningful to interpolate the vectors over time. This enables the contents 
of a block to be estimated at an earlier or later time without needing to send further 
motion information.

In traditional block matching algorithms [55] each block is treated independ­
ently from its neighbours. However, in the Extended Block Algorithm (EBA) each 
block is coupled with those around it to a certain degree, enabling a more correlated 
field to be produced.

The pseudo-code for the algorithm is identical to that for the ESA. The dif­
ference comes in the way the blocks are compared using the metric. In the ESA 
each pixel in the input block was partnered with a corresponding pixel from the 
candidate block. The same is true in the EBA except that each block is extended 
by a certain number of pixels before the metric is calculated. For example, the 
block shown in figure 3.3 has been extended by three pixels in each direction. All 
the pixels in this extended block are used to calculate the motion vector. How­
ever, when creating the motion compensated frame the vector is only applied to the 
original pixels in the block, and not those from the extension.

When near the edge of the image, adding the extension may cause the block 
to extend beyond the image boundary. In this case the extension is cropped to fit 
onto the image. In this particular implementation the opposite edge is also cropped 
to the same amount so that the extension is symmetrical, (see figure 3.4). Another
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Figure 3.2: Even though the grass is all moving in the same direction the motion 
vectors are very chaotic.
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Figure 3.3: The block is extended by a given number of pixels before the metric is 
calculated. In this case the 4 x 4 block is extended by 3 pixels.
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solution to this problem would be to extend the image using some form of padding 
method, such as symmetrical padding or null padding.

2) Near the edge the extension must be cropped. 
In this case the opposite edge is cropped as well 
to preserve symmetry.

1) Away from the edge of the image the 
extension can be applied all around the block.

Figure 3.4: What happens to the extensions at the edges?

If the metric used is normalised, then blocks of different sizes may be com­
pared. However, often all the candidate blocks are required to have the same di­
mensions. In this case, (when near the edge of the frame), the extension applied to 
all the candidate blocks is that of the most cropped block. So for example if one of 
the candidate blocks is a comer block, no extension will be applied to the blocks.

The method can also be modified to take advantage of an SEA type implement­
ation when the metric to be used is the SAD. However, there are two factors which 
need to be taken into account if this is to be done. Firstly the blocks are no longer 
all the same size, so the metric must be normalised. In the case of the SAD this 
means dividing by the number of pixels in the block to yield the MAD, and the 
block sums become the sum norms. Secondly, the calculation of these sum norms 
also requires attention, as the blocks in the input frame are no longer independent 
as the extensions cause them to overlap.

3.1.1 Computational Cost of the EBA

In terms of the number of block matches required to produce a vector field from a 
pair of images, the EBA has the same computational complexity at the ESA. How­
ever, due to the extension in the size of the blocks the number of pixel comparisons
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is greater when using the EBA. Table 3.1 shows this increase in terms of compared 
pixels for various block sizes and extensions. In the case where the extension is 
half the block size the computational cost is over twice that of the standard ESA.

Block
Size Extension

ESA Pixel 
Comparisons

EBA Pixel 
Comparisons

Relative
Cost

8 2 64 100 156%
8 4 64 144 225%
8 8 64 256 400%

16 2 256 324 127%
16 4 256 400 156%
16 8 256 576 225%
N e N 2 (N + e ) 2 (i +  i ) 2

Table 3.1: The increased computational cost of using the EBA.

3.1.2 Results

In order to demonstrate the smoothing effect of the EBA two motion vector fields 
were produced from input images. In both cases the block size was 4 x 4  pixels and 
the scan range was 16 x 16. However, the first vector field (figure 3.7) has no ex­
tension (and is therefore identical to the result produced by the ESA), whereas the 
second field (figure 3.8) has an extension of 4 pixels applied in both the horizontal 
and vertical directions.

It is clear to see that the vector field produced by the extended blocks is much 
smoother than that without. However, the MAD between the input frame and the 
motion compensated frame has risen from 4.28 grey-levels/pixel with no extension 
to 6.51 grey-levels/pixel with the extension.

In order to obtain an estimate for the bandwidth required by the each field the 
following method was used. In raster scan order, each vector, (starting with the 
second), was subtracted from the previous one. For each vector component the 
entropy of each differenced value was found. Summing over all possible values 
yields an estimate of the number of bits to encode each vector. The results are 
shown in table 3.2, along with the actual bit cost for encoding the field as produced 
by an H.263 encoder. It can be seen that in this case around 4 bits/vector can be 
saved by using the EBA.

The procedure was repeated for another eight pairs of frames from the rugby 
sequence. Each pair was evaluated with block sizes of 4 and 8, both with and 
without a 4 pixel extension. The results are shown in figure 3.5.
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Figure 3.5: The effect of the EBA on vector bit cost.
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Calculated Entropy
Extended Blocks Traditional Blocks

x  Vector Component 2.59 4.60
y Vector Component 2.19 4.31

Total 4.78 8.91

Actual Bit Cost 4.87 9.10

Table 3.2: Comparing the number of bits per vector component required when 
a vector field is created with traditional block matching methods and the EBA. 
The actual bit cost of compressing the field is shown along side the cost based on 
entropy calculations.

From these results we can see that the EBA consistently reduces the cost per 
block for all the pairs of frames used. The reduction is more evident when the 
block size is smaller. As previously seen the smaller block size (with no extension) 
produces a less correlated vector field so there is greater scope for improvement.

10

s
2Co
§  6
CD
Q .

O

0

Figure 3.6: The effect of changing the amount of extension when using the EBA. 
(Block Size 8)

No extension 
2 pixel extension 
4 pixel extension 
6 pixel extension

0 1 2 3 4 5 6 7 8
Frame-Pair Set

Figure 3.6 shows the effect of varying the amount of extension when using 
the EBA, (in this case the block size was 8). It can be seen that the greater the 
extension the lower the average cost in bits per block. This is due to the smoothing 
nature of the EBA creating greater correlation between the vectors as the extension
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increases.

Figure 3.7: The motion vector field produced using 4 x 4  pixel blocks with a scan 
range of ±16 pixels, (no extension).

3.2 Embedded Quad-tree Motion Estimation

The Embedded Quad-tree Motion Estimation (EQME) [56] uses a coarse to fine 
approach to produce an embedded motion description. The global motion of the 
input frame with respect to the reference frame is found, and is then recursively 
refined, producing locally more optimal vectors.

In common with block based motion estimation techniques the input frame is 
divided into an array of blocks, each M x N  pixels in size. The maximum density 
of the vector field is limited by the number of blocks.

Initially all the blocks in the input frame are considered as one group and are 
thus constrained to share a common motion vector. For each allowed motion vector 
a comparison metric is applied between the group of blocks and the corresponding
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Figure 3.8: The motion vector field produced using 4 x 4  pixel blocks with a scan 
range of ±16 pixels extended by 4 x 4 pixels.
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group (as determined by the motion vector) in the reference frame. For all non­
zero motion vectors some of the required pixels in the reference frame will he 
outside the image. The value of these pixels are determined using an image padding 
scheme such as zero-padding or symmetric-padding. The optimal global motion 
vector is the one which results in the most favourable outcome of the comparison 
metric. The value of this vector becomes the first element in the motion description 
stream.

Once the global motion vector has been found the refining stage commences. 
In this process, the group of blocks from the input frame is split to form four new 
groups, each of which is a quadrant of the old group, see figure 3.9. For each 
of these new groups the optimal motion vector is found in the same way as for 
the global motion. Each vector is then subtracted from the vector of the parent 
quadrant before being entropy coded and added to the stream, see figure 3.10.

Each new quadrant is itself then split and the process recursively repeated until 
each ‘group’ contains only one block. The resulting embedded motion stream now 
contains the motion vectors for successively smaller blocks, each level containing 
blocks a quarter of the area of the previous one. This bit stream can be truncated at 
any point to give a motion description to an exact number of bits.

3.2.1 Results

Embedded Quad-tree Motion Estimation (EQME) streams were generated for pairs 
of reference/input frames selected from three commonly used video test sequences. 
In each case a fixed number of bits, btotai, was allocated to encode the input frame, 
given the reference frame. Of these bmotion bits were taken from the beginning of 
the EQME stream and used the produce a motion compensated frame. Subtracting 
this motion compensated frame from the reference frame produced the residual, 
which was coded using the remaining bresiduai = btotai — bmotion hits. The result­
ing decoded residual was then combined with the motion compensated frame to 
produce the transmitted frame.

For each pair of frames, the proportion of the bits allocated to the motion de­
scription bmotion/btotai was varied between 0 and 1 and the Normalised RMS Error 
between the transmitted and original frames found, see figures 3.11 to 3.13. For 
each figure btotai =  10,000 ± 1%  and the image size was 176 x 144.

When implementing the EQME a number of decisions regarding the various 
parameters need to be made. These results were obtained for a particular imple­
mentation of the EQME method, with parameters as listed below.
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Figure 3.9: Each block is subdivided into four others, and the motion vectors are 
found for these.
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V
A Id

A □

Subtract

Subtract

1 0 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 0 1 0 1 1 1 1 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 1 0 1 1 0 0 1 1 1 0

Figure 3.10: Each new block is differentially encoded with respect to its parent and 
added to the embedded stream.

• The block size was 4 x 4 .

• The allowed range of the motion vectors was ±15 x ±15.

• The global motion was encoded raw, and the refining difference vectors were 
entropy coded using an adaptive Huffman scheme.

• If a group of blocks could not be spit into four equally sizes quadrants, the 
top-left quadrant was made the largest.

• The comparison metric used was the Sum Absolute Difference (SAD).

• The reference frame was zero-padded in order to account for the uncon­
strained nature of the vectors.

The results illustrate that the optimal distribution of bits between the motion 
description and the residual can vary considerably. For example, figure 3.11 was 
produced from the Carphone sequence in which the motion is relatively simple. 
There is a small amount of global motion, with the remaining motion being quite 
coarse. Here the motion description initially plays an important role in aligning the 
two frames. However, due to the nature of the motion, more detailed refinement 
is more efficiently handled by the residual coder. In this case once the optimal 
proportion has been reached (0.2), the error rapidly rises as further bits are taken 
from the residual and allocated to the motion description.

Figure 3.12 is taken from the beginning of the Foreman sequence, which was 
filmed using a hand held camera. As a result there is significant camera wobble
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Figure 3.11: Carphone frames 305 and 309.
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Figure 3.12: Foreman frames 66 and 70.
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Figure 3.13: Trevor frames 48 and 52.
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between the frames, in addition to the movement of the foreman himself. As this 
motion is slightly more complicated, the optimal distribution requires more bits 
for its motion description than in figure 3.11. However, once the optimal point 
is reached further allocation of bits to the motion does not increase the error as 
rapidly as for Carphone. The results in figure 3.13 come from the Trevor sequence, 
which contains six people moving independently. This leads to localised motion 
which requires an even greater proportion of the bits to be allocated to the motion 
description in order to generate the optimal transmitted frame.

Although the benefits of using the optimal distribution (in terms of RMS error) 
may be small for a single pair of frames, the cumulative benefit over a sequence of 
differentially coded frames could become significant.

3.3 Discussion and Conclusions

The EBA has been shown to generate smoother vector fields with lower entropy 
(and therefore higher compression) than those generated by the ESA. However, it 
is extremely computationally expensive, even more so that the ESA. Controlling 
the smoothness by varying the amount of extension leads to a certain degree of 
control over the bandwidth required to encode the field, however, this control is 
still coarse. Even so, the generation of such a dense, smooth motion vector field 
may have applications outside that of video coding such as cloud tracking [57], 
glacier surface motion, and medical imaging [58].

It is also likely that the EBA will produce more visually pleasing results which 
are less prone to blocking artifacts. As large contiguous areas of the image share 
the same vector, the resulting residual is less likely to have high frequency ‘edges’ 
and will therefore be easier to encode.

This effect is similar to that achieved by overlapping block motion estimation 
in which the applied vector for any given block is the weighted average of the 
calculated vector for that block and its immediate neighbours. This also has the 
effect of smoothing out the vector field, but lacks the EBAs ability to vary the 
bandwidth associated with the motion description.

The results for the EQME are important in that they confirm the hypothesis that 
this is an optimal trade-off between the bits assigned to the motion description and 
those assigned to the residual. They also show that this optimal proportion is not 
fixed, and varies depending on the contents of the sequence.

One problem with the stream produced by the EQME is that, although bandwidth-
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controllable, it is not particularly efficient at compressing the field. For example, 
each quadrant is always split at the refining stage, which is inefficient for large 
areas with constant motion. Quad-tree decomposition has already been applied in 
other areas of image processing [59,60] and evolution of this method could benefit 
from the incorporation of similar decomposition schemes.

3.4 Summary

In this chapter we have examined two methods which give a certain amount of 
control over the bandwidth used to encode the motion description. However, each 
of the methods has drawbacks which prevent them from competing with existing 
techniques. The EBA produced smooth, easily compressed fields, but lacks fine 
grained control over the allocated bandwidth, whereas the the EQME has good 
bandwidth control, but is not efficient at compressing the description.

It was noticed that the smoother fields produced by the EBA often contained 
fewer unique vectors and that they were also more easily compressible. This lead 
to the hypothesis which suggests that the fewer unique vectors a field contains, the 
cheaper it is to encode.

The next chapter explores this hypothesis and examines techniques which at­
tempt to overcome the shortfalls of both the EBA and the EQME thus achieving 
good control over the bandwidth, while also compressing the resulting field effi­
ciently.
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Chapter 4

Restricted Vector Set Motion 
Descriptions

One way to measure the complexity of a vector field is to count the number of 
unique vectors which occur within it. For example, a uniform field has only one 
unique vector, a field in which the left half moves one way and the right half another 
has two unique vectors and a 11 x 9 field in which all the vectors are different would 
have 99 unique vectors.

In order to investigate the relationship between the number of unique vectors in 
a field and the cost of encoding that field, the following experiment was conducted. 
Each of the following sequences, ( ‘Carphone’, ‘Claire, ‘Container’, ‘Foreman’, 
‘News’, ‘Salesman’, ‘Silent’, ‘Suzie’ and ‘Trevor’) were encoded using a standard
H.263 encoder at 128 kb/s using an IPPP... encoding scheme. For each of the 2885 
P-frames produced the cost of the vector field was found using H.263 encoding 
along with the number of unique vectors in the field. The average costs were found 
for each number of unique vectors and the results are shown in figure 4.1.

Up to about 40 vectors the graph is reasonably smooth, with each number of 
vectors having sufficient data to produce a reasonable average. Beyond this point 
however there are fewer data for each point causing the graph to appear more 
chaotic. The raw data for these results can be found in Appendix D.l. Despite 
this the graph still displays a visibly linear trend.

It can be seen that the larger the number of unique vectors the more, on average, 
it costs to encode the field. This can be attributed to the decrease in correlation 
which tends to occur with an increase in vectors.

From this we can conclude that any method which is able to reduce the number
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Figure 4.1: The more unique vectors a field contains, the larger the size of the 
encoded field.

of unique vectors in a field should also have the effect of reducing the encoded cost 
of the field. In this section we explore techniques which try to restrict the number 
of vectors present in a field. These methods try to select a suitable set of candidate 
vectors for a field, and are hence called vector selection strategies.

Three such vector selection strategies are presented below. In essence they 
are no more than motion estimators, however they can be constrained so that the 
motion vector fields they produce contain no more than N  unique vectors.

4.1 Histogram Method

As its name implies the Histogram Method[61] picks vectors based on how fre­
quently they occur. It does not operate directly on the current and reference im­
ages, rather its input is a motion vector field which has already been generated from 
them.

There are three stages which make up the Histogram Method;

1. Prepare the histogram,

2. Pick the vectors,

3. Assign the stragglers.
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Vector Frequency Vector Frequency
(0 ,0 )  18 (-2 ,-2 ) 2
(2 ,-1 )  12 (7 ,6 )  1
(1 ,0 )  8 (2 ,6 )  1
( 1 ,-D  4 (6 , 5) 1
(-1 ,-1 ) 4 (-8 , 3) 1
(0 , -2) 3 (3 ,0 )  1
(3 ,2 )  2 (0 ,-1 )  1
(2 ,1 )  2 (-2 ,-1 ) 1
(1 ,1 )  2 (4 ,-3 )  1
(2 ,0 )  2 (1 ,-3 ) 1
(-1 ,0 )  2 (-8 ,-3 ) 1
(4 ,-2 )  2 (-5 ,-4 ) 1
(2 , -2) 2 (1 ,-5 )  1
(1 ,-2 )  2 (8 , -8) 1

Table 4.1: Example Vector Frequency for a typical motion field.

4.1.0.1 Prepare the Histogram

The vector field which is used as an input to the Histogram Method will contain 
many different vectors and (possibly) several instances of each vector. The first 
thing which needs to be done is to create a list of all the individual vectors which 
comprise the field along with a count of how frequently each vector occurs. A 
typical list is shown in table 4.1.

4.1.0.2 Picking the Vectors

The next task is to select the N  vectors which will form the final motion vector field. 
We simply select the N  most frequently occurring vectors. In some cases there will 
be more than one vector with a given frequency. Such ties can be resolved in a 
number of ways, for example by selecting the vector closest to the origin, or the 
one whose block present the least error.

4.1.0.3 Assign the Stragglers

However, this leaves us with a problem. What do we do with the blocks whose 
vectors were not selected to form part of the new motion vector field? We shall call 
these blocks the stragglers, as we see in table 4.1 nearly half the vectors occur only 
once. The solution is to assign them to one of the blocks which is already present
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in the list. For each straggler block the following procedure is used. Each vector 
from the list is applied to the block and the prediction error is calculated. The block 
is assigned to the list vector for which this prediction error is smallest. This part 
of the process requires access to the original images from which the input motion 
vector field was generated, (or a table of the error metrics for each block/vector 
combination).

This will result in a complete motion vector field which is similar to the ori­
ginal, but with only N  unique vectors.

4.2 Metric Method

The Metric Method[62, 61] attempts to find the the optimal N  vectors in a sequen­
tial manner. It will first find the single vector which minimises the error when 
applied to all the image blocks. The it will find a second vector which when used 
along side the first vector will minimise the error, and so on. The vectors are se­
lected in a sequential fashion, so that the best N  vectors contains the best N  — 1 
vectors, plus an extra one.

Unlike the Histogram Method the Metric Method does not take an existing vec­
tor field as an input. However, it does require a list of possible candidate vectors. 
These are the vectors which will be considered for the vector list. Possible ways to 
pick candidate vectors include;

•  Specifying a range for the vectors. For example (±16, ±16).

•  Using the vectors from a field generated by a block matching algorithm

Once the candidate vectors have been selected the prediction error when each 
of these vectors is applied to each image block is calculated and stored in a table. 
Such a table is shown in figure 4.2.

First we want to find the single vector which gives the minimum total prediction 
error when applied to all the blocks in the image. This vector can be easily found 
by calculating the sum of each row of the table and finding the minimum. The 
vector which provided this sum is the single most optimum vector for the image.

The sum of each row in the table is found; this is the total prediction error when 
each single vector is applied to all the blocks in the image. The vector for which 
this sum is a minimum is the most optimal single vector for the image.

Having found this vector we can now look for the next best vector from the 
remaining candidates in the table. Each of these remaining vectors is considered

75



CHAPTER 4. RESTRICTED VECTOR SET MOTION DESCRIPTIONS

Block
1 2 3 B - 1 B

l 383 886 777 915 793
2 335 386 492 649 421

u
TJ 362 27 690 59 763

0

1 * ; ; * ; *
>> M —2 211 368 567 429 782

M — 1 530 862 123 67 135
M 929 802 22 58 69

Figure 4.2: Example of a metric table. Each cell of the table contains a measure 
of the error introduced into the predicted image when a given vector is applied to a 
given block.

in turn. As before a sum is made along each row of the table, but now contribution 
from each image block is the minimum of the prediction error for the vector under 
consideration and that of the previously selected optimum vector. Once again, the 
minimum sum indicates which candidate vector should be selected as the second 
best vector. This process continues until N  vectors have been selected.

There is a subtle consequence of this selection process which means that N 
iterations will not necessarily produce a field with N  unique vectors. This is due 
to the fact that later vectors can cause earlier vectors to become obsolete. This is 
most easily explained by way of an example.

The best single vector

*(-3. 0)

Figure 4.3: This hypothetical field is composed of only two different vectors. How­
ever, the vector which best describes the global motion is neither of them.

All the blocks in the top half of the
im age have the vector (-3 , -1 ).

(-3

All the blocks in the bottom half of the 
image have the vector ( -3 ,1 ) .
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Suppose we have a pair of images for which the most optimal vector field con­
tains just two unique vectors, in similar proportions, (figure 4.3). It is quite possible 
that the best global vector for these images is neither of the two most optimal vec­
tors. If we assume all three of these vectors are present in the candidate list, the 
first iteration of the Metric Method will result in the vector (—3,0) being selected. 
The next two iterations will add the other two vectors, say (—3,1) followed by 
(—3, —1), resulting in the optimal motion vector field. However, this field will no 
longer contain the original vector (—3,0), so after three iterations of the Metric 
Method we have a field which contains only two vectors.

Another interesting property of this example is that after two iterations we have 
a field which contains the two vectors (—3,0) and (—3,1). Suppose the selection 
process stopped at this stage, it is clear by inspection that a much better choice 
would have been the pair of vectors (—3,1) and (—3, —1). However, because the 
Metric Method can only pick vectors sequentially it is stuck with the erroneous 
vector (—3,0). (In our example this vector becomes obsolete in the next iteration 
but there is no guarantee that this will happen so quickly, if at all.)

4.3 Full Search Method

One drawback of the Metric Method is that the best pair of vectors does not neces­
sarily contain the best single vector as was illustrated in figure 4.3 and the corres­
ponding example.

As with the Metric Method the Full Search Method[61] takes a list of candidate 
vectors as its input. However, where as the Metric Method asks the question, “What 
is the N ^  best vector given that we have already selected these N — 1 vectors?”, the 
Full Search Method simply asks, “What are the N  best vectors?”.

Although this question is more straightforward than that posed by the Metric 
Method the removal of the restriction leads to a much higher computational cost. 
Now there is no need for the best pair of vectors to contain the best single vector. 
As a result there are many more such pairs to evaluate in order to find the optimum.

A table is constructed as it was in the Metric Method. To find the most optimum 
N  vectors, each combination of N  from the candidate list must be tested. The 
total row sum resulting from the minimum prediction error of each vector under 
consideration. When all such combinations have been considered the one with the 
most favourable prediction error is the optimum.
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4.4 Comparing the Vector Selection Strategies

The three methods presented above all have different merits and disadvantages. 
The Histogram Method is very easy to implement and computationally cheap. 
However, the frequency tables produced by many typical vector fields often yield 
vectors with the same frequency (as seen in figure 4.1) and there is no way to prior­
itise these vectors without further calculation (which could possibly be done using 
the Metric Method). As a consequence, its total SAD is always higher than for 
the other techniques, apart from a few cases for which the histogram has distinct 
vectors.

Although the Metric Method generally performs better than the Histogram 
Method, the best N  vectors do not necessarily contain the best N — 1 vectors. This 
can be seen in figure 4.4 which shows the best N  =  1 ,2 ,3 ,4 ,5  vectors as found by 
the Full Search Method and the Metric Method. Both methods pick the best single 
vector (1,0) but this vector is not found in the best pair of vectors (as determined 
by the Full Search Method). As the Metric Method can only find the second vector 
given that it has selected vector (1,0), it fails to produce an optimal result. It is not 
until N  — 4 that this vector reappears in the list for the Full Search Method.

Figure 4.4: The best N = 1 ,2 ,3 ,4 ,5  vectors for the Metric Method and the Re­
stricted Full Search Method.

Another feature of the Metric Method is that earlier vectors can be made ob­
solete by later vectors. For example, figure 4.5(a) shows a hypothetical mapping 
of vectors that minimises the SAD for N  =  4. The index of the vector indicates 
the order in which it was added to the mapping. Notice that by this iteration the 
vector with index 1 only occurs once in the mapping. Suppose that, given that these 
vectors have been selected, most improvement can be gained by replacing this vec­
tor with a new vector with index 4 (see figure 4.5(b)) bringing the total number of 
vectors in the fist to five. However, as vector 1 no longer appears in the mapping 
it has become obsolete and after five iterations the vector fist only contains four

Metric Method Restricted Full Search Method
N  Vectors 
1 (1,0)
2 (2, - 1) (0, 0)
3 (2,-1) (0,0) (1 ,-2 )
4 (1,0) (2 ,-1 ) (0,0) (1,-2)
5 (1,0) (2 ,-1 ) (0,0) (1,-2) (2,1)

N  Vectors 
1 (1,0)
2 (1, 0) (2, - 1)
3 (1,0) (2,-1) (0,0)
4 (1,0) (2,-1) (0,0) (1,-2)
5 (1,0) (2,-1) (0,0) (1,-2) (2,1)
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useful vectors, and is still considered N = 4. As the Metric Method cannot jump 
straight to this second, more optimal solution without considering the first one, it 
must always check past the number of vectors required in order to ensure that all 
the cases for the required value of N  have been considered.

3 3 0 0 0
3 2 1 0 0
3 2 2 2 0
3 2 2 2 0

3 3 0 0 0
3 2 4 0 0
3 2 2 2 0
3 2 2 2 0

(a) (b)

Figure 4.5: An example vector mapping: (a) after the best four vectors have been 
found and (b) after the next iteration in which the replaced vector has become 
obsolete.

Figure 4.6 compares the total SAD of the predicted image constructed using 
N  vectors selected by the Histogram, Metric and Restricted Full Search Methods 
for two frames from the Foreman sequence. The frames were split into 80 blocks 
and the reference frame was degraded as it would have been if used in a rate- 
constrained video codec. The candidate vector set for the Restricted Full Search 
Method (RFSM) was found by running the Metric Method to completion, giving 
28 vectors.

As expected the RFSM always gives the best result, but it is more often than not 
matched by the Metric Method. Also the higher computational cost of the RFSM 
makes it less practical to use than the Metrical Method. The Histogram Method 
does not perform as well for all non-trivial (N >  2) cases.

4.5 Restricted Vector Results

The Metric Method was applied to four sequences (Foreman, Carphone, News and 
Container) to produce around 20,000 motion vector fields containing between 2 
and 30 unique vectors. Each field was encoded using the motion field compressor 
from the H.263 codec. An average result was found for each value of N, the number 
of unique vectors in the field. These are displayed in figure 4.7.
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Figure 4.6: Comparing the different vector selection strategies.
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Figure 4.7: The result of limiting the number of vectors in a field using the metric 
method, and compressing with a standard H.263 encoder.
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Figure 4.8: Examples of how the MAD varies with the number of vectors selected.

The results clearly demonstrate that there is a strong correlation between the 
number of unique vectors in the motion vector field (as produced by the Metric 
Method) and the number of bits needed to encode the field using the H.263 encoder. 
The results for the news and container sequences are limited due to the lack of 
complex motion in these sequences. For example, very few frames in the news 
sequence require more than 15 vectors to adequately describe the motion between 
the frames.

4.6 Dynamically Selecting the Number of Vectors

The methods described in this chapter allow us to construct a motion vector field 
which contains N  unique vectors. Increasing N  produces a more complicated mo­
tion vector field, but the resulting residual contains less error. In this section we 
will look at ways in which a sensible value of N  can be determined for different 
pairs of frames.

A good value of N  is related to the complexity of motion in the sequence. If the 
motion is simple, a low value of N  will usually be sufficient, as adding more vectors 
to the field will not yield a significant reduction in the prediction error. However, 
for more complex motion additional vectors will be beneficial, so we would like to 
include them in the field.

Figure 4.8 shows how the prediction error changes with N  for a pair of frames 
from two different sequences, (the foreman sequence and earphone sequence). The 
frames from the foreman sequence are taken towards the end of the sequence, 
where most of the movement in between the frames is due to the camera motion. 
As a result nearly all the motion is well represented with only a couple of vectors.
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Any additional vectors added to the field have an extremely small effect. In the 
earphone sequence there is a greater variety of movement, so added more vectors 
does improve the quality of the predicted image, (perhaps up to 15 vectors).

This example serves to demonstrate the need to tailor the number of vectors 
picked by the selection strategies (N) to the content of the sequences being com­
pressed.

Rather than try to determine an absolute value of N  we will take an iterative 
approach to the problem. That is we will create fields with N  = 1 ,2 ,3 , .. .  vectors, 
and after each new field is created we evaluate some criteria to determine whether 
or not we should continue.

4.6.1 Number of Blocks Changed

The motion vector field generated for N  vectors will differ from that created with 
N — I vectors. One way to measure this difference is to count the number of 
blocks for which the vectors have changed. When this number becomes small it 
is an indication that each additional vector is having only a small impact on the 
prediction error.

4.6.2 Change in Prediction Error

As N  increases the quality of the prediction will improve and prediction error 
should decrease. In the case of the Metric Method and the Full Search Method the 
amount of improvement decreases with increasing N , (the prediction error mono- 
tonically decreases). This change in the prediction error indicates directly the effect 
of adding vectors to the motion vector field. When this change becomes small the 
bit cost of encoding the more complex vector field may outweigh the benefits of 
the reduction in prediction error.

Figures 4.9 to 4.12 show the effect of using the prediction error as a criteria 
for dynamic picking. In each case the picking continued until the improvement in 
prediction error dropped below a certain threshold. The threshold of 0 allowed the 
picking to continue until an optimal field was found. It is clear from these results 
that the number of vectors in the field can be controlled by this limit. The result for 
the container sequence all coincide. This is due to the very limited motion in the 
sequence.

In figures 4.13 to 4.16 we see the impact the prediction error limiting vector 
picking scheme has on encoded sequences. These results seem to indicate that
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Figure 4.9: The number of vectors used in the first 50 frames of the foreman
sequence. Dynamic picking was enabled and vectors were picked until the im­
provement each frame dropped below a certain limit.
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Figure 4.10: The number of vectors used in the first 50 frames of the earphone 
sequence. Dynamic picking was enabled and vectors were picked until the im­
provement each frame dropped below a certain limit.
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Figure 4.11: The number of vectors used in the first 50 frames of the suzie se­
quence. Dynamic picking was enabled and vectors were picked until the improve­
ment each frame dropped below a certain limit.
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Figure 4.12: The number of vectors used in the first 50 frames of the container 
sequence. Dynamic picking was enabled and vectors were picked until the im­
provement each frame dropped below a certain limit.
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Figure 4.13: The result of coding the first 50 frames of the foreman sequence
using prediction error limited vector picking.

although the number of vectors in the fields varies, the quality of the overall results 
remain more or less the same. Once again the result for the container sequence 
shows only one line as the vector selection strategy has no effect due to the very 
small amount of motion in the sequence.

4.7 Summary

In this chapter we have further looked at ways of controlling the number bits al­
located to the motion description. Three vector selection strategies have been pro­
posed, the Histogram Method, the Metric Method and the Full Search Method. 
Each of these tried to limit the number of vectors which are used to create the mo­
tion vector field. It has been shown the there is a strong correlation between the 
number of unique vectors in the field and the cost in bit required to encode the 
field, (figure 4.7).

In the next chapter we will explore an alternative representation for the motion 
description which may prove more favourable when the number of vectors in a 
motion description has been limited, (by one of the above techniques for example).
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Figure 4.14: The result of coding the first 50 frames of the earphone sequence 
using prediction error limited vector picking.
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Figure 4.15: The result of coding the first 50 frames of the suzie sequence using 
prediction error limited vector picking.
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Figure 4.16: The result of coding the first 50 frames of the container sequence 
using prediction error limited vector picking.
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Chapter 5

The List Mapping Motion 
Description

The traditional method for describing motion vector fields involves simply stat­
ing the horizontal and vertical vector components for each image block. The List 
Mapping Motion Description[63, 64] is an alternative method for describing such 
fields.

Rather than assign each image block a pair of vector components, it is instead 
assigned a single index number. This index number refers to a corresponding table 
of vectors in which the actual vector components can be found. In the context of the 
List Mapping Motion Description (LMMD) this table is referred to as the vector 
list and the array of indices as the vector mapping. Figure 5.1 shows a traditional 
motion vector field and the equivalent LMMD is shown in figure 5.2.

This form of motion description should be more suitable in cases where there 
are a limited number of unique motion descriptions, such as those produced by the 
methods described in chapter 4.

As the LMMD is a form of global optimisation the whole image has to be 
encoded before any part of it can be transmitted. This is different to existing codecs 
such as H.263 which can transmit a block as soon as it is encoded, (when only 
local optimisation is used). The result of this is that the LMMD has frame level 
latency rather than block level latency which could affect some real time coding 
applications.
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Traditional Motion V ector Field

Figure 5.1: This is the traditional representation of a motion description. Each 
image block is assigned a motion vector.

Vector Mapping

3 13 6 6 8 9 5 7 4 4 7

3 6 13 10 13 3 5 4 11 4 10

3 10 6 10 3 6 5 5 11 4 4

3 .j: 8 7 9 8 8 8 11 4 1 0

3 5 : z 7 8 8 8 7 12 4 1

3 8 11 8 8 7 8 9 11 4 ..1

3 0 5 7 11 5 8 . 7 10 5 13

2 12 8 8 8 8 9
8

10 7 7

2 10 10 11 11 11 11
I

7 12 7

Vector List

( o, 1) 7 ( 2, 1)
( 1, 0) 8 ( 3, 1)
( 1, 1) 9 ( 3, 2)

( 1, 2) 10 ( 4, 2)

( o, 3) 11 ( 5, 0)

( 2, 3) 12 (-4 , -4)
( 2, 2) 13 ( -5 , -5)

Figure 5.2: The LMMD uses a vector list and a mapping to describe the motion 
description. It should be noted that this is completely equivalent to the vector field 
shown in 5.1
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5.1 Encoding the LMMD

One of the main features of the LMMD is that each vector is only stated once, in 
its entry in the list. From this it follows that each vector only needs to be encoded 
once. However, it is also necessary to encode the vector index for each image 
block. Although this mapping has been reduced from two values per image block 
(the vector components) to one value (the index) it is much harder to take advantage 
of any correlation in the index mapping. In section A.l it was shown how H.263 
uses the correlation in traditional vector fields can be used to reduce the cost of 
encoding them. This works by predicting the vector to be encoded from those 
previously transmitted and only encoding the (hopefully small) difference between 
this prediction and the actual vector. In the case of the LMMD it makes no sense 
to take the difference between two indices, as (at the most general level) there is no 
well defined correlation between the index and the vector it refers to.

5.2 List Encoding

The following simple method is used to encode the vector list. The components 
of the first vector in the list is encoded using Reversible Variable Length Coding 
(RVLC). Each subsequent vector is subtracted from the previously encoded vector 
and the components of these difference vectors are encoded using the same RVLC 
scheme. An example of this scheme is shown in figure 5.3.

The cost in bits (c) when encoding a given vector component va using the 
RVLC is given by:

c = 2( [log2 vaJ) +  1 (5.1)

Although the encoding method for the list has been fixed, there is still scope for 
optimising the cost of transmitting the list. This encoding method can be thought 
of as equivalent as tracing a path from one vector to the next, starting at the origin. 
Although the cost of encoding the path is not the same as the Euclidean length of 
the path it does have the following properties;

•  The cost of going from A to B via Z is always greater than or equal to the 
cost of going from A to B directly.

• The cost of going from A to B is the same as going from B to A.
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Vector Previous Vector Difference RVLC bit cost
( - 5 , - 5 ) - ( - 5 , - 5 ) 14
( - 4 , - 4 ) ( - 5 , - 5 ) (1,1) 6

(0,1) ( -4 ,  - 4 ) (4,5) 14
(0,3) (0,1) (0,2) 6
(1,0) (0,3) (1 ,-3 ) 8

(1,1) (1,0) (0,1) 4
(1,2) (1,1) (0,1) 4
(2,1) (1,2) (1 ,-1 ) 6
(2,2) (2,1) (0,1) 4
(2,3) (2,2) (0,1) 4
(3,1) (2,3) (1 ,-2 ) 8
(3,2) (3,1) (0,1) 4
(4,2) (3,2) (1,0) 4
(5,0) (4,2) (1 ,-2 ) 8

Total Cost 94

Figure 5.3: An example of encoding a vector list using differential RVLC.

The optimum encoding can be obtained by finding the shortest path (in terms 
of bit cost) between all the vectors. This is an example of the classic Travelling 
Salesman Problem, (see appendix C for details).

5.2.1 Branch and Bound Insertion Algorithm

It is possible to achieve an optimal solution to the Travelling Salesman Problem 
(TSP) without having to evaluate all possible routes between the cities. The Branch 
and Bound Insertion Algorithm (BABIA)[65] uses the principle that a journey from 
A to B via C will be no shorter than going from A to B directly to eliminate some 
routes.

Suppose we have a 10 city problem which we wish to solve. The first step of 
the BABIA algorithm involves finding any tour which traverses all 10 cities and 
measuring its length. This is our initial estimate for the optimum tour. We now 
create a sub-tour which visit any two of the cities. From this sub-tour we can 
create 24 new three1 city sub-tours by inserting each of the remaining 8 cities into 
one of three places:

1. Before the first city,

‘The number o f tours may be reduced depending upon the symmetries o f the problem.
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2. Between the first and second city,

3. After the second city.

Each of these tours can be further extended by placing each of the 7 remaining 
cities in one of the four appropriate places, and so on. Now, owing to the Euclidean 
principle stated above, each of the three city tours must be longer than (or equal to) 
the two city tour, and each four city tour must be longer than (or equal to) the three 
city tour from which it was generated. As a result, if we ever generate a sub-tour 
which is longer than our estimate of the optimum tour we know that the sub-tour in 
question cannot possibly be part of the optimum tour, so we can ignore it, and all 
tours descended from it. Each time our algorithm produces a tour which covers all 
10 cities, we check its length and compare it with our current best tour. If the new 
complete tour is shorter than our current estimate, it becomes our new estimate. As 
more an more 10 city tours are evaluated our estimate improves, which allows us 
to prune sub-tours earlier.

While the solution to the TSP will give the optimal ordering for the vector list, 
the computational expense makes it impractical for long vector list, even with the 
use of algorithms[66] such as BABLA.

The following methods were investigated as faster alternatives to the optimal 
solution.

5.2.2 Genetic Algorithm Solution to the TSP

Much research has been done in trying to use genetic algorithms to solve the 
TSP[67, 68, 69, 70]. For the simple genetic algorithm used in this work the fol­
lowing crossover technique was used when mating two existing ‘parent’ tours {p\ 
and p 2 ) to produce two new child tours (ci and ci). The length of the parent tours 
is taken to be L.

1. A random number, r, which lies between 1 and L — s p l i c e . l e n g t h ,  is 
generated.

2. The cities between r  and r +  s p l i c e _ l e n g t h  are copied from p\ to the 
corresponding locations in c\ and also from p 2 to C2

3. The remaining locations in c\ (those before and after the spiced region) are 
then filled from p 2 by copying across all unused cities in a sequential fashion. 
Similarly, the remaining locations in c\ are filled from p\.
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5.2.2.1 Crossover Example

Suppose the parent tours p\ and P2 are as follows:

pi =  6 1 0 9 2 3 7 8 4 5  

p 2 =  5 7 4 8 0 3 1 9 2 6

and that s p l i c e . l e n g t h  =  3 and r — 4.
The above procedure can now be used to construct c\ and c2. In the following 

example spliced values are in italic, filled values in bold and empty values are 
represented with a dot (•).

• Copy across the spliced regions to the corresponding locations in the chil­
dren.

pi =  6 1 0 9 2 3 7 8 4 5

ci =  . . . .  2 3 7 • • •

p 2 = 5 7 4 8 0 3 1 9 2 6

c2 — . . . .  0  8  1  • •  •

•  Then fill in the remaining locations. This example will show how ci is com­
pleted using the elements from p2.

First all the cites already present in ci are removed from a copy of p2. 

p 2 = 5 / 4 8 0 ^ 1 9 ^ 6

The remaining cities are then copied in a sequential manner to the free spaces 
in c i . This gives

ci = 5 4 8 0 H 7 1 9 6

Repeating the process for c2 would yield:

c2 = 6 9 2 7 0 3 1 8 4 5
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5.2.3 Sorting by Component

The most straightforward method of sorting the list is to arrange the vectors in 
order of increasing x  or y  component, with any ties resolved by considering the 
other component.

5.2.4 Sorting by Magnitude and Angle

Each vector is converted from Cartesian form (x, y) to polar form (r, 0) and these 
values are used to sort the vectors. There are two approaches which can be taken 
in this case;

•  The list can be sorted by magnitude, r, and any ties resolved by sorting by 
angle, 0.

•  The list can be sorted by angle, 0, and any ties resolved by sorting by mag­
nitude, r.

5.2.5 Sector Sort

This method derives its name from the ‘sectors’ that the Cartesian space is divided 
into in order to group together vectors in the list. It is essentially an extension of 
the angle/magnitude sort with a more coarse division by angle.

Figure 5.4 shows an example where the vectors have been split in to six equally 
sized segments. The vectors in each segment are sorted according to magnitude, 
and the segment containing the vector with the smallest magnitude is selected as 
the ‘initial’ sector. If there is a tie for the initial sector then the sector whose median 
is closest to the polar 0° axis is selected.

The vectors from the initial sector are taken (in ascending order of magnitude) 
and used to form the beginning of the reordered list. The next (non-empty) sector in 
an anti-clockwise direction is then considered. This sector is added to the reordered 
list in either ascending or descending magnitude depending on which gives the 
lower encoding cost. This is determined by considering the bit cost of encoding 
the difference between the last vector in the reordered list and the first and last 
vectors in the sector currently under consideration.

5.2.6 List Coding Examples

For each of the methods described a figure is given showing the path traced when 
an example set of 14 vectors are traversed in the order into which they are sorted,
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Figure 5.4: An example of a vector list sorted into sectors as used by the Sector 
Sort.

see Figure 5.5. The length of this path is an indication of the cost of encoding the 
list.

5.3 Mapping Encoding

After the vector list has been encoded it is necessary to encode the array which 
maps the vectors to each individual image block. This mapping contains a list 
of indices to the vectors in the list and often contains correlation which can be 
exploited during coding.

The primary form of correlation in the mapping is due to neighbouring blocks 
being assigned to the same vector and therefore having the same index. It is also 
interesting to note however, that due to the nature of the list encoding it is possible 
that neighbouring indices represent similar vectors. This stems from the fact the 
the list encoding schemes try to reduce the cost of encoding the list by ordering the 
list to minimise the distance between neighbouring vectors in the list. As the index 
used in the mapping corresponds to the position of the vector in the list it is worth 
making some attempt to take advantage of possible correlation between indices.

A number of techniques for encoding the mapping are proposed. As with the
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Figure 5.5: Comparing different methods for sorting the vector list. For each 
method the path traced by the sorted list is shown, along with the cost of encoding 
the list.
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vector list techniques, each have their strengths and weaknesses.

5.3.1 Raw Encoding

This method simply encodes each element of the mapping with a fixed length code. 
As the number of vectors in the list is already known, length of code needed to 
uniquely identify any index in the mapping can be deduced.

For a mapping containing indices between 0 ^  n <  N  the cost, in bits, to 
encode each index is given by;

Ambits =  Llog2(A0J +  1 : N  >  0 (5.2)

Apart from the fact that no attempt is made to take advantage of any correlation 
between indices, this method is rather inefficient for many values of N. However, 
it is fast and the cost of encoding can be determined without the need to iterate 
over the mapping (the cost simply being Abits times the number of blocks in the 
mapping).

5.3.2 Linearised Map Encoding 

5.3.2.1 The Snake Scan

The remaining method operate on a linearised version of the mapping. The most 
traditional method of transforming a two dimensional array into a vector is to select 
the elements in raster order. However, for this work an alternative method known 
as the snake scan will be used. This technique begins the same way as a raster scan; 
by picking data sequentially across the first raster, from left to right. Rather than 
repeating this process, the next fine is linearised from right to left. The third line is 
then traversed left to right, and so on. This method ensures that the neighbours of 
each index in the linearised vector are also neighbours in the original two dimen­
sional mapping. It is also possible to form the vector by scanning down the first 
column, and up the second. These two scan are shown in figure 5.6. The resulting 
vector can be encoded by the following techniques.

Run Length Encoding Runs of symbols in the vectors are encoded using a stand­
ard run length scheme. The symbol is sent raw (see equation 5.2), and then 
length of run encoded. For QCIF size images (with 99 indices in the map­
ping) the the maximum length of run permitted is 8.
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Figure 5.6: Paths of the horizontal and vertical snake scans.

Predictive Encoding The first symbol is sent raw. Each subsequent symbol is 
compared to the previous one, and a bit flag is used to indicate whether or 
not they are the same. If they differ the symbol needs to be sent raw.

Both of the above methods can be used with either the horizontal or vertical 
scanning giving a total of five techniques, with the addition of the raw encoding.

5.4 Summary

In this chapter we have introduced the LMMD as an alternative to the traditional 
motion vector field. The LMMD is comprised of two parts, the vector list and the 
mapping. Techniques for coding each of these have been presented, (both optimal 
and sub-optimal). In the next chapter the LMMD will be combined with the Metric 
Method vector selection strategy and compared with a standard H.263 encoder.
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LMMD Results

6.1 Optimising the LMMD List

Five of the methods described in section 5.2 were used to optimise the LMMD list. 
These were;

1. The xy sort,

2. The magnitude sort,

3. The angle sort,

4. The sector sort,

5. The Travelling Salesman Algorithm.

In order to evaluate these method a test set of list data was generated from the 
following five QCIF sequences:

1. Foreman (400 frames)

2. Carphone (382 frames)

3. Football (90 frames)

4. News (300 frames)

5. Container (300 frames)
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Each sequence was encoded using a standard H.263 encoder running in ’Un­
restricted Motion Vector’ mode, (Annex D). The bit rate used was 128 kbits/s and 
the sequences were run at 30 fps with no frames skipped (after the initial I-frame) 
unless otherwise specified. For each input/reference frame pair in the sequences 
the Metric Method (section 4.2) was used to produce vector fists for between 2 and 
30 unique vectors. (Some frames did not have 29 unique vectors.) A summary of 
the motion descriptions produced is given in table 6.1.

Number of Motion Descriptions
N Foreman Carphone Football News Container
2 395 379 85 260 163
3 394 379 85 246 69
4 385 378 85 237 34
5 374 378 85 210 15
6 363 372 85 160 8
7 352 368 85 125 3
8 338 366 85 102 1
9 331 356 85 92

10 324 345 85 87
11 318 337 85 78
12 315 329 85 62
13 311 323 85 48
14 300 316 85 35
15 288 305 85 20
16 273 293 85 12
17 260 280 85 4
18 247 263 85 4
19 234 249 85 3
20 218 236 85 2
21 204 228 85 2
22 187 207 85 1
23 178 191 85 1
24 167 181 85 1
25 157 162 84 1
26 145 142 84
27 134 138 83
28 122 128 83
29 112 118 83

Total 9084 8499 2372 1793 293

Table 6.1: Summary of the data used to generate the results.
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As the Foreman, Carphone and Football sequences contain significant motion 
they all manage to produce motion descriptions with up to 29 unique vectors. How­
ever, the other sequences contain more simple movement and as a result produce 
less motion data.

The vector list from each motion description was encoded using each of the 
five techniques mentioned above. However, there were constraints placed on the 
Travelling Salesman Algorithm (TSA) in order to reduce computation time. If the 
number of unique vectors (N) less than 16 the TSA was used to yield the optimal 
solution. For N  ^  16 however, the BABIA algorithm (see section 5.2.1 used was 
interrupted after 1 second and the current ‘best result’ was used.

For each sequence two results were plotted. First the average cost in bits for 
each N  was found for each of the methods. Also the number of times each method 
produced the best optimisation was recorded. The sum of the ‘Normalised Number 
of Wins’ will sometimes be greater than one, as more than one technique may 
produce the best list. This can happen frequently for smaller N. These results are 
displays in figures 6.1 to 6.5.

As expected the TSA produced the best optimisation in all the cases it was 
allowed to run to completion (N  ^  15). The amount by which it beats the other 
methods also increases with N. However as N  increases past 16 it fails to produce 
such good results. Towards the end of the graph (N ^  25) the XY sort starts to 
produce the best results.

While in general the average cost of encoding the list seems to increase smoothly 
with the number of vectors in the fist, there is a kink in the graph for the news se­
quence at 17 vectors, (figure 6.4). This is due to the fact that there are only four 
data samples being averaged to produce the lines. One of these is an anomalous, 
expensive result and causes a skew in the mean.

6.2 Encoding the LMMD Mapping

As with the LMMD lists, five mapping encoding methods (section 5.3) were eval­
uated using the motion descriptions from table 6.1. These were;

1. Raw Encoding

2. Horizontal Runlength Encoding

3. Horizontal Difference Encoding
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Figure 6.1: Optimised list encoding results for the foreman sequence.
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Figure 6.2: Optimised list encoding results for the earphone sequence.
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Figure 6.3: Optimised list encoding results for the football sequence.
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Figure 6.4: Optimised list encoding results for the news sequence.
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4. Vertical Runlength Encoding

5. Vertical Difference Encoding

The results are shown in figures 6.6 to 6.10. In the high motion sequences 
(Foreman, Carphone and Football) the vertical DPCM method wins the majority 
of the time, although the horizontal DPCM also provides the best result on 10% 
to 20% of occasions. In these sequences the raw encoding starts to play a role as 
the number of unique vectors starts to rise above 25. As the number of vectors 
increases the correlation in the mapping is likely to decrease, and so the runlength 
and DPCM methods can cost more than they gain.

For the news sequence there is no method out performs the others until there are 
over 15 vectors in the fist. At this point the horizontal DPCM becomes dominant. 
The results below this point however, indicate that a mixture of the methods is 
required in order to gain the most benefit from the LMMD style encoding.

Finally looking at the container sequence we see that once again, no single 
method is dominant. We must also be wary of the apparent drop in the cost of 
encoding the vector list when there are over six vectors. This is likely to be the 
result of averaging data from too few samples, (the number of which can be seen 
in table 6.1).

The range of results shows that although the DPCM methods are predomin­
antly more successful they are not exclusively so. As it is quite difficult to predict 
which scan will work most effectively with a given type of sequence the combined 
approach is sensible. Of course, each method used in the comparison increases 
the computational cost, but this increase is insignificant when compared with other 
areas of complexity within the codec.

For a given list/mapping pair the cost of encoding the mapping is roughly two 
to three times more expensive than encoding the fist.

The cost of encoding the mapping is very sensitive to [log2 N\ and this can be 
seen by the jumps in the cost which occur at N  =  2,4,8,16. This is due to the fact 
that all the methods are sensitive to the raw encoding cost of a mapping index. It 
should be possible to smooth the graph out a bit by using a more sophisticated raw 
coding technique.
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Figure 6.6: Mapping encoding results for the foreman sequence.
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Figure 6.7: Mapping encoding results for the earphone sequence.
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Figure 6.8: Mapping encoding results for the football sequence.
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Figure 6.10: Mapping encoding results for the container sequence.
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6.3 Combining the List/Mapping Encodings

Until now we have examine the list and mapping encoding separately. We now 
combine them to produce a complete motion description which contains sufficient 
information to produce a predicted image from a reference image.

Using, once again, the data from table 6.1 complete motion descriptions were 
evaluated using the LMMD style encoding. For each LMMD the equivalent vector 
field was generated and encoded using H.263 style encoding as described in sec­
tion A.l. In each case the motion vectors for all the image blocks were encoded, 
(something which isn’t guaranteed in a complete H.263 encoder). The results for 
each of the four sequences are shown in figures 6.11 to 6.15.

In all cases the LMMD encoding does well for N  ^  16, however there are two 
factors contributing to its poorer performance after that point. One is the increased 
cost of the mapping. Also after this point the performance of the TSA declines due 
to the fact it is no longer given sufficient time to generate the optimal encoding of 
the list.

For the sequences with less motion (news and container) the LMMD encoding 
always beats traditional H.263. (This should be the case as the LMMD has been 
designed to perform better with lower N.)

6.4 H.263 Codec Based Results

In order to test the LMMD completely it was integrated as part of an H.263 codec. 
The codec used was as described in [1] with the LMMD style motion description 
coding replacing the vector field encoding. Instead of sending the motion vector 
data within the macroblock structure, as the standard H.263 codec does, the list 
and mapping data was sent at the picture level, before any macroblocks have been 
transmitted.

Seven different tests were carried out the details of which are shown in table 6.2. 
Test 0 uses the standard H.263 encoding with no modifications, it provides a baseline 
against which the other tests can be evaluated. Tests 1-3 use the Metric Method 
vector selection strategy to reduce the number of vectors in the field. The field is 
still encoded using a standard H.263 encoder to produce a H.263 compliant stream. 
In test 1 there is no dynamic selection of N, the number of vectors in the field, the 
Metric Method is allowed to use as many vectors as it is supplied with. Test 2 
implements ‘No single vector’ type dynamic picking, (section 4.6.1). This method
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Figure 6.11: Results comparing the LMMD style encoding against H.263 style 
encoding for the foreman sequence.
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Figure 6.12: Results comparing the LMMD style encoding against H.263 style 
encoding for the earphone sequence.
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Figure 6.13: Results comparing the LMMD style encoding against H.263 style 
encoding for the football sequence.
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Figure 6.14: Results comparing the LMMD style encoding against H.263 style 
encoding for the news sequence.
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stops selecting vectors when any addition vectors added to the list only cause one 
block to change its vector. The third test (Test 3) uses the ‘Small Improvement’ 
method to determine how many vectors should be included in the list, (see sec­
tion 4.6.2). Vectors ceased to be added to the list when they caused the SAD of the 
residual to improve by less than 40. The final three tests 4-6 mirror test 1-3, except 
that the standard H.263 vector encoding is replaced with LMMD style encoding.

Each of these tests was carried out on the first 50 frames of the QCIF foreman 
sequence at 20 kbits/s, 32 kbits/s, 64 kbits/s and 128 kbits/s. The encoder was set 
up to encode the first I-frame with a quantisation parameter of 13, which provided 
a sensible image from which the subsequent frames could be predicted. After the 
initial I-frame all the rest of the frames were transmitted in INTER mode, so the 
resulting GOP was of type ‘I P P P . T h e  I-frame was not rate constrained it 
consumed more than one frames worth of bits, as a result the first encoded P-frame 
was frame 4 at 128 kbits/s, frame 8 at 64 kbits/s and 16 at 32 kbits/s. At 20 kbits/s 
the encoder was unable to encode single frames within the required bit budget. As 
a result it skipped every other frame, doubling the bit budget for each frame, but 
halving the number of frames encoded. For this reason these results have not been 
used.

The test were run at 30 fps, giving around 4300 bits/frame at 128 kbits/s, 2150 
bits/frame at 64 kbits/s and 1075 bits/frame at 32 kbits/s. It was hoped that at these 
rates any saving made using the modifications to the standard H.263 encoder would 
be apparent.

ID Description
0 Standard H.263
1 Metric Method: No dynamic picking
2 Metric Method: ‘No single vector’ dynamic picking
3 Metric Method: ‘Small Improvement’ dynamic picking
4 Metric Method with LMMD Encoding: No dynamic picking
5 Metric Method with LMMD Encoding: ‘No single vector’ dy­

namic picking
6 Metric Method with LMMD Encoding: ‘Small Improvement’ dy­

namic picking

Table 6.2: The seven tests. Test 0 is the baseline, and test 1-3 and 4-5 form pairs 
with and without LMMD encoding.

Figure 6.16 compared the baseline test 0 with tests 1-3. At 64 kbits/s none 
of the modifications appear to offer any improvement over the baseline. However, 
at 128 kbits/s all of the tests give an overall performance gain in terms of average
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PSNR.
Figure 6.17 shows the results of test 4-6 which use the LMMD style encoding. 

At both bit rates there is now a marked improvement in terms of PSNR.
The final set of results, shown in figures 6.18,6.19 and 6.20 compare similarly 

produced fields, encoded using standard H.263 encoding and LMMD style encod­
ing. At 128 kbits/s the LMMD encoding provides very little overall benefit, but at 
64 kbits/s it is the LMMD encoding which appears to be generating much of the 
improvement. The same is also true of the results at 32 kbits/s.

Finally, figure 6.21 shows the original H.263 encoding (test 0) versus test 6 
for 32 kbits/s. In nearly all cases the proposed encoding technique improves upon 
that given by an unmodified H.263 encoder. These improvements are often in the 
region of 0.4 dB and in those cases where it is worse the difference is negligible.
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Figure 6.15: Results comparing the LMMD style encoding against H.263 style 
encoding for the container sequence.
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Figure 6.17: Tests 0, 4, 5, and 6 carried out on the first 50 frames of the foreman 
sequence.
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Figure 6.18: These graphs show the effect of adding LMMD encoding to fields
produced by the Metric Method for the 32 kbits/s results.
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Figure 6.19: These graphs show the effect of adding LMMD encoding to fields
produced by the Metric Method for the 64 kbits/s results.
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Figure 6.20: These graphs show the effect of adding LMMD encoding to fields
produced by the Metric Method for the 128 kbits/s results.
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Chapter 7

Conclusions

7.1 Main Aims

This thesis has investigated the trade off between the bits allocated to the motion 
description and the residual in the context of a video codec.

7.2 Varying Block Sizes

Initial efforts showed that very coarse control could be achieved by varying the 
size of the blocks used in block matching algorithms. The level of control was not 
suitable for use in a video codec though.

7.3 The Extended Block Algorithm

Producing a smoother field by extending the blocks used in the block matching 
algorithms provided a mechanism for reducing the cost of encoding the motion 
description. This technique was more useful for dense motion fields with small 
block sizes. As a result it was not really applicable at low bit rates where there 
were insufficient bits available to encode such a dense field.

7.4 Embedded Quadtree Motion Estimation

The Embedded Quad-tree Motion Estimation (EQME) allowed the motion vector 
field bandwidth to be controlled at quite a fine level. It managed this by producing 
an embedded motion description which could be truncated with a resolution of a
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few bits. Experiments with the EQME confirmed that there was an optimum trade 
off in bits between the motion description and the residual, and that it should be 
possible to achieve this balance. Although the EQME was scalable it did not prove 
to be a very efficient way of describing the motion description.

The preceding experiments did indicate that the fewer unique vectors in the 
MVF the more easily the field compressed. This lead to the hypothesis that having 
control over the number of unique vectors in the field may give control over the 
cost of encoding that field.

7.5 Vector Selection Strategies

The investigation then moved to three vector selection strategies. The purpose of 
these was to select a specific number of vectors which could be used to construct 
a motion vector field. By varying the number of unique vectors in the field good 
control could be gained over the cost of the motion description. Of the three meth­
ods proposed the Metric Method provided the best trade off in terms of quality of 
result versus computational complexity.

When the Metric Method was used to modify the motion field produced by a 
standard H.263 codec it was found that it could improve the quality of the results 
(in terms of PSNR).

7.6 The List Mapping Motion Description

As the previously explored vector selection strategies could produce motion vector 
fields with few vectors, a new motion description was developed in order to further 
exploit the enhanced correlation in such a field. The LMMD described the motion 
vector field as a vector list, and a mapping indicating which fisted vector belonged 
to which image block. Techniques for encoding both the fist and the mapping were 
explored.

Experimental results showed that the LMMD was more efficient than a tradi­
tional H.263 encoder at representing fields with less than 16 unique vectors. When 
combined with a vector field produced by the Metric Method the quality of low 
bit rate video (32 and 64 kbits/s) could be improved. However, the addition of 
the LMMD didn’t greatly improve of simple application of the Metric Method at 
higher bit rates (128 kbits/s).
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7.7 Future Work

A great deal of time was spent looking at ways to optimise the vector list in the 
LMMD, and the results were very satisfactory. Less time was devoted to trying to 
improve the mapping encoding. Owing to the fact that the mapping often requires 
over twice as many bits to encode as the list it seems there is a great deal of room 
for improvement in this area. The investigations done so far have been aimed at the 
lower bit rates, and thus concentrated on smaller image sizes. Increasing the image 
size to say CIF (352 x 288) would increase the number of (16 x 16) image blocks 
in each frame. This would lead to a mapping which may well be more correlated 
than those produced for QCIF images.

The work on the EBA and the EQME was produced earlier during the PhD and 
as a result the approach is slightly less mature. It would be nice to take another 
look at these techniques in the light of the later work. The dense motion fields 
produced by the EBA could well be useful at higher bit rates. If the efficiency of 
compression offered by the EQME could be improved it could play the part in a 
fully embedded video compression system.
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The H.263 Codec

The H.263 codec [1] was used as the reference codec against which the modific­
ations described in this work were tested. H.263 is one of the two most prolific 
codecs in use today, the other being the Motion Picture Expert Group (MPEG) 
family of codecs. However, MPEG[8, 71] encoding is usually used for high bit- 
rate applications whereas H.263 performs better in low bit-rate scenarios; such as 
those of interest in this thesis.

A.1 Overview

The H.263 video codec allows for frames to be encoded in any one of a number of 
different modes, such as INTRA mode (I-frames), INTER mode (P-frames) and B 
mode (B-frames). However, the codec used for this thesis only implements INTRA 
and INTER modes as these were the one most relevant to the work. Actually, 
INTRA mode is only used for the first transmitted frame, from then on all frames 
are transmitted in INTER mode. (Don’t forget however, that INTER frames can 
have INTRA blocks.)

H.263 is a block based codec. This means that the image is broken into blocks 
and each block is encoded (more or less) independently. This is a rough overview 
of how I-blocks are encoded. See the specifications!!] for the full details. The 
16 x 16 block is first split into four 8 x 8  blocks. Each of these is then transformed 
using the DCT. The transform coefficients for each block are quantised using a 
given quantisation parameter. The quantised coefficients are then linearised using 
a zig-zag scan pattern and this linear sequence then encoded using run/level based 
Variable Length Code (VLC).
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The process for encoding P-blocks is very similar, except instead of encoding 
the actual image pixels themselves the difference between these pixels and some 
prediction is encoded. The prediction is described using an offset which points to a 
previously (temporally) transmitted block. This offset is known as the motion vec­
tor for the block. Each block has its own motion vector. In the case of the P-blocks 
the motion vector needs to be transmitted along with the transform coefficients.

Rather than encoding the actual vector for each P-block, the H.263 codec en­
codes the difference between the vector for that block and a predicted vector. This 
predicted vector is formed using three neighbouring blocks; the block to the left, 
the block above and the block diagonally above and right. This is shown in fig­
ure A.I.

P 2 P3

P 1 X

Figure A. 1: The three neighbouring blocks used to generate the predicted vector.

In some cases the vector for a block is not known, for example if the block was 
not encoded, or it lies outside the frame. In these cases the following rules are used 
to determine the value of the vector.

1. If the block was not coded, or it was coded in INTRA mode the motion 
vector is taken to be (0,0).

2. If the left hand block lies outside the image, it is taken to have a vector (0,0).

3. If the upper blocks lie outside the top of the image they are assigned the same 
vector as the left hand block.

4. If the right hand block lies outside the right hand edge of the image it is 
assigned the vector (0,0).

These rules are summarised in figure A.2.
Once the vectors of the three candidate blocks have been established the pre­

dicted vector is formed by taking the median of each of the vector components
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P2 P3 P1 P1 P2 (0.0)

(0.0) X P1 X P1 X

..........................- im age boundry (the block x is always on the  inside)

Figure A.2: Rules for obtaining the candidate predicted vectors.

from these blocks. For example if the three candidate vectors were (2,0), (2,4) 
and (1,1) the predicted vector would be;

v =  (median(2,2,1), median(0,4,1))

=  (2. 1)

In this thesis all vector components differences were encoded using a RVLC as 
shown in table A. 1.

Value Range Value to be encoded Number of bits Code
0 0 1 1
1 1 3 050

2-3 •*0 +  2 5 0*0150
4-7 *i*o +  4 7 0*1 1jco150
8-15 *2*1*0 +  8 9 0*21*11*015O

Table A.l: RVLC scheme used to encode motion vectors. Each xn represents a 
binary digit and the value of 5 is used to represent the sign of the value, 0 for 
positive and 1 for negative. Taken from [1].

Rate control for the transform coefficients can be achieved by varying the 
quantisation parameter. Increasing the parameter causes more information to be 
lost, but produces transform coefficients which can be encoded more compactly. 
Conversely, higher quality can be achieved by reducing the quantisation parameter 
but this results in more bits being needed to encode the transform coefficients.
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Fields for Varying Blocksizes

Here we show the four different vector fields produced by the experiment described 
in section 2.14. The fields are produced using the ESA (search range 16 x 16) on 
the pair of QCIF sized images shown in figure 3.1. Each field represents a different 
block size: 2 x 2 , 4 x 4 ,  8 x 8  and 16 x 16.

It is interesting to see that in figure B.l (block size of 2 x 2) the field is very 
chaotic and disorganised. This is due to the fact that each 2 x 2  block does not 
really contain enough context to enable the best match to reflect the true motion. 
Instead each group of four pixels is matched with the most similar group within the 
search range, leading to a wild variation in motion vectors. The resulting field is 
less correlated, and therefore compresses less well when compared with the other 
fields, (as seen in the increase in the ‘bit cost per block’ result).
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Figure B.l: Motion vector field produced with a block size of 2 x 2.

Figure B.2: Motion vector field produced with a block size of 4 x 4.
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Figure B.4: Motion vector field produced with a block size of 16 x 16.
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The Travelling Salesman 
Problem

In the Travelling Salesman Problem (TSP) our salesman has to visit a number of 
different cities which are a known distance apart. He would like to know which 
order to visit the cities in so as to minimise his distance travelled.

A route between the cities may be open or closed. A open route visits each city 
exactly once and is dependant on which city is chosen as the start point. A closed 
route requires the salesman to eventually arrive back at the starting city. In this 
case the starting position is immaterial.

One might suspect that the best open route would form part of the best closed 
route. This is not the case and can be demonstrated by means of the simple counter 
example shown in figure C .l. Assume the salesman starts at city A, his best closed 
route takes him first to city B, followed by cities C and D. In the best open route 
however, he travels from city B to city D, a journey not present in the closed route. 
(It is interesting to note that if the best open route were started from city B or D, 
then the route would indeed be part of the best close route.)

The number of possible open routes between N  cities is given by Nl, and the 
number of closed routes by (N — 1)!. In the case where journeys are symmetrical 
(the distance from A to B is the same as the distance from B to A) these numbers 
can be halved.

A brute force computational approach would simply evaluate each of these 
combinations to find the best. Even with todays powerful computers the sheer size 
of the problem limits the maximum number of cites which can be considered.
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Journey Distance

1 1.00 km

2 1.00 km

3 1.12 km

4 1.12 km

Total 4.24 km

Journey Distance

1 1.00 km

2 0.50 km

3 1.12 km

Total 2.62 km

1 km

Figure C. 1: Comparing optimum open and closed routes. Here it is clear that the 
best open route (starting at city A) is not part of the best closed route.

1 km
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Data

D.1 Average Cost of Field vs. No. of Unique Vectors

NV Cost Count NV Cost Count NV Cost Count
1 115.7 263 25 422.2 31 49 736.0 1
2 116.9 346 26 447.0 23 50 748.8 8
3 117.2 262 27 458.3 29 51 799.5 4
4 124.1 174 28 493.6 22 52 790.0 4
5 131.2 180 29 482.2 24 53 792.0 3
6 137.8 136 30 491.6 33 54 1012.0 1
7 147.9 106 31 509.9 33 55 864.3 6
8 166.6 89 32 546.7 15 56 835.6 5
9 184.8 68 33 545.0 23 57 865.7 7

10 185.4 59 34 566.6 18 58 841.0 2
11 210.1 69 35 555.5 19 59 860.0 1
12 210.7 80 36 585.5 12 60 891.2 5
13 222.2 80 37 582.8 13 62 998.0 2
14 232.6 70 38 575.8 10 63 1002.0 1
15 249.8 71 39 644.2 12 65 898.0 1
16 271.8 47 40 650.2 12 66 1008.0 3
17 291.2 50 41 668.8 8 67 953.0 2
18 305.1 52 42 639.4 10 68 966.0 1
19 309.1 38 43 658.8 8 69 1018.0 4
20 339.3 52 44 706.6 7 70 1027.0 2
21 368.3 31 45 664.4 11 73 1074.0 1
22 397.7 33 46 650.3 7 74 1130.0 1
23 394.9 34 47 764.4 10 76 1180.0 1
24 412.5 31 48 703.3 6

Table D. 1: The average cost of a vector field with a given number of unique vectors 
(NV).
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List of Acronyms

BMA Block Matching Algorithm

CRT Cathode Ray Tube

CZS Circular Zonal Search

DSA Diamond Search Algorithm

DCT Discrete Cosine Transform

DWT Discrete Wavelet Transform

EBA Extended Block Algorithm

EQME Embedded Quad-tree Motion Estimation

ESA Exhaustive Search Algorithm

FSS Four Step Search

HVS Human Visual System

JPEG  Joint Photographic Expert Group

LMMD List Mapping Motion Description

MAD Mean of Absolute Differences

MPEG Motion Picture Expert Group

MSE Mean Square Error

NSS N-Step Search
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RFSM Restricted Full Search Method 

PSNR Peak Signal-to-Noise Ratio 

RMSE Root Mean Square Error 

RVLC Reversible Variable Length Coding 

SAD Sum of Absolute Difference 

SEA Successive Elimination Algorithm 

TCM Transform Coding Model 

TSA Travelling Salesman Algorithm 

TSP Travelling Salesman Problem 

TSS Three Step Search 

VLC Variable Length Code
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Author’s Publications

1. S. Tredwell and A. N. Evans, “Embedded quad-tree motion estimation for 
low bit rate video coding,” in IEE European Workshop on Distributed Ima­
ging, Ref. 1999/109, November 1999, pp. 3/1-5.

2. S. Tredwell and A.N. Evans, “Selecting motion vectors for bandwidth con­
trollable motion description coding,” in Proceedings o f Irish Machine Vision 
and Image Processing Conference, September 2001.

3. S. Tredwell and A.N. Evans, “A sequential vector selection algorithm for 
controllable bandwidth motion description encoding,” in Proceedings o f 
IEEE International Symposium on Intelligent Multimedia, Video and Speech 
Processing, May 2001, pp. 209-212.

4. S. Tredwell and A.N. Evans, “Block grouping algorithm for motion descrip­
tion encoding,” in Proceedings o f IEEE International Symposium on Circuits 
and Systems, May 2001, vol. 5, pp. 211-214.

5. S. Tredwell and A. N. Evans, “Improved motion description coding using 
the list mapping motion description,” in Proceedings ICIP2002, Rochester, 
USA, September 2002, vol. 1, pp. 657-660.
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