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Sum m ary

Tomography is a powerful reconstruction technique for producing cross-sectional images 

of an object. It depends on measurements recorded along many intersecting paths 

between transmitters and detectors through the object. Each path is called a projection 

and can provide information about the object from a specific direction. Tomographic 

methods have found widespread application in many fields such as medical imaging, 
oceanography and recently in mapping the ionosphere, the subject of the present study. 
In all fields, the task is to estimate the distribution of a physical quantity in the object 

from the data.
In many applications of tomography, due to the configuration of the projection 

acquisition system, the data set is incomplete, and hence the imaging problem is 

ill-posed, as is the case in our ionospheric tomography problem with ground-based 

satellite-to-receiver radio signal measurements.
In this thesis, we propose a new Bayesian non-linear model for the spatial 

distribution of electron density in the ionosphere that can overcome the ill-posedness 
problem by incorporating Gaussian Markov Random Fields distributions in the 

formalism of the posterior model. This model has two main advantages: first, its 

competence in accounting for the expected spatial correlation between neighbouring 
regions of the ionosphere; second, it can be used to reconstruct 2D or 3D high-level 

images of vertical electron-density profiles.
To simulate efficiently from the posterior distribution, we develop two MCMC 

algorithms: the mixed algorithm and the Principal Components MCMC algorithm. 
Both approaches adopt reparameterisation ideas in attempts to overcome the mixing 

problem of the standard MCMC. To demonstrate our approaches, we use data obtained 

from the Navy Navigation Satellite System to produce 2D images of the ionosphere.
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Chapter 1

Introduction

1.1 T hesis ob jective and outline

The aim of this thesis is to develop a new approach for tackling the imaging of the spatial 
distribution of electron concentration in the ionosphere over a wide geographical region. 
The solution is to be extracted from inverting a set of satellite-to-receiver transmission 

measurements using MCMC techniques in a Bayesian framework.
In Chapter 2, we will describe the Earth’s ionosphere, its effects on radio signals 

and the associated measurements, known as the Total Electron Content (TEC). A 
brief description of some TEC data acquisition systems is also given. Additionally, we 
introduce the idea of tomography, in particular ionospheric tomography.

Traditional approaches to the ionospheric imaging problem aim to invert a linear 

model when a set of TEC measurements is given for the unknown pixel electron 
densities. However, a lack of near-horizontal ray paths imposes limitations on the 

direct inversion leading to an ill-posed reconstruction problem. To tackle this difficulty, 
model regularisation techniques are required. Some of the general techniques available 

in the literature are described in Chapter 3, and four conventional approaches in which 

some of these techniques are used to regularise the ionospheric problem are reviewed. 
Unfortunately, almost all these inversion methods rely heavily on the initial background 

ionospheres used to regularise the model. In addition, some of these approaches 

produce negative estimates of electron densities. We will introduce a new method 

for regularisation based on the inclusion of some smoothing parameters and which also 
uses the available a priori information including that the density cannot be negative. 

Moreover, our final results will be almost independent of the initial conditions as they 
will only be used to start the iterative algorithm.

19



The development of the new Bayesian model is based on the assumption that an 

ionospheric scene can be viewed as a set of vertical electron-density profiles. In this 
model, smoothing is to be considered between neighbouring sub-cross-sectional regions 

of the ionosphere rather than between adjacent pixels. The formulation of this Bayesian 

model and the reasons justifying our choice of modelling will be stated in Chapter 4.
In Chapter 5, we shall give a general description of Markov Chain Monte Carlo 

sampling methodology, and discuss some associated implementation issues. We then 

build a standard MCMC algorithm based on implementing the Metropolis algorithm 

and Gibbs sampler. The standard algorithm will be tested via an illustrative example 

based on a set of simulated data for a 5 x 3 grid of pixels. To improve the mixing of the 

Markov chain we will include regular reparameterisation steps in the standard MCMC 
approach, and therefore call the resulting sampler the mixed algorithm.

To avoid a lengthy burn-in period when applying the mixed algorithm with the real 
data set in Chapter 6 , we develop an approach to obtain a good starting state for the 

Bayesian model parameters using estimates of pixel electron densities gathered from the 

deterministic algorithm, MIDAS. Initial estimates of the smoothing parameters will be 

obtained by Maximum Pseudo-Likelihood (MPL). Having derived the necessary initial 
values, we will then implement the mixed algorithm for the real data by following 

two approaches. In the first approach, we will fix the smoothing parameters all the 
way through the MCMC simulating process, whereas in the second approach these 
parameters will be allowed to vary by regularly recalculating their MPL estimates.

In Chapter 7, we will develop a more sophisticated MCMC sampler to improve 

mixing (and call this the Principal Components MCMC algorithm). Further, we will 
implement this algorithm for sampling a set of Gaussian and non-Gaussian distributions 
with highly correlated variables. These demonstrations are considered in order to test 

the performance of the algorithm and to comment on its limitations.
In Chapter 8 , the Principal Components MCMC algorithm will be initially applied 

to a simulated data set. The purpose of this study is to test the Principal Components 

MCMC algorithm and compare its performance with that of the standard MCMC 
algorithm. The new sampler is then applied to the real TEC observations.

Finally, in Chapter 9, we state the principle conclusions of this thesis and discuss 

the potential contributions that our Bayesian model and the proposed Principal 

Components MCMC algorithm could make in future research in this field.
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Chapter 2

Ionospheric data and 
Tomography

2.1 A n introduction  to  the ionosphere

The ionosphere is the region of the atmosphere that is ionised by solar radiation. It 
approximately lies between 50 km and 1000 km above the Earth’s surface. Photons of 
energy of solar radiation at extreme ultraviolet (EUV) and other X-rays are capable 

of releasing an electron from a neutral gas atom or molecule during a collision. This 

process is called ionisation. The rate of ionisation is proportional to the gas density and 
the intensity of solar emissions. Actually, the ionosphere is a plasma of ionised gases.
This plasma consists of free negative electrons and positive ions. The free electrons and
ions are attracted to each other by the electromagnetic force, but are too energetic to 
remain fixed together in an electrically neutral molecule. The process in which a free 

electron is “captured” by an ion is called recombination.
The ionosphere is not static. This is because electron concentrations vary with 

geographical location, eg, auroral zones, polar, mid latitudes and equatorial region, as 

well as with time of the day, season and amount of radiation received from the sun. 
Vertically, because the intensity of the solax radiation increases with height whereas 

the density of neutral gas decreases, 3 main layers of ionisation usually form. These 
layers are:

•  The D region: Between 50 and 90 km;

•  The E region: Between 90 and 140 km;

•  The F region: 140 km and above.
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Figure 2-1: A Vertical electron-density profile with peak height at 400 km above the 
E arth ’s surface.

During daytime, the F region may be divided into two layers, namely, F\ (140 - 200 
km) and F2 (200 km and above). Very often, Fi is not well defined because it merges 

with F2 . The latter is the most variable region with the greatest electron density. At 
night, only the F2 layer remains, but it then rises to higher altitudes and all other 
ionospheric regions become insignificant. This is because at this period there is no 
solar radiation and the recombination time of free electrons and ions is longer, due to 

the low gas density at these high altitudes. For a full description of the ionosphere, see 

Davies (1990) or Hargreaves (1992).
W ithin any vertical section of the ionosphere, the electron density forms 

approximately a profile, known as the V ertica l e le c tr o n -d e n s ity  p ro file  or 

C h a p m a n  p ro file  (Chapman, 1931). This profile is maximised at the F2 layer 

producing a peak at an altitude in the range 250 - 500 km as shown in Figure 2-1. 
This peak is called the electron density peak. Each vertical electron-density profile 

is centred at the electron density peak height with variance known as the spread. 
Obviously this curve is scaled by the peak electron concentration.
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Radio signals traversing the ionosphere are affected by the dispersive nature of 

ionisation present along the wave paths, with a stronger effect on low frequency signals. 
This effect can be seen in different forms, for instance, time delay, refraction and 

reflection; see, e.g., Davies (1990) for a detailed description of these phenomena. Hence, 
ionisation affects radio communications, navigational positioning, High frequency 

(HF) radar etc, in either an advantageous or disadvantageous way. For instance, 
HF communication is only possible because the associated signals are refracted and 

returned to the Earth. On the other hand, satellite and receiver navigational signals 

such as the L-band signals based on their time of propagation suffer a delay, causing 

errors (Mitchell and Spencer, 2003).

2.2 D ata  collection

One of the most important physical parameters in the ionosphere is the electron density, 
and accurate knowledge of its spatial distribution is essential for several purposes, such 

as prediction of the space weather effects on telecommunications, determination of the 

state of the ionospheric activities, computation and correction of propagation time 

delays in navigational systems.

In order to investigate the ionospheric effects on radio-signals, several instruments have 

been constructed and used to probe the ionisation structure, for example, the ionosonde 
which is a radar designed to determine the height of the ionospheric reflecting layers. 
Most of the traditional devices are restricted to either the bottom or the top side 
of the ionosphere, leaving more details about the entire F region (140km and above) 
required. This motivated the development of the most recent systems, namely, the 

Global Positioning System (GPS) and the Navy Navigation Satellite System (NNSS).

GPS and NNSS are navigation and positioning satellite-based systems that provide 

the user with velocity, time and location information in the following three dimensions: 
latitude, longitude and altitude. In both systems, satellites transmit dual-frequency 

radio signals through the ionosphere and these signals are then received by a chain 
of ground-based receivers. The systems are subject to several sources of error. These 

include ionospheric delays, satellite and receiver clock errors and receiver noise.

The GPS satellites orbit the Earth at high altitudes of approximately 20,200 km. 

These satellites transmit dual-frequency signals of 1572.42 MHz and 1227.60 MHz. 
The NNSS satellites are in near-circular polar orbits at altitudes of around 1100 km,
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transmitting phase coherent signals at 150 MHz and 400 MHz. The orbiting period of 

a GPS satellite is axound twelve hours. On the other hand, a typical NNSS satellite 
time of one orbit is approximately twenty minutes, and hence the ionosphere can be 

assumed to be stationary during the radio wave transmission period.

The navigational system s’ receivers record the phase and time delay of each propagated 
radio signal. These records give valuable information about the ionosphere in the form 

of ray-path integrations of electron-density measurements. For the dual-frequency 

based systems of navigation, the so-called differential Doppler technique is used to 

obtain these measurements. The method is mainly based on the differential phase of 
the dual radio signals. For a full detail on this method, the reader is referred to Davies 

(1990). Ionospheric observations obtained by such techniques are called Total Electron

In satellite-to-receiver navigation systems, the dispersive effect of the ionosphere on

propagation ray path, which is a fundamental ionospheric quantity known as the Total 
Electron Content. TEC is defined as the line integral of the electron density in a column 
of unit cross-sectional area along a radio-wave path. It can be expressed as

where f ( s ) is the free electron density that correspond to the vertical electron-density 

profile at a specific latitude 9 and longitude 0 , and s is the distance along the straight 
ray path between the receiver, r, and the satellite transmitter, t. The TEC is expressed 

in terms of TEC Units (TECU). One TECU is 1016 e l/m 2, where el is an abbreviation 

of the word electron. Due to the dispersive nature of the ionosphere, the radio signals 

suffer from phase delays causing errors in the TEC measurements, so it is helpful to 

map the ionisation spatial distribution of the ionosphere over an observed geographical 
region of interest in order to correct these errors.

The classical approach for the ionospheric imaging problem builds a two-dimensional 

grid in the vertical ionospheric plane that lies above the receiver chain. This grid is 
subdivided into N  columns and r  rows. The columns are equally spaced in degrees

Content (TEC).

2.3 T he Total E lectron C ontent (TEC )

the dual frequencies results in propagation time delays and a phase difference between 
the two signals. These effects axe related to the electron density present along the

(2 .1)
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Figure 2-2: A simple grid o f pixels showing a typical satellite-to-receiver ray path.

longitude and, due to the E a rth ’s curvature, grow wider as the height increases. 
Each column contains r  pixels a t equally spaced altitudes. These pixels are labelled 
system atically by a single index j  = 1 , 2 , . . . ,  N r, as shown in Figure 2-2: the pixel in 
row x of column n  has index j  =  (n — 1 )r +  x, for x =  \ , . . .  , r  and n  =  1 , . . . , N.  The 
am ount of ionisation within this pixel is assumed to be constant bu t is considered as 
an unknown quantity. Here it is denoted by dj. We will follow this notation in our 
approach.

As Figure 2-2 demonstrates, for each TEC record, the transmitted signal ray 
traverses a finite number of pixels in the grid. Therefore, the TEC integral in Eq 
(2 .1 ) can be represented by a finite sum of shorter integrals along segments of the 
propagation path length. With the grid of pixels covering the ionospheric plane of 
interest, this can be approximated by a weighted summation leading to the formation 
of a system of linear equations in the unknown densities of the form

N r

Yi = J2w*di’
3 = 1

for i =  1 , or generally in matrix notation,

Y  ---- W d, (2.3)
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where Y  is the vector of the I  measurements which most engineers believe that they 
are always recorded without any noise, W  is the known I  x N r  matrix with Wij being 

the segment length of the ith  ray that lies in pixel j ,  and d is the vector of unknown 

local electron densities dj.

It is obvious that any individual TEC measurement contains no information about the 

spatial variation of the amount of ionisation or electron density along the propagation 

path. Thus, to find the spatial distribution of the electron density a set of many TEC  

measurements should be recorded. This information must then be “inverted” to recover 

the values of the unknown number in each pixel in the grid, i.e. {dj } .  In almost all 
ionospheric studies, the problem is known as Ionospheric tomography.

Tomography is a well known technique for determining the internal structure of an 

object, or more precisely for determining the distribution of a physical quantity of 
interest. It is mainly based on using a set of measurements recorded along many 
intersecting paths that traverse the object in different directions. Each path is a 

line integral of the space-dependent quantity of interest and is known as a projection. 
Reconstruction based algorithms combine these projections, and the inferred estimates 

are used to obtain a tomographic image of the object parameter of interest.
Tomography is commonly used for medical imaging. For example, in Computer 

Aided Tomography, two-dimensional cross sectional images are derived from 
measurements of attenuation of X-rays passing through the body from several 
angles. Other common medical imaging techniques are Positron Emission Tomography 

and Single Photon Emission Computed Tomography. Some other areas to which 
tomography has been applied are geophysics (Gustavsson et al. 1986; Takauchi and 
Evans, 1995), oceanography (Munk and Wunch, 1979) and relatively recently to the 

ionosphere, as in Austen et al. (1988), and Pryse and Kersley (1992).

In ionospheric tomography, the total electron content (TEC) measurements are the 

required projections of the process. Figure 2-3 shows a ray path geometry that may 
be used for tomographic TEC observations. Here, the receivers are ground based and 

a satellite passes over the chain of receivers.

Unlike in medical tomography, for instance, in ionospheric tomography the geometry 

of the ionosphere and the distribution of receivers limits the angular range of the 

propagation rays. For example, there is a lack of paths that can run horizontally 

through the ionosphere with this geometry because of the curvature of the Earth, as
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Figure 2-3: A demonstration of the radio-signal path geometry that can be used
fo r  ionospheric tomography using the associated T E C  measurements. The sem i
circle line represents the trajectory o f the orbiting satellite. A ll three receivers are 
ground based and the lines from  these receivers to the positions o f the satellite 
represent signal paths. This picture has been downloaded from  the following website: 
www. aber. ac. uk/propag/images /experim enta l/geom sm all.gif.

can be seen in Figure 2-3. This leads to an incomplete set of tom ographic TEC  da ta  
in many ionospheric applications. The limited geometrical coverage condition requires 
the incorporation of more information to overcome the problem of the missing d a ta  in 
many reconstruction ionospheric studies. Accordingly, the retrieval of the ionospheric 
image cannot be applied using direct inversion algorithms. There is no unique approach 
th a t has been shown to handle all ionospheric problems. However several reconstruction 
algorithm s have been constructed and applied and these have been shown to  be partially 
successful. Some of these approaches are outlined and discussed in C hapter 3.
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Chapter 3

R eview  of ionospheric 
tom ography

3.1 R egularisation based tom ographic reconstruction  
techniques

3 .1 .1  R e g u la r isa tio n

Recall that in ionospheric tomography studies, the aim is to obtain values of the 

unknown electron densities. An ionospheric tomography application can be viewed as 
an inverse problem for which Eq (2.3), for instance, could be solved for d. In practice, 
W  is a known highly singular matrix, and the number of unknown parameters is much 

bigger than the number of available TEC measurements, i.e. the data set is incomplete. 
A problem is said to be well-posed when it has a unique solution and this solution 
depends continuously on the initial condition. If one or more of these conditions fail 
to hold, then the problem is said to be ill-posed; see Marroquin et al. (1987). With  

an incomplete set of TECs, the ionospheric inversion problem is ill-posed because it 

has infinitely many solutions. As a result, and also due to the high singularity of W,  
the standard matrix inversion approach of the form d =  W ~ l Y  is not possible. To 

overcome this difficulty a regularisation technique is required. Solutions to the general 
inversion problem may also be required to satisfy some known physical features of the 

underlying scene. For example, the electron density values should be positive, and the 

reconstructed image should reveal a high degree of smoothness. Again, this may be 
accomplished by regularisation.

A set of values which solves an equation of interest with the same properties as 
Eq (2.3), and at the same time captures the expected features of the problem will be
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described as a “good” solution in this chapter.
In order to generalise the problem of finding a solution to any model similar to that 

given in Eq (2.3), assume that

y  =  X 9  +  e, (3.1)

where y  is an n x 1 vector of observations, X  is a known n x p  fixed matrix, usually 

representing a discretised version of a mathematical transform, 9 is a p  x 1 vector of 
unknown values with p >  n,  and e is the associated data noise.

To solve the above system of equations for 9, several regularisation methods are 

available in the literature. Some of these methods axe described below.

L east-squares regularisation approaches

There are two main types of regularisation techniques that are based on minimising 

the residual sum of squares (RSS), (y — X 9 ) T (y — X 9). In the first type, sets of basis 

functions are used, whereas in the second type a penalty function is added to the RSS 

term. The aim in the latter approach is to find an estimate, 9, that minimises the 

resulting penalty-based function. The two types of method will now be discussed in 

more detail.

1. B asis functions approaches

To implement this technique, we need to define a space © of possible solutions,
i.e. a set of 9’s, say of the form

0 =  (3.2)
3= 1

where (f> d e n o t e s  the jfth chosen basis function, and a,j is its associated but 
unknown weight. A basis is a set of vectors that, in a linear combination, is able 

to represent each vector in an associated space of interest. Every element of the 

basis is known as a basis function.

The reason behind combining each set of basis functions together via Eq (3.2) 

is to hopefully produce a “good” overall solution, 0  6  0 , that can capture the 
required features of the true scene, for instance. Then the selection of the most 

“good” solution, 9 , is based on the fact that this solution minimises the residual 
sum of squares.
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For the ionospheric tomography problem, for example, there are two main choices 

for the basis functions that can be used to represent the unknown structure of 
electron density. These are as follows:

A  p ix e l in d ica to r  fu n ction : This type of basis function was used by Austen 

et al. (1988). Given a pixel’s latitude u, and height above the surface of the 
Earth r, the above authors expressed the basis function as

That is, each basis function is a vector of zeros except the jth  pixel entry 

which is one. This forms vectors of basis functions that are orthonormal. 
These vectors can be combined together to form the basis functions matrix, 

(j). In this case, each basis vector represents a column in this matrix and the 

associated weights are simply the required pixel electron densities.

E x p a n sio n  in  te rm s o f  o b serv ed  or m o d e l io n o sp h ere  b a sis  fu n ction s:
Suppose a set, £, of ionospheres each having J  pixels are observed for 

several local times, solar activities, etc. Denote each observed ionosphere 
in £ by Sj, then Sj represents a column in £. Here the matrix (f) of 

basis functions is written as an expansion in terms of £. To simplify the 

necessary computations in all ionospheric studies based on this approach £ 
is constructed with orthogonal columns. In this case,

An alternative approach for deriving a single Sj vector is to create an artificial 
ionosphere. This can be achieved by using an ionospheric model, such as the 

Chapman layer model, Davies (1990) or the IRI-90 model, Bilitza (1990).

in the next section.

For a simple demonstration on the latter basis functions, and for some more 

detail on the above types of basis functions used in ionospheric tomography, 
the reader is referred to Raymund et al. (1994) and the references therein.

In the above basis function approaches, these functions can be obtained from 
a priori information and the solution of the tomographic problem consists of 
calculating the weight aj associated with each basis function. Hence determining 

the number of basis functions and their corresponding weights are crucial steps

1 , if (u ,r )  is in the jth  pixel; 

0 , elsewhere.

<£ =  £.

The derivation approaches of observed and model ionospheres are discussed
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in any basis functions based method. For more detail on these approaches, see 
Section 3.2.

2. P e n a lty  fu n ctio n  ap proach es

Penalty function based approaches are techniques that are usually used to invert 
a model of the form given by Eq (3.1) for the unknown values. To apply any of 
these approaches, a “penalty” function for 9 , say, g(9) should be defined. The 

goal is then to find 9 which minimises

( y - X 0 ) T ( y - X 9 )  +  \g (e ) ,  (3.3)

where A is an arbitrary regularisation parameter that can be chosen to control 

the trade-off between the faithfulness to the data (small value of RSS) and the 

regularisation degree of a solution.

One standard form that the penalty function may take is given by

s W  =  E » , ?, (3-4>
t=l

that is, g{9), is an L2-norm penalty, for more details on this approach; see, 
for example, Green (1998). The above penalty function is one of the standard 

regularisation methods, mainly due to Tikhonov (Tikhonov and Arsenin, 1977) 
with a stabilising functional ||0 ||2. Poggio et al. (1985) showed that this 

approach can be used for solving computational vision problems when the physical 
constraints of the problem are embodied through a vector q. In this case, the aim 

is to minimise the stabilising functional given by ||<7 0 ||2.

An alternative penalty function to the quadratic one given in Eq (3.4) is that 

based on the log function, g{6 ) =  — J2 i=i l°g  > known as an entropy measure. 
In this case, the inversion method is known as the method of maximum entropy. 
The motivation for this criterion, as in many other regularisation techniques, 
is to convert an ill-posed problem into a well-posed one, and hence solve the 

problem for the unknowns, 9. This aim is to be achieved by adding a priori 
assumptions. Obviously, the technique is only applicable when the components of 
the unknown vector, 6 , are all positive. This condition is expected to hold in many 

applications of inverse problems because in such problems 9 is usually a vector 

of intensity measurements or other quantities that axe strictly non-negative. For
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an application of this approach, see for example, Gull and Daniell (1978).

It is obvious that regularization approaches based on both the L 2 norm and 

the entropy penalty functions, displayed above, do not account for smoothness 
between neighbouring objects, e.g., neighbouring pixels in a reconstruction grid, 

but rather minimise the RSS based on the best overall expected value of all 
components of 9.

A third type of penalty functions are those known as the roughness penalties. 
Given the data set, y, of Eq (3.1), the method aims to estimate the entire curve, 
G(9),  where y  can be re-written in terms of this function as follows:

y  =  G{9) +  c. (3.5)

Here, the penalty is a certain functional of the considered function, G. When 

the penalty function belongs to this category, the inversion process is described 

as a roughness penalty approach. To demonstrate this approach, suppose that 
we wish to fit a model of the form given in Eq (3.5) with the data points shown 
in the left panel of Figure 3-1. Applying the standard piece-wise method of 
least squares, without considering any constraints on the curve G{9) that may 
fit the data, simply joining all data points, as in the second panel of Figure 3-1, 
would give a zero residual sum of squares, but does not explain the underlying 

phenomenon adequately. This is because it does not account for high variability 
between nearby points in the curve to allow for the variation in the data values. 
Even if a slightly more smoothed curve is selected to fit the data points, a curve 
that “wiggles” , e.g., show some high degree of roughness may also be described 

as an inappropriate fit.

Given a function G  with continuous second derivative, a common choice of 
roughness functional is the integrated squared second derivative, G" {9) d9. 
This functional is used as a measure of roughness of the chosen curve. In this 
case, the penalty approach is based on minimising the penalised sum of squares 

given by

/+00 9
G (0) (3.6)

-OO

where T  denotes the transpose.

As A approaches 0 0 , the minimiser, G , reveals no clear curvature and the integral
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Figure 3-1: Data values y  (left). The piece-wise least squares fit to y  (right).
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Figure 3-2: A penalised least squares fit to y  obtained when X =  0.56.
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in Eq (3.6) tends to zero. Therefore, G  tends to be approximately the linear 
regression fit. In contrast, when the smoothing parameter value approaches zero, 

G  turns to be almost the piece-wise least squares fit to the problem. To overcome 

both problems, A should be tuned until a reasonable fit is obtained. For example, 
for the data set of Figure 3-1, one plausible curve that fits the data pretty well is 

derived when A is assigned a value of 0.56. This fit is shown in Figure 3-2.

Penalised  likelihood regularisation approach

Another technique in which roughness penalties axe used is the penalised maximum 

likelihood approach. This approach is widely used in applied statistics; see, for 
instance, Green and Silverman (1994), Wahba (1990), and Kristensson (1986). In 

this approach, the roughness penalty term is subtracted from the log-likelihood of the 

data. Suppose that the data y  in Eq (3.5) axe independently normally distributed with  

mean G( 6 ) =  X 0  and common variance cr2, then the log-likelihood function takes the 
form

i (y,8) =  - ^ ( v - G ( e ) f ( y - G ( e ) ) .

The penalised likelihood solution is that which maximises the penalised log- 

likelihood function, lp(y,9),  given by

f +°° // 2
lp(y,0) =  l ( y , e ) - X  G (8) d&. (3.7)

7 —00

T he B ayesian a lternative approach

An alternative method to those frequentist approaches described above for the inverse 
problem of interest given in Eq (3.1) is that based on Bayes’ theorem.

The Bayesian paradigm consists of four main contributions:

1 . to define a prior distribution of the unknown variables, 7r(0 ), in order to support 

the prior beliefs about them.

2. to construct the likelihood function, L ( y , 6 ), for the given data y.

3. to form the posterior distribution, n(9\y),  by combining the likelihood and the 

prior densities using Bayes’ theorem; i.e.

t t ( % )  oc L ( y , 0 )7r{e), (3.8)
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where 7r(0|y) is usually known up to a normalising constant which is generally 
not available.

4. to obtain inferences about 9 given y  from the posterior distribution.

By taking the logs of the posterior distribution given in Eq (3.8), we obtain

lo g 7r(£%) =  l(y,9)  +  lo g 7r(0 ) +  constant. (3.9)

Comparing the terms of Eq (3.9) with those of the penalised likelihood function shown 

in Eq (3.7), one can see that the prior density term in the former equation plays the role 

of the penalty function in lp(y , 9), so that the maximum penalised likelihood estimator, 

9 , maximising lp, turns to be the mode of the associated posterior distribution, i.e. the 
maximum a posteriori estimator.

Unlike almost all non-Bayesian regularisation approaches where the solution space 

is restricted by the a priori  knowledge, in this method, the a priori  information is 

represented in terms of an appropriate probability density, Marroquin et al. (1987).

3.2 R eview  o f som e ionospheric tom ography approaches

In this section, we will discuss several existing reconstruction algorithms that implement 
some of the above regularisation techniques to map the ionosphere’s spatial distribution 

of electron concentration, in particular, the ART, MART, MIDAS and a Bayesian 
algorithm approach. All these algorithms require one or more initial starting images. 
The initial images are usually known as background ionospheres. These are very 

important, especially for the non-Bayesian approaches. This is due to the fact that 
because only limited projection angles are available, and only a few widely spaced 
monitoring receivers are used in most ionospheric experiments, so many pixels in the 

reconstruction grid are not traversed by any ray path. Hence path segments in such 

pixels are zero. The a priori information represented in the background ionospheres 
in this case plays a significant role in stabilising the solution obtained from these 

algorithms. In most cases, this can be achieved by assigning reasonable values of 
electron densities for such pixels, in addition to those crossed by one or more rays.

There are two ways of obtaining initial configurations. The first is experimental, 
whereas the second is artificial. To obtain an initial state by the first approach, a 
set of satellite-to-receiver signals are observed at a specific time and location. Each 

TEC value is then divided between the pixels that were intersected by the associated
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datum ray path but in proportional to the length of the ray segment within each pixel. 
In general, a pixel electron-density value, dj,  is obtained by dividing the overall TEC  
values assigned to this pixel by the total length of the associated ray segments. The 

term model ionosphere refers to the generation of an artificial ionosphere by using a set 
of simulated TEC rather than measured TEC data. In this technique, it is necessary 

to provide a priori  information on the vertical profile Raymund et al. (1993). For this 
purpose, one can use the Chapman layer model, Davies (1990), or the IRI-90 model 

described by Bilitza, (1990). These models mainly combine the prior knowledge on a 

vertical profile parameters to produce an estimate of the electron density at a particular 

altitude, e.g., a dj value.

3 .2 .1  T h e  A lg e b r a ic  R e c o n s tr u c t io n  T ech n iq u e  (A R T )

ART is an iterative approach for solving a linear equation. It was first introduced as 

a reconstruction algorithm in 1970 by Gordon, Bender, and Herman. These authors 

show that the algorithm converges to the least-squares solution. In 1983, Censor et al. 
modified this approach by considering a sequence of relaxation parameters.

For the ionospheric tomography problem defined in Eq (2.3), a starting image of pixel 
electron densities, d°, is required as an initial guess. In any iterative step, k, the current 
image is modified to produce a new image by considering only a single ray path, i, 
and changing the electron density estimate of all pixels that are intersected by this ray. 
The discrepancy between the TEC measurements, YJ, and the corresponding projection 

estimated value, J2 j = i w ijdj,  obtained from the current image dk is redistributed among 
all pixels intersected by the ith  ray in proportion to the length of intersection within  

each pixel, e.g., Wij. That is, pixel values along the ith  projection are refined to  

conform with the ith  TEC record without changing the remaining pixel densities. At 
each iteration, the algorithm cycles through all ray paths according to the following 

formula:

d *+ 1  -  4  +  \ k Yi ~JP/ = 1  Wijdj Wij, for i =  (3.10)

where {A/-} is the relaxation parameter set which may consists of one number or a 

series of numbers. Different values of the relaxation parameter have different effects. 
Herman et al. (1975) studied this effect and concluded the following: suppose that 

Hi represents the set of all d values such that the 2̂ j = l w ijdj =  Fi, known as the

36



hyperplane of Y{, then if

< 0 , new move is away from 

=  0 , no new move;

G (0,1), new move is towards Hi,  but does not quite reach it;
A* it, — 1 , new move is to Hi exactly;

G (1 ,2), new move is past Hi,  but dk + 1  is nearer to Hi than dk was; 
=  2, dk + 1  is the mirror image of dk in Hf,

k > 2 , dk + 1  is on the other side of Hi,  farther from Hi than dk was.

Therefore, usually a value of Afc is chosen to be within the interval (0,2).

The ART was first introduced in Computerised Ionospheric Tomography by Austen

negative estimates of free electron densities may be generated. However, it has 

been successfully implemented for some experimental ionospheric tomography; see, 
for example, Andreeva et a l  (1990).

3 .2 .2  T h e  M u ltip lic a tiv e  A lg e b r a ic  R e c o n s tr u c t io n  T ech n iq u e

MART is an iterative reconstruction algorithm that was proposed by Gordon et a l  

(1970) and is considered as a modified version of ART.

To implement MART for ionospheric tomography, a starting image, d° is required. 
The algorithm then iterates by changing values of the pixel electron densities based on 

the difference between the measured and the recovered TEC value for each path, as in 

ART. However, the changes in this case are multiplicative rather than additive. Here, 
dk is updated via the following equation:

where Afe is the relaxation parameter at the kth. iteration with 0 <  A& <  1. That is, 
the electron densities’ vector, d, is corrected through an iteration by a ratio of the 

measured TEC and the calculated TEC with a relaxation parameter A*,.

Lent (1977) proved that this algorithm converges to the maximum entropy solution

et a l  (1988). A drawback associated with this approach is that some unrealistic

(M A R T )

(3.11)
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where the aim is to maximise the function, f (d) ,  given by

J

f ( d) =  - J 2 di lo%dj'
j =i

The MART algorithm was initially applied to experimental ionospheric tomography in 
1990 by Raymund et al. In several experimental cases, this algorithm’s behaviour is 

not well understood, in particular, when the data set is incomplete; see, for example, 
Censor (1983). However, other authors such as Kersley et al. (1993) and Pryse et al. 
(1995) found it to perform well for their experiments.

An advantage of MART over ART in estimating the electron densities is its ability 

to avoid negative values of the ds.

3 .2 .3  T h e  M u lti-In s tr u m e n t D a ta  A n a ly s is  S o ftw are  (M ID A S )

In 1992, a non-iterative reconstruction algorithm for two-dimensional imaging was 

introduced by Fremouw et al. Here, a set of empirical orthonormal basis functions 
derived from an ionospheric model with a wide range of possible vertical profiles 

across the grid axe used to represent the vertical structure of the ionosphere, while 

the horizontal structure is selected from a Fourier basis. A large set of possible 
background ionospheres axe therefore created to provide the required initial knowledge. 
The technique allows the a priori  information to be fitted based on the least-squares 

approach to estimate the pixel electron density. The authors’ approach is extended into 
three-dimensions by Spencer and Mitchell (2001). In addition, a time-dependence has 
been included into the tomographic approach to allow for changes in the ionosphere’s 

electron densities when the observing period is long, such as that required by the GPS 

signals. The modified version of the algorithm is called MIDAS.

As in the other approaches to the ionospheric problem, the aim is to solve the equation 

Y  =  Wd,  for the vector of electron densities, d, and consequently to map the associated 

spatial distribution. The matrix, W , is known to be highly singular and contains 
no prior information about the true solution. To overcome this difficulty a mapping 

matrix, X ,  is used to transform the problem from a voxel-based representation with 

unknown electron densities into a basis functions representation with the unknowns 

being the coefficients of the basis functions, represented by the matrix, M , in the
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following mathematical expression:

Y  =  W X M .  (3.12)

Now Eq (3.12) needs to be solved for M.  Re-writing the latter equation in terms of 
this matrix gives

M  =  { W X ) ~ l Y.

Here ( W X ) ~ l is a generalised inverse matrix. The inversion is then solved by applying 

the Singular Value Decomposition to the matrix W X ,  Mitchell et al. (2003). Once M  
is determined, the electron densities within each voxel can be then retrieved by setting

d =  X M .

Obviously, the selection of the orthonormal basis functions from a set of vertical profiles 
is a critical factor in this approach. Here, as in the ART algorithm, the problem of 
obtaining negative electron densities arises. However, this approach is computationally 

cheaper since it is non-iterative.

It is obvious that the above well-known described three regularisation approaches for 
imaging problems of the ionosphere are mainly dependent on the a priori  information 

used to start the algorithms. Thus, the closer the starting condition is to the true image, 
the more accurate reconstruction will be. Therefore, the background ionospheres should 

be chosen to span the entire space of all plausible solutions to the tomographic problem. 
This makes the a priori  information very critical factors in the solutions produced by 

these approaches.

3 .2 .4  A  B a y e s ia n  a lg o r ith m

Markkanen et al. (1995) developed a new reconstruction algorithm based on a Bayesian 

approach to the ionosphere imaging problem. In this method, the unknown variables 

are effectively the pixel electron densities together with the unknown phase constant 
associated with each receiver. All unknown parameters are arranged in one column 

vector denoted by X .  Then each TEC measurement is represented as a linear 

combination of the associated unknown electron density values and phase constants. 
Moreover, an error term is added on this combination. Thus the inversion problem is 

defined by the following equation

Y  =  A X  +  e, (3.13)
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where e is a vector of errors associated with the TEC data. Note that A  in Eq (3.13) 
is not exactly the matrix W  in Eq (2.3) because it also contains contributions of the 
phase constants.

Since this approach is Bayesian, Y,  X  and e, are all treated as random variables 

and a set of distributions are used to model these parameters. The measurements are 
assumed to be recorded with a zero mean Gaussian error, e, but are not necessarily 

conditionally independent. That is, if E denotes the unknown variance matrix of e, 
then E may not be a diagonal matrix. Under these assumptions, Y  ~  N ( A X ,  E). The 

authors only considered either completely flat prior distributions on the pixel electron 
densities and the phase constants, or a simple Gaussian prior. The prior distribution 

is denoted by D ( X ) .  This gives the following posterior distribution:

D ( X \ Y )  a  D (X ) |E |^ e x p  y ~ \ ( A X  -  Y f Y , - 1 ( A X  -  Y ) \  . (3.14)

The inversion is stochastic and therefore the idea is to obtain the most probable values 

of the electron densities and phase constants. However, because of the big size of 
the matrices involved, a solution requires some sort of regularisation. By choosing 
the specified prior distributions, the authors aim to formulate maximum a posteriori 
estimation as a piece of matrix algebra.

The Bayesian approach was initially tested on a set of simulated data in which 
several Chapman profiles peak height values were used in the retrieval procedure via 

a prior distribution. The results indicated that this approach mainly depends on the 

regularisation variables, but the choice of their best values may be based on visible 
artifacts and the lowest negative electron densities as well as the residual sum of squares. 
Further, the authors implemented the approach with experimental data. Here, two 
tomographic images were obtained of which one revealed a reasonable agreement with 

a vertical profile obtained from the EISCAT radar. Nevertheless, the choice of the 

regularisation profile remained an outstanding problem, although this approach was 

found to be less sensitive than the iterative methods of ART and MART, for instance, 
to their initial conditions.
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Chapter 4

Bayesian m odel formulation

4.1 M odelling th e TEC data

In this work we mainly focused on the analysis of 572 TEC measurements recorded 

by a chain of four ground-based NNSS receivers located approximately along a line 

of longitude in Italy, where radio signals from an approaching satellite are detected. 
The measurements axe carried out during a single satellite passage over the chain of 
receivers at discrete instants of time, and in sequential locations. Figure 4-1 illustrates 

the pattern of links from the four ground receivers to the NNSS satellite. We will now 
discuss how we modelled our data in this study.

Hajj et al. (1994) assumed that the variance of the TEC noise is constant for all 
observations; these authors considered discretisation effects as a second source of noise. 
Markkanen et al. (1995) assumed that the measurement errors are Gaussian with zero 

mean, and considered the case of equal error variances for all TEC measurements. 
Since the ionosphere affects all satellite-to-receiver radio signals in a similar manner, 
we simply accept the view of Hajj et al. (1994) that the resulting data noise variance 

should be constant for all TEC measurements, and follow Markkanen et al. (1995) 
in modelling each record error, ê , by a Gaussian distribution with mean zero and 

variance, e2. According to this Eqs (2.2) and (2.3) can be re-written as

N r

(4.1)

for i =  1 , . . . ,  7, or

Y  =  W d  +  e, (4.2)
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over a chain o f four receivers on the ground.
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where e is the measurements noise vector whose elements, e*, quantify the uncertainty 

due to ionospheric dispersive noise and other detecting process noise, and will be 
described as the data noise.

The errors are also assumed to be independent. Thus, by the above assumptions, 
the overall model for the TEC measurements Yi , . . . ,  Yj given d and e2 is

Yi\d,e2 ~  N(E(Yi) ,e2), i =  l , . . . , I ,  (4.3)

where

N r

E(Yi) =  (4.4)
3= 1

and these measurements axe conditionally independent given d and e2.
The choice of modelling the TEC measurements with a common variance is worthy of 

comment. The Poisson distribution has been employed in several similar cases in which 

signals are transmitted through an object and then detected to give observations of the 

form of counts, such as in Single Photon Emission Computed Tomography, see e.g., 
Winkler (2003, Part VII) and Higdon et al. (2003). However, in ionospheric studies 
we have no evidence of dependence between the TEC expected value E(Yi ) and the 
variance of the associated noise.

The above data model gives us a basic starting point for Bayesian inference about 
the spatial pattern of the ionospheric electron density. Under the assumption that the 
TEC records are conditionally independent, the likelihood function for these records is

L(Y\d , t2) =  n ^ ^ e x p j - i j ^ - E f r i ) ) 2!  (4.5)

4.2 M odelling th e  electron density  values d irectly

Given the linear model in Eq (4.2) and the unknown random variable vector 

( d i , . . . ,  d/vr, e2), the classic approach to the ionospheric tomography problem is based 
on solving the model for this vector. Very often the number of local electron densities, 
N r ,  is greater than the number of TEC observations, I.  This makes the inversion
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process impracticable and therefore, methods of regularisation are needed to overcome 

this problem. Many such approaches have been developed, but several drawbacks have 

been found. In addition to those discussed earlier in Chapter 3, one main drawback is 

that almost all these methods do not take into consideration the uncertainty about the 
true value of the physical quantity of interest.

An alternative method that overcomes the uncertainty problem is the Bayesian 

approach introduced in this chapter. The analysis of this method requires the 

specification of a prior distribution for d and e2.
Our prior knowledge about the underlying true pattern of electron densities informs 

us that the ionosphere possesses a certain degree of smoothness. One approach to 
modelling the prior distribution is to work with the pixel densities directly, choosing 

a model which stipulates that neighbouring pixels in the grid have similar densities 

of free electrons. W ith the regular 2D grid considered in this approach, two pixels 

are specified as neighbours if they are directly adjacent so that interior pixels have 
four neighbours, edge pixels have three, and corner pixels have two. For tractability, 
we might assume that under this neighbourhood structure, densities of any two pixels 
that axe not neighbours are conditionally independent given the values of other pixels. 

Gaussian Markov Random Fields (GMRFs), also known as conditional auto-regressions, 
introduced by Besag (1974, 1975) define the spatial correlations between pixels in a 

way that satisfies this conditional independence property. W ithin this class of models, 
smoothing parameters that control the horizontal degree of smoothness, fih >  0 , and 
the vertical degree of smoothness, fa  >  0 , between the adjacent pixels are required. 

These models are briefly introduced in section 4.4.

Under the assumption that e2 is independent of the local electron densities, d, and 

that the smoothing parameters f a  and fa  axe fixed, the joint distribution of d and e2 

is

7r(d,e2 \ph,Pv) =  n(d\ fa, fa)ir (e2), (4.6)

where 7r(e2 ) represents the prior distribution of e 2 .

4.3 A  param etric m odel for electron  density  values

In this section, we will introduce an alternative parametric model and justify this 
choice for modelling the ionospheric problem. The new model will be constructed 

within a Bayesian framework, i.e. prior distributions axe assigned to all parameters 

and a posterior distribution is constructed allowing uncertainty about the parameters
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to be examined. However, the electron densities are not the unknowns for which 
the model will be inverted. Instead, inferences about another related set of random 

variables will be obtained. The definition of the new set of variables is based on the 

famous theorem of Chapman (1931). Under this theorem, every vertical section of 
the underlying ionospheric scene is represented by a Chapman profile, also known as 

the vertical electron-density profile, see Figure 2-1. Moreover, each vertical profile is 

described by three quantities, namely, the peak height which is the altitude of the peak 
in the vertical profile where maximum amount of ionisation is found; the spread, also 

known as the scale height, which measures the width of the profile; and the electron 

density in the area under the profile curve, i.e. the total number of free electrons 

under the vertical profile. We shall apply this result. Therefore, we will represent each 

grid column n by a vertical profile. Further, the nth vertical profile will be described 

by three parameters. These parameters are: the profile peak height, fin, the spread, 
cr̂ , and the total number of electrons within the area under the profile curve, 7 n, for 

n =  1 , . . . ,  iV, where N  represents the total number of columns in the grid.
Fremouw et al. (1994) postulate that the vertical profile has the shape of a Gaussian 

distribution. These authors considered the vertical profiles as background profiles and 
used them to obtain inferences about the local electron densities. By using the above 

ionospheric profile shape assumption, we approximated the shape of the nth vertical 
profile by a Gaussian curve centred at the corresponding peak height, //n, and the 

electron density variation along the profile, is assumed to be controlled by this 

curve variance, for all n =  1 , . . . , i V.  Since every vertical profile is assumed to be 
affected by the amount of electron concentration under the curve, and approximately 

normally shaped, therefore, the electron density at height h within the nth column is

The above formula represents the case where height is measured continuously. 
However, this form is easily modified to satisfy the discrete assumption of the 2D

that this pixel lies in the nth column, then the electron density can be written as

where h{j )  is the corresponding pixel mid-height. Note that in this discrete 

approximation we assume a constant density within each pixel.

By involving the new vertical profile parameters set in the TEC data model through Eq

(4.7)

ionospheric grid. Suppose that we are interested in the j t h  pixel electron density and

(4.8)

45



(4.8), Eq (4.1) is converted from a linear model in pixels electron densities into a non
linear function of the corresponding profile parameters. This produces a new vector of 

random variables, X  =  (fi, <t2 , 7 , e2)T, where /la =  Qui,..., ̂ n ) T , & 2 =  {cr2, ..., 0 %)T 
and 7 =  ( 7 1 , . . .  , 7 a t ) t .

Thus, to tackle the ionospheric problem, in a Bayesian analysis we can work with 
either:

1. A GMRFs prior model for the local electron densities, d, or

2 . A prior defined as a “higher level” parametric model for the vertical profile 

parameters, namely, /la, a 2 and 7 .

In the second approach, there will still be the opportunity to specify that the vertical 
profiles alter smoothly from column to column.

We chose to work with the second approach in reconstructing the map of electron 
density in the ionospheric region of interest for the following two main reasons:

•  The ionospheric region of interest is huge. It extends approximately from 10° to 

65° in latitude and over 1000 km in altitude. Therefore, a 2D grid of many pixels 
is required to “adequately” reconstruct the spatial distribution over this region. 
Let the grid, for instance, be of size 22 x 20 then by choosing the usual linear 
model, the inversion process would need to infer 440-f-l local electron densities 

beside the error parameter. On the other hand, if the parametric model is used, 
inferences of only (20 x 3) 4 -1 , i.e. 61 parameters are needed.

•  The geometry of the TEC observations in Figure 4-1 shows that many pixels 

are not intersected by any ray path. Thus, inferences about these pixels will be 
dominated by the weak prior distribution in the case of the first form of Bayesian 

modelling. In contrast, in the parametric modelling method, it is not necessary 
that each pixel should be intersected by one or more rays to have a “good” 

estimate of its free electron content, rather, it may be adequate to have only few 
ray paths passing through the corresponding column.

4.4 The param etric m odel prior d istribution

4 .4 .1  S p a tia l p r ior  m o d e l for th e  p ro file  p a r a m eters

In the higher level parametric model, a distribution that reflects our prior belief that 

geographically adjacent vertical sections of the ionosphere are similar in term of the

46



amount of ionisation present is needed. Since every vertical section in the reconstruction 
grid is represented by a vertical profile, a spatial dependence between neighbouring 

profiles is expected. In other words, we assume that there exists a local spatially 

structured variation in each of the three parameters, namely, the peak height, p n, the 

spread, cr̂ , and the electron concentration under the vertical profile curve, 7 n, for 
n =  1 , . . . ,  N .

In this case, we will assume that any two vertical profiles separated by a single 
profile or more within the ionospheric grid are conditionally independent of all other 

vertical profiles given a small set of geographical neighbouring profiles.
A suitable class of spatial models that can handle the variation structure inherent 

between neighbouring sites, whether these sites are peak heights, profile spreads or 

column electron densities are the spatially-dependent Gaussian Markov Random Fields 

models mentioned in section 4.2. In statistics, GMRFs are widely used, with important 
applications in structural time-series analysis, analysis of longitudinal and survival data, 
graphical models, image analysis and spatial statistics. For references and illustrations, 
see Rue and Held (2005, Ch. 1).

A GMRFs model has several components: a set of p  sites P  =  { 1 ,2 ,----- ,p};
a neighbourhood system 8  =  { 8 n\n  £ P }  where each member of 8  is a subset of 

neighbouring sites of the nth site; and a random field which is a set of random variables 
X  =  {X n\ n  £ P }  defined on a set Q. A configuration of X  is a Markov field on fI if it 

satisfies the following two conditions:

•  positivity: P ( X  =  x) >  0,Vr £ Cl,

•  Markovianity: P ( X n =  x n\ X - n =  x - n) =  P ( X n =  2:n |A m =  z m,ra £ 8 n), 
Vn £ P,  where X - n denotes the variable consisting of all the components of X  

except the nth component.

The latter condition states that the value of the nth site X n given the rest of sites 

depends only on the value of its neighbouring sites in the set, 8 n.
The key result concerning GMRFs is the Hammersley-Clifford theorem. This 

theorem states that a particular distribution P ( X  =  x) is a Markov random field 

if, and only if,
P ( X  =  x) oc exp{— ^  9c(x)},  (4.9)

c eC

where C  is the set of cliques c and a “clique” is defined as either a singleton site or 

a set of sites all of whom are neighbours, and 9c{x) is a function that depends only 

on values of Xj for j  £  c. Parameters that control the degree of smoothness between 

neighbouring sites are known as smoothing variables and will be usually involved in
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6 c(x), therefore, J2 ceC could be considered as a smoothness function.

We shall propose a model for the profile parameters in which GMRFs prior distributions 

of the form specified by Eq (4.9) axe used. For this purpose we shall assume that (3M >  0, 

(3o-2 >  0  and /?7  >  0  are the necessary smoothing parameters of /i, <r2 and 7 , respectively.
Our prior beliefs, given by most electronic engineers, about the vertical profiles 

inform us that these profiles have peaks at altitudes lying between 250 km and 500 

km above the Earth’s surface. According to this information and the size of the 

reconstruction grid, we bounded each peak height, //n, between 80 km and 1 2 0 0  

km. Since the TEC observations give measurements of concentration of free electrons 

present in columns of unit cross-sectional areas and the latter are measured in meters2, 
the selected boundaries are modified to produce the following peak heights prior 

distribution:

7r (/* |/y  a  exp j - 0 ^  ^  (Ma -  Mb) 2 \  , (4-10)
V. a ~ b  )

where J2 a~b represents the sum over all pairs of neighbours, with each pair counted
once only, and 80,000 <  <  1,200,000 given in meters, for all a =  1, . . . ,  N.

A suitable range for the spreads is derived mainly from a set of values we obtained 
from a preliminary study, as explained in Chapter 6 . These values indicate that the 

spreads are roughly between 1010 m2 and 1011 m2. Therefore, the upper boundary 
of the required interval is picked to be 1012 m2. Moreover, since these parameters 
cannot be negative, a lower suitable boundary may be zero. Hence, the spreads prior 

distribution can be written as:

7r(<7 2 |/?a2 ) oc exp | ~(3a2 ^  (or2 -  o f ) 2 1 , 0 <  <T2 <  1012, (4.11)
k a ~ b  )

where a =  1 , . . . ,  IV.
Finally, and in a similar manner to above, the prior distribution of the electron 

densities under the profile curves is chosen to be:

7t(7 |/?7) a  exp j ~ / ? 7  ^  (7 a -  7 b) 2 i  , 0 <  7 a <  107, (4.12)
V. a ~ 6  /
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for a =  1 , . . . ,  N ,  measured in units of 1 0 11el/m 2, because this unit is consistent with 
that of the local electron densities given by 1 0 n el/m 3.

It is worth mentioning that all the above boundaries are chosen to be big enough to 

easily cover the expected realistic ranges in order to avoid having inferences influenced 

by the boundaries given by the priors.
Note that in the models, the set of profiles extends along just one dimension, 

therefore a site will only have one or two neighbours, depending on whether it is an 
edge or an inner site.

The prior distributions given by Eqs (4.10) - (4.12) are convenient from a computation 
and theoretical point of view: they possess the Markovian property and are jointly 

Gaussian. The Markov property is important for models implemented by Markov 

Chain Monte Carlo methods, as it will also ensure rapid computation of the conditional 

densities; see Rue (2001).

In this study, we will further assume that f i ,a 2 and 7  are independent and that 
e2 is independent of these parameters. Hence, the prior distribution 7r(X ), where 

X  =  7 ,e2) is

7r(/z,CT2 , 7 ,e 2 |/^ ,/?CT2 ,/37) =  7r(/i|/?M)7r((j2 |/?(T2 )7r(7 |/?7 )7r(e2). (4.13)

4 .4 .2  T h e  n o is e  p r io r  m o d e l

In our approach, the error parameter is an important variable because it reflects the 
uncertainty within the model due to several natural and technical source of noise. Since 

we do not know much about it, it is useful to specify a prior distribution that provides 
only little information. This is the criterion for a good model as it will allow information 

about the parameter e2 to be extracted primarily from the observed data.
Prior distributions that satisfy the above aim are known as Jefferys’ priors and are 

usually described as flat distributions. The prior distribution we adopt to model the 

precision, r 2 =  is the improper Gamma distribution, G a(0,0). This distribution is 
widely used to model unknown variances; useful applications can be found in Gilks 

et al. (1996). Although the prior has an infinite integral and is improper, when 

formally combined with the data likelihood it can yield an acceptable proper posterior 

distribution; see Gelman (2005). The Gamma prior is particularly convenient since 

its full conditional posterior distribution is also Gamma, and so can easily be handled 

in Markov Chain Monte Carlo simulations by, say, the Gibbs sampler of Geman and
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Geman (1984). Let us denote this improper Gamma prior by 7r(t2), then

7t ( t 2) oc 0 <  r 2 <  oo. (4.14)

Thus, by Jeffreys’ invariance principle, see Gelman et al. (2004), e2 is modelled by the 

improper Inverse-Gamma prior distribution given by

4.5 The ionospheric im age posterior d istribution

As mentioned in the previous section, the Bayesian approach allows us to model the 
spatial distribution of interest producing the following posterior distribution for X

Our Bayesian inference about the underlying ionospheric scene given the TEC data 

is based on the above posterior distribution. This distribution’s normalising constant, 
7 r ( y ) ,  cannot be calculated due to the high dimensionality and complexity of the model.

In this case, a random field F  =  { F i ,  , F/v} configuration, /  =  { / i , ---- , /w } ,  ° f
any type of the vertical profile parameters can, in principle, be obtained by exploring 

the posterior distribution via Markov Chain Monte Carlo (MCMC) techniques. This 
is because with these techniques the normalising constant is not required as it will 
be automatically cancelled in the acceptance ratio. Once inferences about these 
parameters axe collected, estimates of the pixels electron densities are calculated using

A key issue in any Bayesian modelling is the nature of the resulting posterior 
distribution, for example, an improper posterior model is not acceptable. Such a model 

may emerge if unsuitable improper prior distributions are used. One foolproof way of 
avoiding the impropriety problem is to use proper priors (Hobert and Casella, 1996).

A GMRFs prior distribution for x where x € R N , is called an intrinsic Gaussian 

autoregressions or intrinsic GMRFs (IGMRFs). These type of GMRFs are known to 

be improper as mentioned by Besag (1989) and Rue et al. (2005). Such a prior if

(4.15)

x 7r(/i|/?M)7r(CT2|/?CT2)7r(7|/57). (4.16)

Eq (4.8).
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used in building up a posterior model may lead to an improper posterior distribution. 
However, the impropriety of the model in this case could be removed by converting 
the improper prior distribution into a proper one. This could be perfectly achieved by 

restricting x^s to any finite integral; see, for example, Besag (1989) and Besag et al. 
(1991). Obviously, implementing the latter suggestion in the above example makes the 

integration in Eq (4.18) finite.
Fortunately, the nature of our application and the expected realistic ranges of fj,n , o \  

and t n given in Eqs (4.10) - (4.12), make our prior distribution proper.
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Chapter 5

Im plem enting M CM C using  
sim ulated data

5.1 M arkov Chain M onte Carlo (M C M C )

Markov chain Monte Carlo has had a profound influence on statistics, especially but 
not only in Bayesian inference; see, for example, Smith and Roberts (1993), Besag and 

Green (1993), Gilks et a l  (1996).
MCMC is a sampling based simulation technique that can be used to explore a high

dimensional distribution, 7r ( X ), defined on a sample space Q. The exploration process 

aims to build a stationary Markov chain on the state space fi, with an aperiodic and 
irreducible transition kernel, P (X , X'),  which has t t (X)  as its stationary distribution, 
where X '  denotes a new state given the current state X .  In this context, after a burn-in 
period specified to remove dependence of the chain on its starting state, the simulated 

sequence of samples converges in distribution to the desired model, 7r(X ). Although, 
the values along the Markov chain are dependent, summary features of the target 

distribution, such as point and interval estimates for unknown quantities of interest axe 
then estimated using the converged part of the chain.

An essential step in any MCMC-based inference problem is the determination of a 

Markov chain for which 7r(X)  is its equilibrium distribution. A tractable way to ensure 
convergence to n ( X )  is to construct a transition kernel P ( X ,  X' )  that not only satisfies 

the ergodicity conditions: irreducibility and aperiodicity, but also exhibits detailed 
balance, i.e.

P ( X , X ' ) tt(X )  =  P { X ' ,X ) i r { X ' )  V X , X ' e f t .  (5.1)

Detailed balance is also called time reversibility, because it means that the Markov
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chain is invariant whether it was run forwards in time or backwards. If the detailed 

balance condition is maintained then the global balance J  i r (X )P (X ,  X ' ) d X  =  7r(X')  is
also satisfied.

Hastings (1970) designed the so-called Metropolis-Hastings algorithm that provides 
a way to accomplish detailed balance and global balance. The algorithm is iterative; 
given a state X  E  and an arbitrary proposal density q(X,  X') ,  a new realisation, 
X',  is proposed according to q ( X , .). The definition of the proposal distribution is 

essentially arbitrary, subject to the condition that the Markov chain is irreducible and 

aperiodic. In practice, it is convenient to select a proposal density for which sampling 

is considered a relatively fast and easy task, and for which calculation of the acceptance 

probability is not awkward. Once a new candidate X ’ is generated from q { X , .),  it is 

then accepted as the chain’s new state with probability

However, if the new state was rejected, then the chain remains in the present state, 

X  with probability

X'^X

Obviously, n {X )  and q are related through the acceptance probability ratio, and 
this relationship has a strong effect on the chain convergence rate, as a “good” proposal 
density will lead to an efficient sampler.

constant is not required, as this will be cancelled in 7r(X')/7r(X),  thus knowledge of 

the model only up to a constant of proportionality is adequate for implementation. 
For more details, see Smith and Roberts (1993). A special case of the Metropolis- 
Hastings sampler that is widely used in practice is the original Metropolis algorithm  

of Metropolis et a l  (1953). This is based on the selection of a symmetric proposal 
distribution, i.e. q(X,  X' )  =  q ( X ' , X ) ,  such as a Gaussian centred on the current chain 

state. The acceptance probability in this case is simplified to

a ( X , X')  =  min < 1,
7r ( X ) q ( X ,X ' )

(5.2)

If X '  is accepted, then the transition kernel P ( X ,  X' )  is given by

P ( X ,  X' )  =  q ( X , X ' ) a ( X , X')  if X '  ^  X. (5.3)

(5.4)

A key feature of this algorithm is that determination of the model normalising

mm (5.5)
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Given a state vector X  =  ( X \ , . . .  , X { - i , X i , X i + i , . . .  ,Xk) ,  a new state X '  can 
be generated using different updating schemes. A well known scheme is single-site 

updating, also known as component-wise updating. Here only a single element of A , 

say Xi ,  is updated. That is, q proposes a new single value X[  leaving the remainder 

of X , X - i ,  unaltered. Xi  may be updated randomly or systematically. However, only 

one element of X  is updated at each iteration, producing

X ' =  ( X 1, . . . , X i - 1, X i , X i+1, . . . , X k). (5.6)

The Gibbs sampler given by Geman and Geman (1984) is an example of a 

component-wise based MCMC algorithm. It was firstly used in statistical image 

processing and restoration in the field of spatial statistics. Later Gelfand and Smith 

(1990), amongst others, implemented this approach in other areas such as missing 

data and Bayesian computation problems. The Gibbs algorithm iterates by sampling 

from the full conditional distribution of the selected element, Xi ,  given the values on 

the complement, X - i .  In this case, the new candidate X'  is always accepted, i.e. 
a ( X ,  X' )  =  1 . Therefore, the Gibbs sampler can also be considered as a special case of 

the Metropolis-Hastings algorithm but with an acceptance probability of one.
A different type of updating strategy is the multiple-site or the block-wise scheme. 

Under this strategy, either all elements of A  or a small subset of components of 
X  are updated jointly in each single iteration. Again Hastings algorithm can be 
used with suitable proposal densities, such as the multivariate Gaussian, to generate 
Markov chains with limiting distribution, 7t( X ) .  Several studies based on such blocking 

schemes were implemented on different problems. Knorr-Held and Rue (2002) found 
block updates methods can sometime give misleading estimates even for long runs in 

a disease mapping problem unless the block is big enough. Roberts and Sahu (1997) 
emphasized that blocking can also make an algorithm converge more slowly and proved 

this by two different examples. On the contrary, other investigators, such as Liu et 
al. (1994) deduced that block sampling often improves the properties of the MCMC 
algorithm. Amit and Grenander (1991) found that the larger the blocks that are 

updated simultaneously, the faster the convergence. Indeed, the choice of the MCMC 

algorithm updating strategy can often dramatically affect its efficiency and therefore a 

sampling scheme should always be carefully chosen.

5 .1 .1  C o n v erg en ce  an d  a c c u ra cy

An issue of primary concern associated with the implementation of MCMC is the 

assessment of the convergence of the Markov chain. In practice, three pivotal questions
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arise. Firstly, how to decide how long should the burn-in period be in order for the chain 

to escape from the initial state influence? Secondly, how a chain should be monitored 

to decide whether it has converged to the posterior distribution? Finally, how large 

should a sample be to give inferences to a specified accuracy?

Theoretically, any Markov chain with a unique stationary distribution and an 

appropriate transition mechanism will eventually attain equilibrium. However it is 
usually impossible to say in advance when this equilibrium will be reached. Additionally 

as the simulated values come from a Markov chain, typically they will be serially 

correlated; Kass et al. (1998). Therefore, it is necessary to run the Markov chain for 

an adequate period of time before one can obtain posterior averages with sufficient 
accuracy. The high dependency between successive states can create a slow mixing 

Markov chain which causes slow convergence to the posterior model. Many convergence 

diagnostics have therefore been developed, some of which axe discussed and used in the 

present study.
One easy diagnostic tool is a trace plot of the Markov chain. This is a time series 

plot which indicates whether the chain apparently converges as well as whether it is 
mixing properly. The mixing behaviour is assessed by the chain’s “hairiness” about 

the chain’s ergodic mean. Even if the chain is apparently mixing well, convergence 
might not be guaranteed. For example, if the posterior distribution was bimodal and 
the Markov chain was effectively sampling from a single mode then its time series plot 
will reveal a hairy trace but also a chain that is trapped within one of the two modes. 
Here, more iterations should be considered to allow for sampling from the second mode 
and hence accomplish convergence.

Another commonly used method for monitoring convergence is based on the output 
obtained from several independent realisations of the MCMC sampler, each of length  

2 n, generated by using different random seeds and/or widely dispersed initial values. 
If the inferences drawn from a large number of chains, after discarding the first n 

iterations, are consistent and virtually identical with one another, then one may assume 

that convergence has been achieved. Nevertheless this is still not guaranteed.
By proposing several parallel chains, it is also possible to diagnose Markov chain 

convergence via the corresponding time-series plots, e.g., if any two chain traces do 
not meet within a bounded region of the sampling space beyond the burn-in discarded 

period then lack of convergence is suggested. Thus examining successive batches within  

a single chain, or between several parallel chains, can provide us with “negative” 
evidence that the process is not sufficiently long. However, there is no “positive” 

evidence that equilibrium has been reached. Gelman and Rubin’s (1992) multiple
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chains convergence diagnostic compares the between and within chain variances, and 

the ratio of these two values is used to quantify convergence.
Many authors have discussed different convergence diagnostic tools, including 

Brooks and Roberts (1998), Brooks and Gelman (1998) and Cowles and Carlin (1996). 
In any particular MCMC application, a general acknowledgement is that no one 

convergence diagnostic tool is “best” and furthermore, different approaches might give 

inconsistent decisions.

Once convergence is reached, the next task is to decide when it is safe to stop the 
sampler. An important issue at this stage is the Markov chain autocorrelation. The 

chain’s autocorrelation can be graphically represented by a time series plot known as 

the autocorrelation function (ACF); Chatfield (2003). This plot exhibits correlations 

between successive states of the chain at various lags. If the amount of dependence 

between the chain samples decreases rapidly, the ACF correlation diminishes fast. 
Accordingly, in this context, we would say that the chain is mixing well.

Although the ACF plot acts as an indicator of good mixing, it does not measure 

the speed of this mixing. To quantify this, the integrated auto-correlation tim e  is used. 
In any MCMC approach, the aim is usually to estimate the the expectation E 7r(g) 
of a function of interest g { X)  under the target distribution 7r. However, due to the 
complexity of 7r the corresponding expectation integral given by / X gq f f (X)7r(X)dX,  
is analytically intractable, therefore it may be estimated by the empirical average of 
M  values of g, e.g., {p(A"(m))}, for m  =  1 , . . . , M ,  where { A ^ }  are realisations 

of X  sampled from the chain; gM =  7 7  X)m=i ^  discussed by Ripley
(1987). A key issue is that MCMC samples axe dependent. To counteract this 
problem, a larger sample is required for a respectable estimate of E^{g).  The mean 
square error is commonly used to assess the quality of this estimator, it is given by 
MSE(gM) =  vai (gM) + b 2(gM) where the first term denotes the variance of gM and b 

represents the associated bias. These terms can be formulated as follows

where var^t?) represents the equilibrium variance of g{X) ,  and r{g)  is the required

\E(9m ) -  E(g)]

2

(5.7)
,m = 1

(5.8)
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integrated autocorrelation time and is defined as

OO
T (g)  =  l  +  2  (5.9)

771=1

where Pn(o)  denotes the autocorrelation of g( X ^ }  at lag m,  calculated at equilibrium; 
see for example, Green and Han (1992).

It is clear that the MSE(7jM) is dominated by the asymptotic variance of the sample 

mean, vai (gM) because it is of order M ~ l while that of the squared bias is M ~ 2. Thus, 
a key issue in any MCMC approach is the assessment of the sampling variance, var^#). 
The integrated autocorrelation time value when independent realisations from 7r are 

generated is one. Thus if r(g)  is small, then we can conclude that the Markov chain is 

rapidly mixing. In contrast, a large value of r(g)  indicates that the chain is still slowly 

mixing and hence, we may be forced to use larger number of iterations or modify the 

sampling process in order to improve the accuracy of the resulting ergodic averages.
Several approaches have been introduced in literature to reduce the sampling 

variance, for example, methods of antithetic variables (Green and Han, 1992), 
importance sampling, model reparameterisation (Gelfand et al., 1995) and altering 

jumping rules for Metropolis-Hastings algorithms (Gelman et a l , 1996).

5.2 A  standard M C M C  sam pler

Our methodology is based on the reconstruction of an ionospheric region from a 
collection of TEC data by simulating the posterior distribution, Tr(X\Y),  defined in 

Eq (4.16). Initially, standard MCMC algorithms that may be capable of generating 
realisations of X  =  (p,cr2, 7 , e2) are used. To update the Markov chain, we select the 
basic single-site updating approach, so we may need to consider each parameter’s full 
conditional distribution.

Since we have modelled the precision, r 2, with an improper Gamma prior density, 
the full conditional posterior of r 2 is

7t(t 2\p , C72 , 7 , /?, Y)  oc L(Y\ p ,  a 2, i ) ^ { r 2), (5.10)

where (3 =  ( /^ , /^ 2 ,/Xy), thus after some simplifications we obtain

7r(T 2 |/ i ,  <r2 , 7 , f3, Y )  oc (r2) 1 _1  e x p  f - y  • ( 5 -1 1 )
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It follows that r 2 is distributed as a Gamma random variable, i.e.

(r 2 |/i,cr2 , 7 , /3 ,K ) ~  Ga  I
I  E i i  ( Y j - E ( Y J ) 2 (5.12)

2

which is a well known distribution to sample Thus, new values of e2 can be proposed 

by taking the reciprocal of the precision samples drawn by Gibbs sampling steps of 

Geman and Geman (1984).

In contrast, the complicated form of the likelihood function under the non
linear data model when combined with any vertical profile parameter GMRFs prior 

distribution, forms an awkward conditional distribution. This precludes any further 

Gibbs sampling. Instead, we turn to Metropolis sampling, Metropolis et al. (1953). The 

Metropolis proposal distributions are chosen to be univariate Gaussian with suitably 

scaled variances.

The algorithm described above is called the standard MCMC algorithm in this study. It 
begins by initialising the unknown variable values and fixing the smoothing parameters 
PujPp2 ,/Jy. Then the algorithm iterates through the following steps:

1. For n =  1 , . . . , i V,  at each time t , update the vertical electron density profile 

parameters, systematically, by Metropolis sampling, e.g., if Zn E {/zn,cr2 , 7 n}
then

•  draw Z'n from

(5.13)

where Z $  denotes the current parameter value and Cz the proposal 
density scale.

•  Accept Z'n with probability a ( Z n \  Z'n) =

min < 1 , (5.14)

where Z$n denotes the set of all orthogonal neighbours of Zn.

•  If Z'n is accepted then set Z n + ^ =  Z^, otherwise, Z n + ^ =  Z n \

•  Sample r 2 from its conditional distribution using the Gibbs sampler, and 

then set e2 =  \ .
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Table 5.1: The synthetic plane vertical profiles param eter values.

Profile Peak height p Spread cr2 Electron density under the curve 7

1 1 .0 0 0.50 35.0
2 2 .0 0 0.25 30.0
3 1.25 1 .0 0 25.0
4 1.50 0.30 2 0 .0

5 2.50 0 .1 0 29.0

It is worth mentioning that in computing the contribution to the posterior 

distribution from the likelihood in the second step, only the nth column pixel electron 

densities need to be used to calculate {E'(Yi)},  however, E'(Yi) only needs to be 

calculated if the ith  ray passes through this column. This could be efficiently done 

by adding the new corresponding column weight terms and subtracting the current 
terms of Eq (4.4). After completion of each cycle, values of the updated parameters 

are stored.

5.3 Exam ple

In order to test the standard MCMC algorithm defined in the last section and illustrate 
our methodology, we considered sampling the posterior model given in Eq (4.16) using 

a set of simulated TEC data. We adopted a 3 x 5 grid of pixels to represent a synthetic 
ionospheric plane with five vertical electron-density profiles. The corresponding profiles 
parameter values are given in Table 5.1. Thirty six propagation ray paths from a 

satellite to a chain of three ground-based receivers are constructed to intersect the 
synthetic plane as depicted in Figure 5-1. As mentioned earlier, each pixel electron 
density is determined at the mid-height of the corresponding pixel level.

The electronic engineers believe that the error associated with the observations 

recording process is negligible therefore the Gaussian noise associated with our 
procedure is chosen to be small with zero mean and variance e2 =  2000- 1 . In order 

to simulate the artificial TEC records that correspond to the 36 propagation paths, 
the error of each measurement, e*, is sampled from this Gaussian model and then  

added to the record calculated expected value, E(Yi), using Eq (4.4), for i =  1 , . . . ,  36. 
Preliminary tuning runs of length 10,000 iterations indicated that a “good” degree 
of spatial smoothness may be accomplished by assigning the interaction parameters 

/3m, (3a 2 and to 0.003, 0.004 and 0.008, respectively, and the rates of accepting new 

values of the parameters of interest that lie between 20% - 40% may be obtained
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by using normal proposal kernels with the following scales: J2 =  0.052,<^2 =  0.052 
and J2 =  0.52. The initial peak heights, spreads, electron densities under the profile 

curves and precision values are, respectively, 1.75, 0.1, 31.26 (records mean) and 1500. 
Figure 5-2 demonstrates some resulting time-series plots when 150,000 iterations of 

the algorithm are generated with random number seed 1.0. For comparison reasons, 
this seed will be used for all further related simulations, unless stated. The following 
constraints have been used to define the prior distribution:

0 <  Mn <  3, (5.15)

0 <  a 2 <  10, (5.16)

0 <  in  <  100, (5.17)

for n =  1 , . . .  ,5.  The upper limit of the peak height is chosen to be 3 because this 

is consistent with the reconstruction grid configuration, whereas the other two upper 

limits are chosen to be big enough to allow the data to speak about themselves.
In part (a) of Figure 5-2, due to the effect of the “bad” starting values of the vertical

profile parameters, the residual squared sums; ~  E (X i))2 calculated in the first
iteration after updating these parameters has substantially increased, therefore r 2 has 
approximately dropped to zero. This reflects that the error associated with the first 
replication is very big. Further, all plots in this figure reveal that the Markov chain 
starts to converge after approximately 2 0 ,0 0 0  iterations, where most of the plots began 
to stabilise at their corresponding parameters true values. This is an expected result 
because the added simulated data white noise is very small. However, a few chains 
such as those for, ^ 5  and 7 5 , get trapped away from their true values (the matching 
colour solid lines). This may be due to the fact that these chains are not mixing 

well. As a simple diagnostic for convergence, or rather lack of it, we generated two 
other independent replications of the Markov chain, one by running the sampler using 

another seed and the other by initialising the algorithm with a different state, each of 

length 150,000. Figures 5-3 and 5-4 display the new time series plots.

Comparing the parallel sequences of Figures 5-2 - 5-4, a lack of convergence is evident 
as parameter chains such as those of cr|, 7 2  and 7 5  are moving very slowly, or are stuck 

in separate regions in the posterior distribution. The “stickiness” of the chains can 
also be seen in the high correlations present either between the chain successive states, 

see for example Figure 5-5, or between the model parameters of interest as Figure 5-6 
reveals. Thus, the problem on which we need to focus is how to reduce the existing high 

correlations in order to produce rapid mixing chains and hence improve the efficiency
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Figure 5-1: The 2D grid o f pixels showing the satellite-to-receiver propagation ray paths 
(red dotted lines) for an ionospheric tomography simulated data experiment. The blue 
curves represent the vertical electron-density profiles in each column.
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Figure 5-2: Trace plots o f the precision (a), peak heights (b), spreads (c) and the 
electron densities under the profile curves (d) recorded when the standard component
wise sampler is used. The profile parameters proposal distributions standard deviations 
are respectively, 0.05, 0.05 and 0.5, fo r  all i =  The 1st, 2nd, 3rd, J t̂h and
the 5th vertical profile chains are in black, red, green, blue and light blue, respectively. 
Solid lines represent the synthetic parameter values.
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Figure 5-3: Trace plots o f the precision (a), peak heights (b), spreads (c) and the
electron densities under the profile curves (d) recorded when the standard component
wise sampler is used. The profile parameters proposal distributions standard deviations 
are respectively, 0.05, 0.05 and 0.5, fo r  a l i i  =  The 1st, 2nd, 3rd, J t̂h and
the 5th vertical profile chains are in black, red, green, blue and light blue, respectively. 
Solid lines represent the synthetic parameter values.
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Figure 5-4: Trace plots o f the precision (a), peak heights (b), spreads (c) and the
electron densities under the profile curves (d) recorded when the standard component
wise sampler is used. The profile parameters proposal distributions standard deviations 
are respectively, 0.05, 0.05 and 0.5, fo r  a l i i  =  The 1st, 2nd, 3rd, j{th and
the 5th vertical profile chains are in black, red, green, blue and light blue, respectively. 
Solid lines represent the synthetic parameter values.
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Figure 5-5: Auto correlation plot fo r the last 50,000 accepted values o f 7 5  using the 
standard component-wise sampler with the same input o f Figure 5-2.
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Figure 5-6: Scatter plot o f the first column profile parameters samples obtained from  
the last 50,000 iterations o f Figure 5-2.

of the MCMC sampler?
Recall th a t within this algorithm, the variables are system atically updated  using a 

single-site scheme. This allows for the high dependencies between the param eter in tu rn  
and the other variables to influence the acceptance of the new move. Thus an alternative 
approach might be a block-wise scheme, where highly correlated param eters can be 
“blocked” and jointly updated. For this purpose we decided to  run two different versions 
of block-wise based sampling MCMC algorithms in parallel. W ithin the first version, we 
updated  param eters of the same type together, for example, update p  =  {/xi, . . .  , ps},

65



then a 2 =  { a 2, . . . ,  cr2} and finally 7  =  { 7 1 , . . . , 7 5 }, systematically, before updating 

t 2. In this case, a new realisation of any single type, say / /  for instance, is simulated 

from a N(fi ,  Is^2), where I5 represents the identity 5 x 5  matrix, and then accepted 

with a Metropolis probability given by

(5'18)

Figure 5-7 shows the resulting time-series traces.

In contrast, the second block-wise sampler version updates set of parameters 

representing a single profile together, i.e. a proposal of the form a 2', 7 ^) is 

generated using a Metropolis update and therefore is accepted with probability,

^ (/4>^n»7nl
1 , — -̂--------------

7T (/i.n, ln \

where for example,

L (Y \ • • •)7»’(MnlM<5n)7r(CTn V ln)7r(7nl7<5Tl)- (5.20)

We will call this version the location-wise algorithm. As in the single-site and the first 
block-wise sampler, the last step in each cycle of the location-wise algorithm is a single 
Gibbs update of the precision parameter, t2. The output of this approach is displayed 
in Figure 5-8.

Figures 5-7 and 5-8 reveal that the suggested two block-wise updating schemes have 

not helped. This is because many of the resulting chains are still not mixing well since 

some chains got stuck in few states as can be seen in parts (b) and (c) of Figure 5-7, 
whereas several others are trapped in some small regions of the sample space far from 

the modal area as e.g., fi4 and chains of Figure 5-8 show.
The fact that the performances of the block-wise samplers are poor was not so 

surprising because generating a set of parameters candidates that all lie in a high 
probability region may be rare especially when the posterior distribution is narrow and 

many parameters are blocked and updated together as in the first block-wise sampler 
version.

Further, the resulting parallel nuisance variable, r 2, realisations of Figures 5-2, 5-7 

and 5-8 indicate that the component-wise standard MCMC sampler is the best updating 

approach to use because unlike the block-wise scheme results where 150,000 sweeps axe

mm (5.19)
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Figure 5-7: Trace plots o f the precision (a), peak heights (b), spreads (c) and the electron 
densities under the profile curves (d) recorded when the first version o f the block- 
wise sampler is implemented. The profile parameters proposal distributions standard 
deviations are respectively, 0.05, 0.05 and 0.5, fo r  all i =  1 , . . .  ,5. The 1st, 2nd, 3rd, 
4th and the 5th vertical profile chains are in black, red, green, blue and light blue, 
respectively. Solid lines represent the synthetic parameter values.
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Figure 5-8: Trace plots o f the precision (a), peak heights (h), spreads (c) and the electron 
densities under the profile curves (d) recorded when the location-wise sampler is used. 
The profile parameters proposal distributions standard deviations are respectively, 0.05, 
0.05 and 0.5, fo r all i =  1 , . . .  ,5.  The 1st, 2nd, 3rd, J^th and the 5th vertical profile 
chains are in black, red, green, blue and light blue, respectively. Solid lines represent 
the synthetic parameter values.
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insufficient as a burn-in period, the single-site approach requires approximately 2 0 ,0 0 0  

iterations only to generate large and accurate values of r 2. This reveals that in this 

case small residual squared sums; — E f i i ) ) 2 8X6 produced, where E(Y{)  is
calculated after updating each parameter. Thus, this scheme substantially increases the 

MCMC sampler efficiency if compared with the other two block-wise versions schemes. 
However, the mixing problem associated with this method reveals a more complicated 

structure in the posterior distribution. This issue will be followed up in the next section.

5.4 D evelopm ent o f a m ixed M C M C  algorithm

5 .4 .1  H o w  to  im p ro v e  t h e  sa m p lin g ?

Following Bayes’ theorem the target distribution is constructed by combining the 

likelihood distribution with the prior distribution. However, because our prior 

knowledge about the ionosphere internal structure is very limited the posterior 
distribution is strongly dominated by the likelihood. Thus to improve the MCMC 

sampling it is important to study what in the likelihood distribution causes difficulty 
in moving. This requires examining the way in which {/z, cr2,')}  affect the likelihood. 
Since it is intuitively obvious that this effect originates from the local electron densities 
in the expected values terms, we decided to monitor these densities at a small number of 

places. For this purpose we will use the geometrical plots of the reconstructed vertical 
electron density profiles sketched at different stages of the simulation process versus 

the local electron density values, lni, ln2 -, Ind., where lni denotes the nth profile local 
electron density at the zth level, as demonstrated in Figure 5-9.

Let us for example consider the first and the last parts of the latter figure. Part
(a) shows that the local electron densities at the three levels are well estimated and 
therefore the corresponding profile is almost accurately recovered whereas part (e) 
reveals that the third level local electron density in particular is highly overestimated 
and the generated profiles are approximately coincident creating a curve that 
apparently does not match the desired vertical profile. This indicates a poor mixing 

behaviour caused by the high correlations between the main parameters. These high 

interactions influence the whole column local electron densities to behave in a similar 

manner as can be seen in the scatter plot of Figure 5-10.
Moveover, although we may be able to match the local electron densities at the 

specified levels by values of for any column n  which are far from the
synthetic values, it is then hard to move away from these values because changing for 

example, the peak height /zn, affects the whole column of the local electron densities 

and hence such a single variable change may be rarely accepted in this case.
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Figure 5-9: The reconstructed vertical-electron density profiles generated at iteration 
60,000, 70,000, . . . ,  150,000 of a single run of the standard M CM C sampler using 3 
levels at the heights specified by the dashed lines, (a) , . . . ,  (e) represent the 1 s t , . . . ,  
5th column profiles, respectively. The thick dark black curves reveal the corresponding 
synthetic profiles.

It is known th a t any straight line can be specified by two points bu t if instead a 
normally shaped curve was of interest, as in this study, then a t least three adequately 
spaced points should almost be correctly fitted. Furtherm ore, for a reasonable fit, 
two of these points should roughly bound the curve whereas, the th ird  point should 
approxim ately lie at the curve peak height. Therefore to best fit the vertical profiles it 
is necessary to initially fit the local electron densities th a t jointly create these profiles. 
This may be achieved by regularly generating direct moves in the horizontal direction 
w ithin the vicinity regions of the local electron densities shown as the red bounded 
areas in Figure 5-11 for instance, in addition to  those moves originally proposed in the 
m ajor param eters directions.
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Figure 5-10: Scatter plot of the 5th profile local electron densities obtained at the 3 
distinct levels. Only the last 50,000 values of each relative chain are used. These 
results are associated with those chains of Figure 5-2.
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Figure 5-11: The fifth column retrieved vertical-electron density profiles generated
at iterations 60,000, 70,0000, . . . ,  150,0000 of the single run results of the standard 
sampler used to plot Figure 5-2. The black curve is the synthetic profile. The bounded 
areas by the red shapes represent the neighbourhoods of the local electron densities at 
the three distinct grid levels mid-heights.



To propose the new moves reparameterising ideas could be implemented via the 

following system of equations:

where h { j ) denotes the mid-height of the jth  layer, for j  =  1 ,2  and 3.

In general, reparameterisation methods are widely used in many MCMC application 

problems to accelerate convergence via improving the mixing of the simulated Markov 

chain. For such applications, the reader is referred to Gelfand et a l  (1995).

5 .4 .2  T h e  m ix e d  a lg o r ith m

The sampler is mainly based on two simulation procedures. The first procedure 

generates proposals of (/i, cr2 , 7 ) using the component-wise standard MCMC sampler 
whereas the second, generates realisations of the vertical profiles local electron densities 

at the mid-height of the three levels and then transforms these values back to the 
original parameters set producing states of the form ( / / ,  a 2\  7 '). Proposals of r 2 are 

obtained by a Gibbs step after completion of any type of the above simulation processes. 
A full cycle of the new algorithm consists of only one of the two mentioned procedures. 
The algorithm is designed to iterate between these two procedures in turn. Therefore 
we called this sampler the mixed algorithm. The reparameterisation step will now be 

discussed in more detail.

Recall that when applying the standard MCMC sampler that after accepting a new 
move the corresponding profile local electron densities are calculated using the electron 

concentration function given in Eq (4.8). In contrast, a reparameterisation step involves 

the generation of ^ 2> l'n3 , for each profile. These values, if they satisfy the positivity  
condition, are then used to determine new estimates of the block (/i n , cr2, 7 n) by solving 

the associated equations similar to those given by Eqs (5.21) to (5.23) for <j2/ and 

7 ^. Here every local electron density, lnj ,  is sampled from a Gaussian distribution 

centred at the current density value with a fixed variance <52. Solving the system of 
equations with h { j ) =  j / 2 , see Appendix A, produces the following expressions :

(5.23)

(5.21)

(5.22)

(5.24)
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21n ^ ) - l n ( j ; i ) - l n ( i ^ ) ’ (5'25)

In  =  V 27T <4lexP l ^ y f 0 -5  -  mU2}  ' (5.26)

If the calculated state ( '̂n,a 2>, 7 ^) satisfies the necessary boundary conditions of Eqs

(5.15) - (5.17) then it is accepted with a Metropolis-Hastings decision, i.e.

=  min f  1  7nl -)g((/^n» 7n) (^n, <T2, 7n)) ]  -  ^
\  ’ 7 r (M n ,^ ,7 n |-" )9 ( (M n ,^ ,7 n )  “ ► O C ^ n . T n ) )  J

where for example, q({/J,n, &ni In)  (a4 > a2'n-> In))  represents the joint proposal density 
of fi'n,cr2'n and j'n given the current state (Lim&niln) and 7r(/i^,<j2^ ,7 ^| • • •) is the 
conditional posterior distribution. To simplify our notations we shall use g(Atn,<72 ,7 n) 
and q{ii'n,<j2'n, i n) to represent q{{y!n,a 2'n, i n) ->■ (/zn,cr2 , 7 n)) and ° 2, 7 n)

respectively.
We are interested in evaluating q(ti'n,cr2'n, 7 ^). Fortunately, the unknown joint 

proposal density can be determined from the known joint proposal distribution by 

implementing the several variables transformation method and is therefore

q(fl ,n,<J2'n,'y'n) =  q(l>nl>l'n2,l>n3)(lnl^n2Jn3) \ j ' \  > (5-28)

where | J'\ is the transformation Jacobian given by

0 ( 0  X  2.4s)p'l =

For our example, we have
d(ti'n, a 2'n,jh)

(5.29)

3 " exp (“2  ̂(3/i”2 " 9M“ + ?))' ' (2i ) 5<7'»

The derivation of this term follows the same procedure placed in Appendix B. Thus, 

the new proposal state <j2'n, j^ )  is accepted with probability

a  =  mm

since the known proposal distributions are by definition symmetric.
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Figure 5-12: Trace plots o f the precision (a), peak heights (b), spreads (c) and the 
electron densities under the profile curves (d) recorded when the mixed sampler is 
implemented using a 3 x 5  grid. The 1st, 2nd, 3rd, 4th and the 5th vertical profile 
chains are in black, red, green, blue and light blue, respectively. Solid lines represent 
the synthetic parameter values.

5.5  A p p ly in g  th e  m ixed  a lg o r ith m

Having constructed the mixed algorithm, we now examine its perform ance on the 
sim ulated TEC d ata  example of section 5.3 and discuss the associated im plem entation 
issues and results.

We began our investigation by making several prelim inary runs in which the 
local electron density moves scaling param eters, J 2, are tuned to  produce reasonable 
acceptance rates. Figure 5-12 shows the resulting time-series plots w ith a proposal 
step size of 0.0112 for the first four vertical profiles proposal distributions and 0.000072 
for the last profile corresponding proposal density. The fifth profile scaling constant is
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Figure 5-13: The reconstructed vertical-electron density profiles generated at iterations
60,000, 70,000, . . . ,  150,000 of a single run of the mixed sampler using 3 levels, (a) , . . . ,  
(e) represent the 1st , . . . ,  5th column profiles, respectively. The thick dark black curves 
reveal the corresponding synthetic profiles.

chosen to  be smaller than  the other vertical profiles scaling values because unlike these 
profiles’ first two levels local electron densities this profile’s lower layers have negligible 
electron concentrations as Figures 5-9 and 5-13 reveal, therefore it is necessary to  create 
small enough moves in order for these to  be accepted. This configuration gives the 
following m atching acceptance percentages: 33%, 32%, 36%, 37% and 10%, calculated 
after discarding the first 50,000 sweeps.

Comparing the new trace plots w ith those obtained from the m atching experim ent 
results of Figure 5-2 indicates an apparent improvement in the mixing behaviour of 
the produced Markov chains, especially those of the fifth vertical profile, a t least from 
a visual perspective, because each chain is now moving more freely between many 
trapping states. The effect of this improvement is reflected in the nuisance param eter 
chain, e.g., part (a) of Figure 5-12, in the form of a rapid generation of large values 
of t2. It is also obvious from the plots of the sampled vertical profiles displayed in 
Figure 5-13, th a t in the most awkward profile of Figure 5-9, namely the fifth profile, 
reconstructed curves are now moving more freely within the close neighbourhood of the 
corresponding synthetic profile. This is due to  the fact th a t horizontal moves in the
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Figure 5-14: The fifth vertical profile local electron density l$j chains obtained after 
a bum -in phase of 50,000 from  a single run of the standard sampler (black) and the 
mixed algorithm (blue) versus the synthetic local electron density (dashed red line) at 
the first (top), second (middle) and the third (bottom) grid levels.

local electron density directions are created and accepted regularly, especially a t the 
very low density heights. W ith the standard  sampling such low concentrated altitude 
moves are rarely produced, see Figure 5-14.

This perhaps explains the “stickiness” of the last profile’s restored curves, for 
example. Furtherm ore, and in contrast to the parallel scatter plot of Figure 5-10, 
Figure 5-15 indicates smaller correlations between the three local electron densities.

The effect of combining the reparam eterisation process w ith the standard  MCMC 
sampler within the new algorithm  is not only noticeable in the last profile ou tpu t but 
is also revealed in the other sim ulated chains results. For an example, see Figure 5- 
16. The three dimensional scatter plot obtained by implementing the mixed sampler
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Figure 5-15: Scatter plot o f the fifth column vertical profile parameters l&j samples 
obtained from  the last 50,000 iterations using the mixed sampler with three levels based 
grid.

displayed in the second panel of the la tter figure is much more open than  th a t derived 
by employing the standard  MCMC algorithm  alone (the first panel of the same figure). 
This indicates reduction of correlation between the components of the first vertical 
profile.

In general, the improvement in the results is due to  the fact th a t by switching from 
the standard  MCMC sampling to the reparam eterising based sampling, the updating 
process is converted from a component-wise scheme into a block-wise scheme in which 
param eters of each individual profile axe updated together but in a more sophisticated 
way th an  th a t used in the previous case of the location-wise updating approach. This 
effectively reduces the existing high correlations and hence accelerates convergence by 
improving the mixing of each chain. However, some big excursions and sticky regions 
th a t separate good mixing areas within a single chain are observed in a few chains, in 
particular those of the last profile, as Figure 5-12 reveals. This suggest th a t some chains 
are still not mixing adequately although other chains do. R aftery and Lewis (1992) 
highlighted the fact th a t the number of iterations required by the different chains to 
produce accurate ergodic averages of the quantities of interest can be dram atically 
different within the same problem. We are interested to know w hat is special about
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Figure 5-16: The 3D scatter plots o f the 1st profile parameters produced when the
standard sampler (left) and the mixed algorithm (right) are employed with 3 levels. 
Only the last 50,000 values from  the corresponding chains are used.

this problem, and more specifically about the fifth profile, th a t make good mixing a 
difficult goal to  achieve because it seems from the results obtained so far th a t the 
high posterior correlations are not the only cause of slow mixing. For this purpose we 
decided to take another look at the geometrical plot of the synthetic vertical profiles 
displayed in Figure 5-13, and in particular the last vertical profile curve. A lthough the 
la tter profile is fitted a t three different altitudes or points, Figure 5-13 reveals th a t two 
of these points lie at the curve’s lower boundary, whereas the last point is located at 
the peak area leaving the upper boundary free. This inflates the degree of freedom 
present a t this altitude as can be seen in the corresponding plot of Figure 5-13, and 
hence only a rough estim ate of the corresponding local density is produced. This in 
general affects the fitting quality.

To overcome this problem, the idea of increasing the necessary num ber of restoration 
levels is considered and the mixed algorithm  is modified and implemented accordingly, 
as discussed in the next section.



5.6 T he m ixed  algorithm  w ith  m ore levels

In reality we do not know how many grid levels are necessary to produce good inferences 

for the ionospheric model parameters of interest. Almost certainly three layers are 

insufficient and therefore more levels may be considered. Hence, the present version of 
the mixed algorithm cannot be implemented. To modify it we propose to use only three 

suitably chosen layers d values for every vertical profile because fitting each requires the 

estimation of three parameters, namely, and 7 n which in this case necessitates

solving a system of three equations. Moreover, the same layers of each profile should 
be used whether moving forward or backward within the simulation process. The 

latter constraint, if fulfilled, theoretically ensures convergence to the desired posterior 
distribution because the corresponding Markov chain detailed balance condition is 

satisfied. That is, if n0 ,n& and nc are the nth profile chosen heights with current 
local densities lna^nb and lUc and current state X ,  then a new accepted state X '  ^  X  

with accepted proposals Vna, l'nb and l'nc given the present state X  and transformation 
kernel P ( X ,  X' )  satisfies the time reversibility condition given by Eq (5.1). The choice 

of the three layers needed in the reparameterisation procedure is entirely deterministic 
and can differ from one data set to another.

To hopefully improve the mixing of the simulated data example chains discussed in 
the last section, we re-discretised the two dimensional synthetic plane grid by adding 
an extra level, that is the reconstruction grid is converted from a 3 x 5 into a 4 x 5 grid 

of pixels. We then implemented the new version of the mixed sampler by assigning 
0.0l l 2 for the first four vertical profiles proposal scalings and 0.0022 for <52. Only the 

upper three levels local electron densities are used for reparameterising the model. The 
choice of these levels is based on the fact that within each column at least two of these 

layers lie in non-negligible electron concentration regions. For example, see Figure 5-17. 
The resulting acceptance rates are respectively, 0.3, 0.37, 0.29, 0.36 and 0.33. Figures 

5-18 and 5-19 show the new inversion output.
By comparing the matching generated paths of Figures 5-12 and 5-18, we deduced 

that the inclusion of an extra level has obviously improved the mixing of the generated 

chains in general. As a result of this improvement a good fit of the vertical profiles 
local electron densities has been achieved as Figure 5-19 traces reveal.

We are also interested in testing the performance of the standard MCMC algorithm  
in this case. Therefore, we decided to run the component-wise based sampler using the 

same number of layers of the above experiment. The results of this run are displayed in 
Figure 5-20. Unfortunately, adding an extra level in this case did not help the sampler
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Figure 5-17: The 5th vertical electron-density profile re-scaled into the 4 x 5
reconstruction grid. The red dashed lines represent the altitude o f each local electron 
density involved in the reparameterisation process.

to perform b etter and, unexpectedly, increased the burn-in period to slightly above
100,000. Further, the fifth vertical profile peak height and spread chains got stuck 
again in one state  or more as the corresponding chains traces reveal while 7 5  converges 
very slowly. This is due to the following: despite the fact th a t the vertical profile 
is fitted using an extra local electron density point, this point lies in alm ost a zero 
concentration region as displayed in Figure 5-17, giving very little ex tra  inform ation 
about the density at higher altitudes. This necessitates fitting more layers.

In contrast to  the equivalent mixed sampler experim ent results of Figure 5-18, we 
concluded th a t the mixed algorithm  performs much better than  the standard  algorithm  
in this case because all chains are mixing much faster.

Having obtained some well mixing chains using the mixed sam pler we assessed the 
accuracy of the resulting expectations by calculating the corresponding param eters 
m ean square errors. These errors axe displayed in the first column of Table 5.2. From 
these values we deduced th a t all variables of interest are almost well estim ated except 
7 5  which relatively has a high MSE (defined in Section 5.1.1) of approxim ately 18. In 
general, since these normally curved profiles are fitted a t only four points a b e tte r fit 
may be achieved by increasing the number of layers to be fitted. Therefore, we modified 
the grid to include 6 , 12 and 24 layers instead to find out how many levels are adequate 
to  produce estim ates of a reasonable accuracy. The required reparam eterisation scaling 
constants are fixed a t 0.0112 for the first four vertical profiles and 0.000072 for the last 
one. All acceptance percentages lie between 20% and 40%. Some of the new results
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Figure 5-18: Trace plots of the precision (a), peak heights (b), spreads (c) and the 
electron densities under the profile curves (d) recorded when the mixed sampler is 
implemented using a 4 x 5  grid of pixels. The 1st, 2nd, 3rd, Ĵ th and the 5th vertical 
profile chains are in black, red, green, blue and light blue, respectively. Solid lines 
represent the synthetic parameter values.
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Figure 5-19: Trace plots o f the first (a), second (b), third (c) and the forth  (d) levels 
local electron densities recorded throughout a run time of length 150,000 obtained by 
employing the mixed algorithm with 4 levels. The solid lines represent the synthetic  
electron density values at these heights.
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Figure 5-20: Trace plots of the precision (a), peak heights (b), spreads (c) and
the electron densities under the profile curves (d) recorded when the component-wise 
standard sampler is implemented using a 4 x 5  grid. The 1st, 2nd, 3rd, Ĵ th and the 5th 
vertical profile chains are in black, red, green, blue and light blue, respectively. Solid 
lines represent the synthetic parameter values.
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Table 5.2: The mean square error values obtained when the mixed algorithm is
implemented with the specified number of layers, n j.

Var MSE (nj =  4) MSE (n j =  6 ) MSE ( n j  =  12) MSE ( n j  =  24)

Mi 0 .0 0 0 0 0 1 1 0.00000039 0 .0 0 0 0 0 0 2 2 0.000000088
M 2 0.0000027 0.00000059 0.00000018 0.000000086
M3 0.000064 0.000015 0.0000062 0.0000026
M4 0.0000037 0 . 0 0 0 0 0 2 0 .0 0 0 0 0 1 2 0.00000063
M5 0.014 0.00000033 0.000000045 0.000000038

0 .0 0 0 0 2 1 0.000023 0.0000028 0.0000042

<4 0.0000016 0.0000044 0 .0 0 0 0 0 1 1 0.0000023

<4 0.0005 0.00016 0.00024 0.00018
4 0.000052 0.000013 0.000017 0 .0 0 0 0 1 1

oft 0.0023 0.000081 0.0000014 0 .0 0 0 0 0 1 2

71 0 .0 0 1 0.00035 0 .0 0 0 1 2 0.00013
72 0.00059 0.0005 0.00076 0.00057
73 0.044 0.013 0.0125 0.0056
74 0.0024 0.00088 0.00028 0.00027
75 17.6 0.0637 0.00023 0.00025

time series plots are demonstrated in Figures 5-21 and 5-22.
The last two figures show that by fitting more layers during the reconstruction 

process the sampler significantly improves its performance which is seen in the form 
of speedy mixing chains and extremely short burn-in phases since the model mode is 

approximately found after only a few iterations. This reflects the fact that a better fit 
of the simulated data has now been produced because more accurate estim ates of the 
desired distribution parameters are obtained as the corresponding mean square error 

values recorded in Table 5.2 indicate. All values in this table are calculated using the 

last 1 0 0 ,0 0 0  accepted proposals from each chain.
Moreover, the latter table compares the MSE when the number of layers considered 

are 4, 6 , 12 and 24. From this table and the plots in Figures 5-18, 5-20 and 5-21 it 
can be concluded that fitting six layers is adequate to obtain accurate inferences of all 

vertical profile parameters especially those of the 5th profile since the MSE of 7 5  for 
example has dropped from almost 18 to slightly less than 0.1. Further, there is no big 

difference between the MSE values obtained with n j =  6  or 24. Thus fitting the
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Figure 5-21: Trace plots of the precision (a), peak heights (b), spreads (c) and the 
electron densities under the profile curves (d) recorded when the mixed sampler is 
implemented using a 6 x 5  grid. The 1st, 2nd, 3rd, and the 5th vertical profile 
chains are in black, red, green, blue and light blue, respectively. Solid lines represent 
the synthetic parameter values.
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Figure 5-22: Trace plots of the precision (a), peak heights (b), spreads (c) and the 
electron densities under the profile curves (d) recorded when the mixed sampler is 
implemented using a 12 x 5 grid. The 1st, 2nd, 3rd, l t̂h and the 5th vertical profile 
chains are in black, red, green, blue and light blue, respectively. Solid lines represent 
the synthetic parameter values.
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artificial data using six layers is sufficient to produce good inferences for all 

parameters of interest. This will also reduce the computing time required to effectively 
sample the posterior distribution of interest.

5.7 Sum m ary

In this chapter, we have considered a simulated TEC data set example for which we 

implemented MCMC based algorithms to sample the underlying posterior distribution. 
The standard Metropolis algorithm results suggest that this sampler can be very slow 

to converge especially if the reconstruction grid is discretised with a small number 

of levels, e.g., 3 or 4. The new approach developed, the mixed algorithm, in which 

ideas of reparameterisation are used, gave promising results even when the grid has 

only a few rows. Since this algorithm can only be implemented using three levels local 

electron densities, the choice of which three layers to use is important. A general rule 
of thumb is to select three levels within each column such that two of them bound the 

vertical profile at non-negligible electron density altitudes and the third lies within the 

peak height region. However, a suitable set of layers is not always known in advance. 
One way that may help in choosing these levels is to make use of the available a priori 
information. An alternative approach which we recommend is to generate a preliminary 

run of the standard MCMC sampler using a “good” initial state. Based on the resulting 

profiles’ geometrical plots the required layers could then be chosen.
Although, the mixed sampler performs generally well with small number of layers, 

the empirical estimates obtained from this approach are more accurate when sufficient 

number of layers are considered.
For the real TEC data problem, the mixed algorithm will be used in the next 

chapter. Since the ionospheric region of interest extends vertically from 80 km to 
1 2 0 0  km, it is important to choose a sensible number of rows, r i j , to discretise the 

2-dimensional grid. This number should not be very small nor very large. For very 

small n j ,  the inferences is expected to be not so accurate. On the other hand, if rij is 
set to be very large the algorithm sampling CPU time will increase. This will badly 

affect the efficiency of the algorithm.
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C hapter 6

TEC data for tom ographic 
reconstruction via M CM C

6.1 Introduction

The simulated TEC data example studied in the previous chapter gave promising 

indications that the new MCMC sampler, namely the mixed algorithm, can produce 
accurate restorations of high-level images that deals with more complex features of the 

scene. In this study, the high level image model specifies the image as a collection 
of vertical profiles, each covers a whole column set of pixels in the grid. Capturing 
the attributes of these profiles based on spatial patterns of electron densities, rather 

than the low level image task of estimating each pixel’s content of free electrons, is 
considered a high level image task. The next step is to implement the mixed sampler 

with real TEC measurements. The NNSS TEC data introduced in Section 4.1 will be 

used in this work. Figure 6-1 displays these measurements. In this figure, each set of 
points clustered to approximately form a curve represents a set of TEC observations 

that is collected by only one of the four receivers.
Table 6.1 gives the receivers’ approximate locations in degrees of latitude, the 

number of records collected by every individual receiver, and the approximate detecting 

range of each. Since the radio signals were received between 12°N and 61°N in latitude, 
and the satellite orbits at an altitude of about 1 1 0 0  km, the two dimensional grid is 

designed to cover all signals ray paths and therefore it extends horizontally from 10°N 

to 65°N, and vertically from the surface of the Earth to 1200 km above it.
This grid has a resolution of 2.5° latitude by 40 km altitude. The configuration 

discretises the ionospheric plane of interest into a 30 x 22 grid of pixels as shown in 

Figure 4-1.



Table 6.1: Real T E C  data geometry.

Receiver Number Location Number of records Detecting range
1 38°N 176 21°N - 60°N
2 42°N 50 34° N - 45° N
3 44°N 157 27°N - 61°N
4 36°N 189 12°N - 54°N

(a)
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Latitude in degrees
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I £
O 8

30 35 40 45 50 55 60
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a s
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Figure 6-1: The 572 total electron content observations collected by receiver number 
one (a), two (b), three (c) and four (d) recorded during a single satellite passage over 
the receiver chain.
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4 0 0

Latitu de  in d e g re e s

Figure 6-2: The retrieved image o f free electron densities measured in units o f
10n e l/m 2 obtained from  M IDAS.

Having constructed a “suitable” tom ographic grid, the mixed algorithm  could be 
implemented starting  w ith any initial state. However, we seek a good starting  point; 
a point th a t lies near the mode of the posterior distribution. Although, theoretically, 
the specification of such a starting  point is unim portant as given any starting  sta te  the 
ergodic Markov chain will eventually converge, in practice, such a good initial s ta te  is 
crucial because it may shorten the convergence time, especially if the chain is mixing 
slowly.

6.2  O b ta in in g  a g o o d  in itia l s ta te

Generally, in this study any sta te  A 0 is described by a set of N  vertical electron-density 
profiles w ith an associated d a ta  noise variance. T h at is, X ° =  ({/x®, cr2^, 'y^}, e2°). 
Since our information about the ionosphere is very limited and mainly available in the 
form of TEC  measurements, an initial guess of a good starting  sta te  requires either the 
contribution of the knowledge of an expert or the use of the data. For this purpose, we 
implemented the algorithm, MIDAS described in C hapter 3, using the same geometric 
grid and TEC da ta  values, giving the tom ographic image displayed in Figure 6-2. This
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algorithm is comparatively cheap computationally.
A difficulty that arises with estimating the required initial values directly from 

MIDAS results is that it operates at the pixel level producing a low level free-electron 

density map, whereas we seek a high-level image. To overcome this problem, we develop 
a method that allows us to extract a high level initial state from estimates of electron 

densities gathered at the low level. The derivation proceeds in four steps described in 
the next sub-sections.

6 .2 .1  O b ta in in g  th e  p e a k  h e ig h t fin in it ia l v a lu e

The peak height of a Chapman profile is defined as the altitude at which the maximum  

amount of ionisation is present within a vertical section of the ionosphere, therefore a 

good choice of this parameter starting value say, /i^, may be the mid-height of the pixel 
that has the largest electron concentration within the MIDAS profile grid column. For 

example, assume that ln =  { lni , . . .  ,Zn3o}> is the set of the nth column local electron 
densities, where ln\ for instance denotes the electron density of the pixel in the 1st row. 
Furthermore, suppose that

arg max(7n) =  k , (6 .1 )

for some k E { 1 , . . . ,  30}, then we choose to set

=  m ,  (6 -2 )

where h(k) represents the mid-height of the pixel at the kth  row. By applying this 
approach using MIDAS output an initial peak height of 340,000 m above the Earth’s 

surface is obtained for all vertical profiles for this data set.

6 .2 .2  O b ta in in g  th e  sp rea d  cr̂  in it ia l v a lu e

The spread, cr ,̂ represents the width of a normally shaped curve. Thus a good

approximation of it may require the knowledge of three location values on the profile
curve. These locations should be adequately dispersed but also should not lie at very 

low, nor very high altitudes because at these heights the local electron densities are 

almost zero. A sensible set of the required three points may then be that of the peak 

height layer, lnk, i.e. the value of the electron density dj of the kth  pixel in the nth  
column, and any two neighboring layers such that one lies above the peak layer and 

the other below it, for example, ln(k-i) and ln{k+1)* Eq (4.8) allows us to express these 
densities in terms of the required profile spread as follows:
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lnk =  ^ ~ 2 eXP  ̂ W  ~  V n f  } , (6.3)

given //n — h{k) and a height increment of 40000 m, h(k — 1 ) =  fin — 40000 and 

h(k  +  1) =  iJLn +  40000, hence

ink =  - 7 = ,  (6.4)
V 2?r(Jn

and

ln(k-1) =  ln(k+1) =  y ^ ^ - exp |  — ^ 2  (40000)21 . (6.5)

In order to obtain an initial estimate of cr2, Eqs (6.4) and (6.5) need to be combined 

into a single equation that can be easily solved for this variable. Therefore, we will 
first consider the average of the neighboring layers electron densities and denote this 

average by, n̂((fc—i),(fc+i))>

L((fc-i),(fc+i)) =  exP {  2o^ (40000)2}  • (6-6)

Then a suitable expression of <r2 in terms of all three layers could be derived from 
the ratio R an =  =----- ^ -------, that is

‘n((fc-l),(fc+l))

JXtl.

Ran  =    TV- (6.7)
exp {  — (40000) }

Now solving the above expression for cr2 gives

- 5  400002
CT" =  (6-8)

Given the values of the local electron densities obtained from MIDAS, R an is found 

to be around 1.05, giving us an initial value, cr2°, of approximately (128 x 103 ) 2 m2, 
for n =  1 , . . . ,  2 2 .

6 .2 .3  O b ta in in g  th e  7n in it ia l v a lu e

The total number of free electrons within the nth grid column, T en, could be estimated  

by summing up the local electron density values of all rectangular pixels forming this
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column, that is

30

T en =  Y ^ ln j-  (6.9)
3 =1

An alternative more sophisticated approach to this estimation is based on 

multiplying the area under the Chapman profile curve by its electron density value, 7 n. 

Therefore, we can equate 7 n to the estimated vertical sum of local electron densities. 
However since increments of size 40000 m axe used in building up the reconstruction 

grid, a discrete approximation to it is perhaps

30

(6-10>
3=1

This gives us the following estimate

30
7 n =  40000 ^ 2  Inj, for n =  1 , . . . ,  22. (6.11)

3=1
7  initial values calculated using this estimator and MIDAS results lie between 
(2.5357 x 106) 10n e l/m 2 and (6.8118 x 106) 10n e l/m 2.

The resulting initial image obtained by implementing the above schemes is displayed 
in Figure 6-3.

6 .2 .4  O b ta in in g  th e  n o ise  p a r a m ete r  e2 in it ia l v a lu e

Having derived starting values for the vertical profile parameters using MIDAS results, 
an initial value of e2 can be obtained by calculating the resulting residual squared sums 
and setting e2 as the average of these sums, that is

.20 E £ 21 (Xi -  E(Yi))2
572 ’ 16 ^

where E(Yj) is determined using the estimated local electron densities via Eq (4.4).
Following this approach the data noise value associated with the initial state is
e2° =  6.4822 x 105 (1 0 16e l/m 2 ) 2 or TECU2.

6.3 Starting points for th e  sm ooth ing param eters

In our approach to the ionospheric tomography problem, the statistical model is 

designed to capture the spatial features of the ionospheric image, basically at high-level
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Figure 6-3: The initial ionospheric image of vertical electron density profiles obtained 
from the pixel-based approach results of MIDAS.
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and consequently at a pixel-level by means of the GMRFs priors given in Eqs (4.10) 
- (4.12). This is because neighbouring Chapman profiles are expected to be similar 

with high probability. The GMRFs priors depend on the parameters (3fj,,(3a2 and 

because these parameters jointly control the “strength” of the interactions between the 

vertical profiles. Generally, this type of parameters controls the trade off between the 

influence of the measurements and that of the prior constraints. W ith the limiting case 

(3 =  0 the variables are considered to be independent, whereas with (3 —> oo they tend 
to cluster around a single value and therefore the resulting estimates are too faithful 

to the prior. Thus the choice of these parameters is critical.

It is usually impossible to estimate a smoothing parameter using a full likelihood 
approach. The main reason behind this is that such method requires the calculation of 

the normalising constant, Zp =  Jx tt(X , (3)dX , of the following distribution

v(X,  /?) =  ^ - e x p { - m X ) } ,  (6.13)

where X  is a d-dimensional random variable and <f)(X) is a function that depends on the 

values of X .  In almost all associated problems the determination of this constant is not 
possible because the above integral is intractable. In an attempt to get point estimates 

of these types of parameters, Besag (1974, 1975) developed the pseudo-likelihood (PL) 
approximation and coding methods. For example, in the pseudo-likelihood scheme, 
the conditional distributions are multiplied together. Then the PL is maximised with 
respect to the corresponding interaction parameter. Several researchers have used these 

methods and found them to work reasonably well; see for example, Lee et al. (1995).

Following Besag’s pseudo-likelihood approach, a point estimate of /3M, for instance, 
is determined by maximising the corresponding pseudo-likelihood distribution written 

as

N

PL(/x|/3/x) =  Y l  Tr(^nlM-n), (6.14)
n—1

over Pp.
As can be seen from Eq (6.14), the maximum pseudo-likelihood (MPL) is dependent 

on the conditional distribution, 7r(/in |/i_n), which by the Markovian property of the 

GMRFs can be written in the form of a local characteristic, i.e. 7r(fin\p - n) =  7r(/in |//<sn), 
where psn denotes the set of all neighboring peak heights of p n under the single 

dimensional neighbourhood system. Thus,
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where

N

PL W M) =  II 7r(^"l^n)>
n—1

(6.15)

AVnl/iSn) OC TT^j/^)

OC e x p { - /? M ^  (/in -  flm)2} 
m~n

oc e x p { —/3m ^  ( / 4  -  2 //m/in )} .
m^n

Let represent the number of the nth peak height neighbours and JlSn denote their 

average, then

#<5r ^ Pm-

Hence, the local characteristic can be written in the following form

^{Pn\P6n) OC exp{ - ^ n p ^ r i  ~  Pdn)2},

which implies that

(Pn\psn) ~  N  ^ Sn, ^ j  , 

where kn =  Thus, the required pseudo-likelihood for fi is

= n ^)2} •
The MPL estimate of is obtained by maximising the log-pseudo-likelihood function 
given by

N
log (PL (p\P^)) =  log

n—1 

N

=  -  log \/27rfcn -  (Mn -  /45J
7 2 = 1

over Pa- This produces the following estimator
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A* =  ~ N  ,-------- ^ 2 '  (6 '16)
N_

E n = l  2{J^n(Mn — AL6n )

Similarly, the maximum pseudo-likelihood estimates of (3a 2 and /?7  are found to be

and

N
At2 =  ------------------------- 9 1 (6.17)

N
P y  =  — T r 9  , (6.18)

7  E l i 2 R ( 7 n - 7 , J 2

respectively, where a \n =  ^  E m~n and l5n =  ^  E m ~ n 7 m-

To fix the smoothing parameters at some reasonable values using the above MPL 

estimators, we need to have a set of values for the associated variables; fi, a 2 , 7 . To 
obtain this set, we have at least two options; the first is to consider the extracted  

estimates from the available MIDAS results obtained in the previous section, and the 

second is to generate new realisations approximately from -k{X \Y) via a preliminary run 

of the standard MCMC algorithm but under the assumption of independent profiles, 
i.e. we set (3̂  =  /3a 2 =  /37  =  0. This assumption will allow the data express themselves 
more freely as the prior distributions will be very weak.

By considering the first option, /?7  is found to be roughly 1.64 x 10- 1 1  in units of 
(10n e l/m 2) 2. Unfortunately, /3M and (3a2 cannot be specified from the extracted  

MIDAS estimates due to the fact that under our chosen discrete configuration and 
method of fitting the low level image into a high level one, gave identical values of the 

peak heights and the spreads for this data set, which if substituted in Eqs (6.16) and 
(6.17) would result in undefined estimates of and (3a2 e.g., (3̂  =  (3a2 =  0 0 .

Now we will apply the second approach. To shorten the burn-in period of the standard 

MCMC run the first option estimates of the main parameters are used as the required 

initial state. Here the algorithm is ran for 10,000 iterations. Some of the resulting 

time-series plots are displayed in Figures 6-4 and 6-5.
Inferences obtained from this run are used to reconstruct the ionospheric image 

depicted in Figure 6 -6 . This image reveals that there are different degrees of smoothness 

within the distinct regions of the ionospheric plane. This may be related to the amount
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Figure 6-4: Some vertical profiles peak height traces scaled by a factor of 103 obtained 
from the preliminary run of the standard MCMC algorithm with all (3s =  0. The red 
lines represent the estimated averages obtained from the last 5000 sweeps.
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the preliminary run of the standard MCMC algorithm with all (3s =  0. The red lines 
represent the estimated averages obtained from the last 5000 sweeps.
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Figure 6 -6 : The ionospheric retrieved image of free electron densities measured in units 
of 1 0 11e l/m 2 obtained from  the preliminary run of the standard M CM C algorithm with 
all /3s = 0.

Table 6.2: The MPL estimators obtained by using inferences fo r columns (from  left to 
right) (1 - 4), (11 - 14) and ( 8  - 16) in addition to those obtained from  M IDAS.

oOCM1oOr—
1 35° -  45° 30° -  50° MIDAS

Num ber of columns 4
1.38 x IO- 1 0  

4.58 x IO" 22 

2.57 x 10“ 14

4
3.17 x IO" 8 

1.79 x IO" 18 

5.57 x IO- 1 1

9
2.65 x 10“ 9 

1.98 x 10~ 19 

1.67 x IO" 11

oo
oo

1.64 x 10- 1 1

of inform ation available about each region. Therefore, we will calculate M PL estim ates 
of /9At,/3e72 and /31 for three regions within this plane and justify our choice of one of 
these M PL sets.

The first region extends from 10° to 20° in latitude and covers columns 1 - 4 of the 
grid, the second is bounded horizontally between 35° and 45° and contains columns 
11 to 14, and finally the th ird  region is wider and ranges from 30° to  50° in latitude 
covering all vertical sections of columns 8  to  16. Table 6.2 shows the num ber of columns 
involved in each region. Further, it compares these areas’ M PL estim ates obtained from 
the prelim inary run with those derived from MIDAS.
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Table 6.2 indicates that there are fairly big differences between the second and 

third regions’ MPL estimates. However the first region MPL estimated values are 

much smaller than the former two regions. In terms of smoothness this means that 
the second region, for example is much more smooth than the first region because 

it has stronger spatial interactions between its vertical profiles. This can be seen in 

the associated chains’ traces plotted in Figures 6-4 and 6-5 in the form of a parallel 
behaviour between the same region traces.

Since it is known that the ionosphere only allows for small variations between 

neighbouring regions, the roughness behaviour of the first region is odd. Further 

investigations of the data set led us to believe that the difference between the distinct 

regions of the ionospheric plane in terms of smoothness is largely due to a lack of 

information within some regions, especially those at the edges. For instance, the first 
region was intersected by only few radio signals detected by one of the four receivers 

as can be seen in Figures 4-1 and 6-1, whereas the second was highly covered by many 

signals. Therefore, the latter region’s etimates of the smoothing parameters are perhaps 

more appropriate, especially given that the prior distributions used are defined on wide 
limiting ranges with no source of “artificial added” correlations because all /3s are fixed 
at zero. This ensures that the emerged local high spatial dependency reflects a certain 

“real” degree of smoothness because here the results mainly depend on the likelihood 

of the data rather than the weak priors.
For all the above reasons, the MPL estimates of /3^,/3CT2 and /37  obtained from the 

“highly activated” region covering columns 11 to 14 axe used as the required smoothing 

parameters’ values, especially that the MIDAS MPL estimate of /37  also supports our 
choice. We will refer to these values as the MPL fixed estimates henceforth.

6.4 Im plem enting th e  m ixed M C M C  algorithm  for th e  
real problem

Having derived a “good” initial state with reasonable interaction constants, the next 
stage is to apply the mixed algorithm for the TEC data set. This requires the 

specification of three grid layers at which reparameterisation is to be performed. To 

do this, inferences accumulated from a preliminary run of 1 0 0 ,0 0 0  iterations of the 

standard MCMC sampler are used. In this run, the MPL fixed estimates of /3M, (3a2 and 

/37  are considered to identify the GMRFs priors. This produced the high-level image 

shown in Figure 6-7.
The last image reveals that the majority of vertical profiles are bounded at almost
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Figure 6-7: The high-level image obtained from  the standard M CM C preliminary run  
expectations fo r  the real TEC  measurements.

negligible electron density values outside the 5th and the 12th rows. Thus these layers 

and an ex tra  level between these two may be a good choice. Therefore we selected the 
5th, 8 th  and 12th.

Several initial runs each of length 100,000 iterations of the mixed algorithm  are 
carried-out by tuning the proposal distributions’ standard  deviations so th a t acceptance 
rates between 20% and 40% are mainly obtained for param eters within the inner region 
of ionospheric plane. Based on the results of these runs we assigned 2000, 5 x 109 and
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Figure 6 -8 : Some selected peak heights time series plots scaled by a factor o f 103 

produced by implementing the mixed algorithm using the M PL fixed estimates o f the 
smoothing parameters. The red line represents the corresponding chain empirical 
average.

2 0 0 0 0  for 8a 2 and respectively, for the direct updates of /i, a 2 and 7 , and 0 . 0 2  for 
the indirect reparameterised update step size, S. We then ran the mixed algorithm  for
500,000 sweeps.

Figures 6 - 8  - 6-10 reveal some param eters’ time-series plots obtained from the last 
50% of iterations.

For illustration purposes, four different states low-level electron density images 
obtained from this run  are displayed in Figure 6-11. These images reveal th a t the 
overall expected spatial smoothness of the ionosphere is now captured since almost all 
rough areas of Figure 6 - 6  have disappeared. The effect of this change is also reflected 
in the high-level image of Figure 6-23 where sm ooth profiles are noticed. Moreover,
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Figure 6-9: Some selected spreads time series plots scaled by a factor o f 1010 produced 
by implementing the mixed algorithm using the M PL fixed estimates o f the smoothing 
parameters. The red line represents the corresponding chain empirical average.

Figures 6 - 8  - 6-10 show this effect in the form of a parallel behaviour between the 
proposed chains. Figure 6-12 (left) displays the resulting precision trace.

The la tter results show the im portance of incorporating spatial priors with 
reasonable smoothing param eter estim ates in constructing the ionospheric model. A 
m ajor benefit of such priors is th a t vertical profiles of areas with insufficient or no 
d a ta  can be smoothed by “pooling strength” from neighbouring regions w ith similar 
properties.

An advantage of using fixed single point estim ate of each interaction param eter is th a t 
these need to be calculated once only during the whole reconstruction process, and 
hence no further adaption is required. On the other hand, a drawback may be th a t the
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Figure 6-10: Some selected electron densities under the profile curves time series plots 
scaled by a factor of 104 produced by implementing the mixed algorithm using the M PL  
fixed estimates o f the smoothing parameters. The red line represents the corresponding 
chain empirical average.

uncertainty about them is completely ignored, relying on a single initial estim ate. One 
scheme to overcome the uncertainty problem associated with the spatial interaction 
param eters is to trea t them  as random  unknown variables beside the m ain variables, 
and hence to assign a prior distribution, known as a hyper-prior, for each param eter. 
Practically, this means th a t the whole distribution of these param eters is to  be used 
instead of a single set of point estim ates. In this case, the spatial variables are called 
hyperparameters and the m ethod is considered as a fu lly Bayesian approach, whereas 
with a unique set of point estim ates the m ethod is described as an empirical Bayesian  
approach. The la tter scheme is common and was used by many researchers such as 
Besag et al. (1991) and the references therein.
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Figure 6-11: The ionosphere maps o f free electron densities in units o f lC ^ e l/m 2

produced by the mixed algorithm at iteration (a) 300,000, (b) 350,000 , (c) 400,000, 
(d) 450,000 when the M PL fixed estimates o f the smoothing are used.

In this study, the fully Bayesian approach is not implemented. This is because 
considering {3 ,̂ (3̂ 2 and /37  as random  variables requires the construction of a 
hierarchical model in which each interaction param eter is to be modelled by a hyper
prior distribution. Moreover, under the considered proper priors given in Eqs (4.10) - 
(4.12), the corresponding full conditional distributions of /3^,f3a 2 and /37  require the 
determ ination of the normalising factors, Air(/3/x) , N((3a2) and iV(/37), since the full 
conditional distribution of (3  ̂ for example, is given by

for ^ > 0 ,  (6.19)
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where
N W  =  [  7r(/z|/3M)7r(^M)d/Lt. (6.20)

Jn

The latter integration, if needed, requires long and complicated calculations each time 

(3n changes.

Heikkinen and Hogmander (1994) introduced a “combined” approach in which the 
restoration empirical procedure is used without ignoring the uncertainty of the 

attraction parameter, /3. The proposal is to alternate between updating the unknown 
variable X  using the current (3 values and updating the (3s using the current realisation 

X  via the MPL estimator. Thus, this scheme produces a sequence of estimates of the 

/3s by considering them as constant parameters rather than unknown random variables. 
This consideration shows a special characteristic of the method. It is not crucial that 

each estimate in the created sequence of (3 is drawn from a distribution, but that 
they vary continuously during the restoration process; the uncertainty of (3 is admitted  

through the variation within the produced sequence.

In order to acknowledge the uncertainty of our smoothing parameters we adapted 

the above two authors’ approach, i.e. we treat (3^,(3a 2 and /37  as constants to be 
regularly altered rather than unknown random variables. This choice is also based 

on the following feature of our application: the TEC data as believed by many 
electronic engineers are of high quality. Thus, although, estimates of the smoothing 

parameters cannot be derived directly from the raw data, reasonable values of them may 

be obtained by regularly implementing the MPL approach to the MCMC estimates, 
especially if these estimates correspond to the ionospheric region covered by many data 
signals.

We implemented two different runs of the mixed algorithm based on Heikkinen et 
al. (1994)’s approach. Each run is of 500,000 iterations and has the same configuration 

as the previous study. In both versions, /3M,/? CT2 and /37  are updated every 1000 sweeps 

rather than every sweep because this reduces the computing time, and gaps of this 

size may be reasonable with the long run considered and the high correlations noticed. 
Further, we chose to initially fix (3^,(3a2 and /37  at zero for the same reasons indicated 

in the previous section.
In the first version of the mixed sampler the smoothing parameters are updated 

using the highly active region estimates only, whereas in the second version the whole 
plane results are used. The middle and the right plots of Figure 6-12 reveal the resulting
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Figure 6-12: The precision parameter in unit o f T E C U ~ 2 traces obtained from  the 
mixed algorithm results when the smoothing parameters are: set at the M PL fixed values 
(left), updated using the second region results (middle), updated using the whole plane 
results (right). The numbers above each plot represent the relevant empirical mean.

Table 6.3: The m aximum pseudo-likelihood estimated averages o f the interaction
parameters obtained from  the last two versions o f the mixed algorithm.

Param eter Fixed values Version 1 Version 2

ft* 3.17 x 10“ 8 3.28 x 10" 8 5.04 x 10~ 9

P e r2 1.79 x IO" 18 2 . 0 2  x IO" 18 2.03 x 10- 19

P i 5.57 x 10" 11 5.68 x 10" 11 8.87 x IO" 12

traces of the precision param eter r 2, whereas Figures 6-13 - 6-18 depict bo th  versions 
analogous traces of Figures 6 - 8  - 6-10. In all Figures from 6-13 to 6-18, the left panels 
represent the results obtained from the first version of the mixed algorithm , whereas the 
right panels reveal the second version’s results. The MPL estim ates of the a ttraction  
param eters obtained from the two runs are shown in Figure 6-19 and the corresponding 
uncertainty intervals are revealed in Figure 6-20. Table 6.3 compares the resulting 
averages of the MPL estim ates with the fixed ones derived by our approach.

6.4.1 R esults

The precision time-series plots of Figure 6-12 indicate th a t by im plementing the mixed 
algorithm, whether the smoothing param eters are unaltered from the M PL fixed 
estim ates or updated regularly, smaller residual square errors th an  those we started  
with are obtained rapidly since bigger values of r 2 are generated after short burn-in 
periods. This has largely decreased e2 associated w ith the initial s ta te  by approxim ately 
105 TE C U 2 by all runs of the mixed algorithm.
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The left panel of Figure 6-19 shows that implementing the first version of the 
mixed algorithm has produced MPL estimates of the interaction parameters that vary 

within small ranges during the whole process after the burn-in period reflecting a small 
amount of uncertainty, as can be also noticed in Figures 6-21 and Figure 6-24. However, 
the variation between the resulting MPL estimates of (3a 2 is slightly larger than the 

other two interaction parameters, as the associated histogram of Figure 6-20 reveals. 
Nevertheless, the resulting MPL averages of this version are, in general, close to the 
selected MPL fixed values as displayed in Table 6.3. Therefore this version results are 

fairly similar to those obtained from the fixed estimates run, with only small variations 

seen in the tomographic images of Figures 6-11 and 6-21, and the high-level images of 

Figures 6-23 and 6-24.
In contrast to the first version MPL results, the second version’s histograms 

displayed in the right panel of Figure 6-20, and the relevant traces of Figure 6-19, 
show that the uncertainty in this case is generally larger because wider ranges for j3̂  

and j37  are obtained and big excursions within the created chains are noticed as in fia 2 

trace plot. This indicates that more variation is present in this case. The uncertainty 

of this process has a noticeable effect on the results; at the low imaging level this effect 
can be seen in the form of the widely varying electron density images of Figure 6-22, 
for instance, whereas at the high imaging level it can be seen in the varying vertical 
profiles of Figure 6-25. At both levels of imaging the low and the high, the uncertainty 
associated with the restoration is mostly revealed within the regions that are either not 
intersected by any radio signal rays or only crossed by few of them. This is because 

these regions are now more influenced by the weak priors since smaller interaction  
constants are generated. Consequently, wider estimation ranges are obtained and the 
resulting output vary more often.

6 .4 .2  C o n c lu s io n

In this chapter, we have considered the real TEC data problem mainly using the mixed 
MCMC algorithm developed in this thesis. It have been noticed that the algorithm is 

very sensitive to the values of the smoothing parameters, /5M, fia 2 and f31 . Therefore, 
we investigated two different approaches to deal with these parameters.

In the first approach, they are held fixed at some reasonable values. These values 
are obtained by implementing the MPL technique for a preliminary MCMC run using 

the central region of the ionospheric plane where many radio signals passed.
In the second approach, the smoothing parameters are allowed to vary during the 

MCMC sampling process by regularly calculating their MPL estimates. Here two 
versions of the mixed sampler are ran in parallel. Within the first version, all /5s’
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Figure 6-13: The first region peak height traces obtained from (left) the first version 
and (right) the second version of the mixed algorithm when the smoothing parameters 
are updated regularly. The empirical average of each chain is represented by a red line. 
All values are scaled by a factor of 103.

estim ated values are extracted from the central region estim ates, whereas for the second 
version, the whole plane is used in the MPL estim ation process.

As expected, the first version results reveal more stable restorations for both  the 
low and the high level images than  the second version, as can be noticed by comparing 
Figures 6-21 and 6-24 w ith the analogous plots of Figures 6-22 and 6-25, respectively.

A lthough most of the images produced by the mixed sam pler captured the expected 
degree of ionospheric smoothness, almost all time-series plots indicate slow mixing, as 
clearly noticed in Figures 6 - 8  and 6-13 for instance. To quantify this behaviour we 
present in Table 6.4 estim ates of the integrated autocorrelation time for some chains 
obtained from the three distinct runs of the mixed algorithm. The aim is to obtain  small
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Figure 6-14: The second region peak height traces obtained from (left) the first version 
and (right) the second version of the mixed algorithm when the smoothing parameters 
are updated regularly. The empirical average of each chain is represented by a red line. 
All values are scaled by a factor of 103.

values of the integrated autocorrelation time, say 10 or less. The required estim ates 
are calculated using Geyer’s (1992) initial positive sequence estimator. This estim ator 
will be used for all further similar calculations in this thesis.

It is clear from Table 6.4 th a t all three runs of the mixed algorithm  perform  poorly. 
However, as the uncertainty about the interaction param eters increases, the efficiency 
of the sampler decreases as measured by the integrated autocorrelation tim e estim ates. 
In general, these estim ates indicate th a t the produced chains are not mixing well.

This is probably due to two main reasons: the first is th a t the step sizes chosen 
to update the param eters, despite the fact th a t they produce reasonable acceptance
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Figure 6-15: The first region spread traces obtained from (left) the first version and 
(right) the second version of the mixed algorithm when the smoothing parameters are 
updated regularly. The empirical average of the chain is represented by a red line. All 
values are scaled by a factor of 1 0 10.

rates for the central columns, produced very big acceptance rates for regions with few 
or no radio signals. This can be easily solved by using different step sizes for different 
columns. The second, and very common reason in many MCMC based problems, is 
the high correlations present between the param eters of interest.
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Figure 6-16: The second region spread traces obtained from (left) the first version and 
(right) the second version of the mixed algorithm when the smoothing parameters are 
updated regularly. The empirical average of the chain is represented by a red line. All 
values are scaled by a factor of 1 0 10.

A new task toward a better restoration is to  speed up the mixing of all chains to 
be generated. In the next chapter we will discuss the construction of a new MCMC 
algorithm  th a t may help us to achieve this aim.
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Figure 6-17: The first region electron density under the profile curve traces obtained 
from (left) the first version and (right) the second version of the mixed algorithm when 
the smoothing parameters are updated regularly. The empirical average of the chain is 
represented by a red line. All values are scaled by a factor of 104.
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Figure 6-18: The second region electron density under the profile curve traces obtained 
from (left) the first version and (right) the second version of the mixed algorithm when 
the smoothing parameters are updated regularly. The empirical average of the chain is 
represented by a red line. All values are scaled by a factor of 104.
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Figure 6-19: The interaction parameter traces derived from the (left) first version and 
(right) second version of the mixed algorithm. Red lines represent the means of the 
resulting sequences.
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estimates of the corresponding chains of the above figure. The red vertical lines represent 
the resulting averages.
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Figure 6-21: The ionosphere maps of free electron densities in units of lC ^el/m 2

produced by the first version of the mixed alqorithm at iteration fa) 300,000, (b) 350,000 
, (c) 400,000, (c) 450,000.
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Figure 6-22: The ionosphere maps of free electron densities in units of 10n el/m 2

produced by the second version of the mixed algorithm at iteration (a) 300,000, (b)
350,000 , (c) 400,000, (c) 450,000.
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Figure 6-23: The high-level image obtained from  the mixed algorithm with the M PL
fixed estim ates of the smoothing param eters at the above m entioned iterations.
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Figure 6-24: The high-level image obtained from  the first version o f the mixed algorithm
at the above m entioned iterations.
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Figure 6-25: The high-level image obtained from  the second version o f the mixed
algorithm at the above m entioned iterations.

122



Table 6.4: Some variables’ (Var) integrated autocorrelation times ( f ( .) )  obtained from  
the mixed sampler when the smoothing parameters are fixed (F) (first approach) or 
updated using version one (V .l)  or version two (V .2) of the algorithm together with 
the corresponding chains empirical acceptance rates A. The integrated autocorrelation 
tim e estim ates are calculated from  chains’ sections of length 1 0 0 , 0 0 0 .

Var. n m f ( .) (V .l) f(.)(V .2 ) A % (F) A % (V .l) A % (V.2)

Mi 5694 6240 6524 82 83 74
M2 6192 6699 6822 76 76 69
M3 7127 7277 7665 76 76 47
M4 8277 8075 10387 46 49 24

° i 1728 1793 5239 76 76 72
1936 2081 6826 6 8 6 8 6 6

2179 3369 8413 67 6 8 41
<t\ 2408 3777 11115 42 45 27
71 963 950 2083 87 87 85
72 1129 1138 2397 82 83 82
73 1369 1441 3844 82 82 70
74 1973 2566 5291 65 6 8 41

M il 10958 13308 15991 34 34 28
M12 10981 13419 15766 33 33 27
Ml3 10915 13393 15612 31 31 26
Ml4 10752 13106 15401 37 38 32

4711 6914 9924 33 33 27
*12 3831 5783 10278 33 32 27

*13 2085 4608 10425 30 31 26

*14 1786 3953 10127 35 35 32
7 i l 7923 9933 11194 35 35 28
712 7743 9709 11765 34 35 28
713 7139 9734 9845 32 32 26
714 5567 7922 8233 36 36 30
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Chapter 7

The Principal C om ponents 
M CM C algorithm: An efficient 
sampler

7.1 Introduction

Markov chain Monte Carlo is a method of performing implicit integration for 

analytically intractable distributions. A properly constructed MCMC algorithm will 
generate dependent samples from a posterior distribution of interest provided that it is 

allowed to run sufficiently long. Ergodic averages of the simulated values can be used 
to estimate the posterior expectations of interest.

Practical implementations of MCMC algorithms such as the Metropolis-Hasting 
sampler can suffer from poor mixing and consequently inefficient estimation, even when 

sampling from unimodal distributions.
To demonstrate the difficulty in using standard MCMC algorithms to sample from 

such distributions, consider a bivariate normal density centred at p  =  (5 ,2)T with 

variance matrix

E =
2.02 0.396

0.396 0.22

so that the correlation p =  0.99. This distribution can be written as

(7.1)

where X  =  ( X i , X 2 )T and T  denotes the transpose.
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Figure 7-1: Contours o f the bivariate normal distribution f { X ) .

We are interested in generating draws from the above distribution. Therefore, we 
applied the M etropolis algorithm  using a system atic single-site updating scheme so 
th a t each move is parallel to  one of the coordinate axes. Figure 7-1 reveals contours 
of the corresponding distribution and each component sampling direction. To create 
these moves normal proposal densities are used. Here, we found th a t this sam pler is 
most efficient with integrated autocorrelation times of about 432 when the proposal 
step sizes are fixed a t 0.47 times the standard  deviations of X \  and X i  under f ( X ) .  
However, for a good mixing chain we seek an integrated autocorrelation tim e estim ate
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Figure 7-2: The resulting time-series plots obtained from  the last half samples produced 
by the Metropolis MCMC algorithm. The red line represents the true mean value of 
the corresponding variable. The sample averages o f X \  and X 2 are 4.. 787 and 1.978, 
respectively.

th a t is not much greater than  1.0. The standard  sam pler was started  from the point 
(1.8,4.5)t . W ith the selected steps, acceptance rates of about 35% are achieved and a 
burn-in phase of 400 sweeps is required. Figure 7-2 shows the resulting time-series plots 
obtained from the last 50,000 iterations of a run of 100,000 iterations. Obviously, these 
plots reveal a slow mixing behaviour of the resulting Markov chain. Further, the large 
value of the integrated autocorrelation time estim ates indicate a strong dependence 
between successive iterations. A m ajor reason of this behaviour is the high correlation 
between the two variables (i.e. p =  0.99). Therefore, the contours of this distribution 
as illustrated in Figure 7-1 are narrow. In this case, the probability in the sampled 
distribution is concentrated around the diagonal line X 2 =  1.5 +  O .lA i.

A move between two states (a) and (b) th a t are far ap art from each other needs 
many small steps as Figure 7-3 illustrates. The reason behind this is th a t any generated 
big move th a t lies away from the main diagonal area will be probably rejected because 
it lies in a low probability region, and therefore the chain is likely to  move very slowly. 
A solution to the slow mixing problem is to generate moves th a t allow rapid movement 
w ithin the region where the distribution /  is concentrated. This may be achieved by 
proposing moves along the orthogonal directions e\  and e2 p lo tted  in Figure 7-4, ra ther 
than  the original coordinate axes of X \  and A 2 . Suitable directions e\ and e2 can be 
obtained by finding the eigenvectors of the variance m atrix  E of X .  These eigenvectors
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Figure 7-3: Contours o f f ( X )  and a plausible random path between states a and b.

are also called the principal component loadings or the projection directions. These are 
by construction orthogonal— although they do not appear to be in Figure 7-4 due to 
the different scales of the axes.

The principal components (PCs), Y\ and Y2, of X  are linear com binations of the 
elements of X , th a t is, Y\ — X Te\ and Y2 = X Te2■ The variances of Yi and Y2 are 
the eigenvalues of the variance m atrix of X , denoted Ai and A2 , respectively. The 
first principal component accounts for the largest possible variance and the second 
com ponent accounts for the remaining to ta l variation. In general, the principal 
com ponents are extracted in decreasing order of variance, so th a t the 2th  variate has 
the i th  largest variance. Although the original variables are correlated, their principal 
com ponents are independent.

127



CVI
cvi

o
cvi

CO

CO

0 2 6 8 104

Xi

Figure 7-4: The principal component directions o f f ( X ) .

The m ethod for finding these components is known as the principal components 
analysis (PCA). It is a  powerful technique for d a ta  analysis (Jolliffe, 1986) and has 
been widely used for dimensionality reduction. In this case, the general m otivation for 
PCA is to  transform  the da ta  into some reduced-dimensionality representation th a t 
capture most of the variations present in the d a ta  set in order to  simplify further 
analysis. For more details on PCA, the reader is referred to Dillon et al. (1984, Ch. 2) 
and Chatfield et al. (1980, Ch. 4).

To employ the outcome of PCA in MCMC sampling, one can make M etropolis Hastings 
updates in the principal component directions by adding multiples of the eigenvectors 

of the variance of X  in each updating step, ra ther th an  taking steps along the original
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axes. Another more appropriate approach is that based on transforming X  to a scaled 

version, X ,  for which each element has variance equal to 1.0. This scaling is a common 

practice in multivariate analysis especially when the distinct parameters’ variances 

differ substantially.

The MCMC algorithm developed in this thesis on the basis of the PCA approach 

is defined as the Principal components MCMC algorithm and is abbreviated to 
PCMCMC. The steps of this algorithm are summarised below.

7.2 T he P C M C M C  algorithm

Let 7r(X)  be a D —dimensional distribution with a positive-definite variance matrix, E. 
The PCMCMC sampler proceeds as follows:

1. If E is known then determine its eigenvectors, ( e i , . . . ,  ep) ,  and the corresponding 

eigenvalues, (Ai , . . . ,  A^). Alternatively, if it is unknown then use a random 

sample from 7r to estimate E and derive the eigenvectors and eigenvalues of this 
estimated variance matrix. One way to obtain such a sample is to run a standard 
MCMC algorithm long enough, bearing in mind that this may be slowly mixing.

2 . At each iteration t :

•  Generate a proposal, X ', by creating system atic updates in each principal 
component direction, for example,

X'  =  X ^  +  N ( 0 , s \ d)ed, for d = l , . . . , £ > ,  (7.2)

where the constant s is chosen such that a reasonable acceptance rate is 
attained on each updating direction.

•  Accept X '  as the new realisation of the Markov chain with probability

a  =  mm

If X '  is accepted then set X^t+1  ̂ =  X ', otherwise reject X '  and set
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7.3 B ivariate G aussian exam ples

In this section, we demonstrate the implementation process of the PCMCMC algorithm  

via three illustrative examples. In the first example, we simulate the bivariate normal 
distribution, f ( X ) ,  defined in section 7.1 using the true variance matrix; in the second 

example, we simulate /  using a rough estimate of the variance matrix; and in the last 
example we increase the correlation, p, between the two variables of /  to 0.99999 and 

sample the modified distribution.

7 .3 .1  E x a m p le  1

Suppose f ( X )  =  iV(/i, E), where p  =  (5 ,2 )T and

/  2.02 0.396 \
~  y 0.396 0.22 )  ’

with time series plots generated using the standard approach shown in Figure 7-2. The 
latter results reveal a slow mixing problem and therefore we will try implementing the 

PCMCMC in an attempt to improve the results. The principal components of E can 
be obtained by determining its eigenvalues and eigenvectors. The two eigenvalues are 

Ai =  4.0392 and A2 =  0.000788, and the related eigenvectors are ei =  (0.9951,0.0985)T 

and e2 =  (—0.0985,0.9951)T. Here Y n=i e% =  f°r 3 =  2, where ei =  ( e n , e i 2 )T
and e2 =  (e2 i , e 22 )T.

The PCMCMC approach with s =  1 in Eq (7.2) allows us to generate moves of the 
following type:

X  -*> X  +  Z ie i, Z i ~  7V(0,4.0392), (7.3)

and

X  -*• X  +  Z 2 e2, Z 2 ~ N  (0,0.000788). (7.4)

We implemented this approach for 100,000 iterations starting with the same initial 

values used for the standard approach, namely (1 .8 ,4.5)T. The acceptance rate on 
each direction is found to be around 70%. The burn-in period is roughly 200 sweeps. 

Figure 7-5 traces the resulting last 50% of the 100,000 iterations. Comparing these 
traces with those obtained from the standard Metropolis algorithm run of Figure 7-2 

indicates a very significant improvement in the mixing speed of each chain. Estimates
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Figure 7-5: The resulting time-series plots obtained from  the PCM CM C algorithm based 
on analysing the covariance matrix, S . Only the last half samples o f each generated 
chain are displayed. The red line represents the true mean o f the corresponding variable. 
The sample averages o f X \  and X 2 are 5.018 and 2.002, respectively.

of the integrated autocorrelation times for X \  and X 2 are reduced from approxim ately 
432 to  9.6.
It is worth mentioning th a t the first principal component, Y\ =  0.9951Xi +  0.0985X2, 
is dom inated by X \  because it has the largest weight, although X \  and X 2 are very 
correlated. The reason for this is th a t X \  has the higher variance, i.e. V ar(X i) =  4 
and V ar(X 2 ) =  0.04. Thus a move on the first principal component direction, e \ , will 
be highly dom inated by X \ .  To make both  variables equally im portant and directly 
comparable, we can scale these param eters so th a t each have a  unit variance. This will 
transform  X  to X  w ith components, X \  =  X i/2  and X 2 =  X 2/O.2 , i.e.,

X  =  D X ,

where,

D  =
0.5 0

The variance m atrix of X  is



and the corresponding eigenvalues are, Ai =  1.99 and A2 =  0.01, with eigenvectors 

given by, e\ =  ( 
components are
given by, ei =  ( l / y / 2 , l / y / 2 ) r  and e2 =  (1 / \/2 , — l/- \/2 )T. In this case, the principal

and

*  =  75* - 75* ”
Hence, the Metropolis updates are now of the form

X - * X  +  Ziei ,  Zi  ~ iV (0 ,1 .9 9 ), (7.5)

and

X - > X  +  Z 2 e2, Z2 ~ iV (0 ,0 .0 1 ). (7.6)

Note that updates in Eqs (7.5) and (7.6) are not the same as those given in Eqs (7.3)

and (7.4) but are related via
X  =  D ~ l X ,  (7.7)

where,
2 0
0 0.2

Thus, adding a move in the direction of e\  to X i ,  for example, is equivalent to 

adding a move in the direction of D ~ l e\ to X .  That is,

X - > X  +  Z i / i ,  Zi ~ iV (0 ,1 .9 9 ), (7.8)

and
X ^ X  +  Z 2 f t ,  Z2 ~W(0, 0 . 01) ,  (7.9)

where f t  =  (2 / \ / 2 , 0 .2 / \ / 2 )T and f t  =  (2 / V 2 , - 0 .2 / y / 2 )T .
The latter vectors axe not unit vectors, e.g., the norm, \\fi\\ 7  ̂ 1.0, for i =  1,2.  

Therefore, to represent them in the same way that e\ and e2 are shown in Figure 7-4, 
we standarised them to unit vectors, f t  and f t .  These are f t  =  (0.9950,0.0995)T 

and f t  =  (0.9950, —0.0995)T. Figure 7-6 plots f t  and f t  together with e\ and 

e2 - In contrast to f t  and e\ which axe approximately identical, f t  and e2 differ 

greatly. Moreover, unlike the original eigenvectors, the standarised vectors are not 
orthogonal. Therefore, the projections of X  on these directions are not independent, 

i.e. co v (X Tf t , X Tf t )  =  E ft  ±  0.
We refer to the PCMCMC algorithm applied to a scaled version of X  and
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Figure 7-6: The sampling directions o f the unsealed variables obtained by analysing: £  
(red) and £  (blue) plotted with the contours fo r  f { X ) .

transform ing back to X  as the scaled version of PCM CM C. We will now sim ulate the 
bivariate normal distribution, f ( X ) ,  using the scaled version of PCM CM C. Therefore, 
we ran  the sampler for 100,000 iterations. Again around 70% of the generated proposals 
are accepted and the burn-in period is of length 200 iterations. Figure 7-7 shows the 
resulting sample traces. Here the integrated autocorrelation times are also around 9.6. 
The corresponding PCs tim e series plots are shown in Figure 7-8.

The traces of Figures 7-5 and 7-7 reveal no significant difference between the two
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Figure 7-7: The resulting time-series plots obtained from  the PCM CM C run based on 
analysing, £ . Only the last half samples o f each generated chain are displayed. The 
red line represents the true mean o f the corresponding variable. The sample averages 
of X \  and X 2 are 5.012 and 2.001, respectively.

PCM CM C versions for exploring f ( X ) .  This is because the main principal component 
direction, e\, on which most moves should be generated is captured by f \ .  In  addition, 
applying PCM CM C to the scaled variable X  still produces an independence property.

The projection of X  in directions e\ and £2  are independent, even though this is 
not the case for the projections of X  in directions f \  and f 2- Since the sequence of X  
values mixes well, so does the corresponding sequence of X  values.

The results from both  versions of the PCM CM C algorithm  indicate th a t this is an 
efficient sampling approach because by implementing the PCA the MCMC algorithm  
is allowed to explore the whole sample space more freely. There are three reasons for 
this: first, moves th a t are far away from the main diagonal are now generated very less 
often; secondly, big jum ps such as those between states (a) and (b) of Figure 7-3 can be 
easily performed via few moves, of which some are very large, w ithout being rejected; 
and finally, the proposed estim ates are based on moves in the direction of independent 
principal components, Y\ = X te\ and > 2  =  X le2, or alternatively, Y\ = X lei and 

Y2 = X*&2, as can be seen in the scatter plots of Figure 7-8.
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Figure 7-8: The scatter plot o f the principal components, Y\ and Yi of X , obtained from  
samples generated by the scaled version o f PCM  CM C.

7.3.2 Exam ple 2

Now, assume th a t we do not know the variance m atrix  E, given in section 7.1, bu t we 
would still like to get benefits of the PCMCMC to generate realisations from f { X ) .  
Further, suppose we have a set of X  values obtained using the standard  M etropolis 
algorithm  to sample from f { X ) .  An approach to tackle the problem of the “missing” 
variance m atrix  is to approxim ate it from the given da ta  values. Im plem enting this 
m ethod gives us the following estim ator of Var(X):

g  _  /  4.02522 0.39884 \
~~ y 0.39884 0.04031 J  ’

w ith a correlation coefficient, p =  0.99013. The resulting eigenvalues axe Ai =  4.06475
a  rr\

and A2 =  0.000783 and the associated eigenvectors are e\ =  (0.9951,0.0986) and 
e2 =  (—0.0986, 0.9951)t . Using these estimates the PCM CM C sam pler was ran for
100,000 sweeps with s =  1. The resulting acceptance rates axe 70% and the associated 
integrated autocorrelation times are approximately 9.6. Figure 7-9 displays the last 
half of the time-series traces.

The results obtained from this run show insubstantial difference from those of the
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Figure 7-9: Time-series plots o f the last half o f 100,000 iterations obtained from  the 
PC M C M C  algorithm when estimates o f the principal components are extracted from  
the approximated variance matrix, E. The red line represents the true mean o f the 
corresponding variable. The sample averages o f X \  and X 2 are 5.019 and 2.003, 
respectively.

PCM CM C run based on the true value of E. This is because the ou tpu t derived from 
the standard  approach gave an accurate estim ate of the underlying variance m atrix  of 
X ,  although the chains used in the approxim ation step are not mixing well.

7.3.3 Exam ple 3

Let us assume th a t the correlation present between the two param eters of f ( X )  is 
much higher, e.g., p =  0.99999 and call the resulting distribution, g( X) ,  th a t is 
g ( X)  = N( p ,  E), where p  =  (5 ,2)T and

4 0.399996 \
0.399996 0.04 J  '

The eigenvalues of E are Ai =  4.04 and A2 =  7.92 x 10-7 and the corresponding 
eigenvectors are approximately, e\ =  (0.9950,0.0995)T and e2 =  (—0.0995,0.9950)T. 
The tightly  packed contours of this distribution are shown in Figure 7-10.
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Figure 7-10: Contours of the bivariate normal distribution g{X) .  The contours are so 
close together that no white space is visible between them in the figure.

P C M C M C  for X  d ir ec tly

We performed a simulation study to assess the performance of the PCMCMC based on 
an estimate of £  from data generated by the standard MCMC approach. We tuned the 
standard deviation of the proposal distribution in order to have a reasonable acceptance 

rate. We found that the acceptance rate on each main axis is about 35% with steps 
having standard deviations of 0.015 times the standard deviation of X \  and X 2 under 

g( X) .  Therefore, we used these steps.
Moreover, in an attempt to capture “good” estimates of the required variance matrix 

and eigenvectors, the Metropolis algorithm is allowed to run for a long time. Here we 
used 500,000 iterations and a starting point that is not too far away from the modal 
centre. This point is chosen to be (4 .8 ,1.8)T. Figure 7-11 shows the time-series plots 
obtained from this run. The corresponding empirical averages for X \  and X 2 are, 

respectively, 3.7053 and 1.8705 and the estimated variance of X  is

-  _  /  0.418 0.0418
~~ ^ 0.0418 0.00418

The eigenvectors of £  are, e\  =  (0.9950,0.0995)T and I 2 =  (—0.0995,0.9950)T, 
corresponding to the eigenvalues, Ai =  0.423 and A2 =  2.445 x 10- 6 .

Clearly, the estimated variance matrix is not very close to £ . However e\  and e2 
are accurately estimated. This is because, despite the fact that the sampler is poorly
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Figure 7-11: Traces of X \ and X 2 obtained by sampling the bivariate normal
distribution g(X)  using 500,000 iterations of the standard Metropolis sampler. The 
red lines represent the true means.
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Figure 7-12: The scatter plot o f X 1 and X 2 obtained from  sim ulating g ( X )  using the
standard M C M C  algorithm.
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mixing, the accepted proposals lie around the diagonal line, X 2 =  1.5 +  O.IXi, see for 
example, Figure 7-12, leading us to a good understanding of the direction in which the 

distribution g (X ) is concentrated.

Using the above estimates the PCMCMC algorithm was ran for 500,000 iterations
r p

with a’ =  1 and the same initial state (4 .8 ,1 .8 ) . The acceptance rate on the first 

principal component’s direction is about 90%, whereas on that of the second component 
it is around 54%. Figure 7-13 shows the resulting traces. The averages for X \  and 

X 2 obtained from the last half iterations are, respectively, 5.007 and 2.0007, and 

the integrated autocorrelation time for each variable expected value is roughly 51. 
Moreover, the estimated variance matrix obtained from the PCMCMC run is

~ (  4.171 0.417 \
P C 1  ~  \  0.417 0.0417 /  ’

much closer to the true value.

Scaled P C M C M C

An alternative approach is that based on X , the scaled version of X , X  =  D X  where,

D - | S “  ° ,
0  e 225

Since only an estimate of E is available from an initial run of the standard MCMC
sampler, we use this to define

D  =  (  0  4 1 8 4  0  , )
\  0 0.00418-2 J

(  1.547 0 \

~  \  0 15.47 J  ’

and transform to X  =  D X .  The estimate of E =  Var(X) is then

(  1 0.99971 \D11D =  I .
\  0.99971 1 J

This matrix has eigenvectors, (0.70711,0.70711) and (0 .70711,-0 .70711), and 

associated eigenvalues 1.9997 and 0.000295. The PCMCMC run in this case with 

s =  1 produced the traces displayed in Figure 7-14.
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Figure 7-13: Traces of X \ and X 2 obtained by sampling the bivariate normal
distribution g(X)  using the unsealed version of the PCM CM C sampler with s =  1. 
The red lines represent the true means.

The resulting estim ated variance m atrix  of g( X)  is

~ (  4.186 0.418 \
TjPC2 =

\  0.418 0.0418 J

The corresponding averages for X \  and X 2 are 4.9954 and 1.9995, respectively, 
w ith integrated autocorrelation times of about 51. The acceptance ra te  on the first 
and second principal component directions are 90% and 54%.

Obviously, the traces of Figure 7-11 reveal th a t the standard  MCMC sam pler is mixing 
very poorly since it can only move slowly within g( X)  due to this d istribu tion’s narrow 
shape. Therefore, the estim ated variance m atrix, E, and the corresponding eigenvalues 
are quite far from the tru th . However, the d istribution’s correlation structure is 
reasonably well captured and the resulting eigenvectors’ estim ates are very accurate.

In contrast, the plots in Figures 7-13 and 7-14 reveal a significant improvement 
in term s of mixing. The integrated autocorrelation times estim ated for X \  and 
X 2 obtained from both  versions of the PCM CM C results are around 51, whereas 
those obtained from the standard  approach are about 23388. This indicates th a t the 
PCM CM C sampler is much more efficient than  the standard  sampler whether we scaled
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Figure 7-14: Traces of X \ and X 2 obtained by sampling the bivariate normal
distribution g(X)  using the scaled version of the PCM CM C sampler with s =  1 . The 
red lines represent the true means.

the main variables or not. Therefore, accurate estim ates of the variance m atrix  E and 
the param eters’ expectations are accomplished, although E used to  derive estim ates of 
the necessary principal components was underestim ated by approxim ately a factor of 
10.

In this example, it is clear th a t the high acceptance rates associated with the 
PCM CM C results are due to  the poor choice of the eigenvalues’ estim ators. This 
is because the standard algorithm  from which we obtain these estim ators was mixing 
very slowly. As a result, the integrated autocorrelation time increased to 51 with s  =  1. 
Obviously the acceptance rates can be decreased by increasing the value of s. In the 
next section, the effect of this constant will be studied in more detail.

The examples discussed in this section suggest th a t the standard  M etropolis sampler 
performance on normal distributions is dominated by the original variance m atrix 
eigenvectors. Even if the estim ated variance m atrix is incorrect, as we have seen in 
the last example, we are headed in the right principal component directions. However 
the eigenvalues may not be well estim ated. Thus, the PCM CM C algorithm  can be 
implemented without fear and is expected to be very efficient for sim ulating similar 
distributions. In all further implementations of the PCM CM C algorithm  only the 
scaled version will be used for the purposes indicated earlier in this chapter.
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7.4 C hoosing standard deviations o f proposals in th e  
PC M C M C  algorithm

The last section examples allowed for a good visualisation of the PCMCMC algorithm  

for sampling bivariate normal distributions. The estimated integrated autocorrelation 

times when accurate eigenvalue estimates are useu with s =  1 are found to be 9.6. 
Here, the associated acceptance rates obtained on each PC direction is approximately 

70%. In general, this reflects a good mixing behaviour despite the high correlations 
present between the random variables. However, the acceptance rate associated with  

each PCMCMC proposal is high. This raises the following question: what value of the 
proposal constant, s, of Eq (7.2) makes the PCMCMC sampler achieve optimality?

Gelman et al. (1996) revealed that the random walk Metropolis algorithm when 

implemented to sample a univariate standard normal distribution performs optimally 

if the overall acceptance rate is around 44% or alternatively the proposal standard 

deviation is set to be 2.4 times the target standard deviation. They considered 

the asymptotic efficiency of the Markov chain for estimating a parameter 0 given 

by t ( # ) _1, where t (Q) is the integrated autocorrelation time for 6 , as an efficiency 
measuring parameter of the MCMC sampler. These authors found that for the standard 

normal distribution the optimal asymptotic efficiency is about 0.23, that is the optimal 
integrated autocorrelation time is approximately 4.4. We would then anticipate that 
for any D-dimensional normal distribution, the PCMCMC optimal proposal standard 
deviations are Si =  2.4\/Ai, for i =  1 , . . . , D ,  because sampling is done component- 
wisely in the orthogonal directions of the independent principal components and each 
component marginal distribution is Gaussian.

For an illustrative example, consider the distribution of Section 7.1, f ( X ), where 

X  =  ( X i , X 2)T . The PCMCMC sampling algorithm can be looked at in terms of 
the principal components of X; Yi =  X Te\ and Y2 =  X Te2. So the sampling problem  

simplifies to simulating Y\ and Y2 each on its own direction, where Y\ ~  N( E( Y i ) ,  Ai) 
and Y2 ~  N ( E ( Y 2), X2).

Now, to derive the optimal proposal standard deviation for the PCMCMC  

algorithm, we ran the sampler for a set of s values. Each run consists of 500,000 sweeps, 
and at each sweep Y\ and Y2 are updated systematically using Gaussian proposals 

centred at the current Yi values with steps of size s\/X i. Table 7.1 reveals the proposal 
steps used on the first principal component direction, the resulting acceptance rate and 

the integrated autocorrelation time for the estimate of E {Y \). Results of the second
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Table 7.1: The PCM CM C results obtained by tuning the Gaussian proposal scalings of 
the principal components of X .

s HE( Yi ) ) Acceptance rate % on e\
0.5 23.0 84
1 .0 8 .6 70
1.5 5.7 59
2 .0 4.6 50
2.4 4.4 44
3.0 4.5 37
3.5 4.9 33
4.0 5.3 30
4.5 5.7 27
5.0 6 .1 24

principal component with the same steps are almost identical to those of the first 

component and therefore not displayed.
The left panel of Figure 7-15 plots the resulting asymptotic efficiency measurement 

versus s, whereas the right panel plots the efficiency parameter against the acceptance 
rate associated with each principal component. Similar results (not shown) have been 

obtained when the scaled version of the PCMCMC is implemented instead.

The results of Table 7.1 and the plots of Figure 7-15 reveal that for sampling 

Gaussian distributions the PCMCMC algorithm optimal Gaussian proposal standard 
deviations axe approximately 2 A y f\i  and the associated acceptance rate on each 
principal component direction is approximately 44%. The optimal asymptotic efficiency 

is around 0.23, that is the integrated autocorrelation time is optimised at a value of 4.4 
approximately. These results are very consistent with those obtained by Gelman et al. 
(1996) for sampling the Gaussian distribution with D  =  1, as expected.

As an implication on the above conclusion, we suggest using Gaussian proposals 

with variances 2.42 A* whenever sampling is to be carried out via the PCMCMC 
approach. This ought to give an acceptance rate of about 44%. If this rate is not 
achieved, then perhaps is not a good estimate of Â . Here, one can either perform 

a longer run of the standard MCMC to obtain a better estimate of the underlying 
variation structure, or alternatively tune A* until the optimal acceptance rate is roughly 

obtained on each PC direction.
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Figure 7-15: Efficiency t (6) 1 of the PCM CM C related to s (left) and the acceptance 
rate on each principal component sampling direction (right).

7.5 H igher-dim ension and non-G aussian exam ples

Here we will test the performance of the PCMCMC sampler further. In the first 
experiment, the aim is to simulate a high-dimensional Gaussian distribution. In the 

second demonstration, we will apply the PCMCMC method to four problems sampling 

four two-dimensional but non-Gaussian distributions. In all cases, the efficiency of the 
PCMCMC sampler will be compared with that of the standard Metropolis algorithm.

7 .5 .1  E x a m p le  1

In this example, we will consider the more general case in which the target model is a 

multi-dimensional normal density with highly dependent components. Our example is a 

10-dimensional distribution, h(X) .  The mean of h is, fih =  (2 ,5 ,1 0 ,1 ,3 ,4 ,7 ,6 ,1 2 ,15)T, 
with variance matrix diagonal elements
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9,1,2.25,6.25,0.01,0.04,0.25,0.0625,4,25,

and correlation matrix given by

L =

(  1 

0.95 
0.952

0.95
1

0.95

0.952

0.95
1

\  0.959 0.958 0.957

0.959 \  

0.958 

0.957

We performed a simulation study to compare the efficiency of the PCMCMC sampler 
to that of the standard Metropolis algorithm when sampling h{X) .  In each case, 

we generated 100,000 iterations. For the ordinary component-wise run we tuned the 

proposals’ standard deviations in order to make the algorithm more efficient. We found 

that acceptance rates of about 27% suitable for this goal. The first 10,000 sweeps are 
discarded as a burn-in phase. Figure 7-16 reveals the time-series plots of the last 10,000 

samples gained from this approach.

The estimates of V a r(X i),. . .  ,Var(Xio) from simulation output of the standard MCMC 

run are close to the true values as displayed below

8.69,0 .96,2 .17,6 .04,0 .0098,0 .04,0 .25,0 .063,4 .05,25.3 . (7.10)

Moreover, the set of sampled values gave us an accurate estimate of the target 
correlation structure as the 2D scatter plots illustrated in Figure 7-17 reflect.

We will now test the performance of the new approach, namely PCMCMC, for sampling 

the multivariate normal density h(X) .  In an attempt to make the problem of applying 
the PCMCMC more realistic, we supposed we do not know the true variances nor the 

correlation matrix of h. Therefore, we will use the estimate of the variances from the 

standard MCMC to run the PCMCMC sampler. For this purpose, we define X  =  D X  

and estimate the diagonal matrix D  elements from the variance matrix estimates given 

in (7.10) above, as explained in section 7.3.3.
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Figure 7-16: Time-series plots of the 10-dimensional problem obtained by implementing 
the standard Metropolis sampler. Red lines represent the corresponding parameters ’ true 
mean values.
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Table 7.2: The output obtained from approximately sampling h (X ) by the standard 
Metropolis approach M CM C and the PCM CM C approach. Each fi is the estim ated  
integrated autocorrelation for X{.

Var TRUE
Estimate of E(Xi)  

from MCMC
Estimate of E(Xi)  

from PCMCMC
fi for 

MCMC
f* for 

PCMCMC

X i 2 2 .1 2 1.99 673 4.33
X 2 5 5.04 5.00 733 4.37
* 3 1 0 1 0 .1 1 0 .0 0 778 4.36
x 4 1 1 .2 1 .0 0 811 4.38
x 5 3 3.01 2.99 828 4.46
x 6 4 4.02 3.99 836 4.41
X 7 7 7.04 6.99 817 4.44
X 8 6 6 .0 2 5.99 790 4.47
X 9 1 2 12.17 11.98 745 4.49
X 10 15 15.4 14.99 684 4.43

The standard deviations of the proposal distributions are set to 2A y/% ,, i.e. we use 

the optimal value of s, obtained in the previous section, to generate scaled updates of 
the form given by

X - * X  + Ztei, Zi ~  AT(0,2.42Ai),

where is the estimated eigenvector of the eigenvalue Aj, for i =  1 , . . . ,  10. The 
acceptance rates associated with this run on all PC directions are between 44% and 45%. 
Figure 7-18 traces the resulting samples analogous to those of Figure 7-16. In contrast 
to the standard approach results, we again notice a very significant improvement in 
the mixing speed of the chains generated by the PCMCMC algorithm. Estimates of 

the integrated autocorrelation times obtained from both algorithms are reported in 
Table 7.2. The integrated autocorrelation time estimates of E{Xf )  in the latter table, 

reveal that the PCMCMC is mixing extremely well with integrated autocorrelation  
times of about 4.4. This shows that even for multivariate normal distributions with  

highly correlated variables, optimality is almost accomplished with the same proposal 
step sizes and acceptance rates obtained for the 2-dimensional problem. The small 
differences are due to the size of the sample set used. Accordingly, very accurate 

expectations axe produced as displayed in Table 7.2.
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Figure 7-18: Time-series plots of the 10-dimensional problem obtained by implementing 
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149



7.5.2 Example 2

As a final illustration in this chapter, we will implement the PCMCMC algorithm for 

sampling unimodal two-dimensional distributions that are not exactly Gaussian and 
compare the results obtained from this method with those of the standard Metropolis 

approach.

To construct such distributions, consider the bivariate normal density of section 7.1, 
namely f ( X )  with /x =  (5 ,2)T and variance matrix

(  2.02 0.396 \

~~ 0.396 0.22 )  '

Further, let Z  =  (Z\ ,  Z2)T such that

Zi =  Xi +  a(X2 - p 2)2, (7.11)

and
Z2 =  X 2. (7.12)

The Jacobian factor of this transition for any value of a is exactly one, and therefore

f z { z )  =  f x ( x ) ,  (7.13)

when 2  and x  are related by Eqs (7.11) and (7.12). That is, f { z \ , Z 2 ) is given by

1
 r x
2 tt|E |2

e~k( (Zl~a(Z2 ~tl2)2 -tJ'l)2Z‘i i + 2 (zl - a(z2 -H2)2 -(J'l)(z2 -ti2 )'£‘i2 +(*2-M2)2£J21)

If a =  0, then Z  ~  N([i ,  E) otherwise the normality assumption is disrupted. 
Obviously, extent of departure from normality is proportional to the absolute value of 

a as the contour plots of Figure 7-19 reveal. We are interested in simulating all four 
distributions plotted in this figure using both approaches, the standard Metropolis and 

the PCMCMC.

The initial state chosen to run the standard MCMC algorithm is (6 , 1)T. For this 
sampler, we used Gaussian proposals with standard deviations 1.0 for Z\  and 0.1 for 

W ith these steps, almost 33% of the proposed values of Z\  are accepted for all
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Figure 7-19: Contours o f f z ( z )  with the indicated a values.

values of a, whereas for Z 2 the acceptance rates are 34%, 36%, 11% and 4% when a is 
4, 10, 150 and 1000, respectively. Each run consists of 200,000 sweeps.

Figure 7-20 reveals chains generated by this sampler for the four values of a. Scatter 
plots of Z \ and Z 2 obtained from a sample of size 10000 derived from this run by 
thinning the chains beyond iteration 50,000 are displayed in Figure 7-21. The full run  
sca tte r plots are largely the same. The associated acceptance rates on both  directions of 
Z \  and Z2 , their empirical averages, the corresponding param eters’ standard  deviations 
and integrated autocorrelation times are reported in Table 7.3.
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Figure 7-20: Time-series plots obtained from the standard Metropolis run with a =  4 
(first row), a =  10 (second row), a =  150 (third row) and a =  1000 (last row). The red 
lines represent the true mean values which are respectively: (5.16,2), (5.4,2), (11,2) 
and (45,2).
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Table 7.3: Results obtained for simulating the four non-Gaussian distributions using 
the standard Metropolis MCMC and the principal components PCMCMC algorithms. 
Y\ and Y2 denote the associated PCs.

n —  ACL — •-* MCMC PCMCMC
Acceptance rate 

Sample average of X i ,  X 2  

Sample standard deviation of X i ,  X 2 

Integrated autocorrelation time

33%, 34% 
(5.043, 1.989) 
(1.929, 0.193) 
(1222, 1158)

Yi : 41%, Y2 : 38% 
(5.206, 1.989) 
(2.007, 0.199) 

(7.9, 7.6)

0t —HII<3 MCMC PCMCMC
Acceptance rate 

Sample average of X i , X 2  

Sample standard deviation of X i , X 2  

Integrated autocorrelation time

33%, 36% 
(5.300, 1.993) 
(1.919, 0.193) 

(724, 563)

Yi : 30%, Y2 : 25% 
(5.689, 1.994) 
(2.09, 0.195) 

(52, 34)
a =  150 MCMC PCMCMC

Acceptance rate 
Sample average of X i ,  X 2 

Sample standard deviation of X \ , X 2  

Integrated autocorrelation time

33%, 11% 
(17.465, 1.831) 
(9.455, 0.256) 

(16136, 29295)

Yi : 3%, Y2 : 7% 
(22.582, 1.814) 
(6.774, 0.187) 

(574, 284)
a =  1 0 0 0 MCMC PCMCMC

Acceptance rate 
Sample average of X i ,  X 2  

Sample standard deviation of X i , X 2  

Integrated autocorrelation time

33%, 4% 
(15.0256, 1.967) 
(8.628, 0.0963) 
(16585, 3998)

Yi : 2%, Y2 : 4% 
(36.412,1.9421) 
(20.782, 0.145) 

(5105, 1667)

The variance matrices corresponding to the four distinct distributions are all unknown, 
therefore these matrices are estimated from the matching standard run output.

In all four cases, the standarised version of the PCMCMC sampler is implemented 

with starting points obtained from the standard MCMC results. For the new runs, 
the estimated eigenvectors and eigenvalues displayed in Table 7.4 are considered. In 
each case, we used variance 2.42Aj in the proposal distribution. The acceptance rates 

on each principal component direction and all other analogous results to those of the 

standard approach are summarised in Table 7.3, and the parallel time-series and scatter 

plots are shown in Figures 7-22 and 7-23, respectively.

The standard Metropolis first three scatter plots displayed in Figure 7-21 reveal that 

this algorithm has captured the general shape of these densities. However, we can see 

from some associated time-series plots of Figure 7-20 and the integrated autocorrelation
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Table 7.4: The approximate eigenvectors and eigenvalues estim ated (E st.) from  the 
standard M CM C algorithm fo r  the standarised variables of the four non-gaussian  
distributions.

Est. a =  4 a =  1 0 a =  150 a =  1 0 0 0

ei (0.707,0.707) (0.707,0.707) (0.707,-0.707) (0.707.0.707)
62 (-0.707,0.707) (-0.707,0.707) (0.707,0.707) (-0.707,0.707)
Ai 1.983 1.952 1.610 1.453
A2 0.0170 0.0476 0.390 0.547

time values in Table 7.3 that the generated chains are not mixing rapidly. When 

a =  150, the problem of mixing is more obvious because a move between the two 

ends of the target density is more difficult since it requires many small steps within 
approximately the “U” shaped distribution. Therefore, the integrated autocorrelation 

times had significantly increased.
The last case in which a is increased to 1000, the corresponding time-series and 

scatter plots reveal that the Markov chain has got trapped in the high concentrated 

region around (5,2). Therefore, it did not visit the tails of this distribution shown in 
the corresponding plot of Figure 7-19. This is because the chain can only move slowly 

within the highly curved shape of this density. As a result, the acceptance rate on Z<i 
axis, in particular, is very small.

In contrast, the PCMCMC results indicate that this approach is performing much 

better than the Metropolis standard algorithm for exploring the non-Gaussian 
distributions of the form given by Eq (7.14). However, this algorithm is most efficient 
for relatively small values of a, as the cases with a <  1 0 .

Despite that the optimal proposal standard deviations obtained for the exact normal 
distributions are used for the approximately Gaussian density with a =  4, the associated 

acceptance rates and the efficiency estimates are not the same as the optimal ones 
derived for the perfect Gaussian distributions.

For higher amounts of perturbation, e.g., a =  150, benefits obtained from the PCA  

approach are limited because the algorithm is less efficient as the high values of the 
integrated autocorrelation times reflect.

The inaccurate empirical averages and the low overall acceptance rates are other 

indications. This is an expected result because such distributions are bent at the edges, 
and as a increases the normality shape vanishes, especially when high correlations are 

present, making moves in the estimated directions insufficient, and more precisely, 
inappropriate because these are not the directions on which updates should be made.
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Figure 7-22: Time-series plots obtained from the PCM CM C run with a =  4 (first row), 
a =  10 (second row), a =  150 (third row) and a =  1000 (last row). The red lines 
represent the true mean values which are respectively: (5.16,2), (5.4,2), (11,2) and 
(45,2).

156



a = 4 a = 10
0.5 1.0 1.5 2D 2.5 1.5 2.0 2D

q

q

Zi

0 5 10 15 2 4 6 8 10 12 14 16

a = 150 a = 1000
1.6 1.8 2.0 22

Zi

%

V
C

*6 O

Z2

Zi
\v_/

*>

c Z2

20 30 40 50 60 -20 0 20 40 60 80 100

Figure 7-23: The scatter plots obtained from  a sample generated by the PCM CM C  
algorithm fo r  the specified values o f a.

7.6  C on clu sion

In  this chapter, we have introduced the principal components MCMC algorithm  
PCM CM C; an efficient m ethod th a t can be used to  sample unim odal Gaussian or 
approxim ately Gaussian distributions with high correlation structures, by generating 
appropriate sized moves in the approxim ate directions of the target density principal 
components. To implement this m ethod, it is necessary to  have either the true 
covariance m atrix or alternatively an estim ate of it. If this m atrix  is unknown then  a 
pilot sample roughly from the distribution of interest can be generated by the standard
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Metropolis sampler and then used to estimate the required matrix. Moreover, the 

resulting empirical expectations can be used to initialise the PCMCMC run in order 

to shorten the burn-in period.

In reality, it is quite common that parameters of the posterior distribution have very 

different variances. In this case, the principal components with large eigenvalues will 

be dominated by variables with the highest standard deviations even if all variables 
of interest are highly correlated. To make all components equally important and 

comparable it is suggested to scale all original variables so that each has a variance of 
one.

It has been shown through the examples considered for normal target densities that 

this algorithm is most efficient if the Gaussian proposal distributions have variances 
of size 2.42 times the principal components’ variances. The optimal acceptance rate 

on each principal direction is around 44% and the integrated autocorrelation time is 
approximately 4.4. Nevertheless, when the target density is not perfectly Gaussian the 

same variances give slightly lower acceptance rates which are axound 40% and higher 

integrated autocorrelation times approximately within the range 7 - 8 .  This suggests 
that even when the distribution of interest departs quite a lot from Gaussian then 

this sampler may still do well. For example, in ID, we know that the MCMC can 
perform well for lots of distributions. Hence, the PCMCMC would be good too, as 
long as directions found from the variance matrices’ eigenvectors make an appropriate 

independent decomposition. In this case, a major advantage of this sampler is its 
high efficiency. This makes it a promising tool for simulating many higher-dimensional 
models in which high correlation structures are also expected.

158



Chapter 8

Im plem enting the PCM CM C for 
ionospheric tom ography

8.1 Introduction

In the previous chapter, we have described the PCMCMC algorithm developed in this 

thesis and tested its performance for sampling Gaussian and non-Gaussian unimodal 
distributions with highly correlated variables. When these distributions are Gaussians 

or approximately Gaussians the algorithm can operate very efficiently and produce 
accurate results. Even when the simulated density is not normally shaped this 

algorithm may be abe to explore wider regions of the sampling space with a greater 
speed of mixing than the standard Metropolis sampler.

In this chapter, we shall return to the problem posed in Chapter 4 and implement the 
PCMCMC for sampling the electron density posterior distribution, 7r(X |Y ),  displayed 
in Eq (4.16). As a preliminary testing of the method for the tomographic problem a 

set of simulated data is initially used as presented below.

8.2 PC M C M C  application to  sim ulated data

Here we apply the PCMCMC and standard MCMC algorithms to sample from the 

posterior distribution 7t(X |T ). In this example, the synthetic ionospheric plane is 
represented with a 10 x 7 grid of pixels. Each column in this grid is assumed to 

contain one vertical profile. As mentioned earlier in Chapter 4, the nth vertical profile’s 
parameters, namely the peak height, spread and electron density under the profile 

curve are denoted by fj,n, o \  and 7 n, respectively. The seven synthetic vertical profiles’
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parameter values are given in Table 8.3.
The grid is intersected by sixty five rays for which the artificial data are simulated. 

The derivation of these data proceeds by adding a Gaussian noise, ei, with zero mean 

and variance, e2 =  1/2000, to the expected value, E(Yi),  calculated for each observation. 
The whole synthetic configuration is displayed in Figure 8-1.

The smoothing parameters involved in the prior model, /?/x, /? cr2 and /37 , are assigned 

the values 0.003, 0.004 and 0.008, respectively. The constraints associated with this 

model are:

for n =  1 , . . . ,  7. An upper limit of 10 has been placed for the peak height because /in 

cannot be any larger than the altitude of the grid. The remaining two upper limits are 

selected to be big enough so that all restorations are allowed to be dominated by the 
data rather than the weak prior.

The standard MCMC is run for 100,000 iterations starting from the true parameter 

values. The proposal distributions’ standard deviations are selected such that 
acceptance rates of about 25% are obtained. The resulting traces are displayed in 

Figures 8-2 - 8-4. Here no attempt is made to exclude a burn-in period since the 

algorithm is started at the true values. Table 8.1 shows the integrated autocorrelation 

time estimates for the original parameters. Most of these estimates are very high 

indicating slow mixing, as the associated traces also reveal.

The strength of dependency between certain pairs of these variables can be visualised 

through the scatter plots in Figures 8-5 - 8-7. Obviously, some of these plots reveal high 
correlations between parameters of the same type, especially those of the peak heights 

and the spreads where most scatterplots are confined to a narrow region. However, the 

{'In} plots are much wider indicating that these parameters are less correlated. The 

integrated autocorrelation times in Table 8.1 indicate that the 7 n sequences mix better 
although some of these values are still quite high. One possible reason behind this is 

that a greater degree of smoothing is applied to the 7  variables by the assigned value 

of j31  (relative to the scale of the 7  values).

0  <  Mn <  1 0 ,

0 <  a2n <  10,

0  <  7 n  <  1 0 0 ,

(8 .1)

(8 .2)

(8.3)
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Figure 8-1: The 2D grid showing the satellite-to-receiver rays (red dotted lines) for the 
simulated data inversion problem. The blue curves represent the true vertical electron- 
density profiles.

Now, we will apply the PCM CM C approach. For this purpose, the variance m atrix  
of the posterior distribution n is estim ated from the standard  MCMC output. All 
param eters are then scaled and the corresponding variance structure is consequently 
estim ated to run the PCM CM C. The resulting eigenvalues are between 7.88 and 0.0013.

In an attem pt to get the benefit from the PC  A approach, we used s =  2.4 in 
Equation (7.2), as recommended in section 7.4, to generate 100,000 cycles of th is 
algorithm. The same initial s ta te  used for the standard  approach was used to  run  
the PCM CM C sampler. The acceptance rates on the first two principal com ponents’ 
directions are approximately 50% but on the remaining directions they are around 44%. 
Figures 8 - 8  to 8-10 show the resulting traces of the p n, o \  and 7 n , respectively. Note 
th a t these figures are converted back to  the original set of the unknown variables. The 
integrated autocorrelation times produced by this run are displayed in Table 8.2.
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Table 8.1: Simulated data example. Integrated autocorrelation time estimates obtained 
from  the standard M CM C algorithm.

Vertical profile number n HV>n) t { ° 1 ) ^(7n)
1 9104 2170 16
2 9103 8002 929
3 9280 4491 1 1 2

4 8539 6732 23
5 8729 3574 57
6 8793 1655 2 0 2

7 8361 8418 1 0

Table 8.2: Simulated data example. Integrated autocorrelation time estim ates obtained 
from the PCM CM C algorithm.

Vertical profile number n HVn) H ° l ) f(7n)
1 8.7 7.5 5.2
2 8 .8 5.0 4.9
3 8.7 5.6 5.5
4 9.5 5.0 5.2
5 9.5 5.2 4.8
6 9.5 5.7 5.1
7 9.5 6 .1 5.1
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Figure 8-2: Simulated data example. Trace plots of p \ , . . . ,  p-j produced by implementing 
the standard MCMC algorithm, starting from the true values of these variables 
(represented by the red lines).
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Figure 8-3: Simulated data example. Trace plots of o \ , . . .  ,a? produced by implementing 
the standard MCMC algorithm starting from the true values of these variables 
(represented by the red lines.)
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Figure 8-4: Simulated data example. Trace plots 0/ 7 1 , . . . ,  7 7  produced by implementing 
the standard MCMC algorithm starting from the true values of these variables 
(represented by the red lines.)
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Figure 8 -6 : Simulated data example. 2D scatter plots o f erf,. . . ,  erf values obtained from
the standard M CM C algorithm.
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Figure 8-7: Simulated data example. 2D scatter plots for  7 1 , . . . , 7 7  values obtained
from  the standard M CM C algorithm.
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Figure 8-8: Simulated data example. Trace plots o f p i , . . . ,  p j  produced by implementing  
the PCM CM C algorithm.
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Figure 8-9: Simulated data example. Trace plots o f a f , . . .  , a j  produced by implementing  
the PCM CM C algorithm.
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Figure 8-10: Simulated data example. Trace plots o f 7 1 , . . . ,  7 7  produced by
implementing the PCM CM C algorithm.
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Table 8.3: The synthetic parameter values, the posterior expectations, medians and 99% 
credible intervals derived from the PCM CM C run.

Variable True value mean median 99% Cr.I.

Mi 2.90 2.907 2.907 (2.887,2.926)
M2 3.15 3.157 3.158 (3.134,3.179)
M3 3.05 3.059 3.061 (3.031,3.087)
M4 3.10 3.113 3.114 (3.077,3.146)
M 5 3.00 3.009 3.009 (2.984,3.032)
M 6 2.95 2.961 2.962 (2.923,2.989)
M7 3.20 3.206 3.206 (3.185,3.225)
4 0.42 0.427 0.426 (0.415,0.439)
4 0.36 0.362 0.362 (0.349,0.375)
4 0.45 0.458 0.457 (0.441,0.474)
4 0.47 0.481 0.481 (0.462,0.499)
4 0.46 0.473 0.473 (0.459,0.486)
4 0.39 0.405 0.405 (0.389,0.418)
4 0.38 0.386 0.386 (0.373,0.399)
7 i 35.00 35.02 35.02 (35.00,35.03)
72 30.00 30.00 30.00 (29.98,30.01)
73 25.00 25.01 25.01 (24.99,25.03)
74 2 0 .0 0 2 0 .0 0 2 0 .0 0 (19.99,20.01)
75 29.00 29.01 29.01 (28.99,29.02)
76 23.00 22.99 22.99 (22.97,23.03)
77 33.00 32.99 32.99 (32.97,33.01)

Comparing the plots of Figures 8 - 8  to 8-10 with the parallel plots of Figures 8-2 

to 8-4 reveals a very big improvement in the speed of mixing. This improvement has 
been quantified by estimating the associated integrated autocorrelation times for each 
chain as reported in Table 8 .2 . All entries of this table if compared with the analogous 

values of Table 8.1 show that the PCMCMC dramatically outperforms the standard 

MCMC sampler. The new results on their own indicate that the principal components 

algorithm is very efficient, with all integrated autocorrelation time estimates less than  
ten. The values of f ( / in), r(cr^) and t ( t n) are not much higher than the f s  seen 

in the examples of chapter 7, suggesting the posterior distribution tt(X \Y )  might be 
quite similar to a multivariate Gaussian distribution in 2 2  dimensions, with some high 

correlations. This assumption could be checked by plotting several sets of 3D scatter 

plots, for instance.

Table 8.3 shows the posterior means, medians and the 99% credible intervals obtained
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from the the last 50000 iterations of the PCMCMC run. The outstanding results 

derived for this high-dimensional simulated data problem, as can be seen from Tables
8 .2  and 8.3 reveal that the PCMCMC is a promising tool for sampling from the electron 

density distribution with real TEC data.

8.3 PC M C M C  application to  TEC  data

The results obtained from implementing the mixed algorithm to the actual TEC data 

discussed in chapter 6  reveal that this sampler suffers from very slow mixing. This 

suggests that there exist some high correlations between variables in the posterior 

distribution, Tt{X\Y), displayed in Eq (4.16). One sensible set of values of the 

interaction parameters involved in our model are found to be those estimated from the 

central region of the ionospheric plane where many radio signals passed, namely the 

MPL fixed estimates. Therefore, to obtain a rough estimate of the unknown correlation 

structure of all 67 variables of interest, the results obtained from the MPL fixed 

estimates run given in section 6.4 are used. Some entries of the estimated correlation 

matrix are shown in Table 8.4.

The estimated correlation matrix obtained from the mixed algorithm run confirms that 
many components of the electron density distribution, n {X \Y ) ,  are highly correlated. 

The high correlations are not only seen between parameters of the same type but also 
between different parameters, for example, fin  to fiu  have high correlations with cr^ to 
<7 4̂ . Pairwise relations between parameters belonging to the same category are viewed 

via constructing 2D scatter plots of the generated samples. Some of these plots are 

illustrated in Figures 8-11 - 8-13. The high correlations present suggest that we may 

benefit from the principal components MCMC approach in reducing the effect of these 

correlations and consequently sample the desired distribution more efficiently.

The mixed algorithm results gave some very large estimates such as those of the spreads, 
cr̂ , and at the same time produced other values that are fairly small if compared with  

the former ones, e.g., the peak height estimates. Typical values of fin, and 7 n are, 
respectively, 30,000, 1010 and 200,000. Such differences can cause numerical errors if 
used in estimating the eigenvalues and eigenvectors required to run the PCMCMC. 
For example, the eigenvalues of the estimated variance matrix, E, may come out 
negative, even though E is positive definite by construction. A change of units can 

resolve this problem. Therefore, we converted the pixel electron density, dj, unit from 

10n el/m 3 to 1016el/km 3. This unit will be used with appropriate adjustment of the
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Table 8.4: Part of the correlation matrix estimated from the real data mixed algorithm 
results.

Var Mil Ml2 Ml3 M14 *11 *12 *13 *14 7 ii 712 713 714
I ' n 1 0.99 0.99 0.98 0.57 0.48 0 37 0.3 0.89 0 87 0.83 0.76
M12 0.99 1 0.99 0.99 0.57 0.5 0.39 0.33 0 .8 8 0 .8 8 0.85 0.77
M13 0.99 0.99 1 0.99 0.57 0.49 0.4 0.33 0.87 0.87 0 .8 6 0.77
M 14 0.98 0.99 0.99 1 0.54 0.46 0.38 0.32 0.87 0 .8 6 0 .8 6 0 .8 6

0.57 0.57 0.57 0.54 1 0.96 0.89 0.82 0.49 0.47 0.46 0.47

*12 0.48 0.5 0.49 0.46 0.96 1 0.96 0.9 0.38 0.46 0.41 0.43

<*13 0.37 0.39 0.4 0.38 0.89 0.96 1 0.96 0.28 0.32 0.39 0.37
*14 0.3 0.33 0.33 0.32 0.82 0.9 0.96 1 0 .2 2 0.26 0.29 0.37
7 i i 0.89 0 .8 8 0.87 0.87 0.49 0.38 0.28 0 .2 2 1 0.72 0.74 0 .6 6

712 0.87 0 .8 8 0.87 0 .8 6 0.47 0.46 0.32 0.26 0.72 1 0 .6 6 0.67
713 0.83 0.85 0 .8 6 0 .8 6 0.46 0.41 0.39 0.29 0.74 0 .6 6 1 0.61
714 0.76 0.77 0.77 0 .8 6 0.47 0.43 0.37 0.37 0 .6 6 0.67 0.61 1

other parameters to bring all numbers onto somewhat closer scales in all forthcoming 

applications. However, to sample 7r(X |T ), we still took the further step of scaling the 

whole parameter vector to implement the scaled version of our PCMCMC algorithm, 
as in Chapter 7.

Two sampling methods from ir are then considered, as we did in Chapter 6 . In the 

first method, the smoothing parameters are held fixed throughout the whole run at 
the derived MPL fixed estimates, whereas in the second method these parameters are 

allowed to vary regularly. These simulations are discussed next.
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Figure 8-11: 2D scatter plots for pairs of p n values obtained from  a sample generated
by the mixed algorithm.
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8.3.1 PC M C M C  w ith fixed sm oothing param eters

The aim in this problem is to sample our posterior distribution, ir (X \Y ), with fixed 

smoothing parameter values given by /3M =  3.17 x 10_8,/3cr2 =  1.79 x 10- 1 8  and 

/?7  =  5.57 x 10-11, i.e. the MPL fixed estimates, using the scaled version of the 
PCMCMC algorithm. Therefore, the necessary principal component variances and 

directions are extracted from the scaled variables’ estimated variance matrix derived 
from the mixed algorithm output using these smoothing parameter values, obtained 

in section 6.4. The associated 67 eigenvalues, {A*}, are displayed in Table 8.5. The 

large number of very small eigen-values shows multiple, high correlations among the 

variables.

An alternative approach that can be implemented to obtain good or even better MPL 

estimates of our smoothing parameters is to apply the same technique used to derive 

the MPL fixed estimates described in Chapter 6  but now by using the PCMCMC 
rather than the mixed algorithm. However, this approach is not considered for further 

comparison reasons.

To start the PCMCMC run for this problem, we set the initial state to the scaled 
averages obtained from the long run of the mixed sampler converted to the modified 

units. We then ran the sampler for 100,000 iterations with proposal standard deviations 
2 .4 \/a i , for i =  1 , . . . ,  67.

S im u la tio n  R e su lts

Figures 8-14 to 8-16 reveal some time-series plots produced by the fixed smoothing 

parameters, principal components approach. Moves in the first, second and third 
principal component directions gave acceptance rates of approximately 39%, 34% and 
35%, respectively. On the remaining 64 PCs’ directions, the acceptance rates lie within 

the range 42% - 45%.

The resulting traces indicate that the proposed chains are mixing well. To provide a 
quantitative comparison between the mixed algorithm results derived in chapter 6  and 

the PCMCMC output found in this case, estimates of the integrated autocorrelation 

times are calculated for each parameter. Here segments of chains of length 50,000 

obtained from the final stages of each sampler are used. Table 8 .6  displays these 
estimates. Obviously, the results in this table reveal that the PCMCMC algorithm is 

performing very much better than the mixed sampler.
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Table 8.5: The estimated scaled variables’ variance matrix eigenvalues derived from the 
mixed algorithm run with fixed interaction parameters.

Number i Eigenvalue A* Number i Eigenvalue A*
1 23.778 36 0.096
2 8.347 37 0.091
3 5.566 38 0.084
4 4.198 39 0.077
5 3.504 40 0.072
6 2.731 41 0.066
7 2.523 42 0.057
8 1.901 43 0.054
9 1.437 44 0.048
10 1.191 45 0.045
11 1.036 46 0.043
12 0.919 47 0.041
13 0.889 48 0.038
14 0.778 49 0.037
15 0.687 50 0.028
16 0.640 51 0.026
17 0.611 52 0.023
18 0.542 53 0.018
19 0.527 54 0.015
2 0 0.469 55 0 .0 1 1
21 0.425 56 0.008
2 2 0.405 57 0.0077
23 0.349 58 0.0065
24 0.339 59 0.0046
25 0.322 60 0.0043
26 0.288 61 0.0041
27 0.252 62 0.0039
28 0.240 63 0.0032
29 0.204 64 0.0027
30 0.177 65 0.0023
31 0.162 6 6 0.0016
32 0.159 67 0.0014
33 0.155
34 0.134
35 0.099
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Figure 8-14: Some selected [Ln time-series plots produced by implementing the
PC M C M C  algorithm using the fixed MPL estimates o f the smoothing parameters. The
red line represents the mean o f the second half o f the sampled values.
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Figure 8-15: Some selected <r2 time-series plots scaled by a factor of 102 produced by 
implementing the PCM CM C algorithm using the fixed MPL estimates of the smoothing 
parameters. The red line represents the mean of the second half of the sampled values.
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Figure 8-16: Some selected 7 n time-series plots scaled by a factor o f 105 produced by
implementing the PCM CM C algorithm using the fixed M PL estimates o f the smoothing
parameters. The red line represents the mean of the second half o f the sampled values.
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Table 8.6: The integrated autocorrelation time estim ates obtained from the last 50,000 
iterations of the mixed MC algorithm and the PCMCMC algorithm with fixed smoothing 
parameters set at the MPL fixed estimates derived in chapter 6 .

f(.)MC f(.)PCMCMC f(.)MC f(.)PCMCMC f(.)MC f(.)PCMCMC

H i 3564 7.7 * i 1484 6.1 7 i 870 5.3
H2 3970 7.8 *2 1693 6.6 72 939 5.4
H3 4463 8.3 *§ 1935 6.9 73 1090 5.6
H* 4864 OO 00 a \ 2225 7.1 74 1177 6.1
Hs 5271 8.6 0*5 2679 7.4 75 545 5.6
H& 5564 9.3 * 6 2620 7.4 76 568 5.3
H7 5676 9.1 *? 2358 7.4 77 1745 5.3
H8 5947 8.7 *8 1844 7.9 78 2423 5.9
H9 5907 8.4 *i 4282 8.6 79 311 4.7

H i o 5913 8.4 ©b 4575 8.9 710 1003 6.6
H u 5832 8.4 * n 4091 9.2 7 n 2995 7.7
H l 2 5736 8.5 *12 2053 10.0 712 2913 7.9
H l 3 5622 8.6 *13 1745 10.3 713 2636 8.2
Hu 5331 8.6 *14 1485 10.4 714 1726 7.7
H l 5 4513 8.2 *15 1244 10.3 715 300 6.2
H l 6 3300 7.4 *16 1174 9.6 716 757 5.4
H l 7 1921 6.9 *17 895 9.1 717 739 5.8
H l 8 1789 6.5 *18 874 8.6 718 742 5.8
H i 9 1805 6.3 *19 823 8.4 719 1126 6.1
H20 1784 6.2 *20 768 8.1 720 1449 5.8
H21 1697 6.0 *21 723 7.7 721 1729 5.6
H22 1327 5.8 *22 637 7.5 722 2041 5.6

Further, with the given fixed values of the smoothing parameters, the PCMCMC is 

found to be very efficient because all integrated autocorrelation time estimates are 

between 4.6 and 10.5. These values of integrated autocorrelation times axe quite 
similar to those obtained for the simulated data example discussed earlier and the 
approximately Gaussian distribution of section 7.5.2 with a =  4. This may suggest 
that the underlying posterior distribution is possibly approximately Gaussian but with 

a small degree of normality disruption.

The data error, e, estimated from this run is found to be small with an average of 
about 0.73 TECU. This is consistent with the electronic engineers’ beliefs about this 

parameter. A comparison between the data, Y , and the new tomographic approach 

estimate of E (Y )  obtained from the posterior mean is displayed in Figure 8-17. 
Generally, the agreement between both sets of values is very good. This indicates 
that the TEC data are fitted well. Indeed, this is an expected result because the
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Figure 8-17: A comparison between the 572 TEC data values Y  (black) and estimates 
of E {Y ) (red) obtained from the first method PCM CM C output at the posterior mean.

observations are recorded w ith a small noise, therefore the TEC  d a ta  values and the 
values fitted by the model should be very close.
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Figure 8-18: The high-level image obtained from  the first problem run of the PCM CM C  
algorithm at the above mentioned iterations.

As with the mixed algorithm  equivalent results, see for example Figure 6-23, the 
variations of the vertical profiles associated with this run are within fairly small ranges 
as Figure 8-18 reveals.

Both the ionospheric m ap of free electrons associated with the posterior mean and 
the length of the 95% credible interval image are shown in Figure 8-19.
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Figure 8-19: The tomographic image of electron densities measured in units of
10n el/m 2 at the posterior mean (Top) and the length of the 95% credible interval 
overlayed by all signal paths associated with the fixed smoothing parameters PCM CM C  
run restorations (Bottom).
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8.3.2 PC M C M C  w ith varying sm oothing param eters

Here, the PCMCMC algorithm is applied with repeatedly updated values of the 

smoothing parameters. The algorithm can be summarised in the following steps:

1. Run the mixed algorithm to get a sample approximately from n {X \Y )  and then 

apply the MTL approach to obtain starting values for the smoothing par ameters,

e . g . ,  0 °  =  { 0 ° , 0c 2° , fPy } .

2. W ith the same sample and scaled variables obtained from step 1, estimate the 

necessary eigenvalues, PCs, etc. This step is to be done only once.

3. Set (3 — (3° and generate 1000 sweeps of the PCMCMC updates (as defined in 

step 2). Then apply the MPL approach to get a new /3 using this sample central 
ionospheric region values.

4. (Iterative step): with the present /?, generate 1000 iterations of the PCMCMC 
algorithm to derive a new (3.

For this particular case, we used the MPL fixed estimates as the required starting 
values. As in the first problem run, 100,000 sweeps with proposal scalings 2.4 \ / a 7, for 

all values of i are considered.

S im u la tio n  R e su lts

In Figures 8-20 to 8-22, we show the equivalent traces to those displayed in Figures 

8-14 to 8-16, generated by the varying smoothing parameters’ PCMCMC approach.

In contrast to the first PCMCMC run acceptance rates in the first three PC s’ directions, 
the second problem acceptance rates in these directions are slightly lower especially in 

the main principal component direction. These rates are, respectively, 36%, 33% and 
34%. In the remaining directions, the acceptance rates are almost the same as those 

in the first version of this sampler.
Comparing the time-series plots displayed in Figure 8-20 with the mixed algorithm 

traces revealed in the right panels of Figures 6.13 and 6.14, for instance, indicates that 
the PCMCMC is performing much better than the mixed algorithm for this varying 

smoothing parameters approach. The integrated autocorrelation time estimates in 

Table 8.7 confirm this conclusion. However, when Figures 8-20 to 8-22 are compared 

with the fixed interaction PCMCMC results displayed in Figures 8-14 to 8-16, and the 

associated integrated autocorrelation times in Tables 8.6 and 8.7 are also compared, the 

varying (3 PCMCMC is found to be “not quite as brilliant” as for the fixed (3 problem.
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Figure 8-20: Some selected fin time-series plots produced by implementing the second
method PCM CM C algorithm where the smoothing parameters are updated regularly.
The red line represents the average o f the second half o f the sampled values.
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Figure 8-21: Some selected cr2 time-series plots scaled by a factor of 102 produced by 
implementing the second method PCM CM C algorithm where the smoothing parameters 
are updated regularly. The red line represents the average of the second half of the 
sampled values.
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Figure 8-22: Some selected j n time-series plots scaled by a factor of 105 produced by 
implementing the second method PCM CM C algorithm where the smoothing parameters 
are updated regularly. The red line represents the average of the second half of the 
sampled values.
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Table 8.7: The integrated autocorrelation time estim ates obtained from the last 50,000 
iterations of the mixed MC algorithm and the second problem  PCMCMC algorithm. 
Here the smoothing parameters are updated every 1 000 iteration.

fin f(.)MC f(.)PCMCMC -n f(.)MC f(.)PCMCMC In f(.)MC r(.)PCMCMC
hi 3448 538 - i 2294 191 71 1858 16
h2 3837 562 -2 2633 221 72 2343 31
h-3 4613 586 -3 2915 329 73 3127 52
hi 4605 592 4038 189 74 3898 73
hs 5752 559 -I 4463 506 75 3802 61
h6 8173 561 O6 6978 694 76 2459 85
h7 5744 494 -7 7559 385 17 5316 220
h8 6351 474 -8 5700 194 78 6036 508
h9 9045 337 oi 6579 477 79 2796 120
hio 9064 270 Ob 9696 534 710 4810 67
h ll 9362 276 oh 9677 677 711 7329 225
hl2 9558 280 -12 9546 669 712 6984 167
hl3 9568 278 -13 9320 686 713 6772 181
hl4. 9317 261 o \i 9178 670 714 6478 185
hlS 8470 143 - is 8863 711 715 5496 237
hl6 7494 51 -16 8035 476 716 2444 362
hl7 3843 47 -17 6775 162 717 2656 305
hl8 2684 70 -18 3260 163 718 2509 148
hl9 2608 67 -19 2015 149 719 5540 75
h20 2735 49 -20 1979 132 720 10482 54
h2l 2878 42 -21 1890 118 721 11303 26
h22 2615 37 - 2 2 1698 102 722 11377 29

The empirical average of e obtained from this sampling approach is about 0.7. 
Although the results indicate no substantial difference, most estimates of the integrated 
autocorrelation times differ highly. This is because the second method incorporates 

variation in the smoothing parameters. The effect of this can be clearly seen in the 
scatter plots of Figure 8-23. The irregular plots in this figure indicate that the degree 

of normality disruption in this case is higher than that present in Figure 8-11. This 

is due to the generation of some values of (3^,Pa 2 and P1  other than the MPL fixed 

estimates used to produce Figure 8-11, as Figure 6-19 reveals. This indicates that the 
PCMCMC sampler is very sensitive to the values of the interaction parameters used.
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Figure 8-23: 5ome profiles ’ peak heights scatter plots obtained from a sample generated 
by the mixed algorithm when the interaction parameters are updated regularly.

The ionosphere tomographic image obtained at the posterior mean and the length of 
the 95% credible interval image are shown in Figure 8-24. In Figure 8.25, we compare 
between Y  and estimates of E[Y)  obtained at this mean. Again a very good fit is 
obtained. The associated high-level image is displayed in Figure 8-26.
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Figure 8-24: The tomographic image of electron densities measured in units of
10n el/m? at the posterior mean (Top) and the length of the 95% credible interval 
overlayed by all signal paths associated with the varying smoothing parameters 
PCM CM C run restorations (Bottom).
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E ( Y ) (red) associated with the varying smoothing parameters PCM CM C at the resulting 
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8.4 U ncertainty and sensitiv ity

In the real data problem of ionospheric tomography, we are uncertain about the true 

values of the physical quantities of interest. Fortunately, implementing the Bayesian 

approach allows us to make uncertainty statements about the final outcome of the 

analysis for example in the form of credible intervals as recorded in Tables 8 .8  and 8.9, 

or images of the length of the 95% credible intervals as displayed in Figure 8-19.
In this study, we have assessed the sensitivity to the starting values and seeds 

using the initial values obtained from MIDAS, and other random and flat initial states. 
Figure 8-27 reveal the resulting images. The images in this figure do not show important 

differences for the posterior expectations of electron densities when different seeds and 
initial states were considered. The associated length of the 95% credible interval images 

displayed in Figure 8-28 reveal a high degree of variation within the boundary regions 

of the grid represented in the differences in the shape and size of these regions. This 

reflects the fact that there is less certainty about the free electron concentration within 

these areas which is consistent with the lack of data noticed in these parts of the 

ionosphere.

A major benefit of the Bayesian approach is the ability to incorporate prior knowledge in 
the form of a prior  distribution. During the development of our algorithm we found that 
the results are very sensitive to the amount of smoothing selected in the prior model, 
especially in regions where there is a lack of data. When the smoothing parameters axe 

allowed to vary during the simulation process, the uncertainty associated with these 

parameters increased the overall uncertainty for all other variables. This effect was 
seen in the form of some wider 95% associated credible intervals, see Tables 8 .8  and 

8.9.

8.5 C onclusion

In this chapter, we demonstrated the application of the new algorithm we have 

developed, principal components MCMC, in ionospheric tomography study to image 

the electron density in the ionosphere.

The PCMCMC algorithm was initially tested on a set of simulated TEC data. This 

algorithm revealed an outstanding performance leading to the generation of a Markov 

chain that mixes extremely well.
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Table 8 .8 : The estimated posterior expectations and credible intervals of p  in km, a  
in km, and 7  in 101 6e l/k m 2 scaled by a factor of 105, associated with the last 50,000 
iterations of the PCM CM C fix (3s approach.

Mn 95% Cr.I. <7 n 95% Cr.I. 7 n 95% Cr.I.
Ml 417 (408,426) <71 1 0 0 (95,105) 71 412 (399,426)
M2 417 (408,426) <72 1 0 0 (95,105) 72 412 (400,425)
M3 417 (409,426) <73 1 0 0 (95,104) 73 412 (402,423)
M4 416 (408,424) <74 99 (95,102) 74 412 (404,420)
M5 405 (398,411) <75 98 (94,102) 75 397 (391,402)
M6 404 (397,411) <76 103 (100,106) 76 368 (364,373)
M7 404 (399,410) <77 1 0 1 (98,103) 7 7 340 (336,344)
Ms 392 (387,397) <78 96 (94,98) 78 294 (290,297)
M9 366 (361,370) <79 95 (93,97) 79 269 (267,270)

M10 346 (342,350) <710 1 0 0 (97,102) 7io 280 (279,280)
M il 345 (341,348) <711 108 (106,111) 7 n 270 (270,271)
M12 343 (339,346) <712 105 (103,108) 71 2 255 (254,256)
Ml3 344 (340,347) <713 107 (105,110) 713 240 (240,241)
Ml4 338 (334,342) <714 109 (106,111) 714 231 (230,231)
Ml5 317 (312,321) <715 115 (112,117) 715 240 (239,241)
Mi6 302 (297,307) <716 1 1 2 (109,115) 716 241 (239,244)
Ml7 290 (285,296) <717 107 (103,111) 717 2 1 1 (208,215)
Mis 285 (279,291) <718 105 (101,109) 718 2 0 2 (196,208)
M19 285 (278,291) <719 104 (100,109) 719 2 0 2 (193,210)
M 20 285 (278,291) <720 104 (100,109) 720 2 0 1 (191,212)
M21 285 (277,292) <721 104 (99,110) 721 2 0 1 (189,214)
M22 285 (277,293) <722 104 (99,110) 722 2 0 1 (187,215)
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Table 8.9: The estimated posterior expectations and credible intervals of p  in km, a  
in km, and 7  in  101 6e l/k m 2 scaled by a factor of 105, associated with the last 50,000 
iterations of the PCM CM C varying (3s approach.

Mn 95% Cr.I. (7 n 95% Cr.I. 7 n 95% Cr.I.
Ml 425 (412,438) & 1 1 0 2 (97,107) 71 416 (403,430)
M2 425 (412,438) 02 1 0 2 (97,107) 72 416 (404,429)
M 3 425 (412,437) 03 1 0 2 (97,107) 73 416 (406,427)
M4 423 (411,434) <74 1 0 0 (96,104) 74 415 (408,423)
M5 411 (401,421) 05 1 0 1 (96,105) 75 398 (393,404)
M6 411 (401,420) 0-6 106 (101,109) 76 369 (364,374)
M7 410 (402,418) 0 7 103 (99,106) 77 339 (335,344)
MS 396 (390,403) 0 8 97 (94,99) 78 290 (286,295)
M9 368 (363,373) 09 96 (94,99) 79 268 (266,269)

M10 348 (344,352) 0H) 1 0 1 (98,104) 7 io 280 (279,281)
Mu 347 (343,350) <711 1 1 0 (107,112) 7 n 271 (270,272)
M12 345 (341,348) 012 107 (104,109) 712 255 (254,256)
Ml3 345 (341,349) 043 108 (106,111) 713 241 (240,241)
Ml4 340 (335,344) (714 1 1 0 (107,113) 714 231 (230,231)
Ml5 319 (314,324) (715 116 (113,119) 715 240 (239,241)
M16 303 (299,308) (716 113 (110,116) 716 243 (240,246)
M17 291 (286,296) 0"17 107 (104,111) 717 2 1 2 (208,218)
M18 286 (280,292) (718 105 (100,109) 718 2 0 2 (196,209)
M19 285 (279,292) (719 104 (100,109) 719 2 0 2 (193,211)
M20 285 (278,292) (720 104 (99,109) 720 2 0 2 (191,213)
M21 285 (278,293) (721 104 (99,109) 721 2 0 2 (189,214)
M 22 285 (277,293) (722 104 (99,110) 722 2 0 2 (187,216)
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Figure 8-27: The ionosphere maps in units of 1011 el/nr? obtained at the resulting
posterior mean when all smoothing parameters are held fixed based on the following 
starting values and seeds: MIDAS with seed 1 (Top left), MIDAS with seed 10 (Top 
right), MIDAS with seed 100 (Middle left), MIDAS with seed 1000 (Middle right), 
random with seed 100 (Bottom left) and flat with seed 100 (Bottom right).

The sampler is then applied to the available set of 572 TEC values. Two m ethods are 
considered. In the first method, fixed sensible values of the smoothing param eters are 
used, whereas in the second m ethod these param eters are updated regularly starting  
from the same sensible set of sm oothing values used to  run the empirical Bayesian



Figure 8-28: The length of the 95% credible interval overlayed by all signal paths
associated with the fixed smoothing parameters restorations obtained when all smoothing 
parameters are held fixed based on the following starting values and seeds: MIDAS with 
seed 1 (Top left), MIDAS with seed 10 (Top right), MIDAS with seed 100 (Middle left), 
MIDAS with seed 1000 (Middle right), random with seed 100 (Bottom left) and flat 
with seed 100 (Bottom right).

approach’s sampler. The acceptance rates in the first three principal components’ 
directions are between 33% and 39%, i.e slightly far from the derived optimal acceptance 
rate, 44%, although step sizes of 2 A y /\i,  are used. This indicates that the posterior

2 0 0



model is not perfectly Gaussian as the scatter plots produced by the mixed sampler 

also reveal.

The results obtained by the PCMCMC are very encouraging especially when the 

fixed values of the model smoothing parameters are used. In this case, the integrated 

autocorrelation times have an average of 7.4. Even when the interaction parameters arc 
updated regularly, despite higher integrated autocorrelation time estimates for some 

parameters, the algorithm performed much better than the mixed MCMC sampler. 
Here, we conclude that the PCMCMC is very sensitive to the smoothing parameter 

values used because as these estimates descend below the MPL fixed estimates, the 

degree of departure from normality increases. Thus, the smoothing parameters in this 

application, beside their main use in controlling the spatial dependence present within 

the ionosphere, also play a similar role to that of the normality controller parameter a 

of the four non Gaussian examples of section 7.2.5.

The maps of free electrons generated at the posterior means of both approaches reveal 

no significant difference. Further, in both approaches the TEC data axe fitted very 
well in general, with a small estimated error of about 0.7 TECU, although the plane 

non-central regions suffer from a lack of information. In contrast, the error associated 
with MIDAS is around 61 TECU, i.e. approximately 100 times larger. This mainly 
indicates that our results fit the data not only much better than MIDAS but is also able 
to produce a very good fit as Figures 8-25 and 8-27 also reveal. In addition, our results 

highlight the importance and suitability of our model spatial interaction parameter 

values found in this application, and the high ability of our sampling process.

Unlike MIDAS approach where estimates of the unknown electron densities are 

considered without accounting for the uncertainty related to the model and the 

estimates, the Bayesian approach also incorporates this uncertainty by providing the 

user with ranges of all possible values with high probabilities, as those recorded in 

Tables 8 .8  and 8.9.
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Chapter 9

Conclusions and future directions

In this thesis, we have developed a new tomographic approach which can use 

TEC observations to image the spatial distribution of electron concentration in the 
ionosphere. Our approach for tackling this problem is indirect because it is based on 

extracting low-level images of pixel electron-densities from high-level images of vertical 
electron-density profiles. The new approach consists of two main steps: building a non
linear Bayesian model that captures the expected features of the scene, and developing 

a reconstruction MCMC algorithm that mixes well.

We worked with a day-time data set gathered from the Navy Navigational Satellite 
System that consists of a single orbiting satellite and a chain of four ground-based 
receivers with a geographical configuration that is suitable for reconstructing two- 

dimensional images of the ionospheric scene. As in many previous experimental studies, 
the small number of monitoring receivers and their restricted geographical locations 

limited the ranges of the ray paths in the 2D reconstruction grid. The available prior 

knowledge about the true scene informs us that neighbouring areas in the ionosphere are 
likely to be similar. In order to address the issues of lack of information within several 
regions of the ionosphere and the spatial dependence among neighbouring regions, 
smoothing based Bayesian techniques have been considered in building the non-linear 

model proposed in this thesis.
The fundamental rationale behind spatial smoothing is the concept of “borrowing 

strength” from highly monitored neighbouring regions in the ionosphere so that stable 
estimates for variables of regions with little or no information can be produced. To 

accommodate the spatial structure of the ionosphere, GMRFs distributions are used 
as prior distributions for the vertical profiles. To ensure that the prior distributions 

used in our methodology are consistent with the nature of our problem, for example,
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all accepted estimates should be non-negative, we defined a sensible, broad but finite 

range for each parameter type. Fortunately, these constraints make our prior models 

proper.

Due to the high-dimensionality and complexity of our posterior model it is extremely 

difficult to propose estimates of the model variables of interest by non-MCMC sampling 

approaches. We began our investigation by implementing a standard MCMC algorithm 

in which both the Metropolis algorithm and the Gibbs sampler are used for a set of 
simulated data. We used time-series plots and multiple independent realisations of the 

MCMC approach to assess mixing and convergence of the Maxkov chain. The results 
indicate that this sampler may perform inefficiently especially if the reconstruction grid 

is discretised with few levels, for instance 3 or 4. Reparameterisation ideas are then 

implemented within the standard MCMC algorithm, and the modified version of this 

sampler is defined as the mixed algorithm. The latter sampler, when implemented 

for the same illustrative example, reveals some very good results even when the grid 

consists of only a few layers.

To avoid prolonged run times for the mixed algorithm for the real data set problem, 
we found it necessary to start the simulation process from a good initial state. For this 

purpose, we used estimates of pixel electron densities produced by another tomographic 
approach known as MIDAS. However, since our model variables are not pixel electron 

densities, we developed some algebraic formulae by which we can convert the low level 
image estimates into a high level valid configuration for the adopted posterior density. 
Further, to avoid prespecifying arbitrary values for our interaction parameters, we 
implemented ideas of Maximum Pseudo Likelihood (MPL) to obtain estimates for these 

parameters. We then applied the mixed algorithm for the real TEC measurements 
using the calculated initial configuration but via two different methods. In the first 
method, the empirical Bayesian approach is followed, i.e. the smoothing parameters are 

considered as fixed known constants, whereas in the second method these parameters 

are allowed to vary during the simulation process using the MPL approach in order 

to incorporate uncertainty about them. Nevertheless, the latter method is not a 
fully Bayesian based-approach because no prior distributions are assigned for the 

smoothing parameters, i.e. the new values of these parameters are not sampled from 

any distribution, rather they are recalculated regularly using MPL. This approach 

was introduced by Heikkinen and Hogmander (1994). By following this approach we 

aim to avoid a time consuming procedure and many complicated, if not impossible, 
calculations that would be required if we were to apply the fully Bayesian approach
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instead.
The results obtained from both runs of the mixed algorithm applied to the real 

data reveal a slow mixing problem. However, small residual sum of squares are 

obtained rapidly and the empirical error associated with the resulting estimates is 
less than 1.0 TECU, indicating that both the developed model and the reconstruction 

MCMC sampler are generally good although some high integrated autocorrelation time 

estimates are obtained. To improve mixing and speed up convergence of the Markov 

chain, another more sophisticated MCMC algorithm is developed. This sampler is 

named the Principal Components MCMC (PCMCMC) algorithm because updates in 

this case are generated with appropriate sized steps and in the approximate principal 
component directions of the target distribution. To implement this sampler, it is 

necessary to have the original parameters true variance matrix, or at least an estimate 

of it. W hen this matrix is unknown then one can use the standard Metropolis sampler 

to generate a sample approximately from the desired distribution. Moreover, to 

shorten the PCMCMC run burn-in phase, the empirical expectations obtained from the 
standard algorithm run could be used as the desired initial values of the new sampler. 
In practice, the target distribution variables may have very different scales. Variables 

with high variances could dominate the major principal components. To avoid this 

and make all parameters of interest equally important, we suggested scaling all original 
components of the desired distribution so that each parameter has unit variance.

The PCMCMC approach was initially tested for sampling Gaussian distributions with  

highly correlated variables. It has been shown that this algorithm performs more 

efficiently if the proposal Gaussian distributions have variances of size 2.42 times 
the principal components’ variances. The optimal acceptance rate and integrated 
autocorrelation time associated with each principal component are found to be 44% 
and 4.4. Further applications of this algorithm for simulating not perfectly Gaussian 

densities revealed that PCMCMC outperforms the standard Metropolis sampling, and 

although the above optimal values are not exactly met, the integrated autocorrelation 

times are still below 1 0  unless the unimodal sampled distribution is very far from 
normality. We conclude that PCMCMC would be a promising sampling tool as 

long as directions derived from the variance matrix eigenvalues make an appropriate 

independent decomposition.

Before implementing the new tomographic package for sampling our posterior 

distribution with the real data set, we tested its performance on a set of simulated TEC  

data. In this case, the algorithm revealed outstanding results reflected in the form of a
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Markov chain that mixes extremely well and produces very accurate estimates of the 

retrieved parameters.
The PCMCMC algorithm is then applied to the real TEC observations. The results 

obtained are very encouraging especially when sampling the posterior model in the 
framework of the empirical Bayesian approach where carefully chosen fixed estimates 

of the smoothing parameters aie used. The integrated autocorrelation times have an 
overall average of about 7.4. Even when these parameters are allowed to vary regularly, 

despite some higher integrated autocorrelation times for some variables, the PCMCMC 

algorithm outperforms the mixed sampler. It is worth mentioning that the PCMCMC 

algorithm is highly sensitive to the spatial smoothing parameter values involved in our 

model. For example, when very small arbitrary values are assigned to these parameters, 
the PCMCMC mixing was poor. This is because with such small interaction parameter 

estimates, the degree of deviation from a Normal is increased significantly.

The reconstructed images of the ionospheric scene obtained from the two PCMCMC 
sampling trails reveal no substantial difference. In general, these images fitted our 

TEC set very well with a small associated error of about 0.7 TECU. These results 

reveal the overall suitability of our approach for the ionospheric tomography problem. 
Moreover, problems caused by the generation of non-positive electron density estimates 

and reliance of the reconstructed image on the initial image of the ionospheric scene 
that many existing approaches suffer from are all eliminated.

The approach developed in this study has been designed for a 2D configuration. This is 

because our TEC measurements are suitable for 2D reconstructions since the satellite 
and receivers in the Navy Navigational Satellite System from which our data are taken 

lie approximately in the same plane. However, we can extend our approach to tackle 
3D configurations of latitude, longitude and altitude. This is very important because 

not every TEC set geometry is appropriate for 2 D reconstructions. For example, GPS 

satellites and ground-based receivers axe not always in the same plane. Thus a 3D 
configuration should be used to recover all three spatial dimensions, although this may 

increase the sampling process CPU time and storage. This makes from our approach 

a very promising tool for imaging the ionosphere.

For any 3D future ionospheric reconstruction problem we need to consider the 2D 

neighbourhood structure in defining our spatial distribution rather than the present 
ID structure, i.e. two vertical profiles are considered as neighbours in the grid if their 

corresponding columns axe adjacent, so that corner profiles have two neighbours, edge
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profiles have three, and interior profiles have four.

The Bayesian model and MCMC algorithms developed in this thesis, although 

specifically constructed for TEC data inversion, could be applied more widely especially 

for other fields of tomography where spatial correlations about the true values of the 

physical quantities are to be taken into consideration. I:i these canes, the major 

advantage of using the Bayesian approach is the ability to estimate the uncertainty 

associated with the parameters and thus the constructed images.
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A ppendix A

Solving the system  of the 3 
electron density equations

Suppose that da, db and dc are the electron density values within a column at heights 
a, b and c, where a <  b <  c. Then

da =  _ 2 ^ e- 5 ^ (a-" )2, (A .l)
y/2 n<7T(7

4  =  (A.2)
V27rcr

dc =  (A.3)

This system can be solved for //, cr2 and 7  via the following steps:

1. solve (A .l) for 7 . This gives

7  =  V^7rcrdaexp ^ 2 ^ 2  (a “  A*)2^ ■ (A -4)

2 . substitute 7  in (A.2 ) and then solve for /i. This gives

_ a2 - b 2 -  2 <r2 ln(c4 ) +  2 <72 ln(da) ( A
M 2 ( ^ 6) ' {A’5)

3. substitute 7  and fi in (A.3) and then solve for cr2. This gives

2 = ________ (a -  c)[(a -  b)(a +  c) -  (a2 -  b2)]_________
2 [(q -  6 )(ln(dc) -  ln(da)) -  (q -  c)(ln(db) -  ln(da))] ’
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A ppendix B

The Jacobian of the several 
param eters transform ation

If the joint probability density of da,db and dc is known, then the joint probability 

density of fi, a 2 and 7  could be determined by using the Transformation Technique. 
The J a co b ia n  of this transformation is given by dfcoPsY) i.e.,

J =
TT*on
ddb
w
TT6C7/i

d d a
dfi

dda
dfi

d d a

da*
ddb
do*
d d r .
do*

TT*cry

(77
&£.
0 7

d d b
d o 1

d h
0 7 d d a TT*O fl a7 d d a

d h
on

d d b
d o *

d d c
d a *

M l
(77 d a 2 d d c

d fj. d j
d'y d d r .

d f i
d d r .
d o *

ddb ddc ddb ddc

+

d a 2 d'y d'y d a 2 

dda (  ddb ddc

dda 
d a 2 

ddb ddc 
d'y \  dfi d a 2 d a 2 dfi

ddb ddc 
dfi d'y

ddb ddc 
d'y dfi

(B.l)

Suppose that j  E { a ,6 ,c} , then



ddi d
da2 da2 2= ( a 2) ^  e - ^ - r f ^ 2) 1

.  v 27r

7

e- i O —m)2(<t2) 1 _  x e-|(j-M )2(^2) ']

»2O' ~  V) i
2\/27r

7
2\/27rcrJ

L (* 2) f  (*2) f

d'y y /2 lT(T

Now the jacobian term J could be determined as follows:

1. The first term is

(B.3)

(B.4)

dda (  ddb ddc ddb ddc \
d[i \dcr2 d'y d'y d a 2 J

where

7ddb ddc _  
d a 2 d'y 2 y/2 ircr5

((6  -  / i ) 2 -  cr2 )  e -  (&-/02__ I 0 - ^ 7  (c-m)
y/2 TTi

e 2cr̂
7TC7

47TC76
e  2cr‘ ( ( 6 - m ) 2 + ( c- / x) 2 )

7  (b2 -  2 bf! +  /x2 -  cr2) c_ ^ ( 62+c2_ 2b/x_2cM+2M2) 
47TC76

(B.5)

Similarly,

ddb ddc 
d'y d a 2 y / 2̂ u 2\/27r<7rcr'-

7  (c2 -  2 c/i +  M2 ~  o'2) c - 5l 7 (b2+c2_ 2bM_ 2cM+2M2) 
47TC76

(B.6 )

By subtracting (B.6 ) from (B.5) we obtain

/ ddb_ddc _  d d b d d A  =  7  (b2 +  c2 -  2 byi -  2 cyi +  2 yi2) _ ^ ( 62+c2_ 2bM_ 2cM+2/i2) 
\<9cr2 ^ 7  ^ 7  d a 2 J 47rcr6

(B.7)
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Hence,

d ^ ^ d ^ d d ^ _ d d i d d c \  _  7 ( a - / / )  _ ^ ( a _ M)2 

5/i \5cr2 5 7  5 7  da2 )  y/2na3
7  (62 +  c2 — 26/i — 2c/i +  2/i2) 

47T<T6

x e-  2^  rc2 _2i/x_ 2c/"f2^2)

(B .8 )

2. The second term is

where

Similarly,

ddb ddc 
dfi 5 7

dda f  ddb ddc ddb ddc
d a 2 \  5/i 5 7  d'y dfi

>/27r<7TCT'- 7T<7

27TCT4

=  7 (6^ £ )  - 51i (6=+c2- 26̂ - 2cm+2̂ )
27tct4

ddb ddc 
d'y dfi \/27Ti7TCT \/27Ti

e 2^
7TCT

=  7 (c -  /j) 1 (62 +c2 _2bM_2cAt+2M2 )
27TCT4

By subtracting (B.10) from (B.9) we get

ddb ddc ddb ddc
dfi d'y d'y dfi

27T<74
l _ e- ^ l ( b 2+c2- 2bn-2c»+2H2)

(B.9)

(B.10)

(B .ll )
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Hence,

d d a  f d d b d d c  _  d d b d d A  _  7  ( ( a  ~  ^  ~  °~2)

<9<r2 v<9// <97 <97 <9//y 2v/27rc75 6

x e~ri2'(62+c2_ 2b̂ _ 2c/i+2M2)

3. The third term is
dda ( ddb ddc ddb ddc
d'y \  dfi d a 2 d a 2 dfi

where

d<k d d c  =  T'(6 -M )c- A ( t - ^ 7 ( (c
dfi d a 2 ^/2 tt(7 3 2 \ f 2 wcjb

Similarly,

ddb ddc
=  7 ( (l> M )2  ^

d a 2 dfi 2 y/2 n cr5 \ fh r a 3

By further calculations, we obtain ^  ~  =

(be2 — cb2 + bfi2 — efi2 — c2fi +  b2fi + ccr2 — bcr2 + 2 ef i2

47rcr8

X e ~  2^7 (a2+ k 2-t-c2—2a/z-2&/x—2c/z+3/i2)

Therefore, the Jacobian of the transformation is given by

7 2 (a&2 — a 2b — a c 2 +  a 2c  + be? — b2c )
J =

47T\/27r<T9 

X e ~  2^  (fl2+i*2+ c 2 —2a/i—26/i—2c/z+ 3/i2)
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