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Abstract

The gypsy moth has long been a pest in the forests of North America. Historically, 
population levels have displayed cyclic behaviour with outbreaks observed every 5-12 
years. A number of different attempts have been made to eradicate or control gypsy 
moth outbreaks; however, gypsy moths continue to expand across the United States.

This thesis proposes a mathematical model as a tool for explaining and predicting 
population changes of gypsy moths, and to devise control strategies. Advantages of 
this modelling approach is that it is relatively less costly and time-consuming than 
experiments.

It has been suggested that there are two causes for the decline phase in gypsy moth 
population dynamics. These are, diseases caused by the Nuclear Polyhedrosis Virus 
(NPV), and a decrease in plant food quality (leaf quality). But previous modelling has 
not included the full impact of plant food quality. Foster, Schultz h  Hunter (1992) 
considered gypsy moth and NPV interactions at different levels of leaf quality over a 
hundred year period. Others have focused solely on the host-pathogen interactions of 
the gypsy moth-NPV system and ignored plant food quality effects.

In this thesis we extend the Foster-Schultz-Hunter model (Foster et al. 1992) by 
including leaf quality into the dynamics of the system. First, we develop this model to 
include leaf quality as a changeable (dynamic) value. The potential complexities of field 
investigations into gypsy moth, NPV and leaf quality interactions makes modelling the 
system mathematically a more convenient approach for initial understanding.

Previously modelling has been based on an Anderson h  May (1981) continuous 
time model. We extend this by considering a discrete time structure. This is because 
gypsy moth life cycles are annual and have distinct non-overlapping generations and 
hence forms a discrete time population system. Due to this we turn our attention to 
building a gypsy moth model using a more appropriate discrete time approach. We 
later introduce a spatial component to the model.

Once a good understanding of how gypsy moths interact with NPV and leaf quality 
is achieved then control strategies to contain outbreaks can be developed. In the latter 
part of the thesis we will study the model incorporating a control mechanism (by 
spraying areas with a biological control agent) with the intention to prevent major 
outbreaks, and optimal control strategies will be suggested to minimise costs.
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Chapter 1

Introduction

The gypsy moth is a forest pest, which has caused extensive defoliation across the 
Northeastern United States over the past 130 years. Gypsy moths were brought from 
Europe to the United States in 1867 and have since caused millions of acres of defor
estation which has harmed forest ecosystems. Gypsy moths in the US have not only 
affected forests, but recreational and urban vegetation as well.

There is a long history of attempts to eradicate, suppress or at least slow down the 
spread of the gypsy moths. These attempts have had varying degrees of success (Chap
ter 2, section 2.1.3). Despite these attempts the gypsy moth population continues to 
grow and spread to the south and west of the United States. Since the early 20th cen
tury, numerous predators and parasites have been introduced into the US in an attempt 
to control gypsy moth infestations. Over twenty of these parasites and predators have 
established themselves yet they have been unable to control gypsy moth population 
levels in the long term (Campbell 1981).

Gypsy moths are an irruptive pest whose population levels remain low for a number 
of years before suddenly exploding to reach maximum (outbreak) levels within 1-2 
years. Fortunately outbreak levels are often unable to sustain themselves and a crash 
usually occurs within 2-3 years. This process was described as bimodal by Campbell 
(1981) and gypsy moth populations each year were described to be in one of four 
phases; innocuous, release, outbreak or decline (Figure 1-1). These phases are now 
well used terms in the literature. The population is said to be bimodal because there 
are two relatively stable population levels, innocuous and outbreak. The cause of the 
transition from one level to another is not completely understood, although extensive 
research seems to indicate that a decrease in predation is the catalyst for the release 
phase (Elkinton, Healy, Buonaccorsi, Boettner, Hazzard, Smith & Leibhold 1996) and a 
combination of Nuclear Polyhedrosis Virus (NPV) and plants’ defence mechanism cause
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a sharp decline phase (Foster et al. 1992). Disease of gypsy moth population levels from 
NPV initiated the development and production of a biological pesticide called Gypchek. 
This pesticide is now used by the United States Department of Agriculture (USDA) 
to fight infested areas and to prevent gypsy moths invading nearby uninfested areas. 
Gypchek is applied by spraying aerially in forest regions and on the ground in urban 
areas.

l- ln n o c u o u s  mode

IV -  Decline phase

 •• Trend in individual subpopulaiion

I. -  Trend in area wide population

IS0 16 202 4 6 8 10 12 14

Number of years

Figure 1-1: Four phases of gypsy moth populations: innocuous, release, outbreak and 
decline (source Campbell (1981)).

Spraying large areas is a costly process for the USDA. Gypsy moths are continuing to 
spread further across the United States and this is likely to continue. Residents are not 
always in favour of having their land and surroundings sprayed, due to irritation caused 
to eyes and skin, therefore heavy spraying is not an option in urban or recreational areas. 
This leads to the question of whether it is worthwhile continuing with an expensive 
spraying program. This is a question that can only be answered by management 
strategists.

Further to this it has been suggested that tannin, a chemical produced in plants, can 
affect the gypsy moth susceptibility to NPV. High levels of tannin in plants are caused 
by extensive defoliation of the plant and this results in food which is less favourable to 
gypsy moths. High tannin levels also reduce fecundity, however this is to a lesser extent
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than the decrease in susceptibility. Therefore, we have a positive feedback system:

More Tannin More resistanceMore moths

Less virus induced death

Figure 1-2: Positive feedback created by plants defence mechanism against severe de
foliation by gypsy moths.

This system is important to consider when using NPV as a biocontrol agent.
The purpose of this thesis is first to formulate a mathematical model to forecast 

gypsy moth population levels. Mathematical modelling is a less costly and time- 
consuming approach than experiments in understanding the gypsy moths interaction 
with NPV and plant food quality. This model is then examined to see if and how out
breaks can be controlled via the use of the biological pesticide Gypchek. We can then 
optimise a control strategy in order to minimise the amount of spray, and consequently 
cost, required. This would reduce the unfavourable effects of excessive virus spraying 
on humans, as well as the high cost of the pest to society.

The thesis therefore aims to answer the following questions:

• How does tannin affect the dynamics of gypsy moth-NPV interactions?

• Can a discrete time system predict realistic gypsy moth population dynamics, 
and how does this compare with the continuous time model?

• Can spatial differences occur in gypsy moth population levels?

• How quickly are gypsy moths spreading across the US and can this spread rate 
be reduced?

• Will spraying help reduce gypsy moth outbreaks?

• What is the optimum strategy to reduce the combined costs of environmental 
and economic damage by gypsy moths and spray?
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1.1 Layout of thesis

In Chapter 2 we look at the background of the gypsy moth problem and the ways in 
which mathematics can help answer the questions raised in the previous section. The 
chapter is split into two sections. The first begins with the reasons why gypsy moths 
are a pest in North America. This is followed by the history of gypsy moths in North 
America and a description of its life cycle and how it disperses. Many predators and 
parasites from Europe have been introduced to try to regulate gypsy moth population 
levels. These are discussed along with the influence that one pathogen has on gypsy 
moth growth - the NPV. Plant food quality, in particular tannin levels in leaves, plays 
a role in changing the vital rates of gypsy moths and also affects the resistance of gypsy 
moths to NPV infection. A discussion of this concludes the first section.

The second section concerns mathematical modelling and its applicability to bio
logical systems. It examines previous continuous time modelling for gypsy moth-NPV 
interactions. The Foster et al. (1992) modelling system which incorporates plant food 
quality is described and compared with other models in the literature. Discrete time 
models for host pathogen systems have a long history beginning with the model of 
Nicholson & Bailey (1935). We discuss some of these models and why this type of 
modelling system is relevant. Following on from this we look at how discrete time 
models can be extended to include space using integrodifference equations. Integrod
ifference equations allow space to be continuous whilst populations remain discrete. 
Many studies have used integrodifference equations recently and we will discuss some 
of these. Optimal control has been applied several times to spatial PDE ecological 
models. Yet for hybrid systems, such as integrodifference models, optimal control is a 
newly developing area. We review one of the first studies in this field.

Chapter 3 examines the only known work to have modelled the combined effect of 
NPV and leaf quality on gypsy moth populations, i.e. Foster-Hunter-Schultz model 
(Foster et al. 1992). This models the gypsy moth-NPV interaction using continuous 
time differential equations. Leaf quality is included only in the sense that it changes 
parameter values, such as fecundity and disease induced mortality.

We extend this approach to incorporate tannin as a dynamic variable. This gives a 
more realistic representation of the system. Simulations are carried out to determine 
behaviours at various parameter sets. This model is simplified to consider a special 
case where the abundance of NPV has little effect on the level of infected eggs. This 
simplification enables us to perform some mathematical analysis and hence better un
derstand the system. The chapter concludes with the interpretation of results and a 
comparison to the Foster et al. (1992) study.
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Chapter 4 takes a different approach to model the system. Instead of using a 
continuous time model we develop a discrete time model. This approach is deemed to be 
a more appropriate due to the yearly non-overlapping generations formed in the gypsy 
moth life cycle (see Chapter 2, Section 1.2). We begin by building a model looking solely 
at gypsy moth populations, i.e. without any influence of NPV or plant food quality. 
This base model aids the understanding of how gypsy moths will grow for different 
fecundities and carrying capacities. NPV is then introduced into the system, and 
later plant food quality, comparing each of these stages with the original base model. 
The complete system is complex thus it is simulated numerically. One component 
of the complete system is the density dependent growth rate of gypsy moths. This 
component has a limiting effect on the population when approaching high density levels. 
This corresponds to overcrowding, where gypsy moths compete for limited resources. 
However, several authors have reported that despite high densities of gypsy moths 
there appears to be little mortality due to starvation (Doane 1970, Campbell 1981). 
They report instead that the NPV was the sole determinant in reducing the rate of 
growth of gypsy moth outbreaks. For this case, we look at a reduced system without 
density dependent growth. This reduced model is much simpler and some analysis can 
be carried out.

Chapter 5 considers the incorporation of Gypchek into the model system presented 
in Chapter 4. Gypchek is a biological control agent (ie. NPV) used against gypsy 
moth infestations. It should be noted that Gypchek is a very costly control method, 
however, there is an economic gain in reducing gypsy moth outbreaks. We therefore 
create a bioeconomic model consisting of the cost of control plus the cost of damage 
by gypsy moth infestations. We then seek an optimal control strategy to minimise the 
total cost. Simulations of the results are presented along with alternative strategies 
which are compared to the optimum.

Also following on from Chapter 4, Chapter 6 extends the model to include spatial 
effects. This is formulated using a system of integrodifference equations, which contain 
two components or stages. The first stage is the difference equations given in Chapter
4. The second is the dispersal or movement stage. This addition allows us to predict 
spatial patterns or patchiness formed by the system using bifurcation analysis. This 
will be important in determining spray strategies which are discussed in the subsequent 
chapter. Spatial effects also allow us to determine the rate of spread in virgin forests 
using travelling waves. We investigate the differences in travelling wave speeds for 
different spatial modelling systems, reaction diffusion and integrodifference equations. 
We then apply this information to consider the use of NPV as a barrier to slow the 
spread rate of gypsy moths.
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Chapter 7 extends the spatial model to include control in a similar way to Chapter
5. We again create a bioeconomic model with the goal of minimising the total cost 
by seeking an optimal control strategy. The total cost consists of the cost of control 
by NPV (in the form of Gypchek) and the damage cost that gypsy moths cause to 
the economy at each spatial location. We prove the existence and uniqueness of the 
optimal control. Numerical results and interpretations are given.

Chapter 8 concludes by giving a summary of the achievements of the thesis as well 
as suggestions for future research. The bioeconomic model in Chapter 7 considers virus 
as a control input, however control by NPV may not be the only way to influence the 
gypsy moth system. New research is investigating the control of plant tannin levels. 
This would aid the control of gypsy moth infestations and brief discussion is given for 
future work.
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Chapter 2

Background

2.1 G ypsy M oths - a problem

The problem is that gypsy moth populations historically outbreak to high levels every
7-12 years. Gypsy moths feed heavily on tree foliage during the caterpillar stage thus at 
outbreak levels, large number of caterpillars can cause extensive widespread defoliation. 
Trees can usually survive a year or two of partial defoliation, however either a longer 
period or more acute defoliation makes the trees become increasingly vulnerable to 
diseases. Consequently gypsy moths have contributed significantly to tree mortality in 
the United States. The loss of trees and forest areas have meant a huge drop in oak 
numbers throughout Northeastern United States. The gypsy moth population has had 
devastating effects and as Oak is one of the preferred hosts there is now a major concern 
over the potential loss of one Oak species, Querces spp. Furthermore deforestation has 
a knock on effect for local economies. The tourist industry is undoubtedly affected as 
well as industries such as timber. The gypsy moth also infests recreational and urban 
areas bringing undesirable results. Hence, the need for the United States Department 
of Agriculture (USDA) to become involved in controlling the pest.
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Figure 2-1: Gypsy moth larva.

2.1.1 H istory of G ypsy M oth in A m erica

The Gypsy Moth was first brought to the USA in 1868/9 by Ettiane Leopald Trouvelot 
from France. Trouvelot settled in Medford, near Boston, Massachusetts after fleeing 
France, his native homeland, during the coup d’etat in 1852. He was an artist and 
amateur entomologist whose main interest was in silkworms for the use in silk produc
tion. In the late 1860’s, after visiting France, Trouvelot brought back some gypsy moth 
egg masses to his house at 27 Martle Street in Medford. There, it is said, he either 
cultivated them on trees in the back garden where some of them escaped or they were 
blown from a window sill. He notified the local entomologists yet nothing was done. 
Trouvelot returned home to France prior to the first outbreak of gypsy moths which 
occurred on the street where he had lived, in 1889. Over the past 115 years, gypsy 
moths have spread, first locally, then throughout the state, into neighbouring states 
and beyond. They have now established themselves throughout the Northeastern USA 
and continue to spread to the west, south-west and into Canada.

The first attempts to eradicate gypsy moths were made in 1890. These attempts 
were launched by the State and Federal Governments by poisoning gypsy moths whilst 
in the caterpillar stage. However this initiative failed as the insecticide damaged leaves 
and spraying was not effective. When the outbreak naturally subsided the funding was 
cut and the program was terminated. The next outbreak occurred in 1905 when the



gypsy moths had spread to several states. On this occasion, the government chose to 
import the gypsy moths natural enemies from Europe, but this also failed to reduce 
the population as predicted and funding was again cut. This program however, was 
ultimately effective in reducing the gypsy moth population by the 1920’s.

Several attempts later, scientists introduced DDT which was found to be very ef
fective against gypsy moths, as it was for many other insects. Over 3 million acres 
were treated with DDT by 1957. However, due to increasing health concerns, the pro
gram was abandoned and focus was directed to biological methods of control such as a 
pathogenic bacteria or NPV in the form of Gypchek. Initiative such as the Slow-the- 
Spread project have also been put in place to slow the spread of gypsy moths in the 
United States (Virginia Gypsy Moth Information Systems Lab).

2 .1 .2  T h e  G y p sy  M o th  L ife C y c le

The gypsy moth life cycle begins in late August or September each year when egg 
masses are laid. These egg masses remain in the egg stage over winter and are capable 
of survival at very low temperatures. The eggs hatch in the spring and the young larvae 
begin feeding immediately. Egg masses can on occasions become contaminated by free- 
living NPV during the winter. This can cause transovum vertical transmission of the 
disease as young larvae feed on their egg shells after hatching (Woods Sz Elkinton 1987).

The larvae go through either 5 or 6 instar stages of development. This period is 
when most feeding takes place and when the trees are first likely to suffer defoliation. 
Males go through 5 instar stages and are therefore lighter in mass which enables them 
to fly during adulthood. Females go through 6 instar stages and are too heavy to fly 
when adults, so dispersal or spread is not possible due to flight.

In early instar stages, the larvae are attracted to light and climb the trees to the 
crown. Once food is limited, the larvae hang by silken threads and are dispersed by the 
wind. Thus wind borne dispersal is one of the major reasons for gypsy moth spread 
across the country (Dwyer & Elkinton 1993). This type of dispersal is regarded as 
short range. The dispersal usually happens around the second or third instar stage 
and spraying is co-ordinated with this time. Another way the gypsy moths disperse is 
by human intervention, usually by accidental movement due to egg masses or larvae 
attaching themselves to motor vehicles. The egg masses and larvae can be carried very 
long distances; this method of dispersal is classified as long range.

After about 8 weeks of continuous feeding the larvae complete the instar stages and 
then pupate. The pupae are often found in bark crevices or located in other disguised 
locations. The pupa stage lasts for a few days before the adult moths hatch. Later 
in the season, adults reproduce. As females are unable to fly they attract a mate by

9



emitting a sex pheromone that male moths detect. After mating the female lays eggs 
in a single mass. The moths continue to live until late September when the cycle ends 
for this generation.

Eggs
hatch Pupate

- H —

Eggs
laid

May Jul

Larvae:
5/6 instar stages

Adults

Sep Dec

Figure 2-2: Gypsy moth life cycle.

2.1.3 Introduction  of predators and parasites

Since the first outbreak considerable efforts have been made first to eradicate the gypsy 
moth and later just to control them. This started with the State and Federal Govern
ments attempts to eradicate gypsy moths in the 1890’s. This ultimately failed and 
gypsy moths continued to spread from Massachusetts into neighbouring states. Since 
then over 20 insects, parasites and predators have been introduced to try to dampen 
and control the growth and spread of gypsy moths. This has been described as one of 
the largest undertakings of its kind by authors such as Bess (1961), DeBach (1974) and 
May (1976). However, these introductions have come with different degrees of success. 
Small mammals perhaps have been one of the most important predators when gypsy 
moths are at sparse density levels, in particular white mice. It has also been reported 
that white mice may be a contributing factor for the release phase due to a decline in 
their predator numbers (Elkinton et al. 1996). However, these predators appear to play 
little role in the decline phase (Lauterschlager & Podewaite 1977). Many authors agree 
that disease plays a critical role when populations are at outbreak levels (Bess 1961), 
(Bess, Spurr & Littlefield 1947).

Doane (1970) and Kaya (1976) agree that NPV is a major component of infectious 
disease. The gypsy moth NPV is a naturally occurring baculovirus that is able to live 
freely in the environment. It infects gypsy moths by ingestion. Once ingested the 
virus replicates and kills its hosts within 14 days. Diseased gypsy moth canopes hang
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from branches in an inverted V-shape releasing millions of NPV spores. Ultra-violet 
sunlight breaks down the virus, however some may survive by escaping the sunlight 
in shades or soils. These continue to be active and can infect gypsy moths for many 
years. Therefore, NPV induced disease is a critical factor in producing a decline phase 
in gypsy moth population levels. It is considered, however, to play only a minor role 
once gypsy moths are at innocuous modes again (Campbell 1981), since egg masses are 
sparse.

Figure 2-3: NPV infected gypsy moth larva.

2.1 .4  T he effects of plant food quality

Plant food quality has been reported as one of the main contributors to the collapse of 
gypsy moth outbreaks, yet has not had the same recognition when the system has been 
modelled. Plants are able to defend themselves when suffering extensive defoliation 
by changing their biochemical composition in order to make itself less appealing to 
its host. This is an attempt to reduce the plants consumption. The different biolog
ical composition of leaves affects the development of gypsy moths that feed on them 
(Edel’man 1963). Gypsy moths that were fed on different plants were found to have 
different rates of fecundity and survival (Hough &; Pimental 1978). More recently tan
nin, a chemical found in leaves, was found to affect fecundity and mortality rates of 
gypsy moths (Schultz, Foster & Montgomery 1990). Further work revealed that the 
level of tannin in leaves fed on gypsy moths had a positive effect on their resistance to 
NPV (Keating, Yendol & Schultz 1988, Keating, Hunter & Schultz 1990). This finding 
was contrary to previous theories that gypsy moths eating poor quality food would be 
more vulnerable to infectious diseases.

Biochemical responses in plants do not happen immediately (D’Amico, Elkinton, 
Dwyer, Willis & Montgomery 1998) and it is unlikely that increases in tannin will
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have any effect on gypsy moth populations during the release phase. However, during 
an outbreak, defoliated plants may develop a higher level of tannin to defend them
selves. This is supported by Camboni who concluded that delayed bud burst in cork 
oak was entirely due to defoliation from the previous year (Campbell 1981). Indeed 
newly infested areas, where presumably plant food quality is higher and therefore more 
favourable for gypsy moths, were found to have higher fecundity values. This indicates 
that after an outbreak, future year plants will have a high tannin level to combat the 
risk of further defoliation. Ultimately this results in leaving plants too weak to fight off 
disease. Due to the reduced fecundity and increased resistance caused by higher levels 
of tannin, the varying levels of plant food quality should be included in the dynamics 
of modelling gypsy moth populations.

2.2 M athem atics in population dynamics

There has been a long history of mathematicians fascination with the problems asso
ciated with the development of populations or population dynamics. Indeed due to 
this, Renshaw (1991) rates population biology as perhaps the most mathematically 
developed area in all ecology. The earliest studies focused on small mammals and labo
ratory controlled organisms as these populations could easily be formulated into simple 
mathematical systems (Renshaw 1991). With the development of computers, fairly so
phisticated continuous and discrete time models have been developed (Freedman 1980) 
as well as stochastic models (Ludwig 1974). More recent population dynamical mod
elling has centred around multi-species systems and the inclusion of spatial effects on 
population growth.

So, what is a population and what is population biology? The definitions given 
by Hastings (1997) are that “a population is a group of individuals of some species 
that have a high probability of interacting with each other” and that “population 
biology is simply the study of biological populations”. To study biological populations 
we need to understand how and why population levels change. In order to do this, 
we require mathematical models to explain and predict these changes. Mathematical 
models axe used to simulate population behaviour and are a popular alternative to 
expensive and time consuming experiments. These models are able to show how a 
system can be controlled, which has great applications to wildlife management practices 
(Clark 1976). Therefore, “models of population dynamics are central to understanding 
and application of optimal control techniques for containing pest outbreaks” - (Hallam 
Sz Levin 1986).

Mathematical modelling has also been very important and very successful in the
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theory of spread (Hastings 1997) - in predicting future rates of invasion of populations. 
This has been important in helping to control the spread by developing programs to 
prepare areas for invasion and to design measures to reduce the speed of an invasion.

2 .2 .1  M o d e ls  for g y p sy  m o th s

There have been several attempts to model gypsy moth - NPV interactions. These have 
all primarily based their model on Anderson Sz May (1981) host-microparasite system 
with a free-living microparasite stage (see Anderson Sz May (1981) (Model G) ). We 
will now review a selection of models which have provided insight into the research 
presented in the thesis.

Foster, Schultz &z H unter (1992)

One of the first to model gypsy moth population dynamics was Foster et al. (1992). 
They considered a host pathogen model based on the Anderson & May (1981) free 
living pathogen system. The Anderson-May model was extended to incorporate the 
transovum vertical transmission associated with gypsy moth dynamics. The Foster- 
Schultz-Hunter model is as follows

j  V
—  =  a ( l - q { W ) ) X - b X - d X W  (2.1a)

dY
—  =  aq(W)X -  (b + a) Y  +  d X W  (2.1b)

dW
—  = X Y - { u  + v ( X  + Y ) ) W  (2.1c)

where X  is the susceptible population size of the host, Y  is the population size of
infected gypsy moths, W  is the population size of the free living virus and q(W)  
represents the proportion of newly born gypsy moths contracting the disease. The 
parameters of the system axe given by

a =  fecundity of gypsy moths

b =  natural mortality rate of gypsy moths 

d — horizontal transmission coefficient 

a = disease induced mortality

A =  rate at which the free living virus enters the environment

u = death rate of the free living virus

v =  ingestion rate by the host of the free living virus
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Vertical transmission occurs by egg contamination overwinter by NPV (Murray Sz 
Elkinton 1989). This transmission has been shown to increase with levels of NPV 
(Woods, Elkinton Sz Podgewaite 1989). Therefore Foster et al. (1992) allow vertical 
transmission to be represented by

q =  V W x  1(T8

This is consistent with q = 0.01 for low virus years (1012 NPV per 0.4ha) and q = 0.3 
for high virus years (1015 NPV per 0.4ha), (Woods &; Elkinton 1987).

Plant food quality, in particular tannin levels, is found to influence certain param
eters of the system. There are two main effects of tannin on gypsy moth dynamics, 
firstly susceptibility to the virus decreases with tannin and secondly fecundity decreases 
with tannin. Although tannin decreases the effect on the susceptibility to the virus it 
is greater than its effects on fecundity of gypsy moths (Schultz et al. 1990).

They found that when numerical simulations were conducted, for moderately high 
tannin levels, long lived pathogen and low natural gypsy moth mortality, the solutions 
closely fitted with field data. The dynamics also agreed with the predictions of limit 
cycles by Anderson and May which occurred if the pathogen was long lived and if 
there was high pathogenicity relative to intrinsic growth rate of the prey. However, 
simulations revealed that gypsy moth populations were stable at low tannin levels 
which lead to their conclusion that an increase in tannin has a destabilising effect on 
the population of gypsy moths.

D w yer & E lk inton  (1993)

Other modelling attempts for gypsy moth population dynamics have been made by 
Dwyer Sz Elkinton (1993). They modelled the dynamics of gypsy moths and its in
teraction with NPV. They, like the Foster et al. (1992) model, adapted the Anderson 
Sz May (1981) model. However, instead of looking at long-term behaviour in popula
tion dynamics, they adapted the model to consider within-season dynamics, due to the 
availability of data (Woods Sz Elkinton 1987).

The Dwyer and Elkinton model is given by

- v P S

v PS  -  vP(t  -  r)S{t  -  r)

A vP(t  — r)S(t  — t ) — uP

dS
dt
dl_
dt

dP
dt
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where S  is the population size of susceptible gypsy moths, I  is the population size of 
infected gypsy moths, P  represents the density of pathogen in the environment and t  

is the time between infection and death of the host. The other parameters v, u, A are 
as described in (2.1).

As Dwyer and Elkinton only model within-season dynamics, there are three main 
differences between their model and the Anderson-May model. These are
(1) No fecundity of the gypsy moth or mortality due to non-virus induced death.
(2) There is a constant time delay between the point where the gypsy moth becomes 
infected and when death occurs (Dwyer 1991).
(3) No loss of pathogen particles due to consumption by the host.

The system is computed and compared with field data. Whilst some field data 
agreed favourably with model predictions under appropriate parameter selections, those 
with low initial levels of gypsy moth population did not. They therefore concluded that 
their assumption of the linear virus transmission is only valid at high density of gypsy 
moth initial population.

Dwyer and Elkinton suggested that a possible cause for the underestimation of virus 
transmission rate in low initial densities was due to immigration. They also considered 
this could be due to food quality for the gypsy moths, however they dismissed this 
since low levels of gypsy moths would cause low levels of defoliation and hence low 
transmission (Keating Sz Yendol 1987).

D w yer, DushofF, E lkinton & Levin (2000)

Dwyer, DushofF, Elkinton & Levin (2000) later derived a two-compartment model by 
including seasonality in host reproduction and heterogeneity among the host in their 
susceptibility to the virus. This extended model differs from the Dwyer Sz Elkinton 
(1993) model by allowing heterogeneity in susceptibility as well as including host re
production.

Contaminated egg masses introduce the pathogen into the host population each 
year by the process,

S{v, 0) =  Ntf {v )exp( -vpZt)

P(0) =  Nt J  f{v){l  -  exp( -vpZt))dv

where S  is the density of uninfected insects, P  is the density of infectious cadavers, v 
is the rate of horizontal transmission of the disease and p is the ratio of effectiveness of 
infection at the time of egg hatch relative to infection later in the season. Nt, Zt are
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the initial densities of the host and pathogen respectively at generation t.
The within season dynamics are given by,

a s
dt 
dP
dt

with r  the time between infection and death, and u the breakdown rate of cadavers. At 
the end of the season the gypsy moths reproduce with fecundity A. In order to simplify 
the model for computation, the model was discretised as follows

Nt+1 = XNt( l - I )

%t+i = p f  NtI  +  7 Zt

1 - /  =  (1 + C2(NtI  + p Z , ) ) $

The Anderson-May model concluded that high pathogen survival was needed for cyclic 
behaviour in population dynamics. However Dwyer Sz Elkinton (1993) found in their 
model, that even low pathogen survival could cause such outbreaks, partly due to newly 
hatched insect larvae having higher average susceptibility than the older larvae.

2 .2 .2  D is c r e te  T im e  m o d e ls

One branch of host-pathogen modelling is based on a host-parasitoid model which dates 
back to Nicholson & Bailey (1935) who created a discrete time model. The Nicholson- 
Bailey model was based on two main assumptions

1. The number of encounters E  that parasitoids Pt have with hosts Nt is directly 
proportional to the hosts’ density. Hence,

E  = aNtPt

where a represents the probability that a given parasitoid will encounter a given host 
during its lifetime. This is usually termed “the area of discovery”.

2. The number of encounters are distributed randomly among hosts. Therefore the 
probability that a particular host will not be attacked is given by the zeroth term of 
the Poisson distribution,

Prob{A host is not attacked) =  exp(—E/Nt)  =  exp(—aPt)

P ( t -  r) /  vS(v, t — r)dv — uP
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After making these two assumptions the Nicholson-Bailey model is given by

Nt+i =  rNt exp(—aPt)

Pt+1 =  JVt [l — exp(—aPt)]

where r  denotes the net rate of increase of the host. This system is unstable as it gives 
rise to only one nontrivial fixed point which never satisfies stability criteria for positive 
parameter values. However, the model was stabilised by adding density dependent 
mortality (Hassell 1978).

Nt+1 = Nt e x p ( r ( l - N t/ K ) - a P t)

Pt+1 =  Nt[l -  exp(-aPt)]

When the stable equilibrium existed, it was found that increasing the carrying capac
ity, K, destabilised the steady state. This was due to the reduced effect of density 
dependence on the host population.

Regniere (1984) also studied a discrete time insect pathogen system in which the 
host reproduced seasonally and the pathogen was only transmitted by direct vertical 
transmission or by horizontal transmission. He found that the pathogen could regulate 
the host population in absence of self-regulation. This could lead to a stable equilibrium 
or limit cycles.

White &: Wilson (1999) constructed a discrete host-pathogen system including hosts 
that were resistant to the disease. The host population was split into two categories, 
those that were susceptible and those that were resistant. The model system is given 
by

$+1 =  A s f (Ni )Ni

Ri+l = AR( l - f ( N i ) ) N i

P,+i =  °p P i  +  A(<7S (0) -  as(P i))S i

where

Ni =  (TS(Pi)Si + aRRi .

S  is the population of susceptible host, R  is the population of resistant host and P  is
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density of free living pathogen particles.

As = number of susceptibles born per surviving individual

Ar  =  number of resistants born per surviving individual

A =  number of pathogen propagules produced per infected death

f ( N ) =  fraction of surviving individuals giving birth to susceptibles

<7s(P) = density-dependent survival of susceptibles 

ctr =  density-independent survival of resistants 

<tp = density-independent survival of pathogen propagules

When the model was analysed with and without the resistant class, it was found that 
the resistant class stabilised the host pathogen interactions even though disease acts 
as the population regulator. Also, when the function of offspring which were born 
susceptible ( f (N))  was constant, then the system was more stable. If resistance to 
the disease was changed so that it was density dependent, then unstable population 
dynamics would be stabilised and the behaviours of the system became reliant on the 
initial conditions.

2 .2 .3  S p a tia l In te g ro d ifferen ce  m o d e ls

The models discussed previously only examined the interactions of the host and pathogens 
populations over time. It is also important to consider what role space plays in these 
interactions. Continuous time (reaction diffusion) models have been shown to be driven 
unstable when dispersal is included, such as Turing instability. Also dispersal-driven 
instabilities have been observed in discrete time integrodifference models which we will 
now discuss.

Neubert, Kot & Lewis (1995) investigated the dispersal-driven instabilities in discrete
time predator-prey models formulated as a system of integrodifference equations. This 
formulation gives a far broader set of ecological conditions than do reaction diffusion 
models. They performed detailed analysis on the following system

Nt+i = Nt exp[r(l - N t -  Pt)],

Pt+i = cNtPt.

This system gives rise to three steady states

(0, 0); (1,0); ( 1 . 1 - 1 )
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with the nontrivial steady state stable provided the following conditions on parameters 
hold

1 < c <  2,
. 4c0 < r <  - ----- .

3 — c

If c < 1 then the predators are no longer able to survive leaving the prey to reach its 
natural carrying capacity i.e. solutions go to the (1,0) steady state. If c > 2 then a Hopf 
bifurcation occurs resulting in sustained oscillations of predator and prey populations. 
Finally if r > 4c/(3 — c) then a plus-one transcritical bifurcation occurs. This causes 
the predator population to undergo a catastrophic collapse to extinction.

The addition of spatial effects are incorporated into the system by coupling the 
dynamics with a redistribution kernel. This yields the non-linear integrodifference 
equations

N t+i(x) =  J  h ( x  -  y)Nt(y) exp [r( 1 -  Nt(y) -  Pt(y))\dy,

Pt+i{x) = J  k2(x - y ) c N t{y)Pt{y)dy.

Redistribution kernels are chosen to be either Laplace distributions or double-gamma 
distributions to determine which combinations of dispersal distribution can drive the 
stable steady state system to become unstable. It is then reported that in three of the 
four possible permutations (the exception being the two Laplace distributions) plus- 
one bifurcations occur when there is sufficiently high prey over-dispersal. In the case 
of a minus-one bifurcation this can be achieved when intrinsic growth rate of prey, 
r, is high and for sufficiently high predator dispersal relative to prey. The third and 
final condition would yield a Hopf bifurcation but due to the properties of redistri
bution this bifurcation can never occur in a 2-D system. So the example shows how 
integrodifference equations can exhibit dispersal-driven instability.

In addition, the inclusion of space allows populations to spread or invade. As in 
reaction diffusion systems, constant speed travelling waves may form in the integrodif
ference model. However this is not always the case as for some dispersal kernels, trav
elling waves may occur which are not constant and instead have asymptotically infinite 
speed. Furthermore, constant wave speeds vary depending on the chosen dispersal ker
nel. Kot, Lewis & van den Driessche (1996) discussed wave speeds for integrodifference 
equations which we now review.

Kot et al. (1996) examined dispersal data of Drosophila given in Taylor (1978) but 
collected by Dobzhansky & Wright (1943). Taylor (1978) fitted several dispersal curves
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to Dobzhansky Sz Wright (1943) data, five of these curves were converted to dispersal 
kernels by Kot et al. (1996). Forming an integrodifference model using Beverton-Holt 
dynamics Kot et al. (1996) calculate wave speeds for each of the five different dispersal 
kernels. Four of the dispersal kernels gave rise to constant speed travelling waves each 
with a different speed. For the remaining dispersal kernel, an accelerating wave with 
asymptotically infinite speed of expansion occurred. This kernel was derived from the 
dispersal curve that had the best fit to the data. Following this work, Veit &; Lewis 
(1996) used this to describe the accelerating spread of house finches across eastern 
North America. Further to this, Kot (2002) has classified travelling wave speeds into 
3 categories as follows

1. Constant speed travelling waves. These occur when the dispersal kernel k(x) has 
moment generating function

M M - j K o r * .

for some neighbourhood of s about zero.
2. Asymptotically infinite wave speed. These occur when the dispersal kernel has 

finite moment
fin — j  xnK(x)dx

of all orders n, but no moment generating function.
3. Populations that grow faster than any polynomial in time. These occur when 

the dispersal kernels have moments that are infinite.

2 .2 .4  O p tim a l co n tro l

There are several examples of optimal control applied to spatial ecological models 
(Lenhart Sz Bhat 1992, Bhat, Huffaker &; Lenhart 1993, Neubert 2003) yet these have 
all focussed on continuous time systems. In Lenhart Sz Bhat (1992), a bioeconomic 
model for pest control is created for a beaver population. The beaver population causes 
damage and consequently a cost to the economy yet efforts to control the population 
also brings about a cost. A dilemma occurs which can be resolved by forming an 
optimal control problem which is solved by using an adjoint system. This method is 
described in Lions (1971).

Discrete time spatial systems, in particular integrodifference models, have not re
ceived the same attention. However Joshi, Lenhart & Gaff (in press) rectifies this 
with the first study of optimal control in an integrodifference population model. Here, 
Joshi et al. (in press) consider harvesting a crop with the goal of maximising profit by

20



controlling the amount of harvest. Existence and uniqueness of an optimal control is 
proved and using a combination of the discrete maximum principle (Clark 1990) and 
optimal control of infinite dimensional systems (see Lions (1971)) an adjoint system is 
derived. Numerical results are given that demonstrate how different dispersal kernels 
used to describe crop movement affect the optimal solution.
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Chapter 3

Extending previous G ypsy M oth  
m odelling

Many studies have considered how parasites or parasitoids may regulate their hosts 
population. Extensions to these studies have included hosts with multiple parasites 
(Dobson 1985, Hochberg Sz Holt 1990), parasites infecting multiple hosts (Bowers Sz 
Begon 1991, Holt Sz Pickering 1985) or a host-parasite-hyperparasite system (Hochberg, 
Hassell Sz May 1990). But there have been few studies on any effects that the hosts 
food source has on a host-pathogen system.

Population cycles of hosts have often been attributed to the interaction of purely 
the host and its pathogen. Studies, such as Anderson Sz May (1981) host-pathogen 
system show how as a hosts population grows a pathogens population follows. Once the 
pathogen population reaches high levels mass infection occurs and the host population 
decays. Due to this, the pathogen population subsequently decreases. This then allows 
the host population to grow again and thus the cycle continues.

Not all population cycles behave exactly like this though. Some host populations 
may increase to such high levels that their food source becomes depleted. In such a case, 
as with the gypsy moths (Schultz et al. 1990), plants invoke a natural response to pro
tect themselves against severe defoliation. This response will influence the interaction 
between the gypsy moth and the virus. Furthermore, there is an added complication 
to this host-pathogen system. Namely, that the response by plants to prevent defolia
tion is also found to increase the resistance of gypsy moths to NPV infection (Keating 
et al. 1988, Keating et al. 1990). Foster et al. (1992) modelled this system as described 
in Chapter 2.

In this chapter, we build on the model presented by Foster et al. (1992). We do this 
by making two modifications. The first is to make a change to the vertical transmission
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function, where gypsy moth larvae die several days after hatching due to overwinter 
contamination of egg masses by NPV. The second modification is to include tannin as a 
dynamic variable. This allows us to include the two essential effects of tannin, reduced 
fecundity and increased resistance to NPV infection, in a different way to the approach 
taken by Foster et al. (1992). The model is simulated numerically and compared to 
the simulations of Foster et al. (1992). Lastly, we make a simplification to the model 
in order to take a more detailed look at the effects of tannin on the system.

3.1 Overwinter contam ination of egg masses by N P V

Overwinter contamination of egg masses is usually caused by laying egg masses on 
surfaces contaminated by NPV (Murray & Elkinton 1989). On hatching, gypsy moth 
larvae can become infected due to the presence of virus on the egg mass surface (Doane 
1970). This was found to happen more frequently when virus populations were at high 
levels (Woods et al. 1989). Due to this, Foster et al. (1992) included a transmission 
term in their model that accounts for the increase in overwinter contamination seen at 
higher free-living virus levels.

The function chosen to represent this term was the square root function

Q(W)  =  y/W x 10~8 (3.1)

where W  is the amount of free-living virus in the environment and Q(W)  represents the 
proportion of egg masses that become infected over winter. This function displays the 
characteristics of increasing contamination with increasing virus levels and also com
pares well with estimates from the field by Woods &; Elkinton (1987). Also simulations 
presented by Foster et al. (1992) display realistic behaviour of populations compared 
to field data. However, other parameter sets chosen give less plausible results due to 
the unboundedness of the function Q{W).  Therefore, in this section, we present an 
alternative function for the overwinter contamination term and compare the behaviour 
on the system of this alternative function to the behaviour of Foster et al. (1992).

3 .1 .1  A lte r n a t iv e  fu n c tio n

We choose a simple alternative function to represent the overwinter contamination of 
egg masses

where q is an upper bound for the overwinter contamination term and k determines the 
steepness of the function. This function (3.2) also displays the characteristics sought
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for the vertical transmission term as well as being bounded. As q is an upper bound we 
select q < 1 to ensure the function Q(W)  remains as a probability for all W  > 0. Figure 
3-l(a) shows the square root function (3.1) plotted against the alternative function (3.2) 
for four different values of parameter k. We see that the alternative function is a good 
substitute for the square root function.

i
i

(b)

Figure 3-1: Plots show the square root function (3.1) against the alternative function 
(3.2). Figure (a) shows the alternative function for q =  0.35 and k =  O.OlxlO16, 
0.02xl016, 0.03xl016, 0.04xl016. Figure (b) shows the functions on a smaller scale.

Figure 3-1 (b) magnifies the origin of Figure 3-1 (a). Here we see that for the square 
root function, very small levels of virus have a considerable impact on the contamination 
of egg masses. The alternative function does not allow for such a large proportion to be 
infection. Hence the alternative functions finite growth at the origin causes significantly 
less egg masses contamination than the square root functions infinite growth at the
origin. This is more realistic as using the square root function can cause problems with
simulated behaviour of Foster et al. (1992) model because virus levels that could have 
died out may persist.

3.1.2 T he m odel

The model we present in this section is a continuous-time differential system. The 
model is based on Foster et al. (1992) except it includes the alternative egg mass 
contamination term (3.2). The model is given by,

a(H -  Y) -  bH -  a Y  (3.3a)

a - ^ ^ ( H - Y ) - ( b  (3.3b)

Ay -  (u +  vH ) W  (3.3c)

dH
dt
dY
dt

dW
dt
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where H  is the total population size of gypsy moths (susceptible +  infecteds), Y  is 
the population size of infected gypsy moths, W  is the population size of the free-living 
virus and t is time. The model parameters are: 

a = fecundity of susceptible hosts 
b — natural mortality rate of gypsy moths 
(3 =  horizontal transmission coefficient 
a = disease induced mortality
A =  rate at which the free-living virus enters the environment 
u = death rate of the free-living virus 
v = ingestion rate by gypsy moths of the free-living virus 

Note that the first differential equation represents the rate of change of the total gypsy 
moth population. In Foster et al. (1992), the first equation represents the rate of change 
of only the susceptible gypsy moths. By a replacement of H  = X  +  Y  we would obtain 
the same model form as Foster et al. (1992).

3 .1 .3  M o d e l a n a ly s is

Steady state solutions occur when

H(t) = H  = constant,

Y  (t) =  Y  =  constant,

W(t)  =  W  =  constant.

This gives rise to the set of simultaneous equations

0 =  a(H — Y) — bH — aY,  (3.4a)

0 =  a - j ^ p ( H - Y ) - ( b  + a ) Y  + f i W ( H - Y ) ,  (3.4b)

0 =  A Y - ( u  + vH)W.  (3.4c)

Solving the equations (3.4) gives two biologically realistic steady state solutions. The 
first solution we call the trivial steady state and the second, the nontrivial steady state,

( f f - . m n  =  (0,0,0);
u(a +  a)W* u(a — b)W* *

A(a — 6) — v(a -j- a)W* ’ A(a — b) — v(a +  a)W* ’

where W* is a solution of the quadratic expression

f3iyV*)2 + ( a - a q - b -  kf3)W - k ( a - b )  = 0
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The only feasible solution of a quadratic expression is

=  a - a g - b - k ( 5 + y j ( a - a q - b -  k(3)2 +  4 (3k(a -  b)
2(3 '

as the other root always remains negative. The existence of the nontrivial steady state 
only occurs if it satisfies the two conditions

a > b, (3.6a)

A (a — b) > v(a + a)W*.  (3.6b)

The first inequality (3.6a) is that the birth rate of gypsy moths is greater than its 
mortality rate. If this were untrue, then the gypsy moths would become extinct. The
second inequality (3.6b) is likely to hold as parameter estimates indicate that the left
hand side of the inequality is several orders of magnitude higher than the right hand 
side.

We can find conditions for stability of the steady states from the Jacobian matrix 
of the system (3.3)

J  =
( a — b —(a + a ) 0 ^
°s% + P W  - a ^ - ( b  + a ) - f ) W  [ 0 - a v$ y ? \ ( H - Y )
 ̂ —v W  A — (u + vH) J

Linear stability for the two steady states are determined by the eigenvalues of the 
Jacobian matrix at the steady state. For the trivial state, the eigenvalues are

<t i =  a — 6,

0 2  =  - (b + a),

03 =  —u.

As 02 and <73 are always negative, the stability depends only on the first eigenvalue a\. 
Hence, for stability of the trivial steady state we have just one condition

a < b .  (3.7)

Therefore for (3.7), if the birth rate of gypsy moths is less than the death rate, the 
gypsy moth population will die out. Conversely, if the condition does not hold (the 
birth rate is greater than the death rate) then the gypsy moth population will persist. 

For the nontrivial steady state, the Jacobian gives three conditions. Two of these
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conditions are always satisfied (see Appendix A). This leaves the remaining condition 
which determines stability of the steady state

vuia + c^W* 
b + a + u +  y ’

A(a — b) — v(a +  a)W*

A(q - t ) (fc+ v n - y i n < w y + k ( a - b)
A (a — b) — v(a +  a)W* J

where W* is given in (3.5). This inequality is much more complex and it is not easy 
to see if it is likely to hold true. In fact as shown next, we see that the condition is 
sensitive to parameter estimates.

3 .1 .4  C o m p a r iso n s

Foster et al. (1992) simulated model behaviour at various tannin levels where model 
parameters were dependent on the tannin level. We look at parameter sets where their 
model produced similar behaviour of population levels to that seen in the field. These 
occurred for low natural mortality rate for gypsy moths, long lived free-living virus and 
moderate to high tannin levels. We compare this with behaviour for the alternative 
function (3.2).

From simulations, we see similar fluctuating population cycles as described by Foster 
et al. (1992). Figures 3-2, 3-3 and 3-4 show these population cycles for different q and 
k parameters. Other parameter values are taken from estimates given in Foster et al. 
(1992). From extensive numerical simulations, we find that oscillatory behaviour was 
easily observed at low values of q (q =  0.10, q =  0.30). At these low values of q, a wide 
range of k values display similar oscillatory behaviour to that found by Foster et al. 
(1992).
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Figure 3-2: Plots show similar behaviour of populations using the alternative function 
for overwinter contamination of egg masses (gypsy moths - blue, infected gypsy moths 
- green, NPV - red). For Figure (a) k = O.OlxlO16, Figure (b) k = 0.02xl016, Figure 
(c) k = 0.03xl016, Figure (d) k = 0.04xl016. Other parameters are a =  6.0, q =  0.1, 
6 = 3,/? =  10—14, a  =  5, A = 1.49xl010, u =  1, v = 10-14.

For higher values of q {q =  0.35, q — 0.4), oscillatory behaviour was observed but 
only for a limited range of k values.
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Figure 3-3: Plots show population behaviours for the alternative function for higher 
upper bounds (gypsy moths - blue, infected gypsy moths - green, NPV - red). Figure
(a) q = 0.35, k = 0.058xl016 & Figure (b) q =  0.4, k = 0.07xl016. Other parameters 
are a =  6.0, 6 =  3,/? =  10-14, a =  5, A =  1.49xl010, u =  1, v =  10-14.



For much smaller values of fc, smaller oscillations or a nontrivial steady state occur. 
On the other hand, for larger values of k much bigger unrealistic oscillations appear. 
These are shown in Figure 3-4 where k varies showing behaviour from small oscillations 
through to very large oscillations.
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Figure 3-4: Plots show behaviour of populations using the alternative function for 
overwinter contamination of egg masses (gypsy moths - blue, infected gypsy moths - 
green, NPV - red). For Figure (a) k =  O.OlxlO16, Figure (b) k =  0.02xl016, Figure (c) 
k =  0.03xl016, Figure (d) k =  0.04xl016. Other parameters are a = 6.0, q =  0.3, 6 =  3, 
f3 =  10"14, <* =  5, A =  1.49xl010, u =  1, v =  10-14.

In summary, we have discovered parameter values of the alternative function (3.2) 
that give the same behaviour as Foster et al. (1992) found. Nonetheless, this model like 
Foster et al. (1992) only describes outcomes when tannin is held constant over time.

3.2 T he inclusion  o f tann in  as a dynam ic variable

Foster et al. (1992) considered behaviours of gypsy moth virus interactions over a 
set time period for different tannin levels. In this section, we adapt the model to 
incorporate tannin as a dynamic variable allowing tannin levels to change during the 
time period. This affects the birth rate, a, and we replace this with a function which 
is dependent on tannin levels, a(T). The function is then changeable over time i.e.
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T  = T(t)  where t is time. We choose a decreasing function in tannin levels

a{T) = , (3.8)
v ' 1 + dT v '

where a is the birth rate when no tannin is present and d is a tannin coefficient that 
determines the amount of decay tannin causes on the birth rate. The function has an 
upper bound value, a, which it obtains when tannin levels are zero.

We also let the gypsy moth susceptibility to viral infection be dependent on the 
level of tannin. For the susceptibility, we use the function

m  = ^  (3.9)

where /3 is the transmission rate of the virus to the gypsy moth and c is a tannin 
coefficient that determines the amount of decay tannin causes on the susceptibility to 
infection. This is a decreasing function in tannin so the resistance to infection increases 
as tannin levels increase.

3 .2 .1  T h e  m o d e l

The model is based on the model approach presented by Foster et al. (1992). However, 
tannin has been incorporated into the ordinary differential equation (ODE) system as 
discussed above. Then a fourth ODE is added to describe the rate of change of tannin. 
Levels of tannin increase as a response to an increase in the number of gypsy moths. 
It is assumed that tannin will decrease exponentially. The model is expressed by

f  =  i f j f f  (H - Y ) - b H - * r  P-ioa)

f  =  i ^ f Q { w ) i H - Y ) - { b+a) Y+P- ^ r f ^ 1  (3-10b>
dW

= X Y - ( u  + v H ) W  (3.10c)
dt
dT
dt

=  r H - s T  (3.10d)

where H  is the total population size of gypsy moths (susceptible +  infecteds), Y  is 
the population size of infected gypsy moths, W  is the population size of the free living 
virus, T  is a measure of tannin level and t represents time. The model parameters are 
as given in (3.3) with the additional parameters:

c = tannin coefficient representing the impact of tannin on susceptibility to infec
tion

d = tannin coefficient representing the impact of tannin on gypsy moth fecundity
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r =  the production rate of tannin per gypsy moth 
s =  the decay rate of tannin

As discussed in the previous section, we represent the proportion of offspring in
fected at egg hatch by a bounded increasing function

Q W  = ^  (3.1D

3.2 .2  N u m e ric a l s im u la tio n s

The model (3.10) with the overwinter contamination of egg masses term (3.11) was 
simulated numerically. Simulations were run over a time period of 100 years. Typical 
population behaviours are shown in Figures 3-5 & 3-6

(a)
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Figure 3-5: Plots show typical dynamic behaviour for realistic parameter values (gypsy 
moths - blue, infected gypsy moths - green, NPV - red, tannin - aqua). Figure (a) 
shows a stable steady state solution (s =  2.0). Figure (b) shows oscillatory population 
cycles (s =  7.0). Parameters are; a =  6; 6 =  2;/? =  10- 14;A; =  2 * 1014;a  = 5; A = 
1.49 * 1010; u = 1.0; v = 10“ 14; q = 0.4; r  =  0.1; c =  0.1; d = 0.0067.

We find that the dynamic behaviours fall into 4 categories; stable steady state, 
oscillatory cycles, extinction or gypsy moth persistence and virus extinction. In Figure 
3-5(a) a stable steady state solution occurs for slow decay rate of tannin (s =  2.0) and 
slow production rate of tannin (r =  0.1). For a faster decay rate of tannin (s =  7.0) the 
population behaviour changes to oscillatory population cycles, Figure 3-5(b). Similarly, 
it was observed that a reduction in the production of tannin also caused population 
levels to become oscillatory.
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Figure 3-6: Plots show dynamic behaviour for the gypsy moth-NPV-tannin model 
(gypsy moths - blue, infected gypsy moths - green, NPV - red, tannin - aqua). Figure 
(a) shows the persistence of gypsy moth population when NPV dies out (6 =  2, a =  5, 
r =  0.6, s = 0.4). Figure (b) shows the decay of gypsy moth, NPV and tannin (6 = 3.5, 
a  =  25, r =  0.1, s =  5.0). Parameters are; a =  6; /3 =  10-14; k =  2xl014; A = 
1.49xl010; u = 1.0; u =  10"14; q =  0.4; c =  0.1; d =  0.0067.

Furthermore, for very high production rate and low decay rate of tannin, the virus 
population died out leaving tannin as the only regulator of the gypsy moth population 
(Figure 3-6(a)). We also observe, in Figure 3-6(b), extinction of gypsy moths when the 
natural death rate of gypsy moths, 6, and the disease induced mortality rate, a, are 
large.

Therefore, the new model, with the inclusion of tannin as a dynamic variable, still 
displays the same behaviour as the Foster-Schultz-Hunter model. We see, in Figure 
3-5(b), that when the production rate of tannin is low and the decay rate of tannin is 
high the population behaviour is oscillatory. This behaviour compares well with Foster 
et al. (1992) findings and with realistic gypsy moth population estimates from field 
data. In addition, we found that oscillatory populations can be stabilised by either a 
reduction in the decay rate of tannin or by an increase in the production rate of tannin.

In the next section, we investigate further by considering a simplified version of the 
gypsy moth model.

3.3 Sim plified m odel sy stem

The previous section gave numerical simulations to show the behaviour of the gypsy 
moth-NPV interactions with tannin as a dynamic variable. In this section, we take 
a more detailed look at a simpler version of the model. We analyse this simplified



model to find steady states and stability conditions for two cases; tannin included as 
a dynamic variable and when tannin remains constant (i.e. no influence on the gypsy 
moth-NPV interactions). We look at these two cases to compare the dynamic tannin 
model presented in the last section with constant tannin levels in the Foster et al. 
(1992) model.

3 .3 .1  T h e  m o d e l

We need to simplify the model in order to analyse the system to more easily compare 
constant tannin levels with tannin as a dynamic variable. We do this by making the 
following simplifications. Firstly, we consider the major impact that tannin has on the 
gypsy moth-NPV interaction i.e. we include the decrease in susceptibility of gypsy 
moths to NPV infection when tannin levels are high. The reduction in fecundity is 
shown to have lesser effect than the decrease in susceptibility (Schultz et al. 1990). 
Secondly, we let the proportion of overwinter contamination of egg masses, q, remain 
constant. Making these simplifications to model (3.10), we obtain the following

a(H — Y) -  bH -  aY,  (3.12a)

a q ( H - Y ) - ( b  + a ) Y  + r ^ W ( H - Y ) ,  (3.12b)

A Y  ~ { u  + vH)W,  (3.12c)

r H - s T .  (3.12d)

As before, H  represents the total population size of gypsy moths, Y  represents the
population size of infected gypsy moths, W  represents the amount of free living virus 
and T  represents the tannin level. The parameters of the system are as given in the 
model (3.10).

3 .3 .2  M o d e l a n a ly s is

We analyse the model for the following cases. In the first case, we suppose tannin levels 
are constant and in the second case, we allow tannin to be a dynamic variable.

dH
dt
d Y
dt

dW
dt
dT
dt
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Case (i): C onstant level o f tannin

To analyse the model for a constant level of tannin we set r  =  0, s = 0 and c = 0 in 
(3.12). By setting

H(t) = H  =  constant

Y(t)  =  Y  =  constant

W(t)  =  W  =  constant

we find the steady state solutions from the following simultaneous equations

0 =  a ( H - Y ) - b H - a Y  (3.13a)

0 =  a q { H - Y ) - { b  + a ) Y  + p W ( H - Y )  (3.13b)

0 =  XY  — (u + v H ) W. (3.13c)

Solving (3.13) results in two steady state solutions

( H \ Y ' , W ) =  (0,0,0); (3.14)
\  a + a  p J

where
=  u ( a a ) ( a  -  aq -  b)

PX (a — b) — v(a + a)(a — aq — b)

The first solution in (3.14) is the trivial solution and this solution exists for all parameter 
values. The second solution of (3.14) is the nontrivial steady state and this only occurs 
if the parameter set satisfies the inequalities

PX(a — b)> v(a +  a)(a — aq — b) > 0. (3.15)

Parameter estimates for a, b, q and a  have similar orders of magnitude. P and v have 
similar orders of magnitude as well. As A is large, then (3.15) is likely to hold and the 
nontrivial steady state will exist.

The stability of the steady states are found from the Jacobian matrix

J  =
/  a — b —a — a  0 \

aq + p\V - a q - b - a - p W  P(H -  Y)
\  —v W  A — {u + vH)J

(3.16)
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at (H, Y, W) =  (H *, y*, W*). For the trivial steady state, the eigenvalues of (3.16) are

<Ti =  a — aq — b,

02 =  ~(b + a),

(73 =  - u .

Stability occurs if the real part of all the eigenvalues are negative. As the eigenvalues

That is, if the effective birth rate, a — aq, of gypsy moths is less then its death rate, 
6, then extinction will occur. For the nontrivial steady state, the Jacobian gives the 
following characteristic polynomial

ditions (Murray 2002)

A > 0, C > 0, A B - O O .

As H  > Y  > 0, then the first condition holds. The second condition holds due to 
the existence condition (3.15). Therefore, the stability of the nontrivial steady state 
depends only on the third condition,

(72 and (73 are always negative, the stabilityof the trivial steady state relies on just one 
condition

a — aq <b.

X3 +  A x 2 +  B x  + C =  0

where

A  =  b + a + u + vH ,

B  = (b + a)(u + v H ) - p \ ( H - Y ),

C  =  ( H - Y ) [ j 3 X ( a - b ) - v ( a  + a ) ( a - a q - b ) l

Stability can be found from the characteristic polynomial by the Routh-Hurwitz con-

a — aq — b < [(6 +  a ) r  +  uf3\(a — b)\(3\aq
f 2 (3.18)

where
T := (3\(a — b) — v(a +  a)(a — aq — b). (3.19)

If inequality (3.18) holds, then any initial conditions that start near the steady state 
value will be attracted towards it.
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To gain a better understanding of the system, we can set v = 0 because parameter 
estimates indicate that this parameter is very small. Hence (3.18) reduces to

(a — b)(a — aq — b) < (a + a  + u)aq. (3.20)

Therefore, the disease induced death, a, or proportion infected immediately after birth, 
q, needs to be sufficiently high to keep the population at a steady level. Furthermore, 
we see that as q increases from zero, the behaviour changes from oscillatory population 
cycles to a stable nontrivial solution. A further increase causes the nontrivial steady 
state to lose stability and existence, leaving the population to crash to a stable trivial 
steady state solution.

Nontrivial steady state
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Figure 3-7: Plots show the population behaviour of the system for varying several key 
parameters. Figure (a) [top] varies the egg mass contamination proportion q, Figure 
(a) [bottom] varies disease induced mortality a, and Figure (b) varies the birth rate a.

Figure 3-7(a) [top] shows the change in behaviour as the proportion of infected 
egg masses due to overwinter contamination, q, increases. We see for small values 
of q oscillatory population cycles occur, but as q increases the behaviour changes to a 
stable nontrivial steady state solution as (3.20) is satisfied. Hence increasing q stabilises 
fluctuating gypsy moth populations. Similarly, Figure 3-7(a) [bottom] shows how the 
behaviour changes as the disease induced mortality rate, a increases. As a increases 
the gypsy moth populations become stabilised. In Figure 3-7(b), the birth rate, a, is 
increased. We see that for a low birth rate the population is unable to sustain itself 
and decays to a stable trivial steady state. As the birth rate increases we pass into 
a region where the nontrivial steady state exists and is stable, thus the populations 
remain at a constant level. For even larger values of a, the nontrivial steady state loses 
its stability and oscillating population cycles occur.
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C ase (ii): Tannin as a dynam ic variable

We now analyse the model allowing tannin to vary. The steady states axe given from 
the solution of the following simultaneous equations

0 =  a(H — Y) — bH — a Y  (3.21a)

0 =  a q ( H - Y ) - ( b  + a ) Y  + T:^ W ( H - Y )  (3.21b)

0 =  A Y - { u  + v H ) W  (3.21c)

0 =  r H - s T  (3.21d)

Solving equations (3.21) gives three steady state solutions

(H *,Y * ,W * ,T *) =  (0,0,0,0);
I T *  " /  T T * _______________  ~ > _ T T *

-“  +  > _  . -  ■“  +  > i . . .  T T *  \  + >

( a - 6) A(a-fe) r g ^ y
+ ’ a +  a  +’ (a +  a)(u +  vH+) +’ s / ’

( a - b ) i r  X(a ~  b) ^  rHl
a +  a  ’ (a +  o:)(u +  uifU) ’ s / ’

where

i f /  ^A(a - 6)s urc +  us
± 2 \  \ ( a  +  a) (a — aq —b)vrc vrc

(3\(a — b)s i ' 2urc +  us
(a + a)(a — aq — b)vrc vrc

As in Case (i), the trivial steady state solution exists for all parameter values, yet both 
nontrivial steady states only exist if the following conditions hold

3X(a — b)S ^ \> urc +  us, (3.22a)
(a +  a) (a — aq — b)

p \ ( a - b ) s  \ 2 ^— urc — us ) > 4usvrc. (3.22b)
(a +  a) (a — aq — b)

As discussed for (3.18), u is small in comparison to the parameters in the model. 
Consequently, for inequalities to hold parameters r and c need to be sufficiently small 
compared with s. Parameter c influences the amount tannin reduces the transmission 
rate of the virus to gypsy moths. If c were to be large, very little transmission would 
occur and the gypsy moth population would fail to be regulated by the virus. We 
therefore require this parameter to be small. Assuming r and s are of similar orders of 
magnitude to the remaining parameters then the existence conditions (3.22) will hold.
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For stability analysis, the Jacobian matrix is given by

J  =

(  a — b
™  _ L  0Wa(l + w r

—a — a 0 0 \

V
- v W

r

(H -Y ) /3  ( H - Y ) cPW
1+cT

— (u + v H ) 0

L 0W■aq 0 a 1+cT 1+cT ' (1+cT)2

0 —s /
at (H , Y , W ) =  (H*,Y*,W*).  The trivial steady state again depends on only one 
condition

a — aq <b.

As in Case (i), the rate of gypsy moths dying is greater than the number born. The 
conditions for stability for the nontrivial steady states axe found from the characteristic 
polynomial

X4 +  A x 3 +  B x 2 +  Cx  +  D =  0

where

B = s(b +  a  +  u +  vH±) +  aq 

C = (b + a )

(b +  a)(u +  vH±) 
a — b

/ l\ . (u + vH±) „  ( a - a q - b )u(a — aq — b) +  aqs   rscH±

D =  (a — aq — b ) ( b a ) s

a — b 
(us +  rcvH±)'

s +  rcH±

s +  rcH±

The Routh-Hurwitz conditions reduce to the three conditions

/3\(a — b)s
0 < 2 us — — ucr — vs'j H±(a +  a)(a — aq — b)
0 <  (6 +  a  +  s +  u +  vH±)B — C

0 <  [(b + a  + s + u + vH±) B - C \ C

—(b +  a  +  s +  u +  vH±)2(a — aq — b)(b +  a)s

(3.23a)

(3.23b)

(3.23c)

u — rcH±
(u +  vH±)
s +  rcH±

where B  and C are given above. From extensive numerical runs, it is seen that the 
stability conditions (3.23) for the steady state H -  often hold. Therefore, a stable 
nontrivial steady state may exist. However, the conditions for the steady state H+ 
always fail to hold thus resulting in an unstable steady state.
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3.3.3 C om parisons o f constant and dynam ic tannin levels

In the reduced system (3.12), we considered the effect of tannin on the gypsy moth- 
NPV interaction in only one way i.e. to reduce the susceptibility of gypsy moths to 
NPV infection. This is believed to have a destabilising effect on the gypsy moth- 
NPV system as NPV is the only regulator of the gypsy moth population. Thus, the 
reduced model has a positive feedback mechanism, (see Figure 1-2, Chapter 1). Case (i) 
shows the behaviour of the model (3.12) where levels of tannin remain constant. From 
the analysis, the model produces three types of behaviour dependent on parameter 
conditions. Table 3.1 summarises these behaviours.

Case Behaviour Conditions

A

Stable 

Trivial 

Steady State

a — aq — b < 0

B
Stable 

Nontrivial 

Steady State

0 < a — aq — b

„ u ^ f(6+a)r+u(3\(a—b)]/3\aqU CLCJ U \  p2

C Oscillations

0 < a — aq — b k.

[{b+a)r+up\{a-b)]/3\aq ,p2 \  a aq o

Table 3.1: Table of model behaviours for Case (i) with stability conditions, T is given 
in (3.19).

We turn our attention to the more interesting model behaviours in Case B & Case 
C in Table 3.1, and ask what impact does variable (dynamic) tannin levels (Case (ii)) 
have on these two cases? For Case B, we have a stable nontrivial steady state when 
tannin is constant. By allowing tannin to be dynamic, Case (ii), we look at varying 
parameters r and s (r — s space) to see how the model behaviour changes. We predict
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that tannin may destabilise the nontrivial steady state. Figure 3-8 show the behaviour 
for interesting parameter sets in r — s space.

0.75
Growth

0.50
Oscillations

0.25
Stable

(a) 0.25 0.50 0.75

0.75
Growth

0.50 Oscillations

0.25 Stable

0.25 0.50 0.75
s

0.75
Growth

Oscillations0.50

0.25 Stable

0.25 0.50 0.75

0.75 Growth

0.50

0.25 Stable

Oscillations

(d) 0.25 0.50 0.75
s

Figure 3-8: Plots show the regions of a stable nontrivial steady state in r — s space. 
For Figure (a) a = 15 q = 0.25, Figure (b) a  =  15 q = 0.30 and Figure (c) a =  15 
q =  0.35. Other parameters are a =  6, b =  3, u =  1, c = 0.1, v = 0.001, A =  3 and 
(3 = 0.1. For Figure (d) a =  15, q = 0.30, v = 0.005, A = 2

From Figures 3-8, we do indeed see that tannin has destabilised the nontrivial 
steady state for particular r and s parameter values. Figures (3-8) all show the loss of 
stability for the nontrivial steady state as r and s increase. In each figure, stability is 
lost for a large production rate of tannin, r, and a small decay rate of tannin, s. In 
this case, the virus population is unable to regulate the gypsy moth population and 
the gypsy moths grow unbounded. For large s, the steady state is lost and bounded 
oscillatory population cycles appear. Figure 3-8(a) shows a small area of r — s space 
where the nontrivial steady state remains stable. As parameter q increases, Figures
3-8 (b) & 3-8 (c) show this stability area growing. Figure 3-8 (d) shows the behaviour 
for an alternative parameter set.
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Growth

For Case C, we have oscillatory behaviour for constant tannin levels (Case (i)). 
Again, by making tannin a dynamic variable (Case (ii)), we look at r — s space. This 
time the behaviour is already unstable, so we would expect that there will be no change 
in the stability of the nontrivial steady state. Figure 3-9 shows the model behaviour 
for particular parameter sets in r — s space.

9 ,
(a) • (b)

Figure 3-9: Plots showing the “ pocket of stability” . Parameters are a =  6, b =  3, 
u = 1, c = 0.1, a = 15 and /3 =  0.1.

We find that a small region of parameter space appears where the addition of tannin 
has stabilised the oscillatory behaviour to a stable nontrivial steady state. In other 
words, for this parameter space we see that dynamic tannin has caused stabilisation, 
not destabilisation as expected. Additionally, we again see that for a large production 
rate of tannin, r, and small decay rate of tannin, s, unbounded growth for the gypsy 
moth population occurs. Also for large s, population cycles which are regulated by the 
virus arise. More interestingly, Figure 3-9 shows the existence of a “pocket of stability” 
when r «  s and r and s are small.

3.4 Sum m ary and D iscussion

Previous to this chapter, only Foster et al. (1992) had modelled the interference of plant 
food quality on the gypsy moth interaction with the NPV. Foster et al. (1992) however, 
only allowed tannin to exist at a constant level, although the authors acknowledged 
that tannin levels do change and their model may not be complete as a result. In this 
chapter, we extended the model by Foster et al. (1992) for modelling gypsy moth, NPV, 
tannin interactions by including tannin as a dynamic variable. Comparisons could then 
be drawn between the extended model with dynamic tannin and the Foster et al. (1992) 
model with constant tannin levels.
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We began the chapter by making a modification to the overwinter contamination of 
egg masses function, Q(W).  By replacing the square root function, used by Foster et al. 
(1992), with a bounded function (3.2) the behaviour of the model generally remained 
the same. This includes the observation of realistic population fluctuations for a large 
range of parameter k values when the upper bound q was small. Yet, for larger values 
of <7, the range of values for /c, where realistic oscillations occur, decreased. Instead, 
either small oscillations or very large oscillations of the steady state were observed.

In the second section, a model was proposed to include tannin as a dynamic variable. 
Numerical simulations were presented to demonstrate the different behaviours observed 
for the model. We found that the behaviour of the model fell into 4 categories; a stable 
steady state, oscillatory population cycles, extinction, and persistence of gypsy moths 
with extinction of NPV. This compared well with the simulations of Foster et al. (1992) 
with the exception that our studies found gypsy moth persistence with NPV extinction 
whereas Foster et al. (1992) observed exponential growth of gypsy moth populations. 
Thus, the inclusion of tannin as a dynamic variable prevents the gypsy moth population 
from growing unbounded. Moreover, oscillatory population cycles were observed, which 
compared well with field data.

In the last section, a simplified model was analysed. In the simplified model we only 
include the plant’s effect on the susceptibility of gypsy moths to infection. Without 
tannin, we would expect the virus to regulate the moth population. Therefore, when 
we include tannin, there should be less regulation on the system. This is because the 
tannin decreases the susceptibility of gypsy moths to viral infection. Here, we first find 
the expected result that the addition of tannin destabilises a model experiencing stable 
nontrivial behaviour. We see that the nontrivial steady state loses its stability more 
easily (see Figure 3-8) when the condition (3.18) is close to failing.

We would also expect that the addition of dynamic tannin to the model, when the 
behaviour was unstable, to also have a negative effect on the stability. However, there 
are cases where the addition of tannin has caused the regulation of gypsy moths by the 
virus to become more stable. Figure 3-9 shows the “pocket of stability” occurring in 
r — s space. This is counter intuitive and is a surprising result from the analysis. It 
is not clear why there is a stabilising effect on the populations in the cases shown in 
Figure 3-9.

In summary, we have shown that the effect of adding tannin into the system may 
act as a destabilising or stabilising effect dependent on particular parameter sets. The 
addition of tannin as a more realistic, dynamic variable can also demonstrate cyclic 
population levels of gypsy moths similarly to the work of Foster et al. (1992) and field 
data.
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Chapter 4

A new approach to m odelling  
G ypsy M oth populations

In the previous chapter, we explored the gypsy moth NPV tannin interactions using a 
continuous time modelling approach, which was based on modelling attempts by Foster 
et al. (1992) and Dwyer & Elkinton (1993). Gypsy moths have fixed annual life cycles 
that form non-overlapping generations and they reproduce only once per generation. 
This life cycle is consistent with several other hosts whose populations are regulated by 
paxasitoids. These host-parasitoid interactions have widely been modelled by discrete 
time systems as this method is believed to better reflect the discrete generations of the 
host. Therefore, we will take a new approach to modelling gypsy moth populations 
using a discrete time system.

In this chapter, we build on the continuous time modelling in the Chapter 3, by 
developing a discrete time model structure to reflect the discrete generations of the 
gypsy moth. We compare the behaviour from the newly-formed, discrete time model 
to the outcomes of the previous continuous time approach.

We begin the chapter by building a general framework to model the interactions 
between gypsy moths, virus and tannins. From the general framework, we choose 
specific functions to demonstrate particular model behaviours. We will then analyse 
the system by first simplifying the model in order to take a more detailed look at the 
effects of the inclusion of tannin. We then compare the results from the simplified 
model to the numerics from the complete system. Finally, we compare the behaviour 
of the discrete time model to that of the extended model in Chapter 3. The goal of 
this chapter is to confirm that the behaviour from the discrete time model gives the 
same realistic behaviour as the continuous time model.
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4.1 Building up a model

We begin by building a general discrete time model to describe the population dynamics 
of gypsy moths. First, we model the gypsy moth population without any effects from 
the virus or tree tannins to determine the underlying moth dynamics. This is to 
get a good understanding of the dynamics and its behaviour at different biological 
parameter regions. We then introduce virus into the model creating a host-parasitoid 
system similar to the Nicholson & Bailey model (Nicholson &: Bailey 1935). This model 
is analysed and steady states and stability conditions are given. Lastly, we incorporate 
the experimental results that tree tannins influence the gypsy moth-virus system. This 
model will represent the complete gypsy moth-virus-tree tannin dynamical system and 
from its analysis, comparisons can be drawn with the host-parasitoid model.

Whilst modelling the system, we only consider the main characteristics that influ
ence the population levels in order to keep the model as simple as possible. General 
functions are chosen in this section, however specific forms are taken in following sec
tions to demonstrate particular model behaviours.

4 .1 .1  M o d e llin g  g y p sy  m o th s

We begin with the simplest structure for modelling gypsy moth population levels. We
let Mn be the number of gypsy moths in year (or generation), n, and a represents the
average number of offspring per gypsy moth. To prevent exponential growth of the 
population, we introduce a carrying capacity. This leads to the Ricker model system 
(Ricker 1954):

Mn+i =  F(Mn)
=  aex p (-rM n)Mn (4.1)

where parameter r  represents a self-limit in the gypsy moth population.
The system (4.1) admits two steady state solutions, M* =  Mn+\ = Mn. Substitut

ing into (4.1) and solving gives us two solutions. The first is a trivial solution

M* = 0, (4.2)

and the second is a nontrivial solution

AT =  -  ln(o), a >  1. (4.3)
r

We can determine the stability of the two steady state solutions. A steady state is
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linearly stable if and only if \F'(Mn)\ < 1, i.e. if

—1 < (1 — rM*)aexp(—rM*) < 1. (4.4)

Therefore the trivial solution, (4.2), becomes

- 1  < a < 1. (4.5)

Yet parameter a is positive so the trivial steady state is only unstable if a > 1. This 
means that if the birth rate, a, of the gypsy moth is greater than 1 then the population 
can exist. On the other hand, if the birth rate is less than 1 then the population 
decreases each year and hence will become extinct.

Now we turn our attention to the nontrivial steady state. For this steady state to 
exist, we must have a > 1. The stability condition (4.4) then becomes

1 < a < exp(2). (4.6)

We see that the parameter, r, plays no role in the stability of either of the steady 
states. In contrast, the birth rate, a, plays a critical role. When a < 1, only the trivial 
steady state exists and this state is stable so the population will die out. However, 
when a is in the interval (4.6), a second steady state appears. Here the state is stable 
so the population of gypsy moths survive and tend to a constant population level (4.3). 
But what happens when a exceeds exp(2)? A bifurcation occurs. Figure 4-1 shows 
the bifurcation diagram when the birth rate is varied. As a passes through the value 
exp(2), a —1 type bifurcation occurs resulting in the occurrence of a two cycle. A stable 
two cycle means that the number of gypsy moths will oscillate between two different
population levels in successive years. As a continues to increase, further period doubling
of the branches occurs. Note that Figure 4-1 also shows that we have a +1 bifurcation 
at a = 1. This bifurcation is transcritical; stability switches between the trivial and 
the nontrivial steady states.

Gypsy moth populations do oscillate between low and high levels, so a birth rate 
in excess of exp(2) may cause this behaviour. But estimates of gypsy moth birth rate 
are typically no higher than 6 gypsy moths per year. Hence, it is unlikely that the 
fecundity is solely a cause of the periodic levels in gypsy moth numbers as seen in the 
field.
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Figure 4-1: Bifurcation diagram for birth rate of gypsy moths a, and self-limit param
eter r = 0.1.

4.1.2 G ypsy m oth N P V  interactions

Now, we explore the effects of introducing virus on the gypsy moth population dynam
ics. The model is changed by adding another difference equation to represent the free 
living virus in the environment. We begin to form the model by making the following 
assumptions:

• The virus lives freely in the environment and decreases at a constant rate av.

• Gypsy moths contract the disease by ingesting the virus. The proportion of gypsy 
moths that ingest virus and become infected, in year n, is given by the probability 
function 1 — crm(yn) where Vn is the number of free living virus particles.

• The time taken for infected gypsy moths to die is typically 14 days. Thus, the 
generation time is long enough to allow all the diseased gypsy moths to die during 
a single generation.

• When gypsy moths die due to infection their bodies decompose and release on 
average A free living propagules, per gypsy moth, into the environment.

• Overwinter egg masses may become contaminated with virus before hatching 
(transovum vertical transmission). We let Q(Vn) be the proportion of gypsy 
moths affected by transovum vertical transmission.

• No production of NPV from overwinter contamination of egg masses as this 
amount is negliable. This is in contrast to the continuous time model.
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• No virus release in season

These assumptions lead to the pair of difference equations:

Mn+i =  a[ 1 -  Q(Vn)\ exp(—rM n)crm(Vrn)Mn (4.7a)

Vn+i = avVn +  A(1 -  <rm(Vn))Mn (4.7b)

We can make some restrictions on the general functions Q{Vn) and am(Vn). We assume
that the probability function Q{Vn) is an increasing function that is zero when Vn =  0

0 < Q{Vn) < 1, Vn > 0

Q(Vn) =  0, Vn = 0 
dQ{Vn)

dVn
> 0.

Also, we assume that the probability of gypsy moths not becoming infected is a de
creasing function and takes the value one when Vn =  0

0 <  <Tm{Vn) < 1 ,  Vn >  0

&m{Vn) =  1) Vn = 0
d(Jrn{Vn)

dVn
< 0.

M odel A nalysis

Following the method described in section 4.1.1, we set

M* = M n+1 =  M n, (4.8a)

V* =  Vn+i = V n, (4.8b)

to find the steady states of the model (4.7). Substituting (4.8a) and (4.8b) into (4.7a) 
and (4.7b), we find that there are possibly three steady state solution pairs



where V* is given by any solutions to the equation

V*(l -  (T.) =  -  ln[o(l -  Q(V*))<7ro(V*)]A(l -  am( V ) ) .  (4.10)
r

For the first two steady states, the virus population level is zero (extinct). Therefore, 
we call these states the trivial solutions. These steady state solution are exactly the 
same as those found in the previous subsection. The third steady state is a coexistence 
state. However, it is not clear if there are any solutions to (4.10) and therefore if a 
steady state does exist at all. In fact, there may be several solutions to (4.10) resulting 
in several steady states. This will depend on the specific functions chosen for Q(Vn) 
and <rm(Vn). We explore this condition further when specific functions are explored in 
the next section.

We can find conditions for stability of the steady states from the Jacobian of the 
system

J  = f  JlX J a  , )  (4.11)

where

Jn  = (1 — rM*)a(l — Q(V*))<Tm(V*)e'

aM*e~rM'J\2 =

Evaluating (4.11) at the first trivial steady state, we have

(4.12)
a 0

The eigenvalues of (4.12) determine the stability of the steady state. As av is a propor
tion, we have the same stability condition as in (4.5). Therefore the addition of NPV 
in the model system has not changed this steady state or its stability conditions. For 
the other trivial steady state,

(4.13)
l - l n ( a )  i
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the eigenvalues Xi °f (4.13) are

X i  =  1 — ln(a) (4.14a)

X2 =  av ~  ~  l n ( a ) ( 4 . 1 4 b )

The first condition (4.14a) remains the same as (4.6). Therefore when a =  1, condition 
(4.14b) holds and we again have a transcritical bifurcation resulting in a change in 
stability from the trivial steady state (4.9a) to the steady state (4.9b). This steady 
state (4.9b) can lose stability in one of two ways. As parameter a increases from a =  1, 
stability is lost if a > exp 2, as in (4.6), or if

1 ^ ^  i / \ d(rm{Q)- 1  > a v  In (a)
r dV

that is if am is a sufficiently steep function of V. This will occur when either eigenvalue
Xi = ~ l o r x 2 =  —1> whichever occurs first and a —1 bifurcation may occur (Figure
4-1).

For the nontrivial steady state, we use the Jury conditions (Murray 2002) to deter
mine stability.

0 < 1 — tr(J) +  det(J)

= r M * ( l  -  <7„ +  AM* ̂ )  +  n (4.16a)

0 < 1 +  t r ( J ) +  det(J)

= 2 - r M * ( l  +  < r „ - X M * ^ ) + i )  (4.16b)

0 < 1 — det(J)

= 1 -  (1 -  r M ”) ( a v -  X M * ^ ]  -  r, (4.16c)

where

and

tr(J) = 1 - r M *  + ov - \ M * ^
dV

det(J) =  (1 -  rM*) -  X M ' ^ f ^  + n

1 d,Q(V)  1 dcrm( V )
r) = V*(l -  <r„)

l - Q { V *) dV <rm(V*) dV

If all three conditions (4.16) hold, then the nontrivial steady state will be stable and 
gypsy moth and virus populations will tend to constant levels. Yet if the trivial steady

49



states and the nontrivial states are unstable then the model may display oscillatory 
population cycles. This is the behaviour seen in the field for gypsy moth populations. 
In further sections, we will refer back to these conditions when we choose specific 
functions for crm(Vn) and Q(Vn).

4 .1 .3  G y p sy  m o th  N P V  an d  p la n t fo o d  q u a lity  in te r a c tio n s

The model (4.7) shows the host pathogen interactions of gypsy moths and NPV. In this 
section, we are interested in the effects that plant food quality has on this dynamical 
system. Schultz’s experimental results discovered that tannin has a major effect on the 
system. We therefore include tannin as a dynamic variable in our model to create a 
tritrophic system. Using Schultz’s results, we make the following assumptions:

• An increase in tannin levels causes a decrease in gypsy moth fecundity, a(T) 
(Rossiter, Schultz &; Baldwin 1988).

• An increase in tannin levels decreases gypsy moth susceptibility to virus infection, 
crm(V,T) (Keating et al. 1988, Keating et al. 1990).

• Tannin levels decay naturally with a constant rate, <7*.

• An increase in gypsy moth numbers causes an increase in the plants’ production of 
tannin, p(M). Plants produce tannin as a defence mechanism against defoliation.

Incorporating these assumptions into the previous model (4.7), we obtain

where a(Tn) is a decreasing function of tannin, am(Vn,Tn) is an increasing function 
with respect to tannin but a decreasing function with respect to virus and p(Mn) is an 
increasing function with respect to gypsy moths.

M odel A nalysis

We look for steady state solutions of the system (4.17). As in the previous model (4.7), 
we have one trivial steady state solutions, namely

Mn+i = a{Tn) [ l - Q { V n)]exp(-rMn)am{Vn,Tn)Mn

V n + l  =  & v V n  <^(1 ^ m ( P n 5  ^ n ) ) - ^ ^

Tn+1 — &tTn + p(Mn)

(4.17a)

(4.17b)

(4.17c)

(M*, V*,T*) = (0,0,0) (4.18)
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where a = a(0). There may also exist nontrivial steady state solutions that arise from 
the solution of the equations

1 =  a(Tn)[l — Q{Vn)]exp(—rMn)am(Vn ,Tn) (4.19a)

( l - a v)Vn =  \(1 -  am{Vn,Tn))Mn (4.19b)

(1 - a t)Tn = p(Mn) (4.19c)

The solutions to the equations (4.19) will depend on the specific functions used. In 
further sections, we will refer back to these equations. For the stability of the steady 
states, we look at the Jacobian

J  =
(  J \\ Jl2

A(1 -<rm( V , T ’ ) <r„-A M * ^

i k  0

Jl3 
- X  M*e§ft 

crt
(4.20)

where

J\i =  

J12 =

J\3 =

(1 -rM*)a{T*){ \  -  Q ( V ) ) a m(V*,T*)e 

(1 - Q { V ' ) ) 9<T9 V

am(V * ,T * )§  +  a ( T * ) ^

a{T*)M*e~rM*

[1 — Q(V*)] exp(—rM*)M*

For the trivial steady state (0,0,0), the Jacobian reduces to

J  =
(a{  0) 0 0

0 orv 0

V ®  o
(4.21)

This yields the eigenvalues: crt , ov and a(0). As at and av are both probabilities then 
this reduces to one condition which is that the fecundity is greater than one (a(0) > 1). 
Again if the birth rate of gypsy moths is below 1, then the population will die out. 
The stability condition for the trivial steady state still remains the same condition as 
found in models (4.1) and (4.7).

For the nontrivial steady states, the eigenvalues, of the Jacobian matrix (4.20)
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axe given by the following cubic equation

0 =  x 3 -  (1 “  r M  +  (3)x2 + 
dp

dp
(1 -  rM)(<rt + P) + vtP ~  7 +

<7VS -  \e~rMM 2om ( a ( T ) ^ ^  +  (1 -  Q(V))
"* dM  
+£7t7 -  <7i(l -  rM)(3

dT dV

X

dcryyi da 
~ dV dT

where

(3 = av — AM
dar
dV

7 =  a(T)e-rMV ( l - a v) [ ( l - Q ( V ) ) ^ - - a v^

s = (1 - Q ( V ) ) e ~ rMM  ia(T) d<Jr da
~dT <7mdT

So from the cubic equation, we get the Jury conditions

1 + A + B  + C > 0

l + A - B + C  > 0

1 > |C|

| 1 - C 2| > \ B - A \

(4.22a)

(4.22b)

(4.22c)

(4.22d)

where

A  =  

B  =

C =

—(1 — r M  +  (3)

(1 -  rM)(at +  /?) +  atp  -  7 +

avS -  \e~ rMM 2Gm ^a(T)dp 
dM
+ C 7 t7  -  Gt{ I -  rM)(3

dp 
d M '
dGm dQ +  ^  _  q (v ’)) d(7m da
dT  dV 8V dT

4.2 The model with specific functional forms

In this section, we suggest specific functional forms for the models (4.7) and (4.17). 
In order to obtain meaningful analysis, we choose the simplest functions that still 
display the main properties required, such as the function increasing or decreasing. The 
following subsection describes the functional forms chosen for the birth rate of gypsy 
moths, the susceptibility of gypsy moths to the virus, the overwinter contamination of 
gypsy moth egg masses and the production of tannin.
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4.2.1 B irth  rate o f gypsy m oths

Gypsy moth fecundity has been shown to vary depending on levels of tannin (Rossiter 
et al. 1988). Therefore, we choose a decreasing function in tannin for the birth rate

(4.23)

where a is the birth rate of gypsy moths when no tannin is present in the plants and 
d is the coefficient representing the decrease in births due to tannin.

20 60 80 100 120 140 180 180 200

Tannin. T

Figure 4-2: Plot of birth rate as a function of tannin a(T) for various values of parameter 
d.

We see that as parameter d increases the birth rate drops quicker as tannin levels 
increase (Figure 4-2).

4.2.2 O verwinter contam ination  o f egg m asses

As discussed in Chapter 3, gypsy moth egg masses can become contaminated with the 
virus. This results in some proportion of the gypsy moths dying shortly after hatching, 
due to transovum vertical transmission of the virus which is dependent on the amount 
of free living virus in the environment. Death by transovum vertical transmission is an 
increasing function of the virus

where V represents the free-living virus, q is an upper limit on the amount of eggs that 
get contaminated and k determines how quickly the function reaches that upper limit.

(4.24)
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Figure 4-3: Plot of the proportion of overwinter contamination of egg masses against 
free-living virus Q(V) for q = 0.4 and various values of parameter k.

4.2 .3  G ypsy m oth su scep tib ility  to  virus

Gypsy moths can become infected with the virus during the larval stage. We let the 
probability of gypsy moths not becoming infected with the virus be the zeroth term of 
the Poisson process. However, this probability also depends on the tannin levels, hence 
we form the probability function

<Fm(V„, Tn) =  exp ( ^ )  (4.25) 

to represent the probability that a gypsy moth avoids infection. Figures 4-4 show two

Tannin. T

Virus Population. V (x 101*) Virus Population. V(x 101$)

Figure 4-4: Plot shows survival of gypsy moth at different virus population and tannin 
levels. Figure (a) shows the effect when tannin has little impact on the gypsy moth 
interactions, c =  0.01. Figure (b) shows the effect when tannin has a significant impact 
on gypsy moth interactions, c = 1.0.

cases of tannin’s impact on gypsy moth-NPV interactions. We see that when tannin
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has a significant impact, the gypsy moths become more resistance to virus infection.

4 .2 .4  P r o d u c t io n  o f  ta n n in

Tannin levels increase due to the amount of attack that the plant is under by gypsy 
moth infestation. Thus, more of the plants resources are directed into defending itself 
and less into other things such as growth. For simplicity, we take this function as a 
linear increasing function.

p(Mn) = pMn. (4.26)

In Chapter 5 and Chapter 7, a more complicated functional form is used in order to
carry out relevant analytic and numerical techniques.

4 .2 .5  T h e  m o d e l an d  p a ra m eter  e s t im a te s

Using the functions given in sections 4.2.1-4.2.4, the generalised model becomes

M"« =  i + g .  * +fcV v T " exp ( - rM- -  r r k ) M" <4-27a>

^n+l — ^ 1 — exp (  ~bVn V
\  1 +  cTn J

Mn (4.27b)

Tn+1 — crtTn +  pMn (4.27c)

A list of the parameters in the model are given in Table 4.1, together with estimates 
of some of the parameters.
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PARAMETER SYMBOL PARAMETER RESCALED SOURCE
ESTIMATE VALUE

Gypsy Moth
Birth rate a 6.0 6.0 Schultz et al. (1990)
Susceptibility to virus b lO"14 0.1 Foster et al. (1992)
Resistance of virus due to tannin c - - -

Reduced fecundity due to tannin d 0.0067 0.0067 Schultz et al. (1990)
Self-limit parameter r 10-6 -  lO"7 10“3 -  10"4 -

Overwinter contamination of k 2x l014 20.0 -

egg masses
Maximum overwinter Q 0.3 0.3 Foster et al. (1992)
contamination
NPV
Survival rate ov 0.37 0.37 Foster et al. (1992)
Average virus spores released A 1.49xl010 1.49 Shapiro, Presler &; Robertson (1987)
per gypsy moth
Tannin
Tannin production rate P - - -

Tannin decay rate Ot - - -

Table 4.1: List of parameter estimates used of vital rates for 
gypsy moths, virus and tannin. Rescaled values are used for 
model analysis.



4.3 M odel analysis

We analyse the model presented in section 4.1.3 (4.17) using the specific functions de
scribed in section 4.2 (4.23), (4.24), (4.25) & (4.26). We begin this section by analysing 
a simplified version of the model. We first look at the existence of steady states before 
going on to make a further simplification to analyse stability. Once a good under-

numerically. Here we compare the understanding from the simplified model to the new 
numerics from the complete gypsy moth-virus-tannin model. Also, within this section, 
we refer to the cases where tannin has no influence in the gypsy moth virus system.

4 .3 .1  S im p lified  m o d e l

We make a simplification to the model by setting the overwinter virus contamination 
of egg masses, Q(W),  to remain as a constant proportion, q. Therefore, the model 
becomes

standing of the simplified model is achieved, we look at the complete model system

I 71+I — GyVn "I" A 1

Tn+1 — &tTn

(4.28b)

(4.28c)

(4.28a)

From steady state analysis, in section 4.1.3 we see that this model has two trivial 
steady state solutions. The first steady state is

(.M*,V*,T*) =  (0,0,0) (4.29)

and the other steady state is

(4.30)

where T* is given from the solution of

(4.31)
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We let f ( T ) denote the right hand side of the equation (4.31) and g(T) denote the left 
hand side of the equation (4.31),

f ( T ):= a ( l - ^ ) e x p ^ ~ r (1 ~ gl)T^,

g(T) := 1 +  dT.

A solution to (4.31) exists if a( 1 — q) > 1, which is shown graphically in Figure 4-5.

s

0fO

U. 2

0 5 10 15 20 25 30 35 40 45 50

Figure 4-5: Plot showing the intersection of functions f(T) and g(T) for typical param
eter set, a =  6; q =  0.1; d = 0.0067; r  =  0.01; p =  0.1; at = 0.5

From the figure, the functions intersect when f ( T ) = g(T) so (4.31) holds at this 
point. f (T )  is an increasing function (/(T) > 0) and g(T) is decreasing (g(T) < 0), 
therefore this is the only point of intersection for functions /  and g.

Nontrivial steady state solutions exist whenever the following simultaneous equa
tions have a real solution

. r bV1 =  ----- — (1 — q) exp — (1 — at)T —  -----—
1 + dT * \  P 1 + cT

V =  olT 1 — exp
-b V  

1 + cT

(4.33a)

(4.33b)

where

a  = (1 -  <jf)A
( l - ^ ) p '

Now from rearranging (4.33a) and then taking logs we get

F(T) := V
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1 +  cT

Also substituting (4.33a) into (4.33b) this becomes

G(T) := V  

= a T 14- dT ( r _

Differentiating the functions F(T)  and G(T) gives

F'(T) = - In
a(l — q) \ r
l  + d T / S 1 - ^

+ cT d r  / h  \

T T d r  +  p (1 “

G'(T) = a , 1 +  2 dT ( r ,,
1 - ^ ) e x p b (1 - ‘7t)T
_  l 4 d T  r . ,  x ( r

,)exp(p(
At T*, (4.35a) and (4.35b) reduce to

F ( T )  = ------  — d r '
I + d T  +  p (1 “  °*\

(4.34a)

(4.34b)

(4.35a)

(4.35b)

G ' (T *> =

Then a sufficient condition for at least one nontrivial steady state to exist is

F'(T*) > G’(T*),

or more explicitly

a T  > 1 4- cT*

(4.36)

(4.37)

From realistic parameter estimates we plot the number of solutions to the nontrivial 
steady state in the interval Te(0, T*) for a range of p and at values.
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Number of nontrivial steady s ta tes  solutions

09
No nontrivial

08 Steady States

07
0“

J 0-6
2

1  0.6 a>
S On*(»rtrki&f . I . ......
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Production of tannin, p

Figure 4-6: Plot displays the number of nontrivial steady state solutions in p-at space. 
Parameters are a =  6.0; 6 = 0.1; A = 1.49; av = 0.37; c = 0.1; q = 0.1; d = 0.0067; r = 
0 .001.

We see from Figure 4-6 one steady state solution occurs for the majority of values of 
p and at. However the existence of this nontrivial solution is lost at high p and ot values. 
At these points tannin decays slowly therefore tannin levels will remain high in trees 
that suffer defoliation for long periods of time. Coupled with this is the high production 
rate of tannin caused when trees begin to suffer defoliation. Thus high tannin levels 
sustained for long periods of time cause a large decrease in the susceptibility of gypsy 
moths to virus infection. Therefore it is likely that virus population levels will be
unable to sustain themselves under these conditions. If this occurs then no nontrivial
steady states would be found, as demonstrated in Figure 4-6.

M odelling w ithou t tann in

We compare this to a model where tannin is excluded and see what effect this on the 
steady state solutions. The model system reduces to become

Mn+1 =  a( 1 -  q) exp(—rM n) exp(-bVn)Mn 

Vn+i =  (JvVn + A(1 - e x p ( - 6K ))M n

From (4.9), we have the trivial steady state solutions

= (0,0) (4.38a)

= (In (a ( l-<?)),0) (4.38b)
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These are similar to the two trivial steady state solutions (4.29) and (4.30) found for 
dynamic tannin. The nontrivial steady states are given by

| 4 - 3 9 1

where V* is a solution to

V(1 - <7„) = ±A(1 -  exp(-6V„))(ln(a(l -  -  V„). (4.40)
r

We investigate the number of nontrivial solutions by letting

f (V)  = V(l-<Tv)

g(V) =  -A (l — exp(—6V„))(ln(a(l — 
r

Figure 4-7 plots functions f (V )  and g(V) to display the number of nontrivial solutions. 
The number of nontrivial solutions is given by the number of intersections of the two 
lines (solid and dashed) excluding the intersection at the origin. The intersection at 
the origin is the trivial steady state solution (4.38b).

i=s

Figure 4-7: Plot shows the intersection of f (V)  (dashed line) and g{V) (solid lines). 
Parameters are a = 6.0; b = 0.1; A =  1.49; av = 0.37; r = 0.001.

We see from Figure 4-7 that for high q no nontrivial steady state exists. For 
smaller, more realistic, values of q the nontrivial steady state does exists. As function 
/  is a linear increasing function and function g is concave there can exist at most one 
nontrivial steady state solution as there will be at most one intersection for V > 0. 
Therefore, we have a similar situation to that of the model with tannin. There exists 
two trivial solutions: one in which the virus dies out and the gypsy moths persist at a
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constant level and another in which both the virus and the gypsy moths die out. Yet 
in the case of the nontrivial steady state, we can only obtain at most one solution when 
tannin is constant. So the addition of tannin in the system has added the possibility 
of multiple nontrivial steady state solutions. However practically, for dynamic tannin, 
parameter estimates indicate that at most one nontrivial steady state solution exists.

4 .3 .2  F u rth er  s im p lif ica tio n  to  th e  m o d e l

We simplify the model further to look at the stability of the system. The model is 
reduced by making the same simplifications as in Chapter 3, section 3.3, i.e. we only 
consider the impact of tannin on the susceptibility of gypsy moths to NPV infection. 
This is due to the observation by Schultz et al. (1990) that tannin reduces susceptibility 
to infection to a greater extent than reduction in fecundity. We also set the self-limit 
parameter r  =  0, so that the only regulation on gypsy moth population is from virus 
infection. This is to be consistent with the model from Chapter 3. Our simplified 
model system becomes

Mn+1 =  a{l -  q) exp Mn (4.41a)

Vn+l — GyVn “I” A 1 — exp ~bVn V
1 +  cTn )

Mn (4.41b)

?n+1 — &tTn +  pMn (4.41c)

Performing steady state analysis, we find that there is now only one trivial steady
state

(.M*,V*,T*) =  (0,0,0) (4.42)

The other trivial steady state in section 4.1.3 no longer exists as the self-limit parameter,
r, has been set to zero.

For the nontrivial steady state, we find that there is one solution

where
0 =

( 0(1 -  at)(l -  av)a(l -  q),\ 
0(1 -  <rt)A(a(l -  q) -  1),

V Op( 1 -  av)a{l - q )  )

l n { a ( l - q ) )
6(1 -  cr*)A(a(l -  q) -  1) -  cpa( 1 -  q)( 1 -  av) In (a(l -  q))'
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This solution exists if

6(1 -  at)X(a(l — q) -  1) > cpa(l -  q)(l -  av)(loga(l -  q)) (4.43a)

a (l — q) > 1 (4.43b)

Stability for the trivial steady state is given by the Jacobian

J  =
(a{ 0) 0 0

0  Gv 0

\  P 0 ati

Therefore, we have one stability condition

a(l — q) < 1 

For the nontrivial steady state, the Jacobian is 

/  i  - M *  b
J  =

1+cT* 
r* b

1V1 CV (1+cT*)2
X [ l - X ]  <7v + x  - X M ' c V  (lJ T. yiX

P o a t

where X  = exp • The eigenvalues are the solutions of the cubic expression

X3 + AX2 +  B X +  C =  0

where

A

B

=  ~  1 +

— av +  at +  avat —

_ , _ , C1 ~ ^ ) ln [ a ( l  - q ) ] \
tr” +  <Tt +  a(l -  -  1------)

pc( 1 -  av)a( 1 -  g)(ln[a(l -  g)])2

+[a(l — q) +  at]

\b(a(l — q) — 1) 
(1 -  av) ln[a(l -  g)]

C =

a { l - q )  -  1 
pcjl -  av)a( 1 -  <?)(ln[a(l -  q)])2 

Xb(a(l — q) — 1)
(1 -  av)a{l -  q) ln[a(l -  g)]

- a t av + a(l -  q) -  1

The stability of the nontrivial steady state is determined by the Jury conditions (4.22).
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For stability to occur only 3 of the conditions need to hold, (4.22b) (4.22c) (4.22d)

- 1 + A - R + C  > 0 (4.44a)

1 > \C\ (4.44b)

|1 - C 2| > \ B - A \  (4.44c)

The remaining Jury condition (4.22a) is the same condition as the existence condition 
for the nontrivial condition (4.43a). Therefore this Jury condition holds whenever the 
nontrivial steady state exists.

R esults of simplified model

Now we have analysed the simplified model we look at the behaviour of the model 
over realistic parameter estimates. We use estimates given in Table 4.1 over a range of 
values for p and at. We fix parameter, c to c =  1. We investigate the impact tannin has 
on the gypsy moth virus system by allowing the production of tannin and the decay 
rate of tannin to vary. In Chapter 3 we found that for the continuous time model, 
oscillatory behaviour could become stabilised by the addition of tannin for particular 
parameter ranges of r and s (where r is a measure of the rate of production of tannin 
and s is a measure of the decay rate of tannin). We termed this r — s parameter region 
where a stable steady state appeared the “pocket of stability”. In Figure 4-8 we see

'Pocket of stability'

E x p o n en tia l
G row th

Stability

O scilla tio n s

0.4 0.5 0.6
Productionof tannin, p

0.7 0.8 0.9
tannin,

Figure 4-8: Plot shows the “pocket of stability” found from the addition of tannin to 
the gypsy moth NPV model. Parameters are a =  6.0; 6 = 0.1; A =  1.49; av =  0.37; c = 
0.1; q =  0.1.

an analogous “pocket of stability” for the discrete time model. The figure also shows
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p-<7t parameter space where populations grow exponentially or oscillate. Figure 4-9(a) 
shows the population behaviour when exponential growth occurs. This is when p and 
at are both large and here the existence condition (4.43a) (which is also the first Jury 
condition) fails. Figure 4-9(b) shows the oscillatory behaviour for low values of p and 
crt . The Jury condition (4.44c) fails to hold for these in this parameter region and a 
Naimark Sacker bifurcation occurs resulting in cyclic behaviour. Lastly Figure 4-9(c) 
shows populations when all the Jury conditions hold. Here the populations remain 
stable.

(a

I
1

(b) (c)

Figure 4-9: Plot shows model behaviour for the simplified model (gypsy moths - blue, 
NPV - green, tannin - red). Figure (a) shows exponential growth for p =  0.7 and 
iTt =  0.6. Figure (b) shows oscillatory populations for p = 0.4 and at =  0.3. Figure
(c) shows stable nontrivial steady state for p =  0.5 and at =  0.5. Parameters are 
a =  6.0; 6 =  0.1; A =  1.49; av — 0.37; c =  0.1; q =  0.1 with initial conditions m(l) = 
0.5;v(l) =  0.8;*(l) =  1

Indeed from Figure 4-9(b), we observe for small p, a j  the gypsy moth population is 
regulated by NPV as stable oscillations occur. As p and crj increase, these oscillations 
reduce until condition (4.44) holds and a stable steady state occurs, Figure 4-9(c). A 
further increase causes the existence condition for the nontrivial steady state to fail 
and the population becomes unregulated and grows exponentially (see Figure 4-9(a)).

Modelling without tannin

If we exclude tannin from the modelling process, model (4.41) reduces to a model 
similar to that of (Nicholson & Bailey 1935) discussed in Chapter 2. That is the model 
becomes

Mn+1 =  a(l -  q) exp (-bVn)Mn 

Vn+i = <?vVn +  A [1 -  exp (-bVn)] Mn

(4.45a)

(4.45b)
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This model has two steady state solutions, one trivial and one nontrivial. When the 
nontrivial steady state exists, both steady states will be unstable. Figure 4-10 shows 
the typical behaviour of growing oscillations for when both trivial and nontrivial steady 
states exist. This same unstable behaviour is commonly seen in the Nicholson-Bailey 
model (Nicholson & Bailey 1935), see (Hassell 1978). From the analysis of model (4.45)

s
I
]

0.1

0 10 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0  100

Gonarabon (years)

Figure 4-10: Plot shows the typical growing oscillations found in model (4.45) when the 
nontrivial steady state exists (prey - solid line, parasitoid - dashed line). Parameters are 
a =  6.0; b = 0.1; A = 1.49; av = 0.37; q =  0.75 with initial conditions m(l) = 4.5; t;(l) =  
4.0.

we see that the addition of the plants effect on the gypsy moth virus system has caused 
regulation for some p — at parameter space. We see that at low values of p and at 
bounded oscillations occur. Therefore the addition of tannin has caused the growing 
oscillations from seen in Figure 4-10 to become regulated stable oscillations. Further 
to this, for larger p and at growing oscillations are regulated to a stable steady state. 
Yet for larger p and at exponential growth still remains.

Hence, adding tannin into the system has created a steady state solution, which is 
not present in the model without tannin. So the addition of tannin has had a stabilising 
effect on the system.

Including self-lim it for gypsy m oths

The simplified model (4.41) showed the model behaviour over a range of p and at 
values. Amongst this behaviour was exponential growth where the virus alone was 
unable to regulate the gypsy moth population. We now include a self-limit for the 
gypsy moth growth by allowing r ^  0. We let r be small (r =  0.0001) so that the 
self-limit only affects the unregulated gypsy moth populations. Figure 4-11 displays 
the behaviour of the model for both r = 0 and r = 0.0001. We see that the behaviour
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remains unchanged from the inclusion of the self-limit parameter, r for oscillatory and 
stable steady state behaviour.

I 1

I

(a) (b)
ie

1&
I
I

(c)

Figure 4-11: Plot shows the similar model behaviour from the inclusion of self-limit on 
gypsy moths (gypsy moths - blue, NPV - green, tannin - red). Figure (a) simplified 
model for p =  0.1; at =  0.8. Figure (b) simplified model including self-limit for p =  
0.1; crt =  0.8r =  0.0001;. Figure (c) simplified model for p =  0.4; <r* =  0.8. Figure 
(d) simplified model including self-limit for p =  0.4; at =  0.8r =  0.0001;. Parameters 
are a =  6.0; 6 =  0.1; A =  1.49; crv =  0.37; c =  0.1; q =  0.1 with initial conditions 
m (l) =  0.5; v(l) =  0.8; £(1) =  1

We now look at the area of exponential growth. Figure 4-12 again shows the 
behaviour of the model for both r =  0 and r =  0.0001. Obviously the inclusion of r ^  0 
regulates the exponential growth. However three different behaviours are observed. In 
Figure 4-12(b) we see oscillatory behaviour. This occurs when p is small and crt is large. 
Much more commonly seen is a stable population at a nontrivial steady state. Figure 
4-12(d) demonstrates this behaviour. Lastly we see a trivial steady state where gypsy 
moth and tannin levels persist but virus populations die out. This occurs at high p 
and at values and is consistent with Figure 4-6 where existence of the nontrivial steady
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state is lost.
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Figure 4-12: Plot shows the change in behaviour from the inclusion of self-limit on 
gypsy moths (gypsy moths - blue, NPV - green, tannin - red). Figure (a) simplified 
model for p =  0.1; a* = 0.8. Figure (b) simplified model including self-limit for p =  
0.1; at =  0.8r =  0.0001;. Figure (c) simplified model for p =  0.4; <7* =  0.8. Figure
(d) simplified model including self-limit for p = 0.4; at =  0.8r =  0.0001;. Figure (e) 
simplified model for p =  0.7; cr£ = 0.9. Figure (f) simplified model including self-limit 
for p =  0.7; a* = 0.9r = 0.0001;. Parameters are a =  6.0; 6 =  0.1; A = 1.49; av = 
0.37; c = 0.1; q = 0.1 with initial conditions m(l) =  0.5; u(l) = 0.8; £(1) =  1
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4.3 .3  C om plete m odel system

In the previous section we looked at simplified versions of the complete gypsy moth virus 
tannin model. We did this to gain an understanding of the system. We now compare 
our findings from the previous section with numerical simulations of the complete model 
system. From extensive numerical runs we find a few instances where the behaviours 
are different. This always occurs between the change in behaviour from oscillatory 
population cycles to stable steady state populations as p increases. We find that for 
the complete model this change occurs at slightly higher values of p. As p increases 
further we observe the same stable steady state behaviour as seen in the simplified 
model. Figure 4-13 shows the change in behaviour of the simplified model and the 
complete model.

(a)

I

(c) Generation (years)

wvwww
Generation (yean)
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Generation (years)

60 70 80 90 100

Figure 4-13: Plot shows the change in behaviour between the complete model system 
and the simplified version (gypsy moths - blue, NPV - green, tannin - red). Figure (a) 
simplified model for p = 0.5; <r* = 0.4. Figure (b) complete model for p =  0.5; o* = 
0.4r =  0.0001;. Figure (c) simplified model for p = 0.3; o* = 0.8. Figure (d) complete 
model for p — 0.3; =  0.8r =  0.0001;. Parameters are a — 6.0; b =  0.1; A = 1.49; av =
0.37; c =  0.1; d =  0.0067; q =  0.4; At =  20 with initial conditions m(l) =  0.5; u(l) =  
0.8; £(1) =  1
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More generally the behaviours observed from the complete model system are the 
same behaviours seen in the simplified model. This is demonstrated in Figure 4-14.

I
!

0 20 40 00 00 140 100 100 200

]

Figure 4-14: Plot shows the change in behaviour between the complete model system 
and the simplified version (gypsy moths - blue, NPV - green, tannin - red). Figure (a) 
simplified model for p  = 0.6; crt = 0.4. Figure (b) complete model for p  = 0.6; c t =  
0.4r =  0.0001;. Figure (c) simplified model for p  = 0.3; at = 0.5. Figure (d) complete 
model for p — 0.3; <Jt =  0.5r =  0.0001;. Parameters are a =  6.0; b — 0.1; A =  1.49; o v — 

0.37; c =  0.1; d = 0.0067; q = 0.4; A; = 20 with initial conditions m(l) =  0.5; u(l) =  
0.8; t(l) = 1.

Therefore from the simulations we conclude that the type of behaviour found in 
the simplified model, described in the previous section, also gives a good account of 
the behaviour observed in the complete model system. However oscillatory behaviour 
is slightly more common in the complete model system. This may well be due to the 
fluctuations in the birth rate for the complete model.
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4.4 Summary and Discussion

In this chapter, we have shown an alternative way to modelling the gypsy moth-NPV- 
tannin system. Instead of using continuous time equations to describe the system, we 
instead built up a discrete time relationship. This is believed to more appropriately 
model the system as the gypsy moth has annual reproduction and has no overlapping 
generations.

A generalised model was built first, in order to explain the interactions and combine 
the main processes involved in the interactions between the gypsy moth, the virus and 
tannin. Whilst building the model we discovered that period doubling and chaos exist 
in the system. This was popularised in discrete time models by May (1976) for the 
logistic map and we see the same behaviour when only gypsy moth populations are 
modelled. A two cycle occurs where populations oscillate between high and low levels. 
However two cycles and period doubling occur when the gypsy moth birth rate is high, 
yet birth rate estimates do not concur with this high value.

A model system was formed by adding NPV and later tannin based on known 
assumptions. The addition of NPV and subsequently tannin allows the model system 
to display a rich variety of behaviours. In order to explore these behaviours further 
it was required to define specific functions as shown in section 4.2. Functions were 
chosen to have the basic characteristics, yet to be as simple as possible for analysis 
to be tractable. Also several vital rates and other estimates are known which are 
summarised in Table 4.1. Using these functions in the models from section 4.1.3, the 
systems were analysed mathematically. From a simplified version of the model we 
found that when tannin was included many steady states may occur. This depends on 
the exact parameters, however using realistic estimates, at most one nontrivial steady 
state solution is found. Yet when tannin was excluded only one nontrivial steady state 
occurred. From a further simplification we analysed the stability of the nontrivial 
steady state.

As discussed in Chapter 3, we expect that the addition of tannin to the gypsy moth- 
NPV virus interactions will cause a destabilising effect. However in Chapter 3, we found 
that this is not always the case and on some occasions the opposite effect, stabilisation, 
appears. In the discrete time model we see that there also exists a parameter range 
(<jt-p) where stabilisation occurs. Again stabilisation occurs in a small pocket from high 
decay rate of tannin with low production rate of tannin to small decay rate with high 
production rate of tannin. Furthermore high values of either production of tannin or 
decay of tannin causes a loss in regulation of gypsy moth populations by NPV and hence 
gypsy moths grow without bound. On the other hand, small values for the production
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of tannin and decay rate results in oscillatory behaviour. All these behaviours are 
consistent with the behaviour found in the continuous time model. Hence the change 
from continuous time modelling to discrete has not caused a change in the observed 
behaviour. More importantly the cyclic population levels of gypsy moths seen in field 
observations is readily seen in both continuous and discrete models. However, the 
structure of the gypsy moth life cycle makes a discrete time model more appropriate 
to reflect the rigid annual life cycle of the gypsy moth.
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Chapter 5

Optim al Control for the G ypsy  
M oth M odel

The damage caused by gypsy moths is extensive. Whole areas of woodland have been 
defoliated resulting in the gypsy moth becoming one of Americas most devastating 
forest pest.

As gypsy moths are such a destructive forest pest with considerable economic im
pact, the US government is committed to controlling gypsy moth populations. Nu
merous control attempts have been made, but we will focus on one popular choice a 
biocontrol agent called Gypchek. Despite this method of control being very expensive 
it is still used regularly due to its effectiveness. Yet due to the costs of Gypchek it 
is restricted to use in only small quantities. However the widespread use of Gypchek, 
even in small quantities, results in a huge sum of money spent by the USDA on gypsy 
moth control.

In this chapter we aim to find a control strategy that is cost effective. We do this 
by first assigning a cost to account for the damage caused by gypsy moths. This cost 
can be reduced by lowering gypsy moth population size. This can be achieved by the 
use of the control Gypchek. However there is also a cost to produce and use Gypchek. 
Therefore by summing the two costs, the cost of damage and the cost of control, we 
obtain a total cost. We then seek a control strategy that minimises the total cost 
function.

In section 1 we describe the mathematical set up of the bioeconomic problem. 
Section 2 then shows the existence of an optimal solution. Section 3 gives a character
isation of an optimal control by finding the adjoint system. A uniqueness condition is 
proved in section 4 under certain criteria. The last section gives numerical results and 
interpretations of optimal solutions.
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5.1 M athem atical m odel set up

We aim to optimise such that the sum of the costs of control and the cost of damage are 
minimised over a set, or fixed, period of time. We do this by forming a cost function 
which we will refer to as the objective functional. We then minimise the objective 
function subject to the set of constraints given by the state equations.

We represent the objective functional as cost of damage plus the cost of control for 
each year over a finite number N years

N

j (p ) =
71= 0

AnMn + ^ p 2n (5.1)

where pn is the manufactured NPV sprayed into the environment at generation n. 
Here An is the cost of “damage” per gypsy moth. Therefore for simplicity we assume a 
linearly proportional increase in damage with increasing gypsy moth population levels. 
The constants Bn axe the cost parameters for the control. Due to the labour intensive 
method of production of Gypchek we assume the costs of treatment are nonlinear and 
take the quadratic form given here.

The set of controls is bounded above as Gypchek can cause irritation at high levels 
to humans. Hence the controls belong to the bounded set

u  = {0 < P n  <  Pmax\n =  0, 1, .W} (5.2)

with Pmax being the maximum application for each generation. The objective function 
however is subject to constraints. These constraints are the set of equations of the
gypsy moth model with the addition of the control term. This addition describes the
effect of spraying the control agent on gypsy moth infested areas each year. Hence the 
constraints are

Mn+1 = 1 + dTn +k + v !  "exp ( _rMn -  TT^k) Mn (5'3a)

Vn + 1 = GyVn +  A 1̂ -  exp )  M n +Pn (5*3b)

Tn+i — pMn +  (5.3c)

The other variables and parameters remain the same as in the previous chapter. The
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equations also have the initial conditions

M0 — M̂ nt

Vo = Vfnt,

T0 = Tint.

(5.4a) 

(5.4b) 

(5.4c)

We note that by an iterative construction that given peU where p = { p o , P i ---Pn } ,  

there exists (M, V,T) =  (M (p),V(p),T(p)) satisfying (5.3)-(5.4).

5 .1 .1  E x is te n c e  o f  an  O p tim a l S o lu tio n

First of all we show that a solution to the optimal control problem (5.1)-(5.4) exists. 
The objective functional J  depends on the controls p and also the state variables. 
The set of all possible objective function values, {J(p)\peU}, is clearly bounded below 
by zero. This boundedness along with the completeness property of the reals implies 
the infimum of the set {J(p)\peU} exists. Yet the existence of the infimum does not 
guarantee that a minimum is achieved by some control and its corresponding state 
variables. Thus we now prove that a minimum for the objective function J  does exist 
for an optimal control p*eU (see Macki & Strauss (1982) for ideas in existence results).

T heorem  5.1.1. There exists an optimal control p*eU that minimises the objective 
function J{p).

Proof. By the approximation property of infimum (Wade 2000) there exists a minimis
ing sequence {pK}k =i °f controls for the objective functional J. Due to the fixed initial 
conditions (5.4a)-(5.4c) we have

B/f a k + ( I -  q)\o /  5 Vo \
Ml = r + f i i "  k  +  v 0 exp( _rM° ~ T + t r a )  0

v f  = OvVo +  A ( 1 -  exp ( ) I Mo

T\ — pMo + (J tTo
+ Po

Here Mi and Ti remain fixed however V-^ is sequence dependent. By a further two 
iterations we see that M ^, and T ff are all sequence dependent. So 
{V K}k =i “ d are corresponding state sequences to the control sequence
{PK}k =i • eac^ sequence consists of a finite set of numbers the sequences are
bounded, thus by Bolzano-Weierstrass theorem there exists subsequences {pfc}, {M k},

75



{F fc} and {T k} where

-¥ Pn>

M k ->• M*
yk  
Y n v*v n j
rpk
1 n

rp*
■Ln  >

for all n =  0 ,1...N. By the continuous structure of the state system we have M* = 
V* =  V(p*) and T* =  T(p*). This convergence implies

min J(p) = Um ^ ( A nM k + ^ { p kn)2\
^  n=0

As the range of values for the control is a closed interval of the reals then p*eU. Hence 
there exists a control p* with corresponding states M*, V* and T* that is optimum. □

5 .1 .2  O p tim a lity  sy s te m

There are generalisations of Pontryagin’s Maximum Principle for ordinary differential 
equations to discrete time systems (Clark 1990, Sethi & Thompson 2000). Such gener
alisations can be derived by differentiating the objective functional with respect to the 
control. Therefore we must differentiate the map

V — ► J(p)

which first requires the differentiation of the maps

p M  — M(p) 
p ^ V  = V(p)
P T  = T(p)

We call the directional derivatives ipM, ipv , ipT of the solution maps the sensitivities 
of the states with respect to the control (see Lenhart &; Bhat (1992) and Fister (1997) 
for examples of the use of sensitivities to characterise optimal controls).
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Definition 5.1.1. For ease we define the following: for e >  0

i ’n — lim
£->■0+

=  lim
£-►0+

''Pn =  lim 
£-►0+

M e := M (p + d ), V s := V (p + el), T e := T(p + d ). 

M  -.= M(p), V  := V(p), T  := T(p).

P ro p o sitio n  5.1.1. Let peU, then the mappings

p —> M  = M(p) p —y V  = V(p) p - t T  = T(p)

are differentiable in the sense

M £ - M n 
e

V £ -  Vr, vn y n
£

T £ —T± n ± n
£

such that (p +  el)eU for small £ and I a directional vector.

Proof. Consider the control maps

p —> M  = M(p), p +  d  —► M £ = M (p + d ), 

p —* V  = V(p), p +  d  —> V s = V(p +  el), 

p —>■ T  = T(p), p + el -» T £ — T(p + d ).

From the state equations (5.3a)-(5.3c)

m :

a k + (l — q)Vn (  bVn .v exp - r M n -  —— — Mn
1 +  dTn k + Vn 1 +  cTn

Vn+\ -  K + i =  <7vVi + \ ( l - e x p ( ^ ^ y ) M '  + d n

— A ( l  — e x p ( I ^ | t ) ) m „  

^n+1 — ^n+1 =  pMn +  atT.* — pMn — atTn
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Then from above equations the initial conditions (5.4) we have

Mf -  Mi 

VI -  Vi 

Tf -  T\

Therefore the first sensitivities are bounded

0,

do,

0.

< =  o,

\i>X\

oVI

1>T =  0.

Similarly for the second sensitivities we have 

Mf -  M 2 = ° exD ( _ rM s _  j w _ \  M ,
1 +  dTf k + V{- P V 1 1 +  cT[)  1

a k + { 1 -  q)Vx (  bVi \exp I —rM \ — — —— J M\

v i v 2 = Mf

1 4- dTi k + V-1

<*vV{ +  A ( l  -  exp )

Tf — T2 =  pMf +  <7fTf — pMi — otTi

1 +  cTi

(5.5a)

(5.5b)

(5.5c)

(5.6a)

(5.6b)

(5.6c)

From the first sensitivities Mf =  Mi, (5.5a), and Tf =  Ti, (5.5c), therefore (5.6a) is 
rewritten

a k + { l - q ) V {  (  __ bV{■ ' 1 exp - r M i -  1
1 +  dTi k + V f ” "x' V ' 1  +  cTi

a k + (1 -  q)Vi (  _ _ bVi . _ _exp I —rM i — —;—— ) Mi

Mf -  M2 =
l_ j

~ 1 + dTi k + Vi ” ‘x' V ' ‘ 1 +  cTi

Dividing through by e (> 0) and adding and subtracting the term

k + ( l - q ) V {  (  bVi1 exp - r M i -

Mi

(5.7)

k + V{ 1 +  cTi
(5.8)
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(5.7) then this becomes,

M f -  M 2

+

k + ( l - q ) V {  (  . .  bV{1 exp —rM \ -  1
fc +  VJ 

fe +  (l~ g)V i£ 
fc +  Vf 

k + ( l - q ) V {  
fc + V f 

fe +  ( l - g )V i 
fc +  Fi

exp rM i — 

exp ^ —rM i — 

exp ( —rM \ —

1 +  cTi 
bVi 

1 +  cTi 
bVi 

1 +  cTi 
6Vi

1 +  cTi
Mi

1 +  dT\

fc + V J
fc +  ( i - g ) vj«

k + V{

k + Vi j

£ /  (  ur bVlexp I —rM i —

exp ( —rM i — bVi
1 +  cTi

— exp ( —rM \ — bV!
1 +  cTi

Mi

1 +  cTi 
a

1 + dTi

Taking the limit

lim
e-*0+

M f -  M 2

qk b k + (1 — q)V\
{k + Vi )2 1 +  cTi fc +  Vi

W  i , v

)  1 +  dTi

exp I —rM \ —
1 +  cTi

= : D i t f

Then as ^  is bounded it follows that is bounded

K l  <  Di.cX 

= : C2m .

Following the same process for (5.6c) and (5.6c) we find ip2 , ^ 2  are bounded

V j - V 2^

-b V 1

if) 2 =  lim
£->0

=  <t v +

£
A6

1 +  cTi
exp

1 +  cTi
+ D$

\ip2 I <  D2C r  +  £>3

'2c r
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and

$  =  lim
e->0 V £ 

= 0

from (5.5a), (5.5c) and (5.6c). We can continue iteratively to show

M>n\ < n M
'-'n

\ < \ < C l

\ € \ < C l

So the sensitivities are bounded. □

P ro p o sitio n  5.1.2. The sensitivities ip satisfy the following system

■ (1 ~rMJi +V.‘ +*<I+ v’K“ p ~i r k )*M
n

bVn
1 +  cTn

V _ (  cbV" Q . ad \  M
n \  (1 +  cTn)2 1 +  dTn 1 +  dTn J n

k + (1 -  q)VT
k + Vn exp ^ - r M n -  ^n (5*9a)

^  = A i 1 - exP (lT§;)) <  + (CT“ + ifStexp (it!!:)) ̂
XcbMnVn (  —bVn \  ,T , i

eXP 1 , m +  In (5.9b)(l +  cTra)2 \  1 +  cTn 

^n+1 =  PlPn+°t1pn (5-9c)

Proof. It follows from the proof of Proposition 5.1.1. □

T heorem  5.1.2. Given an optimal controlp* and corresponding state solutions M*, V*,T* 
then there exists adjoint variables qM,qv ,qT such that the adjoint variables satisfy the 
system

aM =  (1 — rM *) a k + (1 — q)Vn ( —r M* — \  aM
qn~ i (1 1 +  dT* k + V* P V 1 +  cT*)

+X (1 -  exp ( ■ ■ ) ) q£ +  pqZ + An (5.10a)- b V r*

1 +  cT*
V  _  I 9k b k +  ( l - q ) v : \ _ _ {  bV:

?„-i =  ^  n exP - t m ; -(k + V*)2 1 +  cT* k + V* J  "  V " 1 +  cT*

80



M
n 1 +  dT*

M , XbM* (  -bV* 
C  +  K  +  exp 1

T
Qn- 1 =

cbv:
1 +  cT* 

ad
1 +  cT* Qn (5.10b)

+(l +  cT*)2 l +  dT* 1 + dT, Mn exp I —r M* —
bv:

1 +  cT*
k +  ( l - q ) v ;  M AcbM*Vr

k + V* Qn exp
(1 +  cT*)2 ^ \ l  + cT*

~bVn \ v  , T 
Qn + a tQn (5.10c)

with the transversality conditions

Q%

Qn

Qn

(5.11a)

(5.11b)

(5.11c)

Furthermore the optimal control is given by

p i =  max ( 0, min ( (5.12)

Proof. We start by taking the directional derivative of the objective functional. Then 
for e > 0 and directional vector /,

0 <

where

d ( J ( p ' ) )
dp

lim -  [J(p* +  el) -  J(p*)] 
£—►0+ e

lim -  
£—►()+ £ E  ( A«M 'n +  ^ ( P n 1)2)  -  E  { A- M-  ~  T 0*

,n=0 n=0
N

71=0
N

£-.0+ V £ /  2 t-tO+V £

71=0

(5.13)

(5.14)

p£ =  p +  d
M £ =  Af(p +  eZ)
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and from Proposition 5.1.1

£->•0+

Note also from Proposition 5.1.1

ipv = lim
e->0+

IpT = lim
£—>•()+

V s - V
£

T £ — T

ipn in (5.14), can be replaced with parameters from the original problem by finding the 
costate variables of the adjoint equations. From Proposition 2 we re-write this system 
of coupled linear equations in matrix form

where

(5.15)
/ ( ) \

^ + i - A i t = *n
Vl’n+l) K i t ! \ 0  /

A =

and 

a n  =  

a 12 =  

«13 =

an a i2 ^13

( ! - exp ( T ^ rr I c::d (  ~ tv“ 'l) )  v ' 1+cTn e X P  \ l + c T n )

0

\cbM nVr
(1 + c T n )» exp ( i q ^ r )

Ot

fc +  ( l  «)F" ( i _ rMn) e x p ( - r M n -  bVn
1 +  dTn k +  Vn

qk b__ k +  (1 -  q)Vn \
1 +  cTn

(k +  Vn)2 1 +  cTn k +  Vn J 1 +  dTn 
cbVn a ad \  k +  (1 — q)Vn

exp ( - r M n - bVn

exp - r M n -

1 +  cT? 
bVT

Mr,

Mn
(1 +  cTn)2 1 +  dTn l + dTn J k + vn '■ " V 1 +  cTn

(for convenience we omit the *’s). Let qn denote the costate variables then the adjoint
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equations are found in the following way. Consider

N - l

-  EG,M QX
n=0

N - l

*X+i
L
( * ^ i \

= In £ )  - E ( « n
n=0

N - l

-  A

N - l

f ^ n \
i>X

\ i > l J .

(5.16)

n—0

= E ( ^ n M+1 Vn+X € +x) l l  ~  E
n=0

N - l

\ 9 n  I
n—0

W \
<lZ)A 'Pi

W )
( £ \

'Pi l ) A T o l
\ 1 l J

We remove a term in the second summation using the fact that the initial conditions 
for the sensitivities (ipj^ ip^ ip ^  are all zero (as Mq = Mo etc). Also we force the

terminal conditions for the costate variables (q^  qj^j to be zero and include this
term in to the second summation. Then renumbering the indices of the first sum in 
order to match that of the second this gives

=  E ( t f
n=1

N

=  E ( ^  O

t f )  t i - x  - E ( ^  
\ i l - J  n=1

( Qn-1 \ I «

N
M'

O
/ q

\Q n

n—1
QX-1 

L \Qn—]
On
qI

(5.17)

Now as the only sensitivity that appears in the derivative of the objective function 
(5.14) is ipn then for each n

Ip™ An =  (rpn ^X  V>n)

Hence combining (5.17) and (5.18) the adjoint equations are given by

f An\ 
0

V O /

(5.18)

(oOL i\ ( Qrf\ (AU\
qX-i - at qX = 0

\ qX-J \ Qn / U  /
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or more explicitly

M /i x a k + ( l - q ) V n (  bVn \ M
g ^  =  (1 - r M . )  k + v  exp f - rM „  -  ) g

+A (1 _exp(rr!i))9"+p<7"+A"
v f  qk b k + { l - q ) V n \  f

qn~1 ~  \(fc +  Vn)2 1 +  cT„ k + Vn ) eXP(  r  "
B/f a  m  x (  i A 6 M n  ^  v -

M" T T d ^ 9" +  ( CT° +  I T ^ exp ( tT ^  J  J 9-

^  =  _  (  cbV '» +  - g f L - )  M„ exp ( —rM n -  W

1 +  cTn

{l + cTn)2 l + dTn l + dTn J n n 1 +  cTn
& +  (1 — (?)Ki A/ \cbMnVn f  —bVn ^ V I T

f c + v .  9 -  -  ( T T ^ F e x p  ( r r ^ J 9" +  ^  ■
Also from (5.15) and (5.16), for each n

Qnln = (qM qv  qT Hn y n y«

So combining (5.15)-(5.18) gives, for each n

N N - l

£ ^ n  =  Y , 0 n ln (5-19)
n = l n=0

Therefore we can make a replacement in (5.14) with (5.19)

0 < (5.20)
o p

N

= + BnPnU]
n = 0

N N - l

=  A o ^  +  Ani>n + Y  B"Pnln +  BNp%lN
71=1 71=0

N N - l

= Y A^ n + Y B^
71=1 71=0
N - l

= £ M « n  +B nP;)] (5.21)
71=0
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So using (5.21) and the boundary conditions (5.2) for a minimum to occur

♦
Pn =

if 0 < qX 
if - P B n < q X <  0 
if qX < —P B n

(5.22)

Hence

p* =  max ( 0, min

and we get the system as originally stated. □

5 .1 .3  U n iq u e n e ss  o f  th e  O p tim a l C o n tro l

We use a convexity argument to show the uniqueness of our optimal control (Lenhart 
& Liang 2000).

T heorem  5.1.3. I f  Bn for n= 0,l...N  are sufficiently large, then the optimal control is 
unique.

Proof We prove a uniqueness result by showing the objective functional J (p) is strictly 
convex (Rockafellar 1970). We begin by defining the function

g{e) =  J ( ( l - e ) p  +  eZ) 
=  J(p + e { l - p ) ) (5.23)

For convexity we need to show that the second derivative of (5.23) is strictly positive

g \ e )  >  0.

The first derivative of (5.23) gives

N

^ 2  A n 1pff'S +  B „ {1 „  -  P n ) \p n +  e ( l n  “  Pn)] (5.24)
n=0
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We now define

a if t  := lim
' / M ,r+e  
TTl+l

,M,e '
VWi

n+1 r —>0

n+1 := lim
V>T+e _  oljV'£ n+1 V^n+l

T —>0

T , e __
'n+1 := lim

T —>0

r ,T + e  I T,e
n+1 rn +1

Then by a similar result to Proposition 2 (5.9) we have

ibM'e -  ™ n+l “

lbV'£ ~  rn+l —

T>e _  
n+1Ip.

where
F =

,Me ®F V dF Te ib„ H--------- ib„ H-------- ibtdM £J n d v y n d T ^ n
dG lMe dG lVe dG lTe

 Ipn -̂----------- Vn  H-----------?An8M **n d V ^ n d T ^ n

f»l>n'C +  <TiV’P

"I” (^n P n)

and

1 +  d T £ k  +  V ?

G =  ^  +  A ( l - e x p ( I i ) )  

Then (5.25) combined with (5.26) yields

1 +  cT* 

M i

Mi

M,e _  
n+1 —

r V *e  -n+1 ~

+

dM t n dM ‘2(Vn ’
OF T d2F . , t £\2  a l'c +  = r + < /£ ’£)2

+ M - aVf + 3/2F  < ^v*f 
dV‘ n a v F Wn 1

dT£WJ-n
dG

+

dM £ 
dG

<r5e +

dT52n

d2G
dM‘ 2

+
dG Ve d2G , , Vlx2 
 <+£ +  ttttx W # ' ) 2

dT.Ifn
&  + - ^ ( V f £)2

dV£n dVF

dT£jn
r T,e 
n+1

   ̂_M,e . _ _T,e
=  P ° n  + < 7 fCTn ’

Now the initial sensitivities are all zero, = 0, ipQ,e =  0 and ^ ,fc =  0- Then usingvTe _

(5.25a)

(5.25b)

(5.25c)

(5.26a)

(5.26b)

(5.26c)

(5.27)

(5.28)

(5.29a)

(5.29b)

(5.29c)
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(5.26) we calculate the next sensitivities. Thus the next sensitivities are

=  0

l ' £ =  (lo -  Vo)

=  0

Continuing this process iteratively we find the following expression

n

\^n+W < Y l a j ( ln- j ~ Pn~^
j =0 

n
l^n+l I — Pj(ln- j  ~  P n - j )

j = 0

where

l^ n + l I — ^ ^ I j U n - j  P n - j )  
3=0

«o = o Pq =  1 7 o  =  0

a i =  l^ = m  '1'1==0

and for i = l , 2...n — 1,

(  dF dF d F \
aj+1 \ d M ^  dV^ dT%)
. /  dG dG dG_\

^ +1 \d M z ' d v f  a r e )
7j+i = ( p , Q , V t ) - ( a t j , P j n j )

M,e _  n v,£ _  n  1 T,e _Also note that a0 ’ =  0, crQ ’ = 0  and <r0 ’ = 0 .  Then similarly from (5.29)

2compute the successive values using ab > -jr(a2 +  b2) (see Appendix Bl)

< ' £ g C j ‘ < h - j  - P n - j f ,  
j = 0

1 ^ 1 1 < £ < ? ( * » - ; - p » - i ) 2,
j= o

n

l^n+11 — 5 3 ^ 7  Un ~3 ~  P n - j )  • 
j =0

(5.30)

(5.31)

(5.32)

we can
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Hence we easily obtain the following

\ D i * ( ln - i  ~  P n - j ) 2 ,
i=0 i=0

E 1̂ 11 ̂  E ° i
i=0 i=0

Y t W l l \ \ < '£ i Di ^ n - j - p n- j ) 2-
i=0 i=0

We can now take the second derivative of the function g. Hence differentiating (5.24) 
and using the bound (5.33a)

N /  j M,e+T I M,e \

9  (£) =  ^ 2  An ~ — t — ~ ) +  Bn l̂n ~ Pn^
n = 0 V T J
jj f [Pn +  (g +  r)(/ra - p w)] ~  [pn +  £ ( ln  " P n ) ] ^

T —^0 \  T  /

N
= AnO™'£ +  Bn(ln -  pn)2

n = 0 
N

> E ( B" - C ,)(i» - P » ) :
n = 0

> 0

So for sufficiently large Bn's the function is convex. Hence the optimal control is 
unique. □

5.2 Numerical Results

In this section we look numerically at an optimal control strategy for the model. This 
uses an iterative method consisting of 6 difference equations from the state and adjoint 
equations. The iterative process begins by solving the state system forward in time 
with specific initial conditions and with an initial guess for the adjoint variables qVn, 
for n = 0 ,1...N — 1. Then using the transversality conditions and the values calculated 
for the state variables, the adjoint equations are solved backwards in time. Thus a new 
set of adjoint variables qVn are calculated. These new adjoint values are compared with 
the initial guess. If the absolute difference between them is greater then a specified 
tolerance for any n then the new values are used as the initial guess for the adjoint 
variables. The process of calculate state variables forward in time and adjoint variables
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backwards in time continues until the absolute difference between successive qVn sets 
is less than the tolerance level. Once this has occurred the system is solved and we 
have an optimal control set pn. For more information on such iterative methods see 
Hackbusch (1978).

This method may not necessarily converge. Difficulties in the convergence of the 
optimality system for the model leads us to make an adaption to the model. This 
involves the replacement of the linear term for the production of tannin given in the 
previous chapter (4.26). In its replacement we use a bounded function p(M ) =  x+tM - 
In this case we find the method to converge. Other updating methods for control, such 
as convex combinations of old and new adjoint variables as used in Jung, Lenhart Sz 
Feng (2002) had little effect on the ability to converge yet it did have an effect on the 
speed of convergence.

The parameters used in the numerics are taken from Chapter 4 with the exception 
of (Tt and p. Due to the change in the production of tannin term new values for ot, p 
and r  were chosen to give qualitatively the same behaviour as discussed in the previous 
chapter.

5 .2 .1  O p tim a l sp ray  s tr a te g ie s

For Figures 5-1 and 5-3 optimal control strategies are give over a 50 year time period. 
Population levels and control levels have been scaled to appear on the same graph. 
Population levels of gypsy moths are scaled by 10-3 and virus levels scaled by 10-13.

Figure 5-1 shows 6 plots of the optimal control solution for varying costs of control, 
B n. Figure 5-1 (a) shows an optimal control solution where the cost of control is ex
tremely high. Here it is not beneficial in terms of cost, to try to control the population 
at all. Therefore we see that the figure displays the oscillatory cycles as seen in Chapter 
4.

Figures 5-1 (b-d) show how, as the cost of control reduces, the use of control plays 
a greater role in the optimal solution. Figure 5-1 (b) has a high cost and hence there is 
little use of control and subsequently little effect on the population cycles. More control 
is seen in Figure 5-1 (c) which reduces the fluctuations and has a slight dampening on 
the fluctuations towards the end of the time period. A further reduction in cost of the 
control has a much greater effect on the dampening of the fluctuations, Figure 5-1 (d). 
Also we observe that the control is used in a greater quantity at times when the virus 
populations are at their lowest levels. This is the stage of the cycle when gypsy moth 
populations begin to outbreak.

Reducing the cost of control further we see in Figure 5-1 (e) that the amount of 
control used in some years reaches the maximum quantity. Control is used less in years
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where virus populations are at there highest and gypsy moths are in decline. Further 
dampening of the oscillations has occurred. Finally Figure 5-1 (f) shows that at very 
low costs of control the optimal solution is to use the maximum amount of control 
each year. An interesting observation in this case is that although the oscillations are 
dampened they have slightly increased in comparison to Figure 5-1 (e). This suggests 
that when the control is oscillatory this helps dampen the population cycle. However, 
the application of a constant control inhibits the fluctuation to a lesser degree.
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Figure 5-1: Plots show optimal cost solution applied to oscillatory population dynamics. 
Figure (a) for cost of spray, B=10000, Figure (b) for B=1000, Figure (c) for B=400, 
Figure (d) for B=100, Figure (e) for B=10, Figure (f) for B=5. Other parameters are 
a =  6.0, b = 0.1, c =  0.1, d =  0.067, q =  0.4, k =  3.0, r =  0.001, A = 1.49, av = 0.37, 
crt =  0.1, p = 1.0, r  =  0.01 and A =  10.
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Figure 5-2: Plot shows the Total cost of the minimised objective function against cost 
of control. Parameters are a — 6.0, b — 0.1, c = 0.1, d =  0.067, q = 0.4, k =  3.0, 
r = 0.001, A = 1.49, cv =  0.37, at =  0.1, p = 1.0, r  =  0.01 and A = 10.

Figure 5-2 shows that when the cost of control is very high then slight changes in 
the cost of control makes little difference to the total cost calculated by the objective 
function. Similarly the same is true at very low costs of control. Yet in between these 
cases even a relatively small change in the cost of the control can have considerable effect 
on the total cost. This region is in the interval [-3,2] in Figure 5-2 which corresponds 
to the interval for the cost of control [1,10000]. A decrease in cost of control from 100 
(Figure 5-l(d)) to 50 (Figure 5-l(e)) results in a 2.2 million dollar reduction in the 
total cost. Hence money spent on the advancement of cutting the cost of control may 
well be money well spent. But in the case where the cost of control is high reducing 
the cost of control may not be beneficial. For low cost of control this would certainly 
not be of benefit. From another point of view an organisation providing the control 
(and hence benefitting from the cost of the control) may take advantage at low costs 
of control. That is they could price there products higher and have little effect on the 
total cost of control.
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Figure 5-3: Plots show optimal cost solution applied to stable steady state populations. 
Figure (a) for cost of spray, B=10000, Figure (b) for B=1000, Figure (c) for B=500, 
Figure (d) for B=100, Figure (e) for B=50, Figure (f) for B =l. Other parameters are 
a = 6.0, b =  0.1, c =  0.1, d = 0.067, q = 0.4, k = 3.0, r =  0.001, A =  1.49, av =  0.37, 
crt = 0.3, p = 5.0, r  =  0.1 and A = 10.

Figure 5-3 shows 6  plots of optimal control solutions for a system for which pop
ulation levels are at a steady state. Figure 5-3(a) has a very high cost of control and 
hence the optimal solution is not to use control leaving the populations at a steady 
state. Figures 5-3(b) and 5-3(c) show the control lowering the gypsy moth population.
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In particular Figure 5-3(c) shows that the optimal solution reduces the gypsy moth 
population early in the control sequence. However immediately after the initial high 
input of control there is a dip in the amount of control used. This is demonstrated 
again in Figure 5-3(d) where the control is at the maximum level except at the point 
where the gypsy moth population have been reduced. Figures 5-3 (e) and 5-3 (f) show 
controls at maximum levels. In each of the optimal solutions the population levels 
remain relatively constant even though they have been reduced by different degrees. 
It is suggested that the reason for the drop in control after the initial high input is to 
dampen any fluctuations in the populations that may occur as a result of the sudden 
input of control.
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Figure 5-4: Plot shows the Total cost of the minimised objective function against cost 
of control. Parameters are a = 6.0, 6 =  0.1, c =  0.1, d = 0.067, q = 0.4, k = 3.0, 
r =  0.001, A =  1.49, av =  0.37, at = 0.3, p = 5.0, r  =  0.1 and A =  10.

Figure 5-4 shows the same behaviour as Figure 5-2. This time the critical cost 
region is in the interval [-2,1] corresponding to the cost of control [10,10000]. We again 
see that in this region a reduction in the cost of spray can have a big impact on reducing 
the total cost. Yet outside this interval a small reduction in the cost of control has 
little if any affect on the total cost.

5.2.2 O ther spray strategies

An optimal control strategy, although most cost effective , may not be the most prac
tical solution. Instead a strategy where an application of control only occurs if a set 
criterion is met, may prove to be more pragmatic. This for example could be to spray 
when virus populations are at a certain level. Indeed from Figure 5-1 (d) we see that
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the optimal control strategy applies control when virus levels are at their lowest. Simi
larly the least control (in fact no control) is applied when the virus population is at its 
highest values. We therefore construct a spraying strategy in which the control is only 
used when the virus population is low. However virus levels are hard to determine in 
the field but instead we can monitor the gypsy moth populations. From Figure 5-1 the 
fluctuations of virus levels match the fluctuations of the gypsy moth population except 
with a time delay of either 2 to 3 generations. We can use this information on gypsy 
moth numbers as an indicator for when to apply control.

We will now look at several different spray strategies and compare these with the 
optimum control solutions. We will compare the total costs and the behaviours of the 
populations. For each case we set the cost of damage A to be $10 and the the cost of 
spray B to be $100. In this case the optimal solution gives a total cost of $10.201m 
and without any control the cost is $46.812m.

Case 1

In the first case we use control for one generation at the maximum level. This is applied 
two years after gypsy moth population levels begin to increase. Figure 5-5(a) shows 
the solution to this control strategy.

On* year spray at Pmax*2 One year spray at Pmax*2

1

70 10 20 30 60 60 70 80 90 100
Generations

Figure 5-5: Plots show the population levels under control form applying control 
method in Case 1. Parameters are a = 6.0, 6 =  0.1, c — 0.1, d — 0.067, q =  0.4, 
k =  3.0, r =  0.001, A = 1.49, av =  0.37, <t* = 0.1, p =  1.0, r  =  0.01 and A =  10.

We see that the control reduces the fluctuations similar to the optimal control. Yet 
the total cost for the strategy is $25.445m, more than double the cost of the optimum 
strategy. However a slight reduction in cost can be achieved by excluding the last year 
of spray, see Figure 5-5(b). Here the cost reduces to $25.369m.
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Case 2

In the second case we spray for two generations at the maximum quantity. This time 
we apply the control one year after an increase in gypsy moth populations.

One year spray a t Pmax«2 One year spray a t Pmax*2

Gypsy Moths

I

1
1

I

Figure 5-6: Plots show the population levels under control form applying control 
method in Case 2. Parameters are a = 6.0, b = 0.1, c = 0.1, d =  0.067, q — 0.4, 
k =  3.0, r =  0.001, A =  1.49, av =  0.37, =  0.1, p =  1.0, r  =  0.01 and A =  10.

Figure 5-6(a) shows the solution. We see that the control has dampened the os
cillations over the first 50 years. The next 50 years the control is used less frequently 
and the population fluctuations are small. The total cost has reduced to $21.581m. 
In Figure 5-6(b) control is only used in the first 50 years. We see that the population 
levels remain fluctuating only slightly over the next fifty years even without control. 
The cost in this scenario is decreased to $20.103m.

Case 3 and 4

In case 3 we spray for an extra year. Figure 5-7(a) shows control used for three 
generations at the maximum quantity. This time the fluctuations are reduced much 
more quickly. After 3 applications of control we see that the total cost has reduced to 
$19.119m. Further use of control decreases fluctuations but increases the total cost.
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Figure 5-7: Plots show the population levels under control form applying control 
method in Case 3 (Figure (a)) and Case 4 (Figure (b)). Parameters are a =  6.0, 
b =  0.1, c =  0.1, d = 0.067, q = 0.4, k = 3.0, r = 0.001, A = 1.49, av =  0.37, <rt = 0.1, 
p =  1.0, r  =  0.01 and A = 10.

For case 4 we apply the same strategy as case 3 except we use a different amount 
of control in the three generations. We spray only half the amount in the first and the 
last year of each 3 year spraying process. From Figure 5-7(b) we see that this slowed 
down the reduction in fluctuations compared with Figure 5-7(a). The total cost for 
case 4 is $19.255m more than the case before. Again as with case 3 further applications 
of control could be used than shown in Figure 7(b) but this results in a higher total 
cost.

Case 5

For the final scenario we again apply the control for only one generation, as in case 1. 
This time we let the maximum quantity of control be half the amount in other cases. 
Here we see that this restriction has had a big effect on the population outcome. By 
limiting the maximum amount of control we see in Figure 5-8 that the control has had 
only a slight impact on the reduction of fluctuations in comparison with case 1-4. The 
total cost has also had less of an effect as the other cases, $29.142m.
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Figure 5-8: Plot shows the population levels under control form applying control 
method in Case 5. Parameters are a = 6.0, b = 0.1, c =  0.1, d =  0.067, q — 0.4, 
k =  3.0, r = 0.001, A =  1.49, av =  0.37, at — 0.1, p =  1.0, r  =  0.01 and A =  10.

5.3 Sum m ary and D iscussion

In this chapter we have presented a bioeconomic model for the control of gypsy moth 
populations. We have also proved existence and uniqueness conditions for the optimal 
solution. A numerical method to determine the optimal solution has been discussed 
and results given.

From the numerical results several points arise. Figures 5-1 show a control being 
added to populations with cyclic behaviour. Here we see that when the control is 
economically viable, the application occurs when virus populations are at their lowest 
and hence when gypsy moth populations are in outbreak phase. Also the population 
fluctuations are heavily reduced when large inputs of control are used at these instances. 
Hence the optimal control appears to try to remove fluctuating populations in favour 
of steady population behaviour.

Figures 5-3 show the populations at constant steady state values. Here, adding 
the control appears not to destabilise the population level, yet the control does reduce 
the amount of gypsy moths. The optimal solution however is not to apply the control 
constantly over the time period. Instead a large application appears at the beginning of 
the control sequence followed by a significant reduction in the amount used shortly after, 
then a higher amount of control is used constantly over the remaining time period. The 
dip that occurs shortly after the initial input may be in order to stabilise the population 
levels. Hence from this and the effect of the optimal control in Figures 5-1 it suggests 
that it is more beneficial in terms of cost not to have fluctuating populations.

Further to this, we discover that there is a critical area for the cost of control where
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a small change in cost may have a significant effect on the total cost. This could be of 
critical use in deciding if efforts to reduce the cost of control will be worthwhile. Also, 
particularly at low costs of control, this information could be useful for organisations on 
pricing their product, in order to increase product price with negligible effect demand.

A more practical approach has also been considered. Several different control strate
gies were proposed. Some of these control strategies worked well in reducing gypsy 
moth fluctuations but none of them were as cost effective as the optimum control. We 
saw that in case 3 the fluctuations were reduced quickly however, after the control 
had finished the oscillations began to grow fairly rapidly. In case 2 it took longer for 
the fluctuations to reduce but once this had occurred they remained low. Therefore a 
combination of these two strategies could be effective.
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Chapter 6

Integrodifference m odel for 
G ypsy M oth populations

In the previous chapters, models have considered changes in population levels over 
time. Those models did not take into account the effect of space. It has been shown 
that spatially implicit models can display very different behaviour to their spatially 
explicit counterparts. For example, Turing (1952) showed how stable steady state 
behaviour from an ordinary differential equation (ODE) system can become unstable 
when diffusion is added, forming a partial differential (PDE) system, commonly known 
as reaction diffusion equations. This was later transferred to ecology by Segel Sz Jackson 
(1972), Segel Sz Levin (1976) and Levin Sz Segel (1976). These instabilities caused by 
diffusion may well result in spatial patterning forming in homogeneous environments 
(Mackas Sz Boyd 1979, Levin 1992). This has led to a growing literature on pattern 
formation by diffusive instabilities in ecology (Okubo 1980).

However, reaction diffusion systems assume Fickian diffusion, that is, a species 
moves randomly and subsequently has Gaussian distribution. Recently integrodiffer- 
ence and integrodifferential population models have been used to model species (Kot 
8z Schaffer 1986, Hardin, Takac & Webb 19886, Hardin, Takac Sz Webb 1988a, Hardin, 
Takac Sz Webb 1990, Kot 1992, Andersen 1991). Integrodifference models are now 
well used for populations with discrete non-overlapping generations and well-defined 
growth and dispersal stages (Neubert et al. 1995). These models have an advantage 
over reaction diffusion models as the assumption of Fickian diffusion is not required. 
This allows for different dispersal distributions to be used that more accurately reflect 
the true dispersal of the species.

Not only has the addition of space allowed for the investigation of patterning but 
also spread rates can be determined. The spread or invasion of a species has originally
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been modelled by reaction diffusion equations (Fisher 1937, Skellam 1951) which read
ily give rise to constant speed travelling waves (Fisher 1937). The speed of these waves, 
commonly referred to as Fishers speed, have often accurately predicted real speeds of 
invasion (Van Den Bosch, Hengeveld Sz Metz 1992). However sometimes reaction dif
fusion equations have underestimated true invasion rates. The most notorious example 
is Reid’s paradox (Skellam 1951, Clark 1998). A more recent alternative to modelling 
spread is either integrodifference or integrodifferential equations. The advantage of 
losing the constraint of Fickian diffusion allows for different constant speed travelling 
waves depending on the chosen dispersal kernel. Indeed some dispersal kernels (fat
tailed kernels) produce accelerating invasions with asymptotically infinite speeds (Kot 
et al. 1996, Lewis 1997).

In this chapter we introduce space to our discrete time gypsy moth model. We do 
this in the form of integrodifference equations as these are ideal for populations with 
discrete non-overlapping generations. We begin by introducing the integrodifference 
model and the dispersal kernels to look at spatial variation. First, a simplified ver
sion of the model is analysed to discover when an originally stable steady state can be 
destabilised by dispersal. We then compare this with the numerics for this simplified 
model with the inclusion of gypsy moth self limit. We then look numerically at how 
dispersal affects the complete model system. Section 2 concerns itself with a general 
predator-prey travelling wave system. Here we investigate the effect on the prey trav
elling wave when a predator is introduced to the system behind the wave front. We 
look at a simple model to compare how reaction diffusion and integrodifference models 
describe spatial spread. In section 3 we use the results of section 2 to investigate the 
spread rate of gypsy moths and NPV. We then consider using NPV in the form of 
Gypchek as a barrier control to reduce gypsy moth spread.

6.1 Spatial variability in gypsy m oth populations

In this section we describe the incorporation of space into the complete gypsy moth 
model system presented in Chapter 4. We first discuss appropriate dispersal kernels 
for the movement of both the gypsy moths and NPV. We then use the chosen dispersal 
kernels to form a set of integrodifference equations to describe the spatial representation 
of the model system.

Previous analysis on a predator prey system by Neubert et al. (1995) showed how 
a stable steady state in a spatially homogeneous model can be driven unstable in a 
spatial model. We use this analysis on a simplified version of the gypsy moth system 
and then compare this with numerics of the complete model system for varying dispersal
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parameters.

6.1.1 D isp ersa l and th e  Integrodifference m od el

Reaction diffusion systems inherently assume dispersal is Gaussian or Fickian. In in
tegrodifference models and similar integrodifferential models dispersal kernels can be 
chosen appropriately to approximate the dispersal distribution, thus overcoming Reid’s 
paradox. For gypsy moths, one study considered only the short range dispersal (Dwyer 
& Elkinton 1995), which accounts only for the movement by crawling or ballooning 
(wind dispersal) at the caterpillar stage of their life cycle. No distribution is assumed 
during the adult stage, as the female gypsy moth (which has an extra larval or feed
ing stage) is too heavy to fly. Therefore the study assumed the dispersal as Fickian 
diffusion. However, one of the main causes for the large spread of gypsy moths across 
Northeastern United States is due to long range dispersal. This is often caused by 
accidental human intervention which is well documented and usually is a result of the 
insects attaching themselves on items that are moved long distances. A more accurate 
description of dispersal would take into account both the short range and long range 
mechanisms. These distributions are known as leptokurtic and the Laplace distribution 
is a well known example (Neubert et al. 1995, Kot 2002)

K{x)  =  ^aexp  (—a|a;|) (6.1)

where a  is the dispersal coefficient. This distribution has exponentially bounded tails 
and gives rise to a constant speed travelling wave. We will use distribution (6.1) as the 
dispersal kernel for the gypsy moths.

There is little known about the distribution of NPV. It may be assumed that it 
diffuses randomly and therefore is appropriate for a Gaussian distribution

K { x ) = i ^ exp0 S)' (6-2)

D is a diffusion coefficient. However, gypsy moths may act as a vector for NPV and
this would cause NPV’s distribution to also be leptokurtic. In this chapter we will
consider both the Gaussian and the Laplace distribution as dispersal kernels for NPV.

Using these dispersal kernels, the spatial gypsy moth model is given by the set of
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integrodifference equations

M n + i { x )  =  J  Ki(x  -  y)f[Mn{y),Vn(y),Tn(y)]dy (6.3a)

Vn+1(x) = J  K 2( x - y ) g [ M n(y),Vn(y),Tn(y)\dy (6.3b)

Tn+i(x) = atTn(x) + pMn(x) (6.3c)

where /  and g are the growth dynamics

f[Mn,Vn, T„] =  ,  ^  exp ( t K  -  ^ r )  M„

9\Mni Vn, Tn\ = ( &vVn ^ 1 — exp -bVn
1 +  cTn

and K \ is the Laplace kernel (6.1) and K<i is either Laplace or Gaussian kernel (6.2). 
The model parameters are as given in Chapter 4.

6 .1 .2  S im p lified  in teg ro d ifferen ce  m o d e l for g y p sy  m o th s

We reduce the complete model system (6.3) by making the same simplifications as in 
Chapter 4. That is, we allow tannin to only affect the susceptibility of gypsy moth 
infection to NPV, the overwinter contamination remains constant and we set the self 
limit parameter, r, to be zero. Consequently, the simplified integrodifference model is 
given by

Mn+i(x) = J  K i ( x - y ) a { l - q ) e x p ^ ~ Y ^ ^ j M ndy,

Vn+i(x) = J  K 2{ x - y )  ( o VVn + \  

Tn+i(x) =  atTn + pMn.

1 — exp -bVn
1 +  cTn

K \ and K 2 are the dispersal kernels for gypsy moths and NPV. We consider disper
sal driven instability where the addition of diffusion can destabilise a stable spatially 
explicit steady state solution. We suppose (M *,V * ,T*) is a nontrivial steady state 
solution of the nonspatial discrete time model

Mn+1 =  h\[Mn (y) ,Vn(y), Tn (y)], 

Vn+i = h2[Mn(y),Vn(y),Tn(y)], 

Tn+i =  hs[Mn(y)) TJi(y)],

(6.4a)

(6.4b)

(6.4c)
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where

— &vV<n "h ^ 1 — exp -&Vn 
1 +  cTn M u

— <Jf7n  +  p M n .

The stability of the steady state (6.4) is determined from the Jury conditions. We find 
the Jury conditions from the characteristic polynomial of the Jacobian matrix

J  =

/  g/n
dMn
dh-2.
dMn
dh%
dMn

dh1 
dhi
dVn
0

dh\ \  
dT, ' 
dh- 
dT, 
dhz / 
dTn/

(6.5)

The corresponding characteristic polynomial of the Jacobian matrix (6.5) is,

x3 + A x 2 + B x  +  c  = 0. (6 .6)

The details of finding the characteristic polynomial (6.6) are given in Chapter 4. Thus 
the steady state is stable if the Jury conditions are satisfied

1 + A + B  + C > 0

1 + A - B  + C > 0

1 > |C1
|1 — C2\ > 1B

Now to determine the stability of a steady state solution for the integrodifference model, 
we look at the Jury conditions of the matrix K J  where

I< =
(k\{w) 0 O'

0 k2(w) 0
\  0 0 1 ,

The functions ki(w), k2 {w) are Fourier transforms of dispersal kernels K\, K 2 respec
tively. Furthermore, the characteristic polynomial for the matrix K  J  is

X 3 + AX2 + B x  + k1k2C = 0
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where

2 _  r  dhi , r  dh2 , dh3A = k i — — +  ^ 2 ^ rr  +uhuji 9*71
- - /  dhi 5/13 d/ii 3/13 \  - /  5/i2 d /13

B = k i [ - — ^r— - -— -T— ) - k 2dTn dMn dMn dTn J \d V n dTn 
dh\ dh$ dhi dh2

+ k lk 2 \ d T n dMn dMn dVni 

Likewise, if the Jury conditions hold then a steady state solution is stable if

l  + A + B  + kifaC > 0 (6.7a)

- l  + A - B  + kik2C > 0 (6.7b)

1 > \kik2C\ (6.7c)

|1 - ( h k 2C f \  > \ B - A k i k 2C\ (6.7d)

In this case, the Jury conditions (6.7) must hold for all weU. Now by using Laplace 
distributions for the dispersal kernels, the Fourier transforms of K \ and K 2 are

k\(w) = 

k2(w) =

a 2
a 2 + w2

P2
P2 +  w2

where a  and P are dispersal coefficients for gypsy moths and NPV respectively. Using 
parameter estimates from Chapter 4, which produce a spatially homogeneous stable 
steady state and by fixing a, we vary (3 to demonstrate any dispersal driven instability. 
Figure 6-1 shows the spatially explicit solution when the dispersal rate for the gypsy 
moth and NPV are similar, a  =  100 and P =  160. Here the steady state solution of 
the spatially explicit model remains stable after the addition of dispersal.
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Figure 6-1: Plots show a spatially uniform stable steady state solution. Figure (a) shows 
population levels over the spatial domain. Figure (b) shows population levels over time 
at a fixed location. Parameters are a =  6.0; c = 0.1; q = 0.35; b =  0.1; A =  1.49; av = 
0.37; at =  0.5; p =  0.5 with Laplace dispersal kernels with coefficients a = 100 and 
/? =  160. Initial conditions are M  = 34; V = 60; T = 34.

However for smaller NPV dispersal a Hopf bifurcation appears. This occurs when 
(3 is sufficiently large that inequality (6.7d) is reversed which results in oscillatory 
population dynamics. Figure 6-2(a) shows a snapshot of the spatial solution of the 
population levels in one generation and Figure 6-2(b) shows the population levels at 
one particular location over time. We see that population levels remain constant in 
space and fluctuate in time.
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Figure 6-2: Plots show a spatially uniform oscillatory solution. Figure (a) shows pop
ulation levels over the spatial domain. Figure (b) shows population levels over time 
at a fixed location. Parameters are a = 6.0; c =  0.1; q =  0.35; 6 =  0.1; A = 1.49; av = 
0.37; a t =  0.5; p =  0.5 with Laplace dispersal kernels with coefficients a = 100 and 
/3 =  1000. Initial conditions are M  =  34; V  =  60; T  = 34.

On the other hand, if we suppose NPV diffuses much faster than the gypsy moths,
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a plus-one bifurcation occurs where the uniform steady state is lost to a spatially 
structured solution. This occurs when inequality (6.7a) is reversed. Figure 6-3 shows 
the solution for a = 1 0 0  and (3 = 80. As seen in Figure 6-3(a), a problem arises 
due to the unboundness of the simplified system. At the boundary edges the gypsy 
moth population escapes regulation by the virus and grows unbounded, which in turn 
is followed by exponential tannin and NPV growth. To rectify this we allow r  /  0 
in the numerics. This bounds the solution and the spatial patterning of the plus-one 
bifurcation is then observed.

Figure 6-3: Plots show a stable spatial pattern fixed in time. Figure (a) shows un
bounded growth at the edges of the domain when r =  0. Figure (b) shows the spatial 
pattern when r =  0.001. Parameters are a =  6.0; c = 0.1; <7 = 0.35; b = 0.1; A = 
1.49; crv =  0.37; at = 0.5; p =  0.5 with Laplace dispersal kernels with coefficients 
a = 100 and (3 = 80. Initial conditions are M  = 34; V = 60; T  = 34.

Hence dispersal driven instability can occur in the simplified model. Furthermore 
stability can be lost in two ways either by a plus-one bifurcation, when the model 
includes a self limit for gypsy moth growth, or by a Hopf bifurcation. Significantly 
a Hopf bifurcation produces cyclic population levels which are concurrent with field 
observations. Therefore, parameter sets which produced stable steady state behaviour 
in the spatially implicit model may produce cyclic population levels in the spatially 
explicit model.

6.1.3 Full integrodifference m odel for gypsy  m oths

We now look at dispersal instabilities for the complete model system. From numerical 
simulations we find that the same dispersal driven instability is observed. For a spatially 
implicit stable nontrivial steady state, we find that the addition of space results in 
either stable constant population levels, periodic population cycles or spatial patterning
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depending on the virus dispersal rate.
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Figure 6-4: Plots show a spatially uniform stable steady state solution for the complete 
model. Figure (a) shows population levels over the spatial domain. Figure (b) shows 
population levels over time at a fixed location. Parameters are a = 6.0; r  = 0.0001; c = 
0.1; d = 0.0067; q = 0.4; k = 20; b =  0.1; A = 1.49; av =  0.37; at =  0.4; p = 0.6 with 
Laplace dispersal kernels with coefficients a = 100 and (3 = 1 0 0 . Initial conditions are 
M  = 30; V = 60; T = 34.

In Figure 6-4 we see the stability of the spatially explicit nontrivial steady state 
remains, when the dispersal rates of gypsy moths and NPV are similar.

100 120 
Time (years)

Figure 6-5: Plots show a spatially uniform oscillatory solution for the complete model. 
Figure (a) shows population levels over the spatial domain. Figure (b) shows population 
levels over time at a fixed location. Parameters are a = 6.0; r  =  0.0001; c =  0.1; d = 
0.0067; g = 0.4; k =  20;b = 0.1; A =  1.49;av = 0.37; crt = 0.4;p = 0.6 with Laplace 
dispersal kernels with coefficients a = 100 and /? =  1000. Initial conditions are M  = 
13.6; V = 15.5; T = 9.0.

We see in Figure 6-5, for slower dispersing NPV relative to gypsy moth dispersal,
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periodic population cycles exist.
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Figure 6 -6 : Plots show a stable spatial pattern fixed in time for the complete model. 
Figure (a) shows population levels over the spatial domain. Figure (b) shows population 
levels over time at a fixed location. Parameters are a = 6 .0 ; r =  0.0001; c =  0.1; d = 
0.0067; q = 0.4;/c =  20; 6  = 0.1; A =  1.49; cv =  0.37; at =  0.4; p = 0 . 6  with Laplace 
dispersal kernels with coefficients a =  100 and f3 =  50. Initial conditions are M  = 
34; V = 60; T = 34.

For faster dispersing NPV relative to gypsy moth dispersal, this results in spatial 
patterning of the population levels as seen in the simplified model and shown in Figure 
6-4. Therefore, the complete model has the same qualitative behaviour as the simplified 
model. In summary for a  «  (3 a spatial uniform constant population level exists. Yet, 
as indicated in the simplified model, a decrease in /? causes a Hopf bifurcation which 
generates fluctuating populations. Conversely an increase in /3 destabilises the spatially 
stable steady state solution giving rise to spatial patterning.

Furthermore the observed behaviours are also seen for the Gaussian distribution 
for NPV dispersal. Figures 6-7-6-9 demonstrate the same dispersal driven instabilities 
as the Laplace distribution for NPV.
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Figure 6-7: Plots show a spatially uniform stable steady state solution for the complete 
model. Figure (a) shows population levels over the spatial domain. Figure (b) shows 
population levels over time at a fixed location. Parameters are a =  6.0; r =  0.0001; c = 
0.1; d = 0.0067; q = 0.4; k = 20; 6 =  0.1; A = 1.49; crv =  0.37; at =  0.4; p =  0.6 with 
Laplace dispersal kernel for gypsy moths and Gaussian distribution for NPV with 
coefficients a =  100 and D = 0.01. Initial conditions are M  =  18.2; V = 16.6; T = 3.3.

Tim* (yean)

Figure 6 -8 : Plots show a spatially uniform oscillatory solution for the complete model. 
Figure (a) shows population levels over the spatial domain. Figure (b) shows population 
levels over time at a fixed location. Parameters are a = 6.0; r  = 0.0001; c =  0.1; d = 
0.0067; q = 0.4; k =  20; 6 = 0.1; A = 1.49; av =  0.37; = 0.4; p =  0.6 with Laplace
dispersal kernel for gypsy moths and Gaussian distribution for NPV with coefficients 
a = 100 and D = 0.00075. Initial conditions are M  = 18.2; V = 16.6; T  = 3.3.
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Figure 6-9: Plots show a stable spatial pattern fixed in time for the complete model. 
Figure (a) shows population levels over the spatial domain. Figure (b) shows population 
levels over time at a fixed location. Parameters are a = 6.0; r = 0.0001; c =  0.1; d = 
0.0067;q =  0.4; k =  20; 6  =  0.1; A = 1.49; tr,, = 0.37; at =  0.4;p =  0 . 6  with Laplace 
dispersal kernel for gypsy moths and Gaussian distribution for NPV with coefficients 
a = 1 0 0  and D = 1.0. Initial conditions are M  =  18.2; V  =  16.6; T =  3.3.

Therefore, dispersal driven instabilities are present in the gypsy moth model and 
low dispersal of NPV may be an explanation for the observed population cycles seen 
in the field.

6.2 Travelling waves in predator-prey m odels

In this section we explore the invasion of both predators and prey, in the form of 
travelling waves, into a virgin environment. We consider the travelling wave to be a 
hetroclinic connection between a nontrivial (nonzero) stable steady state solution and 
a trivial (zero) steady state solution that advances in time and does not change shape 
as it moves. We aim to calculate the speed of the advancing wave front.

In particular, we look at two different systems, one a reaction diffusion model and 
the other an integrodifference model. For each of these model systems we consider a 
prey species advancing in a virgin environment. We then introduce a predator species 
to the system at a specific location behind the advancing prey wave front. Then, if the 
prey species invades faster (or at the same rate) than the predator species, by which we 
mean that the prey diffusion rate is greater than (or equal to) the predator diffusion, 
then the predator will invade the prey yet never catch the prey wave front. Therefore 
it can be shown that the prey will continue to invade the virgin environment at the 
same speed as when the predator is not present.

However if we allow the predator species to invade faster than the prey species,
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this presents an interesting scenario. As the predator is diffusing faster, it will catch 
the prey wave front in finite time. The question arises, what happens to the speed of 
the invasion of both the prey and the predators? We first look at a simple system of 
reaction diffusion equations studied by Conway (1984). We then compare the reaction 
diffusion system to a similar system (Neubert et al. 1995) of integrodifference equations.

6 .2 .1  A  p red a to r -p rey  rea c tio n -d iffu s io n  m o d e l

We investigate a reaction diffusion model to ascertain what happens to a prey species 
travelling wave speed when a faster diffusing predator species catches the prey wave 
front. We use a standard reaction diffusion predator prey model

d N  , /7vr ^  d2N
dt ~  ^  1 dx2
dP  , , d2P
-  = g(N, P) + D2 -g~ 2

where N , P  represent the prey and predator population densities respectively, D \ , Z}2 
represent dispersal coefficients, t represents time and x  the space variable. Functions /  
and g describe the growth dynamics of the prey and predator species. For the purpose 
of numerically demonstrating the impact when predators catch the wave front of the 
prey species, we look at the system with logistic prey growth rate, mass action predation 
and density independent mortality of predation,

f ( N , P )  = r N  ( l  — j ^ \  — /3NP, 

g(N, P) =  ( 3 N P - y P .

where r is the intrinsic growth rate of prey, K  is the earring capacity of the prey, (3 
is the transmission (or predation) rate and 7 is predator mortality rate. First, if the 
predator population cannot catch the wave front of the prey the travelling waves will 
continue separately at the same speed. Figure 6-10 demonstrates the travelling waves 
and their wave speed when the predator population is introduced behind the advancing 
wave front of the prey. In this case the predator and prey travelling waves have the 
same speed (Figures 6-10 (b) & (c)).

112



jn3
Q .O

CL

Prey.

2

1

oo 10 20 30 40 50 60 70 80 90 100

2.5 

2

1.5 

1

0.5

0

(a)

(b)

Position

-PrafelQH

a a a a a a a a a a a a a a a a a a a a

V V V v . V v v V v V V V V .  V V V v . V
10 20 30 40 50

Position

60 70 80

I

( C )

90 100

Predator

Figure 6-10: Plots show travelling waves and wave front location when an invading 
predator cannot catch an advancing prey wave front in a reaction diffusion model. 
Figure (a) shows the travelling wave at 5 year intervals. Figure (b) shows the prey 
wave front location over time. Figures (c) shows the predator wave front location over 
time. Parameters are r  =  1;K = 4; 7 =  0.5;/? =  0.25; and diffusion rates D\ = 
0 .001; D2 =  0 .002 .

The spread of the prey wave can be calculated by 2\ frD  where r is the intrinsic 
growth, r  =  /'(0) and D is the diffusibility, of the prey. This is commonly known as 
Fishers speed (Fisher 1937). For our example the prey travelling wave speed, c, is given
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by

c =  2\JrD \ 

= 0.0632.

(6.8)

For the predator wave, its speed can be calculated by 2\J{fiK  — 7) £>2- This speed is 
calculated in Dunbar (1983) although an approximation for the system also gives the 
same speed, derived in Murray (2003). Again, for our example, the predator travelling 
wave speed is given by

c =  2 y / ( P K - y ) D 2 (6.9)

=  0.0632.

These speeds are the same, so as the predator is introduced behind the prey wave front, 
it is unable to catch the advancing prey wave front.

Next we introduce the predator with a greater diffusion rate (D2 = 0.25). Figure 
6-11 shows the behaviour as the predator wave catches the prey front.
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Figure 6-11: Plots show travelling waves and wave front location when an invading 
predator catches an advancing prey wave front in a reaction diffusion model. Figure 
(a) shows the travelling wave at 5 year intervals. Figure (b) shows the prey wave 
front location over time. Figures (c) shows the predator wave front location over time. 
Parameters are r =  1; K  =  4; 7 =  0.5; (3 =  0.25; and diffusion rates D\ = 0.001; D2 = 
0.25.

Initially the predator forms a travelling wave that invades the prey population with 
a wave speed c = 1.412 as calculated in (6.9). The prey initially travels with wave speed 
c = 0.0632 as before (6.8). Yet when the predators catch up with the prey wave front 
the predators wave speed reduces and both waves continue to travel at the preys wave
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speed. This is proved in Owen & Lewis (2001). Therefore the waves travel together 
with wave speed c = 0.0632, demonstrated in Figure 6-11.

We also note that a transient period occurs when the predators first catch the wave 
front of the prey. Here we see a slight reduction in the prey wave speed as the predator 
wave slows, Figure 6-12.
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Figure 6-12: Plot shows the transient behaviour when a predator population catches 
a prey wave front. Parameters are r = 1; K  = 4; 7 =  0.5; /? =  0.25; D\ =  0.001; Di = 
0.25.

After a short while the prey returns to its original wave speed where it contin
ues to spread, along with the predator. We conclude that when the predator wave 
front catches the prey front only a slight decrease in wave speed momentarily occurs, 
otherwise the preys wave speed is unaffected.

6.2.2 A predator-prey Integrodifference m odel

We now investigate a similar situation for an integrodifference model system. We form 
a general integrodifference model, as described in section 1

Nt+1(x) = I  K 1( x - y ) f ( N

PH i(x)  =  J  K 2( x - y ) g

where Nt, Pt represent the prey and predator population densities respectively at gener
ation £, K\  and K 2 represents the dispersal kernels and x the space variable. Functions 
/  and g describe the growth dynamics of the prey and predator species respectively.
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For the purpose of numerics we use the following functions for /  and g

f ( N t,Pt) =  Nt exp [r (1 — JVt — P*)], 

g(Nt,Pt) = m P t  + lPt-

where r is the intrisic growth rate of the prey, (3 is the transmission (or predation) rate 
and 7 is the survival rate of the predator. In order to compare the similar reaction 
diffusion and integrodifference models we use Gaussian diffusion for both dispersal 
kernels K \ and K 2 .

We again introduce a predator species at a location behind the prey wave front. 
First we let the predators diffusion rate be slower than the prey. We calculate the 
prey wave speed by c =  minse5 [J In (i?oM(s))] where Rq =  f ' ( 0) and M(s)  is the 
moment generating function of the dispersal kernel, M(s) = f  K(x)esxdx , for some 
neighbourhood of s about zero (Weinberger 1978). S  is the set of all s > 0 for which 
the moment generating function converges. For the Gaussian distribution the moment 
generating function is given by M(s) = exp (Ds2). We calculate the prey travelling 
wave speed

mm
seS

= mm 
seS

=  mm
seS

-  In ( RqM(s ) )

-  In (Rq exp (Ds2)) 
s

Ds + In (Rq)

D J l n m  , In (fib)
D

= 2y/D\n(Ro)

ln(flo)
D

The speed for D =  5x10 6 and r = 0.9 is then

c =  0.0042. (6 .10)

Figure 6-13 shows the behaviour of the travelling waves and their speeds for both the 
prey and the predator.
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Figure 6-13: Plots show travelling waves and wave speeds when an invading predator 
cannot catch an advancing prey wave front in an integrodifference model. Figure (a) 
shows the travelling wave at 40 year intervals. Figure (b) shows the prey wave speed 
over time. Figures (c) shows the predator wave speed over time. Parameters are 
r = 0.9; c =  1.0; 7 =  0.8; and dispersal coefficients D\ =  5xl0-6 ; D2 =  5xl0-6 .

The figure is plotted on a grid size of 214. We see that the travelling wave of the 
prey does indeed travel with speed 0.0042, as calculated from (6.10). The predator 
wave travels at a calculated speed of 0.0034.

Next we introduce the predator with a greater diffusion rate. Figure 6-14 shows the
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behaviour as the predator wave catches the prey.
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Figure 6-14: Plots show travelling waves and wave speeds when an invading predator 
can catch an advancing prey wave front in an integrodifference model. Figure (a) 
shows the travelling wave at 40 year intervals. Figure (b) shows the prey wave speed 
over time. Figures (c) shows the predator wave speed over time. Parameters are 
r =  0.9; c =  1.0; 7 =  0.8; and dispersal coefficients D\ — 5xl0-6 ; D2 =  5xl0-3 .

Here it is seen that after the predator catches the prey wave front the prey waves 
speed reduces. However unlike the reaction diffusion system the prey wave does not 
return to its original speed. Instead the speed increases slightly and then remains
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constant at a lower speed than before. Hence the introduction of the predator, with 
faster diffusion than the prey, has unexpectedly caused the preys wave speed to reduce.

Prey wave speed

(a)

Figure 6-15: Plots show the changes in prey wave speed. Figure (a) shows the change 
in wave speed over time for 7  =  0.8 and various dispersal rates. Figure (b) shows 
the change in wave speed over virus survival rates and D2 =  1.0. Parameters are 
r =  0.9; c =  1.0; 7  =  0.8; and dispersal coefficient D\ =  5xl0-6 .

Figure 6-15(a) shows the wave speeds for a variety of diffusion rates for the predator. 
The figure shows that the more diffusive the predator becomes, the greater reduction 
occurs in the wave speed of the prey. Further to this, the survival rate of the predator, 
7 , also affects the wave speed. Figure 6-15(b) shows the wave speed against the survival 
rate, 7 . For large 7  there is a greater reduction in wave speed. As 7  decreases the prey 
wave speed returns to a speed close to the original speed.

The same result occurs for other distribution kernels. Figure 6-16 shows the reduc
tion in wave speed for Laplace distributions for the predator and the prey as well as a 
Gaussian distribution for the predator and Laplace distribution for the prey.
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Figure 6-16: Plots show the change in wave speed for Laplace dispersal kernel for 
prey and Laplace dispersal kernel for predator (Figure (a)) and for Gaussian dispersal 
kernel for predator (Figure (b)). Parameters are r =  0.9; c =  1.0; 7  =  0.8; and dispersal 
coefficient D\ =  5xl0-6 .

Therefore the travelling wave speed of the prey can be slowed when a predator dis
perses faster and catches the prey wave front. Surprisingly there is a distinct difference 
in results in constant speed travelling waves for predator prey systems between reaction 
diffusion and integrodifference models.

6.3 Slow ing th e spread o f  G ypsy m oths

Gypsy moths are continuing to expand across the United States. Since their intro
duction in Massachusetts in the late 1860’s gypsy moths have spread as far west as 
Wisconsin (1997) and as far south as the North Carolina - Virginia border. The spread 
has been relatively slow largely because the female gypsy moth is unable to fly. Lieb- 
hold, Halverson & Elmes (1992) estimated that the population should expand at 1.25 
miles per year, however from 1960 to 1990, the population expanded at a rate of 13 
miles per year. This increase in spread is most likely due to the accidental dispersion 
resulting from human activity. Consequently the USDA have acted by introducing the 
Slow The Spread (STS) project to reduce the expansion. The STS project began in 
1999 and is based on mating disruption at the wave front.

In this section we begin by examining travelling waves and invasion rates of gypsy 
moths. We use the result from section 6.2, that a predator may reduce a prey’s wave 
speed in an integrodifference model. We look at how fast dispersing NPV can slow 
the spread rate of gypsy moths. Based on this we propose an alternative method of 
slowing the spread by considering using NPV as a barrier. We first consider gypsy
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moths invading an area where NPV levels are kept at a constant level to form a barrier 
in front of the advancing wave. This is achieved by applying Gypchek annually to 
maintain the NPV barrier. We investigate the reduction in wave speed of gypsy moths. 
Afterwards, we contemplate a more practical approach of spraying only the gypsy moth 
wave front each year. We look at how much and how far in front of the wave needs to 
be sprayed in order to reduce the invasion.

6.3.1 Travelling wave speeds and invasion rates for th e  gyp sy  m oth  
m odel

The previous section showed that a predator population can slow a prey’s wave speed 
in an integrodifference model if the predator disperses quicker than the prey. We now 
observe how much a travelling wave for gypsy moths is slowed by NPV. We let gypsy 
moths disperse via a Laplace distribution and NPV by either a Laplace or Gaussian 
distribution. From parameter estimates in Chapter 4 we show the reduction in gypsy 
moth wave speed as NPV dispersal increases. Figure 6-17(a) shows the travelling wave 
of gypsy moths and NPV over time using Laplace distributions. Figure 6-17(b) shows 
the reduction in wave speed for various NPV dispersal rates.

Time (years)

Figure 6-17: Plots show travelling wave solutions and wave speeds for Laplace dispersal 
kernels. Figure (a) shows the travelling wave for gypsy moth, NPV and tannin levels 
at 20 year intervals, (3 =  500. Figure (b) shows the reduction in wave speed for various 
NPV dispersal rates. Parameters are a =  6.0; r =  0.0001; c =  0.1; d =  0.0067; q =  
0.4; A: = 20; b =  0.1; A =  1.49; av =  0.37; =  0.5; p =  0.6 with dispersal coefficient
a  =  1000.

In Figure 6-18 the Laplace distribution for NPV dispersal is replaced with the 
Gaussian distribution.
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Figure 6-18: Plots show travelling wave solutions and wave speeds for Laplace dispersal 
kernel for gypsy moth and Gaussian dispersal kernel for NPV. Figure (a) shows the 
travelling wave for gypsy moth, NPV and tannin levels at 20 year intervals, D = 
0.001. Figure (b) shows the reduction in wave speed for various NPV dispersal rates. 
Parameters are a =  6.0; r =  0.0001; c =  0.1; d — 0.0067; q =  0.4; k — 20; b =  0.1; A =  
1.49; av =  0.37; (Tt = 0.5; p =  0.6 with dispersal coefficient a =  1000.

We see, in both cases, that faster dispersing NPV causes a greater reduction in 
gypsy moth wave speed. In section 2, the amount of reduction in the wave speed of 
the prey depends not only on the dispersal of the predator but also its survival rate. 
In the case of gypsy moths the reduction in wave speed is seen to be less significant 
due to the low survival rate of NPV. However if this survival rate could be increased 
it would produce a greater reduction in the wave speed.

Travelling waves assume a constant stable coexisting population after the invasion, 
yet field data show cyclic behaviour of population levels. In this respect we consider 
an invasion where the population levels fluctuate. Figure 6-19 shows the behaviour of 
the invasion of gypsy moths and NPV. The dispersal rate of NPV is varied and plotted 
against wave speed in Figure 6-19.
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Figure 6-19: Plots show invasion and invasion rates for Laplace dispersal kernels. Figure
(a) shows the travelling wave for gypsy moth, NPV and tannin levels, f3 = 500. Figure
(b) shows the reduction in wave speed for various NPV dispersal rates. Parameters 
are a = 6.0; r =  0.0001; c = 0.1; d =  0.0067; q = 0.4; k =  20; b = 0.1; A = 1.49; av = 
0.37; <Jt =  0.4; p = 0.3 with dispersal coefficient a = 1000.

We see that a similar small reduction of wave speed is found for fast dispersing 
NPV. Therefore fast dispersing NPV alone can have little effect on reducing gypsy 
moth wave speed.

6.3.2 Slow ing the spread of G ypsy m oths by N P V  barrier

Gypsy moths are well established in the United States and it is unlikely that their 
expansion can be completely stopped or reversed. For this reason the USDA have 
established a new strategy called Slow the Spread in an effort to control the gypsy 
moth population.

The critical component of the Slow the Spread program is the use of mating dis
ruption. Mating disruption is a noninsecticidal treatment specific to the gypsy moth, 
which involves using controlled-release dispensers that emit animal pheromones. These 
pheromones hamper the ability of the males to find females to mate with, thus resulting 
in the females laying unfertilised eggs.

We propose an alternative method using Gypchek as a barrier to decrease the gypsy 
moth invasion rate. Initially we spray an uninvaded area and maintain this at a specific 
level, Q, of NPV to ascertain the affect when gypsy moths invade this area. Figure 
6-20 shows how a large quantity of control, which is maintained causes the gypsy moth 
wave front to stop when reaching the sprayed area. Similarly in Figure 6-21 a smaller 
quantity of control is maintained and this results in the slowing down of the wave when 
it enters the controlled area.



Figure 6-20: Plot shows the stopped wave from NPV barrier, Q = 25. Parameters 
are a = 6.0; r = 0.0001; c =  0.1; d =  0.0067; g = 0.4; A; =  20; 6 =  0.1; A = 1.49; a* = 
0.37; at =  0.4; p = 0.6 with dispersal coefficients a =  400 and [3 = 300.
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Figure 6-21: Plot shows the reduction in wave speed from NPV barrier, Q = 5. Pa
rameters are a = 6.0; r =  0.0001; c = 0.1; d =  0.0067; q — 0.4; A: =  20; 6 = 0.1; A = 
1.49; av — 0.37; at = 0.4; p = 0.6 with dispersal coefficients a = 400 and (3 = 300.

Figure 6-22 shows the reduction in wave speed against the quantity of the control. 
Here the wave speed reduces quickly as the amount of control is increased. Although 
we do not see the reversal of the advancing front we see that it can be stopped for 
sufficiently large control levels. From this figure a relatively small increase in the



amount of control can have a large effect on reducing wave speed. However, it should be 
noted that a large amount of spray is initially required to cause any significant reduction 
in wave speed. Thus, it may not be practical to use such large quantities of control 
over such a wide area due to high costs or opposition by landowners. Consequently in 
the next section we look at specifically using the control only at the wave front.

5  30

A m ount o t con tro l

Figure 6-22: Plot shows the reduction in wave speed against the quantity of control. 
Parameters are a = 6.0; r  =  0.0001; c =  0.1; d =  0.0067; <7 =  0.4; k =  20; 6 =  0.1; A = 
1.49; ov = 0.37; ot =  0.4; p = 0.6 with dispersal coefficients a = 400 and /3 = 300.

6.3.3 W ave front spraying

We have seen that to cause any reduction in wave speed a large application of spray is 
needed. For large areas (as in the previous subsection) this can be impractical. However 
it may not be necessary to spray such large areas to significantly reduce wave speed. 
Here we look instead at only spraying just in front the wave front. By allowing the 
wave front to initially advance unhindered we then target the wave front by spraying 
the area just in front of the wave. We spray an interval from the gypsy moth wave 
front to a set distance ahead of the wave. Figure 6-23 shows how the wave speed differs 
for different lengths of intervals.
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Figure 6-23: Plot shows the change in wave speed for various lengths of interval of 
spraying Gypchek, for Q =  30. Parameters are a = 6 .0 ; r =  0.0001; c =  0.1; d  =  

0.0067; q =  0.4; fc = 20; b =  0.1; A =  1.49\av =  0.37; crt =  0.4; p =  0.6 with dispersal 
coefficients a =  400 and (3 =  300. s is the distance of the sprayed interval.

As the interval length increases the wave speed is reduced but as the interval in
creases further the reduction in the wave speed then becomes insignificant. Figure 6-24 
illustrates this by plotting the length of the interval against wave speed.
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Figure 6-24: Plot shows wave speed against lengths of interval of spraying Gypchek, 
for Q =  30. Parameters are a =  6.0; r = 0.0001; c = 0.1; d =  0.0067; q = 0.4; k =  
20; 6 =  0 .1 ; A =  1.49; av = 0.37; <r* =  0.4; p = 0.6 with dispersal coefficients a = 400 
and f) =  300.

We see that an increase in the length of the interval has more of an effect when the
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interval is originally small. As the interval gets larger there is a sudden drop in wave 
speed. Thereafter any further increases in the interval length have a negligible effect 
on the wave speed. Nevertheless a change in the quantity of spray per unit area will 
also cause a change in the speed. Figure 6-25 shows the reduction in wave speed for 
different quantities of spray for a set interval length.

5I

Quantity

Figure 6-25: Plot shows wave speed against quantity of spray applied over an interval 
length of 80 units. Parameters are a =  6.0; r = 0.0001; c =  0.1; d = 0.0067; q = 0.4; k = 
20; 6 =  0.1; A =  1.49; ov — 0.37; a* =  0.4; p =  0.6 with dispersal coefficients a =  400 
and (3 = 300.

Therefore for the greatest effect of using Gypchek as a barrier method, the best 
application is to spray the interval from the wave front upto a distance 80 units in 
front of the wave (from Figure 6-24) with a quantity of 110 units of spray (from Figure 
6-25). This will then cause the advancing wave front to considerably reduce to a fraction 
of the original wave speed. However this may not be practical and a shorter distance in 
front of the wave and a reduced level of application may be required. In this case the 
gypsy moths will continue to advance but at a reduced rate. This rate will depend on 
the exact amount of spray used and the distance from the wave front the application 
is applied.

6.4 Sum m ary and d iscussion

Integrodifference models combine discrete population dynamics over a continuous spa
tial domain. This makes them ideally suited to spatially model gypsy moth populations. 
It is well documented that the dispersal of gypsy moths consists of short range disper
sal, by crawling and ballooning of larvae, and long range dispersal by accidental human
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movement. Accordingly their distribution is leptokurtic as this better accounts for the 
long range dispersal than the Gaussian distribution due to the distributions fatter tails. 
Using integrodifference equations has an advantage over conventional reaction diffusion 
models as different distributions can be chosen to more appropriately describe a species 
dispersal.

We began the chapter by introducing dispersal kernels for gypsy moths and NPV, 
to investigate spatially driven instabilities. We considered a spatially implicit steady 
state solution and found that this could be driven unstable in two ways. In a simplified 
version of the model, analysis was conducted which showed that two bifurcations may 
occur as dispersal coefficients were varied. We found that when dispersal of NPV was 
high, relative to gypsy moth dispersal, a plus-one bifurcation occurred giving rise to 
a spatially structured solution. Here gypsy moth population levels settled to remain 
constant over time but oscillatory over space. When dispersal of NPV is low relative to 
gypsy moth dispersal, a Hopf bifurcation occurred. This resulted in populations that 
were constant in space but cyclic in time. This is more realistic to observations in the 
field and therefore, slower dispersing virus may be a cause of the cyclic populations. 
The same behaviour was also observed in the complete model system.

Spatial patterning and dispersal driven instabilities are not the only matters to 
be considered from the inclusion of space. Spatial models are also used to predict or 
estimate speeds of invasion. In section 2 we studied a general predator-prey invasion and 
compared two different modelling techniques: reaction diffusion and integrodifference 
equations. We discovered that although a faster diffusing predator cannot slow the 
wave speed of the prey in a reaction diffusion model, it can in an integrodifference 
model. The reduction caused to the wave speed is dependent on the survival rate of 
the predator and its diffusion rate. Thus reductions in wave speed in integrodifference 
equations may not necessarily be caused by Allee effects as believed in reaction diffusion 
models. This is an important result as it demonstrates that different results can be 
obtained for different modelling techniques describing the same population systems.

In section 3 we used this finding to show how the gypsy moth wave speed may be 
reduced by fast diffusing NPV. Little is known about the dispersal of NPV, thus in 
this section we assumed that NPV was fast diffusing and investigated its affect on the 
spread rate of the gypsy moths. However we found that although the gypsy moth wave 
speed is reduced to some extent this reduction is only significant if NPV dispersal is 
exceptionally large. For smaller NPV dispersal the reduction in wave speed is very 
small. This is mainly due to the fairly low survival rate of NPV. As the majority of 
NPV is unable to survive outside the gypsy moth invaded area, the quantity is too small 
to significantly affect the gypsy moth wave speed. But if NPV survival rate could in
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some way be increased, the wave speed could be considerably reduced as demonstrated 
in section 2.

In spite of the fact that fast dispersing NPV only causes small reductions in wave 
speed of gypsy moths, it could still be effective as a barrier in front of the advancing 
wave. The reduction in gypsy moth wave speed is only small due to the low survival 
rate of NPV. This can be overcome by adding and maintaining NPV in the form 
of Gypchek ahead of the gypsy moth advancing front. We therefore considered using 
Gypchek as a barrier in order to reduce gypsy moth wave speed. We began by spraying 
an entire area ahead of the gypsy moth wave front, maintaining the quantity of NPV 
each year. From this we saw that the gypsy moths wave speed reduced or even stopped 
when reaching the NPV barrier, although spraying large quantities of Gypchek in vast 
areas is unlikely to be realistic. We then explored a more practical method of only 
spraying a set distance in front of the wave. We found that, for large quantities of 
spray, only relatively small distances ahead of the wave needed to be sprayed to have a 
significant impact on the advancing wave front. Indeed the reduction can be substantial 
and can almost stop the wave from advancing. Small quantities and distances sprayed 
would still reduce the wave, but to a lesser extent. Therefore, a combination of mating 
disturbance and application of Gypchek as a barrier could further reduce the current 
invasion rate of gypsy moths.
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Chapter 7

Spatial Optimal Control for the  
G ypsy M oth M odel

Spatial optimal control techniques have been developed for continuous time partial 
differential equations (PDE’s) by Lions (1971). Furthermore, the techniques for finding 
an optimal control solution have been extended to ecology by Lenhart & Bhat (1992) 
and Bhat et al. (1993). Management of pest populations can be an expensive process 
and bioeconomic models help provide information on cost effective control strategies. 
Lenhart & Bhat (1992) demonstrated this with a bioeconomic model for controlling 
beaver populations in New York. Yet optimal control for cost using bioeconomic models 
has not received significant attention in spatial ecological modelling.

Optimal control for hybrid systems such as integrodifference equations has not been 
developed. At present, there is no published research in this field, however work in this 
area by Joshi et al. (in press) is resolving this issue. They consider a one species system 
and we extend this technique to the spatial gypsy moth model system. This work is 
the first to examine optimal control in a discrete time integrodifference predator prey 
model.

In this chapter, we adapt the spatial integrodifference gypsy moth model presented 
in Chapter 6 to incorporate a control term. This control is the addition of NPV to 
the system in the form of the biocontrol agent Gypchek. As in Chapter 5 we seek 
an optimal control strategy that minimises the cost in a bioeconomic model. This 
bioeconomic model consists of the cost of damage caused by gypsy moths and the cost 
of control by Gypchek over the spatial domain.

We first show the set up of the bioeconomic model. We then prove the existence 
and uniqueness of the optimal control solution. Numerical simulations are given of 
optimal control strategies for different costs for the application of control.
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7.1 M athem atical Analysis

We form a bioeconomic model, similar to that in Chapter 5, with the aim of optimising a 
total cost function (objective function) subject to constraints over a fixed time period. 
The objective function consists of the cost of biocontrol plus the cost of damage to 
society caused by gypsy moths. Therefore the objective function is given as

J (p)
N f  

=  §/« AnMn{x) +  ^ pl{x ) dx (7.1)

where An is the cost of damage per gypsy moth, Bn is the cost parameter for the 
control and x is the spatial variable in a bounded domain f ic M 2. pn(x) is the amount 
of spray of the biocontrol agent Gypchek used at location x for each generation. The 
objective function is subject to the constraints of the gypsy moth integrodifference 
model equations with control,

Mn+i(x) =

l(*E) —

[  K l (X - V)  5 k + ( l - q ) V n(y)J ^ x  V) 1 + dTn{y) k  + Vn{y)

exp ( —rM n(y) -
bVn(y)

Mn(y)dy
1 +  cTn(y) 

j  K 2(X -  y) L v n(y) + A ( l  -  exp

Mn(y)]dy+ /  K$(x -  y)pn(y)dy 
Jn

Tn+i{x) =  pMn(x) 4- GtTn{x)

(7.2a)

(7.2b)

(7.2c)

with the initial conditions

M0(x) =  Mint(x), (7.3a)

Vo(x) =  Vint(x), (7.3b)

T0 (:r) =  Tint(x). (7.3c)

where x is position and n is the generation. The states Mn(x), Vn(x),Tn(x), dispersal 
kernels Ki(x),  K 2 (x) and parameters are given in Chapter 6. When Gypchek is sprayed 
there is a narrow distribution given by kernel K^(x).

The set of controls is bounded at each spatial location xeQ by

u  = {0 < pn{x) < P m a x \ n  =  0, 1, .JV -  1} (7.4)

where Pmox is a maximum application at each spatial location for each generation.
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Our goal is to find a control sequence p* in the bounded set (7.4) such that

J(p*) = minJ(p). (7.5)
ptU

7 .1 .1  O p tim a l C o n tro l E x is te n c e

We begin, using a minimising sequence argument (Liang 1999), by verifying that there 
exists a solution to the optimal control problem (7.1-7.4). We prove this existence by 
following a similar method given by Joshi et al. (in press). Firstly, Lemma 7.1.1 shows 
that the states axe bounded over a finite interval. This is followed by Theorem 7.1.1 
which uses Lemma 7.1.1 to establish that an optimal control exists.

Lem m a 7.1.1. For all n  =  0,1,2...AT states Mn(x), Vn(x), Tn(x) are bounded at each 
xeQ,.

Proof. The state equations are invariant (i.e. given initial conditions Mo, Vo, To (7.3) 
are non-negative then Mn, Vn, Tn are non-negative for all n), so therefore the states 
are bounded below by zero. So it remains to show the states are bounded above. Let, 
for each xeQ,

*  1 + dTo k +^ o V° 6XP ( ~ rM ° -  T T k )  M° ^

Cl > <7„Vo +  A f 1 —exp ( r ^ r ) ) M»+P0 (7.6b)

C f  > pMa + a,TQ (7.6c)

Then substituting (7.6) into (7.2) we have

Mi(x) < C f /  h ( x  
Jn

- y ) d y (7.7a)

Vi(x) < e x  u/  k2{x-- y ) d y +  /  k3{x -  y)p0(y)dy (7.7b)
In Jn

Ti(x) < c l (7.7c)

Now as the kernels are redistributing kernels they have the property,



then from (7.7) and (7.4)

Mi(x) <  C "

^i(x) <  c Y + p ^ - ^ c Y 

Ti(x) <  C?

Therefore Mi(x),  Vi(rr), T\(x) are bounded above for each xeQ,. Now as M\(x ), V\(x), 
T\(x) are bounded then similarly there exist constants C ^ , and C j  such that

M2(:e) < f  k i ( x - y ) d y ,
Jo

V2(x) < C \  /  k2( x - y ) d y  + /  h { x  -  y)pi(y)dy,
»/fl

T2(x) <  C2r .

Therefore we obtain the bounds

M 2 ( x ) < ^2 5

V2(x) < A>V , p  —  s~iV 
^ 2 i * m a x  •— '-'2

T2(x ) < c l

Accordingly M2, V̂ , T2 are bounded for all xe£l. Subsequently it follows iteratively 
that Mn, Vn, Tn for bounded for all n =  0 ,1...N. □

T heorem  7.1.1. An optimal control p*eU exists such that the objective function J(p) 
is minimised.

Proof. Let {pk }k =i be a minimising sequence for the objective functional J  and 
{ M Kn = i, { V K} f =l and {TK} x =l be the corresponding state sequences. As the 
sequences are bounded (Lemma 7.1.1) in L?{Q) then by Banach-Alaoglu theorem 
(Evans 1990) there exists a subsequence where

k . *
Pn Pn

M k M *iVJ-n XYJ-n
y k  y*
r n r n
rpk _  ̂ rp*
J-n -Ln

with weak convergence in L2(Q). It is required to show that the states M*, V* and 
T* correspond to the control p*. Due to the fixed initial conditions (7.3) we have from
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(7.2)

M,(x) = k + ( l - q ) V 0(y)
dT0(y) fc +  Yofo)

exp ( - r M 0(y) -  M0{y)dy

v i ( x ) =  f n k2(x ~ y ) ° vV* M  +  X ( 1 ~ exp( t t S ) )

/  h ( x  -  y)pk0(y)dy 
Jn

dy

+

Ti(x) =  pM0(x) + atTQ(x)

Here M\  and T\ remain fixed however V* is sequence dependent. By a further two 
iterations we see that M3 , V* and T3 are all sequence dependent. Then as p\  converges 
weakly as k -> oo this forces M*, Vj and to converge pointwise. Hence M* = 
M(p*), V* = V{p*) and T* = T(p*). Further to this

min
peU

inJ(p) =  \ ^ J ^ ^ ( ^ A nM* + ^ { p * ) 2^ d x

*  /n|>  (.Ss,M")dx+£  f  (“  i ^ 2)dx
^  j n ' E { AnMn + ^ ( p ' n f Sj d x

As the range of values for the control is a closed interval of the reals then p*eU. 
Consequently an optimal control exists p* with corresponding states M*, V* and T*.

□

7 .1 .2  O p tim a lity  sy s te m

In the previous section we proved the existence of an optimal control for minimising the 
objective functional (7.1) subject to the constraints (7.2). In order to find the optimal 
control we need to find the sensitivity and adjoint functions. The use of sensitivity 
and adjoint functions is a standard tool in optimal control theory of partial differential 
equations (Lions 1971, Li & Yong 1995). This model has similar features from a control 
viewpoint due to the continuous space variables. We will use the sensitivity and adjoint 
functions in a similar way as Joshi et al. (in press) to derive our control characterisation.

To characterise the optimal control we must differentiate the objective functional
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at the minimising control

dp £->0+ \  £ J

where I is a directional vector and e is small. However, to do this we must first be able 
to differentiate the states with respect to the control and show that these derivatives 
exist. The derivatives with respect to the control are the sensitivity functions.

P roposition  7.1.1. Let peU. Then the mappings

p —Y M  = M(p), p —YV = V(p), p —Y T  = T(p)

are differentiable in the following sense

Mn{p + el,x) -  Mn(p,x) k „i.m
rn \x )

Vn(p + el,x) -  Vn(p,x) % rn W
Tn(p + el,x) — Tn(p, x) i})T (x)

weakly in L2{£l) as e —Y 0+ , for 0 < e «  1 such that (p +  el)eU.

Proof. Consider the control maps

p +  el —Y AI (p +  el), p +  el —Y V(p el), p +  el —Y T{jp +  el)

p —Y Miff) p —Y V(p) p —Y T(p)

D efin ition  7.1.1. For simplicity we define

M £ := M(p  +  el), V £ :=V{p + el), T £ := T(p +  el).

M  := M(p), V  := V(p), T  := T(p).
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Then since

K + i
k + ( l - q )V * ( y )

W  =  L ^ X - v )T + k ( y ) t  k + V ‘ (y)

exp ( - r M '( y )  -  Mn(v)dV

V*+M  =  Jn h ( x - y ) [ ^ ( y )  + A ( l - e x p ( r ^ » ) )

Mn(x)]dy + J  k3(x - y ) \ p n(y) + eln(y)\ dy 

Tn+ i W  = pM£n{x) 4- crtT £{x)

(7.8a)

(7.8b)

(7.8c)

Subtracting (7.2) from (7.8)

K +1 ( x ) - M n+i(x) =  h ( x - y )  
Jn

a k + ( l - q )V * ( y )
1 + dT*(y) k + V*{y)

exp( - rM»w - r r l ) ) M"w
a k + ( l - q ) V n(y)

1 +  dTn(y) A: +  V^(y)

exp f —rMn(y) -  ^  Mn(y)
1 +  cTn(y)

V n + i ( x ) - V n + i ( x )  = f  k2{x -y)[crvV £(y)
Jq

dy (7.9a)

+A ^1 -  exp ( 1 ) ) M*(x) -  <JvVn(y)

—X I 1 — exp

1 +  d * (y ) 
- bVn(y)

Mn{y) dy1 +  cTn(y)

+  f  h ( x - y )  \pn(y) +  eZ„(2/) -  Pn(y)] dy (7.9b)
Jn

T n + i ( x ) -  T n + i { x )  =  p M £(x)  +  <rtT ^ (z) -  p M n (x)  -  o t T n {x)  (7.9c)

Substituting the initial conditions (7.3) into (7.9) we find,

M[(x) -  Mi(x) = 0

\V {(x) -V i (x) \  = 0 +  [  f a ( x - y ) e \ l n(y)\dy
Jn

<  e C Y

T{ (x) — T\ (x) =  0

(7.10a)

(7.10b)

(7.10c)
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From these bounds we have the existence of the sensitivities and the following bounds

ip™ = 0

i^ n  < c y

^ I  = o

and the first set of sensitivities exist and are bounded. For the second set of sensitivities

a k + { l -q ) V { { y )
:{ x ) - M 2{x) = /  k i { x - y )

Jn 1 + dT[(y) k + V{{y)

exp ( - rM f(y )  -  « ? (» )

a k + ( l - q )V i{ y )
1 +  dT\(y) k + Vi(y)

exp ( —rMi(y) -  ^ M\(y) dy

M[(x) -  avVi(y)

l  +  cTi(y)

V£( x ) - V 2(x ) =  [  k2( x - y ) [ a vV{ { y)
Jo.

-bV{{y)  
l  +  c3Y(y) 

- b V M

(7.11a)

+A ^1 — exp 

— A ^1 — exp ^ Mi(y)
. 1 +  cTi (y)

+  /  k3(x -  y)eh{y)dy 
Jn

T%{x ) - T 2(x ) =  pMl{x) + atT [ ( x ) - p M 1( x ) - a tT1{x) 

From (7.10a) and (7.10c) we find that (7.11a) can be rewritten

dy

(7.11b)

(7.11c)

Mr (x ) - M 2(x ) = /  k i { x - y )
Jn

a k + { l -q ) V { { y )
[ l  +  dT\(y) k 4- V*(y) 

exp ( -rM i(y )  -  Afi(y)
l  + cTi(y))  

a k + ( l - q ) V j ( y )
1 + dT^y) k + Vi(y)

exp (~rM i(y)  -  . ) M\{y) dy (7.12)
1 +  cTi(y)

Dividing through by e (> 0) and adding and subtracting a term into (7.12) then this
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becomes,

A/|(x) -  M2{x)

k + V{(y) 
k + (  1 -

fc +  V?(y) P l  lW  l  +  cT!(y)J

j;1 ~  exp ( —rMi(y) -  r - ^ U
k + V{(y) V ! +  cTi(y)/

fc +  ( l -  
k: +  ^i(y) V 1 +  cTife);

dy

Furthermore as e —> 0,

&  =  lim f M K * ) - M 2(* n  
e-*0+ \  £ J

= [ h ( x  v ) (  &  b k + ( i - q)V l \
Jn " l l H W  1 +  cT! k + Vl J

exp {~rMi ~ irk)  ^
|^,M| < CM f  ki(x-y)'4)Y(y)dy  

Jn
< c f .

Therefore tp^1 exists and is bounded. Similarly for (7.11b) and (7.11c) we obtain the 
existence and boundedness of xpY and ip 2 '

*  -

+ /  k$(x — y)ln(y)dy 
Jet

\^Y\ < Cv  [  k2(x -  y)ipY{y)dy + Cp 
Jn

< C \

i g  =  Urn
£->0 V £

= 0
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Continuing iteratively it follows that

\ ^ \ < c ."
\i>l\ < c l

\ € \ < C l

Hence the sensitivities exist and are bounded.

P ro p o sitio n  7.1.2. The sensitivities ip satisfy the following system

*l>n+1 =  [  h { x - y )  
Jn

fc +  (1 — exp ( - rMn -  hV»

(1 — rMn)ipn (y) +

r ^ - M „ e x p ( - r M n - I

1 +  dTn k -\-Vn ^ V 1 1 +  cTn
qk________ b k + ( l - q ) V n \

(k +  Vn)2 1 + cTn k + Vn J
bVn

1pn(y)
cbVn

+
+  cTn
ad \  k + (1 — q)Vn

(l + cTn)2 l + dTn 1 -f dTj k + Vn

Mn exp ( - r M n -

+

bVn
1 +  cTn dy

^n+l =  f n k2(X ~ V) A (X ~ eXP (  l  )  )  ^ n ( y )

ff“+ i r k exp( i T S : ) ) M" ^ )
dy

XcbVn f  —bVn \ j,Mn exp ( ■■ , J tp*(y)
(l +  cTn)2*'*" ~"x' VI +  cTn

+  /  k3{x -  y)ln(y)dy 
Jn

^n+l =

□

(7.13a)

(7.13b)

(7.13c)

Proof. The proof follows ideas from the proof of Proposition 7.1.1. □
T heorem  7.1.2. Suppose there exists a set of optimum controls p* with corresponding 
solutions M*,V*,T* that minimises the objective function J{p) over the control set Up. 
Then there exists adjoint variables qM,qv ,qT such that the adjoint variables satisfy the 
system

Qn-i(x ) =  (1 ~  rMn) ., , ajrT1 k + ,f1 T/ ^ n exp ( - r M n -  Wr1 4* dTn k +  Vn 1 +  cTn

Ja h ( x  -  y)q“ (y)dy +  A ( l  -  exp ( j ^ f r )  )
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/Jn
k2 (x- y)q^(y )dy  + pqfl (x) +  An (7.14a)

<n
v  f  ̂ / Qk & £ +  ( 1 - ? ) ^  at i W  =----77m7-72-7-r^-----TTTT?---- 1 ■ j r r 'M n(k +  Vn)2 1 +  cTn fc +  Fn ;  1 +  dTn

exp ^—rMn -  1 ^ r  ̂ f n kl (x ~ y ^ n ( y ) d y

+ ("•+i f l t exp(n S :) )  i k2{x~v)ql[[v)dy (714b)
r  / \ _  (  cbVn a ad \  k + C1 ~  wf

9„-lW  \ ( l  + drn)2 l + dTn l + dTnJ k + V„

exp (~rM„  -  x )  J  k i ( x -  y)q^f(y)dy

- ( iT & exp ( i r i ) M- i  Ux ~v)q]*fo)d!/
+<7tgJ’(x) (7.14c)

with the transversality conditions

qff = 0 (7.15a)

gJJ =  0 (7.15b)

?£ =  0 (7.15c)

Furthermore the optimal control is given by

A  =  max (o,m in (7.16)

Proof. We start by taking the directional derivative of the objective function. Then 
for e > 0 and directional vector I,

0 <
dp

lim
£ - > 0+

lim -
£-►0+ £

J(p* + e l ) - J (p * )

— lim -
£ - * • 0+  £

p [ ( A nMn - ^ ( p * n)2 )dx

N .

s/« An lim
£-40+

M l - M n

(7.17)
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where

+  —  lim (  ̂ 2 ^ —
2 £->.0+ \  £

N r
S 2  /  \An^n +  BnVnln\ dx 
ZTnJSl

dx

n=0

p£{x) =  p(x) +  el(x)

M e(x) =  M(p(x) +  el(x))

V e(x) = V(p(x) +  el(x))

T £(x) =  T(p(x) 4- d(x))

(7.18)

and from Proposition 7.1.1

M £(x) — M(x)

Note also from Proposition 7.1.1

V £(x) - V ( x )  
£

T £(x) -  T(x)

-> ipv  (x) 

-> ipT (x)

To solve the optimal control we need to replace ip„ in (7.18) with parameters from 
the original problem. To do this we need to find the adjoint equations. The adjoint 
equations can be found as demonstrated from the following sensitivity equations. Prom 
Proposition 7.1.2 we have the system of sensitivities (7.11a)

^n+i =  [  h { x - y )
Jn

ipn+i = / fo(x-y) 
Jn

*Pn+l = Pi>n+°t^l

dF M dF v  dF T 
~dMn n +  dVn +  'VFn 

"
dM, -i>n + dVn dTn

dy

dy

(7.19a)

(7.19b)

(7.19c)

where

F = a k +  (1 -  q)Vn{y)
1 + dTn{y) k + Vn{y)

exp f - r M n{y) -  W , ) Mn{y)

G =  avVn(y) +  A 1 -  exp

1 +  cTn(y)
-bVn{y)

1 + cTn{y) Mn(y)
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Then we let

5  =  /  E  k '  « r  « ? )
J n  n= 0

- N- 1

/»£(n= 0

f ^ 5 + 1  -  f a  fci ( x  -  y) 
n̂+1 -  /n fc2(® -  y)

dF „i.M , 3F j tV
dMn
dG

dF 
dTn

M i dG ni,V , dG ,/,r'

. k m  i _i_ o£_ . i - rVn  T  a y  Wn T  dT  ipndVr
.*J)M 4-  $G-ibv 4 -  dMn Vn  ^  dVn Vn T dTn^r

M
’)

V

V>n+ 1 

K^n+l!

'I’n+l ~ P^n ~  °t$n

d y \

d y d x

r f a k i ( x - y ) f" dF J jM  i dF j V  , dF j T ]  
dMn Vn ^  dVn Vn  ^  QTn Vn  _ dy^

£  < £ ) f n  k 2 ( x  — y ) ‘ dG  , dG ^ V  , dG 
dMn Vn  T  dVn Vn  T  dTnVn d y

\ P'&rf + )

E  /  U>n  ’/’n  1 % )
n = l  V '

d x

K -r \
9 n -l da;

N

- E
n = l

\ t f - J
' I n  I n  k l ( x  -  y k n  [ M i ^ n  +  +  B E T ^ n ] d y d x  >

+  / n  I n  k 2 ( x  -  v)qX [ m - n ^  +  +  ^ r ^ n ]  d y d x

+  I n  Qn [p'fin +  ] d x  J

Note the initial conditions for the sensitivities ipQ \j%^ are all zero (as M q =
Mq etc). Therefore we exclude that term from the second sum. Then we force the 
terminal conditions for the adjoint variables (q^  qj^j to be zero (7.15) and
include this term in the second sum. We also renumber the indices of the first sum in 
order to match that of the second. Hence

S  == E [  (v-f € )
7 1 = 1

f a l l '
? n - l

\ 9 n - l ,

d x

N

- E
7 1 = 1

I n  +  m ' t ’n +  f a  k ^ x  ~  v ) l n d x d y  \

+  f a  +  m t ^ ]  f a k ^ x  -  y ) l n d x d y

+  f a  I n  [f»Pn +  <Xf<Pn] d x  j
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Then by changing the order of integration,

=  J 2  [  fa n  ^n  ^ n )
n = l  ^  J

(aM ' Qn-1

Qn-1  I d x

\ Q n - 1,

, dFl lV  , dF_ / T  
)Afn Vn -r QVn Vn  T  9T n Vn

I

[ P ^  +  <?t1pn ]

dM,
dG

dM,
dG-jjM  , aG , ac

V n  T  Wn T  QTn Vn

' Jnki { x - y ) q n d x \
f n k2(x -y )q% dx

Qn

dy

By a change of variable

H  (^n/ -^  71 = 1

M ^n ^ n ) 9 n - l

V ^n-l/
M L ^ M  , OF_^v , 5£.,/.r
dMn Vn -r dVn Vn +  dTn Vn
l dG_ , M  , aG IV , aG / T 
dMn Vn  +  dVn Vn  •+■ a r n Vn

[plpn +  °tlpn] 

r N  ( Q n - 1

E i ' P n  * ? )  & .!
J n n = 1 \  „T

( In ki ( x - s ) q n d x '  
Jn k2(x -  s)q%dx I ds

\ T
Qn

~ { i > n  V>n)

/  dF  
dMn 
dF  
dVn

Q n -1 , 
dG

dMn  
dG 
dVn 

dF dG  
\  dTn dTn

( In ki(x -  s )qndx 
fn k2(x — s)q%dx I ds

\ T
Qn

Therefore the adjoint system is 

dFnM -  Qn-1 ~

Qn-1 =

T
Qn-1 =

dM i 
dF  
dVr 
dF

-  J  ki(y -  x)q™dy + J  k2{y -  x)q%<dy +  pq% (7.20a)
7  r q q  r
~  J n  k l ^V  ~  X ^ d y  +  W  J n k2^y ~  x ^ dy (7.20b)
H f t /  \ M  j  T T

n Jn ~  +  & ^ Qn +
(7.20c)

We can replace (7.19a) with (7.20b) in (7.18) as,

N  N —l

YJ,[Anil)M] = ] T  \qV (  k3(x -  y)ln{y)dy
n=l n A  L ■'n

(7.21)
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Hence from (7.18)

0 < 9 ( J ( P •))
d p  
N

= [  Y '[AnipM(x) +  Bnpl(x)ln(x)]dx
n=0

= j n A ° ^  W  +  X j [ A ^ n  (®)]

N - 1

+  ^ 2  lBnPn(x )ln(x)\ +  BNp*N(x)lN(x)dx 
n=0

f  N N - 1

=  /  X I +  X I I^nK M W z)] ch
n = l  n=0

= /  X^ kn /  M ® -p )k (p )d2/ +  5 nP!Ua0W a0 an rr; L an
da:

Then by a further change of order of integration we have

d ( J ( p* ) )0 < dp

= y 2  W s) /  fo(x -  s)<lndxds+ /  Bnp*n(s)ln(s)ds
Lan an an

=  X I /  “  *)?n 0*0^ +  5 nP£M
i=o L>/n J

dx

So for a minimum to occur

Pn =  S

Therefore

0 if 0 < J ^ k 3(x — s)q^(x)dx
_ fa *»(*-££(*)<!* if - B nPmax< f n k3( x - s ) q X ( x ) d x <  0

P  if f n k3(x -  s)qX{x)dx < - B n P m a x

*  =  max (o.min

and we get the system as originally stated (7.14)-(7.1.2). □
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7.1 .3  U n iq u en ess o f  th e  O ptim al C ontrol

T heorem  7.1.3. The optimal control is unique if B n are sufficiently large for n=0,l...N.

Proof. We prove a uniqueness result by showing the objective functional J(p) is strictly 
convex (Rockafellar 1970). We begin by defining the function

g(e) =  J ( ( l - e ) p  +  d)  
=  J(p +  e ( l - p ) ) (7.22)

For convexity we need to show that the second derivative of (7.22) is strictly positive

9 (e) > 0  (7.23)

The first derivative of (7.22) gives

ate)  = lim ^ J(j>+ ^  +  ~ P^  ~ J (P + £(l ~P))
9  {  '  T - + o

n=0
. f  \Pn “1” (T d" e)(ln P n)] (x) [Pn ^(Jn P n )] \  ,

t  ( - - - - - - - - - - - - - - - - - ; - - - - - - - - - - - - - - - - - ) dx
N F

Y ]  /  An1pn'e +  Bn(ln -  Pn)[Pn +  e(ln -  Pn)]dx (7.24)
n=0

We now define

M, e ,

n + l

aY*?, := limn + l r —>0 \ r
I T,t + e / \ i T,s

W l  ( * ) " < & ( * )
'n + l

T —>0

(7.25a)

(7.25b)

(7.25c)

Then by a similar result to Proposition 7.1.2 we have

*l>n+i(x ) =  f  h ( x - y )Jn

^n+i(x) =  [  k2{ x - y )
J n

^ + l W  =  Pi>n'£ + °t1pi

dF m  £ dF Ve dF i b ' A ib ’ A-------
d M ^ n d V ^ n dT£

T,e

dG dG
dMi  

T,e

V,£ dG \T,e
d V £v v n dTi

dy (7.26a)

dy (7.26b) 

(7.26c)
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where

F = a k + ( l - q ) V*( y )  
l  + dT‘ {y) k + V*(y)

-bVj ly )
G = cr„V„£(y) +  A I 1 -  exp

1 + cT*(y) m y )

Then (7.26) combined with (7.25) yields

M,e
n + l

£ fl(* )

/  k i ( x - y )  
Jn

/  h ( x - y )  
Jn

/  k i ( x - y )  
Jn

/  k2(x — y) 
Jn

/  k2( x -  
Jn

/  k2(x — y) 
Jn

- ^ - ° n ’£(y) +  - ^ - o ( i > n ’£(y))2 dM l  n KU) dM*2
dF y  £ . . d2 F  / / Y e t  \ \

° n  (y)  + -^ 772  W > n (y))dV*‘d V n
dF T p /  \ d2F  , , T e /  \ \ 2

- j y p i° n  {V) +  (</))

— ”M’£(y) + ^ J L ( ^ ' e(v)?

y )

d M f n ' d M g
dG Y e /  \ d2G . / Y e /  \ \ 2  

-Qyl°n (v) +  w p t t n  (»))

+ ^ ^ ( V ’n '(y ))2

dy

dy

dy

dy

dy

dy

(7.27a)

._M ,£ i _ _T,£p a n + c r t crn

(7.27b)

(7.27c)

Now the initial sensitivities are all zero, ipQ1'8 = 0, ipQ,e =  0 and i$ '£ =  0. Then using 
(7.26) we calculate the next sensitivities. Next

M,e __
=  0

*I>1,£ =  / f a ( x  -  y ) ( l o  -  P o )d y
Jn

t f ’£ =  0

Continuing this process iteratively we find the following expression

\lf>n+l\ < i t , C¥  f  k*(X ~  y^ ln ~  Pn^dy
j =o

n p

l ^ n + l l  ^  /  k ^ X ~  V^ ln ~  P n ^d y
j=o Jn

\ lpn+l\ [  k ^ X ~  y ^ ln ~  Pn ) d yTFr, Jn
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Also note that a ^ ’£ = 0, =  0 and <r̂ ’e =  0. Using the result for / i , / 2eL2 (see
Appendix B2)

f h ( x ) f 2 ( x ) d x > - ^ -  [ (/i2W  + /|W)^ (7-28)
Jn * Jn

we can compute the successive values from (7.27)

Wn + l  \ f k̂(X ~  V W n - j  ~  P n - j f d y ,
j = o  J n

w  ̂ r

n+ll < X ) CJ  /  k*(X -  VWn-3 ~  P n - j f d y ,
j = 0 ^

n „

^  c j 1 /  k $ ( x  y ) ( / n - i  -  P n - j f d y .

i^r-

k S i l  <
J=0

So

n p U p

^ 2  /  l^i+iM?/ ^  ^ 2 Cm (ln - j - P n - j f d y  (7.29a)
i=o ^  i=o ^

n p n p

^ 2  /  k i i i M s /  >  ^ 2 ° v  ( i n - j -  P n - j f d y  (7.29b)
i=0 j=0 ^

n p n p

Y 1  /  K h - i I ^  ^  Y 1 C t  ( I n - j  -  P n - j f d y  (7.29c)
S S  ^  'm ) Jn

We can now take the second derivative of the function g. Hence differentiating (7.24) 
and using the bound (7.29a)

N p /  i M ,e+r j M,e \

9  (£ ) =  ^ 2  I  A n  ^     )  +  B n ( ln ~ P n )
n=0 J n  T_> V T /

j. f  [Pn +  (g  +  7~)(^n ~  P n)] ~  [Pn +  e(*w ~  P n)] \
T  —^0

= ^>2 [  An(Jn'e +  # n(/n “  P n f  dx
n=0

*  7
> ^  (Bn -  C)(ln -  P n f  d x

n=0
> 0

So for sufficiently large Bn’s the function is convex. Hence the optimal control is 
unique. □
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7.2 Numerical results

We now demonstrate three cases where the optimal control problem is applied. These 
three cases are when population levels are at a spatially uniform stable steady state, 
spatially uniform but periodic in time or a spatially patterned stable population. We 
use an iterative method to find the optimal solution, which involves solving state and 
adjoint equations using Fast Fourier Transforms (FFT’s) for the convolution integrals 
on a spatial domain of size 211. Also dispersal kernels are chosen to be Laplace distri
butions for gypsy moths and NPV dispersal with a narrow Gaussian distribution for 
the control.

We first find a suitable set of initial conditions by solving the spatial state equations 
over 1,000 generations without control. These initial conditions are then used with 
arbitrary values of pn(x) to solve the state equations giving estimates for Mn(x), Vn(x), 
Tn(x) for n = 1...N. Using these estimates together with the transversality conditions, 
the adjoint equations are solved. From the adjoint variables, new control values pn(x) 
are calculated which are compared with the original control values. If the difference 
between control values do not agree to the specified tolerance (0.0001) at each spatial 
location xeQ, and in each generation, then the new pn(x) values are used with the initial 
conditions to find new estimates for Mn(x), Vn(x), Tn(x) for n =  1...JV. Subsequently, 
the adjoint variables are found and in turn control values pn(r). Comparisons are again 
made between the latest control values and the previous pn(x) values. The process 
continues iteratively until the tolerance is met. This process was further described in 
Chapter 5 and similarly in Hackbusch (1978). We now look at the optimal solutions 
applied to the three cases.

7 .2 .1  C a se  i: S p a tia lly  U n ifo rm  S te a d y  S ta te

We consider a spatially uniform steady state solution to the integrodifference model 
and add a control term to the equation describing NPV population levels. Due to 
difficulties in convergence of the optimal system, we replace the linear term for the 
production of tannin by the bounded function pMn(x )/( l + rM n(x)). We then look at 
the optimal control strategy over a 15 year period at a particular cost of damage, An, 
and cost of control, Bn. Figure 7-1 demonstrates the behaviour.
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Figure 7-1: Plots show the population levels for the optimal solution when A =  10 and 
B =  2 over 15 generations (gypsy moth - blue line, NPV - green line, tannin - aqua line, 
control - red line). Parameters are a =  6.0, r  =  0.0001, c = 0.1, d  =  0.067, q =  0.4, k =  
3, b =  0.1, A =  1.49, av =  0.37, <71 =  0.1, p =  0.01, r =  1.2 with dispersal coefficients 
a  =  100, & =  100 and D =  10"6.

We see that the optimal solution is to apply the control periodically. Due to the 
periodic application of the control, the population levels begin to fluctuate in time. 
After the first application of control in years 3 and 4, further control is used when 
virus levels diminish in years 8  and 9 and again in years 13 and 14. This causes the 
virus levels to continue to fluctuate resulting in oscillatory gypsy moth populations. 
As no spatial variation occurs, we look at how the populations change over time at one 
location point for various costs of control, B.

150



Gypsy Moth

C ntr -

I
I

(c)

\ /  Tannin

Gypsy Moth

1
i

o 10 15 20 25

(d)

12 £
1

Gypsy Moth

o 5 15 20 25

(e)

1
I

Control

(f)

!

i

Figure 7-2: Plots show population levels over time with A = 10. Figure(a) cost of 
control, B=50, Figure(b) B=10, Figure(c) B=2, Figure(d) B =l, Figure(e) B=0.5, Fig
ure^) B=0.01. Parameters are a = 6.0, r = 0.0001, c =  0.1, d =  0.067, q — 0.4, Ar =
3,6 =  0.1, A = 1.49, av =  0.37, o* = 0.1, p =  0.01, r  =  1.2 with dispersal coefficients 
a  =  100, /? =  100 and D =  10“6.

Figure 7-2 shows the population levels at a particular location in the middle of 
the spacial domain over 25 generations. In Figures 7-2(a)&(b), the cost of control is 
high and therefore little control is used. Thus we see that the population levels begin 
to fluctuate, but this is very small. In Figures 7-2(c)&;(d), the cost of control has
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decreased, resulting in more control being used in the optimal solution. This causes 
fluctuations in the population levels to appear. However, the fluctuating population of 
gypsy moths always remain lower than the original population level (with no control). 
Finally, Figures 7-2(e)&;(f) show the control reaching maximum levels. We see that 
the control remains periodic flipping between the maximum amount of control in some 
years and no control in other years. Here, gypsy moth populations are further reduced 
but the fluctuations still remain.

We also look at how the total cost of the optimal strategy changes as the cost of 
the control is varied. Figure 7-3 plots the cost of control, B, against the total cost.

6

4.5

4 L
-3 -2 •1 2 30

Cost of control (k>g10)
1

Figure 7-3: Plot shows the total cost against the cost of the control, Bn. Parameters 
are A = 10, a =  6.0, r =  0.0001, c =  0.1, d — 0.067, q =  0.4, k =  3,6 =  0.1, A = 
1.49, av =  0.37, at = 0.1, p =  0.01, r  =  1.2 with dispersal coefficients a = 100, (3 =  100 
and D = 10-6 .

As in Chapter 5, we see a critical range where a small change in the cost of control, 
B, causes a large reduction in the total cost. Therefore, a slight reduction in the cost 
of control in the range [0.1,10], will be economically beneficial. Moreover, management 
strategists may see substantial savings in the total cost of the optimal solution by 
investing in initiatives to reduce the cost of control.

7 .2 .2  C a se  ii: O sc illa to ry  P o p u la tio n s

Using the bounded function pMn(x)/( 1 +  TMn(x)) for the production rate of tannin, 
we look at an optimal control strategy for a spatially uniform oscillatory population. 
Figure 7-4 shows the population levels for an optimal control strategy when the cost 
of control B=0.5.
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Figure 7-4: Plots show the population levels for the optimal solution when A — 10 and 
B =  2 over 15 generations (gypsy moth - blue line, NPV - green line, tannin - , control 
- red line). Parameters are a = 6.0, r =  0.0001, c =  0.1, d = 0.067, q =  0.4, k = 3, 6 = 
0.1, A = 1.49, av =  0.37, crt =  0.1, p = 0.01, r  =  1.2 with dispersal coefficients a  = 100, 
/? =  1200 and D = 10“6.

As in the case of the stable steady state, we see that the control is added periodically. 
We again look at one of the locations in the centre of the spatial domain and consider 
what happens to the population levels over time as cost of control varies.
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Figure 7-5: Plots show population levels over time with A =  10. Figure(a) cost of 
control, B=100, Figure(b) B=10, Figure(c) B=2, Figure(d) B =l, Figure(e) B=0.5, 
Figure(f) B=0.01. Parameters are a = 6.0, r = 0.0001, c = 0.1, d =  0.067, q = 0.4, k =
3,6 = 0.1, A =  1.49, av =  0.37, at = 0.1, p = 0.01, r  =  1.2 with dispersal coefficients 
a  =  100, (3 = 1200 and D =  10-6.

In Figures 7-5(a)&(b), the cost of the control is high, thus little control is used and 
the populations remain oscillatory, although a slight reduction in the fluctuations has 
occurred in Figure 7-5(b). From Figures 7-5(c)&(d), the reduction in cost of control 
has caused an increase in the use of control in the optimum strategy. We see that the
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control is applied periodically in time. This has caused the populations to fluctuate 
more frequently in time but with less amplitude. The height at which gypsy moth 
populations reach is considerably less than seen in Figures 7-5(a)&(b). Further, we see 
in Figures 7-5(e)&(f), the use of control is increased. The application of control still 
remains periodic in time, varying from no control to the maximum use of control. The 
gypsy moth populations have reduced further, now with maximum levels only reaching 
as high as minimum levels when no control is applied. Also, we see that there has been 
no further increase in the number of fluctuations yet the amplitude of the fluctuation 
has grown with minimum levels significantly lower than seen in Figures 7-5(c)&(d).

Plotting the total cost against cost of control, the behaviour is similar to the steady 
state optimal control. We see a critical region (B = 0.1 —10) where small reductions in 
the cost of control have a considerable effect on the total cost for the optimal solution. 
We point out that there is a difference in the total cost of the oscillatory optimal control 
compared with the steady state optimal control, which is slightly lower. This difference 
in total cost occurs over the whole range of B.

Cost of oontrol (k>g10)

Figure 7-6: Plot shows the total cost against the cost of the control, Bn. Parameters 
are A = 10, a = 6.0,r =  0.0001,c =  0.1,d =  0.067,q =  0.4,A; =  3,b = 0.1,A = 
1.49, ov =  0.37, at = 0.1, p =  0.01, t  =  1.2 with dispersal coefficients a  =  100, (3 = 1200 
and D =  1(T6.

7 .2 .3  C a se  iii: S ta b le  sp a tia l p a tte r n in g

We now consider an optimal control strategy for a spatially periodic environment. In 
this case, we use the function pMn(x) as the production rate of tannin as we find that 
there is no issue with convergence. Figures 7-7 & 7-8 show the behaviour of gypsy 
moth populations and the amount of control applied when the costs of control are low
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and high (B=0.5, B=2).
In Figure 7-7(a), we see that for high cost of control, gypsy moth populations are 

reduced and begin to fluctuate over time. However, the spatial pattern remains the 
same, although the amplitude of the oscillation has decreased. We see from Figure 7- 
7(b) that the control is applied periodically in time. Also, levels of control marginally 
vary in time with troughs in synchrony, with the troughs of the gypsy moth population.

3
l

Figure 7-7: Plots show the optimal control applied to gypsy moth populations which 
are spatially patterned. Figure (a) shows the population of gypsy moths over time and 
space. Figure (b) shows the level of control applied over time and space. Parameters 
are A =  10, B  =  2.0, a =  6.0, r = 0.0001, c =  0.1, d =  0.067, q = 0.4, A: =  3,6 = 
0.1, A = 1.49, <JV =  0.37, ut =  0.5, p =  0.6 with dispersal coefficients a  =  100, f3 = 30 
and D =  1(T6.

In Figure 7-8, we see similar reductions in gypsy moth populations for low cost 
of control. The gypsy moth population again begins to fluctuate in time with the 
spatial patterning remaining the same. Although for low cost of control, gypsy moth 
populations reduce further than in Figure 7-8(a). Similarly, control is periodic but now 
varies between no control to maximum levels. However, we observe that during this 
first application of control, an extra year of control occurs only if a trough in gypsy 
moth population is present. Therefore, the application of control is also periodic in 
space in that year. Interestingly, the control is applied at the troughs in gypsy moth 
populations rather than its peaks. This maybe due to the low gypsy moth population 
causing tannin levels to be lower thus making the gypsy moth more susceptible to virus 
infection.
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Figure 7-8: Plots show the optimal control applied to gypsy moth populations which 
are spatially patterned. Figure (a) shows the population of gypsy moths over time and 
space. Figure (b) shows the level of control applied over time and space. Parameters 
are A =  10, B  =  0.5, a — 6.0, r = 0.0001, c =  0.1, d — 0.067, q =  0.4, & = 3,6 = 
0.1, A =  1.49, av =  0.37, crt =  0.5, p =  0.6 with dispersal coefficients a  =  100, /5 = 30 
and D =  10"6.

We again plot the total cost against cost of control. We see a slight increase in the 
critical region of cost of control to the interval [0.01,10] and also a rise in the value of 
the total cost. This is likely to be due to the change in function for the production rate 
of tannin.

I|
15

U 5 --3 -2 0
Cost of control (tofllO)

2 3

Figure 7-9: Plot shows the total cost against the cost of the control, Bn. Parameters are 
A =  10, a = 6.0, r =  0.0001, c =  0.1, d — 0.067, q =  0.4, k = 3, b = 0.1, A = 1.49, av — 
0.37, <rt =  0.5, p = 0.6 with dispersal coefficients a  =  100, =  30 and D =  10-6 .
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7.3 Summary and Discussion

In this chapter, we have solved an optimal control problem for a system of integrodif- 
ference equations. A bioeconomic model is formed with the objective to minimise costs 
in pest control of gypsy moths over a spatial domain. Currently, only optimal control 
for a single species exists for integrodifference models and this chapter has extended 
this theory to multiple species integrodifference model. We have shown the character
isation of an optimal control by finding the adjoint system. We have proved that an 
optimal control exists and that it is unique under the condition that the cost of control 
is sufficiently large.

Numerical simulations were presented to demonstrate optimal solutions for the three 
cases; stable spatially uniform steady states, spatially uniform but oscillatory in time 
and spatially patterned constant in time populations. For the spatially uniform stable 
steady state and the spatially uniform oscillatory populations, control was found to be 
added periodically in the optimal strategies. This caused fluctuations for the steady 
state case and a change in frequency and amplitude in fluctuations in the oscillatory 
case. As the cost of control became cheaper, this caused the populations to reduce. 
Also, the total cost of the optimal strategy reduced as the cost of control decreased. 
Furthermore, we found a range of the cost of control where a small reduction signifi
cantly decreases the total cost. However, outside this range the cost of control caused 
a negligible decrease when reduced.

Optimal control was also applied to a patchy gypsy moth population where popula
tions were oscillatory in space and constant in time. It was found that the population 
levels reduced but remained periodic, however the amplitude of the oscillations did de
crease. The control was added periodically, thus causing the populations to fluctuate 
in time. More interestingly, we found that for the cost of control B  =  0.5, the first 
application of control occurred for 2 years in locations where gypsy moth populations 
were high and 3 years where gypsy moth populations were low. Therefore, an extra 
year of Gypchek was required to be applied periodically over the spatial domain in low 
gypsy moth population areas. This could be due to the higher probability of infection 
in these gypsy moth populations because of lower tannin levels.

158



Chapter 8

Conclusions and Future work

This thesis has presented a mathematical model to describe the tritrophic interactions 
of gypsy moths, NPV and tannin. There is strong evidence that tannin plays a crit
ical role in the interaction of gypsy moths and NPV, and that tannin levels change 
depending on the plants defoliation due to gypsy moths. This study differs from pre
vious research as it considers a dynamic system where gypsy moth populations, NPV 
and tannin levels are time dependent and their interactions cause changes in popula
tion levels. Earlier work had only considered either gypsy moth and NPV interactions 
without the influence of tannin or gypsy moth and NPV interactions at several differ
ent tannin levels held constant over time. The thesis also takes a different approach 
to model gypsy moth populations using discrete time difference equations rather than 
continuous time ODE’s, used in previous studies.

In Chapter 3, we considered adapting previous gypsy moth modelling to include 
tannin as a dynamic variable. We found that the addition of tannin could cause a 
stabilisation effect on gypsy moth NPV interactions. It had previously been thought 
(Foster et al. 1992) that any inclusion of tannin was likely to produce a destabilising 
effect due to the decrease in susceptibility of gypsy moths to NPV infection caused by 
high tannin levels (Schultz et al. 1990). However, even with the inclusion of tannin, 
the typical behaviour of oscillatory population cycles that are found in the field, were 
also displayed in the model, as they were in Foster et al. (1992) model.

Chapter 4 extended gypsy moth modelling further by considering a discrete time 
approach, which is deemed to be more appropriate for modelling gypsy moths due 
to their distinct non-overlapping stages in their life cycle. From the discrete time 
model, we saw the same stabilisation phenomenon as discovered in Chapter 3. We 
also saw oscillatory cycles of populations that resembled the behaviour in the field. 
So the discrete modelling gave similar behaviour to the continuous time model and,
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furthermore, matches the field data. Due to the life cycle of gypsy moths, the discrete 
time model more realistically reflects the gypsy moth population dynamics and forms 
the base model used in subsequent chapters.

We then considered whether spatial differences in population levels of gypsy moths 
can occur. In Chapter 6 we found that dispersal driven instabilities of a stable nontriv
ial steady state can result in spatial patterning. Moreover, cyclic populations may also 
result from dispersal driven instabilities. This occurs when NPV dispersal is small rela
tive to gypsy moth dispersal whereas spatial patterning is formed when NPV dispersal 
is faster than gypsy moth dispersal. In field data, cyclic populations are observed, 
thus indicating that NPV dispersal is likely to be smaller than gypsy moth dispersal. 
Intuitively, since gypsy moths can travel long distances due to human intervention, 
then it is more likely that gypsy moths dispersal will be greater than NPV dispersal. 
Therefore, dispersal alone could be a reason for the large fluctuations found in gypsy 
moth population levels over time.

In addition, we have also looked at the optimal control of a bioeconomic model to 
control gypsy moth levels whilst minimising cost. This model is formed by summing 
a damage cost caused to the economy by gypsy moths together with the cost of using 
a biocontrol agent, Gypchek. In the nonspatial model in Chapter 5, we found that 
as the cost of the control reduced, so did the gypsy moth population and the total 
cost of the optimal solution. In stable populations, the optimal strategy was to apply 
control to reduce gypsy moth levels whilst not allowing the populations to fluctuate. In 
oscillatory populations, the optimal strategy was to dampen the oscillations by spraying 
Gypchek in years when virus populations were low. We also found a critical area for 
the cost of control where small reductions in cost of the control could significantly 
reduce the total economic cost. Thus, advancements in reducing the cost of the control 
using Gypchek can provide substantial savings in this range. Practical approaches for 
spraying Gypchek were considered and compared with the optimal strategy. It was 
found that although gypsy moth population levels were reduced, the methods were far 
from cost effective in comparison to the optimal control.

In Chapter 7, we considered a spatial bioeconomic model. We looked at the optimal 
control solution applied to three different environments of gypsy moth populations. We 
found that optimal strategies applied the biocontrol agent periodically. This caused 
stable steady state gypsy moth populations to fluctuate in time and oscillatory popu
lations to fluctuate more frequently, but with less amplitude. In a patchy, environment 
control was also found to be applied periodically, causing the population to fluctuate 
in time and the amplitude in spatial oscillations to decrease. Also, in some cases, extra 
control was applied to gypsy moth populations in areas which were smaller in popu
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lation size than neighbouring areas. This is thought to be due to the higher infection 
rate of gypsy moths as a result of lower tannin levels in these areas.

In Chapter 6, we also studied the spread of gypsy moths and whether this spread 
can be reduced. We found that fast dispersing NPV may slow the gypsy moth wave 
speed. However, this reduction was small and only occurred when NPV over-dispersal 
was large. The reduction in speed is small mainly due to the low survival rate of NPV. 
We then look at reducing wave speed by the use of Gypchek as a barrier. We found 
that for extremely large quantities of spray over vast areas, gypsy moth wave speed 
could be drastically reduced and even stopped by the Gypchek barrier. Moreover, 
more practical applications still showed a reduction in gypsy moth wave speed with the 
reduction dependent on the exact quantity of spray used and how far ahead from the 
wave front the spraying was applied. Therefore, Gypchek may well be effective in the 
fight to control the advancing front of gypsy moths in combination with the current 
methods of mating disruption in the Slow-The-Spread project.

This thesis has progressed research in optimal control in bioeconomic models for 
hybrid systems. The bioeconomic model presented in Chapter 7 is specific for the 
dynamics of the gypsy moth model, however the optimal control technique can be 
applied to any set of integrodifference equations. Thus, in Chapter 7, we have extended 
a single species spatial optimal control problem to a multi-species optimal control 
problem where currently no published work exists in this area. Also in Chapter 6, 
we discovered that integrodifference systems differ to reaction diffusion systems when 
considering wave speeds in predator prey models. We found that, unlike a reaction 
diffusion system, a predator can reduce the wave speed of the prey in a integrodifference 
model if the predator advances faster than the prey and catches the prey wave front. 
This reduction in prey wave speed depends on the survival rate of the predator and 
how fast it disperses. This, however, is not possible in reaction diffusion models and it 
has been proven that a predator cannot reduce a prey’s wave speed unless there is an 
Allee effect (Owen Sz Lewis 2001). But in integrodifference models, an Allee effect is 
not necessary to reduce prey wave speed thus this restriction is not required.

8.1 Future work

Chapter 5 and Chapter 7 presented an optimal control strategy to minimise the total 
cost in a bioeconomic model. The economic cost consisted of a damage cost caused 
by gypsy moths and the cost of spray to reduce gypsy moth numbers. The cost of 
damage was assumed to linearly increase with the amount of gypsy moths and the cost 
of control was assumed to increase quadratically with respect to the amount of control
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required. However, other terms could be considered to make this more realistic. Other 
bioeconomic models have also considered this simplification and in order to make the 
models more realistic and practical, these cost functions need to be chosen based on 
available data. Also, the cost of damage and spray may vary each year depending on 
changes in the economy, land use and the cost of production of Gypchek.

Furthermore, the inclusion of space in Chapter 7 creates more variation. We may 
now see that costs of damage and spray could vary spatially, as some areas may suffer 
economically more than others from gypsy moth outbreaks and applying control in 
some areas may be more expensive. Further, the maximum application of control may 
vary spatially with reduced levels of spray in recreation or urban areas.

At present, virus control is the most common and effective method in the attempt 
to reduce gypsy moths and hence reduce the damage they cause. In the thesis, we have 
discussed the large costs involved, not only in damage, but also in the cost of controlling 
gypsy moths. However, more recent investigations have focused on controlling tree 
tannin levels. Gypchek works much more effectively when tree tannin levels are low. 
This is due to the reduction in susceptibility of gypsy moths to virus infection at high 
tannin levels. Hence, if a control strategy could reduce tannin then less Gypchek may 
be required to control gypsy moths. Although this work is at a preliminary stage, two 
enzymes have been identified that inhibit or promote tannin. Therefore, we can form 
an optimal control strategy seeking an optimal pair of solutions using the two controls, 
virus and tree tannin controls. A similar method, for seeking an optimal pair of controls 
in an ODE system has been investigated by (Joshi 2002). The advantage of controlling 
tannin would allow less virus spraying in urban areas reducing the irritating effect on 
humans.
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A ppendix

A .l  Routh-H urwitz criteria for cubics

If J  is a Jacobian matrix of a 3rd order system

J  =
( J \\ J\2 J\Z 

J21 J22 J23  I  • 

\*^31 J32

then the characterisic polynomial of det(J  — x-0 is the cubic expression

P(x)  =  X3 + ax2 + bx +  c =  0.

The Routh-Hurwitz stability conditions for the cubic expression P(x) are given by

a > 0, c > 0  and ab — c > 0. (1)

From Chapter 3, section 3.1.3 the first two Routh-Hurwitz conditions give

b +  a  +  u +  vH* > 0 (2)
d{W*)2 + k(a -  b)

k + W* -u(b +  a) > 0 (3)

As H*, W* and all parameters are positive then the conditions (2), (3) hold. Thus, 
the stability depends only on the third condition.
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B .l  Bound for uniqueness proof in Chapter 5

For a, beR, then

0 < ^(a +  &)2

— ̂ a2 — \b 2 < ab.
2 2  ~

This provides a bound using in the uniqueness proof in Chapter 5.

B.2 Bound for uniqueness proof in Chapter 7

For functions fi(x ) , f 2 {x)eL2, we have

0 <  f  ^ ( fi(x )  + f 2(x))2dx < oo
«/ ft

f f \ { x ) d x -  \ [ fl{x )d x  < [ f i ( x ) f2{x)dx.
* Jn * Jn Jn

This provides a bound using in the uniqueness proof in Chapter 7.
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