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3 Summary

Staphylococcus aureus cell-surface proteins have been proposed to play important 

roles in bacterial virulence. The immunoglobulin (Ig)-binding protein A (SpA) has 

been well characterised and it is known to bind most mammalian IgG Fc and Fab 

fragments, thereby inhibiting phagocytosis and acting as a B cell superantigen. 

Recently, a second S. aureus Ig-binding protein has been discovered, Sbi, which also 

binds a second serum protein (^-glycoprotein 1 (P2GPI). In this thesis the Ig-binding 

characteristics of Sbi are analysed and compared to those of SpA. Both Sbi and SpA 

were found to bind all mammalian IgGs tested, but significant differences were found 

between the two proteins in their ability to form high molecular weight complexes 

with some mammalian IgGs. Sbi has one functional Ig-binding domain and sequence 

alignment predicts a second putative Ig-binding domain. Here we show that both Ig- 

binding domains of Sbi bind IgG with high affinity and with specificity for the Fc 

fragment only. Homology modelling of the two Ig-binding domains, based on the 

structure of domain D of SpA, supports our observation that Sbi has conserved Fc 

binding characteristics but does not bind Fab fragments. Structural models of Sbi also 

reveal that the variation in the affinity values of Sbi and SpA for IgG is mainly due to 

small variations in IgG sequence on certain loops at the IgG-ligand interface and at 

the Ch2-Ch3 interface. Multidomain models of Sbi and SpA are used to explain why 

SpA forms large soluble complexes with Fc and insoluble complexes with intact IgG, 

while Sbi forms insoluble complexes with both. Structural studies using small angle 

X-ray scattering, reveal that the N-terminal region of Sbi is composed of 4 globular 

domains, the two Ig-binding domains and two other three-helix bundle domains with 

novel functions.



4 Abbreviations
P2G P I (^-glycoprotein 1

BLAST Basic Local Alignment Search Tool

C na Collagen-binding protein

Ch the constant region of the Ig heavy chain

Cl the constant region of the Ig light chain

ClfA/B Clumping factor A and B

co d  coagulase negative mutant of S. aureus

Ebps Elastin-binding protein

EC M  Extracellular matrix

FnBPA/B Fibronectin binding proteins A and B

GISA glycopeptide intermediately susceptible S. aureus, also referred to as

VISA, vancomycin intermediately susceptible S. aureus

hla haemolysin negative mutant of S. aureus

Ig Immunoglobulin

IgA Immunoglobulin A

IgD Immunoglobulin D

IgE Immunoglobulin E

IgG Immunoglobulin G

IgM Immunoglobulin M

Igs Immunoglobulins

M O E Molecular Operating Environment

MRSA Methicillin resistant S. aureus

M SCRAM M  Microbial surface components recognising adhesive matrix molecules

MSSA Methicillin susceptible S. aureus

NM R Nuclear Magnetic Resonance Spectroscopy

PDB Protein Database

SAXS Small-angle X-ray scattering

Sbi S. aureus Ig-binding protein Sbi

SCCmec staphylococcal cassette chromosome mec

SpA S. aureus Ig-binding protein SpA

TEV Tobacco Etch Virus

TNFR1 tumour-necrosis factor-a receptor 1
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V h the variable region of the Ig heavy chain

Vl the variable region of the Ig light chain

vW F von Willebrand factor
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5 Chapter 1
5.1 Cell adhesion properties of proteins from Staphylococcus aureus 

and their role in virulence

In 1884 Rosenbach described the isolation of two species of Staphylococcus: 

Staphylococcus aureus and what is now termed Staphylococcus epidermidis. This 

genus of bacteria is spherical and forms typical grape shaped clusters as the bacteria 

divides on two planes. Currently, more than 20 species and subspecies of this genus 

have been described, of which S. aureus is the most common. S. aureus derives its 

name from the fact that under certain conditions, the colonies are a gold colour 

(aureus = gold). The bacterium is non-sporing, non-motile, and generally a capsule- 

less cell of ljim  in diameter. It is generally found on the skin and in the nasal 

passages of its host. It does however cause a large range of infections in its host. 

These range from harmless infections, such as pimples, impetigo, boils, to serious 

wound infections and abscesses, septicaemia, osteomyelitis, endocarditis, food 

poisoning and pneumonia (Todar 2005, Prescott, Harley and Klein 2002 Ch 39, 

Greenwood et al 1997 Ch 15). It has been determined that 20% of individuals are 

always colonised, 60% are intermittent carriers, and 20% are never carriers (Foster 

2004).

S. aureus has hit the headlines in the last few years due to the increase in infections by 

MRSA -  methicillin resistant Staphylococcus aureus. The first antibiotic, penicillin, 

was introduced in the early 1940’s, with the first cases of resistance recorded in 1942 

(Lowy 2003). Methicillin, the first of the semi synthetic penicillinase-resistant 

penicillins, was introduced in 1959 to treat infections caused by the penicillin resistant 

staphylococci. However by 1961, there were reports of resistance to this antibiotic, in 

what are now known as MRSA strains (Enright et al 2002). Since the 1960’s, other 

antibiotics have been developed, although there is a lack of novel drugs currently in 

development (Foster 2004). Today, the drug used to treat MRSA infections is the 

glycopeptide antibiotic vancomycin, however in 1997 the first cases of vancomycin 

resistance were reported. These Staphylococci strains with decreased susceptibility to 

this drug (glycopeptide intermediately susceptible S. aureus GISA) are all MRSA

- 10-



strains, and are of great concern as there are no drugs currently available that can 

target such strains (Enright et al 2002, Lowy 2003).

How have antibiotic resistant strains arisen?

S. aureus resistance to methicillin occurs when the S. aureus genome contains the 

mecA gene. Katayama, Ito and Hiramatsu (2000) determined that this gene is carried 

on a novel genetic element: the staphylococcal cassette chromosome mec (SCCraec); 

currently five different cassettes have been identified (Foster 2004). The resistance 

was thought to have occurred once, with a single strain acquiring the SCCmec cassette 

(Kreiswirth et al 1993), however it has now been established that the different MRSA 

strains have evolved from MSSA (methicillin-susceptible S. aureus) strains (Enright 

et al., 2002). According to this study, the major MRSA clones have all evolved from 

the successful MSSA strains and the GISA strains are arising from the major MRSA 

strains. In order to tackle this resistance problem it is necessary to develop novel 

drugs that will be effective to those strains that are already resistant to the currently 

available drugs.

5.1.1 How does S. aureus interact with its host?

One step toward the development of novel drugs against S. aureus is to understand 

how the bacterium interacts with its host, in the case of normal carriage as well as 

infection. It has been determined that S. aureus can interact with a number of host 

proteins though cell-surface adhesion molecules, these include components of the 

host’s extracellular matrix (ECM), host serum proteins, or proteins that are present on 

the surface of the host’s cells (i.e. receptors). S. aureus binds to the ECM protein 

elastin via an elastin-binding protein (EbpS) and fibronectin binding proteins (FnBPA 

and FnBPB). Examples of S. aureus proteins that interact with serum proteins include 

fibrinogen, via clumping factors A and B (ClfA and ClfB), and immunoglobulin G, 

via by S. aureus Ig-binding protein A (SpA) and a recently discovered second Ig- 

binding protein Sbi. The adhesion proteins involved are often referred to as microbial 

surface components recognising adhesive matrix molecules (MSCRAMM) (Foster 

and Hook 1998, O ’Brien et al 2002, Zhang et al 1998). Adhesion proteins are not 

exclusive to S. aureus, there are other known examples in the same genus, and also in 

other infective bacteria. For example the adhesion protein SdrX found in 

Staphylococcus capitis binds collagen (Liu et al 2004), and Staphylococcus
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S. aureus

Platelet

S. aureus

Complement g  V/ ■
system $ FcyRIIa* | jp?GPIIb/ PI 18 

Illb
Cytokeratin 10

Platelet

*/* both interactions are required for activation o f platelets (Loughman et al 2005)

Figure 1 Interactions between S. aureus and platelet cells mediated by (A) SpA and (B) clumping 

factors ClfA and ClfB (adapted from O’Brien et al 2002).

lugdunensis contains a fibrinogen-binding protein (Nilsson et al 2004). Streptococcal 

protein G (SpG) and Peptostreptococcal protein L both bind immunoglobulins

(Tashiro and Montelione 1995). Binding to receptor proteins on host cells generally 

occurs through bridging between the bacterium and the host cell utilising the host 

serum proteins binding between both cells, but some S. aureus proteins have been
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Host Cell /ECM

Collagen

I  FnBP 
" A/B 

J  EbpS

I  CnA

S. aureus

SdrE

UnknownGPIIb/IIIb

Platelet
Figure 2 Interactions between S. aureus, platelet cells and the extracellular matrix by adhesion

proteins: fibronectin binding proteins FnBPA and FnBPB; Elastin binding protein EpbS, collagen 

binding protein Cna, and SdrE (references in text).

identified that can bind directly to host cells. Examples of S. aureus interactions with 

host ECM and serum proteins are shown in Figure 1 and Figure 2, (also see Appendix 

1), and are described in more detail below.
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(c) SdrC
A 445 R 170 aa W

947

(d) SdrD

(e) SdrE

1166
Figure 3 Structural arrangement of the serine-aspartate repeat proteins of S. aureus showing their 

relative arrangement of the (S) signal domain, the A domain, the B repeats, the (R) serine-aspartate 

repeat region, the (W) cell-wall spanning region, and the (M) membrane spanning region, which 

contains the LPXTG motif. The lengths of the A domain, the R region, and the total length of the 

protein is indicated (Josefsson et al 1998).

5.1.1.1 MSCRAMM adhesion proteins of S. aureus

The mechanism of attachment by S. aureus to its host is very complex. There are at 

least nine different adhesion proteins with a known ligand or function, most of which 

are known to bind more than one ligand. It has also been found that a number of S.

aureus ligands interact with more than one adhesion protein. A feature common to 

most S. aureus adhesion proteins is the LPXTG sequence motif. This sequence is 

located in the C-terminal of the immature protein, and is cleaved between amino acids 

threonine and glycine by the enzyme sortase. The threonine is then amine-linked to 

the cell wall via the carboxyl of the threonine to the free amino group of the 

pentaglycine crossbridge in the staphylococcal cell wall (Schneewind, Fowler and 

Foull 1995). I will now describe some examples of adhesion proteins of the 

MSCRAMM family.
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5.1.1.1.1 The SD-repeat family of S. aureus

One family of S. aureus cell surface proteins is characterised by the presence of 

serine-aspartate dipeptide repeats (sdr). The family members also contain a signal 

peptide, an ‘A ’ domain, an ‘R ’ domain, composed of SD-repeats, and an ‘M ’ domain, 

containing a proline-rich membrane spanning region, the LPXTG-motif, and the 

membrane anchor (Figure 3). In S. aureus there are 5 members of this family of 

proteins, including the clumping factors, ClfA and ClfB, and SdrC, SdrD, and SdrE 

(Josefsson et al 1998, Foster and Hook 1998, Liu et al 2004).

5.1.1.1.1.1 The serine-aspartate repeat protein SdrE

SdrE, along with SdrC and SdrD, were first characterised by Josefsson et al (1998), 

using Southern blot analysis with a probe against the SD repeat region. All three 

proteins have the typical gene structure described above, with the addition of ‘B ’ 

repeats not found in ClfA and ClfB (see Figure 3). To date, however, no ligand has 

been identified for these proteins, although the role of SdrE in platelet activation has 

been investigated. O ’Brien et al (2002) has shown that, while the absence of the SdrE 

gene alone had no effect on platelet aggregation, in a double mutant with ClfA and a 

triple mutant of ClfA, SpA, and SdrE, increased lag time for aggregation was 

observed, indicating it does have a role in the activation of platelets.

5.1.1.1.1.2 Clumping factors ClfA and ClfB

The observation that S. aureus cells clump together in plasma was first described in 

1908. Later it was found that S. aureus cultures can also induce coagulation of plasma 

(Boden and Flock 1989). The first protein identified to play a role in this process is 

coagulase, an extracellular product of S. aureus that converts fibrinogen into fibrin. 

However, it was determined that other factors also play a role in clumping and 

coagulation; the staphylococcal clumping factors. Recently, S. aureus has been shown 

to be the dominant cause of infective endocarditis (Loughman et al 2005) and a study 

by Moreillon et al (1995) revealed that clumping factor defective mutants of S. aureus 

causes a 50% reduction in cases of endocarditis in a rat model compared to the wild 

type strain.

ClfA and ClfB are both known to bind fibrinogen, which can bind to host platelet 

cells via the GPHb/IQa receptor. Fibrinogen is the precursor of fibrin, which forms
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blood clots, and it is cleaved by thrombin to form the activated state. The binding of 

S. aureus to fibrinogen on the surface of platelets has been shown to trigger platelet 

activation and leads to platelet aggregation (Siboo et al 2001, O ’Brien et al 2002, 

Loughman et al 2005). This binding is important for S. aureus virulence as was 

shown in a ClfA gene knockout strain, where the absence of the ClfA gene increased 

the lag time for aggregation of platelets (O’Brien et al 2002). However, fibrinogen is 

not the sole ligand for either ClfA or ClfB. In the case of ClfA, Loughman et al 

(2005) showed that fibrinogen alone is insufficient for platelet activation. They found 

that for activation to occur, the serum must also contain anti-ClfA antibodies. These 

bind along with the fibrinogen, thereby attaching the S. aureus bacterium to the 

platelet cells via the fibrinogen receptor and the IgG FcyRIIa receptor (Figure lb). In 

addition, Loughman and co-workers (2005) have shown that activation can also occur 

via the complement pathway. This second mechanism of activation is slower due to 

the time necessary for the assembly of the complement component complexes and it 

also requires IgG. Siboo et al (2001) discovered that ClfA could also bind directly to 

platelets, triggering platelet activation, via a novel cell surface receptor, PI 18.

ClfB was identified via the same method described for SdrC, SdrD, and SdrE. ClfB 

has 26% sequence identity with the A domain of ClfA, and like ClfA it also binds 

fibrinogen (Ni Eidhin et a l, 1998). Unlike ClfA, which binds to the y-chain of 

fibrinogen, ClfB binds to the a -  and p-chains. Walsh et al (2004) showed ClfB has a 

second ligand in the form of cytokeratin 10, an essential component of the cell 

cytoskeleton. Cytokeratin 10 is also found on the surface of squamous cells located in 

the nasal passages, and as such, has been suggested to be a mechanism of attachment 

in nasal colonisation.

5.1.1.1.2 Elastin binding protein EbpS

Elastin is a component of the mammalian ECM, and is found in those tissues that 

require elasticity, such as the lungs, skin and blood vessels (Park et al 1991). Park et 

al (1996) identified and cloned the gene in S. aureus responsible for elastin binding: 

Elastin-binding protein (EbpS), a 23kDa protein that has the ability to inhibit S. 

aureus binding to purified elastin. EbpS, however, lacks the LPXTG cell wall 

anchoring motif characteristic for the MSCRAMM family of proteins.

- 1 6 -



(a) FnBPA 
S Du D1 D2 D3 D4 W M

(b) FnBPB
S A

Figure 4 The arrangement of the domains of the fibronection-binding proteins showing the (S) signal 

domain, the A domain, the B repeats, the D repeats, the (W) cell-wall spanning region, and the (M) 

membrane-spanning region containing the LPXTG motif (Wann, Gurusiddappa and Hook 2000).

5.1.1.1.3 FnBPA and FnBPB

Fibronectin is another component of the ECM, and is also found in blood clots. Two 

S. aureus proteins, fibronectin-binding proteins A and B (FnBPA and FnBPB), were 

shown to bind to coverslips coated with fibronectin (Greene et al 1995). Both are cell 

surface proteins containing the LPXTG-cell wall-anchoring motif. The A regions of

these proteins (shown in Figure 4) share 45% sequence identity while the W and M 

domains (cell-wall spanning, and membrane anchor) show much higher homology 

(Foster and Hook 1998, Greene et al 1995). It is thought that fibronectin binding is 

important in virulence as most invasive strains have the ability to bind fibronectin and 

the binding of S. aureus to fibronectin is required for the internalisation of the 

bacterium by epithelial cells and adhesions to plasma clots (Dziewanowka et al 1999, 

Roche et al 2004). However, Flock et al (1996) showed using a rat model of 

endocarditis, that the elimination of the bacteria’s fibronectin binding properties had 

no effect on virulence.

B1 B2 Du D 1 D 2 D 3 D 4 W M

Like the clumping factors, the fibronectin-binding proteins have multiple ligands. 

FnBPA and FnBPB can also bind fibrinogen, like the clumping factors ClfA and 

ClfB, and supports clumping, although FnBPA has a lower affinity for fibrinogen than 

ClfA (Wann, Gurusiddappa and Hook 2000). FnBPA/B can also bind elastin and this 

activity is present in the N-terminal ‘A’ domain of the two proteins (Roche et al 

2004). In knockout strains, elastin binding is eliminated suggesting that FnBPA/B 

mediates elastin binding and that EbpS is not necessary for this binding.

- 17-



5.1.1.1.4 Collagen-binding protein Cna

S. aureus is the major agent of bacterial arthritis or septic arthritis, causing 80% of 

cases. Strains isolated from such infections are able to bind collagen via the collagen- 

binding protein Cna. Unlike the other adhesion proteins, Cna is not found in most 

strains of S. aureus, however it is found in most strains isolated from patients 

suffering from septic arthritis. The protein has been shown to mediate attachment to 

the cartilage. This attachment via collagen and cartilage is important as was shown in 

a mouse model, where the loss of Cna reduced the rate of arthritis and the degree of 

damage to the joints (Patti et al 1994, Foster and Hook 1998).
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5.2 Bacterial immunoglobulin-receptors and their ligands

(b)

C h2 C„3

Ch2 Ch3
'Heavy chain

Fc region

Fab region

(a)
In mammals the FcyllR

Antigen . /  K receptor plays a central part
binding site <*-Light chain

in the adaptive immune 

response. A number of 

bacterial species also express 

Ig-receptors, examples

include S. aureus, 

Streptococci,

peptrostreptococcus magus 

and haemophilus somnus. 

The S. aureus Ig-receptor 

SpA, for instance, binds IgG 

via both the Fc and Fab

portions of the molecule. It is

thought that these bacterial 

Ig-receptors are involved in 

masking the pathogen from 

the host’s immune system 

(Wilson, McNab and 

Figure 5 (a) showing the arrangement of the domains Henderson 2 0 0 2  Ch 10). The
comprising IgG, also indicating the major IgG fragments, and p re se n c e  0 f  S p A  on the

the composition of peptide chains, (b) showing the crystal
surface of the bacterium,

structure of the intact human IgG b l2  (PDB code 1HZH:

Saphiree,a/2001) c o a tin S th e  cel1 w ith

immunoglobulins, reduces the susceptibility of the bacterial cells to phagocytosis by 

human neutrophils. The absence of IgG in the serum also increases the rate of 

phagocytosis when SpA is expressed by the bacterium. It is thought that this is due to 

activation of the classical complement pathway through the Fab-binding property of 

SpA to IgM (Palmqvist et al 2002).

5.2.1 Immunoglobulins

Most immunoglobulins (Ig) share a characteristic ‘Y’ shaped structure, consisting of 

two heavy chains, and two light chains, as shown in Figure 5. The heavy chain

- 19-



consists of 4 globular domains, constant domains 1 to 3 (C h I ,  C h2 , C h 3 ) and a 

variable domain (V h ), while the light chain is comprised of two domains: a constant 

domain ( C l)  and a variable domain (V l) . The combination of the V h  and the V l  

domains form the antigen binding site. This antigen-recognition site is limited to the 

hyper variable region located on the molecule’s loops. Any Ig contains either a kappa 

(k ) or a lambda (X) light chain, and has one of several different types of heavy chain, 

gamma (yl, y2, y3, y4), mu (p), alpha ( a l ,  a2), epsilon (e), or delta (8). The different 

heavy chains give rise to the five main classes of Igs: IgG (y), IgM (p), IgA (a), IgE 

(e), and IgD (8). IgM and IgE have slightly different heavy chains with an additional 

constant domain (C h 4 ). IgM and IgA also contain an extra protein chain, termed the J- 

chain, which links the Igs together to form a pentameric (IgM) or a dimeric (IgA) 

structure. The dimeric form of IgA is only found in mucosal secretions, in serum it 

exists as a monomer. The secreted form contains another protein termed the secretory 

fragment. The different types of Igs are shown in Figure 6.

IgG is the most abundant Ig found in the serum, and exists in 4 subclasses (IgGl, 

IgG2, IgG3, IgG4) all of which have homologous sequences and structure. IgM is the 

first antibody produced in response to a novel antigen. As mentioned before IgA is 

found in the serum, but is also found in secretions such as mucus, saliva, and breast 

milk. The two IgA subclasses (IgAl and IgA2) are thought to have the same function. 

IgE is involved in immunity against parasitic worms and it is important in hyper 

reactive responses to allergens. The function of IgD is unknown (Parham 2000 Ch2, 

Wood 2001 Ch3).

5.2.2 Bacterial immunoglobulin receptors

5.2.2.1 Streptococcal protein G (SpG)

SpG is a cell wall associated protein found on the surface of bacteria from the genus 

Streptococcus, with the ability to bind IgG and serum albumin. The protein contains 

either two or three albumin binding domains at the N-terminus, followed by either 

two or three IgG binding domains; the specific number of both varies between
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(a) IgA (secreted form) (b) IgD (c) IgE (d) IgG

J-chain—^ Secretory
Piece

(e) IgM

Disulphide
bond

•J-chain

Figure 6 showing the structures of (a) IgA -  secreted form, (b) IgD, (c) IgE, (d) IgG, and (e) IgM. IgE

and IgM have additional C»4 domains, compared to IgG, while IgA and IgM have additional peptide 

chains involved in multimerisation (labelled as J-chain and secretory piece, Wood 2001 Ch3).

different strains. The C-terminal is composed of a cell wall and membrane binding 

domains (Figure 7a, Tashiro and Montelione 1995).

Aybay (2003) investigated the binding of IgG by SpG and compared it to SpA 

binding. While it was known that both SpG, like SpA, could bind both Fab and Fc 

fragments, Aybay (2003) showed that both proteins have unique binding sites on each 

of the fragments.

5.2.2.2 Peptostreptococcal protein L

Protein L is found on the surface of certain strains of Peptostreptococcus magus, and 

binds to the k  chain variable domain of human IgG, IgA and IgM. The protein
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contains 5 Ig-binding domains like SpA (Figure 7b), however the structure of Ig- 

binding domains is the same as SpG: a 4-stranded |3-sheet with a single a-helix 

(Figure 7dii, Tashiro and Montelione 1995).

5.2.2.3 S. aureus Ig-binding protein A (SpA)

SpA is a well-characterised S. aureus cell-surface protein, with a MW of 57kDa, (in S. 

aureus strain 8325-4; Tashiro and Montelione 1995). It contains 4 or 5 highly 

homologous Ig-binding domains in addition to a cell-wall binding region, a cell 

membrane binding region, a transmembrane region in the C-terminal portion of the 

protein, and an LPXTG- cell membrane anchoring motif (see Figure 7c for the 

arrangement of SpA domains, Tashiro and Montelione 1995, Foster and Hook 1998). 

An artificial Z domain has also been generated based on the B domain, differing only 

at a single amino acid position: the B domain to Z domain substitution G22A (Tashiro 

and Montelione 1995, Jansson, Uhlen, and Nygren 1998, the sequences of SpA 

domains are shown in Figure 46).

Early studies found that SpA is specific for mammalian IgGs (Kronvall et a l, 1970). 

No IgGs from fish, amphibians, reptiles or birds (except Rhea americana) serum 

tested positive for IgG binding by SpA. This suggested that the interaction is wide 

spread among mammals and that the ability to immobilise IgG could be important for 

virulence.

Later, Jansson, Uhlen and Nygren (1998) showed that all five SpA Ig-binding 

domains bind to both the IgG Fc fragments and Fab fragments (the engineered Z 

domain binds Fc but lacks the ability to bind Fab). While SpA binds the Fc fragment 

IgG subclasses 1, 2 and 4, no binding has been detected for IgG3; Surolia, Pain and 

Khan 1982. Fab binding is limited to the variable region of heavy chains from gene 

family 3 (V h3, Sasso, Silverman and Mannik 1989). It is interesting to note that it 

only takes a single residue change in SpA to eliminate either Fab or Fc binding. The 

sole difference in domain Z compared to domain B is the substitution of a glycine to 

an alanine (Jansson, Uhlen and Nygren 1998), while inactivation of tyrosine residues 

by iodination eliminates Fc binding in SpA (Romagini et al 1982; Nguyen,
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Ghebrehiwet and Peerschke 2000). In addition to binding IgG, SpA also binds IgM 

(via Fab Vh3 chains) and IgA (subclass 2) (Surolina, Pain and Khan 1982).

In humans the Vh3 family comprises about half of all inherited Vh genes, and leads to 

about 30% of peripheral B-cells binding SpA via their Fab domains in the surface Igs 

(Palmqvist et al 2005). It has been suggested that SpA, by binding to the Fab

E GA GA GA B1 B2 B3 W M
(di)

1 E

(diii)

Xr

4

w M

Xc 532

Ig-binding domains 

Xr = cell-wall binding; Xc = transmembrane 

Figure 7(a) Crystal structure of SpG Ig-binding domain (PDB code 1IGD: Derrick and Wigley 1994) 

(b) NMR structure of protein L (PDB code: 2PTL: Wikstrom et al 1993) (c) NMR structure of SpA Ig- 

binding domain (PDB code 1BDD: Gouda et al 1992) (d) the arrangement of domains in (i) SpG, (ii) 

protein L and (iii) SpA (Tashiro and Montelione 1995)
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fragment of these B-cell surface Igs can trigger stimulation of B-cells similar to the 

superantigens in T-cells. It has been demonstrated that administration of SpA to mice 

causes the long lasting loss of 80% of splenic B-cells reactive to SpA and reduces the 

levels of circulating SpA-reactive IgM and IgM-secreting cells though supraclonal 

deletion and apoptosis of B-cells (Silvermann and Goodyear 2002, Palmqvist et al 

2005, Silverman and Goodyear 2006). It has also been shown that SpA-specific 

memory B-cells are not formed; however antibodies for conventional antigens form 

normally (Palmqvist et al 2005).

5.2.2.3.1 Other ligands of SpA

SpA has been found to bind a number of other ligands, present both in the serum and 

on the surface of host cells. One of the serum proteins that SpA is now known to bind 

to is von Willebrand factor (vWF; Hartleib et al 2000). vWF is a large multifunctional 

glycoprotein released by activated platelets. It is cleaved after release, and binds to 

various sites to allow platelet adhesion at sites of endothelial damage. As vWF also 

has a platelet bound receptor, it provides a bridging mechanism for attachment of SpA 

to platelet cells and a mechanism to allow the triggering of endovascular disease 

(Hartleib et al 2000, O’Brien et al 2002).

SpA can also bind directly to the surface of platelets via the platelet cell-surface 

receptor gClqR/p33 (Nygren, Grebrehiwet and Peerschke 2000; Peerschke and 

Ghebrehiwet 2001). Its ligand is C lq , which is part of the complement factor C l 

complex, involved in the classical complement pathway (Kishore and Reid 2000). 

The receptor is a multifunctional cellular protein that has a role in modulating platelet 

function at sites of vascular injection and inflammation. Iodination of SpA eliminates 

gC lqR  binding to SpA as well as IgG binding, suggesting that SpA has similar 

structural requirements to bind both ligands (Nygren, Grebrehiwet and Peerschke, 

2000).

A second receptor has also been found to bind SpA, the tumour-necrosis factor-a 

receptor (TNFR1), and this binding was shown by Gomez et al (2004) to induce 

inflammation in the airway epithelium. As TNFR1 is found on the surface of 

epithelial cells, in particularly those of the airways, it gives S. aureus a mechanism to
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attach to these surfaces. It was shown with a spa mutant of S. aureus, that there is 

reduced virulence in a mouse model of pneumonia, suggesting that the TNFRl-SpA 

interaction is important in virulence.

5.2.2.3.2 The role of SpA in virulence

Mastitis is of concern in the dairy industry, due to its impact on milk production. S. 

aureus is known to cause this disease. Jonsson et al (1985) investigated the role of 

three S. aureus proteins, and compared their effects on this disease with alpha- 

haemolysin negative (hla'), coagulase negative (coa~) and SpA negative (spa)  

mutants in a mouse model. The hla' and co d  mutants showed reduced virulence 

compared to the wild type strain, however the level of SpA production did not have 

any observed effect on virulence.

The role of SpA, along with alpha-haemolysin (a-haemolysin, also referred to as a - 

toxin), has also been investigated in subcutaneous lesions in a mouse model. Patel et 

al (1987) injected mice with S. aureus, using a wild type strain, along with mutant 

strains lacking either the a-haemolysin gene or the SpA gene, or both in a double 

mutant. This work found notable physiological differences in the appearance of 

lesions between mice injected strains lacking a -  haemolysin and the wild type strain. 

a-Haemolysin expressing strains were at least 10-fold more virulent: a-haemolysin 

was shown to be a major virulence factor. However comparison of strains lacking 

SpA showed only differences in the size of the lesion, not its appearance. They found 

that SpA negative strains do have slightly reduced virulence, although the difference 

is not as marked as in the case of a-haemolysin.

This pattern, in which loss of SpA causes reduced virulence, but to a much lesser 

degree to the loss of a S. aureus toxin has also been found in models of other bacteria 

diseases. For example Callegan et al (1994) used a rabbit model to compare the 

effects of SpA and a-haemolysin in keratitis. After injection of the rabbit corneas 

with either wild type S. aureus or strains lacking SpA, a-haemolysin or both genes 

showed greater reduced pathology in strains lacking a-haemolysin, however, similar 

to the mouse lesions little difference was observed between spa' or wildtype strains.
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The role of SpA in arthritis and septic death was investigated by Palmqvist et al 

(2002). They showed that the loss of SpA produced a less severe arthritic phenotype, 

and a reduced mortality rate in the mice. However they also showed that injecting the 

SpA protein itself did not trigger arthritis in the animal joints. This suggests other 

components expressed by S. aureus are also involved in causing disease. This is 

supported by the work of O’Brien et al (2002). They looked at the role of SpA in 

platelet aggregation in combination with ClfA. In the presence of a S. aureus mutant- 

lacking SpA, the lag time observed for aggregation was the same as the wild type. 

However in the double knock out of ClfA and SpA, an increased lag time was 

observed when compared to the single ClfA negative mutant.

While the importance of the immunoglobulin binding activity mediated by SpA 

remains unclear the recent identification of a second staphylococcal Ig-binding 

protein may help to clarify the role of Ig-binding in S. aureus virulence.

5.2.3 S. aureus Ig-binding protein Sbi (Sbi)

Zhang et al (1998) used phage display techniques to identify a unique polypeptide 

from S. aureus strain 8325-4 that shared SpA’s ability to bind IgG. They went on to 

clone the gene, and from it expressed the protein, comprised of 436 amino acids. 

Sequence analysis of this gene revealed the gene to contain an Ig-binding domain, a 

predicted Ig-binding domain, a P2GPI-binding domain and a proline rich region 

(Zhang et al 1999). The proline-rich sequence is composed of a proline repeated every 

five residues. Proline rich sequences are commonly found in cell-wall spanning 

regions in bacteria proteins, although Sbi lacks the LPXTG motif also found in these 

proteins. The arrangement of domains in Sbi is shown in Figure 8.

436

rich 
region

Figure 8 Sbi domain structure (adapted from Zhang et al., 1998 and 1999).

P2GP1-
binding
domain

Signal Ig- Putative Ig- 
peptide binding binding 

domain domain
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The shotgun phage display method used by Zhang et al (1998) suggested the presence 

of one functional IgG-binding domain, with homology to the Ig-binding domains of 

SpA. The highest homology is in the region of Fc binding determined by Deisenhofer 

(1981). The amino acid sequence suggested the presence of a second Ig-binding 

domain, however Zhang et al (1998) were not able to find any clones that bound IgG 

that mapped to this region of the protein.

When they examined the IgG-binding ability, they used the clone termed IG4, 

comprised of residues 24 to 115. They showed strong binding for human serum IgG, 

pig IgG, guinea pig IgG, and rabbit IgG. The Sbi fragment showed no binding for 

human IgG3, rat IgG, goat IgG and chicken IgG. It did show some binding to human 

IgM and IgA.

Zhang et al (1999) went on to use their phage display against newborn calf serum to 

detect novel interactions. Most clones were IgG-binding or fibrinogen-binding 

domains. However, they also identified overlapping regions of the Sbi gene that does 

not encode for either of the proposed Ig-binding domains, suggesting the ability of Sbi 

to bind a second serum protein. Affinity chromatography was used to isolate this 

protein, and it was identified as (^-glycoprotein I (P2GPI). P2GPI is found in blood 

serum and is a membrane-adhesion glycoprotein. It consists of 5 homologous 

domains, with the fifth domain containing an additional loop that can be inserted into 

membranes. The protein has been implicated in the anti-phospholipid syndrome, 

which is characterised by thrombo-embolic complications and the production of anti

phospholipid autoantibodies. However, it has been realised that the autoantibodies 

bind, not to the lipids, but to P2GPI (Bouma et al 1999). The minimal P2GPI binding 

sequence in Sbi consists of amino acids 204 to 261 (see Figure 8).

Zhang et al (2000) also examined the effect of the growth conditions on Sbi. Sbi was 

shown to be expressed in all tested S. aureus strains, but its expression level is very 

low. It was found that the level of Sbi expression is up regulated by the presence of 

IgG in the growth media. Zhang et al (2000) suggested that this up regulation 

increases the capacity of Sbi to bind P2GPI and that this could be important in 

virulence. They also suggested that while Sbi contains a characteristic polyproline
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repeat region for cell-wall binding but lacks the LPXTG motif, it is probably not 

proteolytically processed by sortases. And although they note that no membrane- 

spanning region was found, they suggest the C-terminal part of Sbi maybe localised 

intracellularly and could play a role in IgG-mediated cell signalling.

5.2.4 Summary

In this thesis, I will study both structural and functional aspects of Sbi in order to 

understand its role in S. aureus virulence. I start by predicting the structure of Sbi via 

homology modelling, based on its similarity to SpA (Chapter 2). Then I compare the 

binding characteristics of Sbi to those of SpA for a selection of serum IgGs from 

different animal species and for the human IgG subclasses (Chapter 3). In Chapter 4 , 1 

attempt to explain the species and subclass specificity in the IgG-binding between Sbi 

and SpA, observed in Chapter 3, by analysing the sequence variations between the 

IgGs and via the generation of homology models of Sbi-IgG and SpA-IgG complexes. 

In Chapter 5 I further analyse the differences in species specificity in IgG-binding by 

comparing the sequences of the Sbi and SpA genes present in S. aureus strains 

isolated from different animal species, to determine whether these strains have 

evolved specificity for IgGs from their host species. Finally, I use small angle X-ray 

scattering to determine a low-resolution solution structure of the extracellular region 

of Sbi (Chapter 6). In Chapter 7 ,1 will discuss future directions for the continuation of 

this work.
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6 C h a pt e r  2

6.1 3-dimensional structure prediction of the N-terminal domains of 

the Staphylococcus aureus protein Sbi by homology modelling

6.1.1 Introduction

S. aureus contains two Ig-binding 

proteins, SpA and Sbi. Sbi is a 

recent discovery and little is 

known about it other than its 

homology in the N-terminal region 

to the Ig-binding domains of SpA 

(Zhang et al 1998, 1999 and 

2000). Zhang et al (1998) 

characterised its binding with IgG, 

discussed further in Chapters 1 

and 3. SpA on the other hand has 

been well characterised in both in 

terms of its binding characterisitics 

for immunoglobulins (see 

Chapters 1 and 3 for more details) 

and the structure of its Ig-binding 

domains.

The first three-dimensional 

structure determined of SpA was 

of the B domain in complex with a 

human IgG Fc fragment. This 

showed the SpA molecule as two 

Figure 9 (a) Crystal structure of SpA in complex with anti-parallel helices and a C- 
IgG Fc (Deisenhofer 1981). (b) Crystal structure of SpA terminal unstructured region. The

SpA molecule is seen to interact 

with the Fc fragment, via the two 

helices, in a region located

in complex with IgM Fab (Grail le et al 2000)
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between the C h2 and C h3 domains (Figure 9a, Deisenhofer 1981). Later, Gouda et al 

(1992) determined the structure of the uncomplexed B domain, in solution, by NMR. 

This structure is different from Deisenhofer’s in that SpA displays a three-helix 

bundle fold (Figure 9b). At the time it was suggested that the third helix could be 

unwound on binding. However Jendeberg et al (1996) demonstrated that this is not 

the case, and suggested that the difference observed by Deisenhofer (1981) could be 

due to poor structural resolution.

SpA also binds to the Fab fragment of immunoglobulins with a certain type of heavy 

chain (the Vh3 gene family) And in 2000 the crystal structure of the SpA D domain 

was determined in complex with an Fab fragment from a human IgM antibody 

(Graille et al 2000). This structure revealed that SpA has two distinct binding sites for 

Fc and Fab fragments. While SpA binds Fc via helices 1 and 2 (Deisenhofer 1981), it 

binds Fab via helices 2 and 3 (Figure 9b). In the Graille et al (2000) structure SpA 

exists as a dimer, with the dimer interface formed by helices 1 and 2 on each 

monomer. It is unknown whether this dimerisation occurs in vitro or in vivo or 

whether this is an artifact of crystallisation. Today several additional structures of the 

SpA domains exist that were determined by NMR. So far, there are no structures for 

SpA with multiple Ig-binding domains.

6.1.1.1.1 Aim of this study

Phage display and sequencing analysis by Zhang et al (1998) revealed the presence of 

one Ig-binding domain in the Sbi sequence, and predicted the presence of another. In 

this chapter, I attempt to predict the structure of the Ig-binding protein Sbi based on 

its sequence and the differences therein when compared to SpA. I will use the above- 

mentioned structures of SpA and its complexes to envisage the role of Sbi in S. aureus 

immunoglobulin binding. Furthermore, I will use sequence alignment and homology 

modelling to assign structure and function to those Sbi regions with unknown 

structure and functions.

6.1.1.1.2 Homology modelling

Homology modelling is used to predict a protein’s 3D structure based on its amino 

acid sequence and the 3D structure of proteins with a similar sequence (Kirton, Baxter 

and Sutcliffe 2002). The first stage in this process is the identification of the structure
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with similar sequence to the unknown target. If multiple structures can be identified, it 

can aid in the additional modelling of loop regions, which tend to be more flexible 

and less conserved in structure and sequence. The generation of a homology model of 

a protein involves a systematic replacement of residues in the template structure with 

those of the target sequence. Insertions and deletions should preferably occur in loop 

regions rather than in regions with a conserved secondary structure. There are 

programs that can be used for manual model building such as O (Jones et al 1991) 

while there are others that will build models automatically based on the structural 

templates, such as the Molecular Operating Environment (MOE; Chemical 

Computing Group Inc.: http://www.chemcomp.com/). In the final stages of modelling 

the structural model is validated in order to determine whether it meets the allowed 

rules of protein folding by checking whether its backbone angles are within the 

allowed regions of the Ramachandran plot and that it is does not have residues 

exposed to unfavourable environments, i.e. large numbers of exposed hydrophobic 

side chains (Kirton, Baxter, and Sutcliffe 2002).

The first step is to identify homologous sequences through a BLAST search (Basic 

Local Alignment Search Tool; Altschul et al 1997), which is a “statistically driven 

search method.” It is possible to restrict such a search to entries in the Protein 

Database (PDB; Bernstein et al 1977; http://www.rcsb.org/pdb/), and avoiding those 

matches that do not have known structures. However there are many cases where it is 

not possible to identify a suitable structure though this method. For such proteins 

there may be other suitable templates available, because certain sequences that are 

only distantly related can also have conserved structure (Kirton, Baxter, and Sutcliffe

2002). These sequences can be identified via a number of structure prediction servers 

on the web that are designed to detect homologous structures that are more remotely 

related than the ones detected by BLAST (see Methods for examples). This method 

can in some cases provide suitable templates for model building.

6.1.2 Methods

6.1.2.1 Calculation of protein hydrophobicity

Pepplot+ (Wisconsin Package Version 10.2) was used determine hydrophobic regions 

in the Sbi protein sequence (PubMed accession number: BAB96206). To do this two 

methods were used. Kyte and Doolittle (1982) calculates an average of a residue-
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specific hydrophobicity index over a window of nine residues, while the Goldman, 

Engelman and Steitz curve is an average of a residue-specific hydrophobicity scale 

over a window of 20 residues. For both methods, a curve in the upper half of the plot 

indicates hydrophobicity, while the curves in the lower half indicates a hydrophilic 

region (see Figure 10).

6.1.2.2 Prediction of protein secondary structure

PEPTIDESTRUCTURE (Wisconsin Package Version 10.2) was used to calculate 

secondary structure of Sbi with two different methods; the Chou-Fasman method (CF- 

pred, Chou and Fasman 1978), and the Robson Gamier (GORpred, Gamier et al 

1978) method. These prediction methods generate their prediction through statistical 

methods (Lin et al 1989). In addition the protein prediction server 3D-PSSM was used 

(see below) which also predicts the protein’s secondary structure.

6.1.2.3 Identification of sequences homologous to Sbi

BLAST (Basic Local Alignment Search Tool) matches a query sequence to those in a 

database though a “statistically driven search method” (Altschul et al 1997). The 

complete Sbi protein sequence was input against the non-redundant GenBank 

database and against the database of sequences from the RCSB protein data bank 

(http://www.rcsb.org/pdb/ Bernstein et al 1977). In addition, shorter fragments of Sbi 

were also input against the same databases for the fragments consisting of residues 

145 to 270 (incorporating the fcGPl binding domain), 260 to 315 (the polyproline 

region) and 305 to 436 (the C-terminal region of Sbi).

Hits produces in BLAST all have an Expect (E) value. This described the number of 

hits occurring by chance. The closer the value is to “0”, the more significant the 

match is (http://O-www.ncbi.nlm.nih.gov.milH .sjlibrary.org/blast/blast_FAQs.shtml)

Protein prediction servers can also be used to determine structures that are 

homologous to a protein sequence with an unknown structure. Three different servers 

were used on the complete Sbi protein. One of these (3D-PSSM) was also used on the 

three shorter fragments described above.
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6.1.2.3.1 3D-PSSM

Three-dimensional position-specific scoring matrix (3D-PSSM) is a method that 

detects remote protein sequence homology though structural alignments (Kelley et al 

2000) available at http://www.sbg.bio.ic.ac.uk/~3dpssm/. The database used for this 

server is SCOP version 1.53 (Murzin et al 1995).

6.1.2.3.2 GenTHREADER

GenTHREADER is a fast and reliable method of fold recognition though sequence 

alignment, calculation of threading potentials, and completed by evaluation by a 

neural network (Jones 1999, McGuffm, Bryson, Jones, 2000) at 

http://bioinf.cs.ucl.ac.uk/psipred/psiform.html. The method uses the PDB (updated 

Thu May 26 01:07:51 2005).

6.1.2.3.3 SAM-T99

SAM-T99 predicts protein structure though an “iterative hidden Markov model-based 

method for constructing protein family profiles,” available at 

http://www.cse.ucsc.edu/research/compbio/HMM-apps/T99-model-library- 

search.html (Karplus et al 1998). This server searches the PDB and SCOP databases 

(SCOP available at http://scop.mrc-lmb.cam.ac.uk/scop/index.html, Murzin et al

1995).

Multiple methods were used in the identification of protein hydrophobicity, secondary 

structure and tertiary structure, so results could be compared and allow the 

determination of similarities between results for the different methods. For example 

the identification of the same fold in different proteins by the various prediction 

servers for a query protein sequence would suggest the identification of the correct 

fold opposed to the identification of different folds by each of the prediction servers.

6.1.2.4 Generation of protein models

Sequences were aligned with the alignment program ClustalX (Thompson et al 1997) 

in the multiple alignment mode.

Protein structures used for building models on were obtained from the Protein Data 

Bank (PDB). Structural alignments were carried out with the program LSQMAN, and
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pdb files modified with MOLEMAN, both programs were supplied by the Uppsala 

Software Factory (http://xray.bmc.uu.se/usf/, Kleywegt 1996).

Protein modelling was carried out in O (Jones et al 1991), a software program initially 

designed to allow manipulation of electron density maps produced by 

macromolecules. For homology modelling, a known protein structure is taken and 

manipulated using the @ mutator function to replace the residues in the template 

structure (obtained from the PDB database) to the corresponding residue in target 

sequence. Residues can also be added or removed in loop regions (or at the end of 

secondary structure elements, to maintain the secondary structure backbone of the 

template structure), and the loops redrawn with the Lego-loop function. Lego can also 

be used to change the orientation of residue side-chains to avoid side chain clashes 

and optimise interactions.

6.1.2.4.1 Determination of interactions in complexes

The amino acid residues in the SpA complexes with IgG Fc (1FC2, Deisenhofer 

1981) and with IgM Fab (IDEE Graille et al 2000) involved in interactions between 

the SpA molecule and its ligand were determined by analysing all atoms in the SpA 

molecule at a distance between 1.8A and 5.2A from residues in the IgG Fc fragm ent, 

using the CCP4 program CONTACT (Collaborative Computational Program 1994). 

The Sbi homology models were superimposed onto the structures of the SpA-Fc and 

Fab complexes to generate models of Sbi in complex with IgG.

6.1.2.4.2 Validation of structures

Two methods were used to check models generated. Ramachandran plots were 

calculated in O (Jones et al 1991) and using PROCHECK (Laskowski et al 1993, 

Morris e ta l  1992), and any unfavourable backbone angles were adjusted.

Verify_3D was used to analyse the environment of amino acids, and to determine 

those “sequences that are most compatible with the environment of the residues in the 

3D structure” (Bowie et al 1991). Verify_3D uses a 21-residue sliding window to 

calculate the average 3D-ID score, the centre of which is indicated on the x-axis. The
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Figure 10 Hydrophobicity plot of the Sbi protein determined by Pepplot+.

sliding window is renders the scores for the first nine and last nine residues in the plot 

meaningless. The output is produced in a graph format (see Figure 13c for an 

example). A line above the axis indicates correctly modelled segments, while lines 

under the axis indicate a segment that is incorrectly modelled. This is a web-based 

program at http://www.doe-mbi.ucla.edu/Services/Verify_3D/ (Luthy et al 1992, 

Bowie et al 1991).

6.1.2.4.3 Generation of protein structure images

All images of molecular models were generated using Molscript (Kraulis 1991) and 

subsequently rendered using Povray™.

6.1.3 Results

6.1.3.1 Calculation of protein hydrophobicity of Sbi

Zhang et al (2000) suggested that Sbi contains a transmembrane region and 

cytoplasmic domain based on the fact that its expression is upregulated when S. 

aureus is grown in the presence of IgG. It was suggested that the C-terminal region of 

Sbi could be located in the cytoplasm and may be involved in protein signalling. The 

hydrophobicity plots shown in Figure 10, generated with both Goldman et al and 

Kyte-Doolittle techniques, show that the protein is very hydrophilic. The only region 

of the protein where both plots agree on the hydrophobic nature of the protein is a 

stretch of 20 residues at the N-terminus of the protein, which comprise the signal 

peptide. Only the Goldman method identified short hydrophobic regions at the C- 

terminal of Sbi. These regions may be involved in membrane crossing, but could also 

be part of the hydrophobic core of a globular domain.
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Figure 11 Secondary structure prediction of Sbi, indicating the regions with predicted functionality 

marked. Predicted helices (H) are shown in red and beta sheets (E) are shown in blue. Coils are 

depicted with ‘C’ and turns are highlighted in green. The 3D-PSSM prediction identified coils while 

the other methods identified turns.

6.1.3.2 Prediction of Sbi’s secondary structure

Three different secondary structure predictions were obtained for Sbi (Figure 11) and 

the results aligned. The alignments show notable differences, but at least two plots 

were in agreement for each region of Sbi. Both Ig-binding domains were predicted as 

helical by 3D-PSSM, and a mixture beta-strand and alpha-helices by the other
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programs. The P2GPI -binding region is predicted to be a-helical by all methods, 

while all predictions produced different results for the poly-proline region. The C- 

terminal region is predicted to consist of a a-(3-structure by two methods, although the 

GORpred method expects it to adopt an all beta structure.

6.1.3.3 Identification of sequences homologous to the full length Sbi protein 

sequence

Sbi was identified by Zhang et al (1998) through its IgG-binding ability. Sequencing 

of the gene revealed the presence of sequence homology in the N-terminal region of 

Sbi with the Ig-binding domains of SpA. By searching the BLAST database with the 

full length Sbi sequence we looked to identify other proteins with similarity to all or 

part of the Sbi protein sequence.

Searches against the non-redundant database in BLAST identified hits against Sbi 

sequences present in the database and also SpA sequences, all with E values of less 

than l.OOE"10. Other sequences identified to have homology to Sbi all had E values of 

5.00E'06 or more. These hits with high E values include a Drosophila protein 

CG32793-PA, a neurofilament protein from Canis familiarlis, Xenopus protein 

Flj25286-prov, and a tail protein from Methanobacterium phage psiM2. The top ten 

hits after removal of all Sbi and SpA sequences are shown in Table 1, along with the 

region of Sbi for which the sequence shows homology.

As a method to identify functional homology of Sbi other than the Ig-binding function 

already identified in SpA, the BLAST search does not appear to be successful as there 

is no clear pattern of conserved structure or function in the homologous proteins 

identified.

Subsequently, the Sbi sequence was used to search structure prediction servers for 

possible conserved structures. However these were not able to provide better 

templates for model building. All results (except for those matches with SpA) had E 

values of more than 6.00 E'09, and all contained a large number of gaps. While most 

of the structures found were a-helical, their tertiary structures did not show any
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Table 1 Top 10 matches for the sequence of the Sbi protein in the BLAST search after removal of Sbi 

matches and of multiple matches for the same sequence (mainly SpA).

Sequences producing significant alignments:
i r s  y  oS' I Sbi regions which the 

BLAST hit has homology to

AAW38738

immunoglobulin G binding 
protein A precursor ^  

[Staphylococcus aureus 
subsp. aureus COL]_________

2 7 % 4 9 % 1 0% 

3.00E-14 24% 42% 15% 
3 1 % 5 1 % 9 %

NP 726835 CG32793-PA [Drosophila 55
melanogaster]

5.00E-06
2 9 % 5 2 %

NP 001003352 heavy neurofflament protein J3 
[Cams famuians]

1.00E-05
2 9 % 5 1 % 0 %

AAH55988
Flj25286-prov protein 

[Xenopus laevis] 52 3.00E-05
2 9 % 5 1 % 0 %

tail protein - 
T12737 Methanobacterium phage 

psiM2

19% 4 4 % 6 % 

52 3.00E-05 2 0 % 4 3 % 14%

2 2 % 4 4 % 4 %

3 2 % 5 9 % 1%

54% 7 8 %

5 2 % 7 2 %

4 5 % 7 0 %

AAC52610 osmotic stress protein 94 51 6.00E-05

Mature parasite-infected 
erythrocyte surface antigen 

NPJ703354 (MESA) or PfEMP2 51 7.00E-05
[Plasmodium falciparum 

3D7]

2 3 % 4 2 % 1 7 % 

1 9% 4 4 % 1 0 %

19% 4 2 % 1 2%

2 4 % 4 3 % 1 5 %

17% 3 8 % 9 %

mature parasite-infected 
AAC13303 erythrocyte surface antigen 50 

_______________ [Plasmodium falciparum]______
1.00E-04 2 3 % 4 3 % 17%

NP 035150 osmotic stress protein [Mus ^  
musculus]

2.00E-04

19% 4 4 % 8 % 

2 1 % 3 9 % 1 5 % 

2 0 % 3 9 % 1 0 % 

18% 3 9 % 3 %

BAA08446 APG-1 [Mus musculus] 50 2.00E-04
19% 3 9 % 6 % 

2 2 % 4 0 % 1 6 %
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Table 2 Results of structure prediction server 3D-PSSM for Sbi sequence fragments encoding the (a)

P2GP1 binding domains, (b) the polyproline repeat and the (c) C-terminal region.

Table 2 
(a)

Sequences producing significant alignments:

Score 
(bits)

E 
V

alue

Identities

P
ositives

G
aps

1LRZ
Chain A, X-Ray Crystal Structure O f Staphylococcus 

Aureus Fema
32 0.034 27% 54%

1LT8
Chain B, Reduced Homo Sapiens Betaine-Homocysteine 

S-Methyltransferase In Complex With S-(Delta- 
Carboxybutyl)-L- Homocysteine

27 1.1 35% 60% 15%

1SMQ
Chain D, Structure O f The Ribonucleotide Reductase

26 1.4 39% 52% 8%)Rnr2 Homodimer From Saccharomyces Cerevisiae
1JK0 Chain A, Ribonucleotide Reductase Y 2y4 Heterodimer 26 1.4 39% 52% 8%)

1U5P
Chain A, Crystal Structure Of Repeats 15 And 16 Of 

Chicken Brain Alpha Spectrin 26 1.9 22% 42%

1U4Q Chain B, Crystal Structure O f Repeats 15, 16 And 17 O f 
Chicken Brain Alpha Spectrin 26 1.9 22% 42%

1UMY Chain D, Bhmt From Rat Liver 25 3.2 32% 60% 15%

1E24 Chain A, Lysyl-Trna Synthetase (Lysu) Hexagonal Form 
Complexed With Lysine And Atp And Mn2+ 24 5.5 23% 48%

1BBW Chain A, Lysyl-Trna Synthetase (Lyss) 24 7.1 22% 48%

1KRT

Mol_id: 1; Molecule: Lysyl-Trna Synthetase (Product O f 
Lyss Gene); Chain: Null; Domain: Anticodon-Binding 
Domain (Residues 40 - 149); Ec: 6.1.1.6; Engineered: 

Yes

24 7.1 22% 48%

1J7G
Chain A, Structure O f Yihz From Haemophilus 

Influenzae (Hi0670), A D- Tyr-Tma(Tyr) Deacylase 23 9.3 34% 48%

1US8
Chain B, The Rad50 Signature Motif: Essential To Atp 

Binding And Biological Function 23 9.3 27% 69% 3%)

1118 Chain B, Crystal Structure Of The P. Furiosus Rad50 
Atpase Domain 23 9.3 27% 69% 3%)

1F2T
Chain B, Crystal Structure Of Atp-Free Rad50 Abc- 

Atpase 23 9.3 27% 69% 3%)

Table 2 
(b)

Sequences producing significant alignments:

Score 
(bits)

E 
V

alue

Identities

P
ositives

G
aps

1PX5
Chain B, Crystal Structure O f The 2'-Specific And Double- 

Stranded Rna-Activated Interferon-Induced Antiviral 
Protein 2'-5'- Oligoadenylate Synthetase

24 7.2 43% 69%

10E6
Chain B, Xenopus Sm ugl, An Anti-Mutator Uracil-Dna 

Glycosylase
24 7.2 37% 58% 3%

1T11 Chain B, Trigger Factor 23 9.4 32% 61%

Table 2 continued overleaf
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Table 2 
(c)

Sequences producing significant alignments: Ia;
V>

<
e.co

CD
3

o'
C fl

o
(/5.

< ’
C D
o n

G
aps

10SM
Chain C, Osmoporin (Ompk36) From Klebsiella

27 0.85 44% 55%
Pneumoniae

10PF The Structure Of Ompf Porin In A Tetragonal Crystal Form 27 1.5 43% 59% 6%
1HXX Chain A, Ompf Porin Mutant Y106f 27 1.5 43% 59% 6%
1HXU Chain A, Ompf Porin Mutant Kk 27 1.5 43% 59% 6%
1HXT Chain A, Ompf Porin Mutant Nqaaa 27 1.5 43% 59% 6%
1BT9 Chain A, Ompf Porin Mutant D74a 27 1.5 43% 59% 6%
1GFQ Ompf Porin (Mutant R82c) 27 1.5 43% 59% 6%
1GFP Ompf Porin (Mutant R42c) 27 1.5 43% 59% 6%
1GFO Ompf Porin (Mutant R132p) 27 1.5 43% 59% 6%
1GFN Ompf Porin Deletion (Mutant Delta 109-114) 27 1.5 43% 59% 6%
1GFM Ompf Porin (Mutant D113g) 27 1.5 43% 59% 6%

1MPF
Matrix Porin (Ompf) Mutant With Gly 119 Replaced By

27 1.5 43% 59% 6%Asp (G119d)
1H6V Chain F, Mammalian Thioredoxin Reductase 25 3.2 68% 78% 5%

1MIQ
Chain B, Crystal Structure O f Proplasmepsin From The

25 4.2 26% 50%Human Malarial Pathogen Plasmodium Vivax

1W0P
Chain A, Vibrio Cholerae Sialidase With Alpha-2,6- 24 7.2 36% 63%Sialyllactose

1EW9
Chain B, Alkaline Phosphatase (E.C. 3.1.3.1) Complex 24 7.2 26% 45% 3%

With Mercaptomethyl Phosphonate
117 A Chain D, Evhl Domain From Murine Homer 2bVESL 2 24 7.2 37% 49% 5%
1B8J Chain B, Alkaline Phosphatase Complexed With Vanadate 24 7.2 26% 45% 3%

2ANH Chain B, Alkaline Phosphatase (D153h) 24 7.2 26% 45% 3%
1URB Chain B, Alkaline Phosphatase (N51mg) 24 7.2 26% 45% 3%
1KIT Vibrio Cholerae Neuraminidase 24 7.2 36% 63%

1HQA Chain B, Alkaline Phosphatase (H412q) 24 7.2 26% 45% 3%
1HJK Chain B, Alkaline Phosphatase Mutant H331q 24 7.2 26% 45% 3%
1ELZ Chain B, E. Coli Alkaline Phosphatase Mutant (S102g) 24 7.2 26% 45% 3%
1ELY Chain B, E. Coli Alkaline Phosphatase Mutant (S 102c) 24 7.2 26% 45% 3%
1ELX Chain B, E. Coli Alkaline Phosphatase Mutant (S102a) 24 7.2 26% 45% 3%
1ANJ Chain B, Alkaline Phosphatase (K328h) 24 7.2 26% 45% 3%
1ANI Chain B, Alkaline Phosphatase (D153h, K328h) 24 7.2 26% 45% 3%
1A U Chain B, Alkaline Phosphatase Mutant (H412n) 24 7.2 26% 45% 3%

1EHI Chain B, D-Alanine:d-Lactate Ligase (Lmddl2) Of 24 9.4 50% 66%
Vancomycin-Resistant Leuconostoc Mesenteroides

1MCW
Chain W, Immunoglobulin Heterologous Light Chain

24 9.4 26% 43% 1%
Dimer (MCG-WEIR Hybrid)



similarity. From these results we can conclude that it is not possible to predict the 

structures for any portion other than the Ig-binding region of Sbi. The level of 

sequence similarity of the domains with the Ig-binding domains of SpA is very high, 

with E-values of less than 5.00 E '11 (E-values obtained from the BLAST search).

In order to identify proteins homologous to regions other than the Ig-binding domains 

we searched the databases using several truncated Sbi sequences.

6.1.3.3.1 Identification of sequences homologous to the p2GPI-binding domain, 

the polyproline region and the C-terminal region of Sbi.

In order to identify sequences homologous to the p2GPl-binding domain, the 

polyproline region and the C-terminal region of Sbi, truncated Sbi sequences of each 

of these domains were used to search the structure prediction server 3D-PSSM for 

homologous structures. However, all the structures identified with homology to these 

regions of Sbi had E values of less than l.OOE02 (see Table 2). In addition, although 

many of the structures homologous to these regions of Sbi had structures composed of 

a-helices, none of the structures identified by the searches showed a conserved fold. It 

is therefore impossible to use these results alone to predict a fold motif for the 

(52GP1 -binding domain, the polyproline region or the C-terminal region of Sbi. Other 

information would be required to make a prediction of the structure of these regions 

of the Sbi protein.

CLUSTAL X (1.81) MULTIPLE SEQUENCE ALIGNMENT 
File: /u/hsl/p/b.spkla/h/Protein_sequences/SpA_Sbi.ps Date: Fri Nov 5 09:40:04 2004
Page 1 of 1

LiLfcuh-N »d -

Figure 12 Sequence alignment of Sbi and SpA generated by ClustalX.
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6.1.3.4 Homology modelling of Sbi’s immunoglobulin binding domains

In Figure 12 the full-length protein sequences of both Sbi and SpA are aligned. SpA 

consists of five Ig-binding domains (known as E, D, A, B, and C) in addition to two 

domains involved in cell wall anchoring. Sbi consists of two Ig-binding domains, a 

P2-glycoprotein binding domain, a proline-rich region, and a proposed intracellular C- 

terminal domain. The sequence alignment most notably aligns the first Ig-binding 

domain of Sbi to the second Ig-binding domain of SpA (D). This alignment shows 

conservation in the first four domains of Sbi, but at a much higher level in the Ig- 

binding domains. On this basis, the Sbi Ig-binding domains are expected to adopt the 

three-helix bundle fold typical for the SpA domains. The regions C-terminally from 

the Ig-binding domains (including the p2-glycoprotein binding domain) show a 

certain level of homology with SpA, suggesting that they may have some structural 

similarity with SpA’s Ig-binding domains.

As the Sbi Ig-binding domains share high sequence similarity to those of SpA, the 

structure of SpA in complex with the Fab fragment of IgM (IDEE) (Graille et al 

2000) was selected as a structural template for homology modelling. This structure 

was chosen rather than the structure of SpA in complex with Fc (1FC2) determined by 

Deisenhofer (1981), in which the C-terminal third of the molecule is unstructured. In 

IDEE (and other the SpA structures solved by NMR) all 3 helices are well defined. 

Both Sbi Ig-binding domains were modelled using IDEE as a template and 

subsequently linked together, using an extended spacer peptide (Figure 13). Analysis 

of the model with both a Ramachandran plot and Verify 3D showed that all backbone 

angles were in allowed conformations and that all side chains are in favourable 

environments (Figure 13).

- 4 2 -



(a)

|  Core regions 

I I A llow ed regions 

I Generous regions 

^  D isallowed regions

135 180
Phi (degrees)

Verify 3D d a t a  fo r  a v e r a g e  d a t a

0.6

<D
>
<  0.2 
Q
Q

1200 20 40 60 80 100
R es idue  num ber

Figure 13(a) Predicted structure of Sbi’s two Ig-binding domains (b) Ramachandran plot of the two Ig- 

domain model, produced by Procheck (Laskowski et al 1993), showing the majority of residues (black 

squares) fall within core and allowed regions. Residues falling in generous and disallowed regions are 

labelled in red. (c) Verify 3D analysis of the two-domain structure. The result for the Sbi model is 

entirely in the upper portion (above the x-axis) of the plot, suggesting it has been correctly modelled.
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N Y V T  Q Q K A F  y H H L  H L  K G R t  E E q IrJ N  Q Y l  K Y ^ H E  H P g  R A  

R R V A Q Q N A F  Y ;N VflL K N D N L T  e B H n  N Y l  A q R k I E N  P D R  S Q o k / W

k [ f jn  k e Iq q n Ia If y M H l I h l  p n l  I e e Iq Ir In Ig m  1q s I l  k R d Ip  s |q J s  a [n ] l  l

l~~l= Fc binding residues 0 =  Fab binding residues

Figure 14 (a) Alignment of the Sbi Ig-binding domains to the B domain of SpA, with the residues 

implicated in binding indicated, (b) Surface structure of the first Sbi Ig-binding domain with conserved 

residues highlighted in green, forming a stripe on the surface of the molecule; the structure is shown in 

120° rotations. The structure of the first Sbi Ig-binding domain superimposed on the (c) SpA-Fc 

complex (Deisenhofer 1981) and the (d) SpA-Fab complex (Graille et al 2000), with those residues 

that are identical between the two sequences represented by ball-and-stick side chains, (e) shows the 

location on intact IgG of the complexes shown in (c) and (d).
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6.1.3.4.1 Prediction of Fc/Fab binding characteristics of Sbi

Superimposing the Sbi structures onto the SpA part of the SpA/IgG Fc complex and 

the SpA/IgG Fab complex allows comparison of the residues of SpA involved in the 

interaction with IgG to those of in the corresponding location in the Sbi structure (see 

Figure 14c&d).

In the X-ray structure of SpA bound to the Fc fragment of IgG, the Fc fragment only 

interacts with two of these three helices. The SpA residues involved in binding Fc 

show high conservation in Sbi, as is indicated in Figure 14b. This suggests that Sbi 

very likely binds to the Fc region of the IgG molecule.

The structure of the SpA/IgG Fab complex and Sbi were superimposed in a similar 

fashion. This revealed that of the large number of residues in SpA involved in Fab 

binding only three were conserved in Sbi (Figure 14a, c & d). On this basis, we 

suggest that is unlikely that Sbi interacts with Fab in a fashion similar to SpA.

6.1.3.4.2 Predicted structure for the P2GPI-binding region.

While the structure prediction servers did not detect any good matches for the Sbi 

fragments containing the |32GP1 -binding domain, the sequence alignments show that 

it does have some similarities to the SpA Ig-binding domains. We therefore attempted 

to model the sequence of this region of Sbi onto the SpA structure IDEE. However, 

the region of Sbi between the second Ig-binding domain and the poly-proline region is 

twice as long as the SpA Ig-binding domains, so the sequence was modelled onto two 

of these domains (Figure 15a) linked together. While the backbone angles all fall 

within allowed regions of the Ramachandran plot (Figure 15b), Verify 3D identifies 

several areas of the model with residues in unfavourable environments suggesting that 

this model may be incorrect (Figure 15c).
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Figure 15 (a) Predicted structure of the p2GPl -binding domain, including the region between this 

domain and the second Ig-binding domain, (b) The Ramachandran plot of the structure produced by 

Procheck (Laskowski et al 1993) showing the majority of residues (black squares) fall within core and 

allowed regions. Residues falling in generous and disallowed regions are labelled in red (c) Results 

produced by Verify_3D,. The result for this portion of the Sbi protein is almost entirely in the lower 

portion (below the x-axis) of the plot, indicating the poor quality of the model.
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Figure 16 (a) Ribbon diagram of proline pipe-helix structure Tus (Butcher et al 1996, PDB accession 

code: 1SUT) (b) Backbone structure of the polyproline repeat region model from Sbi (proline side 

chains are shown in ball-and-stick representation), (c) Molecular surface representation of Sbi’s 

polyproline repeat region homology model, coloured to indicate (i) surface charge (+ in blue and -  in 

red) and (ii) hydrophobicity. All surfaces are generated with GRASP (Nicholls, Sharp and Honig 

1991).

6.1.3.4.3 Predicted structure for the polyproline region.

A suitable template structure for the poly-proline domain was not apparent in the 

BLAST searches or structure prediction server results. However we were able to 

identify a poly-proline pipe-helix in the literature (1SUT, Figure 16a, Butcher et al

1996) that displays the same proline repeat unit length (a proline residue every fifth 

amino acid). This proline pipe-helix sequence is shorter than the region in Sbi. On this 

basis, we decided to use 1SUT as a template, and extend it to account for the longer 

Sbi sequence (Figure 16b). Most of the backbone angles do not fall within the allowed
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regions of the Ramachandran plot, but neither do the angles for the template structure, 

because of the rare structural arrangement of the amino acids in this helix. It is not 

possible to analyse the structure with Verify 3D as the peptide is not long enough for 

such an analysis. Interestingly, the analysis of the surface hydrophobicity and surface 

charge distribution reveals a band of hydrophobic residues on either side of the 

molecule, along the longest axis of the molecule (Figure 16c), and also a band of 

positively changed and a band of negatively changed amino acids.

6.1.4 Discussion

6.1.4.1 Homology analysis as a basis for predicting the structure of Sbi

We used BLAST searches and structure prediction servers to identify any structures 

with homology to the Sbi protein sequence in order to be able to predict folds for the 

various Sbi regions (Table 1). We found high homology in the N-terminal region of 

Sbi (the Ig-binding domains) to the Ig-binding domains of SpA suggesting that these 

domains in Sbi form the same three-helix bundle fold that they do in SpA. However 

for the remainder of the Sbi protein, we were unable to determine any probable fold. 

None of the prediction servers predicted a common fold for the |32GP1 -binding 

domain, the polyproline region or the C-terminal region. Therefore either Sbi contains 

unique folds in these regions, or is composed of an already identified fold, but that is 

not identifiable by the prediction servers. However, hits generated by the prediction 

servers did tend to favour a-helical structures, and this is in general agreement with 

the secondary structure predictions, suggesting that most of the Sbi protein has a 

mainly a-helical secondary structure.

6.1.4.2 Homology analysis as a basis for predicting the function of Sbi

BLAST database and structure prediction searches generated a large number of hits 

with homology to the Ig-binding domains of SpA. These hits include the region in Sbi 

that was shown to be a functional Ig-binding domain by Zhang et al (1998) and the 

second, putative Ig-binding domain for which the Ig-binding properties have yet to be 

confirmed (see Chapter 3 for studies into the binding properties of the second Ig- 

binding domain of Sbi).
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The other regions of Sbi, the |32GP1 -binding domain, the polyproline region and the 

C-terminal region also produce a number of hits in the database searches. However,
-07all these hits had high E values (higher than 100.E ). The database searches using 

truncated Sbi sequences also failed to produce any matches with patterns of common 

structure or function for either the (32GP1-binding domain, the polyproline region or 

the C-terminal region. These regions of Sbi may therefore display novel structural and 

functional features.

6.1.4.3 Predictions for the function of Sbi’s Ig-binding domains

Based on the high sequence identity and functional similarity of the Ig-binding 

domains of SpA and Sbi we predict that both the Sbi Ig-binding domains adopt a 

similar structure to those of SpA. This is also important in predicting the functionality 

of Sbi. The early work on Sbi by Zhang et al (1998) showed IgG binding ability in the 

first Sbi Ig-binding domain but the method of phage display that they used did not 

provide a fragment of the second putative Ig-binding domain.

Comparison of the models of both the Sbi Ig-binding domains with the structures of 

SpA’s Ig-binding domains (Deisenhofer 1981, Graille et al 2000) reveals that there 

are regions of sequence conservation in the 3D structure (Figure 14). The residues that 

are conserved between the two proteins, Sbi and SpA, are conserved in a patch on one 

face of the molecule, shown in Figure 14b. This conservation corresponds to the face 

of the SpA molecule identified to bind the Fc fragment of IgG (Figure 14c, 

Deisenhofer 1980), while the face on the SpA molecule that binds the Fab fragment in 

IgM (Figure 14d, Graille et al 2000) is not conserved. This suggests the Fc binding 

characteristics of the SpA domains is conserved in both of the Ig-binding domains of 

Sbi. We also predict that Sbi lacks the Fab binding characteristics observed in SpA as 

this region is not conserved in the corresponding Sbi domains (Graille et al 2000). It 

is possible that Sbi does not bind Fab at all or that it displays a Vh chain specificity 

for Fabs that is different from SpA.

6.1.4.4 Predicted structure of f^GPl-binding region

The sequence alignment of Sbi showed homology between the f^GPI-binding region 

of Sbi and the corresponding domains of SpA suggesting that there was some
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conservation between Sbi and SpA in this region. Therefore we modelled this region 

of Sbi onto two three-helix bundle domains of SpA, linking them together. Analysis 

of the side-chain environment of this model suggested that this is not a favourable 

conformation for Sbi. Circular dichroism (CD) experiments carried out on a protein 

fragment containing this region of Sbi (data not shown) confirm our prediction that 

this region is a-helical.

6.1.4.5 The structure of the polyproline repeat region and its role in anchoring 

Sbi to the bacterial cell wall

SpA and Sbi share a sequence feature other than the conserved Ig-binding domains, 

the presence of a proline rich region. Little is known about these elements as studies 

on SpA have concentrated on the role of the Ig-binding domains, but it has been 

implicated in cell-wall binding (Tashiro and Montelione 1995). However, there are 

also differences in the sequence of this region between SpA and Sbi. In both proteins 

the proline residues form part of a proline repeat element. The main differences are 

that in SpA it is an octapeptide repeat and there is a large variation in the number of 

repeats between SpA sequences (see also chapter 5). In Sbi a proline occurs every 5th 

position and there is no variation in the number of repeats. There are eight of these 

repeats in the Sbi sequences found in the database so far (see also chapter 5).

The homology model of the polyproline region of Sbi was generated based on the 

structure of a polyproline pipe helix from the replication arrest protein Tus (Butcher et 

al 1996). Of interest to note, is that when the hydrophobicity of the model was 

examined, two hydrophobic bands were found on either side of the protein as well as 

two bands composed of charged residues. Could this be of any functional importance? 

In other S. aureus cell surface adhesion proteins, the proline-rich regions are known to 

be a feature of the cell-wall binding regions (Zhang et al 2000). MSCRAMM proteins 

such as the Sdr proteins, ClfA and ClfB, FnBPB, Cna, and of course SpA, all contain 

proline rich regions associated with cell wall binding. However in these proteins the 

proline-rich region is followed by the LPXTG motif, which is proteolytically cleaved 

for anchoring to the cell-wall. Sbi lacks this motif, and is probably not proteolytically 

cleaved. The question if and how Sbi is covalently attached to the cell-wall and cell 

membrane therefore remains although it seems likely that it is attached to the cell wall
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via the proline rich region. Is it perhaps linked to another membrane protein; or is it 

directly linked to the membrane though a novel mechanism?

The C-terminal region of Sbi is also very different from other S. aureus cell-surface 

adhesion proteins and our database searches did not identify any matches with 

proteins of known function in this region of Sbi. It is therefore difficult to identify the 

role of the C-terminal domain or its structure. Interestingly, this region of Sbi contains 

a large number of tyrosine and threonine residues, which can perhaps function as a 

target for phosphorylation (Zhang et al 2000).

The only way forward to find and answer these questions is to clone, express and 

characterise the Sbi domains both structurally and functionally. In the next chapter I 

will describe the cloning, expression, and purification of the N-terminal domains of 

Sbi and compare their immunoglobulin binding characteristics with SpA.
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7 Chapter 3
7.1 A comparison of the immunoglobulin binding properties of Staphylococcus 

aureus adhesion proteins SpA and Sbi

7.1.1 Introduction

Ig-binding proteins expressed by bacteria on their surface are thought to be important 

in masking the bacterium from the host’s immune system. S. aureus is known to 

express two Ig-binding proteins on its surface. These are the proteins SpA and Sbi. 

SpA has been shown to have a role in infectious diseases including mastitis, 

subcutaneous lesions and arthritis (Jonsson et al 1985, Patel et al 1987, Palmqvist et 

al 2002). In addition SpA has been shown to be important, through its role in binding 

IgGs in phagocytosis, as the absence of IgG in the serum increases the rate of 

phagocytosis. The Ig-binding characteristics of SpA have previously been 

characterised by Kronvall et al (1970), Jansson, Uhlen, and Nygren (1998), and Oda 

et al (2003) and its interactions with serum IgGs and the IgG fragments described in 

detail. Little is known about the IgG-binding properties of Sbi. Zhang et al (1998) 

have described the binding of the first Ig-binding domain of Sbi with serum IgG. Here 

we will further investigate and compare the interactions of the Sbi Ig-binding domains 

with both serum IgGs, IgG fragments and subclasses to those observed with SpA. 

This comparison is of particular interest as SpA and Sbi have a different number of 

Ig-binding domains (4 or 5 for SpA against 2 for Sbi) as described in Chapter 1, and 

we will investigate if this results in a difference in avidity for IgG molecules in the 

binding characteristics of the two proteins.

7.1.1.1.1 Immunoglobulin binding characteristics of SpA

Early studies characterising the binding of SpA to Ig, present in the blood sera, used 

Ouchterlony assays (Kronvall et al 1970). This method was used to study both 

precipitation of IgG by SpA and inhibition of the human IgG-SpA reaction. This 

showed that SpA binds to most mammalian IgGs, although not all mammalian IgGs 

are precipitated by SpA. Analysis of non-mammalian serum Igs showed no reaction 

with SpA.
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Later the enzyme-linked immunosorbant assay (ELISA) method became the most 

popular technique to study binding of SpA with Igs. The information supplied with 

the commercially sold SpA from Pierce

(http://www.piercenet.com/products/browse.cfm?fldID=01021504) lists the binding 

of SpA for the serum IgG of several species, and includes binding results with some 

of the IgG subclasses, and the other types of Ig.

More recent binding studies with SpA concentrate on measuring the affinity of SpA 

for human or mouse immunoglobulins (Jansson, Uhlen, and Nygren 1998, Oda et al

2003). Jansson Uhlen and Nygren (1998) used surface plasmon resonance (SPR) to 

determine the relative binding of SpA to human IgG fragments, showing that all SpA 

Ig-binding domains display near equal relative binding with the Fc fragment, while 

the SpA domains A, B, and C bind the Fab fragment better compared to the SpA E 

and D domains (Jansson, Uhlen, and Nygren 1998, Oda et al 2003). The artificial Z 

domain, based on the B domain, differing only by a single amino acid substitution 

G29A (Tashiro and Montelione 1995, Jansson, Uhlen, and Nygren 1998), binds only 

Fc fragments. Oda et al (2003) used SPR to measure the affinity of SpA for mouse 

monoclonal antibodies, of two IgG subclasses, IgGl and IgG2. Using full-length 

recombinant SpA and a construct containing only the SpA B domain, they found 

similar affinities for both forms of SpA for each monoclonal IgG, although full-length 

SpA had a greater affinity for mouse IgG2 than for IgG l.

7.1.1.1.2 Immunoglobulin binding characteristics of Sbi

Zhang et al (1998, 1999) characterised the structure of the Sbi gene with a phage 

display shotgun approach. This method identified functional domains of IgG binding 

and (32GP1 binding. Analysis of the gene sequence identified a second possible IgG 

binding domain, although the phage display method only detected the first one. The 

data available on the binding of the N-terminal Ig-binding domain of Sbi with Igs was 

obtained using an ELISA-based method. Sbi displayed the highest relative binding for 

human, pig, guinea pig and rabbit serum IgGs. Sbi does not bind the human subclass 

IgG3, rat, goat or chicken IgG. Sbi does show some binding for IgA and IgM (see 

Figure 17).
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Figure 17 ELISA results of Sbi with IgG, taken from Zhang et al 1998.

7.1.1.1.3 Aim of this study

Here we analyse the interactions between Sbi and immunoglobulins from mammalian 

and avian sources, species that are like humans affected by S. aureus infections. In 

addition, the interactions between Sbi and human IgG are studied in more detail by 

analysing IgG subclass specificity and the interaction with Fc and Fab fragments. 

These results are than compared to our results from the interaction between IgG and 

SpA. In order to study the types of complexes formed between Sbi and 

immunoglobulins, the stoichiometry of the interaction, the role of multiple Ig-binding 

domains (avidity) and individual Ig-binding domains (affinity) in the formation of 

these complexes we generated four Sbi protein constructs. These constructs are 

comprised of an N-terminal construct (referred to as Sbi-e) containing the Sbi region 

adjacent to the poly-proline repeat region, a construct containing the two proposed Ig- 

binding domains (Sbi-S) and two constructs containing each of the Ig-binding 

domains (Sbi-1 and Sbi-2). The organisation of these constructs is shown in Figure 

18. To analyse all these different aspects of complex formation we used size exclusion 

(SE) chromatography in addition to agar diffusion studies and surface plasmon 

resonance (SPR).
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Figure 18 The structure of the Sbi gene, and the 4 constructs cloned from it.
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While the ELISA method gives us the relative affinity of the two proteins for Igs, it 

does not produce a complete picture of the complex formation as can be gained 

though use of several different methods. In the original results from Kronvall et al 

(1970), the inhibition method gives only qualitative results. Agar diffusion (or 

Ouchterlony assay) methods can only gives qualitative results by indicating whether 

or not a complex forms an insoluble precipitate and whether this complex formation 

can be inhibited. It cannot be used to quantify the binding relationships, or infer 

complex sizes and therefore does not give any information about complex 

composition. And where quantitative methods such as ELISA or SPR have been used, 

it still tells us very little about what kind of complexes are formed, and in the case of 

the ELISA results it tells us only that binding occurs, it can not be determined whether 

there are differences in the formation of complexes in the serum IgGs of different 

species. There are also other limitations with the use of ELISA, particularly when 

polyclonal Ig is used, as was done by Zhang et al (1998). Friguet et al (1995) 

described how there is no simple correlation between absorbance measured by 

ELISA, the amount of each species of bound molecule, and the concentration of free
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molecules. This means that with a mixture of IgG molecules, such as those found in 

serum, the different IgG subclasses will bind the ligand (for example Sbi) with 

different affinities. Therefore those IgG subclasses with highest affinity for the ligand 

will bind when there is a low concentration of ligand present, while with high 

concentrations of ligand, a disproportionally high fraction of IgG molecules with high 

affinity will bind to the ligand.

7.1.1.1.4 Size Exclusion Chromatography

The principle of SE chromatography is the separation of particles based on their size. 

For our experiments, it allowed us to measure the sizes of complexes composed of 

components of known size. Once insoluble components of the mixture have been 

removed, it is possible to estimate the size of the peaks eluted from the column, using 

the elution times of proteins of known molecular weight (MW) and predict their 

composition. A limitation of this quantitative method is that it does not give any 

kinetic information for the eluted complexes, and it also has limitations in the 

separation resolution of the sepharose column, meaning, it is difficult to estimate the 

size of peaks outside the calibration range of the column, and overlapping peaks can 

cause difficulties in obtaining an exact elution volume (Goetz et al 2004, Stulik, 

Pacakova, Ticha 2003).

7.1.1.1.5 Surface Plasmon Resonance

In order to study binding kinetics of the complexes between IgGs and Ig-binding 

proteins, SPR was employed. This is an optical technique that uses the evanescent 

wave phenomenon to measure changes in the refractive index very close to a sensor 

surface (McDonnell 2001). SPR measures the reflected light intensity as a function of 

incident light angle (see Figure 19).

A polarised light beam is reflected though a prism, onto a gold covered surface. Only 

at a certain incident light angle is the light refleated back into the prism (see Figure 

19); this is known as total internal reflection and is the SPR angle. Some energy in the 

light beam is lost as an energy wave (surface plasmon) upon interaction with the gold 

surface, resulting in a reduction of intensity of the reflective light. If the surface of the 

gold changes, i.e. a protein layer is absorbed, changes in the refractive index occur on 

the surface and results in a change of the SPR angle. There is a linear relationship
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Gold film, 50nm thick

I

Polar ised  light

Prism

0j = Incident light angle

Figure 19 Polarised light is introduced into a gold film  (00, at an angle for total intemel reflection to 

occur. Changes in the refractive index on the gold surface due to binding of protein m olecule to the 

surface result in a change in 0j needed for this to occur.

between the amount of bound protein and the shift of the SPR angle 

(http://www.xantec.com/html/spr.html). This shift allows the measurement of real 

time changes in the gold surface as protein molecules are bound to the surface (Green 

et al 2000). Measurement of the real time response (Rt) allows the rate of ks (or ko„) to 

be determined. ks is the pseudo 1st order rate constant. The relationship between Rt 

and ks is:

R, = Req ( 1 - exp -(kass [P] + kdis) t) (1)

Rt = Req (1 -  exp (-ks t)) (2)

ks = kass [P] + kdis (3)

Therefore with at least Rt vs. time curves for three different analyte concentrations, 

the real time response curves can be fitted to the above equation (2) to produce a 

value for ks (see Figure 22a). Chi square (%2) indicates the quality of the fit of the data 

to the equation. A plot of ks vs. analyte concentration [P] gives the association and

dissociation rate constants from the gradient -  kass and the y-axis intercept - kdis (see

Equation (3) above and Figure 22b). The KA and Kd equilibration constants are 

determined from kass and kdis (see Figure 22c).
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Table 3 Concentration o f IgG stock solutions determined by BIORAD assay and sizes o f serum IgGs 

as determined by size exclusion chromatography. The human IgG subclasses* concentrations for SE 

experiments were taken as given by Sigma (lm g/m l). *The SE profile of Human IgG l appear 

abnormal, indicated partly by the lower than expected molecular weight, however the protein sample 

appeared normal on an SDS-PAGE.

Species o f IgG 
Origin

IgG peak sizes as 
determined by SE 

(kDa)

Concentration for 
SE and diffusion 

experiments 
(mg/ml)

Concentration for 
SPR experiments 

(mg/ml)

Molar 
Concentration for 
SPR experiments 

(M)

Chicken serum IgG 590
227

5.32 9.56 6.37E-05

Cow serum IgG
417
169

5.86 18.87 1.26E-04

Goat serum IgG
379
169

6.52 7.99 5.33E-05

Guinea Pig serum 
IgG

462
192

9.89 2.01 1.34E-05

Horse serum IgG
430
178

6.68 7.38 4.92E-05

Human serum IgG 285
155 6.26 6.69 4.46E-05

Mouse serum IgG 212 7.90 7.90 5.27E-05

Pig serum IgG 358
151 6.33 5.87 3.91E-05

Rabbit serum IgG
407
186

5.84 6.5 4.33E-05

Sheep serum IgG
474
193 9.61 6.51 4.34E-05

Human IgGl 42* 1.0* 0.12 8.00E-07

Human IgG2 187 1.0* 0.29 1.93E-06

Human IgG4 479
214 1.0* 0.54 3.60E-06

Human IgG3
268

1.0* N/A N/A

Human Serum 
Albumin (HSA)

Not
determined

13.34 N/A N/A

By combining these three methods we aim to get a much clearer understanding of the 

interactions of Sbi with IgG, and also how these differ in the complexes formed with 

SpA.

7.1.2 Materials and methods

Serum IgGs were supplied as lyophilized powder by Sigma for several mammalian 

species and for chicken as a representative of a non-mammalian species. Those IgGs 

used were dissolved in PBS buffer, and the species used are listed in Table 3, along 

with their concentrations as determined by the Bio-Rad Protein Assay method (with
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BSA as the standard). 25pl of the stock solutions of the serum IgG (50pl for chicken 

IgG) were supplemented with equilibration buffer (20mM Tris-HCl, 200mM NaCl 

pH7) to a volume of 100 pi and spun at maximum speed in the micro-centrifuge for 

10 minutes to remove precipitated protein. The sample was then injected into the size 

exclusion column to determine the IgG size in kDa (see below for size exclusion 

method, determined sizes and concentrations of serum IgGs are shown in Table 3).

The four human k  IgG subclasses were also obtained from Sigma, provided at a 

concentration of 1 mg/ml in Tris buffered saline pH8. lOOpl of this was added to 

lOOpl of 2x PBS and injected into the size exclusion column to obtain an elution 

profile. IgG I k  produced an atypical profile for an IgG (as shown in Figure 31a, IgGl 

is eluted much later than the other IgGs in Figure 28 and Figure 31), but as it appeared 

normal on a SDS-PAGE, this was taken as standard for this IgG. The concentrations 

were determined for SPR experiments using BIO-RAD assay to allow the 

determination of molar concentration of the protein, shown in Table 3 along with size 

exclusion sizes. A calibration curve for the BIORAD assay is shown in Figure 20

1.00
y = 0 .4758X  + 0 .2 5 0 2

0.90
R =0.9915

£  0 .8 0  
CD

2  0 .7 0

0 .6 0

0 .5 0

0 .4 0

0 .3 0

0.20
0.00 0 .5 0

Protein concentration (mg/ml)

1.00 1.50

Figure 20 Calibration curve for the BIORAD assay, using a BSA standard. The spectrophometer was 

zero-ed against water.
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The molar concentrations for all IgGs were calculated based on their expected 

molecular weights of 150kDa.

P2GPI was supplied in PBS at a concentration of 7.5mg/ml.

Human serum albumin (HSA) was obtained from Sigma, and was diluted in PBS. 

25pi was supplemented with equilibration buffer to a volume of lOOpl and injected 

into the size exclusion column to determine its elution profile (see Table 3 for 

concentration).

BSA was obtained from BIORAD protein assay kit. This was stored in 1ml aliquots at 

1.42mg/ml. This was diluted 1:10 with running buffer for SPR experiments.

Recombinant SpA was obtained from Pierce and dissolved in lx  PBS to give a 

concentration of lOmg/ml.

7.1.2.1 Cloning of Sbi fragm ents

7.1.2.1.1 P C R  am plification of the Sbi gene, nucleotides 86 to 799 (Sbi-e)

The Sbi gene was cloned from nucleotide 86 to 799; to be referred to as Sbi-e. The 

primers used were 5’ -  CAT GCC ATG GCG AGT GAA AAC ACG CAA CAA -  3’ 

(forward primer A) and 5’ -  CCG CTC GAG TCA TTA CGC CAC TTT CTT TTC 

A G C - 3’ (reverse primer B) incorporating Ncol (forward primer) and Xhol (reverse 

primer) restriction sites. All primers were obtained from MWG biotech AG. Template 

DNA was from Staphylococcus aureus strain Mu50. The PCR reaction mixture was 

composed of 0.5nmol of each of the primers, lOnmol of each dNTP (Roche), Pwo 

polymerase buffer, 4u of Pwo polymerase (both from Roche), and lul of template 

DNA per lOOpl (made up to volume with sterile water). Reactions were heated at 

95°C for 7 minutes and than subjected to 35 cycles of 45 seconds at 95°C; 1 minute at 

63.4°C; and 2 minutes 72°C. The reactions were held at 72°C for a further 10 minutes 

and than stored at 4°C.
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7.1.2.1.2 PCR amplification of the Sbi gene, nucleotides 86 to 469, 127 to 283 

and 278 TO 469 (Sbi-S, Sbi-1 and Sbi-2)

N-terminal regions of the Sbi gene were cloned, Sbi-S (nucleotides 86 to 469) 

containing both the proposed Ig-binding domains; Sbi-1 (127 to 283) the first 

proposed Ig-binding domain; and Sbi-2 (nucleotides 278 to 469) the second proposed 

Ig-binding domain. Sbi-S was cloned with forward primer A and reverse primer C (5’ 

-  CCG CTC GAG GAG TCA TTA ATT TTC AAT ATT TTG ACG -  3’). Sbi-1 was 

cloned with forward primer D (5’ -  CAT GCC ATG GGA ACT CAA AAC AAC 

TAC GTA ACA -  3’) and reverse primer E (5’ -  CCG CTC GAG TCA CTA GCT 

GTC T IT  AAG TGA TTC AGA -  3’). Sbi-2 was cloned with forward primer F (5’ -  

CAT GCC ATG GAC AGC AAG ACC CCA GAC CGA -  3’) and reverse primer C. 

all forward primers contained an Ncol site, and the reverse primers an Xhol site. PCR 

reactions were set-up up as described above, and heated at 95°C for 7 minutes, then 

subjected to 35 cycles of 45s at 95°C, 1 minute at 47°C (for Sbi-S and Sbi-1) or 60°C 

(for Sbi-2), and 45s at 72°C. Reactions were held at 72°C for a further 10 minutes and 

than held a 4°C. A schematic representation of the constructs is shown in Figure 18.

7.1.2.1.3 Insertion into the His-tagged parallel vector

PCR fragments were purified with the QIAquick purification kit (QIAGEN) using the 

micro-centrifuge method and eluted into 30|ll of buffer EB. Purified fragments were 

digested in a volume of 50pl containing 30|il of PCR fragments, Nebuffer 2, BSA 

(5jig), Ncol (40u), Xhol (15u) (all from New England Biolabs) and sterile water, and 

incubated overnight at 37°C.

pHIS parallel vector 1 was obtained from Peter Sheffield (described by Sheffield et al 

1999). The vectors were grown in E. coli strain XLl-Blue™  (Stratagene) and purified 

from the cells with the QIAprep Spin Miniprep kit (QIAGEN) using the micro

centrifuge method. The vectors were digested in a volume of 20(il containing 5jil of 

purified vector, Nebuffer 2, BSA (2|ig), Ncol (16u), Xhol (8u) and sterile water and 

digested overnight at 37°C.
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2pl of digested vector and 6.5|il of digested PCR fragment were added to 200u T4 

ligase and T4 ligase buffer (both New England Biolabs) (final volume 10|xl) and 

incubated at 16°C overnight.

2|Hl of the ligation mixture was added to 100|il of component cells (E. coli XL1- 

blue™). After Vi hour on ice, the cells were heat shocked at 42°C for 30 seconds. 

After incubation for 1 hour at 37°C in Luria-Bertani (LB) media (lOg Tryptone 

(Fischer Biotech), 5g yeast extract (Merck) and lOg sodium chloride per litre), the 

cells were spread on LB agar plates (15g agar per litre of LB media) containing 

ampicillin (lm g per litre of LB media). The plates were incubated overnight at 37°C. 

Colonies were used to inoculate 10ml LB media containing ampicillin (100 mg/1) and 

cultured overnight at 37°C.

The vectors were purified, and those containing the correct inserts identified with 

PCR, restriction digests, and sequencing. The Sbi-e and Sbi-S vectors were then 

transformed into BL21 star™ cells (Invitogen), and the Sbi-1 and Sbi-2 vectors were 

transformed into Rossetta™ cells (Novagene). These clones were used to generate 

glycerol stocks (1ml overnight culture plus 0.5ml 50% sterile glycerol)

7.1.2.1.4 Expression in E. coli

1 litre E. coli cultures were grown in LB media with ampicillin at 100 mg per litre, 

inoculated with 10ml of starter culture (10ml LB media plus lOp.1 ampicillin grown at 

37°C overnight, inoculated from either transformations on a LB ampicillin plate or 

glycerol stocks) at 37°C. Upon reaching an optical density (OD) of 0.6 at 600nm, the 

Sbi-e and Sbi-S cultures were induced with 1ml IPTG (0.5M). Sbi-e was grown for 3 

hour at 28°C, while Sbi-S was grown at 25°C. Sbi-1 and Sbi-2 cultures were grown at 

37°C for 4 to 6 hours, and induced with IPTG overnight at 25°C for agar diffusion 

experiments, and at 20°C to improve expression and solubility for the SPR 

experiments. Cells were collected by centrifugation (7,000rpm for 20 minutes) and 

subjected to a freeze-thaw cycle at -20°C.

The pelleted cells were resuspensed in lysis buffer (20mM Tris-HCl, 500mM NaCl, 

10% glycerol, ImM  PMSF, lOmM P-mercaptoethanol), pH 7 for Sbi-e and pH8 for
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all other clones and sonicated according to the following protocol: a cycle of 0.3 

second pulse followed by 1.0 second cooling, for one minute; this is repeated 5 times 

with one minute of cooling between each cycle. This was carried out on ice. Soluble 

and insoluble fractions were separated by centrifugation.

All samples taken from cultures were analysed by SDS-PAGE on 15% glycine gels 

using Novex gel system (run at 180 volts until the dye front reach the base of the gel).

7.1.2.2 Purification of Sbi-e by ion exchange chromatography

Sbi-e was purified via ion-exchange chromatography as this gave purer protein than 

affinity chromatography on a nickel column did. However all the other constructs 

produced purer protein by affinity chromatography (described below). The soluble 

fraction of the Sbi-e cell lysate was loaded onto a Resource S column (Amersham 

Biosciences) connected to an AKTA purifier machine (Amersham Biosciences). The 

soluble fraction was passed though the column and the column washed with 2ml 

lOmM Tris-HCl pH7, collected in a single fraction. Bound protein was eluted with a 

gradient of lOmM Tris-HCl pH7 1M NaCl in two steps; a target of 40% over 5ml and 

100% over a further 5ml. The eluate was collected in 1ml fractions and the Sbi-e 

containing fractions were determined by SDS-PAGE. Protein fractions were 

concentrated with Centricon-10 concentrators (Amicon)

Ion exchange chromatography gave pure protein (>95%), eluted at approximately 

40% salt concentration. Sbi-e is highly soluble and could be concentrated up to 

30mg/ml. However the protein was not stable and prone to degradation. Aliquots were 

kept at -80°C for long-term storage, and at -20°C for short-term storage. Purity and 

stability of the protein were determined by SDS-PAGE.

A stock solution of Sbi-e was concentrated as described above to a concentration of 

23.7mg/ml, measured by UV absorption at 280nm (extinction co-efficient for Sbi-e at 

280nm = 20400 M '1 cm '1; Abs 0.1% (=1 g/1) 0.6; calculated by ProtParam: 

http://us.expasy.org/tools/protparam.html Gasteiger et al 2005). This was aliquoted 

into tubes containing 42pl, each containing lm g of protein.
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7.1.2.3 Affinity purification of Sbi-1 and Sbi-2

Sbi-1 and Sbi-2 were both purified by affinity chromatography with a chelating 

HiTrap column (Amersham Biosciences) connected to the AKTA purification system. 

The column was loaded according to the manufacturer’s instructions with nickel 

sulphate and equilibrated in binding buffer (lOmM Tris-HCl pH8, 300mM NaCl). The 

column was loaded with the soluble protein fraction and washed with binding buffer. 

The protein was eluted with elution buffer (lOmM Tris-HCl pH8, 300mM NaCl, 1M 

Imidazole) on a 0% to 25% gradient over 60min at a flow rate of 0.5ml/min. This 

yielded pure protein for both constructs (>90%), both eluted at about 15% imidazole. 

The imidazole was removed with a PD-10 column (Amersham Biosciences) to leave 

the proteins in binding buffer.

Both Sbi Ig-binding domains were used for SPR; Sbi-1 at a concentration of 4.45e"5M 

(0.43mg/ml); Sbi-2 = 3.50e'5 M (0.35mg/ml). The concentrations of the Sbi domains 

were determined by BIORAD assay, for which a calibration curve is shown in Figure 

20.

See Chapter 6 for purification of Sbi-S.

7.1.2.4 Binding studies

7.1.2.4.1 Double diffusion assay

Double immunodiffusion experiments were performed on Petri dishes containing a 

1% agarose gel. Wells were punched in the agar and individual wells filled with 100 

(il of Sbi-E lmg/ml in PBS; Human serum IgG (Sigma) or IgG Fc (Bethyl 

Laboratories) lmg/ml in PBS; or recombinant SpA (Pierce) lmg/ml in PBS and left to 

incubate for 48 hours at room temperature. Insoluble ‘immune complexes’ formed at 

the zone of equivalence were visualised by Coomassie staining.

7.1.2.4.2 Size exclusion chromatography

IgG and HSA samples were prepared as described before for obtaining an elution 

profile with either lp l of the Sbi-e stock (7.41e"4M) or 2(il of the SpA stock solutions 

(2.38e‘4 M) added. This was incubated on ice for 10 minutes and then spun at 

maximum speed for 10 minutes in the microcentrifuge. Samples were injected into the
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Figure 21 Calibration curve for the Superdex HR 200 10/30 column, using the protein standards 

aprotinin, cytochrome C, carbonic anhydrase, albumin, alcohol dehydragenase, P-amylase, and urease 

proteins (all from Sigma).

Superdex HR 200 10/30 column (Amersham Biosciences) connected to the AKTA 

purifier, equilibrated in 20mM Tris-HCl pH7, 200mM NaCl. The column was washed 

with 1.5 column volumes (approximately 37ml) of equilibration buffer, and the peak 

size(s) measured from the standard curve calculated using the standard proteins: 

aprotinin, cytochrome C, carbonic anhydrase, albumin, alcohol dehydragenase, 13- 

amylase, and urease proteins (all from Sigma). The void volume of the column was 

determined with blue dextran (Sigma). The calibration curve is shown in Figure 21.

A sample of Sbi-1 was collected from the protein purification. To test this product for 

binding ability, SE experiments were carried out. The concentration of the eluted 

protein was not determined. It was added to human or goat IgG to determine the effect 

on the IgG elution profile. A  set amount of eluate was added to the serum IgG prior to 

loading the sample on the SE column. A fixed volume Sbi-1 was used in the 

experiments, or a multiple thereof.
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7.1.2.4.3 Surface plasmon resonance (SPR)

All previously listed IgGs were used (Table 3). The IgG was dissolved in lx PBS and 

further dilutions for experiments were in running buffer.

SPR experiments were carried out using a two-channel Autolab ESPRIT machine and 

SPR sensor discs coated with Ni2+ ions complexed on a 2D chelating surface 

(Winsdor Ltd/Xantec). Measurements were carried out with the Electrochemical

Binding of Human Serum IgG to Sbi-1
450 i

400

350

300

250
cn

200

150

100

150 250
Time (s)

350 450

Human Serum Concentrations

0.45pM ‘ 0.22pM 0 .15pM

b  0.012
y = 0.0187x + 0.0023

0.010

0.008

‘a  0.006

0.004

0.002 -

0.000
0.1 0.2 

Protein Concentration (pM)

0.3 0.4 0.5

A + B
‘asg

k a =
[AB]

[A][B]

AB

k a = ' xass

^dis

Figure 22. Soluble serum IgG is added to Sbi-1 bound to a gold sensor disc at different concentrations. 

The relative refractive angle o f the laser beam was then measured. This gives a set of binding curves, 

one for each concentration of IgG used, (a) shows a typical set of SPR sensograms for the binding of 

human serum IgG to Sbi-1. (b) Typical example o f a plot of ks vs protein concentration, where kass is 

the gradient and k ^  is the intercept with the y-axis. In experimental data, the ks valves are determined 

from the curves in (a) by the fitting the data, using the kinetic evaluation program ESPRIT, (c) Kinetic 

equations used in the determination of the kinetic constants KA and KD.
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Figure 23 SDS-PAGE analysis of the expression of recombinant Sbi constructs, with the pre-induction 

sample (P), post-induction sample (I), soluble fraction (S) and insoluble fraction (In) for (a) Sbi-S and 

(b) Sbi-e and (c) Sbi-1.

Surface Plasmon Resonance Interaction Technology Data Acquisition program (Eco 

Chemie B.V. The Netherlands, version 4.1.0 (2004)). Experimental design was based 

on the work by Nieba et al (1997). Running buffer was lOmM Tris-HCl pH8.0, 

300mM NaCl, 0.005% v/v Tween 20. The surface was activated with 300|iM NiSCTt, 

lOmM Tris-HCl pH8, 300mM NaCl, 0.005% v/v Tween 20. Regeneration buffer was 

0.35M EDTA pH8.5.

A baseline was run for 60s, the Sbi construct was then added, and association 

monitored for 400s, and dissociation measured for 20s. A further baseline was run for 

another 60s, and than the IgG sample was added in one channel, the control BSA was 

added to the other channel. Association was measured for 400s and dissociation for 

20s. EDTA was than added to regenerate the surface.

Kinetics were determined with the ESPRIT Kinetic Evaluation program (Eco Chemie 

B.V. The Netherlands), version 4.1.0 2004). The differential data (the IgG channel 

minus the BSA channel) was analysed using a monophasic-fitting model. The fitting 

program was used to determine a value of ks for all concentrations. The ks value was 

then plotted against IgG concentrations in Microsoft Excel, and a trendline calculated. 

The kass value was taken from the gradient of this line, and the k<jiS value from the 

intercept with the y-axis. KA is kass divided by kdis (Figure 22). x2 values give an
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Figure 24 SDS-PAGE analysis of protein purification of (a) Sbi-S by affinity chromatography, (b) Sbi- 

e by ion exchange chromatography and (c) Sbi-1 by affinity chromatography.

indication of the quality of the fitting of the response data to the the real time response 

equation, calculated by the ESPRIT Kinetic Evaluation program, while R2 is an 

indication of the fitting of the trendline to the data by Microsoft Excel, and of the 

reliability of and kdis-

Sbi-1 and Sbi-2 under went some dissociation from the nickel surface in the absence 

of EDTA after long periods of time on the surface. Therefore the association phase 

measurements were limited to 400s to minimise the loss of Sbi-1 and Sbi-2. The 

dissociation phase was not used to determine a value of kdiss as after 400s Sbi-1 and 

Sbi-2 appeared dissociate from the nickel disc as evidence in association phase 

readings were the amount of protein on the surface started to decrease from its peak 

level, suggesting the dissociation of Sbi in addition to its IgG ligand.

7.1.3 Results

7.1.3.1 Cloning and expression of Sbi constructs

PCR amplification of the fragments of sbi gave single bands for the constructs Sbi-e, 

Sbi-S, Sbi-1 and Sbi-2 (data not shown). These fragments were inserted into the pHIS 

parallel vector (Sheffield et al 1999), and transformed into XLl-Blue E. coli cells. 

The presence of the correct insert was confirmed by sequencing of the plasmid. The 

plasmid containing the Sbi-e and Sbi-S inserts were then transformed into BL21 

star™ E. coli cells, while the ones containing the Sbi-1 and Sbi-2 inserts were



transformed into Rossetta™ E. coli cells. All clones showed good expression at 

optimum temperatures of 28°C (Sbi-e) and 25°C (other clones). Reducing the 

induction temperature of Sbi-1 and Sbi-2 to 20°C further improved the amount and 

solubility of the purified protein. There was no evidence of leaky expression in pre

induction samples; induction with IPTG gave good levels of expression (Figure 23) at 

the expected protein sizes. Affinity (for the Sbi-1 and Sbi-2 constructs) or ion 

exchange chromatography (for sbi-e only) with all proteins gave pure protein (Figure 

24).

The purified Sbi-e fragment could be concentrated up to 30mg/ml. Initial binding 

studies were carried out to both check functionality and to optimise the method for 

size exclusion chromatography with a mouse monoclonal antibody, and a sample of 

P2GPI (a kind gift from Ph. de Groot). This showed Sbi-e binds both proteins (Figure 

25a&b, the calibration curve is shown in Figure 21) with a shift of 30kDa when Sbi-e 

is in the presence of the mouse IgG, and a shift o f 60kDa when Sbi-e is added to 

P2GPI. The profile of Sbi-e in the absence of either ligand is shown in Figure 26. 

ELISA-based binding studies with an Sbi construct and truncated fJ2GPl constructs 

carried out in the de Groot lab, showed that Sbi only binds |32GP1 constructs 

composed of domains I-H-III and domains I-H-III-IV as well as the full-length (32GP1 

(Figure 25c). Size exclusion chromatography with IgG in the presence of Sbi-e 

showed a shift in the peak size of IgG corresponding to 30kDa in the presence of Sbi- 

e, while the p2GPl peak shifted by 60kDa. These results indicate that the 

recombinant Sbi-e construct produces a functional protein product with both IgG- 

binding and (32GP1 -binding characteristics.

7.1.3.2 Binding studies

7.1.3.2.1 Analysis of insoluble SpA-IgG and Sbi-IgG complexes

It is know that in the presence of certain species of IgGs, SpA precipitates the IgG. 

This can be tested by placing a sample of SpA in one well of an agar plate, IgG in 

another, and allowing diffusion to occur. Precipitation can then occurs between the 

two wells, as shown in Figure 27. To determine whether Sbi shows the same patterns 

of precipitation as SpA, both Sbi and SpA where placed in wells in an agar plate 

along with samples of human serum IgG and the human IgG Fc fragment in a double
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Figure 25 Size exclusion chromatography elution profiles of 

(ai) mouse monoclonal IgG and (aii) p2GPl in the presence 

and absence of sbi-e. (b) ELISA results (carried out by de 

Groot; Utrecht) with |32GP1 and the P2GP1-binding domain of 

Sbi.

diffusion assay, shown in 

Figure 27. The arch-shaped 

pattern of precipitation in the 

diffusion equivalence zone 

between SpA, Sbi, and 

human serum IgG indicates 

that the two Ig-binding 

proteins share the same 

epitope on human IgG 

presumably the Fc fraction. 

The line of precipitation 

produced by the SpA-IgG 

complex is broader 

compared to the line of 

precipitation of the Sbi-IgG 

reaction and a spur formation 

of precipitate towards the Sbi 

well (highlighted by an arrow 

in Figure 27) indicates that 

SpA possesses a binding 

specificity for a human IgG 

epitope that is not shared by 

Sbi (presumably the Fab 

binding ability of SpA). In 

the absence of the Fab 

fragment SpA’s capacity to 

precipitate human IgG Fc 

was completely eliminated, 

while precipitation with Sbi 

remains unchanged (see 

Figure 27).
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Figure 26 Size exclusion elution profile of Sbi-e in the absence of IgG or p2GPl

Figure 27 Double immunodiffusion assay with recombinant SpA and Sbi against human serum IgG 

and IgG Fc fragment. The spur of precipitation, indicating partial identity between the IgG binding 

epitopes of SpA and Sbi, is indicated by an arrow.

-71 -



When tested against both the animal serum IgGs and the human subclasses, Sbi-e 

formed insoluble complexes with mouse, rabbit, Guinea pig, and human serum IgGs 

in addition to the human subclasses IgG l and IgG2. SpA differs from Sbi in that, in 

addition to human and Guinea pig serum IgG, it also precipitates very strongly with 

pig serum. The results with Sbi-S show the same precipitation patterns as found with 

Sbi-e, indicating that the insoluble complexes formed by Sbi are caused solely by 

presence of Sbi’s two immunoglobulin binding domains. Although the formation of 

insoluble complexes was expected to require the presence of multiple binding 

domains, the single Ig-binding constructs Sbi-1 and Sbi-2, also produce insoluble 

complexes but only with Guinea pig serum IgG (see Table 4 for precipitation results).

7.1.3.2.1.1 Analysis of soluble SpA-IgG an d  Sbi-IgG complexes

Before analysing the binding characteristics of Sbi and SpA with size exclusion 

chromatography, elution profiles for each of the IgG samples were

obtained first. Subsequently a fixed concentration of either Sbi or SpA was added to 

the same amount of IgG used to generate the IgG profile. From the difference 

between the two elution profiles we analysed the size (molecular weight) of the 

complexes formed. The elution profile of the purified Sbi-e at the concentration used 

in the size exclusion experiments is shown in Figure 25 a. Precipitation of the serum 

IgGs in the size exclusion chromatography experiments was deteated by the addition 

of SDS buffer to the microcentrifuge tube and heated to dissolve any precipitated or 

pelleted protein. This mixture was than loaded an SDS-PAGE gel for separation and 

detection of protein bands.

We found that both Sbi and SpA bind human serum IgG, with most protein 

precipitating before injection (Figure 28a). In addition, a small amount of residual 

soluble protein was observed, as both unbound IgG and large complexes eluted at the 

void volume. Sbi and SpA also bound most of the tested mammalian serum IgGs, 

with different binding characteristics (Figure 28b to Figure 28g). With rabbit IgG, 

most of the IgG in complex with SpA was eluted as a large soluble complex at the 

void volume; no insoluble complexes were detected by SDS-PAGE analysis on the 

residual protein complexes that precipitated in the centrifugation step preceding the 

protein injection. In contrast, all rabbit IgG in complex with Sbi-e was lost as
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Figure 28 Size exclusion chromatography elution profiles for the serum IgGs from (a) human, (b) 

rabbit, (c) Guinea pig, (d) pig, (e) mouse, (f) cow, (g) goat, (h) horse and (i) sheep in the presence and 

absence of Sbi-e and SpA.
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Table 4 Insoluble complexes form by serum IgGs in the presence o f the Ig-binding proteins SpA and 

Sbi. + indicates the formation o f white precipitation on the agar gel, while ++ and +++ indicate 

increasing amounts o f precipitation.

Ig-binding protein or domain
Serum IgG

SpA Sbi-e Sbi-S Sbi-1 Sbi-1

Mouse + + + +

Rabbit + + + +

Goat

Chicken

Cow

Guinea Pig + + + + + + +

Sheep

Horse

Human + + + + + +

Pig + + +

precipitate. However when with SpA in complex with Guinea pig serum IgGs, all 

protein is lost as precipitate, while in complex with Sbi-e, only about half the IgG is 

lost as insoluble precipitate, the remainder was present as a soluble complex, with 

anapproximate size of 201 kDa (see Table 5), a size very close to the size of Guinea 

pig IgG (192kDa). While complexes of pig IgG and Sbi show no formation of 

insoluble precipitate, it does form a number of different soluble complexes (with an 

approximate size of 181kDa for the major complex peak), which are eluted between 

unbound pig IgG and the void volume. This peak indicates that in the presence of Sbi- 

e, most of the pig serum IgG is forming a 1:1 complex with Sbi-e. In the presence of 

SpA, virtually all the pig serum IgG is lost as insoluble complexes. In the presence of 

mouse serum IgG, Sbi-e causes precipitation. A soluble peak is also detected, 

however, of a similar size as the mouse serum IgG peak detected in the absence of an 

Ig-binding protein, suggesting some components in the mouse serum IgG fraction 

does not bind to Sbi-e. Mouse serum IgG, in the presence of SpA, is eluted in a 

complex of about 400kDa, approximately twice the size of the mouse serum IgG, 

suggesting that SpA causes mouse IgG dimerisation. In the case of both cow and goat 

serum IgGs, the complex formed with Sbi-e resulted in a shift of the IgG peak by
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about 30kDa, suggesting a 1:1 complex formation. However, in the presence of SpA, 

larger complexes were also observed (Table 5). Complexes of SpA with cow IgG 

were much larger than the complexes with goat IgG, with the largest eluted at the void 

volume. The size exclusion chromatography profile of Sbi-e-goat IgG complexes 

contained one major peak, with an approximate size of 197kDa. Only for the 

complexes with the serum IgGs from pig, cow and goat it is possible to estimate the 

complex composition; for these species in the presence of Sbi a 1:1 complex is 

formed.

Two other mammalian IgGs were also examined with different results. Horse IgG in 

complex with both Sbi-e and SpA initially did not appear to cause the elution peaks to 

shift, but resulted in the broadening of the peaks (Figure 28h). Addition of ten times 

the original amount of Ig-binding protein resulted in a shift of the peaks eluted, with 

an SpA-IgG complex of about 320kDa and a larger Sbi-e peak complex of about 

335kDa. Sbi-e in complex with horse IgG produces a broad peak suggesting the 

presence of more than one type of complex (Table 5).

Sheep IgG produced peaks of identical size both in the presence and absence of the 

Ig-binding proteins, and thereby suggesting that there is no binding of sheep protein 

by Sbi-e and SpA (Figure 28i).

The only non-mammalian serum IgG tested, that of chicken, differences shown in the 

elution profiles when the Ig-binding proteins were added were not larger enough to 

correspond to Sbi or SpA binding (Figure 29). Human serum albumin (HSA) was 

used as a control. This again showed no shift in the elution profile in the presence of 

either Ig-binding protein (data not shown).

Elution profiles of human and goat serum IgGs were also determined in the presence 

of Sbi-1. Human and goat serum IgGs were use to compare the complex formation of 

Sbi-1 with serum IgGs predicted to form complexes of high and low molecular weight 

complexes in its presence, respectively. In the case of goat serum IgG, the major peak 

shifted about 18kDa. This suggests that there are two molecules of Sbi-1 bound to a 

single IgG molecule. In the elution profile of human serum IgG with the same amount
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Table 5 The peak sizes determined by size exclusion chromatography for IgG molecules and the Sbi 

and SpA IgG complexes, calculated from elution volumes (a) serum IgGs and (b) human IgG 

subclasses. The presence o f precipitated protein was confirmed through the addition o f SDS-PAGE  

buffer to the microcentrifuge tube, and heating it to dissolve any precipitated protein present. This 

mixture was then loaded onto an SDS-PAGE gel for separation and straining of protein bands. Refer to 

Figure 21 for the size exclusion chromatography calibration curve

(a) IgG 
species

IgG peak 
sizes as 

determined 
by SE (kDa)

Sbi-e results SpA results

Major 
Peak Size 

(kDa)

Unbound IgG 
present?

Precipitation
present?

Major 
Peak Size 

(kDa)

Unbound
IgG

present?

Precipitation
present?

Human
285
155

No major 
peak

Yes Yes
No major 

peak Yes Yes

Pig 358
151

181 No No 314 Yes Yes

Rabbit
407
186

No major 
peak

No Yes Void
volume Yes No

Guinea
Pig

462
192 201 Yes Yes

No major 
peak No Yes

Mouse 212 206 Yes Yes 413 Yes Unclear

Sheep
474
193

176 Yes No 159 Yes No

Horse 430
178

171
335

Yes No 198
320

Yes No

Cow 417
169

188 No No Void
volume Yes No

Goat 379
169

197 No No 190 No No

Chicken 590
227

239 Yes No 169 Yes No

(b) IgG 
species

IgG 
subclasses 

peak sizes as 
determined by 

SE (kDa)

Sbi-e results SpA results

Major Peak 
Size (kDa)

Unbound 
IgG present?

Precipitation
present?

Major Peak 
Size (kDa)

Unbound 
IgG present?

Precipitation
present?

IgG l 235 None No Yes
832
235 No No

IgG2 187 1335 No Yes 381 No No

IgG3 268
298
270

Yes No
271
311

Yes No

IgG4 479
214 1652 No No

1448
417

No No
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p re sen c e  of Sbi-e

-20

Elution Volume (ml)
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Figure 29 Size exclusion chromatography elution profiles for chicken serum IgG in the presence and 

absence of Sbi-e and SpA.

Table 6 Peak sizes for the complexes formed by Human and Goat serum IgGs in the presence of Sbi-1

IgG
species

IgG peak sizes as 
determined by 

SE (kDa)

Major Peak Size 
(kDa)

Unbound IgG 
present?

Precipitation
present?

Goat 373
160

434
179 No No

Human 155
725
178 No No

Human 155
1,255
501 No No
213

of Sbi-1, the major peak showed a similar shift in size (23kDa), again suggesting the 

possibility of two Sbi-1 molecules being bound to the IgG molecule. However some 

protein was eluted at an earlier time, with a calculated size of 726kDa, suggesting the 

formation of a large soluble complex. An additional elution profile of human IgG with 

five times the amount of Sbi-1 showed an increase in the amount of protein in the 

larger complex, with an additional increase in the size of this complex, (see Table 6 

for peak sizes, and Figure 30 for elution profiles).
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Figure 30 Elution profiles for human serum IgG and goat serum IgG in the presence and absence of 

Sbi-1

7.1.3.2.1.2 Analysis of soluble complexes of SpA and Sbi with Hum an IgG 

subclasses

Sbi-e interactions with the four human IgG subclasses were compared to those of 

SpA. With IgGlK, both Ig-binding proteins formed complexes that precipitated; SpA 

also formed some soluble complexes (Figure 31a). Sbi-e in complex with IgG2K and 

IgG4K formed large soluble complexes, eluted at the void volume (Figure 31b and 

Figure 3 Id). SpA also formed soluble complexes in the presence of IgG2K and 

IgG4K, but after the void volume (see Table 5 for peak sizes and Figure 31b & d for 

elution profiles). There was no precipitate with SpA in complex with IgG4ic, but a
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Figure 31 Size exclusion chromatography elution profiles for the human IgG subclasses (a) IgGl, (b) 

lgG2, (c) IgG3, and (d) IgG4 in the presence and absence of Sbi-e and SpA.

large amount with IgG2ic (data not shown). Both Sbi-e and SpA failed to show any 

binding for IgG3K, indicated by the absence of a shift in the IgG peak, (Figure 31c).

7.1.3.2.2 Surface plasmon resonance studies

7.1.3.2.2.1 Immunoglobulin-binding characteristics of Sbi’s individual Ig- 

binding domains

Rate constants (kass and kdiS) and equilibration constants (K a  and K d) were determined 

for all antibodies, and compared. These binding results are shown in Figure 32 and 

Table 7a.

The quality of data fitting varies between species, as is indicated by the chi square (x2) 

values. We believe this discrepancy is due to using serum IgGs in our experiments, 

rather than monoclonal antibodies, as the different IgG subclasses present in the 

serum are expected to give different kass and kdiS rate constants, and therefore affect 

the determination of equilibrium constants. ^  are given in Appendix 2. The
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Figure 32 Association constants for the Sbi Ig-binding domain Sbi-1 in the presence of the serum 

IgGs.

heterogeneity of the IgG means that the binding curve produced and the resulting 

value of ks (or kon) is an average for the binding and dissociation of the different IgG 

subclasses on the surface. Therefore the values produces for k^s, kdiS, Ka, and Kd give 

the affinity for a defined collection of IgG subclasses (i.e. the serum IgG) for the Sbi- 

1 ligand.

The values for the association rate constant (kass: the rate at which the components in 

the reaction combine to form the product) indicate binding occurs with all antibodies, 

(see Figure 22 for the theoretical reaction equation and the calculation of rate and 

equilibration constants). Chicken IgG has the lowest association rate (kass = 3.54e' s '1 

M '1) and mouse serum IgG has the highest (kass = 7.81e4s '1 M’1). The IgGs of species 

that show poor binding with Sbi-e (goat, horse, sheep, and chicken) all have a k^s 

value of less than l.Oe'3 s"1. Guinea pig IgG has the highest dissociation rate of 7.3e’3 

s’1. The values of equilibrium constant Ka are the lowest for chicken, cow, horse, pig, 

and sheep serum antibodies (K a  less than 2 .16e6 M’1; K d greater than 4.64e’7 M). 

Goat serum IgG occurs at the other end of the spectrum, with very high affinity (KA = 

4.07e7), but it shows virtually no dissociation (kdis = 1 .OOe’05).
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Table 7 Affinity values for the complexes o f (a) Sbi-1 with the serum IgGs (all R2 values were 

calculated from three data points on a k^kajJPJ+kdis line, except for human serum IgG which used 

five) and (b) Sbi-1 and Sbi-2 with the Human IgG subclasses, calculated from SPR measurements (the 

number o f data points for R2 values are in brackets). R2 is the value produced by Microsoft Excel© to 

show the quality o f fitting a set o f data points to a line.

(a) kassCM'V1) kdis (s ) Ka (M '1) Kd (M) R z
Chicken serum IgG 3.53E+01 9.00E-04 3.93E+04 2.55E-05 1.0000

Cow serum IgG 3.98E+03 2.30E-03 1.73E+06 5.78E-07 0.9561
Goat serum IgG 4.07E+02 1.00E-05 4.07E+07 2.46E-08 0.8868

Guinea Pig serum IgG 3.13E+04 7.30E-03 4.28E+06 2.34E-07 0.9601
Horse serum IgG 2.16E+02 1.00E-04 2.16E+06 4.64E-07 0.9371

Human serum IgG 1.88E+04 2.70E-03 6.95E+06 1.44E-07 0.8717
Mouse serum IgG 9.88E+04 3.70E-03 2.67E+07 3.74E-08 0.9549

Pig serum IgG 3.11E+03 5.80E-03 5.36E+05 1.87E-06 1.0000
Rabbit serum IgG 1.09E+04 3.80E-03 2.86E+06 3.49E-07 0.9854
Sheep serum IgG 8.39E+01 9.00E-05 9.32E+05 1.07E-06 0.9966

(b) k ass kdiss Ka
Sbil Sbi2 Sbil Sbi2 Sbil Sbi 2

IgGl 2.03E+05 2.07E+05 5.80E-03 4.80E-03 3.51E+07 4.30E+07
IgG2 7.18E+04 1.42E+04 1.80E-03 4.50E-03 3.99E+07 3.15E+06
IgG4 3.94E+04 2.51E+04 5.20E-03 4.00E-03 7.59E+06 6.27E+06

(b) Kd Rz
cont. Sbil Sbi2 Sbil Sbi2
IgGl 2.85E-08 2.32E-08 0.8853 (5) 0.9422 (3)
IgG2 2.51E-08 3.17E-07 0.8825 (6) 0.9351 (6)
IgG4 1.32E-07 1.59E-07 0.9504 (7) 0.999 (4)

7.1.3.2.2.2 Affinity of Sbi-1 and Sbi-2 for human IgG subclasses

Rate and equilibration constants were also determined for the human IgG subclasses 

against both Sbi Ig-binding domains. As expected, the fitting of the data for the 

human IgG subclasses is generally better than for the serum IgGs, with %2 values for 

all three measured IgG subclasses and two Sbi Ig-binding proteins of less than 12000 

(A limit of 12000 for % was used as all values for ks with a % below this could be 

fitted onto a straight line. ks values with a x2 above this tend to be outliers). Results 

for the human subclasses are shown in Figure 33 and Table 7b. The kaSS values for 

IgG l are similar for both Sbi-1 and Sbi-2, while the k ^  values for IgG2 and IgG4 are 

similar to each other in complex with both Sbi-1 and Sbi-2. All three IgG subclasses 

have similar kdis values with either Sbi domain (except the combination of Sbi-1 and
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Figure 33 Affinity constant for the Sbi Ig-binding domains Sbi-1 and Sbi-2 with the human IgG

subclasses.

IgG2 that have a lower kdis). When the affinity of Sbi-1 and Sbi-2 is compared for 

each of the IgGs, it was found that both Sbi domains bind IgGl with similar affinity, 

as do they with IgG4. Sbi-1 binds both IgGl and IgG2 with similar affinity, however 

the Sbi-2 plus IgG2 has affinity, which is significantly lower.

7.1.4 Discussion

SpA was the first of the S. aureus Ig-binding proteins to be discovered. The early 

binding studies with SpA and IgGs from different species were performed with 

diffusion assays. Kronvall et al (1970) tested a wide range of mammalian sera and we 

have obtained serum IgG samples for a number of these. Kronvall et al (1970) 

showed that Guinea pig, rabbit and pig serum IgGs precipitated in the presence of 

SpA (human myeloma precipitated as the control in all reactions), while mouse, 

horse, goat and sheep serum IgGs all showed inhibition of the myeloma protein 

reaction.
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The first work on the characterisation of Sbi binding to Ig was carried out by Zhang et 

al (1998). They used ELISA to examine the binding between Sbi and mammalian 

serum IgGs and also the different classes of human IgGs. The highest binding was 

observed with human, Guinea pig, rabbit and pig IgGs. Goat, sheep and chicken did 

not appear to bind Sbi, while cow and horse IgGs gave an intermediate reaction.

How though can the results of SpA obtained via diffusion assay and Sbi obtained by 

ELISA be compared? It would appear to be necessary to compare the reactions of 

IgGs with either SpA or Sbi under the same conditions. To understand this we 

analysed the binding patterns of both SpA and Sbi under the same conditions, both 

proteins were subjected to diffusion assays and size exclusion (SE) chromatography 

to determine the size and stochiometry of the complexes formed, and SPR to study the 

binding kinetics.

The Sbi protein was cloned into 4 different constructs, one containing the N-terminal 

region domains (Sbi-e), one containing both the proposed Ig-binding domains (Sbi-S), 

and two containing the individual Ig-binding domains (Sbi-1 and Sbi-2). All four 

constructs showed binding to IgG. In the agar diffusion assays, Sbi-e and Sbi-S 

showed the same pattern of precipitation, while in the SPR experiments Sbi-1 showed 

the highest affinity for those IgGs that were precipitated in the agar diffusion assays. 

This suggests that, although we did not confirm the Sbi domains in the different 

constructs maintained the same structure through structural methods, as the binding 

ability is conserved, either the correct structure is maintained in the Ig-binding 

domains in the different constructs, or the Ig-binding domains fold correctly on 

binding to the IgG molecules. Evidence to support the hypothesis of the Ig-binding 

domains of Sbi binding corrently folded when in a construct as a single domain is 

available in the structure of the SpA Ig-binding domain structure solved by Gouda et 

al (1992). In this structure, solved by NMR, a single SpA Ig-binding domain is folded 

into the typical three-helix bundle expected for Ig-binding domain in the absence of 

either its ligand or the other SpA Ig-binding domains in the protein.

The sizes of the IgG molecules used in the binding studies were measured by size 

exclusion chromatography. This revealed variation from the expected size of an IgG 

molecule of 150kDa. The size of different IgG molecules are difficult to calculate as
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the complete sequences of all the polypeptide chains are required, and many of the 

IgG sequences available are not complete. It was possible to use the sequences for the 

human IgG structure solved by Saphire et al (2001) to calculate a size for the protein 

of 148kDa. However this did not include the size of the carbohydrate attached to the 

IgG molecule. This is the only example where we were able to use sequences for a 

complete IgG molecule. It is reasonable to assume that IgGs from different species 

have different carbohydrates attached to them, and therefore affecting the IgG 

molecule size in addition to any variations in the lengths of the protein chain 

sequences themselves. In addition the differences in the protein chains between the 

species of IgGs would affect the extinction co-efficents and absorbance of the proteins 

at 280nm, meaning that this in addition to the varations in the concentrations of the 

protein stock solutions (discussed below) result in variation of the height of the IgG 

peaks formed in the elution profiles in Figure 28.

One of the factors influencing the height of the IgG peaks in Figure 28 is the protein 

concentration. The stock solutions of IgG were prepared in a fixed volume of buffer, 

however concentration measurements revealed variation in the concentration of the 

different stock solutions produced. This gives rise to the variation in the height of the 

IgG peaks in Figure 28. However this does not affect the parameter measured in the 

size exclusion results, where the change in the IgG profile after the addition of Sbi or 

SpA was determined. Molar concentrations of the IgG stock solutions were 

determined for use in the SPR experiments for determination of the affinity constants 

from protein concentrations determined by the BIORAD assay .

Different buffer conditions were used for the SPR experiments compared to the size 

exclusion experiments (a change of pH7 to pH8 in the lOmM Tris-HCl 300mM NaCl 

buffer plus the addition of 0.005% v/v Tween 20). This was due previously work had 

optimised the SPR conditions with this buffer (Nieba et al 1997) and the Sbi-1 and 

Sbi-2 constructs proved to be more stable under these conditions than the conditions 

used in the size exclusion experiments where Sbi-e was used.

Three different binding studies methods were used, the agar diffusion assay identified 

which combinations of IgG, Sbi and SpA formed insoluble complexes, size exclusion 

chromatography allowed measurement of the sizes of any soluble complexes present,
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and SPR gave data on the affinity of Sbi for IgG. Insoluble complexes were also 

detected through size exclusion chromatography as the insoluble protein was collected 

in microcentrifuge tubes prior to the injection of the soluble complexes into the 

column. Such protein was run on SDS-PAGE gels, however the results (other than the 

presence or absence of precipitated protein) where unclear due to the large amounts of 

protein present. In addition analysis of soluble complexes eluted from the column 

showed on SDS-PAGE that not all the protein bands expected for IgG and Sbi or SpA 

could be detected due to low amounts of protein present and the dilute nature of the 

eluted fractions collected.

7.1.4.1 Implications of the differences observed in the binding of Sbi and SpA to 

IgG

The double diffusion assay with SpA and Sbi against human serum IgG showed the 

formation of an arch around the IgG well (Figure 27), indicating identity in the 

binding site on the IgG molecule for both proteins. This supports our previous 

prediction that both SpA and Sbi bind to the same site on the Fc fragment (see 

Chapter 2). The formation of a spur in the reaction in the direction of the Sbi well, 

however, indicates that there is an additional binding component in SpA. Our agarose 

diffusion experiments using human IgG Fc fragments indicate that Fab-binding by 

SpA plays a major role in the formation of insoluble complexes with human IgG. The 

absence of Fab, as predicted in Chapter 2, does not affect the formation of insoluble 

Sbi-IgG complexes. From these results we conclude that it is therefore unlikely that 

Sbi has a Vr family Fab specificity different from SpA, ruling out its possible role as 

a B cell super antigen. It may well be that the helix 2-helix 3 face of Sbi binds to other 

yet to be identified ligands.

As precipitation of IgG by SpA requires the intact IgG (Kronvall and Frommel 1970, 

Figure 27), it can aid in explaining the formation of the very large soluble complexes 

formed by some serum IgG such as rabbit serum IgG (Figure 28 and Table 5). The 

formation of these large soluble complexes suggests that, in the case of rabbit IgG, 

SpA cannot bind to the Fab regions of the IgG, thereby reducing its ability to 

crosslink between IgG molecules and subsequent precipitation. In the examples where 

SpA does form precipitation, as is the case with human serum IgG, SpA is known to 

bind certain subclasses of V r  chains ( V h I I I ,  Roben, Salem, Silverman 1995). This
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indicates that Fab-induced crosslinking may also play a role in other serum IgGs that 

also precipitate in the presence of SpA (pig and Guinea pig serum IgG).

Comparison of the SpA and Sbi binding reactions by both the diffusion assay and SE 

chromatography revealed significant differences between the two proteins. SpA 

appears to react most strongly with pig IgG while Sbi reacts strongly with the human 

and rodent IgGs. Both precipitate human IgG. Interestingly, while no precipitation is 

observed for the rabbit IgG in the presence of SpA, it is entirely eluted at the void 

volume as very large soluble complexes in the SE chromatography experiments. Also 

of interest is that of those serums IgGs tested, all those that have strong affinity for 

Sbi in the SPR experiments are precipitated by at least one of the Ig-binding proteins.

We also showed that the individual Sbi Ig-binding domains, Sbi-1 and Sbi-2, both 

bind to IgGs. Sbi-1 formed large soluble complexes in the presence of human IgG, 

and both domains are capable of precipitating Guinea pig IgG. As SpA required the 

presence of Fab binding for precipitation to occur, it is not clear how Sbi is triggering 

precipitation. This phenomenon is discussed further in Chapters 4 and 6.

7.1.4.2 Heterogeneity in immunoglobulin binding

The elution profiles of the tested IgGs indicate that many of the IgG complexes 

consist of components with a variety of molecular weights, including, in some cases 

insoluble complexes that accumulated in the microcentrifuge vial before injection. 

What is the origin of this variation in the SE results? One likely explanation is that the 

serum IgGs tested, and the different IgG subclasses therein, have different individual 

affinities for the two Ig-binding proteins. For example, for both Sbi and SpA in the 

presence of human IgG, most protein is precipitated, however a small amount remains 

unbound in solution. This is in agreement with the SPR results with the human IgG 

subclasses, where IgG 1, 2 and 4 all bind strongly (Figure 31), while no binding was 

detected for IgG3. Apart from the difference in valency between SpA (four Ig-binding 

domains in the construct used in the experiments described here) and Sbi (two Ig- 

binding domains), there are also differences between the Ig-binding domains 

themselves. In the case of SpA, where the domains are very highly conserved, this 

results in small differences in the binding of the Fc fragments (Jansson, Uhlen, 

Nygren 1998). Similarly, the individual Ig-binding domains of Sbi in our SPR
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experiments showed that the two domains do not have equal affinity for all the human 

IgG subclasses (Figure 33).

The Guinea pig elution profile in the presence of Sbi-e shows that, in addition to a 

large amount of precipitation, there is unbound IgG present. Guinea pig serum IgGs 

are known to exist in two subclasses (1 and 2) and it is possible that only one of these 

can bind Sbi-e. In the case of SpA they both appear to be able to bind, as we see no 

unbound IgG in the presence of SpA. This variation in affinity between the different 

IgGs in the serum is supported to a degree by the difficulty to fit the SPR data 

acquired for some serum IgGs. However when the human IgG subclasses were used, a 

consistently better fit was obtained. It was noted by Friguet et al (1995) in ELISA 

experiments where serum IgGs were used opposed to monoclonal antibodies that 

measured binding is an average of the different IgGs. Of the serum IgGs with higher 

affinity, the results of the fitting data for rabbit serum IgG is better than most of the 

other serum results. We were only able to find references to a single rabbit IgG class 

in the databases, appearing to support the view that the more consistent results are 

obtained in the absence of multiple IgG subclasses.

7.1.4.3 Affinity versus avidity

SpA contains 4 Ig-binding domains while there are only two domains present in Sbi-e. 

Does SpA therefore form larger complexes than Sbi? With pig and cow serum IgGs, 

Sbi forms a 1:1 complex (discussed below), but with SpA, large insoluble (pig) or 

soluble (cow) complexes are formed. Although it was impossible to determine the 

complex size for either species (the size of the soluble complexes of cow IgG-SpA 

complex are outside the calibration range of the column), these results suggest that the 

complexes formed in the presence of SpA are larger than the complexes with Sbi. The 

size of such complexes could be determined by analytical ultracentifugation. In the 

case of human, rabbit, mouse and Guinea pig IgGs all complexes formed in the 

presence of Sbi or SpA are insoluble (the rabbit IgG-SpA complex is soluble, but its 

size could not be resolved by the SE column) and it is not possible to determine which 

Ig-binding protein forms the larger complex. The formation of these large complexes 

with Sbi and SpA are discussed further in Chapter 4.
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The size exclusion profiles showed that in addition to large complexes there are also 

complexes that indicate the formation of 1:1 complexes with the serum IgGs from pig 

and cow in the presence of Sbi, and also with sheep, horse and goat IgGs with both 

Sbi and SpA. Possible explanations for the formation of these 1:1 complexes rather 

than larger complexes are: steric hindrance, interfering with the binding of more than 

one IgG for these serum IgG, or that only one of the Ig-binding domains is specific 

for a particular serum IgG present. The 1:1 complexes formed appear to be stable due 

to the narrow peaks produced in the elution profile (if dissociation and re-binding 

were occurring throughout the the elution from the column, broading of the eluted 

peak would be expected to occur due to acceleration and deceleration of the 

complexes as the size of the complexes increases and decreases).

All the other serum IgGs tested other than Chicken IgG produce complexes that are 

either not soluble or are above the resolution limit of the column. In order to 

determine the sizes of the different types of complexes formed in the presence of 

human, rabbit, Guinea pig (in the presence of both SpA and Sbi), cow and pig (in the 

presence of SpA only) requires a method such as analytical ultracentrifugation, which 

has a higher resolution for complex sizes.

The serum IgGs, for which we analysed the interaction with the Ig-binding proteins 

SpA and Sbi, are from animals that are known to acquire serious infections with S. 

aureus. Compared to the binding of human IgG, most of these IgGs (with the 

exception of pig IgG) bind both Ig-binding proteins to a lesser extent. What is 

responsible for this variability in binding and the ability to form insoluble complexes?

Are the differences observed in the binding due to changes in the amino acid 

sequence/structure of the IgGs from the different animal species, and if so what are 

these changes? The Sbi constructs, and SpA used in our experiments are both derived 

from S. aureus strains isolated from human hosts. Is it possible that the Ig-binding 

proteins from strains of S. aureus specific for these animals have acquired a high 

specificity for immunoglobulins from these animals? These questions will be 

addressed in the next two chapters of this thesis.



8 Chapter 4

8.1 Analysis of the interactions between Sbi and its ligands through 

homology models of the Sbi-IgG and SpA-IgG complexes

8.1.1 Introduction

8.1.1.1 SpA Ig-binding domain structures

Figure 34 NMR structure of SpA with the residues identified SpA binds to the Fc portion

of the IgG molecule 

(Deisenhofer 1981, Kronvall 

et al 1970, Jansson, Uhlen, 

Nygren 1998) via interactions 

with the Ch2 and Ch3 

domains of IgG. These

interactions were first

described by Deisenhofer 

(1981) from crystallographic 

data of SpA domain B in 

complex with the Fc fragment 

of human IgG. Two other 

studies helped to shed light on 

the importance of the 

interacting residues in the 

formation of this complex. Romangnani et al (1982) used iodination of SpA, a

technique that specifically inactivates tyrosine residues in the protein of interest.

Iodination of the single tyrosine present in every SpA Ig-binding domain eliminates 

Fc binding, although the Fab binding is unaffected. This tyrosine residue (Y48, Y109, 

Y167, Y225, Y283 in domains E, D, A, B and C, respectively) is not only conserved 

in all SpA Ig-binding domains but also in both of the Sbi Ig-binding domains. Other 

work by Gouda et al (1998) studied the interaction between SpA and Fc using NMR. 

The NMR structure of SpA is shown in Figure 34, with the residues determined by 

NMR to be involved in Fc binding shown. Table 8 lists the residues identified by
*

Deisenhofer (1981) and Gouda et al (1998) to be involved in Fc binding.
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Table 8 Residues identified by Deisenhofer (1981) and Gouda et al (1998) to be involved in Fc binding 
by X-ray and NMR studies respectively

NMR study (Gouda et al 
1998) X-ray study (De 

Contact-1

isenhofer 1981)

Contact-2

FI

Q5
Q6

N7

F9 F9
Y10 Y10

E l l

112 112
L13 L13

E20
R23

N24 N24 N24
G25
F26

127
Q28 Q28 Q28

S29
L30
K31 K31 K31

D37
D38
P39

S40
Q41

While there is structural data available for the SpA Ig-binding domain and its 

interaction with IgG, there is no structural information about the formation of the 

large SpA-IgG complexes. W e have confirmed earlier work by Kronvall et al (1970) 

that certain species of serum IgG form insoluble complexes with SpA, such as human 

and pig serum IgGs, while others such as cow and goat serum IgGs bind SpA but do 

not precipitate in its presence. The structure of an Fc fragment in complex with the Z 

domain (the artificial SpA Ig-binding domain) shows a Z domain molecule in
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SpA  m olecu le  IgG  Fc frag m en t 
(end-on)

Figure 35 (a) cartoon of SpA/IgG multimer as predicted by Hanson and Schumaker (1984). (b) Crystal 

structure of an Fc fragment in complex with 2 SpA domains (Raju et al 2003, PDB accession code: 

10Q 0).

complex with each of the two Fc polypeptide chains (Figure 35a), suggesting that an 

IgG Fc molecule has two functional SpA binding sites (Raju et al (2003; PDB 

accession code lOQO). This observation supports earlier work from Hanson, Phillips,
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and Schumaker (1984), and Hanson and Schumaker (1984). Hanson, Phillips and 

Schumaker (1984) used analytical ultracentrifugation to measure the size of the 

complexes formed between SpA and rabbit serum IgG. They identified several 

different complexes with sizes: 7S, 10S, 13S, and 15S. They also showed that the 

formation of these complexes and their distribution was sensitive to the ratio between 

SpA and rabbit serum IgG. Indeed when the ratio of IgG to SpA was >2, the 

complexes formed were a unique 17S complex. Electron microscope analysis of this 

complex, suggested it is composed of four molecules of IgG and 2 of SpA. In a later 

study by Hanson and Schumaker (1984) they tried to explain the complexes observed 

in the analytical ultracentifugation. For the larger 17S complex, they predicted that the 

four IgG molecules are stacked on top of each other, with an SpA molecule running 

down each side (Figure 35a). This model by Hanson and Schumaker (see Figure 35 a) 

is supported by the SpA structure determined by Raju et al (2003) which shows a 

single IgG Fc fragment with a SpA Z domain molecule bound to each IgG peptide 

(see Figure 35b).

Aim of this study

In Chapter 3 ,1 showed that Sbi and SpA have different binding properties for a set of 

serum IgGs. But what causes these differences? As discussed in Chapter 2, there are 

differences in the sequences of Sbi and SpA, but the Fc binding face is largely 

conserved. There are also differences between the sequences of the IgGs used in 

Chapter 3. How, though, are these sequence variations arranged on the three- 

dimensional IgG structure, and is the binding site for SpA (and Sbi) affected. To 

investigate this, I will use the structure of the complex of SpA with a human IgG Fc 

fragment to analyse the interactions between SpA, Sbi and the set of serum IgGs used 

in Chapter 3 in homology models. In addition, I will present a model, based on the 

work by Hanson and Schumaker (1984) and Raju et al (2003), to explain the 

differences in immune-complex formation between SpA and Sbi.

8.1.2 Methods

8.1.2.1 Sequence alignment

Protein sequences for Sbi, SpA and the IgGs were obtained from the PubMed 

database (http://www.ncbi.nih.gov/entrez/query.fcgi) in fasta format, and aligned with 

the alignment program ClustalX (Thompson et al 1999) in the multiple alignment
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mode. Accession numbers for the human, horse, cow, sheep, pig, Guinea pig, rabbit 

and chicken IgGs used in this modelling study are listed in Table 9a and the accession 

numbers for Ig-binding protein sequences are listed in Table 9b. Sequences for the 

structure used as templates for modelling IgG and Sbi were obtained from the RCSB 

Protein Database (PDB) (http://www.rcsb.org/pdb/), again in fasta format; PDB code 

1FC2 (Deisenhofer 1981).

Table 9(a) Accession numbers for the IgG protein sequences, (b) Accession numbers for Sbi and SpA  

protein sequences.

(a) Species and IgG 
Subclass

PUBMED Accession
number for protein 

sequence

1FC2 Taken from PDB
database

Human_IgG3 A23511
Human_IgGl GHHU
Human_IgG4 G4HU
Human_IgG2 G2HU
Horse IgG6 * CAC86341.1
Horse_IgG4 * AAS18415.1
Horse_IgG7 AAS 18414.1
Horse_IgG3 CAC86339.1
Horse_IgGl CAC44760.1
Cow IgG2* S06611
Cow_IgG2a AAB37380.1
Cow_IgGl AAB37381.2
Cow_IgG3 AAC48762.1

Sheep IgG l* CAA49451.1
Pig IgG4* 147162
Pig_IgG2a 147159
Pig_IgG2b 147160

Guinea_pig IgG2* P01862
Rabbit IgG* P01870

Chicken IgG (clone 
36)* S00390

(b) Ig-binding protein PUBMED Accession
number for protein

sequence
Sbi CAG44122

SpA AAB05743
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8.1.2.2 Homology modelling

Protein structure coordinates were obtained from the PDB. The X-ray crystal structure 

of the SpA domain B in complex with an IgG Fc fragment (PDB accession code 

1FC2) was used as a template for the models of the complexes between the Sbi Ig- 

binding domains and the IgG Fc fragments from seven different animal sera listed in 

Table 9. The models were generated by systemically replacing the residues of the 

template with those of the sequence being modelled in the program ‘O’ (see Chapter 2 

for more details).

All IgG sequences except those for rabbit and chicken contained a two-residue 

insertion between amino acids E388 and N389 (according to the numbering of the 

human IgG Fc structure) in the sequence. This insertion is located in a loop region, 

and the lego function in ‘O’ was used to convert the extended loop into a single turn 

helix. Chicken IgG contains two insertions, 2 residues between amino acids G385 and 

Q386, and 9 residues between D399 and S400, according to the amino acid 

numbering of the human IgG Fc structure, and a single residue deletion that is not

PSVFLFPPKPKDTLM  I SRTPHVTCVVVDVSp[eJ)PQVKFNWYVDCVQVHNAKTKPRF.QQYN 
238 2^5 25) 2?5 25) 265 25i 2?5 25) 285 290 2§5

A B . r r B  C H3

STYRVV SVLTVLHQNWLDGKEYKCKVSNKAL P A P I E K T I SXAKGQPREPQVYTLPP S REE 
~305 3?0 3?5 320 325 1)30 335 35) M5 35) 3$5

,C o v D o o O C  C n C H4

MTKNQVS LTCl. VKGFYPSDIAVEWESNGQP HNNYKTT P PVLDKDGS F FLYSKLTVDKS RW
358 365 370 375 380 385 > 390 395 400 405 410 415

" b C

q q g n v f s c s  v m h e a l h n h y t q k s l s  lsnfnmmngmn  D Deletions in modelled structures

Insertions in modelled structures418 425 430 435 440

a u a a a a a a a
g c g n n g l n g

Figure 36 Sequence and secondary structure of human IgG Fc fragment for 1FC2. Marked are the 

locations where the insertions and deletions occur in the Fc models. The sequence for the CH2 domain 

is in red while the sequence for the CH3 domain is in blue
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present in any of the other sequences (E269 in the human sequence). Figure 36 shows 

the human IgG Fc amino acid sequence for the structure that is used as a template for 

modelling, with the sites of insertions and deletions highlighted (the amino acid 

numbering used follows the 1FC2 sequence). The insertion and deletion sites in the 

homology models were refined using the lego-loop function. In cases of long 

insertions in loop regions, the expected level of confidence for the particular loop in 

the resulting model is low. With the exception of these regions in the IgG Fc 

homology models, there were no significant alterations to the backbone structure of 

the remainder of the IgG Fc structures or the Sbi models. Side-chains replacements in 

the Sbi Ig-binding domain models, were adjusted to a position that resembles the 

corresponding SpA residue side-chain as closely as possible, using the rotamers that 

were available in the lego loop function. In the case of the Fc molecules, alterations to 

the side-chain conformations were only performed in the regions of loop modelling 

due to insertions or deletions, unless a clash was identified by visual examination of 

the molecule.

8.1.2.3 Determination of potential interactions between Sbi/ SpA and the IgG 

Fc models

For the homology models of the complexes of IgG Fc and each of the Sbi Ig-binding 

domains or SpA Ig-binding domain B, the 1FC2 structure was used as a template. The 

resulting complexes were energy minimised using the M oleculer Operating 

Environment (MOE; Chemical Computing Group Inc.: http://www.chemcomp.com/) 

software, and all atoms of the binding partners within 1.8A and 5.2A were analysed 

using the CCP4 program CONTACT (Collaborative Computational Program 1994). 

The residues that comprised the interface between the IgG Fc and the Ig-binding 

protein were compared for all the combinations of IgG species used with the three Ig- 

binding protein models (SpA-B, Sbi-1 and Sbi-2).

The interacting residues at the interface of the two constant (C h ) domains of the Fc 

molecule were also taken into account. This was done by separating constant domains 

(at residues 338 and 339 according to the PDB file 1FC2). Subsequently, CONTACT 

was used to determine all atoms within OA to 5.2A distance of an atom in the other 

half of the molecule. All residues that were detected in this region on both halves of 

the molecule were than compared to those of the other species examined.
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Figure 37 Sequence alignment of the SpA domain B to both the Ig-binding domains of Sbi. This 

alignment was used in the generation of models of the Sbi domains.

8.1.2.4 Analysis of the side-chain environment with VERITY 3D

The environments of the residue side-chains of the IgG Fc models were analysed to 

determine if any residues were exposed to unfavourable environments. This was done 

with the web-based program VERIFY_3D (http://doe-mbi.ucla.edu/Services/ 

Verify_3D/) (Luthy et al 1992).

8.1.3 Results

8.1.3.1 Homology modelling of Sbi’s Ig-binding domains

The two Sbi Ig-binding domains were aligned to the B domain of SpA in the 1FC2 

structure (Figure 37). The Sbi domains were modelled onto this structure rather than 

using the previous models generated in Chapter 2 to conserve any changes in the 

structure that are the result of binding SpA to IgG Fc and that are present in the SpA- 

Fc complex, but are absent in the SpA-Fab complex.

8.1.3.2 Homology modelling of IgG Fc fragments

We used IgG sequences from eight mammalian, and a single avian species that were 

available in the sequence databases (corresponding to the IgGs tested in binding 

studies with Sbi in Chapter 2 (a sequence for goat IgG could not be found in the 

Pubmed database)). These sequences were aligned with the sequence of the IgG in the 

structure of the human IgG Fc -  SpA complex (Deisenhofer 1981). The sequence 

identity and similarity of these IgGs with the sequence of the human Fc template 

(1FC2) are indicated in Table 10. The sequences for the human and chicken IgGs 

shared only 35.4% identity. Of the mammalian sequences analysed, cow IgG was the 

least similar to human IgG (with 63.9% identity and 74.0% similarity), while rabbit 

was the most similar (with 73.1% identity and 80.3% similarity). These data are also
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Figure 38 Alignment of IgG sequences. The sequences indicated with * were used in the generation of 

IgG models.

shown in Table 10. The alignment of the mammalian IgGs (Figure 38) contained a 

two-residue insertion in most of the sequences between residues E388 and N389 of 

the human sequence (rabbit IgG was the only exception). This loop, however, is 

located at a position in the structure that is not likely to interfere with SpA and Sbi 

binding.

lLpmxTJ
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The chicken IgG model contains a short insertion in the same loop as the mammalian 

insertion, and a single residue deletion in another loop (residue E269, following to the 

human sequence) that is also unlikely to interfere with the binding to SpA and Sbi 

(Figure 38). Chicken IgG also contains a longer insertion, in a loop region located 

near the hinge region of the two Fc domains (between residues D399 and S400 in the 

human sequence; Figure 38). While in human IgG Fc this loop appears not to be 

involved in SpA binding, the resulting loop in the chicken IgG model is lengthened, 

and could interfere with the angle between the two constant domains and also affect 

the SpA binding site.

All modelled IgG structures were analysed with VERIFY 3D. This analysis revealed 

that, while most structures are very similar, certain IgGs have regions that differ from 

the template structure (human IgG Fc: 1FC2). These differences could be related to 

the differences in binding, as most of these areas involve regions on the protein 

backbone that compose the link between the C h 2 -C h 3  domains (residues S337 to 

R344 in the human sequence) (Figure 39).

Table 10 Relative sequence identity (as a percentage) o f  the IgG Fes used in this modelling study

Chicken
IgG

Cow
IgG2

1FC2
Guinea 

Pig IgG2
Horse
IgG6

Pig IgG4
Rabbit

IgG
Sheep
IgG l

Chicken IgG 
clone36 100 36 35 37 33 38 37 34

Cow IgG2 36 100 64 63 61 74 64 80

1FC2 35 64 100 71 69 72 73 68

Guinea Pig 
IgG2

37 63 71 100 62 67 69 68

Horse IgG6 33 61 69 62 100 68 63 64

Pig IgG4 38 74 72 67 68 100 70 73

Rabbit IgG 37 64 73 69 63 70 100 69

Sheep IgG l 34 80 68 68 64 73 69 100
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Figure 39 Verify 3D results for the IgG models. The result for all the IgG models are entirely in the 

upper portion of the plot, suggesting it has been correctly modelled (except for the first nine residues of 

the Chicken IgG sequence, however the first and last nine residues of all protein analysed by this 

method are meanless, see 6.1.1.1.2).

8.1.3.3 Analysis of the SpA and Sbi residues involved in the interaction with 

human IgG Fc

The program CONTACT was used to determine which pairs of residues interact 

between the Ig-binding protein and its IgG Fc ligand. The interactions detected in the 

SpA-Fc complex were compared to the interactions seen in the models of the Sbi-1 Fc 

and Sbi-2 Fc complexes, to determine whether the changes in the sequence of the 

three Ig-binding domains could affect the interaction between the two components of 

the complex. The interaction pairs are shown in Figure 40a for all three Ig-binding 

domain models (SpAB, Sbi-1, and Sbi-2) in complex with a human IgG Fc. The plots 

in Figure 40a show the interactions between the human IgG molecule and an Ig- 

binding domain. Residues 250 to 438 are the human IgG residues whilst residues 1 to 

31 are those of the Ig-binding protein. CONTACT (see methods and Chapter 2) was 

used to calculate those residues in the IgG molecule that are within a fixed distance 

(1.8 to 5.2A) of one in the Ig-binding domain. Residues within this distance are 

assumed to be interacting. The present of a green square in the horizontal row 

indicates that residue is interacting with the residue labelled at the top of that column.

Changes in the interaction patterns do not necessarily correspond to changes in the 

sequence of the Ig-binding protein; such changes could also be the result of changes
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Figure 40 (a) Interaction patterns for (i) SpA, (ii) Sbi-1 and (iii) Sbi-2 with human IgG Fc fragment, 

(b) 1FC2 showing the N terminal region wrapped around the IgG. Residues 250 to 438 are the human 

IgG residues while residues 1 to 31 are those of the Ig-binding protein. A green square indicates an 

interaction between the IgG residue and the residue in the Ig-binding domain.

elsewhere in the Ig-binding domain, resulting in the adjustment of the backbone of 

both components of the complex in the MOE energy minimisation program. The 

substitutions that appear to influence the interaction pattern are Q28K and K31R in 

Sbi-1 and FIR and Q28A in Sbi-2. Of these, the FIR substitution of Sbi-2 is probably 

of least interest as (1) this residue was not identified to interact with IgG in the NMR 

study of Gouda et al (1998) and (2) we believe that in the full length SpA molecule, 

the N-terminal of the B domain will not interfere with the binding of the Fc molecule 

as it does in the 1FC2 structure with the N-terminal part of the SpA molecule wrapped 

around the Fc molecule (Figure 40b). Of the remaining residues mentioned here, all
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were identified to be involved in binding Fc by Gouda et al (1998), however we are 

unsure as to how these affect the binding of Sbi to IgG in comparison to SpA.

8.1.3.4 Analysis of the IgG Fc residues involved in the interaction with the Ig- 

binding proteins

The same methods as described in 8.1.3.3, were used to determine where substitutions 

in the IgG sequence between the different IgG species resulted in changes in the 

contacts between the IgG molecule and the Ig-binding domain. Examination of the 

interaction patterns between the Ig-binding proteins and the models of the different 

species’ IgGs reveals numerous differences (the interaction data are shown in 

Appendix 4to Appendix 6). Comparison of the interactions between pairs of residues 

reveals that, while some interactions occur in all models, there are other interactions 

that only occur in a few models (which I termed ‘gain’ of interactions), or interactions 

that occur in most of the models, but not all (where an interaction occurs in 7 or more 

cases, any model lacking this interaction is termed as having ‘lost’ the interaction).

When the sequences are examined for differences, not all changes in the interactions 

between residues can be accounted for by differences in sequence. This suggests that 

differences in other regions of the Fc molecule may cause small changes in 

conformation at the Ch2 and Ch3 domain interface that perhaps affect the interaction 

with Ig-binding proteins without the sequence in the binding region itself being 

altered. It was however possible to identify several Fc residue substitutions affecting 

the interactions with the Ig-binding proteins. The interactions between the Fc models 

and the Ig-binding proteins of interest are listed in Table 11, Table 12, and Table 13.

Changes in the contacts between the IgG Fc molecule and the Ig-binding domain 

include the gain of an interaction Q6-F436 in the chicken IgG model complex, 

compared to the human Fc sequence: Y436, and lost another N24-S309 (Q309 in 

human Fc sequence). In the case of the F436Y substitution, it is not clear how the 

substitution changes the interaction. It could be due, not to the substitution, but re

arrangement of the backbone due to the larger number of substitutions present in the 

chicken IgG sequence. However the same substitution (F436Y) is found in the human 

IgG3 sequence in addition to a H435R substitution (from the sequence of Human 

IgG l), which also occurs in both chicken and human IgG3. Human IgG3 is unique
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among the naturally occurring human IgG subclasses in that it does not bind either 

SpA or Sbi (see chapter 3). The H435R substitution in the Chicken IgG model is not 

observed in any of the complexes with Ig-binding proteins, however it is observed in 

the interactions between the C h 2 -C h 3  domains. Therefore, while F436Y alone 

probably does not prevent binding, in combination with II435R, its effect could 

knockout SpA and Sbi binding. Indeed, Jendeburg et al (1997) showed the 

introduction of the H435R F436Y mutations into human IgGl eliminated its ability to 

bind SpA. The Q309S substitution probably causes the loss of the interaction with 

N24 in the Ig-binding domain due to the reduced size and length of the serine side 

chain in comparison to the glutamine side chain.

Table 11 Changes in interactions between the Fc homology models and SpA. Superscript numbers 

refer to interactions marked in Appendix 4.

Species Gained mutations Lost Mutations
Human IgG l (1FC2) K31-L3094

Chicken_IgG_clone36 K31-S3094
Q6-F43619

F9-E2501
N24-S3092
Q28-S3093

Cow_IgG2

Guinea_Pig_IgG2

I12-L314*
E20-R31511
R23-R31512
N24-R31513
Q6-V43619

Horse_IgG4 F1-A42614

Horse_IgG6

E20-R3146
E20-R3147
N24-R3148
F1-T43515

L13-T43517
H14-T43518

F9-T43516

Mouse_IgGl I12-L3149
Q6-H43619

Pig_IgG4

Rabbit_IgG

K31-T3094
N19-R31510
E20-R31511
R23-R31512
N24-R31513

N24-T3092
Q28-T3093

Sheep_IgGl H14-T3143
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Table 12 Changes in interactions between the Fc homology models and Sbi-1. Superscript numbers

refer to interactions marked in Appendix 5.

Species Gained mutations Lost Mutations
Human IgG l (1FC2) R 31-309'

Chicken_IgG_clone36

R31-2522
R31-2554
L13-3108
Y l-42619
Q6-43624

F9-2501
N24-3095
R31-3097

Cow_IgG2 Q6-254J L13-3141J

Guinea_Pig_IgG2

L13-3150
E20-31516
R23-31517
N24-31518
Q6-43624

Horse_IgG4 E20-31110 
R23-31111

F9-311y
Y l-43421

Horse_IgG6

Y10-314u
H14-31414
L13-31515
E20-31516
R23-31517
N24-31518

F9-2501
F9-43522

H14-43523

Mouse_IgGl

Q6-2543
R31-2554
K28-3106
L13-31515
Y 10-43120
Q6-43624

Pig_IgG4

Rabbit_IgG

N24-309"
E20-31516
R23-31517
N24-31518

Sheep_IgGl R31-2554

Of all the interactions lost or gained in the Fc models, the only amino acids for which 

a pattern can be found between the side chains present and the level of binding 

observed in Chapter 3 is residue 315 (see Table 14 for the identity of this residue in 

all models). The role of side chain of residue 315 appears to be the strongest in 

determining the pattern of binding. Several of the Fc models have gained an 

interaction for residue 315 with at least one of the Ig-binding domains, however 

interactions involving residue 315 are absent in the Fc models for human (1FC2), 

chicken, cow, horse IgG4 and sheep. This amino acid is the most variable residue 

detected in the Fc-Ig-binding protein interface. We find that there is a strong
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T a b le  13 C hanges in  interactions betw een the Fc hom ology m odels and Sbi-2. Superscript numbers

refer to interactions marked in Appendix 6.

Species Gained mutations Lost Mutations
Human IgGl (1FC2) K31-V3084

Chicken_IgG_clone36
K31-D256J
R1-M42614
Q6-F43618

N24-S3095
K31-S3097

Cow_IgG2 R1-V42614

Guinea_Pig_IgG2
K23-R31511
N24-R31512
Q6-V43618

Horse_IgG4 F9-V2501 F9-K3118

Horse_IgG6

Y10-R314*
K23-R31511
N24-R31512
I27-R31513
R1-V42614
R1-H43416
R1-T43517

M ouse_IgGl

F9-V2501
K31-L2552
A28-M3096
L13-N31510
K23-N31511
R1-L42815
Q6-H43618
R1-E43819

Pig_IgG4 K23-N31511

Rabbit_IgG
K13-R3151U
K23-R31511
N24-R31512

N24-T3095

Sheep_IgGl

correlation between the residue type at position 315 and the binding characteristic 

described in chapter 3, across all ten species. We propose that large charged residues 

such as arginine and asparagine are required for the high binding levels while the 

small side chains such as glycine and serine are linked with low binding species.

In ten Fc models, residue 315 exists as five different residues. The species for which 

an interaction was observed in our homology models of the Ig-binding domain -  Fc 

complexes are Guinea pig IgG2 (R315), horse IgG6 (R315), mouse IgGl (N315), pig 

IgG4 (N315), and rabbit IgG (R315). For all these species high levels of binding was 

observed, except for horse IgG6. The only species to show high levels of binding 

(Chapter 3) not in this list is the human Fc model determined by Deisenhofer (1981).
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Table 14 Summary of residues present at position 315 in the IgG models. The affinity of Sbi and SpA 

for the different serum IgGs was determined in Chapter 3. * marks the IgG sequences used in the 

generation of the models. & Human IgG3 shares the high binding residue at position 315 found in the

other human IgG sequences, however it lacks SpA or Sbi binding due to the present of the substitutions 

H435R and F436Y.

IgG species and subclass Residue 315 Relative binding affinity 
for serum IgGs

Horse IgGl S

Low binding
Horse IgG6* R
Horse IgG4* S

Horse IgG7 S
Horse IgG3 N

Sheep IgGl G Low binding
Cow IgGl G

Low bindingCow IgG2* G

Cow IgG2a G
Cow IgG3 G

Pig IgG2a N
High bindingPig IgG2b N

Pig IgG4* N
Human IgGl (1FC2) D

High binding
Human IgGl N

Human IgG4 N
Human IgG2 N

Human IgG3&
Rabbit IgG* R High binding
Mouse IgG2a S

High bindingMouse IgG2b S

Mouse IgG3 R
Mouse IgG 1 * N

Guinea Pig IgG2* R High binding
Chicken clone 36* S Low binding

Here, the residue 315 is an aspartate, while in the other human Fc sequences listed in 

Table 14, this residue is an asparagine. As N315 is also found in other IgG species, 

this supports Human IgG being a high binding species based on sequence alone, as 

shown in the binding studies (Chapter 3). It is assumed that the low binding for horse 

serum IgG, in the case of the IgG6 subclass, despite the presence of R 315 is due to the 

presence of a substitution at position 314 (L314R), with the larger arginine side chain 

disrupting the interacting between the IgG and the Ig-binding domain.
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Table 15 Differences in interactions between the CH2 and CH3 domains between the IgG models.

Numbers in superscript refer to squares in Appendix 3.

Species Gained interactions? Lost interactions?
Human IgGl (1FC2) NONE

Chicken_IgG_clone36

S246-E378J
G249-E3786
E250-D3767
T340-P37413
P342-P37414
N339-R37516
N339-D37619
N339-F40421
E250-R43526
T310-R43528

T340-R37310
G341-R37311
R338-P37412
Y252-V42823
R338-E43025
Y252-R43527

Cow_IgG2 K246-D3783
R338-P374iZ
R338-E43025
T314-H43529

Guinea_Pig_IgG2

K246-H378J
P247-A3754
A342-N3718
K338-A37515
T339-A37516
K340-A37517

T339-P398/G40220
T339-S40421
R315-E43024

P247-H3785

Horse_IgG4

D249-D3780
V250-D3767
T340-P37413
P339-D37619
P339-Y40421

Horse_IgG6
K246-N378J
E342-P37414
A339-P37516

Mouse_IgGl

T339-E37510
T339-D37619
V250-H43526
L251-H43630

T339-F373*
K340-F37310
G341-F37311
P247-L42822

Pig_IgG4 K246-D3788
Rabbit_IgG NONE

Sheep_IgGl

P244-Y3761
P244-Y3762
T339-D37516
S337-Y37618
T339-Y37619

R338-E43025
T314-Y43529
T252-T43631
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Figure 41 (a) Summary of interactions observed in Appendix 1 between the IgG CH2 and CH3

domains. The numbered squares refer to the interactions listed in Table 15. Interactions detected in all 

models are marked in black. Changed interaction pattern: marked in red do not correspond to changes 

in sequence; blue corresponds to changes in the CH2 domain; green to changes in the CH3 domain; 

yellow to changes in both domains, (b) Sequence of the IgG models in the regions identified to be 

involved in interacting with the other domain. Conserved residues are highlighted in yellow. Residues 

conserved in all sequences have a black mark under them.

8.1.3.5 Analysis of the interactions at the CH2 and CH3 interface of the IgG Fc 

models

The interactions between the Ch2 and Ch3 domains and information on the loss or 

gain of interactions is shown in Appendix 2.

Analysis o f  the interaction data showed numerous changes in the pattern of 

interactions between the two C h domains in all m odels (listed in Table 15). However
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not all variations in the interactions between the C h 2  and C h3  domains are due to 

changes in side chains. This can occur if a substitution in the sequence causes a change 

in the conformation of the backbone at a different point in the sequence. Table 15a shows all 

interactions between the Ch2 and Ch3 domains, and indicates which interactions are 

the result of residue substitution, and those interactions which are not.

There are unique sequence changes that could be affecting the interactions between 

the two domains. These substitutions observed in the Fc models are shown in Table 

15. The Chicken Fc model contains several interactions that appear to be affected by 

sequence substitutions. These include the gain of interactions at E250-D476; T340- 

P374; E250-R435; and T310-R435, and loss of interactions at T340-R373 and Y252- 

V428. Interaction changes in the other models include residues T339 (Guinea pig 

IgG2 and Mouse IgG l), T340 (Horse IgG4), H436 (Mouse IgG l), and Y376 (Sheep 

IgGl).

8.1.3.6 Homology model of SpAED in complex with multiple IgG molecules

No structure of SpA determined by a structural method exists with more than one Ig- 

binding domain in a single polypeptide chain. We therefore generated our own using 

the SpA structure of the D domain in IDEE, and linking the two identical molecules 

together in O. The sequence of second Ig-binding domain was altered to match that of 

the SpA A domain (the sequence of the model is shown in Figure 42a). The PDB 

structure lOQO (Raju et al 2003) contains the Fc fragment of an IgG in complex with 

a Z domain bound to each polypeptide chain (Figure 35b: the Z domain is the 

artificial SpA Ig-binding domain). The two-domain SpA model was rotated onto each 

of the Z domains and a second copy of lOQO moved onto the other Ig-binding 

domain. The finished structure is shown in Figure 42b. This structure clearly shows 

that it is possible to fit two Fc molecules sandwiched between two SpA molecules in a 

fashion that corresponds to the Hanson and Schumaker model (Figure 35).
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Figure 42(a) Sequence alignment o f the SpA and Sbi tw o domain structures used in the generation o f  

the large IgG com plexes, (b) Predicted structure o f  SpA in com plex with 2 IgG m olecules, (c) 

Predicted structure o f  Sbi in com plex with two IgG m olecules.
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8.1.3.7 Homology model of Sbil-2 in complex with multiple IgG molecules

A similar model of Sbi in complex with IgG was also generated. The above complex 

of SpA and IgG was used as a template. Sbi was built onto each of the two SpA 

molecules in the complex. However the region of peptide chain linking the Sbi Ig- 

binding domains together is shorter by four residues than the linker in SpA. Therefore 

the extra residues were removed, and as a consequence the two-bound Fc molecules 

are positioned closer together. The resulting structure (Figure 42c) shows that such a 

complex cannot exist without significant steric clashes between the bound Fc 

molecules.

8.1.4 Discussion

In this chapter we used molecular modelling to examine and predict the amino acids 

and their interactions at the binding interface in complexes between IgG Fc fragments
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and Ig-binding proteins Sbi and SpA. Since this interaction is located near the 

junction between the C h 2  and C h 3  domains, we also included the residues at this 

domain interface and the interactions that may affect binding.

8.1.4.1 Prediction of the IgG Fc residues that are important in the complexes 

with SpA and Sbi

The examination of the interface of the C h 2  and C h3  domains revealed a number of 

interactions that differ between the various IgG Fc models. For example the sheep 

IgGl model is the only one to contain a tyrosine at position 376, all other models have 

an aspartate at this position. The tyrosine side chain is larger and bulkier than the 

aspartate side chain, and probably affects the tilt angle between the Ch domains, 

thereby affecting the distance between the two halves of the SpA binding site.

Two substitutions in the IgG Fc protein correspond to observed binding levels to the 

Ig-binding protein.

The interaction pattern analysis identified residue 315 to be important in the binding 

of IgG to Sbi and SpA. At position 315, an arginine was found in three models 

(Guinea pig, horse IgG6, and rabbit IgG) while an asparagine (pig, mouse and human) 

was found in three others. Serum IgGs from all these animal species were all shown to 

bind strongly to both Sbi and SpA. The serum IgGs that show low binding affinity for 

SpA and Sbi in Chapter 3 (horse, sheep, cow and chicken) have either a glycine or a 

serine at position 315.

Positions 435 and 436 also affect binding to Sbi and SpA. Almost all sequences have 

the residues tyrosine (435) histidine (436). Guinea pig IgG2 has the substitution 

Y435V, however it is not possible to determine from the binding studies on the serum 

IgG whether this substitution affects binding. A clear relationship however could be 

determined for both human IgG3 and chicken IgG. While a model for human IgG3 

was not generated, we showed that this subclass did not bind to either Sbi or SpA. 

Chicken IgG also failed to show any binding to Sbi and SpA. And in its model, the 

substitutions Y435F H436R were shown to affect the interaction pattern. It therefore 

appears that these substitutions can completely eliminate all binding of an IgG to Sbi 

and SpA. This is supported by the work of Jendeberg et al (1997), who showed that
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the introduction of the Y435F H436R substitution into IgG l eliminates its ability to 

bind SpA. It is therefore possible that other IgGs, both mammalian and non

mammalian, that do not bind SpA (or Sbi) could share this substitution.

The type of residue present at positions 315, 435 and 436 give the only patterns that 

we detected that could be clearly correlated to the binding results already obtained in 

Chapter 3. Other substitutions could also affect binding, but to determine whether any 

of the identified substitutions do in themselves affect binding to Ig-binding proteins, it 

would be necessary to carry out site directed mutagenesis on an IgG molecule.

8.1.4.2 Predictions on the formation of insoluble complexes of Sbi and IgG

Comparisons of the SpA complexes with Fc and Fab fragments (Chapter 2) to the 

sequence of the Sbi Ig-binding domains strongly suggested that Sbi can only bind to 

the Fc portion of an immunoglobulin. This is confirmed by the binding studies 

described in Chapter 3 where the results of the SE experiments showed that Sbi only 

binds to the Fc fragments of digested IgGs. It therefore appears that Fab binding is not 

an important factor in the formation of large complexes as Sbi can form large 

insoluble complexes with only the Fc region of IgGs. SpA however required the Fab 

region to be present for the precipitation of IgG to occur (see Figure 27).

Hanson and Schumaker (1984) proposed a model for the formation of the large 

soluble complexes seen with rabbit serum IgG in the presence of SpA composed of 2 

SpA molecules and 4 IgG molecules. The most likely model for such a binding ratio 

is a complex of four IgG molecules stacked in the same orientation, with SpA 

molecules running up and down each side of the Fc molecules (Figure 35).

We generated a 2-domain model of SpA, by linking adjacent SpA domains together 

based on the crystal structure of IgG with 2 Z-domains bound (Z-domains are the 

artificial protein A domains, Raju et al 2003). This model shows that it is possible to 

fit IgG molecules between the Ig-binding domains of two SpA molecules (Figure 

42b).

We replaced the SpA molecules with Sbi on the 2-domain model we had generated. 

However, unlike SpA, it was not possible to get the Sbi domains far enough apart to
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Figure 43(a) The SpA/IgG complex from Figure 35a with additional Fab regions present (green) on 

IgG Fc molecules, (b) Crosslinking of the SpA/IgG complexes via Fab. (c) Representation of the 

Sbi/IgG complex from Figure 42, showing the clash of the IgG Fc molecules, (d) Possible mechanism 

of cross-linking IgG Fc (yellow, Fab regions removed) with Sbi molecules (blue).

(b)

(c)

prevent overlapping of the IgG side chains on the adjacent IgG faces (Figure 42c and 

Figure 43c) strongly suggesting that Sbi cannot form such complexes, but it could 

form complexes with other arrangements of the subunits.

The only question remaining regarding the SpA-IgG complex is whether this is 

important in the formation of precipitation. This question is important as Hanson, 

Philips, and Schumaker (1984) carried out their experiments with rabbit IgG. Our 

experiments with rabbit serum IgG and SpA showed that this species is unique as it 

was the only example where high molecular weight complexes were formed, but 

remained completely soluble. In addition SpA requires the presence of the Fab region 

of the IgG molecule for precipitation to occur with human IgG, suggesting the SpA 

does not bind rabbit IgG via its Fab regions. (The previous work of Kronvall et al 

(1970) did show precipitation of rabbit sera by SpA, but as their SpA was purified 

from S. aureus cultures, it could have been contaminated with Sbi (both molecules are
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of similar size, and both would bind to an affinity column based on SpA’s affinity for 

IgG). Our SpA and Sbi are both recombinant proteins and should not contain any 

other S. aureus proteins.

Our immunodiffusion results (Chapter 2) suggest that SpA:Fc complexes indeed form 

the structure predicted by Hanson and Schumaker (1984, Figure 35a). This is 

supported by the modelling studies presented here. We predict though that the 

formation of this complex is not sufficient for precipitation to occur. We suggest that 

this complex forms with SpA in the presence of rabbit IgGs, assuming that SpA does 

not bind to the Fab regions of rabbit IgGs. In species such as human or pig, we think 

precipitation is triggered because, although the complex structure predicted here is 

formed between the Fc and SpA, binding also occurs between SpA and the Fab 

regions, cross-linking the stacked complexes, and causing precipitation (see Figure 

43b).

The precipitation of IgG by Sbi could also be the result of crosslinking by IgG 

molecules. Rather than stacking of IgGs, and crosslinking via the Fab region, as we 

predicted to occur for the SpA Fc complexes, we envisage that Sbi can crosslink IgG 

molecules via the Fc region, as shown in Figure 43c&d.

However the individual Sbi Ig-binding domains, Sbi-1 and Sbi-2, can also precipitate 

IgG (see Chapter 3). Analysis of Sbi-1 by size exclusion chromatography and SAXS 

(Chapter 6) shows that this construct has a tendency to oligomerise. Could this have a 

role in the ability of the Sbi-1 and Sbi-2 to precipitate IgG?
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9 Chapter 5
9.1 Sequence comparison of Immunoglobulin binding proteins SpA 

and Sbi isolated from different animal species

9.1.1 Introduction

As we have described in Chapter 3, Sbi and SpA show different binding 

characteristics to the IgGs isolated from serum of different animal species. Sbi for 

instance binds particularly well to human and rodent (rabbit, Guinea pig and mouse) 

serum IgGs, while SpA favours human, pig and Guinea pig serum IgGs and forms 

large soluble complexes with rabbit serum IgG. W e have also found that both SpA 

and Sbi display poor affinity for serum IgGs from species such as goat, horse and 

cow. S. aureus, however , is known to cause infections and disease in these domestic 

animals. A well-known example is mastitis in dairy cattle. This raises questions about 

the role of Ig-binding proteins in infection of these animal species. In the previous 

chapter (Chapter 4), we have examined the molecular origin of the observed 

differences in IgG binding, but in our studies to this point, all binding experiments 

have been carried out with Ig-binding proteins cloned from a strain of S. aureus 

isolated from humans. In addition, the available SpA and Sbi sequences used in the 

analysis in Chapter 4 are obtained from S. aureus strains isolated from human hosts. 

Are the SpA and Sbi genes from strains infecting animal hosts different from the 

strains infecting humans? Could it perhaps be that Sbi and SpA from S. aureus strains 

specifically infecting domestic animal species have acquired specific affinity for IgGs 

from these animals?

In order to address these questions we have sequenced the Sbi and SpA genes from S. 

aureus strains isolated from a number of different species and analysed them for 

sequence changes and the functional implications of these changes. The sequence data 

are also used to assess the evolution of SpA and Sbi genes relative to their sequence 

type and host, and to investigate selective pressures that may act on these genes.

- 114-



Table 16 Primers for sequencing the Sbi and SpA genes

Primer
Set

Gene
Primer sequence (5’ - 3’)

1 F o r w a r d  - CGC TTT TTT ACA TAG TTA ACA CTA

R e v e r s e  - GGC TTC TAT CAG GGT TTT CTT TAA

2
Sbi

F o r w a r d  -  

R e v e r s e  -

GAC

CCT

CGA

AAT

CGT

AAT

GTT

TTA

GCA

GAT

CAA

TGA

CA

GGA ACC

3 F o r w a r d  - GAT GCT GAA AAG AAA GTG GCG

R e v e r s e  - CGA TGT AAG GAT TAT TTA ACA AG

4 F o r w a r d  - TTT TAG TAT TGC AAT ACA TAA TTC G

R e v e r s e  - CTT TGG ATG AAA CCA TTG CG

5
SpA

F o r w a r d  - GGT GAA GCT AAA AAA TAA AAC G

R e v e r s e  - GCT CAC TGA AGG ATC GTC

6 F o r w a r d  - GAA GAA CAA CGT AAC GGC

R e v e r s e  - TGA TAA GAA TCA TCA AAA TGC

9.1.2 Methods

9.1.2.1 PCR amplification of the Sbi and SpA genes

The S. aureus strain collection used for sequencing was provided by Bernard Poutrel, 

INRA, Pathologie Infectieuse et Immunologie.

The PCR mix consisted of 5jll lOx Mg2+ free buffer, 5|il MgCl2 , l |l l  lOmM dNTPs, 

0.2|il Taq polymerase, lji.1 of each of the two primers at lOOpmol, 0.5|il of DNA 

template, and made up to a reaction volume of 50(1.1 with SDW. A heating protocol of 

5 minutes at 95°C followed by 34 cycles of 95°C for 30 seconds, 50°C for 30seconds 

(55°C for primer set 1 and 2), 72°C for 60 seconds, and finished with 10 minutes at 

72°C.

Primers are shown in Table 16. Forward primer 4 and reverse primer 6 were used to 

amplify SpA, while all six SpA primers were used for sequencing it due to the 

repetitive nature of the gene. Sbi was amplified in three fragments with the 6 different 

primers. The presence of the correct fragments from the amplification reaction was 

checked with a 0.8% agarose-ethidium bromide gel, run for 15 to 20 minutes at 200 to
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250 volts. Sbi reactions produce three fragments while the SpA reactions produced a 

single fragment.

The PCR products were purified by adding 50(il of 95% ethanol and 2 |il sodium 

acetate to each sample, and frozen for one hour. The samples were centrifuged at 

3500rpm for one hour to pellet the PCR products. The supernatant was removed by 

inverting the plates onto paper towel and centrifuged at 500rpm for one minute. The 

pellets were washed in 150jxl of 70% ethanol and centrifuged at 3500rpm for 30 

minutes. The supernatant was removed by inverting the plates onto paper towel and 

centrifuged at 750rpm for 1 minute. The samples were left to air dry for 10 minutes. 

The pellets were resuspended in 15pl of distilled water, vortexed for 2 to 3 minutes 

and these samples were spun at lOOOrpm.

9.1.2.2 Sequencing reaction

l |i l  of primer (either forward or reverse) was added to 2(il of the purified PCR 

product and 2pl of Big dye (Version 2.0, Applied Biosystems). Each Sbi PCR product 

reaction required two reaction mixtures (one forward primer, and one reverse primer), 

while the SpA PCR products required six reaction mixtures (three forward primers, 

and three reverse primers). The resulting products were purified as described above, 

except they were not resuspended in water, but were sealed and stored at -20°C until 

they were loaded onto the ABI Prism 377 DNA sequencer.

9.1.2.3 Databases and programs

Seqmen program (DNASTAR, http://www.dnastar.com/web/rl3.php) was used to 

trim and aligne the obtained sequences. Sequences were aligned using the ClustalX 

programme followed by manual inspection of variable sites.

MEGA (Molecular Evolutionary Genetic Analysis) version 2.1 software (Kumar S., 

Tamura K., Jakobsen IB., Nei M., Arizona State University, Tempe, 2001) was used 

to identify variable sites and calculate ds/dn ratios by the modified Nei and Gojobori 

method (Nei and Gojobori 1986) with Jukes Cantor correction. This program was also 

used to translate the sequences for use in protein modelling.
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PAUP program (Phylogenetic Analysis Using Parismony) version 4.0b 10 was used to 

construct Neighbour Joining Trees and maximum likehood trees (Swofford 2000).

Table 17 S. aureus strains from which the Sbi and SpA genes were sequenced. Those strains for which 

a gene was successfully sequenced are indicated (X).

Sbi SpA
8325 human X X
C101 human X X

D2-95.40 Cow X X
D4-121.24 Goat X X
D4-135.45 Cow X X
D 8-452.ll Rabbit X X
D8-496.17 Rabbit X
D8-520.25 Pig X
D8-520.26 Pig X X
D8-522.05 Pig X X
D8-522.13 Poultry X X
D8-522.16 Poultry X
D8-522.18 Poultry X X
D8-526.12 Rabbit X X
D8-526.16 Pig X
D8-534.30 Cow X
D8-542.04 Ewe X
D8-610.13 Ewe X X
D8-660.22 Goat X
D9-786.04 Goat X X
D9-786.05 Ewe X X
D 9-786.ll Ewe X

H783 human X X
MRSA252 human X X
MSSA476 human X X

MW 2 human X X
N315 human X X

Etoile cow X X
D8-524.04 Poultry X
D8-526.03 Rabbit X
D8-660.22 Goat X

H560 human X
H116 human X
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The Bellerophon server (http://foo.maths.uq.edu.au/~huber/bellerophon.pl) was used 

to identify chimeric sequences (Huber et al 2004).

Datamonkey (www.datamonkey.org) was used to detect any areas of gene sequence 

that are subjected to positive or negative selection (Kosakovsky, Pond and Frost 

2005).

9.1.3 Results

9.1.3.1 Analysis of gene sequences of Sbi and SpA from S. aureus strains 

isolated from goat, cow, horse, rabbit, sheep, human and poultry

Sequences of Sbi were obtained from a collection of 23 strains, while 21 strains gave 

sequences for SpA. 5 additional sequences, available in sequence databases, were 

obtained from human S. aureus strains 8325, MW2, N315, MRSA252, and 

MSSA476. The strains used and the organisms from which they were isolated are 

listed in Table 17. All Sbi nucleotide sequences display conserved gene lengths of 

1311 or 1314 nucleotides, while the SpA sequences showed much greater variability, 

with sequences between 1293 and 1624 nucleotides long.

9.1.3.1.1 Sbi

Sbi sequences show high levels of conservation in both nucleotide and protein 

sequence. A total number of 140 nucleotide changes were observed, giving rise to 60 

amino acid changes and some synonymous (silent) substitutions. Interestingly, most 

of these changes are restricted to Sbi’s C-terminal region. 111 nucleotide changes (47 

amino acid changes) out of 140 in total (60 amino acid changes) were observed in this 

region. The number of substitutions in each region of Sbi are shown in Table 18. For 

the N-terminal part of the protein, the signal sequence of Sbi has a single residue 

change occurring in only one strain (S7X). The first Sbi Ig-binding domain has two 

residue changes, one occurring in a single strain (V48I), and the other (N96K) 

occurring in four of the analysed strains. For the second Sbi Ig-binding domain no 

substitutions were found, while the region 151 to 203 (to be referred to as domain 3) 

contains one substitution in a single strain (D163G). The (32GPI binding region has a 

number of substitutions, most of which occur only once (S218T, N222Q, E223K,
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Table 18 The number of mutations at protein level in each o f the Sbi domains, the length o f each 

domain, and the number o f mutations as a percentage of the domain residues.

Sbi domains No. o f mutations
No. o f residues in

Number of 
mutations as a

domain percentage of the 
domain residues

Signal peptide 1 45 2%

1st Ig-binding 
domain 

2nd Ig-binding 
domain

2

0

55

56

4%

0%

Domain 3 1 49 2%

JJ2GP1-binding 
domain

8 55 15%

Proline rich region 2 41 5%

C-terminal 45 132 34%

K224S and Q249H), while others occur in four different strains (V244I, K245Q, and 

E246K). One substitution (E223V) occurs in eleven strains. The polyproline repeat 

has two substitutions: A284V occurs in three strains, while K288Q occurs only once. 

None of the analysed substitutions shown any pattern related to a specific host from 

which the strain was isolated.

9.1.3.1.2 SpA

As with Sbi, the most variable region of the SpA gene is located in the C-terminal 

part, but this variability is restricted to the first portion of the C-terminal region, 

comprised of the proline octa-repeat region. This region is characterised by the 

octapeptide repeat motif XKPGKEDZ (where X is G or N, while Z can be K or N). 

The number of repeats is highly variable, ranging from 4 to 16 in the strains 

sequenced. Other than the octapeptide repeat region, the C-terminal of SpA in the 

strains sequences is completely conserved (see Table 19 for the number of changes in 

each domain). There appears to be no relationship between the number of proline 

repeats and the species from which the S. aureus strain was isolated (Table 21). The 

SpA gene is well conserved in the Ig-binding domains, with between 9 and 23 

nucleotide changes and 2 to 6  amino acid changes in any one domain. However, while 

the sequences of these domains are conserved, not all sequences contain all 5 Ig- 

binding domains. In several SpA sequences one domain was missing; Table 21 shows 

the Ig-binding domains found in each strain as well as the number of octapeptide
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Table 19 The number of mutations at the protein level found in each o f the SpA Ig-binding domains, 

the length of each domain, and the number o f mutations are shown as a percentage o f the domain 

residues.

Sbi domains No. of mutations
No. of residues in 

domain

Number of 
mutations as a 

percentage of the 
domain residues

E 2 57 4%

D 5 61 8%

A 4 58 7%

B 5 58 9%

C 4 58 7%

repeats. Domain D is absent in strains D 8-452.ll, D8-526.03, and D8-610, while 

strains D2-95.40, D8-526.03 and H560 are missing domain B. Strain HI 16 is missing 

part of domain C.

Two strains (HI 16 and D8-610.13) contain a single nucleotide insertion 3’ after the 

Ig-binding domains, resulting in a frameshift and subsequent mis-translation. Whether 

this is a genuine frameshift or a sequencing error needs to be clarified.

9.1.3.2 Synonymous and non-synonmous substitutions

Ds/dn ratios for the sequences were obtained. This is ratio between of the number of 

synonymous (silent) mutations and the number of nonsynonyous (changes in the 

DNA sequence that result changes in the amino acid sequence) mutations. This 

suggested that there is no selection pressure on either the whole genes of Sbi or SpA, 

or any of the domains contained within the genes (except for the P2GPI binding 

domain of Sbi for which a ds/dn ratio of 0.786 was found, as shown in Table 20).

Table 20 Ratio o f synonymous and non-synonymous changes in each gene or domain. A ratio o f less 

than one indicates positive selection, a value if  1 means there is no selection pressure.

Gene o r Domain ds/dn
Sbi

•  B2GPI binding domain
• C-terminal 

SpA
•  Ig-binding domains

2.103
0.786
2.056
3.166
9.250
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Table 21 The Ig-binding domains of SpA that are present in each strain (indicated with x), and the 

number o f proline octapeptide repeats for each strain. HI 16 (&) contains part o f domain C.

SpA Ig-binding domains present 

E D A B C

No. of 
Proline 
repeats

C101 Human X X X X X 11

D2-95.40 Cow X X X X 12

D4-121.24 Goat X X X X X 4

D4-135.45 Cow X X X X X 12

D 8 -4 5 2 .ll Rabbit X X X X 10

D8-520.26 Pig X X X X X 10

D8-522.05 Pig X X X X X 12

D8-522.13 Poultry X X X X X 12

D8-522.18 Poultry X X X X 10

D8-526.03 Rabbit X X X X 8

D8-660.22 Goat X X X X X 4

D9-786.04 Goat X X X X X 10

D9-786.05 Ewe X X X X X 10

Etoile cow X X X X X 4

H116 Human X X X X & 7

H783 human X X X X X 13

D8-524.04 Poultry X X X X X 13

D8-526.12 Rabbit X X X X X 12

D8-610.13 Ewe X X X X 16

H560 Human X X X X 12

N315 Human X X X X X 12

MW2 Human X X X X X 10

M SSA476 Human X X X X X 10

MRSA252 Human X X X X X 13
8325 Human X X X X X 13

9.1.3.3 Phylogenetic trees

Phylogenetic trees were generated to show the evolutionary relationship between the 

SpA and Sbi genes in the different strains sequenced. Two types of tree were 

generated, a maximum likehood tree and a neighbour joining tree. Trees generated for 

both the Sbi and SpA genes show that the sequences group to sequence type of the S. 

aureus strain; there is no apparent pattern relationship with the host from which the 

bacterium was isolated. The maximum likehood tree of Sbi is shown in Figure 44 and 

the neighbour joining tree of SpA is shown in , and the sequence types are also 

indicated.
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Figure 44 Maximum likehood tree of Sbi, generated by PAUP program (Swofford 2000).

C101 - human (ST30)

D2-95.40 - cow (ST97) 

D4-121.24 - goat (ST97) 

D4-135.45- cow (ST97) 

Etoile -  cow (ST71) 

D8-520.25 - pig (ST9) 

D8-520.26 - pig (ST9) 

D8-660.22 - goat 

H 783-hum an (ST15)

| -  D8-452.11 - rabbit (ST121)

D8-542.04 - ewe (SLV133)

D8-610.13 - ewe (SLV133)

D9-786.11 - ewe (ST 121)

D9-786.04 - goat (SLV133)

D8-496.17 -rabbit (ST407) 

D8-522.18 - poultry (ST407)

D8-526.12-rabbit (ST121)

83?S - human tSTftt

D8-522.13 - poultry

D8-522.16 - poultry (ST221/SLV5) 

  D9-786.05 - ewe

N315 - human (ST5)

D8-534.30 -  cow (ST573) 

MW2- human (ST1) 

MSSA476 - human (ST1)

D8-660.22 - goat

D8-526.16 - pig (ST30)

MRSA252 -  human (ST36) 
—  0.005 substitutions/site

9.1.3.4 Functional implications of the amino acid substitutions in the Ig-binding 

regions of the SpA and Sbi genes

Consensus sequences were generated for each of the SpA Ig-binding domains, and 

used to generate an alignment of the domains. This shows that there are amino acid 

substitutions at 15 positions in these domains out of 58 residues. The alignments are 

shown in Figure 46. Also marked are the positions of the three helices as they occur in 

the NMR structure of SpA domain B (PDB code: 1BDD). This alignment indicates 

that few of the changes found occur in the first two helices in the domain.
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Figure 45 Neighbour joining tree of SpA, generated by PAUP program (Swofford 2000).

0 9 - 7 8 6 . 0 5  e w e

8 3 2 5  • h u m a n  ( S T 8 )

0 8 - 5 2 6  12 - rabb it  ( S T  1 2 1 )  

  N 3 1 5  - h u m a n  ( S T 5 )

0 8 - 5 2 2  .13 - p o u lt ry

---------------------------  H 7 8 3  - h u m a n  ( S T 1 5 )

.  M S S A 4 7 6  - h u m a n  ( S T 1 )

L  M W 2  - h u m a n  ( S T 1 )

D 4 -1 3 5  45 - cow ( S T 9 7 )

D2 -9  5.40 - cow ( S T 9 7 )

D 8 - 5 2 2 . 0 5  - pig ( S T 9 7 )

0 8 - 6 6 0 . 2 2  - g oa t

0 8 - 5 2 0  .26 pig ( S T 9 )

H 116 - h u m a n  ( S T 9 )

H 5 6 0  - h u m a n  ( S T 1 2 1 )

|------- 0 8 - 4 5 2  .11 - rabbit  ( S T  1 2 1 )

Id 8 - 5 2 6 . 0 3  - ra b b it  ( S T  1 2 1 )

D 8 - 5 2 2  18 - poul try ( S T 4 0 7 )

D 8 - 5 2 4 . 0 4  - po u ltr y

 D 8 - 6 1 0  .13 - e w e  ( S L V 1 3 3 )

D 9 - 7 8 6  05 - e w e  

.  M R S A 2 5 2  - h u m a n  ( S T 3 6 )

C 1 0 1  - h u m a n  ( S T 3 0 )

D 4 -1 2  1 . 2 4  - g o a t  ( S T 7 1 )

Etoi le - cow ( S T 7 1 )

Those that do lie in this region, occur either in the loop regions or at the ends of the a- 

helices, substitutions N11H, M12L (both domain A) and T16N (domain C) are both 

predicted to be part of the loop region between helices 1 and 2 (see Figure 46) while 

E17D (domain C) and E18A (domain D) occur at the N-terminus of helix 2. More 

importantly, only one change occurs in the residues identified to be involved in

a l  a2 a3

E A A . . . . O H D E A Q G N A F V E  l

3  2 S S S 3 3

L H M P N L N E E O R N G F  1 O 5  I  A It

8  t: 

D P  5 0 s  a  H l  L A E B J  K l  H J  8  O

S I 5 2  

A P K

D
K

A D A Q O N N *
0
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Figure 46 Alignment of SpA Ig-binding domains with the substitutions that occur in the different 

strains highlighted. The positions of the helices are marked.
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Figure 47 The sequence of Sbi with the substitutions at each position shown with the number of strains 
in which that that substitution occurs.

Fc-binding (as identified by Gouda et al 1998); this is in the A domain at residue 

N 11H, and this substitution results in the presence of an histidine which occurs in 

domains B and C at this position. The alignment shows that the third helix is much 

more variable in its sequence. As a number of these changes occur in the residues 

involved in the binding of Fab (Meininger et al 2000), this could imply that they are
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perhaps important in determining the Fab Vh chain specificity in different host 

species.

Compared to SpA, the N-terminal region of the Sbi sequences is much more 

conserved at the protein level. There are only 14 changes in the first 304 residues 

(including the signal peptide), none of these changes occur in more than 4 strains 

(except at residue 223). The C-terminal region, in contrast, is much more variable. In 

the region from residues 305 to 437, there are 45 changes, some of which are 

observed in over 10 different strains. A portion of these changes are clustered (see 

Figure 47), perhaps indicating the presence of loop regions in the protein’s structure?

9.1.4 Discussion

Analysis has shown differences in the binding of Sbi and SpA to serum IgGs from 

different species. The analysis of the sequences of the IgGs involved indicates that 

slight differences in these regions could play a role in the binding of IgG to its ligand. 

All studies, however, were carried out using SpA and Sbi genes cloned from S. aureus 

strains isolated from humans. It could therefore be that strains residing in other 

animals differ in the sequence of their Ig-binding proteins in order to improve the 

ability of the bacteria to specifically bind the host’s immune proteins.

Through the sequencing of the Ig-binding proteins SpA and Sbi from S. aureus strains 

isolated in different animals, the variation in sequence of these genes was examined. 

The results show that the variation in the Ig-binding regions in terms of substitutions 

at the genetic level and substitutions that appear in the protein are marginal. Those 

substitutions that do occur cannot easily explain the variation observed in the binding 

levels of IgG, especially in the binding of the Fc fragment and how it is overcome in 

different species through changes in the sequence of the Ig-binding proteins to 

produce higher affinity for the host’s serum IgGs.

The variation observed in SpA cannot fully explain the variation in IgG binding via 

the Fc region. Of those residues in SpA identified to be involved in binding Fc by 

NMR (Gouda et al 1998), only the residue N i l  is substituted in any of the SpA Ig- 

binding domains. This substitution is at a position that shows variation between the
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SpA domains (Figure 46). As all SpA domains bind IgG via its Fc domain (Jansson, 

Uhlen, Nygren 1998), this change is unlikely to greatly affect its Fc binding ability.

What is of possible interest is the variation that does occur in SpA’s Fab-binding 

sequences. Most of the variation observed in the Ig-binding domains is in the protein 

sequence for the third helix (Figure 46). From structural analysis, it is known that 

helices 2 and 3 are responsible for Fab binding (Graille et al 2000, Meininger et al 

2000). As there is some variation in this region, it is possible that it does have some 

effect on Fab binding, however some of these changes normally occur in the other 

domains at the corresponding positions. It is therefore difficult to know exactly what, 

if any, effect these changes will have on functionality without assessing the effects of 

the substitutions in direct binding studies.

The only other region in SpA which showed variation was the number of proline 

repeats in the octapeptide repeat region. This region of SpA has been implicated in 

cell-wall binding (Zhang et al 2000) and has been suggested as a marker for 

phenotyping S. aureus strains (Koreen et al 2004), however how the variation of the 

number of repeats affects the cell-wall binding is unknown. The C-terminal region of 

SpA after the octapeptide repeat is conserved in all strains sequenced.

Sbi is generally much more conserved, with little variation in sequence in most of the 

protein (Figure 47). However, like SpA, Sbi also shows variation in the C-terminal 

region. The first 36 residues after the polyproline region, like the rest of the protein, 

are highly conserved. This region contains a large number of tyrosines. As mentioned 

before, tyrosines are known to be sites of phosphorylation (Zhang et al 2000), and this 

region has been suggested to play a role in regulating the expression of the protein.

It is the most C-terminal part of the protein that shows the most variability, in the last 

105 residues of the protein, there are 47 amino acids substitutions. However this 

variability is not spread over the entire sequence, it tends to cluster into regions. One 

hypothesis that can explain this clustering is the presence of loop regions in the 

proteins’ tertiary structure. One of these regions of high variability is near the end of 

the polypeptide (Figure 47), a region that is often flexible in proteins.
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The sequence alignments of SpA and Sbi (Chapter 2) showed some homology in the 

N-terminal region of Sbi up to the polyproline repeat region. The highest level of 

sequence similarity is found in the Ig-binding domains, but in both the f^GPl -binding 

region and the region flanked by the ffeGPl -binding sequence and the second Ig- 

binding domain (domain 3) we have also found similarity with SpA (Figure 12). The 

main difference in the alignment is that SpA has five N-terminal Ig-binding domains, 

while Sbi can be divided into four N-terminal domains. The similarities in sequence 

of the SpA and Sbi Ig-binding domains suggest that these could have evolved from a 

gene duplication event. W e have found in this chapter that several of the SpA genes 

only have four N-terminal domains. Is it possible that SpA and Sbi have evolved from 

a common ancestor gene, that all the domains in Sbi could once have resembled the 

sequence of the SpA domains more closely, and that in some SpA strains, they have 

gained an extra domain, or the Sbi ancestor gene and some SpA genes have lost a 

domain. If the two genes have evolved from a common ancestor, it is likely the 

structure in this region is conserved. We have been able to predict the structure of the 

Sbi Ig-binding domains with a high degree of confidence, but not the other domains 

(chapter 2). To confirm our prediction a structural analysis of these domains is 

needed.
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10 Chapter 6
10.1 Analysis of the Sbi domain structure by small-angle X-ray 

scattering

10.1.1 Introduction

There is evidence to suggest that the Sbi and SpA genes are related. The N-terminal 

immunoglobulin-binding domains of both show high levels of sequence similarity 

(chapter 1) and there are similarities in sequence for the region including the (32GP1- 

binding domain of Sbi with SpA’s Ig-binding domains. Sequence analysis of the SpA 

gene revealed that in several strains this protein consists of only 4 Ig-binding domains 

(chapter 5). We have proposed (chapter 2) that Sbi consists of 4 domains, the 2 Ig- 

binding domains, the (32GP1 -binding domain, and a putative third domain. Since this 

region of the Sbi gene is also of the same length as the 4 SpA Ig-binding domains, 

could it be that the structure of this portion of the two proteins is conserved as well? 

Our structural prediction for the N-terminal domains of Sbi is that all 4 domains adopt 

a three-helix bundle fold, as is predicted for SpA. This prediction is based on the three 

domains of SpA, for which three-dimensional structures have been determined by 

both NMR and X-ray crystallography (SpA domains B, D, and E; SCOP database 

http://scop.mrc-lmb.cam.ac.Uk/scop/data/scop.b.b.bd.b.b.A.html, Murzin e ta l  1995).

Although no structure exists of multiple Ig-binding domain constructs of SpA, it is 

assumed that the molecule is composed of an elongated chain of four (or five) three- 

helix bundles linked together (chapter 4). To investigate whether Sbi adopts a similar 

domain arrangement we attempted to determine the three-dimensional structure of 

Sbi’s N-terminal region comprising the Ig-binding domains and the (S2GP1 -binding 

domain. Incessant attempts to crystallise Sbi-e and Sbi-S failed, likely due to the 

multi-domain structure and flexibility of these polypeptides. Structural analysis of 

these constructs by NMR proved unsuccessful as the large Sbi-e construct is close to 

the upper size-limit for this technique. The tendency of the smaller Sbi constructs to 

form multimers at high protein concentrations was also made them unsuitable for this 

method. Therefore, we opted to use small-angle x-ray scattering (SAXS).
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This technique, like X-ray crystallography is suitable for proteins with a high 

molecular weight, and like NMR, it is a solution technique and does not require the 

production of crystals. SAXS has been shown to be well suited to studying flexible, 

low compactness or even unfolded macromolecules in solution. In SAXS, a solution 

of macromolecules is exposed to X-rays, and the scattered intensity is measured. The 

random positions and orientations of particles result in an isotopic intensity 

distribution, which, for monodisperse solutions of noninteracting particles, is 

proportional to the scattering from a single particle over all orientations. At low 

resolution, the scattering curves of proteins with different structures are very different, 

determined by the shape of the particle. As the resolution increases, the curves 

become more similar. SAXS thus provides information on the shape, and quaternary 

and tertiary structure, but it is not suitable for the analysis of atomic detail (Svergun 

and Koch 2002). Refer to Figure 48 for an example of SAXS scattering curves.

Our aim with this technique is to gain such structure information that we can then fit 

the Sbi models to, to improve the reliability of these.
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10.1.2 Methods

Expression of the Sbi constructs Sbi-e, Sbi-S and Sbi-1 was described in Chapter 3, as 

was the purification of Sbi-e and Sbi-1. Methods for SE chromatography were also 

described in Chapter 3.

10.1.2.1 Affinity purification of Sbi-S

Sbi-S was purified by affinity chromatography with a chelating HiTrap column 

(Amersham Biosciences) connected to the AKTA purification system. The column 

was loaded according to the column instructions with nickel sulphate and equilibrated 

in binding buffer (lOmM Tris-HCl pH8, 300mM NaCl, 0.005% Tween 20). The 

sample was loaded with the soluble protein fraction and washed. The protein was 

eluted with elution buffer (lOmM Tris-HCl pH8, 300mM NaCl, 0.005% Tween 20, 

1M Imidazole) on a 0% to 15% gradient over 60min at a flow rate of 0.5ml/min. This 

gave pure protein (>90%), eluted at about 15% imidazole. The imidazole was 

removed using a PD-10 column (Amersham Biosciences) to leave the proteins in 

binding buffer.

10.1.2.2 Trypsin digests

Sbi-e was prepared in a solution of 2mg/ml as determined by UV absorption (see 

below) in lOmM Tris-HCl pH7 buffer. l |il  of prepared trypsin was added (lOmg/ml 

in PBS prepared from a dry protein power -  Sigma). The reaction was carried out on 

ice and samples removed to determine the apparent level of degradation at different 

time points. The digestions were analysed by electron spray mass spectrometry by 

Andrew Gill at the Institute for Animal Health, Compton.

10.1.2.3 TEV digest

A 2ml fraction of purified protein was collected from the affinity column elute for 

both Sbi-S and Sbi-1. To this 40U of TEV protease (Invitrogen) was added, and the 

reaction was allowed to occur overnight at room temperature. The digested protein 

was analysed by light scattering to examine protein molecule size.
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10.1.2.4 Dynamic light scattering experiments

Dynamic light scattering measures fluctuations about the average intensity of light 

scattered by a protein solution of defined concentration in excess of that scattered by 

background sources. The scattered intensity fluctuations are primarily due to the 

random diffusive motion of the protein molecules into and out of a focused laser 

beam. (Wilson 2003) The size of particles in solution can be measured. This is 

because globular proteins are assumed to be spherical in shape. Therefore the Stokes- 

Einstein relation can be used to estimate the apparent hydrodynamic radius of the 

protein. From this, the apparent size of the protein can be estimated (Wilson 2003).

In light scattering and SAXS, it is important to have a monodisperse protein solution, 

this occurs when all molecules in a system are of a uniform molecular weight 

(http://composite.about.eom/library/glossary/m/bldef-m3514.htm). Polydispersity 

occurs when the size of molecules in a system is not uniform 

(http://composite.about.eom/library/glossary/p/bldef-p4086.htm).

The Sbi constructs were measured by light scattering immediately after purification to 

determine the effect of different components in the buffers, and to determine whether 

the oligomerisation of the Sbi proteins had been reduced. Proteins Sbi-e, Sbi-S, Sbi-1 

and Sbi-2 were analysed in the purification buffer eluted from the column (containing 

Imidazole), and after a PD-10 de-salting step to exchange and remove certain 

components of the buffer (i.e. Imidazole). The samples analysed did not have their 

concentration determined. 0.5M EDTA was added to some samples to absorb any 

nickel released from the chelating column. Sbi-S and Sbi-1 were also subjected to 

TEV digestion, to remove the His-tag. The dynamic light scattering apparatus 

machine used was the Malvern Zetasizer (Nano S, Malvern Instruments, Malvern, 

UK), and all experiments carried out measured the sizes of the particles present and 

the estimated protein size in kDa by the crystallography screen function.

Of the data obtained for the Sbi constructs by this method, the estimated size of the 

molecule is larger in all cases than the theoretical size of the constructs. This can be 

partly explained by errors caused by the assumptions about the spherical shape of the 

proteins, as we know Sbi-e in particular is expected to be an elongated molecule. This 

can lead to errors in the results of the measurements of the molecules in solution,

- 1 3 1 -

http://composite.about.eom/library/glossary/m/bldef-m3514.htm
http://composite.about.eom/library/glossary/p/bldef-p4086.htm


however as all techniques show variability and differences to theoretical molecular 

sizes, it suggests that the errors that occur in light scattering data is of limited 

importance in this case.

10.1.2.5 Preparation of samples for small-angle X-ray scattering (SAXS)

Samples for SAXS were in lOmM Tris-HCl pH8, 300mM NaCl, 0.005% Tween 20, 

and stored at the concentration they were in after buffer exchange. Samples were only 

concentrated shortly prior to the SAXS experiment to reduce aggregation and 

precipitation. Protein concentrations were determined by UV absorption. The 

extinction coefficients at A 2 8 0nm are as follows: Sbi-e 20400 (Abs 0.1% (=1 g/1) 0.6), 

Sbi-S 18910 (Abs 0.1% (=1 g/1) 1.031), Sbi-1 10430 (Abs 0.1% (=1 g/1) 1.095).

10.1.2.6 SAXS experiments and data analysis

Synchrotron radiation X-ray scattering data was collected on the X33 beam line 

(Boulin et al., 1988; Koch and Bordas, 1983) at the Hamburg EMBL Outstation (on 

the DORIS III storage ring, at DESY). Solutions of Sbi-e were measured on a 

MAR345 image plate detector at protein concentrations of 2.8, 8.4 and 16.7 mg/ml 

and sample-detector distance of 2.4m and wavelength X = 1.5A, covering the 

momentum transfer range 0.013 < s  < 0.45 A ' 1 (s = 4 k  sin(B)/X where 2 9  is the 

scattering angle). To check for radiation damage, two 2-minute exposures were 

compared; no radiation effects were observed. The data was averaged after 

normalization to the intensity of the incident beam, corrected for the detector 

response, and the scattering of the buffer was subtracted. The difference data was 

extrapolated to zero solute concentration following standard procedures, and, for the 

gas detector, the curves measured in different angular intervals were merged. All data 

manipulations were performed using the program package PRIMUS (Konarev et a l ,  

2003).

The forward scattering 1(0) and the radius of gyration Rg were evaluated using the 

Guinier approximation (Guinier, 1939) assuming that at very small angles (s < 1.3/Rg) 

the intensity is represented as I(s) = 1(0) exp(-(sRg)2/3). These parameters were also 

computed from the entire scattering patterns using the indirect transform package 

GNOM (Svergun, 1992), which also provided the maximum particle dimension Dmax.
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The molecular mass (MW) of the solute was evaluated by comparison of the forward 

scattering with that from reference solutions of bovine serum albumin (MW = 6 6  

kDa). The excluded volume of the hydrated particle (the Porod volume) was 

computed using the equation (Porod, 1982):

eo

V  = 2k 2I(Q)I  Js2/ exp( i)&  (i)
0

Prior to this analysis an appropriate constant was subtracted from each data point to 

force the sA decay of the intensity at higher angles following the Porod’s law (Porod, 

1982) for homogeneous particles. This “shape scattering” curve was further used to 

generate low resolution ab initio models of Sbi-e using the program DAMMIN, 

(Svergun, 1999) which represents the protein by an assembly of densely packed 

beads. Simulated annealing was employed to build a compact interconnected 

configuration of beads inside a sphere with the diameter Dmax that fits the 

experimental data / exp(s) minimizing the discrepancy (x2  in SAXS indicates how well 

the scattering data fits the structure solution, a figure for x2  of around 1 indicates a 

correct solution):

x2=— TN - \ y

where N  is the number of experimental points, c is a scaling factor and ICaiAsj) and 

o(Sj) are the calculated intensity and the experimental error at the momentum transfer 

Sj, respectively.

The refinement of the Sbi structure was performed with the program BUNCH 

(Petoukhov and Svergun, 2005). This algorithm uses three-dimensional structures or 

homology models for the folded domains, and adds interdomain linkers and terminal 

loops represented as dummy residues chains (Petoukhov et al., 2002). A simulated 

annealing algorithm implemented in BUNCH optimises an energy function containing 

the discrepancy (2) to the experimental SAXS profile and force field terms to avoid 

steric clashes and ensure native-like conformations for the added chains.

The possibility of interdomain dynamics in Sbi-e was further explored using a new 

program based on a genetic algorithm. The experimental scattering profile is fitted by 

a combination of scattering patterns computed from an ensemble of conformations

(2)
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adopted by potentially flexible protein in solution. To generate a representative 

ensemble, 5,000 conformers of Sbi-e were constructed using the program BUNCH 

without using the experimental data in the energy term. In addition, 150 

conformations were generated using the initial part of the SAXS profile in order to 

have certain population of structures with the Rg close to the experimental one. For 

each of the 5,150 conformers the theoretical scattering curve was calculated with the 

program CRYSOL (Svergun et al., 1995). The genetic algorithm aims to select an 

ensemble of K models such the scattering pattern from their equimolar mixture that 

best fits the experimental data (Bemado, Petoukhov, Mylonas, Blackledge & Svergun, 

in preparation). The program was run for different K values to identify the minimum 

number of conformers in the sub-population still compatible with the experimental 

data. It was found that the runs with K>5 yielded a good agreement with experimental 

SAXS curve.

10.1.2.7 Sbi homology modelling

In Chapter 2, homology models were generated of both the Ig-binding domains and 

the P2GP1 -binding domain (see Figure 13 and Figure 15). The Ig-binding region of 

Sbi (composed of two three-helix bundles) and the P2GP1-binding domain (also

Table 22 Sizes o f the Sbi constructs, determined by SE chromatography.

Ig-binding protein Peak Elution 
volume (ml) Protein Size (kDa)

SpA 11.756 177
9.999 433

Sbi-e 10.401 353
12.014 156
13.224 84
14.324 48
14.324 48
16.67 15

Sbi-S 14.504 44
15.163 31

Sbi-1 10.844 282
15.457 27
17.69 8.7

18.313 6.4
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composed of two three-helix bundles) were linked together in O. This generated a 

model of the N-terminal region of the Sbi protein. This could be used in the 

refinement of the SAXS data.

10.1.3 Results

10.1.3.1 Size exclusion analysis of Sbi and SpA

Three Sbi constructs were analysed by SE chromatography: Sbi-e, Sbi-S, and Sbi-1, 

in addition to the commercial SpA. Theoretical masses for each are 30.9kDa (Sbi-e), 

18.3kDa (Sbi-S), 9.7kDa (Sbi-1) and 46.7kDa (SpA). However the measured size of 

each protein in the SE chromatography analysis did not agree with these theoretical 

sizes. In solution, all proteins constructs behaved as particles with larger masses 

(Table 22), suggesting that all exist as multimers in solution. The SE chromatography 

of Sbi-e shows the different profiles obtained with different protein concentrations, 

suggesting that the size of the Sbi-e particle increases as a function of the protein 

concentration (see Figure 49).
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Figure 49 SE chromatography profiles of Sbi-e, with undetermined start concentrations for Sbi-e
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Table 23 Sizes o f Sbi constructs, determined by Light Scattering measurements, including the

polydispersity index (PSI).

Sbi construct Diam. (nm) PSI Est. MW
Sbi-e 8.63 0.592 351.5
Sbi-S 5.67 0.651 48.2 TEV digested de-salted&
Sbi-1 3.68 0.302 18.4 TEV digested
Sbi-2 4.32 0.491 2 1 . 1 TEV digested de-salted&

10.1.3.2 Dynamic light scattering analysis of Sbi

The dynamic light scattering properties of the Sbi constructs were analysed by 

determining which was the most populous peak in the scattering data, using intensity 

polydispersity (PSM) measurements. The peak nearest to the most populous peak in 

size in the crystallisation screen analysis (volume PSM) was than taken to give an 

estimated size of the component of the peak. This data is shown in Table 23. 

Comparisons of the estimated MW to the theoretical MW of the constructs show that 

all the protein sizes are much greater than would be expected for the Sbi protein 

monomers. Sbi-S and Sbi-1 (TEV digested) appear to exist as a dimer, while Sbi-2 

behaves as a tetramer. Sbi-e and Sbi-1 (EDTA present) in solution form multimers of 

approximately ten times the expected size. As all samples were filtered prior to the 

experiment, it is unlikely to be due to aggregation or dust in the samples.

10.1.3.3 Molecular size determined by small-angle X-ray scattering

Small-angle scattering was used to measure the size and effective molecular weight of 

the proteins (Table 24). Sbi-e was the only construct to be measured as a monomer.

Protein
Concentration

(mg/ml)
Rg (nm) Dmax (nm)

Effective 

MW (kDa)

Theoretical 

MW (kDa)

Sbi-1 0 . 6 5 16 90 9.7

Sbi-S
2.4 5.6 17 1 0 0

18.3
0.28 3.0 17 28

Sbi-e 8.4 4.5 15 36 30.9

Table 24 The sizes o f Sbi constructs determined by SAXS. Protein concentrations were determined at 

280nm (extinction coefficients are given in methods). Rg is the radius o f gyration, and Dmax is the 

maximum paritcule diameter
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Figure 50 (a) Experimental scattering (a )

curve of Sbi-e (open circles) and the 

scattering from the model obtained with 

DAMMIN (solid line) and BUNCH 

(dashed line). The plot displays the 

logarithm of the scattering intensity as a 

function of momentum transfer s = 4n 

sin(Q)A where 0 is the scattering angle 

and X = 0.15 nm is the X-ray wavelength.

(b) Two different orientations of the 

structural models of Sbi-e. Beads show 

the ab initio shape obtained by DAMMIN, 

which is superposed to the trace 

representation of a BUNCH structural (b)

model (in blue). The bottom view is 

rotated by 90 degrees counterclockwise 

around the vertical axis.

Lg I, relative

0 2 31

s, nm

Sbi-S was measured at two concentrations; at the lower concentration, Sbi-S appears 

to dimerise while at the higher concentration it appears to form a pentamer. Sbi-1 was 

measured at a single concentration, and its complex appears to contain nine 

monomers.

10.1.3.4 SAXS analysis of Sbi-e

The X-ray scattering curve in Figure 50a yields a MW estimate of 33+3kDa indicating 

that the protein is monomeric in solution. The experimental radius of gyration Rg and 

the maximum size, Dmx, were 46+1A and 160+10A, respectively. These results 

indicate that Sbi is a highly elongated molecule in solution. The low resolution shape 

of Sbi reconstructed ab initio using the bead modelling program DAMMIN (Svergun, 

1999) neatly fits the experimental data with x=l-2 (Figure 50a). A typical
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F igure 51 (a) Experimental scattering curve of Sbi-e (open dots) and reconstructed model

the scattering obtained using the genetic algorithm protocol (solid displayed in Figure 50b is 
line), (b) Backbone trace representation o f the five conformers 

ensem ble obtained with the genetic algorithm.

 ̂ .̂g I, relative

0 21
s, nm-1

(b)

indeed very elongated 

(155 A diameter) and 

depicts four bead domains 

connected by thinner 

loops. This appearance is 

compatible with four 

structural domains of Sbi 

joined by flexible linkers. 

The high resolution and 

homology models of the 

N-terminal domains of Sbi 

were employed to further 

model the structure of Sbi 

using the program 

BUNCH (Petoukhov and 

Svergun, 2005) as 

described in the methods. 

The model was 

represented using the 

folded domains connected 

by dummy residue linkers, 

and additional chains were 

introduced to model the N 

and C-terminal tails. 

Different runs of BUNCH 

yielded reproducible 

results displaying similar 

domain organizations and 

fitting the experimental 

data with x=1.7 (Figure 

50a). A typical BUNCH 

result superimposed with
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Figure 52 (a) Density obtained from SAXS density and (b) with the homology model fitted.

the ab initio shape in Figure 50b reveals a very good overlap between the two 

independently derived models from different programs. The overall shape of Sbi is 

rather extended but somewhat bent so that the C-terminal domains of the BUNCH 

model display some side contacts. Interestingly, the long N-terminal loop of Sbi, 

although extended, appears to be folded back and becomes not completely accessible 

to the solvent (this feature is typical for BUNCH reconstructions).

Multidomain proteins often reveal interdomain dynamics depending on the length of 

the linkers connecting the folded entities (Yuan et al., 2002). To account for the 

possible dynamic effects, an alternative interpretation was used allowing for the data 

fitting by a mixture of conformers. Using the genetic algorithm as described in the 

methods, it was found that selection of a five conformer ensemble from a 

representative set of randomly generated structures was sufficient to fit the 

experimental data. A typical set of structures provided by the genetic algorithm
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Figure 53 The 4-domain density structure of Sbi (a) by homology modelling and (b) the most probable 

structure predicted by SAXS. (b) contains longer N- and C-terminal peptides as DAMMIN is able to 

predict the structure of these long flexible peptides, such as the His-tag of Sbi-e, which is not possible 

to do by homology modelling without a suitable template to build the structure on. (a) therefore lacks 

the N-terminal His-tag and has a truncated C-terminal.

displayed in Figure 51a yields the fit with x=2-0. Interestingly, the individual structures 

in the set appear rather similar, suggesting that only limited conformational space is 

sampled by Sbi in solution. Simultaneously, the results point to a larger conformational 

freedom in the C-terminal domain of Sbi compared with the rest of the protein. The 

ensemble of structures in Figure 51b has an elongated bend shape, which agrees well
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Figure 54 The Verify 3D plots for the structures in Figure 53. The regions for the Sbi-e models in the 

upper portion of the plot suggest that the N-terminal regions (excluding the His-tagged modelled in the 

SAXS structure) are correctly modelled. The C-terminal region is less accurate; with the Verify 3D 

result suggesting the model produced by SAXS is more accurate in this region.

with the ab initio and BUNCH reconstruction. Moreover, the N-terminal loops in the 

genetic algorithm models displays a folded back conformation, as already observed in 

the BUNCH solution (Figure 50b).

10.1.3.5 A model for the domain organisation of Sbi

Using the ab initio density model derived from the SAXS data, we manually fitted the 

Sbi models generated in Chapter 2 to construct a three-dimensional model of Sbi’s 

predicted N-terminal region. The three-helix bundle motif units fit very well with the 

observed density of the first three domains of Sbi-e, suggesting that all four domains 

possibly adopt a similar structural fold. This homology model is shown in Figure 52.

The homology model of Sbi was compared to the SAXS structure. The homology 

model and SAXS structure are both shown in Figure 53. The Verify 3D plots for the 

two structures are overlaid in Figure 54; this shows the SAXS structure appears to be 

more favourable in terms of the side chain environment, however the backbone angles
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Figure 55 Ramachandran plots for the structures shown in Figure 53 determined by Procheck, (a) The 

homology model and (b) the model based on the SAXS structure
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Table 25 Trypsin cleavage sites in the Sbi protein Sbi-e. Residues l*and 263* are the N- and C- 

terminal residues in the molecule.

Sbi trypsin digestion sites Point in Sbi-e sequence

1 * N-terminal residue

4 His-tag

37 Prior to helix 1

79 Between helix 1 and helix 2

97 Between 1st and 2nd Ig-binding domains

149 End of 2nd Ig-binding domain

186 (52GP1 binding domain

191 (32GP1 binding domain

2 0 0 P2GP1 binding domain

204 (32GP1 binding domain

263* C-terminal residue

in the Ramachandran plots (Figure 55) shows that the SAXS structure contains more 

residues in disallowed regions than the homology model.

10.1.3.6 Mapping of trypsin sites on Sbi-e

Digestion of protein molecules by trypsin results in the cleavage of the peptide chain 

in regions not folded into tertiary structures, i.e. between domains, as trypsin can 

generally not cleave at its cleavage site if the protein backbone is folded into a 

globular structure. Therefore trypsin digestion of a protein can be used to reveal the 

domain boundaries of any domains in the protein’s structure.

A trypsin digestion was carried out on the Sbi-e protein; the determined cleavage sites 

are shown in Table 25. When the cleavage sites were mapped onto both the Sbi 

models (Figure 56) the results generally support the proposed domain models. The 

first two sites detected do not appear on the homology model as it was not possible to 

model the N-terminal tag of Sbi-e (Y4 and K37), however as the N-terminal of the 

SAXS model is mainly unstructured, these two trypsin digestion sites do not cleave in 

a region that is expected to be structured. The first cleavage site mapped onto both Sbi 

structures (E79, Figure 56) is located between helices 2 and 3. The next two cleavage 

sites (R97 and R149) are located between domains 1 and 2, and domain 2 and 3
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Figure 56 The secondary structure of the structural models shown in Figure 53 as determined by 

Procheck (Laskowski et al 1993), with the experimentally determined trypsin digestion sites marked 

(red arrow heads), (a) The Homology model and (b) the SAXS structure
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respectively. This suggests that the predicted domain and helix boundaries in this part 

of the molecule are in good agreement, as trypsin is expected to cleave at sites that are 

accessible and not part of the core three-dimensional structure. The remaining 

restriction sites detected are R186, R191, K200 and R204. R191 cleaves the end of N- 

terminal helix 9 in both the homology model and SAXS structure, while K200 in the 

homology model cleaves the C-terminal end of this helix (see Figure 56 for the 

trypsin digestion sites on the secondary structure of the two models).
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10.1.4 Discussion

SAXS revealed the N-terminal region of Sbi (Sbi-e) to be an elongated molecule 

composed of four domains all of similar size. For the first time, this provides insights 

into the three-dimensional domain arrangement of a bacterial immunoglobulin 

binding protein. The similarity with the domain structure of SpA may suggest that this 

region of the Sbi protein is composed of 4 three-helix bundles as predicted in Chapter 

2. This would also support the prediction in Chapter 5 that Sbi and SpA have an 

evolutionary relationship, and that the j32GPl -binding domain and domain 3 of Sbi 

share an ancestral domain or gene with the Ig-binding domains of Sbi and SpA. 

Possible mechanisms by which the evolution of these two proteins occurred is 

discussed further in Chapter 7.

The sizes of the Sbi constructs were determined by three different methods. There are 

three sets of SE chromatography data for Sbi-e. The three elution profiles are very 

different (Figure 49), and suggest that an increase in the protein concentration results 

in an increase in the size of the Sbi-e particles, indicating the formation of large 

complexes. There are also two data sets for Sbi-S from the SAXS analysis; this also 

shows an increase in particle size with an increase in protein concentration (Table 24). 

This suggests that the Sbi constructs have the tendency to form large complexes 

composed of the Sbi monomers. This tendency could explain the ability of Sbi-1 to 

form insoluble complexes with Guinea pig serum IgG.

The SE chromatography results were carried out with the aim of increasing the purity 

of Sbi-e, while the DLS results were to analyse protein samples of Sbi-1, Sbi-2 and 

Sbi-S under different conditions in an attempt to reducing aggregation of the protein 

particle sizes, and improve the quality of the protein for the SAXS experiments and 

the possibility of NMR experiments. These experiments did show that the size of the 

protein particles does appear to be affected by the protein concentration, while the 

particle sizes for Sbi-1, Sbi-2 and Sbi-S also appear to be influenced by the presence 

or absence of the N-terminal His-tag. This is an area where further work is needed to 

gain a better understanding of the relationships between protein concentration, the 

presence of the His-tag on the protein and the particle size for the different Sbi 

constructs.
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Trypsin digestion analysis of the Sbi-e construct revealed the presence of 9 cleavage 

sites (Table 25). Trypsin cleaves preferentially at lysine and arginine residues on 

exposed peptide chains (http://www.expasy.ch/tools/peptidecutter/peptidecutter 

_special_enzymes.html). Mapping these sites onto the homology model and the 

SAXS structure shows that most of the detected trypsin digestion sites in Sbi are on 

loops in the structure, indicating that the allocation o f secondary structure in these 

regions is in good agreement with the predicted three-dimensional models (Figure 

56). The only cleavage sites located on secondary structure elements are R191 and 

K200 are located on helix 9 for the homology model and R191 in the SAXS structure.

The trypsin digest results in combination with the other structure validation results 

suggests that the SAXS model of Sbi can be used to improve homology models for 

proteins whose structure cannot be solved by other structural techniques, such as x- 

ray crystallography. In addition, circular dichroism studies on the P2GPI-binding 

domain (see Chapter 2) confirmed that this region of Sbi is a-helical, thereby also 

supporting the SAXS model. In light of the SAXS data showing that the Sbi protein is 

composed of four domains, we are confident that the model proposed is reliable.
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11 Chapter 7
11.1 Reflections and perspectives

Sbi is an S. aureus cell surface protein. Zhang et al (1998, 1999) identified the 

presence of an N-terminal Ig-binding domain, followed by a second proposed Ig- 

binding domain, and a domain capable of binding the serum protein (32GP1. 

Comparison of the Sbi sequence to the SpA sequence revealed high homology in the 

part of Sbi located N-terminally from the proline rich region (see Figure 8  for the 

structure of the Sbi gene) with the Ig-binding domains of SpA. We therefore predicted 

that this region of Sbi is composed of domains with a structural fold similar to the 

SpA Ig-binding domains. We also predicted that Sbi contains four such domains.

Sbi also contains a proline-rich region between the N- and C-terminal regions. The 

length of the repeat unit matches the motif found in the proline pipe helix (Butcher et 

al 1996). Therefore a proline pipe helix was built for this region of the structure. We 

proposed that the proline pipe helix interacts with the bacterial cell wall in a similar 

fashion as the MSCRAMM proteins, which also contain proline rich sequences in the 

regions identified to be cell wall binding (see Chapter 2 for more details). The 

mechanism of cell wall anchoring by these sequence motifs still remains unclear.

It was not possible to identify any sequences or protein structures homologous to the 

C-terminal region of Sbi. This part of the protein therefore either has a novel function 

and fold or it shares its fold with a previously identified fold, but the sequence 

homology is too low for identification.

Homology modelling of the Sbi Ig-binding domains, using three-dimensional 

structures of SpA domains B and D, revealed that the amino acids on the face of the 

three-helix bundle structure of the Ig-binding domain, responsible for binding to IgG 

via the Fc fragment, are all conserved in both Ig-binding domains of Sbi (see Figure 

14b & c). Residues on the face involved in Fab binding are not conserved in Sbi’s Ig- 

binding domains (see Figure 14d). We predicted that Sbi could only bind IgG via the 

Fc binding site (se Chapter 2).
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Binding studies with Sbi revealed that while both Sbi and SpA form insoluble 

complexes in the presence of intact serum IgGs, only Sbi precipitates in complex with 

IgG Fc fragments. This showed that although both Ig-binding proteins bind to the Fc 

fragment of IgG, SpA also requires Fab binding for precipitation. This observation 

supports the prediction in Chapter 2, based on sequence homology, that Sbi only 

binds to the Fc region of immunoglobulins.

We also examined a possible mechanism of complex formation by both SpA and Sbi. 

Hanson and Schumaker (1984) predicted that SpA in the presence of rabbit IgG forms 

a complex of IgG models stacked on top of each other with SpA Ig-binding molecules 

down each side (Figure 35). To investigate if such a model was possible we generated 

a model composed of two SpA domains, connected by a linker in complex with two 

Fc fragments. A similar model was created for both Sbi Ig-binding domains (see 

Figure 42 for the models of the SpA and Sbi complex with IgG). Interestingly, this 

revealed that while it is possible to fit two Fc molecules along in the SpA ladder 

model, it is not possible to do so for Sbi, because the shorter linker between the Ig- 

binding domains in Sbi causes steric clashes between the two Fc fragments. Our 

ladder model implies that, in the case of Sbi, Fc binding by both domains is more 

likely to cause cross-linking rather than stacking, seen in SpA. With this model we 

now can explain the formation of insoluble complexes between Sbi and Fc fragments, 

while the stacked complexes formed with SpA remain soluble in the absence of Fab.

Comparison of the binding patterns for the formation and size of soluble and insoluble 

complexes with both Sbi and SpA (in Chapter 3) reveals that each share their 

preferences in binding the different human IgG subclasses: both bind IgG l, IgG2, and 

IgG4 and show either weak or no binding to IgG3. Significant differences are 

observed in the presence of serum IgGs from different species: Sbi precipitates 

human, rabbit, mouse and Guinea pig serum IgGs while SpA precipitates human, pig 

and Guinea pig serum IgG, although Guinea pig IgG produces more precipitation in 

the presence of Sbi than with SpA. In the measurement of soluble complex sizes, SpA 

produces larger complexes in the presence of pig and cow serum IgGs than Sbi does. 

Sbi and SpA both appear to form 1:1 complexes in the presence of goat, horse, and 

sheep serum IgGs while Sbi also forms 1:1 complexes with pig and cow serum IgGs.
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Interestingly, single Sbi Ig-binding domains are still capable of forming large 

complexes with human (soluble) and Guinea pig (insoluble) serum IgGs.

Determination of affinity constants for Sbi in the presence of the different serum 

IgGs, using SPR, reveals that Sbi binds mouse serum IgG most strongly, closely 

followed by human and Guinea pig. The weakest binding was found with sheep and 

pig IgGs. Both Sbi Ig-binding domains bind human IgGl subclass strongly and also 

show similar affinity for IgG4. The binding of IgG2 revealed an order of magnitude 

difference in the affinity for IgG2 between the two domains (see Figure 33). Neither 

Sbi domains have any affinity for IgG3.

The differences found in complex formation between SpA and Sbi and the various 

serum IgGs was further analysed using homology modelling in Chapter 4. Models of 

SpA-Fc and Sbi-Fc complexes were generated using a crystal structure of SpA in 

complex with a human Fc fragment (see Chapter 4).

Analysis of the homology models of these complexes pointed to a number of 

substitutions in the Fc sequence that could affect the interaction and orientation 

between the C h2 and C h3 domains of the IgGs. The gain or loss of a large side chain 

at the Ch2-Ch3 domain interface in the Fc molecule could affect the elbow-angle 

between the two domains. Since the SpA binding site on the Fc molecule comprises 

residues on both C h2 and C h3, changes in the elbow-angle between the two domains 

are very likely to affect the binding of SpA (or Sbi) by changing the distance between 

the residues on the two C h domains required to bind SpA (or Sbi). Thereby binding 

could be affected without changing the residues in the binding site itself.

In most cases it is not completely clear what effect, if any, the substitution may cause 

on binding. We were able to identify two substitutions that we believe may play an 

important role in the binding between the two Ig-binding proteins and the IgGs. In 

chicken and sheep IgG we found a substitution (H435R and D376Y, respectively) that 

could affect the elbow angle of the Fc molecule. The chicken substitution (H435R) 

and a neighbouring substitution (Y436F) also occur in the sequence for human IgG3, 

the only IgG subclass that does not bind SpA or Sbi. The H435R and Y436F 

substitutions appear to be able to eliminate Fc binding completely, as shown by
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Jendeberg et al (1997). The Sheep IgG substitution introduces a large side chain at 

this position thereby possibly affecting the spacing and orientation between the two 

Ch domains.

Of the residues identified to be involved in the interaction between the C h domains, 

most are well conserved. A few amino acids are less conserved; these include residues 

315, 339, 375, and 378. Of these amino acids 315 is also involved in the interaction 

with the Ig-binding domain. For residues 339, 375 and 378, there is no apparent 

correlation between the substitution and the affinity of the IgG for SpA and Sbi.

Analysis of the interactions between the IgGs and the Sbi and SpA models identified a 

single site where a correlation between binding levels and the residue present could be 

determined. This is residue 315. Low binding species have a small uncharged or polar 

side chain at position 315, while the presence of large charged or polar side chains 

results in higher binding levels. Site directed mutagenesis of the IgGs at this position 

is needed to determine whether the substitutions really affect the ligand binding as 

proposed.

S. aureus infects a range of species; it is of economical importance in cattle where it 

causes mastitis, affecting milk production. However, our binding studies revealed that 

Sbi and SpA bind cow serum IgGs relativity poorly, as is the case for the IgGs from 

other farm animal species such as horse, sheep and goat. The Ig-binding proteins used 

in this study were both cloned from strains of S. aureus isolated from humans. To 

investigate whether the Ig-binding proteins of S. aureus strains isolated from human 

hosts have adapted to human proteins, we sequenced the SpA and Sbi genes from 

strains isolated from other species (see Chapter 5). The sequence analysis of the spa 

and sbi genes, however, showed no significant changes in the sequences of the Ig- 

binding regions of both genes that could account for the differences in IgG binding in 

the different host species; all sequences of the Ig-binding domains were essentially 

conserved in the different strains. This suggests that there is no tendency for acquiring 

host specific immunoglobulin binding in these strains. Since these animals are in 

regular contact with the human host future experiments should also include strains 

isolated from animals in the wild.
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All attempts to crystallise the Sbi-e region of Sbi for structural studies have so far 

been unsuccessful. We believe this is inherent to the predicted multi-domain structure 

of this construct. We therefore attempted to determine the structure in solution. NMR 

is unsuitable because of the size-limitations of this technique, therefore we tried 

small-angle X-ray scattering. From X-ray scattering analysis it can be concluded that 

the Sbi-e has an elongated molecular shape and is monomeric in solution. An ab initio 

model derived from the scattering data reveals an elongated protein composed of 4 

domains (see Figure 52), which neatly fits the models predicted in Chapter 2.

11.1.1 Implications for the evolutionary origin of Sbi and SpA

The structure determined by SAXS clearly shows Sbi contains 4 domains. The first 

three of these all appear to be the same fold, suggesting that domain 3 is similar to the 

two Ig-binding domains. The structure of the (52GP1 -binding domain is harder to 

predict than the others, as the model is less well refined in this region, however we are 

not able to rule out the possibility of it also being a three-helix bundle, although in the 

most probable model, based on the SAXS ab initio structure shown in Figure 53b, the 

3-helices are in a more open arrangement to the other domains.

W e discussed in Chapter 5 the possibility that there is an evolutionary relationship 

between Sbi and SpA. The high similarity of the Ig-binding domains would suggest 

that they might originate from one ancestral domain, which has been duplicated. In 

Figure 57 I propose several possible routes of this evolution. The structural model for 

Sbi presented in Chapter 6 fits well with the scattering data and suggests a structural 

similarity between the Ig-binding domains of both Sbi and SpA and domain 3 and the 

P2GP1-binding domain of Sbi. This suggests that all five domains in SpA and all four 

domains in Sbi could be descended from a single Ig-binding domain type protein. We 

suggest that the ancestor had the function of Ig-binding, as it is more likely that the 

two C-terminal domains in Sbi have lost this function. This is more likely than the 

independent evolution of the Ig-binding domains in the two proteins. Therefore one of 

three possible routes for the evolution of the two proteins is the evolution of a protein 

containing either four or five similar Ig-binding type domains. This protein was than 

duplicated, one evolved into SpA with five domains, the other acquired mutations in 

its third and fourth domains resulting in a change of function and evolved into Sbi
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Figure 57 Possible mechanisms for the evolution of the Ig-binding proteins SpA and Sbi. (a) The 

ancestor gene (I) consists of a single Ig-binding domain. This domain is duplicated (II) in a single gene 

until the gene consists of five domains. The gene is then duplicated (III) and one copy forms SpA. The 

other copy loses one domain while the other two undergo mutation to form Sbi. (b) The ancestor 

domain (I) is duplicated. The gene is than further duplicated (II). One copy undergoes further 

duplication of domains, while maintaining the Ig-binding function to form SpA (III). T he other copy 

also duplicates its domains, but some of the domains undergo mutation, and this results in Sbi. (c) 

Duplication of the ancestral Ig-binding domain occurs at an early stage (I). One copy retains its 

function, and after undergoing duplication of the Ig-binding domain forms SpA (II). The other copy is 

only duplicated until it has two Ig-binding domains, but in this case they suffer mutations and develop 

novel functions. At some point two Ig-binding domains from SpA are transferred to this gene to form 

Sbi.
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with four domains. In the second method a single or double Ig-binding domain 

ancestor split into two genes. Both underwent subsequent duplication of domains, 

with one acquiring mutations in some of its domains giving rise to Sbi, while the other 

formed SpA. A third method can be based on this. The ancestor consisted of a single 

Ig-binding domain. This was duplicated, and one took the route where it acquired 

mutations in its two Ig-binding domains, to later form domain 3 and |32GPl-binding 

domain of Sbi. Meanwhile the ancestor gene on the other route will have undergone 

little or no change in its double domain form. Then at some point in time a copy of 

this gene is inserted into the gene of the other protein containing the mutations to 

form the modem day Sbi. The original copy of the Ig-binding domains was duplicated 

in its gene to form today’s SpA. One other piece of evidence to support the gain 

and/or loss of Ig-binding domains in the evolution of the Sbi and SpA genes is in our 

sequencing of the different SpA and Sbi genes (Chapter 5). We discovered several 

SpA genes containing only four Ig-binding domains rather than the more normal five. 

As the missing domains cover several different SpA domains it suggests that there is a 

mechanism that results in the loss of the Ig-binding domains under unknown 

conditions. An analysis of the linker sequences between the Ig-binding domains will 

provide evidence about the most likely evolutionary route. As the linkers between the 

Ig-binding domains in Sbi are different to those in SpA, it suggests that the molecules 

have evolved separately from an ancestral domain.

11.1.2 Remaining questions

11.1.2.1 Does Sbi bind other ligands?

SpA is known to bind several ligands other than Igs. These include gClqR/p33, von 

Willebrand factor and the tumour necrosis factor-a receptor. The interactions with 

these ligands are not as well characterised as the interaction with IgG. However one 

of these appears to share the Ig-binding site. Romagnani et al (1982) showed that 

iodination of SpA eliminates IgG binding via its Fc region, while Nygren, 

Ghebrehiwet, and Peerschke (2000) showed that the same method also eliminates 

binding of gClqR/p33. In Chapter 2 I have shown that the Ig-binding site is well 

conserved in Sbi as are the tyrosine residues targeted by the iodination of SpA. This 

suggests the possibility that Sbi, like SpA, binds gClqR/p33. Perhaps Sbi also binds 

other SpA ligands?
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Sbi binds the serum protein (52GP1 as well as IgG. (32GP1 is composed of short 

consensus repeat domains (Bouma et al 1999). Recent studies in our lab have shown 

that Sbi also binds to complement protein C3 (Burman et al submitted for 

publication). Does Sbi bind to any other host proteins? The C3 protein was detected 

by use of a pull down assay. While this method can be used to detect serum proteins 

bound by Sbi, it will not detect any ligands attached to host cells, and not present in 

the serum.

11.1.2.2 How is the expression of Sbi regulated?

Zhang et al (2000) discovered that when S. aureus is cultured in the presence of IgG, 

the expression of Sbi is up-regulated. However, how this occurs is unknown. The C- 

terminal region of Sbi, adjacent to the proline repeat region, is rich in tyrosine and 

threonine residues. Both residues are known to be involved in protein activation via 

the phosphorylation of these residues. However such activation sites are intracellular. 

Sbi does not contain any typical transmembrane region nor does it have any 

hydrophobic regions that could be expected to cross the membrane. Zhang et al 

(2000) showed that Sbi is located on the cell surface, but its mechanism of attachment 

is unknown, as Sbi lacks the LTXPG motif found in other adhesion proteins required 

for anchoring in the cell membrane. It is therefore unclear how it is attached to the 

cell and whether the tyrosine rich region is located intracellularly.

There are many unanswered questions remaining about Sbi. Future studies on this 

protein could reveal its role in S. aureus infections and whether it plays a greater role 

than the other Ig-binding protein SpA. Other areas of interest would include the 

function of individual ligands in infection and virulence for both Sbi and SpA, 

determined by the elimination of specific functional regions in addition to knocking 

out the entire gene. Also of interest is whether other S. aureus adhesion proteins show 

the same preference for ligands from a particular host, i.e. SpA appears to favour 

porcine IgGs. There is also further work needed to understand how the substitutions 

observed in Chapter 4 in the different IgG models affect binding and interactions with 

the Ig-binding proteins SpA and Sbi.
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11.1.2.3 What is the effect of functional elimination of S. aureus Ig-binding 

proteins?

In vivo, proteins generally interact with several others operating in the same pathway. 

However knockout studies generally remove the entire protein, or render it inactive. 

However, as we discussed above, SpA and Sbi interact with a number of known 

ligands in vivo. Most of the binding sites in SpA are restricted to a single domain. 

What effect would the elimination of a single binding site have on the in vivo 

virulence of the bacteria?

The use of targeted mutagenesis in the gene to eliminate a function has the advantage 

that it only affects a single site and will only affect the interactions of ligands that 

bind to that site. This means all other interactions can still occur, and can tell us how 

important one function is compared to another in virulence. For example, could the 

elimination of the Fab binding site on SpA result in a lack of generation of B-cell 

superantigens and thereby decrease the virulence of S. aureus1}

11.1.2.4 What is the role of the poly-proline repeat regions in SpA?

Unlike the number of polyproline repeats in Sbi, which is the same in all sequenced 

Sbi genes, the number of repeats in SpA varies from four to sixteen (see Chapter 5). 

Does this variation have any function? There is no apparent relationship between the 

number of repeats and the species from which the S. aureus strain was isolated. 

However, could there be a relationship between the number of repeats and the 

virulence of the strain?

11.1.2.5 Does S. aureus virulence vary from species to species?

The virulence studies discussed in Chapter 1 were all carried out on lab animals 

(mice, rats, rabbits). This could be important to consider as our binding studies 

(chapter 3) showed marked differences between the IgGs of mouse and rabbit (rat 

serum IgGs were not tested) with both Sbi and SpA. Sbi causes precipitation in the 

presence of these IgGs, while SpA forms large soluble complexes. This suggests these 

serum IgGs bind better to Sbi than SpA. Could this mean that Sbi plays a larger role 

in virulence in these species than does SpA?
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11.1.2.6 Does the specificity of S. aureus adhesion proteins differ from species to 

species?

Regarding the relative binding of these Ig-binding proteins, SpA appears to bind best 

to human and porcine serum IgG while Sbi binds best to human and rodent serum 

IgGs (of those tested in Chapter 3). Other studies have characterised the binding of S. 

aureus proteins to ligands such as fibrinogen and fibronectin, but these adhesion 

proteins have not been characterised binding to the same ligand but produced by 

different mammalian species (Chapter 3, Kronvall et al 1970). Zhang et al (1999) 

identified (32GP1 as a ligand for Sbi, used newborn calf serum. However, recent 

studies in our lab used human serum and identify a novel Sbi ligand, complement 

component C3. No (32GP1 was identified in these affinity pull-down experiments. 

This suggests that Sbi (and perhaps also SpA) does indeed bind different ligands in 

different hosts.

We have determined that Sbi and SpA genes show very little variation between strains 

of S. aureus isolated in different species. Is this the same for other adhesion proteins, 

or do they show greater variability in protein sequence and how does this affect 

virulence of S. aureus in different species? If the S. aureus adhesion proteins 

including SpA and Sbi bind poorly to the serum and ECM proteins of an animal 

species, does it make S. aureus a poor pathogen in those species or is there 

compensation (for example, IgG could be bound weakly, while fibrinogen is bound 

strongly)? One way to investigate this would be comparing binding data with 

infection and virulence data for different species. Unfortunately, these data are not 

available: while the U.K. Department of Agriculture and Rural Development website 

(http://www.dardni.gov.uk/) lists infection data for Brucellosis and Tuberculosis, it 

does not have information published on S. aureus infection rates.

11.1.2.7 The role of SpA from earlier virulence studies

As well as virulence studies with the adhesion proteins such as ClfA and FnBPA, 

virulence studies have also been carried out with SpA (Callegan et al 1994, Gomez et 

al 2004, Jonsson et al 1985, Palmqvist et al 2002, Palmqvist et al 2005). This has also 

been recently classified as an adhesion protein as it has been discovered that it binds a 

component of the ECM: the von Willebrand factor (Foster and Hook 1998, Hartlieb et
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al 2000) in addition to IgG. In the early virulence studies on SpA as well as other 

mutagenesis studies with SpA (for example: Jonsson et al 1985), SpA mutants were 

generated by chemical mutagenesis. Later studies used strains known to be defective 

in SpA. In all cases a small reduction in virulence was observed. The question is 

whether these strains had only the SpA gene eliminated or whether others were also 

affected such as Sbi. Testing for a reaction with IgG was used in determining the 

presence or activity of SpA. However we now know S. aureus contains two Ig- 

binding proteins SpA and Sbi. What we do not know is if they show different 

properties on the surface of S. aureus and whether all studies with S. aureus strains 

into the effect of SpA had functional Sbi or in effect they were studying the effect of a 

double mutant with the S. aureus strain also containing non-functional Sbi. Where 

detection of S. aureus mutants lacking IgG binding ability occurs, it would suggest 

the possible elimination of both genes, while when the presence of low-binding 

mutants is detected, it suggests that these strains could have only one or the other of 

the two Ig-binding genes active. The only way to answer this question would be to use 

S. aureus mutants of both SpA and Sbi generated by molecular biology, where it can 

be confirmed that only a single gene has been affected, and compare the action of the 

S. aureus mutants in vitro to both wild type S. aureus and a double knockout of both 

genes. Virulence studies with such S. aureus mutants would show whether one protein 

has a larger effect on virulence than the other.

11.1.2.8 Reflections on the role of S. aureus and its adhesion proteins in infection 

and future directions

Most virulence studies with S. aureus adhesion proteins (Moreillon et al 1995, Flock 

et al 1998, Jonsson et al 1985, Patel et al 1987, Callagen et al 1994, Palmqvist et al 

2002) have shown that the loss of an adhesion protein results in some reduction in 

virulence (chapter 1). Interestingly, in studies where the loss of an adhesion protein is 

compared to the loss of a toxin such as a-haemolysin, the strain with the a- 

haemolysin mutation shows a much greater reduction in virulence (Callegan et al 

1994, Jonsson et al 1985, Patel et al 1987). Unlike adhesion proteins a-haemolysin is 

a toxin secreted by S. aureus that is part of a group of channel forming toxins. These 

form channels in the membranes of the host cells, resulting in disruption of membrane 

potential and can cause cell death (Wilson, McNab, and Henderson 2002 Ch9). No
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single adhesion protein knockout has the same level of effect as a knockout of a -  

haemolysin. This could be due to the differences in their individual roles in infections. 

W hat is unknown though, is how multiple knockouts of adhesion proteins affect 

virulence in vivo. We have not been able to find any studies with strains of S. aureus 

carrying more than a single gene knockout in an animal disease model. We do know 

from the work of O ’Brien et al (2002) that multiple knockouts of adhesion proteins 

cause further increases in the lag time for platelet aggregation in vitro. In this work, 

using S. aureus knockout mutants of the ClfA, SdrE, and SpA genes, only the single 

ClfA knockout mutant had an increased lag time for aggregation compared to the use 

of wild type strains. However, double knockout mutants of SdrE or SpA and ClfA 

gave a further increase in lag time compared to the wild type, while the triple mutant 

recorded the longest lag time. This clearly shows that all 3 proteins appear to be 

required in an in vitro setting and the loss of the additional genes of SdrE and SpA 

increase the effect of the single ClfA mutation. The effect of these multiple knockout 

mutations on virulence in vivo is unknown. Perhaps the development of a drug 

therapy that targets multiple adhesion proteins would provide an effective way to treat 

and control S. aureus infections.

11.1.3 Conclusion

Sbi is an Ig-binding binding protein with high affinity for human, rabbit, Guinea pig 

and mouse serum IgGs, while SpA shows high affinity for human and pig serum 

IgGs. The N-terminal region of Sbi is predicted to be composed of 4 domains, all of 

the three-helix bundles typical of the SpA Ig-binding domains. Sbi contains two 

functional Ig-binding domains at its N-terminal, while the fourth predicted domain 

binds (32GP1 and domain three and the P2GPI-binding domain together have recently 

been shown to be involved in the binding of complement component C3 (Zhang et al 

1999, Burman et al submitted for publication). Comparison of the IgG sequences 

through homology modelling suggested that the IgG Fc residue 315 plays a role in 

determining affinity for Sbi and SpA, while the sequencing o f the Sbi and SpA genes 

from strains isolated in different hosts revealed that the sequence of the Ig-binding 

domain is conserved across all the hosts.
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Future directions for studies on Sbi should include virulence studies to determine its 

role in infection. Such a study would determine the role of Sbi by the generation of 

sbi strains, the introduction of Sbi into a non-virulent organism such as L. lactis, and 

the generation of Sbi mutants that lack the ability to bind one of its ligands (possibly 

more if it is determined that two or more different ligands share a binding site). The 

generation of such mutants would give a greater understanding of the role of Sbi in 

addition to an sbi' mutant, as it would provide specific information about the role of 

the binding of individual ligands on the virulence of S. aureus. Another direction of 

research would be the generation of S. aureus mutants lacking more than one 

adhesion protein. In vivo virulence studies with strains carrying multiple knockouts 

would give a greater understanding of the roles the proteins play in virulence with 

respect to each other.

There is currently little known about the C-terminal regions of Sbi. We predict that 

Sbi is anchored in the cell wall by its proline rich region. More studies on this part of 

the protein are needed. In addition the function of the tyrosine-rich C-terminal region 

needs addressing. Structural studies on these parts of the protein could reveal if it has 

any structural homology to other known proteins, while the production of soluble 

protein of both the C-terminal region and the proline rich region could be used to 

determine if and how they interact with for instance S. aureus signalling proteins. 

This could be of particular interest as the C-terminal region has been suggested to be 

involved in regulation of the expression of Sbi.
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12 Appendix 1
Table of S. aureus surface proteins, their ligands, and role in infectious diseases.
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Protein

ClfA

Ligand(s)

Fibrinogen

P118/novel cell 

surface 

receptor

Fibrinogen-

independent

binding

Mechanism of 

attachment to cells

LPXTG-motif

Ligand 

loca ted .

Serum

Platelets

Complement

Mammalian

Receptor(s)

>Yes - see 

Boden A Flock 

> GPIIb/IIIa

Ce ll-surface

Cell-surface

Roles/functions 

implicated in ...

Direct platelet 

aggregation - 

fibrinogen 

independent

Diseases 

implicated in ...

Known e ffe c ts  

of K0

Platelet aggregation. 

Binding to platelets/ 

activation. 

Complement 

activation.

Increase in 

lag time fo r 

aggregation

Other points of 

interest
References

5. aureus clumping 

has been known 

for 80years. 

Dominant cause of 

endocarditis

>Does not occur in 

the absence of 

IgG/anti ClfA Ab. 

>Extended lag 

time for 

Complement- 

mediated 

activation due to 

assembly of 

complex

>Siboo et  

al (2001) 

>Boden A 

Flock 

(1989) 

>Loughman 

e t  at 

(2005) 

>0'Brien e t  

a!{2002) 

>Morellion 

e t a / 

(1995)
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Protein Ligand(s)

ClfB

Mechanism of 

attachment to cells

Ligand 

loca ted .

Mammalian

Receptor(s)

Roles/functions 

implicated in ...

Diseases 

implicated in ...

Known e ffe c ts  

of KO

Anti-CIf A Ab FcyRIIaSerum

LPXTG-motif
cont...

General Endocarditis

Fibrinogen

Cytokeratin 10
LPXTG-motif

Serum

Squamous

cells.
Cell surface Nasal colonisation

50% reduction 

in cases in ra ts

Other points of 

interest
References

fibrinogen- 

binding alone does 

not activate 

platelets 

>CIFA-Fibrinogen 

binding plus IgG 

cross linking

See above

Walsh e t at 

(2004)

Fibrinogen Serum

Fibronectin ECM
FnbpA LPXTG-motif

Adhesion to plasma 

clots

Expressed in 

exponential 

phase

Elastin ECM
Endocarditis/

Pneumonia

Lost of Fnbp 

eliminates 

elastin binding

Roche e t  at 

(2004)

Roche e t a! 

(2004)
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Protein Ligand(s)
Mechanism of 

attachment to cells

Ligand 

located ...

Mammalian

Receptor(s)

Roles/functions 

implicated in ...

Diseases 

implicated in ...

Known e ffe c ts  

of KO

Other points of 

interest
References

FnbpB

Fibrinogen

LPXTG-motif

Serum ?

Fibronectin ECM ?
Adhesion to plasma 

clots

Expressed in 

exponential 

phase

Roche e t at 

(2004)

Elastin ECM ?
Endocarditis/

Pneumonia

Lost of Fnbp 

eliminates 

elastin binding

Roche e t  al 

(2004)

FnbpA/B Fibronectin LPXTS-motif

ECM/

Epithelial

cells

Internalisation of 

epithelial cells
Endocarditis No difference

Most invasive 

strains bind Fn

>Flock e ta l  

(1996)

>Dziewanowska

e ta l  (1999)

SdrE Unknown LPXTG-motif N /a N /a
Activation of 

platelets

Family includes 

ClfA/B, 

FnbpA/B and 

SdrC/D

Loughman e t  

a/(2005) 

Josefsson e t  

a /(1998)
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Protein Ligand(s)
Mechanism of 

attachment to cells

Ligand 

located ...

Mammalian

Receptor(s)

Roles/functions 

implicated in ...

Diseases 

implicated in ...

Known e ffe c ts  

of KO

Other points of 

interest
References

Cna Collagen LPXTS-motif ECM ?
Attachment to 

cartilage
Septic arthritis

Reduced rate of 

arthritis

5. aureus 

causes 80% of 

cases

Patti e ta l  

(1994)

EpbS Elastin ECM
Has mammalian 

receptor

Elastin occurs in 

blood vessels. 

Different 

binding to 

mammalian 

receptor.

Park e ta l  

(1991)

Sbi

IgG Fc Serum Fc receptors

p2£Pl Serum
Binds directly 

to platelets

vWbp
Von Willebrand 

fac to r
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Protein Ligand(s)
Mechanism of 

attachment to cells

Ligand 

loca ted ...

Mammalian

Receptor(s)

Roles/functions 

implicated in ...

Diseases 

implicated in ...

Known e ffe c ts  

of K0

Other points of 

interest
References

SpA

IgG Fc

LPXTG-motif

Serum Fc receptors
Binds most 

mammalian IgGs

Kronvall e ta 1 

(1970)

IgG Fab VHI I I Serum Fc receptors

>Supradonal B-cell 

>AII SpA domains 

bind Fab 

>Binds VH3 gene 

family only

>Palmqvist e t  

a /(2005)
>Jansson. Uhlen, & 

Nygren (1998) 

>Robben, Salem, 4  

Silvermann (1995)

Von Willebrand 

fac to r
Serum Platelets Platelet adhesion

Endovascular

disease

Hartlieb e ta l  

(2000)

gClqR/p33

Platelets/

endothelial

cells

Cell surface Endocarditis
Nguyen e ta l  

(2000)

TNFR1 Cell surface Pneumonia
Gomez e t al 

(2004)

General

Keratitis
Not a major 

virulence factor

Callegan e ta l  

(1994)

Mastitis
No significant 

difference

Jonsson e ta l  

(1985)

Arthritis/Septic

Death
Reduced virulence

Palmqvist e t  

a/(2002)
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Protein Ligand(s)

Mechanism of 

attachment to 

cells

Ligand 

located ...

Mammalian

Receptor(s)

Roles/functions 

implicated in ...

Diseases 

implicated in ...

Known e ffe c ts  

of K0

Other points of 

interest
References

Alpha-

toxin

Keratitis
Greatly reduced 

pathology
Pore-forming

haemolytic

toxin

Callegan e ta l  

(1994)

Subcutaneous

lesions

Major virulence 

factor

Jonsson e ta l  

(1985)

Alpha

Haemolysin
Mastitis

Significantly 

reduced virulence
Double mutant 

is even less 

virulence

Jonsson e ta l  

(1985)

Coagulase

Mastitis
Significantly 

reduced virulence

Jonsson e ta l  

(1985)

Endocarditis None
Morellion e t  

a! (1995)
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13 Appendix 2
Species of Serum IgG Concentration (M) ks (s’1) Chi squared (%2)

6.37E-05 3.13E-03 645
Chicken 3.19E-05 2.01E-03 97

2.12E-05 1.63E-03 11
1.26E-06 7.43E-03 9,240

Cow 6.29E-07 4.31E-03 2,630
3.15E-07 3.83E-03 11
1.07E-05 4.17E-03 68,200

Goat 5.33E-06 2.71E-03 21,500
2.66E-06 7.45E-04 3,230
9.84E-06 2.17E-03 772

Horse 4.92E-06 1.42E-03 86
2.46E-06 4.97E-04 117
4.46E-07 1.07E-02 21,600
2.23E-07 8.49E-03 6,080

Human 2.23E-07 6.43E-03 2,620
1.49E-07 5.56E-03 974
1.12E-07 4.03E-03 204
2.68E-07 1.55E-02 23,800

Guinea Pig 1.34E-07 1.22E-02 10,200
6.70E-08 8.92E-03 1,890
3.51E-07 3.73E-02 65,800

Mouse 2.63E-07 3.19E-02 25,400
1.76E-07 2.00E-02 4,580
7.83E-07 8.23E-03 68,100

Pig 3.13E-07 6.77E-03 5,770
1.57E-07 6.29E-03 14,100
8.67E-07 1.34E-02 10,800

Rabbit 4.33E-07 7.53E-03 1,810
1.73E-07 6.05E-03 1,280

Sheep
4.34E-05 3.75E-03 16,900
2.17E-05 1.82E-03 4,050
1.45E-05 1.36E-03 3,150
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14 Appendix 3
Interaction patterns between the Ch2 and Ch3 domains of the IgG models. 

CONTACT was used to calculate residues within 5.2A of a residue in the other Ch 

domain. Residues in the Ch2 domain (244 to 342) interacting with a residue in the 

Ch3 domain (343 to 438) are marked with a green square.
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Residues for 1FC2

Residues for Chicken IgG clone 36
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Residues for Horse lgG4
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Residues for Mouse lgG1
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Residues for Rabbit IgG
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Summary of the interactions between the C h2 and C h3. The number indicates the 

number of times an interaction between two residues is detected. Residue numbers in 

red are residues that are conversed in all models
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Summary of interactions observed above between the IgG Ch2 and Ch3 domains. The 

numbered squared refer to the interactions listed in Table 9. Interactions detected in 

all models are marked in black. Changed interaction pattern: marked in red do not 

correspond to changes in sequence; blue corresponds to changes in the Ch2 domain; 

green to changes in the Ch3 domain; yellow to changes in both domains.
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Sequence of the IgG models in the regions identified to be involved in interacting 

with the other domain. Conserved residues are highlighted in yellow. Residues 

conserved in all sequences have a black mark under them.
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15 Appendix 4
Interaction patterns for SpA with the IgG models. CONTACT was used to calculate 

residues between 1.8 A and 5.2A of a residue in the other half of the complex. 

Residues in the SpA domain (1 to 31) interacting with a residue in the IgGmodel (248 

to 438) are marked with a green square.

- 176-



SpA

1

_2_

_3_

_4_

5
6 

7

_8_

9

10

_12_

13

_!£.
20

23
24

27

28
30

31

SpA

1

2
3

4

5
6 

7

_8_

9

10 

11 

12_
13

14

19

20

23

24

27

28

30
31

- 177 -

interactions with 1FC2

interactions with Chicken IgG clone 36

^ ^u  | u  | u

I i



SpA interactions with C ow  lgG2

ssua a

SpA interactions with Guinea Pig IgG2

- 1 7 8 -



SpA interactions with Horse lgG4
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SpA interactions with Rabbit IgG
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Summary of the interactions between SpA and the IgG models. The number indicates 

the number of times an interaction between two residues is detected. Residue numbers 

in red are residues that are conversed in all models
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Summary of interactions observed above between SpA and the IgG models. The 

numbered squared refer to the interactions listed in Table 10. Interactions detected in 

all models are marked in black. Changed interaction pattern: marked in red do not 

correspond to changes in sequence; green indicates where a substitution occurs in the 

IgG sequences. The sequence for SpA is given.

b :  1 9 0 0 0 0  0 0 0 0 0 0 0  0 0 0

E 11 E E
I 12 E E

j k : c < y £ x x y .
H 14
N 19 
E 20 
R 23 
N 24 
I 27 
Q 28 
L 30

xxxxUxxxxxxxxl&xx

l/\l w
1 M

■

m z x z x z x z

K 31 A _

Sequence of the IgG models in the regions identified to be involved in interacting 

with SpA. Conserved residues are highlighted in yellow. Residues conserved in all 
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16 Appendix 5
Interaction patterns for Sbi-1 with the IgG models. CONTACT was used to calculate 

residues between 1.8 A and 5.2A of a residue in the other half of the complex. 

Residues in the SpA domain (1 to 31) interacting with a residue in the IgGmodel (248 

to 438) are marked with a green square.
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Sbi-1 interactions with 1FC 2
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S b i-1 interactions with Cow lgG2
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Sbi-1 interactions with Horse lgG4
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Sbi-1 interactions with M ouse lgG1
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1 interactions with Rabbit IgG
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Summary of the interactions between Sbi-1 and IgG models. The number indicates 

the number of times an interaction between two residues is detected. Residue numbers 

in red are residues that are conversed in all models
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Summary of interactions observed above between Sbi-1 and the IgG models. The 

numbered squared refer to the interactions listed in Table 11. Interactions detected in 

all models are marked in black. Changed interaction pattern: marked in red do not 

correspond to changes in sequence; green indicates where a substitution occurs in the 

IgG sequences. The sequence for Sbi-1 is given.
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17 Appendix 6
Interaction patterns for Sbi-2 with the IgG models. CONTACT was used to calculate 

residues between 1.8 A and 5.2A of a residue in the other half of the complex. 

Residues in the Sbi-2 domain (1 to 31) interacting with a residue in the IgGmodel 

(248 to 438) are marked with a green square.
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Sbi-2 interactions with 1FC 2
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Sbi-2 interactions with Cow lgG2
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Sbi-2 interactions with Horse lgG4
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Sbi-2 interactions with M ouse Iq
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Summary of the interactions between Sbi-2 and the IgG models. The number 

indicates the number of times an interaction between two residues is detected. 

Residue numbers in red are residues that are conversed in all models
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Summary of interactions observed above between Sbi-2 and the IgG models. The 

numbered squared refer to the interactions listed in Table 12. Interactions detected in 

all models are marked in black. Changed interaction pattern: marked in red do not 

correspond to changes in sequence; green indicates where a substitution occurs in the 

IgG sequences. The sequence for Sbi-2 is given.
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Sequence of the IgG models in the regions identified to be involved in interacting 

with the other domain. Conserved residues are highlighted in yellow. Residues 

conserved in all sequences have a black mark under them.
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