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Abstract

The aim of this thesis was to incorporate new components into a supported lipid 

double bilayer system and study their effect on the phase behaviour and stability. 

This would increase the understanding of mixed lipid planar systems and increase the 

applicability of the system as a biomembrane mimic.

The fabrication and phase behaviour of DPPC double bilayers containing 0 - 1 0  

mol% cholesterol was investigated. During the transition phase the DPPC sample 

exhibited large increases in the upper bilayer roughness and thickness of water layer 

separating the bilayers. This was interpreted as the presence of a ripple phase. Very 

low concentrations of cholesterol progressively reduced the level of increase in the 

two parameters; whilst with higher amounts of cholesterol, only a small swelling of 

the water layer was observed. It is likely therefore that low amounts of cholesterol 

progressively reduce the size of the ripple structure. These studies add to the 

understanding of the effect cholesterol near the main transition, which is currently a 

source of debate.

The phase behaviour of DPPE double and single bilayers with and without 

cholesterol was investigated. The double bilayer was unstable, forming an 

irreversible repeat unit in the fluid phase. The single bilayer exhibited stable gel and 

fluid structures. The addition of 10 mol% cholesterol destabilised the upper bilayer, 

which detached below the gel -  fluid transition temperature.

The effect on the phase behaviour of three different asymmetric lipid distributions 

was investigated. In one study the asymmetric nature increased the temperature of 

the gel -  fluid transition of lipids with different transition temperatures. In another 

study the presence of a deuterated lipid leaflet reduced the transition phase behaviour 

of hydrogenated lipids. In the final study the presence of a lower bilayer with a 

higher concentration of cholesterol reduced the transition phase behaviour of the 

upper bilayer.
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SAM Self-assembled monolayer

SMW Silicon matched water

4MW 4-matched water

Prefixes

h- Hydrogenated versions of lipid

d- Deuterated versions of lipid

1- Lower bilayer

u- Upper bilayer

Parameters

APM Area per molecule

Cov Coverage

Dc Upper bilayer chain thickness

Dc Lower bilayer chain thickness

Dw Thickness of water layer separating bilayers



Dw Thickness of water layer separating lower bilayer and substrate

Rou Roughness

Tm Transition temperature of gel -  fluid transition

Th Transition temperature of lamellar to hexagonal phase
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Chapter 1 Introduction

1. Introduction

1.1 Cell Membranes and their Components

Cell membranes compartmentalise the cell and provide a whole range of vital tasks. 

They act as a selective barrier to substances entering and leaving the cell, they 

control cell to cell recognition, transduce extra-cellular signals to regulate internal 

cellular activity, and control many other cellular activities. Membranes are 

omnipresent in biological materials; the human brain for example consists of 

complex network of membranes with a total surface area o f 103 - 104 m2.

Figure 1.1 Schematic of portion of cell membrane, consisting o f a basic lipid bilayer structure with

imbedded proteins

Membranes vary widely in their composition and function, but they all have the same 

fundamental architecture of a lipid bilayer (Figure 1.1). This is due to the molecular 

structure of the lipids, with their amphiphilic nature that creates the hydrophilic 

exterior and hydrophobic interior of the bilayer. Each membrane contains a specific 

set of proteins that enables it to carry out its own highly specialised functions. The 

traditional view was of the lipids acting purely as a solvent for the proteins, but 

recent research has shown certain lipids form dynamic clusters to aid the movement 

of proteins along the axis and may even activate certain proteins (Simons 1997; 

Barenholz 2002).

helical protein branched  
sugar chains

glycoprotein^
glyoolipid

i  lipid 
bilayer
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Chapter 1 Introduction

Lipids

Nearly all lipids have a polar amphiphilic structure, consisting of a hydrophilic head- 

group (often charged) and hydrophobic hydrocarbon chain region (Figure 1.2). This 

amphiphilic structure causes the lipids to spontaneously form monolayers at the air -  

water and form bilayers in bulk water conditions.
Head Group
Zwitterionic type: PC, PE 
Anionic type: PA, PG, PS, etc.
Glycosyl type 
Linkage 
Ester type
Ether type: Plasmalogen 
Amide type: Sphingomyelin

Hydrocarbon Chain
Chain length
Saturated/Unsaturated chains 
Branching

Figure 1.2 Lipids generally consist o f three segments of varying types.

The head-groups, chain length and chain saturation vary greatly in nature (Lipidat 

database). Head-groups vary from amides to saccharides. They can be charged or 

exist as a zwitterion. Nearly all hydrocarbon chains found in eukaryotic cells have an 

even number of carbon atoms, normally 16, 18 or 20 carbons, with up to four double 

bonds present. There are two common types of lipids; phospholipids and glycolipids 

(Harrison 1975). Common phospholipids are phosphatidylcholines (PC), 

phosphoethanolamines (PE) and phosphoserines (PS) (Darnel 1995). Glycolipids 

contain saccharides in their head-groups. The main lipids and sterol used in this 

study are l,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn- 

glycero-3-phosphoethanolamine (DPPE) and cholesterol (Figure 1.3). DPPC and 

DPPE are identical apart from the amide part of the head-group. Both consist of alkyl 

chains, glycero-carbonyl and functionalised phosphate head-groups.

o

H e
H-N"
h'

Figure 1.3 The main lipids used in this study. DPPC top, DPPE bottom left and cholesterol bottom right.
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Chapter 1 Introduction

Many types of membranes have an asymmetric lipid distribution between the two 

leaflets. Figure 1.4 shows the asymmetric nature of three types of membranes. It can 

be seen that phosphatidylcholines are predominantly found in the exterior facing 

leaflet, whilst phosphoethanolamines are found predominantly in the interior facing 

leaflet. The asymmetric nature is crucial to the membrane’s function.

% in
outer
leaflet

% m  40 
inner 
leaflet go

Human Rat liver Pig platelet
erythrocyte plasm a p lasm a
m em brane m em brane m em brane

Figure 1.4 Examples o f the asymmetric lipid nature of membranes. (PC phosphatidylcholines; PE 

phosphoethanolamines; PS phosphoserines; PI phosphoinositol; SP sphingomyelin)
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Chapter 1 Introduction

1.2 Phase behaviour of lipids

1.2.1 Introduction
The phase behaviour of phospholipids has been extensively studied in vesicles 

(Koynova 2002, Lipidat database). Lipids generally exhibit three types of different 

phases. Like liquid crystals they can exhibit gel phases, transition phases and the 

disordered fluid phases, each with different levels of short range and long range 

ordering. The type of phase exhibited depends on the lipid composition and physical 

conditions. Lipids can form lamellar, hexagonal, cubic, and various other partially 

ordered phases (Koynova 2002). What follows is an overview of the lamellar gel 

phase, liquid crystalline phase and transition phases.

1.2.2 Gel Phases
In the gel phase (Lp) the molecules are ordered in quasi-hexagonal arrays in the plane 

of the bilayer, with the chains fully extended in an all-trans configuration. The gel 

phases of phosphatidylcholines (designated Lp>) are special in that the molecules are 

tilted with respect to the normal of the bilayer plane, due to their head-groups having 

an area that is greater than twice the natural packing area of the parallel chains (two 

per lipid). This frustration is relieved by the chain tilt (Nagle 2000).

1.2.3 Fluid Phase
The fluid phase (La) is the biologically relevant phase. In this phase the chains are 

conformationally disordered and thinner compared to the gel phase. The lipids are 

free to rotate around their long axis and can diffuse laterally within the membrane 

leaflet. Exchange of lipids between the bilayer leaflets can occur (flip -  flop) but is 

much less frequent and is often catalysed by specific proteins.
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Chapter 1 Introduction

1.2.4 Transitional Phases
Bilayers exhibit a range of transitional phases, from a simple melting of the chains 

(as in the case of phosphoethanolamines) to a rippling structural transition (as in the 

case of phosphatidylcholines).

Gel -  liquid transition

The main transition that occurs for most lipid types is the first order gel -  fluid 

transition consisting of the melting of the chains. The temperature at which this 

occurs depends on the type of lipid, the chain length and the composition of the 

bilayer. The pathway from gel to fluid does not exactly retrace the pathway from 

fluid to gel. This is because of a difference in the free energies of the solid and fluid 

domains from those formed in one direction from those formed in the other. This 

hysteresis is more pronounced in bilayers of charged lipids and lipid mixtures than in 

bilayers of neutral lipids (Datta 1987).

Ripple phase

Phosphatidylcholines with saturated chains (e.g. DPPC, DSPC) exhibit a distinct 

rippling phase (Pp>) at temperatures just below the main transition Tm (Nagle 2000). 

The temperature at which the rippling structure occurs is known as the pre-transition 

temperature. The predominant profile found in pure PC systems has an asymmetric 

saw-tooth cross section and a wavelength of about 12-16 nm. Small areas of macro­

ripple and other types of ripple of different symmetry and wavelength also occur in 

pure PC dispersions (Cunningham 1998). Literature values vary though, with the 

wavelength varying between 100 -  160A and the amplitude between 5 -  50A 

(Zasadzinski 1988). The amplitude of the main ripple has been observed to increase 

with temperature until the transition to the fluid phase in some studies (Woodward 

1996). The essential requirements for a ripple phase are a large head-group, high 

hydration and molecular tilt. The ripple phase can occur in mixed PC systems and 

also with low cholesterol ratios (Mortensen 1988). The formation of the ripple phase 

is an endothermic event and leads to a slight reduction in chain tilt (Baneijee 2002).

Many models have been proposed to explain the formation of ripples (Cunningham 

1998 and references therein). They can be broadly grouped into two categories,

5



Chapter 1 Introduction

those that explain it by minimisation of Landau -  Ginzburg free energy using mean 

field approximation (Ishibashi 1995) and others concerning molecular theories based 

on packing frustration between the head-group and chain regions that change in this 

temperature range. In the latter, interfacial energy is thought to play a crucial role in 

the formation, as it is governed by a delicate balance between the attractive 

hydrophobic interactions in the chain region and the repulsion interactions between 

the head-group at the interface. Increases in area per molecule by an increase in 

temperature and increased hydration disturb the latter. Ripples appear to compensate 

this packing frustration of the head-group and chains (Baneijee 2002). The formation 

of the ripple was previously thought to be not coupled to the main transition event, 

but recent studies are starting to propose a linkage (Heimburg 2000).

Anomalous Swelling

While the ripple phase has been well studied and characterised, less attention has 

been paid to the phenomenon observed when cooling the bilayer in the fluid phase 

towards the main fluid -  gel transition temperature (Tm). As the temperature is 

decreased close to the Tm, the lamellar repeat spacing increases slightly in some 

types of phosphatidylcholines (such as DPPC and DMPC) and 

phosphatidylethanolamine bilayers (DMPE). This behaviour is known as anomalous 

swelling (AS), but has also been referred to as pseudo-critical or pre-critical 

behaviour, as it is thought to be linked to the presence of a critical point obscured by 

the events of the main transition (Mason 2000).

Anomalous swelling has only been observed upon cooling in the fluid phase, it has 

not been observed when heating in the gel phase. The swelling is non-linear with 

temperature (Pabst 2003). Evidence suggests that anomalous swelling is not coupled 

to the formation of a ripple phase (Mason 2001), whilst other studies seem to suggest 

it is (Richter 1999).

Anomalous swelling has been interpreted as an indication of the bilayer softening 

near the transition and as a thermal reduction in the bending rigidity, which allows 

increased fluctuations and an increase in the water layer thickness separating the 

bilayers (Lemmich 1997). It is still not fully understood why anomalous swelling 

occurs. Different groups have shown that the hydrophobic part of the bilayer partially

6



Chapter 1 Introduction

swells, along with the dominant swelling of the water layer (Mason 2001, Pabst 

2003).

The magnitude of the swelling varies in literature; examples include a maximum 

increase of 1.7A for DMPC (Pabst 2003), 2 -  3A for DMPC (Richter 1999), 6A  for 

DMPC and 4A for DPPC (Honger 1994). The swelling of only the bilayer has been 

measured at 2.3 A for DMPC (Mason 2001). All of the studies cited above have been 

conducted on multilayer systems either in solution or stacked.

7



Chapter 1 Introduction

1.3 Modelling cell membranes

1.3.1 Introduction
Crystallographically it is not possible to obtain the atomic-level structure of fluid 

phase bilayers, due to the inherent disorder in the bilayer. A range of other systems 

has been developed, that are able to give information on the angstrom scale of the 

fluid phase structure, along with the gel and transition phase structures. Structures 

are usually obtained through a combination of experimental data and model 

interpretation.

Whilst the fluid phase is the most biologically relevant phase, the study of the overall 

phase behaviour is necessary to enable a greater understanding of the function of 

lipid bilayers and also because it is believed that certain physiologically processes 

may be dependent on membrane gelation (Hazel 1995). Also it has recently been 

suggested that the close proximity of certain membranes to the gel state structure is 

of principal importance for certain processes occurring in the brain, as in the 

physiology of thermo-regulation, and in the mechanisms of general anaesthesia 

(Kharakoz 2000).

1.3.2 Requirements for Membrane Mimics
The main requirement for any membrane mimic is to have a similar fluidity level to 

that of cell membranes. The lipids must not be impeded by external forces that 

restrict the freedom of movement or behaviour within the leaflet of the bilayer. It is 

also useful for the bilayers to be fully hydrated. Another requirement is that the 

composition of the system is controllable, and that components such as proteins can 

be easily incorporated. Another preferable ability is being able to fabricate the 

bilayer asymmetrically, that is having the ability to have different components in 

each of the leaflets of the bilayer.

For certain analytical techniques, such as in many scattering techniques, it is 

necessary that the bilayer is planar and supported upon a substrate. The presence of 

the substrate must not hinder the fluidity and freedom of the bilayer. This is essential 

when studying the properties and behaviour of proteins, where the fluidity of the

8



Chapter 1 Introduction

bilayer can affect the nature behaviour of the protein. The lack of influence of the 

substrate is also of a premium when studying the phase behaviour of the bilayer. 

What follows is a brief overview of some of the commonly used membrane mimic 

and a discussion of whether the systems meet the requirements.

1.3.3 Monolayers

Although it is preferable to use bilayers in membrane studies, monolayers at the air- 

liquid interface have proved to be a very useful mimic system (Figure 1.5a). They are 

perhaps the simplest form of systems used and have a high level of lipid fluidity and 

hydration of the head-groups. The composition of the monolayer and sub-phase is 

highly controllable, as is the temperature. Proteins can easily be added to the sub­

phase, allowing studies of their interactions with different lipid compositions. 

Monolayers of biological components are easily formed by spreading the 

components onto an aqueous sub-phase (Chapter 2.1). Monolayers have been utilised 

in a vast number of studies with the use of many different analytical techniques. 

Recent examples include the study interaction of lipid monolayer -  DNA complexes 

by x-ray reflectometry (Kago 1999); the study of the crystallisation of Streptavidin 

monolayers by Brewster Angle Microscopy (Frey 1996) and the study of the 

penetration of proteins into lipid monolayers (Vollhardt 2000). The disadvantage of 

the use of monolayers is that they do not exhibit the same phase behaviour as 

bilayers, also the fact that they only represent one leaflet of the bilayer.

(a) (b) (c) (d)

Figure 1.5 Common systems used to model membranes, (a) Monolayers, (b) multilamellar vesicles, 

(c) unilamellar vesicles, (d) stacked multilayers. (Courtesy G. Fragneto)

9
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1.3.4 Vesicles
Vesicles are the most common way to study lipid behaviour and allow a diverse 

range of analytical techniques to be employed. There are two main types of vesicles, 

the spherical vesicles in solution (Figure 1.5b, 1.5c) and those that have been 

deposited upon substrates to form planar multilamellar vesicles (Figure 1.5d). Two 

types of vesicles in solution are possible; unilamellar vesicles consist only of one 

bilayer (Pabst 2003), whilst multilamellar vesicles consist of bilayers that are 

arranged like skins of an onion (Kinoshita 1996). Vesicles in solution exhibit a full 

range of phase behaviour and are fully hydrated and of a controllable composition 

(Nagle 2000). Vesicles have been used to obtain various bilayer structural attributes 

such as thickness, area per molecule and the number of water molecules per lipid for 

different lipids. This enables the study of the bilayer phase behaviour as a function of 

temperature (Rock 1989, Honger 1994, Sun 1994, Petrache 1998, Richter 1999, 

Nagle 2000, Mason 2000, Balgavy 2001, Lee 2001, Pabst 2003). Vesicles have been 

greatly utilised in studies of interactions of peptides with the bilayer, as detailed in 

the review by White (1998). Vesicles can also be used to form bilayers on solid 

substrates by adsorption techniques (Puu 1997, Leonenko 2000, Johnson 2002). 

Although vesicles in solution are the most common method of studying bilayers, 

another common method is the use of stacked multilayers on solid substrates (Figure 

1.5d). These oriented multilayers allow the utilisation of a range of diffraction 

methods and can provide information such as the chain tilt, in-plane order (Karmakar 

2003) and other structural parameters similar to those obtained from vesicles in 

solution (Lemmich 1996, Nielsen 2000, Petrache 2000, Salditt 2002, Tristram-Nagle 

2002). The number of bilayers can vary from ten bilayers (Mennicke 2002), to 

hundreds (Darkes 2000), to several thousand (Goormaghtigh 1999). Recent uses are 

the investigation of lipid diffusion by fluorescence recovery after photo-bleaching 

(Adalsteinsson 2000), investigation of the structure and fluctuations of bilayers with 

and without peptides (Salditt 2000) and the orientation of molecules within bilayers 

using attenuated total reflection infrared spectroscopy (Goormaghtigh 1999).

1.3.5 Supported Biomembrane mimics
Single bilayers (Tamm 1985) on solid supports provide a useful way of utilising 

many surface and interfacial techniques, that are not possible with vesicles, such as

10



Chapter 1 Introduction

AFM (Nielsen 1999), impedance analysis (Plant 1999, Terrettaz 2003), surface 

plasmon resonance (Cooper 1998), reflectivity (Fragneto 2000) and ellipsometry 

(Benes 2002). They can be used to model cell -  cell interactions (Grakoui 1999, 

Sackmann 1996, Brian 1984) and for various biotechnological applications (Groves 

1997, Boxer 2000). Single bilayers can be fabricated on a range of different 

substrates, varying from gold surfaces (Lahiri 2000) to printed patterned silicon 

(Orth 2003). The bilayers are usually fully hydrated and are of controlled 

composition. The main advantage that single bilayers have over multilamellar 

samples is that the information is bilayer specific; it is not averaged over hundreds or 

thousands of bilayers. Another advantage is that very small amounts of components 

are needed to make them, which is very useful when using expensive compounds. 

One of the main disadvantages though, is that forces from the substrate can often 

restrict the freedom of the components in the bilayer, for example it has been found 

to restrict the bilayer phase behaviour (Fragneto 2000). Another disadvantage is that 

only a very thin film of water separates the bilayer from the substrate. This can 

restrict the incorporation of transmembrane proteins (Wagner 2000).

There are two main ways of forming single bilayers on substrates. The most common 

method is by vesicle adsorption (Puu 1997, Leonenko 2000). With this method it is 

thought that the vesicles first adsorb to the surface, then fuse together, after which 

they rupture to form a uniform single bilayer (Seifert 1990, Reviakine 2000, Johnson 

2002). The adsorption mechanism has been investigated by AFM (Fang 1997). The 

other common method used in the fabrication is that of the Langmuir -  Blodgett 

technique (Chapter 2). With this method the substrate is drawn though the monolayer 

two times to deposit two monolayers onto the substrate (Tamm 1985).

The type of substrate supported single bilayers varies greatly. Examples range from a 

single bilayer adsorbed onto silicon (Puu 1997, Yang 2000), to elaborate polymer 

supported bilayers (Majewski 1998, Wagner 2000, Saccani 2003) to hybrid bilayers, 

where one leaflet does not consist of lipids (Krueger 2001). One type of hydrid 

bilayer consists of a non-lipid self-assembled monolayer as the lower leaflet and a 

lipid layer as the upper leaflet. This has the advantage of being very robust, but the 

lipids have very restricted fluidity (Hollinshead 2001). Recent single bilayer studies 

include investigation of the interactions of living cells with functionalised planar
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Chapter 1 Introduction

bilayers (Grakoui 1999), interactions of simple peptides with bilayers (Michielin 

1998, Fragneto 2000, Krueger 2001, Zhao 2003) and structural studies (Koenig 1996, 

Dufrene 1997, Dufrene 2000, Perez 2003). The dynamics and heterogeneity of 

supported bilayers have also been probed by fluorescence spectroscopy 

(Krishnamoorthy 1998). Single bilayers have also been used to study the influence of 

an electric field on voltage-gated membrane proteins, lipid-lipid interactions, and 

lipid-protein interactions (Jones 1998) and in the development of novel 

electrochemical sensors (Knoll 2000).

1.3.5 Supported Bilayers in Biosensors
One of the great hopes with many supported bilayers is that they can be successfully 

utilised in biosensors. Often membrane proteins are the active component of the 

biosensor. For the protein to properly function their environment needs to mimic that 

of the living cell. The use of bilayers allows the proteins to function is a pseudo­

natural environment. The ability to deposited bilayers and proteins on a variety of 

different substrates allows a range of analytical techniques to be utilised. One of the 

main difficulties with lipid biosensors is to make them robust enough to function 

outside the laboratory environment. One method is the use of hybrid bilayers on 

electrodes. In this system the layer next to the metal electrode is not lipids but an 

organic silane attached to the electrodes that then supports the upper lipid monolayer 

(Scandia group 2003). Proteins containing ion channels are then incorporated into the 

bilayer, which open and close repeatedly in response to specific biological agents. In 

the presence of agents, the ion channels change the bilayer’s electrical impedance by 

permitting the conduction of ions through it. The type and concentration of an agent 

can thus be identified by measuring the electrical resistance of the bilayer.

Another approach is the use of an ion-channel switch comprising of a gold electrode 

to which is tethered a lipid membrane that contains gramicidin ion channels linked to 

antibodies (Rickert 1996, Cornell 1997 and references therein). The molecular 

composition of the tethered membrane results in an ionic reservoir being formed 

between the gold electrode and the membrane. The binding of agents to the 

antibodies alters the conductance of the ion channels, altering the composition of the
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ionic reservoir. The ionic reservoir can be accessed electrically via the gold 

electrode, and the presence of a specific agent is detected.

A different approach to biosensors consists of the formation of self-assembled 

membranes supported on silver wire, which can be used to detect triazine herbicides. 

The interaction of the triazine and the bilayer producing an electrochemical ion 

current that is then easily detectable (Siontorou 1997)

Another type of bilayer biosensor is being developed to estimate the fraction of a 

drug absorbed in the human intestine (Danelian 2000 and references therein). 

Vesicles are attached to a sensor surface and the interactions between drugs and 

vesicles are monitored directly using surface plasmon resonance technology (SPR). 

The phenomenon of SPR is sensitive to changes in refractive index at the sensor 

surface caused by changes in mass. In the SPR method laser light is shone onto a 

glass prism in contact with a gold surface. Light is reflected at all angles except for 

the critical angle, at which the light excites the metal surface electrons (plasmons) 

generating the evanescent field and causing a dip in intensity of the reflected light. 

The critical angle is sensitive to refractive index changes occurring close to the 

sensor surface and thus, by monitoring the change in critical angle with time, details 

of the events at the surface can be probed. The SPR signal shows the binding of the 

compound to the vesicles and the release of the compound from the vesicle surfaces. 

The next step in this method is the use of surface modified vesicles to increase the 

interaction between the vesicles and the drugs, thus increasing the sensitivity of the 

method.

Surface plasmon resonance can also be used to monitor the adsorption of vesicles 

onto micro-patterned self-assembled monolayer, to create bio-mimetic membrane on 

a surface to study the functioning of incorporated proteins and peptides (Jenkins 

2001). This method may form the basis of the next generation of biosensors.

There are many other types of optical biosensors as detailed in the review by 

Leatherbarrow et al. (1999).
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1.4 Double Bilayer System

The double bilayer system (DBS) (Figure 1.6) consists of two bilayers deposited on 

silicon substrates by Langmuir-Blodgett and Langmuir-Schaefer techniques (Charitat 

1999, Fragneto 2001). The lower bilayer acts purely as a support for the upper 

bilayer, which is used as the membrane mimic. It was originally developed to 

minimise the interactions between single bilayers and the substrate, which can 

restrict the phase behaviour and thus the biological realism of the mimic. It was also 

desirable to increase the water layer, allowing the study of transmembrane proteins.

9±lA

37±1A

9±lA
15±lA

9±1A

37±1A 

9±1 A

Figure 1.6 Schematic of DSPC double bilayer systems (Courtesy G. Fragneto)

When fabricated with the lipid DPPC, it was found that the bilayers were separated 

by a water layer o f approximately 30A, enabling the upper bilayer to exhibit full 

phase behaviour and fluctuations. Both bilayers are fully hydrated, with one side 

open to a semi-infinite reservoir of water and have been found to be stable for days. 

The composition of the bilayer is fully controllable, as is the water reservoir 

(Fragneto 2003). The composition of each bilayer leaflet is also fully controllable 

(Chapter 5). Very small amounts of lipids and proteins are needed in fabrication. 

Proteins can be incorporated either by co-spreading in the monolayer that is 

deposited or by adding to the final water reservoir and adsorbing. The information 

obtained from studies is bilayer specific, as it is not an average of the structure of 

hundreds of bilayers. A range of different surface and interfacial techniques have
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been used to study the double bilayer, from reflectivity, to AFM to surface plasma 

resonance.

A variation on the system has also recently been developed. In this version the first 

leaflet of the monolayer has been replaced by a self-assembled monolayer of 

octadecyltrichlorosilane (Hughes 2002a). The advantage of this system is that it 

enables the fabrication of double bilayers of lipids with shorter chains, which have a 

fluid phase at biologically relevant temperatures, such as the lipid DMPC. With this 

lipid it is not possible to deposit four monolayers as the third layer peels off during 

deposition. Like the fully lipid double bilayer, this system was found to have similar 

phase behaviour to multilamellar vesicles (Hughes 2002b). It has recently been used 

to study the flipping of a simple antimicrobial peptide towards a transmembrane 

configuration on application of a potential (Hughes, in preparation).

Studies involving the double bilayer have revolved around two areas of interest; the 

phase behaviour of different lipid compositions and the study of in-plane features 

and fluctuations of the floating bilayer. Specular neutron reflectivity is used to study 

the phase behaviour, whilst off-specular synchrotron radiation is used to study the in­

plane features (Daillant et al., in preparation). An overview of the neutron 

reflectivity work is given below.

When the phase behaviour of the initial double bilayer was investigated it was found 

that the water layer separating the two bilayers swelled near the main transition and 

was accompanied by a high increase in the roughness of the upper bilayer (Fragneto 

2001). A maximum was reached before the literature value of Tm. The swelling was 

observed for a range of different chain lengths of phosphatidylcholines and also in 

selected deuterated versions (Fragneto 2003). The cause of this swelling is not fully 

understood, but has been interpreted in terms of competition between the inter- 

bilayer potential and membrane fluctuations. This allows an estimation of the 

bending rigidity of the bilayer (Mecke 2003). Off-specular synchrotron studies have 

been undertaken to aid the understanding as, unlike specular neutron reflectivity 

which gives information perpendicular to the bilayer plane, the technique gives 

detailed information on the in-plane structure.
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1.5 Forces acting on the bilayers

1.5.1 Forces present in multilamellar vesicles
It is well known that adjacent bilayers in multilamellar vesicles associate with each 

other through attractive Van der Waals forces and repulsive undulations, with the 

addition of hydration forces at smaller separations (Helffich 1977, McIntosh 1993). 

These forces are collectively known as Helfrich forces and they control the mean 

separation of the membranes. Below is given an overview of the Helfrich forces.

Van der Waals forces are the main attraction force for membrane separations greater 

than 15A, if the bilayers carry no electric charge and the solvent contains no 

macromolecules (Lipowsky 1995). They are also thought to remain as the main 

attractive force even with bilayer spacings as large as 150A (Walz 1999).

Undulations are the main source of repulsive forces present in stacked bilayers 

(Lipowsky 1995, Rand 1989). There are several different types of fluctuations 

present in bilayers with the most important being the bending mode fluctuations. 

With bending modes the surface area does not change, the bilayer just undulates. The 

level of fluctuations is connected to the temperature and the bending rigidity of the 

bilayer. The length scales are usually large compared to thickness of the bilayer. 

When a bilayer is confined between bilayers the level of fluctuations are restricted to 

a maximum wavelength by the external potential of these. Helfrich (1977) 

demonstrated that undulation repulsion can act over relatively large bilayer spacings 

and could account for the large swelling seen in planar bilayers.

At smaller bilayer separations hydration forces also contribute to the repulsion. 

Water molecules near the surface of the bilayers have molecular translational and 

rotational properties that are markedly different from those in dilute aqueous 

solution. This arises from structuring of water molecules around the bilayer surface 

and from the polarising of the water molecules by the hydrophilic bilayer surface 

(McIntosh 1993). This creates repulsive forces between the hydrated bilayers. The 

hydration force is found to decay approximately exponentially with increasing 

separation of the bilayers, giving a typical influential range of force on a few
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Angstrom scale. They are only usually dominant on the short-range scale of the order 

of 5A (Lipowsky 1986,1993; McIntosh 1993).

1.5.2 Forces present in double bilayer system
The phase behaviour and structural parameters of the DBS and stacked MLV have 

been found to be very similar. One may therefore assume that the same forces 

present in the stacked MLV which maintain the bilayer separation are also the main 

forces present in the DBS (Hughes 2002b). In the case of the DBS though, forces 

from the substrate need to be considered more. The substrate forces are thought to be 

electrostatic from the negatively charged silicon surface. The system also differs in 

that the bilayers are not confined between two bilayers, and that the two bilayers are 

in different local environments to each other.

The influence of the substrate forces on the DBS bilayers is currently being 

investigated by off-specular synchrotron studies. It has been found in neutron 

reflectivity studies that the lower bilayer does not respond as fully to temperature as 

the upper bilayer (Fragneto 2001). A significantly higher temperature was needed to 

transform it to a fluid phase. The fact that the upper bilayer behaves similar to 

stacked MLV infers that it is not strongly inhibited by substrate forces, but its close 

proximity suggests that substrate forces are likely to have some form of bearing on 

the upper bilayer, but to what extent is currently unclear. In stacked MLV it has been 

proposed that adsorption of bilayers to a solid surface creates attractive stabilising 

forces throughout the multilamellar arrays (Podgomik 1997). One effect of the 

surface is to suppress mechanical undulations of the layers, either because of surface 

tension or because of the forces attaching the bilayers to the substrate, and to increase 

the effect of the Van der Waals forces.
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2. Fabrication, Techniques and Characterisation Methods

2.1 Langmuir Monolayers and Langmuir-Blodgett Films

2.1.1 Introduction
Monolayers enable the study and exploitation of the physical behaviour and 

interactions of nanometer thick films by a range of different surface and interfacial 

techniques. A Langmuir monolayer (Roberts 1990, Petty 1996) consists of a single 

layer of insoluble amphiphilic molecules spread on an aqueous sub-phase. They are 

formed by spreading the amphiphilic molecules in a volatile solvent (typically 

chloroform) on an aqueous sub-phase. The solvent evaporates, leaving the hydrophilic 

head-groups immersed in the water and the hydrophobic tail orientated away.

Phase behaviour of the monolayers can be determined by the change in surface 

pressure versus area per molecule at constant temperature to form an isotherm (Figure 

2.1). Surface pressure (II) is defined as the difference between the surface tension in 

the absence of a monolayer (y0) and the value with a monolayer present (y)

II = y0 -  y
(2.1)

Surface tension (y) is defined by the partial differential of the excess free energy (G) 

and the surface area (5 ), at constant temperature (7), pressure (P) and composition (n,)

T - f - 1

(2.2)

The surface tension of water (73 mN/m at 20°C and atmospheric pressure) has an 

exceptionally high value compared to other liquids. When compressed, monolayers 

usually lower the surface tension by modifying the hydrogen bonds of the water at the 

surface and increasing the repulsive effect between the hydrocarbon chains. This leads 

to an increase in the surface pressure. Monolayers exhibit a range of different two- 

dimensional phase behaviour when the area per molecule is reduced. The rich phase 

diagram consists of two-dimensional analogs to gas, liquid (LI) and crystalline (CS) 

phases as well as a variety of tilted mesophases (hexatic) similar to smetic crystals
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(Schwartz 1993, Riviere-Cantin 1996). The appearance of these phases is dependent 

on the compound or compounds, the temperature and pH. In the crystalline phase the 

molecules are closely packed (Petty 1996). Domain formation can also occur in the 

gaseous phase. Some molecules such as phosphatidylcholine lipids can exhibit co­

existence of liquid and crystalline phases. Figure 2.1 shows the isotherm of DPPC 

measured at room temperature at neutral pH. Brewster angle microscopy images at 

three different surface pressures are shown. At low and high pressure the monolayer is 

homogeneous, whilst at the constant pressure plateau between an area per molecule 

range of 65 -  47A 2 a coexistence region of crystalline and liquid phases occurs. This 

is observed in the Brewster angle microscopy as a series of dotted domains.

35 45 55 65 75 85 95

Area per m olecule (A2)

F igure 2.1 Isotherm of DPPC lipid measured at measured at room temperature at neutral pH. 

BAM images show the different phases present. The middle image is o f coexistence of liquid 

and crystalline phases.
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Isotherms of a particular compound can have many different shapes dependent on 

factors such as the sub-phase used, ion content of sub-phase and temperature 

variations. Contamination of the monolayer is usually visible in its isotherm, usually 

taking on the form of additional bumps.

2.1.2 History
Langmuir monolayers have a varied and colourful history. Early research ranges from 

Benjamin Franklin’s observations of the spreading of oil on a pond in Clapham 

Common in London, to the pioneering research by Agnes Pockles in the late 19th 

century. Agnes Pockles’s method, conducted in her kitchen with cooking trays later 

became the basis of the Langmuir trough. The 20th century saw huge increase in 

monolayer work mainly due to the immense work of the Noble Prize winner Irvine 

Langmuir and by Katherine Blodgett. Langmuir, amongst many other things, 

developed the surface film balance, while Blodgett conducted pioneering work on the 

deposition of monolayers onto solid substrates.

2.1.3 Langmuir -  Blodgett films
The Langmuir -  Blodgett technique enables the deposition of organic films of 

nanometer thickness on to a range of different substrates. The monolayers are 

deposited by drawing the substrate slowly through the monolayer at a constant surface 

pressure. The technique enables the molecular engineering of samples, making it 

possible to position certain molecular groups at precise distances to others. Thin films 

can be built up at the molecular level and the interaction between this artificial 

structure and real cells can be studied (Petty 1996). Depositions can be performed 

vertically (Langmuir-Blodgett technique) and horizontally (Langmuir-Schaefer 

technique). Horizontal depositions are the most common due to their simplicity, 

whilst vertical depositions are usually used when horizontal depositions are not 

viable. The success of a deposition and the number o f layers that can be deposited are 

heavily dependent on the attributes of the compound, the properties o f the sub-phase 

and the type of substrate used (Roberts 1990). Cleanliness of apparatus and all the 

components are also a major factor on the success of a deposition. The quality of the 

deposition can be followed by calculating the transfer ratio, which is simply the area 

of monolayer deposited, divided by the surface area of block dipped.
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2.1.4 Monolayer and Langmuir-Blodgett film studies
Many varied techniques have been used to study the properties and behaviour of 

monolayers. Grazing incident scattering is able to give information on the 

conformation of the molecules and the dynamics of monolayer formation (Carino 

2001), whilst techniques such as Brewster angle microscopy allow the morphological 

changes of monolayers caused by area compression to be easily visualised. Domain 

formation can easily be observed without the addition of fluorescent components as 

needed in fluorescence microscopy (Ramos 1999, Lawie 2000). X-ray and neutron 

reflectivity enables full characterisation of the structure both in-plane and out of plane 

(Daillant 1990). AFM has been used to study the topology when the monolayers are 

deposited on substrates (Ekelund 1999).

Monolayers and Langmuir-Blodgett films have been used in many studies involving 

lipid and proteins (Gershfeld 1979, McConlogue 1997, Krueger 2001, Schalke 2000, 

Brezesinski 2003, Bolze 2002). The interaction of proteins and ions injected into the 

sub-phase and the monolayer can be easily followed using isotherms and Brewster 

angle microscopy (Flach 2000, Wu 2001). The Langmuir-Blodgett technique can be 

used to fabricate model bilayers, which allows a greater range of surface and 

interfacial techniques to be utilised, which are not possible when bilayers are in 

solution. Langmuir-Blodgett films of polymerised components can be formed either 

by directly depositing polymerised films (Mumby 1986, Brinkhuis 1991, Teerenstra 

1992) or by depositing monomers, which are then polymerised by an appropriate 

method (Hatada 1977, Fukuda 1981, Miyashita 1991). The use of polymerisation 

films increases the thermal, mechanical and chemical stability of organic films thus 

increasing their suitability for use in practical devices (Tieke 1979, Swalen 1987, 

Miyashita 1993).

The properties of alkylsilanes have been studied by use of monolayers and Langmuir- 

Blodgett films. Alkylsilanes are used as components in hybrid materials (Wen 1996, 

Judeinstein 1996) and to modify surface properties (Finnie 2000, Zheng 2000). 

Langmuir monolayers have been used in this field to study the dynamics of the 

formation and possible cross-linking (Sagiv 1980) of polymerisation of alkylsilanes
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monolayers at the air/water interface by grazing incident x-ray diffraction (Carino 

2001). Miscibility and non-ideality of mixed films can be readily studied by use of 

Langmuir techniques (Motomura 1986, Matsuki 1990, Ikeda 1994, Iyota 1998).
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2.2 Fabrication of Double Bilayers

2.2.1 Introduction
Once fabricated, double bilayers have been found to be stable and robust with respect 

to the temperature and type of lipids. The difficult part however is the fabrication. The 

depositions are very sensitive to any contamination and irregularities in the method. 

During this thesis the method was optimised to a stage where three out of four 

attempts would succeed. What follows here is a detailed explanation of the method, 

with all its intricacies. The materials used will also be given.

2.2.2 Overview
As mentioned in Chapter 1, fabrication of the double bilayer consists of three vertical 

monolayer depositions (Langmuir -  Blodgett) followed by a horizontal deposition 

(Langmuir -  Schaefer). The samples can be made from a range of different monolayer 

types including asymmetric leaflet bilayers (Chapter 6).

First the silicon substrate and the Langmuir trough are thoroughly cleaned and then 

the monolayer is spread. The first deposition involves drawing the substrate up 

through the monolayer; the second deposition involves lowering it through and the 

third drawing it up once again. This ensures that all the monolayers are orientated in 

the correct way. Single bilayer samples were fabricated by one vertical and one 

horizontal deposition (Charitat 1999). Peptides and proteins can be incorporated either 

by co-spreading in the monolayer or by adding to the reservoir and adsorbing.

2.2.3 Factors necessary for successful fabrication
One of the main factors needed for a successful fabrication is the cleanliness and 

purity of all components, from the trough, to the lipids, water and silicon substrates. 

The other main factors are patience, good laboratory skills and time.
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2.3 Materials and Equipment

2.3.1 Materials
All the lipids used in this experiment were purchased either from Sigma -  Aldrich 

chemicals, (St. Quentin Fallavier, France) or Avanti Polar Lipids (Alabama, USA). 

Cholesterol was purchased from Sigma Chemicals. All were used without further 

purification.

The solvents used in cleaning and in solutions were of analytical grade (99.8+ % 

purity). Deuterium oxide (99%) was supplied by the Institut Laue-Langevin. All were 

used without further purification. Ultra-pure water used was of Millipore grade 

(resistivity 18MQ cm).

Silicon substrates (8cm x 5cm x 2cm) were highly polished on one side to an average 

root-mean-squared of 3±3A by the ESRF optics laboratory (Grenoble, France). 

Angstrom roughness is highly important for deposition reasons and to enable 

reflectivity measurements. The other sides of the substrates are not polished for 

economic reasons. All substrates are thoroughly cleaned before use.

2.3.2 Equipment
The samples were prepared using a custom built Langmuir trough (Nima, Coventry, 

England) with a large dipping well and monolayer surface area of 20x30cm (Figure

2.2 left). Vertical depositions were performed using the computer controlled Nima 

dipper. A novel manual dipper was developed for the horizontal Schaefer deposition 

to improve its quality and reproducibility (Figure 2.2. Right). It consists of micro­

controlled adjuster mounted on a sturdy support. The silicon substrate mounts on to 

the arm via the level adjuster. The level adjuster allows the horizontal level of the 

substrate to be adjusted.
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F igure 2.2 Left. Langmuir trough with dipper positioned. Right. Custom built Schaefer dipper.

2.3.3 Solutions

All solutions were made by dissolving the lipids in chloroform to a lmg/lm L 

concentration (which approximates to 10'3M). Phosphatidylcholines, both 

hydrogenated and deuterated dissolved readily in chloroform, whilst hydrogenated 

phosphatidylethanolamine needed mild heating. It was not found possible to dissolve 

deuterated phosphatidylethanolamine, despite heating and adding small amounts of 

methanol to the chloroform. Phosphatidylserines were found to dissolve when very 

small amounts of methanol were added. Solutions of DPPC and cholesterol were 

made to molar ratios.

2.3.4 Trough housing

As with all monolayer work, the trough should be protected from dust by housing in 

either a lamellar flow cabinet or enclosed in a Perspex box. In general it was found 

that the lipids deposited better if the temperature around the trough was below 20°C. 

This may be linked to the low transition temperatures of lipids like DPPC (37.7°C).
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2.4 Deposition Procedure

2.4.1 Silicon Substrates
Thorough cleaning of the silicon substrates is essential before deposition. Due to the 

high degree of polishing it is necessary to use passive techniques for cleaning the 

silicon surface. The method used here was solvent cleaning in an ultrasound bath. 

The silicon was cleaned in the ultrasound in chloroform, ethanol, and ultra pure water 

for 25 minutes per solvent. It is essential that gloves be used when handling the 

silicon, with care taken to never touch the polished side. Hand grease is very difficult 

to remove by solvent cleaning. Prior to deposition the surface silicon was treated with 

the UV/ozone method (Vig 1985). This involves exposing the substrate to UV under a 

constant flow of oxygen for 30 minutes to form hydrogen oxide groups at the surface 

to ensure a highly hydrophilic surface. The silicon was then lowered into the water 

sub-phase so that the required dipper area was submerged. It is not necessary to dip 

the whole substrate as footprint of beam is smaller than size of substrate.

2.4.2 Monolayers
Solutions of the lipids were spread on the water usually to a surface pressure of 

approximately lOmN/m. This ensures that there is enough monolayer area for three 

depositions. The monolayer was left for 20 minutes to allow the solvent to evaporate. 

After which it was then compressed slowly at 30cm2/minute until a surface pressure 

of 40mN/m was obtained. The surface pressure was then held at this value using the 

automated pressure control.

2.4.3 Depositions
Depositions were performed at a constant surface pressure of 40mN/m using a dipper 

speed of 5mm/min. Decreasing the deposition speed below 5mm/min was not found 

to increase the transfer ratio, whilst increasing above this speed reduced the transfer 

ratio. Depositions consisted of three vertical depositions followed by the horizontal 

Schaefer deposition (Figure 2.3). Single bilayers are fabricated by one vertical and 

one horizontal deposition. The same procedure as for the double bilayer is used. The 

depositions were monitored by calculation of transfer ratios, which is the ratio of the 

area of monolayer deposited to the surface area of substrate dipped.
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2.4.4 First deposition

The substrate is drawn up through the monolayer until it is fully out of the water. The 

first deposition is usually the most robust. Occasionally optical fringes are observed 

due to the draining of the thin layer of water between the silicon and the first 

deposited layer. The transfer ratio is normally unity regardless of the type of lipid 

used.

i t

Figure 2.3 Schematic o f first, second and third vertical depositions and final Schaefer deposition.

2.4.5 Second deposition

Best results are obtained with a wait of 20 minutes between the first and second 

deposition. This allows the monolayer to equilibrate after the first deposition. When 

the substrate is lowered back towards the monolayer it is preferable to touch the 

monolayer at the slowest possible speed (lmm/min), then stop and wait 2 minutes 

before starting the deposition at speed of 5mm/min. This allows the monolayer to 

settle after the impact. The second deposition is usually the most temperamental. 

Unlike the passive like coating style of the first and third depositions with their raised 

meniscuses, this deposition has a downward meniscus leading to the monolayer being 

compressed onto the first monolayer. It is therefore more sensitive.

Irrespective of the type of lipid used the transfer ratios of the second deposition were 

always found to be around 0.3 -  0.4. However, when fitting the lower bilayer 

generally needed a coverage of between 0.9 - 1. The low transfer ratio can be 

explained when considering the ratio of polished surface to unpolished of the 

substrate as only one face of the silicon is polished. This gives a ratio of 30% polished 

area to unpolished area. It is likely that deposition is only occurring on the polished
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side. It is likely the transfer ratios of above 30% are caused by deposition onto the 

rough sides.

2.4.6 Third deposition
It is best to allow a wait of at least 10 minutes before commencing the third 

deposition. Like the first deposition this dip involves drawing the substrate through 

and out of the monolayer. This deposition is usually an indicator of whether the 

previous two depositions are of good enough quality for reflectivity measurements. If 

they are of sufficient quality then the third deposition will give a transfer ratio of 

between 0.95 -  1 and good optical interference fringes. Interference fringes usually 

extend some distance above the meniscus, indicating that a substantial layer of water 

is being transferred along with the monolayer. This water layer thins with time to give 

the approximately 30A thin layer in the final product. Fringes are one of the best 

indications of the quality of the film. They are able to show where the monolayer is 

depositing and whether there is dirt contamination in the deposited film.

2.4.7 Schaefer deposition
The Schaefer deposition is one of the hardest and crucial steps in the fabrication. A 

bad Schaefer deposition can remove significant amounts of previous depositions 

leading to lower bilayer coverage. Two factors were found vital for successful 

deposition, namely the level of horizontality and the use of the slowest speed possible 

(20 microns/second). This was not found to be possible with the standard computer 

controlled dipper, so a novel manual dipper was developed in-house with a rigid arm 

and micron height adjuster (Figure 2.2). It also had a horizontal level adjuster.

First the monolayer of the previous deposition was removed to allow the Teflon well 

part of the neutron cell (Figure 2.4) to be placed in the well of the trough. A new 

monolayer was then spread and compressed to 40mN/m. The substrate was mounted 

on the horizontal dipper and levelled initially with a spirit level. It was then lowered 

until it was within millimetres of the monolayer, whereupon the level was checked 

again using the spirit level. The substrate was then lowered closer. As the substrate 

approaches the monolayer its reflection in the water is used to align the level. With 

the manual dipper the substrate can be brought within microns of the monolayer and
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still be adjusted. Only when the level is excellent the deposition should commence. 

The substrate is lowered at the very slow speed of approximately 2 microns per 10 

seconds or less. When the substrate makes contact with the monolayer the surface 

pressure and area very slightly increases, remaining constant afterwards. The pressure 

and area increases are thought to be caused by removal of parts of the previous 

depositions, although this is not proven. Using the increase in values the transfer 

ratios can be calculated. With the area rise, it is simply the area increase divided by 

the surface area dipped. Although the transfer ratio can be calculated from the 

pressure rise, from experience a pressure rise below 3mN/m for the 8 x 5 x 2 

substrates usually gives an excellent film. Between 5 -  lOmN/m gives a good quality, 

whilst any value above lOmN/m gives a bad coverage film. The magnitude of the area 

increase is usually similar to the magnitude of the pressure increase. The quality of the 

Schaefer deposition does seem to be linked to the type of lipid as well, as 

phosphatidylethanolamines always gave lower pressure rises than 

phosphatidylcholines.

After the Schaefer deposition the substrate should remain at the height it touched the 

water for at least 2 minutes. It should then be lowered slowly until it makes contact 

with the Teflon reservoir well. The monolayer and water should then be removed 

completely. The surface tension of the water seals the substrate and well together. The 

sample is then transferred very carefully into the neutron cell (Figure 2.4). The 

neutron cell consists of the substrate and well sandwiched in between two aluminium 

heating plates. Care should be taken when using substrates of 1 cm depth, as they are 

prone to cracking at the edges. The sample is then transferred to the reflectometer.

Aluminum cooling 
plates

Teflon well with 
lOmL reservoir

Silicon Substrate

Figure 2.4 Neutron cell. (Courtesy G. Fragneto)
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2.5 Principles of Neutron Reflectivity

2.5.1 Introduction
Neutron reflectivity is a non-destructive technique for studying structures and 

interfaces. Specular reflectivity provides composition and structural attributes 

perpendicular to plane to near angstrom precision. It can be used to measure the 

thickness of multiple layers within the sample and their roughness, composition and 

coverage. Reflectivity can be used to study air -  solid, liquid -  solid, air -  liquid, 

liquid -  liquid and solid -  solid interfaces. It is possible to study a wide variety of 

different materials, from magnetic multilayers to biological systems at the solid -  

liquid interface. Examples include the kinetic adsorption of proteins onto hydrophobic 

surfaces (Fragneto 2000a), the study the physical structure of the light-emitting 

polymers (Webster 2002), the thermal fluctuations of orientated lipid membranes by 

non-specular neutron reflectometry (Salditt 2003) and the interaction of water with 

self-assembled monolayers (Schwendel 2003). Measurements can be performed at all 

types of solid, liquid and gas interfaces (Daillant 1999), including even liquid -  liquid 

interfaces (Strutwolf2000). The requirements of the sample are a planar geometry and 

a roughness no greater than the nanometer scale. It is preferable to have sample 

surface sizes of approximately 20cm2 or more, to reduce the counting time caused by 

the low flux of neutron sources.

In a reflection experiment, the elastic scattering (specular reflection) is determined as 

a function of the momentum transfer (qz) perpendicular to the surface:

47tsin0 2%

(2.3)

where 0 is the angle of incidence and X is the wavelength of the neutrons.

In its most basic form a neutron scattering experiment consists of measuring the flux 

of scattered neutrons as a function of the momentum transfer with all of the sample’s 

detailed structure and mechanics concealed in these two parameters. The scattering is 

proportional to the chemical composition and density perpendicular to the surface,
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known as the scattering length density (SLD). Analysis of data usually involves fitting 

the reflectivity of a physical model to the experimental results, due to common phase 

problem, which arises because reflectivity depends on the square of the reflection 

coefficient, meaning that all phase information is lost (see data fitting section below). 

The structural parameters of the model are adjusted within realistic boundaries until 

the model reflectivity profile matches that of the experimental reflectivity.

2.5.2 Why use neutrons?
Neutron scattering has many advantages over other techniques such as x-rays and 

light scattering. The main advantage is that the scattering strength is not strongly 

related to the atomic number of atoms. In the case of x-rays and electrons, the 

scattering power of atoms increases in proportion to the number of electrons in the 

atom. There is no linear relationship like this present in neutrons as the scattering 

varies randomly from atom to atom. Even isotopes have substantially different 

scattering strengths. This means that neutrons are more sensitive to atoms such as 

hydrogen, carbon and nitrogen when in the presence of heavier atoms. Their presence 

is not obscured like in x-ray scattering. Neutrons are able to penetrate deep into 

samples, enabling the study of buried interfaces. They can even travel easily through 

centimetres of solid steel with only small losses due to absorption. Many analytical 

techniques of light and x-ray scattering have been applied to neutrons, such as small 

angle scattering, crystallography, and inelastic scattering.

2.5.3 Theoretical Principles
Neutron reflectivity has much in common with optical techniques, but with different 

refractive indices

2.5.4.1 Snell’s Law

Neutrons passing from one medium to another medium with a different refractive 

index maybe reflected or transmitted according to the wavelength of the radiation, the 

angle of incidence and the difference in the refractive indices of the media. The 

interaction with the interfaces is described by an incidence wave (kj), a reflected wave 

(kr) and a transmitted wave (kt) (Figure 2.5). In specular reflectivity kj is equal to kr
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momentum transfer is perpendicular to the surface as qz = kj -  kr. Thus specular 

reflectivity gives information about the sample perpendicular to the surface

F igure 2.5 Reflection and transmission o f a beam incident on an interface.

The relationship between the angle of transmitted (refracted) radiation (0r) relative to 

the angle of incident (0j) is described by Snell’s law, which for radiation passing one 

medium, 0, with a refractive index of no into a medium with a refractive index of n\ 

can be defined as

nocos 0* = nicos 0r

(2.4)

According to Snell’s law at a certain incidence angle there is no transmitted 

component and there is complete reflection of the incidence beam. This angle is 

known as the critical angle or known as the critical value when defined in q.

The ratio of refractive indices of the two media (n = no/ni) is equal to

n = 1 -  (8 -  ip)

(2.5)

The imaginary component p only occurs when the material is absorbing radiation. The 

real term is given by

>?2
S = ——Nb 

In

(2 .6)

where Nb is the scattering length density and X the wavelength. The refractive index is 

therefore related to the scattering length density by

37



Chapter 2 Fabrication. Techniques and Characterisation

21
n = \ - ——.Nb 

2 n

(2.7)

The scattering length density is a measure of how strongly the radiation interacts with 

the material and for neutrons is given by

N  =  Y.b,p, =  N ^ b ,
A

(2.8)

where bi is the neutron scattering length for the component i, with density pi and 

atomic weight A*. The scattering lengths of a range of commonly encountered 

elements are given in Table 2.1. Note the large difference in the scattering length of 

hydrogen and deuterium atoms and that the value for deuterium is higher than that of 

larger atoms like silicon.

Nucleus b (lO-4 A)
1H -0.374

2H 0.667

C 0.665

N 0.936

O 0.580

Si 0.415

P 0.513

Table 2.1 Neutron lengths o f common elements for the most ambulant isotope.

Examples of scattering length densities of components used in this study are given in 

Table 2.2. The scattering length o f the compound is simply the addition of the 

scattering length of the elements weighted by the stoichiometry.

Material b (10-4 A) SLD (1 O'® A'2)
Si 0.42 2.07

Si02 1.59 3.41

H20 -0.17 -0.56

d2o 1.91 6.35

Table 2.2 Scattering length and densities of bulk materials.
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The critical angle (0C) is related to the difference in SLD between the bulk of a 

material, and the upper phase (usually air) by

0C I ANb 
X V n

(2.9)

The value of the critical angle depends solely on the scattering length of the material 

(or more strictly the difference between the two media) and provides an excellent 

route to the determination of scattering length densities and hence the value of the 

scattering length b.

2.5.4.2 Fresnel Reflectivity

Calculation of the relative amounts of reflected to transmitted beam is calculated 

using the Fresnel equation

_ nj sin(0!) -  n2 sin(02) 
n, sin(0,) + n2 sin(02)

(2.10)

where r is the reflectance coefficient (can be imaginary), ni is the refractive index of 

medium 1, n2 is the refractive index of medium 2 ,0i is angle of the beam in medium 1 

and 02 is the refracted beam from and thus the angle of the beam in medium 2. The 

Fresnel equation can also be written in terms of wave vector of each medium, where 

k= 2n/X

r = k i - k ;  
k , + k ;

(2.11)

The reflectivity, which is real, is then given by the product of r and its complex 

conjugate

R = rr*

(2.12)
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At angles below the critical angle, all neutrons are reflected the reflectivity is unity. 

At angles above the critical angle the reflectivity falls off sharply at approximately q"4, 

which is referred to as Fresnel decay.

2.5.4.3 Surface roughness

Reflectivity is very sensitive to surface roughness on the atomic scale. Roughness 

shows up as a decrease in the reflected intensity which acts in a similar manner to a 

Debye -  Waller factor (in crystallography, the Debye -  Waller factor is applied to the 

diffracted intensity to account for the thermal displacement of atoms). Roughness 

greater than the nanometer scale is able to rapidly reduce the scattering length density 

profile to that of the background. This means that the surface of substrates have to be 

close to atom smoothness to be used in reflectivity. Silicon substrates commonly used 

in reflectivity are normally polished to a roughness of 3±2A. Great care in the 

handling and the use usually retains this very low roughness. The roughness is 

modelled using an error function, whose sigma value corresponds to the roughness 

mean squared (RMS) of the surface.

2.5.4.4 Multilayer Reflection

One way of analysing the reflectivity from samples containing one or more layers is 

to apply the method known as the matrix formulation similar to that of Bom and Wolf 

(Penfold 1994).

Reflectivity from a single film at the interface can be solved directly by calculating 

reflection coefficients for each interface using the Fresnel equation (equation 8) and 

then combining them together, taking into account the interference caused by 

reflection from the top and bottom of the thin layer

r +r e 1 
R ef = — vt- 

1 + r, .r2 .e 1

(2.14)

R = ref.ref*
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(2.13)

where ri and xi are reflectance coefficients of the two interfaces, kl is the wave vector 

in the thin film and d its thickness. The reflectivity is given by the complex conjugate. 

The effect of the interference of the reflected beam is to introduce ripples onto the 

simple Fresnel decay (figure 2.6). The period of the ripples is equal to 2n/d.

10'

1 Cl­

io-
10-
10- 0 0 .2 50 .0 5 0.1 0 .15 0.2 0 .3

q(A"j

Figure 2.6 Interference of the reflected beams from the interfaces gives rise to ripples onto the simple 

Fresnel decay. The period of the ripples is proportional to the inverse thickness o f the layers.

Roughness is brought into the calculation by multiplying each reflection coefficient 

by a Debye -  Waller factor dependent on the sigma value for each interface. When 

more layers are introduced the calculation becomes too difficult. The reflectivity is 

therefore calculated in terms of a characteristic matrix, which is a function of layer 

density and thickness. Each layer has three terms associated with it, Pj, pj and a 

roughness Oj. The first is defined in terms of the refractive index and incident angle by

?i = (n i - n 2.cos2(0)]°5

(2.15)

and p including the thickness

p' = ? - d- p'

(2.16)

where n and nj are the refractive index of air (or bulk component) and layer i, and dj is 

the layer thickness. The Fresnel reflectance, including the roughness, for each layer is 

then
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Q VP. -  P. 
r, = .e 2

P i + P i+1

and the characteristic matrix for each layer

N ,= ri-e

r. .eiPi-' e lp’“lV i

The reflectivity is then calculated by multiplying all the matrices

M = I1N,

(2.17)

(2.18)

M 0,0 .M0>0

and finally calculating an overall reflectance by R = r.r*

(2.19)
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2.6 Analysis of Reflectivity Data

2.6.1 Introduction
Specular neutron reflectivity experiments are relatively straightforward in execution 

but the data analysis and interpretation is rather more difficult. There are three main 

problems associated with the analysis. The phase problem, the low momentum 

transfer available (qz range) limiting the resolution and that an overall scattering 

length density profile is obtained from the analysis that may lead to ambiguities when 

assigning parts to individual section of the sample.

The phase problem is present in all scattering experiments. It arises because 

reflectivity depends on the square of the reflection coefficient, meaning that all phase 

information is lost (Reiss 1996). Knowledge of the phase in conjunction with the 

reflectivity is needed to obtain a unique determination of the density profile. Due to 

the phase problem a reflectivity measurement cannot usually be directly inverted to 

produce a single, unique scattering length density. Recent methods to overcome the 

phase problem have been developed (Majkrzak 1998, Aktosun 2000, Blaise 2003) but 

the most common and simplest way is to fit the reflectivity of a physical model to the 

experimental results (Lu 1996).

The available momentum transfer can be restricted by a number of factors. The main 

factor in solid-liquid samples is caused by background scattering from the liquid and 

hydrogenated components in the film. The highest qz range is usually achieved when 

deuterated water is used, whilst water contains hydrogen atoms that increase 

incoherent background scattering. In the case of the profiles of double bilayers in 

D2O, clear features are usually observed up to a maximum of 0.25A"1, whilst in H2O, 

the features are very subdued usually with a maximum of 0.15A'1.

The ambiguity associated with the overall scattering length density can be reduced by 

use of realistic structural model parameters and by using chemically identical systems 

with different scattering length profiles. The latter method, known as contrast 

variation, involves substituting parts of the system for their deuterated or partially 

deuterated counterpart. This relies on the large difference in the scattering lengths of
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hydrogen and deuterium atoms (-0.38e'14m and 0.65e',4m respectively). The simplest 

method of contrast variation is to exchange the solvent for different D2 O/H2 O ratios. 

Another ways in bilayer studies are to use freely available deuterated lipids, but they 

do not always give the same structure as their hydrogenated counterparts.

Having recorded the reflectivity from a number of different contrasts, a unique 

solution of the structure is usually obtained by simultaneously fitting them with 

similar structural parameters, but with exchanged scattering length densities.

2.6.2 M ethods o f reflectivity data analysis

2.6.2.1 Box Model

The traditional way to treat neutron reflectivity data is to create a model of the 

sample, divide it into slabs characterised by thickness, scattering length density and 

roughness (Figure 2.7).

Layer 3

Layer 2

Layer 1

Figure 2.7 In the box model approach the sample is divided into layers

The scattering length density values are assumed not to vary significantly within the 

temperature range studied. They do however vary slightly with the hydration change 

that occurs with phase transitions. The layer thickness, roughness and level of 

solvation of the bilayers are the main variable parameters. Standard minimisation 

techniques are then used to vary these parameters until its calculated reflectivity 

unambiguously matches that of the real sample. This box model technique is 

successful for simple systems such as single bilayers but deteriorates for more 

complex systems, measured to higher momentum transfer and thus higher resolution 

(Schalke 2000, Hughes 2002b). A number of different programmes are available for
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fitting the data this way. Two of the most popular are AFit (Thomas group, Oxford) 

and Parratt32 (Hahn Meitner Institut, Berlin).

2.6.2.2 Quasi-molecular approach

Recently a different method, the quasi-molecular approach (also known as distribution 

function method), has been employed to model reflectivity data of monolayers 

(Schalke 2000b) and hybrid double bilayers (Hughes 2002b). The method describes 

the bilayer fragments as distribution functions rather than slabs and was first 

developed by Wiener and White for the analysis of diffraction from multilamellar 

vesicles (Wiener 1991). A detailed account of the method applied to neutron 

reflectivity of lipid bilayers can be found in AV Hughes et al., (2002b). An overview 

will be given below.
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F igure 2.8 Each Gaussian represents the contribution of a particular molecular fragment to the overall 

SLD profile for a lipid head-group. The fragments are the choline, phospho, glycero and carbonyl.

With this method the scattering length density of the headgroups are described in 

terms of Gaussian distribution functions, where each Gaussian represents the 

contribution of a particular molecular fragment to the overall SLD profile (Figure 

2.8). The head-group is divided into 4 fragments; the choline, phospho, glycero and 

carbonyl fragments, with each assigned a separate Gaussian. The centre o f the 

Gaussian corresponds to the centre of mass of the fragment along the bilayer normal 

and the width accounting for thermal oscillations around the mean position. Its height
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is the calculated scattering length contribution of the fragment. The Gaussian 

functions may vary within molecular considerations their centre position and half­

widths along the bilayer normal representing the disorder present in bilayers. Figure 

2.9 shows an example of the scattering length profile for a lipid bilayer. The alkyl 

chain region of each lipid leaflet is assumed to be a homogeneous region and is thus 

treated as a single alkyl layer. The methyl groups at the end of each chain region have 

a lower SLD so, are dealt with a separate Gaussian. The coverage of the bilayer is 

determined by scaling between a calculated 0% and 100% coverage until it fits the 

measured reflectivity profile (Hughes 2000b). The silicon oxide layer is described by 

single slab, with its thickness determined to be between 10 -  20A (Fragneto 2000b). 

All unoccupied space in the headgroups, between the bilayers, and between the lower 

bilayer and silicon surface is assumed as occupied by water molecules. The total 

scattering length density of the sample is simply the sum of the Gaussian’s, alkyl slab 

and silicon oxide slab.
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Figure 2.9 Scattering length density of a lipid bilayer

An example of the resulting scattering length density profile for a double bilayer in 

sample in D2O is given in Figure 2.10. The profile reflects the scattering length 

density perpendicular to the surface. The silicon substrate (SLD of 2.07 x 10'6 A*2) 

can be seen on the far left, the thin water layer separating the lower bilayer from the 

substrate is seen next (6.35 x 10‘6 A'2), followed by the bilayers (headgroups 1.74 x
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10"6 A"2 and chains -0.41 x 10"6 A'2) separated by a water layer. The bulk water is on 

the far right.
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Figure 2.10 Scattering density of a double bilayer sample in D20.

The quasi-molecular approach is a more realistic representation of the bilayer 

constitution than the use of large slabs. It has successfully been used to fit synchrotron 

reflectivity of lipid monolayers to momentum transfer out to 0.8A’1, whilst box 

models were found to be rather inadequate to such momentum transfer. (Schalke 

2000a)

The total number of variable parameters can be reduced down to 9 by the reliance of 

certain parameters on others and by defining the positions of fragments relative to the 

centre of the bilayer (Hughes 2000b). This means that each bilayer is described by an 

area per molecule, a position along the bilayer normal, an overall roughness and a 

coverage value. The scattering length density of each fragment is calculated from 

atomic scattering length tables using equation (2.5) and assumed not to vary over the 

temperature range measured. The thickness of the bilayer (D b) can be obtained, as it is 

inversely proportional to the APM
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where Vl is the volume of the lipid fragment. Fragment volumes are available from 

molecular dynamics simulations and experimental results (Armen 1998). The 

thickness of the water layers was simply derived from the positions and thickness of 

the two bilayers. The silicon oxide is described by only one variable parameter, the 

thickness, as its roughness was characterised when polished and by reflectivity. It was 

found to have a RMS of 3±2A2 by AFM (ESRF optics laboratory, Grenoble and 

Charitat 1999).

The complete model was implemented in a Matlab environment, with the reflectivity 

profile calculated by use of the recursive Parratt algorithm (Parratt 1954). The 

programme calculates a range of acceptable fits from randomly starting points within 

realistic parameter boundary limits to minimise the chi-squared (x2) of the model and 

experimental profiles. The parameters are varied until %2 is unable to decrease by at 

least lOe"6.
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2.7 Application of Reflectivity to Double Bilayers

Reflectivity studies of lipid systems are a reliable and an easy way of obtaining 

composition, structure, and kinetic and dynamic changes to near A precision. 

Examples include the structural binding of divalent cations to monolayers of DMPA' 

(Schalke 2000), protein function in alkanethiol-tethered hybrid bilayer membranes 

(Plant 1999) and structural studies of polymer-cushioned lipid bilayers (Majewski 

1998). Other examples can be found in the review of neutron reflection from 

interfaces with biological and biomimetic materials (Krueger 2001).

2.7.1 Advantages
Much of the work on lipid bilayers involves samples consisting of many of bilayers, 

which are necessary to enable several orders of Bragg reflections in diffraction 

studies. Whilst this is a very useful technique and has been greatly utilised (Lemmich 

1996, Petrache 1998, Darkes 2000, Tristram-Nagle 2002), one issue is that the bilayer 

information is averaged over 100s of units, rather than being single bilayer specific 

information. Another issue is that higher quantities of biological compounds are 

needed which can be undesirable when very expensive proteins are being used. One 

of the main advantages of using neutron reflectivity on bilayers is the simplicity of 

sample needed. It can be used to study samples as thin as single monolayers on water 

to multiply stacked bilayers (Mennicke 2002). Only very small amounts of chemicals 

are needed and the sample can be contained in bulk water conditions. Another 

advantage is that it can yield information such as the modifications of bilayer induced 

by small proteins, which are too small to be seen by other techniques (Fragneto 

2000b). Double bilayer samples have been used in a range of different studies with x- 

ray and neutron reflectivity from structural behaviour to protein orientation (Chapter 

1)

2.7.2 Experimental Details
Solvent contrasts

The samples were usually measured in deuterated water, silicon-matched water 

(SMW), and 4-matched water (4MW) which has a SLD of 4 x 10"6 A"2. When 

deuterated lipids were used the sample was measured in pure water as well.
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Deuterated water has a SLD of 6.35 x lO'6 A"2. Silicon-matched water consists of the 

molar ratio of 0.38 D2O and 0.62 H2O and has a scattering length density of 

2.07 x 10*6 A'2. 4-matched water consists of the molar ratio of 0.66 D2O and 0.34 H20 

giving a SLD of 4.00 x 10-6 A'2. Ultra-pure water has a scattering length density of -  

0.56 x 10'6 A'2.

Deuterated water gives no incoherent scattering and has a critical edge of ~ 0.014A'1. 

Reflectivity profiles in D2O usually have large well-defined features. Silicon matched 

water usually has a higher background scattering from the incoherent scattering of the 

water present. It is not possible to see any critical edge, as there is no difference in the 

SLD of the two bulk mediums.

Contrast exchange procedure

The samples were usually fabricated in pure water. For accurate alignment of the 

sample it is better to exchange the solvent to D2O. The Teflon well has two inlets for 

contrast exchange. Different types of techniques were evaluated. As the films are 

robust, it was found that the best and quickest way was to use a syringe with tubing 

protruding into the well. The capacity of Teflon well is approximately lOmL, so 

usually at least 60mL of solvent was pumped through at a rate of approximately lOmL 

per minute. In the case of exchanging the solvent for D2O the position of the critical 

angle (0C) can be used to check whether it has been fully exchanged.
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2.8 Double Bilayer Parameters

dw -  thickness of water layer separating lower bilayer from substrate

lDb -  total thickness of lower bilayer

lDc -  thickness of chain region of lower bilayer

1APM -  average area per molecule of lower bilayer component

IRou -  average roughness of lower bilayer

ICov -  coverage of lower bilayer

Dw -  thickness of water layer separating the two bilayers

uDb -  total thickness of upper bilayer

uDc -  thickness of chain region of upper bilayer

uAPM -  average area per molecule of upper bilayer component

uRou -  average roughness of upper bilayer

uCov -  coverage of upper bilayer
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2.9 The D17 Reflectometer at Institut Laue-Langevin
The measurements were performed on the high flux reflectometer D17 (Cubitt 2002) 

at the Institut Laue-Langevin, France, in time of flight mode (Figure 2.11). The basic 

features of a reflectometer is a radiation source (nuclear or spallation source), 

collimation and monochromators, the sample and the detection system. The main 

requirements for a reflectometer are high flux, flexible resolution, accurate 

collimation and precision neutron detection. D17 has all of these properties. The D17 

reflectometer has the highest white beam flux at the sample position in the ILL of 9.6 

x 109 n/s/cm 2 provided by the super-mirror-coated guide. The instrument has two 

modes of operation, time-of-flight (where the reflectivity is measured at a fixed angle 

and a pulsed wavelength band) and monochromatic (whether the wavelength is fixed 

and the angle varied), with the latter incorporating the polarised-neutron option.

The time-of-flight mode is realized by a double chopper system with variable phase 

and separation, giving a useful wavelength range of 2-20A. The values of q are 

determined from the time of arrival of each neutron as a function of its wavelength. 

The advantage of time of flight mode is that it offers a greater flexibility of resolution 

and enables certain experiments like dynamics or fixed geometry to be carried out as 

an entire order of magnitude in q can be measured simultaneously in less than a 

minute. Time of flight mode is less efficient than the monochromatic mode in terms 

of the flux available at each q point as the flux at the extremes of usable wavelengths 

are much lower than the peak flux used in the monochromatic mode.

There are two options for the monochromic mode; one is a Fe/Si multilayer for 

polarised neutrons working at 6A, the other a Ni/Ti multilayer producing a non­

polarised beam at 5A. Both have a resolution of 5%. Changing between time-of-flight 

and monochromatic modes of operation takes approximately 15 minutes so it is 

possible to utilise both modes in one experiment if required. The monochromatic 

beam is far easier for magnetic experiments (no q-dependent polarization efficiency).

Beam collimation is achieved by two slits before and after the super-mirror focusing 

guide. Background from the solvent in the sample usually limited the useful q-range 

to 0.25 A'1. The large multi-detector is 250 x 500mm of the Helium 3 type and allows
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the simultaneous measurement of background and off-specular scattering. The 

detector (3He type) can be translated from 3.4 to lm  from the sample position

DOUBLE CHOPPERS

D1 7 SIDE VIEW TOF MODE

COLLIM ATIO N s l it s
MULTI-DETECTO R

SAMPLE

— —  —  -
F O C U S IN G  SU PE R M IR R O R  G U ID E  1 I

E VA CUATED DETECTOR TUBE

I

1 100-3400mm

F igure 2.11 Image and schematic of the D17 Reflectometer at the Institut Laue-Langevein. (<Courtesy 

ofR. Cubitt)

D17 settings for Double bilayer measurements

The reflectivity of the double bilayer was measured at two angles (typically 0.7° and 

4°) in time of flight mode. The first angle (ai) had a chopper opening of 1.4 and slit 

openings of 0.8mm. The second angle (a2 ) had a chopper opening of 5 and slit 

openings of 3.2mm. These chopper settings gave a spread of wavelengths between 2A 

and 20A.

The useful q range for double bilayers samples is 0.007 to 0.25 A’1, which was usually 

measured in 2 hours. Fast scans of only the first angle (q range 0.007 -  0.09) can be 

measured in 20 minutes.
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2.9.1 D17 Data treatment

Background substitution

At high values of q the specular reflectivity is very small and the background 

scattering high. The source of this background scattering is related to the sample 

composition, sample environment and components of the reflectometer. The 

background substitution needs to be subtracted from the reflectivity profile. On D17 

the background is usually subtracted by taking a mean of the strip either side of the 

specular scattering on the detector image and subtracting it. It is usually only 

necessary to fit the background if it is not very flat, but usually after dividing by the 

water (which measured for detector efficiency) it is flat.

Data collection

The D17 detector efficiency is tested by measuring the scattering from a cell 

containing water. Since the value of the scattering of water is known at each position 

of the detector, the measurements can then be corrected for any inefficiency.

The intensity o f the neutron beam passing through the silicon block is measured in 

order to normalise the intensity of the reflected beam. The intensity is different from 

that of the incident beam by a factor related to loss of intensity from wide angle 

scattering or adsorption of neutrons by the solid substrate.

Once the sample is in place the sample is aligned in order to ensure that the neutron 

beam strikes exactly at the interface and not in the solid or liquid phases. This is 

simply done by scanning the position of around the interface until the highest 

reflectivity is measured. In a normal double bilayer experiment on the D17 

reflectometer, the reflectivity is usually measured in time of flight mode at two angles. 

The angle is changed to obtain higher reflectivity at higher q. The reflectivity 

collected at the two angles is then joined to form the overall reflectivity profile. The 

measurement of the sample reflectivity is usually highly automated with the use of 

command files to enable temperature scan measurements. The alignment should be 

checked approximately every 20°C to account for any swelling of the Teflon well. It 

is not necessary to check the alignment after the solvent has been changed.
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3. Phase behaviour of dipalmitoylphosphatidylcholine 

double bilayers containing low amounts of cholesterol

3.1 Abstract
The phase behaviour of double bilayers containing different concentrations of 

cholesterol and DPPC (l,2-dipalmitoyl-sn-glycero-3-phosphocholine) was 

investigated by specular neutron reflectivity. The aim of the study was to assess the 

fabrication, stability and phase behaviour to assess their viability as biomembrane 

mimics. Fabrication of DPPC double bilayers with 0 - 1 0  mol% of cholesterol was 

investigated, especially with regards to very low concentrations ( 1 - 4  mol%), which 

are not possible via vesicle adsorption methods {personal comms. Mouritsen, 

University o f Southern Denmark). Phosphatidylcholine vesicles containing very low 

amounts of cholesterol exhibit interesting structural phenomena near the main fluid -  

gel phase transition (Lemmich 1997), the reasons for which are still not fully 

understood.

Double bilayers of phosphatidylcholine have been observed to exhibit large swelling 

during the transition temperature range (Fragneto 2003). It is thought that the 

behaviour is connected. It was hoped that the addition of cholesterol to these double 

bilayers would also contribute to understanding the phenomena.

The fabrication and phase behaviour of double and single bilayers containing both 

hydrogenated chain DPPC and deuterated chain DPPC with cholesterol was also 

investigated. The aim was to develop a range of different deuterated versions, which 

were stable and exhibit full phase behaviour. This would aid greatly in biomembrane 

mimic studies as deuterated layers aid resolution of the structures and can be used to 

essentially highlight components in the bilayer.
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3.2 Introduction
Cholesterol is one of the most important compounds in biological membranes. It has 

been found to regulate the fluidity of membranes, increasing the fluidity at low 

temperatures and reducing it at high temperatures (Yeagle 1986). The concentration 

varies from cell to cell. It is equimolar with phospholipids in membranes of the liver 

cells, erythrocytes and myelin while in the outermost layer of human epidermis it 

represents about 30 mol% of the lipid fraction. The ability of cholesterol to modulate 

the fluidity of membranes seems to be important in many biological processes, for 

example in cell fusion (Nakanishi 2001). It has also recently been found to influence 

the phase behaviour of lipid bilayers as a function of its concentration (Lemmich 

1997). Cholesterol is oriented in the membrane such that its axis lies parallel to the 

lipid chains. This increases the order of the lipids in their upper part while decreases 

the packing constraints at the terminal methyl groups. The structure of cholesterol 

containing membranes has been probed by neutron and x-rays diffraction and small 

angle scattering (Wiener 1991, Knoll 1985, Mortensen 1988) using stacked bilayers 

and multilamellar systems. However the accurate vertical location in the membrane 

is still controversial (Leonard 2001).

The phase diagram of phospholipid bilayers has received much attention in the last 

decades and most of the work has concentrated on the three common phases, the gel 

(Lp>), ripple (PpO and fluid (La). While in the gel and ripple phases the acyl chains are 

conformationally ordered, in the fluid phase they are disordered. The incorporation 

of cholesterol into the phospholipid membrane usually broadens or eliminates the gel 

to liquid-crystalline (La) phase transition; it increases the orientational ordering of 

the hydrocarbons in the La phase of bilayers while decreasing it in the gel phase. At 

high concentrations it stabilises a liquid ordered (10) phase which is fluid from the 

point of view of lateral disorder and diffusion but at the same time the acyl chains in 

this phase have a high degree of conformational order (Vist 1990). The 10 phase is 

characterised by increased bilayer thickness and area compressibility modulus 

(Needham 1988; Trouard 1999). At low concentrations the molecule becomes 

interfacially active and promotes the formation of lipid domains (Mouritsen 1994). 

Phase behaviour studies have been classically carried out on either multilamellar 

phases or stacked bilayers.
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Double bilayers of the phosphatidylcholine DPPC have been previously found to 

swell during the transition region (Fragneto 2001), which is likely due to the unique 

floating bilayer structure of this system. The results were interpreted in terms of a 

competition between the inter-bilayer potential and the membrane fluctuations and 

were used to estimate the bending rigidity of the bilayer. The large swelling of the 

floating bilayer around the main phase transition temperature was found to 

correspond to a minimum of the bending modulus in that region (Mecke 2003). It is 

not known if this is connected to the ripple phase observed in vesicles or is a 

particular behaviour of the double bilayer system.

In this chapter the effect of a range of different cholesterol molar ratios upon the 

phase behaviour of double bilayers of DPPC will be given (Figure 3.1). DPPC was 

chosen because of the abundant structural data and molecular dynamics simulations 

existing in literature, so is useful to validate the results. The aim was to characterise 

the full phase behaviour upon heating and cooling. It was found that the phase 

behaviour of pure DPPC double bilayers differs remarkably depending on whether 

the sample is being heated or cooled and the behaviour was found to be entirely 

reproducible during repeated temperature scans. This was also found to be the case 

for some of the concentrations of cholesterol. The full phase behaviour of DPPC will 

be given, followed by phase behaviour of very low amounts of cholesterol ( 1 - 4  

mol% cholesterol) and then low amounts of cholesterol ( 6 - 1 0  mol% cholesterol). 

Unfortunately it was not possible to fabricate the biologically relevant concentration 

of 20 mol% cholesterol with DPPC. This range of cholesterol concentrations were 

chosen due to their effect on the phase equilibria (Vist 1990) and their effect on the 

phase transition behaviour (Lemmich 1997).

o

e

o

o
H

Figure 3.1 Chemical structures of DPPC (left) and cholesterol (right).
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3.3 Fabrication Results

The fabrication of double bilayers containing ratios of cholesterol between 0 - 2 0  

mol% was evaluated. The monolayers and depositions were fabricated according to 

the method detailed in the fabrication chapter. Monolayers of DPPC and cholesterol 

have been extensively studied in the past (McPhillips 1972, Yeagle 1985, McConnell 

2003), so only the deposition results are given.

3.3.1 Depositions
DPPC with deuterated chains (d62-DPPC) needs mild heating to dissolve in 

chloroform, whilst the hydrogenated version readily dissolves in cold chloroform. 

The transfer ratios and Schaefer deposition parameters are listed in Table 3.1.

Cholesterol ratio (mol%) Tr1 Tr2 Tr3
Schaefer Deposition 

P ressure Area

0 1.04 0.43 1.00 7 5

0.5 1.01 0.37 0.99 9 6

1 1.01 0.37 1.00 7 5

2 1.02 0.34 1.01 8 5

4 1.00 0.21 0.98 16 13

6 1.04 0.50 1.05 8 6

8 1.03 0.29 1.07 6

10 1.10 0.27 1.08 5 3

20

d-DPPC 0 mol% 1.07 0.14 1.06 10 5

d-DPPC 10 mol% 1.11 0.27 1.09 20 10

h-DPPC 10 mol% single 1.11 12 9

d-DPPC 10 mol% single 1.07 7 4

Table 3.1 Average transfer ratios of DPPC with different molar ratios o f cholesterol. Pressure is in 

mN/m and Area in cm2. The ratios 0 - 2 0  mol% are with h-DPPC. Single denotes single bilayer.

No trend was observed in the transfer ratio versus cholesterol concentration. The 

transfer ratios of the first and third depositions were close to unity for all ratios, 

whilst the second deposition was consistently found to give a value below 0.5. It is 

likely that the monolayer is only transferring well onto the Angstrom roughness 

polished side (29% of the overall surface area), as when the reflectivity was fitted,
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high coverage of the upper bilayer was always necessary for a good fit. Another 

indication of the quality of the deposition can be obtained from the optical fringes 

observed during the third deposition. Good depositions generally give straight fringes 

across the block. The presence of dirt or contamination is easily observable in the 

fringes.

All Schaefer depositions were good except for the 4 mol% of cholesterol sample 

which was higher as the block touched the sub phase at a higher speed than the 

others. It was therefore expected that the coverage o f the upper bilayer would be 

lower for this sample.

The results show that it is possible to fabricate double bilayers containing very low 

amounts of cholesterol (0.5 -  2 mol%). This is a useful result as it is not possible to 

fabricate double bilayers containing very low amounts of cholesterol by vesicle 

adsorption {personal communications with Mouritsen group, University o f Southern 

Denmark).

It was not possible to deposit 20 mol% cholesterol and DPPC. It likely that the 

cholesterol and DPPC are separating into domains, causing a heterogeneous 

monolayer that does not deposit well. The formation of rafts of cholesterol in 

membranes is a well-known phenomenon (Simons 1997, Subczynski 2003).

The deuterated samples generally gave bad transfer ratios for the second deposition. 

The first and third depositions were comparable to their hydrogenated counterparts. 

The addition of 10 mol% increased the second transfer ratio.
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3.4 Modelling of DPPC -  cholesterol Neutron Reflectivity

The reflectivity of the samples containing 0 -4  mol% was fitted using the layered 

model approach of the AFit programme due to the large behaviour (and suspected 

coexistence of two structures) observed upon cooling at transition phase 

temperatures. The samples containing 6 and 10 mol% were fitted using the quasi- 

molecular approach. Single bilayer data was fitted using the layered model approach.

The initial scattering lengths densities (SLD) used in the layered model approach are 

given in Table 3.2.

Material SLD (10-* A2)
Si 2.07

to o ro 3.41
H20 -0.56
d2o 6.35

Palmitoyl chain 0% H62: Gel -0.41
Fluid -0.32

Deuterated Palmitoyl chain C30 D62: Gel 7.66
PC head-group Ci0H18O8PN 2.66

Cholesterol 0.22

Table 3.2 Scattering length densities used in DPPC and cholesterol bilayers. All values are from 

Fragneto (2000) except cholesterol from Deme (1997). The fluid phase chain value is calculated using 

volume of 1000A3, whilst gel used 800A3.

The low amounts of cholesterol of this study generally have little or no effect on the 

scattering length density of the chain region. Even the presence of 10% cholesterol 

only reduces the SLD of the chain region from -0.41 x 10'6A'2 to -0.36 x 10"6A'2. An 

increase in the SLD of 0.05 x 10'6A'2 has practically no effect on the fit.
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3.5 Phase behaviour of DPPC double bilayers

3.5.1 Introduction
The reflectivity of the DPPC double bilayer was measured in D20  at various 

temperatures between 25°C and 48°C and down to 27°C. The thickness and 

roughness of the oxide was found to be a 8±1 A and 3±1 A respectively.

3.5.2 Gel Phase Structure

The reflectivity was measured initially in the gel phase temperatures of 25°C and 

33°C, and then at 27.1°C after cooling down from the fluid phase. The fitted profiles 

are shown in Figure 3.2, with the parameters listed in Table 3.3.

2E

1.E-07

1.E-10

0 01 0 0 6 0  11 016 0.21 0.28

q (A’)

Figure 3.2 Fitted profiles o f DPPC double bilayer at 25°C (♦ )  and 33°C (A), and 27.1°C after cooling 

from fluid phase (□).

dw IDb IDc IAPM IRou ICov Dw uDb uDc uAPM uRou uCov

25.0°C 12±1 50±2 35±1 46±2 3±1 100±2 27±1 49±2 34±1 47±2 5 ±2 93±4

33.0°C 12±1 50±2 35±1 46±2 3±1 100±2 29±1 49±2 34±1 47±2 5 ±2 92±4

27.1 °C 12±1 50±2 35 ±1 46±2 3±1 100±2 29±1 49±2 34±1 47±2 9±2 80±4

Table 3.3 Fitted parameters o f DPPC double bilayer at 25°C and 33°C, and then 27.1°C after cooling 

from fluid phase.
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The upper and lower bilayers had similar thickness and roughness, but had different 

coverages, with the upper bilayer having a lower coverage. The difference was likely 

due to the use of the Schaefer deposition for the upper bilayer.

The gel structure after cooling from the fluid phase was similar to the initial 

structures, apart from its coverage and upper bilayer roughness. When the bilayers 

are heated to the fluid phase their coverage usually increases and then contracts when 

cooled back to the gel phase. The difference in coverages could be due to an 

annealing of the chains upon cooling from the fluid phase. The behaviour was also 

observed in the majority of the cholesterol containing samples.

The gel phase APM of the DPPC double bilayer of 47±2A2 was the same as the well 

defined value for vesicles of 47.9A2 (Nagle 2000). The thicknesses of the chain 

regions were also very similar to vesicle values of 35A (Wiener 1989) and 34A 

(Nagle 1996). They were slightly higher than those of adsorbed bilayers on silicon of 

32A (Koenig 1996), but were similar to deposited monolayers, which had a thickness 

of 22±4A per leaflet including the head-groups (Kim 2001). The outer bilayer was 

therefore structurally similar to vesicles in solution and other deposited systems.

As the APM are similar to those of the vesicles, it is likely then that the chains are 

tilted like those in the vesicles (Baneijee 2002). Using a value of 41A for the 

extended length of the acyl part of the DPPC bilayer (32 carbon atoms) and the chain 

region thicknesses, the upper bilayer had a chain tilt of 34° relative to the bilayer 

normal. The lower bilayer had a chain tilt of 31°. These were similar to those of 

literature, which vary around 30° (McIntosh 1980, Smith 1988, Sun 1994).

The three Langmuir-Blodgett depositions were deposited using monolayers with 

49±lA2 and the Schaefer at 48±lA2. The bilayers had very similar APM to these. 

The structure o f the monolayer is therefore not perturbed on deposition.
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3.5.3 Fluid phase Behaviour

The reflectivity of the sample was measured at fluid phase temperatures between 

41.8°C to 48.9°C and upon cooling back to 42.7°C. The fitted profiles at 41.9°C, 

48.9°C and 42.7°C are shown in Figure 3.3 and the parameters listed in Table 3.4.
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Figure 3.3 Fits o f the reflectivity profiles of DPPC double bilayer at 41.9°C (♦ ), 48.9°C (A) and 

42.7°C (□).

dw IDb IDc IAPM IRou ICov Dw uDb uDc uAPM uRou uCov

25.0°C 12±1 50 ±2 35±1 46±2 3±1 100±2 27±1 49±2 34±1 47 ±2 5±2 93±4

41.9°C 12±1 47 ±2 35±1 46±2 3±1 100±2 32±1 44±2 30±1 53 ±2 7±2 100 ±2

42.7°C 13±1 48±2 35±1 46±2 3±1 100±2 31 ±1 43±2 29±1 55±2 6±2 100 ±2

44.4°C 13±1 44 ±2 34±1 47±2 3±1 100±2 31 ±1 43±2 28±1 57 ±2 6±2 100 ±2

48.9°C 12±1 42±2 31 ±1 52±2 3±1 100±2 33±1 42±2 30±1 55±2 8±2 100 ±2

44.4°C 13±1 44±2 34±1 47±2 3±1 100±2 31 ±1 43±2 28±1 57 ±2 6 ±2 100±2

42.7°C 14±1 45±2 35±1 46±2 4±1 100±2 31 ±1 44±2 30±1 53 ±2 8 ±2 100 ±2

Table 3.4 Fitted parameters of fluid phase temperature DPPC double bilayer with increasing and 

decreasing temperature.

The upper bilayer exhibited parameters consistent with a fluid phase structure over 

the whole fluid phase temperature range. The transition to the fluid phase occurred 

between 40.3°C -  41.8°C, which was very close to that of 41.8°C of DPPC vesicles 

in solution (Racansky 1987). The lower bilayer however did not become fluid until 

48.8°C. The lower bilayer therefore needed a temperature of 7°C higher than that of
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the upper bilayer and of vesicles to become fluid. Similar behaviour was observed in 

DSPC double bilayers where a temperature of 10°C higher was needed for the lower 

bilayer to become fluid (Fragneto 2001). The likely reason for the difference in 

behaviour is that it is caused by a higher substrate restraining effect on the lower 

bilayer compared to the upper. Upon reducing the temperature to 44.4°C the lower 

bilayer returned to a gel like structure with parameters similar to the previous 44.4°C 

showing that the transition is completely reversible.

In literature the fluid phase APM of DPPC has a wide spread of values ranging from 

56 -  72A2 (Nagle 2000). This is partly due to the presence of fluctuations in the 

bilayers and variations from the analytical method and sample type used. The APM 

of 57±3A2 lied within the range, whilst the lower bilayer value of 52A2 was just 

below the range. The thicknesses of the chain regions were similar to those of 

literature, where adsorbed bilayer thicknesses were 28A (Koenig 1996), 

multilamellar vesicles 26A (Lewis 1983) and 29A (Nagle 1996) and unilamellar 

vesicles 26A (Tristram-Nagle 1993).

The roughness of the upper bilayer increased slightly by 3A, whereas the lower 

remained constant. The main water layer increased in thickness by 4 -  6A. It then 

decreased back to 29A when cooled to 25 °C. This behaviour was not observed in any 

of the other samples, and it is unclear why it occurred. The upper bilayer coverage 

increased by 7% as expected from an increase in APM and is identical to the increase 

seen in OTS supported DMPC bilayers (Hughes 2002b).
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3.5.4 Transition Phase B ehaviour

The sample exhibited transitional behaviour upon heating between 35.9°C to 40.3°C 

and upon cooling between 39.9°C to 35.7°C. Different behaviour was observed 

depending on the direction of the gel -  fluid phase change.

3.5.4.1 Behaviour between 35.9°C to 40.3°C 

Three representative fits are shown in Figure 3.4 and the parameters are listed in 

Table 3.5, along with the gel phase 25°C and fluid phase 48.9°C.
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Figure 3.4 Fits of the reflectivity profiles of DPPC double bilayer at 35.9°C (♦ ), 37.7°C (A) and 

39.5°C (□).

dw IDb IDc IAPM IRou ICov Dw uDb uDc uAPM uRou uCov

25.0°C 12±1 50±2 35±1 46±2 3±1 100 ±2 27±1 49±2 34±1 47±2 5 ±2 93±4

35.9°C 12±1 50±2 35±1 46±2 3±1 100±2 34±1 48±2 34±1 47±2 11±2 84±2

37.7°C 13±1 50±2 38±1 42 ±2 3±1 100 ±2 40±1 47 ±2 35±1 46±2 15±2 75±2

38.5°C 14±1 49±2 38±1 42±2 3±1 100±2 43±1 45±2 34±1 47 ±2 14±2 73±2

39.5°C 14±1 49±2 38±1 42±2 3±1 100±2 42±1 45±2 34±1 47±2 14±2 73±2

40.3°C 14±1 49±2 38±1 42±2 3±1 100±2 42±1 45±2 34±1 47±2 14±2 74±2

44.4°C 13±1 44 ±2 34±1 47±2 3±1 100±2 31 ±1 43±2 28±1 57 ±2 6 ±2 100±2

48.9°C 12±1 42±2 31 ±1 52±2 3±1 100±2 33±1 42±2 30±1 55±2 8 ±2 100±2

Table 3.5 Fitted parameters of transition phase region structures o f DPPC double bilayer. The gel 

phase 25.0°C and fluid phase 44.4°C are given for comparison.
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The structure o f the lower bilayer and lower water layer retained a constant gel 

structure throughout the transitional temperature region. The thickness of the upper 

bilayer chain region also retained a gel phase thickness throughout, although the 

head-groups became slightly thinner, reducing the overall thickness of the bilayer. 

The main structural changes were increases in the thickness of the main water layer, 

in the roughness of the water layer -  bilayer interface, in the solvation of the bilayer 

and in the bilayer roughness. The variation of these parameters between 25°C -  

48.9°C are shown in Figure 3.5 and the maximum increases relative to the gel phase 

are listed in Table 3.6.

15

25.0 30.0 35.0 40.0 45.0 50.0
Temperature (°C)

F igure 3 .5  U pper b ilayer and D w  param eters vs. tem perature o f  D PPC  double bilayer. T hickness 

m ain w ater layer (p ink), roughness o f  w ater -  b ilayer interface (yellow ), solvation o f  upper b ilayer 

(green) and the average upper b ilayer roughness (blue).

Gel value (25°C) Maximum transition 
phase value Maximum increase

Water layer thickness 27k 43A 16A

Water layer rougness 3k 9A 6A

Upper bilayer rougness 5k 15A 10A

Solvation of upper bilayer 7% 27% 20%

T able 3 .6  C om parison  o f  gel va lues and  m axim um  transition  values o f  D PPC double  bilayer.
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The water layer increased by a half its size and the roughness tripled in size. The 

bilayer roughness also tripled in size. DPPC vesicles exhibit pre-transitional 

behaviour starting at 35.7°C, which continues until the chain melting transition Tm of 

41.8°C (Racansky 1987). Transition behaviour in the double bilayer matched this 

temperature range.

From the change in the parameters and the range of temperature over which they 

occurred, it is likely that the upper bilayer is displaying a ripple structure.

Interpretation of Behaviour

There is a striking similarity present between the upper bilayer roughness parameter 

value and literature values for the ripple amplitude of DPPC bilayers. The Mouritsen 

group measured the ripple amplitude of mica supported DPPC double bilayers 

formed by the adsorption of small unilamellar vesicles using AFM (Kaasgaard 

2003). They estimated that the minimum value of the amplitude upon heating was 

12A. The roughness parameter of the upper bilayer of was determined to be 15A by 

reflectivity. The similarities suggest that the roughness parameter is proportional to 

the amplitude of the ripple amplitude of the upper bilayer. The validity of this 

argument is whether the direct measurement of the ripple amplitude by AFM is the 

same as the roughness modelled in reflectivity using error functions. This needs 

considerably more work, which is beyond the scope o f this thesis.

Another factor that needs to be considered concerning the upper bilayer roughness 

parameter is the wavelength of the ripple. Literature values for the ripple wavelength 

are well defined, with values normally between 100 -  150A depending on the system 

(Woodward 1996 and references therein). The most recent measurement for DPPC 

was 150A by the AFM measurements of Mouritsen group (Kaasgaard 2003). As the 

wavelength size is large compared to the ripple and the thickness of the bilayer itself, 

the periodicity would not be expected to significantly contribute to the roughness 

parameter. Changes in the roughness parameter would be expected to be 

predominantly determined by changes in the amplitude.
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The increase in the solvation parameter of the upper bilayer is expected to occur for a 

dynamic rippling structure. This does not necessarily mean that the actual solvation 

of the bilayer has increased, only that there is increased solvent in the modelled layer 

due to the undulation nature of the bilayer.

In other systems the properties of the ripple phase is thought to progressively 

increase or decrease when changing temperature. This behaviour is not clear though, 

as the ripple periodicity of DMPC multilamellar vesicles was observed to decrease 

upon increasing the temperature (Matuoka 1990); whilst in other studies it did not 

change with temperature (Woodward 1996). In the latter study the ripple amplitude 

was observed to decrease upon decreasing temperature, becoming almost zero at the 

pre-transition temperature. Here however the behaviour varied with increasing 

temperature, with the parameters initially increasing, then remaining constant 

between 38.5°C to 40.3°C and then decreasing when approaching the transition 

temperature. This non-linear behaviour versus temperature was observed in all 

samples up to 10 mol% cholesterol. If the upper bilayer roughness and increase in the 

water layer are directly proportionally to the ripple structure, then the double bilayers 

is therefore behaving differently to that of vesicles.

3.5.4.2 Behaviour between 39.9°C -  35.8°C

It was not possible to fit the profiles using only one model. The profile shape 

changed remarkably upon cooling in the transition phase compared to the fluid phase 

profile. Figure 3.6 shows a comparison of the profiles at 42.7°C in the fluid phase 

and 37.3°C in the transition phase. The shape and position of the first fringe has 

dramatically changed. It is possible that the first fringe actually consists of two 

separate fringes from reflectivity from two coexisting structures (this is clearer in the 

1 - 4  mol% profiles). The shift in the position of the first minimum to a lower q 

value indicates that the sample has become thicker, as its position in the gel and fluid 

phases is proportional to the overall sample thickness (Fragneto 2001). The sample 

can only become thicker by an increase in the thickness of the water layer or by an 

increase in the roughness of the upper bilayer, as the lower bilayer is usually static 

during the transition phase. Indeed the profile indicates that the lower bilayer has not
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changed, as the second fringe is sensitive to the structure of the lower bilayer 

(Fragneto 2001); both profiles have the same second fringe structure at the fluid and 

transition temperature.

q (A1)
F igure 3 .6  Comparison of the profiles at 42.7°C in the fluid phase (blue) and 37.3°C in the transition 

phase (red).

In multilamellar vesicles studies, the behaviour upon cooling in the transition phase 

has also been observed to be different from that observed upon heating (Matuoka 

1993, Katsaras 2000). Upon heating, the ripple structure consisted of a population of 

asymmetric ripples with a short wavelength of 150A and amplitude of 12A. Upon 

cooling, coexistence of short and long ripple phases occurred. The short wavelength 

was similar to that present upon heating, whilst the long wavelength had almost 

double the wavelength of the short ripple phase. The Mouritsen group measured the 

minimum amplitude of the larger ripples as > 50A and wavelength of 280A of mica 

supported DPPC double bilayers (Kaasgaard 2003). The d spacing was also observed 

to be 14A thicker upon cooling. The DPPC sample used was almost identical to the 

sample here, except that the double bilayer was fabricated using the vesicle 

adsorption method and was upon mica. The behaviour o f that sample and the sample 

here would therefore be expected to be very similar, if not identical, despite the use 

of different fabrication methods.

£

0 26
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Fitting of profiles using two ripple models

The first fringe in the profiles of all the samples containing 0 - 4  mol% cholesterol 

appeared to consist of two superimposed fringes. The presence of the second bump 

on the first fringe is important and should not be ignored by the fit.

Figure 3.7 shows the profile measured at 37.3°C overlaid with the fit of heating to 

37.7°C profile. The overlay clearly shows that the profile consists of part of that 

structure that was exhibited upon heating. The presence of a similar ripple structure 

to that observed in heating agrees with the behaviour observed by other techniques 

(Kaasgaard 2003). It is quite possible that the other features of the profile are caused 

by the presence of large amplitude ripples observed by the Mouritsen group.

E

q(A-1)

Figure 3 .7  Reflectivity profile o f cooling down to 37.3°C of DPPC double bilayer. Superimposed is 

the fit at 37.7°C upon heating.

One possible method of fitting the profiles is based on this expected co-existing 

ripple structures. The use of two separate models was evaluated. The reflectivity 

from two models was therefore used to fit different parts of the profile (it must be 

stated that this is not necessarily valid, further theoretical work is necessary). One 

model had an upper bilayer roughness and attributes similar to that exhibited upon 

heating in the transition phase. The other model had a much higher roughness, which
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mimicked the large ripple structure observed by the Mouritsen group. Figure 3.8, 3.9 

and 3.10 show the best fits of the profiles measured at 39.9°C, 37.3°C and 35.7°C 

using the separate reflectivity from the two ripple models. The green fits are the 

smaller ripple model and the red the large ripple phase model. It can be seen that 

when the two fits are overlaid on the profile they are able to account for all the 

features of the profile. The large ripple model fits the lower q features of the first 

fringe, whilst the smaller ripple model the higher q features. The fitted parameters of 

the models at the different temperatures are listed in Table 3.7.

1 E * 0 0
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q (A’1)

F igure 3 .8  DPPC double bilayer profile upon cooling down to 39.9°C fitted using two ripple models. 

The green line is the small ripple phase, the red the large ripple phase.
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Figure 3.9 DPPC double bilayer profile upon cooling down to 37.3°C fitted using two ripple models. 

The green line is the small ripple phase, the red the large ripple phase.
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Figure 3 .10  DPPC double bilayer profile upon cooling down to 35.7°C fitted using two ripple models. 

The green line is the small ripple phase, the red the large ripple phase.
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dw IDb IDc IAPM IRou ICov Dw uDb uDc uAPM uRou uCov

39.9°C
small

large

18±1

18±1

47±2

49±2

37±1

38±1

43±2

42±2

4±1

5±1

96±2

100±2

39±1

46±1

48±2

47±2

34±1

34±1

47±2

47±2

16±2

50±2

63±4 

58 ±4

37.3°C
small

large

18±1

18±1

49±2

49±2

38±1

38±1

42±2

42±2

3±1

5±1

100±2

100±2

41 ±1 

44±1

44±2

45±2

34±1

34±1

47±2

47±2

16±2

52±2

55±4

56±4

35.7°C
small

large

18±1

18±1

48±2

49±2

37±1

38±1

43±2

42±2

4±1

4±1

100±2

100±2

40±1

42±1

45±2

46±2

34±1

34±1

47±2

47±2

15±2

47±2

57±4

56±4

Table 3.7 Fitted parameters upon cooling DPPC double bilayer in transition phase. Two models were 

used to fit the profiles, a small ripple model and a large ripple model

Is the superimposition of two models justified?

The fact that it is possible to obtain good fits by the use of two models and obtain 

behaviour similar to those obtained on a very similar sample, seems to suggest that 

the use of two models is a possible way of interpreting the reflectivity data. However 

it is unlikely that the solution is as simple as just overlaying the two fits. It is more 

likely that a scaled average of the two fits is necessary. There could also be other 

issues to consider. The question is how the two sets of reflectivity should be 

combined? This is the crux of the problem, and determines whether the parameters 

given in Table 3.7 are valid. If the ripples in the sample were actually separate 

domains of small ripples and larger ripples, with domain sizes larger than the neutron 

coherence length, then it would be expected that the overall reflectivity of the profile 

would be a measured average of the reflectivity from the two types of domains. For 

example, if the ratio of large ripples to small ripples were 1:1, one would then 

multiply each fit by a half, and then sum to give the overall fit. This is shown in 

Figure 3.11 for the profile at 37.3°C. As expected, it can be seen that the ratio 

method is unable to fit satisfactory any of the features of the profile. If the ratio is 

increased in favour of one of the models then the fit decreases for the other features 

taken into account by the other model. The only way for this ratio method to work 

successfully would be for the two models to be fitted so that they are above the 

features of the profile, and then scaled down to the profile by the ratios. This is 

simply not a viable method of fitting and it increases the uncertainty by inclusion of 

an unknown ratio factor.
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It is unlikely however that the two ripple structures exist as large domains. In the 

AFM studies of the Mouritsen group on DPPC double bilayers they found that large 

ripples coexisted within small ripple domains (Kaasgaard 2003). The domains were 

not homogeneous.

0.1

0.01

&
% 1 E-3o
0
0I -

1E-4

1E-5

0.1 0.2

Q

F igure 3.11 Reflectivity profile at 37.3°C (black dots). The large roughness model is red, low 

roughness model green. The blue line is a 1:1 average of the two fits.

If the size of the domains of large and small ripples were smaller than the neutron 

coherence length or if there was coexistence within the domains, then the analysis of 

the data is much more complex (Goldar 2002, Goldar PhD Thesis 2002, University 

of Bath) and beyond the scope of this thesis. It is likely that the profiles here fall into 

this category, due to the coexistence of large ripples within smaller ripple domains 

observed by the AFM measurements.

As the two superimposed fits give similar results to those of the Mouritsen group, 

what follows is a discussion of the two models based on the proposed link. This is an
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approximation, and source for further work. The likely existence of two high 

roughness ripple structures poses interesting work for theorists.

Small ripple model results

The best fits using the small ripple model have an upper bilayer roughness of 16±2A 

and water layer thickness of 40±1 A. Compared to the fluid phase structure at 42.7°C, 

this is an increase of 8±2A in the roughness and 9±1 A in the water layer thickness. If 

the upper bilayer roughness is actually a direct measurement of the ripple amplitude, 

this would mean that the amplitude of the upper bilayer is slightly higher than that 

measured by AFM of 12A (Kaasgaard 2003). However, the measurement of the 

amplitude by AFM study gave the minimal possible value, since the size of the AFM 

tip was comparable to the size of the ripples. It was therefore unlikely that the tips 

were able to reach the bottom of the ripple valleys, leading to an underestimate. This 

was found to be particularly true in the case of the small ripples, where the 

underestimate of the amplitude is most pronounced. It is likely therefore that the 

difference between the two values is insignificant, and that the value of 16±2A could 

be a good representation of the small ripple phase amplitude.

Large ripple model results

The best fits using the large ripple model have an upper bilayer roughness of 50±2A 

and water layer thickness of 44±lA. This gives an increase of 42±2A in the 

roughness and 13±lA in the water layer thickness in comparison to the fluid phase. 

The average roughness of the upper bilayer was the same value as the minimum 

amplitude of the large ripple phase measured by AFM. In comparison to the small 

ripple phase, the underestimation of the amplitude is less pronounced due to the 

larger amplitude and wavelength of this ripple phase. Therefore the average value of 

50±2A could be a good representation of the large ripple phase amplitude.

Lower bilayer and water layer structure

The both ripple models give almost identical parameters for the structure of the lower 

bilayer and the lower water layer. This similarity suggests the validity of the use of 

two ripple models to fit this data. The thickness of the chain region is similar to that
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observed in the transition region when heating, which was slightly higher than the 

gel phase values. The lower water layer has swelled during the transition region. 

Whilst swelling was also observed upon heating, it was not as large as this. The 

swelling of the lower water layer could be due to the decrease in confinement of the 

lower bilayer by the rippling upper bilayer causing the main water layer to increase. 

The roughness of the lower bilayer did not increase, indicating that the lower bilayer 

is not exhibiting ripple behaviour.

Trends in parameters as a function of temperature

Unlike upon heating, there the thickness of the water layer did not vary as a function 

of temperature in the small ripple model. The upper bilayer roughness also remained 

relatively constant. If the small ripple structure is similar to that observed upon 

heating, then it is behaving differently upon cooling. There is however a similarity 

between the maximum value of the upper bilayer roughness observed upon heating 

and the constant value observed upon cooling. The presence of the large ripple phase 

could be enabling the small ripple phase to reach its maximum amplitude across the 

whole temperature range, rather than reach a maximum in the middle of the 

temperature range.

In the large ripple model the water layer thickness was found to decrease 

progressively as the temperature was lowered, whilst the upper bilayer roughness had 

a maximum at value 37.3°C. It is possible therefore that the large ripple phase has a 

maximum amplitude in the middle of the transition temperature range, whilst the 

smaller ripple amplitude remains relatively constant throughout.
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3.6 Phase behaviour of 1 mol% Cholesterol 99 mol% DPPC

3.6.1 Introduction
The phase behaviour of 1 mol% cholesterol 99 mol% DPPC double bilayer sample 

was investigated at temperatures between 25°C and 43°C and down to 25°C in D2O. 

The reflectivity of the gel and fluid phases was also measured in a number of solvent 

contrasts to aid the resolution of the structure. The thickness and the roughness of the 

oxide at all temperatures were 8±1 A and 3±lA respectively.

3.6.2 Gel Phase Structure

The sample was measured initially in the gel phase at 25.0°C and 30.5°C, then at 

25.2°C after cooling from the fluid phase. The fitted profiles are shown in Figure 

3.12 and parameters in Table 3.8.
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I E -04

1 E -06

1 E -08
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1.E-12
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Figure 3.12 Fitted profiles o f  1 m ol%  cholesterol 99 m ol%  D P PC  double  b ilayer a t 25 .0°C  ( ♦ )  and 

30.5°C  (A), and 25 .2°C  after cooling  from  fluid phase (□).
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dw IDb IDc IAPM IRou ICov Dw uDb uDc uAPM uRou uCov

25.0°C 9±1 49±2 34±1 47±2 5±1 97±2 22±1 48±2 35±1 46±2 7±2 86±2

30.5°C 9±1 49±2 34±1 47±2 5±1 100±2 23±1 48±2 35±1 46±2 7±2 86±2

25.2 10±1 46±2 35±1 46±2 3±1 95±2 28±1 48±2 34±1 47±2 10±2 88±4

Table 3.8 Fitted parameters o f 1 mol% cholesterol 99 mol% DPPC double bilayer at 25.0°C and 

30.5°C, and then 25.2°C after cooling from fluid phase

The gel phase structure after the fluid phase was similar to that of the initial bilayers, 

except for an increase in the main water layer. It is likely that the thickness is 

equilibrated during the temperature scan. Similar behaviour was observed in the 2 

mol% sample. This is discussed more fully in section 3.13.2.

The upper and lower bilayers had similar structures, except that the upper bilayer had 

a slightly higher roughness and a lower coverage. The thickness and area per 

molecule of the 1 mol% sample were very similar to those of the DPPC sample 

(Table 3.3) it is likely that the presence of this ratio of cholesterol is not interfering 

with the structure and the tilt o f the DPPC.

The scattering density profiles of the 1 mol% sample and the DPPC samples at 25 °C 

are shown in Figure 3.13. The main differences are in the thickness of the main water 

layer (5A) and in the lower water layer (3A). The structures of the bilayers however 

are similar, with both samples having a bilayer thickness of 34 -  35A and similar 

coverage. The upper bilayer of the 1% sample had a slightly higher roughness than 

the pure DPPC sample.

82



Chapter 3 Bilavers o f  DPPC and Cholesterol

-1.E-06 -I   r — ------------------- ,----------------- ,------------------.------------------,------------------■----------------- ,------------------,
•20 0 20 40 60 80 100 120 140 160 160

UstMMM (A)

Figure 3.13 Scattering density profiles o f 1% cholesterol 99% DPPC double bilayer (blue) and pure 

DPPC sample (orange) at 25°C.

3.6.3 Fluid phase Structures

The reflectivity of the sample in D2O was measured at fluid phase temperatures 

between 43.2°C to 47.3°C and to 43.9°C. The fitted profiles at 43.2°C, 47.3°C and 

43.9°C are shown in Figure 3.14 and the fitted parameters are listed in Table 3.9.
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Figure 3.14 Fits o f the reflectivity profiles of 1 mol% cholesterol 99 mol% DPPC double bilayer at 

43.2°C (♦ ), 47.3°C (A) and 43.9°C (□).
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dw IDb IDc IAPM IRou ICov Dw uDb uDc uAPM uRou uCov

25.0°C 9±1 49±2 34±1 47±2 5±1 97±2 22±1 48 ±2 35±1 46±2 7±2 86±2

43.2°C 10±1 45±2 34±1 47±2 3±1 97±2 29±1 42±2 28±1 57±2 9±2 95±4

47.3°C 10±1 41 ±2 30±1 53±2 3±1 100±2 29±1 42±2 28±1 57 ±2 9±2 95±4

43.9°C 8±1 45±2 34±1 47±2 3±1 97±2 28±1 44±2 30±1 53±2 9±2 95±4

Table 3.9 Fitted parameters o f fluid phase structure 1 mol% cholesterol 99 mol% DPPC double 

bilayer at various temperatures

The main transition to the fluid phase (Tm) occurred between 42.1°C to 43.2°C, 

which was just slightly higher than of the transition observed in DPPC vesicles 

(41.8°C). This is different to the effect of very low amounts of cholesterol previously 

observed in DMPC vesicles, where it caused a minute depression of Tm (Lemmich 

1997).

The lower bilayer behaved similar to the DPPC sample as it needed a temperature of 

5°C higher than that of the upper bilayer to become fluid. When the temperature was 

reduced to 43.6°C the lower bilayer became gel like again with identical parameters 

to that of the previous 43.2°C. The difference in behaviour between the two bilayers 

is likely due to higher restraining effect by the substrate on the lower bilayer.

The main water layer increased from 23A in the gel phase to 29A in the fluid phase, 

whilst that of the lower water remained did not change. The increase was also 

observed in the 2 mol% sample.

The changes in the bilayer parameters of the 1% sample were very similar to those in 

the DPPC sample, in that the chain region thickness decreased by 4A, whilst the 

roughness did not change. The areas per molecule and chain region thicknesses were 

similar to the fluid phase APM range of 56 -  72A2 (Nagle 2000) and thickness of 

29A (Nagle 1996).
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3.6.3.1 Fluid Phase Contrast Exchange Structures at 47°C

The sample was measured in D2 O, SMW and 4MW at 47°C. The fitted profiles are 

shown in Figure 3.15 and the parameters are listed in Table 3.10. With the SMW it 

was necessary to use a scattering length density o f 3.07 x 10'6A'2 instead of the 

calculated value of 2.07 x 10'6A'2. This was consistently found to be the case for a 

wide range of samples and is thought to be due to incomplete exchange of solvent.
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F igure 3 .15  Fitted profile o f  1 mol% cholesterol 99 mol% DPPC double bilayer at 47°C  in D 20  (♦ ) ,  

SM W  (A) and 4M W  (□).

dw IDb IDc IAPM IRou ICov Dw uDb uDc uAPM uRou uCov

Dj>0 47.3°C 10±1 41 ±2 30±1 53 ±2 3±1 100±2 29±1 42±2 28±1 57 ±2 9 ±2 95±2

SMW 47.7°C 8±1 38 ±2 28±1 57 ±2 4±1 100±2 25±1 45±2 31 ±1 52±2 5±2 100±2

4MW 47.4°C 8±1 40±2 29±1 55±2 4±1 100±2 28±1 39±2 29±1 55±2 7 ±2 100±2

Average 9±1 40±2 29±1 55 ±2 4±1 100±2 27±2 42±3 29 ±2 55±3 7 ±2 98±3

T able 3 .10  Fitted parameters o f  different contrasts 1 mol% cholesterol 99  mol%  DPPC double bilayer 

at 47°C  and the average o f  the values. SM W  is silicon matched water and 4M W  is 4-m atched water.

The thicknesses of both chain regions were all similar. The main variations were in 

the thickness of the water layer, with SMW having the largest difference, and the 

upper bilayer roughness. Overall, the average of the parameters gave a good 

compromise structure with most contrast parameters within ± 2 of the average.
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3.6.4 Transition Phase Structures and Behaviour

The sample exhibited transitional behaviour between 33.1°C to 42.1°C and between 

41.4°C to 31.0°C. Different behaviour was observed depending on the direction of 

the temperature change.

3.6.4.1 Structural behaviour between 33.1°C -  42.1°C

Three fits during the transition phase temperatures are shown in Figure 3.16. The 

parameters are given in Table 3.11, along with the gel phase 25.0°C and fluid phase 

47.3°C for comparison.
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F igure 3 .16  Fitted reflectivity profiles of 1 mol% cholesterol 99 mol% DPPC double bilayer at 

33.8°C (♦ ), 35.9°C (A) and 41.3°C (□).
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dw IDb IDc IAPM IRou ICov Dw uDb uDc uAPM UROU uCov

25.0°C 9±1 49±2 34±1 47±2 5±1 97±2 22i1 48±2 35±1 46±2 7±2 86±4

33.1 °C 8±1 49±2 34±1 47±2 5±1 100±2 26±1 48±2 35±1 46±2 7±2 86±3

33.8°C 9±1 47±2 34±1 47±2 5±1 10012 30±1 51 ±2 35±1 46±2 12±2 78±3

34.8°C 10±1 46±2 35±1 46±2 5±1 98±2 35±1 49±2 34±1 47±2 16±2 78±3

35.9°C 10±1 46±2 35±1 46±2 5±1 98±2 36±1 49±2 34±1 47±2 16±2 7813

37.1 °C 10±1 46±2 35±1 46±2 5±1 98±2 36±1 49±2 34±1 47±2 16±2 78±3

37.5°C 10±1 46±2 35±1 46±2 5±1 98±2 37±1 49±2 34±1 47±2 16±2 7813

38.4°C 10±1 46±2 35±1 46±2 5±1 98±2 36±1 49±2 34±1 47±2 16±2 7 8 i3

39.3°C 10±1 46±2 35±1 46±2 5±1 98±2 36±1 49±2 34±1 47±2 16±2 78±3

40.3°C 10±1 46±2 35±1 46±2 5±1 98±2 36±1 49±2 34±1 47±2 16±2 7 8 i3

41,3°C 10±1 46±2 35±1 46±2 5±1 98±2 34±1 49±2 34±1 47±2 15±2 7813

42.1 °C 10±1 46±2 35±1 46±2 5±1 98±2 32±1 49±2 34±1 47±2 12±2 7813

47.3°C 10±1 41 ±2 30±1 53±2 3±1 100±2 29±1 42±2 28±1 57 ±2 9±2 95±2

Table 3.11 Fitted parameters at transition phase temperatures o f 1 mol% cholesterol 99 mol% DPPC 

double bilayer. The gel phase 25.0°C and fluid phase 47.3°C are given for comparison.

The structure of the lower bilayer and lower water layer remained static throughout, 

retaining the gel phase structure. The thickness of the upper bilayer also remained 

constant. The main changes were increases in the thickness of the main water layer, 

upper bilayer roughness and solvation. The change in the parameters as a function of 

temperature 25.0°C -  47.3°C are shown in Figure 3.17. The maximum increase, 

along with those of the DPPC sample values are listed in Table 3.12. The maximum 

increase was reached 2°C above the initial increase. The values then remained 

relatively constant until 41.3°C when they decreased. This differed from the 

behaviour of the DPPC sample, which had a symmetrical increase and decrease 

either side of the maximum values at 39°C.
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Figure 3 .17  Upper bilayer and Dw parameters vs. temperature of 1 mol% cholesterol 99 mol% DPPC 

double bilayer. Water layer thickness (pink), roughness of water -  bilayer interface (yellow), solvation 

of upper bilayer (green) and the average upper bilayer roughness (blue).

Gel value (25°C) 

DPPC 1 mol%

Maximum transition phase value 

DPPC 1 mol%

Maximum increase 

DPPC 1 mol%

Dw 27A 2 2 k 43A 37A 16A 15A

WRou 3A 4A 9A 10A 6A 6A

Urou 5A 7 k 15A 16A 10A 9A

uSolv 7% 14% 27% 22% 20% 8%

T able 3.12 Comparison o f the gel phase and maximum transition phase values of 1 mol% cholesterol 

99 mol% DPPC double bilayer with DPPC double bilayer.

The maximum increase of the parameters was similar to those of the pure DPPC 

sample, except for the solvation of the upper bilayer. The parameters suggest that the 

1 mol% sample is exhibiting a similar ripple structure to that present in the DPPC 

sample. The non-linear behaviour versus temperature was similar to the DPPC 

sample, meaning that its behaviour differed from that observed in other systems 

(Matuoka 1990, Woodward 1996). A comparison and discussion of the effect of
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cholesterol on the ripple structure of the double bilayers upon heating is given in 

section 3.13.3.

3.6.4.1 Structural behaviour between 41.4°C -  31.0°C

As in the case of the DPPC double bilayer, the 2 mol% sample and the 4 mol% 

sample, the reflectivity profiles observed upon cooling were complex, especially the 

shape of the first fringe. It looked to consist of two fringes. This is clearer in these 

profiles than it was for the DPPC profiles. It was not possible to fit the profiles using 

only one model. However unlike the DPPC sample, it is not possible to overlay the 

fit when heated to 36°C on the profile when cooled to 36°C and obtain a fit of part of 

the profile (Figure 3.18).
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F igure 3 .18  1 mol% sample profile when cooled  from fluid phase to 36.0°C . Red line is 36°C  fit 

when heated from gel phase. Blue line is DPPC double bilayer best fit when heated to 37.7°C .

The second feature on the first fringe has been shifted to higher q by the presence of 

1 mol% cholesterol in the sample. The q position of the minimum of the first fringe 

is proportional to the overall thickness of the sample for the gel and fluid phases 

(Fragneto 2001). A shift to higher q indicates a decrease in the sample thickness. If 

the first fringe does consist of two fringes, then this could suggest that the structure
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causing the second fringe at 0.09A '1 is thinner than that present in the DPPC sample 

and in the 1 mol% sample when heating in the transition temperature range.

If the upper bilayer is exhibiting coexisting large ripple and small ripple structures, 

like those observed on mica supported DPPC double bilayers (Kaasgaard 2003), then 

the presence of 1 mol% cholesterol could be reducing the structural features of the 

smaller ripple structure. When two models are used to fit different parts of the 

profile, they suggest that this is the case. (The validity of using two models to fit 

different parts of the profile is not proven, but seems to give close results to that 

observed by in the mica supported DPPC double bilayers). Figure 3.19, 3.20 and 

3.21 show the fits of the profiles measured at 41.4°C, 36.0°C and 34.1°C using the 

two models. The parameters are listed in Table 3.13. One model consists of a high 

upper bilayer roughness and large water layer, and the other a lower upper bilayer 

roughness and smaller water layer. The large roughness model enables the feature on 

the left of the first fringe to be fitted (red line); the lower roughness model enables 

the feature on the right of the first fringe to be fitted (green line). The large roughness 

model models the large amplitude ripple and the smaller roughness model the 

smaller amplitude ripple phase.
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F igure 3 .19  1 mol% sample profile at 41.4°C. Large roughness model (red), small roughness model 

(green)
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F igure 3 .20  1 mol% sample profile at 36.0°C. Large roughness model (red), small roughness model 

(green)
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Figure 3.21 1 mol% sample profile at 34.1°C . Large roughness model (red), small roughness model 

(green)
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dw IDb IDc IAPM IRou ICov Dw uDb uDc uAPM uRou uCov

41.4°C
small

large

14±1

16±1

44±2

48±2

34±1

36±1

47±2

44±2

6±1

4±1

93±2

100±2

29±1 

41 ±1

47±2

47±2

35±1

36±1

46±2

44±2

17±2

44±2

53±4

57±4

38.6°C
small

large

14±1

16±1

44±2

48±2

34±1

36±1

47±2

44±2

7±1

4±1

92±2

100±2

30±1 

41 ±1

46±2

47±2

34±1

36±1

47±2

44±2

17±2

44±2

50±4

57±4

36.0°C
small

large

14±1

16±1

45±2

48±2

35±1

36±1

46±2

44±2

6±1

5±1

92±2

100±2

30±1

42±1

47±2

47±2

34±1

36±1

47±2

44±2

17±2 

44 ±2

50±4

54±4

34.1 °C
small

large

14±1

16±1

44±2 

48 ±2

34±1

36±1

47±2

44±2

7±1

4±1

92±2

100±2

31 ±1 

42±1

46±2

47±2

34±1

36±1

47±2

44±2

17±2

45±2

50 ±4 

56±4

31.0°C
small

large

14±1

14±1

44 ±2 

48 ±2

34±1

36±1

47±2

44±2

7±1

4±1

92±2

100±2

31 ±1 

41 ±1

46±2

47±2

34±1

36±1

47±2

44±2

16±2

45±2

50 ±4 

56±4

Table 3.13 1 mol% sample fitted parameters using two models. Small is smaller roughness model, 

representing small amplitude ripple. Large is high roughness model, representing large amplitude 

ripple.

Small ripple model

The upper bilayer roughness is the same as that observed upon heating, but the water 

layer is thinner by 6±2A. The thinner water layer agrees with the shift in the first 

minimum in the profile (Figure 3.18). This suggests that the sample behaves 

differently to the AFM study, where the same small ripple structure was observed 

upon heating and cooling (Kaasgaard 2003). The structure of the small roughness 

structure could be affected by presence of the high roughness structure. The coverage 

of upper bilayer is very low (it was not possible to fit the profile without low 

coverage). This is expected when use of planar layered model for a rippled structure. 

The water would feature in the curved structure of the bilayer, but not within the 

bilayer itself.

When compared to the DPPC sample structure at similar temperatures, the small 

model had the same upper bilayer roughness parameter, but the water layer thickness 

was thinner by 10A. The difference in water layer thickness could be linked to the
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thinner gel and fluid phase water layer observed in the 1 mol% and 2 mol% samples 

compared to the DPPC sample.

If the use of two models is valid, then this indicates that the presence of 1 mol% 

reduces the change in the structural parameters compared to the DPPC sample. This 

was indicated by the shift in positions of some of the features of the profile to higher 

q position (Figure 3.18). This effect is similar to the effect on the behaviour upon 

heating, where the increase in the structured parameters was less than that of the 

DPPC sample.

Large ripple model

The upper bilayer roughness was lower by 5A than that of the DPPC sample. The 

water layer was also thinner by 5A. The use o f this large model seems to suggest that 

the presence of 1 mol% cholesterol decreases the level of structural change observed 

compared to the DPPC sample. It is therefore possible that the 1 mol% decreases the 

structure of the large amplitude ripple.

Lower bilayer and water layer structure

The parameters for the lower water layer and bilayer vary slightly between the two 

models. The larger model has a thicker water layer and bilayer compared to the 

smaller roughness model. The differences are not large though and are close to the 

error in the values.

Trends in parameters versus temperatures

Unlike the transition behaviour upon heating, once they have increased, the upper 

bilayer roughness and water layer thickness remained constant. There is no evidence 

of a maximum in any of the parameters as a function of temperature. This is the same 

behaviour as observed in the DPPC sample. The constant behaviour is clear when the 

profile shapes are compared as a function of temperature (Figure 3.22).
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F igure 3.22 Comparison profiles of 1 mol% sample at 41.1 °C, 36.0°C and 34.1°C.

If the use of two superimposed models is valid, then 1 mol% reduces the level of 

structural change observed during the transition region upon cooling. It is interpreted 

as reducing the size of the large ripple and small ripple structures.
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3.7 Phase behaviour of 2mol% Cholesterol 98mol% DPPC

3.7.1 Introduction

The reflectivity of the 2 mol% Cholesterol 98 mol% DPPC sample was measured in 

D2 O at temperatures between 26.4°C and 48.0°C and down to 26.1°C. The gel and 

fluid phase structures were also measured in D2 O and silicon matched water (SMW). 

The thickness and the roughness of the oxide were 8±1 A and 3±1 A respectively.

3.7.2 Gel Phase Structure

The reflectivity of the sample was measured initially in the gel phase at 26.4°C and 

31.5°C and then 26.1°C after cooling from the fluid phase. The fitted profiles are 

shown in Figure 3.23 and the parameters in Table 3.14.

1E+00
1E-01
1E-02
I E -03

1 E-05

1.E-06
E
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1 E-08
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IE -1 1

1 E-12

1 E-13 I

Figure 3 .23  Fitted profiles o f  2 mol% cholesterol 98 mol% DPPC double bilayer at 26.4°C  ( ♦ ) ,  

3 1 .5°C (A), and 2 6 .1°C after cooling from fluid phase (□).

The bilayer structures after cooling was similar to that of the initial structures. Like 

the 1 mol% sample the structure after cooling had a considerably thicker water layer. 

It is likely that the thickness is equilibrated during the temperature scan. This is 

discussed more fully in the section 3.13.2. Gel phase thickness o f water layers as a 

function of cholesterol. Also, like the 1 mol% sample, the upper bilayer coverage 

was lower and roughness higher after cooling.
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dw IDb IDc IAPM IRou ICov Dw uDb uDc uAPM uRou uCov

26.4°C 10±1 48±2 34±1 47±2 3±1 100±2 23±1 46±2 34±1 47±2 6±2 95±2

31.5°C 10±1 49±2 34±1 47±2 3±1 100 ±2 24±1 46±2 34±1 47±2 6±2 95±2

26.1 °C 9±1 44±2 33±1 48±2 5±1 100±2 28±1 52±2 34±1 47±2 11 ±2 90±2

Table 3.14 Fitted parameters of 2 mol% cholesterol 98 mol% DPPC double bilayer at 26.4°C and 

31.5°C, and then 26.1°C after cooling from fluid phase

The thicknesses of the chain regions of the upper and lower bilayers were identical, 

and the coverage and roughness very similar. The thicknesses of the chain regions 

were very similar to those of the DPPC sample and the 1 mol% cholesterol sample. 

They were also very similar to those of DPPC vesicles of 35A (Weiner 1989) and 

34A (Nagle 2000). The APM values were also very similar to those of DPPC 

literature of 47.9A (Nagle 2000). These similarities differ to the effect of 2 mol% 

cholesterol on vesicles of deuterated chain DMPC, which increased the overall 

thickness of the bilayer (Mortensen 1988). But in that study it was unclear whether 

the cholesterol increased the bilayer thickness or the water layer thickness.

The thickness of the water layer was different compared to the DPPC sample. This 

difference was not an issue though, as like in the case of the 1 mol% cholesterol 

sample, once it was heated to the fluid phase it increased to a value similar to that of 

the pure DPPC sample. After which it remained constant when decreasing the 

temperature back to the gel phase. The thickness of the main water layer was 

equilibrated over the temperature scan.

The overall structure of the 2 mol% sample was very similar to that of the 1 mol% 

sample. The only significant differences were the bilayer coverages, with the 1% 

being higher. This was likely due to differences in the fabrication process.
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3.7.3 F luid Phase S tru c tu res

The reflectivity of the sample was measured at fluid phase temperatures between 

41.6°C and 48.0°C and then down to 41.8°C. The fitted profiles are given in Figure 

3.24 and the parameters listed in Table 3.15.
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F igure 3 .24  Fits o f  the reflectivity profiles o f  2 mol% cholesterol 99 mol% DPPC double bilayer at 

41.6°C  ( ♦ ) ,  48.0°C  (A) and 4 1 ,8°C (□).

dw IDb IDc IAPM IRou ICov Dw uDb uDc uAPM uRou uCov

26.4°C 10±1 48±2 34±1 47±2 3±1 100±2 23±1 46±2 34±1 47±2 6 ±2 95±2

41.6°C 10±1 45±2 34±1 47±2 3±1 100±2 27±1 45±2 30±1 53±2 6 ±2 100±4

42.6°C 10±1 45±2 34±1 47 ±2 3±1 100±2 27±1 45±2 30±1 53±2 6 ±2 100±4

43.5°C 8±1 43±2 32±1 50 ±2 3±1 100±2 26±1 41 ±2 28±1 57 ±2 6 ±2 100±4

48.0°C 9±1 41 ±2 30±1 53±2 3±1 100±2 27±1 42±2 29±1 55±2 5±2 100±4

43.6°C 9±1 45±2 34±1 47±2 3±1 100±2 27±1 42±2 29±1 55±2 5 ±2 100±4

41,8°C 11±1 46±2 34±1 47 ±2 3±1 100 ±2 27±1 44±2 31 ±1 52±2 6±2 93±4

T able 3 .15  Parameters o f  fluid phase structure o f  2 mol% cholesterol 98 mol% DPPC double bilayer.

The upper bilayer exhibited parameters consistent with a fluid phase structure over 

the temperature range measured. The transition to the fluid phase (Tm) occurred 

between 40.8°C -  41.6°C, which was slightly lower than that o f DPPC vesicles of 

41.8°C (Racansky 1987). This minute depression of the Tm has previously been 

observed for DMPC vesicles with low amounts of cholesterol (Lemmich 1997).
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The lower bilayer did not become fluid until 48.0°C, so required a temperature 7°C 

higher than the upper bilayer. Upon reducing the temperature back to 43.6°C, the 

lower bilayer went back to the gel phase again, showing that the transition is 

reversible. This behaviour parallels that of the DPPC sample and 1 mol% sample.

The thickness of the main water layer increased by 4A compared to the gel phase. 

After which it remained constant when the temperature was lowered to the gel phase. 

It is therefore likely that the water layer became equilibrated by the temperature scan. 

The thickness however was still 6A less than in the DPPC sample. The lower water 

thickness remained constant throughout, indicating it is controlled predominantly by 

forces between the substrate and lower bilayer.

The bilayer parameters and changes were similar to those of the DPPC sample and 

the 1 mol% sample and therefore similar to DPPC vesicles (Nagle 2000).

3.7.3.1 Fluid Phase Contrast Exchange Structures at 48°C

The sample was also measured in SMW at 48°C. The fitted profile in SMW is shown 

in Figure 3.25. The fitted parameters are listed in Table 3.16. A SLD of 3.0 x 10'6A‘2 

was used for the SMW contrast.

1 E-Q2

£  1E -04

0.01 000 0.11 0  16 021 0 2 6
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F igure 3 .25  Fitted profile o f  2 mol% cholesterol 98 mol% DPPC double bilayer at 48.2°C  in SMW.
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dw IDb IDc IAPM IRou ICov Dw uDb uDc uAPM uRou uCov

DzO 48.0°C 9±1 41 ±2 30±1 53±2 3±1 100±2 27±1 42±2 29±1 55±2 5±2 100±4

SMW 48.2°C 10±1 39±2 29±1 55±2 3±1 100±2 25±1 45±2 29±1 55±2 5±2 100±4

Average 10±1 40±2 30±1 54 ±2 3±1 100±2 26±1 44 ±2 29±2 55±3 5±2 100±4

T able 3 .16  Fitted parameters o f  different contrasts 2 mol% cholesterol 98 mol% DPPC double bilayer 

at 47°C  and the average o f  the values. SM W  is silicon matched water. The error bars o f  the average 

row indicate the spread o f  the values.

The structural parameters of the two contrasts show good agreement, with the 

differences being within the error margins. The similarities are clearly visible in the 

scattering length density profiles shown in Figure 3.26.

7.E-06

■1.E-06
120 140 160

Oisteno* (A)

F igure 3 .26  Scattering length density profiles o f  2 mol% cholesterol 98  mol% DPPC double bilayer at 

48°C  in different contrasts. D20  (pink) and SM W  (green).

Therefore the 2 mol% cholesterol 98 mol% DPPC double bilayer sample at 48°C had 

a well defined structure of an upper bilayer chain region thickness o f 29A and main 

water layer Dw of 26A. The structure of the fluid phase was very similar to the 1 

mol% cholesterol sample, and quite similar to the DPPC double bilayer. The 

presence of 2 mol% cholesterol does not significantly modify the structure.
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3.7.4 Transition Phase Structures and Behaviour

The sample exhibited transitional behaviour between 34.1°C to 40.8°C and upon 

cooling between 39.2°C to 32.2°C. Different behaviour was observed depending on 

the direction of the temperature change.

3.7.4.1 Structural behaviour between 34.1°C -  40.8°C

The fits of three representative temperatures in the transition phase are shown in 

Figure 3.27 and the parameters are listed in Table 3.17.
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Figure 3 .27  Fits o f  the reflectivity profiles o f  2 mol% cholesterol 98 mol% DPPC double bilayer at 

34.9°C  ( ♦ ) ,  36.6°C  (A) and 39.1°C  (□).

The structure o f the lower bilayer and lower water retained its gel phase structure 

throughout. The upper bilayer also retained its gel phase thickness throughout. As in 

the case o f the DPPC sample, the main changes were an increase in the thickness of 

the main water layer, an increase in the upper bilayer roughness and an increase in 

the solvation of the upper bilayer.
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dw IDb IDc IAPM IRou ICov Dw uDb uDc uAPM uRou uCov

26.4°C 10±1 48±2 34±1 47±2 3±1 100±2 23±1 46±2 34±1 47±2 6±2 95±2

34.1°C 10±1 47±2 34±1 47±2 3±1 100±2 29±1 51 ±2 35±1 46±2 13±2 80±4

34.9°C 8±1 48±2 34±1 47±2 3±1 98±2 33±1 50±2 35±1 46±2 12 ±2 83±4

35.8°C 8±1 48±2 34±1 47±2 3±1 98±2 33±1 50±2 34±1 46±2 12±2 83±4

36.6°C 10±1 48±2 35±1 46±2 3±1 100±2 31 ±1 51 ±2 34±1 46±2 11 ±2 87±4

37.4°C 9±1 47±2 35±1 46±2 3±1 100±2 32±1 51 ±2 34±1 46±2 11 ±2 86±4

38.3°C 9±1 47±2 35±1 46±2 3±1 100±2 32±1 51 ±2 34±1 46±2 11 ±2 86 ±4

39.1°C 9±1 47±2 35±1 46±2 3±1 100±2 32±1 51 ±2 34±1 46±2 11 ±2 86±4

40°C 9±1 47±2 35±1 46±2 3±1 100±2 32±1 51 ±2 34±1 46±2 11 ±2 86 ±4

40.8°C 9±1 48±2 35±1 46±2 3±1 100±2 30±1 51 ±2 34±1 46±2 11±2 88±4

48.0°C 9±1 41 ±2 30±1 53±2 3±1 100±2 27±1 42±2 29±1 55±2 5±2 100±4

T able 3 .17  Fitted parameters at transition phase temperatures o f  2 mol% cholesterol 98 mol% DPPC  

double bilayer. The gel phase 26.4°C  and fluid phase 48.0°C  parameters are given for comparison.

The change in the parameters as a function of temperature is shown in Figure 3.28 

and the maximum values are listed in Table 3.18 along with the DPPC values.

Temperature (°C)

Figure 3 .28  Upper bilayer and Dw  parameters vs. temperature o f  2 mol% cholesterol 98 mol% DPPC  

double bilayer. Thickness main water layer (pink), roughness o f  water -  bilayer interface (yellow ), 

solvation o f  upper bilayer (green) and the average upper bilayer roughness (blue).
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Gel value at 25°C  

DPPC 2 mol%

Maximum transition p h a se  value  

DPPC 2 mol%

Maximum in crease  

DPPC 2  mol%

Dw 27±1 A 23±1 A 43±1 A 33±1 A 16±1 A 10±1A

WRou 3±2A 4±2A 9±2A 5±2A 6±2A 1±2A

Urou 5±2A 6±2A 15±2A 13±2A 10±2A 7±2A

uS olv 7±4% 5±4% 27±4% 20±4% 20±4% 15±4%

Table 3.18 Comparison of the gel phase and maximum transition phase values of 2 mol% cholesterol 

98 mol% DPPC double bilayer with DPPC double bilayer.

The behaviour of this sample as a function of temperature was similar to the DPPC 

sample; however the maximum values were less. The largest differences were in the 

thickness of the water layer (by 6A) and the roughness of the water layer. A full 

comparison and discussion of the effect of cholesterol on the ripple structure of the 

double bilayers upon heating is given in section 3.13.3.

3.7.4.2 Structural behaviour between 39.2°C -  32.2°C
The behaviour of the 2 mol% sample was very similar to that of the 1 mol% sample. 

The profile at 36°C is shown in Figure 3.29 along with the fit of 36°C when heating. 

It can be seen that unlike the DPPC sample, the behaviour is not similar upon cooling 

as upon heating.

As in the case of the DPPC sample and the 1 mol% sample it was not possible to fit 

the profiles using only one fit. It is likely that the first fringe actually consists of two 

fringes from the reflectivity from two coexisting structures. This would agree with 

the behaviour of mica supported DPPC double bilayers, which had coexisting large 

amplitude ripples and small amplitude ripples upon cooling in the transition phase 

(Kaasgaard 2003).
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F igu re 3 .29  2 mol% profile when cooled from fluid phase to 36.5°C. The pink line is the 36.6°C fit 

when heated from gel phase.

A comparison of the profiles of the DPPC, 1 mol% and 2 mol% samples at 36°C is 

given in Figure 3.30. The profiles indicate that the behaviour of the 1 mol% and 2 

mol% samples is similar, but differs compared to the DPPC sample. The 1 mol% and 

2 mol% samples were also found to have similar structural behaviour in the gel and 

fluid phases.

1.E+00

1.E-01

1.E-02

£  1.E-03

1.E-04

1.E-05

:TT_ f
, CJU . - M l l__ u f I

0.01 0.06 0.11

q(A)
0.16 0.21 0.26

F igure 3 .30  Profiles at 36°C of DPPC sample (green), 1 mol% sample (pink) and 2 mol% sample 

(black)
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Figure 3.32, 3.33 and 3.34 show the fits of 39.2°C, 36.5°C and 34.8°C using two 

models. The parameters are listed in Table 3.19. Unfortunately at 39.2°C and 34.8°C 

only a small q range was measured due to beam time constraints. The behaviour at 

these two temperatures thought was likely to be the same as at 36.5°C as the profiles 

were all similar (Figure 3.31).

0.01 002 0 0 3 0 0 4 0.06 0 0 6 0.07 0 0 6 0 0 6 01 011

q(A)

Figure 3.31 Profiles o f 2 mol% sample at 39.2°C (pink), 36.5°C (black) and 34.8°C (green). All the 

profiles are similar.
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Figure 3 .32 Fit of 2 mol% profile at 39.2°C using two superimposed models.
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F igure 3.33 Fit o f 2 mol% profile at 36.5°C using two superimposed models.
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F igure 3 .34  Fit of 2 mol% profile at 34.8°C using two superimposed models.
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dw IDb IDc IAPM IRou ICov Dw uDb uDc uAPM uRou uCov

39.2*C
small

large

15±1

16±1

46±2 

48 ±2

36±1

36±1

44±2

44±2

6±1

4±1

95±2

100±2

30±1

46±1

45±2

46±2

33±1

35±1

46±2

44±2

15±2

45±2

53±4

47±4

36.5*C
small

large

14±1

16±1

48±2 

48 ±2

36±1

36±1

44±2

44±2

4±1

4±1

97±2

100±2

30±1

45±1

45±2

46±2

33±1

35±1

47±2 

44 ±2

16±2

45±2

54±4

47±4

34.8°C
small

large

15±1

14±1

46±2

49±2

36±1

37±1

44±2

43±2

6±1

4±1

95±2

100±2

31 ±1 

46±1

45±2

45±2

33±1

34±1

47±2

44±2

15±2

46±2

53±4

47±4

32.2°C
small

large

15±1

14±1

46±2

49±2

36±1

37±1

44±2

43±2

6±1

4±1

95±2

100±2

31 ±1 

46±1

46±2

45±2

33±1

34±1

47±2

44±2

16±2

46±2

53±4

57±4

Table 3.19 2 mol% sample fitted parameters using two models. Small represents small amplitude 

ripple. Large represents large amplitude ripple structure.

Based on the use of two models to fit different parts of the profile, the upper bilayer 

consisted of two constant coexisting ripple structures. The large model structure had 

a constant roughness of 45±2A over the transitional temperature range. Likewise the 

roughness of the low roughness structure (16±2A) did not vary as a function of 

temperature. The structural behaviour is very similar to that exhibited by the 1 mol% 

sample.

Small ripple model

Compared to the behaviour upon heating in the transition the phase upper bilayer 

roughness is slightly higher than that observed upon heating and the water layer is 

slightly thinner. This suggests different behaviour to that of AFM study, where the 

same small ripple structure was observed upon heating and cooling (Kaasgaard 

2003). The model had the same upper bilayer roughness parameter as the DPPC 

sample, but the water layer thickness was thinner by 10A. The difference in water 

layer thickness could be linked to the thinner gel and fluid phase water layer 

observed in the 1 mol% and 2 mol% samples compared to the DPPC sample.

Larger ripple model

The upper bilayer roughness was less (by 5A) than in the DPPC sample. The water 

layer thickness was similar though. The use of the large roughness model indicates 

that the presence of 2 mol% cholesterol in the bilayers decreases the level of
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structural change in comparison to that observed in the DPPC sample. This could be 

interpreted as the presence of the 2 mol% cholesterol reduces the large amplitude 

ripple, as the upper bilayer roughness is likely to be proportional to the ripple 

amplitude.

Lower bilayer and lower water layer structure

The two models give similar parameters for the structure of the lower water layer and 

lower bilayer. The water layer thickness swelled compared to the fluid and gel 

phases. This behaviour was also observed in the DPPC sample and the 1 mol% 

sample. It is likely connected to the increased environment space of the lower bilayer 

by the rippling upper bilayer.

Trends in the parameters as a function of temperatures

Unlike the transition behaviour upon heating, once the upper bilayer roughness and 

water layer thickness had increased they remained constant as a function of 

temperature. This is also clear in the comparison of the profiles in Figure 3.31. This 

constant structure versus temperature was also observed for the DPPC sample and 

the 1 mol% sample.

Transition phase conclusion

If the use of two models is valid, 2 mol% cholesterol reduces the level of structural 

change during the transition region upon cooling compared to the DPPC sample. It is 

therefore likely that it reduces the size of the structures of the large ripple and the 

small ripple.
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3.8 Phase behaviour of 4 mol% Cholesterol 96 mol% DPPC

3.8.1 Introduction
The phase behaviour of the 4 mol% Cholesterol 96 mol% DPPC sample was 

measured in D2O between 25.1°C and 47.6°C and then down to 25.4°C. The D2O 

was not exchanged completely, so its scattering length density was actually 5.89 x 

10"6A’2. The oxide was found to have a thickness of 8±lA and roughness of 3±1.

3.8.2 Gel Phase Structure
The reflectivity of the sample was measured in the gel phase initially at 25.1°C, 

27.3°C, 29.4°C, 30.3°C and 31.5°C, and then at 25.4°C after cooling. The fitted 

profiles of 25.1°C and 31.5°C are shown in Figure 3.35 and the parameters listed in 

Table 3.20.
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Figure 3.35 Fitted profiles o f 4 mol% cholesterol 96 mol% DPPC double bilayer at 25.1°C (♦), 

31.5°C (A) and 25.4°C after cooling from fluid phase (□).
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dw IDb I Dc IAPM IRou ICov Dw uDb uDc uAPM uRou uCov

25.1 °C 9±1 48±2 34±1 47 ±2 5±1 100±2 29±1 52±2 36±1 44±2 9±2 89±2

27.3°C 8±1 47±2 34±1 47±2 5±1 100±2 29±1 53±2 35±1 46±2 9±2 88±2

29.4°C 8±1 47 ±2 34±1 47 ±2 5±1 100±2 29±1 53±2 35±1 46±2 9±2 88±2

30.3°C 8±1 47±2 34±1 47±2 5±1 100±2 29±1 53±2 35±1 46±2 9 ±2 88±2

31.5°C 9±1 47±2 34±1 47±2 5±1 96±2 30±1 51±2 35±1 46±2 10±2 91 ±2

25.4°C 8±1 49±2 34±1 47 ±2 3±1 94±2 27±1 55±2 37±1 43±2 11 ±2 91 ±2

Table 3.20 Fitted param eters o f  4 m ol%  cholesterol 96 m ol%  DPPC double  b ilayer a t gel phase 

tem peratures, including after cooling  dow n from  fluid phase (25.4°C).

The structure after cooling was similar structure to the initial structure. The upper 

and lower bilayer had similar chain region thicknesses, but different head-groups 

thickness and bilayer roughness values. Like the 1 mol% and 2 mol% samples, the 

thickness of the chain region was identical to that of the DPPC sample. This is 

expected; as the low ratio of cholesterol would not be expected significantly interfere 

with the packing of the DPPC chains. The dimension of the chains was therefore 

similar to that of literature values for DPPC vesicles of 35A (Weiner 1989) and 34A 

(Nagle 2000) and the APM were also similar to DPPC in literature of 47.9A (Nagle 

2000).
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Figure 3.36 Scattering  density  profiles o f  4 m ol%  cholesterol 96 m ol%  DPPC doub le  b ilayer (b lue) 

and pure DPPC sam ple (p ink) at 25°C.

Even though the 4 mol% sample had similar chain thickness parameters to that of the 

DPPC structure, the overall sample varied (Figure 3.36). The DPPC sample had
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thicker water layers, a lower roughness and a thicker oxide. The difference in the 

water layers thicknesses could be due to fabrication aspects or to modification of the 

Helffich forces that determine the mean separation of the bilayers (Helffich 1977). 

The higher bilayer roughness could be due to fabrication aspects as the Schaefer 

parameters were worse for the 4 mol% sample.

3.8.3 Fluid Phase Behaviour
The reflectivity of the sample was measured at fluid phase temperatures between 

41.3°C to 47.6°C and then down to 44.4°C. The fitted profiles at 41.3°C, 47.6°C and 

44.4°C are shown in Figure 3.37 and parameters listed in Table 3.21.
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Figure 3.37 Fits of the reflectivity profiles of 4 mol% cholesterol 96 mol% DPPC double bilayer at 

41.3°C (♦),47.6°C (A) and 44.4°C (□).

The transition of the upper bilayer to the fluid phase structure occurred between 

40.2°C -  41.3°C. This was slightly lower than that of DPPC of 41.8°C (Racansky 

1987) and is consistent with the minute depression of Tm in DMPC vesicles by 

cholesterol (Lemmich 1997). This behaviour was also observed in the 2 mol% and 6 

mol% samples.
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dw IDb IDc IAPM IRou ICov Dw uDb uDc uAPM uRou uCov

25.1 °C 9±1 48 ±2 34±1 47±2 5±1 100 ±2 29±1 52±2 36±1 44±2 9±2 89±2

41.3°C 9±1 43 ±2 33±1 48 ±2 4±1 98±2 34±1 49±2 33±1 48±2 9±2 91 ±4

42.4°C 10±1 43 ±2 33±1 48 ±2 3±1 100 ±2 33±1 45±2 29±1 55±2 9±2 97±4

43.5°C 10±1 43±2 33±1 48±2 3±1 100 ±2 32±1 46±2 30±1 53±2 7±2 97±4

44.5°C 10±1 42±2 32±1 50 ±2 3±1 100 ±2 29±1 46±2 30±1 53±2 6±2 97±4

47.6°C 10±1 40±2 30±1 53 ±2 3±1 100±2 30±1 44±2 30±1 53±2 7±2 93±4

44.4°C 10±1 43 ±2 33±1 48±2 3±1 100 ±2 31 ±1 46±2 30±1 53±2 7±2 97±4

Table 3.21 Fitted parameters o f fluid phase structure o f 4 mol% cholesterol 96 mol% DPPC double 

bilayer at various temperatures.

The difference between the thickness of the chain regions of the gel phase and fluid 

phase was 6A, whilst the area per molecule increased by 9A2. The coverage 

increased by 8% as expected from the increase in APM. The bilayer roughness 

decreased slightly, but not significantly. As in the case of the behaviour of the DPPC, 

1 mol% and 2 mol% samples, the lower bilayer required a temperature 6°C higher 

than that of the upper bilayer to transform to a fluid bilayer. The thickness of the 

chain region started decreasing at 44.5A and become fluid at 47.6°C. It decreased by 

4A relative to the gel phase. Its thickness was the same as the upper bilayer. Upon 

decreasing the temperature the lower bilayer became gel like at 44.5°C. 4 mol% of 

cholesterol did not alter the phase behaviour of the lower bilayer.

The thickness of the water layer gradually decreased during the fluid phase 

temperature scan, becoming a constant value at 44.5°C. After which it remained 

relatively constant upon decreasing the temperature. It is likely that the thickness of 

the water was equilibrated by the temperature scan.

The scattering length density profiles of the 4 mol% sample and the DPPC sample 

are shown in Figure 3.38. The 4 mol% sample had a higher upper bilayer roughness 

and lower coverage. The water layer was also thinner. This differs from 

multilamellar vesicles, were the water layer in the fluid phase was not changed by the 

incorporation of cholesterol (Rand 1980).
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F igure 3 .38  Scattering length density profiles o f  4 mol% cholesterol 96 mol% DPPC double bilayer 

(pink) and DPPC double bilayer (blue) at 48°C.

3.8.4 Transition Phase Structures and Behaviour
The sample exhibited transitional behaviour between 32.0°C to 40.2°C and between 

41.4°C to 31.2°C. Different behaviour was observed depending on the direction of 

the temperature change.

3.8.4.1 Structural behaviour between 32.0°C -  40.2°C

Three representative fits at 34.4°C, 36.7°C and 40.2°C are shown in Figure 3.39 and 

parameters listed in Table 3.22.
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Figure 3 .39  Fits o f  the reflectivity profiles o f  4 mol% cholesterol 96  mol% DPPC double bilayer at 

34.4°C  ( ♦ ) ,  36.7°C  (A) and 40.2°C  (□).

dw IDb IDc IAPM IRou ICov Dw uDb uDc uAPM uRou uCov

25.1°C 9±1 48 ±2 34±1 4 7 ±2 5±1 100±2 29±1 52±2 36±1 44 ±2 9±2 89±2

32.0°C 8±1 46 ±2 33±1 48 ±2 6±1 96 ±2 33±1 51 ±2 35 ±2 46 ±2 10±2 88±4

33.3°C 7±1 44 ±2 32±1 50±2 6±1 96 ±2 36±1 53±2 36 ±2 44±2 10±2 88±4

34.4°C 8±1 46±2 34±1 47 ±2 5±1 97±2 34±1 57 ±2 39±2 41 ±2 14 ±2 86±4

35.2°C 8±1 46±2 34±1 47±2 5±1 97±2 35±1 57 ±2 39±2 41 ±2 14±2 86±4

36.7°C 9±1 45±2 34±1 47 ±2 6±1 96 ±2 35±1 55±2 37±2 43±2 14±2 88 ±4

37.2°C 9±1 45±2 34±1 47 ±2 6±1 96 ±2 37±1 55±2 37±2 43±2 14±2 88 ±4

38.1°C 8±1 45±2 34±1 47 ±2 6±1 96 ±2 36±1 55±2 37±2 43±2 14±2 88±4

38.5°C 8±1 45±2 34±1 47±2 7±1 96 ±2 37±1 55±2 37 ±2 43±2 14±2 88 ±4

39.4°C 8±1 45±2 34±1 47 ±2 7±1 96 ±2 37±1 55±2 37 ±2 43±2 14±2 88±4

40.2°C 8±1 45±2 34±1 47 ±2 7±1 96 ±2 35±1 55±2 37 ±2 43±2 14±2 88±4

47.6°C 10±1 40±2 30±1 53±2 3±1 100±2 30±1 44±2 30±1 53±2 7±2 93±4

Table 3.22 Fitted parameters at transition phase temperatures o f  4 mol% cholesterol 96  mol% DPPC  

double bilayer. The gel phase 25.1°C  and fluid phase 47.6°C  are given  for comparison.
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The lower bilayer and lower water layer remained constant throughout. As in the 0 -  

2 mol% samples, the main structural changes were in the main water layer thickness, 

the roughness of the upper bilayer and the solvation of the upper bilayer. The 

changes in these parameters over the temperature 25.1°C -  47.6°C are shown in 

Figure 3.40 and a comparison of the gel phase values and maximum transition phase 

values, along with the values of the DPPC sample are listed in Table 3.23

35.0 40.0
Temperature (°C)

F igure 3 .40  Upper bilayer and Dw parameters vs. temperature of 4 mol% cholesterol 96 mol% DPPC 

double bilayer. Thickness main water layer (pink), roughness of water -  bilayer interface (yellow), 

solvation of upper bilayer (green) and the average upper bilayer roughness (blue).

Gel value at 25°C 

DPPC 4 mol%

Maximum transition phase value 

DPPC 4 mol%

Maximum increase 

DPPC 4 mol%

Dw 27±1 A 29±1 A 43±1 A 37±1 A 16±lA 8±1 A

WRou 3±2A 5±2A 9±2A 11±2A 6±2A 6±2A

Urou 5±2A 9±2A 15±2A 14±2A 10±2A 5±2A

uSolv 7±4% 11 ±4% 27±4% 14*4% 20±4% 3±4%

T able 3.23  Comparison of the gel phase and maximum transition phase values of 4 mol% cholesterol 

96 mol% DPPC double bilayer with DPPC double bilayer.
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The increase in the bilayer roughness and water layer thickness are consistent with 

the formation of a ripple phase structure. However the maximum increase these 

parameters were less than in the DPPC sample. The difference in the increase in the 

water layer thickness was almost a half, whilst the roughness o f the water layer and 

upper bilayer were slightly lower. It is quite possible that the higher presence of 4 

mol% is restricting the transition behaviour of the DPPC. A full comparison and 

discussion of the effect of cholesterol on the ripple structure o f the double bilayers 

upon heating is given in section 3.13.3.

The scattering length density profiles at 25.1°C and 36.7°C are shown in Figure 3.41. 

The water layer thickness increased, as did the roughness o f the water layer and 

upper bilayer. The static structure of the lower bilayer is clearly visible as well.
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F igure 3.41 Scattering length density profile o f  4 mol% cholesterol 96 mol%  DPPC double bilayer at 

2 5 .1°C (black) and 36.7°C  (pink).
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3.8.4.2 S tru c tu ra l behaviour between 41.4°C to 31.2°C

The 4 mol% sample behaved differently to the 0 -  2 mol% samples. The shape of the 

profile as a function of temperature was different. Between 41.4°C and 36.4°C a shift 

occurs in the first fringe (Figure 3.42). The first minimum is raised to a higher 

intensity. It continues to shift higher between 36.4°C and 34.6°C. For the 0 -  2 mol% 

the profiles did not change over the transition temperature range.
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F igure 3.42  Profiles o f  4 mol% sample at 41.4°C  (black), 36.4°C  (pink) and 34.6°C (green).

It was not possible to fit the profiles at 36.4°C and 34.6°C due to their complex form. 

The fitting of this sample is on going work. It is likely that the structure of the upper 

bilayer consists of two rippling phases, as the profiles resemble two superimposed 

profiles. Figure 3.43 shows the 4 mol% profile at 36.4°C and the 2 mol% at 36.5°C. 

The differences are visible. If the 4 mol% sample was exhibiting two coexisting 

ripple structures, then one or both of the ripple structures is strongly altered by the 

presence of 4 mol%, compared to 2 mol%.
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Figure 3 .43  Profiles o f  4 mol% sample at 36.4°C  (black) and 2 mol% sam ple at 36.5°C  (green).

The analysis of the 4 mol% cholesterol sample is on going work. It would be useful 

to probe the in-plane bilayer structure with AFM.
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3.9 Phase behaviour of 6 mol% Cholesterol 94 mol% DPPC

3.9.1 Introduction
The phase behaviour of the 6 mol% Cholesterol 94 mol% DPPC sample was 

measured in D2O between 25.8°C and 48.0°C and then down to 25.8°C. The 

thickness and the roughness of the oxide were found to be 8±1 A and 3±lA  

respectively.

3.9.2 Gel Phase Structure
The reflectivity of the sample was measured in the gel phase at 25.8°C, 31.0°C and 

33.0°C. The fitted profiles of the initial gel phase at 25.8°C and 33.0°C and at 25.8°C 

after cooling from the fluid phase are shown in Figure 3.44 and the parameters listed 

in Table 3.24.
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Figure 3.44 Fits of the reflectivity profiles o f 6 mol% cholesterol 94 mol% DPPC double bilayer at 

25.8°C (♦)and33.0°C (A), and 25.8°C after cooling from fluid phase (□)
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dw IDb IDc IAPM IRou ICov Dw uDb uDc uAPM uRou uCov

25.8°C 7±1 50±2 35±1 46±2 6±1 94±2 33±1 52±2 38±1 42±2 10±2 75±2

31.0°C 7±1 50±2 35±1 46±2 6±1 94±2 35±1 53±2 38±1 42±2 10±2 73±2

33.0°C 8±1 51 ±2 36±1 44±2 6±1 94±2 34±1 51 ±2 37±1 43±2 10±2 73±2

25.8°C 9±1 50±2 37±1 43±2 4±1 93±2 35±1 55±2 38±1 42±2 13±2 70±2

T ab ie  3 .24  Fitted parameters o f  6 mol% cholesterol 94 mol% DPPC double bilayer at gel phase 

temperatures, including after cooling down from fluid phase (25.8°C ).

The lower bilayer had a chain region thickness similar to DPPC vesicles of 35A 

(Weiner 1989) and 34A (Nagle 2000), whilst the upper bilayer was thicker. The 

upper bilayer thickness of 38A gives a chain tilt of 22° relative to the bilayer normal, 

which is considerably less than that of the DPPC upper bilayer o f 31°. 6 mol% of 

cholesterol interferes with the tilt of the DPPC chains.

The roughness of both of the bilayers was higher than that of the 0 -  2 mol% 

bilayers. The coverages of both bilayers were also lower than those samples, with the 

upper bilayer having a particularly low coverage of 73±2A. The scattering length 

density profiles of the 6 mol% sample and DPPC sample are given in Figure 3.45. 

The higher thickness and roughness of the 6 mol% upper bilayer is visible, as is the 

lower coverage. The differences in the thickness of both water layers is also visible
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F igure 3 .45  Scattering length density profiles o f  6 mol% cholesterol 94 mol% DPPC double bilayer 

(blue) and pure DPPC sample (pink) at 25°C.
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3.9.3 Fluid Phase Behaviour

The sample was measured at fluid phase temperatures between 41.7°C to 48.0°C and 

down to 41.6°C. The fitted profiles at 45.3°C, 48.0°C and 41.6°C are shown in 

Figure 3.46 and the parameters listed in Table 3.25.
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Figure 3 .46  Fits o f  the reflectivity profiles o f  6 mol% cholesterol 94 mol% DPPC double bilayer at 

45.3°C  (♦ ) ,  48.0°C  (A) and 4 1 ,6°C (□).

dw IDb IDc IAPM IRou ICov Dw uDb uDc uAPM uRou uCov

25.8°C 7±1 50±2 35±1 46±2 6±1 94±2 33±1 52±2 38±1 42±2 10±2 75±2

41,7°C 12±1 47±2 34±1 47±2 4±1 96 ±2 33±1 48±2 32±1 50±2 9±2 81 ±4

42.6°C 12±1 46±2 32±1 50±2 4±1 96±2 32±1 46±2 31 ±1 52±2 6±2 81 ±4

43.5°C 12±1 45±2 31 ±1 52±2 4±1 96 ±2 32±1 45±2 30±1 53±2 6±2 81 ±4

45.3°C 11±1 45±2 30±1 53 ±2 4±1 96±2 31 ±1 48±2 31 ±1 52±2 7±2 79±4

48.0°C 11±1 44±2 31±1 52 ±2 4±1 96±2 31 ±1 47 ±2 31±1 52±2 7±2 81 ±4

45.3°C 11±1 44 ±2 31 ±1 52±2 4±1 96±2 31±1 47±2 31±1 52±2 7 ±2 81 ±4

43.5°C 11±1 44 ±2 31 ±1 52±2 4±1 96±2 31±1 47±2 31 ±1 52±2 7±2 81 ±4

41.6°C 12±1 49±2 34±1 47±2 3±1 94±2 30±1 50±2 34±1 47±2 8±2 80±4

Table 3 .25  Parameters o f  fluid phase structure o f  6 mol% cholesterol 94 mol% DPPC double bilayer.

The transition of the upper bilayer to a fluid phase structure occurred between 40.8°C 

-  41.7°C, which was just slightly lower than that of pure DPPC vesicles of 41.8°C
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and is consistent with literature (Lemmich 1997). The lower bilayer became fluid 

between 41.7°C to 42.6°C, which was slightly higher than the Tm of the upper 

bilayer. This differs to the 0 -  4 mol% samples, which required a temperature of 6°C 

higher than that of the upper bilayer. The cholesterol is able to increase the fluidity of 

the lower bilayer at lower temperatures, overcoming the suspected constraining force 

from the substrate. This is consistent with the effect of cholesterol in membranes, 

where it increases the fluidity at lower temperatures and restricts it at higher 

temperatures (Yeagle 1985). The lower bilayer became a gel structure again at 

41.6°C. The effect of the cholesterol was therefore frilly reversible. The thickness of 

both chain regions and the increase in area per molecule were comparable to that of 

DPPC sample and to DPPC vesicles (Nagle 1996,2000).

The roughness of both the upper and lower bilayers decreased upon going to the fluid 

phase. If the DPPC and 6 mol% of cholesterol were immiscible then the roughness 

would have been expected to increase, to account for differences in the height of the 

domains. It is unlikely that domain formation is occurring as it has only been 

observed at ratios of 14 mol% in DMPC vesicles (Knoll 1985).

Other changes that occurred were a slight decrease in the thickness of the main water 

layer. The coverage of the upper bilayer increased, as expected from the increase in 

APM) whilst that of the lower bilayer remained the constant.

3.9.4 Transition Phase Behaviour
The reflectivity of the sample was measured in the transitional temperature between 

34.4°C to 40.8°C and between 38.9°C to 34.3°C. Fitted profiles upon increasing and 

decreasing the temperature are shown in Figure 3.47 and the parameters listed in 

Table 3.26.
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F igure 3.47 Fits o f  6 mol% cholesterol 94 mol% DPPC double bilayer o f  (a) increasing temperature 

34.4°C  ( ♦ ) ,  36.5°C  (A) and 39.1°C  (□ ) and (b) decreasing at 38.9°C  ( ♦ ) ,  36.0°C  (A) and 34.3°C  (□).

dw IDb IDc IAPM IRou ICov Dw uDb uDc uAPM uRou uCov

25.8°C 7±1 50±2 35±1 46±2 6±1 94±2 33±1 52±2 38±1 42±2 10±2 75±2

34.4°C 10±1 50±2 36±1 44±2 4±1 93±2 36±1 52±2 38±1 42±2 11 ±2 88±4

35.6°C 11±1 51 ±2 36±1 44±2 4±1 93±2 37±1 52±2 38±1 42±2 11 ±2 86±4

36.5°C 11±1 50±2 36±1 44±2 4±1 93±2 36±1 52±2 38±1 42±2 10±2 86±4

37.3°C 11±1 51 ±2 36±1 44±2 4±1 93±2 36±1 52±2 38±1 42±2 11 ±2 88±4

38.2°C 11±1 51 ±2 36±1 44 ±2 4±1 93±2 36±1 52±2 38±1 42±2 11 ±2 88±4

39.1 °C 12±1 51 ±2 36±1 44±2 4±1 93±2 36±1 52±2 38±1 42±2 9±2 88±4

39.9°C 11±1 51 ±2 36±1 44 ±2 4±1 93±2 33±1 53±2 38±1 42±2 8±2 88±4

40.8°C 12±1 51 ±2 36±1 44 ±2 4±1 92 ±2 31 ±1 53±2 38±1 42±2 6 ±2 88±4

48.0°C 11±1 44±2 31 ±1 52±2 4±1 96±2 31 ±1 47±2 31 ±1 52±2 7±2 81 ±4

38.9°C 11±1 49±2 35±1 46±2 4±1 93±2 34±1 52±2 38±1 9±2 11 ±2 72±4

36.0°C 11±1 50±2 35±1 46±2 4±1 93±2 35±1 51 ±2 38±1 9±2 11 ±2 72±4

34.3°C 11±1 50±2 35±1 46±2 4±1 93±2 35±1 51 ±2 38±1 9±2 11 ±2 72±4

31.9°C 8±1 52±2 37±1 43±2 4±1 93±2 33±1 53±2 38±1 9 ±2 10±2 71 ±4

25.8°C 8±1 49±2 36±1 44 ±2 4±1 93±2 34±1 56±2 38±1 12±2 11 ±2 70±4

Table 3 .26  Fitted parameters o f  6  mol% cholesterol 94 mol% DPPC double bilayer transition phase 

structures upon increasing and decreasing the temperature. The gel phases before and after the 

temperature scan 25.8°C  and the fluid phase 48.0°C  are given for comparison.

The behaviour in the transition phase was less than that observed in the 0 -  4 mol% 

samples. Figure 3.48 shows the change in the thickness of the main water layer,
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upper bilayer roughness and solvation parameters as a function of temperature. Table 

3.27 lists the maximum increases in these parameters along with those of the DPPC 

sample. The maximum increase values are relative to gel phase upon increasing 

temperature and to fluid phase upon decreasing it. The increase in the parameters 

observed is lower upon decreasing the temperature.

25 .0 3 0 .0 35.0 4 0 .0 45.0 50.0

Temperature (°C)

F igure 3 .48 Thickness main water layer (pink), roughness o f  water -  bilayer interface (yellow ),

solvation o f  upper bilayer (green) and the average upper bilayer roughness (blue) o f  6 mol%  

cholesterol 94 mol% DPPC double bilayer. The bold lines are increasing temperature and dashed 

decreasing temperature.

Gel value at 25°C 

DPPC 6 mol%

Fluid 48°C 

6 mol%

Maximum transition phase value 

DPPC 6 mol% up 6 mol% down

Maximum increase 

DPPC 6 mol% up 6 mol% down

Dw 27±1 A 33±1 A 31 ±1A 43±1 A 37±1 A 35±1 16±1 A 4±1 A 4±1 A

W Rou 3±2A 6±2A 3±2A 9±2A 8±2A 7 ±2 A 6±2A 2±2A 4±2A

Urou 5±2A 10±2A 7±2A 15±2A 11±2A 9±2A 10±2A 1±2A 2±2A

uSolv 7±4% 25±4% 19±4% 27±4% 29±4% 28±4% 20±4% 4±4% 9±4%

T able 3 .27  Comparison o f  the gel phase and the fluid phase with the maximum transition phase 

values upon increasing and decreasing the temperature o f  6 mol%  cholesterol 94  mol% DPPC double 

bilayer with DPPC double bilayer.
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As in the case of the other 0 - 4  mol% samples, the structure of the lower bilayer 

layer remained constant throughout the transition temperature range.

The 6 mol% sample had different behaviour to the 0 -  4 mol% samples in that very 

similar behaviour was observed upon heating and cooling. The same increase in the 

thickness of the water layer was observed, whilst the increases in the roughness of 

the water layer and upper bilayer parameters were similar.

Compared to the DPPC sample, the increase in the water layer was considerably less, 

with a quarter of the size, although the upper bilayer roughness and solvation hardly 

changed. 6 mol% of cholesterol therefore reduces the phase behaviour of the DPPC. 

A full comparison and discussion of the effect of cholesterol on the ripple structure 

of the double bilayers upon heating is given in section 3.13.3.

Interpretation

In literature the cholesterol concentration at which elimination of the ripple structure 

occurs is unclear. Ripple structures have been observed at concentrations of up to 14 

mol% cholesterol (Adachi 1995), 15 mol% (Karmakar 2003), and even up to 20 

mol% (Copeland 1980, Mortensen 1988). Other studies have said that cholesterol 

concentrations as low as 7 mol% suppresses the ripple structure (Vist 1990). From 

these varied studies it would be expected that the 6 mol% sample still exhibits ripple 

behaviour.

Another structural phenomenon occurring in bilayers that has a similar increase in 

the water layer is that of anomalous swelling. This behaviour appears when cooling 

in the fluid phase close to the fluid -  gel transition temperature. The bilayer repeat 

unit swells between 2 -  4A (Honger 1994, Richter 1999, Mason 2000, Pabst 2003). 

The swelling is thought to be largely due to a swelling of the water layer, but also 

maybe partially due to a slight increase in the bilayer thickness (Mason 2000). It is 

thought to be caused by a softening of the bilayer near the transition, which lowers 

the bending rigidity of the bilayer (Lemmich 1997). Anomalous swelling is thought 

to have a critical point just below Tm, but is obscured by the events of the transition 

(Richter 1999). The cholesterol concentrations up to 15 mol% have been observed to
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enhance the anomalous swelling. Inclusion of 10 mol% of cholesterol into DMPC 

vesicles was observed to increase the swelling to 4.2A from the 2.4A observed for 

DMPC vesicles (Richter 1999). The increase of 4 A in the water layer of the 6 mol% 

cholesterol double bilayer is very similar to this. The increase in the water layer 

could be connected to anomalous swelling, but is questionable as the behaviour is 

usually only observed only upon cooling in the fluid phase above the main transition. 

But the suspected presence of the critical point below the main transition could 

suggest a connection.
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3.10 Phase behaviour of 10 mol% Cholesterol 90 mol% DPPC

3.10.1 Introduction
The phase behaviour of the 10 mol% Cholesterol 90 mol% DPPC sample was 

measured in D2O between 25.1°C and 47.2°C and then down to 25.2°C. The 

thickness and the roughness of the oxide were found to be l l± lA  and 3±lA  

respectively.

3.10.2 Gel Phase Structure
The reflectivity of the sample was measured in the gel phase at 25.1°C, 31.2°C and 

34.7°C. The fitted profiles measured at 25.1°C and 34.7°C, and at 25.2°C after 

cooling from the fluid phase are shown in Figure 3.49 and the parameters listed in 

Table 3.28.
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Figure 3.49 Fits of the reflectivity profiles o f 10 mol% cholesterol 90 mol% DPPC double bilayer at 

25.1°C (♦ ) and 34.7 °C (A), and 25.2°C after cooling from the fluid phase (□).
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dw IDb IDc IAPM IRou ICov Dw uDb uDc uAPM uRou uCov

25.1 °C 14±1 51 ±2 35±1 45±2 12±1 100±4 36±1 53±2 37±1 43±2 16±2 75±4

31.2°C 15±1 49±2 35±1 46±2 10±1 96±4 36±1 53±2 37±1 43±2 14±2 71 ±4

34.7°C 12±1 49±2 34±1 47±2 8±1 95±4 34±1 52±2 36±1 44±2 13±2 72±4

25.2°C 10±1 51 ±2 34±1 47±2 4±2 95±4 32±1 51 ±2 36±1 44±2 11 ±2 70±4

Table 3.28 Fitted parameters of 10 mol% cholesterol 90 mol% DPPC double bilayer at gel phase 

temperatures, including after cooling down from fluid phase (25.2°C).

The structure after cooling down from the fluid phase differed from the initial 

structures in a number of ways. The differences are discussed in the fluid phase 

section because they are connected to the fluid phase behaviour

The lower bilayer had a chain region thickness similar to DPPC sample and vesicles 

of 35A (Weiner 1989) and 34A (Nagle 2000), whilst that of the upper bilayer was 

thicker at 37±1 A. This was similar to the structure of the 6 mol% sample. It is likely 

that the cholesterol reduces the tilt of the chains. These chains have an average tilt of 

25.5° relative to the normal to the plane of the bilayer, which is slightly lower than 

literature values for DPPC bilayers which range around 30° (McIntosh 1980, Smith 

1988, Sun 1994). It is also considerably lower than the upper bilayer of the DPPC 

sample which had a tilt angle of 34°.

The roughness of both bilayers was considerable higher than that of the DPPC 

sample which had roughnesses of 3A and 5A. The roughness of both bilayers 

decreased by 4A over the 25.1 -  34.7°C temperature range. This is discussed fully in 

the fluid phase section. Both water layers were also considerable thicker than in the 

DPPC sample, with a difference of 3±1 A in the lower water layer and 8A in the main 

water layer. It could be that 10 mol% of cholesterol is modifying the Helfrich forces 

which determine the mean separation of the bilayers.

The coverage of the upper bilayer was much lower than that of the DPPC sample. 

Increasing amounts of cholesterol was found to progressively decrease the coverage 

of the upper bilayer.
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3.10.3 Fluid Phase Structures
The sample was measured at fluid phase temperatures between 41.8°C to 47.2°C and 

then down to 42.8°C. The fitted profiles 45.5°C, 47.2°C and 42.8°C are shown in 

Figure 3.50 and the parameters listed in Table 3.29.

1.E-11
0.01 0.08 0.11 0.16

Figure 3.50 Fits of the reflectivity profiles o f 10 mol% cholesterol 90 mol% DPPC double bilayer at 

45.3°C (♦), 47.2°C (A) and42.8°C (□).

dw IDb IDc IAPM IRou ICov Dw uDb uDc uAPM uRou uCov

25.1 °C 15±1 51 ±2 35±1 46±2 12±1 100 ±4 36±1 53±2 37±1 43±2 16±2 75±4

41.8°C 11±1 45±2 31 ±1 51 ±2 5±1 95±2 35±1 49±2 34±1 47±2 4±2 70±4

42.6°C 11±1 45 ±2 32±1 51 ±2 3±1 96±2 34±1 48±2 33±1 48±2 3±2 73±4

43.5°C 10±1 43 ±2 30±1 53±2 3±1 95 ±2 35±1 46±2 32±1 50±2 3±2 73±4

44.4°C 10±1 43 ±2 30±1 53±2 3±1 96±2 34±1 47±2 33±1 48±2 2±2 72±4

45.4°C 11±1 45 ±2 31 ±1 51 ±2 3±1 95±2 32±1 47±2 33±1 48±2 3±2 72±4

47.2°C 11±1 45 ±2 31 ±1 51 ±2 3±1 95±2 31 ±1 45 ±2 32±1 50±2 3±2 72±4

42.8°C 11±1 46±2 31 ±1 51 ±2 3±1 95±2 31 ±1 46±2 33±1 48±2 3±2 74±4

Table 3.29 Parameters o f fluid phase structure of 10 mol% cholesterol 90 mol% DPPC double 

bilayer.

The change in the thickness of the chain regions as a function of temperature is 

shown in Figure 3.51. The thickness remained relatively constant until between
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39.1°C -  39.9°C, after which it decreasing, finally reaching a constant value around 

42.6°C. The two bilayers therefore had the same phase behaviour. The transition 

temperature was different to that of the DPPC sample, which had a transition 

between 40.3°C -  41.9°C for the upper bilayer and 44.4°C -  48.9°C for the lower 

bilayer. The presence of 10 mol% cholesterol lowers the transition temperature of 

both bilayers, lowering it considerably for the lower bilayer. It also broadens the 

temperature range over which it occurs. This behaviour was similar to that of the 6 

mol% sample.
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F igure 3.51 Variation o f  thickness o f  chain regions as a function o f  temperature o f  10 mol%  

cholesterol 90 mol% DPPC double bilayer. The black line is the upper bilayer, the pink line the lower 

bilayer. Bold lines are heating, dashed are cooling.

The phase transitions were reversible, occurring at almost the same temperature upon 

heating as upon cooling. The thickness of the chain regions of both the bilayers 

decreased by 5A. This was comparable to the DPPC sample. Although the decrease 

was the same, the upper bilayer was 3 A thicker than the DPPC sample. The gel phase 

was also thicker by this amount. It is likely that this level of cholesterol is increasing 

the chain order in the fluid phase. This is in agreement with literature data that 

indicate that the net effect of cholesterol is to increase the lipid bilayer thickness by 

3-4 A independently of temperature (Leonard 2001).
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The change in the roughness of both bilayers as a function of temperature is shown in 

Figure 3.52. The change in the bilayer roughness behaved differently to the DPPC 

sample and to the 1 -  6 mol% samples. The initial gel phase roughness at 25°C was 

11A higher than the DPPC sample and 6 A higher than the 6 mol% sample. The 

upper bilayer roughness steadily decreased up to 39.9°C after which it rapidly 

decreased to 3A at 42.6°C. The lower bilayer behaved in a similar fashion. Upon 

decreasing the temperature in the fluid phase and then in the gel phase the roughness 

of the upper bilayer increased, whilst that of the lower bilayer remained constant. 

The roughness of the upper bilayer of 9A at 25°C was less than that of the original of 

16A at 25°C.
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Figure 3 .52  Variation o f  bilayer roughness as a function o f  temperature o f  10 mol% cholesterol 90  

mol% DPPC double bilayer. The black line is the upper bilayer, the pink line the lower bilayer. Bold  

lines are heating, dashed are cooling.

The phenomenon o f very high roughness in the gel phase and low roughness in fluid 

phase, and the irreversible nature, was unexpected and differed from that of the 0 -  6 

mol% samples. It can be rationalised by the cholesterol interfering with the packing 

of the DPPC chains. Molecular dynamic simulations have shown that at very high 

cholesterol concentrations (50 mol%) DPPC bilayers have higher roughness than
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pure DPPC, due to the shorter cholesterol molecules (Smondyrev and Berkowitz, 

1999). No information on the roughness of 10 mol% cholesterol bilayers could be 

found in the literature. The most likely explanation for the high roughness in the gel 

phase is related to miscibility issues. It has been observed in vesicles containing 

cholesterol concentrations between 8 - 2 4  mol% that two coexisting phases are 

observed (Knoll 1985). One consists of a tilted phase resembling that of a pure DPPC 

bilayer and the other a non-tilted mixture containing 24 mol% of cholesterol. The 

figure of 24 mol% corresponds to reconciling the concepts of phase separation and 

complex formation. The same group established that there was complete miscibility 

in the fluid phase in vesicles up to ratios of 14 mol%, with strong evidence that it 

was the case up to 45 mol%. Complete miscibility in the 10 mol% sample here 

would be expected to have lower roughness than the phases occurring in the gel 

phase. The different behaviour observed with the lower bilayer close to the silicon 

might be related to substrate effects.

The thickness of the water layer decreased progressively during the fluid phase 

temperatures. Swelling of the water layer was observed upon heating during the 

transition region and was expected to occur upon cooling in the transition region.

The thickness of the sample cooled to 25.8°C water layer was 32A and thus was 

similar to those of the high fluid phase temperature structures. Larger amounts of 

cholesterol between 20 -  50 mol% have been observed to slightly increase the Van 

der Waals forces between bilayers (Simon 1991), which would decrease the water 

layer thickness. However why this would only start to occur in the fluid phase of this 

sample is unclear.
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3.10.4 Transition Phase Behaviour

The sample was measured in the transitional temperature range between 35.6°C to 

40.9°C and between 38.4°C to 34.4°C. Fitted profiles upon increasing and decreasing 

the temperature are shown in Figure 3.53 and the parameters listed in Table 3.30. 

Unfortunately upon cooling, only two temperatures were measured in the transition 

phase (38.4°C and 34.4°C). It is therefore not possible to give a complete picture of 

this phase upon cooling.

S

Figure 3 .53  Fits of 10 mol% cholesterol 90 mol% DPPC double bilayer o f (a) increasing temperature 

35.6°C (♦ ), 37.4°C (A) and 39.9°C (□) and (b) decreasing at 38.4°C (♦ )  and 34.4°C (A).

Figure 3.54 shows the change in the thickness of the water layer and the roughness 

and solvation of the upper bilayer as a function of temperature. The roughness of the 

upper bilayer remained relatively constant during both heating and cooling in the 

transition phase. The water layer however swelled upon heating. The swelling 

occurred over the range 37.4 -  42.6°C, with a maximum at 39.9°C and magnitude of 

5 A (Figure 3.55). It started just before the melting of the chains and finished just 

before the end of them and was symmetrical either side of the maximum. It was not 

possible to ascertain whether it occurred upon cooling as the two temperatures 

measured upon cooling, 38.4°C and 34.4°C, are either side of where it occurred upon 

heating. As the behaviour is similar to the 6 mol% sample upon heating, it is likely 

that the 10 mol% sample exhibited similar swelling upon cooling.
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dw IDb IDc IAPM IRou ICov Dw uDb uDc uAPM uR ou uCov

25.1 °C 15±2 51 ±2 35±1 46±2 12±1 100±4 36±1 53±2 37±1 43±2 16±2 75±4

35.6°C 14±2 49±2 34±1 47±2 10±1 98±4 34±1 52±2 37±1 43±2 11 ±2 72±4

36.5°C 13±2 48±2 34±1 47±2 10±1 97±4 35±1 5 2±2 36±1 44±2 12±2 70±4

37.4°C 14±2 49±2 34±1 47±2 10±1 99±4 34±1 53±2 36±1 44±2 11 ±2 72±4

38.2°C 11 ±2 49±2 34±1 47±2 9±1 94 ±4 35±1 52±2 36±1 44±2 14±2 71 ±4

39.1°C 12±2 47±2 33±1 49±2 11±1 99±4 36±1 52±2 36±1 44±2 12±2 68±4

39.9°C 13±2 46±2 32±1 50±2 9±1 98±4 38±1 48±2 34±1 48±2 13±2 72±4

40.9°C 14±2 45±2 32±1 51 ±2 9±1 100±4 36±1 49±2 35±1 46±2 9 ±2 73±4

47.2°C 11±1 45±2 31 ±1 51 ±2 3±1 95±2 31 ±1 45±2 32±1 50±2 3±2 72±4

38.4°C 10±2 50±2 34±1 47±2 3±1 98±4 34±1 49±2 35±1 46±2 8±2 72±4

34.4°C 10±2 52±2 34±1 4 7 ±2 4±1 98±4 32±1 51 ±2 35±1 46±2 10±2 72±4

25.8°C 10±1 51 ±2 34±1 47±2 4±1 95±4 32±1 51 ±2 36±1 44±2 11 ±2 70±4

T able 3 .30  Fitted parameters of 10 mol% cholesterol 90 mol% DPPC double bilayer transition phase 

structures upon increasing and decreasing the temperature. The gel phases before and after the 

temperature scan 25.8°C and the fluid phase 48.0°C are given for comparison.

4525

Temperature (°C)

Figure 3 .54  Thickness main water layer (pink), solvation o f upper bilayer (green) and the average 

upper bilayer roughness (blue) of 10 mol% cholesterol 90 mol% DPPC double bilayer. The bold lines 

are increasing temperature and dashed decreasing temperature.
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Temperature (“C)

Figure 3 .55  Thickness o f upper chain region (pink) and lower chain region (blue), and thickness of  

main water layer (black) o f 10 mol% cholesterol 90 mol% DPPC double bilayer. The bold lines are 

increasing temperature and dashed decreasing temperature.

Interpretation of behaviour

The concentration at which the suppression of the ripple phase by cholesterol occurs 

is slightly ambiguous as ripple structures have been observed up to cholesterol 

concentrations of 20 mol%. In recent studies, suppression occurred around 

concentrations of 14 -  15 mol% (Adachi 1995, Karmakar 2003). It is unclear 

whether the 10 mol% sample exhibited a ripple structure as there was no increase in 

roughness. The sample already had very high roughness in the gel phase, which 

suggested domain formation, whilst in the fluid phase it had low roughness, 

suggesting complete miscibility. The high gel phase roughness and domain formation 

could hinder the formation of a ripple structure. The question though is what is 

causing the swelling of the water layer.

The level of swelling is similar to that observed in the phenomenon of anomalous 

swelling mentioned for the 6 mol% sample. It is observed when cooling in the fluid 

phase near to the main transition temperature Tm. A small swelling of 2 -  4A has
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been observed for phosphatidylcholine bilayers (Honger 1994, Richter 1999, Mason 

2000, Pabst 2003). The swelling is has been observed with cholesterol concentrations 

up to 15 mol% (Richter 1999). The similar increases in the water layer could suggest 

a connection of the swelling of the 10 mol% sample with anomalous swelling. 

However anomalous swelling is usually only observed upon cooling.

135



Chapter 3 Bilavers o f DPPC and Cholesterol

3.11 Deuterated DPPC double bilayers

3.11.1 Introduction
The fabrication of double bilayers using DPPC lipids with deuterated chains (d62- 

DPPC) has not previously been successful. The fabrication was assessed again and 

the resulting structure measured by reflectivity. Deuterated double bilayers of DSPC 

(the chains each have 2 more carbon units than DPPC) have been fabricated and the 

phase behaviour studied (Fragneto 2003).

The fabrication results were given in the fabrication results section (Table 3.1). It can 

be seen that whilst the first and third depositions were excellent and were comparable 

to the hydrogenated version, the second deposition was very poor. It had a transfer 

ratio of 0.14 and bad fringes were observed. Given that the ratio of polished to 

unpolished of blocks is 29% and if the deposition occurred only on the polished side, 

the maximum coverage for that deposition would be 48%.

The deuterated double bilayer was measured in H2O only at 25°C due to the very 

poor quality of sample.

3.11.2 Gel phase structure
The profile was fitted using a double bilayer model. The profile resembles somewhat 

the profile of a single bilayer, but it was not possible to fit it with a single bilayer 

model.

The fitted profile at 25.1°C is given in Figure 3.56. The parameters used are listed in 

Table 3.31 along with those of the hydrogenated version. The double bilayer had a 

very low coverage for the lower bilayer, as expected from the low transfer ratio. This 

is why the reflectivity profile does not have the expected double bilayer shape.
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Figure 3.56 Fitted profile of deuterated DPPC double bilayer at 25.1°C (♦ )

dw IDb IDc IAPM IRou ICov Dw uDb uDc uAPM uRou uCov

d-DPPC 25.1 °C 11±1 51 ±2 37±1 43 ±2 18±1 48±2 27±1 52±2 38±1 42±2 24±2 70±2

h-DPPC 25.0°C 12±1 50±2 35±1 46 ±2 3±1 100 ±2 27±1 49±2 34±1 47±2 5±2 93±2

Table 3.31 Fitted parameters o f deuterated DPPC double bilayer and the hydrogenated DPPC double 

bilayer at 25°C

The structure of the deuterated double bilayer was very different from the 

hydrogenated version. As expected from the low second transfer ratio, the coverage 

of the lower bilayer was very low. The upper bilayer coverage was also low. Both 

bilayers had very high roughness, which is probably a due to patches of bilayers and 

holes. The thickness of the chains was larger than that of the hydrogenated version. 

The fact that the chain thickness is large, and thus the chains more vertical, indicates 

that the molecules are probably form domains. The larger thickness also indicates 

that the deuterated chains are also less tilted than their hydrogenated counterparts. It 

is unclear why this is the case.
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3.11.3 Interpretation

It has not been possible to make high quality c^-DPPC double bilayers despite 

repeated efforts. The main problem is the second deposition, which normally tends to 

be the most sensitive deposition. The reason for the fabrication differences between 

the hydrogenated and deuterated samples is unclear. Monolayers of hydrogenated 

and deuterated DPPC have previously been found to have different surface pressures 

when measured at the same APM. This was attributed to either reduced Van der 

Waals interactions between the deuterated chains or due to an increase in local 

disorder introduced by a higher chain kink order or enhanced vibrational mode or a 

combination of both (Vaknin 1991).

The monolayer structures were found to be similar when measured by x-ray and 

neutron reflectivity measurements high above the transition to the highly condensed 

phase. Substrate supported bilayers containing 51 mol% d-DMPC and 49 mol% h- 

DMPC have previously been formed by vesicle adsorption, but the degree of 

coverage was not mentioned (Johnson 1991). In other more complicated systems, 

involving depositions of deuterated DPPC onto polymer films, the monolayer was 

found to have a coverage as low as 40% (Perez 2003).

It is not clear why a deuterated version of DPPC does not deposit. It could be 

connected to contamination in the components, but this is unlikely as would it would 

show up in the analytical tests by the company.
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3.12 Single bilayers of d-DPPC and h-DPPC containing 10

mol% cholesterol

Single bilayers of hydrogenated and deuterated chain DPPC with 10 mol% 

cholesterol were successfully fabricated. Their phase behaviour was compared to the 

double bilayer versions to assess whether there are significant differences in the 

phase behaviour of the isotopic variants. An understanding of the phase behaviour of 

the deuterated single bilayer aids its applicability as a biomembrane, especially in 

light of the fabrication problems of double bilayers o f d6 2 -DPPC

No significant differences or trends were observed between the two versions in the 

fabrication. The fabrication results were given in the fabrication section of this 

chapter.

3.12.1 h-DPPC and 10 mol% cholesterol

The sample was measured at 25.2°C and 48.4°C in a range of different solvent 

contrasts. The oxide thickness of 18A was large and was likely due to an older 

silicon substrate being used. Its roughness was 3A and thus comparable to the other 

substrates. The fitted profiles at the two temperatures in the different solvent 

contrasts are shown in Figure 3.57 and the parameters listed in Table 3.32.

II

F igure 3 .57  Fitted profiles o f single bilayer of h-DPPC containing 10 mol% cholesterol at 25.2°C (a) 

in D20  ( A )  and SMW (•), and at 48.4°C in D 20 (▲), 4MW (A) and SMW (•).
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dw Db Dc APM Rou Cov

25.2°C
D20 9±1 54 ±2 36±1 44±2 6±1 82±4

SMW 8±1 52±2 34±1 47±2 5±1 74±4

d 2o 9±1 50±2 31±1 52±2 4±1 80±4

48.4°C 4MW 9±1 50±2 31±1 52±2 4±1 80±4

SMW 9±1 48 ±2 29±1 55±2 4±1 80±4

Table 3.32 Fitted parameters of single bilayer of hydrogenated DPPC containing 10 mol% cholesterol

The single bilayer exhibited gel and fluid phases, with a difference in the chain 

region thickness of 5A. The chain region thickness and roughness of the bilayer in 

both phases is very similar to the lower bilayer of the 10 mol% double bilayer. The 

water layer though was slightly thinner than that of double bilayer and the coverage 

lower. This could be due to the use of the Schaefer deposition.

The single bilayer is therefore similar to that of the lower bilayer of the double 

bilayer, even though different fabrication techniques were used.

3.12.2 d- DPPC and 10 mol% cholesterol

The deuterated sample was measured at 25.7°C and 47.9°C in a range of different 

solvent contrasts. The oxide thickness was 8A and its roughness 3A. The fitted 

profiles at the two temperatures in the different contrast are shown in Figure 3.58 and 

the parameters are listed in Table 3.33.
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s

F igure 3 .58  Fitted profiles of single bilayer of h-DPPC containing 10 mol% cholesterol at 25.7°C (a) 

in D20  (A) ,  H20  (A) and SMW (•), and at 47.9°C in D2Q (A) , H20  (A) and SMW (•).

dw Db Dc APM Rou Cov

25.2°C D20 6±1 57±2 35±1 46±2 16±1 98±4

h2o 6±1 57±2 35±1 46±2 16±1 98±4

SMW 6±1 59±2 38±1 42±2 15±1 82±4

d 2o 6±1 50±2 28±1 57±2 15±1 94±4

48.4°C h2o 6±1 50±2 28±1 57±2 15±1 94±4

SMW 6±1 50±2 28±1 57 ±2 14±1 94 ±4

Table 3.33 Fitted parameters of single bilayer of deuterated DPPC containing 10 mol% cholesterol

Unlike the double bilayer version, the single bilayer had good coverage. Like the 

hydrogenated single and double bilayers it exhibited both gel and fluid phase 

structures, with a decrease in the chain thickness of 7A. The roughness was much 

higher than these samples though and resembled that present in the lower bilayer of 

deuterated double bilayer.
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3.13 Comparison of double bilayer parameters

3.13.1 Gel phase chain region thickness as a function of cholesterol
Cholesterol is known to have a condensing effect on the area per molecule of 

phosphatidylcholine molecules in bilayers (Smondryev 1999, Radhakrishnan 2000, 

Chiu 2002). A condensing of the area per molecule would be expected to increase in 

the thickness of the chain region as it would reduce the tilt of the chains. Table 3.34 

shows the thickness of the chain region versus cholesterol content.

mol% dc

Initial

Dc

Equilibriated 

dc Dc

0 35±1 34±1 35±1 34±1

1 34±1 35±1 35±1 34±1

2 34±1 34±1 33±1 34±1

4 34±1 36±1 34±1 37±1

6 35±1 38±1 36±1 38±1

10 35±1 37±1 34±1 36±1

Table 3.34 Gel phase initial and equilibrated thickness o f chain region versus cholesterol content of 

lower (dc) and upper bilayer (Dc)

The presence of 4 -  10 mol% cholesterol in the gel phase increased the upper bilayer 

thickness by 3 -  4A before and after the temperature scan compared to the DPPC 

thickness. Below 4 mol% the thickness was identical to DPPC. The thickness of the 

lower bilayer chain region was not affected by the presence of cholesterol contents 

even up to 10 mol%. The difference in the behaviour between the upper and lower 

bilayers could be due to the substrate exerting a stronger restraining force on the 

lower bilayer.

There was no trend presence in the thickness of the fluid phase chain regions as a 

function of cholesterol content. This is expected as the chains are not higher ordered 

or tilted in the fluid phase (Nagle 2000). Cholesterol would not be expected to 

influence the thickness.
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3.13.2 Water layer thickness as a function of cholesterol
The gel phase thickness of the water layers as a function of cholesterol content 

before and after the temperature scans are shown in Table 3.35. The initial thickness 

of the lower water layers varied without a trend. The thickness was likely determined 

by differences in the fabrication. After cooling from the fluid phase it is likely that 

the thickness is equilibrated and predominantly determined by the strength of the 

interaction between the substrate and lower bilayer. The majority of the samples had 

a similar lower water layer thickness of 9±1 A, so it is unlikely that cholesterol effects 

this interaction.

25°C

Molar ratio of cholesterol (mol%)

Intiai thickness (A) 
dw Dw

Equilibrated thickness (A) 
dw Dw

0 12±1 27±1 12±1 29±1

1 9±1 22±1 10±1 29±1

2 10±1 23±1 9±1 28±1

4 9±1 29±1 8±1 27±1

6 7±1 33±1 9±1 35±1

10 14±1 37±1 9±1 31 ±1

Table 3.35 Comparison of thickness of water layers in gel phase at 25°C before and after temperature 

scans.

The initial thickness of the main water layer varies significantly, with a difference of 

15A between the 1 mol% and 10 mol% samples. The thickness of the water layers 

after the temperature scan seems to have been equilibrated, as apart from the 6 mol% 

sample, they all have a thickness within 29±2A with no trend present. The reason for 

the larger value of the 6 mol% sample is unclear, although when measured in SMW, 

the contrast gave a value of 32A. This behaviour differs from previous literature 

studies, where the presence of small concentrations of cholesterol was been found to 

dramatically increase the fluid separation in gel phase DPPC vesicles (Rand 1980, 

Simon 1991). Incorporation concentrations of cholesterol between 3 - 1 0  mol% were 

observed to increase the thickness by 15 -  25A. The increase was due to the 

cholesterol inducing large periodic ripples in the plane of the bilayer that increased 

the entopic repulsion between the bilayers. The reason for the difference in the
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behaviour of the double bilayer could be linked to the difference in confinement of 

the bilayers.

The thickness of the main water layer in the fluid phase at 47°C is plotted as a 

function of cholesterol content in Figure 3.59.
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Figure 3.59 Fluid phase thickness o f main water layer of double bilayers at 47°C as a function of 

cholesterol content.

In previous studies using vesicles, the water layer did not appreciatively increase 

with small amounts of cholesterol, and was almost independent of cholesterol 

content (Hui 1983, Simon 1991). In the case of the double bilayer there is a small 

trend present, where very low amounts of cholesterol ( 1 - 2  mol%) decrease the 

water layer thickness. When the cholesterol level was increased the thickness then 

progressively returned back to the DPPC sample thickness.

The very low concentrations of cholesterol are influencing the interactions between 

the two bilayers and thus the changing the distance between the two bilayers. The 

main interactions between the two bilayers are attractive Van der Waals forces and 

repulsive undulations, with the addition of the influence of substrate forces here 

(Chapter 1). It would be expected that the cholesterol could reduce the fluctuations, 

due to its influence on the fluctuations in the transition region (i.e. ripples). But a 

reduction in the fluid phase fluctuations (repulsive forces) would be expected to 

bring the two bilayers closer. Unlike the effect of cholesterol on the transition phase 

behaviour, increasing the cholesterol concentration does not have a linear effect on 

the thickness of the water layer. However, previously very low amounts of
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cholesterol have been observed to have a different effect on the bilayer behaviour in 

comparison to higher amounts, in that case it was anomalous swelling (Lemmich 

1997). It could therefore be the same situation for the thickness of the water layer in 

the fluid phase.
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3.13.3 Effect of cholesterol upon heating in the transition phase

The similarities between the values of the upper bilayer roughness of the DPPC 

double bilayer and the value of the ripple amplitude of a very similar system 

(Kaasgaard 2003) suggest that the roughness parameter is proportional to the 

amplitude of the ripple structure. The possibility of a link between the two values is 

very interesting as only very limited and scattered data on ripple amplitudes have 

previously been reported.

Maximum increase in parameters versus cholesterol content

Table 3.36 shows the maximum increase in the water thickness and upper bilayer 

roughness parameters of the 0 -  6 mol% ratios of cholesterol in the transition region. 

The 10 mol% sample behaved differently so is not discussed here. It can be seen that 

the maximum increase of the parameters successively decreases as the concentration 

of cholesterol is increased. The behaviour of the 1 mol% sample only slightly 

differed from the DPPC sample with the 15A amplitude, but by 2 mol% the 

difference is larger. The 4 mol% cholesterol parameters indicate that a rippling 

structure is still present, whilst by 6 mol% it is not possible to determine whether one 

is present as the difference in the upper bilayer roughness between the gel and 

transition phase is so low. Only a swelling of the water layer is observed. This was 

also the case in the 10 mol%. It is likely therefore that the incorporation of 

cholesterol progressively decreases the amplitude of the ripple phase, until a ratio of 

6 mol%, where it cannot be discerned.

0 mol%

Gel value (25*C)

1 mol% 2  mol% 4 mol% e  mol%

Maximum transition phase value

0 mol% 1 tnol% 2 mol% 4 mol% f  mol% Omol%

Maximum Increase

1 mol% 2 mol% 4 mol% t  mol%

Dw 27±1A 22*1 A 23*1 A 29*1 A 33*1 A 43*1 A 37*1 A 33*1 A 37*1 A 37*1 A 16*1 A 15*1 A 10*1A 8*1 A 4*1 A

Urou 5*2A 7±2A 6±2A 9±2A 10*2A 15*2A 16*2 A 13*2A 14*2 A 11*2A 10*2 A 9*2A 7±2A 5*2A 1*2 A

uSolv 7*4% 14*4% 5*4% 11*4% 25*4% 27*4% 22*4% 20*4% 14*4% 29*4% 20*4% 8*4% 15*4% 3*4% 4*4%

Table 3.36 The gel phase values, maximum values and maximum increase in values o f the parameters 

during the transition phase o f the different ratios of cholesterol with DPPC.
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The maximum increase in the upper bilayer roughness versus the maximum increase 

in the water layer is plotted in Figure 3.60. When the error bars are taken into 

account it can be seen that the decrease in both parameters is almost proportional. 

This is expected for a rippling structures as the larger the ripple the larger the average 

water thickness.
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F igure 3.60  M axim um  increases in the upper b ilayer roughness versus the m axim um  increase in the 

w ater layer.

It was not possible to find literature on the change in ripple amplitude as a function

of cholesterol in phosphatidylcholine systems. In one study the introduction of

cholesterol into DMPC vesicles was been observed to increase the periodicity of the

ripple (Mortensen 1988). However, cholesterol also gave rise to a marked

temperature dependence of the periodicity. The relationship between periodicity and

cholesterol is therefore not trivial. The effect of the introduction o f the cholesterol on

the amplitude cannot be inferred from the effect on the wavelength, as the

relationship between the ripple periodicity and amplitude is not clear in literature.

The two properties could be connected, as in the case of the two ripple structures

observed when cooling in the transition phase, which consisted o f a long wavelength
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ripple with large amplitude and a short wavelength with small amplitude (Kaasgaard 

2003). Other studies though suggest that they are not related, as when the ripple 

amplitude was observed to decrease with decreasing temperature, but the wavelength 

remained constant (Woodward 1996). It is therefore not possible to say whether 

decreases in the ripple amplitude are accompanied by decreases in the wavelength. In 

the double bilayer study it can only be said that increasing amounts of cholesterol is 

probably decreasing the ripple amplitude.

The ratios 0 - 4  mol% exhibited the same behaviour as a function of increasing 

temperature. The water thickness, bilayer roughness and solvation parameters 

initially increased, then reached a plateau, and then decreased when approaching the 

main transition. The behaviour would suggest that the ripple structure increases to a 

maximum amplitude during the plateau and then decreases when approaching the 

main transition. No linear behaviour versus temperature was observed for these 

ratios. This behaviour would differ to that observed with vesicles whose ripple 

amplitude and wavelength progressively changed with temperature (Matuoka 1993, 

Woodward 1996). This could be due to the different containment of the double 

bilayer where one side of the bilayer is open to the reservoir, when in vesicles the 

bilayers are contained between two bilayers.

The thickness of the main water layer at 25°C varied for the different ratios. The 

increase in the water layer observed in the transition phase was related to the initial 

gel phase thicknesses. The thickness of the water layer versus temperature is shown 

in Figure 3.61. The data has been shifted so that all the water layer thicknesses of all 

the samples at 25°C are the same as the DPPC sample, allowing direct comparison of 

the increase.

148



Chapter 3 Bilavers o f  DPPC and Cholesterol

 0% Dw
" “ "1%  adjusted 

2% adjusted 
— “ 4% adjusted 
^ — 6% adjusted 
—  10% adjusted

35.0 40.0
Temperature (°C)

F igure 3.61 Change in the main water layer (D w ) thickness as a function o f  temperature. The plots 

have been shifted vertically so  that they all have the same water layer thickness at 25°C.

The progressive decrease in the maximum values of the water layer as a function of 

cholesterol is clearly visible. The addition of 1 -  4 mol% cholesterol also 

progressively broadens the temperature range over which the increase occurs. The 

addition of 10 mol% causes the sample to behave differently to the lower ratios. This 

is probably due domain formation, which occurs in samples with cholesterol ratios 

above 8 mol% (Knoll 1985) and was discussed more fully in the 10 mol% section. 

The increase of the water layer is proportional to the bilayer roughness (Figure 3.60) 

and probably the ripple structure. The increase is caused by an increase in the bilayer 

separation, which would be effected by the ripple structure (Mecke 2003).

Conclusion

Increasing the cholesterol concentrations progressively decreases the level of 

structural change observed upon heating the double bilayers in the transition region. 

With 0 - 4  mol% the ripple structure is still present due to the increase in bilayer 

roughness. By 6 -  10 mol% it is not possible to clearly determine the ripple structure. 

Increasing the cholesterol concentration progressively decreases the size of the 

increase in the water layer thickness.
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3.14 Overall Conclusion

The aim of this study was to assess the fabrication and phase behaviour of DPPC 

double bilayers containing 0 - 1 0  mol% of cholesterol, especially very low 

concentrations ( 1 - 4  mol%). Vesicle studies of similar concentrations have exhibited 

interesting phase behaviour which is not fully understood. It was hoped that the study 

of the phase behaviour of the double bilayer system would aid the discussion, 

providing relevant biophysical information and also increase the applicability of the 

systems as biomembrane mimics.

Fabrication conclusions

The results have shown that with the Langmuir-Blodgett-Schaefer technique it is 

possible to fabricate stable DPPC double bilayers containing between 0 - 1 0  mol% 

cholesterol. It is not possible to fabricate double bilayers with very low 

concentrations of cholesterol ( 1 - 2  mol%) by vesicle adsorption. Langmuir-Blodgett 

techniques are able to overcome the problem. It was not possible to fabricate high 

coverage double bilayers containing 20 mol%. It is likely that with high 

concentrations, domain formation of cholesterol rich regions and poor regions occurs 

(Knoll 1985). There could also be deposition problems with the liquid-ordered state 

that cholesterol forms a these concentrations (Vist 1990).

Unfortunately it was not possible to fabricate high coverage double bilayers of 

deuterated chain DPPC (d62-DPPC), although it was possible to fabricate high 

coverage single bilayers of d62-DPPC with 10 mol% cholesterol. The reason for the 

difference in fabrication behaviour between the hydrogenated DPPC and deuterated 

DPPC are being investigated. It may be necessary to apply different fabrication 

techniques for the deuterated lipid bilayers.

DPPC cholesterol phase behaviour conclusions

All samples containing between 0 - 1 0  mol% cholesterol exhibited fully stable and 

reversible gel, transition and fluid phases.
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The thickness of the gel phase bilayers was found to increase with increasing 

cholesterol concentration. The presence of cholesterol therefore reduces the tilt of the 

DPPC chains. There was no correlation in the thickness of the fluid phase bilayer 

versus cholesterol concentration. This is expected as the chains are disordered in the 

fluid phase.

No trend was observed in the gel phase thickness of the main water layer separating 

the bilayers as a function of cholesterol content. However, in the fluid phase the 

water layer thickness decreased for very low concentrations ( 1 - 2  mol%), then 

increased back to that of the DPPC sample thickness with increasing cholesterol 

concentration.

Upon heating in the transition region the samples containing 0 - 4  mol% exhibited 

large increases in the upper bilayer roughness and water layer thickness parameters. 

This was interpreted as the observation of a rippling structure. The addition of 1 -  4 

mol% cholesterol progressively broadened the temperature range over which the 

increase in parameters occurred. Increasing the cholesterol concentrations from 1 -  

10 mol% progressively reduced the level of increase in these parameters observed in 

the transition region. With 0 - 4  mol% the ripple structure was still visible by the 

increases in the bilayer roughness, but by 6 -  10 mol% it was not possible to 

determine whether a ripple structure was present as only a swelling of the water layer 

was observed.

Upon cooling in the transition phase the reflectivity profiles of the 0 - 4  mol% 

samples were different to those measured during heating. The first fringe looked to 

consist of two overlapping fringes; especially the samples contained 1 - 4  mol%. It 

was not possible to fit these profiles successfully using only one model. Literature 

studies on similar samples suggest the presence of two coexisting rippling structures 

upon cooling. One ripple structure had parameters similar to the ripple observed 

upon heating and the other ripple had larger amplitude and wavelength parameters. It 

is likely that the profiles observed for the 0 -  4 mol% samples are due to a
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combination of the reflectivity from the two distinct rippling structures. It was 

possible to fit parts of the profiles using two separate models representing two ripple 

structures. These gave results that were similar to those observed in other studies. 

The use of two models to fit different parts is only a simple approximation. Further 

work needs to be undertaken to understand the effect of two high roughness 

coexisting ripple structures on the reflectivity profiles. This is beyond the scope of 

this thesis.

What can be inferred for the 1 -  4 mol% profiles is that the presence of cholesterol 

alters the structure of one of the ripple structures present in the DPPC sample. The 

feature observed on the right side of the first fringe in the profile shifted to a higher q 

with 1 - 4  mol% cholesterol. It is possible that the cholesterol is reducing the size of 

the smaller ripple structure.

Upon cooling in the transition region the samples containing 6 - 1 0  mol% behaved 

differently to those containing 0 - 4  mol% cholesterol. They exhibited similar 

behaviour upon heating and cooling. Only a small increase in the water layer 

thickness was observed. It was not possible to say confidently whether 6 - 1 0  mol% 

of cholesterol eliminates the ripple structure, only that it likely reduces it. The 

different behaviour of the higher cholesterol concentrations could be caused by the 

formation of cholesterol rich and poor domains (Knoll 1985) that could be hindering 

the formation of ripples.

Phase behaviour of deuterate chain DPPC bilayers

As it was not possible to fabricate high coverage double bilayers of deuterated chain 

DPPC the phase behaviour of this system was not investigated. The phase behaviour 

of single bilayers of DPPC and d62-DPPC containing 10 mol% was studied. The 

phase behaviour of the single bilayer of DPPC and 10 mol% cholesterol exhibited 

similar structural behaviour to the double bilayer version. The single bilayer of d62- 

DPPC and 10 mol% cholesterol had a similar gel and fluid phase bilayer thickness to 

the hydrogenated DPPC single bilayer. Its roughness however was much higher.

152



Chapter 3 Bilavers o f DPPC and Cholesterol

3.15 References

Adachi T, Takahashi H, Hatta I. (1995) Cholesterol effects on ripple structure studied by small-angle 

neutron and x-ray diffraction Physica B, 213&214, 760 -  762

Baneijee S. (2002) Exploring the ripple phase o f biomembranes Physica A 308, 8 9 - 1 0 0

Chiu S W, Jakobsson E, Mashl R. et al. (2002) Cholesterol-induced modifications in lipid bilayers: a

simulation study Biophys. J. 83,1842-1853

Copeland B R, McConnel H M. (1980) The rippled structure in bilayer membranes o f phosphatidylcholine 

and binary mixtures o f phosphatidylcholine and cholesterol Biochim. Biophys. Acta 599, 95 - 109 

Cunningham B, Brown A D, Wolfe D H, Williams WP, Brain A. (1998) Ripple phase PC Effect chain 

length, position, and unsaturation Phys. Rev. E. 58, 3662 -3672

Deme B, Lee L T. (1997) Adsorption o f a hydrophobically modified polysaccharide at the air-water 

interface: kinetics and structure J. Phys. Chem. B. 101,8250 -  8258

Dixon G S, Black S G, Butler C T. et al. (1982) A differential AC calorimeter for biophysical studies 

Analytical Biochemistry 121, 5 5 -6 1

Fragneto G, Graner F, Charitat T. et al. (2000b) Interaction o f the third helix o f antennapedia homeodomain 

with a deposited phospholipid bilayer: a neutron reflectivity structural study Langmuir 16,4581-4588  

Fragneto G, Charitat T, Graner F. et al. (2001) A fluid floating bilayer Europhys. Lett. 53 ,100  -  106 

Goldar A, Roser S J, Hughes A. et al. (2002) The effect o f surface texture on total reflection o f neutrons and 

X-rays from modified interfaces Phys. Chem. Chem. Phys. 4 ,2379  -  2386

Helfrich W. (1977) Steric interaction o f fluid membranes in multilayer systems Z. Naturforsch 33a, 305 -  

315

Hughes A V, Goldar A, Gerstenberg M C. et al. (2002a) Hybrid SAM phospholipid approach to fabricating 

free supported lipid bilayer PCCP 4,2371 -2378

Hughes A V, Roser S J, Gerstenberg M C. et al. (2002b) Phase behaviour o f DMPC free supported bilayers 

studied by neutron reflectivity Langmuir 18, 8 1 6 1 -8 1 7 1

Hui S W, He N B. (1983) Molecular organisation in cholesterol-lecithin bilayers by x-ray and electron 

diffraction measurements Biochemistry 22, 1159 -  1164

Kaasgaard T, Leidy C, Crowe J H. et al. (2003) Temperature-controlled structure and kinetics o f ripple

phases in one- and two-component supported lipid bilayers Biophys. J. 85, 350 -  360

Kaizuka Y, Groves J T.(2004) Structure and dynamics o f supported intermembrane junctions Biophys. J. 86,

9 0 5 -9 1 2

Karmakar S, Raghunathan V A. (2003) Choi. Induced Modulated Phase in Phospholipid Membranes Phys. 

R. Lett. 91 ,9 ,098102

Katsaras J, Tristram-Nagle S, Liu Y. et al. (2000) Clarification o f the ripple phase o f lecithin bilayers using 

fully hydrated, aligned samples Phys. Rev. E. 61, 5668 -  5677

Kim K, Kim C, Byun Y. (2001) Preparation o f a dipalmitoyl-phosphatidylcholine/cholesterol Langmuir- 

Blodgett monolayer that suppresses protein adsorption Langmuir 17, 5066 -  5070

Knoll W, Schmidt G, Ibel K. et al. (1985). Small-Angle Neutron Scattering Study o f Lateral Phase 

Separation in Dimyristoylphosphatidylcholine-Cholesterol Mixed Membranes. Biochemistry. 24, 5240 -  

5246.

153



Chapter 3 Bilavers o f DPPC and Cholesterol

Koenig B W, Krueger S, Orts W J. et al. (1996) Neutron reflectivity and atomic force microscopy studies o f 

a lipid bilayer in water adsorbed to the surface o f a silicon single crystal Langmuir 12, 1343 -  1350 

Lemmich J, Mortensen K, Ipsen J H. et al. (1997) The effect o f cholesterol in small amounts on lipid-bilayer 

softness in the region o f the main phase transition Eur. Biophys. 25,293 -  304

Leonard A, Escrive C, Laguerre M. et al. (2001) Location o f Cholesterol in DMPC Membranes. A 

Comparative Study by Neutron Diffraction and Molecular Mechanics Simulationf Langmuir 17,2019 -2030 

Lewis B A, Engelman D M. (1983) Lipid bilayer thickness varies linearly with acyl chain length in fluid  

phosphatidylcholine vesicles J. Mole. Bio. 1 6 6 ,2 1 1 -2 1 7

McConnell H M, Radhakrishnan A. (2003) Condensed complexes o f cholesterol and phospholipids (Review) 

B B A 1 6 1 0 ,1 5 9 -1 7 3

Macintosh T J. (1980) Differences in hydrocarbon chain tilt between hydratedphosphatidylethanolamine 

and phosphatidylcholine bilayers. A molecular packing model. Biophys. J. 29, 237 -  245 

McPhillips (1972) Progress in Surface and Membrane Science 5, Academic Press, New York,

Mason P C, Gaulin B D, Epand R M. et al. (2000) Critical swelling in single phospholipid bilayers Phys. 

Rev. E. 61, 5 6 3 4 -5 6 3 9

Matuoka S, Kato S, Akiyama M. et al. (1990) Temperature dependence o f the ripple structure in 

dimyristoylphosphatidylcholine studied by synchrotron X-ray small-angle diffraction Biochim. Biophys. 

1028, 103 - 1 0 9

Matuoka S, Yao H, Hatta I. (1993) Condition for the appearance o f the metastable P beta' phase in fully 

hydrated phosphatidylcholines as studied by small-angle x-ray diffraction Biophys. J. 64, 1456 -  1460 

Matuoka S, Kato S, Hatta I. (1994) Temperature change o f the ripple structure in fully hydrated 

DMPC/cholesterol multilayers Biophys. J. 67, 728 -  736

Mecke K R, Charitat T, Graner F. (2003) Fluctuating lipid bilayer in an arbitrary potential: theory and 

experimental determination o f bending rigidity Langmuir 19,2080 -  2087

Mortensen K, Pfeiffer W, Sackmann E. et al. (1988) Structural properties o f a phosphatidylcholine- 

cholesterol system as studied by small-angle neutron scattering: ripple structure and phase diagram 

Biochem. Biophys. Acta 945,221 -  245

Mouritsen O G, Jorgensen K. (1994) Dynamical order and disorder in lipid bilayers Chem. Phys. Lipids. 73, 

3 - 2 5

Nagle J F, Zhang R, Tristram-Nagle S. et al. (1996) X-ray structure determination o f fully hydrated L alpha 

phase dipalmitoyl-phosphatidylcholine bilayers Biophys.J. 70, 1419-1431

Nagle J F, Tristram-Nagle S. (2000) Structure o f lipid bilayers Biochim. Biophys. Acta 1469 1 5 9 -1 9 5  

Nakanishi M, Hirayama E, Kim J. (2001) Characterisation o f myogenic cell membrane: II. Dynamic 

changes in membrane lipids during the differentiation o f mouse C2 myoblast cells Cell Biol. Int. 25, 971 — 

979

Needham D, McIntosh T J, Evans E. (1988) Thermomechanical and transition properties o f 

Dimyristoylphosphatidylcholine / cholesterol bilayers Biochemistry 27 ,4668 -  4673.

Pace R J, Chan S I. (1982) Molecular motions in lipid bilayers. 1. Statistical mechanical model o f acyl chain 

motion J. Chem. Phys. 7 6 ,4 2 1 7 -4 2 2 7 .

Perez U A, Faucher K M, Majkrzak C F. et al. (2003) Characterisation o f a Biomimetic Polymeric Lipid 

Bilayer by Phase Sensitive Neutron Reflectometry Langmuir 19,7688 -  7694

154



Chapter 3 Bilavers o f DPPC and Cholesterol

Prestegard J H, Wilkinson A. (1974) Proton relaxation studies o f water in concentrated

dimyristoyllecithin—water systems Biochim. Biophys. Acta 345, 439 -  447

Racansky (1987) A study o f the phase-transitions in phosphatidylcholine and phosphatidylethanolamine 

model membranes using polarizing microscopy Acta Physica Slovaca 37, 166 - 176 

Radhakrishnan A, Anderson T G, McConnell H M. (2000) Condensed complexes, rafts, and the chemical

activity o f  cholesterol in membranes Proc. Natl. Acad. Sci. 97, 12422 — 12427

Rand R P, Parsegian V A, Henry J A  C. et al. (1980) The effect o f  cholesterol on measured interaction and

compressibility o f dipalmitoylphophatidylcholine bilayers Can. J. Biochem. 37 ,959  -  968

Simon S A, McIntosh T J. (1991) Surface ripples cause the large fluid spaces between gel phase bilayers

containing small amounts o f cholesterol Biochim. Biophys. Acta 1064, 69 -  74

Simons K, Ikonen E (1997) Functional rafts in cell membranes Nature 387, 569-572

Smith G S, Sirota E B, Safinya C R. et al. (1988) Structure o f the L-beta phases in a hydrated

phosphatidylcholine multimembrane. Phys. Rev. Lett. 60 ,813 -8 1 6 .

Smondryev AM, Berkowitz M L. (1999) Structure o f DPPC/cholesterol bilayer at low and high cholesterol 

concentrations: molecular dynamics simulation Biophys. J. 77 ,2075 -  2089.

Subczynski W K, Kusumi A. (2003) Dynamics o f raft molecules in the cell and artificial membranes: 

approaches by pulse EPR spin labelling and single molecule optical microscopy Biochim. Biophys Acta 

1 6 1 0 ,2 3 1 -2 4 3

Sun W J, Suter M A, Worthington C R. et al. (1994) Order and disorder in fully hydrated unorientated 

bilayers o f gel phase DPPC Phys. Rev. E. 49 ,4665 -  4676

Tristram-Nagle S, Zhang R, Suter RM. et al. (1993) Measurement o f chain tilt angle in fully hydrated

bilayers o f gel phase lecithins Biophysical J. 64 ,1097  -  1109

Trouard T P, Nevzorov A A, Alam T M. et al. (1999) Influence o f cholesterol on dynamics o f 

dimyristoylphosphatidylcholine bilayers as studied by deuterium NMR relaxation. J. Chem. Phys. 110, 8802 

-8 8 1 8 .

Vist M R, Davis J H. (1990) Phase equilibria o f cholesterol /  dipalmitaylphosphatidylcholine mixtures: 2H 

nuclear magnetic resonance and differential scanning calorimetry Biochemistry 29,451 -  464.

Watts A, Harlos K, Maschke W. et al. (1978) Control o f the structure and fluidity ofphosphatidylglycerol 

bilayers by pH  titration Biochim. Biophys. Acta 510,63 - 74

Wiener M C, Suter RM, Nagle J F. (1989) Structure o f the fully hydrated gel phase o f dipalmitoyl- 

phosphatidylcholine Biophys. J. 5 5 ,3 1 5 -3 2 5

Wiener M C, White S H. (1991) Fluid bilayer structure determination by the combined use o f x-ray and 

neutron-diffraction. 2. Composition-space refinement method Biophys. J. 59, 1 6 2 -1 7 3 .

Woodward J T, Zasadzinski J A. (1996) Amplitude, wave form, and temperature dependence o f  bilayer 

ripples in the Pbeta ’phase Phys. Rev. E. 53, R3044

Yeagle P L. (1985) Cholesterol and the cell membrane. Biochim. Biophys. Acta. Rev. Biomem. 822,267 -  

287

Zasadzinski J, Schneir J, Gurley J. et al. (1988) Scanning tunnelling microscopy o f freeze-fracture replicas 

o f biomembranes Science 239,1013 -1 0 1 5

155



Chapter 4 Bilavers ofDPPE

4. Phase behaviour of DPPE bilayers with and without 

Cholesterol

4.1 Introduction
Single and double bilayers of DPPE with and without cholesterol were studied by 

neutron reflectivity. The aim was to assess the stability and phase behaviour of the 

DPPE bilayers for use as biomembrane mimics. Cholesterol was incorporated to 

increase the realism of the sample and to compare its behaviour to that of DPPC and 

cholesterol double bilayers.

4.1.1 Introduction to Phosphoethanolamines
Phosphatidylethanolamines are one of the most abundant lipids in membranes, often 

accounting for up to a third of the total percentage of lipids present, as in the case of 

human and the rat erythrocyte plasma membranes (Datta 1987). They are frequently 

the main lipid component of microbial membranes such as E. coli. The 

phosphatidylethanolamine used is this study was 1,2-dipalmitoyl- 

phosphoethanolamine (DPPE) (Figure 4.1). The structure is almost identical to that 

of the phosphatidylcholine DPPC except that it has an amine group instead of the 

choline [N(CH3)3]+ head-group of DPPC. This smaller head group enables them to 

form strong hydrogen bonds between the phosphate and the primary amine. This 

ability distinguishes phosphatidylethanolamines from phosphatidylcholines. The 

smaller head-group combined with the large chain area gives DPPE a conical shape 

structure.

O

H-N

Figure 4.1 Chemical structure of 1,2-dipalmitoyl-phosphoethanolamine
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Phosphatidylethanolamines are asymmetrically distributed in membranes, often 

located in the inner leaflet facing the cytoplasm. As well as being one of the major 

building blocks of membranes, they have a specific involvement in supporting active 

transport by the lactose permease. They are also thought to act as a ‘chaperone’ 

during the assembly of membrane proteins, guiding the folding path for the proteins 

and aiding in its transition from the cytoplasmic to the membrane environment (Lipid 

Analysis Unit website, UK).

Despite their predominance in membranes, phosphatidylethanolamines have not 

received as much attention as phosphatidylcholines. For example, the total number of 

publications listed in the Web o f Science with the word phosphatidylethanolamines in 

is just over 300, whilst the number for phosphatidylcholines is over 1400. This 

difference is also reflected in Lipidat (Ohio) a web-based database of thermodynamic 

and associated information, the number o f records for PE is only 2 722 compared to 

11 583 for PC.

4.1.2 D PPE phase behav iour

In solution, phosphatidylethanolamines exhibit lamellar gel and liquid phases and a 

range of non-lamellar phases. For certain PE lipids, a transition from the lamellar 

liquid phase to a non-lamellar inverted hexagonal phase is observed (Seddon 1983, 

Harper 2001).

F igure 4.2 Schematic o f  inverted hexagonal phase. The rods are hexagonally packed.

Inverted hexagonal phases are long rods aligned in hexagonal stacks (Figure 4.2). 

The rods contain water channels inside and lipids on the outside orientated with their 

head-group inwards and the chains outwards (Hamley 2000). The water core is 

circular up to a certain radius limit, above which it is deformed due to packing 

difficulties (Turner 1992). The inverted hexagonal phase accommodates best the
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packing of the small head-group and larger chains. In contrast phosphatidylcholines 

are not known to form hexagonal phases, unless in a mixture of non-similar lipids 

(Lipidat, Ohio). Non-lamellar phases have been found in vital cell tasks, such as in 

cell division where a non-lamellar phase forms around the area in the membrane 

where the cell is splitting with another cell. A similar effect occurs in cell fusion 

(Seddon 1991).

The fluid -  inverted hexagonal transition normally happens at significantly higher 

temperatures than the main gel -  liquid transition Tm. For example, DSPE (Cis) has a 

Tm of 75.5°C (Harlos 1981) and a fluid -  inverted hexagonal temperature (T h) of 

109.5°C. For DPPE it is likely that the Th occurs at 118.0°C, with a Tm of 64.5°C 

(Harlos 1981). It has been found for DOPE that the observed Th is dependent upon 

the rate at which the temperature is changed (Toombes 2002). The temperature of Th 

is also dependent on chain length. Contrary to the trend that an increase in chain 

length increases the value of Tm, Th actually decreases with increasing chain length 

(Harlos 1981). The inclusion o f alkanes such as dodecane reduces T h, presumably by 

a reduction in the hydrocarbon packing stress.

The Tm temperatures of phosphatidylethanolamines are generally higher than those 

for similar chain length phosphatidylcholines. DPPE has a Tm of 64.5°C whereas 

DPPC has a Tm of 41.8°C, even though they have the same chain length. This is due 

to the ability of the PE head-group amine protons to form hydrogen bonds with the 

neighbouring phosphate oxygens (Bloom 1980).

The phase behaviour of dispersed vesicles of phosphatidylethanolamines in solution 

is abundant, whilst literature on the behaviour of stacked multilamellar bilayers is 

rather more limited in number. Lamellar stacks of phosphatidylethanolamines have 

been found to be unstable in the planar structure, forming inverted hexagonal 

structures at the Tm (J. P. Bradshaw et al., unpublished results).
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4.1.3 DPPE and Cholesterol studies
The phase behaviour and organisation of DPPC and cholesterol has been the subject 

of extensive study. Conversely, studies of phosphatidylethanolamines and cholesterol 

mixtures have been rather limited in number despite the abundance of 

phosphatidylethanolamines in membranes (McMullen 1999). Previous studies have 

shown cholesterol to have a greater effect on transition temperatures of 

phosphatidylethanolamines compared to phosphatidylcholines. Addition of 

cholesterol to DPPE vesicles leads to a continuous decrease and broadening of Tm, 

whilst concentrations of 50 mol% of cholesterol showed no detectable Tm in 

calorimetric studies. The transition enthalpy also decreases almost linearly with 

increasing mol% (Blume 1980). Inclusion of 30 mol% cholesterol to DOPE lowered 

the lamellar -  hexagonal transition Th by ~ 30°C (Marinov 1995) The reduction in 

Tm and Th with the addition of cholesterol is likely due to the cholesterol molecules 

interfering with the H-bonding of the phosphatidylethanolamines head-groups.

Phosphatidylethanolamines have also been observed to form cubic phases (Shalaev 

1999). The formation of the cubic phase was found to be induced by cholesterol in 

POPE (Wang 2002), as well as formation of liquid-ordered phase in POPE at certain 

concentrations (Pare 1998). It is not possible to generalise the effect of cholesterol on 

the behaviour of phosphatidylethanolamines as it varies appreciatively with the 

structure of the head-group and the chain structure and length (McMullen 1996).

Supported single bilayers and monolayers of phosphatidylethanolamines have been 

used in a limited number of studies; examples include the interaction of key proteins 

involved in cell division with supported bilayers of DPPE (Alexandre 2002), studies 

of the interactions of antimicrobial peptides with DPPE monolayers (Gidalevitz 

2003). AFM studies have been used to map the adhesive forces between deposited 

DMPE monolayers and surfaces (Berger 1995).
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4.2 Fabrication of DPPE bilayers

4.2.1 Overview
The purpose of this part of the study was to evaluate the fabrication of double 

bilayers of DPPE. Once it was found that the double bilayers were partially unstable 

upon heating past the Tm, the deposition of DPPE with a range of different 

cholesterol ratios between 5 - 3 0  mol% was also evaluated. Single bilayers of DPPE 

were also deposited to compare their phase behaviour with that of the double bilayer 

and to aid in understanding the phase behaviour of the double bilayer.

The different isotherms are shown first, followed by the results of the depositions. 

The isotherms are shown only for reference purposes as isotherms of phospholipids 

in with cholesterol have been greatly studied in the past (Gaines 1966, Roberts 

1990).

4.2.2 Isotherms
The monolayers were fabricated using the method detailed in the fabrication chapter. 

One problem encountered with all solutions containing DPPE was that DPPE is only 

mildly soluble in chloroform at room temperature. Gentle heating (~ 40°C) was 

necessary to dissolve the DPPE prior to spreading as a monolayer. Care has to be 

taken not to overheat the solution, as this was found to give bad monolayers that 

subsequently did not deposit well. It was found impossible to dissolve the deuterated 

chain DPPE, even when small amounts of methanol were added to the chloroform 

(this method, recommended by the supplier, works for problematic lipids like 

phosphatidylserines). It was therefore not possible to measure isotherms of d-DPPE 

or to deposit them. It is unclear why it fails to dissolve, it could be due to the 

differences in hydrogen bonding between the hydrogen and deuterium atoms.

Representative examples of isotherms of DPPE with 0 mol%, 5 mol% and 30 mol% 

molar ratios of cholesterol are shown in Figure 4.3. As the solutions were heated to 

dissolve the DPPE, it is not possible to calculate an accurate area per molecule for 

the isotherms, as the volume of chloroform increases even with mild heating and it is 

therefore difficult to evaluate the lipid concentration. The position of the isotherms
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on the x-axis should be treated as arbitrary and not an indication of the effect of 

cholesterol on the area per molecule of DPPE. At room temperature DPPE has a 

small transition in gradient at a surface pressure of 36mN/m and unlike isotherms of 

DPPC it has no plateau. It is sufficient here to say that all isotherms were stable over 

the time measured, with no area loss when held at a constant surface pressure. The 

different monolayers were therefore deemed suitable for depositions.
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Figure 4.3 Left to right: representative isotherms of DPPE, 5 mol% cholesterol 95 mol% DPPE, 30

mol% cholesterol 70 mol% DPPE
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4.2.3 Depositions
Langmuir -  Blodgett depositions of 0 mol%, 5 mol%, 10 mol% and 30 mol% were 

evaluated to assess their fabrication. The averages of the transfer ratios are shown in 

Table 4.1.

C holesterol
(mol%)

Tr1 Tr2 Tr3

0 1.04 0.80 1.00

DPPE
5 1.03 0.98 1.02

10 1.07 1.05 1.05
30 1.06 1.07 0.97

Table 4.1 Average transfer ratios o f range o f cholesterol -  DPPE ratios

DPPE consistently gave higher transfer ratios for the second deposition (average Tr2 

of 0.80) than DPPC (average Tr2 of 0.43, chapter 3). As only a 29% of the 8 x 5 x 2 

cm2 silicon substrates is polished, and double bilayers are formed only on the 

polished side with high coverages, its is likely that DPPE deposits more readily on 

the rougher sides of the substrate than DPPC.

It was not possible to ascertain whether the first and third transfer ratios are affected 

by the inclusion of cholesterol, as they all were unity. However there is a clear trend 

present in the second transfer ratio with the inclusion of cholesterol. The transfer 

ratio increases to unity with only the addition of very small cholesterol ratio of 5 

mol%. A slight rise in its value is seen with increased ratios. The 10 mol% ratio of  

cholesterol was chosen to evaluate its stabilisation effect on the double bilayer. In the 

monolayer phase separation of DPPE and cholesterol is not expected as previously 

phase separation has only been observed at concentrations of 35 -  40 mol% 

cholesterol (Cheetham 1989).

4.2.3.1 Reflectivity Samples

Table 4.2 lists the fabrication results of the DPPE single bilayer, DPPE double 

bilayer and the 10 mol% Cholesterol 90 mol% DPPE double bilayer. All were 

fabricated as detailed above and in the fabrication chapter. The only difference was 

that the Schaefer deposition of the DPPE double bilayer was done in a D2O sub­

phase instead of H2O. This was the method used in the past, but was discontinued
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due to the very high cost of D2O. Interestingly much lower values for the pressure 

and area rise were observed with a D2O sub-phase.

Tr1 Tr2 Tr3 Schaefer Deposition 
Pressure Area

DPPE single bilayer 1.02 - - 4.0 4.5

DPPE double bilayer * 1.03 0.86 1.04 0.8 0.8
10% cholesterol DPPE double bilayer 1.07 1.05 1.05 12.0 1.5

Table 4.2 Transfer ratios and Schaefer pressure and area rise for samples used in reflectivity studies. 

Pressure is in mN/m and area in cm2. (* Schaefer deposition performed in D20  rather than H20 )

The transfer ratios and Schaefer pressure and area rises were excellent for the DPPE 

single and double bilayers. Whilst the transfer ratios were excellent for the 10 mol% 

ratio, the Schaefer pressure rise was somewhat high, even though the area rise was 

excellent. It was therefore likely that the substrate made contact quite fast with the 

sub-phase, causing the large pressure rise, without being detrimental to the quality of 

the film. If the area had risen higher, then this would have indicated better the 

removal of previous layers, however the reflectivity results for this sample indicated 

high coverage.
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4.3 Modelling of DPPE neutron reflectivity

The reflectivity profiles in this chapter were fitted with AFit (University of Oxford). 

The Bragg peak of the DPPE double bilayer was fitted using the Parratt (HMI, 

Berlin) programme.

The scattering lengths are listed in Table 4.3. They were kept constant when fitting. 

The thickness, roughness and solvent content were the variable parameters. All 

sample temperatures had an error of ±0.1 °C.

Material SLD MO'6 A'2)
Si 2.07

S i0 2 3.41
H20 -0.56
d 2o 6.35

Palmititoyl chain C3oH62 -0.41
PE head-group C7H90 8PN 2.66

Cholesterol 0.22

Table 43  Scattering length densities used in modelling of DPPE bilayer samples. All values from 

Fragneto (2000) except PE head-group from Kuhl (1998) and cholesterol from Deme (1997).
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4.4 DPPE double bilayer

4.4.1 Introduction
To evaluate the phase behaviour and stability of DPPE double bilayer membrane 

mimics, the reflectivity of the sample was measured at a range of temperatures 

between 25 -  84°C. The sample was then measured upon cooling to assess the 

reversibility. The sample was measured only in D2O. The reflectivity was measured 

using the D17 reflectometer of the Institut Laue-Langevin. The profiles were fitted 

using the AFit programme. The silicon oxide was found to have a constant thickness 

of 11A and roughness of 3 A at all temperatures. The results section is divided into 

two parts, the gel phase temperature behaviour and the fluid phase temperature 

behaviour.

4.4.2 Gel phase structure
Within the gel phase temperature range the structure did not change significantly 

despite the large temperature range measured (25.2°C -  62.9°C). The reflectivity was 

measured at 13 intermediate temperatures. Fits of three representative temperatures 

(25.2°C, 47.3°C and 62.9°C) are shown in Figure 4.4. The average values of the 

structural parameters at all the temperatures measured are given in Table 4.4.

1.E+00

1.E-02

1.E-04

1.E-06

1.E-08

1.E-10

1.E-12

1.E-14
0.190.130.070.01

q (A’1)

Figure 4.4 Fitted reflectivity profiles of DPPE double bilayers at 25.2°C ( ♦ ) ,  47.3°C (0) and 62.5°C 

(■)•
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The head-groups were found to have an average thickness of 7±1 at all gel phase 

temperatures. The solvent content of the bilayers remained constant throughout. The 

coverage of the lower bilayer was found to be excellent at 98±2% and 99±1% for the 

upper bilayer, which agreed with the high transfer ratios of the depositions.

dw IDb IDc IRou ICov Dw uDb uDc uRou uCov

Gel temperatures 13±1 49±2 36±1 3±1 98±2 16±2 51 ±2 37±1 5±2 100±1%

Table 4.4 Average parameters of gel phase temperature structures o f DPPE double bilayers.

The scattering length density profile of the structure at 25.2°C is shown in Figure 

4.5. The two minima correspond to the two alkyl chain regions (hydrogenated so 

SLD close to -0.41 x 10'6 A'2), whilst the higher parts correspond to the water layers 

(deuterated so closer to 6.35 x 10'6 A'2). The low roughness and similarities between 

the two bilayers can clearly be seen, as can the well-defined water layer separating 

the lower bilayer from silicon oxide.
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Figure 4.5 Scattering length density profile at 25.2°C. The structure of a double bilayer can clearly be 

seen in the form of two hydrogenated head-group and chain regions separated by a deuterated water 

region. The thin water layer between the silicon oxide and lower bilayer is also clearly visible.
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Discussion

The stability of the bilayer over the measured gel phase temperature range is 

reassuring, but not totally unexpected, as the chains of the bilayer are immobile in 

the gel phase.

Deposited monolayers of DPPE have been found to have a thickness of 27±2 A by X- 

ray photoelectron spectroscopy (Solletti 1996), which is slightly higher than half the 

bilayer thickness of the lower and upper bilayers (25A and 25.5A respectively). 

Monolayers of DPPE on a water sub-phase have been found by ellipsometry and X- 

ray reflectivity to have a chain thickness of 19A, head-group thickness of 6.5A and 

bilayer roughness of 4A at 20°C at a surface pressure of 40mN/m (Thoma 1996). If 

the lower and upper bilayer chain regions of the double bilayer sample are divided 

into leaflets, then their thickness of 18A and 18.5 A are slightly lower than that of the 

monolayer on water. The maximum extension of DPPE chains has been calculated to 

be 19.1 A (Thoma 1996). A comparison of these suggests that the chains in the 

double bilayers are close to full extension, are not tilted in any way and have little or 

no interdigitation. The similarities of the bilayer and head-group thickness to those of 

the monolayers suggest that the monolayer structure does not change significantly on 

deposition. This is likely due to the high deposition coverage. The similarities in the 

roughness of the monolayer on water and those of the bilayers also suggest that the 

roughness of the monolayers is conserved on deposition. No additional roughness 

has been added by the deposition procedure, even by the Schaefer deposition 

procedure.

The bilayer thickness was higher than that of DPPC bilayers, which had a thickness 

of 34±lA in the double bilayers (chapter 3.4). The difference is due to the lack of 

molecular tilt of phosphatidylethanolamines that is present in the gel phase of 

phosphatidylcholines (McIntosh 1980).
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4.4.3 Transition phase behaviour

Unlike phosphatidylcholines, in general phosphatidylethanolamines do not exhibit 

large transition phase behaviour, usually only exhibiting gel -  fluid transition. 

Vesicles of DPPE in solution have a gel -  fluid transition at 64°C (Racansky 1987). 

In this study the transition of the upper bilayer occurred between 62.9 -  64.1°C and 

continued until 69.5°C. The lower bilayer transition occurred between 67.4 -  69.5°C. 

The fitted parameters are shown in Table 4.5. Both chain regions continued to thin 

slowly until becoming constant at 74.4°C. The reduction was also accompanied by a 

decrease in the thickness of the lower water layer (dw). As expected for 

phosphatidylethanolamines no additional phase behaviour (i.e. ripple phase) is 

observed at the transition.

Tem perature (°C) dw IDb IDc IRou ICov Dw uDb uDc uRou uCov

62.5 13±1 51 ±2 36±1 3±1 96 ±2 14±2 50±2 37±1 4±2 100±3%

62.9 13±1 51 ±2 36±1 3±1 96±2 14±2 50±2 37±1 4±2 100±3%

64.1 12±1 49±2 35±1 3±1 93±2 14±2 49±2 34±1 6 ±2 100±3%

67.4 12±1 47±2 35±1 3±1 93±2 14±2 49±2 34±1 6±2 100±3%

69.5 10±1 47±2 31 ±1 5±1 94±2 13±2 44 ±2 30±1 6 ±2 100±3%

70.2 10±1 45±2 31 ±1 6±1 94±2 14±2 44±2 30±1 6±2 100±3%

74.4 10±1 42±2 28±1 5±1 94±2 14±2 41 ±2 27±1 6±2 100±3%

Table 4.5 Structural parameters o f the DPPE double bilayer around the literature gel -  liquid 

transition temperature o f 64°C. All values are in A. The transition in the double bilayers occurs at a 

similar temperature range o f 62.9 -  69.5°C.

The structural change was consistent with a gel -  fluid phase transition. As the 

transition temperature of the upper bilayer started to occur at the same temperature of 

vesicle dispersions, it is likely that the upper bilayer is generally unhindered by the 

substrate, with similar behaviour to that of vesicles. The difference in the transition 

temperature for the upper and lower bilayer is probably due to higher influence of the 

substrate on the lower bilayer. A difference in the behaviour of the two bilayers has 

previously been observed in DPPC double bilayers (Fragneto 2001).
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Structural changes in the sample can often be directly inferred from changes in the 

reflectivity profiles. The first minimum has previously been found to be sensitive to 

the thickness of the overall sample (Fragneto 2001). A shift to higher q usually 

indicates a reduction in the overall thickness as q d _l and indeed a shift to higher q 

can be seen in the DPPE sample either side of the Tm (Figure 4.6).

n°QD
005 0*7

q(A’)

Figure 4.6 The reduction in the thickness o f the sample is observed by a shift in the position of the 

first minimum to higher q with temperature. 64.1°C (♦ ) , 69.5°C (□ ).
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4.4.4 Fluid phase behaviour

4.4.4.1 Introduction

The reflectivity was measured at fluid phase temperatures from 64.1°C to 84.0°C and 

then down to 67°C. The gel -  fluid transition between 64.1 -  69.5°C was 

accompanied surprisingly by a partial structural rearrangement into a structure that 

gave rise to a Bragg peak. The Bragg peak is clearly present at 69.5°C at a q of 

0.12A"1 and could be present at 64.1°C at a q of 0.11 A '1 (Figure 4.7). The overall 

form of the reflectivity profile however indicates that the bulk of the sample 

remained as a double bilayer structure. The position of the Bragg peak shifts with 

temperature and remains present even on cooling below the transition temperature. 

This indicates the formation of an irreversible repeat unit structure.

J

Figure 4.7 Presence of a Bragg peak in the reflectivity of DPPE double bilayers above Tm (a) 64.1°C, 

(b) 69.5°C

The data was analysed by two methods. Initially the data was fitted without 

consideration of the Bragg peak using the normal double bilayer model. The Bragg 

peak was then analysed separately.
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4.4.4.2 Analysis of data using double bilayer model

The shape and strength of the reflectivity profiles indicates that the sample was 

predominantly a double bilayer structure. The data was therefore initially fitted using 

the double bilayer model without consideration of the Bragg peak. The fitted 

parameters for the fluid phase temperatures upon heating and cooling are shown in 

Table 4.6 along with the average of the values for the gel phase. Due to beam-time 

constrains and the desire to study the behaviour of the Bragg peak with temperature, 

only the q range 0.05 -  0.25 was measured for 80.3°C and 84.0°C -  70.3°C 

measurements. Three fits are shown in Figure 4.8.
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Figure 4.8 Fits o f  D PPE double b ilayer a t fluid phase tem peratures using  a  double b ilayer m odel. 

74.4°C  ( ♦ ) ,  84.0°C (A )  and cooled  70.3°C  ( • ) .

T em p era tu re  (°C) d w IDb IDc IRou ICov Dw uD b u D c u R ou u C o v

Gel 13±1 4 9± 2 36±1 3±1 9 8  ±2 16±2 51 ±2 37±1 5 ±2 100±1%

6 9 .5 10±1 4 7  ±2 31 ±1 5±1 94± 2 13±2 44± 2 30±1 6 ±2 100±3%

7 0 .2 10±1 45± 2 31 ±1 6±1 94± 2 14±2 44± 2 30±1 6 ±2 100±3%

7 4 .4 10±1 42  ±2 28±1 5±1 94± 2 14±2 41 ±2 27±1 6 ±2 100±3%

8 0 .3 10±1 42± 2 28±1 3±1 93± 2 14±2 42 ± 2 27±1 5 ±2 100±3%

8 4 .0 10±1 41± 2 27±1 3±1 93± 2 14±2 41 ±2 26±1 5±2 100±3%

7 6 .5 10±1 41 ±2 28±1 4±1 97 ± 2 14±2 4 4  ±2 30±1 4 ±2 100±3%

74.1 11±1 41 ±2 28±1 5±1 96± 2 14±2 43 ± 2 29±1 6 ±2 100±3%

7 0 .3 10±1 41± 2 28±1 5±1 9 7  ±2 14±2 44± 2 30±1 4 ±2 100±3%

T able 4.6  F itted param eters for fluid phase tem peratures and  the average o f  the gel phase param eters. 

All values are in A.
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Figure 4.9 shows the thickness of the chain regions versus temperature. The constant 

thickness at gel phase temperatures and the behaviour at the transition region of 

between 64.1°C -  69.5°C can clearly be seen. Above the Tm of 64°C the chain region 

thickness continued to decrease very slowly until becoming constant at 74.1°C. The 

9A decrease in the chain region between the gel and fluid phase temperatures was of 

an expected magnitude and was slightly larger than the 6A decrease observed in 

DPPC lipids (Nagle 1996). No change was observed in the roughness of the upper 

bilayer between the gel and fluid phase. It is possible that the roughness of the lower 

bilayer increased slightly, but the values fluctuate somewhat. The coverage of the 

upper bilayer remained constant, whilst the values for the lower bilayer fluctuate.
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Figure 4.9 T hickness o f  chain  reg ions vs. tem perature. U pper b ilayer is the b lack line and low er 

b ilayer is the grey line. T he constan t th ickness o f  the gel phase, transition  phase betw een 64.1 -  

69.5°C  and the fluid phase can clea rly  be seen.

The fitted parameters are similar to those found in literature for multilamellar 

vesicles (MLV). Small angle x-ray scattering (SAXS) o f DPPE at 75°C gave a 

bilayer thickness of 46A, a chain thickness of 30A and a thin water layer o f 5A 

(Pabst 2000). Liposomes of POPE were found to have a chain region length of 29A 

by SAXS (Rappolt 2003). The thickness of the water layer was also found to be 

similar to other phosphoethanolamine MLV, where a range of different chain lengths 

gave a constant thickness of 13±lA for a range of temperatures (Seddon 1984,
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Harper 2001). Given the similarities between the results and literature it is therefore 

likely that the majority of the sample is behaving similar to a liquid phase of 

multilamellar vesicles and is therefore not inhibited strongly by the substrate.

Figure 4.10 shows the scattering length density profiles of the sample at 25.2°C in 

the gel phase and at 74.1°C in the fluid phase. The thinning of the chains and water 

layers is clearly visible as well as the shift of the bilayers closer to the substrate. As 

the solvent was not exchanged completely, the water regions have a SLD of 6.0 x 10' 

6 A'2 rather than the D20  value of 6.35 x 10'6 A'2.
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Figure 4.10 Scattering length densities o f  DPPE double bilayer at 25.2°C  (bold line) and 74.1°C

(dotted).

Structure on reducing temperature

The fitted parameters of the gel phase upon cooling are shown in Table 4.7, along 

with the original gel phase values and two fluid phase structures upon heating.
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Temperature (°C) dw IDb IDc IRou ICov Dw uDb uDc uRou uCov

Ave. Gel heating 13±1 49±2 36±1 3±1 98±2 16±2 51 ±2 37±1 5 ±2 100±3%

Fluid 70.3 10±1 41 ±2 28±1 5±1 97 ±2 14±2 44±2 30±1 4±2 100±3%

Fluid 67.4 10±1 43±2 30±1 4±1 97 ±2 14±2 45±2 31 ±1 4 ±2 100±3%

Gel 64.5 11±1 47±2 34±1 3±1 90 ±2 14±2 50±2 34±1 6±2 100±3%

Gel 61.3 11±1 50 ±2 35±1 4±1 92±2 14±2 52±2 38±1 3 ±2 100±3%

Gel 29.0 11±1 50±2 37±1 3±1 93±2 16±2 53±2 38±1 3±2 100±3%

T able 4.7 Fitted parameters for coo led  gel phase temperatures. Fluid phase values and the original gel 

phase parameters are show n for comparison. All values are in A.

The cooled gel phase values are very similar to the original gel phase values, except 

for the coverage of the lower bilayer, which is 5±2% lower. This difference is also 

observed when going through the fluid -  gel transition of 67.4 -  64.5°C. The 

decrease in coverage is expected upon changing from the fluid to gel phase and is 

similar to that seen in DMPC hybrid double bilayers (Hughes 2002). The reduction is 

not seen in the upper bilayer because the original gel phase coverage was 100%. It is 

unclear why the gel phase coverage differs though, as the coverage remained 

constant when heating in the original gel and fluid phase. It may signify an 

equilibrating of the packing of the molecules upon cooling into the gel phase.

The scattering length density profiles of the sample at the initial 25.2°C and the 

29.0°C after cooling are shown in Figure 4.11. There are only small differences 

between the two structures when fitted without the Bragg peak. The lower bilayer 

has shifted slightly towards the substrate and the coverage differs.
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Figure 4.11 Scattering length density profiles o f  the sample o f  initial 25.2°C  (blue) and 29.0°C  (red) 

on reducing the temperature. The structure has only slightly changed overall.
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4.4.4.3 Discussion of Bragg peak

Bragg diffraction occurs when Bragg’s law, rik = 2d sin0 is satisfied (where d is the 

repeat unit, 0 the angle of incidence and X the wavelength of incidence). The height 

of Bragg peaks is dependent on the scattering length density (SLD) difference 

between the interfaces and the roughness of the boundary between the layers. A large 

difference in SLD will give a higher peak than a smaller difference. If the interface is 

rough, then the interference will be less constructive and the peak smaller. The width 

of Bragg peak is proportional to number of repeat units. For the purpose of data 

analysis it was assumed that there are two structures present, that of the double 

bilayer and that of the repeat unit giving rise to the Bragg peak. The reflectivity 

profile is assumed to be superposition of the individual reflectivity curves.

Bragg peak behaviour with temperature

The Bragg peak was first observed at 69.5°C but may have been present at 64.1°C. It 

remained at all temperatures, even when the temperature was reduced to 29.0°C. The 

q position, d spacing and fitted thickness of chain regions versus temperature are all 

shown in Table 4.8.

Tem perature (aC) q Bragg peak (A'1) d spacing IDb uDb

69 0.120 52 47±1 49±1

74 0.121 52 42±1 41 ±1

80 0.123 51 42±1 42±1

84 0.123 51 41 ±1 41 ±1

76 0.122 52 41 ±1 44±1

74 0.123 51 41 ±1 43±1

70 0.119 53 41 ±1 44±1

67 0.119 53 43±1 45±1

64 0.104 60 47±1 49±1

61 0.102 62 50±1 52±1

64 0.104 60 50±1 51 ±1

29 0.100 63 50±1 53±1

Table 4.8 Bragg peak position, d spacing and thickness o f upper (uDb) and lower (lDb) bilayer with 

temperature. UDb and lDb were obtained by fitting the profile whilst ignoring the Bragg peak. Error 

in Bragg peak position is ±0.01.

The position and magnitude of the Bragg peak between 69.5 -  84.0°C -  67.4°C 

remained constant, with a d spacing of 52±lA. However, upon cooling close to the
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fluid -  gel transition of 64°C the Bragg peak shifted to a lower q value. Between 

67.4°C -  64.5°C the d spacing increased from 53 to 60A. The magnitude of the 

Bragg peak decreased as well (Figure 4.12). Below 64.5°C the d spacing and 

magnitude of the peak remains constant at all temperatures down to 29.0°C.
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Figure 4 .12  R eflectivity profiles o f  67.4°C  and 64.5°C . The shift in the position o f  the Bragg peak can 

be seen.

Discussion of d spacing

Normally the d spacing quoted for multilamellar vesicles consists of the bilayer and 

one of the water layers separating the bilayers. The fitting of the fluid phase 

temperatures without consideration of the Bragg peak gave an average upper bilayer 

thickness of 42±2A and gel phase thickness of 52±1. The average thickness of the 

main water layer for the fluid phase was 14±2A and 16±2 for the gel phase. These 

equate to a d spacing of 56A for the fluid phase and 68A for the gel phase and. The 

Bragg peak gives an average d spacing for the fluid phase of 52±1 and 62±1 for the 

gel phase.

Between the fluid and gel phases the d spacing obtained form the Bragg peak 

increased by 1OA. This would suggest either an increase in the thickness of the chain 

region or a swelling of the water layer in the repeat unit. As the increase in d spacing 

occurred so close to the Tm of DPPE, it would be expected to be due to an increase in
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chain thickness rather than swelling of the water. The increase is also very similar to 

that seen in the double bilayer upon the gel -  fluid transition (8A).

Overall, in both the gel and the fluid phase the d spacing obtained without 

consideration of the Bragg peak was 4±1 A greater than the d spacing calculated from 

the Bragg peaks. If the repeating structure was a lamellar bilayer, it is likely then that 

the water layer in the repeat structure is 11A rather than the 15A in the double 

bilayer. The chain region in both the gel and fluid would not be expected to reduce 

by this amount. The repeat unit that gives rise to the Bragg peak is not necessarily a 

repeat planar lamellar bilayer. A possible repeat structure is of layers of inverted 

hexagonal rods above the double bilayers. Planar multilamellar bilayers of DOPE 

have previously been found to form inverted hexagonal rods (J. P. Bradshaw, 

Edinburgh, unpublished results). Inverted hexagonal rod structure consists of water 

filled rod like miscelles arranged into a hexagonal lattice (Figure 4.13). The lipids are 

orientated in the rods with their head-groups towards the internal water channels and 

tails outwards.

X+ ’

Figure 4.13 Schematics o f  inverted hexagonal phase
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4AAA  Analysis of Bragg peak
The Bragg peak was fitted using the multiple layers mode of the Parratt 3.2 

reflectivity fitting programme. The aim was not just to fit the Bragg peak, but to 

obtain a close fit for the whole profile as well.

As the profile showed such a well defined double bilayer form, it is likely that the 

structure was predominantly a double bilayer, with only a small amount of the total 

lipids present forming the repeat structure. The models used here therefore consisted 

of a double bilayer as a support, with a repeat structural above it. The parameters of 

the double bilayer used were those obtained from fitting the fluid phase temperatures 

without the Bragg peak. The coverage was allowed to vary, whilst the thickness and 

roughness was held constant. The d spacing from the Bragg peak was used to define 

the overall thickness of the repeat unit. The fact that most of the sample remained as 

a double bilayer means that the repeat units must have low coverage. It is likely 

therefore that the repeat structure is only occupying a small part of the area above the 

double bilayer.

The intention was to evaluate two models for obtaining the repeat structure, 

consisting of a planar multilamellar repeat structure and an inverted hexagonal repeat 

structure, but complications arose when trying to create a model that realistically 

modelled the inverted hexagonal structure. Coverage issues also arose with the 

planar multilamellar structure.

Inverted hexagonal model discussion

It is unlikely that an inverted hexagonal structure has been formed, as the d spacing 

(52±1 for the fluid phase and 62±1 for the gel phase) is closer to that of a planar 

bilayer structure rather than inverted hexagonal. Inverted hexagonal structures tend 

to have large structures due to the large diameter of the initial water channel, which 

has been found to be 25 A for DDPE (di-Cn), 44A for DAPE (di-C2o) (Seddon 1984) 

and 30A for POPE (Rappolt 2003) in aqueous dispersions. The transition 

temperature of the fluid planar structure to the hexagonal is often considerably higher 

than that of the gel -  fluid planar transition (Harper 2001, Toombes 2002, Rapport 

2003).
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From a modelling point of view it is difficult to form a realistic model of rods of 

inverted hexagonal structures along the surface. The rods cannot be clearly divided 

into planar layers. It was therefore not possible to model an inverted hexagonal 

repeat unit. The main features of the inverted hexagonal structure are all in the plane 

of the bilayer due to their spherical nature. However with specular reflectivity the 

structure normal to the surface is obtained, with the in-plane features averaged. It 

would be more useful to measure the off-specular reflectivity to obtain a clearer idea 

of whether an inverted hexagonal structure is formed.

Planar lamellar model

Unlike the inverted hexagonal structure, a model could easily be constructed for the 

planar lamellar structure. It consisted of a repeat unit consisting of four layers, which 

were a head-group layer, chain region layer, head-group layer and a water layer. The 

bilayer of the repeat unit contained a high solvation content to account for the 

expected low coverage of each layer. The overall thickness of the repeat unit was 

fixed to that of the d spacing obtained from the Bragg peak. Roughness values 

similar to those found in the double bilayer were used for the repeat unit, as high 

roughness would have given a much broader Bragg peak.

The main difficulty with this model was one of bilayer coverage. For Bragg peaks to 

occur with this model there needs to be a significantly large difference in the 

scattering length density between the chain region and head-group interface, or 

between the head-group and water layer interface. As the head-groups are generally 

10% more hydrated that of the chain region (Fragneto 2001) and the bilayer coverage 

very low per repeat unit, it is likely that the head-group scattering length density will 

be closer to that of the solvent. This would mean that the main difference in SLD 

would have to be between the chain region and the head-group.

One issue concerning the formation of a repeat planar lamellar model is why part of 

the upper bilayer would preferably rearrange from the double bilayer into a repeat 

stacking unit. One reason could be that the lipids prefer a multilamellar type 

arrangement, where the lipid head-groups of one bilayer face the head-groups of
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another layer, rather than facing the open reservoir. The conical shape of the DPPE 

lipid may aid the rearrangement from the double bilayer to the repeat lamellar 

structure. Another possible reason for the formation of a repeat lamellar structure is a 

space issue. When a bilayer becomes fluid its area per molecule increases leading to 

an increase in the coverage of the bilayer (Hughes 2002). Unlike the DPPC upper 

bilayer which had a gel phase coverage of 93% and a fluid phase coverage of 100% 

(Chapter 3), the upper bilayer of the DPPE double bilayer already had a coverage of 

100% in the gel phase. The expansion in the DPPE area per molecule upon becoming 

fluid could then force part of the bilayer to buckle and then rearrange to form a 

repeat multilamellar structure. The conical shape of the DPPE lipid would also aid 

this rearrangement from the planar bilayer.

Best fit using planar lamellar model

Two assumptions were used when developing a model for the planar lamellar repeat 

unit. First it is assumed that the best fit is likely only to be an approximation of the 

actual structure, as in reality it likely to be more complex than the model. The second 

assumption is that the repeating unit is only located in one area of the bilayer and 

consists of a finite number of repeats. In reality however, it could be the case that 

there are many different areas where the repeat unit is located consisting of different 

numbers of repeats.

There were two requirements for the acceptability of the fit. Firstly the fit of the 

Bragg peak had to match both the height and thickness. The second requirement was 

that the overall fit had to fit or lie below that of the rest of the profile.

The best fit of the sample at 74°C with the model is shown in Figure 4.14. 

Unfortunately this fit is completely unrealistic as the total percentage of lipids 

required to cause the appearance of the Bragg structure is higher than that present in 

the double bilayer before appearance of the Bragg peak. Each bilayer of the repeat 

unit needed a coverage of at least 15% to create a sufficient difference in the 

scattering length density between the bilayer and water to cause the Bragg peak. It 

was also necessary to have a minimum number of repeat units of 12 to fit the Bragg
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peak. The overall fit also required the upper bilayer of the double bilayer to have a 

high coverage.
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Figure 4 .14  Best fit o f  profile containing Bragg peak. The parameters o f  the fit how ever are 

im possible due to the need to use a higher total percentage o f  lipids than that present in sample.

It was simply not possible to obtain a good fit of the Bragg peak using the repeat 

planar model whilst still satisfying the other structural requirements. It is possible 

that the Bragg is being caused by a non-lamellar type repeat structure or that the 

repeating structure is not uniform in coverage and number of repeat units. Given the 

conical shape of the DPPE lipid it would be expected to be some form of spherical 

structure. The fitting of the Bragg peak is on-going work.

Bragg peak conclusions

The two models proposed to elucidate the repeat structure are insufficient and are not 

able to describe the repeat structure realistically. It is likely that the repeat unit is 

more complex than purely a repeat lamellar structure or inverted hexagonal structure 

or the sample is not uniform. Further experiments would be needed to obtain 

structural information on the repeat unit. One useful type of measurement would be 

off-specular reflectivity, which would enable the in-plane structure to be probed. X- 

ray measurements are better than neutrons due to their higher flux, which leads to a
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detectable signal from the off-specular scattering. AFM measurements would also 

give useful in-plane information.

It is unlikely that the lower bilayer is contributing to the formation of the repeat 

structure. To confirm this, the phase behaviour of a single bilayer was measured.

4.4.5 DPPE Double bilayer Conclusion
The results of the reflectivity measurements show that it is possible to fabricate 

DPPE double bilayers with high coverage aligned bilayers, even though the shape of 

the DPPE molecule is conical. The structure is stable at all gel phase temperatures. 

However at a temperature of 5°C above the gel -  fluid transition a Bragg peak is 

clearly present in the reflectivity profile, signifying that part of the double bilayer has 

become unstable and formed a repeat structure above the double bilayer. Despite the 

appearance of the Bragg peak, the majority of the reflectivity profile remained 

unchanged and was unmistakeably due to the presence of a high coverage double 

bilayer structure. Two models were proposed to understand the repeating structure. 

They were both however unable to fit the profile with realistic parameters. The 

fitting of the Bragg peak is on-going work. Further experiments are needed to 

understand the structure, especially ones that probe the in-plane bilayer structure. A 

greater understanding of the repeat unit structure could suggest ways of stabilising 

the double bilayer structure in the fluid phase.
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4.5 DPPE single bilayer

The reflectivity of the single bilayer of DPPE was measured at temperatures below 

and above the vesicle gel -  fluid transition at 64°C of DPPE. The purpose of this 

study was to investigate the phase behaviour of DPPE close to the substrate and 

investigate whether a repeat structure occurred like that in the double bilayer. The 

sample was measured in D2 O on SURF at ISIS, England. The profiles were fitted 

with the AFit program using a 5-layer modei consisting of an oxide, water layer, 

head-group, chain region and head-group.

The reflectivity was measured at 25°C, 47°C, 61 °C, 65°C, 74°C, and 79°C. The 

shape of the profiles was consistent with the presence o f a single bilayer. The profiles 

were identical up to 65°C whereupon a slight shift of the first fringe occurred 

between 65 -  74°C and then a larger shift between 74 -  79°C. The difference in the 

profiles at 25°C and 79°C profiles is shown in Figure 4.15. The difference is similar 

to that observed in other single bilayers samples like the 10 mol% cholesterol 90 

mol% DPPC bilayer (See DPPC cholesterol chapter) where the first fringe lowers 

slightly and first minimum shifts to higher q. This difference in the profile has been 

found previously in other samples to indicate a transition between a gel and fluid 

phase.

1.E-03

0 16 0210.06 0 110.01

F igure 4 .15  Difference in the reflectivity profiles o f  single bilayers o f  DPPE at 25°C (blue) and 79°C  

(red).
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Fitted profiles at 25°C, 65°C, 74°C and 79°C are shown in Figure 4.16. Fitted 

parameters for all the temperatures are listed in Table 4.9.
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Figure 4.16 Fits o f the reflectivity o f a single DPPE bilayer at 25 (♦ ) ,  65 (A),  74 (0), 79°C (A )

Temperature (°C) dw Db Dc Rou Cov

25 6±1 54±2 39±2 7±2 88%±2

47 6±1 53±2 39±2 8±2 86%±2

61 6±1 54±2 39±2 7±2 90%±2

65 6±1 54±2 39±2 7 ±2 91%±2

74 5±1 52±2 36±2 8±2 90%±2

79 5±1 46±2 31 ±2 8±2 89%±2

Table 4.9 Fitted parameters o f DPPE single bilayer. Db is the bilayer thickness, Dc is the chain region 

thickness, Rou is bilayer roughness and Cov is the coverage of the bilayer, dw is the water layer 

separating the lower bilayer from the silicon substrate. All values are in A unless otherwise specified.
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4.5.1 Phase behaviour

The DPPE single bilayer was stable over all temperatures measured, even up to 15°C 

above the Tm. A clear gel -  fluid transition was observed between 65°C -  74°C, 

which was slightly higher than that observed in the upper bilayer of the double 

bilayer and of vesicles in solution of 64°C (Racansky 1987). The value of the 

transition temperature was closer to that observed in the lower bilayer of the double 

bilayer of between 67 -  74°C. The scattering length density profiles of the sample at 

25°C, 65°C, 74°C and 79°C are shown in Figure 4.17. The constant thickness of the 

water layer and the reduction in the thickness of the bilayer with the transition are 

clearly visible. The reduction is progressive.
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F igure 4.17 Scattering length density profile o f  DPPE single bilayer at 25°C  (black), 65°C  (pink) 

74°C (blue) and 79°C (light blue).

The thickness of the bilayer is comparable to that of the lower leaflet of the double 

bilayer sample.
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4.5.2 Comparison with double bilayer structure 

Gel phase comparison
The gel phase single bilayer was 2 -  3A thicker than either of the bilayers of the 

double bilayer sample. This difference though is insignificant once the error in the 

parameters is taken into account. The single bilayer roughness was approximately 4A 

higher than that of the lower bilayer of the double bilayer, but comparable to that of 

the upper bilayer. This could be due to the fact that the Schaefer deposition was used 

for both, leading to a higher roughness. The single bilayer coverage was less than 

that of either of the lower or upper bilayers. It is likely due to differences in the 

fabrication. The lower water layer of the single bilayer was considerably thinner than 

that present in the double bilayer, with a difference of 7 A. It is unclear why it is 

lower, as the water layers of the other single bilayers measured have similar values to 

their double bilayer versions (2 mol% cholesterol 98 mol% DPPC and 10 mol% 

cholesterol 90 mol% DPPC). It could be due to fabrication aspects or systematic to 

DPPE samples. The lower water layer thickness of the DPPE double bilayer did 

reduce with temperature and the transition, but was still 4A thicker at its lowest value 

of 10A observed between 74°C - 84°C.

Fluid phase comparison

The thickness of the single bilayer in the fluid phase was comparable to that 

observed in the bilayers of the double bilayer sample. Its roughness was comparable 

to that of the upper bilayer. Contrary to the behaviour of the double bilayer the 

roughness of the single bilayer did not vary with temperature. The roughness of the 

single bilayer remained high throughout. This could be due to the closer proximity of 

the single bilayer to the substrate, which leads to a greater restraining effect on the 

bilayer. Even though the single bilayer exhibits fluid like behaviour in its thickness, 

it may not have complete fluidity. This is also reflected in the fact that the coverage 

does not increase in the fluid phase, unlike that of the double bilayer.

186



Chapter 4 Bilavers o f DPPE

4.5.3 Single bilayer Conclusion

The DPPE single bilayer exhibited similar phase behaviour to that of lower bilayer of 

double bilayer. This shows that the behaviour of single bilayers is not affected by use 

of a different fabrication technique for the outer leaflet. No Bragg peak was observed 

in the reflectivity profile, even up temperatures of 15°C above the gel -  fluid 

transition temperature. In the double bilayer the Bragg peak was observed at 5°C 

above the gel -  fluid transition temperature. The results of the single bilayer show 

that the formation of the repeat structure in the double bilayer is likely to be solely 

caused by instability in the upper bilayer.
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4.6 DPPE and 10 mol% cholesterol double bilayer

4.6.1 Introduction
The aim of this study was to assess the ability of cholesterol to stabilise the double 

bilayer. It was hoped that the addition of cholesterol would stabilise the DPPE 

double bilayers, enabling it to be used as a membrane mimic. Cholesterol is known 

to have a stabilising effect on membranes, increasing their fluidity at low temperature 

and restricting it at higher temperatures (Yeagle 1985).

DPPE double bilayers containing 10 mol% cholesterol were prepared and the 

reflectivity measured over a range of temperatures. The ratio of cholesterol used was 

chosen on the basis of the known interactions between DPPC bilayers and 

cholesterol. Very low and high ratios of cholesterol are known to affect the phase 

behaviour, whilst intermediate ratios affect it to a lesser extent (Lemmich 1997).

4.6.2 Methods
The reflectivity was measured between 25.3 to 61.6°C and down from 61.6 to 

25.2°C. The sample was not measured at fluid phase temperatures because it was 

more important to measure a second scan between 25.2°C to 51.5°C due to sample 

stability issues. The sample was measured in D2O on the D17 reflectometer. All the 

reflectivity profiles were fitted using the AFit programme, using the 9-layer model 

previously used for the DPPE double bilayer. The scattering length density of the 

chain region of the bilayers was adjusted from -0.41 x 10'6 A*2 to -0.36 x 10'6 A'2 to 

compensate for the effect of 10 mol% ratio and the size difference of the cholesterol 

on the chains (cholesterol has a scattering length density of 0.22 x 10"6 A"2 (Deme 

1997)). [The volume of cholesterol is 685A3 (calculated from a density of 1.067g/cm' 

3) and the volume of two palmitoyl chains of DPPE is 800A3 (Fragneto 2000)]. The 

SLD of the head-groups was not compensated as cholesterol has been found to 

predominately locate in the chain region of DPPC bilayers, with only the hydroxyl 

group close to the head-groups (Leonard 1999, Smondyrev 2001). It was assumed 

that cholesterol located in the same way in DPPE bilayers.
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4.6.3 Phase behaviour
Upon heating the reflectivity profile underwent a drastic change between 52 -  56.1°C 

(Figure 4.18). The profile lost its small fringe structure to form a wide fringe with no 

real minima. After this the profile structure remained relatively constant for all 

temperatures, including when cooling back to 25°C. Only minor changes occurred 

with heating and cooling.

♦ ■

♦

Figure 4.18 Reflectivity profiles o f DPPE double bilayer with 10 mol% cholesterol at o f 25.3°C 

(black), 56.1°C (blue) and 61.6°C (red).

♦ *  *  ♦  ♦  .

M* ** * ♦

Fit of the reflectivity profiles at 25.3°C, 56.1°C, 61.6°C and 25.2°C are shown in 

Figure 4.19 and the parameters listed in Table 4.10.
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Figure 4.19 Fitted reflectivity profiles at 25.3°C (♦ ) , 56.1°C (A), 61.6°C (■ ) and 25.2°C cooled (O)
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T em perature (°C) dw IDb IDc IRou ICov Dw uDb uDc uRou uCov

25.3 12±1 51 ±2 37±1 5 ±2 8742 23±1 4742 37±1 542 10042

34.4 11±1 51 ±2 37±1 342 8942 22±1 5242 37±1 542 10042

43.6 11±1 50±2 36±1 3±2 9042 21 ±1 5142 37±1 5±2 10042

47.1 11±1 50±2 36±1 542 8942 22±1 4942 37±1 642 10042

52.2 9±1 49±2 35±1 742 8842 22±1 5142 36±1 7±2 10042

56.4 11 ±2 52±2 38±1 342 9542 18±9 5049 35±7 6±12 745

61.6 12±1 5 1 i2 37±1 442 9042

56.1 12±1 5342 37±1 542 91 ±2

52.4 13±1 52±2 37±1 442 9342

47.3 13±1 53±2 38±1 342 9142

43.5 14±1 54±2 39±1 442 9142

34.4 14±1 5342 38±1 542 9142

25.2 14±1 5342 38±1 542 9242

34.4 15±1 5142 37±1 742 9242

43.4 15±1 5142 37±1 742 9242

47.2 15±1 5142 37±1 742 9242

52.5 15±1 5142 37±1 742 9142

Table 4.10 Fitted parameters o f reflectivity of DPPE double bilayers with 10 mol% cholesterol. All 

values are in A, except for the coverages, which are in %.

The structure at 25.3°C was found to be consistent with a gel phase structure and 

similar to that of the DPPE double bilayer. The double bilayer retained the same 

structure up to 47.1°C. The scattering length density profiles of the DPPE double 

bilayers with and without cholesterol are shown in Figure 4.20. The bilayer chain 

thickness and first water layer are both similar, whilst the roughness is slightly higher 

in the presence of cholesterol. The thickness of the main water layer was also 

different, with a 7A larger thickness in the cholesterol-containing sample. This 

maybe due to a modification by cholesterol of the Helfrich forces that determine the 

separation distance of the bilayers (Helfrich 1977).
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Figure 4.20 Scattering length densities of double bilayer of DPPE and 10mol% cholesterol (black) 

and double bilayer of pure DPPE (blue) at 25°C.

Between 52.2 -  56.4°C the structure of the reflectivity profiles drastically changed. It 

went from a profile structure commonly observed for a double bilayer to one 

commonly observed for a single bilayer. In fact between 52.2 -  56.4°C, 93% of the 

upper bilayer was removed and by 61.6°C the sample consisted only of a single 

bilayer. It was not possible to get an excellent fit o f the 56.4°C profile above a q of 

0.16A'1. This is likely due to the disorder of system caused by the partial removal of 

the upper bilayer. Therefore the coverage value o f the upper bilayer at this 

temperature should be interpreted with some caution. The unbinding occurred 

approximately 7°C below the gel -  fluid transition temperature o f DPPE. There was 

no indication in the structure at lower temperatures that the upper bilayer would 

unbind as the structure of the lower bilayer remains unchanged throughout the 

unbinding, retaining its gel-like structure. There was also no indication that either 

bilayer has undergone a phase transition.

The structure at the highest temperature measured (61.6°C) consists o f a single 

bilayer with an identical structure to that of the initial lower bilayer at 25.3°C.

The sample was then measured at a range of temperatures upon cooling to 25.2°C. 

As shown in Table 4.10, the only structural change was a slight increase in the lower 

water layer upon returning to 25.2°C. The scattering length density profiles at

191



Chapter 4 Bilavers o f  DPPE

25.3°C, 56.4°C, 61.6°C and 25.2°C are shown in Figure 4.21. The similarities in the 

lower bilayer over all temperatures measured can clearly be seen. The extremely low 

coverage at 56.4°C is observed as an increase of the upper bilayer scattering length 

density to almost that of the solvent value. The similarities of the 25°C before and 

after heating can also be seen.
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Figure 4.21 Scattering length density profiles at 25.3°C (black), 56.1°C (blue), 61.6°C (red) and 

25.3°C (green).

No change was seen upon heating the sample up to 52.5°C again. The lower bilayer 

remained constant.

The chain thickness throughout the temperature scans was very similar to that found 

in vesicles and the DPPE double bilayer. The presence of 10 mol% cholesterol does 

not alter it. This is expected, as phosphatidylethanolamines molecules are not tilted 

like phosphatidylcholines are and thus the thickness is less affected by cholesterol. 

Phosphatidylethanolamines chains are often close to full extension in the gel phase; 

cholesterol would therefore not be expected to alter the lateral dimension in any way. 

It would alter the lipid area per molecule slightly though.
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4.6.4 Interpretation

Although the presence of 10 mol% cholesterol does not significantly change the 

structure of the double bilayer, it completely destabilises the floating bilayer when 

near fluid phase temperatures. This might be related to the fact that the affinity 

between cholesterol and phosphatidylethanolamines is less than that of 

phosphatidylcholines and cholesterol (Van Dijck 1979). Recent research has shown 

that the interaction of cholesterol with lipids varies appreciably with the structure of 

the head-group and the structure and length of the hydrocarbon chains (McMullen 

1996).

4.6.4.1 Effect on transition temperature

The unbinding of the upper bilayer occurred 7°C lower than the main gel -  fluid 

transition temperature (Tm) of pure DPPE vesicles and that of the transition in the 

upper bilayer of the pure DPPE double bilayer. The incorporation of cholesterol has 

been found to progressively reduce the Tm of phosphatidylethanolamines vesicles up 

to molar concentrations of 20 mol% (McMullen 1997, 1999). 10 mol% cholesterol 

has been found to lower the Tm of DSPE by 4°C. Cholesterol has also been observed 

to lower the lamellar -  inverted hexagonal transition temperature Th for certain 

unsaturated phosphatidylethanolamines (Ohvo 2002). If the gel -  fluid transition 

temperature of the upper bilayer has been lowered by 10 mol% cholesterol, then it 

could well be that the upper bilayer is becoming fluid at 56.1°C, enabling the 

molecules to have sufficient freedom to unbind. But this cannot be ascertained from 

the results here. The lower bilayer remained gel like throughout.

4.6.4.2 Molecular shape of DPPE

The unbinding of the upper bilayer by the presence of cholesterol would not have 

been expected, due to the favourable interaction of similar lipids and cholesterol. But 

although the DPPE molecule is very similar to DPPC, the behaviour of 

phosphatidylcholines and cholesterol cannot be used as a basis for the behaviour 

phosphatidylethanolamines and cholesterol (McMullen 1996). The bulk shape that a 

lipid prefers under a given set of conditions can be rationalised by considering the 

geometric packing of the lipids, which in turn can be described by the shape factor
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characteristic of the lipid molecule under these conditions (Lewis 2000). The most 

likely reason therefore that the unbinding occurs in DPPE rather than DPPC is the 

shape of the DPPE molecule. DPPE is conical, whilst DPPC is cylindrical. The 

conical shape obviously would favour a spherical sample over a planar sample. The 

presence of cholesterol located in the chain region would be expected to increase the 

conical shape of the DPPE, further destabilising it as a planar structure.

4.6.4.3 Miscibility issues

When considering the mechanical effect of cholesterol on the DPPE bilayer, the 

miscibility of the binary sample needs to be taken into account. It has been 

empirically found that miscibility of cholesterol with any lipid is inversely related to 

the characteristic degree of order or tightness of packing of the phospholipid at a 

given temperature and phase state. Phosphatidylethanolamines head-groups have 

strong attractive electrostatic and hydrogen bonding, which is reflected in their high 

transition temperatures (McMullen 1997, 1999). Phospholipids with strong 

intermolecular interactions tend to exclude cholesterol from the bilayer above certain 

concentrations. In vesicles of phosphatidylethanolamines -  cholesterol bilayers, the 

strong lipid inter-head-group electrostatic and hydrogen bonding interactions favour 

PE-PE interactions over PE-chol interactions (Ohvo 2002). However, domains of 

cholesterol have been only found to occur at concentrations of 35 mol% or above 

(Cheetham 1989). Cholesterol has also been found to exhibit a reduced miscibility in 

gel phase compared to fluid phase (McMullen 1997, 1999). It is likely therefore that 

the cholesterol has limited miscibility in the gel phase of the double bilayer. But the 

low molar concentration of cholesterol used in the double bilayer would suggest that 

whilst having limited miscibility, it is still mixing and would not be expected to form 

domains. One theory on why the incorporation of cholesterol caused the unbinding is 

based on the vertical location of the cholesterol in the bilayer. It is known that the 

cholesterol is predominantly located in chain region of the lipids, with only the 

hydroxyl group towards the lipid head-group. This is observed for 

phosphatidylcholine bilayers (Smondyrev 2001) and given the predominately 

hydrophobic nature of cholesterol it is likely the case in phosphatidylethanolamines. 

The presence of the cholesterol molecule in the chain region of the lipid would
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therefore increase the relative chain -  tail size ratio. The conical shape of DPPE 

would be increased, adding to the instability of the planar sample. This theory 

obviously rests on the two components having at least limited miscibility, which for 

this low cholesterol ratio is expected.

4.6.4.4 Unbinding due to fluctuations

The unbinding of a bilayer from a substrate, or another membrane or a substrate has 

been predicted to be driven predominantly by thermally excited fluctuations 

(Lipowsky 1986, Seifert 1993). Small vesicles unbind by thermal activation, whilst 

larger vesicles unbind via shape fluctuations. The fluctuations are able to overcome 

the attractive Van de Waals and electrostatic forces holding the bilayer to the 

interface. The same balance of forces in multilamellar vesicles are thought also to be 

the main forces present in double bilayer samples (Hughes 2002). Double bilayers of 

DPPC have been heated to temperatures 40°C above their Tm without unbinding 

occurring (Fragneto 2003). The in-plane fluctuations and swelling of the water layer 

around the main transition of double bilayers are currently being investigated (J. 

Daillant et al.). The effect of cholesterol on the fluctuations of 

phosphatidylethanolamines bilayers is unclear in literature. In the case of 

phosphatidylcholines, the inclusion of 8 -  14 mol% of cholesterol in DMPC has been 

found to sustain some fluctuations of the transition region down to temperatures 

10°C lower than Tm (Mortensen 1988). The stabilising effect of cholesterol in 

membranes, which increases the fluidity of systems at low temperatures, and 

decreases it at higher temperatures (Yeagle 1985) would be expected to limit the 

fluctuations. The results here show no indication of an increase in fluctuations of 

either bilayer around the unbinding temperature. If the fluctuations had increased 

with the inclusion of 10 mol% of cholesterol then the roughness of the sample and 

thickness of water would have been expected to increase. The parameters of the 

upper bilayer however remained constant until the unbinding temperature range of 

52.2°C to 56.4°C. The parameters of the lower bilayer also remained constant 

throughout. Increased fluctuations would be expected to increase the off-specular 

scattering present on the two-dimensional D17 detector image. However there was 

no indication of increased fluctuations on those images. It is therefore likely that 

cholesterol is not increasing the fluctuations. The main factor in the unbinding of the
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DPPE -  cholesterol bilayer is therefore more likely due to structural driving forces 

rather than fluctuations. However, it may be the case that the fluctuations occur at the 

actual unbinding temperature, leading to the immediate removal of the bilayer and 

are thus not possible to observe over the measurement time.

4.6.4.5 Influence of substrate on lower bilayer

The fact that the thickness of the lower water layer, that separates the lower bilayer 

from the substrate, remained constant after the loss of the upper bilayer indicates that 

the presence of upper bilayer is not a significant factor on determining the thickness. 

It is therefore likely that that the thickness is controlled predominantly by the 

interaction of the bilayer and the substrate only, in these uncharged systems. The 

difference in the Tm of the upper and lower bilayers in the pure DPPE sample are 

most likely caused by a greater influence of the substrate on the lower bilayer than on 

the upper. The fact that the upper bilayer is completely removed whilst none of the 

lower bilayer detaches indicates the greater level of freedom of the upper bilayer and 

also the restricting force of the substrate on the lower bilayer.

It is likely that the removal o f upper bilayer is largely instantaneous, as partial 

removal of bilayer would leave domains of bilayer that would need to rearrange their 

structure to protect their edges from exposure to the water. In solution it would be 

expected that lipids from the upper bilayer are forming a vesicle structure.

4.6.4.6 Comparison with DPPE single and double bilayer structures

The structure of the cholesterol containing lower bilayer was similar to that of the 

DPPE single bilayer. The thickness, roughness and coverage were all similar. 

However, the lower water layer was thicker than that present in the single bilayer, 

having a thickness more similar to that in the DPPE double bilayer. It could be then 

that the double bilayer structure intrinsically results in a thicker lower water layer.

Although the double bilayers of pure DPPE and with 10 mol% cholesterol have 

similar structures at gel phase temperatures, the behaviour around the fluid phase 

temperatures is different, although it is probably related to the same causes. Whilst
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the upper bilayer with cholesterol is completely removed, the pure DPPE system 

forms a repeat structure. The inherent planar instability of the upper bilayer of DPPE 

is therefore increased by the cholesterol, and its effect is to remove the bilayer rather 

than rearrange the structure. DPPE alone is not sufficient to unbind from the surface, 

even up to 20°C above its Tm.

4.6.5 Conclusions
The presence of 10 mol% cholesterol destabilised the upper bilayer rather than 

stabilised it. It is likely that the cholesterol, which is located predominantly in the 

chain region, increases the conical shape of the DPPE molecule and thus renders it 

less favourable as a planar structure. Other compounds should be assessed to see 

whether they are able to stabilise the upper bilayer of DPPE double bilayers, 

preferably those compounds that locate in the head-group region of the molecule. 

Also the planar stability of other types of phosphatidylethanolamines should be 

investigated.

The behaviour of this sample remarkable differed from that of the 

phosphatidylcholine DPPC double bilayer containing 10 mol% cholesterol, which 

was found to be completely stable overall all temperatures measured, including the 

fluid phase.
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4.7 Overall conclusions of DPPE samples
The aim of this study was to develop a stable DPPE double bilayer that exhibited 

phase behaviour similar to that of DPPE vesicles in solution. It was hoped that this 

would allow the use of the system as a bio-membrane mimic for protein studies.

It was found possible to fabricate high quality samples of DPPE double bilayers, 

single bilayers and also double bilayers containing 10 mol% cholesterol.

When the phase behaviour of DPPE double bilayers was studied with neutron 

reflectivity it was found that part of the upper bilayer became unstable at a 

temperature just above the gel -  fluid transition. A Bragg peak appeared in the 

reflectivity profile indicating the formation of an irreversible repeat unit structure. 

However the profile still indicated the presence of a high coverage double bilayer, 

even up to temperatures 10°C above the transition temperature. Two different types 

of models were proposed to elucidate the structure of the repeat unit. It was hoped 

that an understanding of the structure would enable methods to be undertaken to stop 

the formation of the repeat unit and thus obtain a stable DPPE double bilayer for use 

as a biomembrane mimic. Unfortunately neither of the models was able to give a 

satisfactory fit of the Bragg peak using realistic parameters. It is likely that the repeat 

structure is more complex than can be modelled with a layered structure. The fitting 

of the Bragg peak is thus on-going work. Future experiments are needed to 

understand the behaviour, especially ones that probe the in-plane structure of the 

bilayer. When the profile of the double bilayer was fitted without consideration of 

the Bragg peak, the results indicate that the double bilayer became fluid with 

parameters similar to those of DPPE vesicles. It also showed a transition back to the 

gel phase, giving similar gel phase parameters to those of the initial gel phase 

structure.

The phase behaviour of a single bilayer of DPPE was studied to assess the possible 

of its use as a biomembrane mimic, and to understand whether a repeat unit structure 

is formed from single bilayer structures. Unlike the double bilayer, the single bilayer 

was found to be completely stable over all temperatures measured, even up to 15°C 

above the gel -  fluid transition temperature. The single bilayer exhibited similar
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phase behaviour to the lower bilayer of the double bilayer, exhibiting stable gel and 

fluid phases. These results show that the formation of the repeat structure in the 

double bilayer is solely caused by upper bilayer. The stability and phase behaviour of 

the single bilayer sample indicate that it could be used in biomembrane studies.

The phase behaviour of a double bilayer consisting of 90 mol% DPPE and 10 mol% 

cholesterol was investigated to ascertain whether cholesterol stabilises the fluid 

phase of the upper bilayer. Unfortunately the presence of the cholesterol had 

completely the opposite effect. When the temperature o f the sample was increased, 

the upper bilayer was found to completely detach below the gel -  fluid transition 

temperature. Since it is known that the cholesterol is predominately located in the 

chain region of the DPPE molecule, this would essentially increase the conical shape 

of the DPPE molecule making the planar structure highly unfavourable at higher 

temperatures. The behaviour of the sample remarkably differed compared to the 

phosphatidylcholine DPPC double bilayer with 10 mol% cholesterol which was 

found to be completely stable overall all temperatures measured, including the fluid 

phase.

Future perspectives are the incorporation of DPPE into mixed component double 

bilayers, in the hope that it would be stabilised as planar structure by presence of 

other lipids. Another future perspective is to study the formation of the repeat unit 

with other techniques such as AFM to probe the in-plane bilayer structure. A full 

understanding of structure of repeat unit could lead to new methods to stabilise the 

upper bilayer in the fluid phase.
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5. Phase Behaviour of Asymmetric Bilayers

The aim of this study was to attempt to model the asymmetric nature of membranes 

using the double bilayer samples. The results of three different asymmetric samples 

are given here, with respect to the fabrication, stability and phase behaviour.

5.1 Introduction
The distribution of lipids across many types of membranes is usually highly 

asymmetric. In Human erythrocyte and similar membranes phosphatidylcholines are 

mainly distributed in the outer exoplasmic-facing leaflet whilst 

phosphatidylethanolamines are mainly distributed in the inner cytoplasmic facing 

leaflet (Bretscher 1973). The asymmetric distribution of phospholipids is a 

fundamental feature of normal cell operation. For example, phosphatidylserine lipids, 

which are normally localised in the inner leaflet of an animal plasma membrane, are 

vital not only for exocytosis (fusion of membranes and secretory vesicles) and 

intracellular fusion processes, but also for lipid-protein interactions and signal 

transduction pathways (Kato 2002). The asymmetric nature of membranes is 

generated by the activity of an adenosine triphosphate (ATP)-dependent 

aminophospholipid translocase that specifically transports specific types of lipids 

between bilayer leaflets (Seigneuret 1984). This discovery underscored the 

prevailing concept that membrane lipid asymmetry was of major physiologic 

importance, because it showed that cells invest energy to catalyze lipid movement in 

order to maintain a specific transmembrane phospholipid distribution. Another 

membrane-bound enzyme involved in lipid asymmetry is the group known as 

flippases, which catalyse the exchange of lipids between the leaflets. Their working 

mechanism is still not fully understood (Boon 1999).

The Langmuir-Blodgett technique used to fabricate the double bilayers is highly 

suited to the fabrication of asymmetric bilayers. The technique has been used before 

to create supported asymmetric single bilayers (Merkel 1989, Bassereau 1997, Rinia 

1999) but these single bilayers are likely to have the issues associated with their 

close proximity to the substrate.
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In this chapter the results of three different asymmetric samples are given. The first 

sample recreates the asymmetric distribution of phosphatidylcholines and 

phosphatidylethanolamines across the membrane. The second sample consists of a 

lower bilayer of hydrogenated DPPC, and an upper bilayer with a hydrogenated 

DPPC lower leaflet and deuterated chain DPPC upper bilayer. The purpose of this 

sample was to study the asymmetric stability and effect on the phase behaviour. The 

third sample contains different concentrations of cholesterol in the upper and lower 

bilayers. This allows interesting biophysical studies of the effect of cholesterol upon 

various phase phenomena and is a predecessor of models the asymmetrically 

distribution of cholesterol across the leaflets of membranes, which in the case of 

brain synaptic plasma membranes of mice was observed to change with age 

(Igbavboa 1996).
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5.2 Asymmetric bilayers of DPPC, DPPE and cholesterol

5.2.1 In troduction

In many membranes phosphatidylcholines and phosphatidylethanolamines are 

asymmetrically distributed across the leaflets of the bilayer. Figure 5.1 shows the 

asymmetric distribution of phospholipids and sphingomyelin for three common 

membranes. It can be seen that phosphatidylcholines are predominantly located in 

the exoplasmic facing leaflet and phosphatidylethanolamines in the cytoplasm-facing 

leaflet.
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Figure 5.1 Schem atic o f  the asym m etric d istribution  o f  phosphatidy lcho lines (PC ), 

phosphatidy lethanolam ines (PE ), phosphatidylserines (P S ) and sph ingom yelin  (SP ) in th ree d ifferent 

m em branes.

DPPE

Figure 5.2 Schem atic o f  asym m etric sam ple o f  D PPC , cholesterol, D PPE. T he low er b ilayer and 

upper b ilayer ou ter leaflet consisted  o f  10 m ol%  cholesterol and D PPC. T he inner leaflet w as D PPE.

To model the asymmetric distribution of phosphatidylcholines and 

phosphatidylethanolamines, a sample consisting of a lower bilayer of DPPC and 10

10 mol% cholesterol and DPPC

10 mol% cholesterol and DPPC

205



Chapter 5 Phase behaviour o f Asymmetric Bilavers

mol% cholesterol and an upper bilayer with a inner leaflet of DPPE and outer leaflet 

of DPPC and 10 mol% cholesterol was fabricated (Figure 5.2). Cholesterol was not 

included in the DPPE leaflet as it was found to increase the instability of planar 

DPPE bilayers (Chapter 4). The stability, phase behaviour and asymmetric stability 

were studied by neutron reflectivity.
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5.2.2 Fabrication Results
The fabrication of asymmetric samples was found to be rather difficult and very 

precise laboratory skills are necessary due to the exchange of the monolayers 

between the second and third deposition. The first two depositions of 10 mol% 

cholesterol and DPPC proceed in the way described in the fabrication chapter. After 

which the monolayer was removed and a monolayer of DPPE spread. The DPPE 

leaflet was then deposited. The final DPPC cholesterol leaflet was deposited by a 

Schaefer deposition. The transfer ratios and Schaefer results are listed in Table 5.1. 

The first and third depositions were excellent, however the second deposition 

transfer ratios was low. The Schaefer deposition was reasonable. The fabrication 

results show that it is possible to deposit subsequently different monolayers to form 

asymmetric bilayers with good transfer ratios.

Trl Tr2 Tr3
S chaefer D eposition  

P ressu re  Area

Asym . PC PE Choi db 1.09 0.16 1.00 11mN/m 7cm*

Table 5.1 Transfer ratios (Tr) and Schaefer parameters results

5.2.3 Data fitting considerations
The data was fitted using the layered model approach in the AFit programme. A ten 

layer model was used. This allowed the upper bilayer chain region to be separated 

into two leaflets, rather than the usual one chain region. The incorporation of 10 

mol% cholesterol reduced the DPPC chain SLD from -0.41 x 10-6 A'2 to -0.36 x 10"6 

A'2. The silicon oxide was found to have a thickness of 8A and roughness of 3A 

throughout.
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5.2.4 Stability and Phase Behaviour

The sample was measured in D2 O at temperatures between 25.1 -  57.2°C. This 

temperature range covered the full phase behaviour of DPPC. Unfortunately due to 

beam-time constrains it was not possible to measure to temperatures above the gel -  

fluid of the DPPE (Tm is 64.5°C). Fitted profiles at 25.1°C, 43.4°C and 57.2°C are 

shown in Figure 5.3 and the parameters are listed in Table 5.2.
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Figure 5.3 Fitted profiles of asymmetric DPPC -  DPPE -  10 mol% cholesterol sample at 25.1°C (♦ ), 

43.4°C (A) and 57.2°C (□).

The structural parameters show that it is indeed possible to fabricate stable 

asymmetric bilayers which are stable at temperatures above the DPPC Tm. The 

coverages of both leaflets of the upper bilayer are high, even though the lipids 

deposited onto different components from themselves.
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dw IDb IDc IAPM IRou tCov Dw uDb DwPCelial uDc UAPM uRou PEuCov PCuCov

25.1”C 5±1 50*2 36*1 44*2 9*1 63*2 32*1 54*2 20*1 18*1 38*1 42*2 16*2 88*2 85*2

29.4°C 5*1 50*2 36*1 44*2 9*1 83*2 32*1 54*2 20*1 18*1 38*1 42*2 15*2 90*2 87*2

32.5-C 6±1 51*2 37*1 43*2 8*1 65*2 34*1 54*2 20*1 18*1 38*1 42*2 16*2 92*2 90*2

33.2°C 6±1 51*2 37*1 43*2 8*1 65*2 34*1 54*2 20*1 18*1 38*1 42*2 16*2 92*2 90*2

34.0°C 6*1 51*2 37*1 43*2 8*1 65*2 33*1 54*2 20*1 18*1 38*1 42*2 16*2 92*2 90*2

34.9°C 6±1 51*2 37*1 43*2 8*1 65*2 33*1 54*2 20*1 18*1 38*1 42*2 16*2 92*2 60*2

35.8°C 6*1 51*2 37*1 43*2 6*1 65*2 33*1 54*2 20*1 18*1 38*1 42*2 16*2 92*2 90*2

37.1°C 6*1 51*2 37*1 43*2 8*1 65*2 33*1 54*2 20*1 18*1 38*1 42*2 16*2 62*2 90*2

40.5°C 6*1 52*2 37*1 43*2 8*1 85*2 33*1 54*2 20*1 18*1 38*1 42*2 16*2 92*2 90*2

42.1*C 5*1 52*2 37*1 43*2 8*1 65*2 33*1 54*2 20*1 18*1 38*1 42*2 16*2 92*2 90*2

43.4°C 6*1 51*2 37*1 43*2 6*1 85*2 33*1 54*2 20*1 18*1 38*1 42*2 16*2 93*2 91*2

47.1°C 6*1 46*2 32*1 50*2 5*1 68*2 33*1 54*2 20*1 18*1 38*1 42*2 16*2 93*2 91*2

52.9°C 6*1 44*2 30*1 53*2 5*1 90*2 31*1 54*2 20*1 18*1 38*1 42*2 16*2 93*2 91*2

57.2°C 6*1 40*2 28*1 57*2 5*1 92*2 29*1 54*2 20*1 18*1 38*1 42*2 15*2 93*2 91*2

Table 5.2 Fitted parameters o f asymmetric DPPC -  DPPE -  10 mol% cholesterol sample.

The lower bilayer entered the fluid phase between 43.4°C -  47.1°C, after which its 

chain region thickness continued to progressively decrease (Figure 5.4). Its structure 

was similar to that of the 10 mol% cholesterol -  DPPC double bilayer (Chapter 3), 

although the Tm was slightly higher. This may well be due to the closer proximity of 

the lower bilayer to the substrate than for the 10 mol% double bilayer.

The DPPC -  cholesterol outer leaflet of the upper bilayer remained gel like 

throughout the temperature range studied. The surprising fact is that the DPPC leaflet 

remained gel like even when its Tm had been surpassed by 15°C. (The upper bilayer 

of the 10 mol% cholesterol DPPC double bilayer of chapter 3 had a Tm of between 

39.1°C -  39.9°C). The presence of the DPPE leaflet therefore affects its phase 

behaviour.
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Figure 5.4 Thickness of chain region versus temperature. The upper bilayer is black, the lower bilayer 

pink.

The chain region thickness of the upper bilayer was very similar to the 10 mol% 

cholesterol DPPC double bilayer and the DPPE double bilayer, which both had a 

thickness of 37±lA (Table 3.29 and Table 4.4). It was thicker than the DPPC sample 

(34A±1 chapter 3.4), which was expected, as the cholesterol has been observed to 

reduce the tilt of DPPC chains (Leonard 2001) and the chains of DPPE are not tilted 

(Nagle 2000). The roughness of the upper bilayer was identical to the 10 mol% 

double bilayer, but much higher than the DPPE double bilayer of 5±2A. The higher 

roughness could be due to formation of cholesterol rich and poor domains, which 

has been observed in vesicles of DPPC and 10 mol% (Knoll 1985). It is unlikely that 

depositing different monolayers compositions caused the higher roughness.

The gel phase chain region thickness of the lower bilayer was comparable to that of 

the 10 mol% cholesterol DPPC double bilayer of 35±1 A. The fluid phase thickness 

of 28 -  30A was very similar as well, as was its roughness. The lower bilayer 

coverage was less than the other double bilayers, which is likely due to the lower 

quality of the second deposition. The similarities show that the lower bilayer acts 

independently of the upper bilayer, and that changing the components of the upper 

bilayer has no effect on the lower bilayer behaviour.
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The main water layer thickness was comparable to the other double bilayers 

containing DPPC and cholesterol, which varied between 22 -  36A. However, it was 

double the thickness of the DPPE double bilayer thickness of 16A. It is thought that 

the water layer thickness is governed by the same balance of forces present in 

multilayers (Helfrich 1977), but also with the addition of substrate forces. More 

studies need to be conducted to fully understand the effect of different composition 

of leaflets upon the Helfrich forces. The lower water layer was only slightly thinner 

than that of the DPPC -  cholesterol double bilayers, which had a thickness ranging 

between 8 -  12 A.

5.2.5 Asymmetric stability of upper bilayer
There was no indication in the scattering length density values that exchange of 

lipids between the two leaflets occurred (flip -  flop). Although it is not possible to 

observe this unless very significant exchange occurred, as the two lipids have the 

same scattering length density for the chains and similar ones for the head-groups 

(PC 1.74 x Kf6 A'2, PE 2.66 x 10’6 A'2). For very significant exchange to occur it 

would be expected to take a very long time as flip-flop in model membranes and in 

real membranes is very slow (Smith, BD. 2003). A more sensitive way to assess the 

asymmetric stability would be to use deuterated versions of the lipids. An example of 

this is the next sample.
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5.3 Asymmetric hydrogenated and deuterated bilayers

5.3.1 Introduction

The ability to deposit deuterated layers upon hydrogenated layers allows one to 

selectively label components and layers in the bilayers. A new variation on the 

double bilayer was therefore evaluated. The sample consisted of an upper bilayer 

with deuterated lipids in the outer leaflet and hydrogenated lipids in the inner leaflet. 

The lower bilayer had hydrogenated lipids (Figure 5.5). The deuterated lipid used 

was deuterated chain DPPC (d6 2 -DPPC) and the hydrogenated lipid was the normal 

DPPC used in the other studies. This sample is ideal for uses in experiments were 

adsorptions of peripheral proteins onto the surface of the bilayer are studied. The use 

of the deuterated outer leaflets provides a high scattering length contrast between the 

lipid and the proteins, allowing the vertical position of the proteins to be located 

more clearly.

Deuterated chain DPPC

Fully hydrogenated DPPC

Fully hydrogenated DPPC

F igure 5.5  Schematic o f  the asymmetric hydrogenated and deuterated sample.

5.3.2 Fabrication

The d6 2 -DPPC needed mild heating to dissolve in chloroform. The results of the 

depositions are given in Table 5.3. The transfer ratios for the three hydrogenated 

chain DPPC depositions were good and almost identical to those of the DPPC double 

bilayer (Table 3.1). The Schaefer deposition parameters however were higher than 

that observed for h-DPPC, especially the area rise. This maybe intrinsic to d-DPPC 

or may signify a poorer quality deposition.
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Trl Tr2 Tr3
Schaefer Deposition 

Pressure Area

Asym. h-d-DPPC 1.03 0.47 0.96 10mN/m 10cm2

T able 5.3 Transfer ratios and Schaefer parameters o f  depositions o f  three hydrogenated DPPC layers 

fo llow ed by one d^-D PPC  layer.

5.3.3 Stability and Phase B ehaviour

The reflectivity profiles were fitted using a ten-layer model, to enable the separation 

of the upper bilayer chain region into hydrogenated and deuterated layers. The 

scattering length densities are given in the Chapter 3. The sample was measured in 

D2 O from 25.2°C up to 49.1°C. The D2 O solvent used was found to have a scattering 

length density of 6.12 x 10'6 A'2 rather than 6.35 x 10'6 A'2, which indicates 

incomplete exchange of the H2 O for D2 O. The silicon oxide layer was found to have 

a thickness of 16A and roughness o f 3A. Four fitted profiles are shown in Figure 5.6 

and the parameters are listed in Table 5.4.
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F igure 5.6 Fitted profiles o f  asymmetric hydrogenated and deuterated DPPC bilayer sam ple at 25.2°C  

( ♦ ) ,  3 7 .1°C (A), 42.1°C  (□ ) and 49.1°C  (o ) .

The sample exhibited phase behaviour consistent with gel, transition and fluid 

phases. The structure was stable over the temperature range measured.
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5.3.3.1 Gel phase

The chain region thickness of the lower bilayer was comparable to that of the DPPC 

double bilayer of which had a thickness of 35A (Table 3.3). The upper bilayer was 

slightly thicker in comparison. This difference is minimal, but may indicate that the 

hydrogenated and deuterated chains are not interdigitated. The roughness of both 

bilayers was much higher than that observed in the DPPC double bilayer which had a 

lower bilayer roughness of 3 A and upper bilayer of 5 A. The higher roughness of the 

upper bilayer could be due to the asymmetric nature of the layers or because, for 

reasons unknown, deuterated DPPC tends to give rougher layers. It is not understood 

why the lower bilayer has high roughness though. It is not expected to be affected by 

the asymmetric nature. It could be connected to its low coverage though as the 

coverage of both bilayers was lower than that expected.

dw IDb IDc IAPM IRou ICo>v Dw uOto Dh Dd uDc uAPM uRou h uCov d uCov

25.2°C 5*1 55*2 36±1 44*2 10*2 83*2 36*1 53*2 17*1 19*1 36*1 44*1 15*2 74*2 69*2

2fl.5°C 5*1 56*2 37±1 43*2 11*2 82*2 37*1 52*2 17*1 18*1 35*1 46*1 15*2 74*2 70*2

31.3°C 5*1 56*2 37*1 43*2 11*2 84*2 36*1 52*2 17*1 18*1 35*1 46*1 15*2 74*2 70*2

33°C 6*1 56*2 37±1 43*2 11*2 83*2 37*2 53*2 17*1 18*1 35*1 46*1 15*2 70*2 70*2

33.8°C 6±1 56±2 37±1 43*2 11*2 83*2 37*2 53*2 17*1 18*1 35*1 46*1 15*2 70*2 70*2

34.3°C 6±1 56*2 37±1 43*2 11*2 83*2 37*2 52*2 16*2 18*1 34*1 47*1 15*2 70*2 70*2

34.8°C 7*1 56*2 37±1 43*2 11*2 82*2 38*2 53*2 17*1 18*1 35*1 46*1 15*2 69*2 71*2

35.9°C 5*1 57*2 37±1 43*2 12*2 81*2 39*2 53*2 18*1 16*1 34*1 47*1 20*2 63*2 65*2

37.1°C 5±1 55*2 37±1 43*2 11*2 82*2 44*2 54*2 18*1 17*1 35*1 46*1 24*2 65*2 60*2

38.6°C 5±1 57*2 37±1 43*2 11*2 81*2 44*2 54*2 18*1 17*1 35*1 46*1 24*2 65*2 60*2

40.4°C 5±1 56*2 37*1 43*2 11*2 81*2 43*2 54*2 18*1 17*1 35*1 46*1 27*7 64*2 60*2

42.1°C 6±1 55*2 37±1 43*2 10*2 81*2 35*2 47*2 14*1 14*1 28*1 57*1 14*2 71*2 69*2

43.8°C 6±1 55*2 37*1 43*2 10*2 81*2 35*2 47*2 14*1 14*1 28*1 57*1 14*2 71*2 69*2

45.5°C S±1 55*2 36*2 44*2 10*2 80*2 35*2 45*2 13*1 14*1 27*1 59*1 14*2 74*2 67*2

47.3°C 5±1 52*2 32*2 50*2 10*2 86*2 35*2 44*2 12*1 13*1 25*1 64*1 13*2 75*2 72*2

49.1°C 5±1 52*2 07*7 50*2 9*2 85*2 35*2 44*2 12*1 13*1 25*1 64*1 13*2 77*2 72*2

Table 5.4 Fitted parameters asymmetric hydrogenated and deuterated DPPC bilayer.

5.33.2 Transition Phase

The sample started exhibiting transition phase behaviour at 35.9°C with an increase 

in the thickness of the main water layer and increase in the upper bilayer roughness.
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This was the same as the gel -  ripple transition temperature for h-DPPC of 35.7°C 

(Racansky 1987). The presence of a deuterated chain DPPC leaflet in the upper 

bilayer does not affect the bilayer phase behaviour. The variation with temperature of 

the water layer thickness and the bilayer chain thickness are shown in Figure 5.7. 

The increase in the water layer reached a maximum at 37°C that continued until 

close to the transition to the gel -  fluid transition. The behaviour o f the upper bilayer 

roughness parallels that of the water layer.

2 25

40

20
35

25
Tem perature (°C)

F igure 5.7 Variation versus temperature of: upper bilayer chain region (black), lower bilayer chain 

region (pink) and the main water layer (blue).

Table 5.5 shows a comparison of the maximum increase in the water layer thickness 

and upper bilayer roughness of this sample and the hydrogenated DPPC double 

bilayer of chapter 3. The maximum increase of the thickness o f the water layer is 

considerably less than that of the hydrogenated double bilayer. However, the 

maximum increase in the roughness of the bilayers is similar. The difference in the 

maximum water layer thickness could be connected to the difference in the 

thicknesses in the gel phase at 25°C or due to the deuterated leaflet restricting the 

behaviour. The fact that the samples have the same maximum value could indicate 

that the former is the likely reason. The roughness has the opposite behaviour, where 

the maximum increases in the values are the same, but the maximum values are
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different. The increase in the water layer during the transition phase has been 

compared for fully hydrogenated and fully deuterated DSPC bilayers. The maximum 

increase in the water layer in the deuterated DSPC was found to be in the order of a 

half less that that of the hydrogenated DSPC (Fragneto 2003). It is likely that the 

presence of the deuterated leaflet in the upper bilayer is actually causing the reduced 

transition phase behaviour of the water layer.

Gel va lu e  (25°C)

h-DPPC db Asym DPPC

Maximum transition p h a se  value  

h-DPPC db Asym DPPC

Maximum in crea se  

h-DPPC db Asym DPPC

Dw 27±lA 36±lA 43±lA 44±lA 16±lA 8±1A

Urou 5±2A 15±2A 15±2A 24±2A 10±2A 9±2A

Table 5.5 Maximum increase in the water layer thickness and upper bilayer roughness of 

hydrogenated DPPC double bilayer and double bilayer containing deuterated outer leaflet.

5.3.3.3 Fluid phase

The upper bilayer undergoes a transition to the fluid phase between 40.4 -  42.1°C, 

which encompasses the transition temperature of h-DPPC of 41.8°C (Racansky 

1987). Both of the upper bilayer leaflets exhibit a reduction in thickness, showing 

that the d-DPPC has a transition temperature very close to that of the h-DPPC. The 

fact that there are hydrogenated chains in contact with deuterated does not affect the 

gel -  fluid transition temperature. This is particularly interesting, as the predominant 

change occurring in this transition is the melting of the chains, so the difference in 

the isotopic nature does not affect the temperature.

The difference in the upper bilayer roughness between the gel and fluid phase is 

minimal. The hydrogenated double bilayer roughness increased by 3A (Chapter 3), 

but its value of 8A was lower than here. The higher roughness of the deuterated 

leaflet sample could be an inherent factor of deuterated lipids. The upper bilayer 

coverage increased slightly upon becoming fluid. This is expected due to the increase 

in the lipid area per molecule (APM). The average APM of the lipids lies within the 

fluid phase range of values of 56 -  72A2 for h-DPPC (Nagle 2000). The average fluid 

phase chain thickness range of 28 -  25A is less than that observed for the h-DPPC
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double bilayer, which ranged between 30 -  28A. It appears that the h-DPPC and d- 

DPPC chains were more interdigitated than the fully h-DPPC bilayer.

As in the h-DPPC double bilayer, the lower bilayer became fluid between 45.5°C -  

49.1°C. Like the upper bilayer, the roughness of the lower bilayer did not 

significantly change upon becoming fluid, it remained high. The coverage however 

increased slightly. The reduction in chain thickness was slightly less than that 

observed in the upper bilayer and the fluid phase APM was lower than the literature 

range of 56 -  72A2 (Nagle 2000).

5.3.4 Stability of asymmetric nature
There was no indication in the scattering length densities that flip -  flop of the 

deuterated and hydrogenated lipids occurred. All profiles needed the calculated 

values to obtain good fits. Unlike lateral diffusion, which is very rapid, the flip-flop 

of phospholipids across a model bilayer membrane is known to be a very slow 

process with a half-life of hours to days (Smith 2003). Flip-flop rates in vesicles have 

been found to be strongly dependent on the composition of the polar head-group and 

less dependent on the length of the acyl chains (Homan 1988). At neutral pH, flip- 

flop rates increase in the order PC < PG < PA < PE, where the rates for PE were at 

least 10-times greater than those of the homologous PC derivative. The double 

bilayer therefore would not be expected to have a fast exchange of lipids across the 

bilayer. The presence of holes in the bilayer could be expected to increase the rate 

though. To properly assess the asymmetric stability the sample would need to be 

repeatedly measured over a number of days. This is not usually viable with neutron 

reflectivity measurements due to beam-time restrictions. What can be said though is 

that this type of sample is asymmetrically stable over at least a day, which is the time 

it took to measure it. This stability timescale allows this type of sample to be used in 

hydrogenated/deuterated protein studies.
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5.4 Asymmetric distribution of cholesterol

5.4.1 Introduction

Cholesterol is often asymmetrically distributed across the leaflets of membranes. To 

aid in the understanding of the effect of low amounts of cholesterol upon the ripple 

phase behaviour (chapter 3), a DPPC sample containing 6 mol% of cholesterol in the 

lower bilayer and 1 mol% of cholesterol in the upper bilayer was investigated 

(Figure 5.8). The stability and phase behaviour were measured by neutron 

reflectivity.

DPPC

I mol% cholesterol 99 mol% DPPC

6 mol% cholesterol 94mol%

Figure 5.8 Lower bilayer consists o f  6 mol% cholesterol and DPPC and the upper bilayer o f 1 mol% 

cholesterol and DPPC.

5.4.2 Fabrication
The sample was fabricated using the technique detailed in chapter 2, except that 

after the second deposition, the monolayer was replaced by a lower cholesterol 

concentration monolayer. The transfer ratios and Schaefer parameters are given in 

Table 5.6.

Tr1 Tr2 Tr3
Schaefer Deposition 

Pressure Area

Asym. 6% Lbl 1% Ubl 1.07 0.56 0.92 7mN/m 4cm*

Table 5.6 Transfer ratios o f 6 mol% lower bilayer, 1 mol% upper bilayer, DPPC sample

The transfer ratios of the first and second depositions were excellent and comparable 

to those of the 6 mol% double bilayer (Table 3.1). The transfer ratio of the third 

deposition was lower than the normal unity observed.
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5.4.3 Measurements

The reflectivity profiles were fitted using the AFit programme. The scattering length 

densities are given in the Chapter 3. The presence of 6 mol% cholesterol reduces the 

lipid chain scattering length density from -0.41 x 10'6 A’2 to -0.38 x 10*6 A*2. The 

presence of 1 mol% cholesterol does not significantly alter it to two decimal places. 

The reflectivity was measured in D2 O from 26.4°C to 48.3°C and then down to 

26.1°C. The silicon oxide was found to have a thickness o f 8A and roughness of 3A 

throughout. The sample exhibited stable gel, transition and fluid phase behaviour. 

The transition behaviour was different upon heating and cooling.

5.4.4 Gel phase structure

The structure of the gel phase differed before and after the temperature scan. This 

was a result of the large transition behaviour observed when cooling from the fluid 

phase. The gel phase after cooling is given after the transition region section as it 

may still be exhibiting properties of that phase. Fitted profiles at 26.4°C and 31.5°C 

are shown in Figure 5.9 and the parameters are listed in Table 5.7.

E IE -0 4

1.E-07

<**•')

Figure 5.9 Fitted profiles o f asymmetric 6 mol% and 1 mol% sample at 26.4°C (♦ )  and 31.5°C (A).

dw IDb IDc IAPM IRou ICov Dw uDb uDc uAPM uRou uCov

26.4°C 7±1 50±2 36±1 44 ±2 5±1 94±2 28±1 49±2 35±1 46±2 12±2 89±2

31.5°C 7±1 50±2 36±1 44±2 5±1 94±2 29±1 49±2 35±1 46±2 12±2 89±2

Table 5.7 Fitted parameters o f asymmetric 6 mol% and 1 mol% sample in the gel phase
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The deposition of the two bilayers with different concentrations gave a stable double 

bilayer structure and was not effected by the exchange of the monolayer after the 

second deposition.

The structure of the lower bilayer and that of the lower water layer were identical to 

those of the 6 mol% double bilayer (Table 3.20), confirming that the structure of the 

first two depositions is entirely reproducible. The upper bilayer had similar thickness 

and coverage parameters to that of the 1 mol% double bilayer (Table 3.8) but was 

rougher by 5A. The cause of the higher roughness is unknown but maybe connected 

to the lower transfer ratio of the third deposition. The thickness of the main water 

layer was comparable that of the 1 mol% sample after the temperature scan and was 

similar to those of the other low ratio of cholesterol once equilibrated.

5.4.5 Fluid phase structure
The upper bilayer became fluid between 40.1°C to 41.0°C, whilst the lower bilayer 

became fluid between 41.0°C to 42.0°C. These transition temperatures were similar 

to those observed in the respective double bilayers counterparts. The bilayers 

therefore act independently in the fluid phase and are not affected by the different 

concentrations of cholesterol in the other bilayer. Fitted fluid phase profiles at 

42.0°C, 48.3°C and 42.1°C upon cooling are shown in Figure 5.10 and the 

parameters are listed in Table 5.8.

The structures of the upper and lower bilayers were very similar to those of their 

double bilayers counterparts (Table 3.9 and Table 3.25). Both water layer thicknesses 

remained constant throughout the fluid phase and were identical to those of the gel 

phase.
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Figure 5.10 Fitted profiles of asymmetric the 6 mol% and 1 mol% sample at 42.0°C (♦ ), 48.3°C (A) 

and42.1°C (□)

dw IDb IDc IAPM IRou ICov Dw uDb uDc UAPM uRou uCov

26.4°C 7±1 50±2 36±1 44±2 5±1 94±2 28±1 49±2 35±1 46±2 12±2 89±2

41.0°C 8±1 48±2 35±1 46±2 4±1 98±2 29±1 49±2 32±1 50±2 10±2 98±4

42.0°C 8±1 47±2 31 ±1 52±2 3±1 100±2 29±1 45 ±2 29±1 55±2 8±2 100 ±2

43.0°C 8±1 46±2 30±1 53±2 3±1 100±2 28±1 45±2 29±1 55±2 8±2 100±2

48.3°C 8±1 46±2 30±1 53±2 3±1 100±2 28±1 44±2 28±1 57±2 8±2 100±2

44.1 °C 8±1 45 ±2 30±1 53±2 3±1 100 ±2 28±1 43±2 28±1 57±2 10±2 100±2

42.1 °C 8±1 47±2 32±1 50±2 3±1 98±2 28±1 43±2 29±1 55±2 10±2 100 ±2

Table 5.8 Fitted parameters o f asymmetric 6 mol% and 1 mol% sample in the fluid phase

5.4.6 Transition phase behaviour
The sample exhibited different transition phase behaviour upon heating and cooling. 

The difference in behaviour with the direction of temperature change matches the 

behaviour of the 1 mol% double bilayer. The behaviour upon heating will be given 

first, followed by the behaviour upon cooling.

221



Chapter 5 Phase behaviour o f Asymmetric Bilavers

5.4.6.1 Transition phase behaviour upon heating

Upon heating the sample exhibited transition phase behaviour between 34.1°C -  

40.1°C. Fitted profiles at 35.0°C, 36.6°C and 39.1°C are shown in Figure 5.11 and 

the parameters are listed in Table 5.9.
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Figure 5.11 Fitted profiles o f asymmetric 6 mol% and 1 mol% sample at 35.0°C (♦),  36.6°C (A) and 

39.1°C (□).

As in the case of the double bilayers of cholesterol concentrations between 0 - 4  

mol% (Chapter 3) increases were observed in the thickness of the main water layer, 

the upper bilayer roughness and the solvation of the upper bilayer, whilst the 

structure of the lower bilayer and lower water remained constant throughout. These 

increases versus temperature are shown in Figure 5.12. It can be seen that these 

parameters increase in value between 31.5°C to 34.1°C then remain relatively 

constant until 38.3°C where they start to decrease, finally giving the fluid phase 

structure at 41.0°C.
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dw I Ob IDc IAPM IRou ICov Dw uDb uDc uAPM uRou uCov

26.4°C 7±1 50±2 36±1 44 ±2 5±1 94±2 28±1 49±2 35±1 46 ±2 12±2 89±2

34.1°C 7±1 50±2 36±1 44 ±2 4±1 93±2 35±1 54±2 37±1 46 ±2 15±2 82±4

35.0°C 8±1 50±2 36±1 44 ±2 3±1 95±2 34±1 54±2 38±1 46±2 15±2 82±4

35.7°C 8±1 50±2 36±1 44±2 3±1 95±2 35±1 54±2 38±1 46 ±2 15±2 82±4

36.6°C 8±1 50±2 36±1 44 ±2 4±1 95±2 35±1 52±2 38±1 46±2 15±2 83±4

37.4°C 8±1 50±2 36±1 44 ±2 4±1 95±2 35±1 52±2 38±1 46 ±2 15±2 83±4

38.3°C 8±1 50±2 36±1 44±2 4±1 95±2 35±1 52±2 38±1 46±2 15±2 81 ±4

39.1°C 8±1 50±2 36±1 44 ±2 4±1 95±2 34±1 52±2 38±1 46±2 13±2 83±4

40.1°C 8±1 50±2 36±1 44 ±2 4±1 95±2 32±1 52±2 38±1 46±2 12±2 85 ±4

48.3°C 8±1 46±2 30±1 53±2 3±1 100±2 28±1 44±2 28±1 57±2 8 ±2 100±2

Table 5.9 Fitted parameters of asymmetric 6 mol% and 1 mol% sample upon heating in transition 

region
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Figure 5.12 Variation in thickness of main water layer (pink) and upper bilayer roughness (blue) and 

solvation (green) versus temperature upon heating the sample.

The maximum increase in the water layer thickness, and upper bilayer roughness and 

solvation is given in Table 5.10 along with the values of the respective double 

bilayers from chapter 3. The increase in water layer thickness and upper bilayer
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roughness of the asymmetric bilayer are considerably smaller than those of the 1 

mol% double bilayer, but higher than the 6 mol% double bilayer. The sample is not 

reproducing the behaviour of the 1 mol% double bilayer even though the upper 

bilayer has a very similar structure. The presence of a lower bilayer with a different 

amount of cholesterol is affecting the transition phase behaviour.

Gel value (25°C)

Asym 1 mol% 6 mot%

Maximum Transition value  

Asym 1 mot% 6 mot%

Maximum Increase

Asym 1 mol% •  mot%

Dw 28±lA 22±1 A 33±lA 35±1 A 37±1 A 37±lA 7±1 A 15±1A 4±1 A

Urou 12±2A 7±2A 10±2A 15±2A 16±2A 11 ±2A 3±2A 9±2A 1±2A

uSolv 11 ±4% 14±4% 25±4% 19±4% 22±4% 29 ±4% 8±4% 8 ±4% 4±4%

Table 5.10 Comparison o f gel phase, maximum transition values and the maximum increase of water 

layer thickness, and upper bilayer roughness and solvation of asymmetric sample, 1 mol% double 

bilayer and 6 mol% double bilayer.

In chapter 3, it was proposed, that due to the close similarities between the value of 

the upper bilayer roughness parameter and the amplitude of the ripple phase 

measured by AFM (Kaasgaard 2003), that the value of the roughness parameter 

could be proportional to be the amplitude of the ripple. If this is the case, then it can 

be said that the presence of a lower bilayer with a different amount of cholesterol 

reduces the size of the ripple structure compared to a double bilayer with the same 

cholesterol concentration.

It is unclear why the presence of a lower bilayer with a different cholesterol 

concentration would affect the phase behaviour of the upper bilayer, especially when 

the structure of the lower bilayer remains static throughout.

Whilst the structure of the ripple phase has been extensively studied in other systems 

the reasons for its appearance is still not clear and many theoretical models have 

been put forward to explain the formation, but no general model is able to account 

for all the features (Cunningham 1998). In the double bilayer system there is the 

additional interaction with the substrate and the fact the upper rippling bilayer is 

bound only on one side. Further experiments are needed with different ratios of
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cholesterol and with different lipids in the upper and lower bilayer to understand 

more clearly the effect of the lower bilayer composition on the upper bilayer ripple.

5.4.6.2 Transition phase behaviour upon cooling

As in the case of the 1 mol% double bilayer, the asymmetric double bilayer exhibited 

different structural behaviour upon cooling compared to upon heating. Transitional 

behaviour was observed between 39.3°C to 34.9°C. The gel phase structures 

observed below this were heavily affected by the transition region. The sample was 

measured at three temperatures in the transition region (39.3°C, 36.7°C and 34.9°C). 

A complete profile was measured at 36.7°C, whilst for the other two only the first 

angle was measured which gave a maximum q of 0.09A'1.

In the case of the pure 1 mol% double bilayer (chapter 3) due to the possible 

presence of two fringes in the first fringe, it was not possible to fit the overall profile 

using only one model. As in that sample, it was proposed also here that two models 

are needed to achieve a good fit, as it is possible that the upper bilayer was exhibiting 

two coexisting ripple structures. This behaviour has previously been observed by the 

Mouritsen group in DPPC double bilayers on mica by AFM measurements 

(Kaasgaard 2003). The group observed two coexisting ripple structures, consisting of 

a small amplitude ripple structure of > 12A, similar to that observed upon heating 

and a large ripple structure of > 50A. The two models to fit the asymmetric sample 

were the same as those used for the 1 mol% double bilayer profiles. They consisted 

of one model with a smaller upper bilayer roughness (~ 15 A) and another model with 

a high upper bilayer roughness (~ 50A).

Unlike the profiles for the 1 mol% double bilayer, the reflectivity profiles of the 

asymmetric sample do not show clearly a first fringe consisting of two features. It is 

unclear whether the upper bilayer is behaves the same way as the 1 mol% double 

bilayer. The use of two ripple models is shown in Figure 5.13 and 5.14 for the 

sample at 39.3°C and 36.9°C, the ambiguity of the use of two models is clearly 

visible. The parameters are listed in Table 5.11
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Figure 5.13 Profile o f 6 mol% 1 mol% asymmetric sample at 39.3°C fitted using two different 

roughness ripple models. The black line is the smaller roughness model and the green line the larger 

roughness model.
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Figure 5.14 Profile o f 6 mol% 1 mol% asymmetric sample at 36.9°C fitted using two different 

roughness ripple models. The black line is the smaller roughness model and the green line the larger 

roughness model.
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dw IDb IDc IAPM IRou ICov Dw uDb uDc uAPM uRou uCov

39.3°C
sm all

large

8±1

8±1

47±2

48±2

35±1

35±1

46±2

46±2

6±1

4±1

95±2

94±2

35±1

37±1

51 ±2 

53±2

35±1

37±1

46±2 

43 ±2

15±2

23±2

93±2

96±2

36.7°C
sm all

large

8±1

8±1

47±2 

48±2

35±1

35±1

46±2

46±2

6±1

4±1

95±2

94±2

32±1

39±1

51 ±2 

53±2

35±1

36±1

46±2 

44 ±2

15±2

25±2

96±2

100±2

34.9°C
sm all

large

7±1

7±1

47±2

47±2

34±1

35±1

47±2 

46±2

7±1

5±1

96 ±2 

97±2

32±1

34±1

52±2

52±2

37±1

37±1

43 ±2 

43 ±2

16±2 

21 ±2

96±2

100±2

Table 5.11 Fitted parameter of 6 mol% 1 mol% asymmetric sample upon cooling down in transition 

region. The ‘small’ refers to the smaller amplitude ripple model and the ‘large’ label the larger 

amplitude ripple model.

It is possible that the profile measured at 36.9°C could be considered to be fitted 

sufficiently using only the large ripple structure shown in green. However, this fit 

does not account fully for the 0.07 -  0.10 A’1 and 0.12 -  0.14 A*1 parts of the profile. 

The profiles demonstrate that more measurements are needed on this type o f sample, 

especially measuring the sample in many solvent contrasts. This was not conducted 

at the time with this sample due to beam-time constraints.

Whether the use of two models is valid or not, it can be confidently said that from the 

differences in the profile shape that the asymmetric bilayer is behaving differently to 

that of the 1 mol% double bilayer of chapter 3. It is likely then that the presence of a 

lower bilayer with a higher cholesterol concentration is affecting the phase behaviour 

of the upper bilayer.

If the use o f two models was shown to be valid then the following discussion using 

two separate models is valid.

The two models used to fit the profiles had upper bilayer roughnesses ranging from 

15A to 16A and 23A to 25A, which could be evidence of coexisting small amplitude 

ripples and large amplitude ripples. This would suggest that the size of the larger 

ripple is lowered by the presence of the bilayers with two different cholesterol 

concentrations, as it is much lower than that proposed for the 1 mol% double bilayer 

of 44±2A (Chapter 3).
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Both model fits indicated that the structure of the lower bilayers remained constant 

throughout the transition region. For the upper bilayer, the two models had the same 

thickness and similar coverage; however the larger roughness model had a thicker 

water layer. This is logical, as a larger rippling structure would be expected to have 

a thicker water layer due to the larger undulating bilayer structure.

The roughness of the smaller model is similar to that observed when heating in the 

transition region, but the water layer thickness differs slightly. It could be that the 

smaller ripples thought to be present upon cooling are different then to those upon 

heating. This would differ from the AFM study of pure DPPC double bilayers, 

where the small ripples observed upon cooling were the same as those observed 

upon heating (Kaasgaard 2003).

Phase behaviour at 34.9°C

The shape of the profile changed between 36.7°C -  34.9°C. It is equally possible to 

obtain good fits with either of the two ripple models proposed for the higher 

temperatures (Figure 5.15). The parameters were listed in Table 5.11 above. The first 

model consisted of a model of the small amplitude ripple with parameters similar to 

those used in fitting the 39.3°C and 36.7°C profiles. The second model consisted of a 

larger ripple model, but with lower parameters than that used for the 39.3°C and 

36.7°C profiles.

F igure 5.15 Possible fits o f Profile o f 6 mol% 1 mol% asymmetric sample at 34.9°C. (a) Fitted with a 

small roughness model and (b) fitted with a larger roughness model.
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It is not possible to determine which of the two fits is likely to be closer to the real 

structure. Both fits have similar least square difference values and both match the 

contours of the profile.

The parameters of the small ripple model resemble closely those used in the 39.3°C 

and 36.7°C small ripple model, whilst the parameters o f the large ripple model are 

significantly lower than those used in the large model parameters. The water layer 

was 3A -  5A less and the upper bilayer roughness by 2A -  4A less. If this was the 

actual structure, it could be said that a reduced ripple structure is observed at lower 

temperatures. This would parallel the behaviour observed in heating, where a 

maximum is observed in the middle of the transition temperature range.

Gel phase after cooling

The sample exhibited a gel phase between 32.3°C to 26.2°C. The fitted profiles at 

these two temperatures are given in Figure 5.16 and the parameters are listed in 

Table 5.12 along with the initial structure before heating.
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Figure 5 .16  Fitted profiles o f asymmetric 6 mol% and 1 mol% sample at 32.3°C (♦ )  and 26.2°C (A)
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dw IDb IDc IAPM IRou ICov Dw uDb uDc uAPM uRou uCov

32.3°C 7±1 47±2 35±1 46±2 5±1 97±2 32±1 52±2 37±1 43 ±2 16±2 97±2

26.2°C e±i 47±2 35±1 46±2 5±1 97±2 31 ±1 51 ±2 37±1 43±2 16±2 97±2

Initial 26.4°C 7±1 50±2 36±1 44±2 5±1 94±2 28±1 49±2 35±1 46±2 12±2 89±2

Table 5.12 Fitted parameters of asymmetric 6 mol% and 1 mol% sample in gel phase after cooling. 

The initial gel structure before heating is given for comparison.

The main differences between the initial gel phase and after the temperature scan are 

that it has a thicker upper bilayer chain region, thicker main water layer and higher 

coverage in both bilayers. These differences are all likely caused by an equilibrating 

of the structure by the temperature scan. There is one other significant difference 

though; the upper bilayer has a much higher roughness by 4A. This behaviour 

mirrors that of the double bilayer of 1 mol% cholesterol, where the roughness was 

3A higher after the temperature scan (Table 3.8).

The presence of low amounts of cholesterol has previously been observed to stabilise 

the secondary long wavelength ripple structure, which is observed in the transition 

region, down to lower temperatures and into the gel phase. The cholesterol also 

increases the periodicity of the ripples (Mortensen 1988). It could be that the higher 

roughness of the gel phase is caused by the presence of these ripples.
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5.5 Asymmetric Samples Conclusion

The results of this chapter have shown that it is possible to fabricate stable 

asymmetric double bilayer samples using a range of different components. This is an 

advantage of the use of the Langmuir-Blodgett-Schaefer technique, which allows a 

much greater control over each layer composition compared to vesicle adsorption 

methods.

The structural behaviour of the different phases was found to be affected by the 

presence of asymmetric bilayers and samples, especially the transition phase.

The asymmetric double bilayer of DPPE and DPPC-cholesterol was completely 

stable over the temperature range measured. Whilst the lower bilayer of DPPC- 

cholesterol exhibited full gel -  fluid phase behaviour, the presence of the DPPE 

leaflet in the upper bilayer restricted the phase behaviour of the DPPC-cholesterol 

leaflet. The presence of a leaflet with a higher gel -  fluid transition temperature in a 

bilayer is therefore able to restrict the gel -  fluid transition of the other leaflet.

The double bilayer with an asymmetric upper bilayer of h6 2-DPPC and d62-DPPC 

was found to have a stable asymmetric nature over the temperature range measured. 

During the transition phase the asymmetric sample exhibited a lower increase in the 

water layer thickness and upper bilayer roughness compared to the fully 

hydrogenated sample of chapter 3. The presence of a deuterated lipid leaflet is 

restricting the phase behaviour of the upper bilayer. The temperature of the gel -  

fluid transition was not affected however.

The sample containing different amounts of cholesterol in the lower and upper 

bilayer was found to exhibit similar gel and fluid structures to the non-asymmetric 1 

mol% and 6 mol% double bilayers of chapter 3. Upon heating in the transition phase 

the increase in the water layer thickness and upper bilayer roughness was less than 

that observed in the 1 mol% double bilayer. The profiles measured upon cooling in 

the transition phase were different to those of the 1 mol% double bilayer. The 

presence of a lower bilayer with a higher amount of cholesterol is therefore having
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an effect on the behaviour of the upper bilayer. This is logical as the upper bilayer is 

held to the lower bilayer by a range of different Helfrich forces (Helfrich 1977).
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6. Thesis Conclusions

The aim of this thesis was to incorporation of new components into supported lipid 

double bilayer systems and to study their effect on the phase behaviour and stability 

of the double bilayer. This would increase the understanding of the behaviour of the 

components in the field of biophysics and increase the applicability of the system as 

a biomembrane mimic.

In this thesis it has been shown that with the Langmuir-Blodgett-Schaefer technique 

it is possible to fabricate double bilayers with a range of different components, at 

different concentrations and with asymmetric distributions of lipids across the 

bilayer. This particular ability to fabricate asymmetric double bilayers opens an 

interesting new area in field of membrane mimics. It was not possible to fabricate 

high quality bilayers with deuterated chain DPPC (d62-DPPC). However it was 

possible to fabricate single bilayers of this compound using 10 mol% cholesterol.

The main advance in the fabrication method was refinement of the procedures so that 

double bilayers could be fabricated with very reproducible results. This was in part 

due to the development of a micrometer controlled manual dipper for the Schaefer 

deposition. The manual dipper consistently gave better results than with the use of 

the computer controlled dipper. With this dipper the substrate can be brought within 

microns of the monolayer and the horizontality still be adjusted. The speed of 

deposition can also be a slow as microns per minute or less. This is not possible with 

the computer controlled dipper, which is not rigid enough whilst holding the weight 

of the large silicon substrates (8 x 5 x 2cm2) and has a minimum speed of lmm/min.

The thesis aim regarding the study of the phase behaviour of a range of different 

components was also met. Three studies of particular interest were undertaken. The 

phase behaviour of DPPC with low concentrations of cholesterol was studied; the 

stability and phase behaviour of DPPE with and without cholesterol was investigated 

and the effect of asymmetric distributions on the phase behaviour was investigated.
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6.1 DPPC cholesterol phase behaviour
The phase behaviour of DPPC double bilayers containing 0, 1, 2, 4, 6 and 10 mol% 

cholesterol was investigated. They were all found to exhibit stable and reversible gel, 

transition and fluid phases.

The thickness of the gel phase bilayers was found to increase with increasing 

cholesterol concentration, whilst the fluid phase bilayer thickness did not vary with 

cholesterol content.

In the fluid phase the thickness of the water layer that separates the two bilayers was 

thinner for very low concentrations ( 1 - 2  mol%). Increasing the cholesterol 

concentration increased the sample thickness back to that of the pure DPPC.

Upon heating in the transition region, the samples containing 0 - 4  mol% cholesterol 

exhibited large increases in the upper bilayer roughness and the water layer 

thickness. This was interpreted as observation of a ripple structure. The addition of 1 

-  4 mol% cholesterol progressively broadened the temperature range over which the 

increase in parameters was observed, and reduced the level of increase of the 

parameters compared to the pure DPPC sample. By a ratio of between 6 - 1 0  mol% it 

was not possible to determine whether a ripple structure is present, as only a swelling 

of the water layer was observed. The sample containing 10 mol% also exhibited 

different swelling behaviour of the water layer as a function of temperature 

compared to the 0 -  6 mol% samples. It is likely that this was caused by domain 

formation, which interferes with the transition behaviour.

Upon cooling in the transition region, the samples containing 0 - 4  mol% behaved 

differently from the behaviour observed for them upon heating. The reflectivity 

profiles seem to suggest that the upper bilayer exhibits two coexisting ripple 

structures. This has previously been observed in a very similar DPPC double bilayer 

using AFM. It was not possible to fit the reflectivity profiles successfully using only 

one model. The presence of two coexisting ripple structures requires different 

analytical methods for the data analysis, which are not currently available. In this 

thesis a simple approximation was used, that consisted of using two separate models
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to fit different parts of the profiles. This gave results similar to other studies. 

Different measurement techniques such as AFM and off-specular reflectivity are 

necessary to confirm this interpretation.

Upon cooling in the transition region the samples containing 6 - 1 0  mol% behaved 

differently to those of lower cholesterol concentrations. The samples exhibited 

similar transitional structures both upon heating and cooling. The higher ratios of 

cholesterol are likely to be reducing the large amplitude ripple structure thought to be 

occurring in the 0 -  4 mol% samples upon cooling. It is suspected that only a small 

amplitude ripple occurs in the 6 -  10 mol% samples.

It was not possible to study the phase behaviour of d62-DPPC double bilayers due to 

the poor quality of the samples. However the phase behaviour o f single bilayers of 

d62-DPPC and h62-DPPC with 10 mol% was studied and compared. They both 

exhibited similar gel and fluid phase structures, except that the d62-DPPC sample had 

a higher bilayer roughness in both phases.

6.2 DPPE with and without cholesterol phase behaviour
Double bilayers of DPPE were found to be partially unstable above the gel -  fluid 

transition temperature. A Bragg peak was observed in the reflectivity profile, 

indicating that part of the bilayer had formed a structure with a repeating unit. The 

formation was found to be irreversible. The profiles indicated that the majority of the 

sample remained as a double bilayer. The reflectivity profiles were interpreted by the 

use of two models. First the profiles were fitted without consideration of the Bragg 

peak. This gave results showing that the double bilayers still retained high coverage 

and that they became a fluid phase structure. When the gel temperature profiles were 

fitted with this method the bilayers showed a gel phase structure. The Bragg peak 

was then fitted with a model having a repeat lamellar structure above a high coverage 

double bilayer. Unfortunately it was not possible to obtain realistic fits of the Bragg 

with this model. The interpretation of the presence of the Bragg peak is on-going 

work.
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The study of the phase behaviour of a single DPPE bilayer exhibited stable gel and 

fluid phases. This showed that it is likely that it is the upper bilayer that forms the 

repeat structure as no Bragg peak was observed, even up to 15°C above the gel -  

fluid transition.

The phase behaviour of a sample containing 10 mol% cholesterol and DPPE was 

investigated to understand whether cholesterol is able to stabilise the DPPE double 

bilayer structure. The cholesterol however had the opposite effect, with the upper 

bilayer actually detaching completely at a temperature of between 8 -  12°C below 

the gel -  fluid transition temperature of DPPE. It is thought that the cholesterol 

destabilises the upper bilayer by increasing the conical shape of the DPPE molecule. 

Future perspectives are to incorporate DPPE into mixed component double bilayers, 

in the hope that it would be stabilised as planar structure by influence of other lipids.

6.3 Phase behaviour of asymmetric samples
The phase behaviour of three different asymmetric samples was investigated. The 

phase behaviour was found to be affected by the asymmetric nature of the bilayers.

The first sample consisted of a double bilayer with an upper bilayer containing an 

outer leaflet of DPPC and 10 mol% cholesterol, and inner leaflet of DPPE. The 

presence of the DPPE leaflet with its higher gel -  fluid transition temperature was 

found to restrict the gel -  fluid transition of the DPPC and 10 mol% cholesterol 

leaflet. This is a very interesting result and needs more investigation using other lipid 

types.

The second sample investigated had an upper bilayer with an outer leaflet of d62- 

DPPC and inner leaflet of h-DPPC. Whilst the presence of the deuterated leaflet did 

not affect the gel and fluid structure or the temperature of the gel -  fluid transition, in 

the transition phase it reduced the level of increase in the thickness of the water layer 

that separates the bilayers and the bilayer roughness observed compared to the DPPC 

double bilayer.
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The third sample had a lower DPPC bilayer containing 6 mol% cholesterol and upper 

DPPC bilayer containing 1 mol% cholesterol. The presence the lower bilayer with a 

higher concentration of cholesterol was found to reduce the level of increase in the 

upper bilayer roughness and water layer thickness observed in the transition region, 

in comparison to the 1 mol% double bilayer. The effect of the lower bilayer 

concentration is logical as the upper bilayer is held to the lower bilayer by a range of 

different Helfrich forces that would be expected to be altered for different 

compositions.
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7. Future Perspectives

7.1 Future Samples
There are many areas of future work concerning the double bilayer. Firstly, the 

fabrication and phase behaviour of double bilayers containing charged lipids such as 

phosphatidylserines and phosphatidylglycerols should be investigated. Problems 

could be encountered with these charged lipids though, as previously it has only 

been possible to fabricate single bilayers containing the phosphatidylserine DPPS, 

whilst monolayers of the phosphatidylglycerol lipid DPPG were found to be 

unstable (one possible solution would be to use the longer chained DSPG). One area 

of investigation would be to evaluate the use of salts to stabilise the deposition of the 

charged lipid monolayers. It would also be useful to evaluate the incorporation of 

the sphingomyelin into the bilayer, which is commonly found in plasma membranes.

An interesting study would be to investigate whether it is possible to incorporate 

glycolipids into the outer leaflet of the double bilayer. Glycolipids are especially 

abundant in plasma membranes and have a lipid structure containing a head-group 

composed of saccharides. Their role is to provide energy and also serve as markers 

for cellular recognition. The incorporation of glycolipids would aid the study of 

cellular recognition by providing a model for the interaction of glycolipid containing 

bilayers and vesicles.

Variations of the bilayers within this thesis should be investigated. For example, it 

would be useful to investigate the effect on the phase behaviour of different 

structural types of phosphatidylcholines, such as DOPC (18:1 -cis) with its 

asymmetric chain length and unsaturated chains. It would also be interesting to 

study the effect of mixed bilayers of phosphatidylcholines with different chain 

lengths (e.g. DPPC, DSPC) on the planar structure (Ipsen 1988) and the phase 

behaviour. This is also relevant as the chain length of phospholipids is usually C\e 

(palmitoyl), Cjg (stearoyl) or C20 (arachidoyl) (Darnel, 3rd edition 1995).

Another relevant study would be to investigate whether it is possible to fabricate 

high cholesterol concentration (above 20 mol%) double bilayers by the small
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unilamellar vesicle adsorption technique of the Mouritsen group (Kaasgaard 2003). 

This would allow the double bilayer to mimic biological ratios of cholesterol 

(Yeagle 1986).

The effect of low amounts of cholesterol upon the stability of DPPE double bilayers 

should also be investigated, as low concentrations of cholesterol behave differently 

to high amounts. It would also be interesting to study the stability and phase 

behaviour of different structural types of phosphatidylethanolamines, such as DOPE 

with its unsaturated chains. These could be more stable as a double bilayer 

compared to DPPE.

The behaviour of all these samples should also be studied in the presence of 

biological buffer solutions and salts, to mimic the nature extra-cellular environment 

of the cell. All the above studies should also be studied as single component double 

bilayers, mixed component bilayers and asymmetric bilayers. These studies would 

contribute to the use of the double bilayer as a biomembrane mimic. The double 

bilayer is currently being used in this form for protein studies

7.2 Application of different analytical methods
Other future work involves the application of different analytical techniques in 

studies using the double bilayer. Techniques such as AFM, surface plasmon 

resonance and Brewster angle microscopy at the liquid -  solid interface can be 

applied. The use of these techniques has already been initiated and the preliminary 

results look promising.
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