

University of Bath

PHD

Interfacing algebraic and numeric computation

Dewar, Michael C.

Award date:
1991

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

INTERFACING
ALGEBRAIC A N D NUM ERIC

COM PUTATION
subm itted by

Michael C. Dewar

for the degree of Ph.D

of the

University of Bath

1991

Attention is drawn to the fact that copyright of this thesis rests with its author. This

copy of the thesis has been supplied on the condition that anyone who consults it is

understood to recognise that its copyright rests with its author and that no quotation

from the thesis and no information derived from it may be published without the prior

written consent of the author.

This thesis may be made available for consultation within the University Library

and may be photocopied or lent to other libraries for the purposes of consultation.

Signature of Author f a

Michael C. Dewar

UMI Number: U 032590

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com plete manuscript
and there are missing pages, th ese will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U 032590
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

7 q 2 g u ar \ m

So 53 Z g J

Summary

There are two different approaches used to solve mathematical problems with computers.

The more traditional numerical approach is characterised by libraries of FORTRAN

subprograms. These tend to be hard to use, not least because they require the

user to program in FORTRAN. The other approach is to apply symbolic techniques,

usually through a computer algebra system. Both these methods have their merits in

particular situations and with different problems. This thesis deals with the design and

implementation of tools to enable a user to apply both approaches to solving problems

within the same environment.

Acknowledgem ents.

I would like to express my thanks to NAG Ltd. and its associates for their active

cooperation and participation during this project, in particular Mike Richardson for all

his hard work designing routine interfaces and test examples. I’d also like to thank Tony

Hearn the author of Reduce, and Barbara Gates the author of GENTRAN, whose work

provided the basis on which IRENA was built. Finally I’d like to thank my supervisor,

Professor James Davenport, for all his advice and encouragement.

This work was funded by the Science and Engineering Research Council of the United

Kingdom through a research studentship.

Contents

1 In troduction 1

1.1 Numerical Libraries ... 2

1.1.1 The NAG FORTRAN Library .. 3

1.2 Computer Algebra S y s te m s .. 5

1.2.1 The Reduce Computer Algebra System ... 6

1.3 NAG versus Reduce .. 7

1.4 Combining Symbolic and Numeric m e th o d s .. 8

1.5 S u m m a ry ... 9

2 R ela ted W ork 10

2.1 Primitive FORTRAN g e n e ra tio n ... 10

2.2 G E N T R A N .. 11

2.3 Other Code Generation Packages... 12

2.4 Code O ptim isation .. 16

2.4.1 S C O P E ... 19

2.4.2 C o m p ress .. 20

2.4.3 Using Higher-Level K now ledge.. 20

2.4.4 Summary....................................... 20
2.5 Systems for solving specific problems... 21

2.6 NAGLINK .. 21

3 IR E N A 23

3.1 Simple use of IRENA .. 23

iv

3.2 NAG Parameters.. 25

3.3 Returning Results .. 26

3.3.1 IF A IL ... 26

3.4 Providing V a lu e s .. 28

3.5 M atrices... 28

3.6 Code G en era tio n .. 31

3.6.1 Machine Dependent Quantities.. 31

3.6.2 Optimisation... 32

3.7 S u m m a ry ... 32

4 D efau lts 33

4.1 Defaults F i le s .. 33

4.1.1 The Defaults Files’ Syntax... 34

4.2 The defaults mechanism... 36

4.2.1 Evaluating default expressions... 37

4.2.2 Cancelling System Defaults.. 38

4.3 Example... 38

5 T h e Jazz S ystem 42

5.1 Input Jaz z in g .. 43

5.1.1 A liases.. 43

5.1.2 New Scalars.. 43

5.1.3 K eyw ords... 44

5.1.4 Rectangles .. 44

5.1.5 Very Local Constants 45

5.1.6 Jazzing M a tr ice s ... 45

5.1.7 Complex O b jec ts ... 46

5.1.8 Unpacking M a tr ic e s ... 47

5.2 Output Ja z z in g ... 47

5.2.1 Matrices 47

5.2.2 Complex O b jec ts ... 48

v

5.2.3 Packing objects into larger structures ... 48

5.2.4 Output A lia s in g ... 48

5.3 Presentation of R esults... 49

5.3.1 Returning Input Parameters with the O u tp u t............................... 49

5.3.2 Ordering the Output P aram eters ... 49

5.4 The Ideal In te rface .. 49

5.5 The Jazz M echanism ... 50

5.5.1 Input Jazz in g ... 50

5.5.2 Output Jazz in g .. 51

5.5.3 User Jazzing ... 53

5.6 Formal Jazz Syntax ... 54

5.7 Example Jazz F i l e .. 55

6 A rgum ent Subprogram s (A S P s). 59

6.1 The User’s View... 60

6.1.1 Function values.. 60

6.1.2 Jacobian and derivative values... 62

6.1.3 Dummy Routines.. 65

6.1.4 Output Routines... 65

6.1.5 Matrix Manipulation Routines... 65

6.1.6 Regions... 66

6.2 The ASP system... 66

6.2.1 The Requirements.. 66

6.2.2 The Templates.. 67

6.2.3 The ASP Functions.. 67

6.2.4 Functions.. 68

6.2.5 Jacobians.. 69

6.2.6 Functions and Jacobians.. 69

6.2.7 Hessians.. 70

6.2.8 Hessian Products... 70

6.2.9 Dummies... 71

vi

6.2.10 Matrix routines.. 71

6.2.11 Regions.. 71

6.3 Constructing special ASP templates... 72

6.4 S u m m ary .. 73

7 H ow IR E N A W orks. 74

7.1 The Information Files... 74

7.2 Generating The Code... 74

7.3 Loading the compiled code .. 76

7.4 Efficiency .. 78

7.5 Operating System Dependencies ... 80

8 T he D esign and C onstruction o f th e IR E N A System . 82

8.1 The Evolution of the NAG Library.. 83

8.2 The Evolution of Reduce... 83

8.3 Changes in the operating system... 84

8.4 Generating the interfaces... 84

8.4.1 D efau lts .. 84

8.4.2 J a z z in g .. 85

8.4.3 ASPs ... 85

8.4.4 D ocum entation.. 85

8.5 S u m m a ry .. 85

9 C lassifying N A G routines 88

9.1 The NAG Help p ro g ram ... 89

9.2 General S tra te g y ... 91

9.2.1 Choosing the key phrases and rules... 96

9.3 A S P s... 97

9.3.1 Performing the classification.. 97

9.3.2 The subprogram data f i l e ... 98

9.4 IFA ILs.. 99

9.5 Using the Classify p ro g ra m ... 101

vii

9.5.1 Changing certain parameter n am es ..102

9.6 The Specification F ile s .. 102

9.7 The Classify Program for the Mark 14 Library.. 102

10 E xam ples o f U sin g IR E N A . 106

10.1 A steel rolling problem..106

10.2 Warm starts after errors... 107

10.3 Multi-Routine interfaces... 110

11 R ou tin e S election 112

11.1 ARC — An Automatic Routine Chooser...114

11.1.1 The Basic Strategy..115

11.1.2 The D01 Knowledge Base.. 117

11.2 Implementation details.. 119

11.2.1 The Predicates... 119

11.2.2 The link to IRENA... 122

11.3 Future Developments... 123

12 C onclusions 124

12.1 Side-effects of developing IRENA.. 124

12.2 Further Work... 126

12.3 Summary.. 129

A N o ta tio n for syn tax figures. 130

A .l Conventions..130

A.2 Symbols... 130

B C hanges to th e R E D U C E and G E N T R A N system s m ade for IR E N A . 131

B .l Introduction.. 131

B.2 New public GENTRAN features ... 132

B.2.1 D O U B L E ... 132

B.2.2 Intrinsic F unctions .. 133

B.2.3 Complex N u m b ers ... 133

B.2.4 G E T D E C S .. 134

B.2.5 T y p e s ... 135

B.2.6 Modified PERIOD flag ... 135

B.2.7 KEEPDECS ... 135

B.2.8 M A K E C A L L S..135

B.2.9 E ...136

B.3 Private Gentran F e a tu re s ...136

B.4 Additions to the Code O p tim ise r.. 136

B.4.1 Domain elem ents... 136

B.4.2 DECLARECSENAMES...136

B.4.3 OPTIMISEWAIT .. 137

C M atrix R epresen tation in IR E N A . 138

D IR E N A C O N ST A N T S 141

E T h e A R C P red icates 143

F A R C E xam ples 147

ix

List of Figures

2-1 An example of simple FORTRAN generation in Reduce............................ 11

2-2 A Gentran Template... 13

2-3 The intermediate template... 14

2-4 An example of FORTRAN generated by Gentran...................................... 14

2-5 A Reduce session using Gentran.. 15

2-6 An example of the operation of the SCOPE package................................. 19

3-1 A simple example using IRENA to solve an integral.................................. 24

3-2 An example of how IRENA handles an error in the NAG routine........... 27

3-3 Letting IRENA prompt for all the data parameters................................... 29

3-4 Declaring an upper-triangular matrix in IRENA.. 30

4-1 Syntax for the IRENA defaults files.. 35

4-2 The defaults file for D02RAF... 39

5-1 Formal syntax for the users alias files... 53

5-2 An example user alias file.. 53

5-3 Syntax for the IRENA jazz files... 55

5-4 The jazz file for D02RAF.................................... 56

5-5 An example of the use of D02RAF.. 57

6-1 A simple ASP generated by IRENA.. 60

6-2 Using IRENA “subscript” notation for sets of functions............................ 61

6-3 The FORTRAN produced from the “subscript” notation.......................... 61

6-4 The use of fset and / display... 63

x

6-5 Some FORTRAN produced from an fset.. 64

6-6 Some optimised FORTRAN produced from an fset..................................... 64

6-7 The Formal syntax for the fset operator.. 65

6-8 The syntax for an ASP’s requirements... 66

8-1 Schematic view of the generation of the IRENA interfaces........................ 86

9-1 The specification file for D01AJF.. 105

10-1 Equations describing a steel mill... 107

10-2 The IRENA session needed to solve the steel mill problem............................ 108

10-3 Doing a warm start with IRENA.. 109

10-4 An example of a multi-routine interface... I l l

11-1 An example of the use of the automatic routine chooser............................ 114

11-2 ARC’s tracing facility.. 116

12-1 Evaluating partially processed integrals... 128

xi

List of Tables

9.1 Primary phrases recognised by the classify program.......................... 93

C.l Matrices with diagonal lists: uppermost diagonal first throughout 138

C.2 Matrices with row lists: uppermost row first throughout (i represents the

row, and j the column index).. 139

C.3 Sparse m atrices... 140

xii

C hapter 1

Introduction

Since they were invented, one of the main uses of electronic computers has been the

solution of problems in mathematics. In the early days the lack of sophistication of

existing hardware forced programmers to go to great lengths to produce software capable

of solving difficult problems. The legacy of these pioneering efforts is still with us today

in the structure of languages like FORTRAN, and the packaging of algorithms into

libraries of subprograms. Such systems compromise accessibility and usability in favour

of power and flexibility — whilst adaptable and modular, they can only be exploited

via complex programs written in fairly low-level languages. Given the capabilities of

modern hardware, such a compromise is to a large extent no longer necessary.

Modern computer users have a diverse variety of backgrounds. They may be experts

in their own field, but know little or nothing about computer programming. They

prefer to use systems tailored for their own requirements: systems which accept a

representation of the problem to be solved in a form which is natural for the user;

and return their results in the same style. Such users want to exploit the power of

computers and the various packages which exist for them, without the inconvenience of

having to program in low-level languages like FORTRAN or C. Their ideal language is

a language which represents the ideas they have about the problems which they want

to solve.

1

1.1 Numerical Libraries

As computers became more widespread and accessible to ordinary users, it became clear

that much effort was being duplicated as individuals wrote their own implementations of

well-known algorithms for numerical analysis, statistics, data sorting and so on. This led

to the concept of a subprogram library which contained high-quality implementations of

various algorithms which the user could link into his or her program during compilation.

Although libraries were produced in a wide variety of languages, the most common was

FORTRAN.

The advantages of subprogram libraries are clear: they provide efficient, reliable,

and thoroughly tested pieces of code. However there are disadvantages as well.

Although FORTRAN is fast, it is a very unintuitive language. Even for an experienced

programmer, it can take some time to write and test the code to solve a relatively trivial

problem. Not only does he or she need to translate it from its mathematical definition to

its FORTRAN one, the user must frame it in the way required by the particular routine.

Many conceptually simple operations are error-prone when done by hand: for example

writing a subroutine to return the jacobian of a given set of equations in an array.

FORTRAN syntax is very low-level when compared with that of modern programming

languages, and the restriction of parameter names to six characters prevents them from

being either meaningful or memorable.

Another problem with FORTRAN is the amount of “unnecessary” information which

the user must provide. Arrays for workspace, whose size depends in some way on the

particular problem being solved, and array dimensions must all be explicitly passed

as parameters to the routine. Because of its call-by-reference semantics the names of

all parameters used to output results must also be passed. The correct ordering of

the parameters is imperative, and since routines typically take not less than a dozen

parameters (and often thirty or more) it is in practice impossible to use libraries without

access to fairly detailed documentation, either printed or online.

Another aspect of using these “canned” algorithms is that a user needs a little

understanding, not only of the problem being solved, but also of the method being used

to solve it. This is because the routine will typically require a number of parameters

2

to control the operation and termination of the algorithm: the maximum number of

iterations to take in a quadrature routine, the step size to be used in finding the zero of

a polynomial, or the accuracy required for the solution of a differential equation. The

latter example also requires some knowledge of the precision of the implementation being

used, and how well the algorithm may be expected to perform under the circumstances.

There is also the problem of choosing which algorithm to use in the first place, and

this may involve some higher level of mathematical knowledge. For example a user

wishing to solve a set of differential equations may have to decide whether it is stiff

or not, while someone using a quadrature routine might need to determine whether

the integrand has any singularities or discontinuities. Advice giving systems, whether

printed decision trees or interactive menu-driven systems, all tend to expect the user

to understand such concepts, and be able to apply them to the particular problem in

hand.

1.1.1 The NAG FORTRAN Library

The example studied in this thesis is concerned with a particular library: the NAG

FORTRAN Library [NAG LTD. 1990]. The Library was started in 1970 and has grown

steadily ever since. It is divided into chapters, each of which contains routines for

solving particular problems (for example optimisation, quadrature, time series analysis

etc.). Most chapters have a three-character name based on the conventions adopted for

publishing numerical algorithms by the ACM, and each routine in a chapter suffixes

this with a unique three-character label. So for example chapter A02 is concerned with

complex arithmetic, and contains the three routines A02AAF, A02ABF, A02ACF. A

new mark is released roughly every 18 months, which contains some new routines and

has had other older ones deleted. Thus some routines may be 15 years old, while others

were written very recently. A consequence of this is that many routines were written

in FORTRAN-IV at a time when the efficient use of memory was a far more critical

consideration than in modern computing environments. This is reflected in the way

data is handled and packed, and the way arrays are often used for multiple purposes

in different situations. The resulting user interface is often extremely confusing and

3

unintuitive.

At mark 14 (March 1990) the Library contained around 1000 user-callable routines.

The routines are contributed by academics and commercial institutions throughout the

world, which leads to a great deal of inconsistency in the interfaces, particularly in the

naming and style of parameters (i.e. a subprogram argument which fulfills the same

role in two subprograms may be of a completely different — and hence incompatible —

format in two routines which solve the same problem).

The only fairly consistent part of the interfaces is the way in which they handle

errors. There is a parameter, IFAIL, which the user sets to either —1, 0, or 1 before

entering the routine. This determines whether, on encountering a fatal error, the routine

will:

• hand control back to the calling program with a printed message (noisy soft fail);

• terminate the program with a printed message (hard fail);

• hand control back to the calling program without a message (silent soft fail).

If one of the soft fail options is chosen then, on exit, the value of IFAIL will have been set

to an integer value which indicates what sort of error has occurred. The interpretation

of these values is given in the printed and online documentation. Thus when the soft

fail option is chosen it is always vital for the calling program to check the value of IFAIL

on exit from a Library routine.

The NAG Library is implemented on a wide range of machines, and has established

an international reputation for the excellence of the quality of its algorithms. However

it is only of immediate appeal to people who enjoy programming in FORTRAN, an

increasingly rare breed! Todays computer user does not necessarily expect to be a

computer programmer, but expects to be able to use interactive, attractive systems

which “understand” the problem in the same terms as he or she does. If that fails, then

the user can enlist the services of an expert. Yet the Library represents an enormous

investment of time and expertise, and to abandon it would be an appalling waste of

manpower and resources. The system described later in this thesis offers an alternative

path, adapting the existing library to modern expectations.

4

1.2 Computer Algebra Systems

Computer Algebra systems manipulate symbols not numbers. Rather than using the

approximation methods of numerical analysis, they use exact algebraic techniques. Such

systems tend to be interactive programs, commonly written in some dialect of LISP,

and they accept their input in a quasi-mathematical notation which is simple to use

and remember. They can give general expressions as an answer (to an integral, for

example), rather than only a numerical value. All the details of the algorithms used are

normally hidden from the user, and the statement of the problem consists only of its

logical, mathematical components.

Unfortunately computer algebra systems can be comparatively slow, and the time

taken to solve a given problem is unpredictable, as is the size of the solution. For some

problems, such as solving ordinary differential equations, they may not offer a “black

box” interface but rather expect the user to explicitly perform the steps required to find

a solution, using the system to perform the manipulation.

Computer Algebra systems normally deal with the rational numbers and their

polynomial extensions. There are generally no limits to the size of integers which the

system can handle, and so any rational number can be represented exactly. Computer

Algebra systems also offer floating point arithmetic and, because the operations can be

carried out in software rather than in hardware, they can offer arbitrarily high precision,

specified at runtime. Some systems use both hardware and software floating point,

either explicitly as in REDUCE 3.3, or transparently as in REDUCE 3.4. Although

considerably slower than hardware floating point, arbitrary precision big floats offer

obvious advantages. However, no matter how high a precision is chosen, rounding errors

can never be eliminated altogether. Some algebraic techniques, such as Buchberger’s

algorithm for determining the Grobner basis of a set of polynomials, are extremely

sensitive to this and so, where possible, it is better to work in the rational field.

Numerical algorithms implemented in computer algebra systems and using floating

point will generally run far slower than those implemented in FORTRAN libraries. It is

perfectly possible to implement these algorithms in such a way as to use exact rational

arithmetic but this leads to two problems:

5

• Comparing the relative size of two rational numbers whose denominators may be

extremely large integers is not easy.

• Trigonometric and logarithmic functions normally only yield values in floating

point. While their exact value can by expressed as a convergent power series,

truncating this to yield a rational approximation introduces rounding error and

again leads to the difficulty of comparing two rational numbers.

The problem of comparing two rational numbers has been extensively treated by

[Kornerup & Matula 1979], however the algorithms proposed are still relatively slow.

It makes little sense in most cases to try and use exact arithmetic since we are only

using approximation techniques anyway.

1.2.1 The Reduce Computer Algebra System

For the rest of this thesis we shall be mainly concerned with one computer algebra

system: Reduce [Fitch 1985, Hearn 1987]. This system has been under development

since the late 1960s, and is available on a wide range of machines. It has been

implemented in many dialects of LISP, most notably PSL [Galway et al. 1987] which was

specifically designed as a Reduce platform. It offers sophisticated algorithms for such

tasks as indefinite integration, polynomial equation solving, and matrix manipulation.

All expressions are represented as quotients of polynomials, though they may contain

terms involving the trigonometric and logarithmic functions, as well as functions defined

by the user. There are facilities for substituting values into expressions, extracting their

coefficients, and performing all the normal arithmetic operations on them. Although

output is normally a “three-line” mathematical style, it can be generated as REDUCE

input syntax, FORTRAN expressions, or even TftX notation1.

REDUCE offers two modes of operation: algebraic and symbolic. System program

is written in the latter, which is essentially a pre-processor with algol-like syntax for

the underlying LISP system, while applications programs are written in the former.

Although REDUCE is untyped, it has the concept of a domain [Bradford et al. 1986].

1 Using one of the packages TRI or RLFI from the Network Library.

6

The domain can be set by the user, and currently includes rational, rounded, Gaussian

integer, complex rational, and complex rounded. Operations are performed in the

current domain, and constants from other domains coerced to this when necessary. The

rounded domain consists of floating point numbers. Where the precision is small enough

these are represented as hardware floats, otherwise they are bigfloats [Sasaki 1979].

REDUCE offers sophisticated packages for generating and optimising code in

FORTRAN, RATFOR, C and PASCAL, which are discussed in detail in section 2.

1.3 NAG versus Reduce

Reduce offers the interactive environment with comprehensible syntax and uncluttered

interface which modern computer users want. It allows them to concentrate on the

mathematics of a problem without bothering about the underlying algorithms, or the

dubious pleasures of FORTRAN programming. However like all computer algebra

systems it is not an environment suited to numerical algorithms for the reasons given in

section 1.2. Even if this was not so, the effort required to implement even a significant

subset of (say) the NAG Library’s capabilities under Reduce would be enormous. Thus a

user is often going to be faced with the choice: which method to use. In some situations

the choice is clear, since only one system will be capable of solving a particular problem.

However often both systems will appear to be capable of offering a solution.

Let us consider the problem of differentiation. It is well known that numerical

differentiation is extremely sensitive to rounding error, whereas symbolic differentiation

is an almost trivial problem. This is why for many applications (optimisation, solving

differential equations etc.) numerical routines require not only the a piece of code to

represent a function, but another to represent its derivative(s) as well.

On the other hand, consider the problem of definite integration. Here the pros and

cons are not so clear cut. Reduce has an algebraic integration package which can handle

a wide range of integrals, returning a function which can be evaluated at the end points

of the range of integration to yield the result in the usual way (provided, of course, that

the integral has no singularities in the range). NAG provide various routines, some of

7

them general purpose, and others designed to deal with a particular class of integral.

Again, the time taken to prepare the problem for solution is much less in Reduce, but

it may take a long time to yield an answer, and quite often fail altogether. However, if

the same integral is going to be solved over different regions, then numerical evaluation

of a symbolic solution may well be faster.

There are some problems which Reduce can’t handle at all — for example solving

non-factorable algebraic equations of degree five or more — which NAG routines will

often find trivially easy.

In many cases Reduce scores over NAG because of its friendly and easy-to-use user

interface. Most users with the choice will try using Reduce first, before going to the

effort of writing even small FORTRAN programs. This increased execution time is

often more than compensated for by the decreased formulation time, the time taken to

present the user’s problem in a form comprehensible to the mathematical software. A

nicer interface to the NAG library would encourage users to think more carefully about

their choice of methods.

1.4 Combining Symbolic and Numeric methods

Some problems benefit from a combination of both the symbolic and numerical

approach. For example it is often convenient to model a problem symbolically, deriving

a family of equations which describe it, and then evaluate those equations with various

numerical values. There are several surveys of such applications [Fitch 1979, Ng 1979,

Fitch 1990], most of which are concerned with problems in physics and mechanics.

Recently there has also been some interest from the field of biochemistry to model

enzyme reactions [Bennett et al. 1988, Fisher 1990a, Fisher 1990b].

The point here is that the two approaches — symbolic and numeric — should

not be viewed as divorced from one another, but rather as complementary tools for

problem solving. We discuss the technology which currently exists for harnessing the

two methodologies in Chapter 2.

8

1.5 Summary

Existing libraries of FORTRAN subprograms represent decades of effort, and have

proved themselves to be robust and reliable. Unfortunately they are difficult to use, and

do not fit comfortably into the modem interactive, package-oriented, view of computer

software. Computer algebra systems are friendly, interactive packages which, with

the growth of computer power available to most users, are deservedly becoming more

popular.

The two approaches are useful in different circumstances, but can be combined

very effectively to tackle a number of classes of problems. Clearly any problem-solving

toolkit for the modern scientist should include both symbolic and numerical facilities.

It would be nice if such a toolkit could exploit the investment of effort and ability which

a conventional subprogram library represents, while offering the user a more up-to-date

interface.

9

C hapter 2

Related Work

In this chapter we will describe the previous work which has been done on interfacing

symbolic and numerical computation, and the facilities which already exist for those

wishing to mix the two paradigms.

2.1 Primitive FORTRAN generation

Most computer algebra systems have some rudimentary method for producing output

in FORTRAN. For example, in Reduce we can set the switch FORT and all output

will be converted to FORTRAN-compatible syntax. Reduce’s system is comparatively

sophisticated: most FORTRAN compilers will only accept a certain number of

continuation lines, so it will segment any expression which is too large, and split it

into several statements. The maximum acceptable number of continuation lines and

their width are under user control, and default to the definitions in the ANSI standard

[ANSI 1978]. A simple example is given in figure 2-1. Many computer algebra systems

do not offer segmentation, and as such are very often useless, since the sort of expressions

which are generated (for example jacobians) are normally very large indeed. This is the

situation in Mathematica and Maple IV.

The user also has to think carefully about how the computer algebra system is going

to “simplify” the expressions being translated. In the example in figure 2-1 it is clearly

far more efficient to prevent Reduce expanding the right hand side of the assignment,

10

REDUCE Development Version, 22-Jan-90 ...

1: on fort;

2: cardno!* := 2$ '/. Limit the number of continuation lines to 1

6: f := (x+y)~10;
ANS2=10.*X*Y**9+Y**10
ANS1=252.*X**5*Y**5+210.*X**4*Y**6+120.*X**3*Y**7+
. 45.*X**2*Y**8+ANS2
F=X**10+10.*X**9*Y+45.*X**8*Y**2+120.*X**7*Y**3+210.
. *X**6*Y**4+ANS1

Figure 2-1: An example of simple FORTRAN generation in Reduce.

which can be done by setting the Reduce switch EXP off. This issue, how to produce

efficient code, will be discussed in section 2.4.

2.2 GENTRAN

Reduce offers even more sophisticated code-generation facilities, however, with the

GENTRAN package [Gates 1985, Gates 1986, Gates 1987]. This allows the user to

generate complete programs in FORTRAN, RATFOR, PASCAL or C, rather than just

isolated expressions. Not only can GENTRAN translate most LISP statements, but the

user may build skeletal programs, or templates, which are then “fleshed-out” by Reduce.

The passive parts of the template contain fragments of code in the target language,

and are echoed verbatim to the output, while the active parts consist of sequences of

Reduce or GENTRAN commands. GENTRAN has a separate file-handling system,

and so output from its functions may be redirected to selected files, while the results of

Reduce functions still appear on the screen. There are also facilities for handling type

declarations, and segmentation. In the latter case automatically-generated temporary

variables are automatically declared to be of a default type (usually REAL).

Other facilities which we have added to the original version of GENTRAN,

including the handling of double precision constants and variables, the coercion of the

arguments of FORTRAN intrinsic functions to the correct type, and the generation of

11

complex constants, are given in appendix B. The GENTRAN package was originally

implemented in Macsyma [Gates & Wang 1984].

As GENTRAN is central to the work described later in this thesis, we shall give a

simple example which gives a flavour of some of its facilities. Suppose that we wish to

generate a FORTRAN function which will return either a polynomial evaluated at a

point, or its partial derivative. In figure 2-2 we see a GENTRAN template to perform

this task. The ;BEGIN; . . . ;END; sequences enclose the active parts. Since we cannot tell

in advance whether GENTRAN will generate any extra variables (to reduce expressions

to the size allowed by the FORTRAN compiler), we produce the final program segment

in two phases. Our template creates a second GENTRAN template whose only active

part generates the symbol table. This template, shown in figure 2-3, is then processed

to get the final FORTRAN code. The sequence of steps needed in Reduce to do this

is shown in figure 2-5, and the final result in figure 2-4. In practice, this multiple-pass

technique is almost always necessary when translating expressions into FORTRAN.

2.3 Other Code Generation Packages

There are a number of other systems under development to provide complete high-

quality code and program generation facilities for computer algebra systems.

GENCRAY [Weerawarana & Wang 1989] is a package which can produce either

FORTRAN 77 or Cray FORTRAN from Vaxima (the VAX version of Macsyma). It is

interesting for two reasons. The first is that, unlike other systems, it doesn’t produce

its output directly from LISP; but rather produces an intermediate form which can

subsequently be transformed by a C program. This is built using standard parsing

techniques like yacc and /ez, the idea being to make the system more easily extensible.

In addition, by isolating the system dependent part of the parsing process it is also

supposed to be more portable. The other novel feature of GENCRAY is that it includes

facilities for the generation of parallel and vectorisable code for the Cray. This is done

through a suite of macros which handle matrix and vector operations; and a second set

which allows the user to specify that a set of procedure calls be done in parallel, or set

up pipelining etc.

12

;BEGIN;
*/, A Gentran Template to generate a double precision function to
'/, return the value of a multivariate polynomial or its partial
7, derivative at a given point.

off gendecs$ '/, Postpone the generation of type declarations,
on double$ '/, Force double precision output.
tempvartype!* 'real$ '/» Temporary variables will have type real.

;END;
DOUBLE PRECISION FUNCTION F(X,Y,Z,FVALS)

;BEGIN;
gentran declare <<f : function;

x,y,z : real;
fvals : logical;

» $

gentran literal BEGIN;",cr!*(tab!*,"on gendecs$",cr!*,";END;",
cr!*$

;END;
IF (FVALS) THEN

;BEGIN;
gentran f f$

;END;
ELSE

;BEGIN;
gentran f :=: df(f,x)$

;END;
ENDIF
RETURN
END

;BEGIN;
gentran literal "END;",cr!*$

;END;

Figure 2-2: A Gentran Template.

13

DOUBLE PRECISION FUNCTION F(X,Y,Z,FVALS)
;BEGIN;

on gendecs$
;END;

IF (FVALS) THEN
F=X**5+5.0D0*X**4*Y+5.0D0*X**4*Z+10.0D0*X**3*Y**2+20.0D0*X**3*Y*Z+
. 10.0D0*X**3*Z**2+10.0D0*X**2*Y**3+30.0D0*X**2*Y**2*Z+30.0D0*X**2*
. Y*Z**2+10.0D0*X**2*Z**3+5.0D0*X*Y**4+20.0D0*X*Y**3*Z+30.0D0*X*Y**
. 2*Z**2+20.0D0*X*Y*Z**3+5.0D0*X*Z**4+Y**5+5.0D0*Y**4*Z+10.0D0*Y**3
. *Z**2+10.0D0*Y**2*Z**3+5.0D0*Y*Z**4+Z**5
ELSE
F=5.0D0*X**4+20.0D0*X**3*Y+20.0D0*X**3*Z+30.0D0*X**2*Y**2+60.ODO*X
. *+2*Y*Z+30.0D0*X**2*Z**2+20.0D0*X*Y**3+60.0D0*X*Y**2*Z+60.ODO*X*Y
. *Z**2+20.0D0*X*Z**3+5.0D0*Y**4+20.0D0*Y**3*Z+30.0D0*Y**2*Z**2+
. 20.0D0+Y+Z**3,*,5.0D0*Z**4
ENDIF
RETURN
END

;END;

Figure 2-3: The intermediate template.

DOUBLE PRECISION FUNCTION F(X,Y,Z,FVALS)
DOUBLE PRECISION X.Y.Z
LOGICAL FVALS
IF (FVALS) THEN
F=X**5+5.0D0*X**4*Y+5.0D0*X**4*Z+10.0D0*X**3*Y**2+20.0D0*X**3*Y*Z+
. 10.0DO*X**3*Z**2+10.0DO*X**2*Y**3+30.0DO*X**2*Y**2*Z+30.0DO*X**2*
. Y*Z**2+10.0D0*X**2*Z**3+5.0D0*X*Y**4+20.0D0*X*Y**3*Z+30.ODO*X*Y**
. 2*Z**2+20.0D0*X*Y*Z**3+5.0D0*X*Z**4+Y**5+5.0D0*Y**4*Z+10.0D0*Y**3
. *Z**2+10.0D0*Y**2*Z**3+5.0D0*Y*Z**4+Z**5
ELSE
F=5.0D0*X**4+20.0D0*X**3*Y+20.0D0*X**3*Z+30.0D0*X**2*Y**2+60.ODO*X
. **2*Y*Z+30.0D0*X**2*Z**2+20.0D0*X*Y**3+60.0D0*X*Y**2*Z+60.ODO*X*Y
. *Z**2+20.0D0*X*Z**3+5.0D0*Y**4+20.0D0*Y**3*Z+30.0D0*Y**2*Z**2+
. 20.0D0*Y*Z**3+5.0D0*Z**4
ENDIF
RETURN
END

Figure 2-4: An example of FORTRAN generated by Gentran.

14

REDUCE Development Version, 10-Jul-90 ...

1: f := (x+y+z)~5$

2: gentranin "foo.tem" out "#foo.tem"$

"#foo.tem"

21: gentranin "#foo.tem" out "foo.f"$

"foo.f"

Figure 2-5: A Reduce session using Gentran.

MathCode [Kant et al. 1990] is a package for Mathematica which allows the user

to produce FORTRAN or C programs. Originally designed as part of a package to

generate programs for mathematical modelling, it consists of a set of commands to

generate particular constructs in the target language. Most of these commands are

the lower case equivalents of the equivalent Mathematica functions. The constructs

may be subprogram headers, loops, assignments etc. It has a similar facility to

GENTRAN’s templates: the Splice command will read a FORTRAN or C program

containing embedded Mathematica commands and on output replace these with their

evaluated results. It does not appear to segment large expressions or support double

precision output.

MACROFORT [Gomez 1990] is a FORTRAN code generator for MAPLE. Like

MathCode, it has a suite of functions for generating particular program constructs.

In this case they have the same name as the target FORTRAN construct suffixed with

either an “f” or “m”. Thus the user needs to know a little bit about FORTRAN

syntax. A useful feature is that translation is deferred until after each program unit

or subprogram is completely defined, so type declarations, COMMON blocks etc. may be

specified at any time but will appear at the right point in the generated code. It has

an optimiser (see § 2.4) and will produce single or double precision output.

15

2.4 Code Optimisation

When used correctly, GENTRAN is a very powerful tool. However it is possible for the

naive user to produce very inefficient code. In theory this shouldn’t matter, since most

FORTRAN compilers have the facility to optimise arithmetic expressions. However

there are several problems with this:

• Large numbers of large expressions can still outstretch the capacity of a given

compiler.

• Exponentiation is often treated as a function call, so the obvious relationship

between e.g. x2 and x4 is not recognised.

• Optimising compilers do not assume the validity of the commutative and

distributive laws, and so do not produce optimal expressions. This is partly

because, in principle, these laws do not hold with floating point numbers

though, in practice, empirical evidence suggests that this problem can be ignored

[van Hulzen 1984].

There has been a great deal of work done in this area. The most common approach is

to remove common sub-expressions from the generated code, thus reducing the number

of arithmetic operations at the expense of an increase in the number of assignments.

This approach doesn’t take account of the relative costs of the different operations,

which will vary from architecture to architecture, but is completely portable. A simple

example would be converting the expansion of (x + y)10 from:

F=X**10+10.0*X**9*Y+45.0*X**8*Y**2+120.0*X**7*Y**3+
. 210.0*X**6*Y**4+252.0*X**5*Y**5+210.0*X**4*Y**6+120.0
. *X**3*Y**7+45.0*X**2*Y**8+10.0*X*Y**9+Y**10

to the sequence:

T0=X*Y
T5=X**2
T10=Y**2

16

T12=T0**2

T13=T0*T12

T15=T5**2

T17=T10**2

T18=T15*T5

T19«T17*T10

F*T12*(252.0*T13+45.0* (T18+T19)) +T12**2*(210.0*(T10+T5

.))+T13*(120.0*(T17+T15))+T0*(10.0*T17**2+10.0*T15**2)

. +T15*T18+T17*T19

which reduces the number of multiplications from eighteen to sixteen and the number

of exponentiations from eighteen to eight, at the expense of nine extra assignments.

There are other optimisation strategies as well, in particular rewriting polynomials

in a nested form, replacing all the exponentiations by multiplications. Doing this here

will produce the expression:

F=Y**10*(1.0+(X/Y)*(10.0+(X/Y)*(45.0+(X/Y)*(120.0+(X/Y

.)*(210.0+(X/Y)*(252.0+(X/Y)*(210.0+(X/Y)*(120.0+(X/Y)

. *(45.0+(X/Y)* (1 0 .0+X/Y))))))))))

which, after we remove the sub-expression X/Y, consists of only ten multiplications, ten

additions, one division, one exponentiation and two assignments. This is a generalisation

of the famous Horner’s rule which replaces the polynomial:

anxn + an_izn-1 + . . . + a\x + a0

by the expression:

(. . . (anx + an- i) x + . . .) x + a0

Although this can be the most efficient method in many cases it is less general than

common sub-expression removal, and can get tricky where we are dealing with large

numbers of variables.

17

Symbolic code optimisation really comes into its own when computing jacobians.

Because of the obvious relationships between the expressions, their density can be

reduced and the efficiency of the resulting code dramatically improved by this technique.

For example, optimising the jacobian of the following functions [Dewax 1989]:

/ 1(*1, £2 , 2:3)

/2 (x l,x2 ,x3)

/3 (x l , a:2,a:3)

/4 (x l,x2 ,x3)

/5 (£ l, x2,x3)

/ 6(x l, x2,x3)

/7 (x l,x2 ,x3)

/ 8(x l, x2,x3)

/9 (x l, x2,x3)

/10(x l,x2 ,x3)

/11(x1,x2,£3)

/12 (£ l, x2,x3)

/13(£ l,£2 ,£3)

/14(x l,x2 ,x3)

/15(£ l,£2 ,£3)

gives the following improvements:

£ l + 1.0
15 * £2 + 1 * £3 — 0.14

£1 + 2.0
14 * x2 + 2 * x3 — 0.18
 £ l + 3.0______
13 * x2 + 3 * £3 — 0.22

£ l + 4.0
12 * x2 + 4 * x3 — 0.25

x l + 5.0
11 * £2 + 5 * x3 — 0.29
 £ l + 6.0______
10 * x2 + 6 * £3 — 0.32

£ l + 7.0
9 * x2 + 7 * £3 — 0.35

x l + 8.0
8 * £2 + 8 * x3 — 0.39

£ l + 9.0
7 ★ x2 + 7 * x3 — 0.37

x 1 + 10.0
6 * x2 + 6 * x3 — 0.58

x 1 + 11.0
5 * x2 + 5 * x3 — 0.73

£1 + 12.0
4 * x2 + 4 * x3 — 0.96

x l + 13.0
3 * x2 + 3 * x3 — 1.34

x l + 14.0
2 * x2 + 2 * x3 — 2.10

x l + 15.0
1 * x2 + 1 * x3 — 4.39

+ r V ** =

Unoptimised 75 124 45 60

Optimised 38 93 30 136

18

2.4.1 SCOPE

SCOPE [van Hulzen et al. 1989] implements the algorithms to search for common

sub-expressions in blocks of straight-line code. Its input consists of sets of Reduce

expressions, and its output may be either Reduce expressions, or (through Gentran)

FORTRAN or C. Its interface also allows the user access to the Gentran symbol table,

and to control exactly when expressions are evaluated. A short example is given in

figure 2-6.

33: f := (x+2y-z)~5$

34: optim ize - f f l := :d f (f ,x) , f 2 := :d f (f ,y) , f 3 :» :d f (f ,z) }
34: d ecla re « x ,y ,z :r e a l> > ;

REAL X,Y,Z,G45,G46,G47,G65,G64,G63,G72,G73,F1,F2,F3
G45=Z*Y
G46=Z*X
G47=Y*X
G65=Z*Z
G64=Y*Y
G63=X*X
G72=G65*G65+16*G64*G64-(48*G64*G46)+6*G46*G46+G63*G63+24*(G45*G45+
. G65*G47-(G63*G45)+G47*G47)+32*(G64*G47-(G64*G45))+8*(G63*G47-(G65
. *G45))+ 4*(-(G65*G46)- (G63*G46))
G73«5*G72
F1»G73
F2=10*G72
F3=-G73

Figure 2-6: An example of the operation of the SCOPE package.

The package also contains commands to allow the user to use the obviously visible

structure of an expression (similar to the Reduce structr operator), or to apply Horner

rules.

There are unfortunately a few drawbacks with SCOPE. The most serious of these

is that the current version cannot handle polynomials whose coefficients are domain

elements, in particular floating point numbers. It contains a type inference mechanism

to determine the type of the new variables it creates, but this is imperfect and tends

19

to give over-general results (i.e. the sum of two integer variables will be declared as a

real).

2.4.2 Compress

We have already seen that Reduce expands expressions out fully, whereas more efficient

code may result if this expansion is not carried out. One method of doing this is to

turn the switches MCD and EXP off, which stops expressions being put over a common

denominator and expanded respectively. Unfortunately this is a somewhat unrealistic

approach, since other algebraic processes which a user might want to employ to generate

the expressions to be translated may not, as a result, work properly.

An better method is that implemented by the COMPRESS package [Hulshof 1983].

This seeks to restore some or all of the structure to an expression, and may be used as

a pre-processor to another optimiser.

2.4.3 Using Higher-Level Knowledge

A number of people have advocated employing knowledge about the process being used

to generate the expressions to improve the efficiency of the final code. Although not a

very general technique, this can lead to extremely good results. [Wang 1985] exploited

the symmetries of his problems in finite element analysis to reduce the complexity of

the FORTRAN he was generating using GENTRAN. [Mutrie et al. 1987] advocated a

rather more ambitious approach in Maple whereby knowledge about the algorithms

used to perform the “basic” algebraic operations such as differentiation, taylor series

approximation, and integration, would be used to produce more efficient expressions.

2.4.4 Summary

It is clear that, for a given problem, a little careful thought may dramatically improve

the efficiency of the code being generated. In general, however, most users will simply

try to eliminate common sub-expressions using SCOPE or a similar package. In cases

where expressions have a basic structure which has been “lost” through some algebraic

expansion however, trying to restore that structure will often give more efficient code:

20

evaluating (a;+y)10 is more efficient than evaluating the expanded then optimised version

given earlier.

2.5 Systems for solving specific problems.

Various systems have been built to solve problems in a specific area. In general the idea

is for the program to take a description of the user’s problem in symbolic form, analyse

and manipulate it symbolically and then output a piece of “ready-to-run” FORTRAN

code. This program can then be compiled and run to get a numerical solution to the

problem.

[Barton et al. 1971] describe a program to solve differential equations via the method

of Taylor series. The user interface accepts a description of the problem in a quasi-

English syntax which is parsed and interpreted to produce a matrix representation of

the problem. This matrix is then optimised to remove common sub-expressions and

eliminate unnecessary operations between taylor series. Finally a FORTRAN program

is generated to solve the problem.

FINGER [Wang 1986] is a package to generate code for finite element analysis which

runs under MACSYMA and GENTRAN. The code it produces is designed to be linked

to a particular library of FORTRAN subroutines. Another package concerned with

finite element methods is that of [Barbier et al.].

2.6 NAGLINK

NAGLINK [Broughan 1986, Broughan 1987] was the first attempt to produce a

comprehensive system unifying both symbolic and numerical methods in one computing

environment. It used MACSYMA for the symbolic features and the NAG Library

for the numerical algorithms. Each NAG routine had a corresponding LISP routine

which translated the user-provided parameters into the required FORTRAN program.

Parameters which were themselves subprograms had to be seperately converted into

FORTRAN. The resulting program was then compiled, linked, and finally executed

under MACSYMA, the results being returned as a list. NAG parameters which were

21

not strictly part of the problem specification, such as tolerances on results or limits

on the number of iterations, were given global values which the user could change at

need. Unfortunately the system never really became available outside the University

of Waikato where it was written, because by the time it was finished some of the

MACSYMA features used to execute the compiled code were no longer supported in

the latest version.

In addition, there were some criticisms of the design of the interfaces. There were

inconsistencies between the parameters to similar routines which, while to some extent

reflecting the same faults in the NAG Library itself, were unnecessary. A significant

number of routines were reported as not functioning correctly. This may partly have

been due to the way in which each interface was hand-written, which also made

upgrading the system with new releases of the Library a long and tedious job.

Since MACSYMA was no longer a suitable platform the authors decided to

implement their own stand-alone LISP front-end to the system. Although primarily

an interpreter for the NAG interfaces, SENAC [Punjani & Broughan 1990] does include

implementations of a small number of the better known algorithms normally found

in computer algebra systems, such as the Risch algorithm for closed-form integration

[Schou & Broughan 1989]. This system was released commercially in late 1990, and

appears very similar to its predecessor. In addition, it also offers a graphical facility via

an interface to the NAG Graphics Library.

22

C hapter 3

IRENA

We have stated that there is a strong need for a unified environment in which to employ

both symbolic and numerical methods for problem solving. We have constructed such

a system: IRENA — an Interface between REduce and the NAg library [Dewar 1989,

Dewar & Richardson 1990]. It has the following properties:

• It allows a Reduce user access to the full range of NAG routines;

• It provides an easy-to-use, interactive front-end to the NAG library;

• It provides a basic code-generation facility for users of the NAG library.

3.1 Simple use of IRENA

IRENA is used interactively within the normal Reduce environment, so that on first

inspection it might appear similar to a set of native Reduce procedures, although this

is not really the case. As our first example let us consider the NAG routine D01AJF

which calculates an approximation to the integral of a function f (x) over the interval

(A, B). Despite the fact that it is one of the simplest routines in the whole library, it

still requires the user to provide twelve parameters as follows:

• Two real1 scalars A and B, the limits of integration;

1by real we mean either REAL or DOUBLE PRECISION objects.

23

2: d O l a j f (a « 0 , b = l , f (x) « (l o g (x) - l) ~ - 1 0) ;

{ALIST,BLIST,ELIST,RLIST, ABSERR, RESULT.DIVISIONS}

3: result;

0.098 92913 26406 1784

4: ab se rr;

2.003 05847 21634 49 E -13

Figure 3-1: A simple example using IRENA to solve an integral.

• F, a user-defined function evaluating the integrand at a single point X;

• Two reals, EPSABS and EPSREL, which control the accuracy of the result;

• Two arrays IW and W which are used as working space, and their dimensions LIW

and LW. On exit various elements of the arrays contain intermediate results and

values, which may be of use if the computation has failed in some way;

• Two reals, RESULT and ABSERR, which on exit contain the approximation to the

integral and an estimate of the absolute error respectively;

• IFAIL, an integer, the standard NAG diagnostic parameter.

Suppose that we want to solve the problem:

exists [Davenport et al. 1988]). The session with IRENA is shown in figure 3-1. Note

(an integral which Reduce is unable to solve symbolically since no elementary integral

that the argument to the IRENA function is a list of keys, rather than a straightforward

list of parameters, and that only three of the twelve parameters required by the NAG

subroutine have been provided by the user.

24

3.2 NAG Parameters.

Apart from those parameters used simply to return results, we consider there to be

three distinct kinds of NAG parameter.

1. Those which are logically essential to the mathematical description of the problem.

In this example the data parameters are A, B and F.

2 . Those which control the operation and termination of the algorithm, in this case

EPSABS and EPSREL.

3. Those which are used internally by the FORTRAN routine, such as workspace

arrays and dimension arguments: in this case W, IW, LW and LIW. In fact anything

which is not part of the statement of the problem or a constraint on its mode of

solution we regard as such a housekeeping parameter. We also include IFAIL in

this category (see section 1.1.1).

In principle the user must provide values for parameters in category 1, while defaults

are provided for all the others. A default may be freely over-ridden simply by providing

an appropriate value in the call to IRENA; a very real possibility for items in category 2 ,

but an unlikely one for items in category 3, since these tend to be dependent on the

“size” of the problem. The provision of appropriate defaults is discussed in chapter 4.

In practice parameters often fall into several categories. This happens in two ways:

• The amount of workspace allocated controls how many iterations of the algorithm

are performed, i.e. it continues until it runs out of space. For instance, the

parameter LIW in the previous example controls how many times the algorithm

will subdivide the range (A, B) and so is really a control parameter, even though

it is the dimension of a workspace array. There are relatively few such parameters

in the Library.

• One array parameter may be used for several purposes. For example D02YAF

has a parameter W whose columns are used variously for inputting data, returning

results, and workspace. How we disentangle such a parameter is discussed in

chapter 5.

25

3.3 R eturning R esults

The IRENA function returns a list of output parameters, whose values may then be

inspected or manipulated as required. The parameters are called e.g. dOlajf-result

rather than result, but may be referred to by the shorter name2. In this example

the routine has returned a number of parameters which were not listed in our earlier

exposition of the FORTRAN interface. These are, in fact, the “interesting” elements of

the arrays W and IW. The mechanism by which they are transformed, and the rationale

behind it, are given in chapter 5.

3 .3 .1 IF A IL

Finally, it is worth noticing that the user did not bother to check the value of the

diagnostic parameter IFAIL on exit. A conventional user of the NAG library would

regard this as an extremely bad (though one suspects rather widespread) practice.

IRENA however does the checking itself and, if an error has occurred, notifies the user by

displaying a warning together with any extra information output by the routine, along

with the error diagnosis from the manual. For example, figure 3-2 shows what happens

if IRENA is asked to integrate l / x near the origin. As the results are sometimes useful

even if IRENA has signalled an error, they are still returned in the usual way. In this

case the problem is not tractable, but some of the returned values might help a user

decide what remedial action to take. By examining ALIST and BLIST an experienced

user could determine the location of the difficulty. The value of IFAIL is also returned.

Some NAG routines make special provision for a restart after an error has occurred, a

feature which IRENA can make use of by providing the extra keyword reenter in the

appropriate call (see figure 10.2).

2This is to prevent values with common names being overwritten by subsequent calls to different
routines.

26

5: d O l a j f (a = 0 , b = l , f (x) = l / x) ;

** The maximum number of subdivisions (LIMIT) has been reached:
LIMIT = 252 LW = 2000 LIW = 252

** ABNORMAL EXIT from NAG Library routine D01AJF: IFAIL = 1
** NAG soft failure - control returned

The maximum number of subdivisions allowed with the given
workspace has been reached without the accuracy requirements
being achieved. Look at the integrand in order to determine the
integration difficulties. If the position of a local difficulty
within the interval can be determined (e.g. a singularity of the
integrand or its derivative, a peak, a discontinuity...) one
will probably gain from splitting up the interval at this point
and calling the integrator on the subranges. If necessary,
another integrator, which is designed for handling the type of
difficulty involved, must be used. Alternatively consider
relaxing the accuracy requirements specified by EPSABS and
EPSREL, or increasing the amount of workspace.

■(ALIST,BLIST,ELIST,RLIST,ABSERR,RESULT,DIVISI0NS>

Figure 3-2: An example of how IRENA handles an error in the NAG routine.

27

3.4 Providing Values

So far we have shown how to provide values via the key list. In fact there are other

ways to provide values for IRENA:

• Taking values from the global REDUCE environment. It is possible to put a key

of the form (. . . , a = 6, . . .) in the parameter list, which will give the IRENA

parameter a the value of REDUCE identifier b. Similarly a key of the form

(. . . , a = a , . . .) makes perfect sense, but it is syntactically cleaner to set the

switch ENVSEARCH ON, which makes IRENA take any undefined values from

the global REDUCE environment.

• Prompting for values. With the switch PROMPTVAL ON, IRENA will prompt

for the values of any undefined parameters (which must be given in key form).

These two switches may be combined, in which case the order of priority is:

1. Values given in the key list.

2 . Values given in the defaults file(s).

3. Values from the REDUCE environment.

before prompting takes place (see also § 5.5.1).

The reason for this hierarchy is to ensure that, if the user provides no parameters, he

or she will be prompted for data values only. Hence values in the defaults files may only

be over-ridden in the key list. An example of this alternate method of calling D01AJF

is given in figure 3-3. This example also demonstrates the alternative names and forms

of parameters described in chapter 5.

Values of parameters given in the key list are local to the call and do not interfere

with, or affect, the values of REDUCE parameters with the same name.

3.5 Matrices

Reduce represents matrices by lists of list, with each value being explicitly stored, even

if it is zero. It is possible to perform arithmetic on these matrices, and carry out various

28

3: d O la j f () ;

Please supply values for the following variables using the
usual key-line syntax. *0’ may be used instead of the name
of the current variable. Terminate each input with a *;*
character. Replying *;<cr>* to any prompt will abort the
call.

(rectangle) REGION? fl=[0:i];
(function) INTEGRAND? «(x)=4/(l+x~2);

{ALIST, BLIST, ELIST, RLIST, ABSERR, RESULT, INTERVALS}

4: result;

3.1415926535898

Figure 3-3: Letting IRENA prompt for all the data parameters.

operations such as taking their transpose or inverse. However, numerical computations

often deal with very large arrays with special structures. Representing these densely

as Reduce does is extremely wasteful of space, not to mention tedious to enter for the

user. Moreover it is hard to write Reduce matrices to a file to be re-read later. Thus

we have provided a special suite of functions to handle matrices in IRENA.

[Richardson 1988] has identified the various types of matrix which are useful to users

of the NAG Library. We provide a function to input each type of matrix and store the

information on the appropriate property list. The syntax is:

<matrix-type> <name> <elements>

An example of how to declare tin to be an upper-triangular matrix is given in figure 3-4.

These representations cannot be explicitly manipulated or displayed, so we provide

a function to translate them to Reduce matrices as shown. We also provide functions

to read and write IRENA matrices from and to files, and a function to convert Reduce

matrices to IRENA ones. A complete list of IRENA matrices and their representations

is in appendix C.

Ideally we would create a matrix domain [Bradford et al. 1986] to allow these

29

7: tri!-mat tm-C*Cl,2,3>,-C4t5>f-C6»;

8: irena2reduce ’tin;

9: tm;

[1 2 3]
[]
[0 4 5]
[]
[0 0 6]

Figure 3-4: Declaring an upper-triangular matrix in IRENA.

matrices to be first class data objects. Unfortunately there are two problems with

this:

• It is hard to create domains whose elements are themselves members of other

domains, the only successful system known to the author being the TPS package

[Barnes & Padget 1990].

• There can be multiple representations for the same matrix. For example, any

matrix may be represented as a full matrix, or a sparse one. Deciding, for example,

what representation to choose for the product of a full matrix and a sparse matrix

requires some rigid definition of “sparseness”. In this case a simple definition

would be that a sparse matrix is one which can be represented more compactly in

that form, i.e. where less than one third of the elements are non-zero. This does

not, however, prevent a user from providing an inappropriate format. Checking

the structure of a large matrix explicitly is time-consuming.

These problems are not insurmountable, but for the moment we see the matrix functions

solely as a convenient method for inputting data.

30

3.6 Code Generation

IRENA works by generating a FORTRAN program to call the NAG Library (the

mechanism is described fully in chapter 7). The code produced is as portable as possible

and, through the use of the switch DOUBLE and the command PRECISION, code can

be tailored for a target machine other than the current platform. In this case the user

must also disable the compilation and linking phase described in chapter 7, by turning

the switch CODEONLY on.

The ability to generate code to be used elsewhere is particularly useful when this code

includes parameters which axe themselves subprograms. Coding these in FORTRAN

can be a particularly tedious and error-prone task, and their generation is discussed in

chapter 6 .

3.6.1 Machine Dependent Quantities.

For many implementations of numerical algorithms there are a number of parameters

which are dependent on the underlying hardware. These include the machine precision,

the largest positive floating point number and so on. The NAG Library contains a

number of functions to return such values: for example the routine X02AJF returns the

machine precision and X02ALF returns the largest positive floating point number. There

are also routines which return an estimate of the active set size in a paged environment

or indicate how the system treats underflow. Such functions axe essential if a user is to

write portable code, and since one use of IRENA is to generate code on one machine

(e.g. a desk-top workstation) to be run on another (e.g. a mainframe) it is essential

that the code it produces uses them. The way such quantities are treated in IRENA

is as follows: at the Reduce level they are treated as constants so that, for example,

the laxgest floating point number is called fphuge, but, at the code generation stage, we

generate assignments for the returned function values of any of these quantities used,

along with the necessary type declarations and EXTERNAL statements.

As well as the above machine constants there axe various mathematical constants

whose values depend on the precision of the implementation. With the exception of

e, which is replaced by EXP(1 . 0) (or its double precision equivalent), IRENA handles

31

these in the same way. The most obvious example is pi.

A complete list of the objects IRENA treats in this way is given in appendix D.

3.6.2 Optimisation.

If the switch GENTRANOPT is turned on, IRENA will pass the expressions she

generates through the symbolic optimiser. This is particularly useful when generating

code for Jacobians, and even for one-shot problems can sometimes give some speed up.

3.7 Summary

In this chapter we have given a basic description of the capabilities and operation of the

IRENA system. We have indicated how it may be used interactively to call the NAG

Library, and also how it may be used to produce machine-independent source code.

In later chapters we shall describe how the system actually works, together with the

mechanism we have developed to customise and improve its interface.

32

C hapter 4

Defaults

We have seen how we categorise NAG parameters as being data, algorithmic control,

or housekeeping; and that we provide default values and expressions for those in the

latter two groups. This chapter describes in more detail the mechanism which we use.

4.1 Defaults Files

Default values for NAG parameters are provided in various defaults files. Each routine

may have a system-provided default file, which contains the recommended default values

and expressions and, optionally, a defaults file provided by an individual user. A user’s

own defaults will over-ride the system’s.

Defaults may be values or expressions. There are also a set of error tolerances

whose values can be changed at the top level. These are *userabserr*, tuserrelerr*,

usermixer, and *userinputerr*, which are used for absolute, relative, mixed and

input errors1 respectively. The standard starting value for each one is currently 10-5 ,

but this can be changed at any time2. These are the only quantities whose values

are fairly invariant between routines — it makes no sense, for example, to specify a

maximum number of iterations which applies to every routine in the library.

IRENA provides default values for all control and housekeeping parameters. Those in

1i.e. an estimate of the maximum error in some data values.
2Either interactively during a Reduce session, or (in the PSL implementation of Reduce) in the user’s

startup (.reducerc) file.

the first category — tolerances, iteration limits etc. — tend to be straightforward values,

while those in the second — array bounds mainly — tend to be functions dependent in

some way on the size of the data parameters. For example the amount of workspace

required to solve a set of multivariate polynomial equations may depend on the number

of such equations and the number of variables.

Most default values have been determined by careful reading of the Library

documentation, or consultation with NAG experts. The preparation of the first

generation of defaults files is being carried out by NAG and in future they intend to

explicitly incorporate such “recommended values” in the main documentation for each

routine. When new routines are incorporated into the library the authors will be asked

to incorporate such details. Thus in future releases of IRENA the defaults files could

be generated at least partially automatically.

Occasionally NAG routines incorporate a default parameter, indicated by setting

it to a “silly” value. For example the quadrature routine D01AHF has a parameter

NLIMIT which limits the number of function evaluations the algorithm may make. If

NLIMIT< 0 then the default value of 10000 is used. In these cases we incorporate the

latter value, to help in the generation of the IRENA documentation (see section 8.4.4).

Some parameter values are heavily influenced by the fact that IRENA is an interactive

system. The most obvious examples are the diagnostic print parameters, where we feel

that potential users will not want to see screens of information flashing in front of them.

4.1.1 The Defaults Files’ Syntax.

The syntax for the defaults files is given in figure 4-1. An explanation of the notation

used may be found in appendix A. Each entry consists of the parameter followed by a

colon and its default. It allows for conditionals, arithmetic, and the extraction of certain

types of information from input parameters:

• We can extract the number of parameters a particular user-defined function (or

family of functions) takes using the operator PARAMS.

• We can determine the number of functions in a family of functions through the

operator MULTIPLICITY.

34

< default >
< comment >
< scalar- default >
Cmatrix-default >
<dim>
< clause >
< conditional
<bool-clauseO>

<bool-clausel>
<bool-clause2>
<bool-clause3>
< relational >
<exprO>
<addop>
<exprl>
<multop>
<expr2>
<expr3>

<have>
<matrixp>
<scalarp>
< dimension >
<length>
< minimum >
<maximum>
<list-of-numbers>
<abs>
<params>
<multiplicity>
<nth-root>
<tolerance>

<irena-function>
< argument s>
<matrix-element>

_ *

<comment> || < scalar-default> || < matrix-default>
% < text>
<name> : <clause>
<name> (<dim>): <clause>

m ID E N T IT Y || <exprO> { , <exprO> }
<conditional> || <exprO>
if <bool-clauseO> th e n <exprO> {else <exprO> }
<bool-clausel> { O R < bool-clause 1> } || <have> ||
R E E N T E R || <matrixp> || <scalarp>
<bool-clause2> { A N D <bool-clause2> }
<bool-clause3> { <relational> <bool-clause3>}
{ N O T } <exprO> || N O T (<bool-clauseO>)
= ir = ii < ii > ii <= ii >=
<exprl> { <addop> <exprl> }*

{<addop>} <expr2> { <multop> <expr2> }*
* 11/
<expr3> { A <expr3> }*
(<exprO>) || <abs> || <dimension> || <string> ||
<minimum> || <maximum> || <length> || <params>
<multiplicity> || <nth-root> || <tolerance> || T R U E
FALSE || U N SET || <identifier> || »<identifier> ||
<irena-constant> || <irena-function> || <number> ||
<matrix-element> || CA N CELD EFA U LT
HAVE (<name>)
M A T R IX P (<name>)
SC A L A R P (<name>)
D IM (<name> {, (1 || 2)})
L E N G T H ({ <name> || <matrix-element> })
M IN ({ <vector> || <list-of-numbers> })
M A X ({ <vector> || <list-of-numbers> })
<exprO> { , <exprO>}*
A B S (<exprO>)
PA R A M S (<name>)
M U L T IPL IC IT Y (<name>)
N T H !-R O O T (<exprO> , <exprO>)
!*U SE R IN P U T E R R I* || !*U SE R A B SE R R !* ||
!*U SER R ELER R !* || !*U SE R M IX E R R !*
<name> (<arguments>)
<list-of-numbers> || <vector>
<name> (<exprO> { , <exprO> })

Figure 4-1: Syntax for the IRENA defaults files.

35

• We can determine an array’s dimensions (or its first or second dimension3) with

the operator DIM.

• We can determine the length of a string using the operator LENGTH.

• We can determine the minimum or maximum value in a list, or a user-defined

vector.

• We can apply a user-defined function to a user-defined vector or list of numbers,

for example to determine a suitable starting value for a parameter.

• We can signal that a parameter is optional by giving it the default value UNSET.

• We can check whether a parameter has been given a value using the operator

HAVE.

• We can check whether an item is a global reduce matrix or scalar using the

operators M ATRIXP and SCALARP4.

Defaults may be provided for matrices in several ways. Individual elements can be given

default values, default values can be set for the whole matrix, or it may be set to the

identity matrix. A matrix may also be given the default UNSET, to make it optional.

4.2 The defaults mechanism.

As stated earlier, in addition to the system default files, the user may create his or her

own. Default values or expressions in the user’s files take precedence over those in the

system files, but both files are processed at runtime so the user need not provide values

for all the parameters.

The system default files are located in the directory given by the REDUCE variable

*system-defaults-directory. If the user has any defaults files then the name of the

directory where they axe situated should be assigned to the REDUCE variable *defaults-

directory, either during the IRENA session or in the user’s .reducerc file.

3Objects with more than two dimensions are usually specified using jazz functions (see § 5.5.1).
4This is useful when we are picking up structures output by a previous call to IRENA for input to

a subsequent call.

36

4.2.1 Evaluating default expressions.

The order in which defaults are given in the defaults file is immaterial, so it is perfectly

possible that a given expression cannot be evaluated at the moment it is processed. For

example, if a defaults file contains the sequence:

M : N + 1
N : PARAMS(F)

then the value of M is initially undetermined (assuming that no value for N has been

provided earlier). When this occurs, M is given the temporary value STACKED , and

placed on the *unresolved-list. Each entry on this list is of the form:

(<variable> <list of missing variables> <expression>)

in this case:

(M (N) (N !+ 1))

A second list, of the *required-values, is also maintained. This associates the missing

variables with the names of the unevaluated expressions which require them. Every

time a value is determined, the lists are updated:

• If the parameter has an entry in *requtred-values then that entry is removed, and

each element associated with it has its list of missing variables updated.

• As soon as a list of missing variables is empty, that expression is evaluated and

the process repeated.

There is a slight modification in the case of a conditional. If we cannot evaluate the

boolean switch, then we stack the whole clause until we can, without bothering about

whether we have all the necessary information for either branch. Thus we may have to

restack a branch which we cannot evaluate after we have evaluated the switch. However

this does avoid waiting needlessly for a value which we do not actually need.

Values for expressions which cannot be evaluated are determined in the usual way,

depending on the settings of PROMPTVAL and ENVSEARCff. Since the defaults

37

have priority here it allows us to prompt the user for only the non-defaulted (i.e.data)

parameters. As these values are determined the *unresolved-list is checked as before.

It is possible for a deadlock situation to arise if the defaults files have been badly

written. In practice this will normally be due to an inappropriate entry in the user’s

default file. Suppose, for example, that the system default file contains the expressions:

M : N + 1
N : PARAMS(F)

while the user’s file contains the statement:

N : M - 1

with no default for M. Then the default value for N in the system defaults file will

be ignored, and IRENA will be unable to determine values for either M or N. If

PROMPTVAL is on, the system will resolve this conflict by prompting for either M
or N (the order is arbitrary) and then determining the other value automatically. If

PROMPTVAL is off, the call will terminate with an error.

4.2.2 Cancelling System Defaults.

It is possible that a user might wish to ignore permanently the system defaults, e.g. to

ensure that a value is prompted for if it is not provided in the keyline. This can be done

by placing a command of the form:

F00 : CANCELDEFAULT

in the user’s personal default file. This might be useful in the case where a set of routines

were being customised for a specific group of users, e.g. in the teaching of numerical

analysis.

4.3 Example.

The defaults file for the routine D02RAF is given in figure 4-2. D02RAF solves

the two-point boundary value problem with general boundary conditions for a system

38

N : multiplicity(FCN)

MNP : 128

NP : 17

NUMBEG : multiplicity(GBEG)

NUMMIX : multiplicity(GMIX)

TOL : !*userabserr!*

INIT : if Y = unset then 0 else 1

X(*) : if INIT * 0 then unset

'/, A and B are scalars defined in the jazz file

X(l) : A

X(NP) : B

Y : unset

IY : max(dim(Y),N)

IJAC : 1

DELEPS : 0

LWORK : MNP*(3*N*N + 6*N + 2) + 4*N*N +3*N

LIWORK : if IJAC = 0 then MNP*(2*N +1) + N*N + 4*N + 2
else MNP*(2*N + 1) + N

'/, IFAILB and IFAILC are scalars defined in the jazz file

IFAIL : 100*IFAILC + 10+IFAILB + 1

IFAILB : 1

IFAILC : 0
end;

Figure 4-2: The defaults file for D02RAF.

39

of ordinary differential equations in the interval (a, b). The FORTRAN interface has

twenty-four parameters, including six user-supplied subroutines. The IRENA interface

will be described in § 5.7, after the concept of jazzing has been introduced in chapter 5.

We shall give a description of the entries in the defaults file here, however.

N The FORTRAN parameter FCN is a subroutine which evaluates the family of

differential equations at a general point. In IRENA this is represented by a set of

functions. N is the number of such functions, denoted by the multiplicity of FCN.

MNP This parameter represents the maximum permitted number of points in the

finite-difference mesh, and cannot be less than 32. The value 128 given in the

defaults file was recommended by an expert.

NP This parameter represents the number of points in the initial mesh and must lie

between 4 and MNP. The value 17 was recommended by an expert.

NUMBEG The number of left-hand boundary conditions. These are provided as a series

of functions called gbeg.

NUMMIX The number of coupled boundary conditions. These axe provided as a series

of functions called gmix.

TOL An error tolerance, which is given the value *userabserr* described in § 4.1.

INIT The user may optionally provide an initial mesh and approximate solution as

the arrays X and Y respectively, in which case INIT must be given a non-zero

value. The clause in the defaults file checks this by looking to see whether Y has

its default value (unset) or not.

X If INIT is non-zero then X must contain an initial mesh, otherwise the extreme

values must be set to the lower and upper endpoints of the interval (a, 6)

respectively. The effect of the first statement in the defaults file for X is to say that

if INIT is 0 then elements of X need not be given values. The other two statements

set the extreme values of X to A and B which axe actually new objects created by

IRENA.

40

Y This parameter need not always be provided as explained above.

IY This is the dimension of Y, which must be at least N to allow a solution to be

returned. If INIT is non-zero then the actual size of Y, if larger, will be taken.

IJAC This is a flag which denotes whether or not the user has provided Jacobian

evaluation routines. As IRENA always generates these the default value is 1.

DELEPS This specifies whether continuation is required. By default it is not.

LWORK The length of the real workspace array, dependent on the number of equations

and the size of the mesh.

LIWORK The length of the integer workspace array which varies depending on whether

the user has supplied Jacobian evaluation routines or not.

IFAIL, IFAILB, IFAILC D02RAF is one of the few NAG routines which does not

use the standard system for the IFAIL error flag. In this routine, IFAIL should be

a three-digit integer where each digit can be either zero or non-zero to specify the

form of failure (hard or soft), whether error messages should be printed or not,

and whether warning messages should be printed or not. IRENA splits the latter

two off as separate parameters, and by default enables error messages but disables

warnings.

41

C hapter 5

The Jazz System

As previously stated, the form of input parameters is changed by the jazz system. In this

chapter we describe the various cases which can occur, and how the process of jazzing:

i.e. the mapping of objects between their NAG and IRENA representations, is handled.

Each routine has a jazz file associated with it, which contains instructions to IRENA

on how to interpret non-NAG parameters it may meet, and how to get values for NAG

parameters from their jazzed components. There are two classes of jazzing: input and

output, which act on input and output parameters respectively. In the first case the

jazzed form of parameters is not compulsory and there may be multiple jazzings for any

parameter, so that a user who is familiar with the Fortran routine may still use the old

parameter names and definitions; whilst particular interfaces may be specially defined

for specific sets of users. Output jazzing is compulsory, since not only does it make no

sense to return the same item in several different ways1, but to do so would often entail

creating extremely large structures, most of which would be redundant. A useful side

effect of the jazz system is that, in cases where the same FORTRAN parameter is used

for both input and output, in IRENA they are distinct. The user has the option of

making data parameters either global or local in scope, giving more flexibility.

There is one other area where the IRENA interface differs markedly from that

of the NAG Library, and that is in how parameters which are either Functions or

1 though it is possible to force this should the need arise.

42

Subroutines are defined. We differentiate between this process and the jazz system for

purely functional reasons: conceptually they are identical. The mechanism for handling

such parameters is described in Chapter 6.

None of these processes affect the Fortran code which IRENA generates, as the job

of transforming the parameters is done at the Lisp level. This fact is important if the

code is going to be reused as part of another application.

5.1 Input Jazzing

5.1.1 Aliases

The simplest way in which jazzing is used is to provide different names for parameters.

There are a number of cases where this is useful:

• Fortran restricts names to six characters, and therefore these are often not very

meaningful;

• It is preferable to have the same names for equivalent parameters across a whole

chapter, and indeed in some cases across the whole Library;

• Different groups of users use different terminology.

There can be several aliases for the same object, or even aliases to aliases, and of course

the user is still free to use the original parameter name, if desired. In addition to the

system provided aliases, we allow the user to set up his or her own alias file (see § 5.5.3).

5.1.2 New Scalars

Sometimes the NAG parameter is not the natural parameter. For example the

NAG routine E02ADF, which computes least-squares polynomial approximations to

an arbitrary set of data points, has a parameter KPLUS1 whose value is one plus the

maximum degree required. This form of jazzing transforms the IRENA parameter, in

this case k, to its NAG equivalent.2

2This contrasts with the situation where the NAG user might be expected to provide values for
both K and KPLUSl. In this case we would class KPLU Sl as a housekeeping parameter and give it

43

5.1.3 Keywords

Some NAG parameters can only take a limited number of values: for example .TRUE, or

.FALSE.. In this case we define a set of keywords, each of which is equivalent to one of

these cases. For instance, the routine E02BCF evaluates a cubic spline and its first three

derivatives from its B-spline representation. It has a parameter, LEFT, which specifies

whether left or right handed values are to be computed, depending on whether its value

is 1 or not. IRENA has a pair of keywords left and right, which can be interpreted as

LEFT=1 and LEFT=0 respectively. Thus a typical call to E02BCF would look like:

3: e02bcf(vec k {0,0,0,0,1,3,3,3,4,4,6,6,6,6},
3: vec c {10,12,13,15,22,26,24,18,14,12,0,0,0,0}, x=0, right);

Normally we also provide the NAG parameter with a default value, so that one of the

keywords is supplied for symmetry only.

Occasionally we use a keyword to force a different sequence of calls to the NAG

Library, as in the example described in § 10.3.

5.1.4 Rectangles

NAG normally represents a rectangular region either as two scalars (in the one

dimensional case), or two arrays of lower and upper bounds3. In IRENA we define

a rectangle to be a single object in its own right, consisting of a set of pairs of numbers

surrounded by square brackets. For example the constraints on the variables in an

optimisation routine can be given as a rectangle:

1: e04jaf(bounds = [1:3, -2:0, *: *, 1:3],
1: vec start {3,-1,0,1},
1: f(xl,x2,x3,x4)=(xl + 10*x2)~2 + 5*(x3 - x4)~2
1: + (x2 - 2*x3)~4 + 10*(xl - x4)~4);

the default value k + 1. This happens frequently in older routines where one parameter is an array
dimension since, in FORTRAN-IV, array dimensions could not be expressions.

3Occasionally some of the bounds are functions, and are thus represented by subprograms. There are
cases where the two representations are mixed, as in the multi-dimensional integration routine D01DAF.

44

Here bounds represents the constraints on x l,x2 ,x3 ,x4 , i.e.

1 < x l < 3

- 2 < x2 < 0

1 < x4 < 3

The asterisks indicate that x3 is unconstrained in both the positive and negative

directions, as explained in § 5.1.5.

5.1.5 Very Local Constants

Sometimes NAG attaches special meanings to certain values. For example, in the

example shown in § 5.1.4, the FORTRAN arrays BL and BU contain the lower and

upper constraints on the values of the If the value given is a very large negative or

positive number respectively, then this is taken to mean that the value of that particular

X{ is unconstrained in that particular direction. In the example £3 is completely

unconstrained, and in the rectangle bounds its constraints are denoted by asterisks.

Each asterisk in fact means something different. For the upper bound it means fphuge

— the largest floating point number (see § 3.6.1) — while for the lower bound it means

-fphuge. The asterisk is a very local constant, and it enables us to provide a uniform

interface within a routine. In general the asterisk character is interpreted as meaning

that a parameter is “unset” , i.e. not given a value.

5.1.6 Jazzing Matrices

There are three main reasons for jazzing arrays on input:

1. NAG arrays are sometimes confusing, with different columns being used for

different purposes (e.g. W in D02YAF which has a variable number of columns

used for inputting values of derivatives, returning results, and workspace). Jazz

allows the user to specify their separate logical components and then assembles

them correctly.

45

2 . Matrices with a special structure are represented by NAG routines in a multitude

of ways to make efficient use of memory, for example two triangular matrices

might be packed into one FORTRAN array to save space. However, we have

provided representations for matrices which preserve these structures, and so need

to transform the IRENA or Reduce representation to the NAG one. Note that we

do not insist that e.g. a triangular matrix be represented explicitly as an IRENA

triangular matrix, jazz will try to coerce any IRENA or Reduce matrix to the

required type.

3. NAG routines often expect the user to provide a large array, only some of whose

elements are set. This is usually to allow the routine to manipulate elements of

the array in place, rather than using separate workspace. An example is MU in

E02DAF whose first and last four elements are zeros. It is nicer to allow the user

to provide the smaller structure, which jazz then “pads out” to the larger one.

5.1.7 Complex Objects

The FORTRAN standard [ANSI 1978] is somewhat deficient in its representation of

complex numbers. Whilst it provides a single precision complex data type, there is no

double precision analogue. This has led to a great deal of inconsistency between the

available compilers: some follow the standard and offer no double precision complex data

type at all; while others do, but call them by a variety of names (double complex on

SUNs, COMPLEX* 16 on IBM machines etc.). As a result, the implementors of algorithms

have chosen a variety of representations for complex objects. For scalars the normal

ones are:

• a pair of scalars representing the real and imaginary parts;

• a vector of length two, containing the real and imaginary parts (and corresponding

to the normal implementation of the complex data type);

while for arrays the common representations are:

• a pair of arrays representing the real and imaginary parts;

46

• a single vector, those elements with odd indices being the real parts and those

with even ones being the imaginary parts (again, this corresponds to the normal

implementation of the complex data type);

There are a few rather more obscure representations, mainly where we are dealing with

an array with some special structure (e.g. a factored Hermitian matrix).

In IRENA we expect the user to provide a normal Reduce complex object, which

we will then convert to the appropriate format.

5.1.8 Unpacking Matrices

Most jazzing so far has consisted of taking small logical objects and constructing larger

FORTRAN objects from them. Occasionally however, we would like to take a matrix

provided by the user and make each element into a FORTRAN scalar. For example,

the NAG routine C02AJF finds the roots of a quadratic equation with real coefficients

using the well known formula:

—b ± y/b^ — 4acx = -------- -----------
2 a

where the coefficients a ,6,c are provided by the user as three scalars. However, for

consistency with the rest of the C02 chapter, we would like the user to be able to

provide them as a vector called coefficients. Hence the interface can be either:

1: c02ajf(vec c o e f f ic ie n ts { 1 0 ,3 ,1});

or:

2: c02ajf(a= 10 ,b= 3 ,c= l);

5.2 Output Jazzing

5.2.1 Matrices

There are three main uses for output jazzing of arrays:

47

1. Disentangling Fortran arrays into their logical elements. In § 5.1.6 we described

W in D02YAF which has some columns used only for input and some for output.

Clearly we want to return the output columns as separate structures.

2 . Unpacking arrays to restore some structure to them. For example two triangular

matrices are sometimes returned as a single array, IRENA unpacks them and

returns the two matrices separately.

3. Trimming large structures into smaller ones. Analogous to the third case in § 5.1.6

we now wish to get rid of the excess padding we added earlier. Alternatively, we

might wish to return just the “interesting” bits of a workspace array, as is the case

with W in D01AJF, as described in chapter 3.

5.2.2 Complex Objects

On input we generally create real objects from given complex objects, on output we do

the reverse and generate complex objects from the real data returned by the FORTRAN

routine.

5.2.3 Packing objects into larger structures

Analogous to § 5.1.8, here we take several output parameters and turn them into an

array. For instance in the example given the FORTRAN returns two vectors ZSM and

ZLG, representing the two (complex) roots. We transform them into the array roots, for

consistency with the rest of C02.

5.2.4 Output Aliasing

Analogous to the input case, we often wish to give FORTRAN output parameters more

meaningful names. In some cases the actual name on output depends on the initial

parameters chosen by the user or some output value4. Additional to the system provided

aliases, we allow the user to set up his or her own alias file (see § 5.5.3).

4For example, depending on the input value of the parameter JOB, the routine C06EKF will return
either a convolution or correlation in the array X.

48

5.3 P resen tation o f R esults

5.3.1 Returning Input Parameters with the Output

Many routines require the user to provide an estimate of the accuracy to which the

result is to be calculated. Some return an estimate of the final accuracy obtained,

others will terminate with an error flag (normally a non-zero IFAIL) if this accuracy

is not achieved. Since input tolerances are control parameters (see § 3.2) their values

are normally provided by default, with the result that in some cases where no final

accuracy estimate is returned by the routine the user may be unaware of the validity

of the results. In these cases it is helpful to return the input tolerance as an output

parameter.

5.3.2 Ordering the Output Parameters

Sometimes the “natural” order in which IRENA returns parameters does not reflect

their relative importance. For example, in the D01JAF examples in chapter 3, the list

of results has the relatively unimportant data from the workspace array W first, followed

by the result and error estimate. There is, therefore, a facility to allow an interface

designer to customise the order in which the output parameters are returned to the

user.

5.4 The Ideal Interface

Not only are we trying to produce more natural interfaces to individual routines, but

we are trying to produce consistent interfaces across whole chapters. For example

to find the roots of a polynomial the user must provide its coefficients as a vector or

matrix called coefficients, whichever routine is being used. Thus we have been forced, in

some sense, to devise an ideal, canonical description of each problem domain. This has

implications both for future implementations of algorithms, and also for other interfaces

to the library. We will expand on this observation later.

49

5.5 T he Jazz M echanism

As stated earlier, each routine may have a jazz file associated with it. This contains

instructions to the jazzing system on how to create the FORTRAN objects or return

IRENA ones.

5.5.1 Input Jazzing

On input, scalar and matrix objects are handled differently. In the former case the

actual NAG object is created: suppose for example that the jazz file contains the line:

{NEWSCALAR} kplusl [k+1] : k

This tells IRENA that A; is a new parameter introduced as a means of providing the

value of the FORTRAN parameter KPLUS1. So, if the user gives k a value in the key

list, the parameter kplusl will be given the value k -f 1. No record will be kept of the

value of k.

The problem with doing this for matrices is that we may end up generating very

large structures which are never going to be seen by the user, but will just be translated

into FORTRAN and then thrown away. Another problem that occurs with matrices is

that we encounter a multitude of slightly different representations in different routines.

Thus we need an easily extensible, modular mechanism to handle them.

Each type of matrix jazzing is known as a jazz function, and has three functions

associated with it:

check-function A function to check that the user has provided all the necessary

components of the FORTRAN parameter. This function may also be used to

find out which components are still missing (e.g. for prompting).

d im -function A function to return the array dimensions of the FORTRAN object, for

use by the defaults system (see Chapter 4).

tran s-fu n c tio n A function to generate the assignment statements for the FORTRAN

array, using a suite of specially-provided commands.

50

Reconciling Conflicts

Jazzing is not compulsory and, since objects may be provided globally as well as in the

key list, it is possible that we may have several alternative representations for the same

object. In this case we decide which is the correct one as follows:

• If the object has complex jazzing, i.e. the FORTRAN object is the real or

imaginary part of an IRENA one, and the complex object was provided in the

key list we use that.

• If the FORTRAN object was provided in the keyline then we use that.

• If the object has a jazz function and all its components are present either globally

or in the key list then we use that.

• If the object has complex jazzing and the complex object was provided globally

then we use that.

• If the FORTRAN object was provided globally then we use that.

Note that providing the value of an object multiply in the key list will cause an error

(e.g. providing both k and kplusl in the example in § 5.5.1).

5.5.2 Output Jazzing

Most of this is signalled by straightforward commands in the jazz file. For example the

line:

{OUTPUT} W#1 : result

means return the first column of the FORTRAN array W as the Reduce matrix result.

The various options for getting at parts of an array are:

• Return one element.

• Return one column.

• Return bits of a vector as a vector.

51

• Return a rectangular portion of an array (i.e. trim the edges).

Any number of IRENA output parameters may be constructed from one FORTRAN

object, and indeed the same part of a FORTRAN object may be part of several IRENA

ones.

There are also several types of unpacking which can be signalled, to restore structure

to objects. For example getting two symmetric matrices from one array. However it

became clear that there were many variations on these, and so an extensible, modular

mechanism has been adopted to handle this case as well. These out functions take a

FORTRAN object and create any number of IRENA objects with the aid of a suite of

special functions. They return a list of all the objects they have created.

D ep en dencies

Sometimes it is necessary for output jazzing to be done in a specific order. For example

we have seen that D01AJF (like many other quadrature routines) returns matrices of

intermediate results as elements of the real workspace array W. These can be very useful

if the computation fails, since by inspecting them it is often possible to determine the

location of a singularity or discontinuity. The lengths of these matrices depend on the

number of times which the routine has subdivided the range of integration, which is

returned as the first element of the integer workspace array IW. Hence we would like to

process IW before we process W. This can be ensured through the use of a PRECEDENCE

statement, so that part of the jazz file for D01AJF looks like:

{precedence} IW
{output} IW(1) : divisions
{output} W[1 : divisions] : alist
{output} W[divisions+l : 2*divisions] : blist
{output} W[2*divisions+l : 3*divisions] : elist
{output} W[3*divisions+l : 4*divisions] : rlist

52

<user-alias> ::= <in> || <out>
<in> ::= {IN} <identifier> : <identifier>
<out> ::= {OUT} <identifier> : <identifier>

Figure 5-1: Formal syntax for the users alias files.

Alias file for D01AJF
{IN} a : lower
{IN} b : upper
{OUT} result : quad
{OUT} abserr : error
end;

Figure 5-2: An example user alias file.

The PRECEDENCE command can take a list of objects instead of just one, and there

may be multiple PRECEDENCE statements in a single jazz file. Those objects in a list

have equal precedence, and greater precedence than any in statements further down the

file. Thus if necessary the order of output jazzing can be precisely dictated.

This mechanism is more efficient than a stacking procedure such as that used with

the defaults files, and is preferred since jazzing is not under user control.

5.5.3 User Jazzing

Because of the complexity involved in jazzing, we do not allow the user access to the full

system. (However an informed user could substitute their own set of jazz files for the

system provided ones by simply resetting the value of the global Reduce variable * jazz-

directory which represents their location.) It is not unreasonable, however, to suppose

that some users might want to change the names of some parameters, and so for this

purpose we allow the user to set up alias files for each routine, should he or she wish.

The formal syntax is given in figure 5-1, and an example is shown in figure 5-2 . A

description of the notation used to describe the syntax can be found in appendix A.

53

5.6 Formal Jazz Syntax

The syntax for the jazz files is given in figure 5-3. Note that <exprO> refers to syntax

given for the defaults files in figure 4-1. A description of the notation used can be found

in appendix A.

<jazz-entry>

< comment >
<precedence>
<out-order>
<scalar>
< vector>
< keyword >

<local>
<rectangle>

<newscalar>

<output>

<output-name>
< case-clause >

<element>
< column >
< range>
<portion>
< p acked- array >
< triangle >
< ttype>

<comment> || <precedence> |j <scalar> || <vector> ||
<local> || <keyword> || <rectangle> || <newscalar> ||
<output> || <packed-array> || <jazz-fn> || <out-fn> ||
<template> || <complex-in> || <complex-out> ||
<append> || <unpack> || <cunpack> || <out-dims> ||
<alias> || <i2o> || <out-order>
% < text>
{PR E C E D E N C E } <nag-name> {, <nag-name>}*
{O U T PU T -O R D E R } <nag-name> {, <nag-name>}*
{SCA LA R} <name> {, <name>}*
{V E C TO R } <name> {, <name>}*
{K E Y W O R D } <nag-name> [<exprO>
{, <exprO>}+n] : <irena-name> {, <irena-name>}+n
{LOCAL} <nag-name> [<exprO>]: <irena-name>
{R E C TA N G LE} <nag-name> ,<nag-name>:
{ <irena-name> || <matrix-element> }
{N EW SC A LA R} <nag-name> [<exprO>]:
<irena-name>
{O U T P U T } {<element> || <column> || <range> ||
<portion> } : <output-name>
<irena-name> || < case-clause >
C A SE <value> (<number> { , <number> }+n)
<irena-name> { , <irena-name> }+ (n+ l)
< nag- name >(<exprO>)
< nag- name > # < exprO >
<nag-name> [<exprO>:<exprO>{,<exprO>:<exprO>}*]
< nag-name >[(< exprO > ,< exprO >):(< exprO > ,< exprO >)]
<triangle> || <vect>
<ttype> <nag-name> : <irena-name>
{ U P P E R || LO W E R || S U P P E R || SL O W E R ||
D IA G }

54

<vect>

<vtype>
<jazz-fh>
<out-fn>

< template >
<key-list>
< keyword >
<complex-in>

< complex-out >

<append>

< unpack >

<cunpack>

<out-dims>
<i2o>
< alias >
<atype>

<vtype> <nag-name> [<exprO> : <exprO>]:
<irena-name>
{ L T R I || U T R I }
{ <jazz-function> } <nag-name> : <arguments>
{ <out-function> } <nag-name> {, <nag-name>}* :
<irena-name> {, <irena-name>}*
{TEM PLA TE} <routine> : <key-list>
< keyword > {, < keyword >}*
{ * } <key>
{C O M PL EX I-IN } <nag-name> {, <nag-name>} :
<irena-name>
{CO M PLEX I-O U T} <nag-name> {, <nag-name>}
{<portion>} : <irena-name>
{A P PE N D } <nag-name> {, <nag-name>}* :
<irena-name>
{U N PA CK } <nag-name> {, <nag-name>}* :
<irena-name>
{C O M PLEX I-U N PA C K } <nag-name>
{, <nag-name>}* : <irena-name>
{OU TI-D IM S} <nag-name> :’(<lisp-exp> . <lisp-exp>)
{120} <nag-name> : <irena-name>
<atype> <name> : <name>
{ K EY !-A LIA S || PR O M PT !-A L IA S ||
SILEN T!-A LIA S }

Figure 5-3: Syntax for the IRENA jazz files.

5.7 Example Jazz File

The jazz file for D02RAF is given in figure 5-4. This routine is described in § 4.3

along with its defaults file. We shall first show how the standard NAG example from the

manual is programmed in IRENA, and then describe in more detail how this is achieved

by the jazz file. Suppose then that we wish to solve the differential equation:

y = - yy" - 2c (i - y'2)

with boundary conditions:

y(0) = »'(o) = 0, y'(10) = l

55

'/, d02raf jazz file

{prompt!-alias} MNP : maximum.number_of.mesh.points

{key!-alias} MNP : mump

{prompt!-alias} np : initial.number.of.mesh.points

{key!-alias} NP : inmp

{output} NP : size_of_mesh_used

{prompt!-alias} NUMBEG : number.of.left.hand.boundary.conditions

{key!-alias} NUMBEG : nlhbc

{prompt!-alias} NUMMIX : number.of.coupled.boundary.conditions

{key!-alias} NUMMIX : ncbc

{scalar} a, b, ifailb, ifailc

{rectangle} a,b : range

{keyword} ifailb [0,1] : no.error.messages, error.messages

{keyword} ifailc [0,1] : no.monitoring, monitoring

{prompt!-alias} X : mesh

{output} X[l:out(size_of.mesh.used)] : mesh

{output} Y[(l,l):(N,out(size.of.mesh.used))] : solution

{output} ABT : absolute.error.estimates

{prompt!-alias} DELEPS : continuation.increment

{keyword} DELEPS [0] : no.continuation

{output!-order} size.of.mesh.used, mesh, solution,
absolute.error.estimates, deleps

end; '/, of d02raf jazz file

Figure 5-4: The jazz file for D02RAF.
56

2: d02raf(range=[0 :1 0],
2: fcnl(x,yl,y2,y3,eps)= y2,
2: fcn2(x,yl,y2,y3,eps)* y3,
2: fcn3(x,yl,y2,y3,eps)= - yl*y3 - 2*(1 - y2*y2)*eps,
2: gbegl(yl,y2,y3,eps)* yl,
2: gbeg2(y1,y2,y3,eps)* y2,
2: gendl(yl,y2,y3,eps)= y2 - 1)$

{SIZE.OF_MESH_USED,MESH,SOLUTION,ABS0LUTE.ERR0R.E3TIMATES,DELEPS>

Figure 5-5: An example of the use of D02RAF.

This can be rewritten in first order form to give the family:

2/1 = 2/2

V2 = 2/3

2/3 = “ 2/12/3 - 2c (1 - i/£)

An IRENA program to solve this in the interval (0,10) using D02RAF is given in

figure 5-5.

We can see that the three first order equations are given as fc n l , fcn2 and fcnS

while the left-hand conditions are called gbegl and gbeg2 and the right-hand condition

gendl. Had there been any coupled conditions they would be called gmixl etc. The

range of integration is called range and provided as a rectangle.

We shall now describe the function of the various lines in the jazz file. We start by

setting up a number of aliases for objects. The prompt-alias command is used to set

up a descriptive but verbose name to be used when the user is being prompted for a

command. The key-alias is a shorter, more mnemonic name, to be provided by the user

in the key list. The simple output clause for NP gives a different name (sizejofjmeshjused)

to be used to return that parameter.

We now declare some objects to be scalar, i.e. new objects used in the jazz and

defaults files. The FORTRAN routine expects the range to be provided as the first

57

and last elements of the array X, however in IRENA we prefer it to be provided as a

rectangle. We therefore declare a rectangle range whose elements will be called a and

b. The FORTRAN routine also has an unusual way of setting IFAIL, described in § 4.3.

We provide two new objects to reproduce the functionality of the composite IFAIL, and

call them ifailb and ifailc (this naming scheme is a reflection of the way in which the

NAG manual describes IFAIL). We then set up keyword names to represent the various

legal values they can take. In the ifailb case, for example, providing the keyword

no-error .messages will cause ifailb to be set to 0 ; while specifying errorjmessages gives

it the value 1 (which is the default).

We also have some more complicated output statements. Only the portion of X which

was used is returned; as it is a vector this is from the first element to that indexed by

the output parameter size^ofLmesh-used. This object is called mesh. The situation is

similar with Y except that here we want a rectangular portion of a two-dimensional

structure: from the first element of the first column to the element which is in row N

(an input parameter) and column size-ofjmeshjused (an output parameter). Specifying

that we want the output value of a parameter in cases like this saves confusion when

the parameter has different values on input and output.

Another keyword is set up for DELEPS, and finally the order in which the results of

the routine should be returned is defined.

58

C hapter 6

Argument Subprograms (ASPs)

Argument subprograms are parameters to NAG routines which are themselves either

functions or subroutines. They are used for a variety of purposes, as detailed below,

and occur throughout the library. The nearest Reduce equivalent to a FORTRAN

subprogram is an algebraic procedure, but to ask the user to provide ASPs in this form

is unsatisfactory for the following reasons:

• The differences between the two languages make producing equivalent pieces of

code difficult. FORTRAN uses call-by-reference semantics, while Reduce uses

call-by-value. FORTRAN routines often return several results, while RLISP

procedures can only return one (which may be a list). FORTRAN requires explicit

type declarations, while RLISP only requires that variables be local (i.e. scalar)

or globals (the default). A Reduce procedure can be translated into Fortran by

Gentran, and the tokens real and integer can be used instead of scalar to give

type information, but the two pieces of code will not be semantically equivalent.

To generate correct code requires that the Reduce user understand FORTRAN,

something we whole-heartedly wish to avoid.

• Matrices are treated in a rather clumsy fashion by Reduce: they can only be global

variables, rather than local.

• We are trying to get away from the idea that the user needs to write a program

to solve a problem, and to ask the user to encapsulate a mathematical object as

59

DOUBLE PRECISION FUNCTION FUNCTN(NDIM, X)
DOUBLE PRECISION X(NDIM)
INTEGER NDIM
FUNCTN=4*DEXP(DBLE(2*X(3)*X(1)))*(X(4)**2+2*X(4)*
. X(2)+2*X(4)+X(2)**2+2*X(2)+1)**(-1)*X(3)**2*X(1)
RETURN
END

Figure 6-1: A simple ASP generated by IRENA.

a Reduce procedure would undermine that. We prefer to ask the user to provide

these objects in their natural form: for example to generate an ASP which returns

the value of a function at a given point, only the definition of the function is

necessary.

Thus we provide alternative representations for all ASPs. In this way the ASP

system is conceptually similar to the jazz system, the main difference being that in this

case the alternative form is compulsory.

6.1 The User’s View.

6.1.1 Function values.

The most common use of an ASP is to evaluate a given function or set of functions

at an (arbitrary) point, e.g. an integrand or a set of differential equations. In IRENA

the user is expected to supply a set of expressions corresponding to the functions, and

the ASP system will generate the appropriate FORTRAN. For example a call to the

integration routine D01GBF might look as follows:

1004: dOlgbfC region*[0:l,0:l,0:l,0:l]t
1004: f(v,x,y,z)*4*w*y~2*©~(2*w*y)/(l + x + z)~2);

The dummy parameters w,x,y>z are replaced by the correct FORTRAN parameters,

in this case elements of the array X, during code generation to produce the code shown

in figure 6-1.

60

d02bbf(ran ge«[0 :8] ,* —O u a 9
vec initialvalues {0.0,0.5,pi/5},
derivativel(tt,y,v,phi)*tan(phi),
derivative2(tt,y,v,phi)s-0.032*tan(phi)/v - 0.02*v/cos(phi),
derivative3(tt,y ,v,phi)s-o.032/v~2,
vec output {1,2,3,4,5,6,7,8});

Figure 6-2: Using IRENA “subscript” notation for sets of functions.

SUBROUTINE FCN(TT,Y,F)
DOUBLE PRECISION TT,Y(3),F(3)
F(1)=DTAN(Y(3))
F(2)s-(0.02D0*Y(2)*DC0S(Y(3))**(-l))-(0.032D0*Y(2
.)**(-l)*DTAN(Y(3)))
F(3)=-(0.032D0*Y(2)**(-2))
RETURN
END

Figure 6-3: The FORTRAN produced from the “subscript” notation.

In many cases we are dealing not with a single function but with a set of functions,

for example a set of differential equations. We provide two methods for entering such

functions (note that these two methods may not be mixed for the same set of equations.)

The first is analogous to the simple case above, while the second is useful for large sets of

“related” functions. Mathematicians usually represent sets of functions with subscripts;

in IRENA the equivalent notation is to suffix the function name with its index to produce

a new name. This method is used in the key list as shown in figure 6-2 and produces

the FORTRAN shown in 6-3.

An extension to more general functional notation is useful where we have a set of

functions like:

1? *̂ 2) • • • >*̂ 9) — ^j — 1 "I" (3 — 2 ♦ X,’) ♦ Xi 2 ♦ Xj'-|_i -f- 1

with appropriate modifications for the extreme values of i. In IRENA this is coded

using fsets, either in the global Reduce environment, or in the key list. If set up in

the global Reduce environment the values of the function may be inspected using the

61

/ display operator, as shown in figure 6-4.

With the following call to C05NBF (a routine to find the zero of a set of nonlinear

functions):

5: c05nbf(vec x {-1,-1,-1,-1,-1,-1,-1,-1,-1});

the ASP FCN will be as shown in figure 6-5.

We use a loop to generate the values in case we are dealing with a really large set

of assignments, which might overwhelm the compiler. Should the user elect to use the

symbolic code optimiser however, explicit statements will be generated. An example of

this is shown in figure 6-6.

FSETs may be indexed in more than one variable, for example:

1: fset g[l,j=l:4](x[l:4,l:4],y[l:4,l:4])*y(j)$
1: fset g[i=2:4,j=l:4](x[l:4,1:4],y[l:4,1:4])=x(i-l)*y(i)$

They may also refer to global Reduce parameters in their right hand sides. Care must

be taken however, since for example referring to a general matrix element as follows:

8: m := mat((l,2,3,4,5,6,7,8,9,10))$
9: fset f[i=l:10](x[l:10])=x(i)*m(l,i)$

will cause an error at compile time, unless optimisation is turned on (since in this case

each instance of m (l,t) will be evaluated). The formal syntax for the fset operator is

given in figure 6-7. A description of the notation used can be found in appendix A.

6.1.2 Jacobian and derivative values.

Quite often NAG routines require the user to write a routine to calculate the Jacobian

or Hessian matrix, or the derivatives of a given set of functions. Although in theory

an easy task, in practice errors axe easy to make but difficult to detect. In IRENA

we calculate derivatives automatically, expecting the user to provide only the original

functions (which axe normally required anyway for another ASP).

Because Jacobians and Hessians by their very nature consist of large numbers of

related expressions, the efficiency of the generated code can be dramatically increased

through the use of symbolic optimisation.

62

1: fset fcn[l](x[l:9])=(3-2*x(l))*x(l)-2*x(2)+l$

2: fset fcn[i=2:8](x[l:9])=-x(i-l)+(3-2*x(i))*x(i)-2*x(i+l)+i$

3: fset fen[9](x[l:9])=-x(8)+(3-2*x(9))*x(9)+l$

4: fdisplay ’fen;
2

FCN[1]= - 2*(X(2) + X(l) - 3/2*X(l) - 1/2)

2
FCN[2]* - 2*(X(3) + X(2) - 3/2*X(2) + 1/2*X(1) - 1/2)

2
FCN[3]* - 2*(X(4) «■ X(3) - 3/2*X(3) + 1/2*X(2) - 1/2)

2
FCN[4]= - 2*(X(5) + X(4) - 3/2*X(4) + 1/2*X(3) - 1/2)

2
FCN[5]- - 2*(X(6) ♦ X(5) - 3/2*X(5) + 1/2*X(4) - 1/2)

2
FCN[6]* - 2*(X(7) + X(6) - 3/2*X(6) + 1/2*X(5) - 1/2)

2
FCN[7]* - 2*(X(8) + X(7) - 3/2*X(7) + 1/2*X(6) - 1/2)

2
FCN[8]= - 2*(X(9) + X(8) - 3/2*X(8) + 1/2*X(7) - 1/2)

FCN[9]* - 2*(X(9) + 1/2*X(8) - 2)

Figure 6-4: The use of fset and fdisplay.

63

SUBROUTINE FCN(N,X,FVEC,IFLAG)
DOUBLE PRECISION XOO.FVEC(N)
INTEGER N,IFLAG,I
FVEC(1)=-(2*X(2))-(2*X(1)**2)+3*X(1)+1
DO 25001 1=2,8

FVEC(I)=-X(-1+I)-(2*X(1+I))-(2*X(I)**2)+3*X(I
) + l

25001 CONTINUE
FVEC(9)=-(2*X(9))-X(8)+4
RETURN
END

Figure 6-5: Some FORTRAN produced from an fset.

SUBROUTINE FCN(N,X,FVEC,IFLAG)
INTEGER N,IFLAG
DOUBLE PRECISION X(N),FVEC(N)
T0=X(2)
T1=X(1)
T3=X(3)
T7=X(4)
T11=X(5)
T15=X(6)
T19=X(7)
T23=X(8)
T27=X(9)
FVECC1)=1+3*T1-(2*T0)-(2*T1**2)
FVEC(2)=1-T1+3*T0-(2*T3)-(2*T0**2)
FVEC(3)=1-T0+3*T3-(2*T7)-(2*T3**2)
FVEC(4)=1-T3+3*T7-(2*T11)-(2*T7**2)
FVEC(5)=1-T7+3*T11-(2*T15)-(2*T11**2)
FVEC(6)=1-T11+3*T15-(2*T19)-(2*T15**2)
FVEC(7)=1-T15+3*T19-(2*T23)-(2*T19**2)
T33=-(2*T27)
FVEC(8)=1-T19+3*T23+T33-(2*T23**2)
FVEC(9)=4-T23+T33
RETURN
END

Figure 6-6: Some optimised FORTRAN produced from an fset.

64

<fset> ::= F S E T <name> [<subscripts>](<parameters>) =
<expression>

< subscripts> ::= < subscript 1> [, < subscript 1>]
<subscriptl> ::= <integer> || {<identifier> = <integer> : <integer>}
<parameters> ::= [<param eterl> { , <param eterl> }*]
<param eterl> ::= <identifier> || { <identifier> [<integer> : <integer>] }

Figure 6-7: The Formal syntax for the fset operator.

6.1.3 Dummy Routines.

Sometimes NAG offers the user the choice of either writing their own routine, or of

calling one in the Library. This is often the case when the routine is required to monitor

the progress of the computation and output diagnostic information. In these cases

(where appropriate) we automatically generate a dummy routine to call the NAG routine

without further input from the user.

6.1.4 Output Routines.

Occasionally NAG routines require the user to provide a routine to output intermediate

information during the execution of the algorithm. IRENA provides a procedure which

may or may not require some input from the user, such as an array of points at which

to generate diagnostics. Moreover the resulting information is available as an actual

structure within Reduce, rather than simply printed out.

6.1.5 M atrix Manipulation Routines.

These are routines required to manipulate matrices in some way, often a specific (user-

supplied) matrix for a given problem. In such cases IRENA requires that the user

supply the relevant matrix, and the routine is generated using either Reduce’s symbolic

manipulation facilities, or a call to an appropriate NAG routine.

65

<requirements>
<functions>
<function-list>
< matrices >
< rectangle >
< number >

<functions> | <matrices> | <rectangle> | NIL
FUNCTION [<function-list>]
{ <name> | (<num ber>) | (<name> <num ber>) }*
{ MATRIX | VECTOR } [<name>]
RECTANGLE <number>
<integer> | <irena-variable>

N.B. Brackets o f the form (. . .) denote a LISP list.

Figure 6-8: The syntax for an ASP’s requirements.

6.1.6 Regions.

Some NAG routines are concerned with evaluating the endpoints of regions. We expect

the user to express the region as an IRENA rectangle (see § 5.1.4), whose end points

may be either expressions or constants.

6.2 The ASP system.

In the last section we described the different sorts of ASPS visible to the user. However

for each apparent kind their are in fact many similar but distinct examples (more than

seventy separate types in total). In this section we will describe the mechanism used to

tell IRENA how to generate the FORTRAN for a specific ASP from the information

given by the user. With each type of ASP we associate three things:

1. A set of requirements;

2. A lisp function to perform the code generation;

3. A Gentran template.

6.2.1 The Requirements.

The requirements of ASP type n is a list on the property list of the identifier aspn. The

syntax for this list is as given in figure 6-8.

66

Where no name is given the default is the name of the particular subprogram being

generated (which may of course be aliased to something else through the jazz system).

The requirements may be used to check that all the necessary objects have been

provided before code generation commences in earnest. Notice that care must be taken

here, since for given requirements e.g. ’(function (f n)) the value of n may well be

calculated by seeing how many functions /,• exist. In this case, if PROMPTVAL is on,

IRENA will prompt the user for n before prompting for the If PROMPTVAL is off

then IRENA will stop and report an error1.

6.2.2 The Templates.

ASPs are generated using GENTRAN templates which call a host of special functions.

There are two types of templates: those designed to be used with a general class of

ASPS, for example those returning the values of functions, and those which are used

with individual ASPS which do not fit neatly into any particular class. The selection

of the template is done by the ASP function, as described below. Values are passed to

the template via global variables.

6.2.3 The ASP Functions.

The ASP functions do three things:

1. They declare the types and argument list of the subprogram.

2 . They assign the values of relevant global variables (and clear any others that the

template might look at).

3. They initiate the processing of the correct template.

The name of the subprogram being generated is assigned to the global variable *fun by

the procedure getgen which calls the ASP function.

1 IRENA does not currently accept functions defined in the global Reduce environment.

67

Declaring Types.

This is done through two procedures. The first — declare-asp — declares the sort of

subprogram, its type, and its list of parameters in the correct order. For example:

d e c la re -a sp (! * fu n ,’r e a l , ’fu n c t io n ,*(x y)) ;

d e c la re -a sp (! * f u n ,n i l , ’su b ro u tin e ,*(ndim z nfun f)) ;

The second procedure is the standard GENTRAN declare which is used to set up the

parameter types.

Global Parameters.

The different types of standard template each require different global variables to be set.

If these variables require no value for a particular call they should be set to NIL to avoid

picking up previous values. The relevant variables for particular templates are given

below. The values need not be constants, but may be the values of NAG parameters

(which are guaranteed to have values since the ASP functions are only ever called at

code-generation time, after all scalar and array assignments have been generated).

The argument template is a representation of the arguments to the function as

supplied by the user. At run time this is matched to the actual parameters so that the

appropriate substitutions between the user’s dummy variables and the NAG parameters

can be performed. The argument template is a list each of whose elements is either an

identifier or a list whose car is an identifier and whose cdr is a number or irena variable.

So a function:

fo o (x l,x 2 ,x 3 ,d e lta) = . . .

will match an argument template ’((x n) eps) where the value of n is 3.

We will now describe the general cases:

6.2.4 Functions.

This is the common case where the routine returns a function value or a set of function

values. The template is called “functions.tern” , and the necessary values are:

68

function-dimension The number of functions

output-name The FORTRAN parameter which returns the results

argument-template The argument template

6.2.5 Jacobians.

This is the case where the routine returns either a derivative or a Jacobian matrix. The

template is called “jacobians.tem”, and the necessary values axe:

function-dimension The number of functions

jacobian-dimension The number of independent variables

jacobian-variable The independent variable (which may be subscripted)

input-name The name of the function (set) being differentiated

output-name The FORTRAN parameter which returns the results

argument-template The argument template

6.2.6 Functions and Jacobians.

Occasionally a routine returns both the value of the functions and their derivatives.

There may be control statements in the ASP to control which values are returned.

The expression controll is inserted before the function values are returned, controls

between the function and jacobian values, and controls after the jacobian values. These

expressions are all strings or lists of strings. This template is called “fun_and_jac.tem”,

and the necessary values are:

69

control 1

control2

control3

foutput-name

joutput-name

function-dimension

jacobian-dimension

jacobian-variable

argument-template

6.2.7 Hessians.

The first control statement(s)

The second control statement(s)

The third control statement(s)

The FORTRAN parameter which returns the function

values

The FORTRAN parameter which returns the derivatives

The number of functions

The number of independent variables

The independent variable (which may be subscripted)

The argument template

This is the case where the routine returns a Hessian matrix. The template is called

“hessians.tem”, and the necessary values are:

input-name

hessian-variable

hes si an- dimension

loutput-name

doutput-name

The name of the function (set) being differentiated

The independent variable (which may be subscripted)

The number of independent variables

The FORTRAN parameter which returns the results in

the upper triangle

The FORTRAN parameter which returns the results in

the diagonal

argument-template The argument template

6.2.8 Hessian Products.

These ASPs, used in a few optimisation routines, return the product of an array of

functions and its hessian at a given point. The template is called “hess_products.tem”,

and the necessary values are:

70

input-name The name of the function (set) being differentiated

hessian-variable The independent variable (which may be subscripted)

hessian-dimension The number of independent variables

residual-name The name of the array containing the values of the functions at

the given point

output-name The FORTRAN parameter which returns the result

6.2.9 Dummies.

In this case the ASP function contains a list of statements which are inserted in the

FORTRAN between the type declarations and the RETURN statement. Typically these

might be an EXTERNAL statement and a call to a NAG routine. The template is called

“dummies.tern” and the necessary value is:

literals A list of any statements to be included

6.2.10 M atrix routines.

These are matrix manipulation routines which call a NAG routine to perform their

function. The user may be required to provide a matrix. The template is called

“mat jdummy.tem” and the necessary values are:

user-mat The name of any matrix supplied by the user

nagfun The name of the NAG routine being called (a string)

call-statement The call to the NAG routine (a string)

6.2.11 Regions.

These are routines which calculate the boundaries of a region. The user provides a

rectangle, The template is called “rectangles.tern” and the necessary values are:

low-out The FORTRAN variable for the lower bounds

up-out The FORTRAN variable for the upper bounds

dependents A list of variables which the bounds may be expressions in

(in the same syntax as an argument template)

rectangle-dimension The dimension of the rectangle

71

6.3 Constructing special ASP templates.

Although most ASPs fall into the categories described in the previous section, some

inevitably do not2. This section describes how to build individual templates for them,

and details some of the relevant parts of the template mechanism.

ASP templates are normally generated in two passes through GENTRAN, as

described in § 2.2. The first pass does most of the work, and may declare types

using the GENTRAN declare function. The second will print out the FORTRAN type

declarations, and may also output declarations for irena constants (see § 3.6.1). Each

of these requires three components in different places: a type declaration, an EXTERNAL
statement, and an assignment. The necessary statements to generate these are inserted

in the template during the first pass by the three procedures pass2-l, pass2-2, pass2-3.

The actual handling of the two passes is carried out by the t\yo procedures header and

footer, which should be respectively the first and last active statements in the template.

The FORTRAN type declarations and header are generated by passing the ASP name

to the procedure asp-head.

When expressions are translated, the system replaces the dummy parameters with

their actual FORTRAN equivalents. It does this by temporarily assigning the value of

the actual parameter to the dummies. If these are arrays then they must be declared as

operators in Reduce. Any values which these parameters have must also be temporarily

cleared since otherwise when we resimplify we will pick these values up, and conversely

any values which the dummies have must be saved and restored later. The following

procedures accomplish these tasks:

cleanse(l) Temporarily clears each member of list 1

prepare(u) Temporarily makes identifier u an operator

restore(l) Undoes the work of the previous procedures

There are procedures to accomplish this whole process for specific types of ASP —

prepare-names and prepare-rectangle-names — which return lists to be passed to restore

later on. The former is generally used for functions and Jacobians and takes three

2In the current system, out of just over seventy ASPs, these exceptions number only a dozen.

72

arguments: the ASP name, the name of the output parameter, and the expanded

argument template. This can be generated by passing the argument template to the

procedure expand-at, which converts e.g. ’(eps (x n) y) to *(eps (x 1) (x 2) (x 3) y)

where n has the value 3. The latter takes four parameters: the ASP name, the name of

the variable for the lower bounds, the name of the variable for the upper bounds, and

a list of the dependent variables.

The other two useful procedures are generate-functions and generate-jacobians,

which produce the necessary assignments for functions and jacobians respectively. The

former takes four parameters: the name of the output parameter, its first index (if

appropriate), the name of the function (set), and the number of functions. The latter

takes six parameters: the name of the output parameter, its first index, the name of

the function (set), the name of the independent variable, the number of functions and

the number of independent variables. The first index is passed so that the same output

variable can be used to return the values of different functions (for example as in the

SUBROUTINE G of D02RAF).

Finally there axe two statements to allow the optimiser to be applied to sets of

assignments. The first, which should occur before any assignments are generated, is:

IF !*GENTRANOPT THEN «!*0PTSTACK!* :* NIL;ON OPTIMISEWAIT»$

and the second, which actually triggers the optimiser and causes output to be produced,

is:

IF !*GENTRANOPT THEN OPTIMISE!-STACK()$

6.4 Summary

We have described our choice of representations for ASPs, and some of the philosophy

behind them. We have also shown how most ASPs are instances of certain classes,

and described the extensible descriptor language which we have designed to make their

generation easier.

73

C hapter 7

How IR EN A Works.

So far we have given an overview of IRENA from the user’s point of view, and described

how we transform the objects in our interface into the FORTRAN objects required by

the NAG Library routines. In this Chapter we will describe how IRENA actually writes

FORTRAN programs, and how the resulting code is linked to Reduce.

7.1 The Information Files.

Before doing this we must describe one more component of the system. The jazz and

defaults files describe the IRENA interface, but we need a description of the FORTRAN

interface as well. This is provided by the information file, which contains:

• the types of all NAG parameters;

• whether parameters are used for input, output, workspace etc.;

• which of them axe arrays, and their dimensions;

• a list of ASPs and their types;

• the list of diagnostics to be printed if a NAG error occurs.

7.2 Generating The Code.

The initial sequence of steps taken by IRENA is as follows:

74

• The routine’s information file is processed.

• The routine’s jazz file is processed.

• Any alias file is processed.

• The key list is parsed and, where appropriate, values are assigned.

• The defaults files are processed: first the user’s and then the system’s.

• A check is made to ensure that all the parameters have values. At this point

IRENA may look at global REDUCE values or prompt the user for values,

depending on the settings of the switches ENVSEARCH and PROMPTVAL.

At this point, assuming that all necessary values have been provided, we are ready

to proceed. In outline, what we do is as follows: we generate a FORTRAN program

to call the NAG routine, this code is compiled and linked, and then made part of the

running LISP system. The resulting subprogram is then called, being passed pieces of

memory in which to deposit its results. On exit, these pieces of memory are examined

and, if necessary, their contents transformed to produce the output structures for the

user.

We are fortunate that PSL allows us to link a piece of foreign code into the

running LISP system, as this facility is not generally available. Unfortunately there are

difficulties in calling a foreign function from PSL. There is a limit of five parameters,

while NAG routines often return many more. The easiest way round this problem is

to pass the generated FORTRAN routine a block of memory in which to deposit its

results, but FORTRAN cannot (legally) manipulate pointers. Thus we use a small C

program as a form of “syntactic glue” between the LISP and the FORTRAN. It takes a

block of memory as its argument, and calls the FORTRAN with a sequence of pointers

to parts of this array. In practice we use this block of memory for workspace as well as

output parameters, to reduce the size of the compiled FORTRAN code. This memory

is allocated on the PSL heap so that, if we have to allocate a larger piece than usual,

the old piece can be reclaimed (the heap is garbage-collected).

75

This C is useful for another purpose, since we can incorporate an error handler to

detect the standard floating point (IEEE) exceptions such as division by zero, overflow

etc. This allows us to exit gracefully and display some form of explanatory message,

should an exception arise. In future, more NAG routines may incorporate advice on

what to do in cases such as overflow, which we could display in the same way as we

currently deal with non-zero IFAILs.

Thus we generate two pieces of code, one in C and one in FORTRAN, using the

template processing facilities of Gentran. Hence each NAG routine has two Gentran

templates associated with it — a C one and a FORTRAN one.

7.3 Loading the compiled code

The compiled code is linked into the running LISP system using a PSL utility called

o/oad, which makes the foreign code part of PSL’s binary program space (BPS). BPS is

organised so that data grows down from the top while text grows up from the bottom1

and, as there is no garbage collection done on it, when the text and data portions collide

it is irrevocably full. There are two components of oload: one a unix shell script; the

other a set of Lisp functions. Calling the Lisp function oload spawns a child process to

execute the script which, given one or more compiled files, does the following:

• It generates a file containing the text portion of the file(s) being oloaded.

• It generates a file containing the data portion of the file(s) being oloaded.

• It creates a file containing the memory locations at which to load these files.

• It creates a file of Lisp statements telling the PSL compiler the names and entry

points of the oloaded functions.

• If requested, it creates a new symbol table, so that the user may produce a new

PSL with the oloaded code as an integral part.

tec h n ica lly the data doesn’t go into BPS but into the word array space but, in PSL, these are both
parts of the same structure, so the distinction can be ignored.

76

The LISP function oload takes as argument a string containing the names of the

executable load modules and various options either for the oload script or Id, the Unix

linker. The oload options control how much the user is told about the progress of the

oload, whether a symbol table is produced etc. The Id options tell it which libraries to

scan, where to find them and so forth. The script also receives the initial addresses of

the end of the text segment and the beginning of the data segment.

The difficulty is caused by having to arrange matters so that the data segment of

the new code ends at the beginning of the current data area of BPS. Oload does this

through a tortuous sequence of steps:

1. using Id, it creates a relocatable code file containing all the additional modules;

2. using the Unix pattern scanner awk, it determines the relative sizes of the two

segments. At this point it checks to see if BPS is going to be exhausted and, if

so, terminates;

3. using these figures it works out how much bigger the text segment would need to

be to “shunt” the data forward so that it was contiguous with the current data

area;

4. it creates a blank piece of text this size by creating a file of null characters and

then assembling it;

5. it then does a second Id, this time including the blank text, to create the final

executable file;

6. this file is then split in two using dd, the “truncated” text (i.e. ignoring the blanks)

and the data;

7. using the Unix utility nm the list of names and entry points is created;

8. if required, a further Id is performed to generate the symbol table.

The Lisp routine then reads in the files telling it where to put the pieces of code and

loads them at the appropriate places.

77

There are three problems with this approach. The first one is that the whole process

can be agonisingly slow. Up to three passes of the linker, the awk scripts and, worst of

all, writing millions of zeros onto disc2 twice can take a long time. The second problem

is that the user needs to have enough free disc space for these big temporary files

(there are two — one unassembled and one assembled) and, in a distributed networking

environment, there can be problems with connections timing out. The third problem

is to do with the way we are using oload. Each time we oload a routine we load all

the NAG library routines it calls along with it and so BPS becomes rapidly exhausted.

Enlarging BPS was found to exacerbate the first two problems to an almost unbearable

degree.

In fact, oload does far more than IRENA needs. We never call a routine more than

once, so we do not need to preserve it in BPS. Since we never “dump out” our system

we do not need to produce a new symbol table, or even align the text and data segments

correctly. Thus we have created our own version of oload, called IRENAoload, which is

designed to be used for our “one-shot” problems. We need only one pass of the linker,

and the text and data portions are placed in memory exactly as they would be by the

loader. The pointers to the top and bottom of BPS are unchanged so that, the next

time anything is loaded into BPS, the foreign function is overwritten. This method is

much faster, doesn’t require lots of temporary disc space and doesn’t exhaust BPS.

7.4 Efficiency

Every time the user calls a NAG routine with IRENA, the whole process of compiling

and oloading is gone through. Once the routine has been called, all this new code is

effectively forgotten. In the case where a user is making multiple calls to a routine,

perhaps changing one parameter each time, this may appear extremely inefficient. This

inefficiency can be justified for the following reasons:

• The NAG Library is large, about 7Mb at mark 13, and so could not be loaded

in its entirety in any practical situation. Individual NAG routines are also quite

2In the author’s standard IRENA system, the gap in the middle of BPS starts at well over a megabyte.

78

large, and normally call many auxiliary routines. If the user were calling several

different routines, oloading those Library routines required each time, then Reduce

would run out of BPS very rapidly — experiments showed that the number of

IRENA calls that could be made was in single figures. (BPS in PSL is not garbage

collected.)

• There is a large constant factor in the time taken by IRENAoload, regardless of

how much code is being processed. Even if the user were calling the same routine

repeatedly, some recompilation would be required if:

— Any of the parameters which changed were ASPs.

— Any matrix parameters changed in size, since this would necessitate changes

in the location of the pointers passed by the C code.

• It is not always trivial to pass Reduce algebraic objects to compiled foreign code,

since they may be domain elements. For example, if the user sets the precision of

rounded numbers to the machine precision, then the resulting objects will not be

machine floats but will be bigfloats, represented by pairs of numbers: a string of

integers and an exponent.

• The order of matrices being passed from PSL to FORTRAN and back must be

reversed since PSL is implemented in C and so stores its arrays in row order,

whereas FORTRAN stores them in column order.

• Values involving machine constants (see § 3.6.1) are generated by calls to the

relevant NAG routine. Generating them separately in the Reduce environment

to pass to a NAG routine, rather than producing the calls in the oloaded code,

could spark more oloads (though in this case the obvious thing to do would be to

duplicate their functionality with a set of LISP functions).

• We have tried to make our code the most general possible. If all parameters were

passed, rather than assignment statements being generated as at present, it might

lose some of its utility.

79

Thus we believe that, although sometimes inefficient, this mechanism is the most

generally applicable. There are nevertheless improvements which could be made to this

process. One possibility would be to write our own linker, which would directly generate

the objects we require, rather than forming one big file with Id and subsequently splitting

it up. Another possible improvement would be to allow loops to be incorporated in the

generated code, with returned objects gaining an extra dimension to incorporate the

series of results. So for example an output parameter which was normally a scalar

would become a vector, a vector would become an array, an array a three-dimensional

structure and so on. This would deal with the case where we are calling the same routine

repeatedly, e.g. starting an optimisation from different points to ensure we get a global

rather than local answer.

Given that we are using a one-shot technique, it must be asked whether it is worth

oloadmg at all. Why not fork off a subprocess which could write its results to a file

which could then be read by Reduce? Though superficially attractive, there are some

difficulties with this approach:

• We would normally end up generating very large files of data, most of which is

uninteresting (e.g. workspace arrays whose first few elements need to be returned

to the user). This could be avoided by doing some or all of the output jazzing

process in the FORTRAN, but this would reduce the utility and readability of the

generated code for other purposes.

• Straight conversion of floating point data from binary to ascii and back again will

often cause that data to be corrupted, though encoding algorithms do exist to

avoid this.

7.5 Operating System Dependencies

Clearly we are dependent on certain features of the operating system, and of the

underlying LISP. The most obvious of these is the ability to fork off child processes

to perform the compilations and run the oload script.

IRENA implementations have been made for SUN3 and SUN4 workstations, running

80

the SunOS 3.4,4.0 and 4.1 operating systems. The differences between implementations

on the two architectures are fairly trivial — a few changes to the oload script to reflect

the differing segment sizes, and different arguments to the compiler3. Each change of

operating system, however, has been hampered by bugs and incompatibilities in the

linker, and changes in the organisation of some of the system libraries. The extreme

fragility of this part of the process is another argument in favour of developing our own

version of id.

3SUN3’s have various different ways of doing floating point arithmetic depending on what sort of
co-processor they are fitted with, while the SUN4 (SPARC) architecture hides all the details from the

C hapter 8

The Design and Construction of

the IREN A System.

So far we have described the IRENA system, but not the rationale behind its design.

Describing that rationale is the purpose of this chapter.

The IRENA system consists of interfaces to virtually every routine in the NAG

Library (the exceptions are those few routines which use the reverse communication

technique1). Each interface has three essential components and two optional ones. The

essential components are:

• The information file.

• The FORTRAN template.

• The C template.

These define the mechanism which IRENA uses to call the NAG routine. There are

then the two optional components which transform the interface:

1The reverse communication technique involves the routine requesting data from the calling program
at intermediate stages. The usual mechanism is that the routine is called a large number of times, the
intermediate calls having only a few parameter values changed by the user. This gives an expert
programmer greater flexibility since he or she may monitor the progress of the computation and control
how the algorithm operates. However we feel that this model is inappropriate for IRENA, since it
requires deep knowledge and understanding of the underlying algorithms. In any case there are only
eight such routines in the Library.

82

• The system defaults file.

• The jazz file.

Additionally there are three utilities which may need to be extended to handle the

interface to a newly-introduced routine:

• The ASP system.

• The jazz-functions.

• The out-functions.

The first of these is essential; the others, being part of the jazz system, are optional.

8.1 The Evolution of the NAG Library.

As stated in § 1.1.1, a new mark of the NAG Library is released roughly every eighteen

months. At this point new routines are added and old, obsolete ones withdrawn. For

some existing routines, additional information about their parameters is supplied to the

user (for example the contents of the workspace array W mentioned in chapters 3 and

5 were not documented until the release of mark 13, even though the routine had been

part of the Library since mark 8). Thus for IRENA to remain in step with the NAG

Library at each new mark it will be necessary to scrap some old interfaces, identify

those which have changed and modify them, and create many new ones. As an idea

of the scale of this task, at mark 14 seventeen routines were withdrawn, whilst roughly

one hundred and fifty new ones were introduced, giving a total of nearly one thousand

routines in all.

8.2 The Evolution of Reduce.

A new version of Reduce appears roughly every two to three years, though new packages

and upgrades of existing ones are available by electronic mail from the main development

site (the RAND Corporation, Santa Monica) via an automatic server. Changes from

version to version can be fairly major, but they are available well in advance to the beta

83

test sites (of which Bath is one). The change between Reduce 3.3 and 3.4 which had the

most impact on IRENA was the new floating point system, which necessitated changes

to Gentran as well. Minor changes to the parser, and in the way matrices are handled,

also had some effect on us. Changes to Reduce will tend to be integrated with IRENA

as they happen, and so pose less of a problem than changes to the Library.

8.3 Changes in the operating system.

These affect the dynamic linking process. As mentioned in chapter 7 the main problem

so far has been with bugs in the unix linker. The other things which affect us are the

compilers. On the SUN 4, the introduction of a new FORTRAN compiler requires that

a fairly trivial change be made to the compiler arguments IRENA uses. There are also

problems with the representation of double precision complex arrays.

8.4 Generating the interfaces.

It should be clear that, while the host system and the system code are fairly stable,

if we wish to keep in step with the NAG Library we need to automate as much of

the production of the interfaces as is feasible. To do this we have developed a two-

phase process which generates the essential parts of the interface: the information files

and the templates. This process uses a suite of programs which, together, comprise an

interface compiler. The first program creates an abstract classification of the routine, as

described in chapter 9. If this classification is not perfect, then it may be hand-modified

at this stage. The classification is based on NAGs own documentation. From this the

information file and the templates are generated completely automatically.

8.4.1 Defaults

At present the defaults files must be prepared by hand. However, based on the current

documentation and the work we have done in this area, NAG have begun to include

constraints and recommended values in their documentation in a regular, consistent way.

While these will not cover all eventualities, as it is not really sensible to recommend

84

values for some tolerances or diagnostic print parameters; it would at least be possible

to generate automatically skeletal defaults files which would include array dimensions

and workspace. This would improve our automatically generated interface a great deal.

8.4.2 Jazzing

The design of a jazzed interface is, essentially, a subjective matter, and so must be

done by hand. This may involve writing new jazz-functions and out-functions, and even

altering the jazzing of existing routines to maintain consistency.

8.4.3 ASPs

Our automatically-generated interfaces do the job in all but one respect. Routines

with no ASPs present no difficulties, and an ASP which is equivalent to one already

encountered in the Library can be handled. However if a new kind of ASP is discovered

then the ASP mechanism must be extended to handle it.

In the earlier versions of IRENA, each kind of ASP had its own template, but as

the number of identified types grew we found this system to be grossly unsatisfactory.

Thus we developed the “descriptor language” described in § 6.2, to make updating the

system as quick and as error-free as possible. Even the task of hand-crafting a template

for a “maverick” ASP has been made relatively painless.

8.4.4 Documentation

We would Jike the generation of the documentation for each IRENA routine to be

completely automatic but, because of the stylistic considerations involved, this is not

possible. However, we are developing a tool which will use the specification, jazz and

defaults files, as well as the NAG documentation, to produce rough routine documents

which can then be polished by hand.

85

JAZZ
FILE

DEFAULTS
FILE

FORTRAN
TEMPLATE TEMPLATE

INFORMATION
FILE

SPECIFICATION
FILE

NAG DOCUMENTATION

IRENA

IRENA DOCUMENTATION

Figure 8-1: Schematic view of the generation of the IRENA interfaces.

86

8.5 Sum m ary

Figure 8-1 gives a schematic view of where the components of the interface come from.

When a new mark of the library is released it is necessary to:

1. Classify all the routines in the new mark using the classify program described in

chapter 9.

2. Update the ASP system if necessary (this is clearly indicated by the routine

classifications).

3. Automatically generate the relevant components of the interfaces.

4. Compare the existing classifications of routines with their new ones to see if their

description has changed (e.g. using diff), and if necessary revise their jazzing and

defaults.

5. Write jazz and defaults files for new routines.

6. Prepare the new documentation.

By automating the basic interface-generating process, and by using high-level

descriptions for ASPs and jazzing, we are able to produce reliable, error-free interfaces

much quicker than would otherwise be the case. This will allow us to maintain IRENA

in step with the NAG Library.

87

C hapter 9

Classifying NAG routines

As has been stated previously, several components of the IRENA system are generated

automatically, namely the program templates and information files. In this chapter we

will describe how we prepare the data which the generating software requires. Taken

together, this comprises a classification of the functional aspects of the routine. The

information we require is:

T he ro u tin e ty p e i.e. SUBROUTINE, / / r e a l / /1 FUNCTION etc.

T h e a rg u m en t list A list of the routine’s arguments in the order in which they should

be provided to the routine.

T he a rg u m en t ty p es For each parameter we need to know its type, and whether it

is an array. In the latter case we also need to know its dimension(s).

How th e a rg u m en ts a re used We need to know if a parameter is used to provide

information to the routine (an input parameter'), to return results from the

routine (an output parameter), for both (an input/output parameter), purely as

workspace2, or is simply a dummy parameter.

JThe slashes have their usual NAG meaning — that the name they enclose is implementation
dependent. In this case they mean that the actual type depends on the precision of the implementation.

3We insist that workspace arrays have no other use, i.e if an array is used partly as workspace, and
partly for output, then we ignore the former.

88

D etails o f su b p ro g ram p a ram ete rs We need details about ASPs including their

parameters, parameter types, and origin (i.e. whether provided by the user or the

NAG library).

D iagnostic in fo rm ation We need a list of messages to display should we encounter

a non-zero IFAIL or any other error on exit from a routine.

To generate this by hand would be both tedious and error-prone, so we attempt

to extract automatically as much information as we can from the NAG online

documentation.

9.1 The NAG Help program

NAG have an online version of their manual, which can be interrogated using a

descendant of the program described in [Hazel Sz 0 ’Donohue 1980]. We are only really

interested in the data files. During the course of this project both the program and the

contents of the data files have undergone major revisions. In particular, information

which we have identified as useful (such as whether a parameter is used for input,

output etc.) has been explicitly incorporated. This chapter describes the mark 12 and

13 system.

The entry for each routine in the NAG help files is split up into the following

members:

§A A description of the problem which the routine is designed to solve;

§B The routine heading with the type declarations “commented-out”;

§C A description of every parameter, each of which is in its own sub-member3;

§D The error diagnostic messages.

Each member and sub-member is preceded and succeeded by one or more directive lines

which serve to signal its start and end points, as well as giving an indication of which

3occasionally several related parameters are grouped together into one sub-member.

89

member follows and, in the case of the sub-members, the name of the parameter (in

slightly truncated form). These directive lines are the only reliable structure to the Help

files, they allow us to determine the correct piece of text to process at any given time,

but nothing else.

The Help program works in a fairly straightforward manner. It parses the input line

supplied by the user looking for a key which exists in its index. It then finds the relevant

member and, after extracting any remaining keys from the input line, scans through

it displaying the appropriate sub-members. These are listed verbatim on the screen.

What the user sees is precisely what is present in the Help files, less the directive lines.

Unfortunately the data files have evolved over the years, been added to by different

people, and so (globally) there is no reliable structure or layout. On the other hand

the contributors have tended to follow a similar sort of pattern in the way they have

formatted the files, and so it is often possible to make assumptions about text layout

in a local context. Had we been dealing with text which was designed to be processed

before it was viewed, then the layout would have been better standardised, since a

contributor would be forced, for example, to use the system-defined tabs, rather than

whatever he or she felt looked good at the time4. Unfortunately, when we started the

IRENA project, the printed manual had not been fully typeset, otherwise we could have

used that.

Despite the fact that the NAG Help program has been in use for many years at a great

many sites, the data files were found to contain quite a large number of errors. Most

of these would at their very worst have proved a minor inconvenience to an (English-

speaking) user. Many were no more than minor spelling mistakes or minor “syntax-

errors” in §B. For example in:

SUBROUTINE //D01AMF// (F, BOUND, INF, EPSABS,
1 EPSREL,RESULT, ABSERR, W, LW, IW, LIW, IFAIL)

C INTEGER INF, LW, IW(LIW), LIW, IFAIL
C //real// F, BOUND, EPSABS, EPSREL, RESULT. ABSERR

4 For example the UNIX online manual is passed through the nroff text-processor before being
displayed, and is formatted by its own special package of macros.

90

C 1 W(LW)
C EXTERNAL F

the comma is missing at the end of the fourth line. This might seem like a trivial mistake

(and indeed, from the point of view of an ordinary user of the Help system it is), but it

is the sort of thing we might rely on to signal the presence of a continuation line, rather

than wait for the continuation card. Another example, which is a little more difficult

to pin down, is the misspelling of OUTPUT in the last line of:

SUBROUTINE //D02BBF// (X, XEND, N, Y, TOL,
1 IRELAB, FCN, OUTPUT. W, IFAIL)

C INTEGER N, IRELAB, IFAIL
C //real// X, XEND, Y(N), TOL, W(N,7)
C EXTERNAL FCN, OUPUT

The lesson to learn from cases like these is that it is unsafe to make any assumptions

about either the overall correctness of the text or the pieces of code given in §B. An

automatic spelling checker has been employed, but obviously this would not have helped

in either of the cases shown above (OUPUT is after all a pretty reasonable parameter

name). This does however mean that we can rely on the correct spelling of any

“normal” English words which we want to spot, such as “function” or “variable” etc.

In one case a sub-member had had the multiple occurrence of a phrase removed, so

that it made absolutely no sense whatsoever. It is also worth mentioning that the

names of parameters in different routines in the library generally bear no relationship

to each other, and are fairly inconsistent. The only exceptions to this rule are many of

the workspace parameters which have names like WORK, IWORK etc., their dimensioning

arguments which tend to be called LWORK, LIWORK etc., and the diagnostic parameter

which is always called IFAIL.

9.2 General Strategy

We can extract quite a lot of the information we need from §B, namely the routine’s type,

argument list, and argument types. The diagnostic information can be extracted from

91

*

§D. This leaves us with details of subprogram parameters to extract, and information

about ASPs. We will leave a discussion of the latter until the next section, and

concentrate here on scalar parameters.

The strategy we follow is basically to search for certain carefully chosen keywords

or strings, and apply a set of simple rules. This works better than one might at first

imagine because of the amount of jargon used in the Help files: these phrases may be

regarded as having little or no ambiguity in the context of the NAG documentation,

as opposed to in their normal English usage. The strategy is aided by the structure of

the Help files described above: because they are designed to be read in small pieces we

may identify a relevant section of text quite precisely, and not worry about the wider

context. So for example, we may search for the string “UNCHANGED ON EXIT” to

signal that a parameter is not an output parameter.

This naive approach is too simplistic for two reasons. The first problem is that

phrases may be permuted; the above case might also appear as “ON EXIT X IS

UNCHANGED”, or “THE CONTENTS ON EXIT ARE UNCHANGED”. So in some

cases we need to identify the active components of a phrase, which here are “EXIT” and

“UNCHANGED”, and search for them without strict rules about ordering or position.

Thus we need to be able to define areas of text in which a number of such words or

phrases are liable to refer to one another. To do this we introduce the notions of periods

and semantic groups. A period is a piece of text delimited by the characters “.” , “?”,

and “!” (for completeness we can pretend that there is an invisible full-stop at the

start of each section of text we process). A semantic group is a piece of text within a

period which is additionally delimited by the characters “,” , or We then try to

match each occurrence of “unchanged” , with the right occurrence of “entry” or “exit” ,

by connecting couples which occur within the same semantic group. If no matching

word is found then we look in the wider context provided by its period. If we still do

not find a match then we ignore it, and if we find a conflict, then we mark the parameter

as unclassifiable.

The other problem with the naive approach is that the immediate context of the word

or phrase may actually contain a modifier which alters or negates its normal meaning.

92

For example the phrase “X IS NORMALLY UNCHANGED ON EXIT” implies that

(in certain situations) the parameter is used for output. Thus we have to take account

of the presence of modifiers, which we do by ignoring the word or phrase which follows

them, unless they are immediately succeeded by a punctuation mark. The primary

phrases we look for, with the flags which their presence sets, are given in table 9.1:

P h rase Flag
“ENTRY” entry_found
“INPUT” entry .found
“USER MUST SET” entry_found
“EXIT” exit .found
“RETURN” exit_found
“RETURNS” exitdbund
“UNCHANGED” unchanged_flag
“UNDEFINED” unchanged_flag
“INDETERMINATE” unchangedJlag
“ARRAY IS OVERWRITTEN”5 unchanged .flag
“WORKSPACE” workspace_flag
“WORKING SPACE” workspace_flag
“WORKING STORAGE” workspaceJlag
“WORK SPACE” workspace_flag
“WORK STORAGE” workspaceJlag
“DUMMY VARIABLE” dummy J a g
“DUMMY PARAMETER” dummy J a g
“DUMMY ARGUMENT” dummy J a g
“ARRAY DIMENSION” array J a g
“ARRAY OF DIMENSION” array J a g

Table 9.1: Primary phrases recognised by the classify program.

At the end of each semantic-group, period or sub-member, we apply the following

set of rules:

• If we have entry_found then we try to decide whether it is genuine, or part of an

“unchanged on exit” type phrase. We also ignore it if we have exit_flag since we

have found that entry and exit descriptions always occur in order, and so if found

5This may seem a bizarre phrase to equate with “UNCHANGED” . In fact it normally indicates that
the parameter is used both for input and workspace. Thus the phrase “on exit, the array is overwritten”
does not imply that it has been overwritten with anything interesting.

93

together the entry part is spurious. The use of local_entry J a g , which persists

over a whole period, is explained below. So the rule is:

if e n try .found then

if ^u n ch an g ed J a g A ~ ex it J a g then

e n try j la g = tru e

lo c a L e n try J a g = tru e

else

unchanged J a g = false

e n try .found = false

• If we have ex it .found then the procedure is similar to the first case:

i f ex it .found then

if ^u n ch an g ed J a g then

ex it J a g

local_exit_flag

else

unchanged J a g

unchanged.onjexit Jfound

exit .found = false

• If we find we have a lone “unchanged” , then we look beyond the current

semantic group to the whole period. Here we are dealing with phrases like

“ON EXIT, X IS UNCHANGED”. This is where we use lo c a L e n try Ja g and

local.ex it J a g . Note that we ignore the possibility of a phrase like “ON ENTRY,

X IS UNCHANGED . . . ” . In fact, if this sort of phrase occurs, it tends to be of

the form: “ON ENTRY, X IS UNCHANGED FROM THE PREVIOUS CALL

. . . ” which means that we are dealing with an input parameter (albeit of a rather

special kind).

i f unchanged J a g then

= tru e

= tru e

= false

= false

94

i f local_entry_flag A ~local_exit J a g then

entry .flag = false

else {/~local_entryJag A locaLexit J a g then

exit J a g = false
else {/locaLentryJag A local.exit J a g then

ambiguous J a g = true

• Finally, if we are at the end of a period, we must reset the locaLentryJag and

locaLexit J a g values.

i f period then

locaLentryJag = false

locaLexit J a g = false

At the end of each sub-member we apply the following two rules:

i f array J a g then

the parameter is an array.

i f ambiguous J a g then

the parameter cannot be classified

else i f exit J a g A entry J a g then

the parameter is an input/output parameter

else {/entryJag then

the parameter is an input parameter

else {/exit J a g then

the parameter is an output parameter

else i/dummy J a g then

the parameter is a dummy parameter

else {/workspace J a g A array J a g then

the parameter is a workspace array

else {/arrayJag A “WORK” C parameter name then

95

the parameter is a workspace array

else i f parameter name of form L*WORK then

the parameter is an input parameter (in fact an array length)

else i/unchanged_on_exit_found then

the parameter is an input parameter

else

the parameter cannot be classified.

Clearly the further down this clause we get, the more desperate we are becoming!

9.2.1 Choosing the key phrases and rules.

This section briefly outlines how and why we chose the set of phrases and rules for

reasoning about them listed above. We started by looking at just one chapter of the

library (D01, the quadrature chapter), worked out our basic approach, and iterated

on that. When we found a parameter which our system couldn’t cope with, we tried

to introduce a method to handle it. When we found a parameter which our system

classified wrongly, we tried to alter our scheme to accommodate it. Absolute accuracy

was not essential, as any incorrect classifications showed up in testing of the individual

IRENA interfaces, and the specification files could then be modified by hand without

disturbing the rest of the generation process. Nevertheless this approach turned out to

be very successful.

There are three main categories of parameter which our system fails to classify:

1. Probe parameters which are used to pass information to ASPs from the user’s

program.

2. Communication parameters which are used to pass information between NAG

routines.

3. Parameters whose description in the Help files is simply a pointer to another

sub-member.

A more sophisticated program might have been able to follow the indirection which

96

causes the problem in the last case, but there are so few such instances that the effort

didn’t seem to be worthwhile.

9.3 ASPs

In chapter 6 we described how ASPs are handles, and how we classify their different

types. Thus when we encounter an ASP in the NAG documentation, we need to be

able to decide whether it is one which we’ve come across before. We can easily extract

the ASP equivalent of §B of a routine member from the Help file, and of course we can

“read through” the description in the sub-member.

There are two levels at which we classify ASPs. The first is based on their functional

form, i.e.:

• Their type: SUBROUTINE, / / r e a l / / FUNCTION etc.;

• The number of parameters they take;

• The types (including “arrayness”) of the parameters.

The second level on which we classify ASPs is their actual purpose, e.g. return an array

of function values, compute the jacobian of a system of equations etc. Unfortunately

there is very little consistency within the library: ASPs which do the same thing in

different routines are frequently not compatible. This is the main reason why we check

the types and the order of the parameters as well.

9.3.1 Performing the classification

We spot that a parameter is an ASP by checking for the occurrence of the upper-case

words “SUBROUTINE” or “FUNCTION” in its sub-member. We also have to check

that the parameter is not an array, since they sometimes occur in the descriptions of

probe parameters. Obviously if a parameter is an array it cannot be a subprogram, so

there is no ambiguity here. ASPs are classified as follows:

1. When the classify program starts up, a file of data about all known ASPs (called

subprogram-params) is read in and processed. It contains details of each type’s

97

functional form, as well as a (possibly empty) list of identifying phrases to look

for in the Help file.

2. When an ASP is encountered in the Help file it is classified according to the

set of “functional” criteria described above. If there are no matching types in

subprogram_params then it is classed as UNKNOWN.

3. We now have a list of one or more types to which our new ASP might belong. We

then read through the sub-member looking for the phrases which match those of

these candidates. If, at the end of this process, exactly one type matches exactly

(i.e. all the phrases associated with it occur in the current sub-member) then we

assign this type to our ASP. Otherwise we say that the type is UNCERTAIN, and

we list the possibilities.

9.3.2 The subprogram data file

The data file has at least one entry for each type of ASP. Each entry has the following

format:

• A line containing the type number.

• A line containing 1 if it is a FUNCTION and 0 if it is a SUBROUTINE.

• A line containing the number of arguments n.

• n lines containing the types of the arguments. An “@” character at the end

denotes an array, so a real array has type “real®”6.

• Zero or more lines containing (case insensitive) phrases to identify that type.

Entries are delimited by the string “****”. We use multiple entries to give alternate

sets of key phrases for the same type. A typical example of an entry in the data file is:

6

0

6Types are generic, not precision dependent.

98

4

integer
real®
real®
integer
must calculate the values of the functions at
and return these in the vector

which can be interpreted as meaning that type 6 ASPs are subroutines which take four

parameters, the first and last of which are integers, while the others are real arrays. In

addition their parameter description will contain the two phrases “must calculate the

values of the functions a t” and “and return these in the vector” .

The strategy for identifying new ASP types and choosing a suitable set of key phrases

will be discussed later.

9.4 IFAILs

IFAIL is used in three different ways by the NAG library to pass diagnostic information

to the user when an error occurs:

1. The value of IFAIL is an index to a unique diagnostic.

2. The value of IFAIL is an index to a diagnostic which may not be unique.

3. There is only one diagnostic, but the value of IFAIL conveys some extra

information. For example in F02BJF the value of IFAIL represents the place

where an error occurred.

§D of each routine member in the Help files consists of the following:

• A preamble.

• A sequence of descriptions of what the output values of IFAIL mean. Each

description is preceded by a header line of the form:

99

<indentation> IFAIL <op> <value>

The subsequent text is indented further (but uniformly) than the header line.

• Extra information relating to some or all of the diagnostics interspersed amongst

them, and indented to the same depth as the header lines.

We want to ignore the preamble, and we chose to ignore the extra information, since it

is not clear when it will be relevant7.

The thing which determines how each diagnostic will be handled is <op>. There

are six possible cases as follows:

1. = or .EQ.

2. < or .LT.

3. > or .GT.

4. < = or .LE.

5. > = or .GE.

6. .NE.

Not all occur in the current Help files, but we include them all for completeness. The

output of the classify program is either the single word “None.” in the case where IFAIL

is not used by the routine8, or a sequence of diagnostics. Each diagnostic consists of

one or more instruction lines followed by the text of the diagnostic message. Each

instruction line is of the form:

#<operation> [<value>]

where <operation> is one of EQ, NE, LT, GT, LE, and NE (the FORTRAN relational

operators without the surrounding full stops). The case when <value> does not occur

is when we have only one diagnostic which refers to the value of IFAIL. In this case we

have the instruction line “#EQ ”.

7In fact NAG are endeavouring to remove most of these pieces of text, and incorporate them in
individual diagnostics where appropriate.

8It may still be included as a parameter for completeness however.

9.5 Using the Classify program

The classify program is written in C, and the following description assumes that it is

being used under Unix. The syntax for use is:

classify <routine-name> [<output-file>]

If no <output-file> is specified then the specification is sent to the standard output.

The normal convention is to store the specification in a file called <routine-name>.s.

If an error occurs then an appropriate message is printed. Often the message can

be a little misleading — for example if a parameter is misspelt in §B of the Help files

then the classify program will normally complain about a missing type declaration.

Assuming that there are no errors in the Help files, there are two possible problems

which can occur. The first is that a parameter is unclassified, in which case it will

appear as a member of a list headed “UNCLASSED”. The second is when the type of

an ASP cannot be identified. In this case its type will be given as “UNCERTAIN” or

“UNKNOWN”.

Specification files with unclassified parameters are generally modified It may be

that the ASP has been supplied by the NAG Library, in which case we hand modify

the specification file. Otherwise we do the following: first check to see if the ASP is

of a known type, but classify failed to recognise it. This is the case when classify has

said that the type is “UNCERTAIN”, and listed the possibilities. H it is in fact of a

previously encountered type then we should either modify the key phrases in that type’s

entry in the data file (see § 9.3.2), or create a new entry for it with the same functional

information but different phrases.

Where we genuinely do have a new ASP we must create a new entry in the

subprogram data file. Before we can call an IRENA routine with that ASP we must

add it to the ASP system (see chapter 6).

In general, after making any change to the subprogram data file, the user should

run classify over the Library again to see whether he or she has managed to resolve any

other problems, or introduce new ambiguities.

101

9.5.1 Changing certain parameter names

On running classify the user will notice that NAG parameters with the names E and T

have been replaced by parameters called EEE and TTT respectively. This is because

e and t are reserved words in Reduce and so it would be inappropriate to use them

as parameter names in IRENA. EEE and TTT will normally be aliased to something

more appropriate (see § 5.1.1). This doesn’t change the diagnostic messages, but this is

a general problem with aliasing.

9.6 The Specification Files

These are human-readable ASCII files. An example, the specification of D01AJF, is

given in figure 9-1.

9.7 The Classify Program for the Mark 14 Library.

As stated at the start of this chapter, NAG undertook a fundamental revision of their

documentation at mark 14. One aim of this was to accommodate future projects

which would almost certainly require the same kind of information as IRENA. As a

result of this all the information concerning parameter use (input, output etc.) is

now explicitly incorporated in the documentation, so any errors in classification of

parameters encountered is due to errors in that source.

102

TYPE «###

SUBROUTINE

SPECIFICATION *#**

//DOlAJF//(F,A,B,EPSABS,EPSREL,RESULT,
1 ABSERR,W,LW,IW,LIW,IFAIL)

C INTEGER LW,IW(LIW),LIW,IFAIL
C //real// F,A,B,EPSABS,EPSREL,RESULT,
C 1 ABSERR,W(LW)
C EXTERNAL F

**#* PARAMETERS #*#*

**** INPUT PARAMETERS:

A
B
EPSABS
EPSREL
LW
LIW

**** OUTPUT PARAMETERS:

RESULT
ABSERR
m
IW®

**** INPUT/OUTPUT PARAMETERS:

IFAIL

**** WORKSPACE PARAMETERS:

None.

**** DUMMY PARAMETERS:

None.

103

**** FUNCTIONS:

NAME: F
SUPPLIER: USER
TYPE: 1

//real// FUNCTION F(X)
//real// X

**** SUBROUTINES:

None.

#*** IFAIL VALUES ##**
#EQ1

The maximum number of subdivisions allowed with the given
workspace has been reached without the accuracy requirements
being achieved. Look at the integrand in order to determine the
integration difficulties. If the position of a local difficulty
within the interval can be determined (e.g. a singularity of
the integrand or its derivative, a peak, a discontinuity, etc.)
you will probably gain from splitting up the interval at this
point and calling the integrator on the subranges. If
necessary, another integrator, which is designed for handling
the type of difficulty involved, must be used. Alternatively,
consider relaxing the accuracy requirements specified by EPSABS
and EPSREL, or increasing the amount of workspace.

#EQ2
Roundoff error prevents the requested tolerance from being
achieved. The error may be under-estimated. Consider relaxing
the accuracy requirements specified by EPSABS and EPSREL, or
increasing the amount of workspace.
Please note that divergence can occur with any non-zero value
of IFAIL.

*EQ3
Extremely bad local integrand behaviour causes a very strong
subdivision around one (or more) points of the interval. Look
at the integrand in order to determine the integration
difficulties. If the position of a local difficulty within the
interval can be determined (e.g. a singularity of the integrand
or its derivative, a peak, a discontinuity ...) you will
probably gain from splitting up the interval at this point and

104

calling the integrator on the subranges. If necessary, another
integrator, which is designed for handling the type of
difficulty involved, must be used. Alternatively, consider
relaxing the accuracy requirements specified by EPSABS and
EPSREL, or increasing the amount of workspace.
Please note that divergence can occur with any non-zero value
of IFAIL.

*EQ4
The requested tolerance cannot be achieved, because the
extrapolation does not increase the accuracy satisfactorily;
the returned result is the best which can be obtained. Look at
the integrand in order to determine the integration
difficulties. If the position of a local difficulty within the
interval can be determined (e.g. a singularity of the integrand
or its derivative, a peak, a discontinuity ...) you will
probably gain from splitting up the interval at this point and
calling the integrator on the subranges. If necessary, another
integrator, which is designed for handling the type of
difficulty involved, must be used. Alternatively, consider
relaxing the accuracy requirements specified by EPSABS and
EPSREL, or increasing the amount of workspace.
Please note that divergence can occur with any non-zero value
of IFAIL.

*EQ5
The integral is probably divergent, or slowly convergent.
Please note that divergence can occur with any non-zero value
of IFAIL.

*EQ6
On entry, LW < 4,
or LIW < 1.
Please note that divergence can occur with any non-zero value
of IFAIL.

Figure 9-1: The specification file for D01AJF.

105

C hapter 10

Exam ples o f Using IRENA.

In this chapter we shall look at some longer examples which show how IRENA may

be used to solve real problems. We shall also demonstrate some more features of the

system.

10.1 A steel rolling problem.

In [Gomez 1990] the author describes a set of equations which represent the behaviour

of a hot strip rolling mill. Given various parameters describing the milling machinery

and the thickness and tension of the strip at the start of the process, it is possible to

determine the thickness of the strip at the outlet, as well as some details of the process

that has taken place. The author was unable to use his computer algebra system (in

this case Maple) to solve the problem, and so was forced to use a numerical technique.

The method he chose was to use Maple to generate a complete FORTRAN program

which would solve the equations using Newton’s algorithm. Using IRENA, however,

the process is much simpler. Figure 10-1 shows the equations and parameter values as

a Reduce file. Figure 10-2 shows the IRENA session used to compute the solution using

the routine C05PCF, which finds the solution of a system of nonlinear equations. (The

NAG manual describes this routine as “comprehensive” as opposed to its “easy-to-use”

counterpart C05PBF. In both cases the FORTRAN user must provide the jacobian of

the system to be solved, which is calculated automatically by IRENA. It is interesting

106

'/, A s e t o f equations vhich describe the behaviour of a s t e e l m il l .

expl := h2 - s - (f + a2 * (1 - exp(a3*f))) / al$
exp2 := f - l*k*gr*(pi*sqrt(h2/gr)*atan(sqrt(r))/2-pi*csi/4-log(hn/h2)+

log(hl/h2)/2)+gr*csi*tl/h2$
exp3 : = atan(phi*sqrt(gr/h2))-sqrt(h2/gr)*(pi*log(h2/hl)/4+sqrt(gr/h2)*

atan(sqrt(r))-tl/k/l/hl + t2/k/l/h2)/2$

r := (hl-h2)/h2$ '/, The radius of the roll
csi := sqrt((hl-h2)/gr)$
hn := h2+gr*phi“2$

al := 610$
a2 := 648$
a3 := -0.00247$
1 := 1250$ '/, The width of the stand,
k := 0.014$
gr := 360$
tl := 12$ */, The inlet tension.
t2 := 35$ 7, The outlet tension,
hi := 24$ The initial thickness of the strip,
s := 12$ '/, The tightness of the screw.

end$

Figure 10-1: Equations describing a steel mill.

to note that in IRENA both routines have identical calling sequences, though C05PCF

does have more control parameters.) The final zero of the set of equations represents

the milling force, the final thickness of the strip, and the neutral angle (the angle at

the point of the roll where there is no sliding). We have done the computation twice

with different starting points as a check on the solution, since C05PCF will only find

the nearest zero to the starting point. In this case there should be only one meaningful

solution. Since both the equations and the zero are available in the Reduce environment,

it would be simple to substitute the latter back into the former as a further check.

10.2 Warm starts after errors.

Some NAG routines include a warm start facility. If the routine exceeds its maximum

107

2: in "steel.red"$

3: c05pcf(fcnl(f,h2,phi)=expl,
3: fcn2(f,h2,phi)=exp2,
3: fcn3(f,h2,phi)=exp3,
3: vec start{1000,15f0>)$

{ZERO,RESIDUALS,FCALLS,JACCALLS,SCALEFACTORS,JACOBIANQ,JACOBIANR,

QTRANSPOSEF}

4: zero;

[1363.676366832]
C]
[15.261235300841]
[]
[0.063202457582016]

5: c05pcf(fcnl(f#h2,phi)=expl,
5: fcn2(f,h2,phi)=exp2,
5: fcn3(f,h2,phi)*exp3,
5: vec start{500,10,0.1})$

{ZERO,RESIDUALS,FCALLS,JACCALLS,SCALEFACTORS,JACOBIANQ,JACOBIANR,

QTRANSPOSEF}

6: zero;

[1363.6763668355]
C]
[15.261235300853]
C]
[0.063202457582067]

Figure 10-2: The IRENA session needed to solve the steel mill problem.

108

2: d01eaf(fset f[i=l:4](w,x,y,z)*
2: log(w + 2*x + 3*y + 4*z)*sin(i + w + 2*x + 3*y + 4*z),
2: region* [0:1,0:1,0:1,0:1])$
** MAXCLS too small to obtain required accuracy
** ABNORMAL EXIT from NAG Library routine D01EAF: IFAIL * 1
** NAG soft failure - control returned

MAXCLS was too small for //D01EAF// to obtain the required
accuracy. The arrays FINEST and ABSEST respectively contain
current estimates for the integrals and errors.

{WRKSTR,CALLS,ABSERRS,INTEGRALS}

3: calls;
57

4: dOleaf(reenter, maxcalls*10000, fset f[i*l:4](w,x,y,z)*
4: log(w + 2*x + 3*y + 4*z)*sin(i + w + 2*x + 3*y + 4*z),
4: region* [0:1,0:1,0:1,0:1])$
{WRKSTR,CALLS,ABSERRS,INTEGRALS}

5: calls;
6384

6: integrals;
[0.038349753477037]
[]
[0.40117322966197]
[]
[0.39515988860082]
[]
[0.025838368333277]

7: abserrs;
[0.000045932793434718]
[]
[0.000045958066759794]
[]
[0.000040497855131689]
[]
[0.000045094532826377]

Figure 10-3: Doing a warm start with IRENA.

109

number of iterations it preserves the contents of its workspace so that the user can, if

desired, pick up where he or she left off in a subsequent call. Figure 10-3 gives an example

of this, adapted from the one in the NAG manual. D01EAF computes approximates

to the integrals of a set of similar functions, each defined over the same region. If

the routine exceeds its maximum number of iterations, it returns its current workspace

in the array WRKSTR. A subsequent call to the routine using this array, and with the

parameter MINCLS set negative, will staxt up where it left off and proceed until the

maximum iteration limit MAXCLS is reached. In the example we find that 57 iterations

was inadequate, so in the follow-on have increased the maximum number to 10000,

which succeeds. Signaling the start of a continuation is done using the keyword reenter

in the key list, which sets up the various parameter values as required.

10.3 Multi-Routine interfaces.

Sometimes it is nice to have one interface able to call several routines (or several

sequences of routines). For example the routine C06EAF calculates the discrete Fourier

transform of a sequence of real data values. The result is returned in hermitian

form which can be displayed in Reduce using the special operator display!-hermitian.

C06EBF calculates the discrete Fourier transform of a hermetian sequence of complex

data values. To calculate the inverse transform the call to C06EBF must be followed by

a call to C06GBF. If the user provides the keyword inverse in the call to C06EBF this

will be done automatically. The example in figure 10-4 shows how this can be done to

restore the original sequence after a transform has been calculated. This example also

shows the use of the print-precision command for changing the printed precision of real

numbers.

110

2: p r in t ! -p r e c is io n 6$

3: c06eaf(vec sequence {0.34907,0.54890,0.74776,0.94459,
1.13850,1.32850,1.51370})$

{TRANSFORM}

4: display!-hermitian transform;

2.48361

-0.265985 + 0.530898*1

-0.257682 + 0.202979*1

-0.256363 + 0.0580623*1

-0.256363 - 0.0580623*1

-0.257682 - 0.202979*1

-0.265985 - 0.530898*1

5: c06ebf(inverse,sequence=transform);

{TRANSFORM}

6: tp transform;

[0.34907 0.5489 0.74776 0.94459 1.1385 1.3285 1.5137]

7: print!-precision(-l)$

Figure 10-4: An example of a multi-routine interface.

I l l

C hapter 11

R outine Selection

So far we have concentrated on how we may improve the interfaces to individual NAG

routines by abstracting the choice of algorithmic and housekeeping parameters away

from the user. While this removes the need to worry about the details of a particular

routine’s operation, it still requires the user to decide which routine is the best for his

or her particular problem. This is not in general an easy decision to make, and often

requires some “higher-level” mathematical insight into the characteristics of the problem

being solved. For example, a user wishing to solve a one-dimensional integral over a

finite region needs to decide whether the integrand is smooth, identify singularities and

discontinuities, and so forth. Often, of course, he or she will simply choose the most

general routine available, which might not actually be the best.

NAG tackles this problem in their documentation by providing both a general

description of the problem domain, and advice on which characteristics should influence

the choice of which routine (often as an easy-to-follow flow diagram). Unfortunately

many phrases are vague or unexplained: for example in the flow chart for one

dimensional finite quadrature the user is asked whether his or her integrand is “fairly

smooth” . There is apparently no definition of the difference between a smooth and

fairly smooth function.

Several interactive systems have been developed to aid the user in choosing an

appropriate routine. The first such package was NAXPERT [Schulze & Cryer 1986,

Schulze & Cryer 1988] which essentially automates the flow-charts in the manual. When

112

a user consults NAXPERT, he or she provides keywords to the system which describe

the problem to be solved. The system will ask questions of the form is the following

keyword appropriate to your problem? if necessary, and will eventually come up with

a list of possible routines. If required, the system will print out a template program,

which the user can then modify for his or her own purpose. Additionally, some extra

information is available to explain the meanings of certain keywords.

There are also some similar but more general packages available. NITPACK

[Gaffney & Wooten 1983] is a package which takes a representation of a decision tree and

guides the user through it interactively. Although originally designed for helping users

choose routines from NAG or other libraries, it has been used in different areas as well.

There is a NITPACK package to assist a user in choosing a routine to solve a boundary

value ordinary differential equation from the NAG, Harwell, and IMSL Libraries. In

addition, systems like NAG’s online help package and GAMS [Boisvert et al. 1985] will

provide a certain amount of assistance to the user.

A more up-to-date package which exploits modern interface technology (mice,

hypertext, X-windows etc.) is currently being developed by NAG. The KASTLE

system [NAG LTD. 1989], does not use the interrogative “yes / no” style interface of

the previous systems. Rather, users are presented with a list of attributes which may

define the problem. At any time they may ask for more details about an attribute. The

user selects attributes which consequently narrow the search space and so the display is

updated. When the user is finally satisfied that the problem to be solved is completely

described, he or she may ask the program to recommend a list of routines in order of

preference.

The fundamental drawback with all these systems is that the user still has to decide

whether various properties hold for his or her particular problem. In some ways this is

not an entirely unreasonable approach. Deciding whether or not the expression

_ ie *

has a singularity at the point x = 0 is not easy to do automatically; but on the other

hand deciding whether a matrix is symmetric is tedious but trivial. Clearly it would

113

6: integrate(integrand(x)*(l-log(x))~(-10),region®[0:1]);

-CALIST,BLIST,ELIST,RLIST,ABSERR,INTEGRAL,INTERVALS}

7: integral;

0.0989291326406463

Figure 11-1: An example of the use of the automatic routine chooser.

be highly desirable if a system existed which could examine a user’s problem and give

advice on the best method to solve it.

This is clearly an area where a computer algebra system could be very useful, since

we wish to do a symbolic analysis of the problem. With IRENA, however, we can go

one step further and actually make the call to the NAG Library automatically.

11.1 ARC — An Automatic Routine Chooser.

We have implemented a system in Reduce which, given a user’s description of the

problem to be solved, chooses the best routines to use according to a given set of criteria.

If there are several candidate routines then they are ranked according to which seems

the most promising. Calls to IRENA are then made until either a result is obtained or

the candidate list is exhausted. So far only a subset of the D01 (quadrature) chapter

has been implemented, though the system should be extensible to other suitable areas

of the Library.

Consider the example shown in figure 11-1. The first thing to note is that the

parameters the user has provided are the same as in our jazzed interface to the D01

chapter. This is hardly surprising since we set out to provide a canonical interface to

each chapter, which was a complete representation of the problem being solved. No

indication is given of which routine has been used to solve the problem (in fact it was

D01AKF; failing that ARC also suggested using D01AJF), or what criteria have been

used to determine this. To get more detailed information, the user should set the switch

114

selectinfo in which case the system will provide details about its progress, as shown in

figure 11-2 . More examples can be found in appendix F.

11.1.1 The Basic Strategy.

ARC starts by processing the arguments provided by the user. The initial set of

candidate routines is then chosen on the basis of the apparent structure of these

arguments. For example in the case of integration we have three sets of routines

dealing with three distinct areas — one dimensional finite quadrature, one dimensional

semi-infinite or infinite quadrature, and multi-dimensional finite quadrature — and can

determine which case we have by a fairly superficial examination of the parameters

provided by the user1.

We now have a list of routines, associated with each of which is a list of predicates.

These predicates are of two kinds: those whose satisfaction is necessary for a routine to

be chosen; and those which, if satisfied, should remove that routine from consideration.

We loop round, choosing a predicate to evaluate each time. Currently we choose the

predicate which is associated with the most routines. This is a reasonable strategy

since there is not a great deal of difference in the cost of evaluating predicates. Should

we encounter a situation elsewhere in the Library where this is not the case we would

probably adopt a different strategy. At each stage some routines are matched, i.e. they

are satisfied by the value of the predicate; while others are pruned. Thus as we move

through the predicates we have a steadily shrinking list of routines, each of which has

a steadily shrinking set of predicates associated with it. Eventually we are left with a

set of routines, all of whose predicates have been matched. In theory this set could be

empty but, due to the structure of the current knowledge base, we are guaranteed that

at least one routine will be recommended2.

The routine list is then ordered. Currently we use a simple ordering based on the

initial number of predicates associated with each routine: the idea being that the greater

this number then the more specialised the routine, and the more likely it is that it will

1 There is also the case where we have a one-dimensional integral whose functional form is not known,
but since there is only one routine in the library to deal with this case we have ignored it.

2In fact, at least one of the routines D01AJF, D01ATF, D01AHF will always be recommended.

115

9: integrate(integrand(x)=(l-log(x))~(-10),region*[0:1]);
* VECT0R-PR0CESS0R is NIL
— > The following routines are being pruned: (D01ATF D01AUF)
— > The following routines have been matched: (D01AJF DOiAKF)
* SM00TH-EXCEPT-W2 is NIL
— > The following routines are being pruned: (D01BAF D01ARF)
— > The following routines have been matched: (DOIAKF D01ANF D01AQF
D01ALF)
* SM00TH-EXCEPT-W1 is NIL
— > The following routines are being pruned: (D01BAF D01ARF)
— > The following routines have been matched: (DOIAKF D01ANF DOIAQF
D01ALF)
* SMOOTH-INTEGRAND is NIL
— > The following routines are being pruned: (D01BAF D01ARF)
— > The following routines have been matched: (D01ANF D01AQF D01ALF)
* CONTINUOUS is T
— > The following routines are being pruned: (D01AQF)
— > The following routines have been matched: (DOIAKF)
* KNOWN-SINGULARITIES is NIL
— > The following routines are being pruned: (D01ALF)
— > The following routines have been matched: (DOIAKF D01ANF)
* CONTINUOUS-EXCEPT-AT-END-POINTS is NIL
— > The following routines are being pruned: (D01AHF)
— > The following routines have been matched: (D01AJF DOIAKF D01ANF
D01BDF)
* REASONABLY-SMOOTH-EXCEPT-WEIGHT is NIL
— > The following routines are being pruned: (D01ANF)
— > The following routines have been matched: (DOIAKF D01APF D01BDF)
* CONTINUOUS-EXCEPT-W1 is NIL
— > The following routines are being pruned: (D01APF)
— > The following routines have been matched: (DOIAKF D01BDF)
* C0NTINU0US-EXCEPT-W2 is NIL
— > The following routines are being pruned: NIL
— > The following routines have been matched: (DOIAKF D01BDF)
* REASONABLY-SMOOTH-INTEGRAND is NIL
— > The following routines are being pruned: (D01BDF)
— > The following routines have been matched: NIL
*** The recommended routines sire :

(DOIAKF D01AJF)
* Now calling routine DOiAKF
{ALIST,BLIST,ELIST,RLIST,ABSERR,INTEGRAL,INTERVALS}

Figure 11-2 : ARC’s tracing facility.

116

give a result. This is true due to the number of predicates which, if satisfied, will cause

the routine to be pruned: for the more general routines the outcome of evaluating many

predicates is immaterial. While obviously depending on the structure of our knowledge

base, this seems to work well in practice.

Finally we make a call to our first choice of routine, using IRENA. If on exit we

encounter a non-zero ifail, or an IEEE exception occurs, the next routine in the list is

tried and so on. If we get a result then this is returned to the user, otherwise a message

is printed listing the routines which we have tried.

11.1.2 The D01 Knowledge Base.

Much of the success of the relatively simple strategy outlined in § 11.1.1 is dependent

on the structure of the knowledge base. In this section we shall look at the various

predicates, and how they relate to the various routines.

The current knowledge base deals only with one-dimensional finite quadrature. It

contains sixteen entries for twelve routines, in other words some routines (D01ARF and

D01BAF) can be used in different circumstances and so have multiple entries. There

are a total of eleven predicates used to distinguish between them:

• C ontinuous The integrand is continuous over the region.

• K now n-singularities The integrand has singularities within the region, but we

know where they all are.

• C on tinuous-excep t-a t-end-po in ts The only singularities of the integral in the

region lie at one or both of its end points.

• S m ooth Both the integrand and its derivative are continuous, and the integrand

does not oscillate very much.

• R easonab ly-sm ooth Both the integrand and its derivative are continuous.

• V ector-processor The user has indicated that the target architecture is a vector

processor, by providing the keyword vector-processor in the key list.

117

• C o n tinuous-excep t-w l The integrand is continuous over the region apart from

the weight function:

(6 — x)a * (x — ay* * (log(6 — a;))* * (log(r — a))1

where a and b are the end points of the region of integration and x is the

independent variable.

• C ontinuous-excep t-w 2 The integrand is continuous over the region apart from

the weight function:
1

(.x - c)

where c is neither of the endpoints of the region and x is the independent variable.

• S m ooth -ex cep t-w l The integrand is smooth (see above) apart from the weight

function:
a + b c

x- ~ r

where a and b are the end points of the region of integration and x is the

independent variable.

• Sm ooth-except-w 2 The integrand is smooth (see above) apart from the weight

function:

(6 — x)c(x — a)d

where a and 6 are the end points of the region of integration and x is the

independent variable.

• Reasonably-sm ooth-except-^w eight The integrand is reasonably smooth (see

above) apart from one of the weight functions:

cos(u>:r) sin(wx)

where x is the independent variable.

These predicates have been determined from the decision tree in the NAG Manual.

118

W hat they actually mean (e.g. in the case of reasonably-smooth) has sometimes been a

m atter of guesswork and experimentation.

Obviously some of these predicates are inter-related. For example if we know where

all the singularities are we can tell if they all lie at the end points of the region of

integration. However it is less clear whether for example the integrand being continuous

should preclude the predicate continuous-except-wl from holding since if both a and /3

are positive integers there are in fact no singularities in the weight. This possibly

misleading choice of name comes from the decision tree in the NAG manual. Which

predicates are associated with which routines are given in Appendix E.

11.2 Implementation details.

In this section we shall describe how the predicates are implemented, and how the link

to IRENA is made.

11.2.1 The Predicates.

The efficiency of the system is largely determined by the efficiency of evaluating the

predicates. Put bluntly, there is no point spending an hour locating the singularities of

the integrand when you could have tried each and every relevant routine in that time.

In fact, the feedback from such an exercise would probably help locate the singularities

far more quickly. Thus in some cases we have opted for a “quick but dirty” approach

rather than a slow but thorough one.

Testing continuity.

Our first experiments were with methods involving Pad6 approximations and asymptotic

expansions of Taylor series, but these turned out to be far too slow for our purposes. We

thus adopted a less adventurous strategy which would locate poles and some logarithmic

singularities while indicating where there was a possibility that some singularities existed

but had not been detected.

We start with a quotient of polynomials (in the Reduce sense: i.e. sin(r) is a perfectly

119

valid polynomial). Poles of this expression correspond to zeros of the denominator. So

we factorise the denominator and find the zeros of the factors using the Reduce roots

package [Kameny 1990] if the factor is a polynomial (in the mathematical sense), and

the Reduce solve package otherwise. In the former case we can specify that the roots

must lie in a particular region, but in the latter we have to check which ones do. This is

complicated by the fact that the answer may involve arbitrary integers (e.g. the roots

of sin(x) = 0 are x = nir where n is any integer). If solve fails to find any roots, or

we are unable to decide whether a root lies in the region of integration, we signal that

some singularities may exist which we have been unable to detect.

This approach has the merit of being fast and in most cases will, if anything, err on

the conservative side. The one exception to this is when we have a removable singularity:

e.g. if the initial expression is

/(.) = ^ x

then our approach will suggest a singularity at x = 0 even though /(0) = 1. In actual

fact this is not necessarily a bad thing, since a FORTRAN function would probably

evaluate this incorrectly. Integrating f (x) between —1 and 1 using D01AJF yields an

IEEE exception, but using D01ALF and telling it that a singularity exists at the origin

yields the correct result.

The other kind of singularities which we look for are logarithmic singularities in

the numerator. This is done by looking at each factor of the numerator, identifying

logarithm terms, and checking whether their arguments equal zero anywhere in the

region of integration. For this we use the same techniques as when looking for poles. A

final check is made to ensure that none of the logarithmic singularities we have found

actually disappear because another factor of the integrand is zeTo at th a t point (i.e. we

want to avoid claiming that e.g. xlog(x) has a singularity at x = 0).

Estimating oscillations.

One method of calculating the number of times a function oscillates in an interval is to

count the number of zeros of its derivative. We have adopted a method for estimating

this as follows:

120

1. Randomly choose a set of sample points in the interval.

2 . Evaluate the function at each point.

3. Count up the number of sign changes and zeros.

This gives us a lower bound on the number of zeros. We can then compare this with some

critical value to decide whether the function oscillates “too much” . Doing lots of function

evaluations in Reduce’s algebraic mode is rather slow, so the current implementation of

this package does everything in symbolic mode which speeds the process up by an order

of magnitude, and so allows us to examine more points at the cost of a slight restriction

on the sorts of functions which we can handle. Taking a smaller grid of points would

probably require an adaptive strategy where, if a small number of zeros were found, we

examined their neighbourhood to see if there were any more. The current grid size is

fifty points and the critical number of zeros is ten, which is probably rather conservative.

Identifying Weights.

For this we use the PM pattern matcher [Mclsaac 1990] which, given an expression

template and an expression, will try to match the unknowns in the template to values

in the expression. For example in:

38: m(20*sin(6*x+pi),?a*sin(?b*?v+?c));

{?A->20,?B->6,?C->PI,?V->X>

we are matching the unknowns in the template on the right with the actual expression

on the left. Unfortunately there are two drawbacks with using this package. The

first is that PM doesn’t know anything about mathematics and so will not match e.g.

the template ?a*x with the expression x where a —► 1. This sort of problem can be

circumvented by defining families of templates rather than just one, incorporating all

the various possibilities. The second problem is that Reduce will sometimes re-order an

expression in such a way as to fool the pattern matcher. For example the expression

121

(1 — x)3 will not match the template (?a-x)~n because Reduce rewrites it as —(x — l)3

(this depends on the setting of various switches). Thus writing templates is something

of an art form.

Another problem with PM is that it is incompatible with some other Reduce packages

because it redefines several fundamental operators to suit itself. We have had to adapt

it to allow the Roots package to run correctly after PM has been loaded.

11.2.2 The link to IRENA.

Provided that the switch irenalink has been set, ARC will attempt to call the selected

routines using IRENA.

For most routines this is simply a case of passing the user’s parameters to the chosen

routine via IRENA. This is a consequence of our consistent jazzing of interfaces to

routines in the same chapter. In some cases a little extra work is required: for example

where we also need to provide a vector of singularities; or where we have to provide the

parameters in the weight function separately. Routines in this category have a setup

function to perform these operations.

We have suppressed the printing of IFAIL and IEEE messages for failed routines to

improve the ARC interface to the user. One other improvement which would be nice

would be to change some of the output names of the parameters to reflect the different

way in which the routines have been called. For example, D01ANF computes the sine

or cosine transform of a function r̂, i.e.

J g(x)sin(ux)dx

or

j g(x) cos(a?x) dx

The result is called (via the jazz system) transform which makes sense if the routine is

called directly, but when called via ARC the name integral would be better.

122

11.3 Future Developments.

Obviously we would like to extend ARC to other suitable areas of the Library. Some

chapters would be trivial, for example in the C02 chapter which contains routines for

finding the zeros of polynomials we need only decide whether the given expression

is a quadratic or not, and whether the coefficients are complex. Some chapters are

inappropriate for this approach, for example chapter F06 consists of linear algebra

support routines — i.e. operations on matrices and vectors — where each routine

essentially performs a different task.

There are other improvements that could be made. It might, for example, be

worthwhile using the IFAIL value from an unsuccessful call to influence the subsequent

choice of routine. The disadvantage with this is that we would need much more

information about each routine in the database. A variation on this might be to make

an initial attempt at an integral using the most general routine, D01AJF, and if this

failed then use the value of the IFAIL diagnostic and the partial results which the

routine returned to decide how to proceed. While this is an interesting idea, it has

the drawback that the diagnostics are not particularly distinct (three of the five non

trivial ones suggest that a singularity or discontinuity has been detected which cannot

be handled) or comprehensive. In addition many areas of the Library do not have a

“most general” routine, so the idea does not extend to other areas.

123

C hapter 12

Conclusions

There have been two main aims in the work discussed in the previous chapters. The first

has been to provide an environment in which both algebraic and numerical algorithms

can be applied profitably and effectively for the solution of mathematical problems.

The second has been to make the extensive high-quality methods available in numerical

subroutine libraries available in an easy-to-use form to todays modern breed of computer

user. Both these aims are satisfied by IRENA; though ARC provides an even easier,

though currently incomplete, interface. Throughout the design of these systems we

have tried to be non-authoritarian, that is to say we have never forced a user to make

a decision, though we have given as much sensible advice as we can. If the user knows

what value he or she wants for a control parameter then he or she can provide it,

otherwise the system default will be chosen. If the user knows which routine is the best

to solve a given problem then it can be called directly, otherwise ARC will try to select

one. Where IRENA is a simplified interface to the NAG Library, ARC is in some sense

a simplified interface to IRENA.

12.1 Side-efFects of developing IRENA.

There have been other areas where this work has made an impact. Based on the

kind of information we required to build our IRENA interfaces, NAG have redesigned

their documentation to facilitate the future design of other packages which call Library

124

routines; and of knowledge-based, advice-giving systems. The design of the interfaces

themselves might also be useful, for example in designing a suite of FORTRAN-90

[ANSI 1989] interfaces to the current Library. In addition the adoption of canonical

interfaces to areas of the Library could be used as guidelines by future designers of

routines.

Not only have we identified what a package designer wants from a subroutine library,

but we now have a better idea of what facilities a package designer needs the host

computer algebra system to provide. In some ways the main use that IRENA makes of

Reduce itself is as a user interface and parser, so it would be nice to have tools to make

the process of building parsers in LISP easier. The main area however where we have

clearly seen the need for extra functionality is in the code generation and dynamic linking

processes. In IRENA some of the new features have found their way into GENTRAN,

others have been solved by a suite of special functions which, with hindsight, should

perhaps be collected together and made available separately from IRENA to other

users. We now feel that any system to support major package development should, as

a bare minimum, support the following in addition to the simple ability to translate

expressions:

• Skeletal P ro g ram Facilities GENTRAN’s template facilities are quite good,

and they are particularly amenable to automatic generation. Unfortunately they

require the designer to know a fair amount about the target language. A more

abstract description of program segments — perhaps a more general package like

our ASP descriptor language described in chapter 6 — would also be extremely

useful.

• C ross A rch itec tu re S upport Essentially the user should be able to determine

the precision of the generated code, including the number of digits printed for

floating point numbers and, in FORTRAN, the names of intrinsic functions.

• Access to th e P a rse r It is extremely useful to be able to tell if certain tokens

have appeared in the input, and to specify “special” treatment for them. In

IRENA this is used to determine whether irena constants (see § 3.6.1) have been

125

encountered, but one can envisage other uses for it as well. For example, the names

of functions might change according to the chosen precision, machine type etc. In

IRENA we use a piece of dedicated code within GENTRAN to spot and transform

certain tokens, but a more general mechanism ought to be made available.

• O p tim isa tion It is essential that there are facilities for automatic optimisation

of sequences of expressions, not necessarily provided together at the one time.

• Sym bol Table The user should be able to maintain a symbol table of type

and array declarations etc. The current GENTRAN symbol table is not powerful

enough to support properly block-structured languages, pointers, or user-defined

data structures. Since C is rapidly overtaking FORTRAN in popularity among

scientific users, and FORTRAN-90 supports many of these facilities, any new

package should take account of them.

• D ynam ic Linking A user should be able to call pieces of foreign code without

the need to statically link them into the host algebra system. How IRENA does

this is described in chapter 7, but it is not a very general system. An alternative

approach might be to use remote procedure calls to shared libraries. A suite of

functions to convert the generated FORTRAN objects into algebraic objects is

also necessary.

12.2 Further Work.

In many ways the work described in this thesis is a beginning, rather than an end in

itself. We have provided package developers with a high-quality suite of tools which they

can apply to specific problem domains. These packages may be concerned with solving

a particular problem (e.g. determining rate laws in biochemistry), or a particular class

of problems (e.g. solving definite integrals or differential equations). The latter are

interesting since they could exploit both symbolic and numerical techniques.

Integration is particularly interesting, since there exist sophisticated algebraic

“black-box” integrators which can solve a wide range of problems. In many of these

126

cases the algebraic integrator will yield a result faster than IRENA will, but sometimes

it will be extremely slow or will run out of memory. Numerical methods have the

advantage that, because in general they have a fixed limit on the number of iterations

they perform, they will terminate in a predictable time (in some cases they can be

continued if a result has not been found, as in the example in § 10.2). There are thus

three questions which it might be worth asking:

1. Can the algebraic integrator solve this integral?

2 . Will it solve it in “reasonable” time?

3. Does it have the resources (e.g. memory) to solve it?

While it seems possible to determine a reasonable answer to the first question, the others

appear rather more difficult.

Another interesting problem arises when the algebraic integrator can only yield a

partial solution. The question then arises, is it better to perform the whole integration

numerically, or to attempt only the residue left? [Davenport 1985] gives as an example

of a case where analytic integration does indeed make numerical integration easier the

reduction:

f log sin x dx = y log sin y - [x C° SX dx
Jo Jo sin X

In this case the reduction has removed the log term from the integral, and indeed made

the problem more tractable. However it is not always the case that analytic integration

makes a problem easier. The above reduction was done in Scratchpad, an example with

the Reduce integrator which causes problems is:

f ex log xdx = ex log x |o — / —- dx
Jo Jo x

While in both these cases it is clear which is the better form, this is not always going

to be the case. Indeed, while the general-purpose NAG integration routine D01AJF

handles both these examples in their original form with ease, it can manage the first

problem’s reduction, but not the second (see figure 12.2).

127

2: d O la jf(in teg ra n d (x)* lo g (s in x) , reg ion *[0 :1]) ;

•CALIST,BLIST,ELIST,RLIST,ABSERR,INTEGRAL,INTERVALS}

3: integral;

- 1.0567202059916

4: abserr;

1.1102230246252E-15

5: dOlajf(integrand(x)*x*cos(x)/sin(x),region=[0:1]);

•CALIST,BLIST,ELIST.RLIST,ABSERR,INTEGRAL,INTERVALS}

6: on numval;

7: log(sin 1) - integral;

- 1.0567202059916

8: dOlajf(integrand(x)=e~x*(log x),region*[0:1]);

■CALIST,BLIST,ELIST,RLIST.ABSERR,INTEGRAL,INTERVALS}

9: integral;

- 1.3179021514544

10: off print!-ifail!-message; '/, Inhibit verbose error message

11: dOlajf(integrand(x)*e“x/x,region*[0:1]);
** The maximum number of subdivisions (LIMIT) has been reached:

LIMIT * 500 LW * 2000 LIW * 500
** ABNORMAL EXIT from NAG Library routine D01AJF: IFAIL * 1
** NAG soft failure - control returned

■CALIST,BLIST f ELIST,RLIST,ABSERR,INTEGRAL,INTERVALS}

Figure 12-1: Evaluating partially processed integrals.

128

Another area which we have not tackled arises when the solution of a problem

requires the “coupled” use of several NAG routines. For example consider the problem

[P
min / f (x , t)d t

a < x < b J q

where the integral must be calculated numerically. The structure of the program will be

a little messy: the optimisation routine will take an ASP which will call an integration

routine. The value of x will need to be kept in a COMMON block because of the fixed

form of the various ASPs involved. However the real difficulties arise because of the

way in which the choice of parameters in one routine effect the values which should be

chosen in another. The NAG manual normally recommends that the tolerance in an

optimisation routine is the square root of the machine precision: approximately le-08 on

a SUN workstation. However it is usual for integration routines to be called with a lower

tolerance than this: in IRENA the usual tolerance is le-04. It is clearly nonsense to try

and use an accuracy of le-08 to distinguish data accurate only to le-04. Thus for this

kind of application we would need an “intelligent” defaults system which understood

the relationships between parameters in different routines.

12.3 Summary.

The systems we have built open up a lot of possibilities. We now have a toolkit of

techniques which can be used to solve specific problems. It is to be hoped that in future

they will be exploited to the full by package developers, as well as by general users. The

techniques we have described are not limited to Reduce and the NAG Library: other

Libraries could be interfaced to Reduce using these techniques; and the interfaces to the

NAG routines could be re-used in a package based around a different computer algebra

system.

The fundamental aim of this work is very simple. We believe that people with

mathematical problems want mathematical solutions and, provided that they can be

relied upon, aren’t generally particularly interested in where they came from. We believe

the work described here is a major step towards that goal.

129

A ppendix A

N otation for syntax figures.

A .l Conventions.

Terminal symbols appear in bold typeface.

Non-terminal symbols are surrounded by a pair of angled brackets thus: < . . . > .

A .2 Symbols.

assigns a definition to a non-terminal symbol

ll or

an optional part

(. . .) a group

* repeated zero or more times

+ repeated one or more times

+n repeated n times
N.B. Notice the difference between e.g. { and {.

130

A pp en d ix B

Changes to the REDUCE and

G EN TR A N system s made for

IREN A .

B .l Introduction

IRENAreduce is the standard reduce plus the following extra bits of standard PSL:

• oload.b

• defmacro.b

• defmacrol.b

• defmacro2 .b

• l2cdatacon.b

• s-strings .b

• entry.b

• matrix.b

131

The latter is necessary because IRENA builds matrices without using any of the explicit

operators which would load matrix.b if it wasn’t there. To do this it is necessary to load

entry.b first. In addition we load:

• irenajoload.b

• irenamisc.b

• cvec2 .b

which have been specially written. The first is described in § 7.3 and the second is

used to catch IEEE exceptions during the execution of foreign code. The third contains

functions for accessing different types of bitmaps in memory, i.e. for reading the results

left on the heap by the FORTRAN program. In addition some extra procedures for

manipulating strings are added. Finally the GENTRAN package and the code optimiser

are both pre-loaded.

The rest of this document lists the changes to GENTRAN, and PSL made by the

IRENA project at Bath. It doesn’t mention bug fixes, only added features.

B.2 New public GENTRAN features

The following additional features have been added to the GENTRAN system. They are

all of use to general users.

B.2.1 DOUBLE

With this switch ON, the following happens:

• Declarations of parameters of appropriate type are converted to their double

precision counterparts. In Fortran and Ratfor this means that objects of type REAL

are converted to objects of type DOUBLE PRECISION and objects of type COMPLEX

are converted to COMPLEX* 16 1. In C the counterpart of f lo a t is double, and

1This is not part of the ANSI Fortran standard. Some compilers accept DOUBLE COMPLEX as well as,
or instead of, COMPLEX* 16, and some accept neither.

132

of in t is long. There is no complex data type and trying to translate complex

objects causes an error.

• Similarly subprograms are given their correct type where appropriate.

• In Fortran and Ratfor REAL and COMPLEX numbers are printed with the correct

double precision format.

• Intrinsic functions are converted to their double precision counterparts (e.g. in

Fortran SIN -+ DSIN etc.).

B.2.2 Intrinsic Functions

A warning is issued if a standard REDUCE function is encountered which does not have

an intrinsic counterpart in the target language (e.g. cot, sec etc.). Output is not halted

in case this is a user-supplied function, either via a REDUCE definition or within a

GENTRAN template.

Where the arguments of intrinsic functions are of the incorrect type they are

converted to the correct one. Where this cannot be done in advance, i.e. they axe

variables whose types have not been declared using the declare function, the correct

coercion function is generated. In other words sin(x) will be converted to SIN(REAL(X))

or DSIN(DBLE(X)), depending on the setting of DOUBLE.

B.2.3 Complex Numbers

With the switch COMPLEX set ON, GENTRAN generates the correct representation

for a complex number in the given precision provided that:

1. The current language supports a complex data type (if it doesn’t then an error

results);

2. The complex quantity is evaluated by REDUCE to give an object of the correct

domain, i.e.

gentran x:*: 1+i;

133

gentran x: = e v a l 1+ i;

z := 1+i;

gen tran x:=: z;

will all generate the correct result, as will their Symbolic mode equivalents, while:

gen tran x := 1+i;

will not.

B.2.4 GETDECS

With this switch ON, the following happens:

1. The indices of loops are automatically declared to be integers.

2. There is a global variable deftype*, which is the default type given to objects.

Subprograms, their parameters, and local scalar objects are automatically assigned

this type (except in the cases below). Note that types such as real*8 or double

precision should not be used as, if DOUBLE is on, then a default type of real will

in fact be double precision anyway.

3. Standard Gentran does not accept scalar (or real, integer) local declarations, or

subprogram declarations of the form:

INTEGER PROCEDURE ...
REAL PROCEDURE ...

Enhanced Gentran however does. Local scalars are assigned the value of deftype*,

and locally declared integers and reals are declared accordingly (though with

consideration of precision if the flag DOUBLE is on). If a procedure declaration

is preceded by either INTEGER or REAL then not only that subprogram but

also its parameters are assigned that type (again with reference to the current

precision).

134

B.2.5 Types

A check is made on output to ensure that all types generated are legal ones. This is

necessary since deftype* can be set to anything. Note that deftype* ought normally to

be given a simple REDUCE type as its value, such as rea/, integer, or complex, since this

will always be translated into the corresponding type in the target language on output.

B.2.6 Modified PERIOD flag

If the PERIOD flag is on then, if you have already declared something to be an integer,

when you come to assign a value to it that value will not automatically be coerced to a

real. This works whatever method has been used to set the type (i.e. if GETDECS is

on this works for integers which have been declared automatically).

B.2.7 KEEPDECS

In the Bath version of Gentran an entry is removed from the symbol table once a

declaration has been generated for it. The KEEPDECS switch (by default OFF) disables

this, allowing a user to check the types of objects which GENTRAN has generated

(useful if they are being generated automatically).

B.2.8 MAKECALLS

A statement like:

gentran x~2+l$

will yield the result:

X**2+l

but, under normal circumstances, a statement like:

gen tran s in (x)$

will yield the result:

CALL DSIN(X)

135

The switch MAKECALLS (OFF by default) will make GENTRAN yield

DSIN(X)

This is useful if you do not know in advance what the form of the expression which you

are translating is going to be.

B.2.9 E

When GENTRAN encounters e it translates it into EXP(l), and when GENTRAN

encounters ex it is translated to EXP(X). This is then translated into the correct

statement in the given language and precision. Note that it is still possible to do

something like:

gentran e:=:e;

and get the correct result.

B.3 Private Gentran Features

Some code has been added to procedure lispcodeexp to spot the occurrence of certain

variable names such as P I for IRENA.

B.4 Additions to the Code Optimiser

These are changes to the code optimiser written by Barbara Gates.

B.4.1 Domain elements

The optimiser does not attempt to manipulate domain elements, e.g. to decide whether

one divides another.

B .4.2 DECLARECSENAM ES

With this switch ON the new variables generated for the common sub-expressions found

by the optimiser are placed in the GENTRAN symbol table at the current position and

declared to be of type tempvartype*. It is ON by default.

136

B .4 .3 O P T IM IS E W A IT

This feature is essential for using the optimiser with IRENA. When the switch

OPTIM ISEW AIT is set ON, GENTRAN does not optimise or evaluate any expressions

it is given, but instead stacks them. When the user issues a call to the function Optimise-

Stack all the stacked expressions are passed to the optimiser and the results are then

processed by GENTRAN and returned. A typical piece of code which uses this is:

on optimisewait;
for i:*l:n do sym!-gentran *(lrsetq (f i) (getval mkid ’f i));
optimise!-stack();

Here we have a series of expressions fi which we wish to evaluate and assign to the

elements of the matrix /. The effect of this is the same as if we had gone:

gentran «
f(i) getval *fl;
f(2) getval »f2;

f(n) getval ’fn;
» ;

though of course in this case we would need to know the value of n in advance.

137

A ppendix C

M atrix Representation in

IRENA.

All IRENA matrices are represented as lists of lists. In most cases, the inner lists

represent all rows (or partial rows) in the natural order. For strict upper (lower)

triangular matrices, the last (first) inner list is empty, although this empty list may

optionally be omitted, where there is no possibility of confusion between strict upper

and lower triangular matrices (i.e. for strict triangular matrices whose order is more

than 2). In general we do not differentiate between upper and lower forms, where the

form can be detected automatically. A full list of IRENA matrix types appears in tables

C.1-C.3. There is, additionally, an IRENA vector type, represented as a single list.

Type Representation
band (fixed bandwidth) each inner list specifies a “diagonal”
symmetric band (fixed bandwidth) only the superdiagonal and diagonal (or

diagonal and subdiagonal) lists

Table C.l: Matrices with diagonal lists: uppermost diagonal first throughout

138

Type Representation
full each inner list specifies a row
symmetric each inner list specifies that part of a row for which

i > j or i < j
skew-symmetric each inner list specifies that part of a row for which

i > j or i < j
Hermitian each inner list specifies that part of a row for which

i > j or i < j
strict upper triangular each inner list specifies that part of a row for which

i < j
upper triangular each inner list specifies that part of a row for which

i < j
upper Hessenberg each inner list specifies that part of a row for which

i < j + 1
strict lower triangular each inner list specifies that part of a row for which

i > j
lower triangular each inner list specifies that part of a row for which

i > j
lower Hessenberg each inner list specifies that part of a row for which

i> 3 - 1
general band
(variable bandwidth)

each inner list specifies that part of a row lying
within the envelope, the list being packed out with
zeroes for symmetry about the diagonal

symmetric band
(variable bandwidth)

each inner list specifies that part of a row, lying
within the envelope, for which t > j

| (variable bandwidth) | within the envelope, for which i > j

Table C.2: Matrices with row lists: uppermost row first throughout (i represents the
row, and j the column index).

139

Type Representation
sparse 3 inner lists, each in same arbitrary order, containing:

first list — row indices of non-zero elements
second list — column indices of non-zero elements
third list — non-zero elements

symmetric sparse as sparse, restricted to either upper or lower triangle.
An additional representation of sparse matrices is allowed, since, in some
circumstances, entering these would be less error prone:
long sparse a list of triples {r,c,v} representing the row index, column

index and value, respectively, of the non-zero elements
(in arbitrary order)

symmetric long sparse as long sparse, restricted to either upper or lower triangle

Table C.3: Sparse matrices

140

A pp en d ix D

IR EN A CONSTANTS

There are a number of routines in the NAG Library which determine various system

dependent quantities. They can be used in IRENA (either interactively while values

are being given, or in the defaults files) through simple mnemonics. As explained in

§ 3.6.1 this causes proper calls and assignments to be generated in the FORTRAN. The

following is a complete list of those in the current system, routines which have been

superseded but retained in the Library are not included.

141

Name NAG Routine Purpose

pi

fpbase

fpprec

fpemin

fpemax

fpmds

fpeps

fptiny

fphuge

fprnge

scmaxa

maxint

fpdigs

asetsz

ufevnt

defner

defnad

X01AAF The value of 7r.

X02BHF The base of the computer’s arithmetic.

X02BJF The precision.

X02BKF The minimum exponent in floating point numbers.

X02BLF The maximum exponent in floating point numbers.

X02DJF Returns .TRUE, if rounding is always correct in the

final bit, .FALSE, otherwise.

X02AJF The smallest number e such that 1 + e > 0.

X02AKF The smallest positive floating point number.

X02ALF The largest positive floating point number.

X02AMF The smallest positive floating point number z such

that, for any x in [2, 1/ 2], the following may be

“safely” calculated:

»loS(*) * exp(log(z)) ,

X02AHF The largest number for which SIN and COS return

a result with some meaningful accuracy.

X02BBF The largest positive integer.

X02BEF The number of decimal digits which can be relied

upon in floating point numbers.

X02CAF The estimated active set size in a paged

environment, otherwise zero.

X02DAF Returns . FALSE. if underflowing numbers are set

to zero, otherwise . TRUE..

X04AAF The FORTRAN unit number for advisory

messages.

X04ABF The FORTRAN unit number for error messages.

142

A pp en d ix E

The ARC Predicates

This appendix lists the current predicates for the various routines in the database. As

can be seen, two of the routines (D01BAF and D01ARF) appear several times to handle

several situations.

D01ARF

T -P R E D IC A T E S : SMOOTH-INTEGRAND

F -P R E D IC A T E S: CONTINUO US-EXCEPT- W1

CONTINUO US-EXCEPT- W2

REASONABLY-SMOOTH-EXCEPT- WEIGHT

CONTINUO US-EXCEPT-A T-END-POINTS

D01ARF

T -P R E D IC A T E S : SMOOTH-EXCEPT- W1

F -P R E D IC A T E S: CONTINUO US-EXCEPT- W1

CONTINUO US-EXCEPT- W2

REASONABLY-SMOOTH-EXCEPT- WEIGHT

CONTINUO US-EXCEPT-A T-END-POINTS

143

D01ARF

T -P R E D IC A T E S:

F -P R E D IC ATES:

DOIBAF

T -P R E D IC A T E S:

F -P R E D IC ATES:

DOIBAF

T -P R E D IC A T E S:

F -P R E D IC ATES:

DOIBAF

T -P R E D IC A T E S:

F -P R E D IC ATES:

D01BDF

T -P R E D IC A T E S:

F -P R E D IC ATES:

SMOOTH-EXCEPT- W2

CONTINUO US-EXCEPT- Wl

CONTINUOUS-EXCEPT- W2

REASONABLY-SMOOTH-EXCEPT- WEIGHT

CONTINU O US-EXCEPT-A T-END-POINTS

SMOOTH-INTEGRAND

CONTINUO US-EXCEPT- Wl

CONTINUO US-EXCEPT- W2

REASONABLY-SMOOTH-EXCEPT- WEIGHT

CONTINUO US-EXCEP T-A T-END-POINTS

SMOOTH-EXCEPT- W l

CONTINUO US-EXCEPT- Wl

CONTINUO US-EXCEPT- W2

REASONABLY-SMOOTH-EXCEPT- WEIGHT

CONTINUO US-EXCEPT-A T-END-POINTS

SMOOTH-EXCEPT- W2

CONTINUO US-EXCEPT- W l

CONTINUO US-EXCEPT- W2

REASONABLY-SMOOTH-EXCEPT- WEIGHT

CONTINUO US-EXCEPT-A T-END-POINTS

REASONABLY-SMOOTH-INTEGRAND

CONTINUO US-EXCEPT- Wl

CONTINUO US-EXCEPT- W2

REASONABLY-SMOOTH-EXCEPT- WEIGHT

CONTINUO US-EXCEPT-A T-END-POINTS

144

D01ALF

T -P R E D IC A T E S:

F -P R E D IC ATES:

D01APF

T -P R E D IC A T E S:

F -P R E D IC ATES:

D01AQF

T -P R E D IC A T E S:

F -P R E D IC ATES:

DOIANF

T -P R E D IC A T E S:

F -P R E D IC ATES:

KNO WN-SING ULARITIES

SMOO TH-INTEGRAND

SMOO TH-EXCEPT- W l

SMOOTH-EXCEPT- W2

REASONABLY-SMOOTH-INTEGRAND

REASONABLY-SMOOTH-EXCEPT-WEIGHT

CONTINUO US-EXCEPT- Wl

CONTINUO US-EXCEPT- W2

REASONABLY-SMOOTH-EXCEPT- WEIGHT

CONTINUO US-EXCEPT- W2

SMOOTH-INTEGRAND

SMOOTH-EXCEPT- W l

SMOOTH-EXCEPT- W2

REASONABLY-SMOOTH-INTEGRAND

CONTINUOUS

CONTINUO US-EXCEPT- Wl

REASONABLY-SMOO TH-EXCEPT- WEIGHT

CONTINUO US-EXCEPT-A T-END-POINTS

REASONABLY-SMOOTH-EXCEPT- WEIGHT

SMOOTH-INTEGRAND

SMOOTH-EXCEPT- W l

SMOOTH-EXCEPT- W2

CONTINUO US-EXCEPT- Wl

CONTINUO US-EXCEPT- W2

CONTINUO US-EXCEPT-A T-END-POINTS

KNO WN-SING ULARITIES

145

D01AKF

T -P R E D IC A T E S:

F -P R E D IC A T E S:

D01AUF

T -P R E D IC A T E S:

F -P R E D IC ATES:

DOIAHF

T -P R E D IC A T E S:

F -P R E D IC ATES:

DOIAJF

T -P R E D IC A T E S:

F -P R E D IC ATES:

DOIATF

T -P R E D IC A T E S:

F -P R E D IC ATES:

CONTINUOUS

CONTINUO US-EXCEPT- Wl

CONTINUO US-EXCEPT- W2

SMOOTH-EXCEPT- W l

SMOOTH-EXCEPT- W2

REASONABLY-SMOOTH-EXCEPT- WEIGHT

CONTINUO US-EXCEPT-A T-END-POINTS

KNO WN-SING ULARITIES

VECTOR-PROCESSOR

CONTINUOUS

VECTOR-PROCESSOR

CONTINUOUS-EXCEPT- Wl

CONTINUO US-EXCEPT- W2

REASONABLY-SMOOTH-EXCEPT- WEIGHT

CONTINUO US-EXCEPT-A T-END-POINTS

KNO WN-SING ULA RITIES

CONTINUO US-EXCEPT-AT-END-POINTS

None

None

VECTOR-PROCESSOR

CONTINUO US-EXCEPT-A T-END-POINTS

VECTOR-PROCESSOR

CONTINUO US-EXCEPT-A T-END-POINTS

146

A pp en d ix F

ARC Examples

This appendix sets out a number of examples showing ARC selecting a variety of

routines.

147

11: integrate(integrand(x)*log(x)tregion*[0:1]);
* VECTOR-PROCESSOR is NIL
— > The following routines are being pruned: (D01ATF D01AUF)
— > The following routines have been matched: (D01AJF D01AKF)
* SM00TH-EXCEPT-W2 is NIL
— > The following routines are being pruned: (DOIBAF D01ARF)
— > The following routines have been matched: (D01AKF D01ANF D01AQF
D01ALF)
* SM00TH-EXCEPT-W1 is NIL
— > The following routines are being pruned: (DOIBAF D01ARF)
— > The following routines have been matched: (D01AKF D01ANF D01AQF
D01ALF)
* SMOOTH-INTEGRAND is NIL
— > The following routines are being pruned: (DOIBAF D01ARF)
— > The following routines have been matched: (D01ANF D01AQF D01ALF)
* CONTINUOUS is NIL
— > The following routines are being pruned: (D01AKF)
— > The following routines have been matched: (D01AQF)
* KNOWN-SINGULARITIES is T
— > The following routines are being pruned: (D01ANF)
— > The following routines have been matched: (D01ALF)
* CONTINUOUS-EXCEPT-AT-END-POINTS is T
— > The following routines are being pruned: (D01AJF D01AQF D01BDF)
— > The following routines have been matched: (D01AHF)
* C0NTINU0US-EXCEPT-W2 is NIL
— > The following routines are being pruned: NIL
— > The following routines have been matched: (D01APF)
* CONTINUOUS-EXCEPT-W1 is NIL
— > The following routines are being pruned: (D01APF)
— > The following routines have been matched: NIL
* REASONABLY-SMOOTH-EXCEPT-WEIGHT is NIL
— > The following routines are being pruned: NIL
— > The following routines have been matched: (D01ALF)
* REASONABLY-SMOOTH-INTEGRAND is NIL
— > The following routines are being pruned: NIL
— > The following routines have been matched: (D01ALF)
*** The recommended routines are :

(D01ALF D01AHF)
* Now calling routine D01ALF
 > The call terminated unsuccessfully due to an IEEE exception.
* Now calling routine D01AHF
■CRELERR, EVALUATIONS, INTEGRAL}
12: integral;
- 0.999999790039155

148

13: integrate(integrand(x)=l/log(sin(log(x))),region*[0:1]);
* VECTOR-PROCESSOR is NIL
— > The following routines are being pruned: (D01ATF D01AUF)
— > The following routines have been matched: (D01AJF D01AKF)
* SM00TH-EXCEPT-W2 is NIL
— > The following routines are being pruned: (DOIBAF D01ARF)
— > The following routines have been matched: (D01AKF D01ANF D01AQF
D01ALF)
* SMOOTH-EXCEPT-W1 is NIL
— > The following routines are being pruned: (DOIBAF D01ARF)
— > The following routines have been matched: (D01AKF D01ANF D01AQF
D01ALF)
* SMOOTH-INTEGRAND is NIL
— > The following routines are being pruned: (DOIBAF D01ARF)
— > The following routines have been matched: (D01ANF D01AQF D01ALF)
* CONTINUOUS is NIL
— > The following routines are being pruned: (D01AKF)
— > The following routines have been matched: (D01AQF)
* KNOWN-SINGULARITIES is NIL
— > The following routines are being pruned: (D01ALF)
— > The following routines have been matched: (D01ANF)
* CONTINUOUS-EXCEPT-AT-END-POINTS is NIL
— > The following routines are being pruned: (D01AHF)
— > The following routines have been matched: (D01AJF D01ANF D01AQF
D01BDF)
* REASONABLY-SMOOTH-EXCEPT-WEIGHT is NIL
— > The following routines are being pruned: (D01ANF)
— > The following routines have been matched: (D01AQF D01APF D01BDF)
* C0NTINU0US-EXCEPT-W2 is NIL
— > The following routines are being pruned: (D01AQF)
— > The following routines have been matched: (D01APF D01BDF)
* CONTINUOUS-EXCEPT-W1 is NIL
— > The following routines are being pruned: (D01APF)
— > The following routines have been matched: (D01BDF)
* REASONABLY-SMOOTH-INTEGRAND is NIL
— > The following routines are being pruned: (D01BDF)
— > The following routines have been matched: NIL
*** The recommended routines are :

(D01AJF)
* Now calling routine D01AJF
 > The call terminated unsuccessfully due to an IEEE exception.
**** This integration has been unsuccessful. The following

routine was tried:
(D01AJF)

149

14: integrate(integrand(x)*sin(x)/x,region*[-1:1]);
* VECTOR-PROCESSOR is NIL
— > The following routines are being pruned: (D01ATF D01AUF)
— > The following routines have been matched: (D01AJF D01AKF)
* SM00TH-EXCEPT-W2 is NIL
— > The following routines are being pruned: (DOIBAF D01ARF)
— > The following routines have been matched: (D01AKF D01ANF D01AQF
D01ALF)
* SMOOTH-EXCEPT-W1 is NIL
— > The following routines are being pruned: (DOIBAF D01ARF)
— > The following routines have been matched: (D01AKF D01ANF D01AQF
D01ALF)
* SMOOTH-INTEGRAND is NIL
— > The following routines are being pruned: (DOIBAF D01ARF)
— > The following routines have been matched: (D01ANF D01AQF D01ALF)
* CONTINUOUS is NIL
— > The following routines are being pruned: (D01AKF)
— > The following routines have been matched: (D01AQF)
* KNOWN-SINGULARITIES is T
— > The following routines are being pruned: (D01ANF)
— > The following routines have been matched: (D01ALF)
* CONTINUOUS-EXCEPT-AT-END-POINTS is NIL
— > The following routines are being pruned: (D01AHF)
— > The following routines have been matched: (D01AJF D01AQF D01BDF)
* C0NTINU0US-EXCEPT-W2 is NIL
— > The following routines are being pruned: (D01AQF)
— > The following routines have been matched: (D01APF D01BDF)
* CONTINUOUS-EXCEPT-W1 is NIL
— > The following routines are being pruned: (D01APF)
— > The following routines have been matched: (D01BDF)
* REASONABLY-SMOOTH-INTEGRAND is NIL
— > The following routines are being pruned: (D01BDF)
— > The following routines have been matched: (D01ALF)
* REASONABLY-SMOOTH-EXCEPT-WEIGHT is NIL
— > The following routines are being pruned: NIL
— > The following routines have been matched: (D01ALF)
*** The recommended routines are :

(D01ALF D01AJF)
* Now calling routine D01ALF
{ALIST,BLIST,ELIST,RLIST,ABSERR,INTEGRAL,INTERVALS}
15: integral;
1.89216614073437

150

16: integrate(integrand(x)«sin(20*x)*(x**2-l)fregion*[0:5]);
* VECTOR-PROCESSOR is NIL
— > The following routines are being pruned: (D01ATF D01AUF)
— > The following routines have been matched: (D01AJF D01AKF)
* SM00TH-EXCEPT-W2 is NIL
— > The following routines are being pruned: (DOIBAF D01ARF)
— > The following routines have been matched: (D01AKF D01ANF D01AQF
D01ALF)
* SMOOTH-EXCEPT-W1 is NIL
— > The following routines are being pruned: (DOIBAF D01ARF)
— > The following routines have been matched: (D01AKF D01ANF D01AQF
D01ALF)
* SMOOTH-INTEGRAND is NIL
— > The following routines are being pruned: (DOIBAF D01ARF)
— > The following routines have been matched: (D01ANF D01AQF D01ALF)
* CONTINUOUS is T
— > The following routines are being pruned: (D01AQF)
— > The following routines have been matched: (D01AKF)
* KNOWN-SINGULARITIES is NIL
— > The following routines are being pruned: (D01ALF)
— > The following routines have been matched: (D01AKF D01ANF)
* CONTINUOUS-EXCEPT-AT-END-POINTS is NIL
— > The following routines are being pruned: (D01AHF)
— > The following routines have been matched: (D01AJF D01AKF D01ANF
D01BDF)
* REASONABLY-SMOOTH-EXCEPT-WEIGHT is T
— > The following routines are being pruned: (D01AKF D01APF D01BDF)
— > The following routines have been matched: (D01ANF)
* C0NTINU0US-EXCEPT-W2 is NIL
— > The following routines are being pruned: NIL
— > The following routines have been matched: (D01ANF)
* CONTINUOUS-EXCEPT-W1 is NIL
— > The following routines are being pruned: NIL
— > The following routines have been matched: (D01ANF)
*** The recommended routines are :

(D01ANF D01AJF)
* Now calling routine D01ANF
{ALIST, BLIST, ELIST ,RLIST, ABSERR, TRANSFORM, INTERVALS}
17: transform;
- 1.09747620805489

151

18: integrate(integrand(x)=x/(x-1).region*[0:2]);
* VECTOR-PROCESSOR is NIL
— > The following routines are being pruned: (D01ATF D01AUF)
— > The following routines have been matched: (D01AJF D01AKF)
* SM00TH-EXCEPT-W2 is NIL
— > The following routines are being pruned: (DOIBAF D01ARF)
— > The following routines have been matched: (D01AKF D01ANF D01AQF
D01ALF)
* SMOOTH-EXCEPT-W1 is NIL
— > The following routines are being pruned: (DOIBAF D01ARF)
— > The following routines have been matched: (D01AKF D01ANF D01AQF
D01ALF)
* SMOOTH-INTEGRAND is NIL
— > The following routines are being pruned: (DOIBAF D01ARF)
— > The following routines have been matched: (D01ANF D01AQF D01ALF)
* CONTINUOUS is NIL
— > The following routines are being pruned: (D01AKF)
— > The following routines have been matched: (D01AQF)
* KNOWN-SINGULARITIES is T
— > The following routines are being pruned: (D01ANF)
— > The following routines have been matched: (D01ALF)
* CONTINUOUS-EXCEPT-AT-END-POINTS is NIL
— > The following routines are being pruned: (D01AHF)
— > The following routines have been matched: (D01AJF D01AQF D01BDF)
* C0NTINU0US-EXCEPT-W2 is T
— > The following routines are being pruned: (D01APF D01BDF)
— > The following routines have been matched: (D01AQF)
* CONTINUOUS-EXCEPT-Wi is NIL
— > The following routines are being pruned: NIL
— > The following routines have been matched: (D01AQF)
* REASONABLY-SMOOTH-EXCEPT-WEIGHT is NIL
— > The following routines are being pruned: NIL
— > The following routines have been matched: (D01AQF D01ALF)
* REASONABLY-SMOOTH-INTEGRAND is NIL
— > The following routines are being pruned: NIL
— > The following routines have been matched: (D01AQF DOiALF)
*** The recommended routines are :

(D01AQF DOIALF D01AJF)
* Now calling routine D01AQF
{ALIST,BLIST,ELIST,RLIST,ABSERR,TRANSFORM fINTERVALS}
19: transform;
2.0

152

21: off irenalink;

22: integrate(integrand(x)=x*log(x),region=[0:1],vector!-processor);
* VECTOR-PROCESSOR is (VECTOR-PROCESSOR)
— > The following routines are being pruned: (D01AJF D01AKF)
— > The following routines have been matched: (D01ATF D01AUF)
* SM00TH-EXCEPT-W2 is NIL
— > The following routines are being pruned: (DOIBAF D01ARF)
— > The following routines have been matched: (D01ANF D01AQF DOIALF)
* SM00TH-EXCEPT-W1 is NIL
— > The following routines are being pruned: (DOIBAF D01ARF)
— > The following routines have been matched: (D01ANF D01AQF DOIALF)
* SMOOTH-INTEGRAND is NIL
— > The following routines are being pruned: (DOIBAF D01ARF)
— > The following routines have been matched: (D01ANF D01AQF DOIALF)
* CONTINUOUS is T
— > The following routines are being pruned: (D01AQF)
— > The following routines have been matched: (D01AUF)
* KNOWN-SINGULARITIES is NIL
— > The following routines are being pruned: (DOIALF)
— > The following routines have been matched: (D01AUF D01ANF)
* CONTINUOUS-EXCEPT-AT-END-POINTS is NIL
— > The following routines are being pruned: (DOIAHF)
— > The following routines have been matched: (D01ATF D01AUF D01ANF
D01BDF)
* REAS ON ABLY-SMOOTH-EXCEPT-WEIGHT is NIL
— > The following routines axe being pruned: (D01ANF)
— > The following routines have been matched: (D01AUF D01APF D01BDF)
* CONTINUOUS-EXCEPT-W1 is NIL
— > The following routines are being pruned: (D01APF)
— > The following routines have been matched: (D01AUF D01BDF)
* C0NTINU0US-EXCEPT-W2 is NIL
— > The following routines are being pruned: NIL
— > The following routines have been matched: (D01AUF D01BDF)
* REASONABLY-SMOOTH-INTEGRAND is NIL
— > The following routines are being pruned: (D01BDF)
— > The following routines have been matched: NIL

{DO1AUF,DO1ATF}

153

23: integrate(integrand(x)*l/cos(log(x)), region* [0: pi],
23: vector!-processor);
* VECTOR-PROCESSOR is (VECTOR-PROCESSOR)
— > The following routines are being pruned: (D01AJF D01AKF)
— > The following routines have been matched: (D01ATF D01AUF)
* SM00TH-EXCEPT-W2 is NIL
— > The following routines are being pruned: (DOIBAF D01ARF)
— > The following routines have been matched: (D01ANF D01AQF DOIALF)
* SMOOTH-EXCEPT-W1 is NIL
— > The following routines are being pruned: (DOIBAF D01ARF)
— > The following routines have been matched: (D01ANF D01AQF DOIALF)
* SMOOTH-INTEGRAND is NIL
— > The following routines are being pruned: (DOIBAF D01ARF)
— > The following routines have been matched: (D01ANF D01AQF DOIALF)
* CONTINUOUS is NIL
— > The following routines are being pruned: (D01AUF)
— > The following routines have been matched: (D01AQF)
* KNOWN-SINGULARITIES is NIL
— > The following routines are being pruned: (DOIALF)
— > The following routines have been matched: (D01ANF)
* CONTINUOUS-EXCEPT-AT-END-POINTS is NIL
— > The following routines are being pruned: (D01AHF)
— > The following routines have been matched: (D01ATF D01ANF D01AQF
D01BDF)
* REAS ON ABLY-SMO OTH-EXCEPT-WEIGHT is NIL
— > The following routines are being pruned: (D01ANF)
— > The following routines have been matched: (D01AQF D01APF D01BDF)
* C0NTINU0US-EXCEPT-W2 is NIL
— > The following routines are being pruned: (D01AQF)
— > The following routines have been matched: (D01APF D01BDF)
* CONTINUOUS-EXCEPT-W1 is NIL
— > The following routines are being pruned: (DOiAPF)
— > The following routines have been matched: (D01BDF)
* REASONABLY-SMOOTH-INTEGRAND is NIL
— > The following routines are being pruned: (DOiBDF)
— > The following routines have been matched: NIL

{D01ATF}

154

26: integrate(integrand(x)=x“2*log(x),region=[0:1]);
* VECTOR-PROCESSOR is NIL
— > The following routines are being pruned: (D01ATF D01AUF)
— > The following routines have been matched: (D01AJF D01AKF)
* SM00TH-EXCEPT-W2 is NIL
— > The following routines are being pruned: (DOIBAF D01ARF)
— > The following routines have been matched: (D01AKF D01ANF D01AQF
DOIALF)
* SM00TH-EXCEPT-W1 is NIL
— > The following routines are being pruned: (DOIBAF DOiARF)
— > The following routines have been matched: (D01AKF D01ANF D01AQF
DOIALF)
* SMOOTH-INTEGRAND is T
— > The following routines are being pruned: (D01ANF D01AQF DOIALF)
— > The following routines have been matched: (DOIBAF DOIARF)
* CONTINUOUS-EXCEPT-AT-END-POINTS is NIL
— > The following routines are being pruned: (D01AHF)
— > The following routines have been matched: (D01AJF D01AKF D01BDF
DOIBAF DOIARF)
* CONTINUOUS-EXCEPT-W1 is NIL
— > The following routines are being pruned: (D01APF)
— > The following routines have been matched: (DOIAKF D01BDF DOIBAF
DOIARF)
* KNOWN-SINGULARITIES is NIL
— > The following routines are being pruned: NIL
— > The following routines have been matched: (DOIAKF)
* CONTINUOUS is T
— > The following routines are being pruned: NIL
— > The following routines have been matched: (DOIAKF)
* REASONABLY-SMOOTH-INTEGRAND is T
— > The following routines are being pruned: NIL
— > The following routines have been matched: (D01BDF)
* REASONABLY-SMOOTH-EXCEPT-WEIGHT is NIL
— > The following routines are being pruned: NIL
— > The following routines have been matched: (DOIAKF D01BDF DOIBAF
DOIARF)
* C0NTINU0US-EXCEPT-W2 is NIL
— > The following routines are being pruned: NIL
— > The following routines have been matched: (DOIAKF D01BDF DOIBAF
DOIARF)
*** The recommended routines are :

(DOIAKF D01BDF DOIBAF DOIARF D01AJF)
* Now calling routine DOIAKF
{ALIST,BLIST,ELIST,RLIST,ABSERR,INTEGRAL,INTERVALS}
27: integral;
- 0.11111111111105

155

28: integrate(integrand(x)*abs(x-l/2)~3*sin(x),region=[0:1]);
* VECTOR-PROCESSOR is NIL
— > The following routines are being pruned: (D01ATF D01AUF)
— > The following routines have been matched: (D01AJF DOIAKF)
* SM00TH-EXCEPT-W2 is NIL
— > The following routines are being pruned: (DOIBAF DOIARF)
— > The following routines have been matched: (DOIAKF D01ANF D01AQF
DOiALF)
* SMOOTH-EXCEPT-W1 is T
— > The following routines are being pruned: (DOIAKF D01ANF D01AQF
DOIALF)
— > The following routines have been matched: (DOIBAF DOIARF)
* CONTINUOUS-EXCEPT-AT-END-POINTS is NIL
— > The following routines are being pruned: (D01AHF)
— > The following routines have been matched: (D01AJF D01BDF DOIBAF
DOIBAF DOIARF DOIARF)
* C0NTINU0US-EXCEPT-W1 is NIL
— > The following routines are being pruned: (D01APF)
— > The following routines have been matched: (D01BDF DOIBAF DOIBAF
DOIARF DOIARF)
* SMOOTH-INTEGRAND is NIL
— > The following routines are being pruned: (DOIBAF DOIARF)
— > The following routines have been matched: NIL
* REASONABLY-SMOOTH-INTEGRAND is NIL
— > The following routines are being pruned: (D01BDF)
— > The following routines have been matched: NIL
* REASONABLY-SMOOTH-EXCEPT-WEIGHT is NIL
— > The following routines are being pruned: NIL
— > The following routines have been matched: (DOIBAF DOIARF)
* C0NTINU0US-EXCEPT-W2 is NIL
— > The following routines are being pruned: NIL
— > The following routines have been matched: (DOIBAF DOIARF)
*** The recommended routines are :

(DOIBAF DOIARF D01AJF)
* Now calling routine DOIBAF
{INTEGRAL}
29: integral;
0.00171911498967147

156

Bibliography

[ANSI 1978] ANSI. American National Standard Programming Language Fortran.

Technical Report ANS X3.9, American National Standards Institute, 1978.

[ANSI 1989] ANSI. Fortran 8x. Technical Report X3J3/S8.112, American National

Standards Institute, June 1989.

[Barbier et al.] C. Barbier, P. Clark, P. Bettess, and J. Bettess. Automatic generation

of shape functions for finite element analysis using REDUCE. Submitted to

International Journal for Numerical Methods in Engineering.

[Barnes & Padget 1990] A. Barnes and J. Padget. Univariate Power Series Expansions

In REDUCE. In Proceedings o f ISSAC '90, 1990.

[Barton et al. 1971] D. R. Barton, I. M. Willers, and R. V. M. Zahar. The Automatic

Solution of Systems of Ordinary Differential Equations by the Method of

Taylor Series. Computer Journal, 14:243-248, 1971.

[Bennett et al. 1988] J. P. Bennett, J. H. Davenport, and H. M. Sauro. Solution of

Some Equations in Biochemistry. Technical Report 88-12, University of Bath,

June 1988.

[Boisvert et al. 1985] Ronald F. Boisvert, Sally E. Howe, and David K. Kahaner.

GAMS: A Framework for the Management of Scientific Software. ACM

Transactions on Mathematical Software, ll(4):313-355, December 1985.

157

[Bradford et al. 1986] R. J. Bradford, A. C. Hearn, J. A. Padget, and E. Schriifer.

Enlarging the REDUCE Domain of Computation. In Proceedings o f SYM SAC

’86, pages 100-106, 1986.

[Broughan 1986] Kevin A. Broughan. A Symbolic Numeric Interface for the NAG

Library. The NAG Newsletter, (2):16-24, 1986.

[Broughan 1987] Kevin A. Broughan. Naglink — A Working Symbolic / Numeric

Interface. In B. Ford and F. Chatelin, editors, Problem Solving Environments

for Scientific Computing, pages 343-347. North Holland, 1987.

[Davenport 1985] James H. Davenport. The Symbolic and Numeric Manipulation of

Integrals. In Lecture Notes in Computer Science, volume 235, pages 168-180.

Springer-Verlag, 1985.

[Davenport et al. 1988] James H. Davenport, Yves Siret, and E. Tournier. Computer

Algebra. Academic Press, London, 1988.

[Dewar & Richardson 1990] Michael C. Dewar and Michael G. Richardson. Reconciling

Symbolic and Numeric Computation in a Practical Setting. In Proceedings of

DISCO ’90, pages 195-204. Springer-Verlag, 1990.

[Dewar 1989] Michael C. Dewar. IRENA —An Integrated Symbolic and Numerical

Computation Environment. In Proceedings of ISSAC 1989, pages 171-179.

ACM, 1989.

[Fisher 1990a] D. L. Fisher. Applications of Computer Algebra to Enzyme Analysis.

Technical Report 90-32, University of Bath, February 1990.

[Fisher 1990b] D. L. Fisher. Novel Computer Techniques in Enzyme Kinetics. Technical

Report 90-41, University of Bath, August 1990.

[Fitch 1979] J. P. Fitch. The application of symbolic algebra to physics — a case of

creeping flow. In Proceedings of EURO SAM ’79, pages 30-41. Springer-Verlag,

1979.

158

[Fitch 1985] J. P. Fitch. Solving Algebraic Problems with REDUCE. Journal of

Symbolic Computation, l(l):211-227, 1985.

[Fitch 1990] J. P. Fitch. The algebraic - numeric interface. Computer Physics

Communications, (61):22-33, 1990.

[Gaffney & Wooten 1983] P. W. Gaffney and J. W. Wooten. NITPACK: An Interactive

Tree Package. ACM Transactions on Mathematical Software, 9(4):395-417,

December 1983.

[Galway et al. 1987] W. Galway, M. L. Griss, B. Morrison, and B. Othmer. The PSL

3.4 User’s Manual. University of Utah, 1987.

[Gates & Wang 1984] Barbara L. Gates and Paul S. Wang. A LISP-based RATFOR

Code Generator. In Proceedings of the 1984 MACSYMA User’s Conference,

1984.

[Gates 1985] Barbara L. Gates. GENTRAN: An Automatic Code Generation Facility

for REDUCE. ACM SIGSAM Bulletin, 19(3):24-42, August 1985.

[Gates 1986] Barbara L. Gates. A Numerical Code Generation Facility for REDUCE.

In Proceedings o f SYM SAC 1986, pages 94-99. ACM, 1986.

[Gates 1987] Barbara L. Gates. The GENTRAN User’s Manual: REDUCE Version.

The RAND Corporation, 1987.

[Gomez 1990] Claude Gomez. MACROFORT: A FORTRAN Code Generator for

Maple. Technical Report 119, Institut National de Recherche en Informatique

et en Automatique, May 1990.

[Hazel & O’Donohue 1980] P. Hazel and M. R. O’Donohue. HELP Numerical: The

Cambridge interactive documentation system for numerical methods. In

Production and Assessment o f Numerical Software, pages 367-382. Academic

Press, 1980.

[Hearn 1987] A. H. Hearn. The REDUCE User’s Manual. The RAND Corporation,

1987.

159

[Hulshof 1983] B. J. A. Hulshof. COMPRESS. The RAND Corporation, 1983.

[Kameny 1990] Stanley L. Kameny. The REDUCE Root Finding Package. The RAND

Corporation, 1990.

[Kant et al. 1990] E. Kant, F. Daube, B. MacGregor, and J. Wald. MathCode: A

Code Generation Package for Mathematica. Technical report, Schlumberger

Technologies Corporation, September 1990.

[Kornerup & Matula 1979] P. Kornerup and D. W. Matula. Approximate Rational

Arithmetic Systems: Analysis of Recovery of Simple Fractions During

Expression Evaluation. In Proceedings of EUROSAM ’79, pages 383-397.

Springer-Verlag, 1979.

[Mclsaac 1990] Kevin Mclsaac. PM — a REDUCE Pattern Matcher. The RAND

Corporation, 1990.

[Mutrie et al. 1987] Mark P. W. Mutrie, Bruce W. Char, and Richard H. Bartels.

Expression Optimization Using High-Level Knowledge. In Proceedings of

EUROCAL ’87, pages 64-70. Springer-Verlag, 1987.

[NAG LTD. 1989] NAG LTD. The KASTLE System. Technical report, The FOCUS

Consortium, April 1989.

[NAG LTD. 1990] NAG LTD. The NAG Fortran Library Manual — Mark 1J, 1990.

[Ng 1979] Edward W. Ng. Symbolic-Numeric Interface: A Review. In Proceedings of

EUROSAM ’79, pages 330-345. Springer-Verlag, 1979.

[Punjani & Broughan 1990] Minaz Punjani and Kevin A. Broughan. SENAC —

Computer based Algebra and NAG. ULCC News, pages 12-15, October 1990.

[Richardson 1988] Michael G. Richardson. Suggested Representation of Matrices in

IRENA. Private Communication, July 1988.

[Sasaki 1979] T. Sasaki. An Arbitrary Precision Real Arithmetic Package in REDUCE.

In Proceedings o f EUROSAM ’79, pages 358-368. Springer-Verlag, 1979.

[Schou & Broughan 1989] Wayne C. Schou and Kevin A. Broughan. The Risch

Algorithms of MACSYMA and SENAC. ACM SIGSAM Bulletin, 23(3):19-

22, 1989.

[Schulze & Cryer 1986] Klaus Schulze and Colin W. Cryer. NAXPERT: A Prototype

Expert System for Numerical Analysis. Technical Report 7/86 1, Institut fur

Numerische und instrumentelle Mathematik, November 1986.

[Schulze &: Cryer 1988] Klaus Schulze and Colin W. Cryer. NAXPERT: A Prototype

Expert System for Numerical Software. SIAM Journal of Scientific and

Statistical Computation, 9(3), May 1988.

[van Hulzen 1984] J. A. van Hulzen. Code optimization by symbolic processing. In

NGI-SION Symposium, pages 194-203, 1984.

[van Hulzen et al. 1989] J. A. van Hulzen, B. J. A. Hulshof, B. L. Gates, and M. C. van

Heerwaarden. A Code Optimization Package for REDUCE. In Proceedings of

ISSAC 1989, pages 163-170. ACM, 1989.

[Wang 1985] Paul S. Wang. Taking Advantage of Symmetry in the Automatic

Generation of Numerical Programs for Finite Element Analysis. In Proceedings

of EUROCAL ’85, pages 572-582. Springer-Verlag, 1985.

[Wang 1986] Paul S. Wang. FINGER: A Symbolic System for Automatic Generation

of Numerical Programs in Finite Element Analysis. Journal of Symbolic

Computation, 2:305-316, 1986.

[Weerawarana & Wang 1989] Sanjiva Weerawaxana and Paul S. Wang. GENCRAY: A

Portable Code Generator for Cray Fortran. In Proceedings o f ISSAC 1989,

pages 186-191. ACM, 1989.

161

Index

CODEONLY, 31

DOUBLE, 31

ENVSEARCH, 28, 75

GENTRANOPT, 32

PRECISION, 31

PROMPTVAL, 28, 75

REENTER, 107-110

fdisplay, 62

alias file, 53, 75

aliasing, see jazz, aliasing

ARC, 114-123

examples, 147

knowledge base, 117-119, 143-146

link to IRENA, 122

strategy, 115-117

argument subprograms, see ASPs

ASPs, 43, 59-73, 79, 83, 85, 89

classification of, 97-98

derivatives, 62

dummy routines, 65

function values, 60-62

functions, 67-68

dummies, 71

function values, 68

functions and jacobians, 69

hessian products, 70

hessians, 70

jacobians, 69

matrices, 71

regions, 71

jacobians, 62

matrix manipulation routines, 65

output routines, 65

regions, 66

requirements, 66-67

templates, 67

construction, 72-73

classify

E, 102

T, 102

mark 14, 102

phrases, 93

choice of, 96-97

rules, 93-96

choice of, 96-97

strategy, 91-96

subprogram data, 98-99

use of, 101-102

common sub-expression removal,

see optimisation

162

COMPRESS, 20

computer algebra systems, 5-6

floating point numbers, 5

continuity, 119-120

defaults, 33-41

determination of, 34, 84

error tolerances, 33

files, see defaults files

order of evaluation, 37-38

defaults files, 33, 75, 83

example, 39

operators in, 34-36, 38

syntax, 35

diagnostics, 100

expression segmentation, 10

FINGER, 21

FORTRAN-90, 125

FORTRAN-IV, 3

fsets, 61-62

syntax, 65

GENCRAY, 12

GENTRAN, 11-12, 20

new features, 132-136

templates, 11, 67, 72-73

IEEE exceptions, 76

IFAIL, 4, 26, 89, 91, 123

in specification file, 99-100

IRENA’s handling of, 26

information file, 74, 82

instruction lines, 100

IRENA

an introduction to, 23

defaults, see defaults

documentation, 85

interface generation, 84

multi-routine interfaces, 110

operating system dependencies, 80,

84

operation of, 74-81

providing parameters to, 28

returning results, 26

warm starts after errors, 107-110

irena constants, 31-32, 79, 141-142

IRENAoload, 78

IRENAreduce, 131

jacobians, 62

jazz, 42-58, 75, 83

PRECEDENCE, 52

aliasing, 43, 48, 102

complex objects, 46, 48

dependencies, 52

determination of, 85

example jazz file, 56

functions, 83

input, 42-47

mechanism, 50

keywords, 44

matrices, 45, 47, 48

163

jazz functions, 50

mechanism, 50-53

reconciling conflicts, 51

new scalars, 43

output, 42, 47-48

mechanism, 51

presentation of results, 49

rectangles, 44

syntax, 55

very local constants, 45

KASTLE, 113

keywords, see jazz, keywords

MACROFORT, 15

MathCode, 15

matrices, 28-30, 79

ASPs, 65

jazzing of, 45, 47, 48

NAG, 3-4

evolution of, 83

reverse communication routines, 82

NAG Help, 89-91

directive lines, 89

members, 89

sub-member, 89

NAGLINK, 21-22

NAXPERT, 112-113

new scalars, see jazz, new scalars

NITPACK, 113

oload, 76-78

optimisation, 16-21

common sub-expression removal, 16

in IRENA, 32

jacobians, 18

oscillations

estimation of, 120-121

parameters

communication, 96

control, 25, 33

data, 25, 33

dummy, 88

housekeeping, 25, 33

input, 88

input/output, 88

output, 88

probe, 96, 97

workspace, 25, 88

names, 91

period, 92

PM, 121-122

print-precision, 110

PSL

foreign functions, 75

oload, see oload

rectangles, see jazz, rectangles

Reduce, 6-7

algebraic mode, 6

evolution of, 83

symbolic mode, 6

164

SCOPE, 19-20

selectinfo, 115

semantic group, 92

SENAC, see NAGLINK

specification files, 102

subprogram libraries, 2-3

very local constants, see jazz, very local

constants

165

