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Abstract

There is clear evidence from previous work carried out at Bath, on B16 murine 
melanoma cells, that selective receptor-mediated endocytosis using a-Melanocyte 
stimulating hormone (a-MSH) analogues can be achieved. However, the number of 
MSH receptors available is limited to 5000-20000 per B 16 murine melanoma cell. 
Recycling does occur but it is expected that the number of molecules delivered will be 

measured in tens of thousands. This project further investigates the feasibility of 
delivering a cytotoxic agent linked to a-MSH analogue in sufficient quantity to obtain 
a selective cytotoxic action for treating melanoma.

In part I of this work the MTT microtitre growth inhibitory assay was optimised for 
B16 murine melanoma cells, and then used to assess the growth inhibition of various 
classes of cytotoxic agents on B 16 mouse melanoma cells. A range of cytotoxics was 

investigated including existing clinical anti-cancer agents such as Methotrexate 
(MTX), as well as cytotoxics which are still in clinical trials such as the 

cyclopropylpyrroloindole analogues (CPI analogues) adozelesin and bizelesin. 
Bizelesin was the most toxic agent with an EC50 of 6.7 pM that is approximately 
three orders of magnitude more potent than daunorubicin (EC50 of 4 nM).

In addition to the above agents, small molecules based on the naturally occurring 
polyamine, spermine were designed and synthesised in collaboration with the 
medicinal chemistry group at Bath. A series of analogues were tested (using the 
optimised MTT assay), comprising of a polyamine conjugated to the 9 position of the 
polyaromatic acridine or anthracene, either through an amide linkage or directly by a 
covalent bond. It was anticipated that these conjugates would show bifunctional 
modes of DNA binding and hence enhanced cytotoxicity. All the conjugates tested 
were more potent than either spermine or acridine. The most toxic conjugate (7) had 
an EC50 of 0.27 jiM that is approximately three orders of magnitude more potent than 
a 1/1 molar mixture of the conjugate's spermine and acridine based constituents, the 

EC50 was 400pM, as determined under similar incubation conditions.

In part II the most toxic compounds from part I were further investigated in studies 
which aimed to relate the mass of drug taken into the cell with the observed toxicity. 
The objective here was to evaluate which drugs could be delivered in sufficient mass 
by receptor-mediated endocytosis of a-MSH analogues to melanoma. Cytotoxics 
studied included the anti-metabolite MTX, the anthracyclines (doxorubicin & 
daunorubicin) and the CPI analogues (adozelesin & bizelesin). A biological assay was



devised and used to relate the amount of cellular uptake of the anthracycline antibiotic 
(daunorubicin), and the CPI analogues (adozelesin & bizelesin) to their toxicity on 
B 16 cells. The estimates of cellular uptake from this assay have been compared for 
(daunorubicin and doxorubicin) by a fluorescence assay relating the toxicity of the 
anthracyclines to their cellular uptake, using the natural fluorescence property of the 

anthracyclines.

In Part III 3T3 fibroblast cells were transfected with plasmids carrying the MSH 
receptor subtype (MCI) and stable clones were generated. It was hoped that cell lines 

expressing high levels of transgene could be used as models to test the specficity of 
novel cytotoxic-MSH analogues, but unfortunately it was not possible to detect any 

MSH receptors using a radioligand binding assay although the presence of the plasmid 

in the transfected clones was demonstrated by the use of the geneticin resistance 
marker. The activity of a novel MTX-NLDP conjugate was investigated. The toxicity 
of this conjugate on cells expressing melanocortin receptors (MCI on B16 cells and 

MC3 on transformed 293 /cDNA cells) and cell lines lacking the MSH receptor (Cos 
7, 3T3 fibroblast and 293-vector) was assessed. The conjugate had non-specific 
toxicity (albeit reduced when compared to free MTX) against both cells which 
expressed melanocortin receptors and cells which lacked receptors. This correlated 
well with studies carried out at Bath by Whelan (1995) which suggested that the 
conjugate would not have cell-specific cytotoxicity on B16 cells because of the large 
difference between the number of MTX molecules required to kill a B 16 cell 
(measured in millions) and the number of MTX-NLDP molecules which would be 
internalised by a B 16 through receptor mediated endocytosis (tens of thousands). The 
mechanism of non selective toxicity was investigated by considering the stability of 
the conjugate. After HPLC analysis of the MTX-NLDP conjugate, it was shown to 

contain less than 1 % of MTX impurities, these MTX impurities could account for the 
observed non selective toxicity of this conjugate.
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Abbreviations

ACTH Adrenocorticotropic hormone

ADEPT . Antibody-directed enzyme prodrug
therapy

a-M SH a-Melanocyte stimulating hormone
ATP Adenosine triphosphate

Boc t-butoxycarbonyl
BSA Bovine serum albumin
But t-butyl
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DUMP Deoxyuridylate monophosphate
EC50 The extracellular concentration of a

compound, which inhibits the growth of 
cells, in vitro to 50% of their normal 

growth.
EDTA Ethylenediaminetetraacetic acid

EGF Epidermal growth factor
F (glu)n Folic acid polyglutamate
FA Folinic acid
FAB-MS Fast Atom Bombardment-Mass

Spectroscopy
FACS Fluorescence activated cell sorter
FCS Foetal Calf Serum

FH2 7,8-Dihydrofolate
FH4 5,6,7,8-Tetrahydrofolate



FH2 (glu)n 
FH4 (glu)n 

Fmoc 

H2 (g)
HC1
HCG
HEK

HEPES

3H-MTX
HOBT

HPLC

I.P
IVIAD
LDL

MALDI-TOF-MS

MC Receptor 
MeCN 
MeOH 
MTIC

Mtr
MTT

MTT formazan 

MTX
MTX-NLDP
NaOH
NEAA

NLDP a-M SH
OBut
PBS
Pd/c

POMC
RME

Dihydrofolate polyglutamate
Tetrahydrofolate poly glutamate

Fluorenylmethoxycarbonyl
Hydrogen gas
Hydrochloric acid
Gonadotrophin
Human Embryonic kidney
N-(2-hydroxyethyl) piperazine-N-21-
ethane sulphonic acid

Tritiated Methotrexate
N-Hydroxybenzotriazole
High performance liquid chromatography
Intraperitoneal
Intravascular inactivation of active drug
Low density lipoprotein

Matrix Assisted Laser Desorption
Ionisation-Time of Flight-Mass
Spectroscopy
Melanocortin Receptor
Acetonitrile
Methanol
5-(3-Methyl-1 -triazino)imidazole 
carboxamide
Methoxytrimethylbenzenesulphonyl
3-[4,5-Dimethylthiazole-2-yl]-2,5-
diphenyltetrazoliumbromide
l-[4,5-Dimethylthiazol-2-yl]-3,5-diphenyl

formazan
Methotrexate
MTX-[Nle4 ,D-Phe7]a-MSH 

Sodium hydroxide 
Non-essential amino acids 

[Nle4 ,D-Phe7]a-MSH 
t-butoxy
Phosphate buffered saline 
Palladium on carbon 
Pro-opiomelanocortin 

Receptor-mediated endocytosis



RNA Ribonucleic Acid
RPMI Roswell Park Memorial Institute
S.E Standard error
SFM Serum Free Medium
TFA Trifluoroacetic acid
U.V Ultraviolet light
Z Carbobenzyloxy
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Chapter 1

Introduction

1.1. Tumour biology and chemotherapy

Cancer is a disease process which may affect multicellular organisms and which is 

characterised by the seemingly uncontrolled multiplication and spread within such 

organisms of abnormal forms of their own cells. It is not a single disease, but a group 

of disease entities related by the manner in which they grow, spread and behave. 

Consequently, individual tumours, even those from the same organ, may vary in their 

biological activity (Elise and Liotta, 1995). The incidence, geographic distribution, 

and behaviour of specific types of cancer are related to multiple factors including sex, 

age, race, genetic predisposition, and exposure to environmental carcinogens.

Classification o f  tumours

Tumours can be classified into two main groups.

1-Benign neoplasms are tumours whose cells have been so altered (transformed) as to 

produce an abnormal accumulation of such cells. Benign lesions are often 

encapsulated and the cells comprising the tumour do not spread or invade. They cause 

damage by local pressure or obstruction, e.g. adenoma which is a benign tumour of 

epithelial origin.

2-Malignant neoplasms are composed of abnormal cells, these abnormal cells grow, 

invade locally and disseminate, giving rise to separate tumours at distant sites. This 

process is known as metastasis and the tumours formed are described as metastatic or 

secondary tumours, e.g. adenocarcinoma which is a malignant adenoma. When



tumours metastasise they disseminate from the primary focus via pre-existing 

channels and cavities of the body (Carter, 1975). Patients who die of cancer generally 

do so as a consequence of disseminated disease. Benign or malignant lesions may 

arise in any organ and almost all cell types.

Malignant tumours are also classified according to their histological origin. Those 

derived from epithelial tissue are called carcinomas, e.g. colonic carcinoma; those 

arising from connective muscle or osseous tissue are sarcomas e.g. fibrosarcoma; and 

those from lymphatic or haematopoitic tissue are lymphomas, leukaemias, or 

myelomas.

Cancer cells differ from normal cells in behaviour in that they can manifest three 

characteristics not seen in normal cells.

1-Uncontrolled proliferation

2-Invasiveness

3-The ability to metastasise

1.2. Cancer chemotherapy

The optimal way for dealing with virtually all types of cancer is prevention 

(Wattenberg, 1993). This means avoiding all kinds of occupational and 

environmental carcinogens. The second goal is to have early diagnosis and treatment 

of the disease. It is much easier to treat a malignant tumour in its early stages before it 

metastasises and spreads throughout the body. The detection of tumours in their early 

stage by the patient can be achieved by encouraging people to seek medical 

examination of any early symptoms of suspected tumours.

2



Tumour Symptoms

breast cancer painless lump

carcinoma of the lung bronchial narrowing, breathlessness, 

cough and haemoptysis

colonic carcinoma disturbed bowel habit, obstruction and 

chronic blood loss

brain tumours may cause raised intracranial pressure or 

focal neurological signs.

Table 1.1. Clinical features of different tumours at their primary stage. From 

Peckham et al., 1994.

In general benign tumours are readily treated by surgical removal and if this has been 

achieved completely, they should not recur. In contrast, malignant tumours contain 

cells that are capable of invading, spreading and seeding as secondary tumours or 

metastases, throughout the body. The widespread location and number of these 

secondary tumours renders conventional therapy, with surgery and radiation, virtually 

useless, thereby leaving chemical therapy practically the only option.

When considering chemotherapy for any type of tumour, the most desirable properties 

of any pharmaceutical preparation must surely be selectivity and potency (Double, 

1992).

3



Response organ

>. Toxicity organHepatic eliminatio: Blood

Renal elimination

Fig. 1.1. Schematic diagram illustrating the drug disposition in the body. After 

administration into the blood compartment, the drug molecules are eliminated by 

eliminating organs (such as liver and kidney). The drug molecules are also transferred 

to target and toxicity organs. From Suzuki et al., 1996.

It is known that cells in some normal tissues can divide at similar rate as cells in solid 

tumours, e.g. cells in the bone marrow and the epithelium of the gastrointenstinal 

tract. It is therefore obvious that the selective elimination of cancer cells cannot be 

achieved by treating a patient with a drug which indiscriminately damages all dividing 

cells. Chemotherapeutic agents that are effective also have detrimental effects on 

normal cells, particularly the rapidly proliferating marrow, and so current cancer 

chemotherapy is ultimately limited by its toxicity to these normal tissues.

The major problem is to find agents selective against cancer. That this is a difficulty 

is hardly surprising because neoplastic diseases, whatever their cause arise form 

normal tissues and remain very much like them in many ways. None of the drugs 

developed so far are selective enough to allow doses to be increased to the level 

required to kill tumour cells without being toxic at the same time. In order to have 

effective chemotherapy against the various types of malignant tumours it is important

4



to increase the selectivity of the toxicity of cytotoxic agents for tumour tissues or

organs.

There are three main principles by which a selective agent can exert its favourable 

effect:

A- It can be accumulated principally by the target tissue or organ.

B- Or utilising comparative biochemistry, it may interfere or inhibit a chemical system 

important for the target tissue or organ, but not for non-target tissue 

C- Or it may react exclusively with a cytological feature that exists only in the target 

tissue or cell. This approach may be described as cell specific targeting.

1.3. Cell specific targeting 

Cell specific targeting is one approach which would help to alleviate the problems 

associated with non-selective therapeutic agents. There is an obvious appeal in 

attempting to localise cytotoxic drugs at tumour cells to minimise their systemic ill- 

effects. Paul Ehrlich was the first to suggest that molecules with an affinity for certain 

tissues might be able to serve as carriers of cytotoxic agents on appropriate target cells 

in vivo, since then many types of macromolecular carriers have been used to achieve 

selective toxicity of anti cancer agents on tumour tissues and organs.

For all macromolecular conjugates, persistent retention in the circulation, localisation 

near or at the tumour area and the enhanced uptake by malignant cells are the major 

features to enhance in order to improve the antitumour activity of these systems 

(Sezaki et aL, 1989).

5



Types o f macromolecular carriers and/or targeting agents

Antibodies

Many investigators have sought to use antibodies to antigenic determinants expressed 

preferentially on tumour cells as carriers of cytotoxics. For this approach to succeed 

both the antibody and the toxic agent must retain their specificity when the two are 

linked together, or they could be linked in a manner allowing the release of the active 

agent after reaching the target cell.

Many antibody conjugates have been studied containing various cytotoxic elements 

(Pimm etaL, 1988), e.g. antibiotics (daunorubicin, doxorubicin), alkylating agents 

trenimon, p-phenylenediamine mustard), subclones derived from plants (gelonin, 

ricin, abrin) and bacterial toxins (diphtheria). Pimm et al., 1988 demonstrated that a 

direct antibody-drug linked conjugate was able to deliver drug to subcutaneous human 

xenografts in mice, however the achievable tumour drug concentration was unlikely to 

be therapeutic. Immunotoxins (antibody conjugates to animal or plant toxins) possess 

a great advantage due to their high potency (only one toxin molecule generally 

required to cause cell death). The highly toxic component of these conjugates may 

prove undesirable if there are low levels of cross-reactivity, i.e. low level of antigen 

expression on normal tissue. In vivo they are rapidly cleared from the blood by the 

liver (probably due to mannose and fructose residues present in the toxin) which 

causes further problems due to release of free antibody (Blakey et al., 1987). This 

may then saturate the antigen binding sites preventing any intact immunotoxin from 

binding.

6



Other novel approaches include antibody-directed pro drug therapy (ADEPT). In 

ADEPT the distinction between a pro drug and its active component provides a further 

opportunity to improve selectivity, by using a second enzyme system which must be 

retained within the vascular compartment to inactivate any active drug which is 

generated or otherwise enters the vascular compartment.

Tumour Antigen 
A

Antibody-Enzyme 

Prodrug___ -►Drug

ADEPT + IVIAD

Plasma Tumour

PrnHnifr w Prodrug

Ab-E

1
—  Drug

M — E2 
DegradedJ^-Drug^

(a) (b)

Fig 1.2. a. Antibody-directed enzyme prodrug therapy (ADEPT), b. The 

development of the ADEPT principle with intravascular inactivation of active drug 

(IVIAD). Active drug generated in the tumours or by residual enzymes at other sites 

can enter the vascular compartment and reach haemopoietic and other cell renewal 

systems and be dose limiting. An enzyme (E2) which degrades the active drug but not 

the prodrug is confined compartment by attachement to a macromolecule (M). From 

Bagshawe, 1994.

Pre-targeting antibody for imaging and therapy of cancer

In the pre targeting approach cold non-radiolabelled antibody is administered first to 

target the tumour cells, then a clearing step allows removal of circulating antibody.

7



Finally, a small molecule bearing the radioactivity is delivered using a molecular 

capture mechanism such as avidin-biotin (Fritzberg e ta l ., 1994).

Polyethylene Glycol

polymei
backbom

biodegradable spacer

— 4------------------

bond 
to be 
cleaved

spacer

________  DRUG
-peptidyl spacer designed for enzymatic cleavage 
-pH sensitive linker

targeting
residue

....  1

-access to target receptor

Fig 1.3. Schematic diagram showing the composition of a typical polymer-drug 

conjugate. From Duncan and Spreafico, 1994.

Polyethylene glycol has been used widely for protein conjugation (Fuertges and 

Abuchowski, 1990). Variation in the molecular weight of the PEG used (molecular 

weights (200-20000 Da) are available, the chemistry employed for conjugation, and 

the extent of surface modification of the drug provide the means to tailor-make 

specific PEG-drug products (Duncan and Spreafico, 1994). Thus the polymer drug 

conjugate can be designed to allow site-specific enzymatic or hydrolytic cleavage, 

which means both the rate and the site of drug delivery conjugate can be controlled 

(Kopecek, 1984).

8



Several PEG conjugates have been evaluated clinically (Fuertges and Abuchowski, 

1990) including a PEG-conjugate of adenosine deaminase known as Pegademase 

(Hershfield et al., 1987), which received market approval in 1990 in the US for the 

treatment of severe combined immunodeficiency associated with adenosine deaminase 

deficiency. PEG-asparaginase (L-asparaginase) has been used in the treatment of 

acute lymphoblastic leukaemia in patients hypersensitive to the native enzyme (Ho et 

al., 1986).

Albumin and glycoproteins

The albumin itself lacks intrinsic site-selectivity but specificity has been provided 

when used as a carrier with antibodies(Balboni, et al., 1976), e.g. Methotrexate was 

conjugated with both of murine monoclonal antibody (specific to an antigen on ascite 

mouse mammary tumour mm 46 cells) and human serum albumin (Fisher et al.,

1981).

The use of glycoproteins as drug carriers has been investigated (Dean, 1979), although 

as such they display no site selectivity. However, when the sialic acid moieties are 

removed from the terminal sugar branches, the resulting asialoglycoproteins are 

rapidly recognised and cleared by certain cells of the liver (depending on the sugar 

group(s) exposed). Therefore, glycoproteins can be modified to deliver drugs in a 

site-specific manner e.g. hepatocytes possess receptors for galactosyl-terminated gly- 

conjugates (Ashwell and Morrell, 1974). Other plasma proteins in addition to 

albumin have been suggested as carriers of anti cancer agents including fibrinogen and 

globulin (Szekerke et al., 1972).

9



Dextran

Dextran is a synthetic polymer of linear chains of alpha-D glucose molecules.

The polysaccharide dextran has been used for many years as a plasma expander but 

has more recently generated interest as a drug carrier. The varying rates of clearance 

of dextrans according to their molecular weights have led to the prospect of using 

dextrans as a drug (carrier) with the purpose of conferring greater chemical and 

biological stability to dextran-associated drugs.

The antitumour antibiotic mitomycin C was conjugated to dextran of varying 

molecular weights (10,000, 70,000 and 500,000) (Kato et al., 1982). The resulting 

polycationic conjugates were almost as effective as free drug in growth inhibition of 

L1210 mouse leukemia cells after continuous exposure. It was concluded that the 

conjugate acted as a pro drug of mitomycin C, exhibiting their activity after release of 

drug probably by chemical liberation and not by the lysosomal enzymes. Dextran has 

also been used as drug-carrier for linkage to antibodies (Aron and Hurwitz, 1983) 

allowing a greater drug to antibody ratio.

Polypeptides

Synthetic polypeptides such as poly-L-lysine, polyaspartic acid and polyglutamic acid 

have been proposed as drug carriers, in particular the polycationic polypeptide poly-L- 

lysine. This compound in itself has some affinity for specific tumour cells and is 

capable of arresting their growth (Ryser, 1974). Furthermore its cellular uptake by 

endocytosis and its susceptibility to degradation by trypsin, enhances its potential use 

as a drug carrier. Ryser and Shen in 1978 conjugated MTX to poly-L-lysine and

10



tested it against a MTX-uptake resistant Chinese hamster ovary cell line. They 

discovered enhanced uptake and increased cytotoxicity compared to the free drug or 

the carrier and drug administered separately. These effects were not totally reflected 

in vivo, demonstrating that in vitro situations can be misleading. Feijen and co- 

workers covalently coupled adriamycin via an amide bond onto poly (a-L-glutamic 

acid). In contrast to the conjugates in which the drug was attached directly onto the 

carrier, conjugates with oligo peptide spacer arms readily yielded adriamycin upon 

digestion with a relatively specific protease such as papain (Heeswisk et a l ,  1985).

Deoxyribonucleic acid

Site specificity of deoxyribonucleic acid (DNA) is based on the concept of 

lysosomotropic chemotherapy (De Duve et a l ,  1974), the drug carrier complex enters 

the cell by endocytosis and is transported to the lysosomal compartment. The basis 

for the site-specificity of DNA is that certain tumour cells exhibit higher endocytic 

activity than normal cells, plus DNA is a potent inducer of pinocytosis and easily 

degraded by lysosomal hydrolases (Cohen and Parks, 1967).

Relatively stable drug-carrier conjugates have been formed between DNA and 

daunorubicin or doxorubicin (Atassi et al., 1975). Both conjugates displayed equal or 

increased effectiveness over free drug in animal models. The conjugates were also 

associated with decreased toxicity as the bio-distribution of the drugs had been 

altered.

11



Hormones

Cancer cells frequently possess receptors for hormones the specific interaction 

between the hormones and these receptors could be used to direct drugs to cancer 

cells. As hormones generally exert their effects after binding to specific receptors on 

their target cells, they have potential for selective drug-delivery. The minimum 

compromise we have to make by using hormones as carriers is to sacrifice the normal 

target cells of the hormone. Clearly if killing normal target cells is lethal to the host, 

the hormone cannot be considered as a drug carrier. Also if the spectrum of target 

cells is too broad (such as insulin), no therapeutic advantage over the free toxin can be 

expected. Some attempts have been made to deliver drugs to specific cells via# 

hormone carriers. Hormones that have been investigated as drug or toxin carriers 

include human placental lactogen, human chronionic gonadotrophin (hCG), epidermal 

growth factor (EGF) and melanotropin. Although these attempts were unsuccessful, 

knowledge of a hormones receptor characteristics, such as cell-type specificity, and 

whether or not the drug-hormone conjugate is internalised, may improve the use of 

hormones in site specific drug delivery. The very high affinity demonstrated by some 

hormone receptors may permit the advantageous use of hormone conjugates at low 

concentrations. One such hormone that has received particular attentions is MSH (a- 

melanocyte stimulating hormone).

When considering the use of hormones as targeting agents the interaction of the 

hormone with other cell types expressing the target receptor or a receptor for a 

structurally related hormone has to be taken into account (e.g. receptors for ACTH in 

the case of a-MSH). An ideal peptide-drug conjugate would be rapidly and 

specifically taken up by the target cell; this requires a high affinity of the conjugate for



the receptor, and a high rate of endocytosis/internalisation. Ideally, the receptor would 

be rapidly recycled and would participate in multiple rounds of delivery (Basu, 1990). 

Once internalised, the conjugate would have to be broken down into the carrier and 

the active drug. With internalised ligand-receptor complexes, the site of this process 

would be the lysosome, and it has to be insured that the active drug molecule reaches 

the target compartment without being degraded

1.4. Factors affecting targeting via membrane bound receptors.

Targeting to particular cells and tissues can be achieved by using ligand containing 

carriers which interact with specific receptors on the cell surface, e.g. EGF (Cawley et 

al., 1980), transferrin (Bergamaschi et a l, 1988). However from the general overview 

of the endocytic pathway, many factors of targeting via a membrane bound receptor 

have to be considered.

1-The number of binding sites per cell.

2-The distribution of binding sites on other (non-target) cells.

3-Does ligand binding induce receptor-mediated internalisation?

4-If the receptor is recycled does the ligand dissociate within the cell and if so, is it 

transported further along the endocytic pathway or is it returned to the cell surface 

intact with the receptor?

5-How long before re-expression of the receptor on the plasma membrane after 

internalisation?
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Choice o f macromolecular carriers

The choice of carriers will depend on many factors including any known 

pharmacokinetic distribution of the macromolecule. Other important properties a 

carrier should possess are:

1. Lack of intrinsic toxicity and antigenicity by the carrier and its metabolic 

degradation products.

2. The carrier must have adequate functional groups for chemical fixation.

3. The carrier-drug conjugate must retain the desirable specificity of the original 

carrier compound.

The choice o f drug will also depend on a number o f factors:

1. It must have adequate groups in its molecular structure for conjugation.

2. It must be chemically stable in the conjugated form up until the point at which 

release may be required.

3. It must display sufficient toxicity at relatively low doses.

Optimisation o f drug release and /  or carrier degradation

The major sites for enzymatic metabolism of an endocytosed conjugate will be in the 

lysosome, although some proteases are present in earlier organelles e.g. early 

endosomes (Diment and Stahl, 1985). Lysosomal sensitive spacer linkages have been 

employed between drug and carrier in order to enhance the release of active drug from 

the conjugate. Most drug conjugates which release their cytotoxic component once 

selectively delivered to the lysosome can be termed as lysosomotropic agents as 

defined by De Duve et al., 1974.
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1.5. Important cellular uptake mechanisms for macromolecular drug 

delivery

It can be argued that the most important transport process with respect to 

macromolecular drug -delivery is endocytosis. Here plasma membrane invaginates 

and pinches off, internalising membrane proteins, lipids and extra cellular solutes. 

These newly-formed vesicles and their contents are then processed through various 

intracellular organelles before ligands or receptors generally reach the lysosomes, or 

are recycled back to the plasma membrane.

Two main types of endocytosis have been described. Firstly, fluid phase endocytosis 

(pinocytosis, non-specific endocytosis) is a constitutive uptake of soluble molecules 

which is concentration dependent, non-saturable, with relatively slow uptake and 

which is linear over a long time period. Secondly, adsorptive endocytosis (specific or 

non-specific), by which macromolecules bind to the cell membrane before their 

incorporation into endocytic vesicles. Receptor-mediated endocytosis is a particular 

case of adsorptive endocytosis, where specific uptake of macromolecules occurs via 

coated pits (Jarlozinska et al., 1983).
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Receptor-Mediated Endocytosis
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Fig 1.4. A schematic diagram for receptor-mediated endocytosis (RME) of drug- 

polypeptide complex. From Sato et al., 1996.

Receptor-mediated endocytosis is the process whereby binding of a ligand to a cell- 

surface receptor is followed by internalisation of the receptor ligand complex. After 

reaching an acidic intracellular endosomal compartment, receptors and ligands are 

sorted along different pathways for delivery to lysosomes, transport across the cell, or 

return to the cell surface. Many physiological ligands are internalised via this pathway 

e.g. LDL, insulin, EGF (Deurs et al., 1989) but binding of the ligand is not always a
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prerequisite for triggering this process. Transferrin receptors can concentrate in 

coated pits in the absence of ligand and become internalised unoccupied (Watts,

1985). Coated pits are coated regions of the plasma membrane, composed of clathrin 

(fig 1.4). Other receptors (e.g. for EGF and insulin) can be randomly distributed on 

the plasma membrane in the absence of ligand and will only concentrate in coated-pits 

and be endocytosed upon binding (Dickson et al., 1983). Different ligands can be 

internalised within the same coated pit but divergence of the ligands and/or receptors 

may occur through intracellular sorting.

In some cases endocytosis may not be required for the physiologic function of ligands 

e.g. EGF or insulin (Glenny et a l ,  1988), however internalisation of the ligand- 

receptor complex may serve to regulate and control the membrane associated signal. 

Conversely endocytosis of receptor-bound ligands such as transferrin or LDL 

(Schneider, 1989) is essential for their physiological function.

In receptor-mediated endocytosis, the binding of molecules to specific membrane 

receptors is followed very shortly after, by concentration of the ligand-receptor 

complex into specialised clathrin-coated pit regions of the plasma membrane. These 

coated pits apparently pinch off to form coated vesicles within the cytoplasm. The 

coats are then rapidly lost, and the ligands are seen in a system of smooth vesicles and 

tubules (endosomes) close to, but not in continuity with, the cell membrane (Hand et 

a l,  1983).
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1.6. Drug targeting to melanoma using a-MSH analogue as a carrier

Epidemiolgy o f malignant melanoma

Melanoma is known to have a familial component and blue eyes, fair or red hair and a 

pale complexion have been demonstrated to increase risk. Furthermore, individuals 

who sunburn easily are at an increased risk, the association being particularly strong 

for sunburn in childhood. Freckles, either in childhood or as an adult are also 

associated with increased risk.

The incidence of malignant melanoma in the United Kingdom and Germany is now 

approximately 10 per 100,000 per annum giving an approximate life time risk of 1 in 

200. The epidemiology of malignant melanoma is reviewed by Boyle et al., 1996. 

Melanoma is commonest on the back and face in men and on the legs in women 

(Crombie, 1981).

Subdivisions o f malignant melanoma

Cutaneous malignant melanoma is generally classified into four major histological 

groups (Buxton, 1993).

1 -Superficial spreading melanoma; melanoma cells spread superficially in the 

epidermis becoming invasive after months or years.

2-Nodular melanoma; presents as a dark nodule from the start without a preceding in 

situ epidermal phase.
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3-Lentigo maligna melanoma; initially there is a slowly growing pigmented macule 

that is present for many years befor a melanoma develops.

4-Acral lentiginous melanoma; initially, the lesion may present as banal-looking 

pigmented macular area.

Fig 1.5. Superficial spreading malignant melanoma

Fig 1.6. Nodular malignant melanoma

Fig 1.7. Lentigo maligna
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Fig 1.8. Acral lentiginous malignant melanoma

Melanoma prevention and early detection

In the case of melanoma, primary prevention is usually centred around efforts to avoid 

excessive sun exposure, while secondary prevention concentrates on public education 

concerning features of early melanoma, such as development of pigmented lesions 

which may be early melanoma, and encouragement of the public to self-examine their 

skin and attend for surgical treatment, when any possible melanoma is at an early 

curable stage (Mackie, 1995).

i

Progression o f melanoma

The critical progression predictors of the disease remain extent of radial growth, 

measuring tumour thickness and determining level of invasion, in addition to other 

factors such as mitotic rate, number of infiltrating lymphocytes (Slominski et al., 

1995). Also a variety of markers have been cited for prediction of disease recurrence 

and metastasis such as levels of intermediates of melanogenesis (Jimbow et al., 1993).
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Surgery o f primary malignant melanoma

Biopsy remains the standard way of diagnosing malignant melanoma, providing the 

histopathologist with a complete specimen for micro staging. Tumours less than 1 

mm thick require only 1 cm excision margins and they are usually completely cured 

(Slominski et al., 1995), while those 1-4 mm thick need only 2 cm margins (Ball and 

Thomas, 1995). Survival is directly related to the measured depth of invasion. The 

spread of the tumour occurs to skin, subcutaneous tissues, distant lymph nodes, lungs, 

liver, bone and brain (Slominski et al., 1995).

Epidermis -

Dermis -

Hypoderm -

Horny layer 
(stratum corneum) 
Granular layer 
(stratum granulosum)
Prickle cell layer

Basal layer 
Basement membrane
Fibres: collagen, elastica 

reticulin 
Cells: fibrocytes. RE cells 

mast cells 
Blood vessels: arterioles.

capillaries 
Subcutaneous fat

Fig 1.9. Anatomy of the skin. The epidermis is about 0.1mm thick, although the 

thickness is greater (0.8-1.4mm) on the palms and sole. Dermis varies in thickness, 

being thin (0 .6mm) on the eye lids and thicker (3mm or more) on the back, palms and 

soles. Melanocytes are found in the basal layer.
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Treatment o f systemic melanoma

Treatment of patients with systemic melanoma should include careful evaluation for 

the potential role of surgery, radiotherapy and systemic therapy, however the main use 

of chemotherapy remains palliative, and Dacarbazine (DTIC) remains the most active 

agent used for systemic melanoma. The chemotherapeutic options available for the 

treatment of malignant melanoma include multi-agent therapy, high dose 

chemotherapy with autologous bone marrow rescue, adjuvant chemotherapy and 

regional perfusion (Lee et al., 1995). Other approaches include active specific 

immunotherapy of melanoma, this approach attempts to stimulate the patient to reject 

his or her own tumour (Mitchell, 1995), targeted gene therapy (Hart and Vile, 1995) 

the use of biological response modifiers such as cytokines (Bridgewater and Gore, 

1995) and finally drug targeted delivery to melanoma which is the subject of this 

project.

a-MSH secretion and its physiological effects

a-M SH is a pituitary tridecapeptide, and is one of several chemically and biologically 

related peptides which are derived from a large molecular weight precursor, pro

opiomelanocortin in the vertebrate pituitary and hypothalamus (Sawer et al., 1980). 

Secretion of the hormone by the pituitary is under the control of the hypothalamus, 

various peripheral tissues are MSH sensitive, primarily the skin, where melanocytes 

are sited. The peptide is also synthesised and secreted within the brain, (including the 

pituitary and hypothalamus), it is considered a neuropeptide with various CNS related 

effects on development, adaptive behaviour, learning, neurotransmission and nerve 

regeneration (Eberle, 1988)
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Fig 1.10. Summary of the various physiological effects of MSH peptides. From 

Eberle 1988).

Effect o f melanotropins on pigment cells

Lerner and McGuire (1961) were the first to show that MSH peptides increase skin 

darkening in human subjects, and this has been confirmed more recently with NLDP- 

a-MSH, a potent analogue of a-MSH (Levine et al., 1991). The hormone a-MSH 

stimulates melanogenesis in mammalian melanocytes and melanoma cells by 

activating tyrosinase, the rate limiting enzyme for melanin formation. Prota (1980) 

have shown that mammalian melanocytes produce two types of melanin, the brownish 

black eumelanin and the reddish yellow phaeomelanin. The initial steps in the 

synthesis of the two pigments are similar and are under the control of the enzyme 

tyrosinase, but higher levels of tyrosinase are required for the synthesis of eumelanin 

than for phaeomelanin (Burchill et al., 1986).
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Fig 1.11. Scheme of the interaction of MSH receptor agonists with melanocortin 

receptors. Rs; MSH receptor stimulatory, Ri; MSH receptor inhibitory, Ns; 

stimulatory coupling protein, Ni; inhibitory coupling protein, AC; catalytic unit of the 

adenylate cyclase. (Adapted from Eberle, 1988).

It can be demonstrated that the hormone elicits its biological effect by binding to an 

extra cellular receptor since intracellular administration of MSH displayed no 

response. MSH binding stimulates adenylate cyclase causing intracellular levels of 

cAMP to rise, this in turn activates protein kinase (s) resulting in protein 

phosphorylation. It is unknown how the signal caused by MSH binding is terminated, 

but one or more of three possibilities is thought to occur:

1. Dissociation of MSH from the receptor.

2. Internalisation of the receptor/ligand complex.

3. Inactivation of MSH.
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Sawer and his colleagues have developed a super potent and enzymatically resistant a- 

MSH analogue, namely [Nle^,D-Phe^]a-MSH (Sawer et al., 1980) which has 

provided significant improvements over earlier systems for radioligand binding. They 

demonstrated unique biological properties including prolonged biological activity and 

enhanced potency relative to a-MSH in a number of biological systems (Tatro et al., 

1990).

Ac-Ser-Tyr-Ser-Nle-Glu-His-D-Phe-Arg-Trp-Gly-Lys-Pro-Val-NH2 

Figure 1.7. primary structure of [Nle^,D-Phe^]a-MSH 

When used as drug carrier the hormone a-M SH and its analogue [Nle^-D-Phe^Ja- 

MSH have several advantages in addition to their targeting potential. They are 

relatively easy to obtain in a pure form, their small size avoids the problems 

associated with larger conjugates and permits the study of chemical manipulations in 

the peptide sequence. Low immunogenicity would be expected due to their natural 

structural similarity but this may pose the potential problem of cross-recognition of 

the hormone or its analogue by different receptors. The sequence homology with 

other hormones is very close, ACTH has an identical central sequence to a-MSH. In 

this approach we would have to be prepared to lose the normal target cells with 

hormone receptors in addition to the tumour cells. Specifically the loss of normal 

pigmentation cells appears to be tolerable whereas melanoma is not. The effect of 

loss of other MSH receptors by cells, for example in the CNS, is unknown. 

a-MSH-related compounds could ultimately be used as pharmaceuticals for clinical 

application in treatment of pigment disorder, treatment of certain types of dementia, 

enhancement of nerve-regeneration and protection from nerve damage, control of 

fever and inflammation and diagnosis and therapy of melanoma Eberle 1988.
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To envisage the use of MSH for selective drug delivery the pertinent characteristics 

for receptor-mediated endocytosis have to be elucidated. This therefore involves the 

determination of receptor binding characteristics, kinetics and the subsequent fates of 

ligand and receptor.

1.7. Scope and aims of this project 

a-M SH derivatives either alone, or conjugated to a toxin or probe are potential agents 

for specifically targeting melanoma during diagnosis and therapy. In order to achieve 

selective drug delivery and targeting of a-M SH derivatives or their conjugates to 

melanoma cells. Targeted molecules should leave the blood circulation, ideally in 

close proximity of intended site of action. Also targeted molecules must interact 

specifically with and be internalised by the target cell, and sufficient number of 

molecules must be delivered per target cell (through receptor-mediated endocytosis) in 

order to produce the intended therapeutic effects.

The second requirement means that the MSH peptide must be conjugated to a very 

potent cytotoxic agent. In the work presented here we carried out in vitro evaluations 

of the cytotoxicity of a number of cytotoxics based on their extra cellular 

concentrations. These cytotoxics were a selection of existing clinical anti cancer 

agents and novel cytotoxics designed in conjunction with the medicinal chemistry 

group at this department. The relationship between cellular uptake and toxicity was 

investigated for the most toxic compounds. The toxicity of the MTX-NLDP 

conjugate on cells which were shown to possess MSH receptors and cells with no 

MSH receptors has been investigated.
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Chapter 2

Materials and methods

2.1. CELL CULTURE

2.1.1. Reagents and buffers

Water

All water used for the preparation of cell culture media and solutions was freshly 

double glass distilled by a bi-distillation Fistreem still (Fisons Ltd) fitted with a 

Fistreem predeionizer (Fisons Ltd)

Phosphate buffered saline

Phosphate buffered saline without calcium and magnesium (PBS) was obtained from 

Oxoid Ltd in tablet form. One tablet was dissolved in 100 ml of freshly double 

distilled water before steam sterilisation in an autoclave (British Steriliser Co.Ltd, 

Swingclave Type SFT-LAB) at 121°C for 15 minutes and stored at 4°C for a 

maximum of six months.

Preparation o f NaHCO3 (7.5%)

NaHC0 3  (75g) dissolved in DDD water and made up to 1000 ml with DDD water. 

Volumes of 100 ml were transferred to 100 ml tissue culture glass bottles and 

sterilised by autoclaving as described above for PBS. It was stored at 4°C for a 

maximum period of six months.
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Ethylenediaminetetraacetic acid (0.02%)

The disodium salt (O.lg) and 5 PBS tablets were dissolved in DDD water and made up 

to 500ml with DDD Water, 100 ml aliquots were put into sterile universal volumetric 

containers and stored at -20°C until required for a maximum of 6 months.

Trypan blue

This stain was obtained from Sigma Ltd and stored at room temperature as a 0.4% 

solution in PBS.

Growth media and additives

RPMI 1640 (Flow and Imperial Laboratories ) was obtained as 10X sterile liquid 

concentrates containing phenol red without L-glutamine or sodium bicarbonate. The 

media supplements below were obtained sterile from Flow or Imperial Laboratories 

and aseptically aliquoted into 20ml aliquots, L-glutamine (200mM), an antibiotic 

solution (pen/strep) of penicillin (5000IU/ml) and streptomycin (5000mg/ml) and non- 

essential amino acids (NEAA).

RPMI 1640 media and NEAA were stored at 4°C while L-glutamine and pen/strep 

were stored frozen at -20°C.

Foetal calf serum

Foetal calf serum was received in 500ml bottles from Gibco and was aliquoted into 

100ml samples and stored at or below -20°C.
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Table 2.1 Preparation of RPMI 1640 medium. The medium was prepared in an 

aseptic manner, stored at 4°C for up to one month, it was examined visually for 

microbial contamination prior to use.

Reagent volume (ml)

RPMI 1640 50

Foetal calf serum 50

7.5% N aH C 03 13.5

MEM NONESSENTIAL AMINO ACIDS 5

PENICILLIN/STREPTOMYCIN 5

L-GLUTAMINE 5

DDD Water to 500

Table 2.1 Formula of RPMI 1640 + FCS medium.

Reagent volume (ml)

RPMI 1640 50

7.5% N aH C 03 13.5

MEM NONESSENTIAL AMINO ACIDS 5

PENICILLIN/STREPTOMYCIN 5

L-GLUTAMINE 5

DDD Water to 500

Table 2.2 Formula of RPMI 1640 serum free medium.
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2.1.2. Preparation of reusable items .

All recycled items were rinsed in tap water immediately after use and then processed 

as follows. Glassware were soaked in 2% solution of RBS 25 (Fisons Ltd) at 

approximately 40°C for 30 minutes, then thoroughly cleaned using a nylon brush. 

Articles were then rinsed in three changes of tap water, left for 30 minutes in the last 

rinse. The process was then repeated using single distilled water.

Finally, all glassware was left to stand in a large volume of freshly collected double 

distilled water for no longer than 2 hours. After drying in a hot air oven over night 

(Gallenkamp), all items were capped with aluminium foil and sterilised by dry heat at 

160°C ( Gallenkamp Sterilising Oven) for a minimum of 1 hour.

Non-glass items, mainly tips for Gilson pipettes, bottle caps and syringes were rinsed 

immediately after use and then cleaned by boiling in three changes of fresh distilled 

water. Finally, they were rinsed and left for 1 hour in a large volume of freshly double 

distilled water, dried, sealed in autoclave bags (DRG Hospital supplies) and sterilised 

in an autoclave (Drayton Castle Laboratory Steriliser) at 121 °C for 15 minutes.

2.1.3. Disposable items and equipment

Sterile tissue culture polystyrene flasks (175cm^) were regularly obtained from 

Imperial Laboratories. Ninety six well plates were from Nunc. Thirty ml screw 

capped universal containers were obtained from Sterilin Ltd. Polypropylene 2ml
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ampoules with screw-caps were obtained sterile from J.Bibby Sciences and used for 

the storage of cells in liquid nitrogen.

All manipulations requiring a sterile environment were performed in a vertical 

recirculating laminar flow cabinet (MDH Ltd). Other experimental protocols were 

performed at the bench.

All cells were stored in 2ml ampoules, shelved in the vapour phase of a Union 

Carbide LR - 40 liquid nitrogen refrigerator at approximately -148°C. Cells were 

maintained in a LEEC PF2 anhydric incubator (Laboratory and Engineering 

Company) with forced air circulation and thermostatic controls adjusted to give a 

temperature of 37°C, it was regularly checked with a digital thermometer with a 

thermocouple probe (Jenway Ltd) in a beaker of sterile water. An inverted biological 

microscope WILD M40 (wild Heerbrugg Ltd) was used for the examination of 

growing cell cultures and counting cells. A standard double haemocytometer (Fisons 

Ltd) was used to count cell density.

2.1 4. Cell Culture methods

Cell line sub-culture

Sub-culture of B16 cells was undertaken every 3 days when the cells had reached 

confluence (approximately 1x 10^ cells /175cm^) the growth had almost ceased, and 

further growth was limited by contact inhibition and the availability of nutrients in the 

medium. After this point, the medium pH dropped below 7.0, (indicated by the
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change of the medium colour from golden orange to yellow). The sub-culture of 3T3, 

Cos7 and 293/MC3 was undertaken every 4 days.

The culture was optically examined to ensure that the cells were healthy with no free- 

floating cellular debris or contamination in the growth medium. Aseptically, the old 

medium was drained off and the monolayer was rinsed gently twice each with 5ml of 

PBS (to remove traces of serum which would inhibit the action of EDTA). The flask 

was then incubated with 2ml of 0.02% EDTA at 37°C for approx. 5-15 minutes.

B16 cells were incubated with EDTA for 15 minutes while 3T3, 293/MC3 and Cos7 

cells were incubated with EDTA for a few minutes. Upon removal from incubation 

the flask was gently agitated to dislodge the cells and 8 ml of fresh medium was 

added, using a sterile plugged pasteur pipette, the cell suspension was gently aspirated 

until well mixed, centrifuged at lOOOrpm for 10 minutes, resuspended in 10ml media, 

0.4 ml was put into a sterile test tube to determine cell density. A new 175cm^ 

culture flask containing 50ml of fresh media was then inoculated with 10^ cells and 

purged with 5% CO2 in air (BOC special gases) for 30 seconds before the cap was 

tightly sealed. The flask was labelled by the cell line, passage number and fraction 

subculture and its date (e.g. B 16,115, 1/10 mean the cells in the flask were B 16 cell 

line, of passage no 15 subcultured from confluent flask in the ratio of 1/10 on the 

specified date) then they were placed in an incubator and checked every day for health 

and contamination until they reached confluence.
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Determination of cell density

Subcultured cells prepared in a suspension form were thoroughly mixed and 0.1ml of 

trypan blue was mixed in with 0.4ml of the suspension for 5 minutes while being 

gently agitated. Viable cells excluded the dye while non-viable cells stained a dark 

blue. A cell density count would only include the former. A drop of the cell-dye 

mixture was loaded into a haemocytometer chamber under a coverslip pressed down 

such that interference patterns appeared along its edges. Each chamber was divided 

into nine large squares by triple white lines, the four comer squares were further 

subdivided into 16 squares/comer, and the central square was subdivided into 25 

smaller squares. A total count was made on the four corner and the central square of 

the haemocytometer grid with an inverted microscope.

Since each large square had an area of lmm^ and a depth of 0.1mm with the coverslip 

on, the total volume for each square was 10‘4 ml. Where N is the mean of the 5 large 

squares, the cell density of the cell suspension was NxlO^ cells/ml. To account for 

the dilution of the cell suspension with the dye, the end equation was 5(N XI 0^/4) 

cells/ml.

Cells counted in this manner had an imprecision (CV%) of 6% for 4 separate readings 

of a cell suspension. The imprecision (CV%) = standard deviation/average number of 

cells
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Cell storage

All cells were routinely stored frozen in liquid nitrogen, or its overlying vapour, after 

exposure to 10% of the cryptoprotectant dimethyl sulphoxide (DMSO, BDH 

Chemicals grade 1). (The DMSO is stored at room temperature in a dark glass 

container). Cell suspensions were prepared from the monolayer state during routine 

sub-culture, and centrifuged at 1000 rpm for 10 minutes ( Jouan B3-11 Bench 

centrifuge). The supernatant was removed and the cell pellet resuspended in a volume 

of filter -sterilised (Q.2fim sterile filters, Gelman Sciences) growth medium containing 

10% DMSO to give a final cell density of 2xl0^cells/ml. Replicate volumes of 1ml 

were placed in 2ml polypropylene ampoules then immediately placed in nitrogen 

vapour overnight after which they were transferred to a liquid nitrogen freezer for long 

term storage.

Recovery of cells from  storage

Immediately upon removing ampoules from storage they were placed in a 37°C water 

bath, ensuring that the water did not rise above the screw cap. When completely 

thawed the contents were aseptically transferred into 175cm^ flask containing 50 ml 

fresh medium. After 4-5 days the cells formed a monolayer suitable for routine 

subculture.
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2.2. MTT assay

2.2.1. MTT reagents

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) powder (lg) 

was obtained from Sigma chemical company (product number M 2128) and stored at

0-5 °C. MTT was dissolved in PBS at lOmg/ml, filtered to sterilise and remove a 

small amount of insoluble residue present in some batches of MTT. The filter used 

was 0.2pm pore size (sartorius AG Germany)]. Stock solution of MTT was stored at 

4°C for a maximum of one month.

Formazan

lg  (l-(4,5-Dimethylthiazol-2yl)-3,5-diphenyl-formazan (MTT formazan) powder was 

obtained from Sigma chemical company and stored at room temperature.

Dimethyl Sulfoxide (DMSO)

Dimethyl sulfoxide (D M SO ), was obtained from Sigma Chemical Company and 

stored in the dark at room temperature.

Dacarbazine

Dacarbazine powder (lg) was obtained from Sigma Chemical Company and stored at 

-20°C. Dacarbazine was dissolved in RPMI medium as required and the appropriate 

dilutions prepared.
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Mitozolomide & Temozolomide

Mitozolomide (5g) and temozolomide (5g) were supplied as powders by Cancer 

Research Laboratories, University of Nottingham and stored at room temperature.

The required amounts were dissolved in DMSO and the required dilutions were 

prepared in medium for incubation with the cells (DMSO in the medium was less than 

\%  v/v).

Ethidium bromide

Ethidium bromide powder (5g) was obtained from Sigma Chemical Company and 

stored at room temperature. It was dissolved as required in medium and the required 

dilutions were prepared for incubation with cells under study.

Fluorouracil '

Fluorouracil powder (lg) was obtained from Sigma Chemical Company and stored at 

room temperature. It was dissolved as required in medium and the required dilutions 

were prepared for incubation with the cells under study.

Methotrexate

50mg/2ml Methotrexate vials (50mg/ml) were obtained from Lederle and stored in the 

dark at room temperature. Dilutions were prepared as required for incubation with 

cells under study.
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Daunorobucin

Daunorubicin powder (5mg) was obtained from Sigma Chemical Company and stored 

at 4°C. Daunorubicin was dissolved in absolute ethanol and stored at 4°C. Dilutions 

were prepared as required for incubation with cells under study.

Doxorubicin

Doxorubicin powder (lOmg) was obtained from Sigma Chemical Company and stored 

at 4°C. Doxorubicin was dissolved in absolute ethanol and stored at 4°C. Dilutions 

were prepared as required for incubation with cells under study.

Vinblastine

Vinblastine powder (5mg) obtained from Sigma Chemical Company and stored at 4° 

C. It was dissolved in 1ml DDD water and stored at 4°C. Dilutions were prepared as 

required for incubation with cells under study.

Adozelesin

Adozelesin powder (22mg) obtained from Upjohn company USA. It was dissolved in 

500 p.1 dimethylformamide and stored at -20 C. Ten |il of this stock solution were 

diluted in 1ml DMF and stored at -20 C for no more than 1 week. From the second 

stock solution various dilutions were prepared in RPMI media for incubation with 

B 16 cells.
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Bizelesin

Bizelesin powder (22mg) obtained from Upjohn company USA. It was dissolved in 

500 |xl dimethylformamide, and stored at -20 C. Ten j l l I  of this stock solution were 

diluted in 1ml DMF and stored at -20 C for no more than 1 week. From the second 

stock solution various dilutions were prepared in RPMI media for incubation with 

B16 cells.

2.2.2 Methods for MTT (Tetrazolium) assay

Optimisation of the MTT assay

Correlation offormazan concentration with absorbance 

Various dilutions of formazan were prepared in DMSO, the absorbance of these 

dilutions was read in a 96 well plate using the Elisa plate reader, also and in a lambda 

3 UV/VIS spectrophotometer (Perkin-Elmer).

Correlation o f cell number with absorbance by (measuring absorbance at A 540nm 

and background A o f690 nm) o f metabolised M TT after various incubation periods.

Various dilutions of the cells under investigation were made in serum free medium 

containing MTT 1 mg/1 ml and were seeded in a 96 well plate. They were incubated 

for 1,2,3 and 4 hours, after this the MTT assay was performed to determine the 

correlation between cell number and absorbance of MTT metabolised by the cells, and 

to determine the optimal incubation period for the cells to metabolise the MTT.
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An estimation o f the optimal growth conditions (cell density and incubation period)

Various dilutions of B16 cells were prepared in RPMI medium, seeded in 96 well 

plates and incubated at 37C for 1 hour, 24 hours, 48 hours, 72 hours and 96 hours. At 

the end of each incubation period the MTT assay was performed. This enabled us to 

estimate the approximate doubling time for B 16 cells, and to determine optimal 

seeding density and incubation time. This procedure was repeated for 3T3, Cos7 and 

293-MC3 cells.

Colorimetric MTT assay on B16 cells

The assay was performed in 96 well plates, each plate consists of 12 columns and each 

column has 8 wells. The first column was loaded with a blank solution and the sixth 

column with cells without the test compound. B16 cells, subcultured in 175cm flasks 

as described, were seeded at a density of 4000 cells/well. Serial dilutions of the test 

compound were prepared and added to the 96 well plate, they were then incubated at 

37°C for 72 hours, the drug containing media was removed from the plate by flicking 

the plate. MTT solution (200 pi) in SFM 1 mg/1 ml was added and the cells were 

reincubated in the plate at 37°C for 3 hours. After this time the MTT solution was 

removed by flicking the plate and 200 pi of DMSO were added to each well and 

mixed thoroughly to dissolve the dark blue formazan crystals Plates were read within 

30 minutes of adding the DMSO on a Dynatech MR 580 Micro Elisa reader, using a 

test wavelength of 540 nm, and a reference wave length of 690 nm.
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2.3. Estimation of the cellular uptake of anthracyclines using fluorescence

assay.

Estimation o f the rate o f cellular uptake o f the anthracyclines (doxorubicin & 

daunorubicin) by B16 cells using FACS analysis.

Absorption spectra were determined for doxorubicin and daunorubicin to determine 

their absorption maxima, these were used as the excitation X in order to get their 

emission spectra.

The B 16 cells were incubated for 4 hours with each of the drugs (doxorubicin and 

daunorubicin) at 37°C at various drug concentrations in RPMI medium. Following 

drug exposure, the cells were washed twice with PBS, resuspended in PBS to a final 

concentration of 1-2x 10^ cells/ml and used immediately for experiments with the 

fluorescence-activated cell sorter. For each concentration 5000 B 16 cells were 

analysed. To measure the fluorescence intensity, drug-exposed cells were analysed 

with excitation X of 488 nm and emission X of 550 nm. The data obtained were 

displayed in the form of a histogram of cell number analysed by the various channels 

(y) versus log fluorescence of 5000 B 16 cells (x)

Estimation o f the fluorescence o f anthracyclines internalised by B16 cells

The EC50 is defined as the extracellular concentration of a compound, which inhibits 

the growth of cells, in vitro to 50% of their normal growth.
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The EC50 of the anthracyclines was determined , after four hours incubation with B16 

cells at 37°C and 72 hours incubation in a drug free RPMI media, and the MTT assay 

was performed as described before.

B16 cells were incubated with the anthracycline (doxorubicin or daunorubicin) in 

RPMI medium at their EC50 concentrations (as determined following 4 hour 

continuous incubation of B 16 cells with drug and 72 hours in drug free media for 4 

hours at 37°C) in universal volumetries on an orbit mixer (medium speed). After this 

the cells were centrifuged at 4000 rpm for 5 minutes, (the supernatant was kept for 

fluorescence measurements), the pellet (cells) were resuspended in 5 ml of ice cold 

PBS, they were centrifuged at 4000 rpm for 5 minutes (this was repeated twice) the 

supernatants were kept for further fluorescence measurements. The cell pellet was 

resuspend'ed in acid-alcohol reagent containing 95% ethanol, IN hydrochloric acid, 

and distilled water in 5:2.8:1.6 ratio for 30 minutes at 25°C, they were then 

homogenised by passing through an 18 gauge needle 10 times. Insoluble materials 

were removed by centrifugation at 4000 rpm for 20 minutes. The fluorescence of the 

extracted anthracycline (supernatant) at excitation X of 488 nm emission \  of 550 nm 

was measured. The corresponding concentration was read off a calibration curve of 

fluorescence against anthracycline concentration.

2.4. Estimation of the relationship between toxicity and mass of cellular

uptake of drugs using a biological assay

The EC50 of drug was determined, after 4 hours incubation with B 16 cells and 72 

hours incubation in a drug free RPMI medium, after this the MTT assay was
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performed as described before. The same numbers of drug molecules was incubated 

with various number of B16 cells at 37°C for 4 hours, in 30ml universal container on 

an orbit mixer medium speed. The cells were centrifuged at 1500 rpm for 10 minutes 

A toxicity assay of the supernatants on B 16 cells was performed as described before 

(after incubating fresh samples of B 16 cells with supernatant at 37°C for 4 hours and 

72 hours in a drug free media). The cells (pellet) were resuspended in 5 ml ice cold 

PBS, and centrifuged at 1500 rpm for 10 minutes (this was repeated this twice). Each 

sample was diluted to a final concentration of 4000 cells /0.2 ml media and seeded in 

a 96 well plate. The plate was incubated at 37°C for 72 hours, after this the MTT 

assay was performed as described before.

2.5. Isolation of the plasmid pCDNAI/Neo

2.5.1. Buffers and reagents used in the isolation of the plasmid DNA.

Tryptone

Tryptone powder (500g) was obtained from Oxoid Ltd. and stored at room 

temperature until required.

Yeast extract

Yeast extract powder (500g) was obtained from Oxoid Ltd. and stored at room 

temperature until required.
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Ampicillin

Ampicillin powder (5g) was obtained form Sigma Chemical Company and stored at 4 

°C. It was dissolved in DDD water (lOOmg/ml), Sterilised by filtration and stored at - 

20°C. The stock solution was diluted in LB broth to 50|i.g/ml just before use.

1M Tris/HCl (pH 8.0)

Tris[hydroxymethyl]aminomethane powder (1kg) was obtained from Sigma Chemical 

Company, and stored at room temperature until required. Tris base (12. lg) was 

dissolved in 80ml DDD water, the pH was adjusted to 8.0 with 6M HC1, the solution 

was allowed to cool to room temperature then the pH was readjusted, and the solution 

made up to 100ml with DDD water. The solution was autoclaved at 121°C for 15 

minutes, in on liquid cycle, and stored at 4°C for up to one month.

5M Potassium acetate

Potassium acetate powder (500g) was obtained from Sigma Chemical Company. 

Potassium acetate (49. lg) was dissolved in 80ml of pre warmed DDD water, the 

solution was then transferred to a measuring cylinder, and made up to 100ml with 

DDD water. The solution was autoclaved at 121°C for 15 minutes, and stored at room 

temperature.

0.5MEDTA

The disodium salt of EDTA (18.61g) was dissolved in 80 ml DDD water, the pH was 

adjusted to 8.0 with 6M HC1, then made up to 100ml with DDD water. The solution 

was autoclaved at 121°C for 15 minutes and stored at room temperature.
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l O M N a O H

NaOH (40g) was dissolved in 100ml of DDD water, then autoclaved at 121°C for 15 

minutes, and stored at room temperature until required.

Tryptone 10g

Yeast extract 5S

NaCl 10g

DDD Water to 1000ml

Adjust pH to 7.5 withlM  NaOH 

Table 2.3. Formula of LB Broth.

The LB broth was autoclaved at 121°C for 15 minutes. It was discarded when it 

became cloudy.

5M Nacl 200JJ.1

1M Tris.Cl (pH 8.0) lOOOpl

0.5M EDTA (pH 8.0) 20pl

DDD water to 100ml

Table 2.4. Formula of STE buffer.

The STE buffer was autoclaved at 121°C for 15 minutes and stored at 4°C

44



glucose 0.90 lg

1M Tris.Cl (pH 8.0) 2.5ml

0.5M EDTA (pH 8.0) 2ml

DDD water to 100ml

Table 2.5. Formula of solution I

Solution I was autoclaved at 121 °C for 15 minutes and stored at 4°C.

10M NaOH 20JJ.1

10% SDS 100JJ.1

DDD water 880pl

Table 2.6. Formula of solution II

Solution II was freshly prepared.

5M potassium acetate 60.0 ml

glacial acetic acid 11.5 ml

DDD water 28.5 ml

Table 2.7. Formula of solution III

Solution III was autoclaved at 121 °C for 15 minutes and stored at 4°C



Tris.Cl (pH 8.0) 1.0 ml

EDTA (pH 8.0) 0.2 ml

DDD water to 100ml

Table 2.8. Formula of TE buffer (pH 8.0)

The buffer was autoclaved at 121 °C for 15 minutes and stored at room temperature.

2.5.2. Plasm id DNA isolation methods.

Cell storage

Bacteria were stored in media containing 10% glycerol at -80°C without significant 

loss of viability.

1-A culture flask containing 10 ml of LB broth (containing ampicillin at 50|Xg/ml) was 

inoculated with a single bacterial colony and incubated at 37°C overnight with 

vigorous shaking

2- 0.9ml of the overnight culture were transferred to a microfuge tube containing 

0.1ml of sterile glycerol, then vortexed.

3-The glycerinated cultures were then stored at -80°C.

Viable bacteria were recovered by scratching the surface of the frozen stock with a 

sterile platinum loop. The frozen suspension was then returned to -80°C freezer. 

Several vials of each strain were stored.
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Small scale preparation of plasmid DNA (Alkaline lysis method)

Harvesting and lysis o f bacteria 

Harvesting

1- 10ml of LB medium containing 50pg/ml of ampicillin in a loosely capped 30ml 

universal tube were inoculated with the bacteria from a frozen stock as described 

above. The culture was incubated overnight at 37°C with vigorous shaking.

2-The bacterial culture was centrifuged at 4000 rpm for 10 minutes

3-The medium was removed by aspiration, leaving the bacterial pellet as dry as 

possible.

Lysis by alkali

Lysis by alkali was carried out as described by Maniatis et al., 1982.

1-The bacterial cell pellet obtained in step 3 above was resuspended in 1ml of STE 

and recentrifuged at 12000 rpm for 2 minutes. The supernatant was removed leaving 

the pellet as dry as possible

2-The bacterial pellet was resuspended in 200 pi of ice -cold solution I by vigorous 

vortexing.

3-A volume of 400pl of freshly prepared solution II was added.

The tube was closed tightly, and the contents mixed by inverting the tube rapidly five 

times. Making sure that the entire surface of the tube comes in contact with solution

II. IT WAS NOT VORTEXED. The tube was stored on ice until the next step.
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4-300pl of ice-cold solution III was added. The tube was closed and vortexed gently 

in an inverted position for 10 seconds to disperse solution III through the viscous 

bacterial lysate. The tube was stored on ice for 5 minutes.

5-Then centrifuged at 12,000 for 5 minutes at 4°C in a microfuge. The supernatant 

was transferred to a fresh tube.

6-An equal volume of phenolrchloroform was added and mixed by vortexing. After 

centrifuging at 12,000 for 2 minutes at 4°C in a microfuge, 600|il of the supernatant 

(top layer) was transferred to a fresh tube.

7-The double-stranded DNA was precipitated with 600|il of isopropanol (mixed by 

vortexing and allowed the mixture to stand for 5 minutes at room temperature).

8-Centrifuged at 12,000 for 10 minutes at 4°C in a microcentrifuge.

9-The supernatant was removed by gentle aspiration. The tube was left in an inverted 

position on a paper towel to allow all of the fluid to drain a way for 10 minutes. Any 

drops of fluid adhering to the walls of the tube was removed by aspiration.

10-The pellet of double-stranded DNA was rinsed with 1ml of 70% ethanol at 4°C. 

The supernatant was removed as described above. This step was repeated once more.

11-The nucleic acid was redissolved in 50jj,1 of TE (pH 8.0) containing DNAase free 

pancreatic RNAase (20pg/ml), vortexed briefly and stored at -20°C until required.

Quantitation of DNA

Spectrophotometric determination of the amount of DNA

absorbance was read using spectrophotometer, Spectronic 601 (Milton Roy)

An OD260 ° f  1 corresponds to 50pg/ml for double stranded DNA.
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The ratio between the readings at 260nm and 280nm (OD26Q/OD2go) provides an 

estimate of the purity of the nucleic acid.

Pure preparations of DNA have OD26()/OD2g0 values of 1.8.

If there is contamination with protein or phenol, the ratio above will be significantly 

less than the value given above, and accurate quantitation of the amount of nucleic 

acid will not be possible using this method.

2.6. Generation of permanent transfectants of 3T3 cells

Geneticin powder was purchased from Gibco Laboratories, it was stored at room 

temperature (15°C to 30°C). Geneticin solution in water was stored at -20°C for no 

more than one month

MTT assay of geneticin on 3T3 cells

Geneticin was dissolved in RPMI media containing 10 % FCS without antibiotics at a 

concentration of 5 mg/ml and filtered using 0.22 micron filter. 96 well culture plate 

was prepared by adding geneticin to the growth medium to the desired concentrations. 

4000 3T3 cells were added to each well and then incubated in a humidified CO2 

atmosphere at 37°C for 4 days, the supernatant was removed by flicking the plate and 

the MTT assay was performed as described before.
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Electroporation of 3T3 cells

Electroporation cuvettes 0.4 cm were placed on ice at the beginning of the experiment. 

1)- 3T3 cells were grown to 50-70% confluency in 175 cm^ flasks, then washed and 

detached from the flask as described previously. 2)- To the cell suspension 7 ml of 

RPMI/10% FCS were added. The cells were pelleted at 1000 g for 8 minutes. 3)- 

They were then re suspended in 5 ml ice cold PBS and re-pelleted, this was repeated 

twice. 4)-The cells were resuspended to a conc. of approx. 1-2 x lO^cells m l'l in ice 

cold PBS, 0.5 ml of the cell suspension being placed in each of the 0.4 cm 

electroporation cuvettes. 5)- To each electroporation cuvette 20(ig plasmid DNA was 

added and mixed well by flicking the tube. 6)- The cuvettes were then incubated on 

ice for approximately 5 mins. 7)- The cells were electroporated using the following 

electroporation parameters: 250 pF (using the capacitance extender) for time 4-5 ms.

8)- After pulse delivery, the cuvettes were incubated on ice for a further 5 minutes.

9)- The contents from each cuvette was placed into a 175 cm^ flask containing fresh 

culture medium. 10)- The cells were gassed with CO2 and incubated at 37°C.

They were left for 3 days before incubating with geneticin.

Selection for geneticin resistant cells.

Seventy two hours after transfection of 3T3 cells with plasmids carrying the geneticin 

resistant genes, the cells were incubated with growth medium containing geneticin at 

1 mg/1 ml. The medium was replaced every 24 hours, then every 3 days, for approx.

3 weeks. After this time individual colonies were transferred in to single wells of 24 

well plate (Nunc) using an inoculation loop. Their medium was replaced with fresh



growth media containing geneticin at 1 mg/1 ml every 72 hours, until the cells were 

confluent in the wells, the contents of each well were then transferred to a single 25 

cm culture flask (Nunc) and incubated with 5 ml growth media containing geneticin at 

1 mg/1 ml. This medium was replaced every 3 days until the cells are confluent when 

they could be used for experiments or frozen down as described before.

2.7. Binding assay reagents and methods

component volume

25 m M HEPES 5 ml

0.2% BSA 5 ml

SFM to 50 ml

Table.2.9. Formula of binding buffer.

Binding Assay

Several clones of the geneticin resistant cells were seeded at a density of 5x 10^ cells 

per well in 24 well plates, gassed and incubated overnight in the normal manner. On 

removal from incubator they were washed twice with SFM and allowed to cool to 4°C. 

Aliquots of binding buffer (0.5 ml) containing single concentration of the iodinated 

ligand was added to the cells. Eight of the sixteen replicate wells also received non

radiolabelled ligand at 1000 times the concentration of the radiolabelled ligand in 

order to assess non-specific binding. The cells were then re incubated at 4°C, on ice
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for 8 hours, after which the residual ligand was removed by two washings of ice-cold 

SFM.

After this the cells were lysed and removed by the addition of 0.5 ml of 1M NaOH. 

The radioactivity was then read on the gammacounter.

Calculation of radiotracer concentration 

Ratio of 125I : [Nle4, D-Phe7]-cx-MSH, 1:1 

1 mmole 125I =  lxlO ' 3 moles [Nle4 ,D-Phe7 ]-a-MSH 

Specific activity of carrier free Na 123I = 80.5X10*2 Bq/m mole 

1 mole [125I-Tyr2][Nle4 ,D-Phe7]-a-MSH = 80x1012x103 Bq 

1 Bq = 1 disintegration per second 

1 Bq = 60 disintegration per minute

The efficiency of the gammacounter was 70% (as reported by Sahm, 1994)

Therefore: 1 mole [ l25l-Tyr2]-[Nle4 ,D-Phe7 ]-a-MSH = 80.5 x 1012 x 103x 60 x 

70/100 = 3.38 x lO ^cpm .

2.7. HPLC analysis of MTX-NLDP

MTX-NLDP NLDP and MTX samples were dissolved in 0.05M phosphate buffer pH 

2.7 at concentration of 1.3xl0"^M. 50 |il samples were analysed by A C l8 column 

25cm in length and 2.5cm in diameter (Vydac®) reverse phase HPLC using a linear 

gradient. The solvents were 80% phosphate buffer pH 2.7 / 20% acetonitrile (A) and 

95% acetonitrile / 5% phosphate buffer pH 2.7 (B). A U.V detector was employed 

307nm. Flow rate was 1.5ml/minute. All reagents employed were of analytical grade.
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The table below shows the gradient of the two solvents A and B used for the HPLC 

analysis and the time intervals.

Time (minute) % A % B

0 80 20

15.0 0 100

30.0 0 100

40.0 80 20

80.0 80 20

Table 2.10. gradient of solvents A and B.

2.8. Synthesis of the polyamine conjugate)

The synthesis of the polyamine conjugates was carried out by Simon Carrington, 

School of pharmacy, Bath University, however the main points of the methods used 

will be described. A full description of the methodology is described by Carrington et 

aL, 1996, Carrington e ta l,  1997 and Qarawi e ta l ., 1997.

General details

Amide bond formation by dicyclohexylcarbodiimide (DCC)/N-hydroxybenzotriazole 

(HOBt) condensation-General procedure; The carboxylic acid (1 equiv.), DCC (1.5 

equiv.) and catalytic HOBt (0.05 equiv.) were dissolved in solvent and stirred at 25°C.
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The precipitate was filtered off and the filtrate was evaporated in vacuo. The residue 

was purified by flash column chromatography on silica gel to yield the desired amide.

Removal of carbobenzyloxy (Z)-protecting groups by hydrogenolysis-General 

procedure

A solution of Z-protected polyamine in methanol (MeOH) was added to 10% 

palladium on carbon. The mixture was hydrogenated at atmospheric pressure for 24 h 

and then filtered through celite. The filter cake was washed with MeOH (3x20ml) and 

the combined filtrate was concentrated in vacuo. The residue was purified by flash 

column chromatography to yield the deprotected polyamine.

The general methodology for the synthesis of several of these conjugates is presented 

here as an example
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i  ’i  yx-2

spermine

t-butoxycarbonyl

NH
NH

Nl-mono-Boc spermine
*NH2

O

benzyl chloroformate

NZ
tri-z-mono-Boc spermine

Trifluoroacetic acid (TFA) 
Dichloromethane

H,N

N 1 ,N2,N3-tri(benzyloxycarbonyl)spermin^l)*

Fig 2.1. General methodology for the generation of spermine protected with 

benzyloxy carbonyl (Z) groups.
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anthracene-9-carboxylic acid Nl,N2,N3-tri(benzyloxycarbonyl) spermine

DCC (1.5 equiv)
HoBt (catalytic 0.05 equiv)

N Z

n © ©
9-[Carbonyl-N 1 (N2,N3,N4-tri (benzyloxycarbonyl)spermine)]anthracene

I NH ^ NH

9-(carbonyl-N 1 -spermine) (2)

Fig 2.2. General methodology for the synthesis of 9-(carbonyl-Nl- 

spermine)anthracene (2).



^OH

o o o
acridine 9-carboxylic acid • Nl,N2,N3-tri(benzyloxycarbonyl)spermine

DCC (1.5 equiv)
HoBt (catalytic 0.05 equiv)

o Q Q
NZ

H
,NZ

9-[carbonyl-Nl(N2,N3,N4-tri(benzyloxycarbonyl)spermine]acridine

o o o
H 2(g) 
Pd/c

NH
NH .NH2

9-(carbony 1-N1 -spermine)acridine (3)

Fig 2.3. General methodology for the synthesis of 9-(carbonyl-N 1 -spermine) acridine 

(3)
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o

■0.^0
9(10H):acridone

SoCl2 
DMF

molten PhOH 
in NaOH

OPh

Q Q
9-chloroacridine

o Q
9-phenoxyacridine N 1 ,N2,N3-tri(benzyloxycarbonyl)spermine

molten PhOH

9-[N 1 -(N2,N3,N4-tri(benzy loxycarbony l)spermine)acridine
H2(g)
Pd/c

o Q
n h 2

9-(N 1 -spermine)acridine(4)

Fig 2.4. General methodology for the synthesis of 9-(Nl-spermine)acridine (4)

H

58



2.9. Peptide synthesis

The synthesis of [Nle^, D-Phe^Ja-MSH peptide and the peptide derivative of 

Methotrexate (MTX) was carried out by Dr. G.W.J. Olivier, School of Pharmacy, 

Bath University, however the main points of the methods used will be described.

2.9.1. Reagents

Amino acid derivatives, polydimethylacrylamide-kieselguhr resin (Pepsyn K) and 

p-[R,S-a-l(9H-fluoren-9-yl)methoxy-formamido-2,4-dimethoxybenzyl]phenoxy- 

acetic acid (AM-linker) were obtained from MilliGen. Hydroxybenzotriazole 

(HOBT), trifluoroacetic acid (TFA), diisopropylcarbodiimide (DIC), 1,2-ethanedithiol 

(EDT), anisol and phenol were purchased from Aldrich. Analytical and semi

preparative HPLC-columns were packed with Techosphere lOjim as stationary phase 

(HPLC Technology). Preparative HPLC was carried out using a C l8 protein-peptide 

column 25cmx2.5cm i.d. All other reagents were of analytical grade.

2.9.2. [Nle^, D-Phe^ja-MSH Peptide synthesis:

Peptides were prepared by solid-phase using Fmoc strategy (Atherton and Sheppard, 

1989). The carboxamide forms of the peptides were prepared using the AM-linker on 

Pepsyn k resin. All the amino acid reagents were employed as their pentafluorophenyl 

esters with the exceptions of serine, where the 3,4-dihydro-4-oxobenzotriazin-3-yl 

ester was used, and Fmoc-D-Phe-OH, which was treated with DIC and HOBT to form 

its HOBT ester in situ.
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Side chain protecting groups were as follows:

Arginine; methoxytrimethylbenzenesulphonyl (Mtr)

Glutamic acid; t-butoxy (OBut)

Histidine; t-butoxycarbonyl (Boc)

Lysine; t-butoxycarbonyl (Boc)

Serine; t-butyl (But)

Tyrosine; t-butyl (But).

In each case a four fold molar excess of reagents was used.

Deprotection and cleavage was effected by the use of 2% EDTA, 2% anisole and 1% 

water in TFA for 12 hours, at room temperature. Peptide purification took place using 

semi-preparative HPLC with a gradient elution of 0.1 % TFA in water and 0.1 % TFA 

in acetonitrile water (70:30) at a flow rate of 3 ml per minute.

The eluent was monitored by U.V spectrophotometry at 217 nm. Fractions were 

collected at 30 second intervals and checked by analytical scale HPLC. Peptide 

fractions containing the peptide were then pooled and freeze-dried.

Confirmation of peptide purity was undertaken by co-chromatographic techniques 

with purchased [Nle^, D-Phe^Ja-MSH (Sigma Chemical Co.), FAB-MS and MALDI- 

TOF MS: a-MSH M+H calculated; 1664.8, found 1664; [Nle4 , D-Phe7]a-MSH , 

M+H calculated 1646.8, found 1647.

Stock solution of peptide (1 mg/ml) was made up in sterile 0.1 mM HC1 and was 

stored at 4°C prior to usage.

60



2.9.3. Synthesis of MTX-[NIe4, DPhe7]oc-MSH:

To prepare N-MTX-[Nle4, DPhe7]a-MSH, Fmoc-[Nle4, DPhe7]a-MSH on resin was 

deprotected, at the N terminus, using 20% piperidine in DMF. A mixture of MTX and 

diisopropylcarbodiimide (DIC) in DMF were added to form the N-MTX-[Nle4> 

DPhe^Ja-MSH product. FAB-MS was used for confirmation of the identity. It is 

noteworthy that N-MTX-fNle^, DPhe^Ja-MSH was expected to be a mixture of two 

products coupled to the a  or 8 carboxyl groups of the glutamate residue of MTX.

Also racemisation at this glutamate residue occurred making the product a mixture of 

4 compounds. HPLC analysis suggested similar amounts of the four species.
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C hapter 3

In  vitro evaluation of the toxicity of a selection of anti cancer agents on B16 cells 

using an  optimised m icrotitre M IT  assay.

3.1. In troduction

Many biological assays require the measurement of surviving and/or proliferating 

cells. This can be achieved by several methods e.g., counting cells that 

include/exclude dye, as an indicator of cell membrane integrity, chromium release, in 

which radioactive chromate bound to cellular protein is released as a function of cell 

lysis, measuring incorporation of radioactive DNA precursors such as [^H] thymidine 

or [*25i] iodo-deoxyuridine) during cell proliferation, as an index correlating 

inhibition of DNA synthesis with cell death, in vitro colony formation techniques 

(Roper and Drewinko, 1976), and measuring the metabolism of tetrazolium bromide 

to formazan by the de-hydrogenase enzymes in the mitochondria of living cells, as in 

the MTT bioassay (Mosmann, 1983).

Br

Fig 3.1. Chemical structure of 3-[4 ,5-dimethylthiaziol-2-yl]-2 ,5-diphenyltetrazolium 

bromide (MTT)



Fig 3.2. Chemical structure of (l-[4,5-dimethylthiazol-2-yl]-3,5-diphenylformazan 

(MTT formazan)

M TT assay

For this study the MTT assay was chosen for the following reasons. It is a simplified 

cellular cytotoxicity assay. The assay appears suitable for initial stage in vitro drug 

screening (Alley et al., 1988). This approach to in vitro screening has the potential to 

identify new agents with perhaps novel mechanisms for the following reasons time 

taken for the assay and to process results is relatively short, there are no radiolabelled 

substances involved, it could yield accurate results which would be easily understood 

as they could be directly related to cell viability, and finally the reagents used in the 

assay are relatively cheap to buy.

Vital parameters that may vary between different MTT assays; include inoculum 

density, culture conditions, duration of drug exposure, duration of the recovery period 

after drug exposure and the nature of the end point used to quantify drug effects (Alley 

et al, 1988)
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Therefore inter assay comparisons, evaluations and interpretation of drug action on the 

basis of median inhibitory concentrations from data collected among different cell 

lines are extremely difficult.

Because of these difficulties before testing cytotoxicity of novel compounds on a 

particular cell line using a specific assay conditions, it is important to be confident that 

the assay conditions and the toxicity data acquired from such an assay are a true 

reflection of the toxicity of the compounds under study.

N.B. The term cytotoxic compound is used here to mean compounds that inhibit cell 

division and are potentially useful in cancer chemotherapy.

In this chapter, we have used B 16 mouse melanoma cells, for the first stage of 

screening for the in vitro evaluation of a variety of anti neoplastic agents. These 

cytotoxics were chosen to represent the whole range of available anti cancer agents 

with regard to mechanism of action. They therefore include compounds such as the 

DNA alkylating agents temozolomide, the anti metabolite fluorouracil, the vinca 

alkaloids and the anthracycline antibiotics (doxorubicin, and daunorubicin).

Presented below here is a summary of the various classes of anti cancer agents that 

have been selected and a description of their reported mechanism of action.
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Alkylating drugs

The alkylating agents used in chemotherapy encompass a diverse group of chemicals 

that have in common the capacity to contribute, under physiological conditions, alkyl 

groups to biologically vital macromolecules. DNA appears to be the most critical 

target for alkylation (McCormick and McElhinney, 1990)

The mechanism of action of alkylating agents may be due to antineoplastic action 

based on the alkylation power of the compounds. Alkylation may also interfere with 

synthesis or cross-linking in a number of places, for example an attachment at the 7 

position of guanine may prevent H bonding between the chains of DNA, arresting 

proper replication.

Enzymes responsible for removal of DNA lesions act to protect cells from the 

cytotoxic effects of alkylating agents (Orren and Sancar, 1987), e.g. The ATase gene 

codes for the expression of O^-alkyl guanine-DNA alkyl transferase, which protects 

cells against the effects of alkylation at the position of guanine (Pegg, 1990). It 

has been demonstrated that ATase-deficient cell lines are more sensitive to killing by 

simple methylating and chloroethylating agents than ATase proficient cells (D’lncalci 

etal., 1988).

Dacarbazine (DTIC) is reported in the literature to have some activity against 

malignant melanoma. ‘In the treatment of metastatic melanoma, DTIC is considered
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the single most effective chemotherapeutic agent available’ (Lee et a l, 1995) and it is 

the only drug indicated for treating malignant melanoma in the British National 

Formulary (BNF, 1997).

DTIC undergoes metabolic N-demethylation to give the cytotoxic metabolite mono 

methyl triazine, 5- ( 3-methyl- 1-triazino) imidazole-carboxamide (MTIC), which 

methylates DNA, producing among 12 other DNA lesions, 0&- methyl guanine (Meer 

et a l, 1986). There is increasing evidence to suggest that O^- methyl guanine is the 

principle cytotoxic event following DTIC administration and that ATase gene 

expression may be a major factor in cellular resistance to such agents (Lee et al,

1993).

It appears that there is a difference in the rate and extent of N-demethylation of 

dacarbazine between humans and rodents. For instance it has been observed that 

following administration of dacarbazine, plasma levels of MTIC are much higher in 

rodents than in humans. Also studies in the rat have shown that DNA methylation 

occurred to a broadly similar level in all tissues following administration of 

methylating agents, even those requiring metabolic activation (Kleihues et a l, 1976).

There is no evidence to suggest tumour activation of DTIC, thus a pro drug form of 

MTIC , which does not depend on host metabolic activation to unstable species, but 

relies instead on chemical transformation and which has good pharmacodynamics, 

presented advantages compared with DTIC (Stevens et a l, 1987).
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Two pro drugs which do not require metabolic activation are mitozolomide and 

temozolomide. At physiological pH temozolomide undergoes chemical degradation 

to MTIC without the requirement of metabolic activation as in the case of DTIC 

(Tsang et a l, 1991). A flow cytometry study has shown that temozolomide induces a 

block in S (late)-G2-M both in vitro and in mice (Catapano et a l, 1987). This block 

occurs at least two cell divisions after drug treatment, in contrast to many DNA- 

interacting agents, including mitozolomide (Broggini e ta l,  1986), which induces a 

pre-mitotic block a few hours after drug treatment (Baer et a l, 1993).

Pre-mitotic interval [G2]

DNA Synthesis [S] Mitosis [M]

G1

Fig 3.3. The cell cycle; G1 is the period between mitosis and the beginning of DNA 

synthesis. Resting cells (cells that are not preparing for cell division) are said to be in 

a subphase of G l, Gq. S is the period of DNA synthesis; G2 is the premitotic interval; 

and M is the period of mitosis.
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Mitozolomide is a pro-drug of the cytotoxic triazine MCTIC (Stevens et a l, 1984). It 

is a chloroethylating agent (Gibson et al., 1986). The mechanism of action of 

mitozolomide appears to involve chloroethylation of DNA (Gibson et a l, 1985). One 

postulated mechanism of the cytotoxic effect of chloroethylating agents is the 

formation of guanine-cytosine DNA inter strand cross-links which are produced in a 

two step reaction from the mono aduct O^-chloroethyl guanine (Tong e ta l,  1982). It 

is thought that ATase reduces the cytotoxicity of mitozolomide by removing the alkyl 

group from the 0^ position of guanine before inter strand cross-links can be formed 

(D’lncalci et a l, 1988).

R = (CH2)2C1 (mitozolomide)

Fig 3.4. Chemical structures of temozolomide, mitozolomide and Dacarbazine.

O

O
R = CH3 (temozolomide) DTIC
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Fig 3.5. Reaction scheme for the base-catalysed decomposition of temozolomide to 

MTIC and the subsequent decomposition of MTIC to produce methyldiazonium 

cation. Adapted from Denny et al., 1994.
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o OH

RR
Guanine in DNA Carbonium ion ' Guanine alkylated at the 7-nitrogen

Fig 3.6. The reaction by which the carbonium ion becomes covalently bonded to the 

N-7 atom of guanine residue in DNA.

The phase I trial of mitozolomide was completed in 1985 (Newlands et a l, 1985) and 

a number of phase II studies were performed which showed minor anti tumour activity 

in small cell carcinoma of the lung and malignant melanoma, but severe 

mylosuppression precluded its further clinical development (Harding et a l, 1988).

Temozolomide was selected for further clinical development in view of its 

experimental anti tumour activity and much lower toxicity in the pre-clinical screen 

(Stevens et a l, 1987). It has shown some promising anti tumour activity against high- 

grade gliomas, melanoma and mycosis fungoides (Newlands et a l, 1992).
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CC-1065 and it's analogues

.NH,

“OH

OCH,
“OH

KN OCH,

C C -1065

:jgO
I I I *

HN O

O
ADOZELESIN

BIZELESIN

Fig 3.7. Chemical structures of CC-1065, adozelesin and bizelesin

CC-1065 is a very potent new antitumour antibiotic, this antibiotic is produced by 

Streptomyces zelenius nov. sp., it was discovered at the Upjohn company (Hanka et 

al., 1978).

Adozelesin and bizelesin are two synthetic second-generation analogues of CC-1065, 

they have excellent antitumour activity but are devoid of the delayed hepatotoxicity 

associated with CC-1065 (Lee & Gibson, 1993).



The mechanism of action of CC-1065 is via its activity as a DNA minor- groove 

binder. It contains a cyclopropylpyrroloindole (CPI) group, which mediates the 

formation of N^-adenine covalent adducts in double-stranded DNA in a sequence - 

selective fashion.

Adozelesin is a DNA minor groove binding, sequence-selective, mono functional 

alkylating agent modelled on the potent cytotoxic antibiotic CC-1065. Bizelesin, a 

synthetic bifunctional analogue of CC-1065, contains two DNA-reactive 

cyclopropylpyrroloindole (CPI) subunits connected with a rigid bis (indolecarboxylic 

acid) linker, bizelesin features two chloromethyl groups capable of covalently bonding 

two adenine residues (Mitchell et al., 1991). The covalent binding is between adenine 

residues six base pairs apart, also the binding is dependent upon the intervening 

sequence within A/T-rich DNA (Lee and Gibson, 1993).
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Fig 3.8. Cyclisation of the prodrug, bizelesin to give the cyclopropyl derivative 

followed by the reaction of adenines of opposite strands to form the cross-linked 

adduct. From Frederick and Hurley, 1993.

Bizelesin shows good anti tumour efficacy both in vitro and in vivo and is generally 2- 

30 fold more potent than adozelesin (a monofunctional analogue) when tested against 

human carcinoma cells (Mitchell et al., 1991). Adozelesin is currently in phase II
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clinical trials, and bizelesin is currently being developed for phase I clinical trials in 

humans (Fleming e ta l ., 1992).

Anti metabolites

Antimetabolites are compounds that mimic the structures of normal metabolic 

constituents, including folic acid, pyrimidines or purines. Generally the 

pharmacokinetics of these agents resemble the natural substances with which they 

compete or replace and hence inhibit cell metabolism and growth (Balis et al., 1983)

Methotrexate

Folic acid is an essential dietary factor, from which is derived a series of 

tetrahydrofolate cofactors that provide single carbon groups for the synthesis of DNA 

precursors (thymidylate and purines ) and RNA (purines). Inhibition of DHFR leads 

to partial depletion of these tetrahydrofolate cofactors and a vast accumulation of the 

toxic substrate, FH2 polyglutamates. Methotrexate is a folate analogue which binds 

more tightly to dihydrofolate reductase (DHFR) than does folate (Sirotnak, 1985).

The conversion of dihydrofolate to tetrahydrofolate is thereby inhibited and the pool 

of reduced folates required for the synthesis of thymidylate and purines is depleted 

(Shen and Azarnoff, 1978).
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Fluorouracil

O
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H

Fig 3.11. Chemical structure of Fluorouracil

CH.
NH

S— EnzymeHO— P—O

OH

OH

5-Fluoro-2'-deoxyuridine 5'-monophosphate (FDUMP)

Fig 3.12. Chemical structure of fluorodeoxyuridine monophosphate. From Coulson, 

1988.

Fluorouracil interferes with thymidylate synthesis and therefore with synthesis of 

DNA. It is converted into a fraudulent nucleotide fluorodeoxyuridine monophosphate 

(FDUMP). This interacts with thymidylate synthetase and the folate co factors, but 

cannot be converted into thymidylate because, in FDUMP, fluorine has replaced 

hydrogen at C5 where methylation would take place, and this carbon-fluorine bond is 

less susceptible to enzymatic cleavage than the carbon-hydrogen bond. The result is 

inhibition of DNA synthesis but not RNA or protein.



TX

FH4 (glu>MTX

DHFR
F (glu). •FH4 (glu)n + one carbon unit

DHFR

Thymidylate
synthetase

DTMP
DUMP

Fig 3.10. Action of Methotrexate on thymidylate synthesis. Tetrahydrofolate 

polyglutamate [FH4 (glu)n] function as a carrier of one carbon unit, providing the 

methyl group necessary for the conversion of deoxyuridylate monophosphate (DUMP) 

to deoxythymidylate monophosphate (DTMP) by thymidylate synthetase. This is one- 

carbon transfer results in oxidation of [FH4 (glu)n] to [FH2 (glu)n] (Rang et al.,

1995).

Methotrexate is transported into cells via the carrier system present for the naturally 

occurring reduced folates (Reviewed by Sirotnak, 1985). The tetrahydrofolates act 

more efficiently as enzyme co factors when present as polymers with glutamate than 

as monomers. MTX is transported in the blood as a monomer but undergoes enzyme- 

catalysed polymerisation within cells and becomes trapped intracellularly as a 

polymer.
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The blockade of the thymidylate synthetase reaction inhibits DNA synthesis, while 

cellular production of both RNA and protein continues. An imbalance in growth 

occurs that is not compatible with cell survival

It has been shown that 5-FU is much more lethal to logarithmically growing cells than 

to stationary cells, however there is no clearly demonstrated effect at a definite stage 

of the cell cycle.

Vinca alkaloids

The vinca alkaloids are naturally occurring, dimeric indole derivatives. Isolated from 

the periwinkle plant, Vinca rosea (Balis et al.y 1983).

Mechanism of action; although the antitumour effect of the vinca alkaloids has been 

largely attributed to their ability to arrest mitosis by dissolution of microtubular 

mitotic spindles, vinca alkaloids also inhibit a variety of biosynthetic pathways which 

possibly contributes to their toxicity (Hickman and Tritton, 1992).
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Cytotoxic antibiotics

Daunorubicin and doxorubicin

OH

CHjR
OH

CHj O OH O

OH

NH,

R = H (daunorubicin) 
R = OH (doxorubicin)

Fig 3.13. Chemical structures of daunorubicin and doxorubicin.

Daunorubicin and doxorubicin are glycosidic antibiotics, they consist of a planar 

tetracyclic ring linked by a glycosidic bond to the amino sugar. They are produced by 

the bacterium Streptomyces peucetius var. caesius. Doxorubicin was isolated by 

Arcamone et a l, 1969. These anthracycline antibiotics and their derivatives are a 

among the most important of the newer anti tumour agents.
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Mechanism of action

They bind preferentially between the bases in double stranded DNA via strong 

intercalative bonds and weak ionic bonds thus inhibiting biosynthesis of DNA and 

RNA, targeting to specific enzymes like topoisomerase I I . Doxorubicin interferes 

with DNA breakage reunion by the enzyme, stabilising an enzyme-DNA intermediate 

in which the two DNA strands are broken and covalently attached at their 5' termini, 

one to each subunit of the enzyme dimer. These "cleavable complexes" are the 

principal lesion by which topoisomerase II inhibitors exert their cytotoxic effects 

(Marsh e ta l ., 1996).

Topoisomerase

c h 2

0
1

0 = P -
I

o

5'

Base

DNA
chain

Fig 3.14. Covalent enzyme-substrate intermediate in the action of topoisomerases. 

The 5'-phosphate end of the cleaved DNA strand is covalently linked to the hydroxyl 

group of a specific tyrosine residue of the enzyme. From Marsh et a l 1996.
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Amsacrine
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Fig 3.15. Chemical structure of Amsacrine

Amsacrine is a 9-anilinoacridine which displays good anti-anti cancer activity and has 

found use in the treatment of leukaemia (Llamma et al., 1990). This drug resulted 

from a structure-activity program in the late 1960's led by Cain investigating 

substituted heterocycles which have the ability to intercalate the heterocyclic base 

pairs of DNA.

Mechanism of action of Amsacrine

Amsacrine binds tightly to double-stranded DNA by intercalation of the acridine 

chromophore between the base pairs. Topoisomerase II is suggested to be the primary 

target for Amsacrine, which have been shown to induce protein-associated DNA 

strand breaks by stabilising a "cleavable complex" between topoisomerase II and DNA 

(Llamma et al., 1990).
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Such intercalators have potential as anti-cancer agents. Amongst the analogues tested, 

a series of acridinium compounds were shown to have good anti tumour activity (Cain 

et al., 1971). Initial results with a series of 9-anilinoacridine established that having a 

methanesulfonamide group at the l'position gave a compound with good activity, 

water solubility, and stability (Atwell et al., 1972). Studies on Amsacrine and related 

analogues confirmed its ability to intercalate DNA and also established that the 

strength of intercalation closely correlates to the observed activity as an anti-cancer 

agent (Ferguson and Baguley, 1981). Polyamines, such as spermine are known to 

groove-bind to DNA from either the major or the minor groove (Adlam et al., 1994).

In order to obtain compounds with an enhanced strength of binding and therefore 

potentially more cytotoxic, we identified target compounds which retained 9-acridine 

of Amsacrine, but also incorporated a cytotoxic polyamine moiety. The toxicity of 

these compounds are tested on B16 cells in chapter 4.

3.2. Results

Prior to using the MTT assay to assess the cytotoxicity of anti neoplastic agents on 

B16 cells control experiments were performed to ascertain the relation between B 16 

cell number and amount of tetrazolium metabolised to formazan, as well as the 

optimal time required for the metabolism of tetrazolium (Fig 3.1). This graph 

confirms the linear relation between amount of formazan produced and number of 

viable B 16 murine melanoma cells. It also shows the optimal incubation time of cells 

with MTT to be 3 h as beyond this time no further significant amount of formazan is 

generated.



The optimal seeding density was determined over several time periods (Fig. 3.2) 

allowing us to estimate the doubling time for B 16 cells to be approximately 24 h. 

From this it was determined that for experiments over 48 h and 72 h the optimal 

seeding density is 4000 cells per well. These initial seeding densities give enough cell 

growth to allow conveniently large amounts of formazan metabolite to be generated 

on addition of MTT, without limiting the growth of the cells as they become 

confluent.

Optimisation of the MTT assay

— Incubation w'th MTT for 1hour 
—A— Incubation with MTT for 2 hours 
— +— Incubation with MTT for 3 hours 
—o — Incubation with MTT for 4 hours

E
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Fig 3.16. Plot of viable B 16 murine melanoma cell number with the absorbance of 

their metabolised MTT at 540nm (test wavelength) and 690nm (background)), after 

incubation of cells with MTT for various time periods. Each point represents the 

mean value for 8 independent determinations performed in one experiment.
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Fig 3.17. Relation between absorbance of metabolised MTT by B 16 cells and their 

inoculation density, after incubation in RPMI media for various time periods, 

followed by incubation with serum-free RPMI media containing 1 mg/ml MTT. Each 

point represents the mean value for 8 independent determinations performed in one 

experiment.

The cell doubling time is defined here as the time taken for a certain number of cells 

to double once. Two cell doubling times is the time taken for a certain number of 

cells to double twice. So if we start with 10 cells, the number of cells after two 

doubling times is 10 x 2 x 2 = 40 cells, and the number of cells after three cell 

doubling times is 10 x 2 x 2 x 2 = 80 cells.
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A rough estimation of the doubling time for each cell line investigated enabled us to 

design a protocol for the MTT assay, appropriate for each cell line. e.g. The cell 

doubling time for B 16 cells was determined as follows; First B 16 cells were seeded in 

a 96 well plate at various densities and the MTT assay was performed immediately 

after wards, from this a correlation between absorbance and cell number was obtained 

(fig 3.16). So by incubating B 16 cells at lower densities for various time periods and 

then performing the MTT assay aferwards (fig 3.17) we were able to predict the cell 

doubling time.

Here is an example of how the doubling time for B 16 cells is calculated from figs 3.15 

and 3.16. The absorbance of formazan metabolised by 10000 B 16 cells is approx. 0.3 

(fig 3.15). From figure (3.16) incubating approx. 1200 B16 cells for 72 hours then 

performing the MTT assay, the absorbance was 0.3. This means the number of 

doublings the 1200 had made to become 10000 cells is approx. 3 doublings (1200 x 2 

x 2 x 2 = 9600). This calculation can be repeated for other cell densities..

Toxicity assays on various classes of anti cancer agents using B16 mouse 

melanoma cells

The EC50 of the toxic compounds examined here have been determined using the 

non-linear least squares regression analysis using a MINSQ software. The results 

were normalised with respect to a net of values obtained for ethidium bromide 

whose in figures (3.18) and (3.19).

Here is a brief description of the non-linear least squares regression analysis; It is a 

technique used to quantify the relationship between a dependent variable (in this
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case the dependent variable is the absorbance of the metabolised MTT) and an 

independent variable (in this case the cytotoxic compound concentration) resulting in 

a mathematical model of the relationship.

After a model is fitted the observed points will not necessarily lie on the fitted line. 

The scatter about the line will depend on how good the model is. If we draw a 

vertical line from each observed point to the fitted line, square all these distances and 

add them up we obtain the residual sum of squares. The expression "fitting a line to 

the observed points" means the process of finding estimates of the slope and 

intercept that results in a calculated line which fits the observation "best" by "best" 

we mean the estimates which minimise the residual sum of squares. Hence this 

method is called the method of least squares. Data were always plotted and 

examined visually before doing a regression. In order to be certain that the 

relationship between absorbance and concentration fits our model.

86



Incubation of B16 cells wth ethidium bromide for 72 hours

Maximum _ 
absorbance

0.8

0.4

Minimum
absorbance'

0.0
■8 •7 ■6 •5 -4 ■3 -2

log molar concentration of ethidium bromide

Fig 3.18. Dose dependent growth inhibitory effect of ethidium bromide on B 16 cells. 

Each point represents the mean value for 8 independent determinations performed in 

one experiment. S.E of less than 20%.

In the toxicity assay above 

Abs = A/( 1+C/EC) + B 

Where is

C: molar concentration of Ethidium bromide 

B: minimum absorbance

A: maximum absorbance - minimum absorbance

EC5 0 ; extra cellular concentration which give 50% drop in absorbance (that is 50% 

drop in the value of A)

87



For the above toxicity assay A=0.786, B =0.103, and the EC5o = 1. 12E-5 M.

The absorbance values of the above assay were normalised by subtracting B from the 

absorbance values obtained and divide by A then multiply by 100'

The normalised toxicity assay results are presented below
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Fig 3.19. A normalised toxicity assay of ethidium bromide on B 16 cells.



Cytotoxic compound Mean EC50 (M) SE [±] N

Mitozolomide 1.00E-04 3.00E-05 3

Dacarbazine 3.00E-04 1.10E-04 3

Ethidium bromide 1.00E-05 6.33E-07 . 3

Amsacrine 1.84E-06 1.77E-7 3

Fluorouracil 5.06E-07 1.99E-07 3

Methotrexate 5.60E-08 2.50E-08. 3

Vinblastine 5.27E-09 2.90E-09 3

Daunorubicin 4.10E-09 1.29E-09 3

Doxorubicin 1.55E-08 5.65E-09 3

Adozelesin 7.63E-11 1.93E-11 3

Bizelesin 6.72E-12 1.09E-12 3

Table 3.1. EC5 0  values on B16 cells, as determined by the MTT assay, after 72 

hours continuous incubation of compounds with B16 cells.

3.3. Discussion of results

In 1983 Mosmann demonstrated that, under appropriate conditions, MTT reduction to 

formazan is proportional to the number of metabolically viable cells in culture.

In vitro drug sensitivity measurements utilising tetrazolium reduction have been 

reported to correlate with cellular protein, dye exclusion and clonogenic assay 

methodologies under a variety of conditions (Carmichael et al., 1987)

89



The protocol used here involved use of continuous test compound exposure, following 

low density cell inoculation and 72 hours culture duration. These conditions were 

selected for several reasons, for B 16 mouse melanoma cells a 72 hours growth interval 

was required to achieve optimal growth and a minimum of 3 cell doubling times. This 

is necessary to generate levels of formazan suitable for test compound assays, as 

demonstrated at the beginning of this chapter. Continuous test compound exposure 

insures that agents with minimal growth inhibitory activity due to limited solubility in 

culture medium and / or which require extended contact with cells are detected.

To avoid false-negative endpoints in test compound evaluation, each culture plate 

contains a standard configuration of test compound blank wells (lacking cells) which 

permit visual as well as spectrophotometric detection of chemical MTT reduction as 

well as a means to measure absorbance contributions from chromogenic drug 

solutions (Alley et al., 1988).

The MTT assay was used to examine the toxicity of various anti cancer agents. These 

toxicity data are based on the growth inhibitory effect of the extra cellular 

concentration of test compound under study, on B16 mouse melanoma cells.

The toxicity of three triazines (DTIC, temozolomide and mitozolomide) was looked 

at. Of these temozolomide did not show any growth inhibitory effect at 

concentrations < lx l0 '4  M (assay result not shown). The MTT toxicity assay 

involves looking at its inhibitory effect after three cell doubling times but 

temozolomide has been shown, to cause block in S (late)-G2-M at least two cell
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divisions after drug treatment (Catapano et a l, 1987), even incubating temozolomide 

with B 16 cells for 6 days, that is approx. six cell doubling times did not cause any 

significant growth inhibition at the above concentration (results not shown). The 

other two triazines were found to be the least toxic compared to several classes of anti 

cancer agents (table above) against B 16 mouse melanoma. However DTIC is the only 

anti melanoma agent available for therapeutic use (BNF, number 33, 1997), this 

serves to inforce the idea that many other factors must be considered when assessing 

the potential importance of any novel anti cancer agent, such as tissue distribution, 

time to release active species and biochemical selectivity in addition to toxicity data. 

The toxicity of ethidium bromide was investigated with a view to using it as a tool 

because of its fluorescence properties (EC50 of 10 pM). The antimetabolites 

fluorouracil (EC50 0.5pM) and MTX (60nM) were approx. 2 and 3 orders of 

magnitude more potent than mitozolomide

Vinblastine and daunorubicin had EC50 values 5nM and 4nM, respectively. 

Doxorubicin was approx. three fold less potent than daunorubicin.

The cyclopropylpyrroloindole (CPI) analogues were by far the most toxic compounds 

looked at with the EC50 for adozelesin approx. 80 pM, while that for bizelesin 7 pM. 

Thus bizelesin is approximately three orders of magnitude more potent than 

daunorubicin or vinblastine and approx. eight orders of magnitude more potent than 

mitozolomide. This illustrates the huge potency of bizelesin compared to other 

cytotoxics. The EC50 for adozelesin and bizelesin on leukemia L1210 cells was in 

the pM range after incubation with the cells for 1-5 hours (Upjon Chemical Company, 

data sheet). The toxicity of the cytotoxic compounds looked at here seem to be 

similar to the literature values which were determined using similar MTT assay
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conditions e.g. EC50 of MTX as reported by Whelan, 1995 (6E-8), EC50 of 

Vinblastine on the human gastrointestinal carcinoma cells (HT-29), was 3nM, the 

EC50 of doxorubicin on a small cell lung carcinoma (NC1-H249) was lOOnM 

(Carmichael et a l, 1987). The MTT assay was used by Alley et al., in 1988 to 

investigate the toxicity of doxorubicin on 54 different cancer cells and found that all 

the cell types looked at had EC50 values within one order of magnitude of 10 nM 

which is the same order of magnitude of our estimated EC50 for doxorubicin. The 

above comparisons may serve to illustrate that the MTT assay used here does not 

under or over estimate the growth inhibitory effects of compounds under study.

Although the above EC50 values give an indication of the relative potency of various 

cytotoxics on B16 cells, they are not enough on their own, when assessing the 

potential use of any of them in forming the toxic component in a drug delivery system 

for B 16 mouse melanoma cells. The mass of drug internalised, which is responsible 

for such toxicity data, also needs to be measured.
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Chapter 4

The Growth inhibitory effects of novel spermine analogues on B16 murine 

melanoma cells.

4.1. Introduction

Polyamines are generally structurally simple aliphatic compounds consisting of two or 

three flexible carbon chains that are connected by basic nitrogen atoms. They are 

often substituted with primary amino functional groups on each end of the chain, but 

they may also contain basic secondary amines within the chain. The aliphatic 

polyamines spermidine and spermine are natural constituents of most living organisms 

(Heston, 1991). At physiological pH, most naturally occurring polyamines are fully 

protonated, the pKa values for spermine are 11.50, 10.95, 9.79 and 8.90 (Takeda et al, 

1983; Usherwood and Blagbrough, 1989), therefore the structure of spermine at 

physiological pH is polycationic: NH3+(CH2)3NH2+(CH2)4NH2+(CH2)3NH3+.

Function o f polyamines

One facet of the polycationic nature of polyamines is that they are able to interact with 

anions. Electrostatic interactions of polyamines with aniortic sites of macromolecules 

(nucleic acids, proteins, anionic sites of lipid membranes) is the mechanistic basis for 

the majority of biological polyamine function (Heston, 1991). Polyamines are 

increasingly recognized as having an important role in many cellular processes, 

including cell growth and replication (Heby and Persson, 1990). They are known to 

have anti-tumor activity which is attributed to general depletion of polyamine pools, 

down-regulation of enzymes such as ornithine decarboxylase and
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spermine/spermidine-A^-acetyltransferase (Porter et al., 1991), or DNA binding and 

interference with DNA transcription (Feuerstein et al., 1990).

Interaction o f polyamines with DNA

Evidence for DNA interactions, obtained from experiments conducted in cell-free 

systems, includes the ability of poly amines to precipitate DNA and to raise the 

melting temperature of natural DNA (Heston, 1991). The positive charges of 

polyamines interact with the negative charges on the sugar-phosphate backbone of 

DNA causing them to bind from either the major or minor groove (Rodger et al., 

1995). This electrostatic bonding can be further supplemented by hydrophobic van 

der Waals’ interactions between methylene groups in the polyamine chain and methyl 

groups on thymidine (Adlam e ta l ., 1994).

Cellular uptake o f polyamines

Translocation of charged poly amines across the cell membrane requires a transporter 

protein, this is an energy requiring active transport process (Rinehart and Chen, 1984). 

Seiler and co-workers (1990) showed that, in most cells, the polyamine uptake process 

is saturable, carrier mediated and energy dependent, and that the rate of uptake is 

reduced at 4 °C compared with that at 37°C. They have also shown that the 

antibiotics valinomycin and gramicidin curtail polyamine transport in almost all cells 

studied (Seiler etal., 1990).
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The use of other polyamine sources in addition to de novo synthesis has been 

demonstrated for tumor growth (Seiler et al., 1990), growing solid tumors (Moulinoux 

et a l, 1989), and for normal rapidly growing cells (Jann et a l, 1978) or organs like 

the prostate (Heston, 1991). In neoplasia, the level of polyamine biosynthesis activity 

is significantly greater than that of the surrounding normal tissue, even when the latter 

is itself rapidly proliferating such as in the case of intestinal mucosa (Luk and Baylin, 

1984). Therefore, polyamine active transport systems may be exploited both in drug 

delivery and tissue targeting (Cohen and Smith, 1990).

The use o f  spermine to target drugs whose site o f  action is the DNA

Spermine is an attractive candidate for the targeting of drugs whose site of action is 

nuclear DNA, because of two important features. The nature of its interaction with 

DNA, polyammonium salts bind to DNA through an electrostatic interaction, with 

relatively high affinities (Cohen and Smith, 1990). Also of significance, it has been 

shown that whilst constrained to remain close to DNA, the polyammonium cations 

retain a high degree of freedom or motion within the polycation-DNA complex 

(Wemmer and Scrivenugopal, 1985). Thus, conjugation of a drug to a 

polyammonium cation may confer significantly enhanced affinity for DNA, but the 

high mobility of polyamines will allow drugs to locate at their appropriate, specific 

sites on DNA. The existence of an active uptake system for polyamines in a variety of 

cell types, especially in tumor cells, allows the design of a polyamine based conjugate 

which is potentially selective for tumour cells.

DNA intercalators incorporate planar aromatic ring systems which bind between the 

heterocyclic base pairs, perpendicular to the axis of the double helix (Wilson, 1990).
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Such intercalation is mediated by interaction between the rc-orbitals in the ligand and 

those in the DNA bases. The 9-aminoacridine derivative amsacrine is an intercalator 

which has been shown to have anti-cancer activity, currently finding use in the clinic 

to treat leukemia (Baguley, 1991). Structure-activity relationship studies of a series of 

analogues have shown that the strength of DNA intercalation closely correlates with 

the anti-tumor activity (Ferguson and Baguley, 1981).

In order to obtain compounds with enhanced cytotoxicity, conjugates with 

bifunctional modes of binding to DNA were designed. Studies of amsacrine and other 

ligands with substituents on the intercalating aromatic ring system have shown that 

such substituents can protrude into one of the DNA grooves. If this substituent is a 

known groove-binder, such as spermine, then spectroscopy and computer-aided 

molecular modelling have shown that it is possible to obtain molecules 

simultaneously displaying both modes of binding (Adlam et al., 1994; Rodger et al., 

1994; 1995). This dual interaction should strengthen the association between ligand 

and DNA, and therefore increase the cytotoxicity compared to that shown by either the 

groove binder or the intercalator alone. The objective here was to synthesize 

compounds consisting either of an anthracene or an acridine unit linked to spermine 

via an amide or aniline bond at position 9. These conjugates were synthesised and 

purified by S.Carrington, as described by Carrington et al., 1996; and Qarawi et al., 

1997. Their toxicity was determined as described in chapter 2 using B 16 murine 

melanoma cells in the MTT-formazan assay (Mosmann 1983) modified for use with 

this specific murine cell line. The only drug indicated in the BNF (1997, number 33) 

for the treatment of melanoma is dacarbazine 7, a 5-(aminodiazo)-4- 

carboxamideimidazole. A recent attempt to improve the efficacy of this basic
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heterocycle for the treatment of melanoma is the development of mitozolomide which 

incorporates an N-(2-chloroethyl)urea, within a constrained bicyclic analogue of 

dacarbazine. This analogue of mitozolomide, a potential aziridinium ion containing 

nitrogen mustard was the subject of a phase I trial which was completed in 1985 

(Newlands et al., 1992) and subsequently a number of phase II studies were performed 

which showed minor antitumour activity in small cell carcinoma of the lung and 

malignant melanoma. However severe mylosuppression precluded its further clinical 

development (Harding et al., 1988). Nevertheless, it is of interest that both the 

existing treatment for melanoma and its latest analog contain at least two basic 

nitrogen atoms capable of protonation at physiological pH.

97



‘NH2

spermidine

H2N . NH
NH v  'N H 2 

spermine ( 1)

NH NH

DIOO
9-(carbonyl-N 1 -spermine)anthracene (2)

o o Q
NH

9-(carbony 1-N1 -spermine)acridine (3)

NH NH ^
NH NH2

N 9-(Nl-spermine)acridine (4)
Q O

I NH

O w .

NH NH

N 1 -(acridine carbonyl-5-aminopentonyl)spermine (5)

Fig 4.1. Chemical structure for spermidine , spermine and the polyamine conjugates 2 

to 5.
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[N=l]; Nl-(9-acridinyl-5-aminopentonyl)spermine (6)

[N=2]; Nl-(acridinyl-9-aminobutylaminobutyl carbonyl)spermine (7)

NH

OOP
[R=OH]; Nl-[4'-(acridinyl-9-amino)-3-hydroxybenzoyl]spermine (8)

[R=H]; Nl-[4'-(acridinyl-9-amino)benzoyl]spermine (9)

[R=OMe]; Nl-[4'-(acridinyl-9-amino)-3-methoxybenzoyl]spermine (10)

Fig 4.2. Chemical structure for polyamine conjugates referred to in this chapter

4.2. Results

Conjugates of spermine with either 9-anthracene or 9-acridine carboxylic acids have 

been designed in order to achieve a more specific interaction with DNA than the
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tricyclic aromatic intercalator or the polyamine groove-binder alone, as described 

earlier. A comparison of the ability of these conjugates to control the growth of B 16 

murine melanoma cells was undertaken using the MTT assay (Mosmann, 1983) and 

their EC50 values have been determined using the least squares estimation method 

table (4.1). ______________________________________________________________

Compound Mean EC50(M) sEr+i
9-Anthracene carboxylic acid >1.2E-3

9-Acridine carboxylic acid hydrate >8.0E-4

Spermine (1) 4.5E-4 1.8E-4

1/1 Molar mixture of spermine and 

9-anthracene carboxylic acid

2.6E-4 8.0E-5

1/1 Molar mixture of spermine and 

acridine carboxylic acid hydrate

3.9E-4 8.0E-5

9-(carbonyl-Nl-spermine)anthracene (2) 2.0E-5 6.99E-6

9-(carbonyl-N l-spermine)acridine (3) 5.40E-6 1.10E-6

9-(Nl-spermine)acridine (4) 1.02E-6 5.57E-7

Nl-(acridine carbonyl-5-aminopentonyl)spermine (5) 1.93E-6 2.78E-7

N 1 -(9-acridiny 1-5-aminopentony l)spermine (6) 3.0E-5 2.0E-5

Nl-(acridinyl-9-aminobutylaminobutylcarbonyl)spermine (7) 2.67E-7 1.20E-8

N1 [4'-(acridinyl-9-amino)-3-hydroxybenzoyl]spermine (8) 9.0E-5 3.0E-5

Nl-[4'-(acridinyl-9-amino)benzoyl]spermine (9) 9.20E-6 2.30E-6

Nl-[4'-(acridinyl-9-amino)-3-methoxybenzoyl]spermine (10) 4.92E-6 5.70E-7

Table 4.1. EC50 values from 48 h MTT assays of polyamine conjugates on B 16 

murine melanoma cells. Each EC50 value represents the average of 3 independent 

assays with 6 replicate samples for each data point.

The results from the MTT assays are shown in Table 4.1. Based on the average 

EC50 values at 48 hours, the 9-anthracene carboxylic acid and 9-acridine carboxylic 

acid both had no detected effect at concentrations below 1.2E-3 M and 8.0E-4 M, 

respectively. Spermine inhibited cell growth with an EC50 of 4.5E-4M and simply 

mixing spermine with (starting material) aromatic acids showed no increase in 

potency over spermine alone. This experiment acts as a control for any amide bond
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hydrolysis, in order to ascertain if the conjugate is simply acting as a pro-drug for 

spermine.

The conjugate containing the anthracene unit showed inhibition with an EC50 of 

2.0E-5 M, an increase in potency of an order of magnitude over spermine whilst 7, 

the conjugate containing the acridine analogue had an EC50 of 2.67E-7 M, an 

increase in potency by three orders of magnitude over spermine.

These results show a significant increase in the toxicity of some of the conjugates 

compared to a mixture of their components. Questions as to whether the observed 

toxicity of the conjugates is due, in part, to differences in their cellular uptake or 

caused entirely by a more specific interaction with the DNA need to be addressed. 

Neither, in these studies, have we addressed the question of whether the conjugates 

use polyamine transporters in order to gain access to their intracellular sites of 

action. However, the fluorescence of 9-aminoacridines, e.g. conjugate 7, will be a 

useful spectroscopic property in developing convenient, accurate and sensitive 

assays for this polyamine conjugate in studies of its distribution in biological tissues 

and fluids.

We examined the toxicity of (1), (4), (7) and (10) on B16 cells over various time 

periods in order to determine whether the observed toxicity could be altered by 

changing the incubation period.
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compound Incubation period (days) Mean EC^n (M) SE[±]

1 2 4.50E-4 1.8E-4

1 3 4.30E-4 1.50E-4

4 2 1.02E-6 5.57E-7

4 3 1.16E-6 7.83E-7

4 6 6.83E-7 2.53E-7

7 2 2.67E-7 1.20E-8

7 3 1.06E-7 8.95E-9

7 6 5.77E-8 1.17E-8

10 2 4.92E-6 5.7E-7

10 3 1.65E-5 1.75E-6

Table 4.2. EC50 values fr°m MTT assays of 1, 4, 7 and 10 following incubation 

with B 16 cells over various time periods. Each EC50 value represents the average 

of 3 independent assays with 6 replicate samples for each data point.
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Table 4.2 shows the toxicity of spermine (1), 9-acridine spermine (4), (7) and (10) on 

B 16 cells over 2, 3 and 6 days. There is a small difference in the toxicity of each 

compound on B 16 cells over these periods. From these results, we conclude that 

there is little significant metabolic influence on the observed toxicity data obtained 

with these compounds.

-o (1) 48h 
■ (1) 72h

— ■— (7) 48h 
—a— (7) 72h 
— +— (7) 6 days

tX)

90 O-

2 70r
8 60O
s
I
8

2§
I

■o.

-t)

leg concert rat ion [IVJ of cytotoxic compound

Fig. 4.3. Dose-dependent growth inhibitory effect of 1 (broken line) and 7 (solid 

line) following exposure of B 16 cells to polyamines for various time periods as 

estimated by the MTT assay. Each curve represents the average of 3 independent 

assays with 6 replicate samples for each data point. Error bars have been omitted for 

clarity (SE of all values <20%).
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Fig. 4.4. Mean EC50  values of a selection of cytotoxic agents compared to spermine 

(1), acridine monospermine (4) and (7) and (10) as determined using the 72 h MTT 

assay on B 16 murine melanoma cells. Each mean EC50  value represents the average 

of 3 independent assays with 6 replicate samples for each data point.

4.3. Discussion of results

Rationale behind the design and synthesis of polyamine conjugates.

Polyamines, such as the naturally occurring tetra-amine spermine, are known to 

exhibit anti-tumour activity through general depletion of polyamine pools, by down- 

regulation of key enzymes (Bernacki et al., 1992), or by DNA binding and the 

resulting interference with transcription. At physiological pH, the amine functional 

groups are all protonated. These four positive charges are able to interact with 

negative charges on the sugar-phosphate backbone of DNA with binding from major
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and/or minor grooves. Anthracene and acridine containing compounds are known to 

bind to DNA through intercalation. Studies on acridine analogues have shown a 

correlation between their efficiency as intercalators and their cytotoxicity (Baguley, 

1991). It is therefore postulated that conjugates containing spermine covalently linked 

to anthracene (2) or acridine (3) via an amide bond would display bifunctional modes 

of binding and enhanced cytotoxicity (Adlam et a l ,  1994). In another acridine 

analogue (5) one 5-aminovaleric acid spacer was incorporated between the spermine 

and acridine components of the conjugate in order to introduce a region of flexibility 

between acridine and spermine, allowing the two binding regions to optimise their 

interactions. Spermine exhibited an EC50 value of 450p.M and co-administration of 

the anthracene or acridine carboxylic acids with spermine showed no improvement in 

potency over spermine alone. The anthracene and acridine conjugates 2 and 3 showed 

EC50 values of 20p,M and 5|iM, respectively. The synthetic compounds 2 and 3 are 

more potent than spermine, the potency of the acridine conjugate (3) being 

approximately two orders of magnitude higher than spermine alone. The compound 5 

which contain the 5-aminovaleric acid spacer between the acridine and spermine units, 

did show a significant increase in activity compared to the acridine conjugate 3 with 

EC50 of 2pM. The growth inhibitory effect of novel acridine conjugates which were 

synthesised by N-alkylation at position-9 by spermine (4) or by spermine linked to 

one or two molecules of 5-aminovaleric acid 7 and 6, respectively, was also examined. 

These 5-aminovaleric acid units were incorporated in the conjugates in order to 

introduce a region of flexibility between the acridine and spermine, allowing the two 

binding regions to optimise their interactions. Compound 4 had an EC50 of ljiM 

which makes this compound more active inhibitor of B16 cell growth than any 

compound tested so far, the incorporation of a 5-aminovaleric acid unit (7) resulted in 

a compound which is approx. five fold more potent than 4, however the incorporation 

of another 5-aminovaleric acid unit (6) resulted in a large drop in potency with EC50 

of 30|iM.
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By linking polyamines to 9-anilinoacridines, it is envisaged that the resulting 

conjugates would display bifunctional modes of DNA binding, the strength of binding 

being greater than that of the intercalator or polyamine alone. Two compounds were 

proposed, para- disubstituted benzamide linking spermine to 9-anilinoacridine through 

an amide bond at the l'-position 9 and trisubstituted aromatic incorborating the 

potentially important 3'-methoxy group 10. The synthetic compound 9 had an EC50 

of 9J0.M while 10 had an EC50 of 5jliM.

The most potent compound in this series was 7 with EC50 of 0.27pM. This 

compound is approximately three orders of magnitude more potent than spermine 

alone and five-fold more potent than 4. The growth inhibitory effect of these 

compounds was not significantly altered by increasing the incubation time with B 16 

cells in contrast to results seen with other polyamine conjugates reported by Porter et 

a l , 1991. This supports the belief that the main effect of these compounds is due to 

binding to the DNA rather than metabolic influence. Whether or not the analogue 

interaction with DNA is solely responsible for the EC50 properties is still not at all 

clear. These are novel spermine analogues which offer a new lead in the design of 

cytotoxic polyamines with anti-cancer activity. However for the purpose of drug 

targeting to melanoma these compounds were not considered toxic enough for further 

evaluation of the relationship between their cellular uptake and toxicity on B16 

murine melanoma cells. In the absence of any stability studies on these polyamine 

conjugates. They were assumed unstable thus the toxicity assay was performed on all 

of them as soon as they were synthesised. The next step could be a full assessment of 

the stability of these conjugates, and determination of the biological activity of their 

degradation products.
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Chapter 5

Relationship between cellular uptake and toxicity for the anthracycline 

antibiotics (doxorubicin & daunorubicin) and the CC-1065 analogues 

(adozelesin & bizelesin) on B16 cells

5.1. Introduction

In this project we are interested in identifying cytotoxic compounds which are 

potent enough, in order to be considered as possible candidates for targeted 

drug delivery to melanoma cells. Having screened a selection of available 

cytotoxic agents and a series of novel polyamine conjugates, the most toxic 

compounds were the anthracycline antibiotics (doxorubicin and daunorubicin) 

and the CC-1065 analogues (adozelesin and bizelesin). In order to assess the 

potential for using any cytotoxic compound in forming the toxic component in 

a drug -NLDP conjugate for targeting to melanoma cells, it is necessary to 

relate the toxicity to the amount of cellular uptake by B 16 cells of the 

cytotoxic compound under investigation. Here we attempt to determine the 

relation between cellular uptake and toxicity for these compounds. None of 

the polyamine conjugates was considered sufficiently toxic for further study, 

due to their relatively high EC50 .
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Fluorescence of anthracycline antibiotics is one of the most striking 

physicochemical features of this class of antineoplastic agents. It has been 

shown that argon laser excitation in a flow cytometer (cell sorter) can be used 

for rapid detection and quantitation of cellular doxorubicin and daunorubicin 

fluorescence in a heterogeneous cell population (Krishan et a l, 1986). This 

property has been utilised in developing convenient, accurate and sensitive 

assays for anthracyclines in tissues and biological fluids, and it is used here to 

relate cellular uptake of the anthracycline antibiotics to their toxicity on B16 

cells. This assay is based on incubating a certain number B 16 cells with e.g. 

EC50 concentration of the anthracycline for a period of time then extracting 

the internalised anthracycline molecules, measuring their fluorescence and 

reading the corresponding anthracycline concentration from a calibration curve 

of fluorescence against concentration. Using this procedure the number of 

anthracycline molecules required to cause 50% inhibition of B16 cell growth 

can be determined.

FACS analysis of the uptake of daunorubicin and doxorubicin by B16 cells 

provides a direct qualitative comparison of their cellular uptake. However, 

FACS analysis is not suitable for a quantitative determination of the 

concentration of the anthracycline antibiotics producing a particular 

fluorescence. This is due to the fact that FACS measures the fluorescence 

emitted from a particular cell or bead, so it is not possible to get a calibration 

curve of fluorescence against concentration of the anthracycline antibiotics.



FACS provides a very sensitive comparison between the pattern of cellular 

uptake of each of the anthracycline antibiotics in relation to extracellular 

concentration, while spectrofluorometer measurements provide a quantitative 

determination of cellular concentration.

A biological assay was devised to assess the relationship between the mass of 

cytotoxic agents internalised by B16 cells and the observed toxicity of the 

cytotoxic agent being examined. The assay was performed on the CPI 

analogues (adozelesin and bizelesin) and daunorubicin. This biological assay 

is designed to test the growth inhibitory effect of the same number of 

molecules of a cytotoxic agent on increasing numbers of B16 cells. This 

means that if the fraction of molecules removed by a certain number of B 16 

cells is very small e.g. 1 or 2% of the total molecules available, then doubling 

the number of B 16 cells means that 2 or 4% of the total molecules available 

will be removed, with minimal (undetectable) effect on the growth inhibition 

data, and a minute reduction in the number of molecules in the supernatant 

thus the toxicity of the supernatant remains unchanged. On the other hand if 

the fraction of cytotoxic molecules removed by a certain number of B16 cells 

is high e.g. 40% of the initial number of molecules, then doubling the number 

of B 16 cells mean that 80% of total drug molecules are removed by B 16 cells, 

leaving 20% of the initial number of molecules in the supernatant. The 

reduction in the amount of drug remaining in the supernatant was determined 

using a second cytotoxicity assay. The concentration of the cytotoxic agent in 

the supernatant which produces the observed reduction in cell growth
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compared to control was read off a standard growth inhibitory curve for the 

compound being investigated. From the above the total number of molecules 

available, and the number of molecules remaining in the supernatant after 

incubation with a certain number of B16 cells can be estimated, from this the 

number of cytotoxic molecules required to produce a reduction in the growth 

of B 16 cells compared to control cells can be elucidated. Control experiments 

were carried out to assess the stability of cytotoxic agent in the supernatant. 

One problem with this assay is its inability to assess the number of molecules 

remaining on the cell surface which may subsequently be washed away. 

However this difficulty also exists with other assays, such as the fluorescence 

assay, designed to estimate the cellular uptake of the anthracycline antibiotics.

5.2. Results

In this chapter the toxicity of methotrexate, doxorubicin, daunorubicin, 

adozelesin and bizelesin on B16 melanoma cells have been determined 

following different periods of continuous incubation with B16 cells (fig 5.3). 

The graph in (fig 5.4) shows a dose-dependent growth inhibitory effect of 

adozelesin and bizelesin following continuous exposure to B16 cells for 4 

hours and 72 hours as determined from the MTT assay.
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Fig.5.3. Mean EC50  values of methotrexate, doxorubicin, daunorubicin, 

adozelesin and bizelesin as determined using the mtt assay after incubation 

with B 16 murine melanoma cells for various time periods. Each mean EC50 

value represents the average of 3 independent assays with 6 replicate samples 

for each data point.
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Fig.5 4. Dose-dependent growth inhibitory effect of adozelesin and bizelesin 

following continuous exposure to B 16 cells for 4 hours and 72 hours as 

estimated by the MTT assay. Each curve represents the average of 3 

independent assays with 6 replicate samples for each data point. Error bars 

have been omitted for clarity (SE of all values < 20%).

In order to measure the fluorescence of the anthracycline antibiotics 

(doxorubicin and daunorubicin), it was necessary to determine the absorption 

maxima and use this as the excitation wavelength when determining the 

emission maxima for doxorubicin and daunorubicin figs 5.5 and 5.6, 

respectively.
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The graph in fig 5.9 shows the fluorescence of the anthracycline antibiotics 

internalised by 5000 B16 cells, as measured using FACS. Figs 5.10 and 5.11 

are calibration curves of fluorescence against the concentration of the 

anthracycline antibiotics doxorubicin, daunorubicin, respectively, as measured 

using spectrofluorometer.

The results of the biological assays on daunorubicin, adozelesin and bizelesin 

are shown in figs 5.12, 5.13 and 5.14, respectively.
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Fig 5 6 . Emission spectra of daunorubicin at excitation X of 488nm
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Fig.5.8. FACS analysis showing fluorescence of daunorubicin internalised by B16 

cells after incubating various concentrations of daunorubicin with B 16 cells for 4 

hours at 37°C (excitation X of 488nm and emission X of 575 nm). The fluorescence 

of 5000 B 16 cells was measured for each concentration.
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Fig 5.9. Fluorescence of the anthracycline antibiotics internalised by B16 cells, after 

incubating various concentrations of the antibiotics with B 16 cells for four hours at 

37°C (excitation X of 488 nm and emission X of 575 nm). The fluorescence of 5000 

B16 cells was measured for each concentration.
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Fig 5.10. A calibration curve of fluorescence (at excitation X of 488 nm and 

emission X of 575 nm) and doxorubicin concentration as determined using a 

spectrofluorometer.
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Fig 5.11. A calibration curve of fluorescence (at excitation X of 488 nm and 

emission X of 575 nm) and daunorubicin concentration as determined using a 

spectrofluorometer.
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Fig.5.12. Growth inhibitory effect of a constant number of moles of daunorubicin 

on various numbers of B 16 cells, after incubation at 37°C for four hours and 

incubation in a drug free media for 72 hours. A growth inhibitory effect of the 

supernatant above (after incubation with B16 cells for four hours) was determined by 

incubation with a fresh sample of B 16 cells for four hours and incubating the cells in 

a drug free medium for 72 hours. Each curve represents one experiment with four 

replicate samples for each data point used. The above experiment was repeated 

twice giving similar results.
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Fig.5.13. Growth inhibitory effect of a constant number of moles of adozelesin on 

various numbers of B 16 cells, after incubation at 37°C for four hours and incubation 

in a drug free medium for 72 hours. A growth inhibitory effect of the supernatant 

above (after incubation with B16 cells for four hours) was determined by incubation 

with a fresh sample of B 16 cells for four hours and incubating the cells in a drug free 

media for 72 hours. Each curve represents one experiment with four replicate 

samples for each data point used. The above experiment was repeated twice giving 

similar results.
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Fig.5.14. Growth inhibitory effect of a constant number of moles of bizelesin on 

various numbers of B16 cells, after incubation at 37°C for four hours and incubation 

in a drug free medium for 72 hours. A growth inhibitory effect of the supernatant 

above (after incubation with B 16 cells for four hours) was determined by incubation 

with a fresh sample of B 16 cells for four hours and incubating the cells in a drug free 

media for 72 hours. Each curve represents one experiment with four replicate 

samples for each data point used. The above experiment was repeated twice giving 

similar results.
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Discussion

Estimation of doxorubicin and daunorubicin uptake by B16 cells

In the experiments described in this chapter the cytotoxicity of the two 

antibiotics daunorubicin and doxorubicin have been determined after 4 hours 

continuous incubation with B 16 cells, at which point the amount of 

anthracyclines responsible for the observed toxicity was estimated.

Following 72 hours continuous incubation of the anthracycline antibiotics 

(doxorubicin and daunorubicin) with B 16 cells they appear to have similar 

EC50  values (chapter 3). There was a slight change in the EC50 of 

daunorubicin following only 4 hours incubation with B 16 cells, and a further 

incubation of the cells in a drug free media for a further 72 hours. The 

concentration of doxorubicin which resulted in 50% cell death after incubation 

with B16 cells for four hours was 2.27E-7M as determined by the MTT assay, 

compared to 1.55E-8M following 72 hours continuous incubation (fig 5.3). 

That is the EC50 of doxorubicin approximately one order of magnitude higher 

when determined after 4 hours incubation with B16 cells compared to 72 hours 

incubation period.

These results are supported by FACS analysis of B 16 cells after incubating 

them with either doxorubicin or daunorubicin for 4 hours (figs 5.9). It shows 

higher cellular fluorescence of B 16 cells (after incubating them with
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daunorubicin) than B 16 cells incubated with similar concentrations of 

doxorubicin. There are several possible reasons for this. The plasma 

membrane has been suggested as an important target in the cytotoxic effect of 

doxorubicin (Tokes e ta i ,  1982).

Cells exposed to daunorubicin were 2 to 4 times more fluorescent than were 

cells similarly exposed to doxorubicin and the intracellular appearance of 

daunorubicin fluorescence was much more rapid (Krishan and Ganapathi, 

1980).

Chemical structures of daunorubicin and doxorubicin differ only by a single 

hydroxyl group on C14 (fig 5.1). The extra hydroxyl group on doxorubicin 

means doxorubicin is more polar (more lipophobic /  more hydrophilic) than 

daunorubicin which means doxorubicin is less able to cross biological lipid 

membranes than daunorubicin . This may explain why cellular uptake of 

daunorubicin markedly exceeds that of doxorubicin. Another possible 

explanation for the differences in cellular uptake of these anthracyclines is that 

the active efflux of doxorubicin may be more rapid than that of daunorubicin.

Estimation o f doxorubicin uptake by B16 cells

In order to get an approximate estimation of the number of moles of 

doxorubicin which are internalised in order to cause on average 50% growth 

inhibition of B16 cell, we incubated 5 x 10^ B16 cells in 25 ml medium (v l) 

containing 2.27E-7 M doxorubicin (cl). These B16 cells were then washed
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and the internalised doxorubicin was extracted in 4 ml of extraction solution 

(v2) (as described in methods section) and its fluorescence was measured and 

the equivalent concentration (c2) was read of a calibration curve of 

doxorubicin fluorescence against its concentration (fig 5.10).

Number of moles of anthracycline internalised by one B 16 cell (N)

= c2 x v2 / 1000 x n = N 

Where is

c2 : Concentration of anthracycline in the extraction solution 

v2: Volume of the extraction solution

n: Number of B16 cells from which the anthracycline was extracted

Fluorescence of internalised doxorubicin after incubating 2.27E-7 M (cl) with 

B16 cells for four hours was (250.00±15.70; N = 6). This is equivalent to 

1.5E-8 M (c2) (fig 5.10). From this, the number of moles of doxorubicin 

internalised per one B16 cell is (1.5E-8 X 4 / 1000 x 5E5^ = 1.2E-16 moles of 

doxorubicin are required to inhibit on average the growth of B16 cell by 50%, 

compared to control growth of B 16 cell incubated under the same conditions 

but without the presence of doxorubicin.

Fraction of the EC5Qof anthracycline antibiotic which is internalised to cause 

the 50% growth inhibition = [c2 x v2 / c l x v l] x 100%
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Where is

c l: Concentration of the anthracycline in the incubation medium 

v l: Volume of the incubation medium

c2: Concentration of the anthracycline in the extraction solution 

v2: Volume of the extraction solution

Fraction of the EC5Qof doxorubicin which is internalised by B 16 cells to cause 

the 50% growth inhibition = [1.5E-8 x 4 / 2.27E-7 x 25] x 100% = 1% of the 

EC5Qof doxorubicin is internalised by B16 cells to cause the 50% growth 

inhibition.

Estimation o f daunorubicin uptake by B16 cells

In order to get a rough estimation of the number of moles of daunorubicin 

which are internalised in order to inhibit on average the growth of B 16 cell to 

50% compared to control. We incubated 5 x 10^ B16 cells in 25 ml media 

(v l) containing 1.67E-8 M daunorubicin (c l) for 4 hours. These B 16 cells 

were washed and the internalised daunorubicin was extracted in 4 ml of 

extraction solution (v2) (as described in methods section) and its fluorescence 

was measured and the equivalent concentration was read of a calibration curve 

of daunorubicin fluorescence against its concentration (c2) (fig 5.11). 

Fluorescence of internalised daunorubicin after incubating 1.67E-8 M with 

B16 cells for 4 hours was (166-6719.10; N = 6). This is equivalent to 8.0xE-9 

M (fig 5.11). From this the number of moles of daunorubicin internalised by a



B16 cell is (8xE-9 X 4/ 1000 x 5xE5) = 6.4xE-17 moles of daunorubicin are 

required on average to inhibit the growth of B 16 cell to 50% compared to 

control.

Fraction of the EC5Qof daunorubicin which is internalised by B16 cells to 

cause the 50% growth inhibition = [8E-9 x 4 /  1.67E-8 x 25] x 100% = 8 % of 

the EC5Qof daunorubicin is internalised by B16 cells to cause the 50% growth 

inhibition.

From above daunorubicin and doxorubicin appear to have similar potency on 

B 16 cells in terms of the number of moles of each of them which causes 50% 

growth inhibition. Due to differences in the ability of these two anthracycline 

antibiotics to be internalised by B16 cells, about one order of magnitude more 

molecules of doxorubicin are required in the extracellular cellular environment 

in order to internalise similar number of molecules as daunorubicin, this is in 

agreement with the FACS analysis for the cellular uptake of these two 

anthracycline antibiotics (fig 5.9).

The cellular uptake of adozelesin and bizelesin by B16 cells

After only 15 minutes of continuous incubation with B 16 cells the toxicity of 

adozelesin (EC50 4.8E-10 M) (fig 5.3) was not significantly different from the 

four hour incubation period (EC50 2.28E-10M).(fig 5.3). The change was 

much greater for bizelesin which had EC50 of 1.01E-11 M (fig 5.3) after 4 

hours of continuous incubation with B16 cells, this was reduced to EC50 of
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2.5E-10M (fig 5.3) after only 15 minutes of continuous incubation with B16 cells, that 

is approximately 25 fold reduction in the potency of bizelesin.

From the above results it appears that adozelesin needs a shorter time to be 

internalised by B 16 cells than bizelesin although bizelesin is more potent than 

adozelesin once its internalised by B16 cells.

The concentration of bizelesin which reduces the growth of B 16 cells to 80% of the 

control after 4 hours incubation with the compound was 2.5E-12M (fig 5.4), and that 

for adozelesin was 4E-11 M (Fig 5.4) this means that bizelesin is approximately 16 

fold more potent than adozelesin under these conditions. The concentration of 

bizelesin which inhibits the growth to 20% of the control cells was IE-9 M and this is 

the same concentration of adozelesin which inhibits the growth of B16 cells to 20% of 

the control growth, adozelesin go on to be more toxic than bizelesin at concentrations 

higher than 1E-9M (Fig 5.4) under similar incubation conditions.

The solubility of adozelesin and bizelesin in water is approximately lpg/ml (Upjon 

Chemical Company data sheet). The EC50 for adozelesin after incubation with B 16

cells for four hours was 2.28xE-10M. Molecular weight for adozelesin is 502.23.

This means the amount of adozelesin dissolved in the medium at the EC50 value is

1.14E-4pg/ml which is 8.8E3 fold less than its solubility in water.



The EC50 of bizelesin is IE -11M after 4hours incubation with B16 cells. Molecular 

weight for bizelesin is 815-7. This means the amount of bizelesin dissolved in the 

medium at the EC50 value is 8.15E-6|ig/ml which is 1E5 fold less than its solubility

in water. This rules out any influence of the solubility of either of the compounds on 

the EC50 data and on the observed results of the biological assays for both compounds

Adozelesin appears to enter the cell much more freely than bizelesin. Thus increasing 

the extracellular concentration of adozelesin means a rapid increase in the mass of 

drug internalised by B 16 cells compared to bizelesin which appears to be more 

restricted in entering the cell, it follows that increasing the extracellular concentration 

of bizelesin increases the mass of drug crossing the cell membrane but this increase is 

much less than that for adozelesin.

In the biological assay described here, a constant concentration of drug (lOx of the 

EC50) was incubated with increasing number of B16 cells. This assay explores what

happen at the EC50 of the cytotoxic agents looked at here. Does the cytotoxic agent 

become internalised totally from the media, or is the fraction responsible for for the 

EC50 too small compared to the amount of cytotoxic agent remaining in the medium.

An equation for the novel biological assay is derived here
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If we define the following

C: Initial amount of compound in the incubation medium

A: Amount of compound internalised by one cell

T: Number of cells in the incubation medium

R: Amount of compound remaining in the incubation medium

Then;

R = C-[A X T] 1 

[A X T] = C-R 2 

A = C-R / T 3

C is constant; T is dependent variable; R can be determined indirectly by 

performing a cytotoxicity assay on the supernatant and reading the 

concentration from a calibration curve of dose dependent growth inhibitory 

effect of the same compound. Amount of compound internalised by one cell 

(A) is the only unknown in equation 3, and so can be determined.

When the amount of compound removed by cells in the incubation medium is 

too small (A X T = 0), then C = R 4

When the amount of compound removed by cells in the incubation medium is 

too large (A x T = C), then R = 0 5

From (figure 5.12) it appears that at less than IE-15 moles of daunorubicin per 

a B16 cell, the amount of daunorubicin internalised by a B 16 cell is very small 

compared to the amount of daunorubicin remaining in the media C = R. As 

the number of moles of daunorubicin per a B 16 cell in the media is greater
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than 2E-15 moles, the larger the amount of daunorubicin per a B16 cell 

resulted in increase in the amount of daunorubicin being internalised by a B 16 

cell (this is illustrated by an increase in the growth inhibitory activity fig 5.12) 

while the amount of daunorubicin remaining in the supernatant appears to 

change very little (this is illustrated by a constant growth inhibitory activity of 

the supernatant). This gives the impression that daunorubicin enters the B 16 

cell rapidly and raising the amount of daunorubicin in the media above certain 

threshold will result in increase in the amount of daunorubicin entering the cell 

leaving a threshold level of daunorubicin in the media. These results appear to 

be in agreement with the FACS analysis described here which shows that 

internalisation of daunorubicin occurs very quickly at much lower 

concentrations than doxorubicin (fig 5.9). Also from figure 5.12 it appears 

that less than 8E-16 moles of daunorubicin are required to inhibit on average 

the growth of a B 16 cell by 50%, the amount of daunorubicin remaining in the 

media appears to have similar growth inhibitory effect on a fresh sample of 

B16 cells.

It was determined from the fluorescence assay that 8 % of the EC5Qof 

daunorubicin is internalised by B16 cells to cause the 50% growth inhibition, 

this explains the apparent unchange in the toxicity of the supernatant on a 

fresh sample of B 16 cells. The number of moles of daunorubicin which are 

required on average to inhibit the growth of B16 cell to 50% compared to 

control is 6.4xE-17 as determined from the fluorescence assay. This is only 

one order of magnitude different from the value predicted by the biological 

assay.
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From the biological assay of adozelesin on B16 cells (fig 5.13), it appears that 

less than 3E-18 moles of adozelesin are required to inhibit on average the 

growth of a B 16 cell by 50% compared to control cell. The supernatant 

appears to have very similar growth inhibitory effect on a fresh sample of B 16 

cells indicating that the amount of adozelesin removed from the media to 

cause the EC50 is too small compared to the number of moles of adozelesin 

remaining in the supernatant.

From the biological assay of bizelesin on B16 cells (fig 5.14) it appears that 

less than 2E-20 moles of bizelesin are required to inhibit on average the 

growth of a B 16 cell by 50% compared to control cell, with the amount of 

bizelesin remaining in the media exerting minor inhibitory effect, indicating 

that either most of the drug is internalised into B 16 cells or fallen below 

threshold at which the amount of bizelesin in the supernatant is too dilute to 

inter the cell. Increasing the number of moles of bizelesin per a B16 cell to 

3E-19 moles resulted in a very similar growth inhibitory effect on a B 16 cell, 

while the supernatant appears to have enough bizelesin to inhibit the growth of 

a fresh sample of B 16 cells by 50% compared to control. This may indicate 

that bizelesin is extremely potent but it is more restricted in entering the cell 

thus the EC50 value for this compound will underestimate its true potency. 

These results are in agreement with the results obtained following toxicity 

assay of bizelesin on B 16 cells after various periods of incubation with 

bizelesin (fig 5.3), and that bizelesin appears to be extremely potent but it's 

cellular uptake appears to be restricted (figure 5.4).



It was observed that a 90% reduction in the growth of BSC-1 cells was 

observed, with 1E2 bizelesin lesions per cell compared to 1E4 lesions induced 

by the parent analogue CC-1065 (Woynarowski et al., 1995). The same 

authors have demonstrated a reduced lesion formation to DNA in whole cells 

compared to purified DNA, they have attributed the reduced lesion formation 

in whole cells to "limited entry of bizelesin into the cell". These observations 

are in a complete agreement with our findings here.

The above results illustrate the importance of distinguishing between the EC50

value of a cytotoxic compound and the potency of that toxic compound inside 

the cell. They also show that daunorubicin and doxorubicin are approximately 

equipotent in terms of the number of moles required to cause 50% growth 

inhibition of B 16 cells, they also show that adozelesin and bizelesin are more 

potent than daunorubicin in terms of the number of moles required to cause 

50% growth inhibition by at least 20 and 3200-fold respectively. When 

considering candidates for drug targeting to MSH receptors we are concerned 

with the number of moles which inhibit the growth of a melanoma cell rather 

than the EC50 ° f  compound the above results indicate the importance

between distinguishing between these two indicators.
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Chapter 6

Targeting of Methotrexate to melanoma by way of melanocyte stimulating

hormone

6.1. Introduction

MSH receptors

Receptors identified in several types of murine melanoma appear to be comparable in 

terms of binding properties, the dissociation constant (kd) of OC-MSH ranged from 

1.31-2.6E-9 M in B 16 and Cloudman melanoma cells (Siegrist et al., 1988). There 

was more variability in the kd values obtained in human lines at 0.92-2.2E-10M 

(Chhajlani and Wikberg, 1992). Receptors of human melanoma appeared to have 

approximately a 10 fold greater affinity for OC-MSH than murine lines.

The nomenclature of the cloned receptors is as follows. There are four melanocortin 

receptors from human origin they are called (MC-1 to MC-4) MC-1 being the first to 

be cloned and MC-4 the last. There is one melanocortin receptor from rat 

hypothalamus and it is called MC3-R which is an analogue of the human MC-3, and 

finally there is a melanocortin receptor from Cloudman mouse and it is called MSH-R 

(Table 6.1).
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R. subtype. R. origin Tissues expressed in Affinity for the natural 

melanotropins

Reference

MC-1 Human Melanoma cells, but not other 

tissues

a-MSH >ACTH (1-39) >p- 

MSH >8-MSH >ACTH (4- 

10)

Chhajlani and 

Wikberg, 1992

.MC-2 Human Brain tissues not in melanoma 

cells

a-MSH >ACTH (1-39) >p- 
MSH >5-MSH

Chhajlani et al, 

1993

MC-3 Human Brain, placenta and gut no data could be found Gantz et al, 

1993

MC-4 Human Brain notably absent in adrenal 

cortex, melanocytes and 

placenta

a-MSH=p-MSH=8-

MSH=ACTH
Gantz et al, 

1993

MC3-R Rat present primarily in the 
hypothalamus, but in smaller 

amounts in other brain regions

S2-MSH >Sl-MSH=a- 

MSH=ACTH (l-39)»>  

ACTH (4-10)

R.Cone,

personal
communicatio

n

MSH-R Mouse Cloudman melanoma cell a-MSH=P-MSH, 8-MSH 

had little or no affinity

Solca et al, 

1989

Table 6.1. Melanocortin receptor subtypes.

G eneration of 3T3 cells perm anently transfected with PCDNAI/Neo+M Cl)

When examining the selective toxicity of a melanotropin analogue linked to a 

cytotoxic agent on cell lines carrying MSH receptors, it is much easier to observe and 

interpret any selective toxicity due to the interaction of the conjugate with MSH 

receptors, if we have two cell cultures generated from the same clone, one carrying the 

MSH receptor and one w ithout. In this chapter we attempt to transfect 3T3 cells with 

(pCDNAI/Neo + M CI) using electroporation and thereby generate stable clones of 

3T3 cells with plasmids carrying the genetic code for expression of MCI receptors 

and another culture of cells with the same palsmids lacking the genetic code for
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expression of M C 1 receptors. Electroporation is a process whereby cells in 

suspension are mixed with the DNA to be transfected. This cell/DNA mixture is 

subsequently exposed to a high-voltage electric field. This creates pores in the 

membrane of treated cells that are large enough to allow the passage of 

macromolecules such as DNA into the cells. Such DNA molecules are ultimately 

transported to the nucleus, and a subset of these molecules are integrated into the host 

chromosomes. Here, we tried to select the clones of 3T3 cells which are permanently 

transfected with the plasmid.

The observation that electroporation yields a high frequency of permanent 

transfectants, has a high efficiency of transient gene expression, and is subsequently 

easier to carry out than alternative techniques has resulted in its increasing use in 

many applications (Potter, 1988) The amount of DNA that can be introduced into the 

nucleoli of electroporated mammalian cells is in the range of 0.5 pg, corresponding to 

10^ DNA molecule or 8% of total endogenous host DNA. The maximum size of 

DNA molecule that can be introduced by electroporation is at least 150 kb (Potter, 

1988).

To facilitate the isolation of cells stably transfected with the DNA of interest, a gene 

encoding a dominant selectable marker is usually included in the transfection protocol 

(in this case the plasmid containing a gene coding for resistance to geneticin). It is 

important to keep subculturing the transfected cells in the selection media (a media
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which contains geneticin), because transfected DNA can be relatively unstable in the 

host genome and therefore the reversion rates of transfected cells can be quite high.

Specific grow th inhibitory effect of M TX-NLDP conjugate on cells expressing the 

M SH receptors.

COOH
Ac-Ser-Tyr-Ser-R

COOH NLDP

methotrexate

Fig 6.1. Formation of the MTX-[NIe^,D-Phe^]a-MSH. The above reaction results in 

4 separate isomers, depending on which carboxyl group reacts with NLDP and 

because of possible racemisation of the a-carbon of the MTX-glutamate moiety.

The antifolate Methotrexate (MTX) enters cells through the reduced folate carrier,

present on almost all human cells due to the dependence on extracellular folate

sources. The drug exhibits very low specificity against tumour cells due to an

increased folate requirement, but it still has low selectivity for some tumour tissues.

The peptide analogue of MSH, NLDP-MSH, interacts with high affinity to specific

membrane receptors on some cells and will therefore have a more defined mode of

cellular binding. In order to increase the site specificity with which MTX exerted its

inhibitory effects on melanoma cells, the molecule was chemically coupled to an

4 7analogue of the naturally occurring hormone OC-MSH namely [Nle ,D-phe ]OC-MSH)

4 7on an equimolar basis forming the hormone drug conjugate (MTX-[NIe ,D-phe ]CC-
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MSH). The hypothesis was that if MTX-NLDP was not taken up by its normal route 

that is the folic acid pathway, but rather by a cell-specific receptor-mediated process

(in this case utilising the CC-MSH receptor). Then the drug would be targeted to cells 

which possess the MSH receptor, (rational for using the different cell lines) .

The growth inhibitory effect of the MTX-NLDP and MTX was assessed on the 

following cell lines

B16 cells are melanoma cells expressing the MSH receptor subtype MCI (Qarawi, 

1994) the number of receptors expressed varies between 5000-20000 (Sahm, 1994), 

because our MTX-NLDP conjugate is designed specifically to interact selectively on 

cells expressing the MCI receptors on melanoma cells. Melanoma cells appear to be 

the only site where the expression of MCI subtype is reported (Chhajlani and 

Wikberg, 1992). B16 cells provide a suitable in vitro model for melanoma cells.

293-MC3 cells, these are 293 epithelial cells transfected with the genetic code for the 

MSH receptor subtype MC3, and they were shown to express MC3 receptors (Qarawi,

1994). Due to the distribution of this receptor subtype to other parts of the body such 

as brain, placenta and gut (Gantz et al., 1993). Thus it was important to determine 

whether the MTX-NLDP conjugate has any selective toxicity against other MSH 

receptor subtypes such as MC3.
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Cos 7 and 293 cells express very few if any MSH receptors (Doherty, personal 

communication) and the same applies to 3T3 cells this study, so they provide three 

models for detection of non-selective toxicity of the conjugate.

There are several important questions which must be asked when considering the use

of the above hormone in a drug delivery system. 1-Is there a distribution of binding

sites on other (non-target) cells ? MCI.is the only melanocortin receptor subtype

known to date to be expressed only in melanoma cells (table 6 .1). 2-What is the

number of binding sites per cell ? For B 16 mouse melanoma cells there is inter

experimental differences in receptor number expressed by the cells which can vary

between 5,000 and 20,000 (Sahm, 1994). From binding studies on human melanoma

cell lines, the number of binding sites is generally lower than murine melanomas, e.g.

from undetectable to 2000 sites/cell (Eberle, 1988). 3-Does ligand binding induce

4 7receptor-mediated internalisation ? The conjugate MTX-[Nle ,D-phe ]0C-MSH

4 7demonstrated similar profiles of surface binding to the [Nle ,D-phe ]0C-MSH , the 

dissociation constant of the MTX-NLDP conjugate for MSH receptors on B 16 cells 

was 6nM, compared to 0.48nM for NLDPa-MSH thus the conjugate has a ten-fold 

lower affinity for the MSH receptor on B 16 cells (Richards, 1992). It has also been 

shown that the conjugate is internalised via receptor-mediated endocytosis (Whelan,

1995). If the receptor is recycled does the ligand dissociate within the cell and if so is 

it transported further along the endocytic pathway or is it returned to the cell surface 

intact with the receptor ? This question still has not been answered but Whelan 

(1995) has estimated that approx. 40,000 radiolabelled NLDPa-MSH molecules are 

internalised by receptor mediated endocytosis by a single B 16 cell.
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It has also been demonstrated that the lysosomal degradation products of MTX-NLDP 

had an equivalent inhibitory activity on DHFR as free MTX (Richards, 1992).

6.2. Results

MTT assay of geneticin on 3T3 cells

The MTT assay of geneticin on 3T3 cells was performed in order to determine the 

sensitivity of 3T3 cells to geneticin prior to transfection with a plasmid which carries 

the geneticin resistant gene.

10-

E 0.8-coO)
CD
0  0 . 6 -TT
ID
a*
8 0.4-
caJ
1
§ 0 2 -

«
cco
CD 0.0-
E

2.0-3.5 -3.0 -2.5 -2.0 -15 -10 -0.5 0.0 0.5 10 15

log concentration (1 mg/ml of) geneticin

Fig 6.2. Dose-dependent growth inhibitory effect of geneticin on 3T3 cells (prior to 

transfection) following exposure of 3T3 cells to geneticin for 96 hours as determined 

using the MTT assay. Each curve represents one independent experiment with 6
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replicate samples for each data point used. A total of two independent experiments 

were performed.

In order to determine the level of expression of MCI receptors on transfected 3T3 

cells, a binding assay was performed on 3T3 cells transfected with the genetic code for 

MCI receptor and control 3T3 cells.

3T3 clone Total binding CPM Non specific binding CPM

pCDNA/neo 327±16 272±10

clone 1 363±11 372±29

clone 2 316±22 324±29

clone 3 324±26 341±53

Table.6.1 The specific binding activity of three clones of 3r"3 cells transfected with

plasmid containing MCI receptor and cells transfected with plasmid without the 

genetic code for the receptor after incubation with 2.28E-10 M of radioiodinated 

NLDPa-MSH(H) and 2.28E-7M non iodinated ligand (H+C). Each value represents 

the average of three independent binding assays with 3 replicate samples for each data 

point.

3T3 clone Total binding CPM (H) Non specific binding CPM 

(H+C)

pCDNA/neo 630±20 690±26

clone 1 911±37 806±30

clone 2 650±26 594±30
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clone 3 642±26 624±37

Table.6.2 The specific binding activity of three clones of 31"3 cells transfected with

plasmid containing MCI receptor and cells transfected with plasmid without the 

genetic code for the MCI receptor after incubation with 4.56E-10 M of radioiodinated 

NLDPa-M SH (H) and 4.56E-7M non iodinated ligand (H+C). Each value represents 

the average of three independent binding assays with 3 replicate samples for each data 

point.

Using the MTT assay, growth inhibitory effects of MTX and the hormone drug

CX 4 7
conjugate (N MTX-[Nle ,D-phe ]OC-MSH) were examined against a variety of cell

(X 4 7
lines in order to see whether the N MTX-[Nle ,D-phe ]OC-MSH has selective

toxicity against cells with MSH receptors as compared with cells without the MSH

receptor. These cell lines included

B16; Murine melanoma cells which have surface MSH receptors.

293-MC3; Transformed human epethelial 293 cells expressing MC3 receptors .

Cos 7; Transformed cells from the kidney of green African monkey.

3T3; Murine embryonal fibroblast.

The MTT assay was optimised for each cell line, prior to carrying out the MTT assay 

on these cell lines, in order to assess the growth inhibitory effect of MTX and MTX- 

NLDP conjugate on them. The time required for viable cells to metablise detectable 

amounts of tetrazolium to formazan was determined as 4 hours for 3T3, Cos 7 and 6 

hours for 293 cells. Incubation time of 96 hours of each cell line was required to 

achieve between 2 to 3 cell doublings.
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Fig 6.3. Correlation of viable 293 cell number with the absorbance of their 

metabolised MTT at 540nm (test wavelength) and 690nm (background), after 

incubation of cells with MTT for various time periods. Each point represents the 

mean value for 8 independent determinations performed in one experiment.
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Fig 6.4. Relation between absorbance of metabolised MTT by 293 cells and their 

inoculation density, after incubation in RPMI media for various time periods, 

followed by incubation with serum-free RPMI media containing 1 mg/ml MTT for 6 

hours. Each point represents the mean value for 8 independent determinations 

performed in one experiment.
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Fig 6.5. Correlation of viable 3T3 cell number with the absorbance of their 

metabolised MTT at 540nm (test wavelength) and 690nm (background), after 

incubation of cells with MTT for various time periods. Each point represents the 

mean value for 8 independent determinations performed in one experiment.
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Fig 6.6. Relation between absorbance of metabolised MTT by 3T3 cells and their 

inoculation density, after incubation in RPMI media for various time periods, 

followed by incubation with serum-free RPMI media containing 1 mg/ml MTT for 

four hours. Each point represents the mean value for 8 independent determinations 

performed in one experiment.
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Fig 6.7. Correlation of viable Cos 7 cell number with the absorbance of their 

metabolised MTT at 540nm (test wavelength) and 690nm (background), after 

incubation of cells with MTT for various time periods. Each point represents the 

mean value for 8 independent determinations performed in one experiment.
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Fig 6.8. Relation between absorbance of metabolised MTT by Cos 7 cells and their 

inoculation density, after incubation in RPMI media for various time periods,

followed by incubation with serum-free RPMI media containing 1 mg/ml MTT for 

four hours. Each point represents the mean value for 8 independent determinations 

performed in one experiment.

Cell line EC50 (M) a EC50  (M) b EC50  (M) c mean

EC50

SE [±] N

B16 1.00E-07 3.0E-8 2.20E-8 5.0E-8 2.5E-8 3

293-MC3 3.00E-08 5.90E-08 4.50E-08 4.47E-08 8.37E-09 3

Cos 7 2.80E-07 3.50E-07 1.60E-07 2.63E-07 5.55E-08 3

3T3 3.70E-08 2.50E-07 3.20E-08 1.07E-07 7.25E-08 3

Table 6.3. EC50  values from MTT assay of MTX on several cell lines, after 

incubation with B 16 murine melanoma cells for 72 hours, with 293-MC3 cells and 

3T3 for 96 hours. Each mean EC50  value represents 1 independent assay with 6 

replicate samples for each data point.
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Cell line EC50 (M) a EC50 (M) b EC50 (M) c mean EC50 SE [±] N

B16 6.60E-04 2.10E-04 7.30E-05 3.10E-4 1.80E-04 3

293-MC3 5.00E-06 2.12E-05 2.80E-05 2.0E-05 6.82E-06 3

293-Vector 7.40E-06 7.40E-06 1

Cos 7 2.70E-05 3.50E-05 3.0E-05 2.83E-06 2

3T3 4.20E-06 6.12E-06 1.50E-06 3.94E-06 1.34E-06 3

Table 6.4. EC50 values from MTT assay 0 r MTX-NLDP on several cell lines, a 'ter

incubation with B 16 murine melanoma cells for 72 hours, with 293-MC3 cells, 293- 

vector and 3T3 for 96 hours. Each mean EC50 value represents 1 independent assay 

with 6 replicate samples for each data point.

150



0.0001

0.00001

MTX-NLDPMTX MTX-NLDP MTX-NLDP

Fig. 6.9. Mean EC50  values of Methotrexate and MTX-NLDP as determined using 

the MTT assay after incubation with B 16 murine melanoma cells for 72 hours, with 

293-MC3 cells and 3T3 for 96 hours. Each mean EC50  value represents the average 

of 3 independent assays with 6 replicate samples for each data point.

HPLC analysis of the MTX-NLDP conjugate was performed at 307nm (the absorption 

maxima for MTX). The analysis was carried out in order to detect any MTX 

impurities in the conjugate.

Each of figs 6 .10, 6 .11, and 6 .12 are elution profiles of 1.3E-5 M MTX, MTX-NLDP 

and NLDP, at different detection sensitivity to illustrate the fact that the MTX-NLDP 

conjugate contains only traces of MTX impurities and can only be detected at an 

extremely sensitive setting.
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Fig 6.10. This figure shows the elution profile of the following samples at 307nm:

[Nle4,D-Phe7]a-MSH, Na MTX[Nle4,D-Phe7]a-MSH, MTX. (see text for details).
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Fig 6.11. This figure shows the elution profile of the following samples at 307nm:

[Nle4 , D-Phe7]ot-MSH, N«MTX(Nle4,D-Phe7]a-MSH, MTX. (see text for details).
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Fig 6.12. This figure shows the elution profile of the following samples at 307nm:

[Nle4 ,D-Phe7 |a-MSH, N«MTX[Nle4, D-Phe7la-MSH, MTX. (see text for details).
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The stability of the MTX-NLDP conjugate was then assessed and a complete analysis 

report is presented in appendix E. An elution profile for a peak with retention time of 

2.53 minutes was observed when pure MTX sample was injected. Another peak was 

observed when a MTX-NLDP sample was injected into the HPLC with retention time 

of 2.60 minutes. The area under this peak was (1157389) compared to a peak at 

retention time of 2.65 minutes when the same MTX-NLDP sample was incubated at 

37°C for 96 hours with an area of (8532496). This presents more than seven folds 

increase in the level of apparent MTX impurities in the conjugate after 96 hours 

incubation compared to a freshly dissolved conjugate in sterile PBS.

6.3. Discussion

The expression of MCI receptors on the stably transfected cells was assessed using a 

binding assay, the transfected cells have not exhibited specific binding activity when 

compared to 3T3 cell transfected with vector. It is possible that the number of MCI 

receptors expressed on 3T3 cells was not high enough to be detected using this 

binding experiment.

The results of growth inhibitory assays of MTX and MTX-NLDP conjugate on several 

cell lines are summarised in tables 6.3 and 6.4, these results show that the conjugate is 

several orders of magnitude less potent than that of MTX alone. The conjugate 

appears to have similar toxicity against 293-MC3 cells which have on average 50,000 

MSH receptors (Sahm, 1994) and (293-vector, 3T3 Fibroblast and Cos 7 cells which 

have no MSH receptors). B16 murine melanoma cells (which have between 5,000
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and 20,000 MSH receptors/cell (Sahm, 1994) were at least 10 times more resistant to 

the conjugate.

One explanation of these observations is that some of the conjugate is internalised into 

B16 and 293-MC3 cells, by receptor-mediated endocytosis, but the number of 

molecules being taken up through this specific route was not sufficient to have any 

growth inhibitory effects. Since we need approx. 5.4E-5 molecules of MTX in order 

to achieve on average growth inhibition of half the B 16 cells (Whelan, 1995)

The MTX-NLDP conjugate had a forty fold lower affinity than MTX for DHFR 

(Richards, 1992). If we consider the different types of endocytosis discussed in 

chapter one, pinocytosis and adsorptive endocytosis will be responsible for greater 

share of the cellular uptake of the conjugate when the extracellular concentration of 

the conjugate is increased by a 6000-fold. Thus it is possible that a contribution to the 

toxicity data of the conjugate is due simply to pinocytosis and adsorptive endocytosis 

of the MTX-NLDP conjugate.

Also due to the differences between the potency of the conjugate and that of MTX as 

determined using the MTT assay, with MTX being several orders of magnitude more 

potent than MTX-NLDP it was important to find out if the conjugate contains traces 

of free MTX, and to be sure that the observed toxicity of the conjugate has not been 

caused mainly by free MTX. HPLC analysis of the MTX-NLDP conjugate (fig 6.11) 

has shown that the conjugate contains traces of MTX impurities.
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It would appear that most of the observed toxicity of the conjugate can be accounted 

for by the presence of free MTX, hence the increased toxicity of the MTX-NLDP 

conjugate on 3T3 and 293 cells which were incubated with the conjugate for 96 hours 

compared to it's toxicity on B 16 cells which were incubated with the conjugate for 72 

hours might be explained by the minor degradation of the MTX-NLDP.

From above it is clear that the use of the MTX-NLDP conjugate as a specific drug 

delivery system for melanoma was not successful for several reasons outlined in the 

discussion above. It is hoped to consider the practical difficulties observed with this 

conjugate, and our interpretation for its lack of specificity for melanoma and try to 

circumvent them in the design of a future drug targeted melanotropin analogue 

specific for melanoma cells.
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Concluding discussion

The feasibility of active targeting of cytotoxics to melanoma cells by conjugation to 

MSH analogues, has been investigated here.

, Before initiation of this study, it had already been established in our laboratory, that 

[125i_Tyr2-Nle4,D-Phe7]a-MSH displayed specific binding to MSH receptors 

expressed by B 16 cells of Kd 0.37-.87 nM. It was also known that between 5000 and 

20000 binding sites per B 16 cell were available, the NLDPa-MSH has been shown to 

elicit biological action through binding to the MSH-membrane receptor (Sahm, 1994). 

In the work carried out by Adam, 1993 it was shown that [125i_Tyr2_Nle4,D-Phe7]a- 

MSH was bound to the MSH receptor on the surface of B 16 cells and was 

subsequently internalised, and that once within the cells, the ligand made its way to 

the lysosome, were the degradation of the ligands occur. Work done by Sahm, 1994 

has shown that coupling of drugs to the N-terminus of a-MSH has very little effect on 

the affinity of a-MSH to the MSH receptor on B 16 cells. By adding larger moieties to 

the [NLDP]a-MSH such as biotin [ l^ i.T y ^ -N ^ JD -P h e^ ja -M S H , internalisation 

occurred but at a reduced rate (Adam, 1993). Whelan, 1995 has shown that 

approximately 4E4 [NLDP]a-MSH molecules are internalised by a B 16 cell through 

receptor mediated endocytosis.

From above we need a potent drug to conjugate with the N-terminus of a melanotropin 

analogue in order to get enough molecules to be internalised via receptor mediated 

endocytosis to cause a B16 cell death. Ideally we are looking at a cytotoxic agent



which is potent enough if internalised by melanoma cells through receptor mediated 

endocytosis, this mean it needs tens of thousands of molecules to kill a melanoma cell.

In vitro screening was carried out to determine the EC50 values of a selection of 

existing cytotoxic agents and novel polyamine conjugates. Work carried out here 

demonstrated that the EC50 value of a cytotoxic agent is not the only indicator of 

potency, it should be looked at in conjunction with further analysis of the cellular 

uptake, in order to be able to establish what fraction of the extracellular concentration 

of the cytotoxic agent is responsible for the observed EC50 value. This is important 

here because we are interested in potency in terms of the amount of drug which needs 

to be internalised through receptor mediated endocytosis rather than the amount of 

drug in the extracellular environment which causes growth inhibition.

Thus for small lipid soluble compounds, which are internalised rapidly by B16 cells 

through passive diffusion of the drug from the incubation media, such as daunorubicin 

which crosses the cell membrane rapidly through passive diffusion (Tarasiuk et a l, 

1989). The EC50 values are generally a good indication of their potency.

On the other hand for a compound which is very polar, and /or transported into cells 

via active transport process, such as MTX which is transported into cells via the 

carrier system present for the naturally occurring reduced folates. The EC50 values 

might be an underestimation of the potency of these compounds. It is possible that 

only a minute fraction of the extracellular drug is internalised into the cell, before an 

equilibrium is reached. This internalised minute fraction could be responsible for the
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observed toxicity, provided that the drug does not act on cell membrane to cause 

toxicity.

The selectivity of an existing Na MTX-[Nle^,D-Phe^]a-MSH was investigated 

The conjugate employed in this study consisted of two components, both capable of 

binding to cell membranes. The antifolate MTX enters cells through the reduced 

folate carrier, present on almost all human cells due to dependence on extracellular 

reduced folate sources. The affinities usually encountered for MTX and reduced 

folates are in the micro-molar range (Ritchards, 1992), while the peptide analogue of 

MSH (NLDPa-MSH) interacts with high affinity, kd values in nano-molar range , and 

will thus have a more defined mode of cellular binding.

Therefore if the effects of the conjugate were mediated exclusively through MSH

receptors it would be very logical to assume that a very high level of Na MTX- 

[Nle4,D-Phe7]a-MSH must be present before any growth inhibitory effect is seen on

293-vector and 3T3 cells if we were to claim any selectivity of Na MTX-[Nle4,D- 

Phe^Ja-MSH for cells expressing the MSH receptor. Given that the mass of MTX 

which needs to be internalised by a B 16 cell in order to inhibit its growth is 

approximately 1E6 molecules (1.7E-18 moles of methotrexate) (Whelan, 1995), and 

the number of NLDP molecules internalised by a B 16 cell through receptor mediated

endocytosis (4E4 molecules) we would have expected Na MTX-[Nle^,D-Phe^]a- 

MSH to be less potent than MTX due to the reduced number of conjugate molecules 

internalised by a B 16 cell but more selective for cells expressing the MSH receptors 

than free MTX.
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The MTX-NLDP conjugate did not show any selective toxicity on cells expressing the 

MSH receptor in vitro. The lack of selectivity of the conjugate in vitro was attributed 

to the presence of traces of MTX impurities, these MTX impurities would have 

masked any selective toxicity of the conjugate. From this it is believed that the in 

vitro comparison of cytotoxicity of MTX and MTX-NLDP conjugate is less than ideal 

and can be misleading. This is due to the fact that MTX-NLDP was designed in order 

to have different pharmacokinetics from free MTX. The in vitro assay does not 

permit MTX-NLDP to demonstrate fully its altered pharmacokinetics, and despite the 

fact that the MTX-NLDP had traces of free MTX their effect in vivo could be minute. 

The conjugate is designed to be selectively retained by cells expressing the 

melanotropin receptors and free MTX would be washed away with the flow from the 

receptor site, thus it is possible that the MTX-NLDP conjugate has selective toxicity 

against melanoma cells in vivo.

The in vitro system for assessing the growth inhibitory effect, which is described here 

has the potential to rapidly identify new agents with perhaps novel mechanisms, such 

as the novel polyamine conjugates. It was further modified to obtain a relation 

between the growth inhibitory effect and cellular uptake, but the in vitro system may 

not be adequate for assessing alterations in the pharmacokinetics of a drug-polymer 

conjugate compared to a free drug. The in vitro screening system should be 

complemented by a parallel in vivo models where data obtained from in vitro models 

is examined.
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Undoubtedly the study of drug-targeting via MSH (or other hormones) involves many 

different aspects with apparently insurmountable problems, e.g. the establishment of a 

suitable model for the study of transcytosis in the endothelial vasculature, or a 

successful biodistribution of the conjugate in vivo. However I hope this study has 

formed part of the platform for the advancement of further work.
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Appendix A 

Experimental data for chapter 3

column y (mean Abs) se [yEr±] x (cell 
number)

A 0.49713 0.02215 31600
B 0.49725 0.02835 28440
C 0.43263 0.02785 25280
D 0.32262 0.02258 22120
E 0.27238 0.01324 18960
F 0.1955 0.02403 15800
G 0.1745 0.01561 12640
H 0.13563 0.01448 9480
I 0.06463 0.00338 6320
J 0.029 0.00398 3160

Table 3.1a. Incubation of B16 cells with mtt for 1 hour.

column y (mean Abs) se [yEr±] x (cell number)
A 0.63875 0.02669 31600
B 0.58725 0.02869 28440
C 0.59875 0.02259 25280
D 0.53388 0.02338 22120
E 0.397 0.01862 18960
F 0.4035 0.03267 15800
G 0.33688 0.00863 12640
H 0.26138 0.00753 9480
I 0.16838 0.00672 6320
J 0.08888 0.00396 3160
k 0 0

Table 3.1. b Incubation of B16 cells with mtt for 2 hours
column y (mean Abs) se [yEr±] x (cell number)
A 0.87175 0.03954 31600
B 0.77816 0.03944 28440
C 0.694 0.02823 25280
D 0.59737 0.0237 22120
M 0.50038 0.03446 18960
E 0.41425 0.02809 15800
F 0.29838 0.01666 12640
G 0.25363 0.01167 9480
H 0.15588 0.01145 6320
I 0.07243 0.00548 3160
J 0 0

Table 3.1. c. Incubation of B16 cells with mtt for 3 hours
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column y (mean Abs) se [yEr±] x (cell number)
A 0.92875 0.05382 31600
B 0.73575 0.03983 28440
C 161.72863 105.46 25280
D 0.61075 0.04272 22120
E 0.46938 0.02711 18960
F 0.36675 0.02692 15800
G 0.275 0.03045 12640
H 0.20025 0.01697 9480
I 0.10863 0.00671 6320
J 0.0425 0.00508 3160

Table 3.1. d Incubation of B16 cells with mtt for 4 hours

column y (mean Abs) se'[yEr±] x (cell number)
A 0.23738 0.01086 10000
B 0.23775 0.01425 9000
C 0.221 0.01326 8000
D 0.23725 0.00957 7000
E 0.21913 0.01414 6000
F 0.19263 0.00917 5000
G 0.14113 0.01366 4000
H 0.15375 0.00478 3000
I 0.14325 0.00409 2000
J 0.11975 0.00313 1000

Table 3.2. a Incubation of B16 cells for 0 hour, and with mtt for 3 hours

column y (mean Abs) se'[yEr±] x (cell number)
A 0.4918 0.06002 10000
B 0.3838 0.01732 9000
C 0.3518 0.0749 8000
D 0.3082 0.02149 7000
E 0.253 0.01746 6000
F 0.1928 0.00882 5000
G 0.1788 0.01274 4000
H 0.1294 0.00523 3000
I 0.1532 0.01201 2000
J 0.0874 0.00206 1000
k 0 0

Table 3.2. b Incubation of B16 cells at 37°C in RPMI media for 24 hours, 
and with mtt for 3 hours
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column y (mean Abs) se [yEr±] x (cell number)
A 1.24338 0.06916 10000
B 0.92963 0.03777 9000
C 0.85725 0.06859 8000
D 0.70562 0.04124 7000
E 0.66013 0.04406 6000
F 0.60513 0.04337 5000
G 0.5525 0.03461 4000
H 0.38375 0.02606 3000
I 0.23175 0.00865 2000
J 0.15438 0.00425 1000

Table 3.2. c Incubation of B16 cells at 37°C in RPMI media for 48 hours, 
and with mtt for 3 hours

column y (mean Abs) se [yEr±] x (cell number)
A 1.51038 0.03116 10000
B 1.42725 0.06744 9000
C 1.36729 0.08871 8000
D 1.4485 0.06129 7000
E 1.525 0.07584 6000
F 1.61625 0.04373 5000
G 1.29263 0.09855 4000
H 1.06488 0.09832 3000
I 0.61943 0.06694 2000
J 0.20075 0.01513 1000

Table 3.2. d Incubation of B16 cells at 37°C in RPMI media for 72 hours, 
and with mtt for 3 hours.

column y (mean Abs) se [yEr±] y (% Abs 
compared 
to control)

x(log
mitozolomide)
cocentration

A 0.67014 0.0501 76 -8.701
B 0.88771 0.1145 107 -8.0996
C 0.78557 0.10144 93 -7.497
D 0.769 0.11043 90 -6.896
E 0.843 0.11243 101 -6.293
F 1.00443 0.1672 123 -5.691
G 0.842 0.07238 101 -5.089
H 0.71157 0.06111 58 -4.488
I 0.39386 0.02762 37 -3.886
J 0.28029 0.00786 21 -3.283

Table 3.3. a Incubation of B16 cells with mitozolomide for 72 hours
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column y (mean Abs) se [yEr±] y (% Abs 
compared 
to control)

x(log
mitozolomide)
concentration

A 0.813 0.10309 120 -8.701
B 0.70583 0.12461 104 -8.0996
C 0.80067 0.08425 118 -7.497
D 0.61333 0.05237 90 -6.896
E - 0.552 0.05308 81 -6.293
F 0.54317 0.07984 80 -5.691
G 0.67617 0.08419 100 -5.089
H 0.6295 0.10293 93 -4.488
I 0.338. 0.02229 50 -3.886 •
J 0.174 0.0192 25 -3.283

Table 3.3. b Incubation of B16 cells with Mitozolomide for 72 hours

column y (mean Abs) se [yEr±] y (% Abs 
compared 
to control)

x (log
mitozolomide
concentration)

A 0.76443 0.12487 91 -7.39
B 0.77814 0.12172 93 -6.39
C 0.872 0.15798 107 -5.39
D 0.68686 0.09675 80 -4.789
E 0.40914 0.0325 39 -4.488
F 0.34757 0.03622 30 -4.187
G 0.311 0.01913 25 -3.89
H 0.317 0.01951 26 -3.58
I 0.13729 0.0029 -1 -2.982
J 0.13243 0.00535 -1 -2.68

Table 3.3 c. Incubation of B16 cells with mitozolomide for 72 hours

column y (mean Abs) se[yEr±] y (% Abs 
compared 
to control)

x(log
dacarbazine
concentration)

A 1.267 0.09921 101 -8.22
B 1.26714 0.14004 101 -7.22
C 1.30117 0.10259 110 -6.22
D 1.18329 0.13168 95 -5.22
E 1.06 0.10376 87 -4.22
F 0.48257 0.07322 48 -3.22
G 0.18313 0.0173 28 -2.90

Table 3.4 a Incubation of B16 cells with dacarbazine for 72 hours
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column y (mean Abs) se[yEr±] y (% Abs 
compared 
to control)

x(log
dacarbazine
concentration)

A 0.782 0.04727 93 -6.83
B 0.85167 0.03177 101 -6.22
C 0.79 0.04546 94 -5.62
D 0.79833 0.03027 95 -5.02
E 0.71667 0.03853 86 -4.42
F 0.36167 0.0212 42 -3.82
G 0.25833 0.01249 30 -3.21
H -0.02117 0.00751 -3 -2.61
I 0.11183 0.00508 12 -2.01
J -0.07833 0.00859 -10 -1.41

Table 3.4 c. Incubation of B16 cells with dacarbazine for 72 hours

column y (meanAbs) se [yEr±] y (% Abs 
compared to 
control)

x (log ethidium
bromide
concentration)

A 0.87414 0.03538 98 -7.705
B 0.87871 0.05835 99 -7.1
C 0.827 0.03817 92 -6.5
D 0.84857 0.06108 95 -5.9
E 0.72757 0.0582 80 -5.3
F 0.318 0.01217 27 -4.69
G 0.13371 0.00257 4 -4.09
H 0.21686 0.00299 14 -3.49
I 0.10043 0.00303 0 -2.889
J 0.10314 0.00339 0 -2.287

Table 3.5 a. Incubation of B16 cells with Ethidium bromide for 72 hours,,

column y (mean Abs) se [yEr±] y (% Abs 
compared to 
control)

x (log ethidium 
bromide 
concentration)

A 0.86714 0.04281 85 -7.705
B 0.89186 0.04936 88 -7.1
C 0.99843 0.03338 98 -6.5
D 0.91729 0.05909 90 -5.9
E 0.81243 0.05086 80 -5.3
F 0.16614 0.0047 16 -4.69
G 0 0 0 -4.09
H 0 0 0 -3.49
I 0 0 0 -2.889
J 0 0 0 -2.287

Table 3.5. b Incubation of B 16 cells with Ethidium bromide for 72 hours
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column y (mean Abs) se [yEr±] % Abs compared 
to control

x (log ethidium
bromide
concentration)

A 1.064 0.06418 108 -7.705
B 0.90271 0.06367 90 -7.1
C 0.91429 0.03617 92 -6.5
D 0.899 0.06133 90 -5.9
F 0.78257 0.07034 77 -5.3
G 0.25143 0.01981 21 -4.69
H 0.076 0.00267 2 -4.09
I 0.07986 0.00211 3 -3.49
J 0.08271 0.00269 3 -2.889
K 0.11814 0.00198 7 -2.287
Table 3.5 c. Incubation of B16 cells with ethidium bromide for 72 hours

column y (mean Abs) se [yEr±] y (% Abs 
compared to 
control)

x(log
fluorouracil
concentration)

A 1.37771 0.10002 101 -8.59176
B 1.27286 0.16026 92 -7.89279
C 1.29843 0.10908 94 -7.19382
D 1.18171 0.14898 84 -6.49485
E 0.474 0.0156 23 -5.79588
F 0.35443 0.01304 13 -5.09691
G 0.34714 0.0246 12 -4.39794
H 0.24629 0.00992 3 -3.69897
I 0.15629 0.00778 0 -3
J 0.12729 0.03266 0 -2.30103

Table 3.6.a Incu nation of B16 cells with fluorouracil for 72 hours

column y (mean Abs) se [yEr±] y (% Abs 
compared to 
control)

x(log
fluorouracil
concentration)

A 1.48838 0.15308 105 -8.59176
B 1.3445 0.10179 94 -7.89279
C 1.16538 0.11822 80 -7.19382
D 1.05271 0.09402 72 -6.49485
E 0.31971 0.01756 15 -5.79588
F 0.20357 0.01687 6 -5.09691
G 0.18471 0.00725 5 -4.39794
H 0.15671 0.00462 2 -3.69897
I 0.116 0.00469 0 -3
J 0.10329 0.0038 0 -2.30103

Table 3.6 b. Incu jation of B16 cells with flourouracil for 72 hours
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column y (mean Abs) se [yEr±] y (% Abs 
compared to 
control)

x(log
fluorouracil
concentration)

A 1.74571 0.09616 84 -8.1
B 1.93143 0.04067 93 -7.4
C 0.80429 0.06785 39 -6.7
D 0.05743 0.00273 . 3 -6
E 0.072 0.00544 4 -5.3
F 0 0 0 -4.61
G 0 0 0 -3.91
H 0 0 0 -3.21

Table 3.6. c. Incubation of B16 cells with flourouracil for 72 hours

column y ( mean Abs) se [yEr±] y (% Abs 
compared to 
control

x Gog
Methotrexate
concentration)

A 1.13667 0.02591 84 -9.1
B 1.355 0.02907 110 -8.69
C 1.34333 0.04432 108 -8.29
D 1.115 0.02553 81 -7.89
E 1.045 0.00922 73 -7.5
F 0.915 0.02094 58 -7.1
G 0.74 0.02206 38 -6.7
H 0.54833 0.02023 15 -6.3
I 0.425 0.01688 1 -4.3

Table 3.7. a. Incu nation of B16 cells with methotrexate for 72 hours

column y (mean Abs) se [yEr±] y (%  Abs 
compared to 
control)

x(log
methotrexate
concentration)

B 1.21833 0.0199 89 -9.1
C 1.25167 0.01108 92 -8.69
D 1.34 0.01033 101 -8.29
E 1.3 0.06693 97 -7.89
F 1.32333 0.04738 99 -7.5
G 1.11667 0.06168 79 -7.1
H 0.69833 0.09119 37 -6.7
I 0.56 0.04919 23 -6.3
J 0.37167 0.01424 4 -4.3

Table 3.7 .b. Incu Dation of B16 cells with Methotrexate ior 72 hours
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column y (mean Abs) se [yEr±] y (% Abs 
compared to 
control)

x (log
Methotrexate
concentration)

A 1.28 0.01983 108 -9.7
B 1.07667 0.02076 81 -9.1
C 1.39167 0.03646 123 -8.69
D 1.09333 0.01961 83 -8.29
E 1.10833 0.03146 85 -7.89
F 1.26167 0.034 106 -7.5
G 1.01167 0.01558 72 -7.1
H 0.87667 0.02704 54 -6.7
I 0.74333 0.01994 36 -6.3
J 0.48 0.01506 0 -4.3

Table 3.7 .c.- Incubation of B16 cells with Methotrexate for 72 hours

column y (mean Abs) se [yEr±] y (% Abs 
compared to 
controlO

x(log
vinblastine
concentration)

A 1.50667 0.08239 99 -10.377
B 1.4875 0.14983 97 -9.775
C 1.34567 0.16578 84 -9.173
D 1.5792 0.16339 106 -8.57
E 0.67333 0.05821 22 -7.97
F 0.83883 0.10341 37 -7.365
G 0.71117 0.07667 26 -6.76
H 0.40817 0.02916 -2 -6.16
I 0.3495 0.01622 -8 -5.56
J 0.33267 0.01749 -7 -4.958
Table 3.8. a Incubation of B16 cells with vinblastine for 72 hours

column y (mean Abs) se [yEr±] y (% Abs 
compared to 
control)

x(log
vinblastine
concentration)

A 1.79129 0.07759 89 -9.77
B 1.37 0.08058 68 -9.17
C 0.85143 0.12481 42 -8.57
D 0.07317 0.00241 3 -7.97
E 0.09071 0.00127 4 -7.37
F 0.045 0.00179 1 -6.16

Table 3.8.b. Incubation of B16 cells with Vinblastine for 72 hours
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column Y (mean Abs) se [yEr±] y (% Abs 
compared to 
control)

x(log
vinblastine
concentration)

A 1.8005 0.06894 101 -10.377
B 1.79167 0.06322 93 -9.775
C 1.51067 0.05507 73 -9.173
D 1.34583 0.08837 57 -8.57
E 0.89367 0.03514 13 -7.97
F 1.0705 0.06202 31 -7.365
G 0.99783 0.05296 24 -6.76
H 0.60867 0.02377 -13 -6.16
I ‘ 0.6175 0.0426 -13 * -5.56
J 0.623 0.02218 -12 -4.958
Table 3.8. c Incubation of B16 cells with vinblastine for 72 hours

column y (mean Abs) se [yEr±] y (% Abs 
compared to 
control)

log daunorubicin 
concentration

A 1.61533 0.07971 86 -10.47
B 1.92833 0.09843 103 -9.87
C 1.50433 0.09435 80 -9.27
D 0.762 0.05499 41 -8.66
E 0.13417 0.04878 8 -8.06
F 0.0685 0.00417 4 -7.46
G 0.06183 0.0037 4 -6.86
H 0.04017 0.00087 3 -6.26

Table 3.9.a. Incubation of B16 cells with daunorubicin for 72 hours

column y (mean Abs) se [yEr±] y (% Abs 
compared to 
control)

log daunorubicin 
concentration

A 1.00667 0.04485 100 -9.78
B 0.89167 0.06019 88 -9.17
C 0.71667 0.10098 70 -8.57
D 0.36 0.01751 33 -7.97
E 0.24833 0.02056 22 -7.37
F -0.00767 0.01463 3 -6.76
G 0.05567 0.00414 2 -6.16
H 0.04567 0.00415 1 -4.96

Table 3.9.b. Incubation of B16 cells with daunorubicin for 72 hours
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column y (mean Abs) se [yEr±] y (% Abs 
compared to 
control)

log daunorubicin 
concentration

A 0.86667 0.0206 91 -9.78
B 0.92 0.03578 96 -9.17
C 0.6 0.02769 61 -8.57
D 0.29333 0.02124 27 -7.97
E 0.17667 0.00667 15 -7.37
F 0.10567 0.00488 7 -6.76
G 0.0195 0.0162 -3 -6.16
H 0.01667 ‘ 0.00123 -3 -4.96
I 0.03733 0.00294 -1 -4.36

Table 3.9.C. Incubation of B16 cells with daunorubicin for 72 hours.

column y (mean Abs) se [yEr±] y (% Abs 
compared to 
control)

x(log
doxorubicin
concentration)

A 1.06167 0.01682 85 -9.78
B 1.255 0.09066 100 -9.18
C 1.13 0.06598 90 -8.58
D 0.43833 0.04854 33 -8.00
E 0.18667 0.03007 13 -7.37
F 0.01833 0.01327 -1 -6.77
G 0.06467 0.00877 3 -4.96
H 0.11033 0.01415 7 -4.36

Table 3.10. a. Incubation of B16 cells with doxorubicin for 72 hours

column y (mean Abs) se [yEr±] y (% Abs 
compared to 
control)

x(log
doxorubicin
concentration)

A 1.625 0.10049 89 -9.78
B 1.86167 0.07391 103 -9.18
C 1.59333 0.13698 86 -8.58
D 0.96667 0.02642 47 -8.00
E 0.625 0.04342 26 -7.37
F 0.29167 0.01276 5 -6.77
G 0.17833 0.01249 -2 -6.17
H 0.23933 0.02037 2 -5.56
I 0.22167 0.01579 1 -4.96
J 0.22333 0.01382 1 -4.36

Table 3.10. b Incubation of B16 cells with doxorubicin for 72 hours
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column y (mean Abs) se [yEr±) y (% Abs 
compared to 
control)

x(log
doxorubicin
concentration)

A 1.44333 0.10935 89 -10.47
B 1.46333 0.08617 91 -9.87
C 1.525 0.07343 95 -9.27
D 0.8272 0.07868 51 -8.66
E 0.15217 0.01455 9 -8.06
F 0.14717 0.01535 9 -7.46
G 0.01767 0.00247 11 -6.26

Table 3.10. c. Incubation of B 16 cells with doxorubicin for 72 hours

column y(mean Abs) se (yErt) y(% abs compared 
to control)

x(log sibromycin 
concentration)

A 1.23667 0.02871 95 -10.8
B 1.32833 0.02056 102 -10.22
C 1.31167 0.01352 101 -9.62
D 1.22167 0.01621 94 -9.02
E 1.10333 0.05129 85 -8.42
F 0.58 0.01713 45 -7.82
G 0.395 0.02012 30 -7.21
H 0.0115 0.00356 1 -6.61
I 0.01167 0.00477 1 -6.01
J -0.00167 0.00167 -1 -5.41
Table 3.11. a. Incubation of B16 cells with sibromycin for 72 hours.

column y(mean Abs) se (yErt) y(% abs compared 
to control)

x(log sibromycin 
concentration)

A 1.145 0.05182 98 -10.8
B 1.17167 0.05805 99 -10.22
C 1.15833 0.04672 100 -9.62
D 1.09833 0.0585 95 -9.02
E 1.01 0.04435 87 -8.42
F 0.56 0.02852 48 -7.82
G 0.38167 0.02626 32 -7.21
H 0.03017 0.00065 2 -6.61
I 0.03667 0.00333 3 -6.01
J -0.00217 0.00217 0 -5.41
Table 3.1 l.b. Incubation of B16 cells with sibromycin for 72 hours.
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column y(mean Abs) se (yErt) y(% abs compared 
to control)

x(log sibromycin 
concentration)

A 1.22833 0.01249 101 -10.8
B 1.20333 0.01308 98 -10.22
C 1.21333 0.01406 99 -9.62
D 1.17167 0.01493 96 -9.02
E 1.08167 0.00749 88 -8.42
F 0.59 0.00775 47 -7.82
G 0.46167 0.01682 36 -7.21
H 0.05667 0.00211 2 -6.61
I 0.05333 0.00211 1 -6.01
J 0.05167 0.00307 1 -5.41
Table 3.1 I.e. Incubation of B 16 cells with sibromycin for 72 hours.

column y(mean Abs) se(yEr±) y(% abs compared 
to control)

x(log adozelesin 
concentration)

A 1.115 0.01875 109 -12.8
B 1.02 0.02145 100 -12.17
C 0.985 0.02306 95 -11.6
D 0.78833 0.04003 75 -11
E 0.54 0.0139 49 -10.4
F 0.525 0.01875 46 i V

O 00
G 0.215 0.00342 13 -9.16
H 0.03533 0.00353 0 -8.6
I 0.079 0.00184 0 -8
J 0.04833 0.00307 0 -7.4
Table 3.12.a. Incubation of B16 cells with adozelesin for 72 hours.

column y(mean Abs) se (yErt) y(% abs compared 
to control)

x(log adozelesin 
concentration)

A 1.10667 0.02765 104 -12.8
B 1.03167 0.02738 96 -12.17
C 1.03167 0.02926 96 -11.6
D 0.86833 0.03156 78 -11
E 0.58667 0.02216 47 -10.4
F 0.475 0.01522 34 -9.8
G 0.23667 0.00494 9 -9.16
H 0.15167 0.00167 -1 -8.6
I 0.135 0.00224 -3 -8
J 0.15333 0.00333 -1 -7.4
Table 3.12.b. Incubation of B 16 cells with adozelesin for 72 hours.
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column y(mean Abs) se (yErt) y(% abs compared 
to control)

x(log adozelesin 
concentration)

A 0.99 0.0313 112 -12.8
B 0.93667 0.03303 106 -12.17
C 0.86667 0.02883 97 -11.6
D 0.732 0.05722 81 -11
E 0.535 . 0.02975 57 -10.4
F 0.51667 0.01085 55 -9.8
G 0.24167 0.00477 22 -9.16
H 0.06 0 0 -8.6
I 0.03333 0.00211 -4 -8
J 0.06 0.00258 0 -7.4
Table 3.12.c. Incubation of B 16 cells with adozelesin for 72 hours. .

column y(mean Abs) se (yErt) y(% abs compared 
to control)

x(log bizelesin 
concentration)

A 1.14833 0.03763 100 -12.9
B 1.09667 0.01892 96 -12.1
C 0.828 0.02853 72 -11.7
D 0.55167 0.02414 48 -11.1
E 0.385 0.02363 33 -10.48
F 0.32 0.01483 28 -9.88
G 0.27 0.01693 23 -9.28
H 0.15667 0.01085 14 -8.68
I 0.00833 0.00401 1 -8.08
J 0 0 0 -7.47
Table 3.13.a. Incubation of B16 cells with bizelesin for 72 hours.

column y(mean Abs) se (yEr±) y(% abs compared 
to control)

x(log bizelesin 
concentration)

A 1.30667 0.02591 102 -12.9
B 1.232 0.0481 96 -12.1
C 0.815 0.0715 63 -11.7
D 0.70667 0.02974 55 - 11.1
E 0.51 0.00683 40 -10.48
F 0.42167 0.02301 33 -9.88
G 0.40667 0.02459 32 -9.28
H 0.22 0.02066 17 -8.68
I 0.14667 0.00211 12 -8.08
J 0.04333 0.00333 3 -7.47
Table 3.13.b. Incubation of B 16 cells with bizelesin for 72 hours.
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column y(mean Abs) se (yErt) y(% abs compared 
to control)

x(log bizelesin 
concentration)

A 1.09 0.01633 101 -12.9
B 1.02 0.0188 94 -12.1
C 0.92333 0.03106 85 -11.7
D 0.562 0.01241 52 -11.1
E 0.44667 0.01542 42 -10.48
F 0.37333 0.02011 34 -9.88
G 0.335 0.02172 30 -9.28
K 0.23333 0.01476 21 -8.68
I 0.05667 0.00333 5 -8.08
J ‘ 0.03 0.00365 3 -7.47
Table 3.13.C. Incubation of B16 cells with bizelesin for 72 hours.
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Appendix B

Experimental data for chapter 4

column y (mean Abs) se [yEr±] x (log 9-anthracene 
carboxylic acid)

A 0.35783 0.01219 -7.726
B 0.4425 0.04639 -7.123
C 0.44733 0.03161 -6.52
D 0.37217 0.03721 -5.919
E' 0.42883 0.03868 -5.317
F 0.459 0.0338 -4.71
G 0.45 0.04317 -4.113
H 0.40867 0.05007 -3.511
I 0.51283 0.03257 -2.909
Table 4.1.a. Incubation of B16 cells with 9-anthracene carboxylic 
acid for 48 hours

column y (mean Abs) se [yEr±] x (log 9-anthracene 
carboxylic acid)

A 0.74671 0.07178 -7.7
B 0.77529 0.1381 -7.1
C 0.784 0.07505 -6.49
D 0.81243 0.10154 -5.89
E 0.89214 0.06141 -5.29
F 0.969 0.05013 -4.69
G 0.908 0.05228 -4.09
H 0.79043 0.08859 -3.48
J 1.02875 0.0506 -2.279
Table 4.1.b. Incubation of B16 cells with 9-anthracene carboxylic 
acid for 48 hours
column y (mean Abs) se [yEr±] x (log acridine 

carboxylic acid 
hydrate)

A 0.60243 0.02122 -8.418
B 0.51629 0.03148 -7.81
C 0.54029 0.01685 -7.214
D 0.47957 0.0201 -6.61
E 0.53443 0.02791 -6.01
F 0.54436 0.04108 -5.408
G 0.55714 0.04283 -4.806
H 0.466 0.03602 -4.204
I 0.49343 0.01776 -3.602
Table 4.2.a. Incubation of B16 cells with acridine carboxylic acid 
hydrate for 48 hours
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column y (mean Abs) se [yEnt] x (log acridine 
carboxylic acid 
hydrate)

A 0.60086 0.02141 -8.418
B 0.62543 0.01299 -7.81
C 0.71771 0.02547 -7.214
D 0.668 0.01088 -6,61
E 0.67529 0.01487 -6.01
F 0.68114 0.02717 -5.408
G 0.67571 0.01424 -4.806
H 0.68843 0.03623 -4.0204
I ‘ 0.69743 0.02676 -3.602
Table 4.2.b. Incubation of B16 cells with acridine carboxylic acid 
hydrate for 48 hours_____________ ___________ ________
column y (mean Abs) se [yEr±] x (log butrescine)
A 0.665 0.00645 -6.66
B 0.7775 0.02358 -6.1
C 0.7125 0.03966 -5.5
D 0.775 0.03884 -4.9
E 0.785 0.02754 -4.2
F 0.7375 0.05706 -3.65
G 0.6 0.05612 -3.05
H 0.5325 0.05202 -2.45
Table 4.3.a. Incubation of B16 cells with butrescine for 48 hours
column y (mean Abs) se [yEr±] x (log butrescine)
A 0.57 0.03416 -6.66
B 0.775 0.00957 -6.1
C 0.6975 0.05437 -5.5
D 0.705 0.01258 -4.9
E 0.7075 0.0281 -4.2
F 0.6475 0.02016 -3.65
G 0.6225 0.01702 -3.05
H 0.4925 0.01493 -2.45
Table 4.3.b. Incubation of B16 cells with butrescine for 48 hours
column y (mean Abs) se [yErt] x (log butrescine)
A 0.48 0.03136 -6.66
B 0.585 0.05867 -6.1
C 0.7075 0.01652 -5.5
D 0.5175 0.0075 -4.9
E 0.5175 0.02689 -4.2
F 0.4975 0.04131 -3.65
G 0.4225 0.05138 -3.05
H 0.385 0.01323 -2.45
Table 4.3.C. Incubation of B 16 cells with butrescine for 48 hours
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column y (mean Abs) se [yEr±] x (log spermidine)
A 0.72 0.0272 -7.4
B 0.65 0.01703 -6.8
C 0.588 0.03231 -6.2
D 0.544 0.03544 -5.6
E 0.592 0.01594 -5
F 0.488 0.01393 -4.4
G 0.468 0.0102 -3.8
H 0.504 0.01288 -3.2
I 0.41 0.01265 -2.6
Table 4.4.a. Incubation of B c e l l s  with spermidine for 48 .hours

column. y (mean Abs) se [yErt] x Gog spermidine)
A 0.752 0.02131 -7.4
B 0.628 0.05093 -6.8
C 0.574 0.02293 -6.2
D 0.51 0.03899 -5.6
E 0.452 0.02311 -5
F 0.412 0.01934 -4.4
G 0.35 0.01789 -3.8
H 0.334 0.01435 -3.2
I 0.27 0.00548 -2.6
Table 4.4.b. Incubation of B16 cells with spermidine for 48 hours

column y (mean Abs) se [yEr±] x (log spermidine)
A 0.42 0.02074 -7.4
B 0.45 0.0228 -6.8
C 0.416 0.01536 -5.6
D 0.39 0.02569 -5
E 0.386 0.02205 -4.4
F 0.312 0.0398 -3.8
G 0.346 0.02015 -3.2
H 0.172 0.00374 -2.6
Table 4.4.c. Incubation of B16 cells with spermidine for 4 8 hours

column y (mean Abs) se [yErt] y (% Abs 
compared to 
control)

x (log spermine 
concentration)

B 0.65729 0.02983 109 -7.068
C 0.71214 0.05835 119 -6.465
D 0.61029 0.06121 100 -5.86
E 0.46314 0.02676 72 -5.26
F 0.44729 0.02554 69 -4.66
G 0.34783 0.02801 50 -4.055
H 0.333 0.02432 47 -3.45
I 0.07986 0.00345 -1 -2.85
J 0.0518 0.0058 -6 -2.248
Table 4.5.a. Incubation of B16 cells with spermine for 48 lours

209



column y (mean Abs) se [yEr±] y (% Abs 
compared to 
control)

x (log spermine 
concentration)

A 0.70667 0.0152 116 -7.71
B 0.68 0.03256 112 -7.12
C 0.63 0.06039 105 -6.51
D 0.53833 0.05307 . 93 -5.91
E 0.54667 0.01892 95 -5.31
F 0.48333 0.02171 85 -4.71
G 0.39 0.00316 73 -4.11
H 0.43667 0.01838 80 -3.5
I 0.15 0.00577 40 -2.9
J 0.05467 0.00446 27 -2.3
Table 4.5.b. Incubation of B 16 cells with spermine for 48 hours

column y (mean Abs) se [yEr±] y (% Abs 
compared to 
control)

x (log spermine 
concentration)

A 0.86143 0.02087 93 -7.88
B 0.92286 0.04057 98 -7.28
C 0.97286 0.07322 103 -6.67
D 0.91857 0.05671 98 -6.07
E 0.903 0.05013 96 -5.47
F 0.88429 0.03308 95 -4.87
G 0.97714 0.04034 104 -4.27
H 0.75714 0.072 83 -3.66
I 0.109 0.00069 23 -3.06
J 0.08029 0.00944 21 -2.46
Table 4.5.c. Incubation of B16 cells with spermine for 48 hours

column y (mean Abs) se [yEr±] y (% Abs compared to 
control)

x (log 1/1 molar mixture 
of spermine and 9- 
anthracene carboxylic 
acid)

A 0.8705 0.0331 86 -7.66
B 1.0225 0.06553 100 -7.06
C 1.2682 0.08201 124 -6.46
D 0.88067 0.03174 89 -5.858
E 0.92383 0.06278 91 -5.25
F 0.99067 0.11166 97 -4.65
G 0.91683 0.04636 91 -4.052
H 0.43383 0.03342 44 -3.45
I 0.1095 0.00891 13 -2.848
J 0.08233 0.01043 11 -2.246
Table 4.6.a.. Incubation of B16 cells with 1/1 molar mixture of spermine and 9-anthracene 
carboxylic acid for 48 hours
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column y (mean Abs) se [yEr±] y (% Abs compared to 
control)

x (log 1/1 molar mixture 
of spermine and 9- 
anthracene carboxylic 
acid)

A 0.8208 0.07579 74 -7.66
B 1.02983 0.06437 94 -7.06
C. 1.22633 0.07595 113 -6.46
D 0.86617 0.03478 79 -5.858
E 1.03017 0.1052 94 -5.25
F 0.9695 0.10885 88 -4.65
G 0.9095 0.0466 83 -4.052
H ‘ 0.44383 0.03459 • 38 -3.45
I 0.095 0.00866 5 -2.848
J 0.07817 0.00679 4 -2.246
Table 4.6.b.. Incubation of B16 cells with 1/1 molar mixture of spermine and 9-anthracene 
carboxylic acid for 48 hours

column y (mean Abs) se [yEr±] y (% Abs compared to 
control)

x (log 1/1 molar mixture 
of spermine and 9- 
anthracene carboxylic 
acid)

A 0.6895 0.02946 83 -7.85
B 0.90825 0.0141 109 -7.25
C 0.72967 0.03287 88 -6.645
D 0.74867 0.02481 90 -6.045
E 0.89167 0.02363 107 -5.44
F 0.95167 0.04626 114 -4.84
G 0.52867 0.02152 64 -4.238
H 0.1635 0.00177 19 -3.636
I 0.15175 0.00165 18 -3.034
Table 4.6.C.. Incubation of B16 cells with 1/1 molar mixture of spermine and 9-anthracene 
carboxylic acid for 48 hours

column y (mean Abs) se [yErt] y (% Abs 
compared to 
control)

x (log 1/1 molar 
mixture of 
spermine and 
acridine 
carboxylic acid 
hydrate)

A 0.43 0.01155 110 -7.07
B 0.42333 0.01726 107 -6.6
C 0.395 0.01118 100 -6.12
D 0.37 0.0177 92 -5.6
E 0.385 0.00847 97 -5.2
F 0.35167 0.01621 87 -4.69
G 0.36167 0.0204 90 -4.21
H 0.27833 0.01195 66 -3.73
I 0.21 0.01065 46 -3.26
J 0.11167 0.00167 17 -2.79
Table 4.7.a... Incu nation of B16 cells with 1/1 molar mixture of spermine anc acridine
carboxylic acid hydrate
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column y (mean Abs) se [yEnfc] y (% Abs 
compared to 
control)

x (log 1/1 molar 
mixture of 
spermine and 
acridine 
carboxylic acid 
hydrate)

A 1.114 0.05862 104 -7.07
B 1.104 0.00678 103 -6.6
C 1.078 0.02596 101 -6.12
D 1.126 ■« 0.03027 106 , -5.6

E 1.018 0.06406 95 -5.2
F 0.914 0.02839 85 -4.69
G 0.722 0.01772 65 -4.21
H 0.762 0.01356 69 -3.73
I 0.42 0.01049 35 -3.26
J 0.164 0.0186 10 -2.79
Table 4.7.b... Incubation of B 16 cells with 1/1 molar mixture of spermine anc acridine
carboxylic acid hydrate

column y (mean Abs) se [yErt] y (% Abs 
compared to 
control)

x (log 1/1 molar 
mixture of 
spermine and 
acridine 
carboxylic acid 
hydrate)

A 0.888 0.03513 -7.07
B 0.924 0.0186 -6.6
C 0.868 0.02871 -6.12
D 0.688 0.01985 -5.6
E 0.59 0.05206 -5.2
F 0.484 0.01568 -4.69
G 0.406 0.00748 -4.21
H 0.334 0.01208 -3.73
I 0.224 0.00812 -3.26
J 0.0444 0.00246 -2.79
Table 4.7.c... Incubation of B16 cells with 1/1 molar mixture of spermine anc acridine
carboxylic acid hydrate
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column y (mean Abs) se [yEr±] y (% Abs 
compared to 
control)

x(log
concentration of
mono-anthracenyl
spermine)

A 1.27571 0.099 114 -9.16
B 1.14483 0.04063 101 -8.56
C 1.05471 0.05519 93 -7.96
D 1.21971 0.06352 109 -7.36
E 0.9974 0.05277 87 -6.75
F 1.02733 0.06316 91 -6.15
G 0.95543 0.03567 83 -5.55
H ' 0.89829 0.0476 78 -4.947
I 0.35829 0.03501 26 -4.34
J 0.24243 0.00893 15 -3.74
Table 4.8.a... Incubation of B16 cells with Mono-anthracenyl spermine for 48 hours.

column y (mean Abs) se [yErt] y (% Abs 
compared to 
control)

x(log
concentration of
mono-anthracenyl
spermine)

A 0.726 0.08352 100 -7.725
B 0.77386 0.10442 108 -7.12
C 0.64043 0.08433 88 -6.52
D 0.61071 0.08789 83 -5.92
E 0.48014 0.06106 64 -5.32
F 0.25983 0.03546 32 -4.71
G 0.06614 0.00492 3 -4.11
H 0.06229 0.00246 2 -3.51
I 0.05229 0.00241 0 -2.909
J 0.0685 0.00511 3 -2.307
Table 4.8.b. Incubation of B16 cells with Mono-anthracenyl spermine for 48 lours.
column y (mean Abs) se [yEr±] y (% Abs 

compared to 
control)

x(log
concentration of
mono-anthracenyl
spermine)

A 0.43833 0.04086 123 -7.62
B 0.48 0.01966 132 -7.09
C 0.37333 0.02777 107 -6.6
D 0.40167 0.02626 114 -5.52
E 0.23167 0.02926 75 -5
F 0.305 0.01258 91 -4.48
G 0.03967 0.01425 31 -3.95
H 0.03683 0.00145 31 -3.43
I 0 0 21 -2.9
Table 4.8.c... Incu nation of B16 cells with Mono-anthracenyl spermine for 4$ hours.
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column y (mean Abs) se [yEr±] y (% Abs compared 
to control)

x (log concentration 
of 9-amidospermine 
acridine)

A 0.61486 0.03806 91 -8.418
B 0.58171 0.01642 86 -7.81
C 0.79543 0.06844 118 -7.214
D . 0.63767 0.07576 94 -6.61
E 0.60457 0.03577 89 -6.01
F 0.5224 0.02779 77 -5.408
G 0.07933 0.04166 11 -4.806
H 0.06857 0.0295 9 -4.204
I o:o78 0.01249 10 -3.602
Table 4.9.a. Incubation of B16 cells with 9-amidospermine acridine for 48 hours.

column y (mean Abs) se [yEr±] y (% Abs compared 
to control)

x (log concentration 
of 9-amidospermine 
acridine)

A 0.61486 0.03615 95 -8.418
B 0.76057 0.04838 125 -7.81
C 0.55343 0.01003 81 -7.214
D 0.53257 0.02497 77 -6.61
E 0.53 0.04125 77 -6.01
F 0.58733 0.02791 89 -5.408
G 0.20514 0.02316 9 -4.806
H 0.21114 0.01396 11 -4.204
I 0.24314 0.01665 17 -3.602
J 0.14257 0.0039 0 -3
Table 4.9.b. Incubation of B 6 cells with 9-amidospermine acridine for 48 hours.

column y (mean Abs) se [yErt] y (% Abs compared 
to control)

x (log concentration 
of 9-amidospermine 
acridine)

A 0.69 0.01747 111 -8.418
B 0.66057 0.0068 105 -7.81
C 0.57457 0.01945 86 -7.214
D 0.55171 0.02356 82 -6.61
E 0.54771 0.0173 82 -6.01
F 0.38029 0.02316 48 -5.408
G 0.19243 0.01573 10 -4.806
H 0.18629 0.00983 9 -4.204
Table 4.9.C. Incubation of B 6 cells with 9-amidospermine acridine for 48 hours.
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column y (mean Abs) se [yEr±] y (% Abs compared to 
control)

x (log concentration of 
acridine monospermine)

A 0.62029 0.01641 100 -8.418
B 0.56971 0.02101 90 -7.81
C 0.58029 0.01738 92 -7.214
D 0.46714 0.01267 70 -6.61
E 0.21671 0.00545 22 -6.01
F 0.182 0.01023 15 -5.408
G 0.117 0.01008 2 -4.806
Table 4. IO.a. Incubation of B16 cells with acridine monospermine for 8 hours for 48 hours.

column y (mean Abs) se [yErdb] y (% Abs compared to 
control)

x (log concentration of 
acridine monospermine)

A 0.53029 0.01149 91 -8.418
B 0.54143 0.02764 94 -7.81
C 0.53771 0.01436 94 -7.214
D 0.50171 0.00811 83 -6.61
E 0.228 0.00592 12 -6.01
F 0.216 0.00373 10 -5.408
G 0.20829 0.00348 7 -4.806
H 0.20029 0.00331 5 -3.602
Table 4.10.b. Incubation of B16 cells with acridine monospermine for 48 hours for 48 hours.

column y (mean Abs) se [yEr±] y (% Abs compared to 
control)

x (log concentration of 
acridine monospermine)

A 0.68557 0.0224 125 -9
B 0.58143 0.03569 104 -8.39
C 0.566 0.0345 101 -7.79
D 0.47457 0.0264 82 -7.19
E 0.3705 0.03926 61 -6.58
F 0.425 0.03245 73 -6
G 0.31071 0.03255 49 -5.38
H 0.05217 0.0177 -3 -4.78
I 0.08329 0.00174 3 -4.18
J 0.091 0.00115 5 -3.58

Table 4. lO.c. Incubation of B16 cells with acridine monospermine for A8 hours
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column y (mean Abs) se [yEr±] y (% Abs 
compared to 
control)

x (log 5b)

A 0.50833 0.00792 112 -9.12
B 0.41667 0.01542 91 -8.52
C 0.45833 0.01195 100 -7.9
D 0.42333 0.01229 93 -7.32
E 0.37833 0.01327 82 -6.72
F 0.38667 0.0143 84 -6.11
G 0.13 0.01461 25 -5.51
H 0.08667 0.00211 . 15 -4.91
I 0.047 0.00342 5 -4.31
Table 4.11 .a. Incubation of B16 cells with 5b for 48 hours

column y (mean Abs) se [yErt] y (% Abs 
compared to 
control)

x (log 5b)

A 0.278 0.01114 80 -9.12
B 0.3 0.02 87 -8.52
C 0.366 0.014 107 -7.9
D 0.36 0.01703 104 -7.32
E 0.372 0.0153 107 -6.72
F 0.244 0.01965 70 -6.11
G 0.082 0.01855 25 -5.51
H 0.016 0.004 6 -4.91
I 0.037 0.0049 12 -4.31
Table 4.1 l.b. Incubation of B16 cells with 5b for 48 hours

column y (mean Abs) se [yEi±] y (% Abs 
compared to 
control)

x (log 5b)

A 0.4 0.02915 94 -9.12
B 0.4225 0.02955 98 -8.52
C 0.42 0.03391 98 -7.9
D 0.4275 0.02358 100 -7.32
E 0.3925 0.0272 92 -6.72
F 0.3675 0.02358 87 -6.11
G 0.13 0.00913 37 -5.51
H 0 0 10 -4.91
I 0 0 10 -4.31
Table 4 .12.c. Incubation of B16 cells with 5b for 48 hours
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column y (mean Abs) se [yEr±] y (% Abs 
compared to 
control)

x(log
concentration of 
6b)

A 0.485 0.01848 95 -9.06
B 0.51 0.01 100 -8.46
C 0.5075 0.01436 100 -7.85
D 0.55 . 0.0178 106 -7.26
E 0.535 0.02598 103 -6.65
F 0.555 0.00866 106 -6
G 0.445 0.04941 89 -5.4
H 0.3225 0.00629 69 -4.8
I 0.27 0.00577 61 -4.2
J 0 0 18 -3.6
Table 4.13.a. Incubation of B16 cells with (6b) for 48 hours

column y (mean Abs) se [yEnt] y (% Abs 
compared to 
control)

xflog
concentration of 
6b)

A 0.504 0.01778 111 -9.06
B 0.498 0.01685 111 -8.46
C 0.408 0.01715 89 -7.85
D 0.458 0.01828 101 -7.26
E 0.368 0.022 79 -6.65
F 0.452 0.02267 99 -6
G 0.37 0.02258 79 -5.4
H 0.3 0.01761 61 -4.8
I 0.138 0.01114 21 -4.24
J 0.0914 0.00299 9 -3.6
Table 4 .13.b. Incubation of B16 cells with (6b) for 48 hours

column y (mean Abs) se [yErt] y (% Abs 
compared to 
control)

x(log
concentration of 
6b)

A 0.5525 0.06486 85 -8.62
B 0.395 0.01936 73 -8.01
C 0.505 0.02217 99 -7.42
L 0.61 0.04021 125 -6.81
D 0.4125 0.02175 77 -6.21
E 0.4125 0.04922 77 -5.6
F 0.2325 0.01109 35 -5
G 0.14 0.01354 14 -4.4
H 0.1 0.0169 4 -3.8
Table 4.13.c. Incubation of B16 cells with (6b) for 48 hours

217



column y (mean Abs) se [yEr±] y (% Abs 
compared to 
control)

x(log
concentration of 
7b)

A 0.3025 0.05793 80 -8.62
B 0.37 0.0745 107 -8
C 0.3525 0.02955 100 -7.4
D 0.2675 0.03376 69 -6.81
E 0.15 0.00408 23 -6.21
F 0.1225 0.0025 11 -5.61
G 0.1125 0.0025 7 -5
H 0.1225 0.0025 11 -4.4
I ‘ 0.09975 0.00025 3 -3.8
J 0.05625 0.00075 -13 -3.2
Table 4 .14.a. Incubation of B16 cells with (7b) for 48 hours

column y (mean Abs) se [yErt] y (% Abs 
compared to 
control)

x(log
concentration of 
7b)

A 0.564 0.02249 102 -8.62
B 0.516 0.02088 93 -8
C 0.472 0.03072 82 -7.4
D 0.424 0.02421 70 -6.81
E 0.222 0.00663 25 -6.21
F 0.144 0.00245 7 -5.61
G 0.116 0.00245 2 -5
H 0.122 0.002 2 -4.4
I 0.134 0.00245 4 -3.8
J 0.104 0.00245 -2 -3.2
Table 4.14.b. Incubation of B16 cells with (7b) for 48 hours

column y (mean Abs) se [yErit] y (% Abs 
compared to 
control)

x(log
concentration of 
7b)

A 0.476 0.04468 104 -8.62
B 0.402 0.04352 85 -8
C 0.454 0.044 97 -7.4
D 0.328 0.04329 69 -6.81
E 0.15 0.02098 25 -6.21
F 0.024 0.00245 -4 -5.61
G 0.0782 0.00111 8 -5
H 0.048 0.002 I -4.4
I 0.054 0.00245 3 -3.8
J 0.062 0.002 4 -3.2
Table 4 .14.c. Incubation of B 16 cells with (7b) for 48 hours
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column y (mean Abs) se [yEr±] y (% Abs 
compared to 
control)

x (log
concentration of 
8b)

A 0.67 0.00837 95 -9.17
B 0.662 0.0153 94 -8.51
C 0.704 0.02272 99 -7.9
D 0.668 0.02267 95 -7.31
E 0.734 0.02182 102 -6.71
F 0.766 0.02839 107 -6.11
G 0.76 0.02646 105 -5.5
H , 0.6375 0.0275 91 -4.9
I 0.415 0.03884 64 -4.3
J 0.165 0.0119 34 -3.7
Table 4.15.a. Incubation of B16 cells with (8b) for 48 hours

column y (mean Abs) se [yEr±] y (% Abs 
compared to 
control)

x(log
concentration of 
8b)

A 0.53 0.01304 103 -9.17
B 0.504 0.02227 98 -8.51
C 0.532 0.0153 103 -7.9
D 0.508 0.06312 100 -7.31
E 0.452 0.03813 91 -6.71
F 0.53 0.03808 103 -6.11
G 0.544 0.05066 104 -5.5
H 0.39 0.0501 83 -4.9
I 0.338 0.01934 75 -4.3
J 0.0875 0.01548 39 -3.7
Table 4.15.b. Incubation of B16 cells with (8b) for 48 hours

column y (mean Abs) se [yErt] y (% Abs 
compared to 
control)

x(log
concentration of 
8b)

A 0.61333 0.01978 100 -9.17
B 0.61667 0.02789 102 -8.51
C 0.57833 0.03911 96 -7.9
D 0.59667 0.04072 99 -7.31
E 0.61833 0.02626 102 -6.71
F 0.60167 0.02167 99 -6.11
G 0.57833 0.03544 96 -5.5
H 0.47167 0.02358 79 -4.9
I 0.22167 0.01046 41 -4.3
J 0.06583 0.01172 18 -3.7
Table 4.15.C. Incubation of B16 cells with (8b) for 48 hours
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column y (mean Abs) se [yEr±] y (% Abs 
compared to 
control)

x(log
concentration of 
9b)

A 0.714 0.02482 93 -8.5
B 0.826 0.05391 107 -7.9
C 0.812 0.07946 105 -7.3
D . 0.75 0.05788 97 . -6.7
E 0.61 0.01924 81 -6.1
F 0.566 0.01965 76 -5.5
G 0.26 0.02145 38 -4.9
H 0.038 0.002 12 -4.3
I -0.0222 0.00196 5 -3.6
J -0.056 0.00245 0 -3.1
Table 4.16.a. Incubation of B16 cells with (9b) for 48 hours

column y (mean Abs) se [yEr±] y (% Abs 
compared to 
control)

x(log
concentration of 
9b)

A 0.578 0.03308 106 -8.5
B 0.536 0.01965 98 -7.9
C 0.518 0.05044 94 -7.3
D 0.48 0.03017 86 -6.7
E 0.492 0.06367 88 -6.1
F 0.588 0.0586 108 -5.5
G 0.232 0.03007 38 -4.9
H 0.0576 0.00216 6 -4.3
I 0.13 0.0108 19 -3.6
J 0.034 0.00245 0 -3.1
Table 4.16.b. Incubation of B16 cells with (9b) for 48 hours

column y (mean Abs) se [yEr±] y (% Abs 
compared to 
control)

x(log
concentration of 
9b)

A 0.816 0.03501 111 -8.5
B 0.772 0.03904 105 -7.9
C 0.658 0.02417 92 -7.3
D 0.61 0.03633 85 -6.7
E 0.566 0.02542 80 -6.1
F 0.514 0.01661 73 -5.5
G 0.12 0.04278 24 -4.9
H -0.076 0.006 -1 -4.3
I -0.018 0.0049 7 -3.6
J -0.031 0.00458 5 -3.1
Table 4.16.C. Incubation of B16 cells with (9b) for 48 hours
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column y (mean Abs) se [yEr±] y (% Abs 
compared to 
control)

x(log
concentration of 
10b)

A 0.83 0.04062 101 -8.6
B 0.89 0.04021 109 -8
C 0.7625 0.00854 92 -7.4
D . 0.835 0.0433 101 -6.8
E 0.875 0.03403 106 -6.2
F 0.6875 0.03065 83 -5.6
G 0.2875 0.02175 32 -5
H 0.0975 0.0025 8 -4.4
I 0.1275 0.0025 11 -3.8
J 0.1175 0.0025 10 -3.2
Table 4.17.a. Incubation of B16 cells with (10b) for 48 hours

column y (mean Abs) se [yEnfc] y (% Abs 
compared to 
control)

x(log
concentration of 
10b)

A 0.802 0.05826 96 -8.6
B 0.824 0.09201 98 -8
C 0.782 0.10047 94 -7.4
D 0.89 0.03647 106 -6.8
E 0.7 0.08142 85 -6.2
F 0.57 0.06535 71 -5.6
G 0.08 0.02864 18 -5
H -0.05 0 3 -4.4
I -0.05 0 3 -3.8
J -0,046 0.004 3 -3.2
Table 4.17.b. Incubation of B16 cells with (10b) for 48 hours

column y (mean Abs) se [yEr±] y (% Abs 
compared to 
control)

x(log
concentration of 
10b)

A 0.60667 0.01856 113 -8.6
B 0.73667 0.02404 101 -8
C 0.76 0.01155 104 -7.4
D 0.77 0.01732 105 -6.8
E 0.71333 0.05175 97 -6.25
F 0.60667 0.02848 85 -5.6
G 0.54667 0.04096 78 -5
H 0 0 10 -4.4
I 0.03 0 13 -3.8
J 0.03333 0.00333 13 -3.23
Table 4.17.C. Incubation of B16 cells with (10b) for 48 hours
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column y (mean Abs) se [yEr±] y (% Abs 
compared to 
control)

x(log
concentration of
acridine
monospermine)

A 0.857 0.02018 98 -9.87
B 0.904 0.01208 104 -9.17
C 0.894 0.01661 102 -8.47
D 0.816 0.02482 93 -7.77
E 0.676 0.02713 76 -7.07
F 0.472 0.01655 50 -6,37
G 0.168 0.00583 13 -5.67
H 0.0928 0.00132 4 4 -5
I 0.064 0.00122 1 -4.28
J 0.0682 0.00153 1 -3.58
Table 4.18.a. Incubation of B16 cells with acridine monospermine for 72 hours

column y (mean Abs) se [yEr±] y (% Abs 
compared to 
control)

x(log
concentration of
acridine
monospermine)

A 1.33357 0.00934 101 -8.11
B 1.34571 0.04577 102 -7.508
C 1.209 0.05242 91 -6.913
D 1.13229 0.06396 85 -6.309
E 0.72614 0.061 54 -5.707
F 0.41743 0.01884 29 -5.105
G 0.24886 0.01918 16 -4.504
I 0.02957 0.00413 -1 -3.3
Table 4 .18.b. Incubation of B16 cells with acridine monospermine for 72 hours

column y (mean Abs) se [yEr±] y (% Abs 
compared to 
control)

x(log
concentration of
acridine
monospermine)

B 0.835 0.14666 88 -9.17
C 0.9725 0.14551 106 -8.47
D 0.92 0.13626 100 -7.77
E 0.755 0.03014 78 -7.07
F 0.5525 0.04308 52 -6.37
G 0.245 0.00866 12 -5.67
H 0.16 0 1 -5
I 0.18 0.00408 4 -4.28
J 0.1475 0.0025 0 -3.58
Table 4.18.C. Incubation of B16 cells with acridine monospermine for 72 hours
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column y (mean Abs) se [yEr±] y (% Abs 
compared to 
control)

x(log
concentration of
acridine
monospermine)

A 1.12917 0.14537 89 -9.87
B 1.18667 0.0754 94 -9.17
C 1.24667 0.11248 98 -8.47
D 1.225 0.13552 96 -7.77
E 1.145 0.12798 90 -7.07
F 0.58833 0.06316 46 -6.37
G 0 0 0 -5.67
H 0.10183 0.00295 8 -5
I 0.0495 0.00085 4 -4.28
J 0.0355 0.00022 3 -3.58
Table 4.19.a. Incubation of B16 cells with acridine monospermine for 6 days

column y (mean Abs) se [yEr±] y (% Abs 
compared to 
control)

x(log
concentration of
acridine
monospermine)

A 1.325 0.03973 109 -9.87
B 1.175 0.03603 104 -9.17
C 1.125 0.0303 104 -8.47
D 1.07 0.05164 89 -7.77
E 1.135 0.0559 94 -7.07
F 1.22833 0.06819 101 -6.37
G 0.14183 0.01131 15 -5.67
H 0.018 0.00063 5 -5
I 0.1 0.00258 11 -4.28
J -0.01767 0.0119 2 -3.58
Table 4 .19.b. Incubation of B16 cells with acridine monospermine for 6 days

column y (mean Abs) se [yEr±] y (% Abs 
compared to 
control)

x(log
concentration of
acridine
monospermine)

A 1.945 0.04249 111 -9.87
B 1.66 0.06947 95 -9.17
C 1.62833 0.03701 94 -8.47
D 1.745 0.05359 100 -7.77
E 1.33333 0.05678 78 -7.07
F 1.12667 0.12325 67 -6.37
G 0.04383 0.00199 8 -5.67
H -0.036 0.00306 8 -5
I 0.01167 0.0033 6 -3.58
Table 4 .19.c. Incubation of B 16 cells with acridine monospermine for 6 days
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column y (mean Abs) se [yEr±] y {% Abs 
compared to 
control)

x(log
concentration of 
7b)

A 1.10083 0.04352 98 -10.19
B 1.09833 0.0341 98 -9.5
C 1.105 0.01607 99 -8.8
D 1.02667 0.01145 92 -8.1
E 0.90167 0.01579 81 -7.4
F 0.23167 0.00792 22 -6.7
G 0.0085 0.00134 2 -6
H 0.04017 0.00031 5 -5.3
I ' -0.02233 ' 0.00189 -1 -4.6
J 0.04 0.00063 5 -3.9
Table 4.20.a. Incubation of B 16 cells with 7b for 72 hours.

column y (mean Abs) se [yEr±] y (% Abs 
compared to 
control)

x(log
concentration of 
7b)

A 1.11 0.03795 93 -10.19
B 1.18667 0.03528 100 -9.5
C 1.17667 0.01606 99 • 00 00

D 1.13833 0.01701 96 -8.1
E 1.00167 0.02574 84 -7.4
F 0.35167 0.02344 31 -6.7
G 0.08067 0.00244 8 -6
H 0.0565 0.00115 6 -5.3
I 0.002 0.00144 0 -4.6
J -0.02933 0.00269 -1 -3.9
Table 4.20.b. Incubation of B16 cells with 7b for 72 hours.

column y (mean Abs) se [yEr±] y (% Abs 
compared to 
control)

x(log
concentration of 
7b)

A 0.74333 0.01706 91 -10.19
B 0.795 0.00563 97 -9.5
C 0.82833 0.02509 102 -8.8
D 0.78333 0.02028 96 -8.1
E 0.66 0.02556 82 -7.4
F 0.19167 0.00946 27 -6.7
G 0.0035 0.00081 5 -6
H -0.008 0.00203 3 -5.3
I -0.012 0.00246 6 -4.6
J -0.00583 0.00168 3 -3.9
Table 4.20.C. Incubation of B 16 cells with 7b for 72 hours.
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column y (mean Abs) se [yEr±] y (% Abs 
compared to 
control)

x(log
concentration of 
7b)

A 0.95333 0.05011 106 -10.19
B 1.06467 0.06785 99 -9.5
C 1.08333 0.03518 101 -8.8
D 1.025 0.06092 96 -8.1
E 0.89 0.05317 84 -7.4
F 0.0505 0.00262 9 -6.7
G -0.02367 0.00088 3 -6
H 0.02033 0.00076 7 -5.3
I • 0.041 0.00126 9 -4.6
J -0.0725 0.00145 -1 -3.9
Table 4.21.a. Incubation of B16 cells with 7b for 6 days.

column y (mean Abs) se [yErt] y (% Abs 
compared to 
control)

xflog
concentration of 
7b)

A 1.48833 0.03928 97 -10.19
B 1.515 0.03243 98 -9.5
C 1.50167 0.02971 98 -8.8
D 1.33833 0.03728 87 -8.1
E 0.93833 0.0622 62 -7.4
F 0.06367 0.00824 6 -6.7
G 0.0066 0.00267 3 -6
H 0.02583 0.00101 4 -5.3
I -0.00317 0.00108 2 -4.6
J 0.02417 0.00119 4 -3.9
Table 4.2l.b. Incubation of B 16 cells with 7b for 6 days.

column y (mean Abs) se [yEr±] y (% Abs 
compared to 
control)

x(log
concentration of 
7b)

A 1.18167 0.03027 101 -10.19
B 1.18 0.05073 101 -9.5
C 1.09833 0.03487 95 -8.8
D 0.95167 0.04385 82 -8.1
E 0.70667 0.03721 62 -7.4
F 0.06083 0.00536 7 -6.7
G 0.012 0.00181 2 -6
H 0.01867 0.01019 3 -5.3
I 0.00933 0.00115 2 -4.6
J 0.01717 0.00789 3 -3.9
Table 4.2I.e. Incubation of B16 cells with 7b for 6 days.
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Appendix C

Data for experiments in chapter 5

column y (mean Abs). se [yEr±] y (% Abs compared to 
control)

x(log methotrexate 
concentration

A 0.6775 0.04328 93 -8.6
B 0.6525 0.01548 100 -8
C 0.5775 0.0525 92 -7.4
D 0.575 0.06513 90 -6.8
E 0.5125 0.05105 81 -6.2
F 0.4375 0.05879 70 -5.6
G 0.025 0.01041 3 -5
H 0.075 0.00289 11 -4.4
I 0.025 0.00289 3 -3.8
J 0.0375 0.0025 6 -3.2
Table 5.1.a Incubation of B16 cells with methotrexate for 4hours, then without 
methotrexate for 72 hours

column y (mean Abs) se [yEr±] y (% Abs compared to 
control)

x(log methotrexate 
concentration

A 0.702 0.03513 98 -8.6
B 0.688 0.02818 97 -8
C 0.694 0.03957 97 -7.4
D 0.672 0.04224 94 -6.8
E 0.718 0.02905 101 -6.2
F 0.592 0.07081 82 -5.6
G 0.166 0.01939 20 -5
H 0.116 0.004 13 -4.4
I 0.068 0.00583 6 -3.8
J 0.05 0.00548 3 -3.2
Table 5.1.b Incubation of B16 cells with methotrexate for 4hours, then without 
methotrexate for 72 hours
column y (mean Abs) se [yErt] y (% Abs compared to 

control)
x(log methotrexate 
concentration

A 0.5775 0.02626 94 -8.6
B 0.6225 0.0225 100 -8
C 0.6125 0.02496 98 -7.4
D 0.5875 0.05836 95 -6.8
E 0.5075 0.03092 83 -6.2
F 0.51 0.0505 83 -5.6
G 0.045 0.00866 11 -5
H 0.0325 0.0025 9 -4.4
I 0.0225 0.0025 8 -3.8
J -0.02 0.00408 1 -3.2
Table 5.1 .c Incubation of B16 cells with methotrexate for 4hours, then without
methotrexate for 72 hours
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column y (mean Abs) se [yEr±] y (% Abs 
compared to 
control)

x(log doxorubicin 
concentration

A 1.02667 0.09054 98 -8.9
B 1.10667 0.06586 107 -8.3
C 0.935 0.05812 91 -7.7
D 0.73 0.02817 69 -7.1
E 0.51833 0.01352 48 -6.5
F 0.26833 0.00946 24 -5.9
G 0.042 0.00129 2 -5.3
H 0.06867 0.00099 4 -4.69
I 0 ' 0 0 -4.09
J 0 0 0 -3.49

Table 5.2.a. Incubation of B16 cells with doxorubicin for 4hours, then wit lout doxorubicin
for 72 hours

column y (mean Abs) se [yEr±] y (% Abs 
compared to 
control)

x(log doxorubicin 
concentration)

A 1.24667 0.06302 113 -8.9
B 1.06 0.06501 95 -8.3
C 0.915 0.05321 81 -7.7
D 0.83333 0.06302 73 -7.1
E 0.504 0.0425 42 -6.5
F 0.31 0.0228 24 -5.9
G 0.14333 0.00211 8 -5.3
H 0.08 0.00516 2 -4.69
I 0 0 0 -4.09
J 0 0 0 -3.49

Table 5.2.b. Incubation of B16 cells with doxorubicin for4hours then without doxorubicin 
for 72 hours

column y (mean Abs) se [yErt] y (% Abs 
compared to 
control)

x(log doxorubicin 
concentration)

A 0.81 0.04143 125 -9.78
B 0.58 0.03189 73 -9.18
C 0.665 0.04093 99 -8.58
D 0.64 0.03873 95 -7.98
E 0.46 0.04491 63 -7.38
F 0.4025 0.0125 52 -6.77
G 0.3125 0.00479 36 -6.2
H 0.135 0.00645 4 -5.57
I 0.0775 0.00479 -5 -4.97
J 0.0965 0.00176 -2 -4.37

Table 5.2. c Incubation of B16 cells with doxorubicin for 4 hours then withou it for 72
hours
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column y(mean Abs) se [yEr±] y (%  Abs 
compared to 
control)

x(log
Daunorubicin
concentration)

A 0.99167 0.04854 100 -9.77
B 0.88667 0.03073 88 -9.2
C 0.84167 0.04191 82 -8.57
D 0.55 0.01183 47 -8
E 0.29667 0.00615 16 -7.4
F 0.20333 0.00422 4 -6.8
G 0.17667 0.00211 1 -6.15
H 0.145 0.00224 -4 -5.56
I 0.14167 0.00401 -4 -4.9 S'
J 0.12167 0.00307 -6 -4.35

Table 5.3.a. Incubation of B16 cells with Daunorubicin for 4 hours, then without it for 72 
hours

column y (mean Abs) se [yEr±] y (% Abs 
compared to 
control)

xflog
Daunorubicin
concentration)

A 0.86833 0.0324 95 -9.77
B 0.79 0.02781 85 -9.2
C 0.475 0.05536 45 -8.57
D 0.32333 0.0408 26 -8
E 0.30667 0.00882 25 -7.4
F 0.175 0.00671 7 -6.8
G 0.11167 0.00307 0 -6.15
H 0.05167 0.00307 -7 -5.56
I 0.07 0.00258 -5 -4.95
J 0.05 0.00365 -7 -4.35

Table 5.3. :>. Incubation of B 16 cells with Daunorubicin for 4 hours, then without it for 72
hours

column y (mean Abs) se [yEr±] y (% Abs 
compared to 
control)

x(log
Daunorubicin
concentration)

A 0.566 0.03501 109 -9.77
B 0.48 0.02324 89 -9.17
C 0.49 0.04827 91 -8.57
D 0.456 0.04654 83 -7.97
E 0.258 0.01744 39 -7.37
F 0.194 0.00678 25 -6.76
G 0.132 0.0086 11 -6.16
H 0.0768 0.0024 -1 -5.56
I 0.114 0.00245 7 -4.96
J 0.0264 0.0016 -11 -4.36

Table 5.3. c. incubation of B16 cells with daunorubicin for 4 hours, then without it for 72
hours.
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column y(mean Abs) se (yEr±) y(% abs compared 
to control)

x(log adozelesin 
concentration)

K 0.94167 0.03229 108 -12.8
A 0.865 0.03686 98 -12.17
B 0.84667 0.03073 97 -11.6
C 0.84 0.02745 96 -11
D 0.685 0.02643 76 . -10.4
E 0.415 0.03212 44 -9.8
F 0.33167 0.01249 34 -9.16
G 0.135 0.005 10 -8.6
H -0.0375 0.00171 -10 -8
I 0.06167 0.00307 2 -7.4
Table 5.4.a. Incubation of B16 cells with adozelesin for 4 hours then without adozelesin for 72 hours

column y(mean Abs) se(yEi±) y(% abs compared 
to control)

x(log adozelesin 
concentration)

A 1.01167 0.04813 105 -12.8
B 0.95333 0.03955 99 -12.17
C 0.91333 0.02642 94 -11.6
D 0.88833 0.03798 92 -11
E 0.755 0.02335 77 -10.4
F 0.50667 0.02171 51 -9.8
G 0.33333 0.01909 31 -9.16
H 0.07333 0.00422 3 -8.6
I 0.04333 0.00558 0 -8
J 0.015 0.00671 -3 -7.4
Table 5.4.b. Incubation of B16 cells with adozelesin for 4 hours then without adozelesin for 72 hours

column y(mean Abs) se (yEr±) y(% abs compared 
to control)

x(log adozelesin 
concentration)

A 1.26333 0.03201 97 -12.8
B 1.3 0.03337 100 -12.17
C 1.35 0.02966 104 -11.6
D 1.25333 0.04794 96 -11
E 1.15667 0.05175 90 -10.4
F 0.66833 0.02587 54 -9.8
G 0.51 0.01528 42 -9.16
H 0.011 0.00771 5 -8.6
I -0.02 0.00258 3 -8
J -0.06667 0.00333 0 -7.4
Table 5.4.c. Incubation of B16 cells with adozelesin for 4 hours then without adozelesin for 72 hours
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doxorubicin concentration [M] Fluorescence
6.90E-06 25344
2.70E-06 12544
1.10E-06 5888
4.40E-07 2582
1.80E-07 1168
7.00E-08 520 .
2.80E-08 248
1.13E-08 126
4.50E-09 78
1.80E-09 50

Table 5.8. Fluorescence of various concentrations of doxorubicin at ( excitation X. of 488nm, and 
emission X of 560nm0.

daunorubicin concentration [M] fluorescence
6.90E-06 31744
2.70E-06 16128
1.10E-06 7424
4.40E-07 3347
1.80E-07 1472
7.00E-08 672
2.80E-08 336
1.13E-08 192
4.50E-09 125
1.80E-09 85

Table 5.9. Fluorescence of various concentrations of daunorubicin ( excitation X of 488nm, and 
emission X of 560nm).

sample tested fluorescence
(a)

fluorescence
(b)

fluorescence
(c)

fluorescence
(d)

mean fluo Se [±]

wash 1 2532 2404 2756 2596 2572 73.2
wash 2 888 792 696 792 792 39.2
wash 3 581 653 589 573 599 18.3

extracted
doxorubicin

15564 15360 16384 15360 15667 243.8

Table 5.10. After incubating 9.6x10 M Doxorubicin in 4ml RPMI media with 5x10 B16 cells for 4 
hours. Fluorescence at ( excitation X of 488nm, and emission X of 560nm).of samples from three 
consecutive washing steps compared to fluorescence of sample containing extracted doxorubicin from
B16 cells.

sample tested fluorescence
(a)

fluorescence
(b)

fluorescence
(c)

fluorescence
(d)

mean fluo Se [±]

wash 1 56 40 48 112 64 16.3
wash 2 72 56 64 64 4.6
wash 3 120 96 72 66 88.5 12.3

extracted
daunorubicin

3568 3632 3376 1840 3104 424.8

Table 5.11. After incubating 7x10" M Daunorubicin in 4ml RPMI media with 5x10 B16 cells for 4 
hours. Fluorescence at ( excitation X of 488nm, and emission X of 560nm).of samples from three 
consecutive washing steps compared to fluorescence of sample containing extracted daunorubicin from
B 16 cells.
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column y(mean Abs) se (yErit) x (daunorubicin 
molecules per single 
Bicell)

A 1.26 0.07778 31000000
B 0.6475 0.05822 62000000
C 0.5525 0.03449 1.2E+08
D 0.47 0.03317 2.5E+08
E 0.3375 0.02175 4.9E+08
F 0.3325 0.01548 9.9E+08
G 0.24 0.01 2E+09
H 0.1775 0.01031 4E+09
I 0.07 0.0216 8E+09
J 0.03575 0.02065 1.6E+10
Table 5.12.a. MTT assay of daunorubicin on B16 cells after incubating the same number of 
daunorubicin molecules with various number of B16 cells for 4 hours, then incubation in a drug free 
media for 72 hours.

column y(mean Abs) se(yEr±) x (daunorubicin 
molecules per single B16 
cell)

A 0.70333 0.09905 31000000
B 0.61667 0.05207 62000000
C 0.58333 0.10333 1.2E+08
D 0.42 0.01732 2.5E+08
E 0.35 0.04509 4.9E+08
F 0.27667 0.02186 9.9E+08
G 0.29333 0.03383 2E+09
H 0.26667 0.01667 4E+09
I 0.27333 0.01856 8E+09
J 0.34333 0.00882 1.6E+10
Table 5.12.b. MTT assay of the supernatant containing daunorubicin molecules on B16 cells after only 
4 hours incubation with B16 cells and 72 hours incubation in drug free media. This supernatant 
contained daunorubicin remaining after incubating the same number of daunorubicin molecules with 
various number of B16 cells.

column y(mean Abs) se (yEr±) x (Adozelesin 
molecules/a single B16 
cell)

A 0.56333 0.03667 420000
B 0.48 0.01155 840000
C 0.38667 0.00882 1700000
D 0.42333 0.01202 3400000
E 0.36333 0.00882 6800000
F 0.31333 0.00667 13000000
G 0.21 0 54000000
H 0.22 0.00577 1.08E+08
I 0.135 0.00354 2.2E+08
Table 5.13.a. MTT assay of adozelesin on B16 cells after incubating the same number of adozelesin 
molecules with various number of B16 cells for 4 hours, then incubation in a drug free media for 72 
hours.
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column y(mean Abs) se (yEr±) x (Adozelesin molecules 
per a single B16 cell)

A 0.72 0.01414 420000
B 0.63 0.03536 840000
C 0.5 0.00707 1700000
D 0.49 0 3400000
E 0.38 0.00707 6800000
F 0.425 0.01061 '13000000
H 0.425 0.01061 54000000
I 0.315 0.01061 1.08E+08
J 0.335 0.02475 2.2E+08
Table 5.13.b. MTT assay of the supernatant containing adozelesin molecules on B16 cells after only 4 
hours incubation with B16 cells and 72 hours incubation in drug free media. This supernatant 
contained adozelesin remaining after incubating the same number of adozelesin molecules with various , 
number of B16 cells.

column y(mean Abs) se (yEnfc) x (bizelesin molecules per 
a single B16 cell)

A 0.215 0.00645 20000
B 0.2175 0.00854 40000
C 0.2525 0.00854 80000
D 0.25 0.01915 160000
E 0.215 0.01555 320000
F 0.26 0.01581 650000
G 0.205 0.02255 1300000
H 0.255 0.01893 2600000
I 0.2725 0.01974 5200000
J 0.28 0.01155 10300000
Table 5.14.a. MTT assay of bizelesin on B16 cells after incubating the same number of bizelesin 
molecules with various number of B16 cells for 4 hours then incubation in a drug free media for 72 
hours.

column y(mean Abs) se (yEr±) x (bizelesin molecules per 
a single B16 cell)

A 0.98 0.02483 20000
B 0.825 0.03663 40000
C 0.7225 0.03351 80000
D 0.645 0.03279 160000
E 0.495 0.01323 320000
F 0.485 0.0263 650000
G 0.49 0.01472 1300000
H 0.4375 0.0272 2600000
I 0.5325 0.01887 5200000
J 0.4625 0.03038 10300000
Table 5.14.b. MTT assay of the supernatant containing bizelesin molecules on B16 cells after only 4 
hours incubation with B16 cells and 72 hours incubation in drug free media. This supernatant 
contained bizelesin remaining after incubating the same number of bizelesin molecules with various 
number of B16 cells.
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Appendix D

Data for experiments in chapter 6

column y (mean Abs) se [yEr±] x (cell number)
A 0.08183 0.00788 7620
B 0.15 0.01125 11430
C 0-24667 0.01726 15240
D 0.36667 0.03283 19050
E 0.395 0.03304 22860
F 0.41833 0.01778 26670
G 0.43 0.03795 30480
H 0.55 0.02517 34290
I 0.585 0.03797 38100
Table 6.l.a. Incubation of 3T3 cells with mtt for 2 hours

column y (mean Abs) se [yEr±] x (cell number)
A 0.12 0.00816 1900
B 0.20667 0.01308 3810
C 0.25833 0.01327 7620
D 0.358 0.02956 11430
E 0.416 0.02441 15240
F 0.486 0.02694 19050
G 0.496 0.04007 22860
H 0.554 0.04456 26670
I 0.622 0.04727 30480
J 0.694 0.05115 34290
Table 6.1 .b. Incubation of 3T3 cells with mtt for 4 hours

column y (mean Abs) se [yEr±] x (cell number)
A 0.05333 0.01174 1900
B 0.09667 0.00667 3810
C 0.31 0.01125 7620
D 0.34833 0.01701 11430
E 0.465 0.02527 15240
F 0.53833 0.02056 19050
G 0.66167 0.02428 22860
H 0.685 0.02604 26670
I 0.78833 0.02833 30480
J 0.82333 0.03712 34290
Table 6.1 .c. Incubation of 3T3 cells with mtt for 6 hours
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column y (mean Abs) se [yEr±] x (cell number)
A 0.09057 0.00524 1000
B 0.41429 0.01974 3000
C 0.55714 0.02714 4000
D 0.54857 0.0315 5000
E 0.80571 0.03221 6000
F 0.84429 0.0268 7000
M 0.82429 0.02698 8000
G 0.81429 0.03191 9000
H 0.87857 0.03991 10000
Table 6.2.a. Incubation of 3T3 cells at 37°C in RPMI media for 72 hours, 
and with mtt for 4 hours.

column y (mean Abs) se [yEr±] x (cell number)
A 0.06729 0.02739 1000
B 0.60286 0.05541 3000
C 0.72286 0.03006 4000
D 0.86286 0.04617 5000
E 0.91857 0.04501 6000
F 1.00143 0.03888 7000
G 1.01143 0.04728 8000
H 1.27286 0.04965 9000
I 1.26571 0.04052 10000
Table 6.2.b. Incubation of 3T3 cells at 37°C in RPMI media for 96 hours, 
and with mtt for 4 hours.

column y (mean Abs) se [yEr±] x (cell number)
A 0.1224 0.00178 14000
B 0.1524 0.01018 18666
C 0.1952 0.01256 23333
D 0.2028 0.00309 28000
E 0.2226 0.00371 32666
F 0.2406 0.00527 37333
G 0.2892 0.00796 42000
H 0.3534 0.01517 46666
Table 6.3.a. Incubation of 293 cells with mtt for 2 hours

column y (mean Abs) se [yErit] x (cell number)
A 0.3625 0.01181 14000
B 0.49 0.01225 18666
C 0.5675 0.0125 23333
D 0.61 0.01472 28000
E 0.77 0.02483 32666
F 0.8575 0.06005 37333
G 0.89 0.0713 42000
H 0.965 0.06886 46666
Table 6.3.b. Incubation of 293 cells with mtt for 6 hours
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column y (mean Abs) se [yEr±] x (cell number)
A 0.23875 0.0091 2000
B 0.32075 0.00504 3000
C 0.39175 0.0067 4000
D 0.4235 0.00437 5000
E 0.51575 0.01426 6000
F 0.60375 0.03083 7000
G 0.58475 0.01582 . 8000
H 0.7145 0.0184 9000
Table 6.4.a. Incubation of 293 cells at 37°C in RPMI media for 96 hours, 
and with mtt for 6 hours.

column y (mean Abs) se [yEr±] x (cell number)
A 0.2325 0.01931 2000
B 0.365 0.02102 3000
C 0.5125 0.02287 4000
D 0.59 0.02121 5000
E 0.80333 0.03333 6000
F 0.73 0.03894 7000
G 0.88 0.02972 8000
H 1.025 0.03329 9000
I 1.065 0.02843 10000
Table 6.4.b. Incubation of 293 cells at 37°C in RPMI media for 96 hours, 
and with mtt for 6 hours.

column y (mean Abs) se [yErit] x (cell number)
K 0.13143 0.00143 2033
A 0.17857 0.0067 4066
B 0.14429 0.00782 8133
C 0.27714 0.0209 12199
D 0.50429 0.02935 16265
E 0.61714 0.03435 20331
F 0.76429 0.06027 24397
G 1.04429 0.03637 28463
H 1.01429 0.07718 32529
I 0.96 0.06777 36595
Table 6.5.a. Incubation of Cos 7 cells with mtt for 2 hours

column y (mean Abs) se [yEr±] x (cell number)
A 0.11714 0.00565 2033
B 0.17714 0.0036 4066
C 0.27143 0.01164 8133
D 0.47571 0:00812 12199
E 0.65 0.01877 16265
F 0.86143 0.03582 20331
G 0.97857 0.04533 24397
H 1 0.03658 28463
I 1.05714 0.0257 32529
J 1.17 0.08816 36595
K 1.20286 0.05195 40661
Table 6.5.b. Incubation of Cos 7 cells with mtt for 4 hours
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column y (mean Abs) se [yEr±l x (cell number)
A 0.14457 0.01385 1000
B 0.26286 0.02876 2000
C 0.29714 0.0286 3000
D 0.46429 0.02125 4000
E 0.43143 0.03582 5000
F 0.48429 0.03463 6000
G 0.65714 0.04069 7000
H 0.72571 0.04815 8000
I 0.70186 0.02579 9000
6.6 a. Incubation of Cos 7 cells at 37°C in RPMI media for 72 hours, and with mtt for 4 hours.

column y (mean Abs) se [yEr±] x (cell number)
A 0.23667 0.02525 1000
B 0.42667 0.06975 2000
C 0.57 0.04906 3000
D 0.73 0.07979 4000
E 0.807 0.06884 5000
F 1.02667 0.08413 6000
G 1.07833 0.1281 7000
H 1.1925 0.07021 8000
I 1.31333 0.04971 9000
Table 6.6.b. Incubation of Cos 7 cells at 37°C in RPMI media for 96 hours, and with mtt for 4 hours.

col y (mean Abs) se [yErt] x (log NLDP 
concentration)

A 1.25833 0.01249 -6.72
B 1.205 0.0303 -6.29
C 1.205 0.00847 -5.86
D 1.55 0.07132 -5.44
E 1.355 0.02172 -5.01
F 1.345 0.02187 -4.58
G 1.325 0.02202 -4.16
H 1.365 0.01522 -3.73
I 1.28333 0.0152 -3.3
J 1.055 0.02432 -2.88
Table 6.7.a. Incubation of B 16 cells with NLDP for 72 hours.

col y (mean abs) se [yErt] x (log NLDP 
concentration)

A 0.91167 0.02822 -6.72
B 0.96 0.01592 -6.29
C 0.97167 0.01662 -5.86
D 1.23667 0.01542 -5.44
E 1.49167 0.04629 -5.01
F 1.41833 0.07432 -4.58
G 1.32667 0.05194 -4.16
H 1.155 0.02062 -3.73
I 1.09167 0.06177 -3.3
J 1.21667 0.01202 -2.88
Table 6.7.b. Incubation of B 16 ce Is with NLDP for 72 hours.
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col y (mean Abs) Se [Er±] x (log NLDP 
concentration)

A. 0.985 0.01522 -6.72
B 1.105 0.01147 -6.29
C 1.17 0.01862 -5.86
D 1.14333 0.01706 -5.44
E 1.24 0.02852 -5.01
F 1.1775 0.02863 -4.58
G 1.09167 0.02868 -4.16
H 1.19333 0.02155 -3.73
I 1.08167 0.03978 -3.3
J 0.89333 0.02654 -2.88
Table 6.7.c. Incubation of B 16 cel s with NLDP for 72 hours.

col y (mean Abs) Se [yErt] y (% Abs compared 
to control)

x (log Methotrexate 
concentration)

A 1.13667 0.02591 84 -9.1
B 1.355 0.02907 110 -8.69
C 1.34333 0.04432 108 -8.29
D 1.115 0.02553 81 -7.89
E 1.045 0.00922 73 -7.5
F 0.915 0.02094 58 -7.1
G 0.74 0.02206 38 -6.7
H 0.54833 0.02023 15 -6.3
I 0.425 0.01688 1 -4.3
Table 6.8.a. Incubation of B16 cells with Methotrexate for 72 hours.

col y (mean Abs) Se [yErt] y (% Abs compared 
to control)

x (log Methotrexate 
concentration)

B 1.21833 0.0199 89 -9.1
C 1.25167 0.01108 92 -8.69
D 1.34 0.01033 101 -8.29
E 1.3 0.06693 97 -7.89
F 1.32333 0.04738 99 -7.5
G 1.11667 0.06168 79 -7.1
H 0.69833 0.09119 37 -6.7
I 0.56 0.04919 23 -6.3
J 0.37167 0.01424 4 -4.3
Table 6.8.b. Incubation of B 16 cells with Methotrexate for 72 hours.
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col y (mean Abs) Se [yEnfc] y (%Abs compared to 
control)

x (log Methotrexate 
concentration)

A 1.28 0.01983 108 -9.7
B 1.07667 0.02076 81 -9.1
C 1.39167 0.03646 123 -8.69
D 1.09333 0.01961 83 -8.29
E 1.10833 0.03146 85 -7.89
F 1.26167 0.034 106 -7.5
G 1.01167 0.01558 72 -7.1
H 0.87667 0.02704 54 -6.7
I 0.74333 0.01994 36 -6.3
J 0.48 0:01506 0 -4.3
Table 6.8.c. Incubation of B 16 cells with Methotrexate for 72 hours.

col y (mean Abs) Se [yEr±] y (% Abs compared 
to control)

x (log MTX-NLDP 
concentration)

A 1.275 0.0317 107 -6.86
B 1.27333 0.03201 107 -6.44
C 1.22167 0.04453 104 -6.01
D 0.99333 0.01382 91 -5.58
E 0.96917 0.03298 90 -5.16
F 1.105 0.05566 97 -4.73
G 0.98167 0.03049 90 -4.31
H 0.86 0.04683 83 -3.88
I 0.59 0.05983 68 -3.46
J 0.12833 0.0233 41 -3.03
Table 6.9.a. Incubation of B 16 cel s with MTX-NLDP for 72 hours.

col y (mean Abs) Se [yErt] y (% Abs compared 
to control)

x (log MTX-NLDP 
concentration)

A 1.19167 0.01579 97 -6.86
B 1.04 0.02828 84 -6.44
C 1.155 0.03452 93 -6.01
D 1.00667 0.06173 81 -5.58
E 0.99667 0.04835 80 -5.16
F 1.04667 0.05018 84 -4.73
G 0.825 0.01727 65 -4.31
H 0.68667 0.04787 53 -3.88
I 0.36167 0.01851 25 -3.46
J 0.14583 0.03073 6 -3.03
Table 6.9.b.Incubation of B 16 cells with MTX-NLD J for 72 hours.
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col y (mean Abs) Se [yEnfc] y (% Abs compared 
to control)

x (log MTX-NLDP 
concentration)

A 1.14167 0.06405 97 -6.44
B 1.22283 0.11343 105 -6.01
C 1.04667 0.09069 88 -5.58
D 1.10333 0.14961 93 -5.16
E 1.04833 0.09243 88 -4.73
F 0.68833 0.07661 54 -4.31
G 0.51167 0.05816 37 -3.88
H 0.31833 0.02651 18 -3.46
Table 6.9.c. Incubation of B 16 cel s with MTX-NLDP for 72 hours.

col y (mean Se [yEnfc] y (% Abs compared 
to control)

x (log Methotrexate 
concentration)

A 0.846 0.03203 105 -9.5
B 0.712 0.04352 80 -8.9
C 0.808 0.04329 98 -8.2
D 0.504 0.02713 73 -7.5
E 0.374 0.02159 16 -6.8
F 0.364 0.00927 14 -6.1
G 0.272 0.01594 -3 -5.4
H 0.3 0.01183 2 -4.7
I 0.258 0.0097 -6 -4
Table 6.10.a. Incubation of 293-MC3 cells with Methotrexate for 96 hours

col y (mean) Se [yEnfc] y (%  Abs compared 
to control)

x (log Methotrexate 
concentration)

A 0.59167 0.03683 103 -9.5
B 0.55 0.01713 93 -8.9
C 0.57 0.02206 98 -8.2
D 0.41333 0.01054 57 -7.5
E 0.29667 0.00843 27 -6.8
F 0.315 0.00619 32 -6.1
G 0.15483 0.01925 -9 -5.4
H 0.23167 0.01621 10 -4.7
I 0.133 0.01436 -15 -4
J 0.17333 0.01358 -5 -3.3
Table 6.10.b. Incubation of 293-MC3 cells with Methotrexate for 96 hours

242



col y (mean) Se [yEnfc] y (% Abs compared 
to control)

x (log Methotrexate 
concentration)

A 0.53667 0.03997 94 -9.5
B 0.52667 0.01476 92 -8.9
C 0.57833 0.01078 105 -8.2
D 0.365 0.01025 49 -7.5
E 0.27 0.01211 24 -6.8
F 0.22333 0.00667 .11 -6.1
G 0.19333 0.01202 3 -5.4
H 0.19667 0.01892 4 -4.7
I 0.15833 0.00543 -6 -4
J 0.13667 0.00955 -11 -3.3
Table 6.10.C. Incubation of 293-MC3 cells with Methotrexate for 96 hours

col y (mean Se [yEnfc] y (% Abs compared 
to control)

x Gog MTX-NLDP 
concentration)

A 0.82857 0.02029 88 -9.45
B 0.86 0.02478 92 -8.85
C 0.89714 0.02958 98 -8.24
D 0.93286 0.0475 103 -7.64
E 0.94571 0.0127 105 -7.04
F 0.93857 0.02773 104 -6.44
G 0.79333 0.06417 82 -5.83
H 0.465 0.0131 32 -5.23
I 0.45167 0.01249 30 -4.63
J 0.24667 0.00803 0 -4.03
Table 6.11.a. Incubation of 293-MC3 cells with MTX-NLDP for 96 hours

col y (mean Abs) Se [yEnfc] y (% Abs compared to 
control)

x (log MTX-NLDP 
concentration)

A 0.673 0.03767 71 -9.55
B 0.84333 0.02716 96 -8.95
C 0.79 0.01693 88 -8.35
D 0.82833 0.04061 94 -7.7
E 1.00167 0.06353 120 -7.1
F 0.935 0.02825 110 -6.5
G 0.935 0.06526 110 -5.9
H - 0.87667 0.06854 101 -5.3
I 0.39833 0.01195 30 -4.7
J 0.4 0.01065 30 -4.14
Table 6.11. >. Incubation of 293-N* C3 cells with M' "X-NLDP for 96 hours.
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col y (mean Abs) Se [yEr±] y (% Abs compared 
to control)

x (log MTX-NLDP 
concentration)

A 0.68 0.00816 95 -9.55
B 0.584 0.0199 80 -8.95
C 0.625 0.0461 86 -8.35
D 0.62333 0.06591 86 -7.7
E 0.73333 . 0.05931 103 -7.1
F 0.69833 0.04942 97 -6.5
G 0.97333 0.07654 140 -5.9
H 0.75833 0.0204 107 -5.3
I 0.27667 0.00558 32 -4.7
J 0.30333 0.00989 -4.14
Table 6.1 I.e. Incubation of 293-MC3 cells with MTX-NLDP for 96 hours.

col y (mean Abs) Se [yEr±] y (% Abs compared to 
control)

x (log MTX-NLDP 
concentration)

A 1.288 0.04769 105 -9.5
B 1.152 0.02973 84 -8.9
C 1.17 0.04159 87 -8.3
D 1.356 0.02839 115 -7.7
E 1.226 0.02293 95 -7.1
F 1.244 0.03789 98 -6.5
G 1.216 0.05192 94 -5.9
H 1.034 0.1353 66 -5.3
I 0.668 0.05407 9 -4.7
J 0.726 0.034 18 -4.1
Table 6.12.a. Incubation of 293-vector cells with MTX-NLDP for 96 hours.

col y (mean Abs) Se [yEr±] y (% Abs compared 
to control)

x (log MTX-NLDP 
concentration)

A 1.4625 0.05573 127 -9.59
B 0.925 0.02398 70 -8.99
C 1.545 0.06357 135 -8.38
D 1.0175 0.03568 80 -7.78
E 0.935 0.10169 71 -7.18
F 0.955 0.17188 73 -6.6
G 0.66 0.04708 42 -6
H 0.5 0.10108 25 -5.37
I 0.395 0.05236 14 -4.77
J 0.095 0.03279 -17 -4.17
Table 6.12. b. Incubation of 293-vector cells with M'fX-NLDPfor 96 hours.
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col y (mean Abs) Se [yEnt] y (%Abs compared to 
control)

x ( log Methotrexate 
concentration)

A 0.82714 0.04534 88 -9.09
B 0.79143 0.06486 81 -8.67
C 0.95571 0.03747 111 -8
D 0.85871 0.04418 93 -7.59
E 0.94286 0.06225 109 -7.19
F 0.76286 0.07599 70 -6.8
G 0.45157 0.04315 19 -6.4
H 0.43429 0.02724 15 -6
I 0.45 0.01272 18 , -5.3
Table 6.13.a. Incubation of cos 7 cells with Methotrexate for 96 hours.

col y (mean Abs) Se [yEnt] y (% Abs compared 
to control)

x (log Methotrexate 
concentration)

A 0.93714 0.03871 89 -9.09
B 0.90714 0.04518 84 -8.67
C 0.95 0.0234 91 -8
D 1.05429 0.03199 107 -7.59
E 1.11286 0.05112 116 -7.19
F 0.83143 0.04611 72 -6.8
G 0.53 0.02449 25 -6.4
H 0.51143 0.04085 22 -6
I 0.45857 0.01668 14 -5.3
J 0.50571 0.01043 21 -3.3
Table 6.13. i>. Incubation of cos 7 cells with Methotrexate for 96 hours.

col y (mean Abs) Se [yEnt] y (% Abs compared to 
control)

x (log Methotrexate 
concentration)

A 1.14 0.03402 101 -9.09
B 1.12143 0.03446 99 -8.67
C 1.02286 0.03198 85 -8.00
D 0.98 0.04353 80 -7.59
E 1.12 0.05542 99 -7.19
F 0.66857 0.03391 38 -6.80
G 0.58286 0.03053 26 -6.40
H 0.46714 0.02427 10 -6.0
I 0.43857 0.01752 7 -5.30
J 0.40429 0.00972 2 -3.3
Table 6.13.C. Incubation of cos 7 cells with Methotrexate for 96 hours.
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col y (mean Abs) Se [yEr±] y (% Abs compared to 
control)

x (log MTX-NLDP 
concentration)

A 1.20429 0.03909 98 -7.56
B 1.14143 0.02577 91 -7.13
C 1.17857 0.02492 95 -6,7
D 1.13286 0.05209 90 -6.28
E 1.24714 0.08624 103 -5.86
F 1.27143 0.07268 105 -5.43
G 1.06143 0.05302 83 -5
H 0.65143 0.01223 37 -4.58
I 0.51571 0.02136 ' 23 -4.15
J 0.48571 0.01811 19 -3.73
Table 6.14.a. Incubation of cos 7 cells with MTX-NLDP for 96 hours.

col y (mean Abs) Se [yEr±] y (% Abs compared 
to control)

x (log MTX-NLDP 
concentration)

C 1.07857 0.0346 90 -6.7
D 1.09571 0.02768 92 -6.28
E 1.13571 0.04076 97 -5.86
F 1.18571 0.03897 97 -5.43
G 1.13714 0.03676 97 -5
H 0.72143 0.02577 44 -4.58
I 0.58714 0.01267 26 -4.15
J 0.55571 0.01192 22 -3.73
Table 6.14.C. Incubation of cos 7 cells with MTX-NLDP for 96 hours.

COL y (mean Abs) Se [y Et±] y (%  Abs compared 
to control)

x (log Methotrexate 
concentration)

A 0.84667 0.07982 100 -9.09
B 0.81 0.10328 94 -8.67
C 0.68167 0.06374 73 -8
D 0.61 0.09832 61 -7.59
E 0.47167 0.026 38 -7.19
F 0.36167 0.03692 20 -6.8
G 0.255 0.00719 3 -6.4
H 0.27 0.01211 5 -6
I 0.25333 0.01476 2 -5.3
Table 6.15.a. Incubation of 3T3 cells with Methotrexate for 96 hours.
col y (mean Abs) Se [yEr±] y (% Abs compared to 

control)
X (log Methotrexate 

concentration)
A 0.47333 0.02472 83 -9.09
B 0.50333 0.01229 91 -8.67
C 0.56667 0.02431 107 -8
D 0.58 0.0531 111 -7.59
E 0.455 0.02778 80 -7.19
F 0.36667 0.01606 57 -6.8
G 0.265 0.01432 32 -6.4
H 0.23667 0.01453 25 -6
I 0.23333 0.00558 24 -5.3
J 0.25333 0.00803 29 -3.3
Table 6.15. >. Incubation of 3T3 cells with Methotrexate for 96 hours.



y (mean Abs) Se [yEnt] y {% Abs compared to 
control)

x (log Metotrexate 
concentration)

A 0.57167 0.03439 88 -9.09
B 0.645 0.06114 106 -8.67
C 0.51167 0.063 74 -8
D 0.44 0.07243 56 -7.59
E 0.33667 0.04709 39 -7.1
F 0.295 0.04249 21 -6.8
G 0.23 0.03022 6 -6
H 0.24 0.02082 8 -5.3
I 0.22667 0.00955 5 -3.3
Table 6.15.C. Incubation of 3T3 cells with Methotrexate for 96 hours.

col y (mean Abs) Se [yEnt] y (%  Abs compared 
to control)

x (log MTX-NLDP 
concentration)

A 0.55 0.02059 83 -6.28
B 0.54714 0.0219 83 -5.86
C 0.46429 0.01798 61 -5.43
D 0.29429 0.00429 17 -5
E 0.26286 0.00421 9 -4.58
F 0.28 0.00724 14 -4.15
G 0.26857 0.00459 11 -3.73
Table 6.16.a. Incubation of 3T3 cells with MTX-NLDP for 96 hours

col y (mean Abs) Se [yEr±] y (% Abs compared to 
control)

x (log MTX-NLDP 
concentration)

C 0.54286 0.02801 88 -6.7
D 0.53571 0.01212 87 -6.28
E 0.59286 0.02244 101 -5.86
F 0.46714 0.02135 69 -5.43
G 0.30286 0.01409 26 -5
H 0.23143 0.00404 8 -4.58
I 0.24286 0.0119 11 -4.15
J 0.24286 0.01248 11 -3.73
Table 6.16. 3. Incubation of 3T3 cells with MTX-N J )P  for 96 hours.

col y (mean Abs) Se [yEr±] y (% Abs compared to 
control)

x (log MTX-NLDP 
concentration)

A 0.50571 0.01571 80 -6.7
B 0.50286 0.02784 79 -6.28
D 0.45429 0.01702 67 -5.86
E 0.24 0.02469 10 -5.43
F 0.23 0.00724 8 -5
H 0.20286 0.00837 1 -4.15
I 0.25286 0.00474 14 -3.73
Table 6.16.C. Incubation of 3T3 cells with MTX-N ^DP for 96 hours
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Appendix E

HPLC analysis report on the stability of the MTX-NLDP conjugate.

The table below shows the gradient of the two solvents A and B used for the HPLC 

analysis of the stability of MTX-NLDP conjugate, and the time intervals.

Time (minute) % A % B

0 80 20

2.0 0 100

5.0 0 100

8.0 80 20

10.0 80 20

Table 6.17. gradient of solvents A and B.

In order to assess the stability of the MTX-NLDP, 0.22mg of MTX-NLDP powder 

was dissolved in 1ml PBS and the samples incubated at 37°C for 24h, 48h, 72h and 

96h. HPLC analysis of I0|il samples of 1.3xlO"^M MTX-NLDP was undertaken to 

determine the stability of the conjugate under physiological conditions for various 

time periods, in addition to the HPLC analysis of a 10pl sample of 8.5xlO‘IOM MTX. 

The HPLC procedure is described in chapter 2 the U.V detection wavelength was 

217nm.
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Mode: Acquired Data
Original Results: D:\TSP\SYSTEM1\Data\mtx.l.RES
Notes:

Page 1
Reported On: 20-06-96 17:48:47

A n a l y s i s  R e p o r t

Name: mtx.l 
Description: 8.5E-10 
Type: Sample 
Injection Volume: 10.0 uL

Acquisition Log 
Column Pressure (PSI): 2724 
Noise (microAU): 1e+002 
Run-Time Messages: None

Signal 1: Scan Wavelength 217 
Calculation Type: Area Percent

cn
o
o

Vial: A32 Injection: 1 of 1

Injected On: 19-06-96 18:06:42

Column Temperature (C): N/A 
Drift (microAU/min): 4e+002

mV or mAU

o
o
o

Pump Flow Stability: N/A

cn
o
o

ro
o
o
o

cn U.933

“2t533*

E  cn
CDl/>

ro
o

rocn

co
o

Component RT(min) Area Height Area% Peak Type
Unident0001 1.914 81239 4010 0.79 Fused
Unident0002 2.533 10148162 1950768 98.33 Fused
Unident0003 4.933 91323 6980 0.88 Last Fused
Totals 10320724 1961758 100.00



Mode. Acquired Data
Original Results: D:\TSP\SYSTEM1\f
Notes:

Page 1
Reported On: 21-06-96 09:10:23

RES

A n a l y s i s  R e p o r t

Name:/>?7>^ - /T-LD0 H P
Description: HOURS 1
Type: Sample
Injection Volume: 10.0 uL

Vial: A26 Injection: 1 of 1

Injected On: 19-06-96 15:52:04

Acquisition Log 
Column Pressure (PSI): 2674 
Noise (microAU): 4e+001 
Run-Time Messages: None

Column Temperature (C): N/A 
Drift (microAU/min): 8e+001

Pump Flow Stability: N/A

Signal 1: Scan Wavelength 217 
Calculation Type: Area Percent

cn
o
o

mV or mAU

o
o
o

cn
o
o

ro
o
o
o

ro
cn
o
o

co
o
o
o

o

1.333

cn 5.340

9.371
o

ro  J 
o

ro
cn

co
o

Component RT(min) Area Height Area% Peak Type
Unident0001 1.657 322246 16908 0.17 Fused
Unident0002 2.333 1252944 206516 0.68 Fused
Unident0003 2.600 837944 72158 0.45 Fused
Unident0004 3.175 705170 33880 0.38 Fused
Unident0005 3.704 1474741 49104 0.80 Fused
Unident0006 4.477 2417877 86262 1.31 Fused
Unident0007 5.340 167679192 2985896 90.77 Fused
Unident0008 8.004 1789740 47060 0.97 Fused



Mode: Acquired Data
Original Results: D:\TSP\SYSTEM1\Data\MTX-NLDP_24HR.RES 
Notes:

Page 1
Reported On. 20-06-96 18:04:22

A n a l y s i s  R e p o r t

Name: MTX-NLDP_24HR 
Description: 24 HOURS 
Type: Sample 
Injection Volume: 10.0 uL

Acquisition Log 
Column Pressure (PSl): 2620 
Noise (microAU): 5e+O01 
Run-Time Messages: None

Signal 1: Scan Wavelength 217 
Calculation Type: Area Percent

Vial: A24 Injection: 1 of 1

Injected On: 19-06-96 15:16:54

Column Temperature (C): N/A 
Drift (microAU/min): -4

Pump Flow Stability: N/A

mV or mAU

CD
o
o

CXJ
o
o

ro
o
o

o
o

o
oo

o

2.683 2-317

cn

7.504
8.344

o

j

J 14.482

ro
o

ro
cn

CO
o

Component RT(min) Area Height Area% Peak Type
Unident0001 1.627 225666 14688 0.15 Fused
Unident0002 2.317 1515796 264072 0.99 Fused
Unident0003 2.583 1157389 132160 0.75 Fused
Unident0004 3.102 702393 35340 0.46 Fused
Unident0005 3.591 1256394 54330 0.82 Fused
Unident0006 4.260 2447128 84474 1.59 Fused
Unident0007 5.532 3422213 90352 2.23 Fused
Unident0008 6.123 3810393 130600 2.48 Fused



Mode: Acquired Data
Original Results: D:\TSP\SYSTEM1\Data\MTX-NLDP
Unident0009 6.501 2202378
UnidentOOlO 7.504 40253115
UnidentOOl 1 8.344 85207052
Unident0012 10.487 944454
UnidentOOl 3 11.078 5186878
UnidentOOl 4 11.866 3465019
UnidentOOl 6 ' 14.482 1699125
Totals 153495393

Page 2
Reported On: 20-06-96 18:04:22

.24HR.RES
129646 1.43 Fused

1111314 26.22 Fused
1184522 55.51 Fused

47350 0.62 Fused
138776 3.38 Fused
107790 2.26 Fused ,
89586 1.11 Last Fused

3615000 100.00



Made: Acquired Data
Original Results: D:\TSP\SYSTEM1\Data\MTX-NLDP_48HR.RES
Notes:

Page i
Reported On: 20-06-96 18:06:21

A n a l y s i s  R e p o r t

Name: MTX-NLDP_48HR 
Description: 48 HOUR 
Type: Sample 
Injection Volume: 10.0 uL

Acquisition Log 
Column Pressure (PSI): 2665 
Noise (microAU): 6eH)01 
Run-Time Messages: None

Signal 1: Scan Wavelength 217 
Calculation Type: Area Percent

Vial: A22 Injection: 1 of I

Injected On: 19-06-96 14:44:35

Column Temperature (C): N/A 
Drift (microAU/min): -7e+002

Pump Flow Stability: N/A

mV or mAU

ro cn
o
o

CD
o
o

ro
o
o

o
o

o
o

o
ooo

o

cn

- —  7.2807.946

o

4.028
coc/>

ro
o

ro
cn

co
o

Component RT(min) Area Height Area% Peak Type
UnidentOOOl 1.611 234694 16260 0.15 Fused
Unident0002 2.283 1187886 228036 0.74 Fused
Unident0003 2.533 317616 39306 0.20 Fused
Unident0004 2.567 1448176 147570 0.90 Fused
Unident0005 3.093 595387 33578 0.37 Fused
Unident0006 3.571 1383217 60766 0.86 Fused
Unident0007 4.232 2658352 93402 1.65 Fused
Unident0008 5.470 3363962 89892 2.09 Fused



Page 2
Mode: Acquired Data Reported On: 20-06-96 18:06:21
Original Results: D:\TSP\SYSTEM1\Data\MTX-NLDP_48HR.RES
Unident0009 6.037 3875864 138784 2.41 Fused
UnidentOOl 0 7.280 45595289 1369190 28.36 Fused
UnidentOOl 1 7.946 83663819 1202924 52.03 Fused
UnidentOOl 2 10.882 6236641 154286 3.88 Fused
UnidentOOl 3 11.626 3719124 115796 2.31 Fused
UnidentOOl 4 14.028 6509982 182308 4.05 Last Fused
Totals 160790009 ' 3872098 100.00



Mode: Acquired Data
Original Results: D:\TSP\SYSTEM1\Data\MTX-NLDP_72HR.RES
Notes:

Page 1
Reported On: 20-06-96 18:08:20

A n a l y s i s  R e p o r t

Name: MTX-NLDP_72HR 
Description: 72 HOUR 
Type: Sample 
Injection Volume: 10.0 uL

Acquisition Log 
Colurtin Pressure (PSI): 2690 
Noise (microAU): 1e+O05 
Run-Time Messages: None

Signal 1: Scan Wavelength 217 
Calculation Type: Area Percent

Vial: A21 Injection: 1 of 1 

Injected On: 19-06-96 14:05:49

Column Temperature (C): N/A 
Drift (microAU/min): 3e+005

Pump Flow Stability: N/A

mV or mAU

o
o

ro
o
o

ro
o
o

o
o

Oi
o
o

oo
o
o

o  ro
o  o
o  o

o

.640

cn

o

rocn

CO J 
o

Component RT(min) Area Height Area% Peak Type
Unident0001 1.640 567286 29670 0.34 Fused
Unident0002 2.300 4806691 316742 2.85 Fused
Unident0003 2.900 1324800 79512 0.79 Fused
Unident0004 3.364 1767760 90528 1.05 Fused
Unident0005 3.849 3726584 110482 2.21 Fused
Unident0006 5.138 4665463 103146 2.77 Fused
Unident0007 5.787 4656617 160332 2.77 Fused
Unident0008 7.205 45797622 1260316 27.20 Fused



Page 2
Mode: Acquired Data -Reported On: 20-06-96 18:08:20
Original Results: P:\TSP\SYSTEM1\Data\MTX-NLDP_72HR.RES
Unident0009 7.911 86635975 1259212 51.45 Fused
UnidentOOl 0 10.567 5966125 173150 3.54 Fused
UnidentOOl 1 11.253 3705605 105572 2.20 Fused
UnidentOOl 2 13.209 1106968 64828 0.66 Fused
UnidentOOl 3 13.857 3648089 113366 2.17 Last Fused
Totals 168375585 3866856 100.00



Mode: Acquired Data
Original Results: D:\TSP\SYSTEM1\Data\MTX-NLDP_STAB1.RES
Notes:

Page 1
Reported On: 20-06-96 18:01:12

A n a l y s i s  R e p o r t

Name: MTX-NLDP_STAB1 
Description: Q£IOUR 
Type: Sample 
Injection Volume: 10.0 uL

Acquisition Log 
Column Pressure (PSI): 2658 
Noise (microAU): 3e+004 
Run-Time Messages: None

Signal 1: Scan Wavelength 217 
Calculation Type: Area Percent

Vial: A20

Column Temperature (C): N/A 
Drift (microAU/min): 1e+005

Injection: 1 of 1 

Injected On: 19-06-96 13:36:48

Pump Flow Stability: N/A

mV or mAU

ro
o
o

ro
o
o

o
o

cn
o
o

oo
o
o

o
o
o

o

4.533 
.823 
71

ro
o

rocn

co
o

Component RT(min) Area Height Area% Peak Type
UnidentOOOl 2.650 8532496 1047242 75.06 Resolved
Unident0002 4.533 1664262 74066 14.64 Fused
Unident0003 5.823 716849 28842 6.31 Fused
Unident0004 6.778 109398 3762 0.96 Fused
Unident0005 7.583 87686 5548 0.77 Fused
Unident0006 8.036 37323 3422 0.33 Fused
Unident0007 8.333 42239 3588 0.37 Fused
Unident0008 9.089 177771 12780 1.56 Last Fused



Page
Mode: Acquired Data Reported On: 20-06-96 18:01:1
Original Results: D:\TSP\SYSTEM 1 \Data\MTX-NLDP_STAB 1 .RES
Totals 11368024 1179250 100.00
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