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Sum m ary

The contents of this thesis can be viewed in two equivalent two ways. The straightfor

ward view is that the bulk of the material concerns linear recurrences (usually the Fibonacci 

recurrence) in finite p-groups. The other perspective is to build the recurrence into the 

presentation of a group, and then examine which finite p-groups can occur as quotients of 

this group. Though this thesis is principally concerned with the Fibonacci recurrence, it 

has recently become clear that, contrary tokm r initial expectations, some of the results 

generalize to (almost) arbitrary linear recurrences.

The method of working has been to discover experimental “tru ths” via computational 

experiment, usually using the system CAYLEY, and then to set about providing formal 

mathematical proofs to confirm that the apparent truths are actually theorems. The 

mathematical technique we have developed to accomplish this task has been a calculus of 

Fourier Sums, where a periodic function, sometimes of considerable complexity, is summed 

over a fundamental period.

The thesis ends with some material concerning the search for natural algebraic invari

ants to discriminate between isoclinic finite p-groups. This work is not directty related to 

the rest of the thesis.
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CH APTER 0

Introduction

Firstly, we define the Fibonacci groups. These are groups parameterized by natural num

bers r  and n  and described by the following presentations

F ( r , Tl  )  —  ^  . I j  X 2 X 3  ' ’ ’ I r  —  X  f*-j- ! , X 2 X 3 X 4  • • X  7*^-1 —  r r - f 2 5

1 n  — * * " *̂ '7'—2 X r — \ 1 X n X  1 X 2 * ’ ’ X j  —  ^  •

Thomas gave a table describing our knowledge of the structure of Fibonacci groups with 

small parameters in his survey of Fibonacci groups. This survey appears as a Technical 

Report [Th89b]. We will now briefly describe the history of Fibonacci Groups.

Study of these groups began with a question of Conway [Co]. His question was to determine 

whether or not F (2 ,5 ) is cyclic of order 11. The question was quickly answered (in the 

affirmative) independently by large number of mathematicians.

The groups .F(2, 1) and F ( 2 , 2 ) are trivial. The group F (2 , 3) is the quaternion group of 

order 8 . The group .F(2,4) is cyclic of order 5. The group .F(2,5) is cyclic of order 11 and 

F ( 2 , 6) is infinite. F ( 2 , 7) was shown to be cyclic of order 29 using a computer by Brunner 

[Br] and Chalk and Johnson [CJ]. An algebraic proof was given by Havas [Ha]. Brunner 

showed that the groups F ( 2 ,8 ) and F (2, 10) are infinite [Br]. The group F ( 2,9) is infinite, 

a fact that was demonstrated by Newman [Ne]. Now, F(2,n)  is infinite, where n > 11. 

This was shown by Lyndon. We have summarized the existing knowledge of F(2,n) .  Now, 

we will enumerate some of the known properties of Fibonacci groups.

1 . Johnson showed that the derived quotient F(r. n ) /F ' ( r , n)  is always finite and the order

of F( r , n ) / F ' ( r , n )  is equal to | n i= i(£t” — 1) l» where f ( x )  =  1 +  x +  x 2 H +  :rr-1  — x r

and the are the roots of this polynomial [Jo].
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2 . Johnson, Wamsley and Wright proved that if n divides r, then F ( r ,n )  is cyclic of order 

r  -  1 [JWW].

3. Campbell and Robertson proved that if r  =  1 (mod n), then F ( r ,n )  is metacyclic of 

order r n — 1 [CR74a], [CR74b].

4. It was shown by Campbell and Thomas [CT], [Th83] that F (r , n) is infinite i f ( r  +  l ,n )  > 

3 or if (r + 1 , n) =  3 with n even or r > 2, where (r + 1 , n)  denotes greatest common divisor 

of r  +  1 and n.

5. If r is even, then F (r,2 ) is cyclic of order r — 1. If r is odd the F (r , 2) is metacyclic of 

order r 2 — 1. It was shown by Johnson, Wamsley and Wright [JWW].

6 . The group F(r,  3) is cyclic of order r  — 1 if r  =  0 (mod 3), metacyclic of order r 3 — 1 if 

r =  1 (mod 3), and infinite if r  =  2 (mod 3) with r  > 2. This result appears in [JWW].

7. The group F (r, 4) is cyclic of order r  — 1 if r  =  0 (mod 4), metacyclic of order r 4 — 1 if 

r =  1 (mod 4), metacyclic of order (4k +  1)[24*+1 4- (—l ) k22k+1 +  1] if r =  2 (mod 4) where 

r =  4k +  2 and F ( r ,4) is infinite if r  =  3 (mod 4). These results were due to Thomas 

[Th89a] and Seal [Se]. There appear to be no known results of similar type for the group 

F (r , 5). It is not known, for example, whether or not F ( 7,5) is finite.

8 . Chalk and Johnson showed that if n does not divide any of r ±  I, r  ±  2, 2r ±  1, 37', 4?’ 

or 5?', then F ( r ,77.) is infinite [CJ].

9. If r is odd and if n does not divide any of r  ±  1, r  4  2, 2r, 2r 4- 1 or 3r then F (r ,n )  

is infinite. This result is a generalization of the previous remark, and was proved by Seal 

[Se].
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10. If s > 0 such that 2a divides ( r ,7i), 2a+1 does not divide r, and n does not divide any 

of r ±  1, r -f 2 , 2r, 2r  +  1 or 3r, then F (r ,n )  is infinite [Se].

11. If n does not divide any of r  ±  2 , r ±  3,2r, 2r  ±  1, 2r  ±  2, or 3r ±  1, then F(r ,n)  is 

infinite [Se].

12. As a result, if n > 2r +  1, then F(r, n) is infinite unless r  =  2, n =  7 or (perhaps) 

r  =  3, n =  9.

Next we will give the definition and some properties of finite p-groups.

Definition: Let G be a finite group. If every element of G has order a power of p, then G 

is called p-group, where p is a prime number.

1. Every non-trivial finite p-group has a central subgroup of order p.

2 . If order of the p-group G is p” , then every maximal subgroup of G has order pn_1.

3. A finite p-group is nilpotent.

4. A p-group G of order pn can have nilpotency class at most 7i — 1, since either p-group 

is cyclic or p2 divides the index of the Frattini subgroup of G. This result was due to 

Burnside. See, for example, [Har].

Now we will give some information about commutators, commutator groups, nilpotent 

groups and the notion of nilpotency class.

Definition: Let G be a group. If x and y elements of G then (x,y)  =  x ~ 1'y~1xy  is called 

the commutator of x  and y. If A  and B  are subgroups of G, then (A, B)  is the subgroup 

generated by all the commutators (x,y)  with x (E A, y £ B. G = (G,G)  is called the
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derived group of G.

Definition: Let H < G , K < G , K < H .  If H / K  is contained in the centre of G / K  then 

H / K  is called a central factor of G. A group G is called nilpotent if it has finite series of 

normal subgroups

G — Gq ^  G\ ^  G‘2 ^  ^  Gr =  1 ( l)

such that G i - i / G i  is a central factor of G for each i= l ,  2 , 3, • • •, r. The smallest possible

r is called the nilpotency class of G.

If the nilpotency class of G is 1, then the group is Abelian. If the nilpotencj' class of G

is 2, then the group is metabelian. Now, we will define the upper central series and the

lower central series.

Definition: Let G be a group.

1 =  <$o(G) < <$i(G) ^  '

is called the upper central series of G if 6i+\{G)/6i(G) is the centre of G/8i{G).

Definition: Let G be a group.

G  =  7 i ( G ) >  7 2 ( G )  > ■ • •  

is called the lower central series if 7 ,+i(G ) =  (7 i(G),G).

If (1) is any central series of G then for all integers i, j  we have

<$ii(G) > Gr_i, 7J+i(G ) < Gj.

We will use these properties and following properties in Chapter 4.

In any group G we have the following commutator formulas, mostly due to Philip Hall 

[Ha79].



1. (y ,x) =  (x, y) J , x y =  x (x ,y ), x yz = x (x ,z )(x ,y )2 = x (x ,yz), (xy ) z = xy(xy,z), 

x zy z = x(x, z )y(y , z) =  xy(x, z )y(y , 2),

2. (x ,yz) =  (x ,z )(x ,y )2, (xy ,z) =  (x, z)y(y, 2),

3. (x ,y -1 , z)y(y, z ~ l ,x )z(2 ,x _1 ,y )x =  1 due to W itt ,

4. (x, y, 2x)(z, x, y2)(y, 2, x y) =  1,

5.

( 7 i ( G ) , 7 j ( G ) ) < 7  < + i ( G )

and

6. if z > j ,

and in particular (£*(G),7 i(G)) =  1.

O riginality o f M aterial in th is T hesis.

In this section, we describe, for the sake of the examiners, exactly which parts of the thesis 

are the original work of the author. More than half of this thesis has appeared as a Bath 

Technical Report [AS], but for the purposes of this explanation, we shall not deem that to 

be a publication. As well as the following summary, we have indicated in the body of the 

thesis when results are not original.

In chapter 1, we list the main theorems and announcements. In chapter 2 , proof techniques 

are joint work between the author and his supervisor. Some of results belong to Wall[Wa] 

and Vinson[Vi]. We reproved their results using new techniques. In chapter 3, lemma 3.12 

and 3.13 are due to Smith (this work being unpublished and original). Ninety percent of 

the rest of the work in that chapter was the work of the author of this thesis. In this



chapter, most of the results are unpublished and original, save that some of the early 

formulas are well known. The rest of the results are due to the author under the guidance 

of Smith. Chapter 4 is joint work with Smith. In chapter 5, theorems 5.1 and 5.2 were 

proved by Wall[Wa], The algorithm and program were conceived and written by Smith 

(unpublished). In chapter 6 , lemma 6.3 is due to Johnson (personal communication), and 

lemma 6.4 was the upshot of discussions between the author, Johnson and Smith. The 

rest of the results are due to the author. None of the work in this chapter is published. In 

chapter 7 the work is due to the author. The final chapter was the first successful research 

work accomplished by the author, and was done at the suggestion of Eamonn O ’Brien of 

A.N.U. Canberra. It appears in another Bath Technical Report [Ay],
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CH APTER 1

Prelim inaries

We shall prove two major theorems in the course of this document. They axe as follows. 

Theorem A.

If G is a p-group for some prime p, and that G has exponent p central length n, then if 

any two elements of G are used to initiate a Fibonacci sequence in G, then that sequence 

must have minimum period dividing kpn~l where k is the minimum period of the ordinary 

Fibonacci sequence modulo p.

Recall the definition of a Fibonacci group; The Fibonacci Group i r'(r,n ) is the group with 

the following presentation:

^  | X  i  X 2  • ’ • £  r  —  3C j ,  X 2  X 3  . . . X 1 - | -  j —  X  r-f - 2  ? • • • ? X j i X \  . . .  X f —  j —  X  f

where all subscripts are taken modulo n.

Theorem B.

If the Fibonacci Group F(2,n)  has the two generator relatively free group in the variety of 

exponent p groups of class 1 as a homomorphic image, then F(2,n)  has the two generator 

relatively free group G in the variety of exponent p groups of class 4 as a homomorphic 

image.

Put less cleanly but perhaps more clearly, Theorem B says that if Cp x Cp is a quotient

1



of jP (2 , n), then a larger quotient can be'described (unless the prime p is even). Johnson 

and Odoni have characterized the circumstances under which F(2,n)  made Abelian is 

cyclic [JO], in turn, they have therefore characterized the circumstances under which the 

Abelian quotient is non-cyclic, and so Theorem B applies. Computer experiments indicate 

that Theorem B is best possible, in the sense that it cannot be extended to class 5.

We also announce two computer results -  using the system CAYLEY.

Announcement C.

Any Fibonacci sequence constructed by starting off with two elements from the restricted 

Burnside group R ( 2,5) must have minimum period dividing 20. This is the least number 

with this property. Indeed, the number 20 is also the minimum period of a Fibonacci 

sequence in C5 x C5.

Announcement D.

Wall’s conjecture that for each prime p, the minimum period of the ordinary Fibonacci 

sequence modulo p2 is greater than the minimum period of the Fibonacci sequence modulo 

p has been verified to hold for all primes less than 108 by computer search.

Theorem A is proved in Chapter 2 , and Theorem B is proved in Chapter 4, using results on 

Fourier sums established in the lengthy and technical Chapter 3. The results of Chapter 3 

majr be of some interest in their own right. Announcement C is a calculation which may be 

performed quite easily via CAYLEY, in particular using the nilpotent quotient algorithm. 

The background to Announcement D is explained in Chapter 5.
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C H APTER 2

D .D . W all R ev isited , and a P roof o f T heorem  A

The notion of a Fibonacci Group F(r ,n)  followed on the heels of Conway’s Advanced 

Problem 5327 in the American Mathematical Monthly [Co], Since then considerable effort 

has been expended in attem pting to understand Fibonacci groups (the reader not familiar 

with this notation should see Chapter 1). This enterprise has met with considerable success. 

For example we now know exactly when F ( 2, n) is finite. Roger Lyndon’s [Ly] application 

of small cancellation theory almost finished the problem, though some corrections (or 

perhaps amplifications) to the arguments were needed, and were, according to a personal 

communication from D. L. Johnson, supplied in Chalk’s thesis [Ch]. The author of this 

document has not yet had the opportunity to read Chalk’s thesis, and relies on the evidence 

of D.L. Johnson for the accuracy of this information. The ‘hard’ cases not covered by 

Lyndon’s work were F ( 2 , 8) and F ( 2, 10) -  these were covered by Brunner [Br], and .F(2 , 9) 

by Newman [Ne].

In general, we know quite a lot about Abelianized Fibonacci Groups, thanks to the work 

of Johnson and others in a sequence of papers in the mid-seventies, for example in [CJ], 

[Jo] and [JWW]. Recent developments include work on structure of Abelianized Fibonacci 

groups (and more generally cyclically presented groups). Papers are in preparation in this 

area, see (when they exist) [BJK] and [JO]. This is a most felicitous and timely development 

since [JO] will, among other things, describe exactly when F(2,n)  can be the subject of 

Theorem B of this document.

The co-operation between Thomas, Robertson and Campbell has proved very fruitful, and 

has given us some insight into groups which have presentations closety related to those of 

Fibonacci Groups. Thomas has an excellent survey article in the form of a. technical report 

[Th89b] which appears more widely in abbreviated form in [Th9l]. This article is also a 

good source of references. One possibility for future work by the author of this document
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will be generalization of the results contained here to Fibonacci-like groups and, if possible, 

cyclically presented groups in general. The methods in the sequel do not admit of ready 

generalization, but Dikici and Smith are in the process of developing alternative methods 

to cover more general cases.

W hat we will do in this work is to investigate which groups F(2,n)  have a given finite 

quotient G of a particular form. This problem has already been the subject of investigation. 

It seems to have first been addressed by Wall [Wa] and then Vinson [Vi] for cyclic groups. 

This case amounts to the study of the instance where the image group is cyclic of prime- 

power order -  thanks to the Chinese remainder theorem. We are able to generalize the Wall- 

Vinson theory to address the case where the image group is an arbitrary finite p —group. 

This is the content of Theorem A. We shall reprove some of the early results for two 

reasons. Firstly we wish to make this work self-contained, but secondly we have a slightly 

different perspective from these earlier workers -  and we contend that our viewpoint is 

more illuminating.

Campbell, Robertson and Doostie have, in an excellent preprint [CDR], addressed the 

similar questions where the image group is simple. This work overlaps in some degree with 

Doostie’s thesis [Do].

We must gratefully acknowledge the use of the Computer Algebra system CAYLEY [Ca82], 

which enabled us to guess some truths via computational experiments, and to effect cal

culations with specific groups where appropriate.

In Remarks on Fibonacci Loops 2 (to appear) the author and his supervisor will summarize 

computational results on various relatively free nilpotent finite p —groups. Work is also in 

progress (Dikici and Smith) concerning similar questions about F(r ,n)  where r > 3. We 

expect this to appear in Remarks on Fibonacci loops 3 . Dikici and Smith claim to be able 

to generalize both Theorem A and Theorem B of this document.

Let G be a finite group. We define a Fibonacci loop or loop g of G as follows. Suppose 

<7o,<7i € G, then for i > 2  define gi =  gi - 2gi-\  recursively. For i < 0 define gi =  <?i+2 </,■+! 

also recursively. We obtain a loop, a “bi-infinite sequence” g =  (<7,-)*'€z> f°r which both

10



recurrence equations hold for every integer i.

Such a loop must be periodic, since G is finite. We will use the term length to describe the 

minimum period of a loop f, and write it as /(f). Thus if a loop f  is known to be periodic 

with period /, then we may deduce that /(f) divides t. There will be exactly \G\2 distinct 

loops, since that is the number of distinct ordered pairs of group elements. The role of 

the indexing is not particularly significant, and we can eliminate it easily. We define an 

equivalence relation ~  on loops by writing (gi) ~  (hi) if and only if there exists an integer 

s such that gi+s =  hi for each integer i. We introduce the term eloop for the equivalence 

classes of loops. The period of a loop is constant on equivalence classes, so the notion of 

the length of an eloop makes sense. We deliberately blur the distinction between f  and 

the eloop containing f  in order to avoid notational explosion. If f  is a loop or an eloop, we 

write /(f) for its length.

Notice that Aut(G)  acts naturally on both the loops and the eloops; moreover, group 

homomorphisms send loops to loops and eloops to eloops, though length may drop.

The set of loops of G will be denoted L(G).  The set of all periodic bi-infinite sequences of 

elements of G form a group under componentwise composition, and if G is Abelian then 

L(G ) is a finite subgroup isomorphic to the Cartesian square of G.

Notation:

If f  is a loop of length / then we may elect to write it as

f  =  (/o> Ji > • • • / / - i )

and we may, by abuse, refer to the associated eloop in the same way. This gives us a 

unique representation for loops, but, in general, 11011-unique representations for eloops. We 

refer to the process of selecting a loop in the same eloop class as f  6 L(G) as rotating f.

11



The case when G is cyclic of prime order has been studied by Wall [Wa] , Vinson [Vi] and 

Wilcox [Wi]. We reprove some of their results from our perspective, and throw a little 

light on some of their results.

We may assume that G is the additive group of a field GF(p)  with p  elements. The 

automorphism group of G will then be handily realized as multiplication by units.

Having chosen this particular representation of G, there is an obvious distinguished loop 

s with s 0 =  0 and s i =  1. We call this the standard loop, and refer to its associated 

eloop as the standard eloop. The appellation trivial would seem appropriate for the loop 

0 =  (0 , 0, . . . )  and its associated eloop.

Following Wall [Wa] we let k(pn) denote the length of the standard eloop of the cyclic 

group of order pn, thought of as the additive group of Z /p nZ.

Lemma 2.1.

(i) Let H  be the additive group of the finite field GF(p*). If f  6 L ( H ) then /(f) divides 

k(p). A non-trivial short loop h (/(h) < k(p)) must have all its entries non-zero and be a 

geometric sequence (i.e. h ~1hi+j must be independent of i).

(ii) For non-trivial loops f  in Cp we have /(f) = k(p) unless p = 0,1  or 4 mod 5.

Proof.

(i) Let s =  (0 , 1, 1, . . . )  be the standard loop of length fc(p), so s is a loop in GF1(p), a 

subfield of GF(p*). We can rotate this loop to obtain other loops of length k(p) in the 

same equivalence class. We can also multiply each element of the loop by an element of 

GF{pl) to obtain another loop. Suppose f  £ L{H)  is an arbitrary loop. In the obvious

12



notation,

f  =  ( / o , / i ,  - - •) =  / o  • (1,0---- ) + / i  • (0 ,1 , . .  .)•

Notice tha t (1 ,0 , .. .)  is a rotation of the standard loop so the loop f  has period k(p) and 

/(f) must divide k(p).

Suppose f  has 0 as an entry, but is not the trivial loop. By rotation we may assume that 

f  =  (0 ,2 , . . .)  where x ^  0. Now f  =  x • s (and s =  x ~ l • f) so /(f) =  k(p).

We may now assume that f  has only no zero entries, and we shall suppose that /(f) < k(p). 

Suppose f  =  { w , w x , . . . )  and that g is any rotation of f. Thus g =  (y, y z ,. . . )  and then 

f  — wy~l g =  (0,u;(2 —z ) , . . . )  is a loop of length less than k(p) containing an entry which is 

0. It must be the trivial loop and so x =  z. Thus there exists at most one (3 E GF(pt) which 

can occur as a ratio of consecutive elements in any given short loop. Thus a non-trivial 

short loop must have no zero entries. This completes the proof of part (i).

(ii) The recurrence equation forces such a 0  to satisfy /?2 =  /? -f 1. If t =  1 such a (3 will 

exist in GF(p)  exactly when 5 is a square in GF(p).  The condition for this special case is 

that either p — 5 or, by quadratic reciprocity, p ei- 1 or 4 mod 5.

□

Thus non-trivial short loops of Cp can only exist when a golden ratio occurs in GF(p).  

The polynomial X 2 — X  — 1 has coincident roots; in GF(5), and otherwise it has distinct 

roots. Thus for p = 1 or 4 mod 5 there are two rival golden ratios in play, either of which 

might be the common ratio of a non-trivial short loop. The length of a loop with common 

ratio /?, a golden ratio, is simply the multiplicative order of (3. In fact at most one of the 

golden ratios can cause a loop to be short.

Lemma 2.2. Let H  be the additive group of a. finite field GF{pl ) where p ^  5. Suppose 

f  E L{H)  is a non-trivial short loop with common ratio j3\. Let /?2 P\) be the other
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root of X 2 — X  — 1 in GF(pl). There axe no short loops, which are non-trivial, in L ( H ) 

with common ratio A-

Proof.

We may multiply f  by /J"1 to obtain a loop a  =  (1, A , . . . )  of the same length as f. Let 

b =  (1, A , • • •)• 71 = K3 ) =  ° (A ) observe that A  A  =  —1- Thus f32n =  (—l) 2n =  1.

We can exchange the roles of A  and A  to obtain that the multiplicative orders of A  and 

A  either coincide or differ by a factor of 2 .

Thus /(a — b) divides m =  max{o(A ), o(A)}- Now a — b commences with 0 and so must 

either be 0 or of length k(p). It cannot be 0 else A  =  A  and then p = 5.

It follows that k(p) divides m.

On the other hand, m  is the length of a loop of H  and so, by Lemma 2.1, we know that 

?77 divides k(p). Thus m  =  k(p) as required.

□

In the case p =  5 the polynomial X 2 — X  — 1 has the double root 3. This gives rise to 

short loops of length 4 of the form (a, 3a, 4a, 2a) where a ^ 0 . In fact k(5) =  20 by direct 

calculation:

s =  (0 ,1 ,1 ,2 ,3 ,0 ,3 ,3 ,1 ,4 ,0 ,4 ,4 ,3 ,2 ,0 ,2 ,2 ,4 ,1 ) .

Lemma 2.3. (Wall) Suppose p is an odd prime.

(i) If p = 1 or 4 mod 5 then k(p) divides p — 1.

(ii) If p = 2 or 3 mod 5 then k(p) divides 2p +  2.
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Proof.

Choose 0  £ GF(p2) a root of X 2 — X  — 1 giving rise to a loop ( l , /3 ,. . . )  of length k(p). 

Such a 0  exists by lemma 2.2. Thus k(p) is the multiplicative order of 0 . Now part (i) 

is immediate since then 0  £ GF(p )°, the group of units of GF(p).  For part (ii), put 

Pi = 0  E GF(p2) \  GF(p).  Let the other root of X 2 -  X  -  1 in GF{p2) be 02. By 

Galois Theory there in a GF(p)— automorphism of GF(p2) exchanging 0\  and 02> so the 

multiplicative orders of 0\ and 02 must coincide and be k(p) by Proposition 3.2. Let t be the 

smallest positive integer such that 0\ £ GF(p).  By considering the group GF(p2)°/GF(p)°  

we see tha t t divides p -f  1. It is im portant to note that if t happens to be odd, then t 

actually divides (p 4- l) /2 . Put 7 =  0 \ /  02- By Galois Theory 0 “ £ GF(p)  if and only if 

0* = 0 ^ y so then 7 * =  1. Recall that 0\02 =  —1 and so

7‘ =  t f / #  =  ( - W  =  l-

If t is even k{p) must divide 21, and if t is odd, k(p) must divide 41. We remarked earlier 

that t divides p +  1, and also divides (p +  l )/2 in the event that t is odd. Either way, we 

have proved that k(p) must divide 2p +  2.

□

Definition: Suppose G is (temporarily) any Abelian group written additively, and that 

g £ L(G).  In the event that there exists gi in the sequence such that <7; =  0, we let the 

rank of apparition of the sequence be r  where r is the smallest positive integer such that 

there exist m, n £ Z with gm = gn = 0 and 7/7. — n =  r.

Lemma 2.4. Suppose that x appears immediately before the second 0 in the standard loop 

s £ L(Cp), and that o{x) =  t. We may conclude that k(p) =  rt when r is the rank of 

apparition for p.

Proof.
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/  =  (0 ,1 , . . .  0, x . . . )  so multiplication by x rotates /  through r. Thus x l =  1 and x u 1 

for positive integers u smaller than £, and so rt =  k(p).

□

Lemma 2.5. (Vinson) Suppose p ^  2 or 5, then the rank of apparition r  of s G L(CV) is 

the multiplicative order of 7 =  /?i//?2- If r is odd then k(p) =  4r. If r  is even then either 

I = r or I = 2r.

Proof

Let 7 =  /?i//?2 and suppose that 0(7) =  u. Notice that

s = d ( l , / ? ! , . . . )  -  d( l , /?2, . . . )

where d =  (/?i — f t ) -1 - The rank of apparition ?• is the smallest positive integer such that 

— K '  and so must coincide with the multiplicative order of 7.

Our argument proceeds along the lines of part of the proof of lemma 2.4, though on this 

occasion we are studying 7 =  /?i//?2 even when fli,/?2 € GF(p).  We may assume that the 

multiplicative order of (d\ is k(p), else we just interchange the roles of /?i and /?2- At any 

rate, it is still true that 1 =  an(l so fi\r =  ( — l ) r . If r is even this forces k(p)

to divide 2r. Next we are use the fact that p is odd so that — 1 ^  1. If r  is odd we have 

k(p) divides 4r but not 2r.

We also know that r divides k(p) irrespective of the parity of r by lemma 2.4. Now we are 

done.

□
When p =  2 the proof of lemma 2.5 goes through almost to the end. It only fails at the 

point where the distinction is made between —1 and 1. It is true that the rank of apparition
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is 0(7 ) =  3. Thus the Proposition all holds when p — 2 save that we must allow A:(2) divides 

2r. There is no way round this point, since in fact k{2) =  3 =  r  so k(2) ^  4r.

Notice that when p — 5, we have f t  =  f t  =  3. In fact the standard loop

(0 ,1 ,1 ,2 ,3 ,0 ,3 ,3 ,1 ,4 ,0 ,4 ,4 ,3 ,2 ,0 ,2 ,2 ,4 ,1 )  

has length 20, and the rank of apparition is 5.

Having tidied the awkward primes, we obtain a clean result.

Corollary.

If p is an odd prime then k is even.

□
We now turn our attention to more general circumstances. In a group of prime order, only 

the trivial loop 0 has the property that two adjacent elements fail to generate the whole 

group. In general this is not the case. The interesting case is when a pair, and therefore 

all pairs, of adjacent elements of the loop generate the group -  otherwise you simply study 

a smaller group. We will call a loop (or eloop) a generating loop of a finite group G if 

and only if a pair, and so all pairs, of adjacent elements generate the group. We pursue 

the theme of p—groups. From this point of view, we may restrict ourselves to p-groups 

where G/<^>(G), the Frattini quotient, is either cyclic of order p (so G itself is cyclic) or 

the Cartesian square of the cyclic group of order p. The Abelian case was investigated by 

Wall. As we observed before, the product of loops is not in general a loop, but we can 

squeeze out something.

Lemma 2.6. Let G be a finite group with f  (E L{G)  a loop. Suppose that h 6 L(Z(G))  is 

a loop of the centre of G, then f  • h, the componentwise product of these loops is a loop of 

G.
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Proof.

For each integer i we have

f ih i  =  f i —2 f i —\ 2^t —1 — f i -2  ̂ 1- 2 / i - l  ^*-1 •

□

Theorem A. Suppose G is a p-group for some prime p, and that G has exponent p central 

length n, then if f  is loop of G then the length of f  must divide k(p)pn~1.

Proof.

We induct on the exponent p central length of G, and disposing of the trivial group and 

the Abelian groups by inspection, we may assume that G has exponent p central length at 

least 2. We consider the elements /o , / i  of G. The group G must have a central subgroup 

N  of exponent p with G / N  having exponent p central length n — 1. Choose a transversal 

T  for N  in G and put f i  =  where t,- E T, rii E N  for i E Z. The length of the 

loop (/0 Ar, t \ N , . ..) in G / N  must divide A =  k(p)pn~2 by the inductive hypothesis. Thus 

fx = t0iix and /a+ i =  ^ h a + i. It is not necessarily true that the bi-infinite sequence (77,) 

is a loop of N.

The “ratios” J x / q 1 and f x+i f \  1 only depend on uq and n\ .  To see this we tinker with to 

and ti in an arbitrary fashion, and observe that the relevant ratios are left undisturbed. 

Suppose that m  is any loop of N.  Notice that /(m) must divide k(p) by lemma 2.1, and 

so /(m) must therefore divide A. Thus

m  =  (m A,m A+1, . . .)  =  ( m 0, m u . ..).

Now consider a =  f  • m. By lemma 2.6 this is a loop of G, and by selecting m  appropriately 

we may force cio =  ton and a\ =  t \n'  where 77, 77' are any chosen pair of elements of N.  

Now

a\ ao^ =  / AraA( / 0m 0)-1 =  f x f o 1 =  u 
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and

OA+iaf1 =  /A + im A + il/im j)"1 =  /A + i / f 1 =  v -

We have shown that u and v depend only on 7?o and n\ ,  and do not depend on to or t\.  

Thus f j \  =  and f j \+i  =  /( j_ i)a+ iv f°r all positive integers j.  We conclude that

f Px — foup — f 0 and / pa+i =  f i v? =  f i  and we are done.

□

In Wall [Wa] raises the question as to whether or not it can happen that k(p) = k(Cp) 

can be equal to k(Cp2). He did a computer search and found that k(p) ^  k(p2) for all 

primes less than 104. It is amusing to note that, with the passage of time, Wall’s heroic 

calculation of 1960 can now be performed in about 1 second on a SUN 4 workstation. We 

have extended the range of the search, and can announce that equality does not hold for 

any prime less than 108. See Chapter 5 of this document.

Let us focus on the prime 5 for a moment, let G be the Restricted Burnside Group R ( 2,5) 

- s o  |G| =  534 and G is nilpotent of class 12. A computer calculation shows that k(G)  =  

20 =  k(5). In other words, R ( 2,5) is a homomorphic image of .F(2, 20). This is the content 

of Announcement C.
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C H A P T E R  3 

Fourier Sums

We now embark on a large number of calculations concerning Fourier Sums. We call 

them Fourier sums by analogy with the process of integrating a periodic function over its 

fundamental range, widely studied in other contexts. We will work modulo a prime p, 

though we could always choose to work modulo an arbitrary natural number by Chinese 

Remainder Theorem. In the cases where we exclude certain primes, we would have had 

to impose non-divisibility conditions on the modulus should we have worked modulo a 

composite number.

We will make the blanket assumption that the prime is at least 5. This simplifies m atters 

considerably. In particular, for odd primes k is even, whereas k is 3 when p is 2. That 

would lead to all sorts of extra complications. Another prime which causes trouble is 

the prime 11. This does not start to become awkward until Lemma 3.6, so we will not 

ban it from the outset. Group theoretically, the cases p = 2 or 3 are degenerate in our 

applications, so we lose little. Some of the congruences hold good when p = 2 or 3, a fact 

which may be verified by direct calculation. Where the range of summation is not stated, 

it is supposed to be clear. In particular, we begin with sums over the range 0 < i < k — 1, 

exactly over a fundamental period. The key observation to make is that we may translate 

the range of summation to any other fundamental period without changing the value of 

the sum. Another useful ruse is to reverse the range of summation.

The philosophy of our (admittedly technical) manipulations is that in order to prove results 

about finite p-groups, we need to establish that, certain sums of monomials manufactured 

from the Fibonacci sequence modulo p must vanish. These sums can get quite complicated, 

for example it turns out to be necessary to show that

E E E + Y, E s>$
r =  0 >=0  i'=0 j = 0 i= 0

+Ê (3i)(-Di+1 = °.
1 = 0
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This is a somewhat daunting sum of sums. We will build an armoury of equations and 

techniques which will eventually render the above sum tractable. In case the reader might 

think that any sum (over the fundamental range) of monomials must vanish, we draw his 

or her attention to 5i ( —1),+1- We can show that this sum never vanishes for the

relevant primes save when the prime is 5.

Another point worth making is tha t the network of logical dependencies between the 

equations in the sequel is somewhat complex. We have found a route through to the 

equations which we need. It is hardly likely that we have found the “shortest path” . Some 

of the equations we study are very friendly, in the sense that almost any sensible attem pt 

to demonstrate their tru th  will succeed. Others were far more resistant, and required the 

application of considerable ingenuity before they yielded. There may, of course, be fast 

tracks to those results, but if so, we have been unable to find them.

Lemma 3.1. The following equations concerning sums of powers of Fibonacci numbers over 

a fundamental range all hold good.

E  *  = °-

E ^  =  °.

( i)

( 2 )

E s* =  °- (3)

Proof.

5 2  s ' =  5 2 s ' - 1 + - ] C 5 * - 2 =  '5 2 s * +  5 2 s ' '

Equation (1) now follows. Note how we have exploited the periodicity of the loop (s,-).

Y =  S i ~ 2 ^ 2

so
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E*< = 2XX+2XSi!’-1- (4)

Similarly, we express 2 as Sj — 6,_i to obtain

E S‘ = X 5i-2 = 2 X X - 2 X X Si- 1' ^

Adding (4) and (5) we obtain

2 E * ?  =  4 E s?

from which the equation (2) follows.

=  X / 6’* +  's*“ 1)3

so

Y sf =  2  Y ^ 3  Y, 5 * “ i  ^ 3  Y, 's * , s i - i  •

Similarly we may write

E = E ai-2 = E^1 ~ Si-')3
and so

Y s S  ̂ =  —̂ Y / S^Si~ l +

Add (6) and (7) to obtain

2 E ^  =  2 E ^ + 6 E ^ - i

from which it follows that

3 ^ s , - 4 _ i = 0 -  (8)

Now we adjust (8) using 1 +  s ,_2 to obtain
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3 £ s i + 3 £ ^ s - i  =  °- (9)

From (6) and (8) we know

5 3 ^ + 3  £ > ? * - > = o .  ( i o )

Subtract (10) from (9) to obtain the result.

□

Corollary.

=  0 , ( 11)

= 2 > * ? _ , = 0  (12)

and

^  sj.st+a — U V a G Z. (13)

Equation (13) is obtained from equations (3) and (12) using the Fibonacci recurrence and 

finite induction.

□
Lemma 3.2.

s k-i =  s - i  =  **i( — l )l+1 ^  £ Z, (14)

£ Si(-l) '+ >  = 0  (15)

and

5 3 « ? ( - d ,+1 =  o. ( i 6)
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Special Note: Equation (14) is of such crucial importance in the sequel that we will often 

omit to give future mention to it, else this document would be overwhelmed with such 

references. The reader is urged to take note of this result. The result is, of course, well- 

known, as are equations (1) and (15).

Proof.

First notice that Si =  +  S{-2 Vi E Z forces

=  s . - u - i r + * i ( - i )i+1 v» e  z .

Put t _ i  =  $j( —1)*+1 to obtain t i  =  t,-_ 1 +  2 Vi E Z. Notice also that to =  0 and t! =  1.

Thus (tj) =  (s,-), and equation (14) follows. Note that it follows that k is even (for odd 

primes), because

1 =  s i  =  s i k - ( k - i )  =  * i t - i (  — 1)* =  ( - I ) * -

(15) : Now

= £ < - , = £ < * _ , .
, =  0 1= 0

We now reverse the direction of the range of summation, replacing i by k — i. We have

£  ^ ( - i ) '+1 =  £  =  £  ._< =  £  =  0
1=1

by (1).

We tackle the proof of equation (16) in the same spirit.

£ 4  =  =  j 2 * U ( - v k- i+1

since k is even. Now reverse the direction of summation to obtain

£ 4  =  £ 4 ( - i ) ' + ’ =  £ ^ ( - i ) ' +1- 
1 = 1
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Recall that s f =  0 by equation (3) and so we are done.

□

Lemma 3.3. The following equations hold good.

$ > ? + ! *  =  °. (17)

= 0 , (18)

(19)

and

5 > + 1 4 ( - l ) ‘ =  0 .  ( 2 0 )

Proof.

We first exploit equation (3),

0 =  £  -Si+2 =  ]T ^ (5 «+1 =  2 S i +  3  S W 3 i  +  3 5 *'+l5 i *

Thus

3 s;+i<s* +  3 ^ 2  5i+ i5? =  0-

Similarly we have

0 =  £  5?_1 =  ̂ ( S j +1 -  Si)'1 — -  3 ^ 2  Si+l*i +  3 ̂ 2  Si+is2i'

Adding and subtracting these last two equations we obtain (18) and (17). If we repeat this

argument, but exploit equation (16) rather than equation (3), we obtain equations (19) 

and (20).

□
Corollary.

y :  s * $ i + f l ( — 1 )* =  0  V  a  6  Z .  

2 5
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This follows from equations (16) and (20), the* Fibonacci recurrence, and finite induction.

□

The next lemma is well-known. We include a proof for completeness.

Lemma 3.4. This is a well-known Fibonacci identity.

•s*+i>si- i  =  sj +  ( — 1)* Vi G Z (22)

Proof.

To see this, one may simply observe that

f s i+1 Si \  _  / l  T V

\  si s i-l )  \  1 0 /

in GL{2 , Z) by induction on i. Taking determinants yields the result.

□

The next lemma needs a little work. The corresponding non-alternating sum ^3 st n°t 

0 in general. It is when p is 2 or 3, but a computer search yields no other prime smaller

than 900 for which the value of this sum is 0 . Happily it is the alternating sum which we

need to control.

Lemma 3.5.

E ^ ( - i ) ‘ =  °- (23)

Proof.

We introduce some temporary shorthand to clarify the proof.

26



Let

or =

p = *?+iai - i ( —1)'>

7 = y !* .-+ i* ? - i ( - D ‘,

e = 5 Z  1 )*»

c =  I X i ( - i r

and finally

v = Y , * u u - i y -

Our ambition is to demonstrate that a  =  0 . First we show that /? =  7 .

The final equality is obtained using (14) and the fact that k is even -  the corollary to 

lemma 3.2. Now reverse the direction of summation to obtain

k
/3 =  £ > L i * . + I ( — 1 ) ‘ = 7 -  

1 = 1

The final equality is obtained by translating the range.

Our next ambition is to show that a = S. We deploy the result of lemma 3.4 (equation 

(22)) to good effect.

s = ^ i+lSi_ 1)2( - i r  =  5 > ?  +  ( - i ) ‘)2( - i ) ‘

so

Now Y2 s f =  0 by (2) and —1)* =  0 since k is even. Thus a = S.

Our next target is to show that e =  £.

— *+1
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Note that i and i — 1 have opposite parity. We reverse the range of summation to obtain

e =  £ 5?si+i ( - l ) ' ' +1 =  £ > * L i ( - l ) ‘ =  C-t=l
Now for something a little different; we show that o +  0 =  e (= C ).

a  +  /? =  E  *?(-!)■' +  E  

=  E 3<(- 1 ) '(5i -  =  E - ^ - i t - 1) ' =  e-

As a final preliminary, we show that rj =  0 . Notice that

* = E^-it-1̂  = E aL,-sLi+i(-i)*_<-
Once again we have used (14), and have prepared to reverse the range of summation. Thus

i? =  E ^ + i ( - 1)*= E 5i ^ + i ( - 1 )’- 
2 = 1

Now translate the range of summation to yield

r? =  E st 14 ( - 1)i+ 1 = - ’?>

and we are done.

Let us summarize the results of our labour.

0  =  7 , 6 = a , € — C, <i +  0  =  e, i} = 0 .

We now embark on calculations to obtain linear relations between o and 0, using the 

binomial theorem as our vehicle.

o  =  ^ ( .s ,-+ i -  s l_ 1)4( - l)*  =  - a - 4 0  + 6<5 - 4 7 - a

so

o =  —2o -  S0 +  Go 
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and therefore

3c* — S/i/ =  0. (*)

Now we express a  in a different way.

« =  £ 4 n ( - i ) i+I =  + ^ .- i ) 4( - i ) i+1.

so

a  = —a  — 4e — 6?/ — 4£ +  c*.

This simplifies to

c* =  —4(c* +  ft) — 0 — 4(c* +  (3)

and so

9c* -f S/i =  0. (**)

Adding the starred equations we obtain 12c* =  0 from which the result follows.

□

Corollary.

and

/9 =  5 > ? + 1 * - , ( - l ) * '  =  0 ,

7 =  £ > + i * L , ( - : l ) '  =  o, 

6 = si+r\ - 1  ( — 1)' =
e — £ -S jjs ,_ i(  —1)' =  0 ,

c =  £ ^ l ,< - i ) '= = o

(24)

(25)

(26)

(27)

(28)

(29)
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□
We now discard the assigned meanings of those Greek letters, since we will wish to use 

them locally again in the future.

Lemma 3.6. If p ^  11 then

£  4  =  0 (30)

and

£ sf ( - i r  =  o. (31)

Proof.

Equation (31) will follow easily from (30), and we address ourselves to (30). Lemma 3.4 

(equation (22)) will be our main weapon.

Let a  =  53 s f then

a  =  ^^ (s i+ i — s i- i  )5

so

a  =  - 5 ^ s J +1Si_! +  1 0 j ^ s J + 1.sjf_, -  10 

and therefore

a  =  - 5 ^  Si+ i6i_i(sJ+] -  sj_ ] ) +  1 0 ^ s J +1sJ_j(si+i -  Sj_i).

We now deploy equation (22) to obtain

a  =  - 5  £ ( 4  +  ( - l h ( a ?+1 -  4 . , )  +  10 £ ( 4  +  ( - i y ) 2Si-

This expression admits of considerable simplification. In fact one can simply suppress the 

occurrences of ( —1)* because the following equations hold:

] T ^ i + i ( - l ) l+l =  0 from (16)
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and

Thus

and so

^ s ? _ 1( - l ) ,+ l =  0 from (16) 

^ s j ( - l ) * +1 =  0 from (16)

^  S{ =  0 from (1).

<* =  - 5 ^ ^ ( 4 h  ~ s 3i_i) + 10Q,

—9a  — —5 ('s’?+i “  “  5»')3)-

Expanding we obtain

- 9 a  =  - 5  ^ 2  S1 (3^+]*» -  Ssi+isi +  s3)

so

—9a — —5 ^ 2  <s?(3*i+j^ji,5i+] — Si) +  s*)

and therefore

—9a =  —b ^ 2  sl (^ s i+\s is i - i  + 6%3)- 

We now close on our quarry using lemma 3.4 again. We have

- 9 a  =  - 5  £  ■ +  ( - 1 ) 1) +  a?).

Once again we may suppress (—1)* because of equation (16). Thus

- 9 a  = - 5 ] T 4 .s - =  —20a.

We conclude that 11a =  0. Since we have excluded the prime 11, we have demonstrated 

the tru th  of equation (30).

To prove the second part of the lemma is now an easy task. We have

=  X > * - . - ( - i ),'+ 1( - i ) < =  - ! > * - , •  =  - E s < =  °>
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and by appeal to equation (30), equation (31) is justified.

□

As a m atter of interest, the exclusion of the prime 11 in lemma 3.6 is necessary. When 

p = 11 a direct calculation yields =  1 arK  ̂ — 1)* =  “ 1*

Lemma 3.7. Assuming p ^  11, we have

E s^ - > = 0  (32)

and

= 0 3 )

Proof.

Put q =  X3s i s i-l» so

a — ^ j ( 5 * + i  “  - s , - — i ) 2 . s ? _ i  =  ^ ( . ^ J + i  -  2 s i + ] S j _ i  +  sj-i)s*-i-

Thus

a = ^ 2  a?+i5?-i ~ 2 ,s*+i5i - i +  5^-1’

but by equation (30) this simplifies to

Q =  “  2 5 Z ai+jSi-i* (34)

Now deploy equation (22) in conjunction with equation (34) to deduce that 

a = +  ( — l)*)2’s*-i “  2 +  (— 1 )*)-s?_i,

and so

a  =  E ( s? + 2- i t - i r  +  u * - i  -  2 E ^ i ,  - 2 E « L 1( - i )i-

Now equations (19), (1) and (16) come to aid, giving

■ ;a  =  E 4 * - . - 2 E
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and so

3a = £  4^-1- (35)

We now embark on another tack. This time we exploit equation (30). We have

X  5 i + l  =  X ^ *  5 , - 1  ) 5 =  0

SO

+  10^ f / i  +  10̂ *7 j +  5sisf_1 +  Si_i) — 0,

which simplifies to

5  X S ; S i _ i  +  1 0  X + 10 X S ?'S i - 1 +  3 X S ' S ' i - 1 =  ( 2 b )

thanks to equation (30).

We now repeat this argument, this time observing that equation (30) yields 

After mimicking our previous calculation, we find

-5 Y / s i s i - i + i0X ~ 10 X + 5 X s,,s?-i = °* (37̂
Subtracting (37) from (36) we obtain

10 +  20 £  «?*?_,=  0 ,

or rather

20a  =  - l i > Y * U i - i -  (38)

From equations (35) and (38) we deduce 50a =  0 , which really asserts that 25a =  0 . When 

p =  5 the result is true by direct calculation and so equation (32) is established. Now for 

equation (33).
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by (32). Now reverse the direct of summation - replacing k — i by i to obtain

£  =  £  ** =  o.
*=i

Thus (33) is also established and we are done.

□
The proviso that p ^  11 is necessary, since a direct calculation yields that, in that instance, 

the sums described in (32) and (33) are, respectively, 5 and 6.

Corollary.

Unless the prime p is 11, we have

£ $ • * ,_ !  = 0 . (39)

In the event that p = 11, the sum is actually 3.

From now on, we will ban the prime 11 from our considerations, since whenever we have 

recourse to one of the preceding equations (37),(38) or (39), we would have to make an 

exception for that prime.

Lemma 3.8.

£ . ^ . ^ , = 0  (40)

and

£ ^ _ 1( - D ' =  o. (41)

Proof.

We exploit equation (32). We have

1 +  ^i—2)2 =  0
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so

+  2 X ] Si - l ^»'-2 +  ^ 2 ^ 3i - i s i-2 -  °- 

The first sum vanishes by equation (30) and the second by equation (39). Thus

=  ^ * < 4 - 1  =  0

and so equation (40) is established. Now we obtain equation (41) by reversing the direction 

of summation in equation (40). We have

J 2 Si s2i - l  =  ] C 4* -ii,? - i + l ( - l ) '+1 =  °'

Replacing k — i by i we obtain

£ 4 4 + i ( - n <+1 = o .
i=i

Now replace i +  1 by i and then slide the range of summation to yield

£ 4 4 - , ( - i r  =  o

as required.

Lemma 3.9.

and

Proof.

= 0 ,  (42)

0 (43)

^ ^ i+i .s f ( - l ) i =  0. (44)

From equations (39) and (30) we have

^  v ^i+l^j =  ^  “I" $i— 1 hsi =  ^   ̂ 4" ^   ̂ Sj — 1 =  0 .
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Thus equation (42) is established. We have

=  ° -

Now reverse the direction of summation in the usual way, replacing k — i by i. This yields

k
=  o

1 = 1

and equation (43) is established. Finally we turn to equation (43) as our route to proving 

equation (44). Thus we see that

-  ^ x - i y  =  o.

Now deploy equations (43) and (31) and we are home.

□

Lemma 3.10.

a  =  ^ ^ _ 2( - l ) i+1 = 0 . (45)

Proof.

so

a  =  J 2  s L i 4 - 2 ( - 1 )’+1 +  2 Y ,  • w t 2( - l )i+1 +  Y ,

so

a  =  ^ s U l A - l Y  -  2 ^ . s 1+1^ ( - l ) ‘ -  £ a ? ( - l ) V

These sums vanish by equations (41), (44) and (31) respectively. Thus a = 0 and we are 

done.

□
30



Lemma 3.11. This is presumably well-known. For each integer n we have

34 = 4+i + 4-j + 2 ( - l ) " +1. (46)

Proof.

This result actually holds in the ordinary Fibonacci sequence, and not just modulo a prime 

P•

s n  =  ( ^ n + 1  —l )  =  lS?} +  | “1“ 5 n - l

but 5n+is n_i =  s2n +  ( — 1)” by equation (22) so

s~ =  s n + 1 +  4 - ,  - 2 4  +  2 ( - l ) " +1

and the result follows.

□

On the basis of computational experiments, wo propose the following conjectures.

Conjecture 1: If q is prime then =  0 f°r but finitely many prime moduli p. The

evidence for this conjecture is as follows. Wo know it holds for primes q less than 11. For 

primes q larger than 7 we have computed all values of the prime modulus p < 200 for which 

the sum s? fails to vanish. This conjecture looks rather dodgy and we will discard it in 

published documents unless we find more compelling arguments.

Conjecture 2 : The prime moduli causing the sum JP .sj to fail to vanish must be congruent 

to 1 or —1 mod 5.
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q p 

5 11

7 11,29

11 19,29

13 19,29

17 11,19,29,31

19 11,29,31

23 29,31

29 11,19,31,59

31 19,59

37 11,29,59,71

41 29,59,71,79

43 29,59,71,79

47 11,19,29,31,59,71,79
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53 19,29,31,59,71,79 

59 11,31,71,79

61 71,79

67 11,19,29,71,79

71 19,29,79
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We now embark on the study of Fibonacci double sums, and remind the reader that 

the primes 2,3 and 11 are barred from our discussions. A typical sum is of the form 

2 >=o S i= o  We abbreviate the notation for this sum to Yli<j the event

that we wish to consider we write S2a/ / / ( b i ) -  As m  the case

of single sums, we will heavily exploit the periodicity of (s*), and tinker with ranges of 

summation. A variety of other tricks is needed too, and we will introduce such ruses on 

an ad hoc basis as the need arises.

Lemma 3.12.

and

v = Y , » b i - i  = °  (47)
i<j

*i =  E 4 =0 .  (48)
i<j

Proof.

V —  S j S j - i + i  S j . S j - i - i

i<j i<j
k-1 j-1 k — 1 j —1

= E E 4 s> -1+1 " E E ^ - 1
7 = 0  t = 0  7 = 0  i = 0

k-1 j -1  k-1 j

= E E
j =0 i= — 1 7=0 *= I

We can tinker with the ranges of summation providing we only add or subtract terms 

which vanish, or compensate by inserting new sums. Thus

k-1 j -1 k-1 k- \  k — l j —l k-1 k-1

v = ($^ 52sjsJ-i + 52 sjsj+i ~ 52*j,si } “ (52 5 2 _ s>+
7 = 0  i = 0  7 = 0  7 = 0  7 = 0  i = 0  7 =  0 7 = 0

In this expression for i/, the first and fourth terms cancel, the sixth vanishes since s0 = 0, 

and the remaining terms -  the second, third and fifth, vanish by equations ( 12), (2) and 

(3) respectively. Thus v =  0 and (47) is established.

We now address fi,

v = E = E E
i < 7  7 = 0  i = l
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We slide down the range for i by 1. The case i =  j  is harmless since so =  0. Thus

i<j

We deploy equation (3) and equation (47) to deduce ^  =  v =  0 , and equation (48) is 

established.

□
Corollary.

^   ̂SjSj^i^.a — 0 Va G Z. (49)
i<j

This follows from equations (47),(48), the Fibonacci recurrence and finite induction.

□
Lemma 3.13.

Proof.

£ ^ i ? s y _ i _ , ( - l ) > + 1 = 0 .  (50)
i<i

Put

Recall equation (46)
*'< >

%sn ~  -Sn+1 +  sn -l + 2( —1)" + 1 Vn G Z,

which will play a central role in our manipulations. We introduce some temporary names 

for various expressions.

* < j

*<j
and

7 =

i< 3
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Let 9 = 3rp then

6 = a  +  fi +  27 ,

by recasting 3s2j using equation (46). The previous lemma (equation (48)) shows that 7  =  0 

so 9 = a + (3. Now

a = Y,s2j+is2isi-<-i(-1)J+' =
i<j j= l *=0

There is no problem in adjusting the range for j  since s0 = Sk = 0 . Thus

j = 0 1=0

Now we wish to add j  — 1 to the range of /; this too is fine since it involves the creation of 

the extra term

i=0

This vanishes by equation (29). Thus

a  =  (51)
»<J

We now give (3 similar treatment.

i<j j=- l  i= 0

We can remove —1 from the range of j  since there are 110 legal values of i less than 0 . We 

wish to introduce k — 1 into the range of 7. This creates an extra term

i = 0

This last sum vanishes by equation (20). The removal of j  from the range of i is harmless 

since so =  0 . Thus we may write

/ j = £ 4 ^ - ( - i y -  (52)
»<j
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We are roughly half way through this proof. Now, in the* spirit of justice, we start again, 

this time giving i the treatm ent previously meted out to j.

9 =  6 +  e +  2C

where

*<j

*<j
and

i<j
As might be expected, £ is the easiest term to deal with, and so we tackle it first. We 

are introducing a new type of ruse here, so the reader may wish to be especially alert. Of 

course we could prove that £ =  0 by a. direct method, but the following technique illustrates 

a new weapon at our disposal.

i<j i<j
SO

k j-1
c =

j=0 i=0
since Sk = 0 . Now prepare to reverse direction of summation. We have

k j - i

j=U i=U

We replace k — j  by j  and k — i by i to yield

k i — 1
c = X ] 5 I * sj-sj-t+ i-

i = 0 j = U

The clean way to see that this ruse is legitimate is to realize that we were summing over all 

pairs ( i , j )  in the range 0 < i < j  < k. This is the same as the range 0 < k — j  < k — i < k. 

Thus

C =  5 ^ 5j*Sj-*+l T . SjSJ-k+l • 
j<*
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The final sum in this last equation is really * 2j s j + i  which vanishes by equation (12). We

can shave of the top of the range of i by equation (18). We conclude that

C = ^2  s2j sj- i+i  =
j < i  al l  i < j

The second and third terms on the right vanish by equations (49) and (2) respectively. 

Thus we deduce that
k-1 k-1

c =  X X ( X ^ - + i ) -
jf=0 i = 0

The inner sum is really just Y l s i which vanishes by equation (1). Thus we have shown 

that £ =  0 .

We conclude that 6 =  8 -f- e. Now we work on b. Notice that

i < j  .7 =  0 t = 0

Now change variable i in the sum to obtain

< =  E E * H ' h ( - d j+ '-
j = 0 i =  1

Now we can slide the range of i down by 1 at both ends since So =  0 . Thus

6 =  =  - P -  (53)
i < j

by equation (52). Thus 6 =  — (3. On this bright note, we set off in pursuit of e.

« =  £ 4 ? - ^ — , ( - i r + ' = y + I.
i < j  7 = 0  i = 0

Changing variable as before, we obtain

)j+ i .
j = 0 i =  — J

Once again we would like to slide the range of i by 1, but this time upwards. When we fix 

i =  — 1 the contribution to the sum is
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which vanishes by equation (19). When we put i  =  j  — 1 the contribution is

This vanishes by equation (29). We conclude that

e =  ^ ^ s ^ J_ 1_-J(--T)J+1 =  - a ,
*<j

by equation (51). Pulling things together, we obtain

6 =  a  +  /3 = —(fi + e) =  —0.

Thus 6 =  0 , and so ^  =  0 and we arc done.

□

Corollary.

C =  = ° .  (54)
i<j

Lemma 3.14. Using the notation of the previous lemma

« =  K + i a f o - . - i t - 1) * '  =  0 (55)
*<>

and

0 = , ( - l ) J+l =  0. (56)
i<j

Proof.

In the proof of the previous lemma we obtained a +  ft =  0 . Also, using equations (52) and 

(53) we have

0 - a  =  £ ^ _ , ( - l ) >  -  =  °-
i<j i<j i <j
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Thus a = (3 = 0.

□
Corollary.

] T  = 0  Va 6  Z. (57)
*<j

This follows from equations (50),(51) and (55), the Fibonacci recurrence and finite induc

tion.

Lemma 3.15.

Proof.

□

£ W + l S ?sJ-_i_ p( - l )-''+1 = 0 .  (58)
i<j

Temporarily put

The previous two lemmas tell us (via equations (56),(50) and (54)) that

H  s>-i A =  Z X A = H  A =  °-
i<j i<j t <j

Now

2 ^   ̂S j S j + 1 \  =  — £ > +J — ) A =  — ^   ̂<Sj_i A =  0.
i<j i<j t<j

The final equality is simply equation (56), and we are done.

□

Corollary.

(59)
i < j
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Lemma 3.16.

^ 2 sj s l sj-*+a =  0 V a G Z.
*<7

Proof.

Thus

Put

Oi =  ' y  ^ s j s i S j - i + a  —  s j + \ s i ' ^j —i + a  ~  ^  ^  s j - l s i  s j -  

i < j  t < j  i < j

k j - 2 k —2 j

* =  £ £  E E  S j S j  S j —i + a + l  i
j - 1 i = 0  7 =  — 1 » = 0

by adjusting the ranges of t and j . Now we immediately deduce

fc—1 7 - 2  Ik-2 7

a  =  E E  ^7 î '**7 — *+o— 1 E E  .Sj Sj Sj — i-f-a-f-i
7=0 i=0 7=0 i=U

by removing and introducing vanishing terms. Now

k —l 7 - 2  k - 1

^  575 *5J - * + a - l  =  — s j s j - l
7=0 i=0 i<7 7=0

The last term vanishes by equation (12) so

f c - i 7 - 2

E E  SjS± 6j_j_}.a — i — ^   ̂ 7̂̂ t~ 7̂ — « + <* — 1 ’
7=0 i=0 i<7

We now attack the second sum in our expression for a . We see that 

k —2 j  k - 1  j  k - 1

ŷ  yi s j s j s j - j + a + i = _
7 = 0  i = 0  7 = 0  i = 0  i= 0

The final sum being subtracted is tractable. It is simply

i + a  •

5a.

k — i + a  •



and this vanishes by equation (21). We deduce that 

k — 1 j

E E  — i + a + 1  — ^  "j Aj s \ ^ j  — t + a - H  “h  ^   ̂■^j ’̂ a + 1

j —0  * = 0  i < j

The last term vanishes by equation (3), and so we have

Oi =  ^   ̂Sj Si S j  — 1+fl — l — ^  ^^ j s i s j  — »+g+l •
«<i *<>

NOW Sj_j_|_a_ i — *-t-a+l =  S j  — t-f-a SO

a  =
i < j

Thus a  =  0 as required.

Lemma 3.17.

Proof.

Let

so

Now

i < j

a  =  E ^ - ^ - ' - J + i -
i < j

□

l ) i+i = 0 . (61)
*<J

k - 1 jfc-1

a l l  a l l  i = ( )  j = 0

but the inner sum vanishes thanks to equation (21). Thus we have

Y  Sj^iSi-j  + l = 0-
a l l
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Our intention is to use the following trick -  the meaning of which should be self evident -

E  = E + E + E -
a l l  i < j  j < i  i = j

We must investigate the sum when i = j .  This is just

E ^ >  = E s‘ =  ° ’

which vanishes because of equation (3). We conclude that

OL =  — ^  ^ S j S i S { - . j + \  =  — ^  ]  s j s i s j  — i + 1  •

j < i  i < i

The final equality is obtained by permuting notation. Thus

Q == — ^  " Sj.sj Sj_i+\
i < j

which vanishes by equation (60).

□

Lemma 3.18.

Proof.

( - l ) * '  = 0 . (62)
i < j

Let

a = s ] s j s , _ i .sj _, _ i ( - 1) ■7+ 1
*<j

Using =  Si — Sj_2 and the equation (50) we obtain

0 ( — ^  ^ $  j $  j & i — 2 ,%ij  — i —1 (  1 ) ^ *  

i < j

Now use equation (22) so

a  =  (— 1 )7 “  ^ ^ _ t_ i ( - l ) ,+J.
i < j
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The last term vanishes by equation (54). Now

“  =  X  5 3  ( — 1)J
j f = 0  i ' =0

so

° = E E si+isiJH-i(-1),+l-
j= i i=i

Adjusting the ranges we have

i<j

SO

a  =  ^  s^+1s j s j _ , _ i ( - l  )J'1 J +  ^  —1)*.
i<j

These last two terms vanish by (55) and (20) so o =  0 and we are done.

□

Lemma 3.19.

6sjS2j _ 1 =  ,J +I +  .sj_2 — 2Sj Vy G Z. (63)

Proof.

For each integer j  we have

s 3j+i  +  -s^_2 — 2s3j =  (sj  +  S j_ i) '{ + (sj — .sj_ i )’* — 2s? =  6sjS2_ l .

□

Lemma 3.20.

6s2jS j_ j =  «J+1 -  »)_t -  2s'j_, Vj 6 Z. (64)
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Proof.

For each integer j  we have

s- s j —2 ^ s j —i  —  +  <S j _  i )  { s j  5 j _ i )  2 S j _ i  —  6 S j S j —j +1

□

Lemma 3.21.

= 0  Va € Z. (65)
i<j

Proof.

Put

a  =  6 ^ 4 ‘!j_ ,+„.sils?_I( - l ) i+1
i<j

= +  E 4 sJ- + ' ‘<? - 2 ( - i ) J+1 - 2 ^ ^ > - i + « ^ ( - i )J+1
*<J *<j i<j

Now fiddle with the range of summation for i.

« =  £ £  Sj^j— t+a+l ( i ) J+I + £ £
j=0 i=l j —0 i= —2

- 2 y ; 4 ^ l+a^ ( - i ) > + i . (66)
i<;j

We deal with these three double sums in equation (66) individually. The first one is

EE ̂ j^j  — *+a+l ( 1 — E i+(t + l si (~  1)J + 1 +  Sa + lS^{ — 1)J + 1 •
>=0 i=l i<j j= 0

The last term  vanishes by (31) so 

k- i  j
EE s2jSj-i+a+lSi( - 1 ) >+1 =  E 4i 5>-i+a + l « i ( - l ) >+J- (67)
.7=0 z=1 »<j
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Now for the second term in equation (66). We have 

j=0 *= — 2 i<j

+ 5Zaisi+«+is-i(-1),+1-
The last four terms vanish by equations (45), (41), (21) and (21) respectively, so

Y  Y  siiSi-'+a-25i(-1)J+I = •̂Si«i-i+a-2«i(-1)J+1- (6S)
j = 0 *=—2 »<ji

Thus from equations (66), (67) and (68) we have

Q  ~  ^  ; S j S i ( ~ ^ -)J~̂  (^j —*+o+l "f" «Sj_j+a _2 ~  ^ s j  — *+o)- 
i<j

However,

>Sj —* + a + l  4“ — *H-a.—2 ^ S j —i + a  =  ( $ j —* + o + l  $ j  — t + a )  ( S j  — i + a  &j — * + a —2 )

=  S j — t+o — 1 Sj — j'+o — 1 =  0.

Thus a  =  0 and we are done.

□

Lemma 3.22.

1)J+1 = 0  Va e Z. (69)
i<j

Proof.

The proof is similar to that of lemma 3.21, but this time we exploit lemma 3.20 rather 

than lemma 3.19. Put

a  =  6 ^ ^ s J_ 1s?sJ_ t+a( - l ) J+1,
*<i

P  ~  s i s i ,sj - » + Q - l ( ~ ^ ) J\
*<J
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7  =  5 Z ^ 5 i S > - i + « + 2 ( _ 1 ) J  
• < ]

and

6 =  ^ S j ^ - 5 j - .+ a + l ( - 1)J -
*<j

Now we introduce more notation. Put

k j ~ 2
fa =  E E ' sH ' s; - i+<—

j = 1 i = 0  

Jfc-3 j+ 1

7 . =  E E 4 ^  - i + a + 2 (  — 1 ) J 
j = —2 t = 0

and

^ = E E  syshHj -  *+«+]( - 1 ) J-
j= —1 i=0

Equation (64) yields that

a  = E«>+i*i«i-i+a(-1),+1 - E si-2Jii-s>-i+a(-l)J+1
i < j  i < j

i<J
Recasting the ranges of summation for j  we obt ain

« = EE -*+a+2(-l)J
j = l  i = 0  j ——2 i = 0

f c - 2  j

- 2  E E  ,s> -* + a + l  ( 1 ) J ( 70 )
j =  — 1 1 = 0

or rather

a  =  /?i +  7j — 2̂ >i.

We must simplify each sum on the right. We take them in sequence. First we have

f t  = / ? - E 4 s ' - i s « ( - 1 ) i -
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The last expression vanishes by (33) so f} \ =  /?. We now approach 7 1 . We have

k- 3 j'+l

7 1  =  E E S K ‘', - > - i + “ + 2 ( _ 1 ) ' ’
j = Q i = 0

SO
fc-1J+1 ifc

7 l  =  ^ ^ ^ ^ s j s i s j - i + a + 2 { ~ ~ ^ y  ~  ^  ^ s k - 2 s i s k - i + a  * f  s k - l S i S k - i + a + l - 
j —0 i = 0  i = 0

k — 1 j'+l

=  X  E  ,S>5i 5>-*+a+2( — 1)'7 +  X
j = 0  i = 0

The last two sums vanish by (21) so

Jt-i j+i
7i =  X ! X l ^ ; ’y?-sj-»+fl+2(-l)-7-

j  =  0 i = 0

We need to attenuate the range of j . We accomplish this task thus -

7i =  7 +  X  +  E  'si 5j+ i5a+3(- 1 )J -

Once again the last two sums vanish, this time because of (31) and (41). We ma}' conclude 

that 71 =  7 . Next we tackle 6\. We have

k—2 j

f > = E Ej= — 1 i=0

so
Jfc-i j fc-i

. S1 =  E E s K 5J - '+ '> + i ( - 1 )j -  5 Z  S*-1 s i ■»*-<+«( —1) fc_1
j=0 i = 0  t = 0

=  E  E * K s;--+ < .+ i(- i) j +
j=0 1=0

The last term vanishes by (21) again. Thus we have

k - i  j
Si =  E  E  ^M -sj -»+<*+i t " 1)-7-

ji=U i = 0

We now shrink the range of i and so

61 =  b — X ! -ys«+i( — 1)J- 
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The last term vanishes by (31) so 8 \  =  6. Thus

a  =  A  +  — 2#i =  (3 +  7 -  2 8 .

Now we can deduce that

OL =  ' y  ^ s i s i  ( s j —i - f g - 1  " k  -Sj —i - f a + 2  — 2 £ j _ i + a + l ) (  — I ) 17 • 

i < j

The expression in brackets vanishes by the Fibonacci recurrence because

( «S j _ j+a  —1 "k 2 3 j _ i + fl+ i  ) =  S j _ t - | - a + l  ) "P ( ^ j  —i + o + 2  ^ j  — t + a + l )

=  $ j —i+ci  “k — *+a =  0*

Now we are done.

Lemma 3.23. For every integer a we have

Proof.

Let

then

so

a = I > K * > - H - a ( - l ) i+1
i < j

a  —  J > + 1  — « S j _ i )  i > \ S j - i + a ( l ) ^  

*<J

i < j  i < j

i < j  i < j

□

•_,•+„(- IF * - ’ = 0 .  (71)
i < j



We now adjust ranges of summation. We have

—i f  Sj—i+a — 1 ( 1)J' - 3 ^ ( ^  + ( - l ) ' , )Sj+j5j5>-,+„ ( - l )J+1
j = 1 i=0 i<j

k-2 j
+ 3 £ ( Si +  ( - l ) J'K - l ^ ^ - i + a ( - l );+1 -  ^ ^ S j - i + a + i C - i y .  (*)

i<j J= —1 *=°

We examine the four sums in (*) separately. We have

a = ft — 37 +  36 — e

in the obvious notation. We have

j= l i=0

so
k- l  j-'l

f t -  5 3  5 3  sj's?'sj - i + o - l ( - l )7
j=0 i=0

since so =  0 . Now adjust the range of z, so

P =  s3j sl sj-i+a- 1 ( -  1 )7 — S'j$2j-iSa( — i y  •
i<j

The final term in the last equation vanishes by equation (33) so

i<j

Next we approach e. We have

e ~  ^ 2 y ^ i 'f o j - t + q + i l - - 1)7
j = —1 i=0

so
k- ] j

£ — ' ^ 2 ' ^ 2 s3j s‘i sj- i+a+A.-l )J -  y)>2Sl - l Si Sk-i+a{-'L)k *
jf=0 i=0

The final term is, up to sign,
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2 3 .s fsv _ „ ( - l) i 

which vanishes by equation (21). Thus

ji=0 1=0

so adjusting the range of i we obtain

c =  ^  sj sj sj — t+q-H (~ f  )J d~ ^  1 sj sa + l (~ ^ y  - 
*<>

The last sum vanishes by equation (31). It is now clear that

P  ~  € =  ' ^ 2 s 3j S 2i Sj _ i + a _ l ( - l ) J -  ^ 6 ^ - ^ _ i + a + l ( - l ) J

i<j i<j

SO

P  -  e =  ^ 2  s3j s l s j - t + a ( - i y + 1  =  <*•
i<j

We now approach 7  and S.

so

1  =
i<j

7 — ^  ^ s j s j + l s i s j  — i + a (   ̂ d* ^   ̂$ j +  1 s j $ j  — i+a{ !)■ 
i<j i<j

Similarly

Thus

6 — ^   ̂s j sj — l s i sj — i+g{ 1 d" 1 sj — i+a{ !)■
i<j i<j

7  ~ S = ^   ̂ Sj — *+«( ~ ̂  y~  ̂ ~  ^   ̂5 j s i Sj — i+d’
i<j i<j

The final term of the last equation vanishes by equation (60). Thus

7 - 6  = ^ 2  Sj s i Sj - i + « ( - 1)J+1 = Q-
i<j
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From equation (*) we deduce that

a  =  ft — ( — 3( 7 — 6)

so

a  =  a  — 3 a =  —2a. 

It follows that 3a =  0 and we are done.

Lemma 3.24.

Proof.

We establish this by showing

and

□

£ * J-+ l W _ j+.« J ( - l ) ' '+ l . (72)
*<>

(*)
i<j

^ 2 sj+lsj s j-i+as 'i( — i y +l — 0 (**)
i<j

for all integers a and b. From now on, in tlu* course of this proof we will omit to mention 

that in all equations involving a and 6, the values of a and 6 are arbitrary integers.

The result follows from (*) and (**), the Fibonacci recurrence and finite induction. Recall 

equation (65) which asserts that

*<i

Reverting to detailed notation, this asserts that



;=0 1=0

and changing a variable this means that

j=o *'= —1

Now remove the edge effects from this last sum. We have 

Jfc-i j - 2
5 1  5 1  * i « j - i + a - l S i + l S i ( - l ) J+1 =  5 ^ a i _ I-+ a _ , S j + I s ? ( - i y + 1
j =0 i= —1 i<j

The final two sums vanish because .sq =  0 , and equation (33) applies (respectively). We 

may add 1 to a since it is arbitrary, and deduct1 that

(73)
«<;

Now recall equation (69) which asserts that

i<]

We use the J^all =  H ,< j +  T,j<i + Hi=j  trick- Now we liave

all j —0 i=0

The inner sum vanishes by equation (21) so

^ 2 s 2j sj - 1s 2i sj - t+H{ - i y +l = 0 .
all

Now consider the contribution when i =  j .  This is
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which vanishes by equation (43). We may conclude that

} < i

Now change the roles of i and j  in this equation to obtain

*<>

which equally well asserts that

£*JV j+.*?*j_,(-i)>+, =o. (74)
i<j

We have spun the term ,Si_j+a to S j - i - a, replaced a by —a, and multiplied by —1 if 

necessary.

Subtracting equation (74) from equation (73) we obtain equation (*). We now address 

equation (**) using our new found faith in equation (*). We know from equation (*) that

= 0,
*<j

so we may change the variable j  to deduce that.

k- 2 j
A'j+i-si —»+<h i s i (~ i y  =  0.

j = —1 i=0

Now the range of summation for j  can be slipped up by 1 without damage, so

k—1 j
s j + 16J-*+<i+ I s i ( ~ 1 ) J =: 0-

j=0 i=0

Now eliminate the edge effect. Our latest, equation can be written

’y  > S j+lSj-i+a+l^i ( " I ) 7 — y  Js j+ls a + l s j ( ~ ^ y  =  0*
i<j

The final term vanishes by equation (41) so

^ ^ + |S j_ 1+a+l,;‘( - l )J+1 = 0 . (75)
‘ <.7

GO



We have subtracted 1 from a and multiplied by —1.

Now repeat this last enterprise, this time changing the variable j  in the opposite direction. 

We have

Y , S 2j*j-i+a»3i { ~ l Y +1 = 0 ,
i<j

so replacing j  by j  — 1 we see that

=  0.
j= 1 »=0

Thus

^ 2 ^ 2 s2j - l Sj - i+a-lS3t { ~ i y  - '* T f S2j _ l Sa$3j - i ( - i y  = 0 . 
j= 1 i=0

The final term vanishes by equation (31). Knocking 0 oft’ the range of j  is harmless since 

there are no legal values of i when j ' =  0 , so we only have to worry about what happens 

when j  = k. Thus

^  — Isj — i+a — 1 *si ( y  d~ ^  v s k — 1 ^k — i+a — l s i =  0 .
*<J

Now

E _2 , .3   NT '  , ,3 / I \t+(i
5 it — ?+o — 1 - i  ~  /  , •**» ( * )

which vanishes by equations (23) and (28), and a finite induction. We deduce that

5 ^ _ , s > _ i + « s ? ( ~ i y +1 = 0 -  (76)
*<J

We have added 1 to a and multiplied by —1. Now

2 S j + i S j  =  — { S j + 1 -  S j ) 2 +  .Sj+ , +  S j  =  s j + 1  +  S j  -  S j _ j .

Thus adding equations (75) and (*), then subtracting equation (76) we obtain

2 5i+ i5>5i- i+ n ,si?(“  1)J+1 =  0
i<j

and we are done.
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Lemma 3.25.

^   ̂ ^r—j — $j — i—1 — 0. (77)
i<j<r

Proof.

We put

Oi =  y  J 5 r _ j _ i  S j S j  ^  ^  S f . _ j . S j S j  ^  ]  S r _ j —2 s j s i s j  — i — l -

i < j < r  i < j  < r  i < j < r

Now adjust the ranges of summation, to obtain

k  r —2 j —l  k —2 r  j  — 1

“  =  £ £ £  S r _ j _ \ S j S j  S j _ i _ \  - £ £ £ * -  _ j _ 1 S j S 2i S j _ i _ i .  ( * )

r =  1 j = 0 7=0  r =  —1 j = 0  7 = 0

We study these last two sums separately. Initially we address the first sum.

k r - 2  J - l  k r —1 j  — 1

£ £ £  S r —j  — l S j S j  S j  — i _ ]  -=  £ £ £  *s r —j  —1 S j  — i — 1

r = l  j = 0  7 = 0  / = 0  j ' = 0  z = 0

by inserting vanishing terms. Now we must work a little harder.

k  r —1 j —1

S r - j f - l < S j . S t S j - , - 1  =  y ]  J*,._ | S j S  j S j _ . j _ i  — S k _ j _ i S j S j  S j _ j _ } .

r = 0  j = 0  i = 0  i < j < r  i < j

The final term here is just

^  " *s> i  iVij —7—l ( I 
*<>

which vanishes by (58). Thus the first sum in our equation (*) for a can be replaced by

y   ̂ $ r —j  — L's j S {  S j  — i — i , 

i < j < r

which happens to be a . Thus (*) becomes

<* =  <*- (**)
r =  — 1 j = 0  7 = 0
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Now for the remaining unsimplified term in (**). We have

k - 2 r  j - 1 Jb—1 r  j - 1 * - 1  j - 1

= E E E ar->- i^ i 4>-<- 1 - E E s*-->-
r = 0  j i = 0  i = 0  r = 0  j = 0  i = 0  j = 0 i = 0

Once again, the second term

k  — 1 j —1

E E  S k —j —2 $ j S i ^ j —i —1

j = 0 i = 0

vanishes, this time because of equation (59). Thus we have

k —2 r  j — 1 k —l r j —l

E E E  •Sr —ji—1 S j s ' i  S j  — i — 1 =  E E E  ^  ̂  j  _  j  5  j  5,  «S j  ^ j

r = 0  j = 0  i = 0  r = 0  j —0 i = U

k—l r—1
=  ^  ^ ^ r —j  — —i —J T  ^  ^ ^  —1 ■Sr— i —1 •

i < j < r  r = 0  a = 0

The final term here is simply another way of writing

i < j

which vanishes by equation (60). Thus

k —2 r  j —1

E E E  s r_ j _ i S j s j s j - i - i  — ^  s r_j_|.SjSl-Sj_i_i — a.
r = 0  j>=0 t = 0  i < j < r

Putting all the pieces together by substituting into (**), we obtain

cx = a- — rv = 0.

Lemma 3.26.

E l ( - l V +‘ =0.
i < j < r

Proof.



Let

a  =  'y ^ —1) 5rSr_j_i5j[Sj;_j( —1) +
i < j < r  t < j < r

-  5 Z  s l s r - j - l S j S j - i - 2 ( - l ) r + t - 
i < j < r

Now adjust the ranges of summation for i to obtain

a  =  5 3  E  E  i ? s r - j - i S j - s i - , _ , ( - l ) r + , + 1  -  ^ 5 Z ^ i * s r _ i _ i s J- a > _ , - _ i ( - l ) r + , + 1 .
r=0  j=Q i=  —1 r=0  j —0 *=1

(*)

We consider the two sums in (*) separately. First we have

E E E  S r  S ‘f —j  _. j S j  S j  _  j _  j ( 1) —— E  * r s r —j  — l s j s j - i  —1( 1)
r=0  j = 0 i =  — l i < j < r

+  ^ 2 s2rS r - j - \ * j { - l ) r -
j < r  j < r

The argument of the the third sum vanishes since sq =  0. The second expression is simply 

another way of writing

i <j

which vanishes by equation (50). Thus (*) becomes

a  =  E  s2r s r - } - l s j s J— l ( - 1 Y'+ ' + ' -  E  E E ' , ’ ,S’- - ' - l S -’'3> - i - 1( ~ 1 ) r + ' + 1 - ( * * )
i < j < r  r=l) j —0 i = l

We now tackle the second expression in (**). We have

E E E s ^ - > - i w - i - i ( - i r + , + l  -  E  4 *
r =0 j —0 i= 1 i < j <r

~  S r $ r - j - l $ j $ j - } {  — l ) r + * +  y  S ^ r - j - l - ’b ’S - l f  — l ) r+J '+ 1 .
j < r  j < r

The second sum here is really just

5 3 4 > js i_ )*i _ ,_ 1( - l ) * 1
i <j
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which vanishes by equation (62). The third sum is really

*< j

which vanishes by equation (61). Thus (**) becomes

a =  4 5r - j - l5 j5 i - i_ 1( - l ) r+,+ l -  5 jsr_J-_i5J-5J-_i_1( - l ) r+,+ 1
i < j < r  i < j < r

=  —a + o = 0 ,

and we are done.

Lemma 3.27.

Proof.

Let

and

Q. — ^  J>r+1 Sr_j_.] Sj.S • ( 1) + ,
* < j < r

(3 = ^ 2  ■s'?—i-s»-—j —i - S j —*—i (— l ) r+ \
i < j < r

a =  .sr_J_ i . s j S j .

t < j < r

Recall from equation (46) that

3 4 = 4 + , + ^ - ,  - 2 ( - D n V „ 6 Z

We deploy this, focusing on the variable i \  to obtain

30 = a  +  (3 +  2A.

6 6

□

tf=  £  ^ - > - i . V < S - i - i ( - l )r+1 = 0 -  (79)
t < j < r



The equation (73) shows that A =  0  so

30 =  a  +- (3.

We now attem pt to find a different linear relation between a  and /?. We have

r = l  j = 0  t = 0

Sliding the range of r  down by 1 is harmless since sq =  0 . We have

A - l r —2

G =  ^   ̂ 5rSr_j_2<Sj<St’ ( 1) ^   ̂^   ̂$r$ — i «Sr— 1 «St~ ^r—i—2( 1) •
* < j < r  r = 0 i = 0

The second sum is the edge effect, and we need to show it vanishes. We change the dummy 

variable r  to j  to render the appearance of the sum more familiar. We have

j = 0 i = 0  i < j

The first sum vanishes by (69) and the second because of equation (41). Thus

OL =  ^   ̂ SrSr_j|_2.s;-’»̂ Sr_,_] ( 1) . (*)
i < j < r

We now address /3 in the same spirit. We have

r + 1
(3 —  ^  ^ ^ r — l ^ i  — j - I  s j  — i —1(  1 )

i < j < r

-  ^ 2  ■

r =  — 1 j = 0 j = 0

When j  = r we get no contribution, so

(3 — ^   ̂ j ( 1) ^  —1 —1 —j^j^ — i — l ( ^)*
i < j < r  i < j

GO



The last term, up to sign, is just

* < j

which vanishes by equation (59). Thus

i < j < r

Thus

O L  —  f t  ~  ^  ^  -Sr ( . S r _ j _ 2 —  -S’r — j ) S j $ i  — i — 1 ( ~ l )  =  

i < j < r

Putting this information together, we have

30 =  a  +  ft and 9 — a — ft.

We are nearly half way home. Put

€ =  ^   ̂ -sji-s^. i «Sj_ * —i (~  1) ,
i < j < r

1 =
i < j < r

and

C =  £  S*3r_j _ , .V i _,--1( - l ) r+<.
i < j < r

Equation (46) forces

8 =  6 +  7 + 2C-

However, f  vanishes by equation (78) so 8 =  t 4 7 - We address e,

E E   j ^ J 5 j _ | (  l)
z < j i < r  r = 0  j = 0  i = l

S O

e —  ^  ^ $ r ^ r —j — • i ^ j  — *'(

i < j < r
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We now turn our attention to 7. We have

7 =  «Sr5r-i-l5jS-_15;_ i _ i ( - l ) r+1 = ] T  ^  5jsr_J-_15J-S?SJ-_i_2( - 1)r+l.
i < j < r  r — 0 j = 0  i =  — 1

This gives us

7 =  5?Sr-j-l5j5?5j_i_2( - l ) r+J + 5 ^ ^ 5 r_J-_iSJ-5J|_1( - l ) r+1
i < j < r  j < r

j < r

and changing variable names we see that

7 =  4 3r -> - l3 j4aJ - i -2( - l ) r4'1 + y ;  ^.S,-5,-_i3j-i-i(-l)J+1
i < j  < r  i < j

*<j
The final two sums vanish by equations (G2 ) and (65).

7 =  ^  l ) r+1 • (**)
i < j < r

Notice that the expressions for e and 7 yield 6 .-= e — 7.
Summarizing we have

Q' -j- /̂  —■ — 6 "i- 7

and

cv — fj = 0 -- e — 7.
Thus a = e = 26 and (3 =  7  =  0.

Now consider

0 =  ^ S r _ J- _ | l S _y. s?.SJ- _ |- _ 1 ( - l )

i < j < r

We put

r + l

/ i  —  > — i «s j  +  l ) r + 1

i < j < r

OS



and

V  —  s ' r ^ r —j — I I s f s j  — i — l ( l ) r "^*

t < j < r

SO

0 = f.i -  v.

Adjusting ranges of summation we see that

r = 0  j =  1 i = 0

and

V  =  Y  Y  Y  S r s r -  j  -  2 S j S j  S j _ , (  - 1 )'r + 1 •

r = 0 j =  — 1 i = 0

Now

fi =
r = 0  j = 0  i = 0

since we have added and removed vanishing terms. We now extend the range of i so 

/ i =  4 s r - j S j s h j - i - 2 ( - l ) r + ' +  ^ ^ - j ^ _ 1 s - i ( - l ) r + 1 .

i < j < r  j < r

Changing variable names we see that

i < j < r  i < j

The final sum vanishes by (66) and so

/i =  ^   ̂ S r Xr - j S j . S ’ — 1) +  •
i < j < r

We now attack v. We have

V  —  Y <  Y h  Y L  S l S r - j - 2 $ j ^ S j - i ( - l ) ' 2  1 "  Y  Y ,  Y ,  s r s r - j - 2 S j S 2 S j - j (  — l ) r + 1
r =  0 j =  — l  i = 0 r = 0  j = 0 *=()

since there are no legal values of i less than — 1. We increment the top range of j  introducing

the term

X ^ X ^ r 5- l 5r - lS ? S r - . '- l ( - l ) ' '+ ' =  s j s j - i s f o - i - l ( - 1 ) J+1.
r = 0  t = 0  i < j
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which vanishes by (69). We now contract, the upper range of i by 1, which is inconsequential 

since so =  0 . Thus

i < j < r

The expressions for /i and v differ in two places.

Notice that

— 2 & r —j —2 & j —t =  (^*r—j — 1 "f" & r —j —2 ) ^ j —i —2 $ r —j —2(^7 — t — 1 S j  — i —2 )

=  Sr _ j _ i  'SV—j —2 ^ j  — i — 1

SO

9 [I V =  ^   ̂ 5rSr_ j_ i SjfSj-S j_j_2( 1) ^  ' £r$i — j —2^j^i $j — i — 1 ( l)
i < j < r  i < j < r

Now, examination of the equations in the proof marked (*) and (**) yields that

9 = 7 -|- a.
However, we know that 7 = 9 and a = 29, so 9 — 39. Thus 9 = 0 and we are done.

□

Corollary.

In the notation of the lemma, it follows that o = 0 and so

£  4 + 1̂ 4 s - J- , ^ - i - i ( - l ) r+J = 0 . (80)
i < j < r

□

Lemma 3.28.

r =  6rs r+|.sr_J_ |S /.s“A; _ f_i( — 1)T+1 == 0. (81)
i < j < r
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Proof.

SO

T  —  ^  ^  -s r ^ r + l

i < j < r

Now exploit the previous corollary (equation (80)) in conjunction with sr =  s r+1 — sr_! 

to obtain

r =  ^   ̂ .sr+1K:— ^   ̂ s r+i«sr_i/c.
i < j < r  i < j < r

The first term vanishes by (79), and s r+ is r_i =  .sj +  ( — l ) r for each r by (22). Thus 

T  =  ^  ^ <Sr «Sr _ j _ i  ,• $ j  — i — 1 ( — 1 ) T  ^  ^ 5 r _ j  — 1 S j f S j  — i — 1 •

i < j < r  i < j < r

The first term vanishes by equation (79) and the second term vanishes by equation (77). 

Thus r  =  0 and we are done.

□
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CH APTER 4

A Proof  of  Theorem B

Consider a group H  =  H z  with the following presentation:

H z  =< x , y , z , t , u  : (y ,x)  =  c, ( z ,x )  = t, (t , x )  = u >

where those pairs of generators with unspecified commutators are implicitly deemed to 

commute. This is a torsion-free nilpotent group of nilpotency class 4. In fact this group 

is generated by just x  and y. Each element of the group will have a unique representation 

as x aybz ct due where a, 6, c, d, e E Z. In fact., we may as well think of this group as being 

a rather strange group structure on Z5. The group multiplication law will be given by 

rational polynomials in 10 variables, and inversion by rational polynomials in 5 variables. 

These polynomials must, of course, have the property that, regarded as maps, they assume 

integral values when supplied with integral arguments. We shall use the somewhat sloppy 

term integer valued rational polynomials to describe such polynomials.

Let p be a prime, and work in (Z /pZ )5 instead. There are no difficulties associated with this 

reduction modulo p, because the polynomials involved do not have primes other than 2 or 3 

involved in denominators of co-efficients. We regard the variables a,b,c,d,e as being in Z /pZ  

and obtain a group structure on (Z /pZ )r\  We call this group H z ^pZ and for p larger than 

3 this will be a group of exponent p. We shall demonstrate this shortly. The natural ring 

epimorphism Z — » Z /pZ  induces a natural epimorphism of groups ip : H z  — ► H z lpZ. 

We abuse the letters r ,y ,  z , t , u  to denote the images of the corresponding elements of H z  

under ip.

The relatively free two generator nilpotent groups of class 4 with exponent laws 2 and 3 

are, respectively, C2 x C2 and the (class 2) extra-special group of order 27. These are, in 

a sense, degenerate, since for all other primes p, the relatively free two-generator exponent 

p class 4 groups are all of genuine class 4, and have order p8. It is these primes p > 3 on 

which we shall focus.



We examine the details of the multiplication law of the groups H z /pZ. The element u is 

central, and the group V  = <  > is Abelian. A concrete representation of this

group is to think of V  as a four dimensional GF(p )—vector space. This space admits an 

automorphism a  (really x) given by the matrix

/ I  1 0 0 \

0 1 1 0  

0 0 1 1

\ 0  0 0 1 /

The group H z /pZ is then realized as the seini-direct product of V  with < a  > .

Notice that the m atrix of a n is

/ I  ( ? )  VI )  ( ? ) \  

o 1 («) ( j )

0 0 1 (J)

Vo 0 0 1 /
so for primes p other than 2 and 3 we have a p =  1. We wish to show that for primes p > 3, 

the group H z lpZ has exponent p.

Suppose v E V  and that n E N, then

( a n • v)p =  a 1"1 • i>( 1 + n ” +  . . .  +  a " ( H ) )

by the definition of semi-direct products. Assuming that p is a prime other than 2 or 3, 

we have that a p =  1, so a np =  1. It remains to show that

/3 =  l + a M +  . . .  +  o n(p- 1) =  0.

Let m n E GF(p)[X] denote the minimum polynomial of a " , so m„ is irreducible and 

divides

1 -  X p =  (1 -  Ar )(l + A' +  X 2 +  . . .  +  X p~1).

The ring GF(p)[X] is a unique factorization domain. If m„ divides (1 —X )  then a n =  1 so 

(3 =  0. Conversely, if m n fails to divide (1 — A’) then it must divide 1 +  X  + X 2 + . . .  +  X p~1 

so (3 =  0.
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Thus for primes p greater than  3 the group H z ^pz has exponent p.

We now investigate the group law of H z fpZ in some detail, reverting to the description of 

H z / p z  as being (Z /pZ )5 with a peculiar group law. In the obvious notation

(a, 6, c, d, e) • (a', 6', c \  d \  e') =  (a", 6", c", d", e")

represents the group law. A straightforward induction argument yields the following:

/ /  , / a =  a -f a

b" = b +  6'

=  c  - f  c ; +  

d" =  d +  d' +  a'c +  ( £ >

=  e  -(- - f  o ! t l  4 - ( 2  ) c  “I-  ( 3  ) b

We now use these formulas to calculate the Fibonacci loop l(or, y , . . .) .

The first few terms are as follows (reduce modulo p of your choice):

(1, 0, 0, 0 , 0)

(0, 1, 0 , 0, 0)

(1, 1, 0, 0, 0)

(1 ,2 ,1 ,0 ,0 )

(2 ,3 ,2 ,0 ,0 )

(3 ,5 ,7 ,4 ,1 )
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5,8,18,19,10)

8,13,50,108,151)

13,21,132,495,1265)

21,34,351,2267,10438)

34,55,924,9944,77748)

n particular, choosing the prime 7, we obtain the

1 .0 .0 .0 .0 ;

0 , 1, 0 , 0,0  

1 .1 .0 .0 .0  

1 , 2 , 1 , 0,0  

2,3, 2 ,0 ,0

3 ,5 ,0 ,4 ,1

5 .1 .4 .5 .3

1 .6 .1 .3 .4



6 .0 .6 .5 .5 )

0 , 6 , 1, 6 , 1)

6 .6 .0 .4 .6 )

6 ,5 ,2 ,1 ,3 )

5 .4 .3 .4 .6 )

4 ,2 ,2 ,2 ,0 )

2 .6 .0 .0 .0 )

6 .1 .6 .1 .6 ) 

1, 0 , 0 , 0 , 0) 

0 , 1, 0 , 0 , 0)

of length 16.

Let the i th entry of 1 be (sj_ i,S j,

From now on we will make the benign assumption that the prime p is not 2,3,5 or 11, so 

all the results of Chapter 3 may be freely used.
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Lemma 4.1.

~k = Zk+l = 0.

Proof.

Using the formula for multiplication, a simple induction shows that for positive n, we have

71 — 1
•~n ~  ^  ^ ^  ii — I — l ^ i  •

7 =  0

Thus

zk =  ^ s k - i - i s j  =  y  sk~i 
1 = 0

By lemma 2.2 (equation (14)) we have

Zk =  -s.+ i ^ ( - l ) *

lemma 3.3 (equation (20)) we have Zk — 0.

Similarly

ZM  = ^ 2 s k-i*i =  y  -H-iS? =
1 = 0

This last expression vanishes by lemma 3.2 (equation (16)) so Zk+i = 0 and we are done.

□

Lemma 4.2.

tk =  h+\ = 0.
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Proof.

We use a similar method as in the proof of lemma 4.1, but the argument is a little more 

complicated. Once again, we use induction to obtain a formula for t n for positive n. It is

n —1 n —1

t n =  ^   ̂Sn — l —j ^ j Z j  4“ ^  ^(2 )s*Sn—i—1*
j = 0  »'=0

In particular,
k  j  — 1 k

t k + 1 =  ^  ^  s k - j S j  ^  ^ • * ) - >  —1 +  ^  ^ (2* ) s i s k —i
j=0 i=0 i=0

which, after cosmetic treatm ent, becomes

j = 0 : = 0

This expression vanishes by appeal to three chapter 3 equations, those numbered (50), (23) 

and (16) will do the trick.

We address the second problem

J t - i  j - 1

t k  =  ^  ' s i c  — l —j S j  -S't $ j -  I — 1 +  ^  ^ ( 2  ) ’5 i ' s * + l (  — 1 )  •

ji=0 i=0

The second sum vanishes by equations (20) and (28), and so

t k  =  ^  ^ ( ~ 1  ) J •

*<j

This vanishes by equation (55) and so =  0 and we arc done.

□

Lemma 4.3.

u k = u k+ 1 == 0.
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Proof.

The argument is in the same style as the previous two proofs. For positive n, an inductive 

argument shows that we have

n  — 1 n —1 n  —1

== Sn _ r _ i S r t r  +  ^   ̂ ^w—j  —1(2^ ) Zj  ^ n  —1 — 1(3 )^*>
r=0 7=0 i=0

which expands to

n —1 r —1 j —1 n —1 j —1

u-  =  E E E  E E  Sn—j —lSj( 2̂ i — 1
r = 0  7 = 0 t = 0  j —0 t = 0

n  —1 J  —1 n  —1

+ ^  ^  ̂■Sn-j-1 (2' )^ j— l - i ’Sj "I" y  ] Sn - t - l  (3* ) s t .
7=0 i=0 i=0

& r — 1 7 — 1 ifc j  — 1

=  s r s j s i s r - j  — l 1) “H ^   ̂ ^   ̂s k —j s j { 2 ) ^ i ^ j  —1 —1
r=0 7 =0 i=0 ji=0 i=0

+ E E ^ ( 2 i K - . - . ^ ( - i ) >+1 +  E * * ( *  h - 1) * 1-
7 = 0 i = 0  t = 0

The last of the four sums is quite straightforward; it vanishes because of equations (16),

(23) and (31). Thus we have

tu+ i =  E E E ^ i ^ - H ^ - M t - r 1 + E E si(2 , )s isH - i ( - i r l
r=0  7=0 i=0 7=0 t=0

+ E E ^ ) w ? ( - d j+1.
7=0 1=0

The first sum vanishes by equation (78), the second by equations (5) and (72), and the 

last by equations (50) and (70).

Jfe-ij-i
U k  y   ̂ "S/:—1 _ r «sr s r _ j _ i s j S j — sj -f~ y   ̂y   ̂s ^ —j —i s j ^  ) -sl s j f _ l _ i

i < j < r  7=0 1=0
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“I" ^  ^ s k - j - 1(2^ ) s j - i  — l s j 4" ^  ^ s k —1 — 1(3* ) ’S»‘ 
i < j

These four sums vanish for the following reasons. The first sum is really

^   ̂ s r + l s r s r —j —l s j s j —i —l s i (  l )  • 
i < j < r

This vanishes by (81). The second sum is actually

k - 1 j - 1

^   ̂ ^   ̂ ) <st ,si - * - i ( —I ) -7
j = 0 t= 0

which vanishes by equations (58) and (72).

The next sum is

This vanishes by equations (72) and (58). Finally we consider the fourth sum which is 

This vanishes by equations (44), (28) and (20).

□

Lemma 4.4. Let

H = < x , y , z , t , u  : (y,x) =  2, (z ,x)  =  t, ( t ,x)  =  u >

where those pairs of generators with unspecified commutators are implicitly deemed to 

commute, and the p —th power of every group element is 1. The Fibonacci loop (ar,y ,. . . )  

in H  has length k =  k{p).

Proof.

This is simply the upshot of lemmas 4.1,4.2 and 4.3.

□
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We use implicit left bracket notation for commutators, so

(a,fc,c) =  ((a,6),c).

Recall the identity of W itt,

(a ,6 -1 ,c )6(6 ,c"1,a )c(c ,a “ 1,6)° =  1 (Wit t )

and Philip Hall’s formulas

(a&, c) =  (a ,c )ft(6,c) and (a, be) =  (a, c)(a,6)c (Hall).

These equations hold for all a, 6, c elements of an arbitrary group G. See [Ha79].

Lemma 4.5. Suppose that £ ,y  E G, where G has nilpotency class 4. Let a  =  (a:, y), then

(a ,x ,y )  =  (a ,y ,x ) .

Proof.

The W itt identity forces

( a , x , y ) x 1(a:“ 1,j7“ 1,o ) !'fy ,Q -1 ,.T-1 )a =  1.

The commutators have weight 4 and so each one is central. Our equation can thus be 

written

(a ,x ,y )(x _1,y _1,o :)(y ,o“ 1,a:_1) =  1.

Now

(a-_1,y " 1) =  (a-,y)r ' y * =  (x,y)z  

where 2: G 73(G). Now using Hall  we set' that

( x ~ \ y - \ a )  = ((a*, y )r , cv) =  ((x, y), a ) z(z, a).

Thus we obtain

(z -1 ,y - J ,a') =  (t*,at)z(z ,a) .
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Now clearly (o:,a) =  1, and since z £ 73(G) and a  £ 72(G) then (z ,a )  £ 75(G). However, 

G has class 4 so 75(G) is trivial. Thus our main equation becomes

(a ,x ,y ) ( i / ,a “ \ x ” 1) =  1.

Now we work on the final commutator in this expression. We have

( y ,a _1,x _1) =  ( (y ,(y ,x )) ,x _1) =  (((x ,y ),y )a \ a T 1).

Now

( ( x , y ) > y ) a  1 = ((*,y)»jy)<
for some t £ 74(G), and so

( ((z > y ),y )° '~ \a r1) =  ( ( {x , y ) , y ) t , x~1) =  (((r , y), y), x -1 )*(£, x _1).

Now t is central so we may deduce that

( y ,a _1,x _1) == ( a ,y ,x _1).

Now Hall’s formulas force

( a , y , T ) ( a , y , ; r ~ l ) x =  1.

As usual we may omit the final conjugation by x since ( o ^ x -1 ) is central. Thus

( a ,y ,x -1 ) =  ( a ,y ,x ) _1.

We deduce that

(o ,x ,y )  =  (a ,y ,x ) .

□

Theorem B.

If the Fibonacci Group F (2 ,n ) has the two generator relatively free group in the variety of 

exponent p groups of class 1 as a homomorphic image, then F (2 ,n ) has the two generator



relatively free group G in the variety of exponent p groups of class 4 as a homomorphic 

image.

Proof.

The theorem holds for the primes 2,3,5 and 11 by direct computer aided calculation. In 

principle a diligent human could perform the task. We may therefore assume that our 

prime is not 2,3,5 or 11, so ail the results of Chapter 3 and 4 may be freely used. Let T  

be the two generator relatively free class 4 group, and suppose that T  is relatively free on 

x and y. We assume the reader has a passing familiarity with the theory of torsion-free 

finitely generated nilpotent groups, and refer him or her to [Ba], [Ha79] or [Se] in the 

event tha t our presumption is unjustified.

The group T  has Hirsch length 8, and a Mal'cev basis may be easily described. It is

x ,y ,(y ,x )i((y,x),-r),((y<-‘') ,y ) ,(( (y ,x ),x ) ,x ) ,

( ( ( y , * ) , y ) , z )  =  ( ( ( V i * ) ' * h ! / ) , ( ( ( l / > x ) , !/),!/)■

The equality in this list is justified by Lemma 4.5, and we may regard T  = T z  as being 

the group structure on Z8 induced by this Mal'cev basis. See [Ha79].

Thanks to [MKS] page 349 exercise 9, and to Eamonn O’Brien for pointing out this ref

erence, we know that T  =  T / T v lias order / / .  It follows that the Mal’cev basis we have 

described induces a central series in T  where adjacent terms of the series have quotients 

which are cyclic of order p. We abusively denote the images of x and y in T  by the same 

letters. The group T  is relatively free, so we have a Fibonacci automorphism <j> : T  — ► T  

defined by x<f> =  y and y(f> =  xy.  Let M  —< (y .i’,y) > 7 , a normal subgroup of order p3. 

A routine calculation shows that M<f> H M  D =  1.

The details we now explain -  using vector notation to express group elements in T  with 

respect to the image of the Mal'cev basis of T; we also freely use easy consequences of 

(Hall)  to  be found on page 9 of [Ha79]. WV have

M<f> = <  ( x y , y , xy )  > l =< ( y , x , x ) ( y , x , y ) ( y , x , y , x )  > T
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so

M<j> =  { (0 ,0 ,0 ,« ,a, ft,a +  b + c,c) | a, ft,c E Z/pZ}.

Also we find that

M  = <  (y ,x ,y ) > T=  {(0,0,0,0, a, 0, ft, c) | a,ft,c 6 Z/pZ}.

Finally

M ^ ” 1 = <  (x ,y x ” \ x )  > T= <  (y ,x ,x ) > T

so

M(j)~l =  {(0,0,0, r/.,0, ft, r.\0) | a, ft, c £ Z/pZ}.

Notice that

M n M f 1 = <  (;y,:r,x, y) > T= <  (?/, x, y, x) > T,

a cyclic group of order p. In vector notation this is

M  n M<t>~1 =  { (0 ,0 ,0 ,0 ,0 ,0 ,a, 0) | a £ Z/pZ}.

Finally we deduce that

M<f>n M  n M(f~l =  l

as required. Note that the appeal to [MKS] is only present to give us a way of showing 

that the intersection M(f> fl M  fl M(j>~1 is trivial.

We have natural maps T  — > T/M(pl for each i , and these induce an embedding

0 : T — ► T /M 0  x T /M  x T /M 0 " 1.

Now I m (T )  is a subdirect product in T / M 4> x 7’/M  x T/M(f>~1. Each group T/M<j>% is a 

copy of the group H  studied in this chapter.

When we compute the Fibonacci sequence in T  the images in T/M(j) x T / M  x T/M(j)~l 

of the first four terms are as follows.
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( x ( M  4) , x M , x ( M  <)>-')) (a)

(y(M*),SA/(y W ‘ )) (b)

(x y ( M 4 > ) , x y M , x y ( M < j > ~ ")) (c)

(y x y ( M </>), y x y M ,  y x y ( M < f > ~ 1 ) )  (d )

In the second co-ordinate, we are simply calculating the Fibonacci loop which as been 

the central object of study of this chapter. This is not quite true of the first and third 

co-ordinates. The groups are the same (up to isomorphism), but the starting values are 

different. However, in these co-ordinates we are actually dealing with rotations of the 

series in the second co-ordinate. This is because (xM)(f> =  y(M<f>) and (yM)cj) = xy(M<j>) 

yielding a rotation by 1 place in the loop of the first co-ordinate. Similarly <f)~1 induces a 

rotation through 1 place in the opposite direction in the third co-ordinate. Thus the loop 

beginning (x, y , . . . )  in T  has length k =  k(p) as required.

□

Observations:

The final ruse in the proof of Theorem B was used because we did not know that all 

loops in H  had length dividing fc, we only knew it for the specific loop with which worked 

throughout Chapter 3 and Chapter 4. Now, however, we are suddenly liberated. From 

Theorem B it follows that any loop in any class 4 p —group of exponent p has length 

dividing k , since any such group is a quotient of the relatively free group T.
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CH APTER 5

On a C onjecture o f D D W all

Let n  be a positive integer and suppose (.*5,) denotes the standard Fibonacci bi-infinite 

sequence modulo n. Thus So =  0 and Sj =  1. The minimum period of this sequence we call 

Wall’s number k(n ), or just k if the modulus is clear. Wall conjectured that for any prime 

p  that k(p) ^  k(p2). He verified this conjecture for all primes less than 104. We have been 

unable to prove Wall’s conjecture, but can announce that we have searched all primes less 

than 108 and Wall’s conjecture holds in all cases. In this document, p will always denote 

an odd prime. Recall Lemma 2.3;

Lemma 5.1. (Wall) For all primes p,

if p =  1 or 4 mod 5 then k(p) divides p — 1,

and

if p =  2 or 3 mod 5 then k{p) divides 2p -j- 2.

□

For a substantial prime (of order say 10s ) a naive attem pt to calculate k(p), let alone k(p2) 

is extremely computationally expensive. By naive we mean that one simply calculates the 

Fibonacci sequence until it repeats. A better way to calculate k(p) is to test divisors of 

p — 1 or 2p +  2 (as appropriate). One can calculate a specified term of the Fibonacci 

sequence (mod p or p2) relatively cheaply using the Fibonacci matrix equation

C :  ; . ) - G '»)
in GL(2, R)  where R  is Z /pZ  or Z /p 2Z as appropriate. The method of repeated squaring 

is, of course, de rigueur. Even so, the explicit calculation of k(p) has drawbacks, since 

multiple calculations are needed to determine the true value of k(p).



The algorithm we used relies on another theorem of Wall, in our terms this is a corollary 

of Theorem A.

Theorem 5.2. (Wall) If k(p) k(p2) then k(p2) = pk(p).

□

We introduce the notation w(p) =  p — 1 or w{p) = 2p +  2 as p = 1,4 or p =  2,3 mod 5. 

Proposition.

Let p  be an odd prime which is not 5, and suppose that (s,-) denotes the Fibonacci sequence 

modulo p2. We have s w^  = 0 and .su.(7,)+i =  1 if and only if k(p) =  k(p2).

Proof.

If k(p2) = k(p) then k(p2) divides /o(p). Conversely if k(p2) — pk(p) then pk(p) cannot 

divide either p — 1 or 2p +  2 unless p is 2.

□

This proposition can be readily turned an algorithm for testing Wall’s conjecture. We 

ran this program for several weeks in the background on a variety of SUN 3, SUN 4 

and Orion machines. Each machine examined a congruence class or congruence classes 

of primes modulo 30, depending on the machines relative speed. For almost all of the 

calculation, the arbitrary precision arithmetic feature of CAYLEY was used to perform 

the computation, though as an experiment .1 P ffitch coded the algorithm in LISP and 

eliminated a small part of the range (circa 5 million).

Note that the repeated squaring of the Fibonacci matrix can be performed more easily 

than squaring an arbitrary matrix, since all [ lo w e r s  of the matrix are symmetric.



The code follows:

x = 1;
‘‘Initialize the Fibonacci Matrix** 
all = 1; 
al2 = 1; 
a22 = 0;

a = seq(all,al2,a22);
‘‘ Procedure for multiplying matrices of our special form mod q* * 
procedure mult(a,b,q;c);

ell = (a[l]*b[l] + a[2]*b[2]) mod q;
cl2 = (a[l]*b[2] + a[2]*b[3]) mod q;
c22 = (a[2]*b[2] + a[3]*b[3]) mod q;
c ” seq(cll,cl2,c22);

end;

‘‘Procedure writes the integer q into a reverse binary sequence** 
procedure decomp(q;bin); 

bin = empty; 
while q ne 0 do

r = q mod 2; 
q = (q-r)/2; 
bin = append(bin,r);

end;
end;

‘ ‘Main Progrcun* * 
zz = 50000000 mod 30;
for i = (50000000 - zz + x) to 100000000 by 30 do 

if i mod 1000000 It 30 then
print * done up to *,i;

end;
if not prime(i) then 

loop;
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end;
y -  i~2;
<(Split into two cases; determine the appropriate multiple 

of Walls Number.”  
if C Ci mod 5) eq 1) or ((i mod 5) eq 4) then 

k = i —1; 
else k = 2*1+2; 
end;
decomp(k;bin); 
u— seq(l,0,1); 
ustore = u;
m « conseq(u,length(bin)); 
m[l] = a; 
b = a;
ltCompute the appropriate power of the Fibonacci matrix mod y 

using the method of repeated squaring.” ; 
for j = 2 to length(m) do 

mult(b,b,y;b); 
m[j] = b;

end;
for j * 1 to length(m) do

if bin[j] eq 1 then
mult(u,m[j],y;u);

end;
end;
if u eq ustore then

print 1*****violator*****1 , i ;
end;

end;
print * done *; 
show time;
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CH APTER 6

M ore R esu lts 011 Single Fourier Sum s

Note that when we mention equation (3.22), we mean that we refer to equation 22 of 

chapter 3. We will sometimes recap the details of such an equation, in order to save the 

reader from having to flick backwards and forwards through the thesis.

Lemma 6.1. When p is prime and p / 2  we have

£ * ‘ = ° a )

Proof.

From the Fibonacci relation S{ =  ,sl+ | — ,st_ ( for each integer z, and so

X - 4 =  - ^ - i )6-

We first exploit the equation,

Y 4 = X 4 + i  — ^ X ^ 1̂ 1-1 + ^  X 4 + i 4 - i  ~

+15  Y ,  4 + i 4 - i  *“ 6 X ,s*+ i4 - ]  +  X 4 ~ i -

We replace z +  1 by z and i — 1 by / in the fust and last terms on the right hand side, and 

obtain

X 4  =  2 X 4  ~ + ^ - 1)

+ 1 5 ^ , ? + l^ _ , ( ^ +1 + 2 0 ^ 4 +,4 _ , .

From equation (3.22), Sj+is t_i =  s'* +  ( — l ) 1,

_ X4 = -6X(4 + (-1)‘)(4+i + 4-i) + 15X(4 + (—1)*)2('s?+i + 4- i)
-2 0  £(*■? +  (-!)*)* .
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Some of terms vanish by equations (3.2), (3.23), (3.29) and (3.29) (again), which are 

T , sl = °> HX- 1 ) '5? =  0. £ ( - D ^ ? +, =  0, E ( - 1)i'si s i - i  =  0 and since k is even,

E(-i)‘ = o,
19 *f =  - 6  ] T  sfrt+i ~  6 E  * l* U  +  I5 E  s i's?+i +  15 E  ■

In the first and the second sums on the right side, replace i by i — 1 and i by *4-1, 

respectively, to obtain

1 9 ^ . s ; i =  9 ^ s ? ( 4 - 1 +«?+1)-

By the equation (3.22), we deduce that

19 =  9 ^ ( s , + |Si_, + (—1)*—1 ) ( 4 - i  + 5h-i )-

Apply equation (3.23) to obtain 1)’ ~  anc  ̂ so

1 9 ^ s ®  = 9 5Z  s*+' ‘‘‘i-1 +  9 X ^ 4 + i 5*-i -

By Fibonacci recurrence relations .sl+ | =  sj -f *,_] and =  S{+i — s*,

19 ^   ̂Sj =  9 ^  (̂-st +  )-5i—i +  9 ^   ̂5i+ i(5*+i — 5*)*

We obtain the equation

E ^  =  9 E ^ - 9 E ^ +1-

Replacing i — 1 by i and 2 +  1 and i in the first and the second terms on the right side, 

respectively, we deduce that

E s* =  » E -■•+.-? - 9 E si->

From the Fibonacci recurrence relation .s,+ i — .s,_i =  s t , and the assumption that p ^  2, 

the result follows.

□
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Corollary.

and

Proof.

(2)

(3)

(4)

(5)

(6)

£ 4 + 1 4 - .  = °  (7)

= o ,

.2 .4 = o ,

£44., = 0,
£«i+i4-, =0,
£4+r4- , =0

We will prove the equation (2). Proof of the other equations will be similar. From (1) and 

recurrence relation, s,- =  Sj+i —

0 =  ^ 2  = ^ ( s l+ , -  .s;_, )sa- =  ^ 2 s i+is i ~  E * - 1*

We change the range of last sum in these* equnlities

^  ^ 5 * + l  s i =  ~  ^  1  s k - i - I  s A- - i  =  — y  ^ 5 i —l 5 * •

We have

• 2 £ s - , 4  = o.

Replacing i — 1 by i on the sum and we change the range of sums to obtain

- 2  yjT SiS -+1 =  2 i - i  =  2 X !  =  °*

So we find

£ v 4 ~ i= °
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unless p =  2.

Lemma 6.2.

£ - I  =  o (8)

a n d

£ ( - l ) ,+'.<J=0 (9)

unless p =  11 or 29.

Proof.

From the Fibonacci recurrence Si =  .s,+i — $,-_j, we may easily obtain that

£ • “.' =  £ k - + i  -  s i - i ) 7-

We exploit the equation,

£  s J = £  "I+i - 7 £  s?+i5i-i

+21 £  «?+, *?_, - 3 5  £ 4 f i * L i

+ 3 5 £ , ? + i, ’_,

+ 7 £ ' s'+ j'<i',>-1 -  £ « . !- i -

Replacing i +  1 by i and i — 1 by i in the first and last term on the right side, respectively, 

these two terms vanish. So

y > ;  =  -  4 +1)

Now we deploy equation (3.22), .$,+ ].st_j = sj -f ( — 1)*, in the equation

£ 4  = ? £ ( 4  + (-lrxsf-i -  4 h)
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Expanding we obtain,

Y  S1 ^ 2  5i ( a i - l  ~  ,SH-J ) +  7 )*(5 i - l  ~  5 i + l )

+ 2 1Y, •<(««.! -  'Si-1 ) +  42 £  *?(-l)*'(*S+i -  **-i)

+21 ] > > ? +1 -  ) ~  35 £  s] -  105 £  4 ( ~ 1  Y

- 1 0 5 ^ ? - 3 5  £ ( - 1  )»•'*.

Replacing i — 1 by i and i +  1 by i where appropriate, we see that the second and and fifth 

terms vanish. The fourth and the last three sums vanish by equations (3.32), (3.33) and 

(3.31), (3.3) and (3.15). So our expression simplifies to

=  7 £ * ? ( « ? _ !  -  4 + , )  +  2 i ; £ > ? ( 4 h  36

From the Fibonacci recurrence relations s I+l = .$,• -f and s ,_ i =  Si+i — s, we deduce 

that

36 ^ 2  sJ = ” Y  >— (s* +  's‘- 1 )5)

+21 Y  ’sU*'!+i “  l s «+i ~  6i)3)-

We expand the equation to obtain

36 ^ 2  SJ = 5 2  5i 1 + isi +  si-1) +

+21 ^2  ,!ii (2*si+|-si(-»i + l — s i) +  ).

s,_ i =  Sj+i — and then equations (3.22), f ( — 1)* =  .s,+jSi_i, we find 

4 3 X > I  =  -3 5  - 7 0 ^ 4 i . - _ ,  - 7 0 ^ ( - 1 ) ^ 5 , _ a

-3 5  $ 3  + 8 4 ^ * 1  +  63 ^ ( - l ) 4*?.

The third and seventh terms on the right side vanish by equations (3.31) and (3.43).
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Thus we obtain

-41  =  - l O S ^ . - i - S S ^ M - r

Replacing s t_i by s; — s ,_2 and sJ_j by .s,-Sj_2 -f (—1)*, in the equation, we obtain

-4 1  s] =  -105  £  s j +  35 ] T  3i?5,_2 -  35 ^  s?s?_2

The last two terms vanish by (3.31), (3.43) and (3.3) in chapter 3.

Our equation simplifies to

64 ^  s • = 35 ^ 2  *1-2(3Si — 2).

Since 3Si — Si- 2 =  Sj+i +  Si and s ,_2 =  •*<,• — s ,_ i , we deduce that

64 =  3 5 ^ s J ( . s ’;f + .sd^i+i — 5 ,_ |) — Si+iSj_i).

We find that

6 4 £ SI =  3 5 £ . s; - 3 5 £ ( - 1 , ^ ,

and the last term  vanishes by (3.31), unless p—11. We are assuming that p ^  11 so this is 

not a problem. Therefore,

2 9 £ , J = 0

and the result follows.

To prove the second part of the lemma is now easy. We have

B - 1) ^  =  E ( - 1),+ '« - 1' i4 - i =  - Z s l = E 5'  =  °-

Thus

B 5;(- - i >' =  °-

□
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Corollary.

E  1 = (10)

E - W - *  = ° - ( i i )

E * M - i = o , ( 1 2 )

E =  °> (13)

E 4 + >4 - , = o , (14)

E 4 +I-4 - !  = ° . (15)

and the corresponding alternating sums also vanish. This means that

= 0 -  (10')

(u ')

(12')

E t - D ’s.+ i^'-i = 0 ,  (13')

E ( - i ) ,^ + i< - i  =  0 (14')

and

E < - D ^ + r 4 - i  = 0 .  (15')

The proof of this corollary is similar to those of lemmas 3.7-3.10.

Lemma 6.3.

E l - l ,  (16)

E - 4 ( - i  )' =  - § *  (17)

and

E ^ i - i ( - D '  =  ^ ' ,  (18)
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where k is the Wall number for a. prime p.

Proof.

The equation (16) is obvious.

Now we will show that the equations (17) and (18) axe valid. From the Fibonacci recurrence 

relation Si =  s,+i — -s,_i, we deduce that

= £ < * '+ >

We exploit the equation,

On the right side, replacing i +  1 by /' and i — 1 by i in the first and the last term, 

respectively, to obtain

3 ^ ^ ( - i ) ’ =  ( 1 9 )

From the known formula (3.22), Sj+ |S j_ | =  sj -f- (—1)% we obtain

3 £ 4 ( - i r  =  - 2 ] T ( a? + ( - i r ) ( - i y ,

so

Since we have equation (16), the right side is equal to —2k. Thus the result follows. 

Secondly we will show that

( - 1 ) ' =  Ifc.

From (19) and Fibonacci recurrence we have

3 Y, =  - 2  ] [ > ,  +  3i_,).si_ , ( - l ) <.
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We know that

and from (17), we obtain

and we are done.

Corollary.

=  \ k .

Lemma 6.4. The following equations arc all valid.

E  •* = £ * .

and

y  — it.^  25

Proof.

Using formula (3.22), s j =  di+i5i-i + ( - l ) ,+ l . we deduce that

We exploit this equation, which yields

£ 4  =  + 2 ^ , i+IJil_ I ( - i ) i+1 + ' £ 1 .

By the Fibonacci recurrence and from (10) and (16), we deduce the equation,



Replacing Si  by Si+i — Sj_i in the second term on the right hand side,

=  ^ 2 s<i s<i- i  “  s k '

Now we deploy equation (3.22) to obtain

+ 2 ^ ( - l ) iS?_1 -  £ > ? _ ,  -  \ k .

Replacing i — 1 by i in the second and third sums and then from (17), we obtain

2 E ^ - 3E  "***-! = f fc- (25)
From the Fibonacci recurrence relation we have

+g»-2)4«

Expanding we obtain

s t =  ^ _ i +  4 ^ - i s> + 6  sj_ 15-_2

+ 4 ] ^  •s*-1<s'/-2 +  y  St-2-

Replacing z — 1 by i twice in the second and last sum and once in the rest of the terms on 

the right hand side, we have

+ 4 y Z 5*s?-1 = o *

Now

$ > ? + ! *  =  =  - £ > < - 1 * .i=k
and reversing the range of summation, 

so we obtain

5 Z  * ? + o 5 Z  *?**-! =  °- (26)
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Now we have two linear equations (25) and (26). We solve these equations,

y  . = _ L *
^  * 1-1 25

and

From equations (24), (21) and (22) (in this chapter),

Corollary.

25

and

X X + . * ? - J = S *  (27)

(28)

Lemma 6.5. The following equations an* valid.

=  (29)

Y , * i * U ( - i Y  = Y h "  (30)
E ^ - , ( - i r  =  o (31)

and

Proof.

We use equation (3.22), s\ — Sj+jSj__i + ( — 1 ),+1, to deduce that

^ 4 ( - 1 )* = X /( ,s*+ ' tS*_i +  (“ 1),+1)3(_ 1 )*-
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We exploit the right hand side,

+3 ^  -s*-i-1«s«'—1 (— 1)* — I-

Now X )5?+I5i-1 =  =  f*  and £ l  =  fc by (27), (20) and (16),

respectively. Replacing Sj+i by Si +  s,_ i in the first term on the right hand side we obtain

2 £  + 3  E  **«<-! ( - 1)'

+3 ^  ( - 1  ) * - § * ■  (33)

We deploy equation (3.22) in the first sum and Si = s;+i — Sj_i in the second and third 

terms on the right side, respectively, to deduce that

2 ^  ( _ 1 )* =  — 3 X ]  s ?5?- i (  — 1)1

+3 ( - 1 ) ' -  3 £ > « _ , ( - ! ) '  -

Now we use (3.22) in the fourth term on the right side find then =  j ^ k  by (23)

S 5i - i  =  by (21) we obtain

=  “  25^* (34)

Firstly, from the Fibonacci recurrence relation Si =  s t+i — Sj_i and then equation (3.22) 

we find the equation

E  ( - 1)’ + E  (-1)'+2 E  s?^-> + E  s>-i (-1)1

-  E 5^ - ^ - 1)' -  E ^ - i  + BE <W - 1( - l ) i =  ~ Y h k -

Replacing i — 1 by i in fourth and sixth terms, from (22), (17) and (21) we write,

E  <?(-ir + E ^ - . < ~ 1>‘ - +  f * -  i k
+ 5 E * < » i - i ( - 1 y  = - ^ k - 
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In the second term, replace i  by i  +  1 in the left hand side and then

1

E ' J + i ^ - 1) * 1 =  =  - i X i ' f t - 1)'-
i = k

Now reverse the direction of summation to find

Thus we may conclude that

£  ,?(-!)■• + 4  J 3 * M - i  ( -! )*  =  “ *• (35)

Secondly, from the Fibonacci recurrence relation s* =  S{+1 — S i-ij

We exploit the equation,

E * ? ( - ! ) ' =  E ^ c- d 1 -  6 E 4 „ - * w ( - ' ) '  +

-2 0  5 3 « ?+ ,»?_ ,(!)*+  15 5 3  »?+ , ^ _ I( - l V - 6 5 ^ a j+1« ? _ i( - l ) i +  5 3 Sf_1( - 1)<.

We replace i +  1 by i and i — 1 by i in the first and the last terms, respectively, and then 

we deploy the equation (3.22) to obtain

3 j > ? ( - i r  = + ( - i )'k^+i +*j_ ,x - i ) i

+15  5 > ? + ( - i r ) 2(-?+i +  » u  >( -D * -  20 E ( s? + ( - i ) <)3( - i ) i -

We expand the equation,

3 £ i J ( - i y  =  - 6 ^ . sM + i( - d '  -  a ' E ' S U i

- e  E ^ i - !  +  i 5 ^ i ? + l^ ( - i r  + 3u 5 3 «?+,«? +  i5  5 3 «?+I( - i ) ' '

+15 53 s}sf_, (~ iy+30 53 ,?«?_, +15 e  * L , (- i)‘ -  20 e  -'(-ly

- 6 0  5 3  4  -  go 5 3  „?( - l y  -  2 0 5 3 1.

1 0 2



Now we reverse the direction of the following summations to obtain 

and

and from (21), (17), (22) and (16), which are

£«in = £*J_i = £ 4  = 5 5*. 

£ * ? + , ( - i y  =  =  - £ * ? ( - i  Y =  h .5

£ s?4h = £ 4 - i4 - , - 1  = £  s? 4-i =

£ i  = t,
we obtain the equation

2 3 £ s®(—1)' =  -1 2  £ .« ;  * •_ , ( - ! ) '  -  7 2 ^ i' +  3 0 £ s - 5 i _ i ( - l ) i

-60-^-k  + 9 o |*  +  30 £  -  20*.

Replace i by i +  1 in the third and sixth term and then

£*i«*?(-i)<+1 = £ 4 —,4-i(-D*—11 = -£ 4 - 1̂ (-i)‘,
i = k

Reversing the range of summation to obtain

£4hs?(-i),+’ = Z * U « h - i r '  = £^_»*?(-irI-
4=1

Finally, we obtain

2 3 £ ^ ( - l ) ‘ + 4 2 £ . s f 4 _ , ( - l ) ‘ =  - 25 

From linear equations (35) and (36),

w    qo
23 £  «?(-!)* + 4 2 £ . s f 4 _ , ( —1)‘ =  (36)

£ 4 ( - i  r  = - ± t .25
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and from linear equations (33) and (34),

and

and we are done.

Corollary.

The following equations are valid.

and

Lemma 6.6.

T  4  =  —  k,Z ^  1 1 0F> ’125

125

and

Proof.

y  *■?.,« =  _Lfe. 
Z-^ 1 125

From the Fibonacci recurrence relation . s ,  =  . s , +  t —



We exploit the equation,

5? — X ] 5!+i ~  s X / '‘<,!+ , 's*“ 1 +  28 

~56 E  4+14-1 + 70 E  S'+ I 4-1 ~ 56 E  4+14-1

+285 3 si+l4-l - 85Z'si+lsi-l + E 4 - 1 -

Replacing i by i + 1 and i by i — 1 in the first and the last terms , respectively, on the right 

side to obtain

=  2 X ^ 5  ̂ _  8 X ^ 5*+1'S<'“ 1^ + 1 *  "I” * * Z 4 + i ' U ( ‘ U i  +  5?-i)

+ ‘s?-i) + 7 0 ^ s f +1sf_1.

By equation (3.22), s2 + ( — 1)* = , we obtain

+ ,s?-i) “ 8 + 5i-l)

+28 4 (4+ 1 + 4 - i ) +  5C -1  )'. (̂.s?+1 + 4 _ , ) +  28 ^ ( s j +1 + )

- 5 6 ^ 4 ( 4 +1 + 4_,) -  168 Y  4 ( - 1 >'(4+i + *?-i) -  168 Y  4(4+1 + 4-i)  

- s e ^ - i n ^ + i  + 4 -1 ) +  ■" E  4  +  2S052 4 ( - i ) i +  420 Y  4

+280 £ 4 ( - l ) ' + 7 0 £ l  = 0.

Since

E 4 4 + ,  = E  4-,4-1-1 = E  44-1,  

E 4 4 + ,  = E 4- ,-4 - .- - i  = E 4 4 - i .

E ,t> ,2 _  ■« 2 4> ,2
* 1* 1+1 -  2 L  A* - r s * - i - l  -  /  ^ i ^ i - U

E 4 + i 4 ( - i ) , = E 4 - i 4 ( - i ) i,

E 4 4 + i ( - i ) ’ - E 4 4 - i ( - i r ,

and

E .2 .2 .2  ,2
• V SH-1 =
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we have

71 Y  4  - 1 6 ]T  s'i4 _ , +  1 6 £ ( - 1 ) ’^  + 56Y  4 4 . ,

+112 +  5 6 ^ 4  -  112 - 3 3 6 ^ ( - 1 ) ’4 S?_i

-336 Y ,  4 4 - 1  +  H2 £ ( - l ) ’s? +  280 Y  4 ( " 1 ) < +  420 E  4  

+280 Y  *i (“ I )' +  70 E  1 =  O’

Replacing i by i +  1 in the second and the fifth terms on the left side,

E 4 4 - . - E 4 + . 4 ,

E t - 1^ - !  =

and then reversing the range of sums,

E4+,4 = E4-i4.

The last sum is zero by (31).

We now have

71 £ < J  + M - 1 2 8  £ > ? * ? _ !  

+296 E ( ~ ! ) ‘4  + 4'6  E  4  ~  330 E

+392 J j - I J 'V ;?  +  7 0 ] T l  = 0 .

From the equations (29), (21), (22),(17) and (16), we obtain the equation

7 l E * i + 5CE ' , -"i- - i — 128 E  *‘ **-1

1184, 2826, 336, 784, ^
k -J- k H-  k — k “I- tOk — 0.

25 25 25

We find the linear equation,

7 1 ^ - ?  +  56E  4 4 - 1  -  128E  4 4 - 1  “  = °-25
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On the right side, we know

£ - ^ - i  =  £ 4 « +

Now we can play on the range of last sum,

£ 4 ^ ?  =  £ * L . -

So we find the first linear equation,

71 £  4  +  56 £  -  128 £  «?*?_, -  =  0. (43)

Secondly, from the Fibonacci recurrence relation S{ =  s,_] +  s ,_2 we obtain

= x e * -1+

We expand the equation,

XI S i -  XI +  8  XI S t - \ S i - 2  +  2 8  XI * * - l 5 i - 2

+56  E  5 f - l  5 i - 2  +  7() E  S' '--1 ^ ~ 2 +  X I  **-1  * i - 2

+28 x :  •sLrvf</-2 + 8 XI *'*-i5I-2 + XI *̂ -2•
In this equation, replace * — 1 by i and i — 2 by i in the first and the last sums, respectively, 

in rest of the other terms on the right side replace i — 1 by i to obtain

XI s *i =  2 XI + 8 XI •s'< s'~1 + 28 E  *i 5?-i
+56  X: 'Vsi-1 + 70 E  ,s» **-i + 5G E  ** **-i 

+ 2S E ^ - ,  +  s X ^ i - , .

On the right side, replacing * — 1 by i. in the second, third .and fourth terms, we have

£  s?  = 2 £  4 + s £  + 28 £  4+lS?

+56  £  s f + , +  70 £  s  - s f _ 1 +  56 £  Sj s f _ ,
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+28 4 4 - i  +  8  ^  5*5i - i  •

Since

=  ^ 4 - , - i « t - i  =  ~ X X - i 3i>

and

E 5 3 _  V - ,5 3 _  V '  „5 „3
5i+i5i - 2^ -̂t-rh-i — — } , si-isi •

We obtain the second linear equation,

534 + 7o 534_,4 + 56̂ 3 44_, = °-

By the formula (3.22), s j =  S j_jsl+] -f ( —l ) l+ l, so

y ŝi = y>+,*,-i+(-i)>+1)4.
We exploit the equation

£ 4  = XX.4-. -m534+1*?-.(-D,+1

+ e £ 4 +14 - l + 4 y ^ .s ,+ i.si_ i ( - i ) ,+i +  y :  i.

From the equations (37), (27), (20) and (16), we obtain

E g v-'* < 4 3(> 66 12
4 = >  4 + i 4  I  / ; + —- £  k + k.

* ^  1+1 ,_1 25 25 5

From the Fibonacci recurrence relation .s;+, — ,s ■ -f we obtain

5 ^ 4  = £ > ,  +  i)44 - i  -  2^ -

We expand the equation to get



Replacing sf  by +  (—1)*+1 and ,s,- by .sj+] — s,-_i in the second term and replacing

S{ by in the fourth term in the equation on the right side, to obtain

+ 4 5 > i + < ^ -1

- 4 5 3 ,si+i 'si - i  _ 4 5 3 ( _ 1)'-'i'+ is i - i  + 4 5 3 ( _ 1),s i - i + 6 5 3 ^ 5?-i

+ 4  5 3  - 4 5 3  •"? -* + 1 3  s*-» -  J i k ■

Since s? +  (—1)* =  s,+iSj_i and $3 ,si =  £  tS?-i we deduce that

4 E 5® =  E  + 4 +  (“ l ),’)24 - i

“ 4 5Z(5i +  ~ 4 £ ( - i , ,(,? +  (—i)*)-»i—j. +

Some of the terms vanish so our equation simplifies to

~ 4 S1 + 5 ^  -s» *J-1 +  6 ,ŝ

+ 4 ] P ( - 1 ) ‘4 _ | + 4 ] ^ ( - l ) 's J .s J _ 1 -  — k = 0 .

From the equations (31) and (29) we find that

- 4 £ > ? + 5  5 3  + 6  5 3 ( - i ) <«?4j_i

1C 5
+ — jfc + 0  k = 0.

25 25

Finally, we find a third linear equation

- 4  5 3  <? + 5  5 3  + o 5 3 ( - l ) ^ ? _ i + § *  =  0. (45)

From the linear equations (43), (44) and (45),



Therefore the results follow. We solved the equations by hand and on the computer.

□
Corollary.

The following equations axe all valid.

- i ® *
1 ~  125

(46)

~—k 
1 “  125 ’

(47)

, =  2 9 .̂ 1 125
(48)

E - s+ |, i ‘ - 1 125
(49)

, = - L *125
(50)

•-= — — fc. 
125

(51)

Proof.

All of these equations can solve by using previous lemmas. Now we will prove equation 

(48). From (42) and recurrence relation, s ,  —  . s < + 1  —  s ;- ] ,

’ 125* =  X X s*-1 =  — -'’. - i  )2-sf_i-

We expand the equation



From (3.22), s i + i S i _i =  s? +  (-I)* ,

125 

By (40),

_ 2 '5Z*si ‘si-J + 2 ^ ( - 1)*<si +  125fc = Y25

From (42)and (29)

W  6 _ JLfc_ JU + iifr = _Lfc
1+1 *_l tor or* 19R 195125 25 125 125

Finally,

v  * -• 29 fc2 ^ i + i ' ’.~i -  125fc-

On the basis of computational experiments, we conjecture that the following results are 

true. Note that only powers of 5 occur in the denominators.

r—\ ,,, 252
D - n ' 4 "  - = - 5^

> i 1-1 Q1 9 R

V-' ' /  1 \i ,2 ,8 28 »
) 0 1 9 c  ’

3125 
11 

3125 
18 

3125 
21

3125 
28

3T25

and

Z ^ v ' ,_l 3125

y ; - j *  =  — fc,
Z - ,  ' 1 r»fi9K15625

V  •« -  4 1  7-
Z ^ v s ,~ l 15625 ’

1 1 1



15625*’

- - i S - *15625

15625

126
15625

462
15625 '



CH APTER 7

G eneral R ecurrence R elations in the Group

Let a G be the free nilpotent group of class 2 mid exponent p. We put z =  (y, x) as usual. 

Suppose that we have integers n and m  and a recurrence relation in the group:

x i- 2  * — ;Vi Vt E Z.

We assume tha t p does not divide n, then we get a definition of two-step general standard 

Fibonacci sequence which will be (0 , l ,m ,n  + m 2,...) in Z /pZ .  If p were perm itted to 

divide n, then the sequence would be ultimately periodic, but would never return to the 

consecutive pair 0 , 1. The length of the standard sequence is k which, as usual, we call the 

Wall number of the sequence.

Each element in the group G can be uniquely represented as x aybz c where a, 6, c E Z/pZ. 

The group laws give us a law of composition of standard forms:

t  t  I f t  t t  n
~ . a  . . b  . . a  .  r  ~ . ax y z • * y z =  x y z ,

where a" , 6" and cn are given by the following explicit formulas.

We have a = a  +  a ,6  = 6 + 6 , and r  =  c + c +  a 6. We discussed these product laws 

in the chapter 3. In order to study this recurrence, we need a closed formula to describe

how to take the next term of the sequence. Now we will investigate more general elements
t 9 t

in the group. Let (xay bz c)n and (a*" yh */' )"* be two elements in the group. The relevant 

formulas are
f i t  n u n

f \i> i „« ..b . i.' \ i»  a h _c{x y z ) (x y : ) =  x y z ,

where
i f  t

a. — ?/a -f- ma ,

f t  t

I) = rib + mb  
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and
/# / #, (n — l )n  (m  — l)m  # #

c =  nc +  me +  rnna b H ab H----------------a b .
2 2

We use vector notation to calculate with the sequence. We put (1, 0 , 0) =  (s_i,ro,<o) 

which corresponds to x, and (0 , 1, 0 ) =  (•So,r i , / i )  which corresponds to y. We obtain two 

sequences (r,-) and ( )  via our recurrence. Notice that we have Si =  nr,- for each integer i. 

The j  th  term of the third component of our sequence of vectors is 

j - i  jf-i j '- i
t j =  m n2 ^ r H _!r? +  (J )n +  (™)n r y - i . in r i+ i .

i=0 i=0 1=0

Now we want to show that tk =  0 and /*+] — 0 when p > 3.

Theorem 7.1.

jfc-l Jfc-1 fc-l
+  (J)n  ^  rit_ i_ irxr l+1 =  0,

i=0 i=0 i=0

where m ,n  E Z /pZ  p > 2  and n ^  0 . There are two other assumptions which will insert

(a) n2 — m3 — n — 3m n  ^  0 mod p,

(b) 3m (m 2 +  n) ^  0 mod p.

Observation: Computational experiments indicate that it is likely that conditions (a) and 

(b) can be omitted. Work is in hand to attempt, to prove that this is indeed the case.

Proof.

Let

9 =  n 2m  r k - i - l ri +  (" )n riri- l  +  ( ?)n

Since r I+1 =  m ri +  n r , . ] , we can recast the last sum to obtain

6  =  (n2m +  (J1 )rzr7?) ^  +  ((J)n +  (™)n2) ^  r f c - i - i ^ r , - ! .
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We will prove tha t 6  — 0 . We separate this sum to the two parts,

Q\ =  (n2rn +  (™)nm)

and

^2 =  ((2 )™ +

We can pull out factors without difficulty. We put l\ =  and i* =  (2n)n + ( ? ) " 2

and then set

fa = ^ 2 rk-i-ir'i

and

f a  =

Now we have and 82 =  hfa-  We will show that =  0 and fa = 0.

Firstly, we will prove that

fa =  =  E w . - i =  °*

Now we show tha t _1
n

If a  and ft are the roots of x 2 — rn:r — n. — 0 , then aft=—n and a  +  ft = m.  From the Binet

formula, r t =  and r_,- =  0 — . When we multiply r _ x- by (a:/?)1 we see that

=  ( - 1 )'+ , ( —) v ,  ( 1)
n

and also we have

r t+1r;_ , =  r2 - ( - n ) 1- 1. (2)

This formula was known to Somer[So]. Since r_ (t-+1) =  ( — l)*(“ ),+1rj+ i, and equation (2) 

holds, we obtain

^r_(i+1)rir,_1 = (̂-1)'(I)'+1,,3 +
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We will prove th a t ^2 r,- =  0. Since our recurrence relation is r, =  m rj_i + n r ,-_2 we deduce 

that

n  =  m  ^  +  n r ^ .

Substitute i — 1 by i in the first sum and i — 2 by i in the second sum on the right side to 

yield

(7/7. +  7/. — 1) r; =  0. (3)

^2 r i =  0 unless m  +  n — 1 is congruent to 0 modulo p. If we show

5 j - m - ) i+ ,r ? = 0 ,L—' 11

then we will be on the half way through the proof. From the recurrence relation,

5 2 ( _ l ) < ( I y + y  = £ ( _ i )'l I ) i+1(mr,_i + „ ri_2)3.
z '  n n

We expand this equation to obtain

£ ( - l ) ' ( - ) i+Ir 3 =  ’« 3 £ ( - 1 )‘( - ) i+ ,< l 1 +z '  n '  11 n

+ 3m n2 i - i ’i -2 +  n3 £ ( - l ) \ l ) <+1r t 2.
'  77 z '  77

Replacing i — 1 by i in the first, second and third sums, and i — 2 by i in the last sum on 

the right side, we obtain

=  m 3 ]T (  —l ) ’+ '( I ) '+ 2r? + 3 m 2n 5 3 ( - l ) <+I( i ) <+2r? r<_ I 
L ' n z '  77 '  77

+3m n2 ^ ( - l ) ' ' + l( i ) ,+i r ir '!. .1 + n 3 ^ ( - l ) ' +2( i ) i+3rf . (4)

Now we have

{n — — 1) Y V - l  )l( - ) ,+ 1r- +  37i m y ( - l ) - + 1( i)« + 2r ir l- .1(m r< +  nr*_i) =  0 .
77 11 77 *—'  77

Since mri +  77r,- =  and

H + in - i  = rj  = r ?  +  ( - l ) l(n)*"1,
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we obtain

(n -  —  -  l ) £ ( - l ) ' ( - ) i+V .3n *■—' 11 '  n

- 3 in Y  \ r i  =  0 
' r r

The last sum is zero by (3). Then we have

(n -  —  -  1 -3/77) V ( - l ) * ( i ) ,+1r? =  0. (5)
n *■—' n

When we multiply (5) by n we see that

(„2 _  m 3 _  „  _  3 m n ) y '( —l)*+1( i ) ' r ;  =  0.
71

Finally, we have
y ' (_ i )* ( I ) '+ ir3 =  0 (6)

'  7/

unless n2 — m 3 — n — 377777 is congruent, to 0 modulo p.

We deduce that <f>2 =  0. Hence we have done the first part of the proof.

Now we will try to prove that the other part, of 6 is equal to 0. By (1), we can write

<t>i = 5 > i ) - < I ) - + w ? .L—/ 11

By equation (4) we have

{n2 - m 3 -  n ) V '( —1 )’' ( i ) i+Jr? + 3m 2n 2 Y ' ( - l ) i+1( i ) i+2r? r i_ 1 
z—'  n L '  n

+Zmn3 V ( - l ) ,+ l( - ) ’+2r i»f_1 =  0.
' 77

From (6), we have our first linear equation

3m2n £ ( - l ) ‘( V v ^ - .  +  37m?2 1 )*( — )*H"1ri7'?_1 = 0 .  (7)' n —/ 77

From the recurrence relation, 77.r, = 7*,-+2 — mr,-+i and (6) we get

£ (_ i ) ‘( i ) * i P? =  ^ (_ i ) ' (I ) ' + i (ri+2 _  mri+l)3 =  o.
^ '  77 / / J z—' 77
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We exploit this equation to obtain

Replacing i +  2 by i in the first, second and third and i +  1 by i in the last sum on the left 

side we see that

i  E i - i r - i j r M - 3 =

+ 4  -  £  B - > r ' ( i ) v i = o

The first and last sums vanish by (6). We multiply the equation by n to obtain a second 

linear equation

+ 3 m J ^ ( - l ) i( i ) ’+1r ir?_J = 0 .  (8)
z '  n n

From the linear equations (7) and (8),

T ( - l  )*-(I)<+‘r? r<_ 1 =  0, (9)L '  n

' E ( - l ) i£ ) » 1r irii - i  = 0 (10)' n
unless 3m n{m 2 +  n) is congruent to 0 modulo p. Replacing i — 1 by i in (10),

3m (m 2 +  n) y '( - i ) < ( I ) < + V i+Ir? =  0 . (11)
*■—' n

So we have finished the second part of the proof.

Therefore we have 6 = 0.

□
This result has an obvious interpretation in terms of quotients of groups with presentations 

similar to those of Fibonacci groups which is:

F(2 , r ,m , n) =< xi,  X2, • • •, x r : x ^ x ^ x ^ 1, x ^ x ^ x ^ 1, • • •, a ; 2a:JJ1 a;J”1, X r X ^ x ^ 1 > •
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C onclusion

In Chapter two, we reproved the theorems of Wail and Vinson concerning the lengths 

and shapes of Fibonacci sequences modulo primes. We know that there exist Fibonacci 

sequences in which no entries is 0 when p =  1 or 4 mod 5. Thus non-trivial short loops 

of Cp can only exist when a golden ratio occurs in GF(p).  The polynomial x 2 — x — 1 has 

coincident roots in G F (5).

Definition: Let f  be a loop. If there is no zero in f, then the loop is called a golden loop.

For example, the golden ratios are 4 and 8 when p =  11. The common ratios of the golden 

loops are 4 and 8 .

Wall proved that if k(p2) ^  k(p), then k(pn) = pn~1k(p) for all n > 2. Wall conjectured 

that if p is a prime, then k(p2) ^  k(p). We exhibited theorem A for p-groups. The 

statement of the theorem A is:

If G is a p-group for some prime p, and that G has exponent p central length n, then if 

any two elements of G are used to initiate a Fibonacci sequence in G, then that sequence 

must have minimum period dividing kpn~l where k is the minimum period of the ordinary 

Fibonacci sequence modulo p.

We gave the computer-proved announcement C which is:

Any Fibonacci sequence constructed by starting off with two elements from the restricted 

Burnside group R(2,5) must have minimum period dividing 20. This is the least number 

with this property. Indeed, the number 20 is also the minimum period of the standard 

sequence in C5 x C5.

In chapter 3 we proved that many single, double and triple Fourier sums manufactured from 

the standard two-step Fibonacci sequence vanish. For example, ^Y s i =  0, =  0 ,

= 0, =  0 , £ ( - l ) ' s J  =  0, £ ( - 1 ) ^  =  0- £ * i  =  0 and £ ( - l ) ' s ?  =  0 . The

last two sums do not vanish modulo 11. We conjectured that = 0 anc  ̂E  s t =  0
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except for finitely many primes p (where q is a fixed prime). We also conjecture that these 

finitely many primes are congruent to 1 or 4 modulo 5. Example of double and triple Fourier 

sums are =  0 and Y^i<j <r ( - 1Y +lsl sj s2i s r - j - i S j - i - i  = 0. We

proved many formulas concerning the Fibonacci numbers, e.g. — sf_2 — 2sf_1

for all integers i , but we suspect these formulas axe known to the Fibonacci community.

In chapter 4, we proved some commutator results for groups with two generators and 

nilpotency class 4, and we proved theorem B which is:

If the Fibonacci Group .F(2 , n ) has the two generator relatively free group in the variety 

of exponent p groups of class 1 as homomorphic image, then F ( 2 , n ) has the two generator 

relatively free group G in the variety of exponent p groups of class 4 as homomorphic 

image.

Theorem B does not appear to extend to class 5, since computational experiments indicate 

that the Wall number goes up. Thus k(p) should be replaced by pk(p) for class greater 

than 5. We have data  for primes less than 100.

In chapter 5 is Announcement D. We checked the Wall conjecture which is: If p is an odd 

prime, then k(p2) ^  k(p). We report on an algorithm and verified that k{p2) =  k(p) for 

primes less than 108. Wall’s conjecture is still open.

In chapter 6, we proved more results on Fourier single sums. Sums and alternating sums 

of seventh powers of elements of Fibonacci sequences are zero except for finitely many 

primes (which are 11 and 29). If the power of elements in a sum is even then ^  s2 = 0, 

£ (  —1)*$J =  0, which are proved in chapter 3; =  and XX- =  ~ \ k ,  =

2 5 H ( —l) I<si =  S 5? =  have conjectures which are: if n = 4 /+  2, where

/ =  0,1,*--, then 5^(—l)*>s” depends only on k, and powers of 5 occur in the denominators. 

If n =  41, where Z =  0 ,1, • • •, then depends only on k, and only powers of 5 occur in

the denominators. For example,



£ ( - 1  Y W - i  =

B - D W - .  =  - stU

3125

21
3125

28
3125

and

Moreover,

D - D ' * * ? - .  =  ^

V i ?2 =  924 i-2 ^  * 1 RR9R ’

y s*s* , =
^  * * _ 1  1 K R 9 R  ’

y sy  =_J_ fci
* 1 - 1  1 S R 9 K  ’

E 4 8 56 ,
* 1 -1  1KR9R ’

r . i , »  42 h
2 -i ' 1-1  1RR9R ’

y sy . o  J ^ L k
^  * 1 - 1  1KR9R

15625

41 
15625

7
15625

56 
15625

42 
15625 
126 

15625

and

W - s *1 =  462 k2!_> * *“ ! 1SR9R15625

Otherwise the sum is equal to zero (except, we conjecture, for finitely many primes).

In chapter 7, we proved that Fourier sums associated with more general recurrence relations

in a group on 2 generators with nilpotency class are equal to zero.

Experimentally, the technical conditions:

(a) n 2 — m3 — n — 3mn  ^  0 mod p,

(b) 3 m (m 2 +  n) ^  0 mod p.

(a) and (b) in theorem 7.1 can be omitted. We have conjectured that theorem B applies 

for more general recurrence relations in such group.

1 2 1



We would like to announce that Dikici and his supervisor, Smith, have been working 

on similar question about F{r,n)  where r  > 3. They claim that more general Fourier 

sums than those in chapter 3 are zero for r  >  3 by using linear algebra methods. The 

homogeneous linear equations system obtained from the Fourier sums will be solved by 

using matrix methods.

They also claim tha t theorem A and theorem B can be proved for more generalizations of 

the Fibonacci groups.
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A P P E N D IX

On Similar D istinct F inite 2-Groups

Philip Hall[Ha40] worked on the classification groups of prime power order. In 

his work, the ideas of an isoclinism, isoclinism families and families of invariants 

were introduced. Isoclinism is an equivalence relation on the class of groups which 

is weaker than isomorphism.

R. James, M.F. Newman and E.A. 0 ’Brien[JN0] worked on the groups of order 

128. They showed that there are 2328 isomorphism types of group of order 128 and 

115 isoclinism families.

The groups may be discriminated with the help of character tables, but we seek 

to separate them using cruder techniques.

Newman and O’Brien constructed a CAYLEY version 3.6 library for the groups 

of order dividing 128 by using a p-group generation algorithm. The CAYLEY li

brary includes library twogps. One particular isoclinism family is studied in this 

work. This comprises 210 groups of order 128. We will try to find natural algebraic 

invariants which discriminate between non-isomorphic groups in this family. We use 

the library twogps in the CAYLEY language. This isoclinism family is the largest 

isoclinism family in groups of order 128. O’Brien suggested1 that this particular 

isoclinism class might prove difficult to separate into isomorphism types using sim

ple algebraic invariants. It turns out that he was both right and wrong. One can 

discriminate between most of the groups in O’Brien’s target isoclinism family using 

fairly crude invariants. There are, however, five pairs of groups which seem resistant 

to discrimination by elementary methods.

1 Personal communication.
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There is an invariant which will discriminate between these groups; one could 

use the multiplication tables! A more challenging question is to try to find “simple” 

invariants which will do the trick. The multiplication table of a group of order 

128 contains 214 entries and even then, the order in which the rows and columns 

are labelled must be taken into account. Another objection to the multiplication 

table is that it ignores the algebraic structures which algebraists normally use. The 

subgroup lattice, sizes of generating sets of subgroups, centralizers, normalizers, 

conjugacy classes etc are notions which enable one to understand a group -  but the 

multiplication table itself is relatively useless; one is swamped with information.

Firstly we will give some background on isoclinism.

Definition: Two groups G\ and G2 with centres Z(G i), £ ( £ 2) and derived group 

G1? G'2 are said to be isoclinic if there exists isomorphisms

6: Gl /Z (G l ) — >G2/Z (G 2), 

4>:G\ — ► G'2

such that </>([a,/9]) =  [a',0'] for all a, 0 £ G\, where a Z (G2) =  9(aZ(Gi)) and 

ftZ(G'2) =  e{0Z(G\)) (written Gl G2). In fact it is a equivalence relation and 

the pair (0,<j>) is called an isoclinism. Two groups belong to same family iff they are 

isoclinic. Equivalence classes are called ( isoclinism ) families.

There are many properties of isoclinism families. It is clear that G ~  1 iff G is 

abelian. Any property which is the same for any two groups of the same family will 

be called a family invariant. If we do not distinguish between isomorphic groups, 

we may say that the commutator subgroup and central quotient groups are family 

invariants. The nilpotency class of a prime-power group is a family invariant. For 

detailed information see Hall[Ha40] and James[Ja].

Every group of order pn, p is a prime number and n is a natural number, has
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a power-commutator presentation on n generators. A presentation on n generators 

defines a group of order pn if presentation is consistent.

We are studying the groups of order 128 with 4 generators, nilpotency class-2, 

rank 7 ( =  log2 \ Z  D G' | -f log2 \ G /Z  | ), where Z  is centre of G and G' is the 

derived subgroup of G. These groups all have 38 conjugacy classes.

Library twogps in CAYLEY was constructed by Newman and O’Brien [NO]. This 

library contains two-groups of order less than 28. In this library, there are many 

sublibraries, but we used just two sublibraries; library gpsl28d4 ( groups of order 

128 on 4-generators ) and library genrat ( which converts from O’Brien’s compact 

description to group presentations ).

There are 1153 groups in library gpsl28d4. We studied 210 groups of these which 

are in the same isoclinism family. These groups are “similar” groups in positions 

between 139-348 in the library gpsl28d4 isoclinism family number 29 in James, 

Newman, 0 ’Brien[JN0]. Invariants are used to demonstrate non-isomorphism of 

groups in this isoclinism family.

The first invariants are the numbers of elements of different orders of groups. 

Every group has 128 elements; an identity element and elements of various 2-power 

order.
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type of grps numb, of elts. of ord. 2 numb, of elts. of ord. 4 numb, of grps

1 47 80 7

2 63 64 2

3 55 72 3

4 31 96 37

5 39 88 19

6 23 104 56

7 15 112 53

8 7 120 33

The table shows that the 210 groups are separated into eight types.

Second invariants: We investigate the number of subgroups and of Abelian sub

groups of our groups. According to these invariants, groups in first three types 

are non-isomorphic, that is, each group has different number of subgroups and of 

Abelian subgroups. The rest of types have similar groups which are at most eigth, 

but a lot of groups in these types are non-isomorphic.

Clearly groups of type 6 and 7 are likely to give us the most difficulty. Non- 

isomorphic groups are also omitted from the table.



type of groups 4 5 6 7 8

number of 6 2 8 8 8

subgroups and 6 2 6 6 5

of Abelian 3 2 4 6 5

subgroups of 2 2 4 6 3

similar groups 2 2 3 4 3

2 2 3 3 2

2 3 2

2 2 2

2 2

2 2

2

2

2

Third invariants: This invariant is normalizer of subgroups in a group. If nor- 

malizer of subgroup in a group is equal to the group, then we investigated number of 

conjugacy classes of the factor group, the number of subgroups of the factor group 

and number of elements of order 2 and 4 in the factor group, respectively.

In this step, we obtain that many of our groups are non-isomorphic. There are 

still similar groups in each type.

type of groups 6 7 8

number of similar 

groups

3 2 3

3 2

2 2

2
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The last invariant is the power map. At the end, five pairs of groups (2 , 2 , 2 , 2 , 2) 

are similar. We couldn’t separate these groups by using simple invariants; group 

numbers in the library gpsl28d4 are 262-267,312-314,331-333, 264-269 and 309-313. 

All the remaining groups have been demonstrated to be non-isomorphic.

Definition: Let G be a p-group and let C be the set of conjugacy classes of the 

group G. We define the power map as follows; it is a map

/  : C — ► C

defined by

[i] — *[zp].

Here the conjugacy class of the element y is denoted [y]. The map /  is well-defined 

(as the reader may verify), and is called power map on the conjugacy classes C .

The use of the power map; we take representative x of conjugacy class number 

z, we look at xp and identify its class number, say j ,  then i — ► j .

For example, let us examine groups 251 and 266 and restrict attention to the 

conjugacy classes of length 4 and which happen to contain elements of order 4. For 

each of our groups, we find that the number of such classes is 16. When we look at 

the power maps of these groups, restricting the domains to the specified conjugacy 

classes we find the following:

There are 6 conjugacy classes of the specified type in group number 251, whose 

image under the power map is conjugacy class 23 - a class of size 1. Therefore, there 

are 24 elements of order 4 in conjugacy class of length 4 with squares conjugate 

(in fact equal) to the element in cl[23] in gp251. No more than 16 similar elements 

can be found conjugate to a particular element in gp 266. Thus the power map 

distinguishes the groups.

We want to take one of these pairs. If we take (262,267),then



Group presetation of gp 262;

/ l 2= /7 ,  / 2 2= /5  • /6 ,  / 3 2=1, / 4 2= /6 ,  

/ 5 2=1, / 6 2=1, / 7 2=1, ( / 2 , / l ) = / 5 ,  

( / 3 , / l ) = / 6 ,  ( /3 , /2 ) = /7 ,  ( / 4 , / l ) = / 5 .

Group presentation of gp 267;

g l 2=g$ * gl,  g22=g6, g32=l,  g±2=g$ * g6,

^52=1, 5f62= l ,  5f72= l ,  (p2,^l)=p5,

(^3,flfl)=flf6, {g3,g2)=g7, {g4,gl)=g5.

Groups share these invariants:

number of elements of order 2 and 4 : 23, 104

number of subgroups : 452

number of Abelian subgroups : 310

number of subgroups of order 2, 4, 8, 16, 32, 64.

The two groups have identical subgroup lattices, and normal subgroup lattices. 

The lattices of Abelian subgroups are also identical. They share the same number 

of conjugacy classes. These statements subsume other co-incidences; for example, 

the numbers of elements of given order are the same. Lastly, even the power maps 

are the same.

Challenge

The interested reader is invited to try to distinguish between the 5 pairs of groups 

using a collection of natural (crude) invariants.

Conclusion

As a result, all of groups except 10 groups between 139-348 in library gpsl28d4 

were demonstrated non-isomorphic using simple invariants. These invariants may 

be applied to show that isoclinic groups of order 128 are non-isomorphic.

129



POWER MAP

ISOCLINISM

ISOMORPHISM

#  CONJ. CLASS

CHARACTER TABLE

130



References

[Ay]

[AS]

[Ba]

[BJK]

[Br]

[Ca82]

[Ca87]

[CDR]

[Ch]

[CJ]

H. Aydin, “On Similar Distinct Finite 2-Groups”, Technical Report 90-42, 

Bath Computer Science, University of Bath, U.K. (1990).

H. Aydin and G. C. Smith, “Remarks on Fibonacci Sequences in Groups 

1” , Technical Report 91-50, Bath Mathematics and Computer Science, 

University of Bath, U.K. (1991).

G. Baumslag, “Lecture Notes on Nilpotent Groups” , Regional Conference 

Series in Mathematics, A.M.S. (1969).

M. W. Bunder, D.L. Johnson and A. C. Kim, untitled, in preparation by 

M .W.B ., (1991+e)

A. M. Brunner, “The determination of Fibonacci groups” , Bull. Austral. 

Math. Soc. 11 (1974), 11-14.

J. Cannon, “A Language for Group Theory” , Department of Pure Math

ematics University of Sydney (1982), Australia.

J. Cannon, “The Cayley Bulletin No 3” , Department of Pure Mathematics 

University of Sydney (1987), Australia.

C.M. Campbell, H. Doostie and E.F. Robertson, “Fibonacci Length of 

Generating Pairs in Groups” , Applications of Fibonacci Numbers, ed. G.E. 

Bergum, A.N. Philippou and A.F. Horada Kluwer vol.3 (1990), 27-35.

C.P. Chalk, Ph.D thesis, University of East Anglia (1979 approximately).

C.P. Chalk and D.L. Johnson, “The Fibonacci Groups II” , Proc. Royal 

Soc. Edinburgh 77A, (1977), 79-86.

131



[Co] J.H. Conway “Advanced Problem 5327”, Amer. Math. Monthly 72 (1965), 

915.

[CR74a] C.M Campbell and E.F. Robertson, “The Orders of Certain Metacyclic 

Groups”, Bull. London Math. soc. 6 (1974) 312-314.

[CR74b] C.M Campbell and E.F. Robertson, “Applications of the Todd-Coxeter 

algorithm to Generalized Fibonacci groups” , Proc. Royal Soc. Edingburgh 

73A (1974/75),163-166.

[CT] C.M Campbell and R.M. Thomas, “On Infinite Groups of Fibonacci

Type”, Proc. Edingburgh Math. Soc. 29 (1986), 225-232.

[Do] H. Doostie, “Fibonacci-type Sequences and Classes of Groups”, Ph.D. the

sis, St Andrews (1988).

[Ha40] P. Hall, “The Classification of Prime Power Groups”, J. Reine Angew

Math. 182 (1940), 130-141.

[Ha79] P. Hall, “The Edmonton Notes on Nilpotent Groups” , Queen Mary College

Mathematics Notes (1979).

[Ha] G. Havas, “Computer Aided Determination of a Fibonacci Group” , Bull.

Australian Math. Soc. 15 (1976), 297-305.

[Har] B. Hartley, “Topics in the Theory of Nilpotent Groups” , Group Theory ed.

K.W. Gruenberg and J.E. Roseblade, London Math. Soc. (1984) 61-120.

[Ja] R. James, “The Groups of Order p6 (p an odd prime)” , Math. Comput.

34(1980), 613-614.

132



[JNO] R. James, M.F. Newman and E.A. O’Brien, “The Groups of Order 128”,

Technical Report No 303, Department of Mathematics, Statistic and Com

puter Science, Marquette University (1989), USA.

[JO] D.L. Johnson and R.W.K. Odoni in preparation^ 1991 -f e).

[Jo74] D.L. Johnson, “A Note on the Fibonacci Groups” , Israel J. Math. 17

(1974), 277-282.

[JWW] D.L. Johnson, J.W. Wamsley and D. Wright, “The Fibonacci Groups”,

Proc. Lond. Math. Soc. (3) 29, (1974), 577 - 592.

[Ly] R. Lyndon unpublished notes

[MKS] W. Magnus, A. Karrass and D. Solitar, “Combinatorial Group Theory” ,

Dover (1966).

[Ne] M.F. Newman, “Proving a group infinite ” , Research Report 26, Depart

ment of Mathematics, Australian National University (1988).

[NO] M.F. Newman and E.A. O’Brien, “A Cayley Library for the Groups of

Order Dividing 128”, Proceeding of the 1987 Singapore Conference (1987), 

437-442.

[O’Br] E.A. O’Brien, “The p-group Generation Algorithm”, Department of Math

ematics, Statistics and Computer Science Marquette University (1989), 

USA.

[Se] D. Segal, “Polycyclic Groups ” , C.U.P. (1983)

[Sea] D.J. Seal, “The Orders of the Fibonacci Groups” , Proc. Roy. Soc. Edin

burgh 92A (1982), 181-192.



[So] L. Somer, “The Divisibility Properties of Primary Lucas Recurrences with

Respect to Primes”, The Fibonacci Quarterly 18 No 4 (1980), 316-334.

[Th83] R.M. Thomas, “Some Infinite Fibonacci Groups” , Bull. London Math. Soc.

15 (1983), 384-386.

[Th89a] R.M. Thomas, “The Fibonacci Groups F(4k  +  2,4)” , preprint.

[Th89b] R.M. Thomas, “The Fibonacci Groups - a Survey” , Technical Report 23, 

Department of Computing Studies, University of Leicester (May 1989).

[Th9l] R.M. Thomas, “The Fibonacci Groups Revisited” , in C.M.Campbell and

E.F.Robertson (eds.), Proceedings of Groups St. Andrews 1989 vol. 2 LMS 

Lecture Note Series 160, CUP, (1991) pp 445 -454.

[Vi] J. Vinson,“ The Relations of the Period Modulo m to the Rank of Appari

tion of m in the Fibonacci Sequence” , The Fibonacci Quarterly 1 (1963), 

37-45.

[Wa] D. D. Wall, “Fibonacci Series Modulo m”, Amer. Math. Monthly 67 (1960), 

525-532.

[Wi] H. J. Wilcox, “Fibonacci Sequences of Period n in Groups” , The Fibonacci 

Quarterly 24 (1986), 356-361.

134


