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Summary

This thesis presents a novel self-consistent method for the analysis of active 

semiconductor devices, and in particular longitudinally non-uniform weakly guiding 

structures which have recently become of great interest.

The modelling of active semiconductor devices involves different aspects to be 

considered:

i) the solution of the wave equation for the analysis of the electromagnetic field in 

the device;

ii) the solution of the diffusion equation to obtain the distribution of the injected 

carriers;

iii) the description of the field-canier interaction through a self-consistent scheme 

linking i) and ii), which produces the nonlinear effects typical of the operation of 

active devices. Note also that the longitudinal non-uniformity of the geometries of 

interest adds to the difficulties associated particularly with the solution of i) above 

since analytic solutions are generally not possible.

This thesis is composed of three main contributions reflecting the above three 

points. The attractive feature of the self-consistent analysis presented in this thesis is 

that it relies essentially on one method of solution, based on a function expansion 

procedure, which has been developed and successfully applied to solve both the field 

and the carrier diffusion equation. In this method the Hermite-Gauss functions form 

the very suitable, complete basis set in terms of which both the optical field and the 

carrier density profile may be accurately described. The numerical solution has been 

conveniently achieved with the collocation method, thus obtaining the compact 

Hermite-Gauss Collocation Method (HGCM).

The three stages of the work have been presented in sequence describing the 

development of the solution scheme and discussing the comparisons of the computed 

results with those from analytic or alternative numerical methods. In all cases such 

comparisons have been very satisfactory, demonstrating the versatility and accuracy of 

this compact HGCM scheme.
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Introduction

This thesis presents the outcome of research investigations which were motivated 

by the need to develop a convenient scheme for the modelling of a category of 

semiconductor optical devices. This need originates from the recent increasing interest 

in (optical) devices which are not uniform along the longitudinal axis. Obvious 

examples of such structures are tapered fibres for improving coupling to 

semiconductor optical sources. In fact, the complementary situation is also taking 

hold, namely that of specifically designing the source such that its output field profile 

matches as closely as possible with that of the fibre. Although optical sources are 

involved, the problem in those two examples are essentially related to passive devices. 

The recent, but rapidly growing interest in high power taper geometry semiconductor 

optical sources is an example of active devices with longitudinal non-uniformity. 

Reliable modelling of such devices is thus needed to design for improved and/or 

extended device characteristics.

The modelling of any such device is, broadly speaking, based on the analysis of 

two primary physical aspects - the electromagnetic (optical) field and the carrier 

(inversion population) distribution. The same is done for conventional (uniform) 

devices, but, now, the longitudinal non-uniformity introduces further complications. 

For example, whereas mode solutions are permissible for the uniform devices, no such 

convenient set is available, in general, for non-uniform structures. In the matter of 

carrier distribution also, the complexity of the solution is similarly increased. 

Consequently, it is important to develop a simple yet efficient modelling scheme. 

There are numerical methods available such as Finite Difference, Beam Propagation 

Method (BPM), etc., but they are dominantly numerical approaches. One of the 

motivations for the present research programme has been to develop a computational 

scheme which, by utilising the known properties of pertinent simpler structures, 

produces effective and efficient analyses.

Although the development of the new computational procedure is based on the 

motivation to model semiconductor optical devices, it is expected that the method will 

find applications also in other areas, such as in fluid dynamics and acoustic wave
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propagation, since the basis of the work here is to solve for wave propagation in 

weakly non-uniform geometries.

Particularly for the modelling of weakly non-uniform structures the most 

immediate approach is that of the perturbation method, which relies on the known 

solution of the corresponding unperturbed (uniform) structure for describing the 

‘new* solutions to the problem. This approach is frequently and effectively used in 

(closed) metal guides, but the application to (open) dielectric structures creates 

considerable computational complications because of the need to include in the modal 

representation the radiation modes of the unperturbed (local) dielectric waveguide. 

However, the radiation modes are in integral form and it is this that creates the 

difficulty. Hence, other suitable expansion functions are often sought.

There are any number of function sets which are orthogonal and complete and, in 

principle, may be used instead of the (local) mode function set. However, for effective 

and efficient computation, the choice of the basis function set should satisfy the 

additional condition of not having an integral form, and also should have similarity 

with the typical field solutions for the structure to be modelled.

With this in mind the Hermite-Gauss Beam (HGB) set was first considered, since 

they provide an infinite but discrete set of orthogonal functions, which have close 

resemblance to the (diffracting) field solutions to be expected in weakly non-uniform 

structures. However, as discussed in this thesis, the HGBs are not amenable for the 

analysis of inhomogeneous media.

It was thus decided to consider the Hermite-Gauss Eigenfunctions (HGE), which 

are quite different from the HGBs in that they represent the modes of longitudinally 

uniform waveguides with quadratically varying dielectric distribution. Although they 

do not individually represent diffracting fields, they nevertheless resemble the modes 

of typical slab dielectric waveguides. The longitudinal variation is, then, conveniently 

accounted for by expanding the total field in longitudinally non-uniform structures in 

terms of the complete HGE set, and by using longitudinally varying expansion 

coefficients. Also the HGEs form a complete and discrete set of functions so that the 

desired properties for efficient modelling are satisfied.

By enforcing that the above HGE representation of the total field solution satisfies 

the wave equation for the structure to be modelled yields a set of coupled differential
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equations for the expansion coefficients. This formalism, however, generally involves 

integral terms to be solved which, however, should be avoided for computational 

efficiency. This is the reason why the collocation numerical method has been adopted 

to evaluate the expansion coefficients, with the advantages of avoiding integration and 

of leading to a matrix formulation. Hence, the overall scheme developed in this thesis 

is referred to as the Hermite-Gauss Collocation Method (HGCM), and it is 

demonstrated that it forms a very efficient and effective compact scheme for the 

computation of field propagation in weakly non-uniform structures.

Before achieving the overall, self-consistent model it was needed to evaluate the 

gain/loss via the carrier (inversion population) diffusion equation. Various methods 

have been employed previously to solve the nonlinear diffusion equation, such as finite 

difference, cascaded matrix, Jacobi tri-diagonal method. Recognising that solutions to 

simple diffusion equations are Gaussian functions, it seemed sensible to try solving the 

diffusion equation with the HGCM. As discussed in detail in the thesis this new 

approach has proved to be an unqualified success.

The last stage of the development requires combining the methods for solving the 

optical field and the carrier distribution in a self-consistent scheme. The advantage and 

attraction of the HGCM is even more apparent at this stage since the two main 

computation routines are almost identical. There was no basic difficulty in achieving 

the final HGCM programme and it has thus been possible to obtain self-consistent 

solutions for weakly non-uniform active devices. Thus, the original objective has been 

achieved

The thesis is structured as follows:

Chanter 1: review of some mathematical aspects relevant to the analysis of field 

problems. The aim of this chapter is to introduce the formalism that will be followed 

throughout the thesis.

Chapter 2: introduction to the Hermite-Gauss functional form in the two different 

sets of functions: i) the Hermite-Gauss Beams which are the eigensolution of the 

paraxial wave equation in a homogeneous medium, and hence represent diffracting 

solutions; ii) the Hermite-Gauss Eigenfunctions which are the modes of longitudinally
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uniform quadratic media. It is the latter set which will be used in the remainder of the 

thesis as the basis set.

Chapter 3: review of some of the methods used to solve for field problems, which 

are distinguished as i) eigenvalue; and ii) propagation (initial value) problems.

Chapter 4: the HGCM formalism is presented for the solution of the scalar wave 

equation in open structures.

Chapter 5: the HGCM is applied to the solution of a variety of field problems, 

including i) eigenvalue problems in waveguides characterised by arbitrary dielectric 

distributions, including complex dielectric distributions; ii) diffraction in homogeneous 

media; iii) propagation across dielectric step discontinuities; iv) propagation in 

coupled waveguides; v) propagation in tapered structures. Comparisons of the results 

obtained with the HGCM with other methods of solution are discussed, together with 

some aspects of numerical analysis.

Chapter 6 : the HGCM formalism is applied to the solution of the carrier diffusion 

equation. Results pertaining to linear and nonlinear forms of the diffusion equation are 

presented, discussing the comparisons with analytic solutions and with numerical 

solutions, respectively.

Chapter 7: the comprehensive self-consistent HGCM method is presented and 

applied to the analysis of active optical devices. Progressive results that show the 

development of the self-consistent scheme are discussed. Linear and parabolic tapered 

devices have been considered; results for the latter case have been compared with 

those from another method of solution based on the local mode expansion method.



Chapter 1

Review of some mathematical aspects of 

electromagnetic wave problems

This chapter presents a format of the basic electromagnetic field equations which 

will be referred to throughout this thesis.

The first part of the chapter describes the development of the formalism that leads 

to the wave equation. Thus, Maxwell’s equations and the interface conditions are 

summarised in Sections 1 and 2. The wave equation is derived in Section 3 and 

relevant properties of this equation for two specific cases, i.e., propagation in 

homogeneous media and in waveguide structures, are discussed. In Sections 5, 6 and 

7 two important approximations to the wave equation, namely the scalar and the 

paraxial approximations, are formally defined and some pertinent points are discussed 

in detail as a means of gaining further familiarity with the substance of the 

approximations. A rapid review of the Poynting vector in Section 8 concludes the first 

part of the chapter.

The second part of the chapter is dedicated to the review of flongitudinally 

uniform) guiding structures. The extensive application of waveguides in 

communication systems is evident; the discussion here is to emphasise the modal 

solutions that these structures admit. Waveguides have two main classifications: i) 

closed, ii) open. Examples of i) are hollow metal guides where the electromagnetic 

field is entirely contained inside the closed region. Dielectric waveguides are an 

example of ii), where the electromagnetic field extends laterally out to infinity. Metal 

guides are impractical and inefficient beyond microwave frequencies, and hence at 

higher frequencies (including optical frequencies) dielectric waveguides are 

extensively used.

The appropriate boundary conditions associated with the wave equation specify the 

set of characteristic solutions that are pertinent to any particular waveguiding 

structure. The characteristic solutions are known as the (eigen)modes of the 

waveguide.

l
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The most important properties of closed guides, specifically hollow metal guides, 

are reviewed in Section 9. In Section 10 open waveguides are considered, referring 

for simplicity to the case of the three-layer symmetric slab waveguide. The main 

object here is to illustrate the particular features of the solution spectra of the wave 

equation that occur as a consequence of the different boundary conditions associated 

with the open as compared to the closed waveguides.

1. M axwell’s equations

The equations that govern the theory of electromagnetic waves derive from 

Maxwell’s equations which are summarised here for the case of harmonic time 

dependent fields. Consider thus all fields to be of the form F(s, t) = F(s)g(t) = F(s)el<ot

where co > 0 (in rad/s) is a real quantity defined as the angular frequency, F(s) the 

complex vector function and s the spatial co-ordinates.

Maxwell’s equations are

V a  E = -icoB (1.1.1)

V-D = p (1.1.2)

V a  H = icoD + J tot (1.1.3)

V-B = 0 (1.1.4)

where E (in V/m) and H (in A/m) represent the field intensity vector for the electric 

and magnetic field respectively, D (in C/m2) and B (in weber/m2 = tesla) the flux 

density vector of the electric and magnetic field respectively (D is also referred to as 

electric displacement vector), p is the electric charge density (in C/m3); It* = Lource + L  

is the total current density term (in A/m2), composed of the source and the conduction

current density terms. In linear1, isotropic2 media the vectors E, D, H, B and Jc satisfy

the following (linear) constitutive relations

D = ecerE (1.1.5)

B = p 0|xH (1.1.6)

J = a E  (1.1.7)

1A medium is linear when the constitutive relations hold independent of the magnitude of the field.
2 A medium is isotropic when the constitutive relations hold independent of the direction of the
field.

2
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where eo is the electric permittivity of vacuum', er the (real, dimensionless) relative 

dielectric constant of the medium, [i0 the magnetic permeability of vacuum2, \x the 

(dimensionless) relative magnetic permeability of the medium and a  (in nrf'ohm'1) is 

the conductivity of the medium, [1], [2].

In this thesis most of the theory pertains to electromagnetic wave propagation at 

high optical frequencies in source-free regions. Hence, the Lourc* term will be ignored 

henceforth (it is noted however that spontaneous emission may be accounted for 

through this explicit term, if needed). Thus, in the remainder of the thesis non

ferromagnetic, source-free media are considered for which |i = 1, p = 0, and Lourcc = 0 

in equations (1.1.1) - (1.1.4).

1.1 Com plex dielectric distribution

In optical media it is convenient to account for (stimulated) gain or loss through 

the conductivity, a, of the medium. A complex dielectric distribution, e, may be 

defined by

e = e r - i - ^ —= er + i£. (1.1.8)
C0£o

where £r is the (real) relative dielectric distribution of the medium. Hence equation 

(1.1.8) may be written in terms of the (complex) refractive index distribution as

£ = (nr + mi)2 (1-1.9)

where iv and nj are the real and imaginary part of the refractive index, respectively. 

Making use of equation (1.1.8), equation (1.1.3) may be written in the compact form

V AH = ic0£o£E (1.1.10)

where £ is the complex dielectric constant defined in (1.1.8). The advantage of 

defining a complex £ is that Maxwell’s equations (1.1.1) - (1.1.4) have the same form 

independent of the nature of the medium (ranging from insulators to conductors).

The wave equation, which determines the evolution of electromagnetic fields, can 

be derived from equations (1.1.1) - (1.1.4). This will be discussed in Section 3 for 

source-free media. However, it is worth reviewing at this point the conditions to

' e0 = 8.854 10-12 farad/m
2 go = An 10-7 henry/m

3



Chapter 1 Review of some mathematical aspects of electromagnetic wave problems

which the electromagnetic field is subject when travelling across an abrupt interface 

separating piecewise homogeneous media.

2. Interface conditions

For field analysis in piecewise homogeneous media with an abrupt interface, the 

most convenient approach is to solve Maxwell’s equations in each homogeneous 

region and then match the solutions at the points of material discontinuity (interfaces) 

to ensure a unique solution everywhere in space. Most commonly two basic types of 

interfaces need be considered, i) that between two dielectrics and ii) that between a 

dielectric and a metal. The interface conditions can be derived from the integral form 

of Maxwell’s equation (1.1.1) - (1.1.4), [1], [3], [4], [5] and are as follows.

The first condition, that for the tangential component of the electric field, derives 

from Ampere’s law (equivalent to equation (1.1.1)), and is

where Et(i) represents the component of the electric field in medium 1 which is 

tangential to the interface, and correspondingly, E^) is that for medium 2, Fig. 1.2.1.

The condition on the normal component of the electric field is best defined by the 

electric displacement vector, from Gauss’ law (equivalent to equation (1.1.2) ), and 

reads

where Dn(i) is the component of the dielectric displacement vector in medium 1 

normal to the interface, and similarly for Dn(2); ps is the surface charge density on the 

interface (in C/m2).

From the above equations it follows that in the absence of surface charges, the 

tangential component of the electric field is continuous, while the normal component 

of the electric field changes according to (1.2.2), i.e., = £2E n(2), with £i and 82

the dielectric constants in medium 1 and 2, respectively.

The following conditions apply to the magnetic field. From Faraday’s law 

(equivalent to equation (1.1.3)), obtain

E t(i) — E t(2) ( 1.2. 1)

I^n(l) ^n(2) “  Pi (1.2.2)

Ht(l) ^ t(2) ~ I; (1.2.3)

4
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where Hl(1) denotes the component of the magnetic field which is tangential to the 

surface in medium 1, and similarly for H ^ ; Js is the surface current density (in A/m).

The condition on the normal component of the magnetic field derives from Gauss’ 

(magnetic) law (equivalent to equation (1.1.4)):

B„„> = Bn(2) (1.2.4)

where Bn(1) is the component of the magnetic flux density vector normal to the surface

in medium 1, and similarly for Bn(2).

In the case of a metal-dielectric interface the metal is approximated as a perfect

conductor (up to microwave frequencies). Since the fields inside a perfect conductor 

are zero, the interface conditions, with reference to the field components in the 

dielectric, become

E t = 0 (1.2.5)

D n =Ps (1.2.6)

B n = 0 (1.2.7)

H t = J s (1.2.8)

Fig. 1.2.1: Interface between two homogeneous media defined by £j and e2; n and t are the unity 

vectors perpendicular and parallel to the interface, respectively.

3. The wave equation

Operating with V a  on equations (1.1.1) and (1.1.3) and using the vector identity 

A2 v = V(V • v) -  V a  V a  v 1 yields the vector wave equation

1 This identity defines, in a general co-ordinate system, the operator A2 which operates on the vector
v = (vx, vy, vz). Note that only in the Cartesian co-ordinate system

( a 2 y) .  - Y  ( Y v i ) =  ^ 2 v i =  ( d2 + d 2 +dz)vi » i =  x . y . z-

5
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A2E + k 2eE = -V f Ve= - •  E
U  )

(1.3.1)

where k Q = — = —  is the wave number in vacuum, with X0 and c = ■ . * — the
c K  Ve .^o

wavelength and the velocity of light in vacuum, respectively, [5], [6]. Similarly, from 

equations (1.1.10) and (1.1.1) the corresponding wave equation for the magnetic field 

is

A2H + k 2eH = - = ^ A V A H  (1.3.2)

Equations (1.3.1) and (1.3.2) produce six scalar equations that determine the 

evolution of the six components of the electromagnetic field. All six field components 

are coupled through the right hand side term of equations (1.3.1) and (1.3.2), and by 

Maxwell’s equations (1.1.1) - (1.1.4), [4].

3.1 The wave equation in homogeneous media

In a homogeneous medium the relative permittivity, e, is independent of the spatial 

co-ordinates, hence the vectorial wave equations (1.3.1) - (1.3.2) become

A2E + k 2eE = 0 (1.3.3)

A2H + k 2eH = 0 (1.3.4)

In Cartesian co-ordinates equations (1.3.3) - (1.3.4) produce six scalar equations (of 

the same form), one for each field component:

A2Ej + k 2n2Ej = 0 (1.3.5)

A2Hj + k 2n2Hj = 0 (1.3.6)

with j = x, y, z. Each of the above six equations (1.3.5) - (1.3.6) is usually known as 

the scalar wave equation or Helmholtz equation.

A particular solution of (1.3.3) - (1.3.4) is the plane wave that depends only on 

one variable, e.g., z, and follows from assuming E = E x(z)x in (1.3.3), where x is 

the unity vector along the x-axis. Thus, the solution of the scalar equation for Ex is

E , (z) = E (x+)e”kz + E x_)e+kz (1.3.7)

6
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with k 2 = - k 2n2. The (constant) amplitudes Ex(+>, Ex(} are determined by the

boundary conditions associated with the problem. Since, in general, the refractive 

index of a medium is complex, i.e., n = nr+ ini, k in (1.3.7) is also complex, and hence

k = a  + ip (1.3.8)

with a  and p purely real. The parameter a  is the attenuation (gain) constant (in 

neper/m). It can be shown that n* < 0 corresponds to attenuating fields along the 

positive z direction, [7]. P in equation (1.3.8) specifies the magnitude of the phase in

(1.3.7) and hence it is called phase constant (in radians/m).

The general vector solution of (1.3.3) is in this case

E(z) = EI w e"“ e ' ‘|llx + E ^ W ^ x  (1.3.9)

which may be seen as composed of two terms, the first a forward travelling wave, the 

second a reverse travelling wave. The phase velocities of the forward (+) and reverse

(-) travelling waves are vjjf = ± ^ »  [8].

For this plane wave with the electric field E = Ex(z)x, the magnetic field can be 

derived from Maxwell’s equation, and it can be shown that it has one field component 

in the y direction, H = H y (z)y, where y is the unity vector parallel to the y-axis.

3.2 Vectorial wave equation for guided waves

In this section the vectorial wave equation is considered for the case of 

waveguides, that is, for dielectric distributions which are independent of the 

longitudinal variable z, i.e., e = e(x, y). The purpose here is to highlight the 

importance of the Ve term in the vectorial wave equations (1.3.1) - (1.3.2) in the 

context of (longitudinally uniform) waveguides.

It is common to classify the waveguide solutions deriving from (1.3.1) - (1.3.2) 

into two categories: transverse electric (TE or H) waves for which the electric field 

has no component along the axis of propagation, and transverse magnetic (TM or E) 

waves for which the magnetic field has no component along the propagation axis. 

This distinction is valid in both closed and open waveguides and hence the following 

discussion is applicable generally to guiding structures. The TE and TM modes are 

particular solutions of the wave equation in waveguides. In the general case, all six

7
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field components are present and the solutions are defined as hybrid waves, which 

may be viewed as TE and TM waves coupled by the boundaries imposed by the 

structure, [7], [9].

It is possible to prove that the electromagnetic field in the case analysed in this 

section may be fully represented by two field components, [5], [10]. Hence only the 

two transverse components of the electric field derived from equation (1.3.1) are 

considered here [a similar analysis can be applied to equation (1.3.2)].

Assume a mode solution described by the propagation factor exp(-/pz), and 

consider e = e(x, y) in equation (1.3.1) in order to derive the equations for the two 

transverse components of the electric field, E x and E y:

9 jE x + 9JE . + (k2e (x ,y ) -p 2)EI + a x[E A ln (e )  + Ey9y ln(e)]= 0 (1.3.10)

3 2Ey + 9 2yE y + (k 2e (x ,y ) -p 2)Ey + 9 y[Ey3y ln (e)+ E „a,ln (e)]=  0 (1.3.11) 

0
with d x = —  etc. In the above equations three contributions may be highlighted: 

dx

1) the first three terms of equations (1.3.10) and (1.3.11) constitute the basic 

scalar wave equation for each individual field component. Thus, considering only the 

first three terms results in a simplified (degenerate) scalar analysis which is acceptable 

for weakly guiding waveguides, [4].

2) the term 3XE X3 X ln(e) in equation (1.3.10), [and respectively dyEydy ln(e) in

(1.3.11)] accounts for the polarisation effects on the field solutions (TE and TM 

modes). This term can be considered as a polarisation correction to the scalar wave 

equation, [11]. The propagation constant characterising the two polarisations (TE- 

TM) for the same mode number are different However, without the polarisation 

correction the field solutions are degenerate, i.e., the modal profiles and 

corresponding propagation constants are identical for both polarisations. In the 

degenerate case it is sufficient to use the scalar wave equation to describe the chosen 

field component and derive the other field components from Maxwell’s equations.

3) the last term 0xEy3y ln(e) in (1.3.10) [and, correspondingly, 9yE x3x ln(e) in

(1.3.11)] represents the vectorial nature of the wave equation providing the coupling 

between the field transverse components. In the most general case the solution of the

8
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(vecto rial) w ave equation  involves all six com ponen ts o f  the e lec trom agnetic  field 

(hybrid  m odes).

In weakly guiding structures it is common to consider the coupling terms between 

components to be weak so that the field solutions are assumed to be essentially 

linearly polarised. Since the cases analysed in this thesis predominantly involve weakly 

guiding structures all the corrections discussed above are neglected, i.e., the scalar 

analysis leads to sufficiently accurate results for the cases of interest.

4. Scalar wave equation

For the work described in this thesis the wave equation is solved mainly in the 

context of weakly guiding structures. In such cases the right hand side of equations

Ve
(1.3.1) and (1.3.2) can be neglected, because either = 0 (the rate of variation is

e

sufficiently small) or E _L V e. Hence, the wave equation becomes

A2E + k 2e(x,y,z)E = 0 (1.4.1)

A2H + k 2e(x,y,z)H = 0 (1.4.2)

The Cartesian co-ordinate system will be adopted in the following discussion because 

in this co-ordinate system the six scalar equations resulting from (1.4.1) - (1.4.2) have 

the same form:

[V2 + k 2e(x,y,z)]Fj(x,y,z)=  0 (1.4.3)

where V2 = 3 2 + 3 2 + 32, Fj is a component of either the electric or the magnetic

field, j = x, y or z. In general only one of the above scalar (Helmholtz) equations is

used to represent the chosen component of the electric or magnetic field, the other 

field components then follow from Maxwell’s equations. The solution of equation

(1.4.3) is uniquely determined once the associated boundary conditions imposed by 

the structure are specified.

In the remainder of the thesis weakly guiding structures will be considered in 

which the dominant guiding effects along the vertical (y) direction are accounted for 

separately, using the effective dielectric constant method (E. D. C.) [Appendix 1.1], 

or any other suitable method. Hence, use is made of the two-dimensional scalar wave 

equation in x and z,

9
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[a 2 + 32 + k2e(x, z)]F(x, z) = 0 (1.4.4)

with F(x, z) the chosen field component and e(x, z) the (effective) dielectric 

distribution in the (two-dimensional) medium.

5. The radiation condition

For the case of unbounded regions, such as open waveguides, the boundary 

condition associated with equation (1.4.4) is generally referred to as the Sommerfeld 

radiation condition. This condition imposes that if the sources are contained in a 

limited region, only outgoing waves are present at a large distance from that region, 

[4], [5], [12], [13].

The radiation condition assumes different expressions according to the co

ordinate system used and on the dimension of the physical space, [14]. For one

dimensional problems, in Cartesian co-ordinates the radiation condition in a lossless 

homogeneous medium is

|lim (a,F  + ik F )= 0  (1.5.1)

where k = k0V c , with e the dielectric constant of the medium, [14].

The general form of equation (1.5.1) is

l im R ~ ( — + ikF) = 0 (1.5.2)
*— U r  )

where R is an independent variable in the direction of power flow, and h is the 

dimension of the physical space (in Cartesian co-ordinates R2 = x2 + y2 + z2), [15]. For 

lossy media the above conditions are simplified by assuming that the (total) 

electromagnetic field vanishes at infinity, [5], [13].

6. Solutions of interest

For the work discussed in this thesis it is assumed that the field solutions 

propagate predominantly along the longitudinal (z) direction, with the transverse 

profile either invariant (waveguide mode solutions) or slowly varying (weakly 

diffracting fields) with z. The main characteristics of these two types of solutions are 

presented below.

10
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6.1 M odal solutions

For one-dimensional waveguides, with confinement along x and propagation axis 

along z, the method of separation of variables can be used to solve equation (1.4.4). 

Hence the field is written in the form

which typically represents the waveguide modes. In (1.6.1) m is the mode number, 

fm(x) and |3m the field profile (eigenmode) and modal propagation constant 

(eigenvalue), respectively. For each mode, the eigenvalue pm may be expressed in 

terms of an effective refractive index, nm, defined by

6.2 Quasi-m odal solutions

In the case of weakly diffracting fields it is advantageous to write the solution of 

equation (1.4.4) in the following form

where p is a suitably chosen (real positive) constant and f+(x,z) and L(x,z) the field 

transverse profile of the forward and reverse travelling wave, respectively, since the

assumed that f±(x, z) changes slowly during propagation, and, hence, for convenience, 

the large phase variation is separated out in the exponential term. The consideration of 

a slowly varying amplitude allows to introduce further simplifications to the scalar 

wave equation (1.4.4), namely the paraxial approximation which will be discussed in 

the next section.

The two types of solutions described in (1.6.1) and (1.6.3) are analysed in 

subsequent sections. In particular, the slowly varying field approximation presented in 

connection with equation (1.6.3) is extensively used in this thesis for the analysis of 

diffraction problems and for the study of field propagation in longitudinally non- 

uniform (dielectric) structures.

F(x>z) = pm (x>z) = fm (x)e±lP"z ( 1.6 . 1)

( 1.6.2)

(1.6.3)

harmonic time dependent factor e*1™ is assumed. For weakly guiding media, it can be

11
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7. The paraxial wave equation

Consider in the following a weakly diffracting field, F(x,z), that is propagating 

essentially in the positive z-direction. Thus, from equation (1.6.3), the field is written 

as

F(x, z) = f+(x, z)e',pz (1.7.1)

In particular situations f(x, z) may be considered to be slowly changing with z. The 

analysis of electromagnetic fields with slowly varying amplitude is greatly simplified 

by the use of the paraxial approximation which is mathematically expressed by

|3z2f(x ,z)|«  p|3zf(x,z)| (1.7.2)

and

|3’f(x ,z)|« |a* f(x ,z)| (1.7.3)

Substituting (1.7.1) into the wave equation (1.4.4) obtain

32f (x,z) + 32f(x ,z)-  p2f(x ,z)-  2ip3zf (x,z) + k 2e(x,z)f(x,z) = 0 (1.7.4)

Use of (1.7.2) and (1.7.3) reduces equation (1.7.4) to the paraxial wave equation, [4], 

[16], [17],

32f -2 ip 3 zf + (k2£ (x ,z )-p 2)f = 0 (1.7.5)

The paraxial wave equation (1.7.5) has been used for most of the problems 

investigated in this thesis, particularly in the analysis of Oongitudinally) weakly non- 

uniform structures defined by e = e(x, z).

In the particular case of homogeneous media it is convenient to choose p2 = ko2£h 

where £h is the dielectric constant of the medium, [Appendix 1.2]. Thus, equation 

(1.7.5) becomes

32f -2 ip 3 zf = 0 (1.7.6)

7.1 Forward and reverse travelling waves

The use of equation (1.6.3) to describe the field implies that the direction of 

propagation has been chosen to be either in the positive or in the negative z-direction. 

For the general field solution of Helmholtz equation (1.4.4) both directions of

propagation need to be considered. For example, in problems involving reflection of

1
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the field at discontinuities the contribution of both the forward and the backward 

travelling fields would be necessary.

A general field may thus be written as

F(x, z) = f+(x, z)e‘pz + f_(x, z)e+/pz (1.7.7)

with f+(x, z) and L(x,z) depicting the forward (reverse) travelling wave. Substituting

(1.7.7) into the wave equation (1.4.4) yields

(32 +d\ -2 ip 9 z + k 2e - p 2)f+e ^  + (9 2 +d\ + 2ip3z + k 2e - p 2)f_e+ipz = 0  (1.7.8)

However, the difficulty of solving equation (1.7.8) makes it necessary to introduce 

some approximations. Usually the two bracketed terms of equation (1.7.8) are solved 

separately, which is equivalent to assuming that the forward and reverse fields may be 

treated independently. Explicit boundaries along z are then satisfied by using the 

forward and reverse travelling waves.

In the case of weakly guiding structures, both f+(x, z) and L(x, z) may be

supposed to be slowly varying with z, and hence the analysis of the forward and,

separately, of the reverse travelling wave may be simplified by the use of the paraxial 

approximation, i.e., for the forward

[a2 -  2ip3z + k 2e(x, z)]f+ (x, z) = 0 (1.7.9)

and for the reverse travelling wave

[a; + 2ip3z + k 2e(x,z)Jf_(x,z) = 0 (1.7.10)

Although most of the structures analysed in this thesis are longitudinally non- 

uniform, which implies that the field is (continuously) reflected at the discontinuities, 

the continuously reflected field has been neglected in the analysis developed in this 

thesis. In those cases in which it is essential to consider also the reverse propagating 

field, e.g., in laser structures, use is made of the individual paraxial wave equations in 

both directions of propagation.

Consider the following initial value problem in which the initial field is given by 

F(x, z = 0) = f0 (x). Assuming propagation along the positive z-direction in the range

(0, L), the solution, F(x,z = L) = fL(x ), is found solving equation (1.7.9). Note, 

however, that given the initial field fL(x) = F(x,z = L ) , equation (1.7.9) yields 

F(x,z = 0) = fG(x), as expected, while equation (1.7.10) produces a quite different 

result, f, (x) * fD(x ). This property is shown schematically in Fig. 1.7.1.

13
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from equation (1.7.9)

f  (x )
o

from equation (1.7.10)

>  f  (x )L

f ,  (X) z -  A z

Fig. 1.7.1: Connections between the solutions of the paraxial wave equations (1.7.9) and (1.7.10).

8. Power carried by electromagnetic waves

The power carrier by an electromagnetic wave is determined by the Poynting 

vector, S, which, for linear, isotropic media is defined by

where the symbol ~ indicates the space-time quantities. The Poynting vector may be 

interpreted as the power per unit area that flows at that point, [7]. At high frequencies 

the instantaneous power is very rapidly varying with time and hence it is common 

practice to use the time-averaged (complex) Poynting vector' which is called power 

density or irradiance (in W/m2). For harmonic time varying signals the time-averaged 

power density is defined as

The measurable quantity derived by the irradiance (1.8.2) is (the real part2 of) the 

time-averaged power (P) flowing through a surface (A), i.e.,

where da is the vector differential surface element.

9. Closed waveguides

Closed waveguides are characterised by the fact that the field is confined inside 

the (perfectly) reflecting boundaries. Consider in this section a parallel plate guide

S = E a  H ( 1.8. 1)

S = yRe(E a H*) ( 1.8.2)

(1.8.3)

1 The time-average Poynting vector is derived from the Poynting theorem in the frequency domain,
P!.
2 The imaginary part of the complex Poynting power can be interpreted as reactive power, [7], [3].
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formed by two perfectly conducting metal plates at x = ± a, as shown in Fig. 1.9.1. TE 

and TM modes may be obtained in this case, as summarised in Appendix 1.3. 

However, in the following discussion the interest is in illustrating the relevant 

properties of the eigenvalues and eigenfunctions of the type ( 1.6 .1) of closed 

waveguides, and hence the symbol fm(x) may represent either a TE or a TM mode.

Fig. 1.9.1: Parallel plate metal closed waveguide: perfectly conducting boundaries at x = ± a.

The modes of (longitudinally uniform) closed waveguides constitute an infinite 

complete set of discrete (bound) modes either propagating or evanescent. It can be 

demonstrated that the modes of any (lossless) waveguide are orthogonal to one 

another. This implies that each individual mode may propagate independently of the 

other modes, [9], [3], [18]. This property is expressed mathematically by the 

following integral:

where fn(x) and fm(x) are the modal fields. From the orthogonality property (1.9.1) 

also follows the power-orthogonality, [1], which means that if the waveguide 

supports more than one mode, the power associated with a general field composed of 

many modes of the guide is given by the summation of the contributions of the 

individual modes.

The orthogonality relation (1.9.1) is generally used for the normalisation of the 

mode fields, fm(x)

2a z

/  fm (*)C (x)dx = S^, (1.9.1)

(1.9.2)

with fm(x) specifying the normalised m-th mode, [Appendix 1.3].
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Another important property of the modes of closed waveguides is that of 

completeness, which permits the expansion of any field at any cross section of the 

waveguide in terms of the modal fields. That is, any total field, F0(x), inside the 

waveguide may be represented as

F0(x) = Z Amfm(x) (1.9.3)
m=l

where fm(x) represent the modal fields, Am the (constant) expansion coefficients.

Using the orthogonality condition (1.9.1) the expansion coefficients in (1.9.3) may be 
+* ~

determined by Am = jF 0(x)fm(x)dx.
—a

Since the modes propagate independently in the guide, the field at any longitudinal 

position, z, is given by

F(x,z)=  S A mfm(x )e - '^  (1.9.4)
m=l

where each characteristic modal phase factor is specified by the corresponding 

propagation constant pm. At any longitudinal position the power associated with the 

field expressed by (1.9.4) is

P =  £ |A mf  j1l,(x)|2dx (1.9.5)
m=l m=l 1

where Pm is the power of each mode. However, although the power obtained by the 

summation of the contribution of the individual modes is equal to the power of the

incident field at all longitudinal positions, the profile of the field changes during

propagation because of the different modal phase factors. The details necessary to 

calculate the power associated with TE/TM waveguides modes are summarised in 

Appendix 1.3.

10. Open waveguides

Metal plate waveguides are very effective at microwave frequencies because the 

high reflectivity of the boundaries confines the field inside the cavity. However, at 

higher frequencies these structures become too lossy and the alternative guiding 

mechanism of total internal reflection at dielectric interfaces is exploited to produce 

optical waveguides. In dielectric waveguides the wave is not totally confined inside 

the waveguide as in the case of closed guides, but extends out to infinity. The
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achievement of waveguiding in dielectric waveguides made it possible to guide waves 

of higher frequency and thus to increase the capacity for information transmission.

In the following discussion reference is made to slab dielectric waveguides. 

Although they have some aspects in common with closed guides, open waveguides 

are characterised by the very distinctive feature of radiating into open space if any 

irregularity is present, [19]. Similarly to closed guides, open waveguides guide only a 

finite number of discrete modes, known as guided modes, or surface modes to 

underline the fact that the wave is guided by the dielectric surface. But, differently 

from closed waveguides, in open waveguides the complete spectrum of solutions 

involves also the category of radiation (quasi-surface) modes which form a continuous 

spectrum, [9], [19]. By requiring that the total field (instead of the individual modes) 

satisfies the radiation condition, a weaker condition is found by which the radiation 

modes become legitimate solutions of the wave equation, and hence the mode 

spectrum of open waveguides becomes complete, as discussed in detail in reference

[19]. As in the case of closed guides, all modes of an open waveguide are mutually 

orthogonal in the integration over the plane transverse to the longitudinal axis. 

Further, any field in an open waveguide may be described in terms of the complete set 

of eigensolutions (guided modes and radiation modes) pertinent to the structure, [4]. 

This process of field expansion is similar to the one described in connection with 

closed waveguides, and is generally known as eigenmode expansion or local mode 

expansion. Deviations from perfect geometry not only convert power among guided 

modes of the dielectric waveguide, but also scatter power into the continuous 

spectrum of radiation modes, which is seen as radiation outside the dielectric 

waveguide, [4].

10.1 The three-layer sym m etric slab dielectric waveguide

A symmetric three-layer slab waveguide is considered here with the purpose of 

briefly reviewing the characteristic features of the solutions of open waveguides (see 

e.g., [5], [20] for asymmetric open waveguides). Hence, assume d y = 0.

The characteristic solutions of slab open waveguides may be classified as TE and 

TM modes. However, since each type of modes may be derived from one field 

component, in the following discussion it will be understood that for TE modes
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F(x,z) = Ey(x,z) = f(x)e~l,k (1.10.1)

and f(x) = ey(x), while for TM modes

F(x, z) = Hy (x, z) = f (x)e-?l (1.10.2)

and f(x) = hy(x). The other field components derive from Maxwell’s equations (1.1.1)

- (1.1.4), [Appendix 1.4]. Further, because of the symmetry of the dielectric

distribution there are two separate sets modes, i.e., the symmetric and the anti

symmetric (TE/TM) modes, [Appendix 1.4]. This distinction will not be explicitly

mentioned in the following discussion.

£ 2

Fig. 1.10.1: Schematic of a longitudinally uniform three-layer symmetric slab waveguide, the 

core layer (shaded region) has a larger dielectric constant with respect to the cladding layers. 

The thickness of the waveguide core layer is 2a.

Consider thus a longitudinally uniform three-layer symmetric slab waveguide

described by the dielectric distribution e = e(x) independent of z. The layers are

assumed to extend to infinity along the x and z axes with no variation along the y-

{£ |x| < a
1 with 6i > £2 (£1 and

e 2  |x| £  a

£2 real). Assuming a (bound) mode-solution of the type (1.6.1)

F(x,z) = f(x)e-?2 [1.6.1]

the wave equation (1.4.4) becomes

^ r ^ + O m« = o  d.io.3)

where k*m = (k*£-P *) determines the eigenvalue pm corresponding to the

eigensolution fm(x). Having assumed £(x) to be piecewise constant, equation (1.10.3)

is solved separately in the three regions. The (unique) mode-solutions are obtained 

matching the solutions determined in each (homogeneous) region at the interfaces 

between the dielectrics.
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The discrete (surface) modes are determined using the boundary (radiation) 

conditions pertinent to open structures, i.e., that the field decays to zero at infinity 

along the transverse axis:

f o r |x |^ ° o  (1.10.4)

The eigenmodes are characterised by a transverse distribution of the field, fm(x), that 

remains unchanged along the longitudinal direction z and by a propagation constant 

Pm. For each waveguide bound mode it is possible to define an effective refractive

index nm =-&^ [equation (1.6.2)]. The guided modes are descriptive of

electromagnetic energy confined inside the guide; but to account for the energy 

radiating outside the guide the radiation modes need to be considered, [4]. The 

radiation modes are determined using the weaker condition that the field be finite at 

infinity

I fmOOl < 00 for |x| —> €» (1.10.5)

instead of (1.10.4), and are characterised by having a continuum of values for the

propagation constant (continuum spectrum). The expressions for the modal fields for 

guided and radiation modes are summarised in Appendix 1.4.

The overall spectrum of eigenvalues of equation (1.10.3) may be summarised in 

the graph of Fig. 1.10.2, [4], [20].

R 1L evanescen t
P

1 (radiation)

backward forward

guided radiation radiation guided

- k n - k n 0 k n k n ^r
o 1  o 2 0 2 o 1

Fig. 1.10.2: Spectrum of the eigenvalues of an open waveguide (pr and pi refer to real and 

imaginary part of P respectively, n! is the highest value of the refractive index distribution, n2

the lowest)

19



Chapter 1 Review o f some mathematical aspects of electromagnetic wave problems

The solutions of the slab waveguide are usually classified as

i) P > k0nj - the solutions exponentially grow in all three layers which implies infinite

field amplitudes (and power) at large distances from the waveguide. This situation 

is not acceptable (physically impossible).

ii) k0nj > P > k0n2 - a discrete number of bound (guided - surface) modes which vary

sinusoidally inside the waveguide core and decay exponentially outside the 

waveguide; this set of p values forms the discrete spectrum of the waveguide.

iii) k ^  > P > 0 - the solutions vary sinusoidally in all three layers: these are the 

radiation (quasi-surface) modes of the slab waveguide. Any value of p in this 

range is allowed, hence this set constitutes part of the continuum spectrum of the 

waveguide.

iv) p < 0 - the negative values of the propagation constant are an indication of the 

reverse direction of propagation, i.e., p < 0 represent backward travelling modes. 

The same distinctions as above apply in this region, with the signs appropriately 

changed.

v) imaginary p, i.e., p = - i  | p | with 0 < | PI < <*> - the corresponding eigensolutions

are the evanescent (or reactive) modes. The inclusion of evanescent modes in field 

analysis is necessary for a detailed description of the field at the surface of the 

waveguide, but since they do not carry power away from the waveguide they can 

be neglected in the analysis of field propagation in dielectric waveguides, [4], [5]. 

The reactive modes correspond to the non-propagating modes below cut-off in 

closed waveguides, [5].

The cut-off condition for guided modes occurs when pm = k ^  and determines the 

frequency below which the mode ceases to propagate in the waveguide, i.e., 

k oa>/e1 - e 2 = mrc, or, in terms of the cut-off frequency, ocfc(m):

m7tc
« .(„> = —E = =  (1-10.6)

aV£i ^2

with m = 0, 1, 2, ... . Note that for symmetric (slab) waveguides the fundamental 

mode has no cut-off frequency, [4].

As already discussed for closed guides, the totality of the mode-functions fm(x) of 

open waveguides have the mathematical property of forming a complete set of
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Chapter 1 Review of some mathematical aspects of electromagnetic wave problems

mutually orthogonal functions, [5]. For open waveguides the orthogonality condition 

may be written as

Jfm(x)f*(x)dx = 0 fo rm ^ n  (1.10.7)

Equation (1.10.7) holds for any combination of guided and radiation modes, [4]. The 

orthogonality relation (1.10.7) is typically used to normalise the mode functions. In 

particular, the normalisation condition for radiation modes involves the Dirac delta 

distribution, i.e.,

— C f(x .p )f'(x ,p ')d x  = P S (p -p ')  (1.10.8)
“ Ho

here p represents the propagation constant, [Appendix 1.4] and P is the power 

flowing in the z-direction per unit length in the y-direction, [4]. Refer to Appendix 1.4 

for the equations defining the power carried by waveguide TE/TM modes.

The totality of the modes of slab waveguides form a complete set, [4], and hence 

any electromagnetic field inside a dielectric slab may be expressed in the following 

form

f(,)0 0 =  £  cmf(),)m(x)+ I  £ “ q(p)f(y)(p)dp (1.10.9)
m even
even odd
odd

Equation (1.10.9) holds for the y-component of the electric field of TE modes, 

E y(x,z) = fy(x)e_ipz, the other components may be expanded similarly. The

expansion coefficients of (1.10.9) are determined using the orthogonality condition 

(1.10.7). Although rigorously the complete set of modes ought to be used, as in 

(1.10.9), in many situations such as in weak dielectric step waveguides it is sufficient 

to consider only the set of the discrete modes to obtain satisfactory (approximate) 

results, which simplifies the analysis, [2], [4].

Summary

The fundamental equations for electromagnetic field analysis are summarised in 

the first part of this chapter. Particular attention is given to the implications of the 

scalar and paraxial approximations to the wave equation since they will be used 

substantially in the remainder of the thesis.
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Chapter 1 Review of some mathematical aspects of electromagnetic wave problems

The second part of the chapter deals with the properties of the solutions of the 

wave equation. In particular, a basic comparison between closed and open guiding 

structures is discussed, the most important difference being the presence of a 

continuous spectrum in open waveguides.
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Appendix 1.1 

The effective dielectric constant method

Two dimensional, e.g., rectangular cross-section, dielectric waveguides are 

mathematically difficult to analyse since separation of variables is not applicable. For 

rectangular dielectric waveguides which produce mode profiles that have a large 

aspect ratio various approximate methods of analysis are possible. One of the simplest 

and, in that context, perhaps the best is the effective dielectric constant (E. D. C.) 

method, [22], [23]. For example, the structures of interest in this thesis are taken to 

be fabricated from typical multilayer semiconductor material, as shown in Fig. Al.1-1. 

The resulting three-dimensional structure has a dielectric distribution of the type e = 

e(x, y). If the rib section is longitudinally non-uniform then the dielectric distribution 

is also z-dependent, i.e., e = e(x, y, z). In such structures it can be convenient to 

reduce the problem to two dimensions, the transverse (x) and the longitudinal (z), 

using the E. D. C. method (along the vertical y-axis) to derive an effective dielectric 

distribution for a corresponding two-dimensional structure.

For the following derivation, [22], consider a waveguide of the type shown in Fig. 

Al.1-1, although the E. D. C. can be equally applied to longitudinally non-uniform 

structures by considering z as a parameter. The three-dimensional scalar wave 

equation that should be used in this case is

V2F(x,y,z) + k2e(x,y,z)F(x,y,z) = 0 (A l.l - 1)

where for the present case e(x, y, z) = e(x, y) = eq(x) (q = 1, 2, 3) is the stepwise 

constant (along the y-axis) (complex) dielectric distribution of the waveguide. Assume 

an ansatz of the type

F(x, y,z) = g(x;y)f(x)e“ipz (A l.l - 2)

where g(x;y) and f(x) are the vertical (parametrised in y) and horizontal mode 

distributions respectively, with g(x;y) slowly varying along x. Substitute (A l.l - 2) 

into (A l.1 -1), and obtain an equation that can be approximated by

— a;g(x;y) + - i - a ^ f ( x )  + ( k ^ (x ;y ) -p 2) = 0 ( A l . l -3 )
g(x;y) f(x) v ’

In (A l.l - 3) the terms f(x)52g(x;y) and f(x)3xg(x;y) have been neglected. Thus, 

first solve
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Appendix 1.1 The effective dielectric constant method

3yg(x;y) + [k2e (x ,y )-p ^ (x )]g (x ;y ) = 0 (A l.l -4)

to derive the vertical modes g(x;y) and the corresponding effective refractive indices 

in each region in which e(x, y) is constant. The resulting pCff(x) are then used to solve 

the remaining equation for the transverse modes:

d 2xf( X )  + [k je * ( X ) - p 2]f(x) = 0 (A 1.1 - 5)

where k^e^  (x) = p ^  (x). Hence, £cff(x) is the dielectric distribution that is used to 

define the equivalent ‘effective’ two-dimensional structure.

With reference to Fig. Al.1-1, the three regions are defined by x < xi, x\ < x < X2 , 

x > x3 and the dielectric distribution is stepwise constant in each region, i.e., £i(y), 

e2(y), e3(y). Hence, equation (A l.l - 4) becomes

(y)+ [k»ei (y) -  P i*]g , (y) = o (a i . i - 6)
with q = 1, 2, 3. From the solution of (A l.l - 6) obtain the effective refractive indices 

of each region p ^  q = k cn cff q . The following equation is thus to be solved to find the

transverse modes:

a ;f(x ) + [k jedt(1- p 2]f(x) = 0 ( A l . l -7)

where £cff,q = n2cffiq is the effective dielectric distribution of the equivalent two- 

dimensional structure shown in Fig. A 1.1-2. The use of equation (Al . l  - 7) implies

that the structures of Fig. A. 1.1-2 is considered as the two-dimensional equivalent of

the structure shown in Fig. Al.1-1.

y

xx.2

Fig. Al.1-1: Typical semiconductor device etched from multilayer material. In this specific 

example the variation of the thickness of the layers produces the refractive index step.
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z

cff, 3cff, 2

x

Fig. Al.1-2: Two-dimensional equivalent structure of the one shown in Fig. Al.1-1 obtained 

using the E. D. C. method.
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Appendix 1.2 

Plane wave decomposition and the paraxial wave equation

In a homogeneous medium with refractive index nh (or eh = nh2), a general field

function F(x,z) may be written in the form of a Fourier Integral:

(A1.2- 1)

where A(kx) is the angular spectrum distribution, and kx and kz the transverse and 

longitudinal components of the field propagation vector. Substituting (A 1.2 -1) into 

the wave equation (1.4.4) it follows that the two components of the wave vector are 

related by the condition k * + k * = k ^ e h, and hence

In the range for which the paraxial approximation is valid, the square root in equation 

(A 1.2 - 2) is real. The paraxial wave equation, in fact, describes waves that are 

characterised by a wave vector almost parallel to the axis of propagation (the z-axis, 

in this case). Thus, the individual plane wave components in (A 1.2 - 1) may be viewed 

as propagating at small angles to the longitudinal axis (z), Fig. Al.2-1, [16], [17].

(Al .2 -2)

x

z

Fig. Al.2-1: Decomposition on the wave vector fi (p = k0£h) along the 

transverse (x) and longitudinal (z) axes.

From (A 1.2 - 1), the initial field distribution is
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Appendix 1.2 Plane wave decomposition and the paraxial wave equation

F(x, z = 0) = F„(x) = - j L  J A(k, K ^ -d k , (A 1.2 - 3)

By recognising that equation (A 1.2 - 3) is a Fourier transform, by inverse 

transformation obtain the angular spectrum:

A(k «) = ̂ f ^  jF 0(x)e+"k-dx (A l.2 -4 )

In the particular case of a Gaussian initial field distribution

F(x,z = 0) = F0(x) = Ece 2wi (A 1.2 - 5)

where E0 and wQ are constants, the angular spectrum distribution is

A(k «) = Eow oe"*w"k‘ (A l.2 -6 )

7 2
which is a Gaussian function of width .

w0

Using (A 1.2 - 1), the field distribution at any longitudinal position z is

F(x,z) = - ^ = E 0w0 f e ' ^ : e ' i -xe '“' ^ ri^ d k l (A1.2 - 7)
\2 k mm

Noting that the angular spectrum (A 1.2 - 6) tends to zero rapidly outside a finite 

interval, it is possible to use the paraxial approximation, i.e., k x «  k 0eh. Hence from

(A 1.2 - 2), kz becomes

“ k 0nh - —
2k„nh

Making use of (A 1.2 - 8) in equation (A 1.2 - 7) the field at z > 0 is
/  \

(A l.2 -8 )

F(x, z) = w°
wi- i -  z

•exp

k„nh

r  • ' \
2 1Zw: -

V k„nh /

exp(-izk0nh) (A l.2 -9 )

With a few algebraic steps (A 1.2 - 9) can be reduced to the expression for the 

(fundamental) Gaussian Beam [refer to Chapter 2], This result is valid also for higher 

order Gaussian Beams. In summary, the Gaussian Beams are usually referred to as 

free-space modes because the diffracted field originated from a Gaussian Beam is still 

a Gaussian Beam of the same order, but characterised by different size and phase,

[17].
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Appendix 1.2 Plane wave decomposition and the paraxial wave equation

It can also be demonstrated that the paraxial wave equation in a homogeneous 

medium and the Huygens-Fresnel-Kirchhoff integral represent the same mathematical 

(and physical) approximation, [17]. Free-space propagation may be analysed using the 

paraxial wave equation, or, alternatively, the integral equation based on Huygens’ 

principle in the Fresnel approximation. Huygens’ principle states that given the field 

distribution F0(x, z) incident on a closed surface SQ, each point on this surface may be 

considered as the source of a uniform spherical wave (Huygens’ wavelet). The total 

field at any point in space can therefore be calculated by summing the fields of the 

wavelets originating from all the point sources on SQ. Huygens’ principle can be 

expressed in mathematical form (in a Cartesian two-dimensional representation), as

where X is the wavelength in the homogeneous medium. Hence, given the initial field 

distribution F0(x0, Zo), the field F(x, z) at any (x, z) is obtained by solving the integral 

in equation (A 1.2 - 10). The solution is accurate within the paraxial approximation.

(A1.2- 10)
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M odes of parallel plate metal waveguides

1. TM modes

Consider a parallel plate metal guide of the type shown in Fig. 1.9.1. The 

characteristic equation for TM modes describes the longitudinal component of the 

electric field, Ez(x), the other finite field components being Ex and Hy, [1], [3]. 

Assuming a mode solution Ez(x, z) = ez(x)e"‘pz, (1.6.1), the scalar wave equation

(1.4.4) becomes

propagation constant, pm. The boundary conditions associated with (A 1.3 - 1) at the 

perfectly conducting boundaries are expressed by equation (1.2.5). Hence, ez = 0 at x 

= - a  and x = +a, which imposes

and also that the characteristic eigenvalues of equation (A 1.3 - 1) take on discrete 

values determined by

with m = 1, 3 ,5 ,... .

The propagation constant, pm, for the m-th order TM mode is

The other field components of TM modes derive from Maxwell’s equations, i.e.,

with k2c(m) = ko2e -  pm2 the characteristic eigenvalue which determines the mode

ez(x) = Acos(kc(m)X) (A1.3 - 2)

(A l.3 -4 )

(A 1.3 - 5)

(A1.3 - 6)

where H y(x,z) = hy(x)e lPmZ, and m = 1, 3, 5 ,....

Imposing pm = 0 in (A 1.3 - 4) obtain the cut-off frequency:
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Appendix 1.3 Modes of parallel plate metal waveguides

mit c
(A l.3 -7 )

“ 2a &
which determines the frequency at which the m-th mode ceases to propagate (pm = 0), 

[9]. For frequencies below cut-off pm becomes purely imaginary and hence the mode 

attenuates rather than propagates (in which case pm is called attenuation constant),

[9]. In general, waveguides are operated in a low frequency range where only one 

propagating mode exists in the waveguide in order to avoid problems associated with 

modal dispersion typical of multimode operation, [1].

In many cases, e.g., reflection problems, it is useful to consider the wave 

impedance parameter along the direction of propagation, which is defined as the ratio 

of the transverse electric field to the transverse magnetic field for the individual mode,

[3]. For the m-th order TM mode this parameter is

transverse variable (x), and that for frequencies below cut-off it becomes purely 

imaginary, which corresponds to a situation of no power flowing along the direction 

of propagation. The wave impedance parameter is generally used to express the 

transmitted power of an individual mode in terms of the field transverse components 

only. In fact, the transverse component (A 1.3 - 6) of the electric field of the m-th 

mode may be written as

2. TE modes

TE modes are characterised by the three finite field components Hx, Ey, Hz. The 

scalar wave equation is now solved for the longitudinal component of the magnetic 

field, Hz, assuming a mode of the type (1.6.1). Following a derivation similar to that

(A1.3 - 8)

From (A 1.3 - 8) it is seen that the characteristic impedance Z™ is independent of the

ex(x) = ZJJj hy(x) (A1.3 - 9)

and hence the power carried by this TM mode is

P<™> = W r - |M x)|2dx = 2Z™ 7|h,(x)f d* (A1.3 -10)-*Zco£ —«
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used for TM modes, it is found that the z-component of the magnetic field of TE 

modes is

where m = 1, 3, 5, ... . The other field components of TE modes derive from 

Maxwell’s equations and are

where E y(x,z) = ey(x)e lp"z.

The expression for the cut-off frequency, cq*m), for the attenuation constant (a,,,) 

below cut-off and for the propagation constant (pm) above cut-off are the same as 

those obtained for TM modes, i.e., equations (A1.3 - 7) and (A1.3 - 4) respectively. 

The characteristic impedance for TE modes is defined by

which, as for TM modes, is independent of the transverse variable (x) and becomes 

purely imaginary for frequencies below cut-off. The power carried by TE modes is

hz(x) = Bsin(kc(m)x) (A1.3- 11)

with kc(m) given by

kc(m) 2a
(A1.3- 12)

(A1.3- 14)

(A1.3- 13)

(A1.3 - 15)

31



Appendix 1.4 

Functional form of TE and TM modes of the three-layer sym m etric 

slab dielectric waveguide - scalar analysis

For (longitudinally uniform) slab waveguide structures, Fig. 1.10.1, in which the 

refractive index profile is a function of only the transverse variable (x), two separate 

sets of equations can be derived from Maxwell’s equations, one of which determines 

the (TE)X while the other corresponds to the (TM)X modes, [4]. The ‘generating’ field 

components for the TE and the TM modes may, e.g., be chosen to be, respectively,

with ey(x) and hy(x) the transverse distributions of the electric and magnetic field 

components and p(e) and p(h) the corresponding propagation constants. They satisfy,

respectively, the scalar wave equations, [24],

Substituting (A 1.4 - 1) and (A 1.4 - 2) into equations (A 1.4 - 3) and (A 1.4 - 4), 

respectively, yield the equation describing the transverse distributions of the y-field 

components as follows:

Equation (A 1.4 - 5) is used to solve for the TE modes, while equation (A 1.4 - 6) for 

the TM modes.

In particular, for cases in which the Ve term is neglected in (A 1.4 - 4), the scalar 

wave equation (1.4.4) provides approximate (degenerate) solutions for the two 

polarisations that are accurate for most practical situations, i.e., the propagation 

constants (and related field profiles) of TE and TM modes become identical. In many 

weak dielectric step optical waveguides, e.g., the neglect of Ve is justified, [4].

Ey = e y(x)e",|w  

H y = hy(x)e“fi,“,z (A 1.4 - 2)

(A1.4- 1)

V2Ey + k 2e(x)Ey = 0

V2H + - a , e 3 xH y + k 2e(x)H = 0 
8

(A l.4 -4 )

(A l.4 -3 )

(A l.4 -5 )

(A l.4 -6 )
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In the case of slab waveguides with (multi-) step index profile, the modes are 

obtained by solving the scalar wave equation in each region in which the refractive 

index is piece-wise constant (since the Ve term in each such regions is identically 

zero). The distinction between TE and TM modes arises when the matching condition 

for both the electric and the magnetic field at the interface between regions with 

different values of the dielectric constant are taken into account.

Once the equations for Ey and Hy are solved, with the appropriate boundary 

conditions, [Section 2], the other field components are obtained using Maxwell’s 

equations (1.1.1) - (1.1.4); hence, the equations defining TE and TM modes result:

TE modes cop., (A l.4 -7 )
H, =

®po
d*Ey

and

TM modes
E. = A f t )  TT

coe0na(x) y (A l.4 -8 )

Ez =  IT T 9. 11,coe0n (x)

Thus, for TE modes, the electric field has no longitudinal component, and the 

electromagnetic field is characterised by the three components Hx, Ey, Hz. 

Analogously, for TM modes, the magnetic field has no longitudinal component, and 

the electromagnetic field has only three components, i.e., Ex, Hy, Ez.

It is worth noting that, when the dielectric distribution is symmetric, i.e., 

e (—x) = e(x), the TE and the TM modes are either symmetric or antisymmetric in x.

1. TE m odes (Hx, Ey, H J

i) Bound modes

f  sin(kxlx)^ 
cos(k ,x)

e v(x) =
xl / /' >

frs in (k ,ia)
M

. cos(k„a) .

|x |< a

X > a
(A1.4 - 9)
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with k*i2 = ko2ei -  pm2 and k^2 = pm2 -  k<>2£2- The upper functional form refers to 

antisymmetric modes, while the lower one to symmetric modes. The complete 

expression for TE bound modes is Ey (x) = e y (x)e-,p"z, m = 0, 1 ,2 ,... .

Condition for bound modes: k 2p k 22 > 0

ii) Radiation modes

e v(x) =

f  ci

V

sin(ox) 
cosCox)̂

(De-ip* + F eipx)

x < a

|x |> a
(A1.4- 10)

with o2 = ko2£i - p2 and p2 = ko2£2 - p2. The upper functional form refers to 

antisymmetric modes, the lower one to symmetric modes. The complete expression 

for TE radiation modes is Ey (x) = ey (x)e_iPz.

Condition for radiation modes: p2 > 0.

The other field components of TE modes derive from Maxwell’s equations:

i 3EV
hx(x) = -  

h .(x )=

copo dz 

i 5ey
copo 3x

The power carried by TE (guided) modes is

(A1.4- 11) 

(A1.4- 12)

(A1.4- 13)

2. TM  m odes (Ex, Hy, Ej)

The functional forms for TM modes are as described above but replacing Cy(x) 

with hy(x); the other field components for TM modes are

e (x) = —5 - i  (A l.4 -14)
C0£o£ dz

i
ez(x) = -----— - ( Al . 4- 15)

C0£„£ dx
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where Hy(x) = hy(x)exp(-/pmz). Note that TM modal fields in three-layer slab 

dielectric waveguides are discontinuous because the dielectric distribution e(x) is 

discontinuous (e.g., in a three-layer slab waveguide the dielectric distribution is 

stepwise constant).

The power carrier by a TM (guided) mode is

(A1.4- 16)
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Chapter 2

The Hermite-Gauss functional form

In this chapter the relevant properties of the two distinct sets of the Hermite- 

Gauss Beams (HGB) and the Hermite-Gauss Eigenfunctions (HGE) are presented. 

The purpose of this review is to highlight the differences between the two sets of 

functions, and to introduce the HGEs which will form the basis set for the method 

developed in this thesis for the analysis of field propagation in weakly guiding 

structures. The following discussions are with reference to the two-dimensional space 

described by the Cartesian co-ordinates x and z.

Although both the HGB and the HGE function sets are complete and have nearly 

the same nomenclature, which denotes the functional form, they are, in fact, 

characterised by different properties that can be related to the equations from which 

they originate. The HGBs are the solutions of the paraxial wave equation in free- 

space (unbounded, homogeneous medium). Hence, they are the solutions of a first 

order partial differential equation and constitute only an approximate solution of the 

complete wave equation. Specifically, the HGBs are characterised by a Hermite- 

Gaussian profile whose size changes with distance along the direction of propagation. 

This means that each HGB function depends on both x and z to represent diffraction 

effects.

The Hermite-Gauss Eigenfunctions are of a different nature. They are the 

eigensolutions of the wave equation in a quadratic medium1 which is a second order 

differential equation of the Sturm-Liouville type. As with the HGBs, the HGEs are 

characterised by a Hermite-Gaussian profile, but now the profile is unchanged and the 

phase front remains flat2 during propagation in the quadratic medium because here 

diffraction effects are counteracted by the focusing effect of the quadratically varying

1 A quadratic medium is an inhomogeneous medium with quadratically varying (parabolic) dielectric 
profile.
2 For a mode (an individual HGE is a mode of the quadratic medium, as discussed below), the 
(complex) modal field may be written in the form Fm(x,z) = lfm(x)lexp(i0m(z)), where fm(x) is the 
mode transverse profile, and 0m(z) is the phase front which is independent of x and such that 0m(z) = 
Pmz. Consequently, at each longitudinal position z = const the phase front is 0m(z) = const which is 
usually referred to as ‘fiat’ (or ‘plane’) phase front.
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dielectric profile. The HGEs are also known as harmonic functions (eigensolutions of 

the harmonic oscillator of quantum mechanics, [1]).

1. Weak diffraction in homogeneous media: the Hermite-Gauss 

Beams

Consider a homogeneous medium characterised by the constant dielectric 

distribution e(x,z)=  e and, for convenience, define p2 = k 2e . By substitution of the 

ansatz F(x, z) = f(x, z)e"pz into the paraxial wave equation (1.7.6) obtain

a zf(x,z) = - ^ - a 2f(x,z)
2p

It can be shown, [Appendix 1.2], that the solutions of (2.1.1) are the Hermite-Gauss 

Beams, [2], [3], [4]. The characteristic functional form for a HGB is

fn(X>Z) =
1

V ^2 nn!
w.

w(z)
H. x 'e 2' 2<‘>e (2.1.2)

w(z)

where Hn (s)e~15 is the Hermite-Gauss function of integer order, n;

is the half beam-width whose minimum value (wQ) is referredw (z) =  w 01 1 +

to as the beam waist - note that w(z) is independent of the mode number n; 

z2
R(z) = z + —  is the radius of curvature of the phase front which also is independent 

z

of the mode number;

/  \  n  + l(P„(z) = - r - a r c tg
f  \  z

VZ0 J
is a term contributing to the phase of the wave which does

depend on the mode order n;

p = “ ■, with A the wavelength in the medium; 
A

7tW,
z„ = is the Rayleigh range.

The smaller the spotsize w0 at the beam waist, the smaller the Rayleigh range, and 

hence the greater the rate of growth with z of the spot size from the waist, [3]. It is 

possible to define a divergence angle for the Gaussian Beam as
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q ~ — = ^-2. —------ (for z »  2^) which is of the same order of the divergence
z zG 7twc

angle associated with the diffraction of a plane wave by an aperture of diameter ~wG 

located at the beam waist, [3].

To visualise such two dimensional functions, note that for any z = const., the field 

amplitude has a Hermite-Gaussian distribution along x, with a waist size w = w(z) 

corresponding to that longitudinal position. Further, at any specified longitudinal 

position, z, the phase front has a defined curvature [note in equation (2.1.2) the 

additional phase terms which depend on both z and the mode number]. From equation 

(2.1.2) it can be seen that the phase front is flat only at the beam waist (when z = 0, 

w(z) = w0) while at large distances from the beam waist plane it is curved (since R(z) 

* z, for z »  Zo) and centred at the beam waist.

w(z)

z

Fig. 2.1.1: Diffraction of the fundamental Gaussian Beam (propagation is assumed to be only in 

the +z-direction). The broken curves show the phase front which is flat a t the beam waist (w = 

w0) and curved a t z > 0, and also the beam waist increasing with z.

The fact that both the width of the beam and its radius of curvature are 

independent of the mode number is relevant for practical problems of mode matching, 

e.g., in the coupling of single mode fibres to laser, [2].

At any z = const, it is possible to show that the HGBs (2.1.2) satisfy the following 

differential equation of the Sturm-Liouville type
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dx2
gn(x) = -(2n + l)gn(x) (2.1.3)

where g„(x) = fn(x, z = const.) of equation (2.1.2). Using (2.1.3) it can be 

demonstrated that (at any z = const.) the HGB set is complete in the vector space of
. j 2

square integrable functions1 [5] since the operator
|_dx‘

hermitian2.

d 2 - x in equation (2.1.3) is

The HGBs have been widely used in the analysis of solid state and gas laser 

beams, [6] as well as in the theory of open resonators, [4], [7]. Also, in optics, the 

HGBs represent an invaluable means of analysis since the laws of propagation for the 

HGBs in a variety of optical systems (e.g., homogeneous media, interfaces between 

two homogeneous media, lenses, and apertures) can be synthesised within the ABCD 

matrix method, [4], [8]. The ABCD matrix method is a fast and convenient formalism 

for describing the transformation of HGBs travelling through a combination of optical 

systems which can be represented by a succession of lenses and free-space elements 

(under the geometrical optics approximation). These properties make the HGBs ideal 

for the analysis of quasi-optical propagation; thus they find widespread application in 

the design, [9], and also the analysis of far-field characteristics, [10], [11], of 

microwave antennas.

The HGBs may also be derived from Huygens’ diffraction integral instead of via 

the paraxial wave equation [Appendix 1.2], since the two analyses are equivalent in 

homogeneous media, [4]. The diffraction integral approach has also been applied to 

the analysis of open resonators [3], [4], [6]. In this particular case, the modes are field 

distributions that repeat themselves at each round-trip. Most lasers operate with 

apertures which are large compared to the (optical) wavelength so that the output 

beams may be accurately described by Hermite-Gauss Beams. It is found that by

1 Square integrable functions, f(x), over an interval (a,b) have the property that the integral
b
J|f(x)| dx is finite. The set of square integrable functions is a vectorial space with inner product
a

b
defined by (f,g) = J f  *(x)g(x)dx (where * denotes the complex conjugate).

a

2 Complex self-adjoint operators are usually called hermitian operators, and they are defined by A = 
A \ with A* the hermitian operator (f is the operation of Hermitian conjugation, i.e., complex 
conjugation plus transposition of variables). The most relevant properties of such operators are that 
all eigenvalues are real, and that eigenfunctions corresponding to different eigenvalues are 
orthogonal, [5]. The class of Sturm-Liouville operators are one example of hermitian operators.
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placing  m irro rs  o f  p ro p e r cu rv atu re  to  m atch  the cu rved  phase  fron t o f  the H G B  at a 

specified  longitudinal position  it is possib le  to  p ro d u ce  a varie ty  o f  laser re so n a to r 

co n fig u ra tio n s , [2], [3].

2. M odes of quadratic media: the Hermite-Gauss Eigenfunctions

For the following discussion consider a non-homogeneous medium with a 

continuously varying dielectric distribution that has a quadratic (parabolic) transverse 

variation of the form e(x) = b - a x 2, with a and b positive real. Such a medium is 

generally referred to as a quadratic medium. In this case it can be shown that the 

refractive index profile is also parabolic. By writing n(x) = nD — ntx2 with ni «  1,

the dielectric distribution becomes e (x )» n2 — 2n0njX2, in which case a = 2n<Jn1 

and b = n 2. (Note that although a quadratic dielectric profile is not physically 

realisable in the full range 0 < |x| < , such a distribution is often considered for

mathematical convenience, [12]).

A quadratic medium can be viewed as a succession of an infinite number of thin 

lenses whose distance from one another has been reduced to zero. This produces a 

continuously guiding medium; for example, graded index optical glass fibres have a 

refractive index distribution of the kind described above, [2]. Strictly speaking, for 

media with continuously varying refractive index profile the Helmholtz equation

(1.4.4) is not an exact equivalent of Maxwell’s equations, [13], [12]. However, 

considering a refractive index distribution that varies slowly with x, the scalar wave 

equation approach considered in this discussion is an acceptable approximation.

The scalar wave equation (1.4.4) for quadratic media takes the form

(2.2.1)

For mode-type solutions of the general form

F(x. z) = Fm (x>z) = fm(x>  ,P"Z (2.2.2)

the eigenvalue equation is

(2.2.3)
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where k 2m(x) = [k2( b - a x 2) - p 2 ] determines the eigenvalue, pm, of the m-th 

eigenmode, fm(x). To solve equation (2.2.1), the following boundary conditions are

cLf
assumed: |fm| -» 0 and —--------> 0 for Ixl —> oo (refer to Sommerfeld radiation

dx

condition, [14], [15]) which hold for bound mode field solutions, as discussed in 

Chapter 1.

The eigensolutions of (2.2.3) are the Hermite-Gauss functions

U x )  = CmHm(^ )e
— X
2̂ 1 (2.2.4)

where m is a positive integer, Cm = is the normalisation constant,
^w02mm!Vjt^

is the Hermite polynomial of order m, and wo the constant specified by

w„ =
knVa

, is often referred to as the width parameter.

The eigenvalue equation (2.2.3) can be solved only if the eigenvalues are discrete,

i.e., by imposing the condition — — ■̂ nL = 2m +1, [5]. Hence the modes of a square-
k„va

law medium are of the type described in equation (2.2.2) with transverse profile given 

in equation (2.2.4), Fig. 2.2.1, and have corresponding propagation constant

p" = k ° r  k ^ (2m+1)
(2.2.5)

It is worth noting that the HGEs are purely real and hence, viewed in conjunction with 

equation (2.2.2), they are characterised by plane phase fronts at z = const.

The eigenvalue equation (2.2.3) can also be written in the form

ds5
2 + ( - s 2 +2m  + l) U s )  = 0 (2.2.6)

where s = — ; in this form the equation is recognised to be of the Sturm-Liouville 
w„

type, as equation (2.1.3). The operator
ds‘

- s in (2.2.6) is hermitian; the HGEs,
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thus, form a complete orthonormal set in the functional space of square integrable 

functions, [2], [4], [16].

The orthogonality condition for the HGEs is
•4-00

Vm,n J f m(x)f*(x)dx = 8 nm (2.2.7)

which follows from the properties of the operator in (2.2.6).

Because of the following properties

i) completeness in the space of square summable functions,

ii) satisfying the radiation boundary conditions required for electromagnetic fields

iii) forming a (complete) discrete set

the HGEs provide an ideal basis set for electromagnetic field analysis

For example, in the case of the modal solution, Fm(x), of the eigenvalue equation 

(1.10.3) for slab waveguides, field analysis by means of function expansion methods is 

typically expressed in the form

F„(x) = Sa'">fk(x) (2.2.8)
k

with a£m> the expansion coefficients and fk(x) the basis functions. For (2.2.8) to be 

valid it is essential that the basis set be complete in the functional space of interest - 

this will be discussed in detail in Chapter 4. It is worth pointing out that the HGBs 

also form a complete and orthonormal set in the same functional space as the HGEs. 

In fact, the HGBs have often been used as a basis set typically for field problems in 

free-space or in paraxial optical systems, [4]. However, it is argued that, compared to 

the HGBs, the HGE set is far more manageable for the solution of field propagation in 

inhomogeneous media.
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1

0

•1

-10 -5 0 S 10
x(p m )

Fig. 2.2.1: The first three Hermite-Gauss Eigenfunctions.

3. Approximation of the three-layer slab dielectric waveguide modes 

by the HGEs - the variational method

The choice of the appropriate width parameter wQ can be of importance when 

using the HGEs (2.2.4) as the basis set for (total) field analyses of the type (2.2.8). In 

general no ‘a priori’ criteria exist for a convenient choice of wG because of the several 

problem-dependent factors involved in such a choice; this aspect will be discussed in 

detail in Chapter 4. However, it is useful to present a short review of the variational 

method by means of which an optimal width parameter may be determined for the 

particular situation described below.

As evident from Fig. 2.2.1, the HGEs resemble the bound modes of the symmetric 

three-layer slab waveguide. This is the reason why they have often been used as an 

approximation of such modal profiles, [2]. In this case the variational method may be 

applied to calculate the best fitting HGE function for each corresponding waveguide 

bound mode, and hence the optimal width parameter (wQ) for that particular HGE is 

determined.

As an example, consider the fundamental mode of a symmetric three-layer slab 

waveguide which is to be approximated by a single Gaussian function, [2], [17], [18],

[19]. Consider in the following discussion the waveguide parameters: ni and n2 the 

refractive index in the core and cladding layers, respectively; core thickness = 2a<>; XQ
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the free-space wavelength of the signal. The (approximated) fundamental mode is 

written as

y(x,z) = f(x)e"i|Jz (2.3.1)

where f(x)= I— J — exp 
Vwc Vti V w o J

is the HGE with the width parameter w0 and the

propagation constant p to be determined. It can be shown, [2], that the scalar wave 

equation (1.4.4) is the Euler equation for the functional1

' -(V \j/*))-n2ko\jnj/*Jdxdz, whose stationary value is zero. Hence,

every solution of the scalar wave equation (1.4.4) is also a stationary value for 3 , [2]. 

Strictly, this is only a necessary condition for 3  to be an extremum, but it is assumed 

here that this condition is also sufficient, [2].

Assuming a normalised trial solution for 3  of the type specified in equation

(2.3.1), which is then automatically a solution of the scalar wave equation (1.4.4), and 

substituting it into the functional 3 , obtain

J[n2k 2f(x)f‘ (x )-a „ © xf]d x
P2 = = -------- =--------------------------  (2.3.2)

Jf(x)f*(x)dx

Equation (2.3.2) represents the variational expression for the mode propagation

constant p. Since (2.3.1) is a stationary solution of the wave equation, p2 should be

insensitive to small variations of the solution, f(x), [18], [2], i.e.,

• ^ 1 = 0  (2.3.3)
dw„

Equation (2.3.3) is then used to determine the waist parameter, wQ, of the Gaussian 

that best approximates the mode field profile.

For the case of a symmetric three-layer step-index waveguide the (transcendental) 

equation for wD is (in rectangular co-ordinates)

— V2 e~*"~ ——  = 0 (2.3.4)I71 W,

where V = aG k G ^ n f  - n 2 is the normalised frequency, [19].

1 A number 3  is a functional of f if its value depends on f, e.g., 3  = Ifl2.
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The same variational technique has also been applied to analyse circular optical 

fibres, and in that case also accurate values for the propagation constant are obtained,

[2], [4], [20].

The above analysis is easily extended to the higher order modes [19], but in 

general it is found that the values of the width parameter that optimise each HGE to 

the corresponding waveguide bound mode are different for modes of different order. 

Consequently, in general, it appears not to be practical to use the variational method 

for determining a single optimum width parameter for field expansions of the type 

(2.2.8).

4. Connection between the Herm ite-Gauss Eigenfunctions and the 

Herm ite-Gauss Beam s

In this section an example of total field analysis in a quadratic medium is presented 

with the purpose of illustrating the relation between the HGEs (2.2.4) and the HGBs

(2.1.2). An incident field F(x, z=0) = F0(x) in a quadratic medium is expanded in terms 

of the HGE modes, fm(x), supported by the medium as

F „ « = I X f,»00 (2.4.1)
m=0

where, applying (2.2.7),

a„ = jF„(x)fm(x)dx (2.4.2)

Assume the medium to be specified by the refractive index profile n(x) = n0 -  n tx2,

with no > 0 and 0 < ni «  1. Since each individual HGE mode, fm(x), propagates with 

a propagation constant pm specified by

P „ = V k X - M 2noni(2m + 1) (2.4.3)

it is possible to write the (total) field at any z in the quadratic medium as

F ( x , z )  = £  jF „(x ')fm(x')dx' f  

Using Mehler’ s formula [21]

(*)e z (2.4.4)
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2 c s s ' - c 2(s2 + s/2) exp ------------ ------------
(2.4.5)

with c = e , s = — and 
w

1
, equation (2.4.4) becomes

F(x, z) = (2.4.6)

with 0
2n

c Z .
n o

In the limit of nx —> 0 , such that 0C —> 0, the focusing properties of the medium 

are negligible, i.e., the medium becomes homogeneous. This implies that the ffee- 

space propagation term, kon<>, in equation (2.4.3) is the dominating term for (3m so that 

the individual HGEs are now approximately plane waves. In this case equation (2.4.6) 

can be reduced to

Thus, as expected, in the case of a very weakly guiding medium (ni « 0), the 

expression for determining the field propagating in a quadratic medium, equation

(2.4.4), reduces to the Fresnel-Huygens’ integral for calculating propagation in ffee-

the latter equation. Thus, with the above derivation it has been shown that the HGEs 

lose the characteristics of guided eigensolutions and become diffracting HGBs during 

the transition from quadratic (guiding) medium to homogeneous (diffracting) medium.

Summ ary

In this chapter the two sets of functions, the Hermite-Gauss Beams (HGBs) and 

the Hermite-Gauss Eigenfunctions (HGEs), have been reviewed. It has been 

considered useful to recognise that they represent qualitatively different solutions of 

the wave equation. The HGBs are the solutions of the paraxial wave equation in a 

homogeneous medium; this is the reason why they are also known as free-space 

normal modes. The characteristic feature of the HGBs of diffracting during

(2.4.7)

space. As already mentioned in Section 1, the HGBs are one set of eigensolutions of
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propagation can be recognised in the longitudinally varying beam waist. On the other 

hand, the HGEs represent the modes of (longitudinally uniform) waveguides with 

quadratic dielectric distribution, and hence they are characterised by a constant beam 

waist.

Both sets of functions are complete in the functional space of interest, and hence 

both can be equally used as the basis set for total field expansion schemes. However, 

it is felt that the HGE set is far more manageable for the analysis of electromagnetic 

fields propagating in longitudinally non-uniform optical structures. The HGE set has 

thus been considered as the most convenient basis set for the model developed in this 

thesis.
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Derivation o f the Hermite-Gauss Beams

This appendix shows the derivation of the fundamental Gaussian Beam from the 

paraxial wave equation

a 2f -2 ip 3 zf = 0

[3], [4]. Assume an ansatz for equation (1.7.6) of the following form:

f (x, z) = j M z )  exp
.2 \

- ip
2q(z)

[1.7.6]

(A2.1 - 1)

where A(z) and q(z) are two unknown functions of z. [This assumption follows from 

the experimental observation that laser beams show an intensity transverse profile of

- 2-

the type e ^  . In the following derivation, however, the two-dimensional solution 

in x and z is considered.]

By substitution of (A2.1 -1) into equation (1.7.6) obtain

- ip f \ dA l x 1----
dz q_

_ i - d q ) p x2 „ 2

VA exp
.2 \

-ip
2q.& l )  q2

Equation (A2.1 - 2) must be valid for all x, hence it must be assumed that

dq(z)

= 0 (A 2.1-2)

dz
=  1

and

dA(z) A(z)
dz q(z)

The solutions of (A2.1 - 3) and (A2.1 - 4) are, respectively,

q(z) = q 0 + z - z Q

and

A(z)   Mo

q(z)

(A2.1 - 3)

(A2.1 - 4)

(A2.1 - 5)

(A2.1 - 6)

Hence the sought beam-like solution takes the form

f(x ,z )=  P ^ - e x p
v q(z)

- ip
2q(z)

(A 2.1-7)
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with q(z) specified by (A2.1 - 5). In the general case q(z) is complex, and hence it is 

convenient to write

1 1 - i — — (A 2.1-8)
q(z) q,(z) q 2(z)

where qi(z) = R(z) is defined as the radius of curvature of the beam and q2(z) = 7tw2(z) 

with w(z) the Gaussian spot size, since, by so doing, the solution resembles the 

experimental observation mentioned above. A similar derivation applies for the higher 

order Hermite-Gauss Beams, [3], [4].
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Chapter 3 

Field analysis in optical dielectric structures: a brief 

review

The analysis of electromagnetic field propagation in dielectric structures can be 

broadly distinguished in two categories: i) for longitudinally uniform structures it can 

be classified as an eigenvalue problem, and ii) for longitudinally non-uniform 

structures as an initial value problem.

In the first category of problems, the eigensolutions of the wave equation are 

determined for a specified dielectric distribution. The dielectric structure is in this case 

a waveguide; the eigensolutions are the modes (eigenfunctions) supported by the 

waveguide and the corresponding propagation constants (eigenvalues). The solution, 

however, is analytic only for some particular dielectric distributions.

For the second category, the wave equation, often in the paraxial approximation, 

is solved given the initial field distribution and the boundary conditions associated 

with the problem. Field propagation in longitudinally uniform waveguides is usually 

solved by expanding the (total) field in terms of the local modes, (local mode 

expansion, LME) [1]. This method has been extensively used for solving field 

propagation in metal (closed) guides [2]. In open waveguides the discrete set of 

bound modes is complemented by a continuum set of radiation modes and hence the 

mode expansion technique has to be modified in order to take the radiation modes 

into account [3], [4]. However, to simplify the calculations the radiation mode set is 

often neglected, [5]. Longitudinally non-uniform devices may be analysed by 

approximating the structure by a series of uniform waveguide sections of 

correspondingly different width, and by applying the LME at all junctions between 

any two such sections [1], [6]. Besides the LME technique alternative solution 

schemes have been proposed for solving field propagation in longitudinally non- 

uniform structures, [7], [8].

It is customary to distinguish the various propagation methods in the two broad 

categories of (a) numerical methods used to directly solve the wave equation, e.g., the 

BPM [9], [10], the Finite-Difference Method [11], the Finite-Element Method [12],
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and (b) semi-analytic methods, e.g., the variational and perturbation methods. In the 

latter category may also be included a variety of expansion methods [1], [6], [13] in 

which the wave equation is transformed into a system of coupled differential 

equations that can be then solved by standard techniques. It is pertinent to indicate 

that the model developed in this thesis is based on [13], but has been substantially 

extended to enable a wider range of structures to be analysed.

In the following sections some of the solution schemes found in the literature are 

reviewed to point out differences and similarities with the model developed in this 

thesis. Results from some of these methods will be used later for comparison with 

results obtained from the method developed in this thesis.

1. Longitudinally uniform structures: eigenvalue problem

Consider in the following discussion (longitudinally uniform) waveguides for 

which the scalar wave equation

[a2x + a ’ + k ’e]E(x>z) = 0 [1.4.4]

gives a sufficiently accurate description of the modes. In most practical cases only the

bound modes are of interest since they can be individually excited. In this case

equation (1.4.4) can be solved by separation of variables, hence using the expression 

E(x, z) = F(x)e',pz to represent an individual bound mode obtain from (1.4.4) the 

eigenvalue equation

k2e(x)F(x) = p2F(x) (3.1.1)
dx

in which both F(x) and p are unknown. Many methods have been proposed to solve 

the eigenvalue problem (3.1.1). Three of these will be described in the following 

subsections: the perturbation method, the global expansion method and the variational 

method. The above mentioned techniques have been extensively used in the literature 

because they are versatile and hence applicable to a range of problems.

1.1 The perturbation method

The eigenvalue problem related to a particular dielectric distribution may in some 

cases be considered as a perturbation of a similar eigenvalue problem the solution to 

which is known. Both the eigenvalues and the eigenfunctions of the new problem are
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then considered as perturbations of the known solutions. As an example consider the 

eigenvalue problem (3.1.1) where e(x) = e(x) + 5e = (n(x) + 8n)2, with

e(x) = (n(x))2 the unperturbed dielectric distribution. Referring to Appendix 3.1, 

where the details of the formalism are presented, the unperturbed equation is

d F(x)
+ k e (x )F (x )= p 2F(x) (3.1.2)

dx2

where F (x ), p are the unperturbed eigensolutions, while the perturbation

is W = k 25e (W is formally referred to as the perturbation operator).

An important result that is obtained by applying the perturbation technique is the 

correction to the eigenvalue

P'1)=w,m (3.1.3)
|  om

where the expression WM = J fn(o)* (x)[Wfn(o) (x)]dx is usually referred to as

expectation value for the operator W. In some practical problems equation (3.1.3) is 

the essential correction to accurately describe the solution of the perturbed problem, 

Le., in those cases in which fn(x) « f„(o)(x), [Appendix 3.1].

For example, in [14], waveguides with parabolic dielectric distribution are 

considered, and only the correction to the propagation constant due to the TE/TM 

polarisation term is to be determined, i.e., with reference to equation (3.1.2) and to

_1 d_
e(x) dx

used in [15] for the analysis of truncated parabolic and exponential dielectric 

distributions.

The perturbation method is also useful to study the characteristics of realistic 

waveguides to account for deviations from the idealised perfect case because of 

imperfections in the structure, [1], or to account for gain/loss. For example, in [16] a 

(constant) small imaginary part is introduced in the refractive index of the waveguide,
g

i.e., 8n = - / —— , where g is the optical intensity gain in the medium, and the
2ko

perturbation to the propagation constants of TE and TM modes is calculated. In the

equation (A 1.4- 6) of Appendix 1.4, W = k 2e —
dx

. A similar approach is
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context of active optical devices, in [17] the perturbation is introduced by the 

injection of carriers into the initially passive waveguide.

1.2 The global expansion method

A variety of methods can be classified under the category of global, or total field 

expansion methods. They all have in common the fact that the total field in the 

structure is expanded in terms of a complete set of (orthonormal) functions. The 

choice of the basis function set is characteristic of the particular method. According to 

this formalism, the modal solution of equation (3.1.1) is considered as the total field 

and is expressed as the following series expansion:

F(x) = I a kfk(x) (3.1.4)
k

with fk the orthonormal basis functions and the (constant) expansion coefficients are

ak = JIfk*(x)F(x)dx (3.1.5)

where I is the appropriate range of integration. By substitution of (3.1.4) into (3.1.1) 

a set of coupled equations is obtained that may be solved by various techniques, such 

as the Galerkin method, [18], [19], the Ritz-Galerkin method, [20], and the 

collocation method, [13]. In general the advantage of using (modal) field expansion 

methods is that all eigensolutions are obtained simultaneously. However, not only all 

bound modes of the waveguide are determined, but also a discrete approximation of 

the continuum (radiation) modes is typically obtained, [6], [21].

Examples of function sets used in the literature are i) Laguerre-Gauss functions,

[22], [23]; ii) Hermite-Gauss functions, [13], [18], [20], [21], [24]; iii) sine (cosine) 

functions [6], [19]; iv) waveguide modes (local modes - eigenmode expansion) [1],

[4], [5].

The choice of the basis set invariably affects the approach to the solution of 

equation (3.1.1). For example, in [6], [19] sine functions are used as the basis 

functions, but since they do not individually satisfy the radiation condition typical of 

open structures, the dielectric waveguide has to be enclosed in a fictitious metal box 

in order to conveniently solve the eigenproblem. In [13], [21] instead, the Hermite- 

Gauss (HG) functions form the basis set. The HG functions individually satisfy the 

radiation condition, which means that, differently from the expansion methods using

57



Chapter 3 Field analysis in optical dielectric structures: a brief review

sine functions the radiation condition for the total field is implicitly included in the HG 

expansion. This aspect is considered to be of fundamental importance in the choice of 

the HG functions as the basis set for the method presented in this thesis.

The expression for the field expansion (3.1.4) may vary in detail according to the 

chosen basis set. For example, in the case of the local mode expansion, [1], the 

expansion (3.1.4) should contain an integral contribution due to the continuum 

spectrum. However, some authors have considered in (3.1.4), as an approximation, 

only the contribution of the discrete modes, [5], since it leads to very much reduced 

complexity and computation.

The method described in [24] to analyse field propagation in inhomogeneous 

media with gain or loss, presents a further refinement with respect to those mentioned 

above. In the analytic method described in [24] not only the field, equation (3.1.4), 

but also the complex dielectric distribution is expressed in terms of the HG set, i.e.,

e(x)=  I b kfk(x) (3.1.6)
k=0

By the use of (3.1.6) in conjunction with (3.1.4) it is possible to derive a quasi- 

analytic formalism to solve equation (3.1.1). This method appears to have potential 

advantage, but the suitability of it to the type of devices analysed in this thesis will be 

considered as future work.

1.3 The variational method

The first step in the variational method is to define a functional which is stationary 

for the exact solution of the physical problem. The optimal approximate solution is 

then found by minimising the resulting variational expression which for modal 

solutions represents the modal propagation constant [refer to the description of the 

variational method used to approximate the fundamental mode of a three-layer slab 

waveguide by a Gaussian function, Chapter 2, Section 3]. The propagation 

characteristics of slab waveguides and optical fibres have been extensively studied 

with this method, [1], [25].

The variational method has also been used to solve waveguides with complex 

dielectric distributions. For example, in [22] the complex eigenvalue problem is solved 

by combining the variational method with the field expansion method [discussed in
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this chapter, Section 1.2]. The particular feature of the method described in [22] is 

that the unknown (complex) modal field profile is expanded in terms of Laguerre- 

Gauss (LG) functions, as

where Lk(x) are the LG expansion functions, a* the complex expansion coefficients 

and N is the number of expansion terms. The advantage of using the field expansion

(3.1.7) is in the higher accuracy achieved in the approximation of the exact field 

profile. Another advantage of expanding the field in terms of LG functions is that the 

set of equations obtained by applying the variational technique to determine both [3 

and the (complex) expansion coefficients ak used in (3.1.7) can be solved with the 

matrix formalism.

2. Longitudinally non-uniform structures: initial value problem

Longitudinally non-uniform structures have an important role in two important 

fields: i) as passive devices, e.g., mode converters where the adiabatically flared 

structure allows the mode profile to expand or contract, [1], [26], [27], and ii) as 

active devices, e.g., flared semiconductor optical amplifiers [28] and semiconductor 

lasers [29], [30] where the flared cross-section lowers the power density inside the 

device which reduces the possibility of catastrophic optical damage of the facets, 

while retaining the capability of yielding high power.

Electromagnetic field propagation in dielectric tapered structures is not readily 

solvable. However, it is possible with the aid of some approximations to quite 

accurately describe the field in longitudinally non-uniform devices and hence it is 

possible not only to analyse such structures, but also to improve on the design and 

performance of some of these devices. Among the various methods that have been 

proposed in the literature to solve for field propagation in longitudinally uniform and 

non-uniform structures, the mode matching method and the BPM will be briefly 

described in the following sections because they are extensively used in the literature. 

The third method for analysing field propagation that is considered in this section is 

the total field expansion method which has already been introduced in the context of 

longitudinally uniform waveguides [Section 1.3]. In this respect reference [13] will be

N

(3.1.7)
k=0
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reviewed in some detail since, to a large extent, it forms the starting point for a part of 

the modelling scheme that is developed in this thesis.

Consider a passive longitudinally non-uniform dielectric structure defined by the 

dielectric distribution e(x, z). As outlined in Chapter 1, Section 4, field propagation in 

such a structure is governed by the scalar wave equation

[c ^ + a j + k*e(x,z)]F(x,z) = 0 [1.4.4]

Equation (1.4.4) may, in some cases, be satisfactorily approximated by assuming

paraxial propagation, e.g., in weakly guiding structures. The field is thus written as

F(x, z) = f(x, z) e',pz, where f(x, z) is the slowly varying field profile, p is a suitably 

chosen constant [Chapter 1, Section 7], and equation (1.4.4) reduces to the paraxial 

wave equation

a ^ f -2 ip 3 zf  + ( k ^ - p 2)f = 0 [1.7.5]

2.1 The mode matching method

The mode matching method has been extensively used in the analysis of metal 

(closed) waveguides, [2]. However, since dielectric waveguides are categorised as 

‘open’ any field distribution at an arbitrary cross-section of the waveguide should be 

expressed as the summation of the contributions of both the guided (discrete) and the 

radiation (continuous) local modes, [1], [31]. In the immediately following discussion, 

however, it will be assumed that the contribution of the radiation modes may be 

neglected which allows for an analysis formalism with much reduced complexity, [5].

The longitudinally non-uniform structure is approximated by a series of uniform 

(slab) waveguide sections of varying width, Fig. 3.2.1. Each section can then be 

considered as a local waveguide.

Fig. 3.2.1: Tapered structure approximated by a series of waveguide slabs (e.g., sections q and 

q+1). Input and output widths: 2a0 and 2ar,n, respectively; length of the device: L.
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With reference to Fig. 3.2.1, the definition of field matching is reduced to

Fq_! (x, z = zq) = Fq (x, z = zq) (3.2.1)

which is a scalar field matching and is valid for weakly guiding structures. The field at

the beginning of section q is expressed as

Fq(x,z = zq)=  I a k(q)fk(q)(x) (3.2.2)
k=l

where Nq represents the number of bound modes in the uniform section q, fk(q) the 

bound mode functions of section q, and ak(q) are the (constant) expansion coefficients 

determined by

a k(q) = J f k(q) ( X ) F q ( X > Z =  Z q )dx (3.2.3)

The (initial) field Fq (x, z = zq) is then propagated along the uniform section to yield

F,(x,z) = I a k(p)fk(, )e“?k<” (~ ’) (3.2.4)
k=l

where pk(q) are the propagation constants of the modes in section q. F(x,z) can thus be 

obtained at z = Zq+i and the same procedure is repeated at each junction.

The advantage of this method is that it has a simple and intuitive interpretation in 

terms of the local modes. However, in general it is not possible to limit the expansion 

to only the guided modes. The general field must be represented by the complete set 

comprising of the bound and the radiation modes. Hence equation (3.2.1) must 

include the continuum spectrum but this adds very significantly to the complexity of 

the computation, not least because of the numerical integration.

2.2 The beam propagation method

The numerical BPM was introduced in the early 1970s to solve underwater 

acoustic problems, [9]. It was later applied to analyse fibre optics structures since it 

was recognised that the same approximations used for underwater acoustic analysis 

were also valid for the analysis of (weak) dielectric structures, [32]. Various versions 

of the Beam Propagation Method (BPM) have thus been proposed to solve for field 

propagation problems ranging from the scalar paraxial to the full vectorial analysis. To 

simplify the approach to this method the simple version of the BPM based on the
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scalar paraxial wave equation, [9], is discussed below. The version of the BPM 

described here is a combination of the eigenfunction expansion method and the 

perturbation method.

The BPM assumes that the longitudinal non-uniformity of the structure is small so 

that the refractive index distribution may be written as

n(x,z) = n(x) +An(x,z) (3.2.5)

with An small. The wave equation can thus be considered in the scalar form, (1.4.4).

It is also assumed that the solutions to the scalar wave equation with n(x) = n(x) are

known as fk(x) (eigenfunctions) and pk (eigenvalues). The choice of n(x) has to

satisfy two criteria: i) that An is small, and ii) that the resulting numerical procedure is 

fast and stable, [9]. It has been found that it is convenient to choose n(x) to be 

constant which means that the unperturbed problem is that of free-space propagation - 

the eigenfunctions fk(x) are thus plane waves.

The details of the formalism have been outlined in Appendix 3.2. However, the 

most relevant result is that, following some assumptions, the first order approximation 

to the field due to the non-uniformity An(x, z) is in the phase, e_ikoAnAz. It is worth 

noting that this correction typically describes the focusing effect of thin lenses. 

Therefore, in the first approximation the field propagating in the longitudinally non- 

uniform medium is given by

F(x, z) = E(x, z)e"‘k,AnAz (3.2.6)

where E(x,z) is the field propagating in the unperturbed medium (n )  and Az is the 

propagation step in the longitudinal direction [Appendix 3.2]. The simplified version 

of the BPM algorithm [9] reviewed here is subject to a few conditions that limit the 

range of An and Vn that can be considered; however, improved versions of the BPM 

are available in the literature so that the number of such constraints is reduced, [33].

2.3 The total field propagation scheme

This section presents the global expansion scheme with the particular use of the 

Hermite-Gauss (HG) functions, as was suggested in [13], as being suitable for the 

analysis of longitudinally (weakly) non-uniform dielectric structures. The applicability

62



Chapter 3 Field analysis in optical dielectric structures: a brief review

of the HG expansion scheme also to the analysis of periodic structures and nonlinear 

pulse propagation in optical fibres is presented in [34].

The advantages of the total field expansion method based on the HG functions are 

that

i) it is applicable to arbitrary dielectric profiles and arbitrary waveguide shapes;

ii) it involves no inherent approximations;

iii) it solves for the total field;

iv) it naturally leads to the use of the (numerical) collocation method by means of 

which the scalar partial differential equation can be easily reduced to a set of coupled 

ordinary differential equations.

The solution of equation (1.4.4), F(x, z), is sought as a linear combination of HG 

functions

F(x, z) = £  Ak (z)fk (x) (3.2.7)
k

where Ak(z) are the z-dependent expansion coefficients, and fk(x) are the HG 

functions. Substitution of (3.2.7) into (1.4.4) or (1.7.5) yields the set of coupled 

equations for the field expansion coefficients.

In [13] the HG expansion scheme has been compared with the Galerkin method 

for the eigenvalue problem related to various dielectric distributions, obtaining 

excellent agreement. Further, it has also been compared with the BPM for the solution 

of field propagation problems, finding the HG expansion scheme to be more 

convenient for both accuracy and computational efforts. However, the range of cases 

tested in [13] have been limited and that shortcoming has also been addressed in this 

thesis.

Summary

The two categories of electromagnetic field analysis problems, the eigenvalue and 

the initial value (propagation) problems, have been discussed reviewing some of the 

most commonly used methods of solution.

Attention has been drawn in this chapter to semi-analytic methods (the 

perturbation method, the global expansion method and the variational method) 

because the intention has been to emphasise possible connections between these 

methods and the solution scheme developed in the remainder of this thesis.
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For the category of field propagation (initial value) problems in longitudinally non- 

uniform structures three methods have been reviewed. The first method is the quasi- 

analytic method of mode matching. The reviewed beam propagation scheme is a 

simplified version of the Beam Propagation Method (BPM). This version of the BPM 

solves for field propagation in (weakly) non-uniform structures using a perturbation 

technique where the perturbed solution is expanded in terms of plane waves. The third 

method is a more general scheme typically referred to as global expansion method. In 

this method the total field propagating in the structure is expanded in terms of a 

suitably chosen basis set. In fact, the field analysis developed in this thesis is of this 

third type and uses the Hermite-Gauss functions as the basis set.
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First order perturbation technique

For the following derivation reference is made to [35]. Consider an eigenvalue 

problem of the type

(H + W)fn(x) = pnfn(x) (A 3.1-1)

where H and W are two linear, hermitian operators, fn(x) and pn the eigenfunction and 

corresponding eigenvalue. The operator W is considered as a perturbation of the 

operator H. The eigenvalue problem associated with H is

Hfn(o)(x) = p ^ f n(o)(x) (A 3.1-2)

f„(o) and pn(o) are the eigenfunctions and eigenvalues of H satisfying the condition 

Pm} *  Pk0) for m * k (a modified derivation is necessary if the operator H is 

degenerate). It is convenient to express the perturbation W in terms of a (small) 

coefficient a  as W = aW0* because it is expected that when a  —> 0 (the perturbation 

is zero) the eigenfunctions and eigenvalues of (A3.1 - 1) tend to those of the 

unperturbed problem (A3.1 - 2). Hence, the perturbed eigenfunctions can be 

expanded in terms of the powers of the parameter a , and similarly for the eigenvalues:

f . ( x )  =  X “ k4 w W  (A 3 .1 - 3 )
k

and

P „ = Z « kPnk) (A 3 .1 -4 )
k

Hence in the limit a  —» 0 the perturbed solution tends to the unperturbed one, i.e., 

Vn fn(x) g^ 0 >fn(o)(x) and P„ a_0 >P„o)- For simplicity put fn(i)(x) = a ifn(i)(x)

and pj;1} = a ip^° (i = 1, 2 ,...) and consider only the first order corrections to fn(o) and 

pn(o) so that equations (A3.1 - 3) - (A3.1 - 4) become

fn(x) =  fnO)(x) +  fn(1)0 0  (A3.1 - 5)

and

pn = p i0)+ p i1} (A 3.1-6)

Substituting equations (A3.1 - 5) - (A3.1 - 6) into (A3.1 -1) obtain

Hfna)(x) + Wfn(o)(x) = Pio)fn(1)(x) + p ^ fn(o)(x) (A3.1 - 7)
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Multiplying by fn(o)(x) and integrating over (—<»,-h») equation (A3.1 - 7) becomes

I f i'»>-(Hfi;'))dx + 1f„<0)‘(Wfn(0))dx = P'°>|f*°>"fn<1)dx + p ‘° Jf*o)'f„<0)dx (A3.1 - 8) 

Since the operators H and W are linear and hermitian (A3.1 - 8) can be reduced to

Pi1* = W„„ (A3.1-9)
+«•

where Wm = J fn(o) (x)(Wfn(o) (x))dx is referred to as expectation value for the

operator W. Equation (A3.1 - 9) is a very important result since it determines the first 

order correction to the unperturbed eigenvalue due to the perturbation W on H.

The derivation that follows is necessary to determine the (first order) correction to 

the eigenfunctions. For this purpose it is essential that the unperturbed eigenfunctions 

fn(o)(x) form a complete set of functions. In this case, then, fn(1)(x) can be expanded in 

terms of such a basis set, obtaining

fna*(x) =  X C"qf q0>(x) (A 3 .1 -1 0 )
q

Using equation (A3.1 -10) in (A3.1 - 7), multiplying by fp(o)(x) (p ^  n) and integrating 

over (—00,-1-00) gives

5 X J  fW* (Hf <»> (x))dx + W „ = p ‘%  (A3.1-11)
q

where Wp, depicts the matrix element of the operator W between vectors labelled p 
+~

and n, i.e.,Wpn = J f p(o)*(x)(\Vfn(o) (x))dx. Thus from equation (A3.1 - 11) obtain the

unknown coefficients c„p of expansion (A3.1 -10) making use of the linearity property 

of H:

W
cn =-■„  P° , (A3.1-12)np

However, equation (A3.1 - 12) gives all the coefficients c„p with p * n. The last

coefficient Cm is obtained by imposing the normalisation condition on the perturbed

eigenfunctions. This condition leads to

c _ + c L = 0  (A3.1-13)

which implies that if the functional space is real, Cm, = 0; if it is complex the expansion 

coefficients are purely imaginary since (A3.1 - 13) enforces Re(Cnn) = 0, but arbitrary 

since Im(Cnn) remains undetermined.
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In cases in which the first order corrections are not sufficiently accurate, it is 

necessary to consider higher order corrections for the solution of the perturbed 

problem, [35].
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A ppendix 3.2  

BPM : derivation o f the correction term  er

In the following appendix, a detailed discussion of the BPM scheme, [9], is 

presented. Field propagation in a weakly non-uniform medium is described by the 

scalar wave equation

\d2x + d2z + k„n2(x,z)]F(x,z) = 0 [1.4.4]

The non-uniform medium is specified by the following refractive index distribution

n(x,z) = n(x) +An(x,z) (A 3.2-1)

with n constant and An(x,z) a small perturbation of n . The unperturbed differential 

equation related to n is

0  + (k2n 2 - p 2)f(x) = O (A 3.2-2)

with f(x) the unperturbed eigenfunctions (plane waves), and P the unperturbed and 

eigenvalues. The field at a specified longitudinal position, z, in the non-uniform 

medium is assumed to be accurately described by

F(x,z) = E(x,z) er(x,z) (A 3.2-3)

where E(x,z) is the field propagating in the uniform medium (n ), which can be 

expressed in terms of the unperturbed eigenfunctions as a Fourier Transform; and 

er(x,2) is the (multiplicative) correction term due to the non-uniformity An(x,z).

In the present formulation only the forward travelling components are considered 

since it is supposed that the contribution of the reverse travelling components to the 

forward travelling beam is negligible. The individual components of E(x,z) in (A3.2-3) 

are thus propagated in the homogeneous medium and hence the field can be 

recomposed at any longitudinal position.

The multiplicative correction er(x,z) is determined using the perturbation technique. 

Thus, substituting equation (A3.2 - 3) into the scalar wave equation, using (A3.2 - 2) 

and retaining only the first order correction terms, obtain

E(92r  + 92r )  + 2 (a„ra ,E  + 3 ,r3 ,E )+  k 2 (n2(x ,z )-H 2)E = 0 (A3.2 - 4)

Since the propagation step Az can be made arbitrarily small, the exponent T(x,z) of 

the correction term can be expanded in a Taylor series as
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T ( x , z )  =  £ A s ( x ) z s (A3.2 - 5)
S = 1

Substituting (A3.2 - 5) into (A3.2 - 4) and making use of equation (A3.2 - 2) obtain 

the set of coupled equations for the expansion coefficients As(x) that define T(x,z) in 

(A3.2 - 5). The first coefficient (first order correction) is given by

A? + f - | a zE V ,  + k 2 (n2(x, z) -  n2) + 2A 2 = 0 (A3.2 - 6)

It is possible to simplify equation (A3.2 - 6) assuming that

k 2(n2( x ,z ) -n 2)
A2 «

Using thus the approximation (A3.2 - 7) the first coefficient becomes
r  \

(A3.2 - 7)

Ai = - d zE 
1 E

-1  +

i
k 2(n2(x ,z ) -n 2)

(A3.2 - 8)

(A3.2 - 9)

To further simplify the expression for Ai it is convenient to assume that

k 2(n2(x ,z ) - i i2)
  -----------5----L«  1

(i3-E)
which is equivalent to assuming paraxial propagation. Finally, the expression for Aj is 

thus

k2(n2( x ,z ) -n 2) e
A ,= (A3.2 - 10)

2 o2e

For each individual eigenfunction (plane wave) of the unperturbed problem (A3.2 -2), 

the first order correction term is in the phase. The first coefficient for T(x,z) is

Aj = - i k 0An (A3.2- 11)

and hence the correction term defined in (A3.2 - 3) is

e r = e -ik#AnAz (A3.2- 12)

which describes the focusing effect of the (Az) layer of non-uniform (An) medium on 

the unperturbed component of the field.
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Chapter 4 

Total Held analysis using the Hermite-Gauss function 

expansion method

The motivation for the work in this thesis has been to develop a convenient and 

efficient scheme for modelling a range of optical devices of current interest that may 

be classified as dielectric structures that propagate weakly diffracting signals. The 

essential field problem is to solve for weakly diffracting fields in inhomogeneous 

media. The Local Mode Expansion (LME) is possible in principle, but the difficulties 

of including and computing the radiation modes are well known. It is proposed and 

demonstrated in this chapter that the Hermite-Gauss (HG) function expansion 

provides for a convenient alternative method of analysis that reduces the difficulties 

associated with the LME. The same method will be used in the following chapters to 

solve also the carrier diffusion equation. This will then lead to the development of a 

compact and self-consistent formulation for the solution of both the field and the 

carrier profile in active optical devices by the same method.

The main concern in this chapter is the solution of the wave equation in passive 

open structures using a total field expansion technique of the type described in brief in 

Chapter 3, Sections 1.2 and 2.3, based on the HG function set. As outlined in Chapter 

3, total field expansion methods are versatile and readily applicable to a variety of 

problems. Here the HG expansion method has been used for the solution of field 

problems not only in (longitudinally uniform) waveguides but also in longitudinally 

non-uniform structures of arbitrary shape and dielectric distribution.

This chapter is arranged as follows. The choice of the HG set as the basis on 

which to expand the optical field is justified in Section 1. The analytic formalism for 

the HG expansion method is described in Section 2, while the discretisation (analytic) 

procedure to numerically solve the resulting set of equations is presented in Section 3. 

In Section 4 the numerical collocation method is associated with the HG expansion 

method to form the Hermite-Gauss Collocation Method (HGCM) that is used to 

obtain the numerical solution of field propagation problems. The correspondence of 

the HGCM formalism with the analytic method as discussed in Section 3 is then
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Chapter 4 Total field analysis using the Hermite-Gauss function expansion method

established. Finally, the choice of the (arbitrary) width parameter for the HG functions 

is discussed in Section 5.

1. Basis function set

The choice of the most suitable basis functions set is dictated by the problem to be

solved. Each physical problem is defined by the boundary conditions, and hence the

solution must satisfy not only the differential equation associated with the problem,

but also the specified boundary condition. For (weakly guiding) open structures the

boundary condition associated with the electromagnetic (scalar) field is the radiation

condition which imposes that the field be continuous and vanish at infinity, such that

the power carried by the electromagnetic field is finite. Electromagnetic (optical)

fields are represented by ‘well-behaved’ functions in the (vector) space of square

integrable functions defined on the infinite domain, L2((-^»,-f©o)). The solutions of

interest F(x,z) are thus characterised by the following property
+—
J|F(x)|dx <<» Vz (4.1.1)

In the functional space of interest, L2((-oo,+oo)), it is possible to specify various sets of 

functions which are characterised by the same property of completeness. Each such 

function set is defined as a basis set and it can be demonstrated that any element of 

L2((—oo,-H>o)) can be represented by a linear combination of basis functions, [1], [2], 

The Fourier transform is one well-known example of function expansion on a basis set 

of L2((-e>°,+o°)), but other examples exist such as the Hermite-Gauss or Laguerre- 

Gauss function expansion, which have been mentioned in Chapter 3, Section 1.2.

For the analysis of electromagnetic field propagation in passive weakly guiding 

dielectric structures, a convenient and suitable basis set has been found in the 

Hermite-Gauss functions. The following discussion on the most relevant properties of 

the HG set provides a justification for this choice:

1) the HG functions constitute a complete set of orthogonal functions in the 

space of square integrable functions on the interval (- °̂,-H>°), which covers the 

solutions of the field problems of interest. The completeness property follows from 

the fact that the HG functions are the solutions of a Sturm-Liouville differential 

equation [Chapter 2, Section 2], [1], [2];
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2) the HG functions individually satisfy the radiation condition for the total 

field in open dielectric structures;

3) the HG functions form a discrete set. This property is very important in the 

simplification of the mathematical formalism associated with the field analysis 

problems. Since the HG functions form a complete set the total optical field is 

accurately represented by the expansion in terms of HG functions, i.e., the 

contributions of both the bound and the radiation (local) modes of the open structures 

are taken into account at the same time under the series summation. An individual 

radiation mode, which is a practically unrealisable solution, cannot be described by a 

summation of HG functions. This limitation is however only apparent since the 

intention is to solve for the total field;

4) the HG functions represent a good approximation to the bound modes of 

three-layer symmetric slab dielectric waveguides [refer to Section 3, Chapter 2]. 

However note that for a rigorous description of each individual waveguide mode the 

totality of HG functions should be considered.

Because of the properties listed above the complete discrete set of HG functions 

constitutes a convenient basis set for field analysis in open structures. In particular the 

fact that they satisfy the radiation boundary condition associated with open structures 

makes it possible to incorporate the radiation boundary conditions for electromagnetic 

field problems (in open structures) implicitly in the formalism. Finally note that since 

the HG functions are the eigenmodes of the (infinitely extended) parabolic dielectric 

distribution, the HG field expansion may be interpreted also in the framework of 

perturbation methods [refer to the following Section 2.1].

2. Form alism  for the HG expansion method

In the following two subsections the eigenvalue problem for (longitudinally 

uniform) waveguides and the field propagation (initial value) problem in passive 

dielectric structures are analysed by using the total field expansion method based on 

the Hermite-Gauss functions.
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2.1 The eigenvalue problem

Longitudinally uniform waveguides are analysed in this section so that the 

dielectric distribution e(x, z) = e(x) is considered. Assuming mode solutions of the

type (1.6.1), Em(x, z) = Fm(x)exp(-ipmz), the wave equation takes the form of an 

eigenvalue equation

d 2Fm(x) , ,2
dx2

+ < m(x)Fm(x) = 0 [1.10.3]

where Fm(x) is the mode field profile (eigenfunction) and kxjm2 (x) = ko2e(x) -  pm2, 

with pm the corresponding propagation constant (eigenvalue).

The field expansion method of analysis may applied here by expanding a mode 

function in terms of the complete set of HG basis functions so that for the m-th mode

FmW = £a< "> fk(x) (4.2.1)
k=0

where aj.m) are the (constant) expansion coefficients. By substituting equation (4.2.1) 

into the eigenvalue equation (1.10.3) making use of the properties of the basis 

functions, equation (2.2.6) and (2.2.7), obtain i) the equation for evaluating pm, as

PL = J C (x)[k^e(x) + x* -  (2m + l)]fm (x)dx (4.2.2) 

where m is the mode number,

and ii) the set of coupled equations for evaluating the expansion coefficients, a£m), 

which are needed to reconstruct the modal field

Saji"’' /  f^(x)[kje(x) + x2]fk(x)dx = 0 (4.2.3)

w herek ^m , [Appendix4.1.]

Two aspects of the above results may be highlighted The first is that by writing 

equation (4.2.2) in the form

Pm — Pm =  k L J  C  (x)[e(x) -  e(x)]fm (x)dx (4.2.4)

x 2
where e(x) = — -  + b is the dielectric distribution of a quadratic medium, and

k o

pm = <y/k2b - (2 m  + l) the propagation constant for the corresponding modes, the
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solution pm corresponding to e(x) may be recognised as a perturbation solution, [refer 

to Section 1.1, Chapter 3].

The second point is that equation (4.2.3) gives the expansion coefficients ak only 

for k *  m. The coefficient, a ^ J, is determined by normalising each eigenfunction, i.e., 

by enforcing that

a 'r 1 = , / l -  I ( a ^ ) 2 (4.2.5)
V k*m

With the last coefficient specified by (4.2.5) the waveguide mode of order m can be 

recomposed as the HG series (4.2.1), with the propagation constant given by (4.2.4).

2.1.1 Com plex media

The HG expansion method has been applied also to waveguides with gain or loss, 

i.e., with complex dielectric distribution. The (complex) m-th mode function may be 

written as

Fm (x) = (x) + > FmJ (x) (4.2.6)

Expanding Fm(x) in terms of HG functions implies that both the real, Fm>R(x), and the 

imaginary part, Fm>i(x), of the mode function can be expressed in terms of the HG set. 

This leads to the expression

F„  (x ) =  2 X fk (x ) +  ' 2 X fk (x) = X ( a k + ' a k)fk(x ) = I X fk(x ) (4.2.7)
k k k k

where now ak = ak + iak are the complex expansion coefficients.

Waveguides with loss or gain are described by non-self-adjoint operators. 

Although for waveguides with complex dielectric distribution the characteristic

d 2equation is formally identical to equation (1.10.3), the operator L = — r- + k 2e(x) is
dx

now complex. This implies that the eigenmodes, u„(x), of the non-Hermitian operator 

L which describes the complex system do not form a complete set of orthogonal 

functions. In fact, the eigenmodes of complex systems are biorthogonal, i.e., they are 

orthogonal to a set of functions which are the eigensolutions of the adjoint operator, 

L \  of L.

The eigenmodes of a complex parabolic dielectric distribution are still HG 

functions, but with complex argument, i.e., they are defined by a complex width
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parameter wc, [3]. An electromagnetic field in a complex system should be expanded 

in terms of the Complex Hermite-Gauss (CHG) functions. It is recognised that 

equation (4.2.7) is thus an approximated expression for the field, but it is argued that 

it is sufficiently accurate for media with small imaginary part in the complex refractive 

index, as also found in [4].

A field expansion scheme that uses the CHG functions as the basis set is presented 

in [5]. However it is found that the formalism is excessively complicated because of 

the need to operate with the biorthogonal CHG set.

2.2 The initial value problem

Consider now the problem of field propagation in longitudinally non-uniform, 

weakly guiding structures described by the dielectric distribution e(x, z). The equation 

to be solved is the scalar wave equation

[d2x + d2z + k *e(x, z)]E(x, z )  = 0 [1.4.4]

The method of solution used here is similar to the one described in the previous 

section, except that now the HG expansion of the total field, E(x, z), involves 

complex and z-dependent coefficients to account for propagation. The expression

(4.2.1) is thus replaced by

E(x,z)=  i B k(z)fk(x) (4.2.8)
k=0

with (fk(x)} the HG basis functions, (2.2.4), and Bm(z) the expansion coefficients.

Equation (4.2.8) is substituted in the scalar wave equation (1.4.4). Then, as 

presented in Appendix 4.2, using the properties of the (HG) basis functions, equation

(1.4.4) is reduced to a set of coupled ordinary differential equations for the expansion 

coefficients Bk(z),

^ M _ 2 f a l Bk(z) + S B j(z)QKj(z) = 0 (4.2.9)

where k = 1, 2 ,... and

Qkj W  = 7 K + k?e& z)]f, (4.2.10)

is the matrix element, [Appendix 4.2].
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2.2.1 Paraxial wave equation

The set of second order coupled differential equations (4.2.9) may be further 

simplified by making appropriate approximations. For example for field propagation in 

weakly guiding structures the paraxial approximation is typically used to reduce the 

complexity of having to solve coupled second order differential equations. In this 

case, then, the field is written in the form E(x, z) = F(x, z)e_<pz, equation (1.6.3). 

Equation (1.4.4) is reduced to the paraxial wave equation (1.7.5)

9*F -  2ip3,F + (k*e(x,z) -  p 2)F = 0 [1.7.5]

which can be solved as an initial value problem. The slowly varying field profile F(x,z) 

is now expanded in terms of the HG basis functions, (2.2.4), as

F(x,z)= £ b k(z)fk(x) (4.2.11)
k=0

with bk(z) the complex z-dependent expansion coefficients. Following the same 

method used to derive (4.2.9) obtain the set of first order coupled differential 

equations for the expansion coefficients bk(z):

_ 2 i p * t M _ 2 k + l b l ( z ) ~ 4 - b t (z) + S b j(z)Qltj(z) = 0 (4.2.12)
dz w„ w„ jO O '

with k = 1, 2 ,... and the matrix element Qkj is defined as in (4.2.10).

3. Discretisation

The expansion coefficients used in the total field expansions (4.2.1), (4.2.8) and

(4.2.11), derive from the solution of the sets of coupled equations, (4.2.3) - (4.2.9) -

(4.2.12), respectively. In this section the analytic orthogonalisation process to solve 

the above mentioned sets is presented. In the formulation of the propagation scheme 

presented in this thesis, the analytic method has been replaced by the faster and more 

convenient collocation numerical method. However, it is useful to point out that the 

two procedures are inter-connected by the Gaussian Quadrature Formula, [6], as 

shown below.

Consider in the following discussion the field expansion (4.2.8). For a practical 

solution only a finite number, M, of expansion terms is used, so that (4.2.8) becomes
M

E(m)(x. z)=  Z B k(zXk(x) (4.3.1)
k=l
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Substituting (4.3.1) into the wave equation (1.4.4), making use of the properties of

the HG basis functions and of the Gaussian Quadrature Formula for the Hermite

polynomial, a set of coupled ordinary differential equations for the expansion 

coefficients is derived. The resulting set is written here in matrix form

4 - =  + Q B =0 (4.3.2)
dz =

with B = [Bk(z);k = 1,2, ...,N ] the column vector containing the field expansion 

coefficients and the matrix Q is defined in equation (A4.3 - 6) of Appendix 4.3.

It is convenient to modify equation (4.3.2) in order to have the field E(M)(z) as the 

unknown instead of the vector B(z). From equation (4.3.1) the following expression 

may be derived

I<M)(z)=GB(z) (4.3.3)

with the matrix G defined in Appendix 4.3, and hence equation (4.3.2) becomes

^ = ^  + P(z)E(z) = 0 (4.3.4)
dz —

with P as defined in Appendix 4.3.

4. The collocation method

Within the category of methods of weighted residuals, such as the Galerkin 

method, the collocation method uses Dirac delta distributions as the weighting 

functions, [refer to Appendix 4.4], [7], [8], [9]. By combining the HG expansion 

method with the numerical collocation method (HGCM) the partial differential scalar 

wave equation (1.4.4) may be conveniently reduced to a set of coupled ordinary 

differential equations in the single variable, z.

Consider the general case of the field expansion (4.2.8) in a dielectric structure. In 

order to (numerically) solve equation (1.4.4) it is inevitable that the expansion (4.2.8) 

be limited to a finite number (M) of expansion terms

e <m ) ( x - z )  = £ Bk(z)fk(x) [4.3.1]k=0

The next step is to discretise the transverse (x) axis into a set of points, xj, called 

collocation points. The choice of collocation points is in principle arbitrary, but the set 

of the M zeros of the M-th order Hermite polynomial has been shown to be an
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appropriate and convenient one [refer also to the use of the Gaussian Quadrature 

formula, as discussed in the previous Section 3].

For the present case, therefore, the collocation points are defined by

x4: HM(Xi) = 0 i = 1,2,...,M (4.4.1)

The field E(m>(x, z )  can be sampled at the collocation points to obtain

E<M)(xi.z )=  I B k(z)fk(x,) (4.4.2)
k=0

Equation (4.4.2) can be interpreted as the i-th component of the column vector 

containing the values of the field sampled at the collocation points:

Hi(z) = H(M)(Xi,z) (4.4.3)

and hence E (m )(z) = [Ei(z); i  = 1,2 ,..., M].

Compared to (4.2.8), the finite expansion (4.3.1) is not an exact solution of

(1.4.4). The difference between the exact solution (4.2.8) and the approximate one

(4.3.1) is estimated by the residual function R(x, z, M). For the particular case of the 

scalar wave equation (1.4.4) R(x, z, M) is defined by

R(x,z,M) = |[V2 -  ko8(x, z ) ] e (M) ( x ,  z)| (4.4.4)

For the collocation method, the residual function R(x, z, M) is forced to vanish at the 

chosen collocation points (xj) [Appendix 4.4]. This is equivalent to writing the scalar

wave equation at each collocation point.

Thus, using equation (4.4.4) and the properties of the HG functions, the scalar 

wave equation (1.4.4) can be reduced to a matrix equation for the field E(m>(z):

d ~ g )(Z) + S(z)E(M) ( z )  =  0 (4.4.5)

where S(z) is a (real) matrix which depends on z via the refractive index distribution,

as presented in Appendix 4.5. It is worth noticing that equation (4.4.5) is equivalent 

to (4.3.4), thus confirming the correspondence between the collocation method and 

the analytic derivation discussed in the previous section.

In summary, the advantages of combining the collocation method with the HG 

expansion method are that i) the partial differential Helmholtz equation (1.4.4) can be 

transformed into a set of coupled ordinary differential equations; ii) no numerical

integration is required; and iii) the analysis follows from a matrix formalism.
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5. Choice of the width parameter (w0) of the HG functions

When the field expansion is done with the complete (infinite) set of HG functions, 

as in (4.2.1) or (4.2.8) or (4.2.11), then any value for the width parameter, wQ, should 

yield the correct representation of the original function. For numerical computation, 

however, the number of expansion terms is finite and then the choice of w0 may affect 

the accuracy of the representation.

In particular situations, e.g., in the representation of a single mode of a three-layer 

symmetric slab (open) waveguide by an individual Hermite-Gauss function of the 

corresponding order, it is possible to use the variational method [Chapter 2, Section 

3] to derive an optimum waist parameter w0 which gives the most accurate value for 

the propagation constant for that mode. With the variational method it is assumed that 

the (individual) HG function . adequately represents the mode profile since the 

emphasis is on obtaining an accurate value only for the propagation constant. For 

multimoded waveguides each mode is considered separately and the corresponding 

individual width parameters do not necessarily have the same value. This highlights 

the problem that arises when applying the HGCM to eigenvalue problems related to 

multimoded waveguides, where all modes are computed simultaneously. The choice 

of w0 in the context of the numerical solution of field problems is presented and 

discussed in the next chapter.

For the solution of field propagation (initial value problems) in longitudinally non- 

uniform structures, it is the total field that is to be approximated by an expansion in 

terms of a finite number of HG functions, equation (4.3.1). The optimal choice of w0 

in this case is the one that best approximates the field shape. Also in the case of initial 

value problems it is strictly not possible to determine w0a priori, although a workable 

choice can be made in this respect. One of the factors to be taken into account in the 

selection of wQ is the transverse domain that has to be used for the computation 

(computational window). The collocation points, in fact, determine the domain on the 

transverse axis. Hence, as with all numerical procedures, there is a trade-off between 

the number of HG functions used and the extent of the lateral physical dimension that 

is included in the computations. [Note that the number M of collocation points is 

chosen to be the same as the number of terms used in the field expansion.]
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The modelling of longitudinally non-uniform devices, e.g., flared geometry 

devices, may add further complications in the choice of wG. The end facets may have 

significantly different widths, as for example shown in Fig. 4.5.1. The same value of 

w0 used all along the length of this device, for example, is unlikely to give satisfactory 

results. Analyses of this type of devices have shown that the use of appropriately 

different wc parameters along the length increases the accuracy of the results. This has 

been achieved in the model presented in this thesis by using longitudinally piecewise 

constant wG. A schematic illustrating this process is shown in Fig. 4.5.2.

x

>< L

Fig. 4.5.1: Top view of a taper structure device: 2a0 and 2ann are the narrower and 

wider width, respectively, L is the length of the device.

x

Fig. 4.5.2: Longitudinal sections, characterised by different values 

for the width param eter, e.g., wj and w2 etc., for the analysis of 

tapers which have significantly varying widths.

Sum m ary

The formalism for the electromagnetic field expansion using a set of orthogonal 

basis functions is presented in this chapter. In the present context it is argued that the 

HG functions are most apt since i) they form a complete set in the functional space of
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interest, ii) they individually satisfy the radiation condition pertinent to optical 

structures, and iii) they form a discrete set.

Both the eigenvalue problem and the initial value problem have been analysed with 

the HG expansion scheme. Further, it is shown that the combination of the HG 

expansion with the collocation method produces a convenient scheme for field 

analysis in semiconductor optical structures. Finally, it is pointed out that no unique, 

optimum choice for wQ (the HG width parameter) is readily predictable for use with 

the HGCM even for the solution of the eigenvalue problem.
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H G  expansion method for the eigenvalue problem

Consider the field expansion

Fm(x) = 2 X m)fk(x) [4.2.1]
k=0

for the m-th mode of a (longitudinally uniform) waveguide, where akm) are the 

(constant) expansion coefficients and fk(x) are the HG functions (for the sake of 

simplicity the width parameter is taken to be wc = 1). Substitute (4.2.1) into the 

eigenvalue equation (1.10.3)

d2Fm(x)
dx2

(k2e - p 2m)Fm(x) = 0 [1.10.3]

where Fm(x), the modal field profile (eigenfunction), and pm, the corresponding 

propagation constant (eigenvalue), are both still unknown. The resulting equation is

Za<">[fk" ( x ) + ( ^ e - p 2 )fk(x)] = 0 (A4.1 -1 )

where " depicts the second derivative with respect to x. Multiplying by f*m(x), 

integrating over the infinite range ( -00,+00), and making use of

d 2
dx"

•+(—x + 2m + l) fk(x) = 0 [2.2.6]

obtain

Z a ‘m) T C (x 2 - 2 k - l)fkdx + k j J f *e(x)fkdx — p2 Y f ^ d x l  = 0 (A4.1 - 2)

with k = 1, 2 ,... . Consider the two cases of k = m and k ^ m  separately, where m is 

the waveguide mode of interest.

1. k = m

Assuming a£° ^  0 , equation (A4.1 - 2) becomes

p2 + 2m + l - k 2 J C e(x)- ^ x 2^

K ;
f_dx = 0 (A 4.1-3)

It is worth noting that equation (2.2.6) may be conveniently rewritten as
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Appendix 4.1 HG expansion method for the eigenvalue problem

^ ^  + (k ^ e (x )-p k2)fk(x) = 0 (A 4.1-4)

x 2
with e(x) = — r + b  and pk = k * b -(2 k  + l). Equation (A4.1 - 4) can be then

k o

interpreted as the equation of the unperturbed quadratic medium whose 

eigensolutions are the HG functions and the eigenvalues defined as above by Pk. In 

this context, then, equation (A4.1 - 3) (with k = m) becomes

- e « ] fm (A4. 1 - 5)

which is equivalent to that derived with the perturbation method [Chapter 3, Section 

1.1]. Summarising, for the case k = m, e(x) in (1.10.3) is considered as a perturbation 

of e(x) (which is the unperturbed parabolic dielectric distribution).

2 . k ^ m

Equation (A4.1 -2 ) becomes

I a ' m>7 C (x ) [k 2e(x) + x2]fk(x)dx = 0 (A4.1 - 6)

the solution of which gives the expansion coefficients akm) with k *  m (k = 1, 2 , ...).

The only undetermined coefficient a^° is found by normalising the eigenfunction, 

which leads to

aLm) = J 1 -  I  (akm))2 (A4.1 - 7)
V k*m

for the m-th mode. The waveguide mode of order m can be thus reconstructed as the 

linear combination of HG functions (4.2.1), using the expansion coefficients specified 

by (A4.1 - 6) - (A4.1 - 7); the corresponding propagation constant is given by 

equation (A4.1 - 5).
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Appendix 4.2 HG expansion method for the initial value problem

Appendix 4.2 

HG expansion method for the initial value problem

Consider the field expansion

E(x,z)=  S B k(z)fk(x) [4.2.8]
k=0

with fk(x) the HG basis functions, (2.2.4), and Bk(z) the (complex) expansion 

coefficients. Substituting (4.2.8) into the scalar wave equation (1.4.4), obtain

?  fk ® +Bk (zf e + k “e(^’z)fk = 0 (A4-2 ‘ 1}

where % = ^  and f"@) = .

Making use of equation (2.2.6), (A4.2 -1) becomes

£ p " ^ +Bk(z)[k°e(̂ z)+ r̂(̂  - 2fc- 1)]}fk̂ )=0 (A42'2)
Multiplying by f  j(x) and integrating over (~oo,+o°) obtain

jr; G X  m +B k(z)Tf; ( ^ ) 2 -  + kjeft. z) ftd̂ J = 0

(A4.2 - 3)

and hence
|2

+ +X e(^,z)]fk( ^  = 0 (A4.2-4 )

with j = 1, 2 , .. . .  In a compact form equation (A4.2 - 4) is written as

d 2B • (z) o;. i
— - 4 - ' _ a H Bj(z) + I Q J[(z)Bk(z) = 0 (A 4.2-5)l2p jW  : 

dz2 "w

where j = 1, 2 ,... and

Qjk(z) = 7 f ; ( ^ ) 2 + k 26(^,z)]fk( ^  (A4.2- 6)

is the matrix element
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Appendix 4.3 

Analytic method for the discretisation of the system  of coupled 

differential equations (4.2.9) for the expansion coefficients B k(z) - 

derivation of equation (4.3.4)

The starting equation is (4.2.9) which has been derived by expanding the total 

field, E(x,z), as in (4.2.8). It is convenient to write the set of equations (4.2.9) in the 

following explicit form, using (2.2.4),

-  2 i ± l  B t (z) +  x  B, (z)CkCj T H k f t ) [ ( £ ) 2 +  k ’ e f t .  j f t ) ^  ̂  =  0

(A4.3 - 1)

x
where k = 1, 2,... and % = — .

w_

The first step is to discretise the integrals in (A4.3 - 1), which also implies the 

discretisation of the transverse axis. This is achieved by means of the Gaussian 

Quadrature formula for the Hermite polynomials, [6],

Y g f t J e - '^ - i ^ g f t , )  (A 4.3-2)
— i=l

for any function g(£), where P is the number of (sampling) points on the transverse 

axis. The Gaussian Quadrature formula for Hermite polynomials imposes that the 

sampling points be the zeros of the P-th order Hermite polynomial. [The same set of 

points are shown to be a convenient choice for the collocation points]. The weight 

functions hi are defined by

= 2" (A4.3 - 3)
p 2[HP- , ( y ]

Both the set of sampling points and the weight functions are specified by the 

orthogonal polynomials used in the Gaussian Quadrature formula (which exists for 

different types of polynomials, [6]).

Using (A4.3 - 2) the set (A4.3 -1) becomes

- ^ B t (z) + £ B J (z)Ck C, £  Hk f t ,  j ( ^ ) 2 + k ’e f t , , z)]h ,H j f t , ):= 0

(A4.3 - 4)
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Appendix 4.3 Analytic method for the discretisation

with k = 1, 2 ,.. ..  The formal version of equation (A4.3 - 4) is for the series expansion 

(4.2.8). However, in practice, only a finite number of terms, M, is used, so that (4.2.8) 

becomes
M

e <m >(x >z ) =  £ Bk(z)fk(x) [4.3.1]
k=l

It is then convenient to choose M = P so that the number of expansion terms is the 

same as the number of sampling points. The set (A4.3 - 4) can thus be written in a 

compact form making use of the matrix formalism (square matrices of order M):

4 - |+ Q B = 0  (A 4.3-5)
dz =

where B = [Bk(z);k = 1,2,...,M] is the column vector of the expansion coefficients at 

a specified position z;

Q=2~12i2 +2”1£2_22 (A4-3 ■6)
with G = {fk(^ ) ; i ,k  = 1,2,...,m} the matrix whose columns are the HG functions 

sampled at the sampling points

D i = -^diag{£f, i = l,2 m}  and D 2 = -^ d ia g { (2 i- l ) , i  = 1,2, ...,m }  two diagonal

matrices;

R(z) = kpdiag{n2(^i,z),i = 1,2 m} the diagonal matrix of the dielectric

distribution sampled at

The discretisation of the transverse axis permits to write the total field function 

E(x, z) at each sampling point xj as

E<„)(xi,z) = | B k(zXt ( t )  (A4 .3 - 7)

which can be regarded as the i-th component of the M-dimensional column vector 

E(z), i.e.,

E.(z) = E(x.,z) (A 4.3-8)

where the subscript (M) has been suppressed.

Hence E(z) = [Ej(z), i = 1,2 ,... M] can be also expressed as

E(z)=GB(z) (A 4.3-9)

Using equation (A4.3 -9) the matrix equation (A4.3 - 5) can be rewritten in terms of 

the (sampled) total field function:

89



Appendix 4.3 Analytic method for the discretisation

+ P(z)E(z) = 0

where P = D i + R - GD2G~V

(A4.3 - 10)
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Appendix 4.4 

The residual function

In the method of weighted residuals the residual function is forced to be zero in an 

average sense; i.e., the weighted integrals of the residual are forced to vanish so that

JIwiR(x,z,M)dx = 0 (A 4.4-1)

Wi are the weighting functions, M is the discretisation parameter, and I is the range of 

integration. Different methods of weighted residuals can be found in the literature, 

each characterised by a particular choice of weighting wj. For the collocation method 

the weighting functions are the Dirac delta distributions centered at the collocation 

points, i.e.,

wj = 5(x -  xO (A4.4 - 2)

where i = 1, 2, ..., M, and Xi are the collocation points. The definition of weighting 

function given in (A4.4 - 2) is equivalent to forcing the residual function R(x, z, M) to 

vanish at the collocation points, i.e.,

R (xj, z, M) = 0 (A4.4 - 3)

As expected, the accuracy of the method increases with M, [9].
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Appendix 4.5 

The collocation method - formalism

The approximate solution of the wave equation (1.4.4), E(M)(x, z), is expressed as 

a linear combination of M Hermite-Gauss functions, fm(x), as in equation (4.3.1). At 

each collocation point, xi5 E(M)(Xi, z) is a function only of z:

From (A4.5 -1), E(M)(xj, z) can be considered as the i-th component of the column 

vector E(m)(z) which, then, represents the transverse distribution of the field at any 

longitudinal position z, sampled at the collocation points, x*.

The residual function R(x,z,M) [Appendix 4.4] is made to vanish at the 

collocation points. This process is equivalent to writing Helmholtz equation, (1.4.4), 

at each collocation point, i.e.,

where i = 1, 2, ... M; the subscript (M) will be henceforth suppressed. In a compact 

(matrix) form (A4.5 - 2) becomes

and R(z) is the diagonal matrix of the dielectric distribution sampled at the

Since the HG functions, fk(x), satisfy the Sturm-Liouville differential equation

the vector D(z) can be reduced to an expression involving only the vector E(z) as the 

unknown, as shown below.

D(z) can be written as

E ( M ) ( X , ' Z ) =  E <M). i (Z )  =  f , B k ( Z ) f k ( X . ) (A4.5 - 1)

O jj?) + D(z) + R(z)E(z) = 0
dz

(A4.5 - 3)

where

collocation points, R(z) = k^diag{e(xi,z),i = 1,2,...m}.

[2.2.6]

D = DB(z) (A4.5 - 4)
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Appendix 4.5 The collocation method - formalism

where D = d2ft (x)
d x '

;i,k = 1,2,...M is the matrix of the second derivatives of the

HG functions. Further, using (2.2.6), equation (A4.5 - 4) reduces to

D = 2 i  G - G D 2 (A4.5-5)

with G = {fk (xj);i,k = 1,2,...m} the matrix whose columns are HG functions sampled

at the collocation points, and D = -^ -d iag
w „

r 2 \  
x ;

VwW
,i = l,2,...M> and

D = -^-diag{(2i - l ) ,  i = 1,2, ...m} two diagonal matrices. 
— w

It is also convenient to write the field sampled at the collocation points in the form 

E(z) = G B(z), so that

B(z) = G-1E(z) (A 4.5-6)

Using (A4.5 -6), equation (A4.5 - 4) becomes

D = DB = (Dl G -  GD2 ) g _1 E = (Di -  GD.G~‘ )g  (A4.5 -7)

Thus, making use of (A4.5 - 5) and (A4.5 - 7) the matrix equation (A4.5 - 3) becomes

d i E(z)
dz"

+S(z)E(z) = 0 (A4.5 - 8)

with S(z) = R(z) + Di — GD,G  a real matrix which depends on z via the matrix of 

the dielectric distribution R(z) only.

1. Inversion of matrix G

The matrix G always has the inverse, G-1, because the HG functions are

orthogonal and the collocation points are all distinct Making use of the properties of 

the HG functions and of the Gaussian Quadrature formula it is possible to determine 

the inverse of matrix G algebraically. Consider the orthogonality property

|f / (x ) fk(x)dx = 8 jk

and the Gaussian Quadrature Formula applied to the same pair of functions
M 2

J f * ( x ) f k ( x ) d x  «  f f * ( X j ) h . e  Xif k ( x . )
-o i=l

[2.2.7]

(A4.5 - 9)
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Appendix 4.5 The collocation method - formalism

with the weight function hi as defined in Appendix 4.3, equation (A4.3 - 3). By 

comparison of (2.2.7) with (A4.5 -9) obtain the following matrix equation

Gt HG = 1 (A4.5-10)

where T depicts the transpose matrix, H = diag{hie ll’ ;i = and 1 is the

unity matrix. Thus, from (A4.5 - 10) it follows that

G-‘ = G t H (A4.5-11)
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Chapter 5

Field analysis - results

In this chapter the Hermite-Gauss Collocation Method (HGCM), [Chapter 4, 

Section 4] is applied to the analysis of passive structures and in most cases it has been 

possible to compare the results obtained with the HGCM with those from other 

methods of solution.

In the first part of the chapter, Section 1, important aspects concerning the choice 

of w0 for the HG basis functions are discussed to underline the caution that must be 

exercised in the numerical solution of field problems. It is also demonstrated that the 

HGCM numerical results are remarkably improved by the use of a continuously 

vaiying (analytic) refractive index distribution (compared to those obtained with an 

abrupt, step index distribution). The HGCM is used to solve the eigenvalue problem 

related to different types of waveguides - including waveguides with loss/gain 

introduced through the imaginary part of the refractive index.

In the second part attention is focused on the computation of electromagnetic field 

propagation which is solved as an initial value problems. Free-space propagation is 

considered first, in Section 2.1. It is well known that diffraction problems can be 

conveniently solved using the Hermite-Gauss Beam analysis [Chapter 2, Section 1]. 

However, with the results shown here it is argued that the HG expansion scheme 

provides an alternative and, at least, an equally effective method. Problems of field 

propagation in (longitudinally uniform) waveguides (Section 2.2) and coupled 

waveguides (Section 2.3) are thus solved with the HGCM as test cases to assess the 

accuracy of the HGCM as a scheme for field propagation analysis.

The analysis of step discontinuities is presented in Section 2.4 to demonstrate that 

field analysis by means of the HGCM implicidy takes into account the contribution of 

the radiation modes. A second approximate method of solution based on a 

combination of bound modes and plane wave expansion is also presented in Section 

2.4 to provide for another method against which the results from the HGCM are 

compared.

Tapered structures are next investigated: the HGCM is used to solve for field 

propagation in linear (Section 2.5) and parabolic (Section 2.6) shaped tapers. The
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Chapter 5 Field analysis - results

results obtained with the HGCM are compared with those obtained with an 

approximated mode-matching method, [1], [2]. Finally, in Section 2.7 some aspects of 

the numerical analysis of the HGCM are discussed in the context of the initial value 

problem.

1. E igenvalue problem

1.1 Role o f the w0 parameter in the HG function expansion

The Hermite-Gauss functions form a complete orthogonal set in the space of 

square integrable functions. Any function in the functional space of interest can thus 

be represented in terms of the HG set. Hence, for example, for a waveguide (bound) 

mode, Fm(x), which is a square integrable function, it is possible to write

F_ (x) = £ a '"”fk
r \  x

k=0 VW o J

where wQ is the waist parameter of the HG basis functions, fk
r \  x

VW o J

(5.1.1)

. The important

point in equation (5.1.1) is that any value for the waist parameter, wc, can be used 

with the HG set if the whole (infinite) set is considered in the series expansion.

For practical solutions, however, a finite number of expansion terms are used in 

(5.1.1), and hence

M

X
k=0

Fm(x) = I a ‘m)fk
r \  x

vwoy
= F.m,(M) ( X) (5.1.2)

The error in the approximation used in (5.1.2) is given by

AF = Fn,(x ) -F m.(M)(x)=  £  aST’f,
f  \  

X

k=M+l V W o J

(5.1.3)

and depends on the waist parameter, wQ, and on the number of expansion terms, M, 

used in (5.1.2). With the finite expansion (5.1.2) it is thus important to choose wQ in 

such a way that AF is minimised. This problem begins to become significant only for 

relatively small values of M.

A particular case of (5.1.2) is when M = 1, which implies that a single HG 

function is used to approximate the field profile. The variational method has been used 

to determine the waist parameter of the best fitting HG function for that particular

97



Chapter 5 Field analysis - results

mode, by minimising the error in the evaluated modal propagation constant, [refer to 

Chapter 2, Section 3].

For the most part in this thesis M = 99 is used in equation (5.1.2) with the 

HGCM, which is sufficiently large so that, in practice any reasonable w0 yields 

sufficiently accurate results. In this thesis the HG expansion method has been 

combined with the numerical collocation method, since the latter is a most convenient 

process with which to carry out the computation required for the HG expansion 

method.

However for the solution of step index profile waveguides numerical inaccuracies 

have been encountered. In fact it is noted that the collocation method is a sampling 

technique, and hence a step function is in general randomly sampled, depending on the 

position of the collocation points with varying wD, and it is this that produces 

numerical inaccuracies rather than the finite number of expansion terms M used in

(5.1.2).

The latter problem has been overcome by introducing a novel approach which 

uses a sharp, but continuously varying analytic (supergaussian) index distribution to 

approximate the step index profile. With this innovation the improvement in the 

computed results has been remarkable, and it is found that, as expected, the results are 

now relatively insensitive in w0. Results confirming the conclusions drawn in the 

present section are discussed in the following subsections.

1.2 Piecewise constant refractive index distribution

For HGCM solutions of the eigenvalue problem for step index (piecewise 

constant) profile waveguides, the choice of wG for the HG functions is important. As a 

general feature of the HGCM it is found that by varying w0 the value of the computed 

effective refractive index of a particular (bound) mode fluctuates around the correct 

value. This effect is shown in Fig. 5.1.1, where the eigenvalues for a three-layer, 

symmetric, multimoded slab waveguide calculated with the HGCM are plotted against 

the w0 parameter used in the calculations. The multimoded waveguide chosen for this 

example supports two bound modes, characterised by the effective refractive indices 

ncff(0) and iWd), respectively, and hence the two curves shown in the graph are
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obtained simultaneously with the HGCM. The effective refractive indices determined 

analytically are also shown.

3.3300

3.3290 —

neff(o) _
3.3280 —

x  3.3270 —
CD

T 3C
3.3260 — 

>  I

3.3250 —
03i—
CD> 3.3240 — 

neff(1) _OCD
CD 3.3230 —

3.3220

3.3210 —

3.3200

0.0 0.5 1.0 1.5 2.0
width parameter (pm)

Fig. 5.1.1: Effective refractive index as a function of the width param eter, w0, used in the 

HGCM calculations. The multimoded waveguide is characterised by the following parameters: 

2a0 = 3pm, X* = 0.86pm, nj = 333, n2 = 332, neff(0) = 3.32834, nefT(u = 3.32376.

1.3 Continuously varying refractive index profile

The numerical inaccuracies discussed in the above Section 1.2 are dramatically 

reduced if the piecewise constant refractive index distribution (ST) is replaced by a 

continuously varying (analytically expressible) refractive index distribution. An abrupt 

change in index profile may be conveniently represented by the supergaussian (SG) 

analytic distribution

n(x) = n2 +(nj - n 2)exp (5.1.4)
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where q > 10 gives a supergaussian flat-top profile and 2a is the width of the 

waveguide. An example of supergaussian distribution (q = 16) is shown in Fig. 5.1.2, 

and compared with the piecewise constant distribution. In most cases step changes in 

index are not realised in practice, and so the supergaussian, in fact, represents a 

realistic index distribution.

3 .3 3 0

3 .3 2 9  —

3 .3 2 8  —

3 .3 2 7  —

3 .3 2 6  —
X

3 .3 2 5c

& 3 .3 2 4  —
.fc

3 .3 2 3  —

3 .3 2 2  —

3.321 —

3 .3 2 0  —

3 .3 1 9

-4 -3 -2 0■1 1 2 3 4
x (Mm)

Fig. 5.1.2: Refractive index distribution (nx = 3.33, n2 = 3.32, 2ac = 3pm): 

solid line: supergaussian (q = 16); broken line: piecewise constant.

As discussed in Section 1.1 of this Chapter, it is preferable to use a continuous 

dielectric function with the HGCM because the collocation method is implicitly a 

sampling technique - this aspect of the HGCM is also mentioned in [3], [4] - and 

hence the accuracy of the results calculated with the HGCM increases significantly 

when the function to be sampled is analytic. The improvement is clearly evident by 

comparing Fig. 5.1.1 with Fig. 5.1.3.
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>
oTO
(1) 3.3250  —

<D
>
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Fig. 5.1.3: Effective refractive index as a function of the we parameter used in the

HGCM calculations using a continuous SG refractive index distribution (q = 16).

(Parameters in Fig. 5.1.1)

1.4 Number of expansion terms, M

The other parameter to be taken into account in the HGCM is the number, M, of 

expansion terms used in the field expansion (5.1.1), which corresponds to the number 

of collocation points. The effect of M on the (computed) effective refractive index of 

the bound modes of the eigenvalue problem (3.1.1) is shown in Fig. 5.1.4. From the 

discussions of the preceding Section 1.1 it is clear that by increasing the number of 

expansion terms the approximation (5.1.1) approaches the limit case of the series 

expansion. Consequently, it is seen that the number of wc values that give the correct 

eigenvalues increases with M. However, it emerges again that the HGCM is far more 

efficient when a continuous SG refractive index profile is used in the calculations 

although, even for the ST refractive index profile the improvement is evident upon 

increasing M. Finally, it is worth mentioning that for small M values it has been 

noticed that spurious solutions may occur when using large values for wc for the 

solution of the ST refractive index distribution, which could be attributed to the
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incorrect definition of the width of the waveguide rib and to the poor accuracy 

associated with low values of M.
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Fig. 5.1.4: Effective refractive index as a function of the w0 param eter and of the number of 

expansion term used in the HGCM calculations: a) M = 11, b) M = 41. The curves refer to 

broken line ST refractive index distribution, solid line SG refractive index distribution (q = 16). 

(Parameters in Fig. 5.1.1)
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1.5 W aveguide bound modes - real refractive index distribution

The HGCM has been tested solving for the bound modes of slab waveguides 

defined by several (real) refractive index distributions, n(x). These results are 

compared with those from the Transfer Matrix Method (TMM) [5], and, whenever 

possible, with the analytic solution (A). The results are shown in Tab. 5.1.1. The 

values of the effective refractive index of the (bound) modes computed with the 

HGCM are in good agreement with those calculated with the other two methods. The 

relative error is defined by

8 = 0  eff (HGCM) n  eff (OTHER METHOD)

n i ~ n 2
X 100 (5.1.5)

and is of the order of 0.1%. Very good agreement is also found for the corresponding 

modal profiles.

Note that in Tab. 5.1.1 the last set of results refer to the TE/TM mode 

propagation constants of single mode waveguides characterised by a Gaussian 

dielectric distribution. In this case the HGCM has been used to solve the two different 

scalar equations that generate TE and TM mode solutions, as discussed in Appendix 

1.4. It is satisfying to observe that the two (different) propagation constants could be 

determined by the HGCM with sufficient accuracy.
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Table 5.1.1: Effective refractive index for waveguide bound modes calculated with HGCM, 

TMM and analytic solution (A)

X

(pm)

ni n2 2a0

(pm)

M w0

(pm)

n*fr

(HGCM)
nCfr

(TMM)

nerr

(A)

0.75 3.5 3.35 0.1 61 0.117 3.3723 3.3723 3.3723

1.0 3.5 3.3541 0.1 61 0.120 3.3672 3.3671 3.3671

0.75 3.5 3.4641 0.1 61 0.209 3.4656 3.4655 3.4655

1.5 3.5 3.35 0.4 99 0.106 3.4088 3.4082 3.4082

1.0 3.5 3.35 0.1 61 0.091 3.3637 3.3637 3.3637

<+> 0.75 3.5 3.304 0.1 99 0.045 3.3196 3.3196

«  1.0 3.5 3.35 0.2 99 0.08 3.3772 3.3787

(A> 1.55 3.42 3.4187 5.0 31 2.5 3.419207 3.419206

O 0.86 3.33 3.32 4.0 99 1.051 I 3.3289 3.3289 3.3289

II 3.3258 3.3258 3.3266

III 3.3213 3.3213 3.3213

m 1.55 3.42 3.4187 4.0 99 1.95 TO 3.4190424 ra 3.4190427

™ 3.4190418 ™ 3.4190426

ni, n2 = highest and lowest values of the refractive index; unless otherwise specified, the waveguide

structure is a three-layer slab

2ao = thickness of the waveguiding layer

nrf = effective refractive index of the mode

M = number of collocation points

w0 = width parameter of the HG functions

(+) truncated parabolic refractive index distribution: n (x ) = n, —(ni —n 2)
(

X

Va o J
.n2

2 + ( n f - n 2)e *•

ni x < a „

n2 M
.n3 x > a „

|x |<a,  

|x| > a,

(*) Gaussian refractive index profile: n2(x) = n2 + fn2 - n, Je
r

(A) asymmetric refractive index profile: n(x) =«

(") multimoded waveguide: I, II, III refer to the fundamental, first and second order mode, 

respectively

(T) singlemoded waveguide characterised by a Gaussian profile, as in (>): TE and TM refer to the 

propagation constants of the TE and TM modes, respectively
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Another advantage of using the HGCM is that the propagation constants and 

transverse profiles of all the bound modes supported by the waveguide are calculated 

simultaneously by solving the eigenvalue matrix equation (3.1.1).

In conclusion to this section note that it is possible to redistribute the collocation 

points by means of a transformation of variables, as described in [4], [6]. The resulting 

modified HGCM may be convenient in some specific cases, e.g., in the calculation of 

the eigenvalues associated with a (longitudinally uniform) waveguide. Making use of 

the transformation of variables the density of points in the central part of the 

transverse domain (core region of the waveguide) may be increased. As a 

consequence the points in the outer region (decaying part of the field) are reduced in 

number, but at the same time they are spread out and hence cover a wider transverse 

range. This procedure, described in Appendix 5.1, is particularly useful in the analysis 

of strong waveguides because the field is tightly confined in the core region. For 

weaker waveguides, the field spreads out in the cladding layers, so that an almost 

uniformly distributed set of collocation points (such as the set of zeros of Hermite 

polynomials) is desirable.

1.6 W aveguide bound modes - complex refractive index distribution

The Hermite-Gauss Collocation Method has also been applied to solve for the 

complex eigenvalue problem that corresponds to the modes of waveguides with 

complex refractive index distribution, i.e., waveguides with gain or loss, [Chapter 4, 

Section 2.1.1]. Specifically, three-layer symmetric slab waveguides with complex 

refractive index in the core region, nx = n l R + in^ , are considered.

The results are summarised in Tab. 5.1.2 where the results calculated with the 

HGCM are compared with the numerical solution of the complex dispersion relation 

(D). The agreement between the two sets of results is satisfactory. The HGCM 

provides the values for the real part of the mode effective refractive index within a 

relative error, defined by
„  (HGCM) 

eff,R _ n (A) 
cff.R

n i,R n 2,R

of the order of 0.1 %. Also the results for the imaginary part of the eigenvalues 

calculated with the HGCM are sufficiently accurate, the discrepancy, defined by
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5 , =
(HGCM)

Ucff,I - n (A)eff.l
n!.I - 0 2,1

x 100 (5.1.7)

being of the order of 10%.

Table 5.1.2: Effective refractive index of the (bound) modes of three-layer slab waveguides with 

complex dielectric distribution in the core layer.

w

(pm)
neff 

(HGCM, M=99)

neff

(D)

1 0.105 (3.4655, 7.4 10'5) (3.4655,4.5 105)

2 0.595 (3.3448,6.9 10'5) (3.3448,7.1 10'5)

(*) 3 2.0 (3.4999, 2.3 10^) (3.4999, 2.8 lO*)

(+) 4 1.048 I (3.3289,9.7 10“5) I (3.3289,9.7 10‘5)

II (3.3258,9.0 10"5) II (3.3258,1.1 10'5)

III (3.3213, 6.5 10-5) III (3.3213,6.3 10'5)

(+)5 1.61 I (1.8729, 6.0 10^) I (1.8729,6.19 10"*)

II (1.8670,5.8 10-4) II (1.8699,6.7 10"*)

III (1.8577, 5.0 10"*) III (1.8578,5.1 10"*)

where

X
(pm)

2a

(pm)

ni n 2

1 0.75 0.1 (3.5,5.5724 10-4) 3.4641

2 1.5 2.0 (3.35,1.0 10"*) 3.34

(*)3 0.86 4.0 (3.5,1.0 10"*) 3.5

(+) 4 0.86 4.0 (3.33,1.0 10"*) 3.32

(+)5 0.85 4.0 (1.875,6.28 IQ"*) 1.85

(*) note that in this particular example there is no real refractive index step

(+)multimoded waveguide: I, II, III refer to the fundamental, first and second order mode,

respectively
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2. Initial value problem

2.1 Free-space propagation

Free-space propagation provides a quite challenging example for testing the field 

propagation scheme based on the Hermite-Gauss expansion method. This diffraction 

problem can be solved analytically in the paraxial approximation (Fresnel diffraction). 

The well-known analytic solutions are the Hermite-Gauss Beams, [Chapter 2, Section

1]. Hence, given a Gaussian initial field distribution, the field diffracts in the 

homogeneous medium maintaining the Gaussian profile, but increasing in (lateral) 

dimension because of the longitudinally varying beam waist.

w (z 0){

Fig. 5.2.1: Diffraction in half-space: the initial Gaussian field is specified at z = 0, zr,n is the 

propagation length, w(z = 0) = initial beam width, w(z) = beam width at the longitudinal 

position z.

Consider in the following example an initial Gaussian field distribution 

propagating in free-space, Fig. 5.2.1. The HGCM is applied to the paraxial wave 

equation (1.7.6) to solve for the total field diffracting in free-space. The analytic 

solution is readily available, [Chapter 2, Section 1]. For a further comparison the 

analytic method of Plane Wave Decomposition [Appendix 1.2] is also used. The 

results are shown in Fig. 5.2.2. The field profiles obtained with the HGCM and with 

the Plane Wave Decomposition are in excellent agreement with the analytic solution.
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The accuracy in solving free-space (paraxial) propagation thus demonstrates that the 

Hermite-Gauss total field expansion method is an effective and simplified method for 

the analysis of diffraction problems, that can be readily applied also to arbitrary initial 

field distributions. Hence, the HGCM can be considered as very convenient and 

versatile alternative method to the analytic HGB solutions.

1.0

0.9 —

0.8 —

0.7 —

-> 0.6 —3
08

0.5 —

•a o . 4 -

0.3 —

0.2 —

0.1

0.0
-30 -20 -10 0 10 20 30

* (pm)

Fig. 5.2.2: Diffraction in half-space (X« = 1.55pm, the beam waist of the initial 

field distribution is w(z = 0) = 5.0pm, the refractive index of the homogeneous 

medium is nh = 3.42, zr,n = 500pm): dotted line: Gaussian initial field 

distribution; solid line: HGCM (M = 99, w0 = 2.8pm); x: fundamental Gaussian 

Beam at z = zn„; broken line: Plane Wave Decomposition method.

2.2 Multimoded symmetric slab dielectric waveguide

More tests to assess the accuracy of the HGCM in solving (total) field 

propagation are discussed in this section. The problem analysed here is that of 

calculating the total field propagating in a multimoded lossless dielectric waveguide, 

given an initial field F(x, z = 0) composed of two bound modes of equal amplitude

F(x, z = 0) = a0f0 (x) + a2f2 (x) (5.2.1)

where f0(x) and fz(x) are, respectively, the (normalised) fundamental and second order 

modes supported by the waveguide; and a0 = a 2 the corresponding expansion

coefficients, which have been chosen to be equal.

109



C h ap ter 5 Field analysis - results

Although the contribution of the individual modes does not change during 

propagation, the field intensity profile can change very significantly because of the 

relative change in phase due to the different propagation constants characterising the 

two individual modes. At any longitudinal position the field is

F(x, z) = a0f0 (x) e x p H P 0z) + a 2f2 (x) exp(-ip2z) (5.2.2)

where pG and p2  are the modal propagation constants. The intensity profile (at z = zfm) 

calculated with the HGCM is thus compared with the analytic solution.

This test has been performed in two waveguides characterised by different index 

steps. The excellent agreement between the HGCM solution and the analytic is 

demonstrated by Fig. 5.2.3 for the ‘stronger’ (larger index step) waveguide. In the 

calculations presented in this section the supergaussian representation of the refractive 

index has been used. However note that since the waveguide is longitudinally uniform 

a piecewise constant refractive index distribution would also give accurate results 

once a suitable wQ is chosen.

1.0

0 .9

0.8

0 .7

-T- 0.63
2? 0 .5
55
c

c 0 .4  —

0 .3

0.2

0.1

0.0
-10 -8 -6 ■2 8 10-4 0 2 4 6

x (pm)

Fig. 5.23: Propagation in a multimoded waveguide (A* = 0.86 pm, nj = 3.33, n2 = 3.32, 

2ac = 4pm, nefr(o) = 3.3289, nefT(i) = 3.3258, nefr(2) = 3.3213, respectively for each bound 

mode). The results are labelled as follows: dotted line: input field, solid line: HGCM 

(M = 99, w0 = 0.776pm, zn„ = 100pm), (x): analytic solution. The rib is shown as a 

rectangle (broken line).
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The total field calculated with the HGCM has been decomposed in terms of the 

HG basis set. The magnitude of the expansion coefficients is plotted in Fig. 5.2.4 as a 

function of the order of the HG functions. The following observations can be made in 

this respect: i) a smaller number of expansion terms could be used in the calculations 

since the contribution of the higher order expansion terms is small; however, the large 

number of expansion terms used in the calculations (M = 99) is justified by the 

requirement of a detailed field profile, which can be provided only by having a large 

number of collocation points, and ii) only the symmetric HG functions contribute to 

the field since the initial field is composed only of symmetric modes.

The close agreement obtained between the HGCM and the analytic solution 

proves that the HGCM can be effectively used for solving total field propagation 

problems in longitudinally uniform dielectric waveguides. However, as already noted 

previously, if the wQ parameter is too large (poor resolution) or too small (the 

computation window not sufficiently wide) the accuracy decreases.

0 .9  —

0.8 —
c® <
£  0 .7  —

8co'«/>c
0.6 —

x  0 .5  —  o
<D£
0 04 “
<DT>
1 0-3-
E(0

0.2 —

0.1 —

0.0
1 2 3  4  5  6  7  8  9  1 0  11 1 2  13 14 1 5  16  17  18 19  2 0

o rd er  o f  th e  HG fu n ction

Fig. 5.2.4: Propagation in a multimoded waveguide: contribution of the HG expansion functions 

to the field calculated in Fig. 5.2.3. (o): coefficients of the HGCM solution, (+): coefficients of 

the analytic solution. Note that although M = 99 only the coefficients of the HG functions of 

order < 20 are shown here since the contributions of the HG functions of order > 20 are 

negligible.
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2.3 Coupled waveguides

Propagation in coupled waveguides is also analysed as yet another test of the 

applicability and the effectiveness of the HGCM. This problem is often solved with 

coupled mode theory [7]. Here, however, the results calculated with the HGCM are 

compared with those from the essentially analytic solution derived for modal analysis 

in a five-layer slab waveguide.

Consider a symmetric structure composed of two identical symmetric waveguides 

separated by a distance d, Fig. 5.2.5, but which should be rigorously viewed as a five- 

layer slab waveguide. Fig. 5.2.6 shows the excellent agreement between the field 

calculated with the HGCM and the analytic solutions. The results are presented for a 

propagation length corresponding to half the coupling length to emphatically 

demonstrate mode coupling in the waveguide and thereby to illustrate further the 

capability of the HGCM.

2a2 0utPui

K-------------------------------------------------------------------------- ^
L

Fig. 5.2.5: Propagation in coupled waveguides (A*, = 1.55 pm, ni = 3.28448, n2 = 3.28241, 

2aj = 2a2 = 3pm, d = 3pm). The input field is launched in one of the waveguides. The 

coupling length is L = 2tc/AP « 2240pm since the propagation constants1 of the 

fundamental and first order modes of the structure are P = k 0n err, with nerr(0) = 3.28334 

and nerr(i) — 3.28274.

1 The effective refractive indices of the two modes supported by the five-layer slab waveguide 
calculated with the HGCM are n ^ )  = 3.28337 and n ^ jj = 3.28271, using M = 99 and w0 = 2.0pm.
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Fig. 5.2.6: Field propagation in coupled waveguides (zr,n = \  = 1120pm, other parameters

as shown in Fig. 5.2.5): solid line: HGCM (M = 99, w0 = 2.01pm); crosses: analytic solution; 

broken line: initial field distribution.

2.4 Longitudinal step discontinuities in waveguides

In this section it is demonstrated that the HGCM is particularly suited to the 

solution of electromagnetic field propagation in slab dielectric waveguides with 

longitudinal non-uniformities. A stark example of such non-uniformities is the step 

discontinuity, Fig. 5.2.7. Referring to the process of field expansion in terms of 

complete (orthogonal) sets [Chapter 3, Sections 1.2, 2.1 and 2.3] the longitudinal 

non-uniformity may be formulated as the excitation of the mode-spectra of the 

uniform waveguide due to the perturbation produced by the discontinuity. It is, of 

course, not essential to use the waveguide mode spectrum as the basis set; the 

fundamental point is that the expansion set be complete in the functional space of 

interest, [Chapter 3, Section 1.2]. Therefore the HG set is used here since it is argued 

that it provides for a veiy suitable and convenient set for field analysis in dielectric 

structures which also accounts for the radiation mode spectrum of the waveguide.
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WG1 WG2
Fig. 5.2.7: Junction between two dielectric waveguides, WG1 and WG2, of width 2ai and 2a2, 

respectively.

Field propagation in step discontinuities has been investigated in detail in the 

literature, with particular attention to the power lost in radiation. In [8] an analytic 

method, referred to as step-transition method, based on the mode matching technique 

is discussed. There the amplitudes of the reflected and transmitted, guided and 

radiation, modes are determined by matching the transverse components of the 

electromagnetic field at the junction (specifically, waveguides supporting only one 

bound mode are considered on both sides of the discontinuity). In [9] and in [10] a 

mode matching method is proposed in which the dielectric waveguide junction is 

enclosed in a metal (closed) waveguide in order to avoid the complication of matching 

radiation mode components. The latter approach is justified in the paper [10] by the 

one-to-one correspondence of the mode spectra of open and closed guiding 

structures1, and by the assumption that in the limit of metal boundaries at infinity the 

two structures become identical.

In the following example the case of a dielectric structure of the type shown in 

Fig. 5.2.7 is analysed. The waveguide on the left hand side (WG1, z < 0) supports 

three (bound) modes, while the one on the right hand side (WG2, z > 0) supports only

1 In a closed waveguide the spectrum is composed of an infinite discrete set of eigenvalues, while in 
an open waveguide the spectrum is composed of a finite discrete part complemented by an infinite 
continuous component. The surface, radiation and reactive modes of open waveguides correspond, 
respectively, to the slow, fast and evanescent modes of closed waveguides, [10].
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the fundamental mode. Assume propagation along the positive z-axis. At the 

discontinuity, because of the difference in width the input field launched from WG1 

into WG2 couples only partially into the fundamental mode of WG2 and the rest of 

the field diffracts outside WG2 into the cladding layer. The reflected field is assumed 

to be negligible, which is justified by the weak refractive index step considered in the 

present analysis. Consider the three situations:

1) the initial field launched into WG2 is the fundamental mode of WG1. The 

mismatch due to the widths of the two waveguides produces ‘wings’ diffracting in the 

cladding layers (radiation), that gradually depart from the region nearer to the core of 

WG2 as the field propagates along z, Fig. 5.2.8 (a);

2) the input field is the first order mode of WG1. Since WG2 does not support 

anti-symmetric modes, the field couples only to the radiation modes and hence the 

diffracting ‘wings’ (radiation) are more pronounced than in the previous case, Fig. 

5.2.8 (b);

3) the initial field is the second order mode of WG1. This situation is similar to the 

one described in 1). The field partially couples in the fundamental mode supported by 

WG2, the rest of the field diffracts into the cladding layers (radiation), Fig. 5.2.8 c).

2.4.1 Approxim ate analysis o f waveguide step-discontinuities

The results calculated with the HGCM are compared with those obtained with an 

approximate but new method of analysis (referred to as Plane Wave Approximation 

Spectrum, PWAS) based on the following considerations. In the situations 1) and 3) 

described above the incident field partially couples into WG2, this portion of the field, 

Fi(x,z), is then guided in WG2. It is thus possible to consider Fi(x,z) as a separated 

field from the diffracting ‘wings’, F2(x,z). The latter, F2(x,z), is then solved as a 

diffracting field in a homogeneous medium chosen to be that of the cladding, using the 

plane wave expansion method [Appendix 1.2]. Note that F2(x,z) is only approximately 

determined since, strictly, it is affected by the presence of the waveguide WG2. 

However, it is assumed that at any longitudinal position the sum of the two fields 

Fi(x,z) + F2(x,z) corresponds to the total field propagating in the region z > 0.

Specifically, the initial field distribution, Fc(x), is given. The overlap integral, K, of 

F0(x) with the fundamental mode, fQ(x), of WG2 is determined by
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K = J  F0(x)f„(x)dx (5.2.3)

Hence Fi(x,z) is

F,(x,z) = Kf0(x)e~'p,z (5.2.4)

where p0 is the propagation constant of fQ(x).

The field F2(x,z) at the junction, z = 0, is given by

F2 (x, z = 0) = F0 (x) -  Fj (x, z = 0) (5.2.5)

and at any z > 0 F2(x,z) can be determined using the following plane wave expansion

+oo

F2 ( x , z )  = J  A (kI )e“‘M e~ai,Idk1< (5.2.6)

with k„2 + k,2 = k , V  ( n 2  is the refractive index of the cladding layer), and the 

amplitude distribution given by
+®»

A (k ,)=  j F 2(x,z = 0)ea‘"'dx (5.2.7)

The agreement between the HGCM and the PWAS method is not expected to be 

perfect because of the approximations made for the latter method. However, it is 

satisfying to observe that both methods show good agreement and, particularly, reveal 

the radiation outside WG2, Fig. 5.2.8.
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Fig. 5.2.8 (continued): a)
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Fig. 5.2.8 (continued): Field propagation across a step discontinuity calculated at 

distance of 50pm from the junction: dotted line: input field, solid line: HGCM (M = 

99, w0 = 1.2 pm), broken line: PWAS method. Parameters: 2ai = 6pm, 2a2 = 2pm, n! = 

3.32, n2 = 3.3, Xo=1.55pm. The mode effective refractive indices are, in WG1: nerr(0) = 

3.31842, neff(i)=3.31378, n err(2) = 3.30652, in WG2: nerr(o) = 3.31194.
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2.5 Field propagation in tapered dielectric structures

It is particularly for the analysis of field propagation in longitudinally non-uniform 

dielectric structures that the HGCM has been developed in this research programme. 

The results obtained by using the HGCM to solve for electromagnetic fields in linear 

dielectric tapers are presented in this section. A piecewise constant refractive index 

distribution defines the core/cladding regions and the taper is represented by a core 

width that is a function of the longitudinal position, i.e., a = a(z), Fig. 5.2.9.

x

2 a***** __Lo
2a fin

Fig. 5.2.9: Top view of a linearly tapered structure.

The advantages of using a continuous refractive index distribution with the 

HGCM have been discussed in the previous Section 1. Hence in the present section 

the linear taper is represented using a sharp, but continuous, supergaussian refractive 

index distribution similar to the one presented in Section 1. However, to account for 

the tapering width, equation (5.1.4) is written as

4 — Tn(x,z) = n 2 + (n 1 - n 2)e A ' {z)} (5.2.8)

where a(z) = a0 + 1 • z is the half the width of the taper, q specifies the refractive index

profile, and ni and n2 the core and cladding refractive indices far from the transition.

The results obtained with the HGCM are then compared with those from the 

method described in [1]. The latter method is based on the mode matching technique, 

except that it uses only the discrete part of the (local) mode spectrum (referred to as 

DMM), [1]. The results from both methods are shown in Fig. 5.2.10. The agreement 

is good, but the field calculated with the HGCM is slightly wider than that calculated 

with the DMM.
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It is also noted that with the HGCM the integral of the electromagnetic (optical) 

intensity distribution, which is a measure of the power carried by the field, is 

conserved. In fact, using the HGCM it is found that

*M. *Mi n
J |F(x,z = 0)| dx -  J |F(x,z = zrm)| dx (5.2.9)

xj

to within an error of 0 .01%, where (xi,xm) is the computational range set by the 

collocation points, and F(x,z) is the computed field at any z > 0. On the other hand, 

with the DMM it is found that the error in (5.2.9) is of the order of 10%. It is argued 

that this discrepancy represents an indication of the contribution of the (local) 

radiation mode spectrum, which is neglected in the DMM, but implicitly included in 

the HGCM.

Two other results are shown in Fig. 5.2.10. One is the plot of the local 

fundamental mode at the output facet. The difference between the latter field and the 

HGCM computed field propagating from the narrow to the broad output facet shows 

that the original input fundamental mode couples significantly into higher order local 

modes even for a quite slowly varying taper.

The second plot reproduces the field profile to be expected at z = L if the same 

initial field is diffracting into the homogeneous half-space defined by n2. This result 

establishes that the weak but finite dielectric step, An = ni -  n2, of the taper does 

affect the field shape.
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Fig. 5.2.10: Optical field propagating in a tapered structure, the input field is the (local) 

fundamental mode at z = 0 (ni = 3.42, n2 = 3.4187, 2a0 = 5pm, 2am, = 70pm, L = 500pm, Xo = 

1.55pm): solid line: output field calculated with the HGCM (M = 99, five longitudinal sections 

were used with w0 = 0.9 - 1.2 - 1.8 - 2.6 - 3.0pm, respectively); broken-dotted line: output field 

calculated with the DMM; dotted line: (local) fundamental mode at the broad end of the taper; 

broken line: free-space diffraction of the same initial field (as in Fig. 5.2.1).

2.6 Parabolic structures

There is considerable interest in optoelectronics to improve the device 

characteristics in order to maximise the coupling between components that have 

different sizes or shapes, e.g., coupling semiconductor lasers to slab waveguides or to 

optical fibres. Tapered structures are thus very suited to this purpose; however, to 

minimise the radiation losses and the coupling to higher order (local) modes, some 

requirements need to be satisfied. In this respect various tapering profiles have been 

investigated as discussed below.

In [11] the optimal tapering shape is sought to minimise radiation power losses 

along the length of the device. It is proved therein that adiabatic operation for mode 

transformers can be achieved when the lowest order local normal mode propagates 

through the structure with minimum coupling to the higher order local modes. An
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‘adiabaticity’ criterion is thus given, based on the consideration that the ‘spreading of 

the waveguide width’ should be slower than the diffraction spreading of the lowest 

order mode, [11].

Theoretical modelling shows that mode conversion to higher order modes 

increases in structures with rapidly changing taper widths, and hence longer (slowly 

varying) tapers may be used to reduce this problem. However, practical difficulties 

may be encountered in the realisation of long tapers; shorter tapers are often desired 

for many applications, for example in integrated optics.

It has been demonstrated, [11], that parabolic tapers satisfy the adiabaticity 

criterion, such that it is possible to retain almost the total power in the fundamental 

local mode all along the length of the taper. Parabolic structures of the type shown in 

Fig. 5.2.11 may thus be better suited for applications where mode size increase is 

required but without conversion to higher order modes.

>< L

Fig. 5.2.11: Parabolic taper, the width of the taper varies along z as a2(z) = a20 + pz, where p is 

the tapering param eter (2a0 is the input width, 2ar,n is the output width, L is the length of the 

taper).

The HGCM is applied to solve for field propagation in parabolic tapers. Two 

types of comparison are possible. First the results calculated with the HGCM may be 

compared with those calculated by the DMM, [2], Second, the results calculated with 

the HGCM for parabolic tapers can be compared with those obtained for 

corresponding linear tapers, i.e., of the same dimensions.

Two sets of results are shown in Fig. 5.2.12. The results obtained for the 

parabolic taper are shown in Fig. 5.2.12 a), while those obtained for the
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corresponding linear taper are plotted in Fig. 5.2.12 b). In particular, in each set three 

curves are shown, of which two have been computed with the HGCM (one using a 

piecewise constant, the other a continuous supergaussian refractive index profile), 

while the third has been calculated with the DMM.

From the comparison of Fig. 5.2.12 a) and b) it can be observed that

i) as expected, the use of a SG refractive index profile greatly improves the quality 

of the results calculated with the HGCM;

ii) the near field calculated for the linear and the parabolic structures are 

significantly different;

iii) each set of results calculated with the HGCM is in good agreement with the 

corresponding set calculated with the DMM.

The corresponding phase fronts (at the output facet) are also shown in Fig. 5.2.13 

a) and b), form which it emerges that a characteristic feature of parabolic tapers is to 

produce a flatter phase front (compared to the linear taper), which yields a narrower 

far field, Fig. 5.2.14 a) and b).
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Fig. 5.2.12: Field propagation in a) parabolic and b) linear tapers (2a0 = 3pm, 

2ar,„ = 20pm, L = 500pm, nj = 3.33, n2 = 3.32, \  = 0.86pm), solid line: SG (q = 16); 

dotted line: ST broken line: DMM.

Parameters used for the HGCM (M = 99, Az = 5pm): parabolic taper: 5 

longitudinal sections w„ = 0.3 - 0.5 - 0.7 - 0.9 - 1.1 pm, with = 40 - 80 - 120 - 

200 - 500 pm; linear taper: 3 longitudinal sections w0 = 0.9 - 1.1 - 1.3 pm, with 

zsection = 100 - 300 - 500 pm.
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Fig. 5.2.13: Phase front at the output facet of a) parabolic, b) linear taper: solid line: SG 

(q = 16); dotted line: ST Linear taper: broken line: DMM. (Parameters in Fig. 5.2.12.)
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Fig. 5.2.14: Far field from the output facet of a) parabolic, b) linear taper: solid line: SG 

(q = 16); dotted line: ST Linear taper: broken line: DMM. (Parameters in Fig. 5.2.12.)

2.7 Sensitivity to wG and M

As with the solution of the eigenvalue problems, the solution of initial value 

problems by the HGCM are also improved by the use of a sharp, but continuous 

dielectric distribution [Section 1 in this chapter]. Hence it is expected that the choice 

of the width parameter of the HG expansion functions, wD, is decided primarily by the 

extent of the structure to be modelled.

The effect of the number of expansion terms, M (which in the HGCM corresponds 

to the number of collocation points) on the results calculated with the HGCM is
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studied in this section in the context of the initial value problem. Hence field 

propagation in a linear taper is solved here with the HGCM considering M as a 

variable parameter. Both the piecewise constant (ST) and the supergaussian (SG) 

refractive index distributions have been used in the calculations. The results are shown 

in Fig. 5.2.15 and Fig. 5.2.16 for the ST and the SG dielectric profile, respectively. 

Different longitudinal sections, each characterised by a particular value of wG, have 

been used in the simulations. The wQ values have been chosen so that with varying M 

the same computational window is used in all cases.

From the comparison of Fig. 5.2.15 and Fig. 5.2.16 it is evident that convergence 

is not easily achieved when a piecewise constant refractive index profile is used in the 

HGCM calculations. On the other hand, by using a continuous refractive index profile 

the accuracy of the HGCM increases even when using a small number of collocation 

points.

1.0

0 .9  —

0.8

0 .7  —

0.6 —3
a)

0 .5  —

c 0 .4  —

0 .3  —

0.2  —

0.1 —

0.0

-1 2  - 1 0 - 8 - 6 - 4 -2 0 2 4 6 8 10 12
x(Mm)

Fig. 5.2.15: Convergence properties of the HGCM with respect to the param eter M, using 

a ST refractive index distribution: dotted line input field, broken-dotted line: M = 41, 

dotted line: M = 71, solid line: M = 99. Parameters for HGCM: M = 99, 3 longitudinal 

sections with zsectj0n = 100 - 300 - 500 pm, Az = 5pm (for M = 41: wc = 0.7 - 1.2 - 1.8pm; for 

M = 71: w0 = 0.7 - 1.2 - 1.5pm; for M = 99: wQ = 0.4 - 0.9 - 1.2pm). Structure as in Fig. 

5.2.12.
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Fig. 5.2.16: Convergence properties of the HGCM with respect to the 

param eter M, using a SG refractive index distribution: dotted line input Field, 

broken-dotted line M = 41, dotted line M = 71, solid line M = 99.

(Parameters in Fig. 5.2.17.)

For the same structure, it has been observed that it is possible to use a longitudinal 

step as large as Az = 10pm without noting changes in the results calculated with the 

HGCM (typically Az = 5pm is used in this thesis); for larger Az the accuracy 

decreases.

Tab. 5.2.1 compares the computation times needed for the two methods, HGCM 

and DMM, to solve for the field propagation problem discussed above. It is clear that 

the comparison is not completely justified since the DMM only takes into account 

bound modes, while the HGCM is a total field analysis. It is noted that the computing 

time needed for the HGCM increases approximately as M2.
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Tab. 5.2.1: Comparison of the computing time needed for HGCM 

and DMM to solve initial value problems. In particular the CPU 

time (minutes: seconds) is given as a function of M for the HGCM.

HGCM DMM

M CPU CPU

41 0:36 0:30

51 1:00

61 1:30

71 2:41

81 4:14

91 6:13

99 9:16

Sum mary

The HGCM has been demonstrated to be most suited to solve for a variety of field 

problems in dielectric structures. The following conclusions can be drawn from the 

analysis of the results presented in this chapter:

i) the HGCM can be used to solve both eigenvalue and initial value problems for 

fields in open structures;

ii) the eigenvalue problem for any real refractive index distribution may be 

accurately solved by the HGCM. Complex refractive index profiles may also be solved 

with the HGCM with satisfactory accuracy (for small imaginary parts of the refractive 

index in the core layer);

iii) the use of a continuously varying refractive index distribution in the 

calculations dramatically increases the accuracy of the HGCM. It has been observed 

that by using analytic representations of the refractive index profile the choice of w0 

may be left almost arbitrary;

iv) the HGCM has been used for solving field propagation in the form of an initial 

value problem. In most of the cases analysed the results produced with the HGCM are 

in good agreement with those obtained from other methods of solution. The HGCM 

has been found to be particularly useful in the solution of problems involving radiation 

(e.g., diffraction in homogeneous media, propagation across step discontinuities). The 

consideration of the total field expressed on the basis of the complete HG set is
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regarded as an advantage if the HGCM is to be compared with a solution method 

based on the commonly used mode matching method since it is expected that the 

inclusion of the radiation modes in the field matching complicates the formalism.
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A ppendix 5.1 

V ariable transform ation  in the collocation m ethod

In some cases it is convenient to redistribute the collocation points along the 

transverse domain in order to increase the density of sampling points. This can be 

achieved by means of a transformation of variable in the collocation method, [6].

Consider a variable transformation of the form x = g(s). Two conditions must be 

satisfied in order to apply it to the collocation method: i) g continuous, with first and 

second derivatives also continuous on the transverse range, and ii) g'(s) > 0 . The field 

in the dielectric structure is thus written as

F(x, z) = Vg'(s) E(s, z) (A5.1 - 1)

Substituting (A5.1 - 1) into the scalar wave equation (1.4.2), obtain the differential 

equation for E(s,z)

3*E(s, z) + Cj (s)3 *E(s, z )  + [C2 (s) + k*e(s, z)]E(s, z) = 0 (A5.1 -2 )

/ X ,  ^  x 2g"'(s)g'(s)-3(g"(s))a
with C; (s) = (g (s)) and C2(s) = ---------  4---------- .

4(g (s))

Equation (A5.1 - 2) is now solved using the collocation method with respect to

the variable s. This means that it is now E(s,z) to be expanded in terms of the HG

basis set

E(s, z) = Bk (z)fk (s) (A5.1 -3)
k=l

with Bk(z) the z-dependent expansion coefficients and fk(s) the HG functions, 

equation (2.2.4). The total field at the redistributed collocation points, { * i} i=1 2 , is

thus obtained using equation (A5.1 - 1).
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Chapter 6 

The carrier diffusion equation

One of the main directions of the research work presented in this thesis has been 

to achieve a compact scheme for the modelling of semiconductor optical devices. The 

work presented in the chapters so far has concentrated on the electromagnetic 

(optical) field aspects of the problem by developing the HGCM for the analysis of 

field propagation particularly in dielectric structures that may be considered as 

supporting weakly diffracting signals. Indeed the HGCM has been used to solve for 

media in which gain or loss is introduced formally through a complex dielectric 

distribution. However, in many practical semiconductor devices the optical gain is 

produced by creating an population inversion through injected carriers.

Hence, for a complete and consistent model of the device it is not only the field 

profile but also the carrier distribution that must be analysed. The carrier distribution 

is obtained by solving the carrier diffusion equation which is typically nonlinear 

because of the presence of explicit nonlinear effects, such as bimolecular and Auger 

recombination. In active semiconductor optical devices the situation is further 

complicated by the possible strong, implicit nonlinearities induced by stimulated 

recombination. The need for a numerical solution is thus evident

The contents of this chapter will demonstrate that a novel approach of using 

essentially the HGCM to solve for the nonlinear diffusion equation provides for a very 

convenient and efficient technique for computing the carrier distribution.

The formalism of the HGCM for the diffusion equation is presented in Section 1. 

The details of the collocation method used to numerically solve the diffusion equation 

are illustrated in Section 2. Results from the HGCM are thus presented in Section 3 

and compared with those from other numerical techniques. In particular, one set of 

results refer to the linear form of the diffusion equation which can be solved 

analytically and hence HGCM numerically computed results for these cases are 

compared with the analytic solutions. Other results referring to the nonlinear diffusion 

equation are compared with those from the Jacobi-Tridiagonal method (JTM) 

described in [1] (in the same reference the JTM is compared with two other numerical 

methods of solution). Numerical aspects concerning the sensitivity of the HGCM on
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the HG width parameter, wc, and on the number of collocation points, M, in solving 

the diffusion equation are discussed in Section 4.

1. Formulation

A schematic of a typical tapered geometry semiconductor device is shown in Fig. 

6.1.1. In the present context the tapered geometry merely defines the region of 

current injection, but the geometry is not fundamental to the method of solution. It is 

assumed that the taper is slowly varying along the longitudinal (z) direction, hence the 

carrier diffusion along z is neglected so that only diffusion along the transverse (x) 

axis is analysed in the present formulation.

Note that the tapered contact width varies considerably along the length, so 

diffusion also has considerably different effects with longitudinal position on the 

carrier distribution. For example, in the narrower part of the taper the carrier profile 

tends to be Gaussian-like, while at the wider end it is almost unaffected by diffusion, 

thereby resulting in a flat-top profile. It is thus required that any solution scheme 

produce accurate results for the carrier distribution over the full range of widths of a 

typical tapered geometry device. It is shown in this chapter that the HGCM fulfils this 

role most satisfactorily.

ribwidth

a) b)

Fig. 6.1.1: Tapered geometry device: a) top view: the shaded region defines the contact

for current injection; b) front view: d is the thickness of the active layer.

At any longitudinal position, z, the (rate) carrier diffusion equation, [2], [3] is

D d^ (? ;Z) -  Bt [n„ + N(x;z)]N(x;z) -  yN3 (x; z) -  g(x;z)P(x;z) + = 0 (6.1.1)
dx qd
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where z is considered as a parameter, hence the notation v(x;z) for any variable v(x,z) 

in the equation, D is the diffusion coefficient, Br the bimolecular recombination 

constant, nQ the doping density, y  the Auger recombination coefficient, g(x;z) the local 

gain profile, P(x;z) the photon density distribution, J(x;z) the injection current profile, 

q the electronic charge, d the thickness of the active layer (along the y-direction) and 

N(x;z) the unknown carrier distribution.

Without satisfying self-consistency the stimulated emission term, g(x;z)P(x;z), 

does not introduce any nonlinearities in the diffusion equation, and hence it is 

neglected in the present analysis. Hence, the diffusion equation to be solved here is

D d^N|x) _ B [ N(x)jN(x)_ yN3(x) + M  = 0 (6.1.2)
dx qd

where, for brevity, all the z dependent variables v(x;z) have been written as v(x) since 

z is considered as a parameter in the present context.

It is proposed and demonstrated in this chapter that equation (6.1.2) may be 

conveniently solved using essentially the same HGCM formalism that has already been 

applied to solve the optical field equation, [Chapter 4]. Thus, the carrier profile, N(x), 

is expanded in terms of a complete set of (orthogonal) basis functions, fk(x)

NW  = X akfk(x) (6.1.3)
k-0

with M = oo for the ideal case of a series expansion, and ak the (constant) expansion 

coefficients. The boundary conditions typically associated with equation (6.1.2) for 

structures that are unbounded along x are

N(x)—>0 and —> 0 for |x| —> (6.1.4)

For the cases of present interest the solution is in the vector space of square integrable 

functions which are defined by J|N(x)|2dx < ©o. The set of functions, {fk(x)}, used in

the expansion (6.1.3) then must be complete in the same functional space, [4].

Based on features described and discussed in Chapter 4, it has been found most 

convenient to choose the HG functions as the basis set, (fk(x)}, equation (2.2.4), to 

solve also for equation (6.1.2). This choice seems very appropriate because the HG 

functions form a complete set in the functional space of interest and also because they 

individually satisfy the boundary conditions (6.1.4) associated with equation (6.1.2).
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Hence the boundary conditions (6.1.4) do not appear explicitly in the subsequent 

formulation since they are built into the solution as expressed in (6.1.3). A further 

advantage in using the HG set is that the resulting scheme naturally leads to the use of 

the numerical collocation method. This aspect has already been discussed in Chapter 4 

and will be re-iterated in the next section in the context of the diffusion equation.

The next step is to substitute (6.1.3) into equation (6.1.2). However, the quadratic 

and cubic nonlinear terms pose difficulties in the proposed method for solving (6.1.2). 

It is therefore necessary to approximate equation (6.1.2) to an equivalent linearised 

form and to thereby solve the nonlinear diffusion equation by making use of an 

iterative procedure. Equation (6.1.2) is thus written in the following form

D d - B ,[n 0 + N ( x )1n ( x ) - yN 2 ( x ) N ( x )  + —  = 0 (6.1.5)
dx L J qd

a

where the carrier profile calculated in the previous iteration, N(x), is now known.

By substituting (6.1.3) into equation (6.1.5), and using the properties of the HG 

basis functions, equations (2.2.6) and (2.2.7), a set of coupled equations in the 

unknown expansion coefficients, ak, of (6.1.3) are derived, Appendix 6.1. This format, 

however, need a laborious orthogonalisation process which typically requires 

extensive numerical integration and is considered to be computationally inefficient. In 

the present model the numerical integration is replaced by the collocation method, 

[Chapter 4], which is very efficient. Note, however, that the equivalence between the 

collocation method and the analytic orthogonalisation procedure can be demonstrated 

by the Gaussian Quadrature formula for the Hermite polynomials, [5], Appendix 6.1.

2. The H G CM  for the solution of the diffusion equation

Assume the solution of equation (6.1.5) to be expressible in the form (6.1.3). In 

practical cases, the number of expansion terms is finite, i.e., M < oo. Also, for a 

numerical solution, the independent variable (x) is discretised into a number M1 of 

points, Xi with i = 1, 2, ..., M, which are known as the collocation points. The 

discretisation process implies that the carrier profile, N(x), is sampled at the

1 It is convenient to choose the number of collocation points to correspond to the number of 
expansion terms used in (6.1.3), [Chapter 4, Section 4].
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collocation points, x*. The best choice of the collocation points is the set of M zeros

of the Hermite polynomial H ,
/  \ 

x

\ W o  J
when using the HG basis set in (6.1.3).

The expression for the carrier density at the collocation points,
M

N (xj)=  Z a kfk(x ,) (6.2.1)
k=0

may be interpreted as the i-th component of an M-dimensional vector N which thus

represents the carrier transverse profile sampled at the M collocation points. By

applying the collocation method, [Appendix 6.2], in conjunction with the HG function 

expansion technique, referred to as HGCM, equation (6.1.5) is reduced to an 

algebraic matrix equation in N of the type

TN + J  = 0 (6.2.2)

where T [defined in Appendix 6.2] is an invertible matrix which contains the carrier

profile N calculated in the previous iteration. The solution of (6.2.2) is used in the 

next iteration loop, and the iteration process is stopped when convergence is 

achieved, as schematically illustrated in Fig. 6.2.1.

N(x) = Nc(x)

\
->  solve equation (6.1.5)

i
N(x) = Nt(x) Nk(x)

t  I
no < —  test of convergence 

yes 

stop

Fig. 6.2.1: Iteration scheme for the solution of the nonlinear diffusion equation.
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3. Results

3.1 Linear diffusion equation - comparison with the analytic solution

Three examples of the linear form of the diffusion equation that admit analytic 

solutions are used to test the HGCM solution scheme. Results of solutions in finite 

regions, including surface recombination, solved with the HGCM are presented in the 

following subsections.

The linear diffusion equation considered in the present section is of the form

dx x qd

where x is the spontaneous recombination time constant (in s),

{JD Xj <  X <  x 2
is the injection current density profile, and the other

0 x < x x, x > x 2 

symbols are as defined in connection with equation (6.1.1).

3.1.1 Unbounded region

The boundary conditions that define the problem are

N(x) —» 0 and —» 0 for |x| —> ( 6 . 3 . 2 )

The analytic solution of (6.3.1) takes the form
x

B j e ^  x < xx

N(x) =« Cxe ^  + C2e * ^  + xx < x < x 2 (6.3.3)
qd

x > x

where Bi, Ci, C2, Di are constants which are determined by applying the continuity of 

dN(x)
N(x) and o f  at the points of discontinuity, x = xj and x = X2, [Appendix 6.3].

dx

The excellent agreement between the carrier profiles calculated with the HGCM and 

with the analytic solution is demonstrated in Fig. 6.3.1.

136



C hap ter 6 The carrie r diffusion equation
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Fig. 6.3.1: Linear diffusion equation in unbounded region (contact width = 4pm, D = 3.5 109 

pm2/s, t = 8ns, d = 0.1pm, J 0 = 3.0 10'5 A/pm2): solid line: HGCM (M = 99, w„ = 1.05pm), 

broken line: analytic solution.

3.1.2 Finite region

With reference to Fig. 6.3.3, the boundary conditions that have been chosen to be 

associated with the solution of the diffusion equation in a finite region are

N(xq) = Nq for xq = x0, x3 (6.3.4)

The analytic solution of (6.3.1) is

N(x) =

B1e ’/C' + B2e

C.e7^  + C .e s
qd

- x  X

D . e ^  + D 2e7Br

To! X <  X <  X,

X,  <  X <  X.

x 2 <  X <  x 3

(6.3.5)

where Bi, B2, Ci, C2, Di, D2 are constants determined by applying the specified

dN(x)
boundary conditions (6.3.4) and continuity of N(x) and of --------  at x = x2, x3,

dx

[Appendix 6.3]. The solution obtained with the HGCM reproduces the analytic 

solution with sufficient accuracy, as shown in Fig. 6.3.2.
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X (Mm)

Fig. 6.3.2: Linear diffusion equation solved in a finite region (D = 3.5 109 pm2/s, t = 8ns, 

d=0.1pm, Jo = 3.0 10~5 A/jutm2, contact width = 10pm, x<, = -7pm , N0 = 3.0 106pm-3 and 

x ^ p m ,  Ni = 1.0 106 pm-3): solid line: HGCM (M = 99, w0 = 1.05pm), broken line: analytic

3.1.3 Finite region with mixed boundary conditions

This case is the most complicated of the three. The mixed boundary conditions 

considered here are

constant parameter, and q = 0, 3. It can be recognised that boundary conditions of the 

type (6.3.6) are typically associated with surface recombination processes, [6].

In this case equation (6.3.1) may be conveniently solved with the HGCM if the 

physical domain is embedded in an unbounded open region, as shown in Fig. 6.3.3. 

Complications may be encountered due to the possibility of the derivative of N(x) 

being discontinuous (at material interfaces) depending on the specified boundary 

conditions, in which case the solution would not be appropriately described by the HG 

functions. Thus, the corresponding consistently posed problem of solving the diffusion 

equation in an unbounded region is examined and hence the boundary conditions 

(6.3.2) need to be considered. In the fictitious unbounded region, the two lateral 

regions in Fig. 6.3.3 are defined by the parameters Di, Xi and D3, x3, respectively, so 

that the solution and its derivative are continuous over the infinite range.

solution,

(6.3.6)

where vq (in ms *) is the (constant) surface recombination rate, Nq (in m 3) is a
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X  X X  Xo 1 2  3
Fig. 6.3.3: Structure used for the solution of the linear diffusion equation with mixed 

boundary conditions (case 3.1.3). The current injection is limited to the region (xx, x2). The 

region x < Xo is characterised by the parameters Dx, Tx; the region x*. < x < x3 by D2, t2; and 

the region x > x3 by D3, x3.

The analytic solution of (6.3.1) in this case takes the following form:
x - x

Ae7̂  + Be7B?T
X -X

X <  X 0

C e ^ + D e 7^
X - x

J.
qdD;

x 0 < x < x t

E e ^  + Fe7B’’’ +
X -X

Xj  < X < x2

Ge75™ + He75"
X -X

x2 < x < x3

IevsFr + j e ^ X > x3

with A, B, C, D, E, F, G, H, I, J, (Dili), (D3 T3 ) determined using the boundary 

conditions (6.3.2), the condition imposed by (6.3.6) at x = xQ, x3, and the continuity of 

dN(x)
N(x) and --------  at x = Xo, xx, x2, x3, [Appendix 6.3]. The very satisfactory

dx

comparison between the HGCM and the analytic solutions is shown in Fig. 6.3.4.

In all the cases investigated in this section it has been found that the solutions are 

sensitive to the choice w0. However, it has not been possible to establish any general 

criteria for evaluating the optimum value for wQ.
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Fig. 6.3.4: Linear diffusion equation solved in a finite region with mixed boundary conditions 

(D2= 3.5 109 pm2/s, T = 8ns, d = 0.1pm, J 0 = 3.0 10-5 A/pm2, contact = 19.5pm, v0 = 1.0 

10lopm/s, Xo = x3 = -13.5pm, N0 = N3 = 0pm~3): solid line: HGCM (M = 99, w0 = 1.0pm), 

broken line: analytic solution.
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3.2 Nonlinear diffusion equation - comparison with other methods of 

solution

In this section the HGCM is used to solve the nonlinear diffusion equation of the 

form of equation (6.1.5). The results from the HGCM are compared with those 

obtained with the JTM, [1], (in that reference the JTM is compared with two other 

numerical methods, namely the Perturbation Method and the Transfer-Matrix- 

Method).

First consider an example of (active) device of the type shown in Fig. 6.1.1, in 

which the Auger recombination is negligible, i.e., y  =  0 in equation (6.1.5). The carrier 

profiles at the narrow and at the wide end of the device, calculated with the HGCM 

and the JTM, are compared in Fig. 6.3.5. Results from the two methods are in 

excellent agreement.

Equation (6.1.5) is now solved including the Auger recombination term (y > 0). 

Fig. 6.3.6 shows the results calculated by the HGCM as compared with those 

obtained using the JTM. As in the previous case the results from the two different 

methods are in very good agreement.
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o o e+o

60 80-80 -60 -20 0 20 40
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Fig. 6.3.5: Solution of the nonlinear diffusion equation: solid line: HGCM (M = 99, 

vv„ = 1.5pm at narrow end, w0 = 6.0pm at broad end), broken line: JTM . (Contact 

width at narrow end = 4pm, at wide end = 100pm, D = 1.5 109 pm2/s, Br =102pm3/s, 

n0 = 104 pm-3, Jo = 3.0 1(T5 A/pm2, d = 0.17pm.)

%

I0
13

1.5E+6 —

1.0E+6 —
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Fig. 6.3.6: C arrier profile calculated including the effect of Auger 

recombination (y = 1.0 10-5 pm6s_1, other param eters as in Fig. 6.3.5, at 

narrow end): solid line: HGCM (M = 99, w0 = 1.5pm); broken line: JTM .

It is observed that the inclusion of the Auger recombination term increases the 

computational efforts required to find the self-consistent solution; in some cases (large 

y) it may reduce the stability of the algorithm so that convergence may not be 

achieved, which is also noted with other numerical methods. However, it has been 

found that by writing
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N^(x) = | ( n L ( x) + n L w ) (6.3.8)

in equation (6.1.5) for the k-th iteration, where Nk_2(x) and Nk_j(x) refer to the 

solutions obtained in the iteration k-2 and k-1, respectively, the HGCM iteration 

procedure converges faster to the required solution.

Since computing time is an important consideration, Tab. 6.3.1 tabulates the 

computation time taken by the HGCM and by other numerical methods, [1], for the 

solution of the carrier diffusion equation of the example considered in Fig. 6.3.5 and 

in Fig. 6.3.6 (with and without the Auger recombination term). It is seen that the 

HGCM compares very favourably with other methods of solution, Tab. 6.3.1, even if 

it appears to be marginally slower than the JTM.

Tab. 63.1: Summary of the CPU time (in seconds) needed by the HGCM and other methods of solution - 

the JTM, the perturbation method (PM), and the transfer matrix method (TMM):

HGCM JTM PM TMM
M (1) (2) (1) (2) (1) (2) (1) (2)
31 0.4 1.9 0.7 0.8 26.0 27.0 14.5
61 1.3 2.4
99 2.3 2.6

(1) without Auger recombination, (2) with Auger recombination

4. Sensitivity of the solution to M and w0

The accuracy of the proposed HGCM solution scheme is controlled by two 

parameters: the first is the number of expansion terms (M) used in equation (6.1.3), 

which also corresponds to the number of collocation points; and the second is the 

width parameter, Wo, defining the HG functions. The extent of the computational 

window is determined by both parameters. Keeping the number (M) of collocation 

points fixed, the wG parameter determines the extent of the transverse (x) range by 

altering the separation between the points; on the other hand, given a value for wQ, the 

number (M) of points determines the density of collocation points in that range.

The effect of wc is investigated by solving equation (6.1.5) with different w0 

values, but keeping the number of expansion terms constant (M = 99). The results are 

shown in Fig. 6.4.1. The solutions are qualitatively unaffected by wD; however if w0 is 

too small the computational range is not sufficient for describing the solution. From 

Fig. 6.4.1 it can also be noticed that the peak value of N(x) varies with wG, as shown
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in detail in Fig. 6.4.2, but the fluctuations are small - the maximum relative error in 

Fig. 6.4.2 is, in fact, less than 5% for a wide range of wG values.
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x  (M m )

Fig. 6.4.1: Effect of w0 parameter on the solution of the diffusion equation with the HGCM 

(M = 99): broken line: w0 = 0.5pm; broken-dotted line: w0 = 0.75pm; solid line: w0 = 2.0pm 

(contact width = 4pm, D = 1.5 109 pm2/s, Br = 102 pm3/s, n0 = 104 pm 3, J 0 = 3.0 10-5 A/pm2, 

d = 0.17 pm).
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Fig. 6.4.2: Peak value of the carrier distribution as a function of the width param eter used in 

the HGCM (M = 99). The variation is less than ±2%, (contact width = 4pm, D = 1.5 109 pm2/s, 

Br = 102 pm3/s, n0 = 104 pm'3, J 0 = 3.0 10 s A/pm2, d = 0.17 pm).
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The effect of the number of collocation points, M, on the solution of the carrier 

diffusion equation is next investigated. The carrier profiles shown in Fig. 6.4.3 have 

been calculated using three different values of M, but at the same time choosing the 

w0 value such that the x-range is unchanged. As expected, the accuracy of the 

solution determined with the HGCM increases with the number of expansion terms 

M. Also, as in the previous case, it is noted that the peak value of N(x) fluctuates with 

M; however, the fluctuations are of 5% relative error, as shown in Fig. 6.4.4.

2 .8 E + 6

2 .4 E + 6  —

2 .0 E + 6  —

8

8 .0 E + 5  —

4 .0 E + 5  —

0 .0 E + 0

-10 -8 -6 -4 -2 0 2 4 6 8 10
x(pm )

Fig. 6.4.3: C arrier profile calculated with the HGCM with varying M: 

broken line: M = 31; broken-dotted line: M = 61; solid line: M = 111 

(contact width = 4pm, D = 1.5 109 pm2/s, Br = 102 pm3/s, n0 = 104 pm-3, 

Jo = 3.0 10~5 A/pm2, d = 0.17 pm).
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Fig. 6.4.4: Dependence of the peak value of the carrier distribution 

profile with varying M. Note that the variation is less than ±2%

(contact width = 4pm, D = 1.5 109 pm2/s, Br = 102 pm3/s, n0 = 104 pnT3,

Jo = 3.0 1(T5 A/pm2, d = 0.17 pm).

However, a larger number of points also implies a larger computational effort. 

From Tab. 6.3.1 it is observed that the time needed for computation increases 

approximately as M2 and hence M should be chosen wisely by compromising between 

accuracy and CPU time.

From the above discussions it emerges that the solution of the nonlinear diffusion 

equation (6.1.5) is relatively insensidve to the two parameters, w0 and M, which may 

be qualitatively explained by the fact that the iterative scheme converges for the range 

of (device) parameters used in the calculations. This implies that in the self-consistent 

model described in the next chapter, the two parameters w0 and M can be chosen 

according to the requirements specified by the field equation.

Finally, as discussed in Section 1 of this chapter, since the effects of diffusion on 

the carriers profile varies according to the width of the contact of current injection the 

initial profile can be appropriately chosen according to the contact width, to be either 

a Gaussian or a top-hat distribution, in order to optimise on the iteration process. 

Although this process reduces the CPU time needed by the HGCM, it is noted that 

the HGCM converges to the required solution of the diffusion equation, independent 

of the initial carrier distribution, N0(x) in Fig. 6.2.1.

145



Chapter 6 The carrier diffusion equation

Summary

In this chapter the HGCM has been used to solve the carrier diffusion equation 

typically associated with (active) semiconductor optical devices. The HGCM 

formalism that has been used in connection with the wave equation can be used 

almost unchanged in the context of the diffusion equation.

Linear forms of the diffusion equation have been solved with the proposed HGCM 

scheme, and very good agreement with the analytic solutions has been achieved. 

Results calculated with the HGCM for the nonlinear diffusion equation have been 

compared with those from another method of solution, namely the Jacobi-Tridiagonal 

method - again, excellent agreement is observed. It is noted that the HGCM solution 

of the nonlinear diffusion equation is relatively insensitive to the choice of the w0 

parameter, which is qualitatively explained by the consideration that the nonlinear 

equation converges for the range of parameters used in the analysis.
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T he analytic procedure to solve the carrier diffusion equation with 

the H G  expansion  m ethod

Substituting the function expansion (6.1.3) into the diffusion equation (6.1.5) 

obtain the following equation:

D Z a^ ” (x) - { Br k + N ] - 'm 2} i a kfk(x) + ̂  = 0 (A6.1- 1)
k=l k=l qd

[for convenience wQ = 1 has been used]. Then, using equation (2.2.6), and

orthogonalising obtain

—D(2j + l)a j + D £  ak T  f /  (x)[x2 -  {b , [nc + n ] -  yN2 }]fk (x)dx +
t=‘ ~  _  (A6.1-2)

+ —  / f /W J o(x)dx = 0 
qd-~

The integrals in equation (A6.1 - 2) can be discretised using the Gaussian Quadrature 

formula (A4.3 - 2), [5], [Appendix 4.3]
+“  M . . 2
jF(x)dx = I F ( x i)e‘1hi [A4.3-2]

for any function F(x) in the appropriate functional space, where hj are the weight

2m+1m!V7tfunctions for the Hermite polynomials, h. = ------------=-, Xi the sampling points
[H^ (Xj )]

corresponding to the (M) roots of the Hermite polynomial HM(x).

Using (A4.3 - 2), equation (A6.1 - 2) is transformed into the following matrix 

equation

DGTHC2G A - DC iA - G TH[Br(noI + N i)+Y N 2]GA + G THJ = 0 (A6.1 - 3)

where G is the matrix of the HG functions evaluated at the sampling points, defined 

by G = {fj(xi),i,j = 1, 2 ,..., m };
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G t is the transpose of G ;

H the diagonal matrix of the weight functions, H = |diag^eXi h ^ i  = 1, 2, m | ;

A the vector of the (constant) unknown expansion coefficients, 

A = [a£;i = 1, 2 ,..., M];

the diagonal matrix defined by Cj = {diag(2i — l);i = 1, 2 ,..., M};

C2 the diagonal matrix defined by C2 = |diag(xf );i = 1, 2 ,..., m };

the diagonal matrix of the values of the carrier distribution sampled at the 

collocation points calculated in the previous iteration (or the initial guess at the 

beginning of the iteration process), = |diag^N(xi)^;i = 1, 2 ,..., m |  ;

N2 the diagonal matrix defined by N 2 = |diag(N2(xi));i = 1, 2 ,..., m |  ;

I the identity matrix;

J the vector of the current density profile sampled at the collocation points

J = j(Xi)- ^ ; i  = l, 2 ,..., M 
qd

and the other symbols are as defined in Section 2.

Since the HG functions are orthogonal and the sampling points are all distinct and 

real, the inverse of matrix G always exists, [Appendix 4.5], and can be calculated by

G_1= G t H [A4.5-11]

Using (A6.1 - 4) in (A6.1 - 3) obtain

PA + G"1 J = 0 (A 6.1-4)

where P = d (g -1C2G - C ^ - B rG-1 (nGI + N i^ G -y G _1N 2G is an invertible

matrix. Hence, in principle, the expansion coefficients used in (6.1.3) can be

calculated solving (A6.1 - 4).

Alternatively (A6.1 - 4) may be written in terms of N using the identity N = G A ,

and hence

TN + J  = 0 (A 6.1-5)

w ithT  = D ^ 2 -G C l G-’) - B [(n0I + Nl) -Y N 2.
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Equation (A6.1 - 5) can also be obtained by applying the collocation method 

directly to the diffusion equation, as presented in Appendix 6.2, establishing the 

correspondence between the orthogonalisation process described above and the 

collocation method.



Appendix 6.2 

The collocation method for solving the carrier diffusion equation

Substituting the HG expansion (6.1.3) into the diffusion equation (6.1.5), and 

writing the resulting differential equation at each collocation point obtain

D g a t fk (xi) -{ B ,[n <>+ N (xi)]+ i^ [2(xi)}N(xi) + ^ ^  = 0 (A 6.2-1)

Then making use of the Sturm-Liouville equation (2.2.6) for the HG functions 

[Chapter 2], equation (A6.2 -1 ) reduces to

DX a k{ (x ? -2 k - l ) - [ B r[no + N (xi)]+-yN2(x,)]}fk(xi) + ^  = 0 (A6.2-2 )

Equation (A6.2 - 2) may be conveniently written in the compact matrix form

D(C2G —GC,)A —B ^ n .I  + N ^ —YN 2N + J = 0 (A 6.2-3)

where G , A , Cx, C2, Nx, N 2, I , J  are as defined in Appendix 6.1, and the other

symbols are as defined in Section 2.

From equation (6.1.3) it follows that the (sampled) carrier profile can be written 

in the form of a matrix-vector product

N = GA (A 6.2-4)

Hence, since the matrix G can always be inverted [Appendix 4.5]

A = G_1N (A 6.2-5)

so that equation (A6.2 - 3) reduces to the following matrix equation in N:

TN + J  = 0 (A 6.2-6)

where T = D(C2 - G C ^ - B , ^  + n 0l ) - YN2.
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Appendix 6.3 

Linear diffusion equation: analytic solution

1. Unbounded region

The coefficients for the analytic solution
x

XJjC

N(x) = C,e'/5‘ + C ,e '/Bf + - ^  
qd

—x

X <  X,

Xj <  X <  x 2

are n  _ p-x2V«\ n
~~ 2a V r  2a

D , = —  with a = —  and b = - ^
1 2 a v ’ Dx DqdDx

X >  x .

C2 = —  
2 2a

2. Finite region with uniform boundary conditions

The coefficients for the analytic solution

N(x) =

- X  X

- X  + x

c,e7Br+ c 2e7B? +

VDt . TN _  V Dr

L l
qd

Dje’' + D 2e

x. < x < x,

xx < x < x 2

x 2 <  X <  x 3

are Cj =
- N ,  + -C h(V a[x2 - x 3])— Ch(Va[xQ - x j ^VT(x2-I

a  =

2Sh(x3Va)

N x —N oe v‘(_X0”X3) -^C h(V a[x2 - x 3] )+ ^ e ^ ("X0_X3)Ch(Va[xo - x j )

2Sh(x3Va)

b  + x !  4a T )    p  , _ b  —x i  VJTB. = C. + — e+x,v‘ , B2 = C2 + — e"x,v*, 
1 2a 2 2a

Dt = < :,+ — exjV\  D2 = C 2+ — e X2Vr
2a

1 J
with a = —  and b = —— 

Dx Dqd

2a

[6.3.3]

[6.3.5]
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c) finite region with mixed boundary conditions

The coefficients for the analytic solution

N(x) =

A e ^  + B e ^

CeVD,Tl + D e ',D’,‘
X

E e’/B̂  +  Fev“1‘’f i r  J.
qdD;

G e ^  +H e V̂2T2

x < x
xc < X <  Xj 

Xj <  X < x 2

x2 < X < x 3
X >  X,

are B = 0 ,1 = 0,

(xa-xj)7«7 >/a2 p(*j_xi)v*r p_x»v*r ■ ~̂~Vai p.(»i-2x>)y«7

F = VaT-V^T
e +  ' ■ ev

Va2 ~Vai
Va7+va7c-,.y^ 

V^T- V^T- v^r
- e

E  =  V a T + V ^ r c -x .V i7r  , b  7 ^ 7 + V ^ T c fr,-2x.W i7 _ b e -x1v ^ !

Va2 _ Va"r ^ Va2_~Vai" ^

1 1

C = E + — e~x' ^ ,  D = F + — eXl̂
2a. 2a,

G = E + — H = F + — e1̂  
2a2 2a2

A = ,

J = ,

|x„| D |x3| D

For brevity the following notation has been used: ak =

b2 = ^ .
D2qd

^ k Tk
with k = 1,

[6.3.7]

2, 3, and
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Chapter 7

The HGCM for the self-consistent solution of active 

semiconductor optical devices

Two computational schemes based on the HGCM have been developed in the 

previous chapters. The first has been used for the analysis of electromagnetic field 

propagation in (longitudinally non-uniform) optical structures. The second scheme, 

basically equivalent to the first, solves the carrier diffusion equation. In the present 

chapter these two HGCM schemes will be combined to derive a comprehensive model 

for the analysis of active optical devices.

A particular feature of active semiconductor optical devices is that the injected 

carriers (inversion population) induces changes in the refractive index distribution 

which, in turn, affect the optical field in the cavity via the diffusion equation. In terms 

of modelling, the field-carrier interaction can be accounted for by coupling the wave 

equation to the carrier diffusion equation through the stimulated recombination term. 

Ideally the two equations should be solved simultaneously to correctly describe the 

operation of active devices. However, the solution is typically achieved by an iteration 

procedure ensuring that the two equations are solved self-consistently. Particularly for 

the modelling of flared active devices the inherent longitudinal non-uniformity of the 

structure introduces additional complications especially in the analysis of the field 

distribution since analytic solutions are generally not possible.

This chapter is structured as follows: in Section 1 the background history of 

tapered devices is summarised The proposed self-consistent scheme based on the 

HGCM is presented in Section 2. The first set of results is discussed in Section 3 and 

refers to linearly tapered active devices. In particular in Section 3.1 travelling-wave 

amplifiers are modelled and the results obatined with the HGCM are compared with 

those calculated with another self-consistent model. In Section 3.2 the self-consistent 

analysis of laser devices is discussed, showing various stages of self-consistency 

obtained with the HGCM. Parabolic tapered lasers are thus modelled in Section 4, 

where results from the HGCM are compared with those obtained with another 

method of solution. Two examples of index- and gain-guided stripe lasers are
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considered in Section 5 as a further test of the modelling capabilities of the HGCM. 

Finally, in Section 6 two alternative self-consistent methods, one based on the BPM, 

the other on the mode matching method, are reviewed in the context of active devices 

to highlight the different features characterising those two models with respect to the 

HGCM presented in the previous sections.

Note that the results discussed in this chapter derive from a steady state analysis 

of active optical devices. Time dependent effects may significantly affect the operation 

of semiconductor active devices in some circumstances (e.g., filamentation, chaotic 

behaviour) and strictly they should be included, [1], [2]. The incorporation of time 

dependent effects in the HGCM model is in fact contemplated as future work, and it is 

suggested that the steady-state HGCM model presented here constitutes a convenient 

basis for the extension to a more sophisticated time and space dependent model for 

(tapered) active devices.

1. Tapered laser devices

The objective of achieving integrated optical devices and circuits explains the 

intense research effort invested in the analysis and improvement of semiconductor 

devices. Increasing interest has recently been directed towards the achievement of 

high power (semiconductor) optical sources for applications in optical pumping, laser 

printing, communications, etc. . The most immediate way of generating high output 

powers from ordinary (narrow) stripe lasers, Fig. 7.1.1 a), is to increase the injection 

current. However, apart from saturation effects, catastrophic optical damage may 

occur at the resonator facets because of the high optical power densities created in the 

laser cavity. To avoid such detrimental effects, arrays of ordinary narrow stripe lasers, 

Fig. 7.1.1 b), have been used which have shown stable optical characteristics even at 

high injection levels. However, the lasing mode of multi-stripe laser arrays is generally 

the fundamental (lowest loss) transverse eigenmode in which the individual emitters 

are in antiphase. This feature produces undesirable double lobed far-field patterns 

from multistripe lasers, [3]. For applications that require near diffraction limited 

beams (such as optical pumping, printing, medical imaging, sensing, ...) other 

solutions have to be adopted. An alternative approach is to increase the lateral 

dimension of ordinary stripe lasers to operate as broad area (BA) lasers, Fig. 7.1.1 c).
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In fact, increasing the volume of the lasing mode results in an increase of the laser 

output power. However, the drawback of BA lasers, is that they tend to excite 

multiple lateral modes. At or near threshold BA devices may operate as near to 

diffraction limited sources, [3], but at higher injection currents the far field patterns 

produced by BA lasers are typically unstable, irregular and broadening with increasing 

injection currents, [3], [4], [5], [6]. Further, BA lasers are subject to filamentation 

because of self-focusing [4], [6], [7], which makes the devices spatially incoherent at 

the output facet. Various configurations have been proposed to reduce such instability 

problems which are intrinsic to BA lasers, e.g., incorporation of unstable resonators, 

tailoring of the gain region, injection-locking, thermally induced or built-in lateral 

index tailoring, incorporation of an external cavity, [3] and references therein. 

However, although most of these configurations have been demonstrated to stabilise 

BA lasers and to enhance the control on the lateral-mode content of the output beam 

even at high output power levels, [3], the additional design and fabrication 

requirements are generally very demanding. Recently active devices have been 

designed with tapered geometries, [8], [9], [10], Fig. 7.1.1 d), to reduce catastrophic 

optical damage, filamentation and saturation effects. Tapered semiconductor devices, 

in fact, seem to provide structures capable of producing most of the beam 

characteristics needed for applications ranging from mode-converters [11] to high- 

power optical sources [8], [9], [10], [12], [13]. In addition to the desirable 

operational features, the advantages of easy fabrication and integration justify the 

efforts directed towards a full understanding of the properties of flared devices.

a  b c  d

Fig. 7.1.1: Towards tapered geometry devices: a) ordinary stripe laser, b) multi-stripe laser 

array, c) broad area laser, d) tapered geometry laser and bow-tie laser.

156



C hapter 7 The HGCM for the self-consistent solution of active sem iconductor optical devices

2. Active optical devices modelling: the HGCM formulation

The devices of interest are assumed to be fabricated from typical double 

heterostructure multilayer semiconductor laser material [Appendix 7.1]. With 

reference to Fig. 7.2.1, the dominant optical confinement effect is along the vertical 

(y) axis. Along the horizontal (x) direction the devices analysed in this thesis typically 

present a rib structure, Fig. 7.2.1 b), which not only reduces current spreading, but 

also leads to (weak) optical confinement along the x-axis. Thus, the definition of 

weakly guiding structures for the devices considered in the present context, refers to 

the analysis of the guiding properties in the (x,z) plane. It is convenient to consider 

the strong guiding effect separately by applying the effective dielectric constant 

method along the y-axis [Appendix 1.1], or by any other appropriate method, to 

reduce the three-dimensional analysis to that in two dimensions. Thus, with reference 

to Fig. 7.2.1 c), the transverse (x) and the longitudinal (z) axes are of interest.

JI
t

I
d

t
x

b)
L _________

t
2a

C)
Fig. 7.2.1: a) Tapered device, b) front view: d is the thickness of the active layer, c) top-plane 

view: 2a0and 2an„ are the widths of narrower and wider facets, respectively; L is the length of 

the device. The tapered shaded region also corresponds to the area of the metal contact.

a)
r i b w i d t h  

K -------------  X
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In the present formulation reference is made to the phenomenological approach, 

[14], typically used for the modelling of active semiconductor devices. The optical 

signal will be assumed to have a fixed free space wavelength, X<» corresponding to a 

2 k c
frequency coo = —— . Spontaneous emission is neglected entirely in the present 

formulation.

2.1 Field equation

In this thesis the HGCM is formulated as a scalar, total field analysis. Polarisation 

effects are thus neglected and hence the scalar field in the structure, F(x,z), may 

represent either the transverse component, Ex, of the electric field of the (TE)y type 

polarisation or the transverse magnetic component, Hx, of the (TM)y polarisation.

In addition to the nonlinearites produced by the field-carrier interaction, further 

complications in the model arise from the longitudinal non-uniformity of the tapered 

geometry devices. The formalism, however, may be simplified by considering paraxial 

propagation for the counter propagating fields in the cavity. Hence, as discussed in 

Chapter 1, Section 7, the total field in the dielectric structure is written as

F(x, z) = F+ (x, z) + F_ (x, z) = f+ (x, z)e-ipz + f_ (x, z)e+ipz (7.2.1) 

F+(x, z) and F_(x, z) are the forward and reverse counter propagating fields, 

respectively, and f+(x, z) and f_(x, z) are the corresponding slowly varying envelopes, 

and p is a suitably chosen constant to take account of the fast phase change of the 

fields along z, [Chapter 1, Section 6.2 and Section 7]. In the present formulation the 

field equations to be solved are

32f+ (x, z) -  2ip3zf+ (x, z) + (k2e(x, z) -  p2 )f+ (x, z) = 0 (7.2.2)

for the forward travelling wave, and

32f_ (x, z) + 2ip5zf_ (x, z) + (k2e(x, z) -  p2 )f_ (x, z) = 0 (7.2.3)

for the reverse travelling wave. Using the paraxial wave equation in both directions, 

the forward and the reverse travelling waves are treated separately. The resulting 

approximate analysis that uses equations (7.2.2) and (7.2.3) considerably reduces the 

complications associated with the full analysis (7.2.1). However in the present 

formulation the coupling between the forward and the reverse travelling field is still
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retained since account is taken for the boundary conditions imposed by the structure 

and for the complex refractive index distribution in the active medium which changes 

self-consistently with the optical field in the structure, as discussed in the following 

sections.

In the modelling of a laser device the facet reflectivities provide the boundary 

condition for the z axis,

F+(x,z = 0) = V rT F _ ( x , z  = 0) (7.2.4)

and

F. (x, z = L) = 7R 7  F+ (x, z = L) (7.2.5)

where Ri and R2 are the facet (intensity) reflectivity coefficients of the facets of the 

devices extending between 0 < z < L.

2.2 Com plex refractive index distribution

In both equations (7.2.2) and (7.2.3), e(x, z) = n2(x, z, N(x, z)) = (nR + ini)2 is the 

built-in and carrier dependent complex dielectric distribution. The explicit dependence 

of nR and ni on the carrier density and on the field intensity is discussed below, [14]. 

The complex refractive index in the device is assumed to be of the following form:

n(x, z, N) = nb(x, z) + AnR(x, z, N) + /ni(x,z) + /Ani(x, z, N) (7.2.6)

where nb(x, z) is the built-in refractive index of the structure, ni(x,z) represents the 

scattering losses and the free carriers absorption losses

n, (x, z) = _ a «c + F g . + (1~ r .)“ c. (7 2 ?)
2kc

where a*; is the scattering loss coefficient (in mT1), a* and Oc are the loss coefficients

(in m_1) due to the free carriers in active and cladding layer respectively, and T is the

vertical confinement factor along the y-axis, Fig. 7.2.1 b).

AnR(x, z, N) and Ani(x, z, N) in (7.2.6) denote the changes due to the injected 

carriers and the optical field in the device. In particular, AnR accounts for changes in 

the (real part) refractive index due to the injected carriers:

AnR(x, z, N) = -Tac N(x, z) (7.2.8)

with ac the constant differential parameter and N(x, z) the injected carrier distribution.
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The last term Ani of equation (7.2.6) accounts for variations in the gain due to the 

carriers injected in the device,

A n,(x ,z,N )=rg (_X’Z’N) (7.2.9)

where g(x, z, N) is the material (local) gain (in m-1) in the active layer of the device. 

In the literature the changes in the (complex) refractive index due to the injected 

carriers are often given in the following compact form, which is equivalent to 

equations (7.2.7) and (7.2.9),

An = An„ + (An, = r(-(5, + (7.2.10)

where pa is known as the antiguiding factor, [14].

In the present model saturation effects (gain nonlinearity/gain compression, [15]) 

are included by using the following expression for the material gain

g(x’z-N)=7^fetS  ( 7 -2 1 1 )

S «

with the unsaturated local gain, gu, is assumed to be linearly dependent on the carrier 

density, i.e.,

g„(x, z, N) = a(N(x, z) -  N,r) (7.2.12)

a  is the gain coefficient (in m2), N* the carrier density needed to achieve transparency 

(in m-3); S** is the saturation power density (in Wm"2), and

Stv( x , z ) Q f +(x,z)|2 +|f_(x,z)|2) the optical power density (in Wm"2) weighted 

averaged across the vertical (y) direction, [Appendix 7.2].

2.3 Carrier diffusion equation

The phenomenological approach used in the previous section to establish the 

dependence of the refractive index on the carriers in the cavity, is completed by 

relating the carrier density to the pump parameter, which is the injection current 

density, J, [14]. This is achieved by including in the carrier diffusion equation all the 

(radiative and non radiative) recombination processes that modify the carrier 

concentration.
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The devices of interest are assumed to be slowly varying along the z-axis, so that 

diffusion along the longitudinal (z) direction may be neglected. Hence the (time- 

independent) nonlinear diffusion equation, [Chapter 6, Section 1], becomes

D " 3x*~~ ~~ Br tN X̂’ + n° 1N(X’z) ”  ̂  (x’ z) ”  g(x’ Z)S*V (x’z) + ̂  = 0

(7.2.13)

where D is the diffusion coefficient (in m2s-1); Br the spontaneous recombination 

constant (in m3s-1); y the Auger recombination coefficient(in m6s_1); g(x, z) the local 

gain as defined in equation (7.2.10); Sav(x, z) the photon density averaged across the 

active layer (in n f V 1) [Appendix 7.2]; no the doping density (in m"3); Jc the injection 

current density (in Am-2); d the active layer thickness (in m); q the magnitude of the 

electronic charge (in C).

Considering z as a parameter and the linearisation process discussed in Chapter 6, 

Section 1, equation (7.2.13) may be rewritten as

D d *5X’Z) - B r In ( x ; z) +  n D 1n ( x ; z)- yN2(x;z)N(x;z)- g(x;z)S,v(x;z) + ~ X*Ẑ  = 0 
dx L J qd

(7.2.14)
A

where N(x,z) represents the carrier profile obtained in the previous iteration.

The boundary conditions associated with equation (7.2.14) follow from the 

assumption of infinite lateral extent of the device, i.e., at any z

N(x;z) —> 0 and dN(x;z) -> 0 for Ixl -> (7.2.15)
dx

The iteration scheme used to self-consistendy solve the system of coupled equations 

for the field and the carrier distribution is illustrated in the next section.

2.4 Self-consistent method of solution

The success of the HGCM to solve the differential equations for the field, (7.2.2) 

and (7.2.3), and the carrier distribution, (7.2.14), have been presented in Chapters 4 

and 6. In the present discussion, the two computational schemes are combined in an 

iteration procedure to obtain a self-consistent numerical method that models active 

semiconductor optical devices.
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The solutions of interest, f+(x,z), f_(x,z) and N(x,z), are square integrable 

functions, and hence they may be individually represented in terms of a suitable 

(complete) set of basis functions. Since the overall self-consistent model is based on 

the HGCM, it is convenient to use the same HG basis set to expand both the field and 

the carrier profile, as discussed in Chapter 4 and Chapter 6. Hence, the forward (+) 

and reverse (-) travelling fields are expressed as

f±(x.z)= 2 am(z)h,
m=0

r \
X

and the carrier density distribution as

M
N(x, z) = £ b m (z)ht

m=0

VW o J

r \  x

(7.2.16)

VW o J
(7.2.17)

where h.

C =

x
VW o /

1

= CmH_nt m

r \
X

VW o J
exp

f  2 \  —X

v wo y
are the HG basis functions, with

the normalising constant, wQ the (constant) width parameter;
V7t2mm! Vw

a±m(z) and bm(z) are the expansion coefficients for the field and the carrier profile, 

respectively.

The transverse axis is discretised by making use of the collocation method 

[Chapter 4, Section 4; and Chapter 6, Section 2]. The same discretisation is used for 

both the field and the carrier equations, and hence the same w0 and the same number 

of expansion terms is considered in (7.2.16) and (7.2.17).

By substitution of (7.2.16) and (7.2.17) into equations (7.2.4), (7.2.5) and

(7.2.14), respectively, two sets of coupled ordinary equations are derived: one is for 

the expansion coefficients of the field, a±m(z), [Chapter 4] and the other for the 

expansion coefficients of the carrier density profile, bm(z), [Chapter 6].

The sets of coupled equations for the field are

dftd(̂ ’Z) = + ̂  (S(z) -  pJ l)f ± (x, z) (7.2.18)

where m = 1, 2 ,..., M, f ± = {f±(x.,z), i = 1, 2 ,..., M}, 1 the unity matrix and S(z)

as defined in Appendix 4.5. For the carrier profile

N = - T -1 J (7.2.19)
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with N = {N(Xi), i = 1, 2,...,  M} and T the invertible matrix as defined in Appendix 

6.2.

2.5 Num erical details

The convenient matrix form of the resulting sets of equations makes it possible to 

use standard techniques of solutions. In the present fomiulation the Runge-Kutta 

variable step - variable order Adam’s method has been used to solve the set of first 

order differential equations for the field, (7.2.18).

Travelling-wave amplifiers and lasers are modelled using two different iterative 

schemes. In the former case the solution is locally (i.e., at each longitudinal step) self- 

consistent, Fig. 7.2.2 a), since the field travels along the structure just once.

In the laser model the field is propagated between the cavity mirrors until a 

stationary field configuration is achieved, which represents the cavity output mode (in 

the steady state analysis). The (complex) refractive index distribution in the medium 

changes as the field evolves. At each iteration the solution (optical intensity profile) is 

tested at the facets for convergence. The iteration scheme used in the present 

formulation for the laser, which is also known as Fox-Li method, [16], is given in the 

flow chart of Fig. 7.2.2 b). Note that in the diffusion equation (7.2.14) use is made of

Sav(x,z) «= (|f+(x,z)|2 +|f_(x,z)|2) which corresponds to the summation of the powers

of the forward travelling and the reverse travelling wave. With reference to Fig. 7.2.2 

b), during each single pass the power of the travelling field is stored so that in the next 

(single) pass S«v (x,z) can be calculated by retrieving the power carried by the field 

travelling in the opposite direction.
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current injection

1
solve diffusion equation with gp = 0

I
obtain e<0) (x,z)

1
propagate initial field in ev„(x,z)->
in one longitudinal step z, + Az 

1
convergence test on field intensity , . . . .°  1 ^ ___  solve diffusion equation, determine e ^ fx .z )

at z = Zj + Az

J ,yes
”  z = Zj + Az

a) travelling-wave amplifier

current injection

convergence test 
stop < yCS 00 field intensity 

at z = L

i
solve diffusion equation with gp = 0

I
obtain (x,z)

I
propagate initial field in e^/x.z) using (722 )

1
->  refleaion at z = L, obtain F_(x, z = L)

propagate F_(x,z) in e^ x ^ ) using (7.2.3)

1
solve diffusion equation, determine e^.^x.z)

l
refleaion at z = 0, obtain F+(x, z = 0)

I
propagate F+(x,z) in ^ ( x ^ )  using (7.2.2)

b)laser

Fig. 7.2.2: Schematic for the iteration procedure used with the self-consistent HGCM model for 

a) travelling-wave amplifiers, b) laser devices; (gp indicates the stimulated emission term in the 

carrier diffusion equation, (7.2.14); e ^ x ,  z) the complex dielectric distribution calculated in 

the j-th  iteration; Az the longitudinal step).
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3. Semiconductor am plifier and lasers: HGCM  computed results

Consider in the present section a linearly tapered geometry semiconductor 

structure as shown in Fig. 7.2.1 c), whose dimensions are specified in Tab. 7.3.1. In 

the following subsections the same structure will be used to model a travelling-wave 

flared amplifier, Sections 3.1, and a tapered laser, Section 3.2.

For the results presented in the following subsections the same parameters have 

been used with the HGCM, i.e., M = 99, wQ = 1.3pm, the step in the longitudinal 

direction Az = 5pm, unless otherwise specified.

Tab. 7.3.1: Parameters defining the tapered 

geometry structure of Fig. 7.2.1 c)

Param eter value

2a« 3pm

2<Ifin 20pm

L 500pm

ni 3.33

n2 3.325

Xo 0.86pm

3.1 Tapered geometry travelling-wave amplifier

The reflectivity at both facets of the travelling-wave amplifier is assumed to be 

zero, the other parameters are summarised in Tab. 7.3.2. Assuming the input optical 

field to be the fundamental mode of the local slab at z = 0, the solution is calculated 

with the HGCM using the self-consistent scheme of Fig. 7.2.2 a).

3.1.1 Comparison with the m ode m atching technique

The results obtained with the HGCM for the travelling-wave amplifier may be 

compared with those calculated with another method based on the local mode 

expansion technique, described in [17] (referred to as DMM). Tab 7.3.1 gives the 

parameters for the devices used for the comparison.

The near fields calculated with the two methods are plotted in Fig. 7.3.1. The 

agreement between the two computed field profiles is quite satisfactory.
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Whereas in the passive tapered structure the power carried by the field is 

conserved during propagation, in the travelling-wave amplifier it increases due to the 

gain introduced by the injected carriers, as shown in Fig. 7.3.2, where the gain rates 

obtained with the two methods are compared.

Note that the output power calculated with the HGCM is larger than that obtained 

with the DMM, which may be due to i) the fact that the discretisation procedures are 

different in the two methods, i.e., the structure simulated with the HGCM does not 

correspond to the one simulated with the DMM, ii) the approximation of neglecting 

the contributions of the radiation (local) modes in the DMM.

1.0

0 .9  —

0.8  —

0 .7  —

- j  0 .6  —

•S.
0 .5  —

V)
c0)
c  0 .4  —

0 .3  —

0.2  —

0.1 —

0.0

-15 -10 -5 0 5 10 1 5

x (Mm)

Fig. 7.3.1: Linearly tapered travelling-wave amplifier, near field (z = L): 

solid line: HGCM; broken line: DMM; dotted-broken line: input field; 

dotted line: fundamental mode at z = L (J0 = 1.5 1(T5 A/pm2, Pi = 5mW).
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3 5
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E
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1 5  —
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z(pm)

Fig. 7.3.2: Tapered amplifier: single pass gain for J 0 = 1.5 10'5 A/pm2, 

and input power Pi = 5mW: solid line: HGCM (Pout = 32mW); broken 

line: DMM (Po„t = 28mW).

Tab. 7.3.2: Parameters used for modelling the tapered geometry amplifier

parameter value

Ri 0

r 2 0

( + ) r 0.07307

a c 1.4 10"9 pm3

a 1.5 10“* pm2

N„ 106 pm'3

OCsc 0.0 pm-1

a . 1.0 10~3pm-1

parameter value

Ctd 0.25 10“3 p m '1

0.2 103 Wpm“2

D 3.5 109 pm2s_1

Br 1.4 102 pm3s_1

Y 0.0 pm V 1

n0 1.0 104pm '3

d 0.02 pm

q 1.6 10“19C

(+) The vertical confinement factor used in the calculations corresponds to 
typical Quantum Well active layer

In Fig. 7.3.3 the light-current characteristics for the amplifier obtained with the 

two methods are shown. As also observed with other methods of solution, [17], for 

high power densities it has been found that the HGCM iteration scheme may not reach 

convergence. It is observed that the output beam characteristics do not change with 

varying JQ or Pin, which can be explained by the fact that the effect of the field-carrier
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interaction on the refractive index is small in amplifiers made of Quantum Well 

material.

60

4 0  —

E

8.
8 20 —

O .OE+O 5 .0 E - 6  1 .0 E - 5  1 .5 E -5  2 .0 E -5  2 .5 E - 5  3 .0 E - 5

injection current d en sity  (A /pm 2)

Fig. 7.3.3: Light-current characteristics for the tapered 

geometry travelling wave-amplifier: broken line: Pj„ = lmW ; 

solid line: P|„ = 5mW; dotted line: DMM with P in = 5mW.

3.1.2 Forward and reverse travelling fields

The last set of results for the travelling-wave amplifier shows the difference 

between the forward and reverse travelling fields. This has been done in order to 

attain information on the iteration process that will be used in the laser model. The 

field shown in Fig. 7.3.4 a) has been obtained by solving equation (7.2.2), while that 

in Fig. 7.3.4 b) by solving equation (7.2.3). In Fig. 7.3.4 a) the solution of the 

diffusion equation shows the interesting feature that the inversion population density 

in the narrow region is below transparency, for the value of injection current used in 

the calculations, so that the optical field intensity initially reduces as it propagates 

along z because of absorption. Beyond the longitudinal position where the minimum 

intensity occurs the effect of diffusion is reduced so that the carrier density is now 

above transparency and hence the field intensity sees optical gain.

Note also that the initial field in Fig. 7.3.4 b) is the output field which has been 

obtained after forward propagation, but the scaling changes from Fig. 7.3.4 a) to Fig.
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7.3.4 b). The field obtained in Fig. 7.3.4 a) and b) are plotted for z = 0 in Fig. 7.3.5 to 

highlight the differences between the two profiles. The radiation appearing at the 

narrow end of the taper for backward propagation is expected to have a significant 

effect on the modelling of laser devices, as discussed in Section 3.2 of this Chapter.
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x(fun)

a) forward propagation

52 0.4 v

- 1 5
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Fig. 7.3.4: 

b) reverse

b) backward propagation 

Field propagation in the tapered travelling-wave amplifier: a) forward, 

travelling field (J0 = 1.0 10-5 A/pm2, Pin = O.lmW).
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Fig. 7.3.5: Field propagation in the tapered travelling-wave amplifier: comparison of the fields 

obtained in Fig. 7.3.4 a) and b) at z= 0.
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3.2 Linearly tapered laser

The device structure to be modelled in this subsection is shown in Fig. 7.2.1 c). 

The tapered laser modelled in this section is characterised by the same parameters 

used for the travelling-wave amplifier, and hence refer to Tab. 7.3.1 and Tab. 7.3.2 

for the device parameters. For computing laser operation the facet reflectivities have 

been assumed to be equal and taken to be Ri = R2 = 0.3.

In the various test cases discussed in the following paragraphs, unless otherwise 

stated, the injection current density is J0 = 1.5 10”5A/pm2, which corresponds to 

1.5x1*, with J* the threshold current density of the device of interest.

3.2.1 ac = 0, a  =0
The first set of results refers to a structure where the effect of the injected carries 

on both the gain and the refractive index has been suppressed, i.e., with reference to 

equations (7.2.8) and (7.2.12), ac = 0, a  =0. Also the scattering losses and the losses 

due to the free carriers, equation (7.2.7), are neglected in the present section and the 

reflectivity of the facets are assumed to be unity. This effectively corresponds to a 

passive device since both the gain and the losses are neglected.

The near field changes at each iteration; as an example, the near field obtained 

after 15 round-trip iterations is shown in Fig. 7.3.6, from which it can be noted that 

most of the field leaks out of the rib.

XM 2
The quantity / |F(x,L)| dx «= Power carried by the field at z = L, where (xi, xM)

*i

is the computational window used with the HGCM, remains constant at each iteration 

since all the losses and the gain factor have been set to zero, Fig. 7.3.7.
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Fig. 7.3.6: Near field for tapered laser at z = 0 (broken line), and at z = L (continuous line).
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Fig. 7.3.7: Output power after each iteration.
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3.2.2 ac = 0, a  *  0

The following results have been calculated for the case ac = 0, but a  * 0 (a  = 1.5 

10-8 pm2), in equations (7.2.8) and (7.2.12), respectively. This corresponds to the 

situation in which the refractive index is not affected by the presence of the injected 

carriers, but the carrier distribution is modified by the optical field in the device, as 

shown in Fig. 7.3.8.

At each iteration the near field profile, Fig. 7.3.9, does not change, apart from a 

scaling factor due to gain, which is an indication of stability in the field solution. It is 

in fact observed that the same solution is obtained even after starting with a different 

initial field in the iterative process. However, from Fig. 7.3.10 it can be seen that the 

output power seems to be reaching a stationary value after quite a large number of 

round trip iterations.
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Fig. 7.3.8: C arrier density distribution at the narrow and wide 

ends of the linearly tapered laser: broken line: in the absence of 
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Fig. 7.3.10: Output power obtained after each round-trip iteration.
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3.2.3 ac ^ 0, a  * 0
In this subsection the self-consistent solution is calculated for the case in which 

both ac and a , in equations (7.2.8) and (7.2.12), are finite, i.e., a  = 1.5 10"8 pm2 and 

ac = 1.4 10“9 pm3. Both the near field, Fig. 7.3.11, and the carrier density distribution, 

Fig. 7.3.12 a), are different from those presented in the previous cases, showing the 

effect of the change in refractive index due to the carriers (ac > 0), Fig. 7.3.12 b).

The output power obtained after each round trip iteration is plotted in Fig. 7.3.13 

for different injection currents. From Fig. 7.3.13 it can be seen that at relatively high 

injection currents an oscillatory pattern appears in the output power (in Fig. 7.3.13 

the scale has been explicitly chosen so that it will be possible to compare this result 

with the corresponding one obtained for a parabolic laser, which is discussed in 

Section 4). This oscillatory pattern in the power may be dependent on i) the accuracy 

achievable with the matrix formulation of the iterative scheme, or ii) the geometry of 

the structure. This point needs further investigation.
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Fig. 7.3.13: Tapered laser: output power obtained after each round-trip iteration: 
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3.2.4 ac ^ 0, a  *  0, M = 51, w0 = 1.8pm

The results presented in subsection 3.2.3 have been repeated using M = 51 and 

width parameter wQ = 1.8pm in the HGCM calculations. It is found that the results 

closely reproduce those obtained with M = 99 and w0= 1.3pm, the oscillations in the 

output power are also reproduced.

Comparing Fig. 7.3.14, where the near field obtained with M = 51 is shown, with 

Fig. 7.3.11 a) it is seen that the HGCM with M = 51 produces a self-consistent 

solution which is in qualitatively good agreement with the one obtained with M = 99, 

however, a larger number of collocation points provides a more detailed near field, 

which is desirable.
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Fig. 7.3.14: Near field for the tapered laser: broken line: near field at z = 0; 

continuous line: near field at z = L.
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3.2.5 a  ^ 0, ac ^ o, M = 99, wQ = 1.3pm, with deflectors

The last set of results of this section refer to the tapered laser discussed in the 

subsection 3.2.3 with an additional modification. It has been noted experimentally that 

the inclusion of deflectors at the narrow section of tapered lasers, [18], greatly 

improves the quality of the output beam characteristics. The deflectors in fact act as a 

spatial filter, preventing the field that leaks outside the rib (radiation) to be reflected 

and coupled back into the taper.

With reference to Fig. 7.3.15, preliminary results have been obtained representing 

the deflectors in the model modifying the facet reflectivity at z = 0 from R -  Ri Vx to

R = ! r , M 5 2 a o

to M ^ 2a.
(7.3.1)

Equation (7.3.1) has been thus replaced by the following (analytic) supergaussian 

distribution to avoid numerical inaccuracies due to the collocation method,

R(x) = Rj exp
.< 2 0 ,

(7.3.2)

Fig: 7.3.15: Model for the inclusion of deflectors (darker shaded region at z = 0) in the 

tapered laser; (xi, xM) transverse range specified by the collocation points; 2a0 is the narrower 

width of the taper.
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With this device model the power output converges with the iteration number, 

Fig. 7.3.16, thereby demonstrating that the presence of the deflectors improves the 

results, but it is found that the near field is significantly altered, Fig. 7.3.17. The 

‘noise’ appearing in the near field profile of Fig. 7.3.17 a) is, however, to be expected 

because of the truncation of the field due to the deflectors, equation (7.3.1); as 

demonstrated by the use of the supergaussian representation of the facet reflectivity, 

equation (7.3.2), Fig. 7.3.17 b).

Finally, note that the carrier distribution, Fig. 7.3.18, has changed as compared to 

that shown in Fig. 7.3.12 a). By comparing Fig. 7.3.18 with Fig. 7.3.12 a) it is 

possible to notice that the characteristic ‘hole-burning’ effect on the carriers has 

changed as a consequence of the change in the field intensity profile.
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Fig. 7.3.16: Power as a function of the iteration number for the tapered laser with deflectors.
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Fig. 7.3.17: Near field profile in tapered laser with deflectors using the representation of

a) equation (7.3.1), and b) equation (7.3.2): broken line: at z = 0; continuous line: at z = L; 

in b) dotted line: field after reflection at z = 0.
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continuous line: solution after reaching self-consistency.
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3.3 Discussion of the HGCM  results for linearly tapered active 

devices

In Section 3.1 results calculated with the HGCM for a flared travelling-wave 

amplifier are presented and compared with those produced with another self- 

consistent model, the DMM, showing satisfactory agreement.

In the series of results presented in Sections 3.2.1 to 3.2.3, the parameters ac and 

a  of equations (7.2.8) and (7.2.12), have been introduced one at a time to observe 

various stages of self-consistency of the HGCM scheme.

In Section 3.2.4 a smaller (M = 51) number of collocation points is used to model 

the linear laser obtaining good qualitative agreement with the results calculated with 

M = 99, Section 3.2.3. However, a larger number of collocation points is desirable to 

produce detailed field characteristics.

The characteristic feature of the HGCM scheme of including the contribution of 

the radiation (local) mode spectrum is found to be of fundamental importance in the 

modelling of semiconductor active optical devices. The results shown in Fig. 7.3.5 c) 

demonstrate that at the narrow end of the taper, Fig. 7.2.1 c), the field partially 

radiates outside the rib. It is thus argued that in the iterative process to find the self- 

consistent solution for lasers, the reflection of the ‘radiation tails’, which thus couples 

back into the tapered device, significantly affects the self-consistent field profile, as 

shown in Fig. 7.3.11 a).

The elimination of the ‘radiation tails* by the incorporation of a spatial filter in the 

model (Section 3.2.5), has the effect of changing the self-consistent field profile and, 

consequently, also the carrier density profile.

It is to be noted that the HGCM near threshold converges to a self-consistent 

solution, however at high injection current densities it may fail to reach convergence 

because with large power densities the effects of stimulated recombination are 

dominant and may destabilise the iterative scheme. This feature as also been noted in 

other numerical iterative schemes, [17].

No comparisons are shown in this section for linearly tapered lasers since it has 

not been possible to readily develop an alternative model for comparison. Note in this 

respect that the DMM, which has been used as a comparison for the travelling-wave 

amplifier, is not amenable for the self-consistent solution of linearly tapered lasers
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since the backward propagating higher order modes cut off as they approach the 

narrow end of the taper, and hence the description of the field is not sufficiently 

accurate.

4. Parabolically tapered laser

The need for achieving high power semiconductor lasers but at the same time with 

good far field characteristics for applications in medicine, communications, laser 

printing, etc., has lead to the development of parabolically tapered devices. It has been 

shown that parabolic taper lasers produce very desirable operational characteristics 

yielding moderately large output power, reduced optical power density at the broad 

facet and narrow far-fields (without a correcting lens) for output facet widths up to 

about 30 pm, [19]. In general the theoretical comparison between linear and parabolic 

devices indicates that in the latter structures the near field is wider, hence making a 

better use of the active semiconductor material; the far field is typically narrower and 

the low power density distributed inside the device reduces the potential for 

catastrophic optical damage of the facets. Similar features are also observed 

experimentally, [19].

In this respect the results calculated with the HGCM for the parabolic tapered 

laser can be compared with those discussed in the previous section for linearly tapered 

structures.

The first observation, by comparing Fig. 7.4.1 a) with Fig. 7.3.11 a) is that the 

field leaking out of the rib is significantly reduced in the parabolic structure. This is 

expected since it has been shown [20] that the coupling to the fundamental local mode 

is maximised by the parabolic rib profile. Further evidence that the reverse travelling 

field is contained almost entirely within the parabolic structure is given by observing 

that the inclusion of deflectors, as in the linear taper, Fig. 7.3.15, does not 

significantly change the overall field distribution in this case - unlike in the linear 

taper, [Section 3.2.5, Fig. 7.3.17, in this chapter]. The phase front, Fig. 7.4.1 b) and 

Fig. 7.3.11 b), also appears to be ‘flatter*, which, consequently produces a narrower 

far field profile, Fig. 7.4.1 c) and Fig. 7.3.11 c).

Also note that the power output is considerably higher than that achieved with the 

linear structure, as shown in Fig. 7.4.2 for three values of the injection current density.
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Further, by comparing Fig. 7.4.2 with Fig. 7.3.13, where the same scale has been 

used, the oscillation with iteration number in the output power that was observed in 

the modelling of the linear taper is now no longer observed.

To complete the picture the carrier density and the refractive index distributions 

produced in the parabolic device are shown in Fig. 7.4.3.

Because the DMM can be used to model the parabolic tapered laser (since the 

backward travelling fields are reasonably accountable in this case), a comparison of 

the results obtained with the DMM and with the HGCM is possible. The results 

calculated with the DMM using the same parameters are also presented in Fig. 7.4.1 

for the near field profile, the phase front at the wide facet and for the far field. The 

very good agreement between the two sets of results is most satisfying, considering 

that the two methods of analysis are quite different.
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Fig. 7.4.1 (continued): a) near field
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Fig. 7.4.2: Parabolically tapered laser: output power obtained after each round trip 
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5. Stripe laser

The objective of this section is to establish that the HGCM model can be used 

equally to analyse gain-guided devices as it has been to model index-guided devices. 

For this purpose a narrow stripe laser (with device parameters as in Tab. 7.5.1) is 

modelled, Fig. 7.5.1.

7R III!
y

...... ........ ................ ’'V*. Hj

<  L ------------------------- >

Fig. 7.5.1: Stripe laser geometry.

The device parameters listed in Tab. 7.5.1 are the same as in [21], [22] so that 

results from the HGCM may be compared with those presented in the above 

references. For the HGCM, consider M = 51 and wG = 1.8pm.

Tab. 7.5.1: Parameters used for modelling stripe lasers

parameter value

CUc 0.0 pm-1

a . 1.0 10_3pm 1

Otcl 0.25 10_3pm_l

5 fat 0.2 103 Wpm~2

D 1.0 109 pm2/s

Br 1.0 102 pm3/s

Y 0.0 pm6 /s

n0 1.0 104 pm-3

param eter value

2ao 5pm

L 250pm

ni 3.33

n2 3.33-A n

r 0.2517

ac 1.4 10-9 pm

a 1.3 10~* pm2

Ntr 106 pm'3

d 0.2 pm

To model the index-guided structure consider the shaded region in Fig. 7.5.1 as 

characterised by a different refractive index (ni > n2) such that the lateral index step is 

An = ni - n2 = 5.0 10-3 (which is sufficient to provide index-guiding). On the other
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hand, for the gain-guided, stripe laser assume the shaded region to be the metal 

contact in a homogeneous (ni = n2) medium, and hence An = 0.

The near fields obtained after simulating the index- and gain-guided situations 

with the HGCM are compared in Fig. 7.5.2. As discussed in [21], [22] the field is 

wider in the gain-guided structure, while in the index-guided stripe laser the near field 

is expected to be narrower.

As expected, [14], the current threshold increases for the gain-guided device, Fig. 

7.5.3 a), b). The refractive index distribution and the carrier density profile before and 

after achieving self-consistent solutions are shown in Fig. 7.5.4 a), b), c) and d) for 

the index- and the gain-guided devices, respectively. From Fig. 7.5.3 it is seen that An 

= 5.0 10-3 is sufficiently large to ensure index-guiding, thereby preventing the effect of 

the injected carriers to bleach the lateral index step.
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Fig. 7.5.2.: Near field: comparison between the gain-guided (broken line) 

and the index-guided stripe laser (continuous line).
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Fig. 7.5.3: Power calculated at each iteration for different injection current densities:

a) gain-guided device: (o) J c = 8.0 10-5 A/pm2, (•) J 0 = 9.0 10 s A/pm2;

b) index-guided device: (o) J D = 5.0 10-5 A/pm2, (•) J 0 = 8.0 10~5 A/pm2.
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refractive index distribution 

a) gain-guided laser b) index-guided laser
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Fig. 7.5.4: Refractive index distribution and carrier density for gain-guided and index-guided 

laser: distribution before (broken line) and after (continuous line) self-consistency (J0 = 8.0 10~5 

A/pm2).
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5.1 Num erical aspects of the solution for gain-guided devices

The self-consistent solution for the gain-guided laser is found with the same 

iterative HGCM scheme used for the index-guided devices, as described in Section 

2.5. However, a peculiar pattern is observed in the evolution of the near field with the 

iteration number in the modelling of gain-guided lasers, which is shown in Fig. 7.5.5.

Note in Fig. 7.5.5 that the field diffracts in the first iterations since there is no 

lateral confinement of the optical field (An = 0), and also because there is an anti

index-step produced by the injected carriers, equation (7.2.8). In the iteration process 

the field-carrier interaction takes place and self-consistently modifies the refractive 

index and the gain profile in the structure. Hence, when then the field-carrier 

interaction sets in and produces gain-guiding effects, the field ‘recomposes’ in the 

final mode-like shape, which is shown in Fig. 7.5.5 d) and also in Fig. 7.5.2.

However, it is noted that in the case of the gain-guided device the phase front at 

the facet, and consequently also the far field, cannot be calculated with the HGCM, 

perhaps because of numerical inaccuracies introduced by the process of 

‘recomposition’ of the field, shown in Fig. 7.5.5.

Similar features are observed by varying the number of collocation points used in 

the HGCM; or by changing the initial field distribution in the iteration process, both a 

Gaussian and a supergaussian initial field distribution have been used obtaining the 

same self-consistent solution.
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Fig. 7.5.5: Near field profile in the iterative process: broken line at z = 0; continuous line 

at z = L. Note that in a) and b) the scale is orders of magnitude smaller than that used in

c) and d).
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6. M odelling of active tapered devices

Two modelling techniques are next reviewed in the context of active devices, the 

Beam Propagation Method [Chapter 3, Section 2.2] and the mode matching method 

[Chapter 3, Section 2.1]. The purpose of the following discussion is to highlight the 

differences between the HGCM self-consistent scheme and the two methods reviewed 

in this section. To facilitate a direct comparison of the equations used in the two 

methods reviewed here and those presented in Section 2 of this Chapter, the same 

parameters will be used in the present section. Fig. 7.2.1 shows a schematic of a 

tapered device and defines the co-ordinate axes used in the following discussion.

6.1 Beam  Propagation M ethod

The Beam Propagation Method (BPM) which is commonly used to solve for field 

propagation in (longitudinally non-uniform) structures, has been recently incorporated 

in self-consistent schemes for the modelling of tapered active devices, for example, 

[12], [23], [24]. In such computation schemes the optical field is propagated along the 

structure using the BPM algorithm [Chapter 3, Section 2.2], and the coupling 

between the optical field and the carrier density is ensured by varying the gain and the 

effective refractive index in the structure consistently with the optical field intensity.

In [23] the linearly tapered amplifier section of MOPA (Master Oscillator Power 

Amplifier) structures has been analysed [as in Section 3.1 of this Chapter]. The 

relevant parameters used in the BPM model presented in [23] are summarised below. 

The built-in and carrier and temperature dependent complex refractive index 

distribution in the tapered device is given by

neff(x,z) = n^) + -^ - [A n R(x,z,N) + /rg (x ,z )-z a loss] + a TT(x,z) (7.6.1)

with neff(0) the unperturbed effective refractive index, T is the confinement factor along 

the vertical (y) axis, g(x,z) the local gain, AnR(x,z,N) the change in refractive index 

due to the injected carriers [Section 2.2, this Chapter], (Xioss the linear losses (including 

the scattering losses and the losses due to free carriers), Or the temperature coefficient 

of effective index (in KT1), and T(x, z) is the local temperature change. The saturated 

gain g(x, z) is as defined as in equation (7.2.11).
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The model presented in [23] is particularly convenient to model gain-guided 

devices since the inclusion of a lateral index step to produce index-guiding effects 

generally introduces complications in the formalism.

In [24], [25] it is shown that when applying the self-consistent BPM model [23] to 

laser devices, chaotic behaviour may be observed. In [24], in fact, the same BPM 

model described in [23] forms the basis of a numerical Fox-Li technique in which the 

field is propagated between the laser facets (both with finite reflectivities) until it 

converges to a stationary field distribution. However, it is not clear if the instabilities 

discussed in [24], [25], reflect physical instabilities which have been observed 

experimentally in tapered devices because the BPM model in [24] uses steady-state 

equations. Depending on the driving current (which represents the control parameter) 

it is observed in [24] that the output near field and power do not always converge, but 

may show chaotic behaviour. It is also shown that the critical parameter that may lead 

to chaos in the modelling of flared lasers is the antiguiding factor, pa in equation 

(7.2.10).

6.2 M ode matching method

Another commonly used method for computing field propagation is the mode 

matching method [Chapter 3, Section 2.1]. In the following discussion reference is 

made to [26] and [18] where the mode matching method has been applied to active 

devices with linear and nonlinear tapers. With the mode matching technique the 

tapered structure is approximated by a series of (longitudinally uniform) slab 

waveguide sections in each of which the local modes are determined. Considering the 

initial field to be the fundamental local mode at z = 0. The coupling between the initial 

field and the higher order and radiation modes supported by each uniform section is 

thus calculated matching the field components at the interface between adjacent 

sections. In the method presented in [26] self-consistency is ensured by coupling the 

diffusion equation to the equation that governs the amplification rate of the optical 

intensity along the tapered amplifier. The carrier diffusion equation used there is as in 

equation (7.2.14), while the field (intensity) equation is
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/

(7.6.2)

where S(z) = —  J JS(x,y,z)dxdy is the optical field intensity averaged across the 
wd —

x-y plane, gu is the unsaturated material gain, T the optical confinement factor in the 

x-y plane, Ss* the saturation intensity, aioss the losses in the active and cladding layers,

which accounts for the spreading of the optical intensity due to the tapered geometry.

neglected since this effect is considered of secondary importance in index-guided

analyse linearly [26] as well as exponentially tapered travelling-wave amplifiers [8].

Another example of self-consistent model based on the mode matching technique 

is described in [18]. As in [26] the tapered device is approximated by a series of slab 

waveguide sections. In [18], however, the optical field is expanded on the basis of the 

set of only the discrete (local) modes. Further, in [18] the carrier distribution is 

calculated by solving the carrier diffusion equation of the form (7.2.14) with the 

Jacobi-Tridiagonal method. Self-consistency is ensured by iteratively changing the 

gain and the refractive index distribution as the field propagates along the structure. 

Although similar to [26], the method described in [18] retains the refractive index 

dependence on carrier density, but only the propagation constants of the (local) 

modes are altered, leaving the modal field profiles unperturbed.

Both these models based on the mode matching technique, [26], [18] have been 

applied to index-guided structures for which the process of finding the local (bound) 

modes is relatively straightforward.

Summary

A comprehensive method based on the Hermite-Gauss expansion for achieving 

self-consistent models of semiconductor lasers and amplifiers has been presented in 

this chapter. The characteristic feature of this method is that it solves both the optical

—  ------  where w(z) is the width of the local slab, the factor
dz\,w(z)J

It is to be noted that in [26] the refractive index dependence on the carrier density is

devices (lateral refractive index step > 5 10 3). This formalism has been used to
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field equations and the carrier diffusion equation with the same HGCM scheme. In 

comparison with other methods, the HGCM model offers the advantage of implicitly 

including the contribution of the radiation mode set. This is achieved by expanding the 

optical field in the structure on the basis of the complete set of Hermite-Gauss 

functions. The property of discreteness of the basis set simplifies the formalism of the 

present method since no integrals need to be included in the expansion, thereby 

reducing the complications deriving from the discretisation of the continuum spectrum 

(as with the mode matching method). By making use of the collocation method the 

HGCM is formulated in matrix form which, although convenient for the numerical 

solution of the problem, may in some cases also be a limiting factor for the accuracy 

achieved by the method.

In this chapter the overall iterative HGCM scheme has been tested with several 

examples. Gradual modifications on the self-consistent solution have been produced 

by individually varying the parameters used in the calculations. Some of the results 

obtained with the HGCM have been compared with those calculated with another 

method of solution based on the mode matching scheme (using only the discrete set of 

modes). The comparisons are satisfactory, although further investigations are needed 

to fully assess the capabilities of the HGCM. However, the variety of devices analysed 

in this chapter proves that the HGCM scheme is convenient and readily applicable for 

the analysis of a category of longitudinally non-uniform active optical devices. The 

HGCM has been applied also for analysing gain-guided narrow stripe lasers. It is 

argued that being a total field analysis, the HGCM can be applied even in the extreme 

case of a purely gain-guided device where the local mode expansion scheme is not as 

convenient because of the difficulties arising from the consideration of the radiation 

mode set.
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Appendix 7.1 

M aterial param eters o f typical semiconductor devices

The multilayer structure of the material from which typical semiconductor devices 

are made is described in Tab. A7.1-1 for Quantum Well material and Tab. A7.1-2 for 

bulk material, [27]. Most of the devices that have been measured are characterised by 

a rib to obtain (weak) guiding also along the transverse (x) axis. The rib is produced 

by reaction ion beam etching, and hence it is useful to be able to predict the effect of 

the etching depth on the (calculated) effective refractive index in the structure, Fig. 

A7.1-1 a) and b).

Tab. A7.1-1: Layer structure of a typical Quantum Well material (QT829A)

material thickness doping

GaAs 0.3pm 9.0 1018 Zn

Alo.60 1.4pm 2.2 1018 C

A1o.60 0.2pm -5.0 1017 C

A1o.26 0.15pm undoped

GaAs 103A undoped

Alo.26 100 A undoped

GaAs 103A undoped

Alo.26 0.15pm undoped

Alo.60 1.6pm 1.3 1018 Si

GaAs 0.1pm 1.0 1018 Si

Tab. A7.1-2: Layer structure for a bulk material (CB539)

layer thickness (pm) composition doping type

contact 0.2 GaAs P+

cladding 0.1 Alo.60Gao.40As P -

active 0.1 Alo.04Gao.96As u

cladding 2.0 Alo.60Gao.40As n -

substrate — GaAs (3° off axis) n+
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Fig. A7.1-1: Variation of the (calculated) effective refractive index and of the confinement 

factor along the vertical (y) direction, with respect to the etching depth; a) Quantum Well 

material (QT829A), b) bulk material (CB539).
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Appendix 7.2 

Average photon density

The objective in this Appendix is to provide the link between the electromagnetic 

fields in the structure and the photon density distribution that is used in the diffusion 

equation (7.2.14).

To be specific, let the typical device structure be that of a multilayer ridge 

waveguide, of width 2a<>, Fig. A7.1-1, and it is assumed that the dominant guiding is 

along y.

B A B
Fig. A7.2-1: Schematic of a typical ridge waveguide semiconductor device; 2a0 is the ribwidth.

layer q

The waveguide is defined by the complex refractive index distribution n(x,y,z), but 

for weakly non-uniform structures a scalar field analysis is acceptable. Because of the 

assumption of large aspect ratio the structure may be taken to support (TE)y and 

(TM)y modes. Consider, here, a (TE)y-type of electromagnetic field characterised by 

the field components Ex, Hy, Hz. [Significant deviations from the large aspect 

ratio/Effective Dielectric Constant approximations are discussed, for example in [28], 

but will not be considered in the present formulation.]

With this approximation let Ex(x,y,z) be the generating field component and use

F(x,y,z) = E x(x,y,z) (A7.2- 1)

F(x,y,z) satisfies the wave equation (1.4.3)

[af + a? + d l  + k y  (x,y,z)]F(x,y,z) = 0 (A7.2 - 2)
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where n(x,y,z) is the complex dielectric distribution which accounts for gain/loss in 

the layers.

It is assumed that the Effective Dielectric Constant (E. D. C.) analysis is

applicable such that 3EX »
dy 3x

, [Appendix 1.1]; hence, consider, for example,

only the lateral (x) region A defined as - a 0 < x < a 0, [for tapered devices, 

a0 = a c(z)]. In region A the variable x is considered as a parameter, hence 

F(x, y, z) = Fa (y, z) and satisfies

[a2 + a 2 + k 2n2 (y )K  (y, z> = o (A7.2 - 3)

with nA = n A R + /nA I . The approximate solution of equation (A7.2 - 3) produces the 

effective refractive index

n = i r .eff,A A,q
q

'  ,-gA.qN 
"A’q 2 k ~ ,

(A7.2 - 4)

where r A and gA are the confinement factor and material gain, respectively, in

each layer (q) in region A for the vertical mode, FA(x ,z)« fA (y)e"‘k°neff,AZ, with 

fA(y) calculated with the approximation that the layers have purely real refractive 

indices. Similarly for region B. [The effective refractive indices n ^  and iw >B are used 

in the two-dimensional HGCM analysis, [Chapter 5, Section 2.5], as m and n2, 

respectively.]

Then, on the basis of the E. D. C. analysis

F(x, y, z) = Fh (x, z)fv (y) * Fh (x, z)fA (y )« Fh (x, z)fB (y) (A7.2 - 5)

with fA(y) and fB(y)the modal profiles of the vertical fields, as defined in (A7.2 - 3). 

The field Fh(x,z) thus satisfies the wave equation (1.4.4)

[a2, + 3 2 + k2n ^  (x,z)]Fh (x, z) = 0 (A7.2 - 6)

X| - 3owhere n ^  = eff.A

n cfF.B x > a.

Also assume

Fh(x ,z)«  fh(x,z)e ipz (A7.2 - 7)
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where fh(x,z) is the slowly varying field amplitude, and p a positive, real constant; 

typically p is chosen to be in the range k 0n cfr B < p < kcncff A.

From equation (A7.2 - 1),

E x(x,y,z) -  fv(y)fh(x,z)e-ipz (A7.2 - 8)

The magnetic field components derive from Maxwell’ s equations [Chapter 1, Section

3.1 and Appendix 1.4], in particular the transverse component of the magnetic field is

H y = —  dzE x 
W o

(A7.2 - 9)

Assuming that as a function of z, fh(x,z) varies slowly compared to e‘<pz, then 

equation (A7.2 - 9) may be reduced to

H y -
W o

(A7.2 - 10)

It is convenient to write the electric field (A7.2 - 8) as

F(x, y, z) =  fh (x, z)fv (y)
chcv

(A7.2- 11)

where fh(x,z) = fh(x,z)e lpz and fv(y) are non-normalised functions,
cuch v

t°* 2 “*~°° 2
nannalising constant and cj = J |fh(x,z = 0)| dx and cl = J|fv(y)| dy [refer to

Appendix 1.4]. For simplicity, choose Fh(x,z) =_ hfh(X»Z) fv(y)and Fv (y) = ——  (both in 
Cu c„

I— , while A is dimensionless), so that, at any z, 
m

F(x, y, z) = AFh (x, z)Fv (y)

Thus, at any z, the power density associated with F(x, y, z) is

Sj(x,y,z) = A2 —2— |Fh (x, z)|2|Fv (y)|2 
ZW o

and in this case the total power is

_  A2 PS = A
2co|i0 U

J |F h(x,z)|2dx J |F v(y)|2dy

(A7.2 - 12)

(A7.2 - 13)

(A7.2 - 14)
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* I 12
Note that / |Fh (x, z)| dx is > (< ) 1 in active gain (loss) devices. Hence, the total 

power associated with F(x, y, z) becomes

Sr = A 2- ^ - 7 | F h(x,z)|2dx (A7.2-15)
M- o

At z = 0 the power carried by the initial field F(x, y, z = 0) (which can be interpreted 

as the initial guess of the iterative process in the laser model) is known, PQ, and it is

P = A2—- — (A7.2-16)
2<0)Xo

Thus, the number of photons crossing the unit area in the unit time interval is

P(x>y>z) = - ^ ^  = ̂ | F h(x>z)|2|F>(y)|2 (A7.2- 17)
hv hv

and the number of photons crossing the unit area in the unit time interval, averaged 

over the thickness (d) of the active layer, is
d

P.v(x.z) = ̂ | F h(x,z)|2i J  |Fv(y)|2dy = TZ=.|F (x,z)|2 (A7.2- 18)
hv d hv

2

where T is the vertical confinement factor

The stimulated emission term in the diffusion equation (7.2.14) thus takes the 

form

g(x, z)P>v (x, z) = ^  g(x, z)|Fh (x, z)|2 (A7.2 - 20)

with g(x,z) the local gain.
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Future work

Reflected field: The analysis of longitudinally non-uniform

devices is based on the paraxial approximation which is quite valid for weakly non- 

uniform structures, such as adiabatic tapers. For continuously non-uniform structures 

the ‘forward’ and ‘reverse’ travelling components do not strictly decouple even in the 

paraxial approximation; for the present analysis, however, a decoupled formalism is 

used. Note though that although such an approximation may be satisfactory with 

weakly non-uniform, passive devices, in active devices the small, but continuous, 

reflection could, in some cases, considerably affect the device characteristics.

Complex w„: The analysis of structures defined by complex

refractive index distributions has also been analysed with the HGCM and satisfactorily 

accurate solutions have been mostly obtained. Nevertheless, the solution of complex 

eigenvalue problems should be properly solved using a complex width parameter w0 

for the HG expansion functions. However, the complications introduced by such a 

modification have been considered to be substantial, and hence they have been 

deferred to future developments.

Gain-guided devices: Further investigations are also needed in the

modelling of gain-guided devices. In this respect it has been possible to obtain results 

with the HGCM for gain-guided stripe lasers that are in good qualitative agreement 

with those found in the literature. However, it is felt that some numerical aspects, e.g., 

pertaining to the complex mode functions, need to be better understood to establish 

the potential of the HGCM self-consistent scheme in this area.

VectoHai analysis: The present HGCM formulation relies on the

scalar analysis of the field since the structures of interest are weakly guiding. But it is 

felt that the analysis should be extended to include vectorial aspects such as the 

discrimination between TE and TM mode solutions, and, for example, in 

longitudinally non-uniform devices, the full vectorial characterisation of the Poynting 

vector.
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Future work

Time-dependent effects: In this thesis the HGCM self-consistent model

has been presented in the steady-state formulation. However, the possibility of 

including time-dependent effects in the form of a slowly varying time-dependence 

must be considered. The time dependence could be included in different stages, the 

first of which would be to simply introduce slow time-dependence in the diffusion 

equation using a Finite difference approximation. At a later stage the solution of the 

field equation could be extended to include faster time-dependent effects.

Laguerre-Gauss basis functions: The solution scheme presented in this thesis may

be effectively extended to the analysis of cylindrical structures by replacing the 

Hermite-Gauss with the Laguerre-Gauss function set. The possibility of also solving 

the carrier diffusion equation in cylindrical co-ordinates should be addressed. This 

would permit a self-consistent model applicable, e.g., to Vertical Cavity Surface 

Emitting Lasers.

As is always the case, the detailed study of a new topic ‘answers’ many 

‘questions’, but raises many others. It is in that sense that the points outlined under 

Future Work should be read. However, that should not distract from the fact that the 

HGCM developed in the course of this research and presented in this thesis has been 

shown to be a new and very effective method for modelling a wide range of optical 

devices.
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Conclusions

The objective of the research presented in this thesis has been to develop a new 

procedure for analysing active, semiconductor optical devices, particularly devices 

which are longitudinally non-uniform. The development of the proposed self- 

consistent scheme has progressed in three different stages. The first has been to 

formulate and test the method for the electromagnetic field analysis in such devices. In 

the second stage it has been shown that with appropriate modifications, essentially the 

same procedure that has been developed for the optical field analysis may also be 

applied to very effectively solve the carrier diffusion equation typically associated to 

active semiconductor devices. The final stage of the work has been to combine the 

schemes developed in the first two stages in an appropriately iterative procedure to 

achieve the desired model which self-consistendy solves the carrier density and the 

photon field equation in active semiconductor optical devices such as lasers and 

optical amplifiers.

Hermite-Gauss functional form; The first approach to the analysis of

electromagnetic field problems has been to study the properties pertinent to two 

important sets of functions: the Hermite-Gauss Beams (HGBs) and the Hermite- 

Gauss Eigenfunctions (HGEs). Although these two sets have been used extensively in 

the literature, the review discussed in this thesis has been useful not only in collecting 

together various concepts and features pertaining to these functions, but, importantly, 

to also clearly identify the differences between the two sets of functions. In the 

present context it is observed that i) both the HGBs and the HGEs provide a complete 

set of orthogonal functions in the same functional space of square integrable 

functions; and ii) the HGBs are most often used in the analysis of diffracting field, 

while the HGEs are far more convenient for the analysis of field propagation in 

inhomogeneous media.

HGEs as basis functions: The basic point to note is that the optical

devices to be analysed are essentially dielectric structures with deviations from typical 

waveguides due to longitudinal non-uniformities. Therefore the analysis proposed
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here is to express the (total) field in these structures as an expansion in terms of a 

suitable, complete set of orthogonal functions. Since the media are in general 

inhomogeneous, the arguments from the immediately previous paragraph strongly 

suggest that the HGEs functions should be used as the complete set of basis functions. 

Other features that add to the justification for this choice are:

i) individually the HGEs closely resemble corresponding bound modes of 

symmetric slab dielectric waveguides, hence in many cases the total field in the device 

can be expected to be very well represented by only a few HGEs;

ii) because the HGEs form a complete set for the pertinent functional space of 

interest the contribution of the continuum (radiation) modes is taken into account by 

the HG field expansion;

iii) although an infinite number of HGEs is needed for the correct expansion, the 

set is discrete so that no integral representation is needed (in contrast with the 

expansion using dielectric slab modes);

iv) the HGEs individually satisfy the radiation condition at infinity, and hence that 

condition is built into the field expansion.

h g c m  - field analysts: Having chosen the HGEs as the basis functions,

the analytic expansion procedure has been developed to obtain a set of coupled 

integro-differential equations for evaluating the expansion coefficients. From a 

computational viewpoint integrations are very laborious, and hence the more efficient 

numerical collocation method is adopted to overcome such difficulties. Thus, the 

Hermite-Gauss Collocation Method (HGCM) forms the chosen scheme in this thesis 

for analysing passive and active optical devices, both longitudinally uniform and non- 

uniform.

The HGCM has been extensively tested for a variety of field problems, such as i) 

longitudinally uniform waveguides, ii) diffraction in half-space, iii) abrupt 

discontinuities in dielectric waveguides, iv) coupled waveguides, v) tapered devices.

Whenever possible these solutions have been compared with corresponding 

analytic results, or with results from alternative numerical methods. In all cases the 

HGCM results closely match with the others.
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A point to note is that in the present formalism the ‘forward’ and ‘reverse’ 

travelling wave components are assumed to be decoupled even though, strictly, such 

decoupling is not possible for continuously non-uniform structures.

The computation time is one measure of efficiency of any model. The HGCM is 

found to use more computation time than the Discrete Mode Matching (DMM) 

method - this being the only readily available numerical method against which 

comparison could be made. But the comparison is not on the same grounds since the 

DMM uses only the discrete modes of the local waveguide as the expansion functions 

- the continuum modes are ignored but their absence poses serious limitations to the 

DMM in many cases while including them would vastly increase computation time. 

The HGCM, on the other hand, implicitly includes, in effect, the continuum spectrum.

The Wn parameter; In the expansion of an arbitrary function the

infinite set of HGEs has to be used, in which case any value of wQ will, in principle, be 

correct. Practical computations, however, use only a finite number of terms in the 

series expansion, which poses the problem of choosing an appropriate w0 for a 

sufficiently accurate representation. This interesting issue has been discussed in this 

thesis. It is observed that the number of expansion terms that are typically used in the 

calculations is very large (in order to obtain a detailed description of the field profile) 

and hence the HGCM results are not significantly affected by the choice of wQ.

Nevertheless, in the early stages of the work it was found that the solutions 

computed with the HGCM did quite strongly depend on w0 (even with a large number 

of expansion terms). This ‘problem* was identified as due not to the truncated 

expansion, but to the fact that the computation of step index profile waveguides with 

the HGCM led to sampling errors. It was found that only a few particular values of wQ 

for that case gave accurate results, although experience and educated guesses helped 

to obtain the appropriate wQ quite rapidly.

In a novel development it has been shown that by replacing the step index profile 

with a sharp but analytic profile, defined by a supergaussian function, completely 

eliminates the ‘problem*. Thus it has been found that, in this case, even using a 

relatively small number of expansion terms yields very accurate results. This has 

proved to be a very important innovation.
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h g c m  - carrier diffusion equation: A particularly useful feature of this research has

been the development of a new numerical procedure for the solution of the carrier 

diffusion equation that is typical of semiconductor optical devices. It was proposed 

and demonstrated within this research programme that the HGCM (suitably modified) 

provides a very effective means for solving the (linear and nonlinear) carrier diffusion 

equation. Results calculated with the HGCM have been compared with analytic 

solutions, or with other numerical solutions, obtaining most favourable comparisons. 

Particularly satisfying is the fact that the HGCM works equally effectively with 

relatively narrow and very broad current injection regions which makes it very 

amenable for use in the modelling of taper geometry devices.

h g c m  self-consistent scheme; The two HGCM schemes developed in the first

part of the research work, the first to solve the (electromagnetic field) scalar wave 

equation, the second for the nonlinear (carrier) diffusion equation, have been merged 

in a self-consistent iterative scheme for the (steady state) modelling of active 

semiconductor optical devices.

A set of results obtained with the HGCM for linearly tapered active devices has 

also been used as a form of test for the HGCM by putting to zero the influence of 

some of the parameters at a time in attempts to understand computed results with 

expectations from experience. Further results for flared amplifiers and for parabolic 

taper lasers have been compared with those obtained from the approximate Discrete 

Mode Matching (DMM) method. The two methods agree satisfactorily well where the 

continuum (radiation) modes are not significant, but otherwise the two sets of results 

agree less precisely. This lack of agreement is because the DMM used here ignores 

radiation modes in the formulation.

Note, however, that it has not been possible to compare the test results obtained 

with the HGCM for linearly tapered lasers with those form the DMM since the latter 

becomes quite unacceptable as a model (without the inclusion of the continuum 

modes) for this device geometry. This shortcoming of the DMM is far less detrimental 

in the modelling of parabolic structures because in these devices the conversion to 

higher order (local) modes is relatively small.
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