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SUMMARY

The corrosion characteristics of aluminium alloys containing a  number of 

ceramic reinforcements has been investigated. The reinforcements 

included continuous carbon and Nicalon fibres, short alumina (Saffil) 

fibres and silicon carbide particulate. The matrix metals consisted of 

aluminium, an Al-7Si-0.5Mg casting alloy and an Al-4Cu-1.5Mg 

precipitation hardening alloy. The composites were fabricated either by 

liquid metal infiltration (LMI), squeeze casting or powder metallurgy.

The corrosion studies have been carried out using natural immersion and 

accelerated corrosion methods such as the cyclic polarisation test. Special 

attention has been focused on a double cyclic polarisation technique. This 

has proved to be invaluable for predicting the susceptibility of MMC to 

pitting attack, good correlation having been found between pitting and 

protection potentials derived from this method and those from open circuit 

potential measurements made under natural immersion conditions. The 

electrochemical studies have been combined with detailed microstructural 

analysis.

Examination of the corroded surfaces and sections through the corroded 

material has been carried out using optical, scanning electron microscopy 

(SEM), transmission electron microscopy (TEM) and energy dispersive 

spectroscopy (EDS). These have enabled the sites of corrosion attack to be 

identified, such as fibre/matrix interfaces, secondaiy and intermetallic 

phases and pores and crevices caused by poor infiltration during 

fabrication.



The MMC containing the most electrically conducting fibre, carbon, 

appeared to suffer the greatest degree of attack a t fibre/matrix interfaces. 

The effect was not wholly due to a galvanic action, but to the presence of a 

reaction product, aluminium carbide, AI4 C3 , which reacted strongly with 

water. The geometry of the reinforcement was found to effect the 

propagation of corrosion pits. Continuous fibres tended to act as barriers 

and channel the corrosion along the fibres, whereas the Saffil short fibres 

and SiC particulate allowed lateral growth of corrosion pits.

The chemical composition of the metal matrix was found to play an 

important role regarding corrosion sites. In particular intermetallics 

containing iron, present largely as an  impurity, proved detrimental to the 

corrosion resistance and caused enhanced attack of the surrounding metal 

due to a microgalvanic action. The method of composite manufacture also 

affected the corrosion process and was related to pores caused by poor 

infiltration in regions of densely-packed fibres.
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CHAPTER 1 

INTRODUCTION

The concept of using strong, stiff fibres to reinforce materials is by no 

means a recent idea. The incorporation of straw within mud for use as a 

building material was an ancient development and even nature resorts to 

composites for load bearing structures in the form of wood and bone. More 

recently, composites comprising of ceramic or metal reinforcements in 

plastic, metal and ceramic matrices have evolved with potential 

advantages over their component materials.

Metal matrix composites (MMC) offer improvements over conventional 

alloys in  applications where low density and high strength and stiffness 

are prime requirements. The fibres confer the strength, rigidity and 

toughness to the metal matrix which is relatively ductile. MMC also have 

the capacity to withstand higher temperatures without loss of mechanical 

properties, than many of the fibre reinforced plastics. Thus MMC provide 

the possibility to make considerable weight savings particularly in 

aerospace applications where reducing weight is a prime requirement.

Research into MMC during the 1960s focused mainly upon a boron fibre 

reinforcement but this met with only limited success. Poor composite 

properties were found as a result of chemical reactions occuring between 

the fibre and matrix a t the high temperatures used in manufacture. 

Fabrication routes were therefore restricted to solid state processes such 

as diffusion bonding.

Advances in ceramic fibre technology such as chemical vapour deposition 

processes and methods of coating fibres brought about renewed interest in
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MMC during the early 1970s. Furthermore, the development of relatively 

inert fibres such as silicon carbide and alumina, has encouraged the 

developement of liquid phase fabrication routes, whilst progress in powder 

metallurgy (PM) technology has lead to the production of particulate 

reinforced metals by a PM route.

A revival in interest and a more realistic appraisal of potential of MMC 

has led to increased effort on characterising their mechanical properties. 

However comparatively little attention has been given to their secondary 

properties such as corrosion.

Most research into the corrosion behaviour of MMC has concentrated on 

matrix materials of aluminium and its alloys. The corrosion properties of 

these metals are well understood, aluminium alloys having long been used 

in  marine environments owing to their generally good corrosion resistance 

and their light weight. The improved mechanical properties offered by 

reinforcing these materials with fibres have re-established interest in 

these materials for marine applications. Consequently there is a great 

need for knowledge concerning the modification of corrosion properties 

brought about by a fibre reinforcement.

Research to date has been based upon aluminium and on Al-Mg-Si alloys 

reinforced with carbon, silicon carbide or boron fibres. The general 

findings are that the corrosion behaviour of the composites is more severe 

than th a t of the unreinforced metal. Crevices, pores, interfacial reaction 

products and galvanic coupling in the composite may result in enhanced 

or localised attack of the matrix. Furthermore, the presence of reinforcing 

fibres in metals such as aluminium which are covered with a protective
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oxide film, may, by impairing the continuity of the surface oxide, thereby 

promote localised attack.

The aim of the present study was to investigate not only the corrosion 

properties of these new materials, but also to establish experimental 

techniques which might be most accurately applied to obtain corrosion 

data on MMC.

The MMC employed in this investigation were fabricated by liquid metal 

infiltration (LMI), squeeze casting or powder metallurgy and had matrices 

of pure aluminium, an Al-7Si-0.5Mg casting alloy or an Al-4Cu-1.5Mg 

precipitation hardening alloy. Carbon, and Nicalon (essentially silicon 

carbide) continuous fibres, Saffil (alumina) short fibre and silicon carbide 

particulate were employed as reinforcements.

The corrosion behaviour of the MMC has been studied in de-aerated, 

3.5wt% NaCl solution during simple immersion and also under 

accelerated conditions, where specimens were forced to corrode by an 

applied potential. The double cycle polarisation (DCP) test is an 

accelerated test, which was employed in parallel with the simple 

immersion tests to predict susceptibility of the MMC to pitting corrosion.

The microstructures of the materials have been characterised both before 

and following corrosion using optical and scanning electron microscopy 

(SEM), and energy dispersive spectrometry (EDS) to establish the 

chemical composition of the preferential sites of corrosion attack.

The thesis is composed of five chapters in addition to this introduction. 

The second chapter presents a survey of the literature relating to the
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fabrication of metal matrix composites, the corrosion of aluminium, the 

techniques which have most commonly been applied to assess the 

corrosion of aluminium and its alloys, and finally the corrosion of MMC. 

The experimental procedures are presented in the third chapter, which 

includes details of the preparation of materials, the corrosion test 

apparatus and the equipment used for microstructural studies. The 

results of the corrosion tests and microstructural investigations are 

reported in  Chapter four. Chapter five is a discussion of the findings from 

this investigation, which focuses upon the corrosion test methods and the 

corrosion behaviour of the materials in relation to the reinforcement type, 

the matrix alloy, the fabrication route and the role of second phases. 

Finally, Chapter six presents the conclusions which have been drawn 

from this study.
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CHAPTER 2 

LITERATURE SURVEY

The literature survey comprises four sections. In the first part, the 

fabrication methods which have been applied to MMC are described and 

the second part is a discussion of the corrosion behaviour of aluminium. 

The most popular methods of corrosion testing are reviewed in the third 

section, and the fourth section reports the findings which have been 

published of the limited corrosion studies on MMC. Finally, the fifth 

section summarises the aims of this investigation in the light of the 

literature review.

2.1 FABRICATION OF METAL MATRIX COMPOSITES

Many fabrication routes have been explored for the production of MMC, 

with varying degrees of success. The main difficulties involve firstly, the 

incorporation of brittle reinforcements into a matrix without incurring 

breakages, and secondly, achieving a strong interface between the 

reinforcement and matrix without the formation of detrimental reaction 

products.

Fabrication methods may be broadly classified into two groups; (i) solid 

state processes, which operate below the melting point of the matrix and 

(ii) liquid phase processes, which are conducted above the melting point of 

the matrix. The process selected depends to a great extent upon the choice 

of reinforcement and matrix. Liquid phase routes offer the advantage of 

intimate reinforcement-matrix contact which reduces residual porosity in 

the final composite. Solid state processes on the other hand are less likely 

to promote the formation of adverse interfacial reactions products as
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reported by Levi et al (1978), Lloyd (1989) and Yang and Scott (1991a). 

The most popular fabrication routes will now be discussed.

2.1.1 LIQUID PHASE FABRICATION PROCESSES

(a) Squeeze Casting

One of the most successful techniques for fabricating MMC is squeeze 

casting, illustrated schematically in Fig.2 .1 . Considerable research has 

been dedicated to this process owing to its potential for producing near- 

net shape components which require little or no secondary processing. The 

method, which is described by Harris (1988 & 1989), Chadwick (1990) and 

Bader et al (1985), involves infiltration of a pre-heated fibre preform by 

the molten metal. Pressures of up to lOOMPa are applied by an hydraulic 

ram. This is maintained until solidification begins, thereby forcing the 

metal into the preform, infiltrating the fibres, compressing any gas 

bubbles and feeding shrinkage as it occurs. The advantage of applying 

pressure during the casting process, as stated by Chadwick and Yue 

(1989), is that gas or shrinkage porosity is almost eliminated. In addition 

i t  opens up the possibility of producing composites with metal matrices 

not normally used during casting owing to poor fluidity in  the molten 

state.

Components fabricated by this method have been found to possess 

mechanical properties which are equal to or greater than wrought 

products of the same compositions. Das and Chateijee (1981) noted that 

the good mechanical properties resulted from the fine grain 

microstructure which was characterised by small dendrites, small
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constituent particles and a more homogeneous distribution of structural 

components.

The major disadvantage of squeeze casting lies with the high pressures 

involved. Damage to brittle reinforcements may occur, particularly when 

the reinforcement is present in high volume fractions. Also the necessity 

for such high pressures limits the size of component which can be 

produced by this method.

(b) Liquid M etal Infiltration

The liquid metal infiltration (LMI) process is proving to be one of the most 

promising production routes for MMC. The LMI method, described by 

Mykura (1988 & 1991) and Chiou and Chung (1991), is similar to that of 

squeeze casting with the difference that the process is operated under 

vacuum and the pressure is applied by inert gas. The essential procedure, 

illustrated schematically in Fig.2.2, is as follows.

A preheated fibre preform is placed into a split metal die, also preheated 

and in the shape of the component. The die is then closed and the die and 

molten metal reservoir chamber evacuated of all air down to a pressure of 

clm bar. The melt chamber is pressurised to ~1000psi (~7MPa) by an 

inert gas such as argon, which forces the molten metal into the die so as to 

infiltrate the fibre preform. The molten metal is kept under pressure until 

solidification occurs. The gas pressure is then removed, the system vented 

and the die opened. As with squeeze casting it has the advantage of near- 

net-shape forming with little or no further processing required, although 

the size and complexity of the component is not as restricted; indeed 

Mykura (1988) has reported parts of up to two metres long having been
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produced by this method. In  addition it has an advantage over squeeze 

casting in that the pressures involved are over an order of magnitude 

lower, thereby minimising preform compression.

One of the major draw backs of the LMI technique lies with control of the 

operating temperature. Masur et al (1987) have shown that infiltration 

has a strong dependance on fibre temperature. Too low a fibre 

temperature results in solidification of the metal prior to complete 

infiltration and hence porosity in the cast. However, if  the fibre 

temperature is too high, the long solidification time promotes the 

possibility of undesirable reactions occurring a t the fibre/matrix interface. 

Indeed, Yang and Scott (1991a) have shown tha t the formation of 

aluminium carbide a t the fibre/matrix interface in a carbon-reinforced Al- 

Si alloy produced by LMI has a very detrimental effect upon the 

mechanical properties of the composite.

(c) C om pocasting

Compocasting is a  useful technique for the fabrication of MMC containing 

short fibres, whiskers or particulates. The technique, described by Levi et 

al (1978) and Zhu (1988), involves the addition of a discontinuous 

reinforcement to a semi-solid slurry which has been produced by stirring 

the molten metal as it  cools until i t  is approximately 30-50% solid. The 

reinforcement therefore becomes mechanically trapped by the slurry. 

Stirring continues as the mixture cools. This promotes intimate contact 

between the metal and reinforcement by repeatedly breaking the alumina 

skin which forms on the aluminium surface. Interactions are likely to 

occur between the reinforcement and the matrix by this method which 

limits the process to certain reinforcement-matrix combinations.
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Furthermore, Harris (1988) noted that extensive fibre damage may result 

from the compocasting process, making it more suitable for fabricating 

particle-reinforced composites.

Following mixing, the slurry is poured from the bottom of the crucible into 

a mould. Alternatively, it may undergo further processing in the form of 

squeeze casting, as described by Milliere and Suery (1988) and 

Karandikar and Chou (1991). The advantage of following compocasting 

with squeeze casting is that porosity associated with traditional casting 

processes is considerably reduced.

(d) Spray  D eposition

The production of particulate-reinforced composites by spray deposition 

has been researched by White and Willis (1989). The matrix metal, which 

is contained in a crucible, is heated by induction until molten. The 

crucible is then pressurised and the molten metal is injected into an 

atomiser. An atomised stream of metal is produced into which is 

introduced the particulate reinforcement. The metal and particulate are 

then co-deposited onto a substrate which is placed in the line of flight. 

Careful control of the atomising and particulate feeding is required to 

ensure a uniform distribution of the reinforcement within the matrix. 

Although still in the research stages, White and Willis (1989) believe it  to 

be capable of producing 1 0 0 kg ingots with a homogeneous, fine-grain 

microstructure. An advantage of the method is that the short contact 

times during spraying, limits the formation of undesirable interfacial 

reaction products.
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2.1.2 SOLID STATE FABRICATION PROCESSES

(a) Pow der M etallurgy

Short fibre or particulate reinforcements may successfully be incorporated 

into a matrix by a powder metallurgy fabrication process. The process 

involves mixing and blending the metal powders with the reinforcement 

in  the required proportions until there is a homogeneous dispersion of the 

reinforcement. The powder mix then undergoes consolidation to form a 

green compact, before being hot isostatically pressed. The composite may 

then be extruded into billets and hot rolled into a sheet form.

As noted by Mileiko (1989) the technique involves lower processing 

temperatures and, therefore, a greater control of the reinforcement-matrix 

interface properties. In addition, the extrusion stage leads to orientation 

of the whiskers, which may be desirable for many applications. The 

method also produces composites which have uniform distributions of the 

reinforcement. Disadvantages are the limited availability of pre-alloyed 

powders, and the high level of cleanliness required to prevent inclusions 

in the final product as noted by White and Willis (1989).

(b) D iffusion Bonding

Continuous fibres and matrix may be combined in the solid state by 

diffusion bonding, which involves the simultaneous application of heat 

and static pressure. The process, which is described by Chou et al (1985) 

and has been employed for a  variety of systems by Alexander et al (1968), 

is generally applied to the consolidation of lay-ups of metal-foils and fibre- 

arrays, or to tape or wire preforms which have been fabricated by
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chemical vapour deposition, plasma spraying, electrodeposition or hot 

rolling.

The advantage of this technique lies with the relatively low temperatures 

involved. However, the process is expensive and the high pressures 

involved are likely to lead to fibre breakages. Furthermore, as noted by 

Harris (1989), difficulties may arise with the penetration of the filament 

layers by the metal foils to form a fully dense material.

2.2. CORROSION OF ALUMINIUM AND ITS ALLOYS

Aluminium owes its good corrosion resistance to the tenacious oxide film 

which covers its surface. The alumina film which is only ~25-50A thick is 

highly protective in  most environments and if  damaged, reforms 

immediately, restoring corrosion protection to the metal. However, under 

certain conditions of potential and pH, as expressed by the Pourbaix 

diagram for aluminium, Fig.2.3, the protective film is unstable and 

corrosion may occur. Aluminium is passive between pH4 and pH8.5, but 

in  more acidic or more alkaline environments, corrosion in the form of 

localised attack is possible. In addition, corrosion of aluminium may take 

place in near-neutral solutions where aggressive anions such as chloride 

ions are present.

The oxide film thickens in air a t a slow rate which decreases with time, 

but in aqueous environments, the rate of film growth is much greater. The 

initial corrosion product is thought to be aluminium hydroxide which 

changes with immersion time to become hydrated aluminium oxide. The 

aqueous formed film, although thicker, is less adherent and consequently 

does not offer the same level of protection.

11



It is well established that the mechanisms of the corrosion process in 

aqueous environments are electrochemical. When a metal is immersed in 

solution, certain areas of the metal acquire a  different electrode potential 

from the remainder of the surface. Localised cathodic and anodic areas 

therefore become established, the anodic sites having the more negative 

electrode potential. This results in dissolution of the anodic sites due to 

the flow of current between the regions of different potential. On some 

metals, (Chandler, 1985), corrosion a t the anodic sites becomes stifled and 

new anodic areas adjacent to the old ones become active, the interchange 

of anodic and cathodic areas leading to an almost uniform attack over a 

period of time. However for some materials this interchange of sites does 

not occur and so the corrosion becomes localised a t a  number of anodic 

sites on the surface, the remainder of the surface being laigely cathodic. 

The respective anodic and cathodic reactions are as follows;

Anodic:
2A1-----> 2Al3+ + 6 e-

Cathodic:
6H20  + 6 e‘------> 60H* + 3H2

3/202  + 6 e ' + 3H20 -----> 60H‘

Under certain conditions, the aluminium and hydroxyl ions may combine 

to form hydrated Al2 ( > 3  corrosion product.

The mechanisms of the localised corrosion of aluminium, namely pitting 

and crevice attack, will now be discussed.
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2.2.1 PITTING CORROSION OF ALUMINIUM

Pitting corrosion may be described as the local dissolution of metal from a 

passivated metal or alloy which is immersed in near-neutral solutions 

containing aggressive ions such as chloride ions. Many theories have been 

proposed regarding the initiation and growth of corrosion pits, the theory 

being dependant to some extent upon the experimental approach adopted.

A mechanism given by Hoar et al (1965), based upon their studies into 

pitting, suggested tha t the initiation of pits involved the adsorption of 

activating anions, particularly chloride ions, a t specific sites on the metal 

surface such as impurities or grain boundaries. The aggresive anions 

penetrated the film under the electrostatic field across the film/solution 

interface when the film reached a critical value corresponding to the 

breakdown potential. Either the anions would travel completely through 

the film, or the metal cations would travel outwards to meet them. The 

film was thus "contaminated" with ions and hence became a superior ion 

conductor compared with the original passive film. This resulted in the 

rapid release of cations a t the film/solution interface, thereby promoting 

pitting.

Richardson and Wood (1970) studied the pitting of aluminium by scanning 

electron microscopy and concluded that flaws in the surface oxide film 

acted as nucleation sites for pitting. The flaws could be of a "residual" type 

produced during film growth at impurity-rich regions, or could be 

"mechanical" in origin, associated with stress relief in the film resulting 

from oxide formation over mechanical surface defects, e.g. scratch lines. 

Pits would initiate a t these weak spots and propagate by metal dissolution 

of the sample and the undermining of the oxide film.
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Intermetallic or second phases are also common sites for pit initiation. 

Hubner and Wranglen (1964) reported that pits can be initiated in the 

surface of aluminium, by iron-rich precipitates, probably FeAlg, which act 

as local cathodes. Similar observations were made by Murray et al (1967), 

who discovered that the process could be accelerated by the presence of a 

small amount of copper ions in the water. The effect was related to the 

deposition of copper on the FeAl3  particles which made them more 

efficient as cathodes in the corrosion process.

In their studies on an Al-Mg alloy, Gehring and Peterson (1981) found 

th a t pits initiated a t intermetallics of the type (CrFeMn)Alg. They 

attributed this to the less protective nature of the oxide film a t the 

intermetallic particles and also to the galvanic action between the 

aluminium matrix and the more noble intermetallics.

Once initiated, the propagation of corrosion pits can be rapid, the process 

being autocatalytic as noted by Hoar et al (1965). Such behaviour was 

considered to arise from the high concentration of chloride ions within the 

pit, which reduced the pH of the electrolyte to more acidic levels. From 

studies of the pitting of aluminium, Hubner and Wranglen (1964) thus 

described the self-generating conditions for pit propagation as follows.

(1 ) Inside the pit, preventing repassivation there is,

(a) a limited supply of oxygen,

(b) a low pH due to hydrolysis of metal ions,

(c) a migration of chloride ions into the pit owing to the current 

generated by the pit, and

(d) the formation of a concentrated salt solution of high electrical 

conductivity.
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(2) In the pit mouth, an hydroxide diaphragm forms, preventing mixing of 

the solution inside the pit with the bulk solution, and hence strengthening 

the factors described in  (1 ).

(3) Outside the pit, preventing general attack there is,

(a) cathodic protection of the surrounding surface by the corrosion 

current,

(b) alkali passivation, particularly in the presence of calcium 

bicarbonate, and

(c) deposition of more noble metals, particularly copper, which 

increases the effectiveness of cathodic sites and facilitates the 

maintenance of an electrode potential more noble than the critical or 

breakthrough potential within the p it

2J2J2 CREVICE CORROSION

The mechanism of crevice corrosion is not unlike pitting corrosion and 

indeed, once initiated, proceeds in a similar fashion. However, it is 

distinguishable from pitting in the initiation phase. Whereas pits form 

generally on plane surfaces due to the metallurgical factors described in 

the previous section, crevice corrosion is initiated by differential 

concentrations of oxygen or ions in the electrolyte between the crevice and 

its surroundings.

Fontana (1987) noted tha t two basic reactions occurred on the metal 

surface; (i) metal dissolution to metal ions and (ii) oxygen reduction to 

hydroxide ions. He proposed that initially the reactions occurred 

uniformly over the entire surface, including the interior of the crevice, the
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generation of metal ions being counter-balanced electrostatically by the 

creation of negative hydroxyl ions. However, after a while, the oxygen 

within the crevice became depleted because the oxygen was more readily 

replaced a t the surface than in the crevice. Thus within the crevice, the 

cathodic process was impeded by the depletion of oxygen and eventually 

the reaction ceased. The dissolution of metal within the crevice continued, 

however, creating an excess positive charge. In order to balance the 

charge, negative ions such as chloride ions migrated into the crevice to 

balance the charge. This results in an increase in the concentration of 

metal chloride in the crevice. The metal chloride was readily hydrolysed in 

water by the following process:

M+C1‘ + H20  = MOH + H+Cl’

The HC1 dissociated in water and the resulting increase in hydrogen ion 

concentration accelerated the metal dissolution. An auto-catalytic 

situation was thus established. As the corrosion within the crevice 

increased, the oxygen reduction process on the surrounding surface 

increased, thereby cathodically protecting the surface.

Oldfield et al (1987) summarised the above mechanism as occurring in 

four stages;

(a) de-aeration within the crevice caused by the consumption of 

oxygen during the maintenance of a passive film,

(b) a  decrease in the pH and an increase in the chloride 

concentration of the crevice solution caused by metal hydrolysis, and 

migration of chloride ions into the crevice respectively,
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(c) breakdown of the passive film in the crevice due to the build-up of 

a "critical crevice solution”, and

(d) propagation of crevice corrosion.

2.3 CORROSION TEST METHODS FOR ALUMINIUM

A variety of techniques are available for the corrosion testing of materials, 

and these range from the very simple to the very complex. The simple 

tests involve measurement of the weight loss of metal caused by exposure 

to a corrosive environment (gravimetry). The more complex tests are 

based upon electrochemical principles and involve measurement of the 

minimum potential a t which pits are initiated, the pitting potential, E pfr 

The common corrosion test methods for aluminium will now be discussed.

2.3.1 GRAVIMETRY

Gravimetry, which involves measuring the mass of material corroded 

away over a known period of time, can yield reasonable accuracy when 

good cleaning procedures are employed for the removal of corrosion 

products from the surface but, as noted by B am artt (1976) and Schrier 

(1978), the corrosion rates measured by this method are only an average 

value. The method implies tha t the corrosion has occurred a t a constant 

rate throughout the test and that the surface has been uniformly 

attacked. However, this is rarely the case, firstly because corrosion rate 

tends to diminish with time and secondly because materials such as 

aluminium are susceptible to localised attack.

Nisancioglu and Holtan (1979) successfully employed the gravimetric 

method in corrosion studies on a range of aluminium alloys. To overcome
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the problem of the change in corrosion rate with time, they measured the 

weight loss due to pitting as a function of immersion time and concluded 

tha t gravimetry was a valuable technique when i t  was used as a 

comparative test and combined with electrochemical methods.

Indeed, the consensus is that gravimetric tests should be conducted with 

caution. The weight loss should be calculated over a  range of immersion 

times, and the results analysed and compared with data from other test 

methods.

2.3.2 OPEN CIRCUIT POTENTIAL

The open circuit potential test is an electrochemical technique which 

involves the measurement of potential changes with respect to time of a 

freely-corroding specimen. The technique is often considered as being 

erratic, but Nisandoglu and Holtan (1978a & 1979) have shown tha t with 

careful interpretation of the data, fairly accurate results may be achieved. 

They proposed that the potential-time plots obtained from open circuit 

potential (OCP) measurements could be divided into four distinct regions, 

Fig.2.4, which relate to different surface behaviour. Region I corresponds 

to pit initiation and lasts for -1  minute, whereas region II, which 

represents pit propagation, may continue for several hours. The quasi- 

stationary potential in region II corresponds to the pitting potential, Ep^. 

They observed oscillations, mostly as potential surges in the positive 

direction, in region I and the early part of region II. These became 

changes in  the negative direction in the latter part of region II and 

continued into region III, where the potential declined to more negative 

values. This region they believed to correspond to a  reduction in the 

cathodic area and lower pit current densities, in agreement with Bond et
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al (1966), the result being a switch from anodic to cathodic control in 

region HI. Thus repassivation occurs in region IV and the rapid surges in 

potential disappear.

Foroulis and Thubrikar (1976) showed there to be good correlation 

between the pitting potential and the OCP when conducting corrosion 

studies on aluminium. They found that a necessary prerequisite for the 

nudeation of pits in pure aluminium when immersed in chloride solutions 

is tha t the OCP must a t some stage become more positive than the pitting 

potential for a period of time which is suffirient for pits to nudeate. Once 

nudeated, any pits tha t have been initiated may be sustained a t more 

negative potentials than Epfr although no new pits will initiate.

Sherif and Narayan (1989) investigated the variation in OCP with 

immersion time of aluminium and found that the effects of aluminium 

purity, surface treatment, oxygen content and pH of solutions, and 

mechanical agitation all affected the OCP response.

Wood et al (1974) confirmed that surface roughness affected the OCP and 

reported tha t the initial phase of the OCP curve, which is assodated with 

pit initiation, is more reprodudble if  the surface preparation is kept 

constant. The latter stages were less reprodudble, regardless of surface 

preparation.

2.3.3 POLARISATION TECHNIQUES

The major disadvantages of natural immersion methods, such as those 

just described, lies with the long periods of immersion which may be 

required. In some cases exposure of the specimens to the corrosive
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solution may take months or even years to produce useful data. This is 

unacceptable for many studies, and therefore a form of accelerated test is 

desirable. Polarisation tests, which involve controlling the potential of the 

specimen, are often employed for this reason.

(a) P oten tiok inetic  Tests

(i) Anodic P o larisa tion

Anodic polarisation involves applying a potential to a specimen whilst 

measuring the corresponding current induced within it. If a material 

which is susceptible to localised attack is polarised in a positive (anodic) 

direction, then the potential a t which pits become initiated produces a 

corresponding increase in the current density. A typical anodic 

polarisation curve is illustrated in Fig.2.5.

The first experiments using the anodic polarisation technique were 

conducted by Brennert (1937) on specimens of iron. He noted an increase 

in current and attributed it  to breakdown of the passive surface layer. He 

named this potential the break-through potential, although it  is now more 

usually called the pitting potential, Epit* In general, the more positive the 

pitting potential, the more resistant the material is to pitting attack. The 

anodic polarisation method may be used to investigate the influence of 

different factors such as heat-treatments or the fabrication process of a 

particular material.

(ii) Cyclic P o larisa tio n

A variation of the above method which is often employed is the cyclic 

polarisation test, a schematic illustration of a cyclic polarisation curve
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being given in Fig.2.6. Pourbaix et al (1963) discovered tha t a second 

important potential could be defined from this method, which they called 

the protection potential, Epro .̂ The method involves anodically polarising 

a specimen by increasing the potential until it  is more positive than E p ^  

so that the passive film is broken down and pitting occurs (the forward 

scan). The direction of the potential scan is then reversed, and the 

specimen is polarised in the cathodic direction until the curve intersects 

the forward scan thereby forming a loop. This intersection between the 

forward and reverse scans, Ex in Fig.2.6, was described by Pourbaix et al 

(1963) as the protection potential, Epro ,̂ the potential a t which pits were 

no longer active and the passive layer was restored. Otani et al (1988), 

however, defined E p ^  as the point of inflection in the reverse scan, 

labelled as Ejnfl in Fig.2.6. They based this definition upon the work of 

Nisandoglu and Holtan (1978b), who monitored the current density on 

specimens of aluminium when the potential sweep was terminated above 

and below Ejnf|. When terminated above Ejnfl, the current increased 

continuously and steady state conditions were not reached within a  time 

period of one day. However, if  terminated below Ejnfj, the current density 

attained a constant value within one day a t the most. In support of these 

findings Otani (1988) noted from microstructural observations tha t when 

specimens were polarised in a salt solution for one hour a t a  potential 

between Ex and Ejnfl that pitting did not initiate or propagate.

The area enclosed by the cyclic polarisation loop is commonly known as 

the hysteresis area. Also shown in Fig.2 . 6  is the corrosion potential, 

ECOrr> which is the potential a t which the anodic and cathodic reactions 

are equal and opposite during the polarisation experiment, and the 

effective current is a minimum.
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Pourbaix et al (1963) proposed from their study on alloy steels tha t a 

knowledge of Ep^ and Eprot  would enable predictions of the specimen 

corrosion behaviour to be made as follows. At potentials lower than Ep^, 

no corrosion will occur. However, if the potential exceeds Ep^, even for a 

short time, pits become initiated. Once initiated, pits may continue to 

propagate a t potentials below Ep^ until the protection potential is 

reached. Below Epr0{- the pits become repassivated and localised corrosion 

ceases to occur.

Some authors have found that the method by which the potential is 

changed during polarisation can affect the shape of the polarisation 

curve. There are three basic methods by which the potential can be 

controlled:

1 ) in a continuous fashion a t a constant rate (potentiodynamic)

2 ) in  a stepwise fashion a t a constant rate (quasi-stationary)

3) in a stepwise fashion where the potential is changed only when a

constant current is established (stationary)

Broli and Holtan (1973) showed that on aluminium, E p^ was a function of 

the scan rate employed, Epjj. becoming more positive a t faster rates. This 

was observed also by Leckie (1970). Broli and Holtan (1973) noted that the 

hysteresis area became larger as the scan rate was increased, and no 

hysteresis loop a t all was found by the stationary method. They proposed 

that electrochemical equilibria was never attained in potentiodynamic and 

quasi-stationary tests in contrast to the stationary method where 

equilibria was being achieved a t each stage in the test. They concluded, 

therefore, that the stationary method gave the most accurate value of the
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pitting potential and tha t Ep^ and Eproj. were actually the same 

potential.

Nisandoglu and Holtan (1978a) found that values of E p^ on aluminium 

did not differ greatly between potentiodynamic, quasi-stationary and 

stationary tests, provided that scan rates were of the order of a few 

mV/min. They attributed the major cause of difference to an  induction 

time for p it initiation, i.e. the specimen may be polarised substantially 

above Ep^, but pitting will not be observed until an induction time has 

elapsed. E p^ therefore becomes more positive with faster rates of scan.

In contradiction to the work of Broli and Holtan (1973), a number of 

authors have shown tha t a protection potential does exist and tha t its 

value depends upon the extent of propagation of pits and crevices. Wilde 

(1972) demonstrated th a t for a 430 stainless steel, Eprot  was not a unique 

material property but merely reflected the experimental conditions 

necessary to repassivate the corrosion pits. By conducting tests a t a 

variety of scan rates, he showed that propagation was greater for the 

slower scan rates and hence the protection potential was more negative. 

Similarly, if the current density a t which the potential scan was reversed 

was increased, Eproj. moved to more negative values because of an 

increase in the extent of corrosion.

Wilde and Williams (1971) showed that Eproj. was not a unique value for 

a given material and proposed that the parameter, Ep^-Epro ,̂ called the 

difference potential, was a measure of the extent of attack. In support of 

their argument they showed that good correlation existed between the 

weight loss recorded on stainless steel exposed to sea water for 4.5 years 

and the difference potential from cyclic polarisation tests.
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Syrett (1977) interpreted the change of Eprot with increased propagation 

to the solution chemistry changes which occur inside the pit. He suggested 

tha t in the early stages of pitting, the corrodent within the pit became 

increasingly more aggressive in saline environments due to the increasing 

acidity from chloride ions. As the pit grew it became more difficult to 

repassivate the walls of the pit and thus Eprot  was depressed to more 

active values as the corrosion proceeded.

(b) P otentiostatic Tests

A method which overcomes the problems associated with the induction 

time in potentiokinetic tests is potentiostatic polarisation. I t involves 

measuring the current density changes with respect to time for a 

specimen held a t a constant potential. As noted by Szklarska-Smialowska 

and Janik-Czachor (1971) there are essentially two ways in which the 

experiment may be carried out.

The first method may be used for determining the pitting potential. The 

specimen is held at a constant potential for a pre-determined period of 

time, and the current is monitored. A new sample is used for each 

potential. At E<Ep^  the current density decreases with time and the 

metal surface remains passive. However, at E^Epft the current density 

increases because pits have become initiated.

The second method may be used to determine the protection potential. A 

sample is polarised to a high anodic potential to initiate pitting and then 

polarised to a potential below Ep^  and held there for the remainder of the 

test, a new sample being used for each test. At E>Epro  ̂propagation of 

pits occurs and the current density continues to increase with time. At
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E<Eprot  however, the pits become repassivated and the current density 

decreases with time.

The potentiostatic technique has been employed by Wood et al (1974) on 

aluminium alloys. They reported the existence of an induction time for 

pitting. The curves of current density vs time were characterised by a flat 

induction period, during which pitting was not evident upon the surface. 

This was followed by a sharp rise in the current, where pitting became 

evident upon the specimen surface.

Nisandoglu and Holtan (1978a) also observed an induction period on 

aluminium alloys. They suggested that the duration of the test must 

exceed the expected induction time for pit initiation a t the test potential. 

The induction time was found to be inversely proportional to E-Ep^. where 

E is the applied potential (>Ep^). Therefore, lengthy experiments could 

result, particularly in the vicinity of Ep^.

The potentiostatic method has also been successfully applied for the 

determination of the pitting potential on aluminium (Bond et al, 1966), 

and the determination of the protection potential on a Fe-16Cr alloy 

(Szklarska-Smialowska and Janik-Czachor, 1971).

(c) Scratch Technique

The scratch method is essentially a variation of the potentiostatic test, in 

which the protective film on a specimen held a t a constant potential is 

broken by scratching. The current density is monitored and the time 

taken for repassivation is recorded. The potential a t which repassivation 

occurs is, however, a source of disagreement. Pessall and Liu (1971)
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believed it  to represent the pitting potential and stated that under 

equilibrium conditions the pitting and protection potential were the same. 

Syrett (1977) on the other hand, believed in the existence of two distinct 

potentials, E p^ and Epro ,̂ and regarded the potential obtained from this 

technique as representing Epro .̂

Pessall and Liu (1971) successfully applied the technique to stainless steel 

to determine a  value of Ep^ which was dependent only upon specimen 

composition and test environment. They found that Fe-Cr and Fe-Cr-Mo 

alloys gave different E p^ characteristics for the scratch technique and 

the potentiokinetic methods. Only slightly different E p^ values were 

obtained on ternary alloys using the two methods, but the scratch 

technique gave consistently lower values for the binary alloys. Iizlovs and 

Bond (1975) found similarly tha t the scratch method gave more negative 

values of E p^ for some stainless steels, but comparable values for others. 

Both they and Pessall and Liu (1971) agreed, however, that the scratch 

technique gave the most accurate value of the pitting potential and tha t 

this was independent of surface condition and other minor variations in 

the test procedure. Syrett (1977) agreed that the scratch method gave 

more reliable values of the potential, which he considered to be the 

protection potential. However he noted that the method had the major 

disadvantage that the passive film was broken by scratching in areas 

which would not necessarily be favoured as pitting sites. He considered 

tha t the potential represented that for the repassivation of scratches 

rather than pits.
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(d) P it Propagation Rate M ethod

A test which was suggested by Syrett (1977) as overcoming the short­

comings of both the cyclic polarisation test and the scratch method, is the 

pit propagation rate (PPR) method. The principles of the test are as 

follows. A specimen is immersed in the test solution for 1 hour before 

being taken through an anodic cycle, illustrated in Fig.2.7. The potential 

is potentiodynamically driven a t 36V/hr to a preselected potential between 

and E p^ (0.25VgQE hi Fig.2.7). It is held a t this potential for 10 

minutes to obtain a steady current density in the passive condition, 

(Ipass)' The potential is then driven above Ep^ until a  nominal current 

density of lOmA/cm^ is reached, indicating that pits have initiated. The 

potential is then reduced in a single step to the preselected potential 

below E p^ (0.25VgQg) and held for 10 minutes. Hence as no new pits 

would initiate between E p^ and Eprot* the current density recorded 

(Itotal) would be a  measure of the rate of general corrosion plus the rate of 

pit growth. The potential is decreased once more in  a single step to the 

original corrosion potential so as to repassivate the pits, before scanning 

to the preselected value again. This ensures that the current has not 

changed under passive conditions. From these results the current 

generated by pit growth can be determined from Ip^  = I ^ t a l " Ipass* *^ie 

pit propagation rate can thus be calculated from Ip^p itted  area, the 

pitted area being determined from microscopic examination. Syrett 

applied the test to stainless steels and discovered that the protection 

potentials from this method were considerably more noble than those from 

cyclic polarisation tests.
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2.4 CORROSION OF METAL MATRIX COMPOSITES 

Most of the published work on the corrosion of metal matrix composites 

has focused upon aluminium and aluminium alloys reinforced with 

graphite, silicon carbide or boron. The following sections discuss the 

corrosion behaviour of aluminium-based MMC containing these 

reinforcements and the experimental techniques which have been applied.

2.4.1 CORROSION OF SILICON CARBIDE-REINFORCED 

ALUMINIUM ALLOTS

The effect of silicon carbide reinforcement on the corrosion properties of 

aluminium alloys has been investigated by a variety of techniques. 

Reinforcements in  the form of continuous fibres, whiskers or particles 

have all received attention.

Aylor and Kain (1985) investigated the corrosion behaviour of a 6061 (Al- 

Si) alloy reinforced with fibres, whiskers and particulate. The whisker and 

particulate MMC were fabricated by a powder metallurgy route, the 

blended powders being hot-pressed between 1100 (>99% Al) aluminium 

surface foils. The fibre-reinforced MMC was produced by the diffusion 

bonding of plasma-sprayed SiC and 6061 Al foils. Test panels of these 

materials were exposed to total marine immersion, splash/spray alternate 

tidal immersion and also marine atmosphere exposures. The test period 

ranged from 30 to 365 days. They found that gravimetric measurements 

did not accurately represent the degree of corrosion owing to the build-up 

of internally entrapped corrosion products which off-set the overall weight 

loss. Microstuctural analysis of the MMC with SiC particulate showed 

that the corrosion took the form of pitting and was related initially to the 

corrosion resistance of the 1 1 0 0  aluminium surface foils. Once penetration
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of the surface foils had occurred (-230 days), corrosion concentrated 

around the SiC particles. Regarding the SiC whisker MMC, pitting 

corrosion was concentrated around the whiskers, which Aylor and Kain 

attributed to crevices a t the reinforcement/matrix interface. In the case of 

the SiC fibre MMC, attack occurred intergranularly in the 6061 Al surface 

foils and penetration through the surface foils into the composite did not 

occur during the test.

Aylor and Moran (1985) also observed preferential attack a t the 

reinforcement/matrix interface of a  6061 (Al-Si) alloy reinforced with SiC 

whiskers. The material was fabricated by powder metallurgy and studied 

in  the as-received and T6  heat-treated conditions. They noted tha t the 

morphology and extent of pitting differed between the composite and the 

corresponding unreinforced alloy, the composite exhibiting a larger 

number of pits, which were smaller and shallower than those in  the 

corroded alloy. Cyclic polarisation tests showed the composite materials to 

yield pitting potentials which were more noble than the lowest value of 

Epit f°r  alloy. They therefore concluded tha t the presence of SiC 

whiskers did not increase the susceptibility of the aluminium surface film 

to pitting corrosion.

These findings are also consistent with the results of corrosion tests 

performed by Trzaskoma et al (1983) and Trzaskoma (1990) on powder 

metallurgy produced 6061 (Al-Si) and 5456 (Al-Mg) alloys reinforced with 

SiC whiskers. They noted that although the pitting potential remained 

unaffected by the reinforcement, the corrosion morphology was altered 

and a  significantly greater number of pits formed on the composites 

compared with the corresponding unreinforced alloys. They attributed 

this to the presence of a greater number of detrimental secondary
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intermetallic phases in the composite. In the case of the 5456-based MMC 

the intermetallics were enriched with chromium and manganese, which 

were alloying elements present in the alloy, and also iron, which was 

present as an impurity phase. EDS analysis indicated tha t pits initiated 

a t these particles.

In contrast to the 6061 and 5456 based materials, Trzaskoma et al (1983) 

discovered that a 2024 (Al-Cu) alloy became more susceptible to pitting on 

addition of SiC whiskers. The pitting potential obtained from anodic 

polarisation tests was ~100mV more active for the composite than the 

alloy.

Padej and Agarwala (1988) studied the effect of SiC particulate on the 

corrosion of a 7091 (Al-Zn-Mg) alloy. The composite was manufactured by 

powder metallurgy and studied in  the as-received condition (A), after 

heat-treatment a t 910*F for 1 hour (B), and after heat treatment a t 910*F 

for 2 hours followed by 4 days a t room temperature (C). The corrosion 

tests comprised gravimetry, potentiodynamic polarisation and open circuit 

potential measurements. They found that corrosion rates calculated from 

weight loss measurements, were higher for the MMC than for the 

corresponding unreinforced alloy. The rate for all materials increased 

rapidly during the first stages of immersion (~3 days), A having the 

highest corrosion rate, followed by B then C. The rate then declined for all 

materials over the following 1 2  days. Steady state corrosion potentials 

recorded over short immersion times (-3000 seconds) on both composite 

and alloy systems reflected a similar trend. The initial potentials for the 

materials were in decreasing order of electronegativity, A < B < alloy < C. 

They observed that these initial negative potentials reflected the 

dissolution of active phases or intermetallics in the matrix material. After
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2 0 0 0  seconds the corrosion potentials became more stable and the alloy 

was found to have the most active potential, followed by C, B and finally 

A. Microstructural examination showed that the pits had formed around 

the SiC particles, which Padej and Agarwala noted could possibly be due 

to the high dislocation density a t the particulate/matrix interface 

providing an area of high residual stress. Hence these regions were likely 

sites for crevice or pit formation. The pitting potentials from 

potentiodynamic polarisation tests were most active for the composites in 

the order A < B < C < alloy, which is in dose agreement with the results 

of weight loss tests.

Padej and Agarwala (1985) investigated also the corrosion behaviour of a 

7091 (Al-Zn-Mg) alloy reinforced with SiC whiskers, fabricated by a 

powder metallurgy process and noted that its corrosion resistance was 

worse due to inhomogeneity factors. Hence, they conduded that 

processing variables as well as heat treatment played an important role in 

the corrosion behaviour of MMC.

Otani et al (1988 & 1989) conducted an investigation into the corrosion 

behaviour of an Al-Si-Mg alloy and commerdal purity aluminium, both of 

which were reinforced with continuous SiC (Nicalon) fibres. The 

composites were fabricated by the liquid metal infiltration process. In 

addition to weight loss measurements, they adopted a double cyclic 

polarisation (DCP) technique i.e. two cyclic polarisation curves performed 

in  succession. Otani (1988) reported this to be an improved technique over 

the traditional cyclic polarisation method as he found tha t for a variety of 

materials, particularly MMC, the pitting potential was ill-defined by the 

first polarisation cyde and no inflection corresponding to E p^ could be 

found. If, however, a second polarisation cyde was performed immediately
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following the first, the pitting potential was well-defined on the second 

cyde. I t was found tha t weight loss tests on the composites were 

unsuccessful due to the entrappment of internal corrosion products. This 

made assessment of the DCP technique difficult. Regarding the 

unreinforced alloys, however, the weight loss data from gravimetric tests 

gave good correlation with the hysteresis area and difference potentials 

(which both represent the extent of attack), obtained from the DCP test. It 

was noted that the difference potential test could still be useful in placing 

the materials into a  ranking order. Regarding the microstructures, the 

presence of SiC fibres was found to play a secondary role in the corrosion 

process by acting as a barrier to corrosion pit growth or by altering the 

microstructure of the metal. The major influence of the fibres was found to 

lie within the metal matrix; large amounts of second phases containing 

iron were found in the commercial purity aluminium, such as FeAlg, and 

these produced a strong microgalvanic corrosion effect. In the case of the 

Al-Si-Mg based MMC, the presence of the silicon meant tha t a FeSiAlg 

intermetallic was formed. This was less severely attacked and apparently 

appeared to inhibit corrosion propagation. In this MMC, the pits formed 

a t regions of silicon segregation close to the fibres and propagated along 

the fibres due to the higher concentration of silicon along the fibre/matrix 

interface.

2.4.2 CORROSION OF CARBON-REINFORCED ALUMINIUM 

ALLOYS

There is a consensus of opinion among authors that the incorporation of 

graphite fibres into aluminium alloys has a detrimental affect upon the 

corrosion behaviour of the alloys.

32



Aylor and Kain (1985) investigated the corrosion resistance of a 6061 (Al- 

Si) alloy, both unreinforced and reinforced with graphite fibres. The 

composite was fabricated by hot-press diffusion bonding of 

graphite/6061Al wires between aluminium-surface foils. They subjected 

test panels, which were in the as-received, anodised and nickel-coated 

conditions, to marine environments and then made microstructural 

observations. After 30 days, they noted that the uncoated MMC had 

suffered pitting attack, which was similar to that of the unreinforced 

control alloy, the corrosion proceeding intergranularly through the surface 

foils. The nickel-coated panels showed more severe corrosion, indicating 

that the coating accelerated the attack rather than providing a  barrier. 

This they attributed to flaws in the coating and concluded tha t longer 

immersion times of the uncoated MMC would result in attack similar to 

that found on the nickel-coated panels. The nickel-coated panel showed 

penetration of the surface foils and thereafter galvanic interaction 

between the fibres and matrix. This type of attack would lead to a  build­

up of internal corrosion products and eventual degradation of the 

composite. The anodised panels showed that despite having been 

attacked, after 180 days the coating still provided good protection for the 

composite. Overall the control panels exhibited greater corrosion 

resistance than the composite panels.

Aylor et al (1984) reported the results of weight loss measurements made 

on graphite fibre-reinforced 6061 (Al-Si) alloy. They found tha t the results 

did not accurately reflect the extent of corrosion of the MMC material due 

firstly to the attack being localised rather than uniform and secondly due 

to the build-up of internal corrosion products.
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Evans and Braddick (1971) also observed that corrosion could penetrate 

well below the surface, causing swelling and degradation of a carbon- 

reinforced aluminium MMC. The corrosion occurred by intergranular 

attack in regions where the matrix was supposedly pure aluminium. They 

attributed this effect to the dissolution of impurity phases (probably 

carbon) in  the aluminium during heat-treatment. Weight loss 

measurements were also made and it was noted tha t the corrosion rates 

were considerably greater than those previously found elsewhere for a 

chopped carbon fibre-reinforced aluminium MMC. They attributed this to 

the presence of an uninterrupted electrically conducting path formed by 

the continuous fibres in their composite.

Marine exposure, corrosion potential measurements and cyclic 

polarisation tests were applied by Aylor and Moran (1985) to a  graphite- 

reinforced 6061 (Al-Si) alloy, produced by diffusion bonding of 

graphite/aluminium wires and 6061 aluminium surface foils. After 1  to 4 

months exposure in  filtered sea water, the MMC test panels exhibited 

severe attack. The surface foils had blistered thereby exposing the 

composite to the environment and exemplifying the accelerated corrosion 

which follows penetration of the surface foils. This demonstrated that the 

corrosion resistance of the material was dependent upon the integrity of 

the surface foils. The average corrosion potential recorded after 30 days 

immersion in marine water was more electronegative for the MMC than 

for the corresponding alloy, indicating that the graphite fibres did not 

polarise the composite in the electropositive direction as might be 

expected under normal galvanic conditions. In addition, values of the 

pitting potential recorded for the graphite composite were significantly 

more negative than values of E p^ found for a SiC composite based on the 

same 6061 alloy. Aylor and Moran proposed that this was due to the
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passive film on the graphite-reinforced 6061 alloy being more susceptible 

to pitting attack. They also suggested, as did Evans and Braddick (1971), 

that carbon diffused from the fibres into the matrix and consequently 

formed aluminium carbides at the fibre/matrix interface. Thus the 

interface was rendered more susceptible to breakdown, and the corrosion 

potential would be forced to more negative values, as they observed, due 

to the active dissolution of these sites.

Vassilaros et al (1980) adopted a rather different approach when 

characterising the marine performance of graphite-reinforced 6061 (Al-Si) 

alloy. The material was assessed by the loss of strength due to corrosion. 

The material, which was fabricated by diffusion bonding of TiB-coated 

graphite wires and 6061 aluminium foils, was subjected to mechanical 

property tests both prior to and following corrosion testing. The corrosion 

tests involved immersion in natural flowing sea water, tidal immersion 

and exposure to a marine environment. They found tha t providing there 

was no visible evidence of corrosion, the strength of the composite was not 

affected. The average tensile strength fell in the band 550-670 MPa, which 

compared favourably with results for unexposed specimens which had 

strengths of -10-15% higher. They found, however tha t for specimens 

which exhibited visible corrosion (generally those exposed to flowing sea 

water), there was a substantial decrease in strength to <200MPa. In 

agreement with Aylor and Moran (1985), they found tha t the corrosion 

resistance was dependant upon the integrity of the surface foils; once 

these were penetrated, the attack occurred a t an accelerated rate a t  the 

fibre/matrix interface.

Otani et al (1989) performed double cyclic polarisation tests on a carbon- 

reinforced Al-Si-Mg alloy. They discovered that whilst corrosion data from
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the DCP test suggested tha t this material corroded less than the same 

alloy reinforced with a SiC fibre, initial microstructural observations 

showed the reverse to be true. However, upon doser examination, they 

found th a t much of the microstructural damage was in the form of 

extensive cracking caused by mechanical stresses generated during the 

formation of internal corrosion products. They conduded that the 

cracking, which occurred a t the fibre/matrix interface was due to galvanic 

corrosion caused by the electrochemical potential difference between the 

aluminium and carbon.

Friend et al (1990) applied potentiodynamic polarisation to 99.99% 

aluminium reinforced with high modulus carbon and high strength carbon 

fibres. The results showed tha t the two composites had almost the same 

value of the pitting potential and also that the breakdown to pitting 

attack occurred a t lower potentials for the composite than for the 

aluminium. They observed that enhanced attack occurred within the 

MMC compared to the aluminium, and this they attributed to galvanic 

corrosion caused by the electrochemical difference between the carbon 

fibres and the aluminium matrix.

2.4.3 CORROSION OF BORON-REINFORCED ALUMINIUM

An investigation into the corrosion susceptibility of boron-reinforced 

aluminium was conducted by Evans and Braddick (1971). From 

microstructural examinations they observed that a fairly uniform 

dissolution of aluminium had occurred across the surface, with some 

instances of pitting. Severe attack was found, however, a t the fibre/matrix 

interface, which they believed to be a consequence of the formation of 

aluminium boride a t the interface. This formed during the hot pressing
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process employed during manufacture. Examination of the boron fibres 

suggested that some attack of the fibres themselves may have occurred, 

but they noted that this may also have been a consequence of damage 

incurred during manufacture.

Sedriks et al (1971) offered an alternative explanation for the interfacial 

corrosion. They studied the corrosion behaviour of a  boron fibre-reinforced 

2024 (Al-Cu) alloy by measuring the loss of strength as a  result of 

corrosion. I t was discovered that the loss of strength of the composite was 

greater than that of the unreinforced alloy. This was due to a larger 

reduction in load bearing area as a result of localised corrosion. The 

attack occurred preferentially a t the fibre/matrix interfaces and a t the 

diffusion bonds between the metal foils. This behaviour they attributed to 

an  increase in the number of anodic sites a t the interfaces due to the 

presence of crevices.

A further explanation for preferential corrosion a t the fibre/matrix 

interface was put forward by Pohlman (1978), who studied the 

environmental corrosion of boron-reinforced 2024 (Al-Cu) and 6061 (Al-Si) 

alloys. They suggested that the enhanced attack, which they found in the 

interfacial regions could be a result of either (i) a lower corrosion 

resistance of the aluminium boride which they found a t the filament 

surface (as also suggested by Evans and Braddick, 1971), or (ii) a galvanic 

action between fibre and matrix, or (iii) a combination of (i) and (ii).

Batrakov et al (1979) performed anodic polarisation tests on aluminium 

alloys reinforced with steel or carbon in addition to boron-reinforced 

aluminium alloys. From a comparison of polarisation curves they 

suggested tha t the corrosion behaviour of the composite materials was
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limited by cathodic processes occurring on the surface of the 

reinforcements, due to the fibres having a more positive potential and 

acting as the cathode in a  galvanic cell. It followed that the corrosion of 

the matrix depended upon the nature and relative area of the 

reinforcement; the smaller the area of the reinforcement, the lower the 

cathodic current and consequently the corrosion of the matrix would be 

reduced.

2.5 AIMS OF THE PRESENT INVESTIGATION

It is apparent from the preceeding literature survey that the corrosion 

behaviour of MMC is by no means well understood and that the limited 

number of corrosion tests applied to these materials to date have only met 

with varying degrees of success. Thus the present study focuses attention 

particularly upon:

(a) establishing a suitable corrosion test by which the susceptibility 

of MMC to corrosion may be assessed, and

(b) elucidating the mechanism of corrosion in aluminium-based 

MMC.

The experimental work investigates corrosion characteristics in de­

aerated 3.5wt% NaCl solution of aluminium alloys containing a number of 

ceramic reinforcements which have a  range of electrical conductivities. 

The reinforcements include continuous carbon and Nicalon fibres 

(conducting and semi-conducting respectively), short alumina (Saffil) 

fibres (non-conducting) and silicon carbide particulate (semi-conducting). 

The matrix metals consist of pure aluminium, an Al-7Si-0.5Mg alloy, well 

known for its good casting characteristics, and a Al-4Cu-1.5Mg alloy with
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the potential for precipitation hardening. Composites were fabricated by 

liquid metal infiltration (LMI), squeeze casting or powder metallurgy.

The corrosion studies have been carried out using simple immersion of the 

samples in  the corrosive solution and employing accelerated corrosion test 

methods in which the specimens were forced to corrode by an applied 

potential. In particular, the double cyclic polarisation (DCP) test has been 

used for predicting the susceptibility of MMC to pitting attack.

Examination of the corroded surfaces and sections through the corroded 

material has been carried out using a variety of microstructural 

techniques. Optical and scanning electron microscopy (SEM) have been 

applied to the characterisation of the sites of corrosion attack. This has 

been coupled with energy-dispersive spectrometry (EDS) of the X-ray 

emission in order to obtain related chemical composition data. 

Transmission electron microscopy (TEM) has been used for the study of 

much finer microstructural details such as the nature of the fibre/matrix 

interface. In addition to elucidating the role of the reinforcement and of 

the matrix composition, the studies have also permitted the effect of 

fabrication route to be explored.
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CHAPTERS 

EXPERIMENTAL DETAILS

3.1 MATERIALS

3.1.1 MATRIX METALS

The metal matrix composites selected for investigation were based upon 

three matrix metals:

(i) super pure aluminium,

(ii) aluminium - 7wt% silicon - 0.5wt% magnesium alloy, designated 357, a 

popular casting alloy owing to its high fluidity in the molten state, and

(iii) aluminium - 4wt% copper - 1 .5 wt% magnesium, a  precipitation 

hardening alloy, designated 2124.

The matrix metals were studied in the unreinforced condition to provide a  

comparison for the composite materials. In the case of the super purity 

aluminium matrix, commercial purity aluminium was studied in  the 

unreinforced condition as a control. The chemical compositions of the 

matrices are given in Table 3.1.

Some experiments designed to evaluate the performance of the corrosion 

test apparatus were made using a 430 stainless steel, the chemical 

composition of which is also given in Table 3.1.

3.1.2 REINFORCEMENTS

The reinforcements studied included continuous and short fibres and 

particulate. The continuous fibres were carbon and Nicalon, a fibre 

composed essentially of silicon carbide, the short fibre was Saffil, a 5-
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alumina fibre, and the particulate reinforcement was silicon carbide. 

Nicalon and Saffil are trade names for products of Nippon Carbone Co. 

Ltd and ICI pic, respectively. Data relating to the reinforcements are 

given in Table 3.2.

The carbon fibre was produced by the pyrolysis of a polyacrylonitrile 

(PAN) precursor, the final product consisting of multifilament tows with 

fibres being ~8 pm in diameter.

The Nicalon fibre was developed by Yajima et al (1978) as a silicon carbide 

fibre. The production of the fibre involves a series of complicated 

operations, illustrated schematically in Fig.3.1 (from Anderson and 

Warren, 1984) and ends with the pyrolysis of a polycarbosilane fibre to 

form what was originally thought to be a silicon carbide fibre, although it 

has been more recently shown (Porte and Sartre, 1989) to consist of silicon 

carbide together with carbon and an intermediate silicon oxycarbide 

phase SiOxCy. The molar ratios of the components give;

SiC: SiOxCy:C: S i0 2  = 1: 0.5: 0.75±0.25: 0.08.

The 5-alumina fibres were produced by a spinning process which controls 

the fibre diameter within tight limits around a mean value of 3pn. The 

mean length of the fibres is ~ 100pm. A fine-grained microstructure was 

developed by the addition of -4% silica. This is effective in controlling the 

level of porosity and acting as a crystal growth inhibitor during the heat- 

treatment. The 5-alumina fibres were then made into a porous, block-like 

preform by mixing the fibres in a slurry containing an in-organic binder 

and a fugitive organic binder, the latter of which is burnt off during firing.
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3.1.3 METAL MATRIX COMPOSITES

The corrosion characteristics of seven metal matrix composites were 

investigated. The composites were fabricated by a variety of routes which 

included, squeeze casting (made at the Royal Military College of Science, 

Shrivenham, Wiltshire), liquid metal infiltration (supplied by the DRA 

(Maritime Division) Admiralty Research Establishment, Holton Heath, 

Dorset, and Cray Advanced Materials Systems, Yeovil) and powder 

metallurgy (supplied by BP). Table 3.3 is a summary of the MMC systems, 

their method of manufacture and the form in which the composite was 

received.

3.1.4 FABRICATION OF MMC BY SQUEEZE CASTING

The composites listed in Table 3.3 which were fabricated by squeeze 

casting, were manufactured using equipment a t the Royal Military 

College of Science, Shrivenham, Wiltshire, with their kind permission. 

The procedure followed will now be described.

Firstly a fibre preform of unidirectional carbon fibres was constructed by a 

filament winding process. Tows containing - 2 0 0 0  carbon fibres were 

wound by hand around two plates of steel placed back to back, the edges 

of the steel being bent to prevent the fibres sliding off, Fig.3.2(a). Steel 

caps were placed over each side of the preform, as illustrated in Fig.3.2(b), 

and then the whole assembly clamped between steel plates, see Fig.3.2(c), 

to prevent the fibres from floating during casting. Finally the fibres were 

de-sized in a  furnace at a temperature of ~800°C for 15 minutes.

Prior to casting the fibre preform was heated to 750#C and placed in  the 

die, which was also heated to -  370°C. The metal (1 kg mass), was heated
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to 1000°C in the crucible, before being poured from the bottom of the 

crucible via a launder into the die. A dovetail ram, which was located 

directly above the die, was lowered onto the molten cast, until a pressure 

of ~30MPa was attained. This was maintained for 1  minute. The pressure 

was then allowed to fall back to zero. The die and cast were cooled to 

~250°C before the ram was raised, bringing with it  the cast which was 

interlocked in the dovetail. After further cooling the composite could be 

cut from the cast.

3.2 PREPARATION OF TEST SPECIMENS

3.2.1 UNREINFORCED MATRIX METALS

Samples of unreinforced metals were cut on a Struers Discotom cutting 

machine, fitted with a  hard-bonded abrasive cutting wheel. An Aquicut 

cutting fluid acted as a  lubricant and coolant. Specimens for corrosion 

tests were required to be either unmounted or mounted in resin. Those for 

mounting were cut into ~1 0 x l 0 x5 mm^ blocks and mounted in Struers 

Epofix cold-setting resin, whilst the unmounted specimens were larger, 

typically 20xl5x5mm^.

A high quality metallographic finish was required for microstructural 

analysis. To achieve this, specimens were firstly ground until flat on 200 

grit silicon carbide paper on a Beuhler Motopol 1 2  machine. This was 

followed by grinding on a perforated Texmet* doth using 6 pm diamond
]|g

slurry and then polishing on a Metlap 1 doth and a 1pm diamond slurry, 

(the latter 1 pm stage was omitted in the case of aluminium). The final 

stage involved polishing on a Mastertex cloth with colloidal silica. After

* Beuhler UK L td.

43



washing with Teepol detergent, the samples were rinsed with distilled 

water, dried and stored in a dessicator until required.

Unmounted specimens were ground on all faces using successively finer 

grades of silicon carbide paper, down to 500 grit. All edges and comers 

were rounded to prevent charge concentration effects during the corrosion 

experiments. A 3mm hole drilled towards the top of the specimen enabled 

it  to be suspended in the electrolyte, the hole being masked off with 

Lacomit varnish to prevent charge concentration effects.

3.2.2 METAL MATRIX COMPOSITES

Specimens of MMC were cut from the bulk using a Struers Acutom 

precision cutting machine fitted with a Bakelite bonded abrasive wheel. 

An Aquicut cutting fluid was once again used for lubrication and cooling. 

Composites containing unidirectional fibres were cut to expose transverse 

sections whilst the two-directional material (carbon fibre-reinforced 357 

alloy) was cut to expose fibres in both directions simultaneously. The 

Saffil reinforced material was not cut to any particular fibre orientation, 

and the particulate reinforced specimens were cut to expose surfaces 

containing the hot-rolling direction.

Mounted MMC specimens were once again prepared using a  Beuhler
a |e

Motopol 1 2  machine. They were firstly ground using a Metlap 10 

grinding wheel with 45pm diamond slurry until the specimens were flat. 

This was followed by two stages on Perforated Texmet doth using 15pm 

diamond and then 6 pm diamond slurries. A Metlap 1  with 1 pm diamond 

slurry and finally a Mastertex doth with colloidal silica completed the
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metallographic preparation. Samples were then cleaned, rinsed and stored 

in a dessicator.

Unmounted MMC specimens were prepared in the same way as the 

unmounted metals described in the previous section.

3*2.3 TRANSMISSION ELECTRON MICROSCOPY SPECIMENS 

Composite specimens for examination in the transmission electron 

microscope (TEM) were prepared by cutting thin (~0.2mm) slices from the 

bulk composite. Discs of 3mm diameter were prepared from the wafers 

using a  coring drill and the discs ground on silicon carbide paper to a 

thickness of 100pm. The central thickness of a disc was further reduced to 

~25pm by mechanical dimpling each face of the disc in turn  with a  VCR 

model 500 dimpling machine. This was followed by ion beam thinning in  a 

Gatan Duomill for several hours a t 5KV and a beam angle of 15* until 

perforation occurred. The region around the perforation was then thin 

enough for TEM studies.

3.2.4 ALUMINIUM SINGLE CRYSTAL SPECIMENS 

Single crystals of aluminium were cut along specific crystal planes for 

assessment of the polarisation test method. The back-reflection Laue 

method was employed to orientate the crystals prior to cutting.

The single crystal specimen was mounted on a goniometer which allowed 

three mutually perpendicular axes of rotation. The X-ray beam was 

switched on and an X-ray diffraction pattern was produced consisting of 

an  array of spots characteristic of the orientation of the crystal. The 

specimen was then orientated by means of the goniometer until a  spot
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pattern to the desired orientation was achieved. Without disturbing the 

crystal, the goniometer was removed from its track and transferred to a 

similar track on a cutting device. The crystal was then cut to the required 

orientation whilst still mounted on the holder.

3.3 CORROSION TESTING

3.3.1 CORROSION TEST ENVIRONMENT

A 3.5wt% NaCl solution, prepared from reagent grade NaCl and distilled 

water, was used for all corrosion tests, this solution being dose to the 

concentration of sea water. The solution was maintained a t a  constant 

temperature of 25±0.5*C and de-aerated for all tests by bubbling oxygen- 

free nitrogen gas through the solution for 1  hour prior to and constantly 

during the test. Measurement of the residual oxygen content with an 

oxygen meter after de-aerating for 1  hour, showed the solution to be fully 

de-aerated within the sensitivity of the meter (O.lppm). The reasons for 

de-aeration, as noted by Syrret (1976), are essentially;

(a) to enable the anodic characteristics of a  metal to be determined 

over a wider potential range in the absence of oxygen, and

(b) to remove the effect that the dissolved oxygen may have on the 

cathodic reactions occurring on the metal surface.

3.3.2 GRAVIMETRY

For determining the weight change of a material with time, an 

unmounted specimen was suspended in solution for increasing lengths of 

time ranging from 1  day to 3 weeks. The surface area of the specimen and 

its mass was recorded prior to immersion. After immersion the specimen

46



was scrubbed with a soft bristle brush and immersed in nitric acid for 1 0  

minutes in  an ultrasonic bath to remove all corrosion product. The 

specimen was then weighed. The cleaning procedure was repeated until a 

constant weight was achieved, indicating that all corrosion product had 

been removed. The mass loss was then calculated with respect to the 

exposed area.

3.3.3 OPEN CIRCUIT POTENTIAL TESTS

The open circuit potential of a freely corroding specimen was monitored 

over a  3 week period. A mounted specimen was fitted into the working 

electrode holder, Fig.3.3. This consisted of a cap, stem, screw and holder 

fabricated from PTFE containing rods and a plate of copper to provide an 

electrically conducting path to the specimen. The assembly is based upon 

the design of Otani et al (1988) but incorporated improved sealing 

arrangements between the specimen cap and specimen in order to prevent 

water ingress. I t involved machining away a small part of the cap so as to 

create a lip a t the edge of the opening which exposed the specimen, 

Fig.3.3, and a small amount of silicone rubber sealant introduced between 

the cap and specimen. When assembled, a lcm^ circular area of the 

specimen was exposed to the solution. When, however, thin mounted 

sections of the material were used, exposure of some of the resin mount 

and the interface between the specimen and resin reduced the area of the 

sections to ~30mm^. Lacomit varnish was used to seal specimen/mount 

interfaces from the solution in order to avoid the possibilities of crevice 

corrosion being generated.

The working electrode, containing the specimen, was immersed in  the 

solution and the potential monitored using a saturated calomel electrode
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(SCE). All data were recorded as a function of time by a data logger, the 

potential data sampling period being varied as the test progressed. 

Starting a t 1 minute for the first hour, the sampling time was increased to 

10 minutes for the next 3 hours. Measurement intervals were then set a t 

30 minutes for the remainder of the first day, hourly for the second day 

and finally 2  hourly until the test reached completion. After each data 

interval, the data was transferred to floppy disc.

3.3.4 POTENTIODYNAMIC POLARISATION

(a) A pparatus

The equipment used for polarisation tests is illustrated in Fig.3.4. It 

consisted of an ACM RS-232 Computerstat (Applied Corrosion Monitoring 

Ltd) which was controlled by an Amstrad PC-1512 computer. The ACM- 

232 Computerstat was a potentiostat which could be controlled via a 

computer to measure current-potential or current-time relationships for a 

variety of materials. The results were plotted out during the course of the 

test and stored on floppy disc. The choice of sampling interval (potential 

and current) was dependant upon the method of polarisation since it  is a 

function of the memory of the computer. Typically data were sampled a t 

5mV intervals during potentiodynamic polarisation experiments.

A coaxial glass cell was used for all polarisation studies, Fig.3.5, which 

consisted of three compartments. The outer jacket contained water a t a 

constant temperature which was continually circulated from a water bath. 

This maintained the test solution, contained in the middle and inner 

compartments, at a constant temperature throughout the test. The middle 

compartment contained the test solution and also a glass frit, through
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which the nitrogen was bubbled to minimise turbulence in the inner 

compartment The inner compartment, also filled with test solution, 

contained a working electrode, a counter electrode and a  standard 

reference electrode. Holes in  the walls of the inner compartment allowed 

interchange of the solution with the middle compartment. Fig.3.6 shows 

the polarisation cell fitted with the three electrodes.

The same working electrode assembly as adopted for open circuit potential 

studies, section 3.3.3, was used.

A reference electrode, a saturated calomel electrode (SCE), was included 

to provide a  stable reference potential against which the potential of the 

working electrode could be measured. All potentials reported in  this 

investigation were recorded with reference to the SCE which has a 

potential of +242mV (with respect to the standard hydrogen electrode, 

SHE). Some experiments were conducted using the Luggin capilliary 

technique as described by McGill and McEnaney (1978). The method is 

usefid for avoiding errors caused by contamination of the test solution 

with chloride ions from the reference electrode and by the uncompensated 

solution resistance. However, the results obtained with and without the 

Luggin technique were almost identical, probably because the high 

concentration of ions present in the solution provided good conductivity 

and off-set any contamination. Most of the tests carried out did not, 

therefore, include the Luggin probe.

The auxilliaiy electrode, a  platinum mesh of ~30mm^, was employed to 

supply the current required by the working electrode response of the cell.

49



(b) Anodic Polarisation

Preliminary anodic polarisation studies were conducted in accordance 

with the ASTM G5-78 (1978) standard recommended practice to assess 

the performance of the cell. This involved producing anodic polarisation 

curves for 430 stainless steel immersed in de-aerated 1.0N H2 SO4  a t 

30*C. The potential scan, which commenced at ~50mV below the natural 

corrosion potential, was swept a t a scan rate of lOmV/min up to ~1600mV. 

Graphs of the potential vs current density were recorded for experiments 

both with and without the Luggin probe.

(c) Double Cyclic Polarisation

The double cycle polarisation (DCP) test was employed for determining 

pitting, protection and corrosion potentials for all alloys and MMC. The 

limits of each potential cycle were (i) a  potential of 500mV more negative 

than the free corrosion potential on immersion for the start of each cycle 

and (ii) a  maximum current density of 5 mAcm“̂  for the reversal of 

potential a t the end of each forward scan. The specimen was immersed in 

the solution for ~ 1 0  minutes prior to polarisation, by which time a steady 

potential had been achieved. Each test was carried out a t least three 

times and the mean values of the pitting, protection and corrosion 

potentials and hysteresis area calculated. The experimental scatter for 

each potential was also recorded from the tests.

Preliminary tests were conducted on silicon carbide-reinforced 2124 alloy 

to characterise the DCP curve. In addition, some experiments were 

carried out on single crystals of aluminium of different crystallographic 

orientations to assess the sensitivity of the DCP technique.
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Some tests were conducted on materials based upon the 357 alloy a t the 

slow scan rate of 2mV/min, to investigate the effect of scan rate upon the 

DCP curve, but a scan rate of 20mV/min was mostly adopted.

3.3.5 POTENTIOSTATTC POLARISATION

Potentiostatic polarisation tests were carried out on silicon carbide- 

reinforced 2124 alloy to investigate the definition of a protection potential. 

The equipment employed for these experiments was the same as tha t for 

the proceeding polarisation tests. The experiment involved holding the 

specimen a t a predetermined potential and monitoring the current 

response over a  period of 3 hours. The potentials a t which the specimen 

was polarised were selected so as to explore in more detail the 

electrochemical characteristics in the region of the protection potential 

from the DCP curve.

3.3.6 GALVANIC COUPLES

Galvanic tests were performed between unreinforced metal and bare 

fibres in order to determine the galvanic current flowing between them 

and hence the corrosion rate of the metal in such a couple. The mounted 

metal specimen was placed in the working electrode assembly and 

immersed in the solution (which was not de-aerated in this case). Tows of 

carbon or Nicalon fibres, which had been desized by immersion in dilute 

HNO3  f°r  minutes, were stuck down onto copper plates using silver 

paint in order to provide a conducting path to the fibres. The fibres were 

then immersed in the solution together with the working electrode 

assembly. After allowing the system to stabilise (taking -10 minutes), the 

galvanic current flowing between the metal and fibres was monitored over
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a 2  hour period using a computer-controlled zero resistance ammeter and 

the results stored on floppy disc.

3.4 mCROSTRUCTURAL STUDY

3.4.1 OPTICAL MICROSCOPY

Metallographically prepared specimens were studied using a Zeiss ICM 

405 optical microscope both before and after corrosion testing. The optical 

microscope was also used to investigate the corrosion morphology of 

specimens which had been corroded for times ranging from a few hours to 

3 weeks.

3.4.2 QUANTITATIVE MICROSCOPY

The volume fractions of fibres present in the MMC were measured by 

image analysis using a Joyce-Loebl Magiscan 2A coupled to a Zeiss 

Ultraphot microscope. The principal stages of image analysis are as 

follows.

The image formed by the microscope, of polished and mounted specimens 

is collected by a real time video camera. The analogue camera image is 

then digitised and treated as a set of points (pixels), arranged in a matrix 

of 512 x 512 square pixels. Each pixel is assigned one of 64 grey levels 

from black to white. The grey image may be manipulated in a number of 

ways, the "edge operator” being the only one used in this study. This 

defined more clearly the edge of an object by finding regions of rapid 

change of grey level, for example a fibre edge, and sharpening this region
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whilst smoothing the others, thereby improving the contrast between the 

two areas.

The regions of interest within the image were separated from the 

background by a process of segmentation giving a binary image of white 

regions and black background. This was achieved by setting a threshold 

level, where all levels of grey below a selected one were treated as white 

and all above the level were treated as black. In the case of a composite, 

the threshold was set so tha t the fibres appeared black and the matrix 

regions and second phases were white.

The final stage of image analysis, object detection, involved counting all 

the pixels which appeared black in the image.

3.4.3 SCANNING ELECTRON MICROSCOPY

The scanning electron microscope (SEM), Fig.3.7, provided an excellent 

means for studying the corrosion of MMC owing to its greater depth of 

field and greater resolution (~5 nm) when compared with the optical 

microscope.

The principle of the technique is as follows. An electron gun produces a 

monochromatic beam of electrons with the energy range 5KV and 40KV 

and condenser lenses demagnify the beam into a finely focused spot 

(~5nm) on the specimen. When the electrons strike the surface, various 

interaction processes occur as summarised in Fig.3.8. The secondary and 

back-scattered electrons are collected to form a picture upon a cathode ray 

tube (CRT), which gives point-to-point correspondence with the area of 

specimen scanned by the electron beam.
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A JEOL T330 and a JEOL 35C scanning electron microscope were used in 

this investigation. The latter was fitted with an energy-dispersive 

spectrometer (EDS) which was used to determine the chemical 

composition of microstructural features. The principle of operation of an 

EDS system will be described in section 3.4.5.

3.4.4 TRANSMISSION ELECTRON MICROSCOPY

The transmission electron microscope (TEM), Fig.3.9, allows the 

resolution of microstructural details <lnm  in size. The TEM used in this 

investigation was a JEOL 2 0 0 0 FX instrument to which was attached a 

LINK high-angle thin window EDS detector and AN1000 analyser. The 

operation of the TEM is as follows.

A beam of electrons is emitted from the electron gun a t an accelerating 

voltage of up to 200keV. Below the gun are condensor lenses which control 

the diameter of the electron beam as it hits the specimen, which is located 

in a chamber directly beneath the condensor lenses. The specimen holder 

can be moved in two directions in the horizontal plane and it can also be 

tilted to an angle of up to 45° in order tha t different features of the 

specimen can be brought into view. The objective lens, which is situated 

below the specimen chamber, forms an intermediate image which, by 

controlling the current, is focused upon a plane containing a set of 

apertures. These apertures, known as diffraction apertures, enable the 

area of the field of view to be selected for the purposes of forming an 

electron diffraction pattern. The intermediate image is viewed on a 

fluorescent screen after passing through several projector lenses which 

enlarge the image to its final magnification.
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The TEM can provide electron diffraction patterns, from which 

information may be obtained regarding the crystallographic structure of 

the material under investigation. A schematic illustration of the formation 

of a diffraction pattern is given in Fig.3.10. When the electron beam 

strikes the specimen, some of the electrons are transmitted without 

interaction, whilst others are diffracted. The electrons which have been 

diffracted through the same angle are refracted by the objective lens and 

brought to a point in the back focal plane, as illustrated in Fig.3.10. This 

forms the diffraction pattern.

From the diffraction pattern, the spacing of lattice planes within the 

crystal may be found as follows. Fig.3.11 illustrates a beam of electrons of 

wavelength X, which have been diffracted through an angle 0, by a crystal 

whose interplanar spacing is d. According to Bragg's Law:

nX = 2 dsin0  

and, as 0  is very small, this approximates to:

nX -  2 d0

From Fig.3.11 we can see that the angle through which the electrons are 

diffracted, is related to the distance between the spot from the central 

spot on the diffraction pattern, r, and the distance between the specimen 

and the pattern, L, (otherwise known as the camera length). Thus

2 0  ~ r 
L

nX = dr 
L

/. d = nXL 
r

Hence the interplanar spacing may be found from measurement of r  from 

the diffraction pattern. Having obtained the interplanar spacings, the 

material may be identified by reference to ASTM charts, which lists the
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d-spacings of many materials. For a cubic lattice the relationship is as 

follows, where a is the unit cell parameter and h,k and 1 are the indices of 

the diffracting plane;

dhkl
V(h  ̂+ +1^)

Having indexed the diffraction pattern, the zone axis [uvw] is defined by 

the vector product of two different diffracting planes, (h^k^l^) and 

(h2 k2 l2);

[uvw] = (h jk ^ i)  A (h2 k2 l2)

3.4.5 ELECTRON-PROBE MICROANALYSIS

When a specimen is bombarded with high energy electrons a spectrum of 

X-rays are produced which consists of background radiation and 

characteristic X-ray emissions. Each element present will emit X-rays of a 

particular ("characteristic") energy and measurement of these X-ray 

energies will allow the elements present to be identified. Furthermore, the 

intensity of the X-ray energies gives a measure of the amount of element 

present. This X-ray spectrochemical technique is referred to as electron- 

probe microanalysis and there are two distinct experimental techniques 

for analysing the spectra. These are known as energy-dispersive 

spectrometry (EDS) and wavelength-dispersive spectrometry (WDS). With 

EDS, the X-rays are detected with a Si(Li) semiconductor held a t liquid 

nitrogen temperature. A thin window is positioned in front of the detector 

in  standard EDS systems, to protect the device from surface 

contamination. The detector used in this study could detect elements 

down to boron (atomic number 5) as it had an ultra-thin plastic window.
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Within the semiconductor junction, electron-hole pairs are generated, the 

number of pairs being proportional to the X-ray energy. The total charge 

is collected, amplified and the pulses separated by a multi-channel 

analyser according to their amplitude (energy). The resulting spectrum, 

an example of which is given in Fig.3.12, may be displayed on a screen, 

stored on a magnetic disc or printed out as a hard copy. EDS systems were 

employed in this study to establish the composition of second phases and 

other microstructural features.

WDS has a number of advantages over EDS in that it  is more sensitive to 

light element detection and it  has improved energy resolution and 

element detection sensitivity. Generally, EDS is more suitable for 

quantitative analysis of chemical compositions.

A WDS system uses a crystal of known interplanar spacing to diffract the 

X-rays emitted from a specimen. Measurement of the diffraction angle 

allows the X-ray wavelength, X, to be calculated by Bragg's law:

nX = 2 dsin0

where "d" is the known interplanar spacing of the analysing crystal. The 

spectrometer can be set a t the appropriate angle to receive X-rays from a 

selected element and these are then be detected by a gas proportional 

counter and the intensity measured.

A JEOL 8000S superprobe instrument fitted with four WDS systems was 

used to determine the thickness of the oxide film on corroded specimens 

by the following technique.
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3.4.6 MEASUREMENT OF OXIDE FILM THICKNESS 

Although the measurement of oxide film thickness proved to be a minor 

part of the research on corroded materials, the method of measurement 

used, together with the results obtained, were considered to be of 

sufficient general interest to be reported in some detail. It involves the use 

of electron-probe microanalysis to analyse chemically the surface regions 

of the corroded material, and then to apply a correction routine to convert 

the measured X-ray intensities into film thickness measurements. A 

description of the underlying principles now follows.

When a specimen is bombarded with electrons in the range 5 to 50kV, X- 

rays are produced from a volume of approximately ljim^ in the specimen. 

The manner in which the X-ray intensity varies with depth in the target 

is a function of its atomic number and the accelerating voltage of the 

electron beam. It may be represented by a distribution known as a <Kpz) 

curve, see Fig.3.13. Various analytical formulae have been developed to 

describe the <Kpz) function, but the equations, in  general, are fairly 

complicated. Love and Scott (1978), however, adopted a simple approach 

which was first proposed by Bishop (1974). They assumed that the X-ray 

distribution <|>(pz) with mass depth pz was a rectangular function, see 

Fig.3.14, where a constant <|>(pz) was assumed until a value of twice the 

mean depth of X-ray generation (pz) was reached whereupon it fell to zero. 

The term pz is defined as follows;

pz = <|>(pz).pz.d(pz) 
o______________

oo

<Kpz).d(pz)
o
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Love and Scott showed that the rectangular function could be used in

quantitaive microanalysis, provided that an accurate expression for pz 

was available. The total intensity of generated X-rays is thus given by 

<|>(0).2pz, where fiO) is the surface ionisation function. An X-ray absorption 

term (x) must be included to take into account the X-rays which are 

absorbed as they leave the specimen and thus the emitted X-ray intensity

• 'o

where x = p/p.cosec\|/ and \j/ is the X-ray take-off angle. Since <>(0 ) is a 

constant,the expression may be written as follows;

In quantitative analysis the oxygen X-ray intensity from the oxide film 

are compared with that from a standard of pure alumina. Assuming the

alumina, <J>(0) and x are the same and the X-ray intensity for an oxide film, 

thickness t, is given by

is;

*2pz

<j>(0).exp(-x.pz).d(pz)

*2pz

<t>(0 ) expC-x.pz).d(pz)

which becomes

= <K0 ) [ 1  - exp(-2 x.pz)] 
X

X-ray distribution functions are similar in oxidised aluminium and

^ lm  = jW)-[ 1  - exp(-x-pt)]
X

and we may write
I film  = l-exp(-xpt)

W  l-exp(-2 xpz).
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Thus t  is calculated from the above equation by measurement of the two 

respective X-ray intensities in an electron probe microanalyser, the mean 

depth of X-ray generation, pz being determined from an expression 

developed by Sewell et al (1985);

pz = psm ________In Uo_________
2.4 + 0.07Z + (1.04 +0.48T1)

where psm, the electron range, is given by

psm = A/Z[ (0.733x10"® Jy2  E03/2) + (0.735xl0"6 Eo2) ].

Z is the atomic number; A is the atomic weight; ri is the backscatter 

coefficient (dependant upon the composition of the specimen); U q  is the 

overvoltage ratio, E0 /Ec, the ratio of the energy of incident electrons, E0, 

to the critical excitation potential of the target atom, Ec; J  is the 

ionisation potential, expressed by 0.0135Z.
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CHAPTER 4

RESULTS

4.1 ASSESSMENT OF THE POLARISATION TECHNIQUE

This section describes corrosion experiments which were conducted to 

assess the performance of the polarisation apparatus. The sensitivity of 

the DCP technique will be discussed as well as the determination of 

characteristic potentials from a double cycle polarisation curve. Particular 

reference will be made to the definition of a protection potential.

4.1.1 ASSESSMENT OF THE POLARISATION APPARATUS 

Anodic polarisation studies conducted on 430 stainless steel in de-aerated 

1.0N H2 SO4  produced curves of potential versus current density which 

were in  good agreement with the ASTM G5-78 (1978) data. Fig.4.1(a) 

shows results obtained by the standard test (represented by the shaded 

region) and Fig.4.1(b), the experimental curves, A and B, obtained from 

tests conducted with and without a Luggin capilliary reference electrode. 

The curves show th a t the tests are in good agreement with each other and 

with the ASTM data and tha t the Luggin probe offers no advantage over 

the SCE; the Luggin technique was therefore not adopted in the majority 

of polarisation tests. The data confirm also that the polarisation 

apparatus, comprising computer-controlled potentiostat, glass 

polarisation cell, PTFE working electrode assembly and SCE, performs 

satisfactorily.
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4.1.2 THE DOUBLE CYCLIC POLARISATION METHOD

(a) D efinition o f a Protection Potential

The determination of a pitting potential and corrosion potential from 

cyclic polarisation curves is well established and is universally agreed 

upon. The definition of a  protection potential, Eprot> is, however, a  source 

of controversey amongst a number of authors as mentioned in section 

2.3.3(aXii). I t has been described as the intersection between forward and 

reverse scans, Ex, (Pourbaix et al, 1963) or the potential a t which there is 

an inflection in the reverse scan, (Otani et al, 1988).

To determine an accurate definition of a  protection potential, 

potentiostatic tests were conducted upon specimens of 2124-SiC in order 

th a t the current density in the vicinity of the Ejnfl and Ex might be 

studied. The principle was to establish pitting upon the specimen prior to 

applying a constant potential. The level of the current density in the 

sample following polarisation a t the preselected potential could then be 

monitored. If the potential was above the true protection potential, pitting 

should continue and a high current density would be maintained. If, 

however, the potential was below Eproj., pits should be rendered inactive 

and the current density would correspondingly decrease to passive values.

It was found by optical microscopy of the corroded surface, tha t pitting 

corrosion had occurred on samples of 2124-SiC which were immersed in 

the salt solution for a period of -15 minutes. Therefore, in the case of all 

potentiostatic tests the specimens were immersed in the solution 15 

minutes prior to testing.

A DCP curve for 2124-SiC is given in Fig.4.2(a). From this the values of 

Epit» Ejnfl and Ex could be determined, Ep^  being recorded from the
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second cycle and and Ex from the first cycle. The potentials selected 

for potentiostatic tests lay in the ranges Ep^>E>Ejnf|, E n̂f|>E>EY and 

E<EX, and were -732mV, -800mV and -lOOOmV respectively. Results of 

holding specimens at these potentials for 3 hours are illustrated in 

Fig.4.2(b), which shows the variation in current density with time. The 

data indicate that high anodic current densities are recorded for 

potentials greater than Ex, and that these fluctuate slightly, suggesting 

that pitting is continuing at these potentials. The pitting is confirmed by 

the microstructure, Fig.4.3(a). Below Ex the current density is cathodic 

throughout the test and no fluctuations are seen, indicating that pitting 

has stopped. Fig.4.3(b) shows that the extent of pitting is similar to that 

which occurs during immersion prior to testing, Fig.4.3(c), indicating that 

no further pitting had occurred. It was therefore concluded that the 

protection potential is best described by the intersection between the 

forward and reverse potential scans, shown in Fig.4.2(a) as Ex.

Ob) D efin ition  of the C haracte ristic  P o ten tia ls  from  a DCP 

Curve

The DCP curve obtained from SiC particulate-reinforced 2124 alloy (2124- 

SiC) composite was chosen to characterise the pitting, protection and 

corrosion potentials, because of the uniform distribution of reinforcement 

and pore-free microstructure in this material.

Fig.4.4(a) is a typical curve obtained using a potential scan rate of 

20mV/min. The curve may be characterised by the potentials E^corr and 

E-^prot f°r the first cycle and E^C()rr, E ^ j .  and E ^ p ^  for the second 

cycle. The mean values from three DCP tests on 2124-SiC are listed in 

Table 4.1, together with the experimental scatter of results.
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The pitting potential, as illustrated in Fig.4.4(a), was recorded only on the 

second cycle. During the first cycle, the rapid increase in current density 

normally associated with Ep^, occurred from the corrosion potential. 

Then during the second cycle, the corrosion potential became shifted to 

more negative potentials by ~400mV. These observations are shown in 

the data, Table 4.1; E^corr,which was ~-732±5mV, was close to E^p^, (- 

726±5mV). This suggests that the corrosion potential is in the vicinity of 

Epit during the first cycle and therefore masks the pitting potential. In 

the second cycle the corrosion potential becomes depressed, thereby 

producing a clear passive range and allowing a pitting potential to be 

distinguished. On the basis of this, it was decided to adopt Ep-^ and Ecorr 

values from the second cycle where they were more clearly defined.

Regarding the protection potential, the results showed that the second 

cycle produced slightly more positive values than the first cycle (- 

946±5mV compared with -965±10mV respectively). To determine whether 

the movement to more positive values was a feature of repeated cycles, a 

triple cycle polarisation test was performed on the 2124-SiC specimen. 

The results, illustrated in Fig.4.4(b), show that the protection potential 

does indeed become slightly more positive with repeated cycles. Hence it 

could be concluded that the protection potential was sensitive to repeated 

polarisation scans and that the first cycle produced the most accurate 

value for the protection potential.

Another corrosion parameter which may be derived from polarisation 

curves relates to the area swept out during the scan. This we term the 

hysteresis area. Table 4.1 shows that the area for the second cycle is 

slightly smaller than the first, but the range of values for each cycle 

overlap. The hysteresis area is seen to be different for each cycle,
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Fig.4.4(a), as a result of the shift in Ecorr to more negative potentials and 

the appearance of a pitting potential on the second cycle. As both Ecorr 

and E p^ are more accurately represented by the second cycle and are 

responsible for the shape of the hysteresis loop, it was decided that the 

hysteresis area would also be better defined from the second cycle.

Thus, all values of the pitting and corrosion potentials and the hysteresis 

area recorded in this investigation were taken from the second cycle 

unless otherwise stated. The protection potential, however, was taken 

from the first cycle.

(c) Sensitiv ity  o f the DCP Technique

The sensitivity tests for the DCP method were performed on single 

crystals of aluminium which had been cut to expose surfaces of four 

crystallographic orientations (2 1 1 ), (1 1 1 ), (1 1 0 ) and (1 0 0 ) planes.

The results of DCP tests are illustrated by Fig.4.5(a),(b),(c)&(d) and the 

data are collated in Table 4.2. As the curves in Fig.4.5 show, no major 

differences can be seen between the samples. All crystals produced well- 

defined pitting potentials on both cycles, whilst examination of the Epit 

data, Table 4.2, shows tha t they were in good agreement between cycles 

and between orientations if errors are taken into account, (-782±8mV).

The protection potential on the first cycle is similar for all specimens 

except for the (211) orientation. However, on the second cycle, Eproj. for 

the (2 1 1 ) orientation is in much closer agreement with the (1 1 1 ) and (1 1 0 ) 

samples, (-845mV compared with -860mV). The (100) surface produced a 

very low value of Eproj. on the second cycle, although Eproj. from the first
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cycle is in  close agreement with the other orientations. The differences in 

the values of the protection potentials for the (2 1 1 ) plane on the first cycle 

and the (1 0 0 ) plane on the second cycle can be explained by very slight 

differences in the current density exhibited by the crystals during the 

passive region on the forward and reverse scans. The current density of 

the first forward scan on the (2 1 1 ) plane was slightly higher than that 

exhibited by other planes and hence the intersection between the forward 

and reverse scans for (211) was at a slightly higher potential. Regarding 

the (1 0 0 ) plane, the difference between the current density of the forward 

and reverse scans on the second cycle were fractionally greater than  for 

the other planes, and hence the intersection between the scans occurred at 

a  lower potential. For both (100) and (211) planes, however, the 

differences observed were not consistent between cycles

The recorded corrosion potential appeared to be similar for the different 

cxystals, bearing in mind its inherent variability as it represents the 

potential a t which cathodic and anodic reactions are equal but opposite 

upon the specimen surface.

The results from these tests indicate that whilst slight differences were 

found between characteristic potentials in one or two cases, these were 

not consistenet between cycles. It may be concluded, therefore, th a t the 

DCP technique, or cyclic polarisation tests in general, are not sensitive to 

differences in crystallographic orientation under the experimental 

conditions used.

4.2 CHARACTERISATION OF AS-RECEIVED MATERIALS 

Prior to corrosion testing, optical and electron microscopy were employed 

to characterise the microstructure of the as-fabricated materials.
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Specimens were prepared by the metallographic procedures described in 

sections 3.2.1 and 3.2.2 for unreinforced metals and MMC respectively.

4.2.1 MATERIALS BASED UPON Al-Si-Mg (357) ALLOY

(a) 357 Alloy

An optical micrograph of the 357 alloy, Fig.4.6(a), illustrates a 

microstructure which is typical of that for a cast alloy with a eutectic 

structure. It consists of primary aluminium dendrites surrounded by a 

large amount of eutectic phase which EDS analysis showed was 

comprising elemental silicon (the darker grey phase) and aluminium. The 

dendrites were essentially pure aluminium.

Two phases, one of which was almost white in appearance and the other 

which was light grey, were interspersed within the eutectic phase. They 

appeared in a "script" form and were more readily visible in  the scanning 

electron microscope, Fig.4.6(b). EDS analysis showed the light grey phase 

contained aluminium, silicon magnesium and iron, Fig.4.6(c). These 

results accord with previous studies of a "script" phase in Al-Si casting 

alloys, and indicate a composition of AlgSigMggFe, as reported in the 

ASM Metals Handbook (1972). EDS analysis of the white phase showed it  

was composed of aluminium, silicon and iron, Fig.4.6(d). Another 

"Chinese-script" phase is reported by Mondolfo (1976) as being a possible 

micro-constituent of aluminium alloys, the phase having a composition of 

Fe2 SiAlg, sometimes called a-(AlFeSi) . This description agrees with our 

findings and it is therefore likely that the white phase in Fig.4.6(b) is 

Fe2 SiAl8.
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A notable feature of the cast material was the presence of pores, 

Fig.4.7(a), which were dendritic in form. They appeared in greater 

numbers towards the centre of the ingot and probably amounted to 

several percent of the total volume of the material.

The 357 alloy produced by the liquid metal infiltration route, without 

fibres, Fig.4.7(b), had a modified eutectic structure. The silicon particles 

were coarser than in the cast material and more evenly dispersed, giving 

rise to uniform grains of aluminium rather than a dendritic structure. 

Within the eutectic, the same intermetallic phases of Fe2 SiAlg and 

AlgSigMggFe were found.

(b) Carbon-reinforced 357 Alloy Fabricated by Liquid M etal 

Infiltration

An optical micrograph taken of carbon-reinforced 357 alloy produced by 

liquid metal infiltration (357-Cl) is illustrated in Fig.4.8(a). The original 

tows which constituted the fibre preform are evident, with fibres of 8 pm in 

diameter being orientated in the 0* and 90* directions. Fairly extensive 

regions of matrix metal separate the tows, within which may be seen weft 

fibres. The overall fibre volume fraction was 50%, but image analysis 

measurements showed that locally this could rise to 62% in a fibre-rich 

region. Porosity arising from poor infiltration of the closely packed fibres 

was apparent, especially a t the edge of fibre tows.

The matrix microstructure was much altered by the presence of fibres. 

The silicon particles were coarser than those seen in Fig.4.7(a), and were 

more evenly dispersed. In fibre-free regions they were distributed evenly 

throughout the matrix. In fibre-rich regions only a small amount of Al-Si
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eutectic was found, the silicon particles forming on the fibres in the less 

densely-packed regions; in some cases the particles formed inter-fibre 

bridges.

In addition to the silicon particles, some second phases were present in 

the matrix which had a paler appearance, as indicated by A and B in 

Fig.4.8(a). Phase A has a needle-like morphology, whereas phase B is 

plate-like in  shape. When viewed in the SEM, both phases appeared much 

whiter than either aluminium or silicon. EDS data from particle A, 

Fig.4.8(b), shows substantial amounts of aluminium, silicon and iron. 

Comparison of the X-ray intensities with those reported by Yang and 

Scott (1991b) for a needle-like phase within the same alloy, indicated that 

the composition was FeSiAlg. EDS data from phase B, Fig.4.8(c), shows 

chromium to be present in addition to aluminium, silicon and iron. The 

height of the aluminium peak from B phase varied considerably from 

particle to particle when compared with the relative heights of the iron, 

silicon and chromium peaks. This effect was attributed to differing 

amounts of excitation of the surrounding aluminium matrix as a  result of 

the electron beam penetrating the thin plate-like particles. This made it  

difficult to deduce a precise composition. Finally, EDS analysis of the 

weft, Fig.4.8(d), showed it to contain silicon, calcium and oxygen which 

confirms it  as being glass.

(c) C arbon-reinforced  357 Alloy F ab rica ted  by  Squeeze C asting  

The fibres, which were 8 pm in diameter, were more uniformly distributed 

in this squeeze cast material, Fig.4.9(a), than in the material produced by 

LMI. The fibre volume fraction, as deduced by image analysis, was -63%. 

As with the LMI composite, the Al-Si eutectic was affected by the presence
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of fibres and second phases precipitated preferentially a t the matrix-rich 

regions where fibres had separated during manufacture, Fig.4.9(b). The 

FeSiAlg phase was again found in fibre-free regions, Fig.4.9(b). A second 

intermetallic phase consisting of aluminium, silicon, iron and magnesium 

was occasionally found, identical to that detected in the unreinforced 

alloy, see Fig.4.6(c).

(d) N icalon-reinforced 357 Alloy

The Nicalon-reinforced 357 alloy, (357-Nic) was fabricated by liquid metal 

infiltration and supplied in two forms; one (material A) contained a fibre 

weft, Fig.4.10(a), and the other (material B), Fig.4.10(b), contained 

initially an organic polymer binder which had almost been completely 

burnt-off during fabrication. The volume fraction of fibres in  both 

materials was -50%, but image analysis showed that in material A, this 

was as high as 65% where the fibres remained in closely-packed tows. 

Evidently with material B, the burning-off of the binder during 

fabrication allowed the fibres to spread out during infiltration to produce 

a more homogeneous distribution. The mean diameter of the Nicalon 

fibres was 15pm.

As noted for 357-Cl  MMC, the Al-Si eutectic was modified by the 

presence of fibres and the silicon particles tended to form preferentially on 

them. As in material A, the eutectic phase was dispersed evenly 

throughout the fibre-free regions, with only a small amount of silicon 

forming at the fibres.

The presence of the needle-like FeSiAlg intermetallic was detected also in 

these materials, although there was much less in material B than in
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material A. The weft fibre in material A was found by EDS analysis to be 

glass of similar composition to that found in the 357-Cl  material, 

Fig.4.8(d).

(e) Saffil-reinforced 357 Alloy

The Saffil-reinforced 357 alloy (3 5 7 -Saf) is illustrated in Fig.4.11(a), and 

was produced by liquid metal infiltration. The Saffil short fibres, which 

were 3|im in diameter comprised a volume fraction of 20% and were 

uniformly distributed about a planar random orientation.

Once again the Al-Si eutectic was modified by the presence of a 

reinforcement, the coarser silicon particles forming preferentially a t the 

fibres and sometimes forming bridges between fibres. Porosity between 

fibres is clearly visible in the SEM back-scattered electron image (BEI) 

image as well as the white, needle-like FeSiAlg phase, Fig.4.11(b).

4.2.2 MATERIALS BASED UPON Al-Cu-Mg (2124) ALLOY

(a) 2124 Alloy

The 2124 alloy was supplied in the T851 condition, i.e. solution teated, 

cold-worked by stretching to - 2 % permenant strain to relieve stresses and 

then artificially aged. Fig.4.12 shows the microstructure consists of small 

precipitates aligned in the direction of cold-work. EDS analysis showed 

the alloy regions to consist of aluminium, with a small amount (<2 %) of 

dissolved copper and magnesium. Second phases are present and these 

were found to consist of two types, Fig.4.13(a)&(b). Both phases appear 

white in the scanning electron micrographs, and are therefore only
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distinguishable by slight differences in their morphology. One phase, 

Fig.4.13(a), is small and rounded and contains aluminium, copper and 

magnesium, Fig.4.13(c). The composition of the phase is thought to be 

A^CuMg, an intermetallic compound which is reported by Polmear (1981) 

as being the most commonly found precipitate in Al-Cu-Mg alloys. The 

other phase, Fig.4.13(b), is larger and slightly more irregular in shape 

compared with the A^CuMg precipitate. EDS studies on this phase, 

Fig.4.13(d), showed it to contain aluminium, copper, iron and manganese. 

A comparison of these findings with those reported in the ASM Metals 

Handbook (1972) for a 2024 alloy (which is of an almost identical 

composition to the 2124 alloy), showed that this phase is likely to be 

(CuFeMn)Al6.

(b) Carbon-reinforced 2124 Alloy

The carbon-reinforced 2124 alloy was fabricated by squeeze casting using 

a facility available a t RMCS Shrivenham. A mostly uniform distribution 

of fibres, which were 8 pm in diameter, was found, the microstructure at 

low magnification appearing very similar to that for the 357-Cg MMC, 

also fabricated by squeeze casting, see Fig.4.9(a). The volume fraction of 

fibres as measured using an image analyser, was -63%. As with the 357- 

Cg material, also fabricated by squeeze casting, a few fibre-free regions 

were found where the fibres had separated during fabrication and it was 

here th a t preferential precipitation of second phases occurred. This is 

illustrated in the scanning electron micrograph, Fig.4.14(a). As with the 

2124 alloy, two phases were found, one containing aluminium, copper and 

magnesium and the other aluminium, copper, manganese and iron. 

However, the morphology of the phases in the composite material was 

very different. Fig.4.14(b), a matrix-rich area, shows dendrites which
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consist of essentially aluminium with some copper and magnesium, 

surrounding the dendrites is a mixture of large particles (up to 1 0  |im in 

diameter) and a much finer dispersion, see Fig.4.14(b). The fine dispersion 

consisted of aluminium, copper and magnesium, whereas the larger 

phase was found to consist of aluminium, copper, manganese and iron. 

EDS analysis showed the phases to be of the same composition as those 

found in the unreinforced 2124 alloy, i.e. A^CuMg and (CuFeMn)Alg, 

illustrated by the EDS results, Fig.4.13(c)&(d).

(c) S ilicon  Carbide-reinforced 2124 Alloy

The 2124 alloy reinforced with silicon-carbide particles, Fig.4.15(a), was 

fabricated by a powder metallurgy process. The particles were found by 

image analysis to occupy a volume fraction of - 2 0 %. The average diameter 

of the particles is 3pm and they are homogeneously dispersed, appearing 

to be orientated in the direction of hot-rolling given to the hot isostatically 

pressed material. Second phases of less than 3pm diameter were clearly 

visible as white particles in the scanning electron microscope, Fig.4.15(b). 

Their small size made EDS analysis difficult, but results showed the 

presence of two phases with either an aluminium-copper or an 

aluminium-copper-manganese-iron composition. It is likely that the latter 

phase is the same as that found in the unreinforced alloy, (CuFeMn)Alg, 

whilst the other is probably CuA^, a well-established precipitate in 

aluminium-copper alloys. The absence of magnesium in this phase 

compared with the A^CuMg in the unreinforced alloy is possibly related 

to the hot-rolling process. In the process of rolling the 2124-SiC material 

into a thin sheet magnesium may have been leached from the surface as a 

result of oxidation at the high temperatures involved in the process.
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4.2.3 MATERIALS BASED UPON ALUMINIUM

(a) Com m ercial P u rity  Alum inium

The commercial purity aluminium was 99.5% pure, the remaining 0.5% 

being essentially accounted for by the presence of impurity elements, 

mainly iron and silicon. Consequently, as illustrated by the 

microstructure, Fig.4.16, a second phase was present which EDS analysis 

confirmed was composed of aluminium, iron and a small amount of 

silicon. This is consistent with the ASM Metals Handbook (1972), where it 

is reported that phases in unalloyed aluminium contain impurity 

elements such as iron and silicon, generally in the form A1 j^FegSi.

(b) C arbon-reinforced  S uper P u rity  A lum inium

The carbon-reinforced aluminium material was fabricated using the 

squeeze casting facility a t RMC Shrivenham. As for the other MMC 

fabricated by squeeze casting, the 8 pm fibres were uniformly distributed 

throughout the matrix. No evidence of second phases within the matrix 

was found.

Analysis of the fibre/matrix interface was carried out in the transmission 

electron microscope (TEM). Fig.4.17(a) is a transmission electron 

micrograph of the specimen showing the carbon fibre, the aluminium 

matrix and a reaction zone containing lath-like crystals situated a t the 

fibre/matrix interface. The crystals, which appeared to have grown into 

the matrix in a variety of directions, were found to have lengths of up to 

~300nm long and widths of up to ~1 0 0 nm. Analyses of the fibre, matrix 

and the interfacial crystals were made by selected area diffraction (SAD). 

The carbon fibre gave a SAD pattern of diffuse rings, Fig.4.17(b),
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indicating a polycrystalline structure. The aluminium matrix produced a 

SAD pattern composed of a regular array of spots, Fig.4.17(c), analysis 

revealing this region to be orientated along a <114> zone axis. A SAD 

pattern of a needle-like crystal a t the interface Fig.4.18(a)&(b), revealed a 

row of strong reflections. EDS showed that the crystals were composed of 

carbon and aluminium, whilst analysis of the diffraction spot pattern 

showed that the strong reflections corresponded exactly to the 0003, 0006, 

0009, 0 0 0 , 1 2  planes of an aluminium carbide crystal, AI4 C3 . Fig.4.18(c) is 

a TEM micrograph showing lattice fringes in a crystal, which have a 

spacing of 0.84nm and lie parallel to the crystal axis. These correspond to 

the basal planes of the carbide lattice. Diffraction patterns of the carbide 

crystals and the aluminium grain in which the crystal was situated 

showed little evidence of an orientation relationship between their 

structures.
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4.3 CORROSION STUDIES ON 357 ALLOY

4.3.1 GRAVIMETRY

Weight changes for 357 alloy specimens corroded for times of up to 3 

weeks are recorded in Table 4.3. The experimental scatter in the results 

represents an estimated error of - 2 0 % probably incurred from 

measurements of mass loss and exposed area. As the data in Table 4.3 

show, a weight loss was recorded for all specimens. The table also includes 

values of corrosion rates, which were obtained by dividing the weight loss 

by the time period of the test. Fig.4.19, which illustrates the variation of 

corrosion rate with immersion time, shows that the corrosion rate 

decreased from 0.05 to 0 .0 1 2 g.m"^.h‘  ̂during 3 weeks immersion.

4.3.2 OPEN CIRCUIT POTENTIAL

The changes in open circuit potential (OCP) of a freely corroding specimen 

of 357 alloy over a period of 3 weeks, Fig.4.20(a), may be characterised by 

the following features. Dining the first hour of immersion the potential 

was a t its highest, fluctuating around an almost constant value of • 

760mV. After 1  hour, the potential decreased rapidly, until after - 6  hours 

i t  reached a minimum of -1080mV. Then followed a slight increase over 

the next 4 days, after which there was a return to the high potential seen 

a t the beginning of the test and this was maintained throughout the 

remainder of the experiment. The other specimens of 357 alloy exhibited 

similar behaviour with the exception that for one specimen, the return to 

high potential a t the later stages of the test was not seen, see Fig.4.20(b); 

once the potential had reached a minimum value, it remained there for 

the rest of the experiment. The average values of the initial maximum 

corrosion potential, and the minimum potential, Emi-n, recorded
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over three tests are given in Table 4.4. The results illustrate that 

experienced only a small variation (±5mV) between tests on different 

samples, whereas larger deviations (±40mV) were found for Emi-n.

4.3.3 DOUBLE CYCLE POLARISATION

(a) 20mV/min P o ten tia l Scan R ate

A curve obtained from a DCP test conducted on 357 alloy at a potential 

scan rate of 20mV/min is shown in Fig.4.21(a). The average data recorded 

over three tests are given in Table 4.5. As Fig.4.21(a) illustrates, the 

pitting potential was not clearly defined dining the first forward scan. The 

sudden increase in current density, which is normally associated with 

Epit, occurred from the corrosion potential. An inflection point was 

observed on both reverse scans. Two unusual features may be noted. 

Firstly, a "double hysteresis loop" was formed during the first cycle owing 

to the pronounced inflection in the reverse scan intersecting the forward 

scan on two occasions prior to reaching the protection potential. Secondly, 

the protection potential occurred below the corrosion potential.

Table 4.5 lists the mean values of Ep^, Eproj-, Ecorr and the hysteresis 

area (HA). Values recorded for Ep^ were in excellent agreement - 

743±5mV. The reproducibility of the corrosion potential and protection 

potentials was, however, much less, giving values of -995±150mV and - 

1079±80mV for Ecorr and Epr 0 f. respectively. The hysteresis area gave a 

value of 213±45jiC.

A typical microstructure taken after the DCP test on 357 alloy, Fig.4.21(b) 

shows that corrosion took the form of pitting, with preferential attack 

occurring a t the Al-Si eutectic regions between the aluminium dendrites.
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It was evident that the pits in the eutectic areas contained light grey 

intermetallic phases, which EDS analysis confirmed were of the same 

composition as the phases in the uncorroded material, c.f. Fig.4.6 (c)&(d), 

i.e. AlgSigMggFe and Fe2 SiAlg respectively. Corrosion, in the form of 

numerous small pits, was visible within the aluminium dendrites

(b) 2mV/min P otential Scan Rate

A DCP curve obtained a t a scan rate of 2 mV/min on 357 alloy is given in 

Fig.4.22(a) and the corresponding data recorded in Table 4.5. As the 

results illustrate, the pitting potential (-751±5mV) and the protection 

potential (-1030±5mV) are in reasonable agreement with the data from 

tests performed at 20mV/min (-743±5mV and -1079±80mV respectively). 

The hysteresis area gave a value of 220±60pC which was only 7pC more 

than  tha t found for the faster rate. The corrosion potential, Ecorr, is more 

positive a t the slower rate, -854±25mV compared with -995±150mV a t the 

faster rate. If, however, the large scatter in results is considered, the 

difference between the results for each test overlap.

The DCP curve, Fig.4.22(a), illustrates that the shape of the first cycle is 

different from that seen a t the faster scan rate, see Fig.4.21(a). I t shows a 

well-defined value of Ep^ and the double hysteresis effect, which was 

apparent a t the faster rate has disappeared. The second cycle is also 

different such tha t the pitting potential, which was clearly marked a t the 

faster scan rate, appears as only a small step in the curve.

The microstructure following corrosion, Fig.4.22(b), shows more severe 

attack than that for the 357 alloy a t the faster scan rate, see Fig.4.21(b). 

The corrosion pits situated a t the eutectic regions between the dendrites

78



are larger and within the eutectic regions where pits had not developed, 

attack occurred around the silicon particles and the intermetallic phases. 

The aluminium dendrites were more severely attacked than a t the faster 

rate and where the tiny pits within the dendrites had propagated and 

merged, the dendrites took on a dimpled appearance.

4.3.4 CORROSION MORPHOLOGY

The development of corrosion over increasing periods of immersion 

ranging from 1 hour to 3 weeks was investigated using a different 

specimen for each immersion period. After 1  hour, small pits were visible 

with regions of darkness and brightness surrounding them, Fig.4.23(a). 

High magnification showed that most pits formed around the 

intermetallic phases confirmed by EDS analysis as being the 

AlgSigMg3 Fe and Fe2 SiAlg phases, the latter phase being associated with 

a greater number of pits. A few pits only had formed a t silicon rods.

The rings of brightness (A) and darkness (B) surrounding a pit suggested 

that these may represent a different oxide film thickness. To verify this, 

measurements of the oxide thickness were made using the technique 

described in section 3.4.6. This involved measuring the oxygen X-ray 

intensity from the oxide film over the sample by WDS analysis and 

comparing it with the intensity from an alumina (AI2 O3 ) standard 

analysed under the same conditions. Firstly a line scan was carried out 

across a pit, commencing and finishing ~40jim either side of the pit. The 

sampling interval was 1 pm and the sampling time a t each interval was 2 0  

seconds. The results of the line scan are illustrated in Fig.4.23(b) as 

variation in oxygen X-ray intensity versus distance across a pit. The 

oxygen X-ray intensity is approximately constant away from the pit region

79



(C). Within the pitted region (A) large changes in the intensity were found 

due to differences in geometry resulting from corrosion and the presence 

of intermetallic phases inside the pit. From three scans, the mean oxygen 

X-ray intensity beyond the pit (region C) was found to be 1 0 2 0  counts and 

the maximum value (region 6 ) was 1800 counts. From these data, the 

thickness of oxide was calculated using the method detailed in section 

3.4.6. This gave a thickness near the pit edge (B) of ~2 0 C)A, whilst the 

average thickness away from the pit (C) was -50A.

The size of the corrosion pits did not appear to increase after an 

immersion period of 1 day. After 3 days, however, the microstructure, 

Fig.4.24(a), showed that more general attack had taken place, with 

corrosion occurring preferentially around the silicon rods within the 

eutectic regions and around the intermetallic phases. The aluminium 

dendrites suffered corrosion in the form of small pits.

The extent of attack remained little changed after immersion for the 

following week, but after 3 weeks, Fig.4.24(b), the eutectic regions were 

severely attacked and the dendrites experienced a  more general form of 

corrosion. The silicon rods were no longer distinguishable, although some 

of the intermetallic particles could still be seen in the corroded regions.

An indication of the depth of corrosion after 3 weeks was found from 

microscopy of cross-sections made through the corroded surface of the 

specimens. An example is given in Fig.4.24(c). The pits were mostly 

hemispherical and often followed regions of the eutectic phase which 

contained the silicon rods and intermetallic phase. The depth of pitting 

measured from microstructures ranged from 10-45|im, to give an average 

value of 15jim.
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4.4 CORROSION STUDIES ON CARBON REINFORCED 357 

ALLOY FABRICATED BY LIQUID METAL INFILTRATION

4.4.1 GRAVIMETRY

Weight changes for 357-Cl  specimens immersed for periods ranging from 

1 day to 3 weeks are listed in Table 4.6. The results illustrate, tha t the 

samples gained rather than lost weight after each immersion period 

despite attempts to remove surface corrosion products by mechanical and 

chemical cleaning. No change in the weight was found after repeating the 

cleaning procedure. The rate of weight gain (see Table 4.6) is plotted with 

respect to time in Fig.4.25. The graph shows that the rate decreases with 

immersion time, reaching an almost constant rate of weight gain of 8x10"^ 

g.m'^.h"! after several days.

4.4.2 OPEN CIRCUIT POTENTIAL

The change in OCP with time for a sample of 357-Cl, Fig.4.26, was 

similar to that of the unreinforced alloy during the early stages of 

immersion, the potential fluctuating slightly about a value of —735mV, 

before suddenly decreasing after 1  hour immersion to a value of ~-880mV. 

The OCP varied around the minimum over the following few days, until a 

sudden increase in potential occurred after 10 days and a value of -760mV 

was reached, which was slightly more negative than the initial potential. 

This remained constant for the remainder of the test. The mean values 

and deviations of E*n^  and found over three tests are given in Table

4.4.
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4.4.3 DOUBLE CYCLE POLARISATION

(a) 2 0 mV/min P o ten tia l Scan R ate

The results of DCP tests on samples of 357-Cl » Fig.4.27 and Table 4.5, 

illustrate tha t the pitting potential was once again not recorded during 

the first cycle. It was, however, clearly visible on the second cycle. Unlike 

the curve for 357 alloy, Fig.4.21(a), no point of inflection is visible on the 

reverse scan of either cycle. The protection potential occurred below Ecorr 

on the first cycle, but on the second cycle, it is recorded a t more positive 

potentials than Ecorr, owing to a shift in the corrosion potential to more 

negative potentials. The values of Ep^ (-752±10mV), Eproj. (-850±15mV), 

Ecorr (-919±10mV) and hysteresis area (191±5pC) all showed good 

reproducibility between tests.

The microstructure following a DCP test on the 357-Cl  MMC shows tha t 

corrosion took the form of pits which occurred preferentially a t the edge of 

the fibre tows often being associated with light grey platelet and needle­

like phases, Fig.4.28(a), or the glass fibre weft, Fig.4.28(b). EDS analysis 

confirmed the needle phase to be the intermetallic FeSiAlg found in the 

uncorroded composite, see Fig.4.8(b). The platelet phase was of the same 

composition as tha t found during analysis of the polished material, see 

Fig.4.8(c), and contained aluminium, silicon, iron and chromium. Where 

attack occurred around the fibres, the silicon particles which formed a t 

the fibres remained unattacked and could be seen to be attached to the 

fibres, Fig.4.28(c). This picture illustrates well the formation of silicon 

rods a t the fibre surfaces during the LMI fabrication process. An example 

of a pit extending into the composite is given in Fig.4.28(d), a micrograph
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of a cross-section through the corroded surface. The micrograph shows 

tha t the attack extends along the fibres and around the (AlSiFeCr) 

platelet and FeSiAlg needle-like phases. The pits were generally very 

narrow, and their growth was channelled along the fibres into the 

composite. The depth of pits as measured from microscopy, varied 

considerably across the surface from ~30-400|im, with an average value of 

150|im.

(b) 2 mV/min P o ten tia l Scan R ate

A DCP curve from a test conducted a t a 2 mV/min scan rate on 357-Cl, 

Fig.4.29(a), shows that a pitting potential was not recorded on either the 

first or second cycles and that the rapid increase in current density 

normally associated with Ep^, occurred a t the corrosion potential. The 

corrosion data are listed in Table 4.5. The corrosion potential(-749±5mV), 

although vastly different from that recorded a t the faster scan rate (- 

919±10mV), was very dose to the value of the pitting potential a t the 

20mV/min rate (-752±10mV). The protection potential (-837±5mV) was 

also in good agreement with Eproj. a t the faster rate (-850±15mV). The 

hysteresis area, however, had a value of 104±20jiC, which was almost 

90|iC less than that for the faster rate.

A typical microstructure after the DCP test is shown in Fig.4.29(b). The 

corrosion is more severe than tha t seen after the faster scan rate, see 

Fig.4.28(a)&(b). Discrete corrosion pits are less visible, the attack 

extending over most of the composite surface. Where less severe attack of 

the matrix had taken place, pits had initiated around the second phases, 

identified by EDS analysis as FeSiAlg and (AlSiFeCr), see Figs.4.8(c)&(d).
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The depth of corrosion pits was estimated from polished cross-sections 

through the corroded surface. The morphology of the pits was the same as 

that seen a t the faster scan rate, but the extent of penetration was more 

severe. In one instance, however, the corrosion had extended to a depth of 

-2000pm, Fig.4.29(c). The mean pit depth measured was -300pm. The 

pitting attack in nearly all cases was concentrated a t the edge of the fibre 

tows, as evidenced by Figs.4.29(c).

4.4.4 GALVANIC COUPLE

The galvanic current flowing between a specimen of 357 alloy and several 

tows of fibres immersed in the corrosion solution remained almost 

constant a t -465pA over a period of 2 hours. From the galvanic current a 

corrosion rate was calculated using Faraday's law:

Corrosion rate (mm.yr-^) = 315ki
Ap

where: i = current (pA)

p = density (g.cnT^)

A = area of anode (cm'^)

k = electrochemical equivalent (g.Coulomb- )̂

= Z atomic weight fraction x atomic weight
of each element_______________of each element

valency x 96500

In the case of alloys, the equivalent weight is calculated using the atomic 

fractions of each component element. It therefore assumes tha t each 

element present corrodes at a u n ifo rm  rate. The value of k calculated for 

357 alloy was 0.0917g.C"^.
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The corrosion rate for 357 alloy coupled to carbon fibres was 5.0mm.yr“̂ . 

Table 4.7 records the galvanic current data and the corrosion rates for this 

couple.

4.4.5 CORROSION MORPHOLOGY

Preliminary "interrupted" tests were conducted upon a sample of 357-Cl 

immersed in the corrosive solution for a total of 1 day. The sample was 

removed at intervals so that the corrosion morphology of a particular area 

could be followed. Fig.4.30(a),(b)&(c) are micrographs of an area before 

immersion, after 6  hours and after 1  day respectively. The uncorroded 

area shows the edge of two carbon fibre tows, some silicon particles, light 

grey needles of FeSiAlg and a (AlSiFeCr) platelet. After 6  hours 

immersion, there is evidence of attack a t the FeSiAlg needles and around 

the fibres. Small corrosion pits are just visible within the matrix and also 

a t the interface of a few silicon particles. After immersion for 1 day, the 

corrosion at the FeSiAlg needles was quite severe and there was now 

visible attack around the (AlSiFeCr) platelet. Corrosion at the fibre- 

matrix interface had also extended further into the matrix and more small 

corrosion pits had developed within the matrix region between the fibre 

tows.

Another set of experiments involved the immersion of a number of 

specimens, each for a prescribed length of time ranging from 1 day to 3 

weeks. The corrosion morphology after 1  day was essentially the same as 

that described above for the specimen in the interrupted tests with the 

exception of cracks within the fibre tows which ran along the fibre-matrix 

interface, Fig.4.31(a). After 3 days the attack was more severe, Fig.4.31(b),
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much of the matrix surrounding the fibres and intermetallic phases being 

corroded away.

Following immersion for 3 weeks the microstructure showed evidence of 

extensive attack at the carbon fibre-matrix and a t the glass-fibre 

weft/matrix interfaces, Fig.4.32(a), the matrix having been corroded 

almost completely away. At the fibre-free regions the attack was 

concentrated mostly a t the FeSiAlg needles. The cracks in the fibre tows 

were more widespread than in the 1  day specimen and they had opened 

up to form large crevices of ~30-40|im wide, Fig.4.32(b).

Examination of cross-sections through the specimen corroded for 3 weeks 

showed tha t most of the matrix had been corroded to a depth of ~45}im, 

leaving bare fibres protruding a t the surface, Fig.4.32(c). However, in 

some instances the attack was more severe. One case in particular, 

Fig.4.32(d), showed the attack had penetrated through a ~6 mm thick 

specimen, causing corrosion to occur at the rear of the composite. The 

attack was concentrated at the edge of a fibre tow. Other cases of 

extensive attack also showed that the edge of the fibre tows appeared to 

act as a preferential site for this type of attack, with much of the corrosion 

product being retained within the specimen.
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4.5 CORROSION STUDIES ON CARBON-REINFORCED 357 

ALLOY FABRICATED BY SQUEEZE CASTING

4.5.1 OPEN CIRCUIT POTENTIAL

The OCP characteristics exhibited by samples of 357-Cg immersed in the 

corrosive solution for 3 weeks were similar to those of 357 alloy, see 

Fig.4.20(a); the results are listed in Table 4.4. A potential of ~-784±60mV 

occurred during the first hour of immersion and again during the later 

stages of the test, with a minimum potential of -934±60mV being recorded 

after -4  hours.

4.5.2 DOUBLE CYCLE POLARISATION

DCP tests performed on samples of 357-Cg employed a 2 0 mV/min scan 

rate, an example of a DCP curve being given in Fig.4.33(a). Unlike the 

curve for 357-Cl, 811 inflection is apparent in both reverse scans. The 

protection potential occurs below Ecorr once more, and the pitting 

potential is seen clearly only during the second cycle. The data are 

summarised in Table 4.5. The values of E p^ and the hysteresis area were 

very reproducible (-763±5mV and 119±10|iC respectively) in contrast to 

values for the protection and corrosion potentials, -896±45mV and - 

880±60mV respectively.

Microstructural examination following DCP tests showed that pitting had 

taken place, Fig.4.33(b), preferential sites for attack being the silicon rods 

and the needle-like intermetallic phase in  matrix-rich regions. EDS 

analysis confirmed the needle-like phase to be FeSiAlg.
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Cross-sections through the corroded surface showed the pit morphology to 

be similar to that described for the same MMC system fabricated by LMI

i.e. narrow pits which propagated down into the composite along the 

fibres. The depth of pitting was considerably less than in the 357-Cl 

material and the pit depth did not vaiy as much. The average pit depth 

was measured as ~ 100pm with pits ranging from ~40-220pm.

4.5.3 CORROSION MORPHOLOGY

The corrosion morphology of 357-Cg was investigated by immersing 

different samples for increasing periods of time from 1 day to 3 weeks. 

After 1  day the corrosion was slight. Only a few pits were visible across 

the specimen surface and these were mostly situated a t the edge of fibre- 

rich regions, Fig.4.34(a), and a t the FeSiAlg needles and silicon rods. 

Following 3 days immersion, many small corrosion pits had developed and 

again these occurred in matrix-rich regions a t the second phases, 

Fig.4.34(b).

Corrosion a t the fibre-matrix interface became more evident after 

immersion for 1 week. Pits were surrounded by large circular regions 

which were apparently unattacked, Fig.4.35(a). Around the uncorroded 

regions, the matrix surrounding the fibres had been attacked, exposing 

the bare fibres and the silicon rods. This is illustrated by Fig.4.35(b), 

which shows the edge of an uncorroded region surrounding a pit and the 

neighbouring region which has suffered more extensive attack. The silicon 

rods and intermetallic phases were the sites of preferential attack within 

the matrix, Fig.4.35(c), whilst the aluminium grains contained small, 

shallow pits, which gave the grains a dimpled appearance.
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After 3 weeks corrosion, most of the matrix a t the fibre-matrix interfaces 

had been corroded away, Fig.4.36(a). This exposed the fibres and also the 

silicon particles which had formed inter-fibre bridges, Fig.4.36(b). Cross- 

sections made through the composite confirmed that the matrix had been 

corroded extensively in fibre regions, Fig.4.36(c). The depth of attack 

varied between 25-300pm across the surface, the mean depth being 

~95pm.

4.6 CORROSION STUDIES ON NICALON-REINFORCED 357 

ALLOY

4.6.1 GRAVIMETRY

The weight losses for periods of up to 3 weeks for type A specimens of 

357-Nic (with glass binder) are recorded in Table 4.8. Corrosion rate data 

(Table 4.8) showed that the rate of attack diminished over the first week 

of immersion until an almost constant rate of -5x 1 0 "^  g.m'^.h"^ was 

reached.

4.6.2 OPEN CIRCUIT POTENTIAL

The behaviour of the OCP for type A specimens (with glass binder), see 

Table 4.4, during 3 weeks corrosion was similar to that for other 357- 

based materials, e.g. Fig.4.20(a). During the first hour, a high OCP of - 

778±15mV was recorded. This was followed by a sharp decline to more 

negative potentials, where a minimum of -1085±45mV was reached. The 

OCP then recovered to potentials of, or a little less than,
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4.6.3 DOUBLE CYCLE POLARISATION

(a) 2 0 mV/min P o ten tia l Scan R ate

DCP characteristics for type A 357-Nic were similar to 357-Cl, see 

Fig.4.27, except that the protection potential occurred above rather than 

below the corrosion potential. The data, Table 4.5, show that Ep^ and 

Eprot were reproducible between tests, with values of -751±5mV and - 

810±10mV respectively. Regarding the corrosion potential and the 

hysteresis area, the results were somewhat more variable, values of - 

969±65mV for Ecorr and 283±70jiC for the hysteresis area being recorded.

Examination of the corroded microstructure showed that pitting had once 

again occurred a t the matrix-rich regions and in particular along the glass 

fibre weft, Fig.4.37(a). Some of the pits had developed around the needle­

like FeSiAlg phase, Fig.4.37(b). Very little corrosion had taken place 

within the fibre tows, and no general corrosion was found.

(b) 2 mV/min P o ten tia l Scan R ate

The curves produced from DCP tests performed at a scan rate of 2 mV/min 

on type A samples of 357-Nic were almost identical to those recorded for 

357-Cl, see Fig.4.29(a). There was no evidence of a  pitting potential on 

either the first or second cycles; the increase in current density occurred 

once more from the corrosion potential on each cycle. The mean data 

obtained from three tests are given in Table 4.5. As noted for the 357-Cl  

material, the corrosion potential a t the slow scan rate (-742±20mV), was 

very dose to the pitting potential obtained from tests a t the faster rate (- 

751±5mV). The protection potential a t the 2mV/min scan rate (- 

863±15mV), was ~50mV more negative than Epro  ̂a t the 20mV/min rate.
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However, the hysteresis area (237±10p.C) was in reasonable agreement 

with that obtained from tests a t the faster rate (283±70jiC), taking the 

scatter of results into account.

A typical microstructure after a DCP test a t the slower scan rate, 

Fig.4.38(a), shows tha t the attack, though of a similar nature to that a t 

the faster scan rate, is much more extensive, with most of the matrix-rich 

regions and areas containing the glass-fibre wefts being severly corroded. 

Fig.4.38(b) shows that some matrix regions surrounding silicon rods, 

FeSiAlg needles and fibres have been corroded away.

4.6.4 GALVANIC COUPLE

The galvanic current flowing between a sample of 357 alloy and several 

tows of Nicalon fibres was measured as 72jiA using a zero resistance 

ammeter. The current remained constant over a period of two hours. From 

the current a corrosion rate of 0.8 mm.yr"^ was calculated. These data are 

listed together with data from other galvanic couples in Table 4.7.

4.6.5 CORROSION MORPHOLOGY

The corrosion behaviour of 357-Nic was assessed by immersing different 

samples for various periods of time ranging from 1 hour to 3 weeks. Both 

type A (with glass binder) and type B (without binder) specimens were 

studied. After immersion for 1  day, a few areas of corrosion were found. In 

material A, these were mostly sited a t the glass binder weft and to a 

lesser extent around the fibres, as illustrated in Fig.4.39(a). In type B, the 

attack occurred preferentially a t the fibre-matrix interface in a few areas 

only, Fig.4.39(b).
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The extent of attack did not increase greatly over 3 days immersion. After 

1 week, however, corrosion of material A was more severe, occurring as 

corrosion pits adjacent to fibres and the glass binder. On closer 

examination of the pitted regions, Fig.4.40(a), it became evident that 

white needles a t the fibres were present. These were the FeSiAlg 

intermetallics found in the uncorroded material. Regarding material B, 

the corrosion was found to have attacked most fibre/matrix interfaces as 

well as regions around the silicon particles and intermetallic needles, 

Fig.4.40(b).

After immersion for 3 weeks, material A had experienced severe corrosion 

a t the glass binder but to rather less extent at the fibre/matrix interface, 

Fig.4.41(a). Material B was found to have been extensively attacked in 

some regions, with most of the matrix having been corroded away, 

Fig.4.41(b). In other regions the corrosion was less severe, Fig.4.41(c), and 

most of the matrix remained between the fibres. There was also evidence 

in these areas of corrosion around the silicon rods and intermetallic 

needles. Examination of cross-sections through the corroded material 

revealed that the attack in the type A material was concentrated a t the 

binder phase. The mean depth of corrosion was found to be ~85pm, the 

depth ranging up to ~350pm. Regarding material B, the attack followed 

the fibre/matrix interface, the depth of corrosion also extending up to 

~350pm.
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4.7 CORROSION STUDIES ON SAFFIL-REINFORCED 357 ALLOY

4.7.1 GRAVIMETRY

As found for the 357-Cl MMC, specimens of 357-Saf gained weight during 

immersion also, but to a larger extent. Weight gains and corresponding 

rates of weight gain for immersion times of up to 3 weeks are recorded in  

Table 4.9. Further cleaning did not reduce these values. The rate of 

weight gain decreased from - 1 . 0  g.m'^.h"^ to 0 . 2  g.m"^.h“̂  over the test 

period but the rate did not appear to approach a steady value seen in the 

case of 357-Cl.

4.7.2 OPEN CIRCUIT POTENTIAL

The variation in the OCP on 357-Saf was similar to that recorded on other 

357-based materials. The mean values of and E mi*n, Table 4.4, were 

-763±5mV and -990±70mV respectively.

4.7.3 DOUBLE CYCLE POLARISATION

(a) 2 0 mV/min P o ten tia l Scan  R ate

A typical DCP test performed a t a scan rate of 2 0 mV/min on 357-Saf is 

illustrated in Fig.4.42(a). An unusual feature of the curve, was the 

appearance of a pitting potential on the first cycle, visible as only a slight 

inflection. Ep^ was more clearly revealed on the second cycle owing to 

the shift of the corrosion potential to more negative values. The pitting 

potentials from both cycles were closely similar.
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Values of Ep^, together with the other DCP data, are recorded in Table

4.5. Once again, excellent reproducibility was found for Ep^, (-761±5mV). 

The protection and corrosion potentials showed rather more scatter, 

however, having values of -947±45mV and -938±50mV respectively, whilst 

the hysteresis area was 85±15pC.

The microstructure after a DCP test, Fig.4.42(b), shows random corrosion 

pits of -  100pm or more in diameter. Microscopy of cross-sections through 

the corroded surface showed that the pits were different in shape to those 

seen in the carbon fibre-reinforced composites described in the previous 

sections, Fig.4.42(c). There was little restriction on the pits propagating 

laterally as was noted in the other MMC, and hence the pits were wider, 

shallower and hemispherical in appearance. The pit depths across the 

specimen surface ranged from ~30-120pm, with an average of 65pm.

(b) 2 mV/min P o ten tia l Scan R ate

DCP tests performed at this scan rate (2 mV/min) on 357-Saf gave slightly 

different results compared to those on other materials. Fig.4.43(a), shows 

tha t E p^ is visible on both cycles, being most clearly defined by the second 

cycle. The results, Table 4.5, show that Ep^ (-770±5mV) and Ecorr (- 

939±80mV), accord with those at the faster scan rate (-761±5mV and - 

938±50mV repectively). The protection potential (-1006±30mV), was 

~60mV more negative than that a t the faster rate but the large deviation 

in Eproj. a t the 2 mV/min and 20mV/min rates (±30mV and ±45mV 

respectively), meant that the results for each rate in fact overlapped. The 

hysteresis area (132±10pC) was found to be ~50jiC larger than for the 

faster scan rate.
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The microstructure of the specimen after testing at the 2mV/min scan 

rate, Fig.4.43(b), showed once again that the corrosion was more severe 

than with the faster rate, although the nature of attack was the same. The 

pits were more extensive, and in many cases had merged together.

4.7.4 CORROSION MORPHOLOGY

After immersion for 1  day, SEM revealed that there was very little 

corrosion of 357-Saf material. Slight attack of the matrix had occurred 

around white phases, Fig.4.44(a), identified by EDS analysis as FeSiAlg. 

The extent of corrosion did not appear to change with immersion times up 

to 3 days although after 1 week the attack around FeSiAlg was more 

severe and now took the form of corrosion pits, Fig.4.44(b).

Following immersion for 3 weeks, corrosion had occurred a t the 

fibre/matrix interfaces, a t the intermetallic and silicon phases, Fig.4.45(a) 

and in some areas corrosion pits had developed, Fig.4.45(b). Examination 

of corroded cross-sections showed that the depth of attack varied between 

~10-35pm, the mean depth of pits being -15pm. Corrosion pits often 

contained needles of FeSiA^, Fig.4.45(c). The pits were hemispherical in 

form and there was no evidence of retained corrosion products within 

them.

4.8 CORROSION STUDIES ON 2124 ALLOY

4.8.1 GRAVIMETRY

The weight losses measured on 2124 alloy are given in Table 4.10 for 

immersion times of up to 3 weeks. The corrosion rates, also recorded in
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Table 4.10, show that the rate of attack decreased most quickly during the 

first 3 days of immersion from -20x10"^ g.m'^.h-!  to -lOxlCT^ g.nT^.h'l 

but between 1 and 3 weeks, the rate reached a fairly constant level.

4.8.2 OPEN CIRCUIT POTENTIAL

Samples of 2124 alloy exhibited a variation in OCP typified by the 357- 

based materials, see Figs.4.20 & 4.26. The mean values of the initial and 

minimum potentials, Table 4.4, were -772±5mV and -985±30mV.

4.8.3 DOUBLE CYCLE POLARISATION (20mV/min)

The DCP curve produced a t a scan rate of 2 0 mV/min on 2124 alloy, 

Fig.4.46(a), was similar to that observed for other materials. An inflection 

was visible in both reverse scans and the protection potential occurred 

well above the corrosion potential on the second cycle due to the fact that 

E^yj. moved to more negative values, (by ~300mV). This produced a 

clearly defined passive range and pitting potential on the second forward 

scan, which did not appear on the first cycle. The characteristic potentials 

are reported in Table 4.5. Good reproducibility may be seen between 

values for Ep^, Eproj. and Ecorr, -748±10mV, -902±5mV and -1047±20mV 

respectively. The hysteresis area was very large, being 375±45jiC.

The microstructure following DCP testing is illustrated in Fig.4.46(b). 

There are small corrosion pits which are elongated in  the direction of cold- 

work. The pits have developed around the second phases, identified by 

EDS as A^CuMg and (CuFeMn)Alg (see Fig.4.13(c)&(d)). Evidence of 

attack a t the grain boundaries is also apparent.
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4.8.4 CORROSION MORPHOLOGY

After corrosion for 1 day, there was little evidence of attack on 2124 alloy. 

However, following 3 days immersion, the corrosion became more evident 

and was associated with (CuFeMn)Alg second phases, Fig.4.47(a). The 

A^CuMg phase was rarely attacked. After immersion for 1 week, the 

specimen surface was covered with small corrosion pits, Fig.4.47(b). The 

pits had grown around the second phases, thereby loosening and causing 

them to fall away. The remainder of the surface had a dimpled 

appearance. After 3 weeks, the pits had become larger and the specimen 

surface appeared to have been grooved in the direction of cold-work, 

Fig.4.47(c). Examination of cross-sections made through the material after 

3 weeks immersion showed that the corrosion pits had propagated to 

between 15-35pm with an average depth of 25pm, Fig.4.47(d).

4.9 CORROSION STUDIES ON CARBON-REINFORCED 2124 

ALLOY

4.9.1 OPEN CIRCUIT POTENTIAL

The changes in the OCP for samples of 2124-C were similar to those seen 

for the materials previously described. The initial potential of — 

749±20mV was maintained for a little less than 1  hour, before declining to 

a minimum potential of ~-923±25mV. The values of E^n^  and Emjn , are 

recorded in Table 4.4.

4.9.2 DOUBLE CYCLE POTENTIAL (20mV/min)

The DCP data for specimens of 2124-C were similar to those produced for 

the unreinforced alloy, see Fig.4.46(a), and are listed in Table 4.5. With
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the exception of Ecorr, which had values of -958±40mV, Ep^ (-705±10mV), 

Eprot (-854±10mV) and the hysteresis area (190±5pC), gave excellent 

reproducibility between tests.

The microstructure showed that most corrosion had occurred a t the fibre- 

free regions, Fig.4.48(a), where the second phases of A^CuMg and 

(CuFeMn)Alg were present, Fig.4.48(b). The micrograph illustrates that 

part of the A^CuMg phase has become loosened by the surrounding 

corrosion and has fallen away. Areas of attack around the fibres were 

found, and this was further evidenced by microscopy of cross-sections 

through the corroded material, Fig.4.48(c). The depth of the attack was 

found to range from ~25-140pm, the mean depth across the surface being 

70pm.

4.9.3 GALVANIC COUPLE

The galvanic current flowing between a specimen of 2124 alloy and 

several tows of carbon fibres was measured over a period of 2 hours. The 

results are reported in Table 4.7. During this time a constant current of 

320pA was attained. Using the equation in section 4.4.4, the corrosion 

rate, was calculated assuming an electrochemical equivalent, k, of 

0.1004g.C'l for 2124 alloy. The rate was 3.6mm.yr“̂ .

4.9.4 CORROSION MORPHOLOGY

The 2124-C specimen which had been corroded for 1  day showed tha t the 

fibre regions had not experienced much corrosion, with only a few small 

corrosion pits forming between the fibres. This is illustrated by 

Fig.4.49(a), which also shows large circular areas of corrosion film
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deposited on the surface. Preferential attack occurred a t the intermetallic 

phase identified as (CuFeMn)Alg, Fig.4.49(b), see ED results, Fig.4.32(b). 

The A^CuMg phase was not attacked.

After 3 days corrosion there was still no evidence of attack at the 

A^CuMg phase, but more small corrosion pits were visible in the matrix 

regions, Fig.4.50(a). In some fibre-rich regions, the matrix had been 

corroded slightly and a white phase a t the fibre-matrix interface was 

evident, Fig.4.50(b). This phase was too small for an accurate 

determination of its composition but EDS analysis, Fig.4.50(c), showed the 

presence of aluminium and copper only.

Following immersion for 1  week, most corrosion still occurred around the 

second phases, including the A^CuMg phase, in the fibre-free regions. As 

Fig.4.51 shows the corrosion had loosened the phases and most of them 

had fallen away from the material. The fibre regions were relatively 

unattacked in most areas and they were similar in appearance to the 3 

day corroded samples.

The corrosion after 3 weeks had become more extensive and much of the 

matrix had been removed to expose bare fibres, Fig.4.52(a). No evidence of 

the second phases in the matrix remained due to the degree of attack. The 

matrix regions surrounding the white phase at some of the fibre regions 

had also been severely attacked. EDS analysis, Fig.4.52(b) of the phase 

with most of the surrounding matrix corroded away, showed tha t only 

copper was present; the gold resulted from the coating process prior to 

SEM examination. Microscopy was conducted to determine the depth of 

corrosive attack. A depth of penetration ranging slightly between -30- 

50pm was found.
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4.10 CORROSION STUDIES ON SILICON CARBIDE- 

REINFORCED 2124 ALLOY

4.10.1 GRAVIMETRY

Weight loss measurements made upon 2124-SiC specimens are recorded 

in Table 4.11, together with corrosion rates. The data show a decrease in 

the rate of corrosion over the first week of immersion. During the 

remainder of the test however, the rate increased to a value of 1 2 x 1 0 '^  

g.m"2 .h"l, which was comparable to the rate of attack following the first 

day of immersion.

4.10.2 OPEN CIRCUIT POTENTIAL

The OCP characteristics for two specimens of 2124-SiC were the same as 

for the 357-based materials and for the 2124 alloy eg. Fig.4.20(a). A third 

specimen, however, produced a variation in OCP, Fig.4.53, where the high 

potential found during the initial stages persisted throughout most of the 

test. Towards, the later stages of immersion, there was a steady decline 

towards slightly more negative values, but no minimum was reached 

during the test. The mean initial and minimum potentials from the three 

tests are -729±20mV and -984±40mV respectively, Table 4.4.

4.10.3 DOUBLE CYCLE POLARISATION (20mV/min)

DCP test data on samples of 2124-SiC a t a scan rate of 2 0 mV/min are 

given in Table 4.5. The DCP curves followed the same pattern as other 

2124-based materials, see Fig.4.46(a). The reproducibility between tests 

was excellent regarding Ep^  (-726±5mV) and Eprot (-965±10mV). The
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hysteresis area (332±35jiC) and the corrosion potential (-1147±40mV), 

however, exhibited more variability.

The microstructure after DCP testing, Fig.4.54, shows a uniform 

distribution of corrosion pits encompassing a large number of the small 

(3pm) SiC particles. As a result of this corrosion many of the SiC particles 

and second phases (CuAl2  and (CuFeMn)Alg) had become loosened from 

the matrix and subsequently fallen away.

4.10.4 CORROSION MORPHOLOGY

After immersion of 2124-SiC for 1  day the corrosion was very slight. 

Examination in the SEM, Fig.4.55(a) revealed tiny corrosion pits a t the 

silicon carbide particles and the second phase particles of CuAl2  and 

(CuFeMn)Alg. The degree of attack did not change visibly over 3 days, but 

after 1  week the corrosion pits had increased in size, Fig.4.55(b). The 

greatest change occurred between 1 and 3 weeks immersion. Much of the 

matrix surrounding the particles and second phases had been corroded 

away, Fig.4.55(c), although some particles and second phases still 

remained held by the matrix below. In regions where large corrosion pits 

had developed, the particles had fallen away. Measurement of cross- 

sections of corroded specimens after 3 weeks immersion showed that the 

average pit depth was ~25fim with a variation of depths between 10-40pm 

being found. Fig.4.55(d) is an example of a cross-section through a pitted 

region.
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4.11 CORROSION STUDIES ON COMMERCIAL PURITY 

ALUMINIUM

4.11.1 GRAVIMETRY

Weight loss and corrosion rate data on aluminium specimens are given in 

Table 4.12. These show that the rate of attack diminishes with immersion 

time, the corrosion rate reaching an almost constant level of 4.0x10"^ g.m’

2 .h“l  after 1  week.

4.11.2 OPEN CIRCUIT POTENTIAL

Commercial purity aluminium experienced variations in potential during 

natural immersion similar to that illustrated in Fig.4.20(a) for 357 alloy. 

The mean values of and Em]n , Table 4.4, were found to be - 

787±15mV and -1143±10mV respectively.

4.11.3 DOUBLE CYCLE POLARISATION (2 0 mV/min)

The DCP curves were of the same form as those recorded on aluminium 

single crystals, Fig.4.5, and had similar features to those observed for 357- 

Saf, Fig.4.42(a). In particular Ep^ was recorded on the first cycle also, 

being closely similar to the pitting potential on the second cycle.

The corrosion potential was found to be the most reproducible between 

tests, with a value of -854±10mV. The pitting potential (-770±20mV) and 

hysteresis area (145±20jiC) gave reasonable agreement, whilst the 

protection potential was more variable, with a value of -858±45mV.

Corrosion occurring as a result of the DCP test took the form of large 

corrosion pits up to - 1 0 0 pm in diameter, thereby encompassing a large
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number of the (AlSiFe) phases, Fig.4.56. Evidence of small corrosion pits 

around the particles may also be seen.

4.11.4 CORROSION MORPHOLOGY

The nature of the attack during the first week of immersion was similar to 

that for the 2124 alloy, i.e. it was mostly located around the second 

phases. However, in aluminium, the phases (AlSiFe) were not loosened by 

the attack and remained visible after 1 week, as Fig.4.57(a) illustrates.

Following corrosion for 3 weeks, the surface was covered in small pits, 

some of which contained tiny particles of the second phase. Larger 

particles of the second phase remained held by the aluminium, as shown 

in Fig.4.57(b).

4.12 CORROSION STUDIES ON CARBON-REINFORCED SUPER 

PURITY ALUMINIUM

4.12.1 OPEN CIRCUIT POTENTIAL

Changes in OCP recorded over 3 weeks for Al-C, were similar to those 

reported for a sample of 357 alloy, see Fig.4.20(b), i.e. the potential, once it 

had reached a minimum, remained there for the rest of the experiment. 

Values of the initial potential (-772±5mV) and the minimum potential (- 

1088±50mV) for the three samples tested, are recorded in Table 4.4.
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4.12.2 DOUBLE CYCLE POLARISATION (2 0 mV/min)

The DCP curve obtained on Al-C MMC, Fig.4.58(a), shows considerable 

difference between the shape of the hysteresis loop in the first and second 

cycles. During the first cycle the current density increases dramatically 

from the corrosion potential. At the second cycle, Ecorr becomes depressed 

and a marked passive range and well-defined E p^ become evident, The 

increase in current density then occurs a t Ep^ as would normally be 

expected. The pitting potential (-775±5mV) was very reproducible between 

tests but the corrosion and protection potentials were rather more 

variable, with values of -1054±65mV and -900±90mV respectively. The 

hysteresis area was 145±30pC.

The microstructure after the DCP test, Fig.4.58(b) showed th a t pitting 

had occurred, mainly in the matrix-rich regions. SEM examination 

illustrated that the aluminium had been attacked in a  crystallographic 

fashion to expose "steps" which were perpendicular to each other. 

Microscopy of cross-sections through the material indicated tha t the 

corrosion pits ranged from ~2 0 -2 0 0 pm across the section, with a mean 

value of 80pm.

4.12.3 GALVANIC COUPLE

The galvanic current measured over a 2  hour period between a sample of 

commercial purity aluminium and several tows of carbon fibres, was 

260|iA. The corrosion rate calculated using the equation in section 4.4.4, 

was 2 .8 mm.yr‘l, assuming an electrochemical equivalent, k, of 0.093gC"^ 

for aluminium. The results of corrosion rate and galvanic current are 

listed in Table 4.7.
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4.12.4 CORROSION MORPHOLOGY

Following immersion for 1  day, the Al-C material exhibited little 

corrosion, pits only becoming evident after 3 days. The pits formed in the 

matrix-rich areas, Fig.4.59(a), the rest of the surface remaining 

unattacked. After immersion for 1  week, there was clear evidence of 

corrosion around the fibres and in some regions the attack had taken a 

crystallographic form, Fig.4.59(b).

Corrosion after 3 weeks immersion was more severe showing extensive 

attack of the aluminium around the fibres, Fig.4.60(a). The fibre-free 

regions were also slightly attacked, the corrosion taking the form of 

shallow pits. In some fibre areas, a large amount of internally trapped 

corrosion products were present, Fig.4.60(b). Examination of cross- 

sections showed that corrosion of the aluminium between fibres had 

occurred to a mean depth of -80pm, the depth varying between 50-150pm 

across the surface.
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CHAPTERS

DISCUSSION

This chapter begins with an assessment of the various corrosion 

techniques which we have applied to metal matrix composites (MMC) and 

unreinforced alloys. A comparison of the electrochemical methods is made 

in section 5.2 and this is followed by a discussion of the usefulness of a 

double cycle polarisation (DCP) test for predicting the corrosion behaviour 

of MMC materials. A treatment of the corrosion characteristics of the 

materials are given in section 5.3, with reference to the type of 

reinforcement, the role of second phases, the composition of the matrix 

and, finally, the effect of the composite fabrication route.

5.1 GENERAL OBSERVATIONS OF THE CORROSION TESTS

5.1.1 GRAVIMETRY

The usefulness of applying gravimetric (weight loss) tests to the 

unreinforced metals and a selection of the MMC materials in this 

investigation was limited. Whilst all unreinforced metals and two MMC 

(357-Nic and 2124-SiC) produced weight losses, two other composites 

(357-Cl  357-Saf) gave weight gains (see Tables 4.3,4.6 & 4.8-4.12).

In general, weight losses recorded on unreinforced alloys, which ranged 

between ~ 2  to 6 g.m"^ for the various alloys, were in good agreement with 

those found by Nisancioglu and Holtan (1979) for a number of aluminium 

alloys immersed for times of up to 50 days.

The fact that the 357-Cl  composite experienced a weight gain rather than 

a weight loss may be explained by reference to microstructural studies of
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corroded specimens. This indicated that the volume expansion which 

accompanies the formation of internal corrosion products, causes stresses 

to be developed in the material. Thus the stresses initiate cracking (see 

Figs.4.31(a) & 4.32(b)), the fibre/matrix interface being the path of least 

resistance for the propagation of the cracks. The build-up of corrosion 

products within the crack, therefore, off-sets any weight loss due to 

corrosion. Indeed, microstructural investigations of cross-sections through 

the corroded material, Fig.4.32(d), showed evidence of corrosion together 

with the retention of corrosion products deep within the composite. This 

was noted also by Aylor et al (1984) and Evans and Braddick (1971) in 

corrosion studies of carbon-reinforced aluminium alloys, who reported 

that degradation of the composites resulted from internal stresses created 

by the corrosion products. The progressive decrease in the rate of weight 

gain observed over a three week period, (Fig.4.25), was probably due to an 

increasing thickness of corrosion product acting as an increasingly 

effective barrier to ingress of the corrosive solution.

The weight gain observed on corroded 357-Saf composite could not, 

however, be related to the presence of internal corrosion product, since the 

pits which formed on the surface were hemispherical and the corrosion 

products within them easily removed by the cleaning process. It is our 

contention that the fibres may have absorbed the corrosive solution 

during immersion, as noted by Nath and Namboodhiri (1988) for mica 

particles in an aluminium alloy. Support for this view was obtained by 

immersing specimens of 357-Saf in distilled water, a liquid in which the 

matrix would not be susceptible to pitting, but in which the fibres would 

still be able to hydrate. A substantial weight gain was noted after 24 

hours immersion (~45g.m"^) for specimens of 357-Saf, Fig.5.1. In contrast, 

357-Nic used as a control experienced only a very small weight gain
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(~5g.m"2), possibly due to traces of water being trapped in pores and 

crevices within the material. This experiment confirmed that Saffil fibres 

will hydrate on immersion in an aqueous solution and it is feasible that 

with longer immersion time the extent of internal hydration due to a 

"wicking" effect in the fibres will be greater and make it  more difficult for 

the fibres to dry out.

Returning to the materials which produced weight losses, the most 

notable feature was that the 357-Nic composite gave a smaller weight loss 

than the unreinforced 357 alloy (2.53g.m’^ compared with 6.15 g.m"^), see 

Tables 4.3 & 4.8. A contributory factor to the apparent low weight loss of 

the composite was that the total area of the specimen exposed during the 

test was used in calculating the weight loss rather than the true area of 

exposed matrix. Hence taking the volume fraction of fibres (-50%) into 

account, the weight loss for 357-Nic becomes ~5 g.m"^, which is slightly 

less than the weight loss of the alloy. In addition, microstructural studies 

of cross-sections through the corroded materials showed that the MMC 

had undergone more extensive attack than the alloy indicating tha t its 

measured weight loss must be lower due to the entrapment of internal 

corrosion debris.

This argument cannot explain the higher weight loss of 2124-SiC 

composite (5.98g.m“̂ ) compared with the corresponding unreinforced alloy 

(5.07g.m"2), although it is possible tha t the difference in weight loss is 

insignificant considering the error involved in their measurement 

(~±lg.m'2). However, the microstructure of the corroded 2124-SiC could 

be related to the weight loss data. Corrosion attack was initiated around 

the SiC particles and led to the eventual detachment of the reinforcement 

in  pitted regions, Fig.4.55(c). These observations are in accord with the

108



rate of weight loss for the 2124-SiC, Table 4.11, which shows a reduction 

in corrosion rate over the first week of immersion, but a doubling between 

1 and 3 weeks, consistent with the growth of large pits and subsequent 

loss of reinforcing particles.

In summary, the success of gravimetric tests on the composite materials 

was limited, 2124-SiC being the only MMC which did not appear to retain 

either corrosion products or corrosion solution after removal and cleaning.

5.1.2 OPEN CIRCUIT POTENTIAL

The results of open circuit potential (OCP) measurements showed tha t all 

materials followed essentially the same trends. A high initial potential 

was found in all cases, and this lasted for ~ 1  hour, fluctuating around an 

almost constant potential. After the first hour, there was generally a 

sudden decline in the OCP to more negative values, a minimum potential 

being reached after ~4-6 hours. These first stages of the test were quite 

reproducible, although the latter stages were less so with the OCP 

attaining a potential between the initial and minimum potential value.

Changes in the OCP have been characterised by Nisancioglu and Holtan 

(1978a & 1979), as consisting of four distinct regions, as discussed in 

Chapter 2 and illustrated in Fig.2.4. Region I, pit initiation, corresponds 

to the first minute of immersion, where the potential reaches a value 

above the pitting potential. This region was not recorded in tests 

conducted during this study because it lasted for less time than the data 

sampling period of 1  minute.
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Following initiation a quasi-stationary potential was reached in region II, 

which Nisancioglu and Holtan (1979) related to pit propagation. Hence 

this must be the pitting potential, Ep^, which corresponded to the initial 

potential, E ^ f., recorded during our tests. As with our findings, 

Nisancioglu and Holtan noted potential oscillations in region II, as did 

Richardson and Wood (1970) and Wood et al (1974), who attributed the 

oscillations to a constantly changing ratio of the anode to cathode area. As 

a pit initiated, it would expose fresh metal which is anodic in nature. This 

would be accompanied by a surge of potential in the negative direction 

and as cathodic activity rapidly established itself, the potential would 

become more positive again. As more pits initiate, the fluctuations in 

potential would continue but the OCP would decline as the ratio of the 

anodic to cathodic area increased. The decline in potential corresponds to 

region III in the model of Nisancioglu and Holtan (1978a & 1979). They 

attributed the downward trend of potential to the reduction in cathodic 

area, which is consistent with our findings where a minimum potential 

was reached approaching the bare metal potential of aluminium, -1.2V 

(SHE) as reported by Lepin and Kadek (1966). The presence of active pits 

would polarise the surface to more negative potentials. The area of pits 

would thus increase and the cathodic area, which supports the anodic 

reactions would correspondingly decrease. Eventually, the cathodic 

current would be reduced to zero and, therefore, the anodic reactions 

could no longer be sustained. At this point repassivation of the pits would 

occur. Hence we conclude that the potential a t which anodic reactions 

cease must relate to the protection potential, below which pitting cannot 

occur. The minimum potential Emjn, must, therefore, be the protection 

potential, Eprof..

110



During the later stages of immersion (region IV), the OCP was found to 

increase slightly and maintain a constant voltage for the remainder of the 

test. Nisancioglu and Holtan (1978a & 1979) identified this potential as 

the protection potential. However, we believe it to be more likely tha t 

passivation occurs a t the minimum potential in region HI, where pitting 

stops and, that in region IV, the potential moves to a constant value 

generally within the passive range, i.e. between the pitting and protection 

potential. In accord with this, our study showed that the latter stages 

(region IV) were rather less reproducible, a feature also noted by Wood et 

al (1974) and, although a constant potential was usually attained 

following region HI, its position was variable. Generally, the potential did 

one of three things;

(i) it  remained at the minimum potential (Epro{.), or

(ii) it returned to the high initial potential exhibited dining the first 

hour of the test (Ep^), or

(iii) it attained a potential between the initial and minimum 

potential (within the passive range).

These differences in behaviour are not surprising considering the 

statistical nature of pitting. Indeed, the values of the OCP recorded by a 

variety of authors on super-pure aluminium and collected by Nisancioglu 

and Holtan (1979) show that for immersion times ranging from 100 

minutes to 32 days, the OCP can attain a value anywhere between - 

810mV and -1200mV.

To summarise this section of the work on electrochemical measurements, 

it  has been clearly demonstrated that both pitting potentials and
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protection potentials can be determined from a study of OCP 

characteristics.

5.1.3 DOUBLE CYCLE POLARISATION

The results of double cyclic polarisation (DCP) tests showed that, with two 

exceptions, the pitting potential was much more clearly defined during 

the second polarisation cycle than during the first. For most materials, a 

rapid increase in current density occurred at the corrosion potential in the 

first cycle, indicating that the material was freely pitting a t the corrosion 

potential. This feature has been noted also by Nath and Namboodhiri 

(1988) in studies on a mica-reinforced aluminium alloy and it led them to 

consider the corrosion potential as representing the pitting potential. 

Furthermore, Szklarska-Smialowska (1986) reported that in solutions 

which were aggressive to the material, pitting often occurred at potentials 

scarcely more positive than the corrosion potential. This was exhibited by 

our materials, such that when the potential was increased above Ecorr, 

the current also increased. Measurements showed also that the OCP (or 

free corrosion potential) varied substantially for all materials, {e.g. from ~- 

720 to -1150mV over a few hours) and tha t a rapid increase in the current 

density at the corrosion potential should not be assumed to represent the 

pitting potential.

However, as demonstrated with the double cycle polarisation test, the 

corrosion potential was depressed on the second cycle, thereby allowing 

the pitting potential to be clearly defined on the second cycle. The general 

features of the DCP test may be summarised as follows;
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(i) the corrosion potential was always depressed on the second cycle,

(ii) there was a clear passive range in the anodic part of the second 

cycle and a clearly defined Ep^,

(iii) the anodic part of the reverse scans on the first and second cycles 

were similar and for some materials, an inflection was found, and 

finally

(iv) the cathodic part of the reverse scans on the first and second 

cycle was always depressed {i.e. the current density a t a given 

potential was lower during the first cycle than on the second).

The different features of the DCP curve may be explained with reference 

to the schematic representation, potential versus current density, shown 

in Fig.5.2.

On immersion the pits were active, as shown by the initial high OCP 

measurements, and the corrosion potential was therefore close to the 

pitting potential. Hence, specimens became freely pitting during initial 

immersion prior to polarisation. During the first forward cathodic scan 

(AB), the pits, although cathodically polarised, were not rendered inactive 

due to their occluded nature. Thus during the anodic part of the first 

anodic scan (CD), the already established pits were actively driven by 

being anodically polarised. On reversal of the potential through DEF, the 

pits were first cathodically polarised and then deactivated by formation of 

a passive film inside the pits. The cathodic part of the first reverse scan 

(FGH) was a t a higher current density than the cathodic part of the first 

forward scan (AB), indicating that the anodic component of the net 

current in FGH was less than that in AB. This implies that the pits which 

were active in AB were now passivated.
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During the forward scan of the second cycle (HIJK), the corrosion 

potential became substantially depressed because the material was now 

passivated, to give a clearly defined passive range (JK). At K, film 

breakdown occurred leading to pitting. The second reverse scan (LMNOP) 

was similar to the first reverse scan (DEFGH), implying tha t the 

mechanism of pit passivation is the same.

Hence with MMC materials, the presence of many pores and crevices will 

provide an abundance of sites at which pitting can initiate. These pits will 

continue to grow during the forward cycle of the first polarisation scan, 

which is why a clearly defined pitting potential is not visible on the first 

cycle. This demonstrates the usefulness of the DCP test for those 

materials where the pitting potential cannot be determined from a simple 

cyclic polarisation test.

(a) Sensitivity of the DCP Test

DCP tests conducted on single crystals of aluminium cut a t a variety of 

orientations illustrated that the technique was not sensitive to changes in 

the crystallographic orientation and the values of pitting, protection and 

corrosion potentials did not vary between samples beyond the normal 

scatter expected in tests on the same material, Table 4.2. This result may 

be explained by considering the mechanism of pit initiation and 

propagation. Whilst the mechanism of pit initiation is not well 

understood, there is evidence that pitting is associated with the 

breakdown of the passive film. If, therefore, the film is not epitaxially 

related to the crystallographic orientation of the underlying aluminium, 

no effect of orientation would be expected. With regard to pit propagation,
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this would be controlled by processes occurring within the pit, e.g. mass 

transfer within the corrosive solution. Hence, pit propagation would also 

be expected to be insensitive to the crystallographic orientation of the 

aluminium. Nevertheless, the DCP method was sufficiently sensitive to 

detect effects due to the alloying elements, reinforcement type and 

manufacturing process and thus provided a means for comparing 

potential data of different MMC materials.

(b) Effect of Scan Rate

The effect of applying a slow (2 mV/min) scan rate to the 357-based 

materials instead of the generally adopted 20mV/min rate highlighted a 

number of interesting features. The most obvious difference related to the 

pitting potential. Firstly, for 357 alloy (Fig.4.22a) and 357-Saf MMC 

(Fig.4.43a), the pitting potential was found to be ~9 mV more negative 

than tha t recorded at the faster scan rate, see Table 4.5. Secondly, 357-Cl 

and 357-Nic materials did not exhibit a pitting potential on either the first 

or second potential cycles, a rapid increase in current density occurring at 

the corrosion potential in both cases, see Fig.4.29(a).

Regarding 357 and 357-Saf materials, the higher value of the pitting 

potential a t the faster rate was due to the ,,lagH in potential associated 

with the faster potential scan, i.e. potentials were recorded a t more 

positive values than those at which they actually occurred. This is in 

agreement with Broli and Holtan (1973), who reported tha t the pitting 

potential for aluminium was dependant upon the scan rate and became 

more negative as the scan rate was reduced. Freiman and Khartinova 

(1972) also reported that pitting potentials measured on steels were 

affected by the rate of scan in polarisation tests. Indeed, they found that
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scan rates of <0.12V/h (2 mV/min), gave unreliable values of the pitting 

potential.

In the case of the 357-Cl and 357-Nic materials, the absence of a pitting 

potential on either cycle can be related to microstructure. Microscopy of 

cross-sections through the corroded surface (whether 3 weeks corrosion, 

Fig.4.32(d) or DCP tests, Fig.4.29(d)), showed tha t the depth of attack was 

more severe for these materials than for other systems and was 

channelled by the fibres to form long, narrow corrosion pits deep within 

the composite. It is possible that the factors discussed earlier, which cause 

the corrosion potential to He dose to the pitting potential, may be 

enhanced at a slower scan rate. Thus pits which were initiated prior to 

polarisation continue to propagate deep within the composite during the 

anodic part of the first forward scan. It therefore follows that a t the slower 

rate more extensive internal attack could occur due to the longer time 

period of the test and that pits would remain active during the cathodic 

part of the first reverse scan and the second forward scan. In support of 

this, the DCP curve at the slower scan rate, Fig.4.29(a), showed that the 

cathodic part of the second forward cycle occurred at higher current 

densities (~1 0 x) than that for the faster rate, Fig.4.27. Consequently the 

situation was the same as that normally experienced during the first 

cycle, i.e. pits were active at the corrosion potential on the second cycle, 

and hence the pitting potential was not defined.

Scan rate effects were noted by Wilde (1972) and Syrett (1977), who 

suggested that the protection potential was related to the extent of 

propagation and showed that a t slower scan rates Epro{. moved to more 

negative values for stainless steels. However, our experiments on 

composite materials and the parent alloy showed no such relationship,
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and the protection and corrosion potentials were not significantly different 

for the two scan rates, taking into account the scatter in results between 

tests. Broli and Holtan (1973) also reported a dependance of the protection 

potential upon the scan rate although the effect was small, the protection 

potential passing through a maximum at a scan rate of lOmV/min. This 

may account for the similarity in Eprot  recorded a t the two scan rates in 

our tests, in that the protection potential at the 2mV/min rate falls on one 

side of the maximum Eproj., whilst the protection potential a t 20mV/min 

falls on the other.

It has also been suggested (Broli and Holtan, 1973) tha t the scan rate 

affects the hysteresis area, in this work the area contained within the 

second cycle. They believe that this was due to the absence of 

electrochemical equilibrium and they showed that the area was smaller at 

a slower scan rate and did not occur a t all in a stationary polarisation 

test. Our tests at slower rates showed smaller hysteresis areas for 357-Cl  

and 357-Nic, and larger areas for 357-Saf and 357, see Table 4.5 (the 

scatter in results means that the difference between the two rates is not 

significant), but no relationship between scan rate and hysteresis area 

could be established.

It is apparent also that a slower scan rate is not always desirable for the 

purposes of assessing MMC for pitting corrosion using the DCP method, 

particularly with continuous reinforcements where the pitting potential 

cannot be obtained from either the first or second polarisation cycle.

(c) T he Inflection  P o ten tia l

An inflection potential occurred in the reverse potential scans of 

polarisation tests on all materials, with the exception of 357-Cl  anc  ̂357-
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Nic, e.g. Fig.4.27. As discussed in the Chapter 2 , the point of inflection has 

been related with the protection potential (Otani 1988), although in 

Chapter 4 we have shown that the protection potential is more accurately 

defined as the intersection between the forward and reverse scans, see 

Fig.4.2(a). Moreover, Nisancioglu and Holtan (1978b) noted during studies 

on aluminium alloys that the inflection potential was close to the pitting 

potential. They considered that the pitting potential was associated with 

changes in the corrosion mechanism such that a t high current densities 

(i.e. above Ep^), corrosion occurred on a macroscopic front to form large 

rounded pits, whereas at low current densities (i.e. below Ep^), corrosion 

occurred on a microscopic level to produce crystallogaphic facets. Such 

mechanistic changes a t high and low current levels were noted also by 

Richardson and Wood (1970) and Wood et al (1974). Their findings would 

suggest that the inflection potential in the reverse scan is related to the 

pitting potential on the forward scan, with E ^ g  being more negative than 

Epit owing to the "lag" introduced by the potential scan. Thus it  is 

possible tha t Ejnfl may also correspond to a change in the corrosion 

mechanism from one of macroscopic attack above E j ^ ,  to a slower 

crystallographic type of attack below.

As noted earlier, materials 357-Cl  357-Nic did not exhibit an

inflection potential, which on the basis of the above theory would suggest 

that corrosion proceeded on a macroscopic front until passivation of the 

pits occurred a t Eproj.. This would then account for the extensive internal 

corrosion which occurred in these materials. However, further work is 

required to confirm such a relationship between the point of inflection and 

the change in corrosion mechanism.
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5.1.4 GALVANIC COUPLES

Measurement of the galvanic current flowing between the matrix metal 

and bare fibres revealed that couples containing carbon fibres produced 

the largest galvanic current and consequently the fastest corrosion rate. 

The semi-conducting Nicalon fibre coupled to 357 alloy gave a corrosion 

rate which was an order of magnitude lower than for the carbon fibre. 

These results are not surprising considering the superior electrical 

conductivity of the carbon fibre.

Comparison of the corrosion rates with the maximum pit depth produced 

by simple immersion for 3 weeks (recorded in Table 5.1) showed a 

different ranking order compared with that provided by the galvanic 

corrosion rates, 2124/C having the second fastest galvanic corrosion rate 

but the smallest pit depth. Hence it is evident that other factors other 

than the galvanic interaction between fibre and matrix are contributing to 

the corrosion rate of the MMC.

One such factor concerns the presence in some MMC, of a layer of 

aluminium carbide between the fibre and matrix. Indeed evidence has 

been presented showing that the incorporation of carbon fibres into an 

aluminium matrix by squeeze casting frequently results in the formation 

of aluminium carbide (Figs.4.17 & 4.18), as shown by Yang and Scott 

(1991a) in their studies on 357-C fabricated by liquid metal infiltration 

(LMI). Thus 2124-C and 357-Cg, both fabricated by squeeze casting, are 

also likely to contain aluminium carbide. This phase readily hydrolyses 

and accelerated corrosion at the fibre/matrix interface would be 

anticipated, giving more extensive attack than tha t indicated by 

measurement of the galvanic current between fibre and matrix.
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The extensive pits found in 357-Nic cannot be attributed entirely to the 

presence of carbide although it may have played some role in the corrosion 

reaction. In this composite the carbon needed to promote the carbide 

formation is present in the Nicalon fibre (Chapman et al, 1991), but to a 

much lesser degree than that in carbon-reinforced MMC. Thus we contend 

that an important factor governing pit depth concerns MMC fabrication, 

in particular the presence of voids left behind after manufacture. In 

support of this it was noted that the squeeze cast material was effectively 

free of voids compared with materials made by LMI, and the maximum pit 

depth was 50x less in 357-Cg than 357-Cl. Indeed the extensive pits in 

both 357-Nic and 357-Cl  was related to poor infiltration which allowed 

the ingress of corrosive solution into the composite. Such pores would act 

as "wicks" for the solution and promote the hydrolysis of aluminium 

carbide within the MMC.

In addition to the above two factors second phases, in particular the iron- 

containing intermetallic phases, were seen to affect the corrosion of MMC. 

For example, the 2124-C MMC experienced attack a t the (CuFeMn)Alg 

phase during the first few days of immersion, although corrosion a t the 

fibre/matrix interface was not significant until more than 1  week of 

immersion. Hence, the depth of corrosion pits was much less in this 

material than for those materials containing extensive carbide.

It is evident, therefore, that measurements of galvanic current between 

the constituents of an MMC, matrix and reinforcement, do not by 

themselves give data from which the corrosion rate of a composite may be 

derived. Indeed, the presence of interfacial reaction products and matrix 

second phases, both of which may be affected by the method of fabrication,
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will strongly influence the corrosion of the MMC. These secondary effects 

will be discussed in section 5.3.

5.2 ASSESSMENT OF THE CORROSION TESTS

5.2.1 COMPARISON OF OCP AND DCP TESTS 

It has been established that the initial potential, E ^ j.,  and the minimum 

potential, Ern n̂ , derived from open circuit potential tests are equivalent to 

the pitting potential, Ep^, and the protection potential, Epr0 ,̂ from DCP 

tests. Thus OCP measurements obtained under conditions of natural 

immersion can be used to assess the value of the DCP test.

Pitting potentials obtained from OCP and DCP tests are collated in 

Fig.5.3, the straight line representing a one-to-one correlation. For three 

of the materials, 357-Saf, 2124-SiC and Al-C, there appears to be excellent 

agreement between the results of the two tests. However, for the other 

seven materials, pitting potentials from the OCP tests are ~25mV more 

negative than those obtained from DCP tests. This may be due to the "lag" 

in potential associated with the DCP scan rate. This was reinforced by 

tests conducted a t the slow rate (2mV/min) which showed tha t for the two 

materials exhibiting a pitting potential, the Ep^ value was nearly lOmV 

more negative than at the 20mV/min scan rate. Therefore, provided that 

allowance is made for the effect of a potential scan rate, the DCP test 

pitting potential data agree reasonably well with those obtained from 

OCP tests.

With the exception of 2124 alloy, the materials could be separated into 

three groups according to matrix type. The materials based upon
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unalloyed aluminium have the lowest pitting potentials, the 357-based 

materials and the 2124 alloy have intermediate potentials, and the 2124- 

based composites have the most positive values of Ep^. These differences 

in behaviour are related to the constitution of the matrix alloy, the effect 

of reinforcement and the method of fabrication, as will be discussed later.

Comparison of protection potentials from DCP and OCP tests, see Fig.5.4 

where the straight line again represents a one-to-one correlation, shows 

reasonable agreement between data on seven MMC systems. With 357- 

Nic, A1 and Al-C materials, poor correlations were found the OCP 

protection potential being - 2 0 0  to 300mV more electronegative than the 

DCP value. The more negative potential may be a function of the 

experimental technique in that it  relates to the conditions necessary to 

repassivate the metal inside the growing pit, a point made previously by 

Wilde (1972) and by Syrett (1977).

Our results showed that the extent of attack was greatest after OCP tests 

and it  was not surprising therefore to find that these protection potentials 

were more negative than those obtained from DCP tests. This accords 

with the findings of Wilde (1972) and Wilde and Williams (1971) who, 

noted in work on stainless steels that the protection potential was 

dependent upon the extent of corrosion, with lower values for more 

extensive attack. If, however, the protection potentials are considered 

from a materials point of view, the relationship between the degree of 

corrosion and the protection potential proposed by Wilde and Williams 

(1971) does not provide a fully consistent explanation. For example, the 

material which experienced the most extensive attack, 357-Cl , one 

the most positive values of Eproj. whether derived from DCP or OCP tests.
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Thus to progress the argument, we have to consider microstructural 

characteristics of the different materials, in addition to physical and 

chemical effects within the pits associated with the presence of corrosion 

products and chloride ions or hydrogen gas. In turn, these corrosion 

effects will be influenced by the presence of fibres and intermetallic 

phases. Indeed, as reported by Wilde and Williams (1971) and Nisancioglu 

and Holtan (1978c), the protection potential is characteristic of the 

potential a t the bottom of a pit, and this is dependent upon the 

concentration gradient or ohmic potential inside the pit.

Examination of materials corroded for shorter immersion times showed 

that the sites of attack were essentially the same in OCP and DCP tests, 

i.e. a t fibre/matrix interfaces and at intermetallic or other second phases 

in the matrix. There were, however, some differences in that the DCP test 

produced large individual corrosion pits with little corrosion of the 

surrounding surfaces, whereas specimens subjected to the OCP test 

experienced corrosion across the whole surface to differing extents which 

rendered individual corrosion pits less obvious.

The differences may be explained as follows. In the DCP test, the 

specimen is polarised to potentials which are far more positive than those 

occurring under conditions of natural immersion. This is evidenced by the 

maximum potential of 700mV reached in OCP tests compared with ~- 

500mV in the DCP tests. Thus pits, once initiated, are actively driven in 

the DCP test whereas, under the OCP conditions of natural immersion, 

pits are constantly being initiated and repassivated (after various degrees 

of propagation). Hence more corrosion sites are developed over the surface 

under OCP conditions. This would accord with the observations of 

Richardson and Wood (1970) who noted that the morphology and
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distribution of pits, in the absence of an applied potential, depended upon 

the changing ratio of cathode-to-anode area, and that this in turn resulted 

in a more uneven size and distribution of pits. Under applied polarisation, 

the pits would be more evenly distributed and more uniform in size, as 

evidenced by the present study.

Thus it may be concluded that whilst the preferred sites of pitting are 

generally the same in the two tests, the density of active sites and the 

overall morphology of corrosive attack is different. This was confirmed 

from an examination of cross-sections through the corroded materials. 

Comparison of the maximum pit depth measured on a selection of MMC 

after OCP and DCP tests shows, Fig.5.5, that although the pits were 

much deeper after OCP tests, the trends were similar for both. This 

supports our contention that the DCP test is useful for determining the 

relative corrosion resistance of a variety of materials.

5.2.2 ASSESSMENT OF OTHER PARAMETERS TO 

CHARACTERISE CORROSION

The difference potential (Epj^-Ep^) as deduced from cyclic polarisation 

tests has been suggested by Wilde and Williams (1971) and Wilde (1972) 

as providing a measure of the extent of corrosive attack. They showed that 

difference potential values correlated well with the corrosion weight loss 

of stainless steels under natural immersion conditions. However, with 

aluminium alloys Nisancioglu and Holtan (1978b & 1979) indicated that 

the difference potential was not a useful parameter because the protection 

potential was found not to be a function of the amount of metal dissolution 

prior to pit passivation.
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With regard to oar studies on unreinforced aluminium alloys and the 

2124-SiC composite (the only materials on which gravimetry was 

successful), the difference potential showed some correspondence with 

weight loss data, Fig.5.6, although there was no linear relationship 

between the two sets of data. Concerning composite materials, difficulties 

in carrying out sensible a gravimetric measurements precluded any 

possibility of correlating the data.

Turning to the question of hysteresis area, this is given by the area swept 

out by the voltage versus current density plot during a single cycle, and 

has been suggested by Walker and Rowe (1976) as being a measure of the 

extent of corrosion. The area is related to the power supplied to the 

specimen during formation of the loop, the larger the loop, the more 

extensive the corrosion.

Whilst the difference potential is also used as a measure of corrosive 

attack, the present results showed little correlation between this and the 

hysteresis area, Fig.5.7. This is not surprising since the hysteresis area is 

dominated by corrosion at high current densities and, as discussed in 

section 5.1.3(c), this is probably associated with a different corrosion 

mechanism from the low current density region associated with the 

difference potential. Of the two corrosion parameters, our view is that the 

difference potential is, in general, more useful, since a trend with weight 

loss data was found for unreinforced and SiC particulate-reinforced 

materials, (Fig.5.6). However, it is inadvisable to use it for fibre-reinforced 

metals without additional information, as evidenced by the low difference 

potential exhibited by the strongly corroding 357-Cl  357-Nic

materials.
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5.3 CORROSION OF THE MATERIALS

5.3.1 EFFECT OF REINFORCEMENT

The type of reinforcement was found to play an important role in the 

corrosion of the metal matrix composites. For all materials studied, 

corrosion was evident a t the reinforcement/matrix interface, some systems 

experiencing more extensive corrosion than others. The interfacial 

corrosion could be due to a number of factors. For example, pores and 

crevices could increase the number of local anodes a t the fibre surface as 

suggested by Sedricks et al (1971). Alternatively, as noted by Otani et al 

(1988 & 1989), Friend et al (1990) and Pohlman (1978), galvanic currents 

may be arise between an electrically conductive reinforcement and the 

matrix. However, the corrosion of aluminium in salt water is caused by 

the presence of chloride ions and for attack to occur, chloride ions must 

penetrate through the protective oxide film as discussed in Chapter 2 . 

Interfaces would provide a preferential site for the penetration of the 

chloride ions due to the impaired passivity of the oxide film in these 

regions. Once the chloride ions are in contact with the metal, corrosion 

can occur and this may be accelerated by the formation of a galvanic 

couple a t interfaces between phases or materials of differing electrode 

potentials. The presence of fibres or particles a t the alloy surface is likely 

to cause such a situation, thereby facilitating attack of the metal adjacent 

to the fibre where the oxide film is impaired. Thus corrosion a t the 

interfaces between materials of differing electrode potentials may be a 

combination of firstly, film breakdown and secondly, galvanic corrosion. In 

support of this mechanism, the least severe attack occurred on Saffil 

(AI2 O3 ) fibre-reinforced 357 alloy. It is possible tha t the continuity of the 

oxide film was enhanced across the surface of this material due to the
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fibre and the surface oxide film being of similar composition. An 

additional factor which may account for the less severe interfacial 

corrosion of 357-Saf material is the absence of any galvanic contribution, 

owing to the non-conducting nature of the Saffil fibre. Clearly the galvanic 

effect has made a bigger contribution to the corrosion of the carbon fibre- 

reinforced materials, as demonstrated by the results of current 

measurements on fibre-matrix galvanic couples.

Paciej and Agarwala (1988) noted that corrosion in the interfacial regions 

of the 2124-SiC MMC could be a result of the high dislocation density 

produced around the particles by the thermal mismatch during 

fabrication. The dislocations can promote corrosion either because they 

provide regions of high residual stress or they act as sites for the 

precipitation of galvanically active phases. As mentioned above, the attack 

a t dislocations and active phases may be initially attributable to defects in 

the passive film a t these sites.

The pitting potential of 2124-SiC was more negative than that for 2124-C 

(-726mV and -705mV respectively as recorded from DCP curves). This is 

surprising as the presence of carbon fibres might be expected to render 

the matrix more susceptible to pitting than the less electrically-conducting 

silicon carbide particles. A contributory factor to the enhanced pitting 

susceptibility of 2124-SiC may be its lower volume fraction of 

reinforcement compared with 2124-C. Thus a larger area of matrix and 

consequently a larger number of potential pitting sites would be exposed 

during corrosion of 2124-SiC. In agreement with this, the pitting potential 

of 2124 alloy which contained no reinforcement (-748mV) was more 

negative than either of the two 2124-based MMC, indicating that it has a 

greater susceptiblity to pitting. However, the possibility that differences
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in fabrication of the three materials, may have an an affect on the 

tendancy for pitting to occur should not be overlooked, a point which we 

shall return to later.

The geometry of the reinforcement also played an important part in the 

nature of the corrosion. In the case of continuous fibres, corrosion was 

channelled along the fibre, forming long corrosion pits which, in the case 

of the 357-Nic and more especially the 357-Cl  composite, extended deeply 

within the material. The short Saffil fibres and silicon carbide particles 

did not influence the propagation of corrosion pits to such a great extent, 

since the pits in these materials were hemispherical and shallower than 

those in the continuous fibre-reinforced MMC. In fact with both 2124-SiC 

and 357-Saf materials, the pits after 3 weeks corrosion were of similar 

depths to those in the unreinforced alloys.

Crevices a t the fibre-matrix interface also contributed to corrosive attack 

of the interface, although crevice corrosion is traditionally associated with 

the presence of oxygen, whereas our solutions were de-aerated. Rosenfeld 

and Marshakov (1964) reported, however, that the process may occur in 

corrosive solutions completely free of oxygen, due to changes in the 

character of the electrolyte within the crevice. They noted that the 

development of a "macrocouple", with the metal inside the crevice acting 

as the anode and the metal outside the crevice acting as the cathode, may 

cause acidification of the solution within the crevice, thereby accelerating 

corrosion.

One consequence of particular types of reinforcement and liquid metal 

fabrication processes is the formation of reaction products at the interface. 

In certain circumstances, this microstructural feature may severely
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influence the nature of the corrosive attack. This is exemplified by 

studies on 357-Cl, where total penetration had occurred for one sample 

after immersion for only three weeks, due partly to the hydrolyses of 

aluminium carbide. Such attack was found to cause cracking a t the 

fibre/matrix interface due to a "jacking" affect from the volume expansion 

of the internal corrosion products, Otani et al (1989) also observed 

cracking in this type of composite, although they attributed the severe 

internal corrosion to a galvanic action between fibre and matrix since no 

evidence of aluminium carbide at the interface was found. The less severe 

interfacial corrosion of the Saffil short fibre and SiC particulate-reinforced 

materials is due to the absence of aluminium carbide.

5.3.2 EFFECT OF MATRIX ALLOY

The elements present in the aluminium alloys had a pronounced effect 

upon the corrosion characteristics of the composite material, by not only 

affecting the alloy composition, but also by influencing the formation of 

certain intermetallic and second phases. However, the subject of second 

phases will be discussed in the following section

The most noticeable effect was that upon the pitting potential. 

Commercial purity aluminium gave an Ep^ value of -770mV in DCP tests, 

which was ~15mV more positive than that recorded for single crystals of 

pure aluminium. The difference is very likely to be due to the presence of 

impurity phases containing iron since the electrode potential of iron is 

more positive than aluminium.

The 357 alloy-based materials had pitting potentials which ranged 

between -743mV to -763mV, all of which were more positive than the
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pitting potentials of materials based upon unalloyed aluminium. The shift 

to more positive potentials is mainly due to the presence of silicon and 

also to iron found in the intermetallic phases in this material. The 

differences in the pitting potentials between composites may result from 

the presence of fibres and also the differences in the amount of iron 

contamination or, more generally, to a different fabrication route as 

discussed in the following section.

The 2124-based materials produced more positive pitting potentials than 

those recorded for 357-based materials. This is due to the presence of 

copper, a more electropositive metal compared with aluminium, as noted 

by Mueller and Galvele (1977). The fact that pitting potentials of the three 

2124-based materials were significantly different and may again be 

related to the various manufacturing routes.

5.3.3 EFFECT OF SECOND PHASES

In addition to the aluminium carbide a t the fibre/matrix interface, a 

variety of intermetallic phases were discovered which were found to 

promote corrosion of the surrounding metal.

The corrosion of the metal adjacent to the intermetallics is generally due 

to a microgalvanic action, the phase having a more electropositive 

potential than the surrounding material and thus acting as the cathode in 

the corrosion process. However, Nisancioglu and Lunder (1986) suggested 

that other factors had to be considered. In particular, the electrochemical 

properties of intermetallic and matrix, (such as the surface structure and 

composition of the matrix and phases) and the composition of the solution 

adjacent to the anodic and cathodic areas must be borne in mind. Also the
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interaction may be affected by the ratio of the cathode/anode area, these 

being controlled by fabrication and secondary manufacturing processes. 

Murray et al (1967) noted that a contributory factor to the corrosion 

around intermetallics could be the less protective nature of the oxide film 

in these regions.

The 357 alloy contained three different phases - the silicon eutectic and 

the Fe2 SiAlg and AlgSigMggFe intermetallic phases. The silicon eutectic 

contributed little to the corrosion of the aluminium compared with the two 

intermetallics, although during longer immersion periods, corrosion was 

noticeable around the eutectic rods. The intermetallic phases initiated pits 

from the very early stages of immersion, the Fe2 SiAlg phase being the 

preferred corrosion site. This could be due to differences in the galvanic 

affect contributed by the two phases. The electrode potential of 

magnesium according to Polmear (1981) is —1 .7 V (SCE) and hence the 

AlgSigMggFe phase would be expected to be more anodic and closer to the 

electrode potential of aluminium than the Fe2 SiAlg phase. Consequently 

there would be less corrosion adjacent to the AlgSigMggFe phase.

The FeSiAlg phase commonly present in the 357-based composites proved 

to be detrimental to the corrosion properties, causing corrosion of the 

adjacent aluminium. This was especially evident in the 357-Saf material, 

where the alumina fibres were relatively passive compared with the 

Nicalon and carbon reinforcements. This observation would appear to be 

in contrast to the findings of Otani et al (1988 & 1989) who reported that 

the FeSiAlg phase in 357-based composites appeared to inhibit pit 

propagation by acting as a barrier to the development of pits. In the 357- 

Cl  MMC, the FeSiAlg needles appeared to cause corrosion of the
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surrounding metal a t a slightly earlier stage of immersion than the 

coexistent (FeSiAlCr) phase.

Regarding 2124 alloy and 2124-C MMC, the (CuFeMn)Alg phase located 

in these materials was found to have a more severe affect on the corrosion 

of the surrounding matrix than the A^CuMg phase. Corrosion occurred a t 

the (CuFeMn)Alg phase during the first day of immersion, whereas the 

CuA^Mg phase remained relatively inactive as regards the corrosion 

process until more than 3 days after immersion. In the 2124-SiC MMC 

however, the (CuFeMn)Alg and C11AI2  phases were attacked equally 

which suggests that the magnesium in the A ^Cu phase renders the 

intermetallic phase less active. This accords with the reported electrode 

potentials of -1.00V and -0.53V (SCE) (Polmear 1981) for the CuA^Mg 

and CuAl2  phases respectively. Thus it follows that (CuFeMn)Alg must 

also have a electrode potential close to -0.53V and the more cathodic 

potential in this case is probably due to the presence of iron.

In the case of the 2124-C composites, a white phase appeared around 

some of the fibres after 3 days immersion, the phase not having been 

visible prior to corrosion. EDS analysis of the phase was difficult due to its 

small size, but showed the presence of aluminium and copper. After 3 

weeks corrosion, much of the aluminium surrounding the phase had been 

corroded away and ED results now showed that only copper was present. 

It is possible, therefore, that the aluminium recorded in the ED spectra 

after 3 days was picked up from the surrounding aluminium matrix. This 

suggests tha t as copper was not found at the fibres in the uncorroded 

specimens, it must have been deposited during immersion. This accords 

with the findings of Summerson and Sprowls (1986) who noted that 

copper ions can be plated-out on an aluminium surface, thereby creating
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small galvanic cells and intensifying pitting. This would also explain why 

the 2124-C did not exhibit extensive attack in the fibre regions until the 

later stages of immersion.

Regarding commercial purity aluminium, the (FeSiAl) phase also 

enhanced corrosion of the surrounding aluminium, probably due to a 

galvanic affect and to discontinuity of the oxide film.

In summary, all intermetallic phases present in the matrix were found to 

be detrimental to the corrosion resistance of the composite materials. 

Impurity phases containing iron were found to act as preferential 

initiation sites, due to their being cathodic to the surrounding aluminium. 

The magnesium-containing phases caused less severe attack since other 

their potential was closer to the adjacent matrix than the iron-containing 

phases. In all cases disruptions in the continuity of the oxide film may 

have initiated the localised attack, with the ensuing galvanic action 

causing propagation of the pits.

5.3.4 EFFECT OF FABRICATION

This investigation utilised materials manufactured by liquid metal 

infiltration (357-Cl , 357-Nic and 357-Saf), squeeze casting (357-Cg, 2124- 

C and Al-C) and powder metallurgy (2124-SiC). The unreinforced alloys 

also varied in their method of manufacture; the 357 alloy and aluminium 

had been conventionally cast and the 2124 alloy was in the T851 heat- 

treated condition. Some important microstructural features characterised 

the differences in manufacture and had important consequences with 

regard to corrosion behaviour.
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Concerning the alloys, the corrosion propagated along the direction of 

stretching in the case of 2124 alloy. The corrosion of 357 alloy, however, 

followed regions of eutectic and intermetallic phase, this material not 

having undergone any secondary manufacturing processes which 

introduced directionality into the material. Pitting in aluminium was also 

non-directional, being centred around impurity phases.

As noted earlier, 2124-based materials gave widely different values of the 

pitting potential which may be attributed firstly to differences in the 

volume fraction of reinforcement and, secondly to the different methods of 

production. The 2124 alloy experienced intergranular attack and was 

found to gave the most negative value of Ep^ (-748mV), indicating that it 

was the most susceptible material to pitting attack. This accords with the 

findings of Weisshaus et al (1980), who showed that an aluminium-copper 

alloy was more susceptible to pitting after heat-treatment. Galvele and De 

Micheli (1970) found that aged aluminium-copper alloys were susceptible 

to intergranular corrosion and attributed this to the differences in pitting 

potentials between the grain interior and the grain boundary. They noted 

tha t on precipitation-ageing the grain boundaries became depleted in 

copper and had a lower pitting potential than the grain itself. Also those 

aluminium-copper alloys which were sensitive to intergranular corrosion, 

had an overall pitting potential which was greater than that of the 

depleted zone, but less than that of the grain. Hence our heat-treated 

2124 alloy experienced pitting at lower potentials than either of the non- 

heat-treated composites, 2124-SiC and 2124-C MMC.

The 357-Cl  anc  ̂357-Cg composites comprised the same fibres and matrix, 

but were fabricated by liquid metal infiltration and squeeze casting 

respectively. Taking into account the scatter in results, data from DCP
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and OCP tests gave similar values of Ep^, Eproj. and Ecorr for the two 

materials. However, studies of the microstructure after corrosion revealed 

tha t the 357-Cl MMC had corroded more severely, with cross-sections 

through the corroded material after 3 weeks corrosion showing the 

development of pits up to 6000pm deep compared with 300pm in 357-Cg. 

The nature of attack also differed; corrosion occurred almost uniformly 

across the 357-Cg material, but was more localised on the 357-Cl  

material, being located mostly a t the edges of fibre tows. This was due to 

the fibres in the 357-Cl  material being held tightly in  tows by glass fibre 

wefts. During liquid metal infiltration the carbon fibres were restrained 

and consequently regions of poor infiltration resulted, particularly a t the 

outermost regions of carbon fibre tows where the infiltrating metal has 

pushed the fibres more closely together. This was also observed in a 

similar composite by Yang and Scott (1991a). The edges of tows were thus 

regions of high porosity which allowed the corrosion solution to penetrate 

deeply within the composite to develop occluded pitting. The pores, 

together with the aluminium carbide a t the fibre/matrix interface, had a 

"wicking" effect and consequently deep corrosion pits grew within the 

composites over a relatively short period of time.

The 357-Nic material which contained the glass weft experienced similar 

attack, with the fibre wefts also providing paths followed by the corrosion 

pits. The depth of attack in the 357-Nic composite was less than in the 

357-Cl  material which is believed to be due to the orientation of the glass 

wefts to the exposed surface, see Fig.5.8. Transverse fibre sections of 357- 

Nic material were studied, which contained glass wefts orientated 

longitudinally (parallel to the surface), as illustrated schematically in 

Fig.5.8(a). Hence as the cross-section through an exposed surface shows, 

Fig 5.8(b), tows of glass wefts exposed a t the surface only extend a  short
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distance into the material, which limits the depth of corrosion at the 

glass/matrix interface.

The 357-Nic composite which did not contain the glass weft, corroded to 

the same depth as the 357-Nic material with the glass wefts, the corrosion 

occurring along the fibre/matrix interface. It is therefore evident that the 

depth of attack for specimens of 357-Nic containing glass wefts parallel to 

the exposed surface was controlled by corrosion a t the fibre/matrix 

interface. However, it is reasonable to assume that sections of 357-Nic 

containing glass weftss perpendicular to the exposed surface would 

experience more extensive internal attack.

Thus it may be concluded that the presence of binders such as glass-fibre 

wefts which are not removed during the fabrication of MMC, can have a 

major influence on the corrosion properties of the MMC. Indeed, the 

materials which were fabricated by squeeze casting, contained no glass- 

binder, the reiforcing fibres being free to move during infiltration of the 

molten metal. This, combined with the higher pressures involved in 

squeeze casting, permitted the preform to be almost completely 

infiltrated, with virtually no residual porosity. Consequently, as the MMC 

based upon the 357 alloy reinforced with carbon fibres showed, the 

corrosion of the squeeze cast materials was less extensive than the same 

material fabricated by liquid metal infiltration.
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CHAPTER 6

CONCLUSIONS

The conclusions arising from the corrosion test methods are firstly 

summarised, followed by those relating to the corrosion behaviour of the 

MMC.

6.1 CORROSION TEST METHODS

Simple immersion corrosion tests were conducted in parallel with an 

accelerated cyclic polarisation method to investigate the corrosion 

behaviour of MMC. On immersion, crevices and pores created by the 

presence of fibres permitted the formation of occluded corrosion pits, as 

evidenced by the initial high potential recorded in OCP tests. During the 

forward scan of a single cyclic polarisation test these pits remained active 

thus masking the pitting potential. During the reverse scan, however, pits 

became passivated so that if a second cyclic polarisation was performed 

immediately following the first a well-defined Epft was found at the 

pitting potential. The double cyclic polarisation (DCP) technique, 

therefore, proved to be a valuable method of establishing accelerated 

corrosion data for MMC.

The occluded pitting effects were enhanced during DCP tests at a slow 

(2mV/min) potential scan rate. The increased time period of the test 

permitted extensive internal pitting and the pits were not rendered 

inactive, even by a second cycle. Thus slow scan rates are not always 

desirable.
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The DCP test provided reproducible pitting and protection potentials, the 

data showing reasonable correlation with open circuit potential 

measurements.

Potentiostatic tests conducted on MMC showed tha t the protection 

potential, which some authors have related to the point of inflection in the 

reverse scan of a cyclic polarisation test, is better defined a t the 

intersection between the forward and reverse scans.

Gravimetry could not be used as a comparative technique for MMC, as 

continuous fibre-reinforced MMC developed deep pits which entrapped 

corrosion products. In addition, the Saffil fibres were shown to hydrate in 

the solution. Both of these phenomena resulted in off-setting any weight 

loss occurring in the composites due to corrosion.

The extent of corrosion of fibre-reinforced MMC could not be predicted 

from polarisation data such as the difference potential (Epft-Eproj.), or the 

hysteresis area. This may be due to the differences in corrosion 

mechanisms which occur during the polarisation test.

Differences in the corrosion morphology were noted between specimens 

after DCP tests and those corroded during natural immersion for 3 weeks. 

Although the matrix surrounding the same microstructural features were 

attacked in both tests, DCP tests produced large individual corrosion pits, 

whereas OCP specimens experienced corrosion across the whole surface to 

differing extents. This results from the aggressive nature of the DCP test 

which polarises the specimen to more positive potentials than those 

reached under natural immersion.
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6 . 2  CORROSION OF MMC

The microstructure of the MMC played an important role in the corrosion 

process, with attack being concentrated around features such as second 

phases or reinforcements. Discontinuities in the surface oxide film at 

these features may have permitted the ingress of chloride ions which, once 

in  contact with the metal, initiated pitting. In some cases the pitting wras 

enhanced by galvanic interactions between conductive reinforcements or 

second phases and the matrix. Needle-like FeSiAlg intermetallic phases 

were commonly found and these proved to be the most detrimental phase 

present in the 357-based MMC. The (AlSiFeCr) phase found in 357-Cl  

material also promoted corrosion but to a lesser extent. The (CuFeMn)Alg 

intermetallic detected in 2124-based MMC was associated with notable 

corrosion of the surrounding matrix during the first day of immersion, 

whereas the less active CuA^Mg phase, did not result in appreciable 

galvanic corrosion until more than 3 days had elapsed.

The electrically conducting carbon fibre had the most severe effect on the 

corrosion of MMC compared with the other reinforcements. This was 

largely attributed to the presence of aluminium carbide a t the carbon 

fibre/matrix interface, which readily hydrolyses and accelerates corrosion 

a t the interfacial regions. Attack at the fibre/matrix interface within the 

Saffil-reinforced MMC was much less severe owing to the non-conducting 

nature of the fibre and also the absence of interfacial aluminium carbide. 

The Nicalon fibre-reinforced MMC also experienced fairly severe corrosion 

a t the fibre/matrix interface, possibly due to the semi-conducting nature of 

the fibre, the presence of small amounts of interfacial aluminium carbide 

and the effect of fabrication.
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The 357-Cl anc  ̂ 357-Nic MMC produced by liquid metal infiltration 

contained residual porosity between closely-packed fibres restrained by 

glass fibre wefts. The pores allowed ingress of the electrolyte, thereby 

accelerating internal corrosion. This, combined with a galvanic effect and 

the presence of aluminium carbide in the 357-Cl  caused this material to 

suffer the most severe attack. The MMC fabricated by squeeze casting 

contained virtually no remnant porosity owing to the absence of the glass 

binder and the higher pressures involved. Hence the corrosion 

experienced by these materials was less severe.
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TABLES



ALLOY COMPOSITION (wt%)

357
2124
Super purity 
aluminium
Commercial purity 
aluminium
430 stainless 
steel

7Si; 0.5Mg; rem. Al
4.0Cu; 1.5Mg; 0.6Mn; rem. Al
99.99% Al; rem impurity elements

99.5% Al; rem impurity elements (Fe,Si)

16.5Cr; 0.49Si; 0.4Mn; 0.27Ni; 0.07Cu 
0.05C; rem. Fe

Table 3.1 Chemical compositions of the alloys.

REINFORCEMENT LENGTH DIAMETER
(pm)

Carbon fibre continuous 8
Nicalon fibre continuous 15
Saffil fibre -100pm 3
SiC particulate - 3

T able 3.2 Details relating to the geometry of the reinforcements.



MATRIX REINFORCEMENT COMPOSITE
NAME

FABRICATION
METHOD

FORM
RECEIVED

357 Carbon 357-Cl LMI -10mm
plate

357 Carbon 357-Cs SC ~10mm
plate

357 Nicalon 357-Nic LMI ~3mm
sheet

357 Saffil 357-Saf LMI ~10mm
plate

2124 Carbon 2124-C SC ~10mm
plate

2124 SiC 2124-SiC PM ~2mm
sheet

Al Carbon Al-C SC ~10mm
plate

SC = Squeeze cast
LMI = Liquid metal infiltration
PM = Powder metallurgy

Table 3.3 Details relating to the metal matrix composites.



CHARACTERISTIC
POTENTIAL

MEAN
VALUE

r»l
*  corr -732±5 mV
rl
** prot -965±10 mV
HA1 322±35 nc
E2154 corr -1147±40 mV

E2Pit -726+5 mV
E2prot -94 6±5 mV
HA2 279±60 tlC

Table 4.1. The DCP test results for 2124-SiC MMC.

ORIENTATION
(211) (111) (HO) (100)

E^pifc ’<mV) -785 -785 -790 -780

E2pit <mV> -780 -775 -780 -780

Elprot <mV) -1140 -1230 -1215 -1215

E2prot <m V > -845 -860 -860 -1290

E^corr <mV> -970 -1087 -1040 -1065

E2corr <mV> -1175 -1215 -1252 -1270
HA1 (̂ C) 89 91 86 76
HA2 (HC) 96 91 79 85

T able 4.2 DCP test data for single crystals of aluminium.



IMMERSION WEIGHT CORROSION
TIME LOSS o RATE
(days) (g.m 2) (g.m. .h

1 1.20+0.2 0.005
3 1.87±0.4 0.026
7 3 .5 6±0. 7 0.021
21 6.15±1.2 0.012

Table 4.3 Results of gravimetric tests conducted on 357 alloy.

MATERIAL Einit
(mV)

^ i n
(mV)

357 -764+5 -1044140
357-Cl -774140 -938160
357-Cg -784160 -934160
357-Nic -778115 -1085145
357-Saf -76315 -990170
2124 -77215 -895130
2124-C -749120 -923125
2124-SiC -729120 -984140
Al -787115 -1143110
Al-C -77215 -1088150

Table 4.4 Open circuit test results



MATERIAL SCAN
RATE
(mV/min)

E p it

(mV)
Eprot
(mV)

Ecorr
(mV)

HA
(l̂ C)

357 20 -743±5 -1079180 -9951150 213145
2 -751±5 -103015 -854125 220160

357-Cl 20 -752±10 -850115 -919110 19115
2 * -83715 -7 4  915 104120

357-Cg 20 - 7 6 3±5 -896145 -880160 119110

357-Nic 20 -  7 5 1±5 -810110 -969165 283170
2 * -8  63115 -742120 237110

357-Saf 20 -761±5 -94  7145 -938150 85115
2 -770±5 -1006130 -939180 132110

2124 20 -748110 -90215 -1047120 375145

2124-C 20 -705110 -854110 -958140 14 915

2124-SiC 20 -7 2  615 -965110 -1147140 322135

Al 20 -770120 -858145 -854110 145120

Al-C 20 -77515 -900190 -1054165 145130

* Epit not recorded on either cycle 

T able 4.5 The polarisation data from DCP tests.



IMMERSION
TIME
(days)

WEIGHT 
GAIN 
(g.m 2)

RATE OF WEIGHT
GAIN-2 -1 (g.m .h ■*■)

1 1.53±0.3 0.064
3 2.08±0.4 0.029
7 2.83±0.6 0.017
21 3.9410.8 0.008

Table 4.6 Results of gravimetric tests on 357-Cl  MMC.

COUPLE CURRENT
pA

CORROSION RATE 
mm.yr”1

357-C 465 5.0
357-Nic 72 0.8
2124-C 320 3.6
Al-C 260 ro • 00

Table 4.7 The results of galvanic couple tests.

IMMERSION WEIGHT CORROSION
TIME LOSS RATE
(days) (g.m”2) (g.m"2 .h”1)

1 0.67±0.1 0.028
7 0.7710.2 0.005
21 2.5310.5 0.005

Table 4.8 Results of gravimetric test on 357-Nic MMC.



IMMERSION
TIME
(days)

WEIGHT 
GAIN 
(g.rn 2)

RATE OF WEIGHT 
GAIN
(g.m .h"*)

1 25±5 1.0
3 78±15 1.1
7 12 0±2 4 0.7
21 97±20 0.2

Table 4.9 Results of gravimetric tests on 357-Saf MMC.

IMMERSION WEIGHT CORROSION
TIME LOSS RATE
(days) (g.m-2) (g.m” .hr )̂

1 0.50±0.1 0.020
3 0.87±0.2 0.012
7 1.7010.3 0.011
21 5.0711.0 0.010

Table 4.10 Results of gravimetric tests on 2124 alloy.



IMMERSION WEIGHT CORROSION
TIME LOSS RATE
(days) (g.m 2) (g.m .h~l)

1 0.33±0.07 0.013
3 0.75±0.15 0.010
7 0.9 9±0.2 0.006
21 5.98±1.2 0.012

Table 4.11 Results of gravimetric tests on 2124-SiC MMC.

IMMERSION WEIGHT CORROSION
TIME LOSS RATE
(days) (g.m 2) (g.m 2 .h“l)

1 0.19±0.03 0.013
3 0.80±0.15 0.011
7 0.73±0.15 0.004
21 2.13±0.4 3 0.004

Table 4.12 Results of gravimetric tests on commercial purity aluminium.



COUPLE GALVANIC CORROSION 
RATE 
(mm.yr” )̂

MAXIMUM PIT 
DEPTH 
(pm)

357/C 5.0 6000 (LMI) 
300 (SC)

357/Nic 0.8 350
2124/C 3.6 50
Al/C 00•

CM 150

LMI; MMC fabricated by liquid metal infitration 
SC; MMC fabricated by squeeze casting

Table 5.1 Comparison of the galvanic corrosion rate and the
measured between matrix/fibre, couple with maximum 
pit depth recorded in the corresponding MMC



FIGURES



Fig.2.1 Schematic illustration of the squeeze casting 
process (taken from Chadwick and Yue, 1989).
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Fig.2.2 Schematic illustration of the liquid metal 
infiltration process.
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Fig.2.3 The Pourbaix diagram for aluminium in water.
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Fig.2.4 An illustration of the variation in open cicuit 
potential with time proposed by Nisancioglu 
and Holtan (1978a and 1979)
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Fig.2.5 A schematic of an anodic polarisation curve
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Fig.2.6 A schematic of a cyclic polarisation curve
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Fig.2.7 An example of the variation in current with time of 
a specimen taken through an anodic cycle (from 
Syrett, 1977).
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Polymerization at 
470*C in autoclave

Melt spinning at 
350°C <N2)

Dechlorination 
with Na (toNaCI)

Pyrolysis - heating to 
1300*C or less in H2 or 
vacuum ( 100°Ch ’’ )

Curing 190°C in air 
or RT in ozone

SiC fibre
amorphous or micro- 
crystalline 3 -SiC

Polycarbosilane
fibres

P olycarb osilan e

- S i
CH-

C -

CH.

CH

Dichlorodi m ethylsi lane

C1

C1

Dimethylpolysilane

—  Si

Polycarbosilane fibres 
with molecular cross- 
linking by oxygen to 
avoid subsequent 
melting

Fig.3.1 A flow diagram illustrating the main stages 
in the preparation of Nicalon 
fibres (taken from Anderson and Warren 
1984)



(c)

Fig.3.2 The stages in the preparation of a fibre
preform for the squeeze casting process
(a) fibres wound around steel plates
(b) steel caps placed over the fibres to 

hold them in place
(c) preform clamped between steel plates to 

prevent the fibres from separating 
during infiltration of the molten metal
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Fig.3.3 A schematic of the PTFE working electrode holder

Fig.3.4 The computer-controlled polarisation equipment
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Fig.3.5 A schematic of the coaxial glass cell

Fig.3.6 The glass cell equipped with the working, reference 
and auxilliary electrodes
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Fig.3.7 A schematic showing the operation of a scanning 
electron microscope
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Fig.3.8 A summary of the secondary effects which may be 
excited when a beam of primary electrons 
hits the surface
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Fig.3.9 A schematic showing the operation of a 
transmission electron microscope 
(from Smallman and Ashbee, 1969)
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Fig.3.10 A schematic illustrating the formation of a 
diffraction pattern in the transmission 
electron microscope
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Fig.3.11 An illustration of a beam of electrons
of wavelength X,  which have been diffracted 
through an angle 0, by a crystal whose 
interplanar spacing is d
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Fig.4.1 Anodic polarisation curves for 430 stainless steel
(a) The range of results from the ASTM 

standard test
(b) Results from our tests conducted with (A) 

and without (B) a Luggin probe



(a)
- 5 0 0

Epit,- 7 0 0
LU

- 9 0 0

<D

O
F irst  cyc le  

Second cycle

- 1 3 0 0
1.0E-3 1 .0E-11.0E-51.0E-7

Log (cu rren t  d e n s i t y  /  A c m -2 )

(b)
0 .3

\7
CMI
E
<

inc<u■O
*-»c<L>l_C-ou  7 3 2  mV

 8 0 0 mV

 1 0 0 0 m V

- 0.2
20 3

T im e (hou rs)

Fig.4.2 (a) A DCP curve for 2124-SiC, showing the position 
of Epit’ Einfl and Ex

(b) Potentiostatic tests performed on 2124-SiC 
at -732mV, -800mV and -lOOOmV.
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Fig.4.3 Optical micrographs of 2124-SiC
(a) After potentiostatic polarisation at 

-800mV for 3 hours
(b) After potentiostatic polarisation at 

-lOOOmV for 3 hours
(c) After natural immersion for 15 minutes
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Fig.4.4 (a) A double cyclic polarisation curve for 
2124-SiC illustrating the position of
Epit> Ep ro tand Ecorr on each cycle

(b) A triple cyclic polarisation curve for 
2124-SiC illustrating the second and 
third cycles only
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Fig.4.5 DCP curves obtained on single crystals of aluminium 
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(d)(100)



(a) (b)

50jjm

Mg

(d)
A1

a
1 Fe
*1 A •

Fig.4.6 (a) Optical micrograph of 357 alloy
(b) SEM micrograph of 357 alloy, illustrating 

the presence of light grey and white 
"script"-like phases

(c) EDS analysis of the light grey phase (A)
(d) EDS analysis of the white phase(B)
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Fig.4.7 (a) Casting defects in 357 alloy
(b) 357 alloy produced by liquid metal 

infiltration
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Fig.4.8 (a) Optical micrograph of 357-Ct showing the 
presence of pale grey needledike (A) and 
platelet-like (B) phases

(b) EDS analysis of phase A
(c) EDS analysis of phase B
(d) EDS analysis of fibre weft

Carbon
fibres
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Fig.4.9 (a) Optical micrograph of 357-Cg
(b) SEM micrograph of a fibre-free region in 

357-Cg showing the presence of FeSiAlg 
intermetallic (white needles)
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Fig.4.10 Optical micrographs of 357-Nic
(a) With glass fibre weft (material A)
(b) With organic binder (materials B)
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Fig.4.11 (a) Optical micrograph of 357-Saf
(b) SEM micrograph of 357-Saf showing the 

presence of FeSiAlg intermetallic 
(white needles)



Fig.4.12 Optical micrograph of 2124 alloy
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Fig.4.13 (a) SEM micrograph of phase in 2124 alloy 
containing Al, Cu and Mg

(b) SEM micrograph of phase in 2124 alloy 
containing Al, Cu, Mn and Fe

(c) EDS analysis of phase in (a)
(d) EDS analysis of phase in (b)
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(a)
Fig.4.14 SEM micrograph of matrix-rich region in 2124-C
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Fig.4.15 2124-SiC
(a) Optical micrograph
(b) SEM micrograph showing the presence 

second phases (white particles)



Fig.4.16 Optical micrograph of commercial purity aluminium

(b)

Fig.4.17 (a) TEM micrograph of crystals at the fibre/matrix 
interface in Al-C

(b) SAD pattern of carbon fibre
(c) SAD pattern of aluminium matrix



(a)

Fig.4.18 (a) Crystal at the fibre/matrix interface in Al-C
(b) SAX) pattern of crystal in (a)
(c) Lattice image of a crystal
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Fig.4.19 The variation of corrosion rate with immersion time 
for 357 alloy
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Fig.4.20 (a) The variations of OCP with time exhibited 
by two specimens of 357 alloy 
(b) The variation of OCP with time exhibited 
by one specimens of 357 alloy
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Fig.4.21 The results of DCP tests on 357 alloy (20mV/min 
scan rate)
(a) DCP curve
(b) Optical micrograph taken after the test
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Fig.4.22 The results of DCP tests on 357 alloy (2mV/min 
scan rate)
(a) DCP curve
(b) Optical micrograph taken after the test
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Fig.4.23 (a) Optical micrograph of 357 alloy after 
1 hour immersion

(b) Variation of oxygen intensity across a 
corrosion pit in 357 alloy formed after 
1 hour immersion
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Fig.4.24 Optical micrographs of 357 alloy
(a) After 3 days immersion
(b) After 3 weeks immersion
(c) Cross-section through the specimen 

after 3 weeks immersion
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Fig.4.25 The variation in rate of weight gain with 
immersion time for 357-C l
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Fig.4.26 The variation of OCP with time for 357-Cl
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Fig.4.27 DCP curve for 357-Cl  (20mV/min scan rate)
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Fig.4.25 The variation in rate of weight gain with 
immersion time for 357-Cl
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Fig.4.26 The variation of OOP with time for 357-Cl
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Fig.4 .27 DCP curve for 357-Cl  (20mV/min scan rate)
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Fig.4.28 Corrosion morphology of 357-Ct after DCP test
(a) Corrosion pit at intermetallic phases at the 

edge of fibre tow
(b) Corrosion at glass fibre weft
(c) Silicon particles attached to carbon fibres
(d) Cross-section through a specimen

10Opm 1 OOpm
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Fig.4.29 The results of DCP tests on 357-Ct (2mV/min scan rate)
(a) DCP curve ^
(b) Optical micrograph taken after the test
(c) Cross-section through the specimen

Exposed surface
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Fig.4.30 Optical micrographs of an area of 357-Cl
(a) Before immersion
(b) After 6 hours immersion
(c) After 1 day immersion
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Fig.4.31 Corrosion morphology of 357-Cl
(a) After 1 day immersion
(b) After 3 days immersion
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Fig.4.32 Corrosion morphology of 357-Ct after 3 weeks corrosion
(a) Corrosion around carbon arm weft fibres
(b) Crack running through fibre tow
(c) Cross-section through the corroded specimen
(d) Cross-section showing complete penetration 

of corrosion through the specimen
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Fig.4.33 The results of DCP tests on 357-Cc (20mV/min scan rate)
(a) DCP curve
(b) Optical micrograph taken after the test
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Fig.4.34 Corrosion morphology of 357-Cg
(a) After 1 day immersion
(b) After 3 days immersion
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Fig.4.35 Corrosion morphology of 357-Cg after 1 week immersion
(a) Corrosion pit surrounded by an unattacked 

region
(b) Edge of an uncorroded and corroded region
(c) Corrosion around second phases in matrix- 

rich region
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Fig.4.36

10Ojjm

Corrosion morphology of 357-Cg after 3 weeks
(a) Corrosion at the fibre/matrix interface
(b) Silicon particles attached to fibres
(c) Cross-section through a corroded specimen

immersion
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Fig.4.37 Corrosion morphology of 357-Nic (type A) after DCP 
test (20mV/min scan rate)
(a) Corrosion around the glass weft
(b) Corrosion pit at FeSiAlg intermetallic
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Fig.4.38 Corrosion morphology of 357-Nic (type A) after DCP 
test (2mV/min scan rate)
(a) Corrosion at the glass-fibre weft and 

matrix-rich regions
(b) Corrosion at the fibre/matrix interface
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Fig.4.39 Corrosion morphology of 357-Nic after 1 day immersion
(a) Corrosion around glass-weft (type A)
(b) Corrosion at fibre/matrix interface (type B)
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Fig.4.40 Corrosion morphology of 357-Nic after 1 week immersion
(a) Corrosion at FeSiAlc intermetallic (type A)
(b) Corrosion around fibres and silicon 

particles (type B)
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Fig.4.41 Corrosion morphology of 357-Nic after 3 weeks immersion
(a) Corrosion at glass-fibre weft (type A)
(b) Severe corrosion around fibres (type B)
(c) Less extensive corrosion around fibres 

(type B)



(a)

(b)

- 5 0 0

E - 7 0 0

om

- 11  0 0
F i r s t  c y c le

Second cyc le

300
L0E-7 1.0E-5 10E-3 L0E-1

Log (current density /  Acm-2)

10Ojum

( 0

Fig.4.42 The results of DCP tests on 357-Saf (20mV/min 
scan rate)

(a) DCP curve
(b) Optical micrograph taken after the test
(c) Cross-section through a corroded specimen
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Fig.4.43 The results of DCP tests on 357-Saf (2mV/min 
scan rate)

(a) DCP curve
(b) Optical micrograph taken after the test
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Fig.4.44 Corrosion morphology of 357-Saf
(a) Attack around FeSiAlg intermetallic phase 

after 1 day immersion
(b) Corrosion pit at FeSiAlg after 1 week 

immersion
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Fig.4.45 Corrosion morphology of 357-Saf after 3 weeks immersion
(a) Corrosion around fibres and second phases
(b) Corrosion pits
(c) Cross-section through a specimen showing a 

pit initiated at the FeSiAlg phase
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Fig.4.46 The results of DCP tests on 2124 alloy (20mV/min 
scan rate)

(a) DCP curve
(b) Optical micrograph taken after the test



Fig.4.47 Corrosion morphology of 2124 alloy
(a) After 3 days immersion, illustrating 

corrosion around the (CuFeMn)Alg phase
(b) After 1 week immersion
(c) After 3 weeks immersion
(d) Cross-section through a specimen after 

3 weeks corrosion
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Fig.4.48 The results of DCP tests on 2124-C (20mV/min 
scan rate)

(a) Corrosion at the second phases in fibre-free 
regions

(b) Corrosion around AloCuMg phase
(c) Cross-section through a corroded specimen
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(b)

Fig.4.49 Corrosion morphology of 2124-C after 1 day immersion
(a) Small pits between fibres covered by 

corrosion film
(b) Preferential attack around the (CuFeMn)Alg 

phase
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Cu

Fig.4.50 Corrosion morphology of 2124-C after 3 days immersion
(a) Preferential attack around the (CuFeMn)Alg 

phase
(b) White phase surrounding fibres
(c) EDS analysis of white phase in (b)



Fig.4.51 Corrosion around second phases in a fibre-free region 
of2124-C

(a)

(b)
Cu

Au
Cu

Fig.4.52 (a) 2124-C after 3 weeks immersion; corrosion around 
fibres

(b) EDS analysis of white phase around fibres 
(see Fig.4.50(b))
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Fig.4.53 The variation in OCP for a specimen of 2124-SiC

200pm

Fig.4.54 Corrosion morphology of 2124-SiC after DCP test 
(20mV/min scan rate)
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Fig.4.55 Corrosion morphology of 2124-SiC
(a) After 1 day immersion
(b) After 1 week immersion
(c) After 3 week immersion
(d) Cross-section through a specimen after 

3 weeks immersion

50jjm
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Fig.4.56 Corrosion pit in commercial purity aluminium after 
DCP test (20mV/min scan rate)

1 00pm

(b)

Fig.4.57 Corrosion morphology of commercial purity aluminium
(a) After 1 week immersion
(b) After 3 weeks immersion
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Fig.4.58 The results of DCP tests on Al-C (20mV/min)
(a) A DCP curve
(b) Optical micrograph of a corrosion pit 

taken after the test
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Fig.4.59 Corrosion morphology of Al-C
(a) After 3 days immersion
(c) After 1 week immersion, showing 

crystallographic attack
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Fig.4.60 Corrosion morphology after 3 weeks immersion
(a) Corrosion around the fibres
(b) Corrosion product trapped between the 

fibres
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Fig.5.1 The weight gains experienced by specimens of 357-Saf and 
357-Nic immersed in distilled water for times 
of upto 24 hours
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Fig.5.2 Schematic of a DCP curve
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Fig.5.3 The correlation between pitting potentials from OCP 
and DCP tests

Key: •  357-based materials □ 2124-based materials A Al-based materials 
1357 6 2124 9 A1
2 357-Ct 7 2124-C 10 Al-C
3 357-Ca
4 357-Nic
5 357-Saf

- u t
3 357-Ca 8 2124-SiC
4 357-Nic

>
E

CL
oo
Eo

Cl
LU

-700

-8 00 -

-9 00 -

- 1000 -

- 1100 -

- 1 2 0 0  - f ^ — '-------- 1---------•-------- 1-------- •-------- 1—

- 1 2 0 0  -1 1 0 0  - 1 0 0 0  - 9 0 0 - 7 0 0- 8 0 0

Eprot from DCP test /mV

Fig.5.4 The correlation between protection potentials from OCP 
and DCP tests (see Fig.5.3 for key)
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Fig.5.5 The relationship between maximum pit depths measured 
on specimens from OCP and DCP tests (see Fig.5.3 
for key)
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Fig.5.6 The relationship between weight loss data and difference 
potential for alloys and 2124-SiC 
(see Fig.5.3 for key)
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Fig.5.7 The relationship between hysteresis area and difference 
potential for all materials (see Fig.5.3 for key)
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Fig.5.8 Schematic of 357-Nic (type A)
(a) Transverse section exposing longitudnal 

glass fibres
(b) Cross-section through the exposed surface

showing transverse glass fibres in bundles
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F ig .4 .5  DCP curves obtained on single crystals of aluminium 
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