

University of Bath

PHD

Man machine interface for real time power system simulation

Ng, F.

Award date:
1992

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

M AN MACHINE INTERFACE
FOR

REAL TIME POW ER SYSTEM
SIMULATION

Subm itted by F. Ng, B.Sc.(Hons)
for the degree of

D octor of Philosophy
of the University of B ath

1992

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with its author.
This copy of the thesis has been supplied on condition that anyone who consults
it is understood to recognise that its copyright rests with its author and no
information derived from it may be published without the prior written consent
of the author.

This thesis may be made available for consultation within the University library
and may be photocopied or lent to other libraries for the purposes of consultation.

UMI Number: U042138

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U042138
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

{ W " r '-" I F BATH
?v

12 FEB 1993
P h d

S o ~i g

: v * W N W >

H
Z j

C ontents

S u m m a ry ii

Acknowledgem ents... iii

G lossary ... iv

List of Principal Symbols.. vii

1 Introduction 1

1.1 Power System Simulation... 1

1.2 Bath University Real Time Power System Sim ulator........................ 2

1.3 User In te rface .. 3

1.4 Graphical User In te rfa c e ... 5

1.5 About the T h e s is .. 6

2 U ser Interface Design 7

2.1 In troduction ... 7

2.2 Human F a c to r s ... 8

2.2.1 Memory M o d e l .. 9

2.2.2 Self-regulation... 11

2.2.3 F lex ib ility .. 12

2.2.4 Skill/Rule/Knowledge... 12

i

2.3 Model T h e o rie s .. 13

2.3.1 B o ttlen e c k s .. 14

2.3.2 Magical thinking and Non-Determinism.................................. 16

2.3.3 Projection and Transference .. 17

2.4 Interaction S ty le s .. 17

2.4.1 M o d e s .. 18

2.4.2 W hat You See is What You G o t ... 19

2.4.3 Dialogue Models ... 20

2.4.4 Direct M an ip u la tio n .. 22

2.5 C o lo u r ... 25

2.6 User Interface Development T o o ls ... 28

2.6.1 Separation of Interface and Application , 28

2.6.2 UIMS and Toolkit .. 30

2.7 C onclusions.. 32

3 T h e X W indow S ystem 35

3.1 In troduction .. 35

3.2 H isto ry ... 36

3.3 Design Philosophy ... 37

3.4 Software H ie ra rch y ... 39

3.4.1 X Server, X Client and X P r o to c o l .. 39

3.4.2 Xlib, X Toolkit, Intrinsics and W id g e ts 40

3.5 F e a tu re s .. 42

3.5.1 Events and B uffering.. 42

li

3.5.2 W indows... 44

3.5.3 Window M anager... 45

3.5.4 R eso u rces .. 46

3.5.5 C o lo u r .. 46

3.5.6 Graphics and T e x t .. 47

3.5.7 Input D ev ices.. 48

3.6 Conclusion... 49

4 C o m p u te r S ystem H ardw are 52

4.1 In troduction ... 52

4.2 The T800 Processing B oards .. 54

4.2.1 Main S tru c tu re .. 54

4.2.2 Interprocessor Com m unications... 55

4.2.3 Memory Map Arrangement .. 56

4.3 Link Topology Configuration B o a rd ... 56

4.4 Input/O utput B o a r d ... 58

4.5 B ack p lan e ... 59

4.6 Bus A rb itra tio n ... 60

4.7 Graphics B o a r d ... 61

4.7.1 Microcore Board ... 62

4.7.2 T800 .. 63

4.7.3 G178 Colour P a l e t t e ... 64

4.7.4 M o u s e .. 64

4.7.5 K e y b o a rd .. 65

iii

4.8 Conclusion 65

5 The H elios O perating System 76

5.1 In troduction ... 76

5.2 Overview.. 77

5.2.1 Design Philosophy .. 77

5.2.2 Structure .. 79

5.3 The N ucleus... 82

5.3.1 The K e r n e l .. 83

5.3.2 System Library (S y sL ib).. 87

5.3.3 L o a d e r.. 88

5.3.4 Processor Manager (ProcM an).. 88

5.3.5 I/O Controller (IO C) ... 89

5.4 Communication Methods in Helios 89

5.4.1 Kernel Level I / O ... 91

5.5 S ervers ... 94

5.5.1 Network Server (N S) ... 95

5.5.2 Task Force Manager (T F M) .. 95

5.5.3 Host S e r v e r ... 96

5.6 Parallel Programming S u p p o rt... 97

5.6.1 C D L .. 97

5.6.2 Parallel A lg o r ith m .. 98

5.7 Conclusion... 98

6 T he Interface 107

iv

107

108

108

109

110

111

112

113

113

114

115

115

116

116

118

118

119

120

121

122

122

123

123

Introduction

Survey of Interactive Power System Simulators

6.2.1 H istory ...

6.2.2 Characteristics of an Interactive System

6.2.3 S u rv ey ...

6.2.4 The Bath S y ste m

System Configuration..

6.3.1 H a rd w a re ..

6.3.2 S oftw are ..

Conceptual M odel..

6.4.1 User In te rface ..

6.4.2 Application In te rface

6.4.3 Simulation Code and D a ta

6.4.4 Virtual M achine.......................................

Structure of the M M I..

6.5.1 Screen L ay o u t..

6.5.2 M e n u s ...

Interaction Style ..

6.6.1 Feedback..

The Use of Colour ...

6.7.1 M enu..

6.7.2 Data D is p la y ..

A n im atio n ..

v

6.8.1 Double B u ffe rin g .. 125

6.8.2 Colourmap M anipulation..126

6.8.3 Selective Graphics U p d a tin g ... 128

6.8.4 W hat the MMI has adopted .. 128

6.8.5 Double Buffering and X .. 129

7 Features of The Interface 134

7.1 In troduction .. 134

7.2 Getting S ta r te d ..135

7.3 N e tw o rk ...136

7.3.1 The m ouse... 136

7.3.2 Parameter M e n u ...137

7.3.3 Meters M e n u ... 138

7.3.4 Network S u b -m en u ... 139

7.4 Time H is to r y ...141

7.5 O p e ra tio n ..143

7.6 Set p o i n t s ..144

7.7 F a u l t s .. 146

7.8 H e l p ... 147

7.9 Quit S im u la to r ..148

8 Further W ork 192

9 Conclusion 195

R eferences 198

vi

A ppendices 206

A Starting up the Simulator 206

B Pow er System O ne-line diagram 208

C Specifying a sequence for the power system 214

D D esigning a H ypertext H elp M enu 218

E T he Four M achine Power System 221

F A ssem bler listing of the keyboard and m ouse data capturing rou
tines 231

G Circuit Diagram 239

H Screen D um ps 240

V ll

Su m m ary

This thesis describes research into the design issues of implementing a man ma

chine interface, MMI, for a power system simulator which is used to simulate the

electro-mechanical transient behaviour of the British National Grid transmission

system in real time. The computer system used is a locally designed multipro

cessor transputer system, running the Helios operating system. The MMI follows

the modern practice of user interface design by implementing a graphical user

interface and the X Window System provides the main interface building tools.

The MMI has been successfully shown to be user friendly for the novice user while

at the same time providing powerful features for the more experienced user. In

addition, it opens up scope for future research into the new direction of user

interface design for real time power system simulators.

A ck n ow led gem en ts

The author is indebted to his academic supervisor, Mr A.R. Daniels for his help

and guidance throughout this work. He would like to thank Professor J.F. East-

ham, Head of School for provision of facilities at the School of Electrical Engi

neering and also the National Grid Company (NGC) for the use of their facilities.

Financial support from the Science and Engineering Research Council and the

NGC is gratefully acknowledged.

The author would like to express his thanks to his colleagues at the University

and staff at the NGC, in particular Dr T. Berry, Dr R.W. Dunn and Mr V.S.

Gott for their help and advice throughout this project.

Finally, the author would also like to thank his brother Mr. K. Ng for drawing

some of the figures in the thesis.

This thesis was produced using Mp\X running under the Unix operating system.

G lossary

D ialogue box
Arbitrary input data values cannot be supplied via a menu dialog. A window
can be popped up on the screen (called a popup window) where a number of
pre-determined questions will be presented for the user.

Drop Down M enu
This appears automatically when a user moves along the menu bar. A subsidiary
menu block will “drop down” under each heading.

GEM : Graphical Environm ent M anager
This is a Digital Research’s user interface, which was one of the first windowing
systems. Users interact with the system via graphical objects displayed on the
screen with either a keyboard or a mouse as input devices.

GUI: Graphical User Interface
This is the general name for an interactive graphical environment in which the
user interacts with the system via graphical objects on the display.

H ypertext
This is used to describe a specialised type of database. The principle is that
keywords exist within the text of the information displayed on-screen, and se
lecting those keywords will produce a link to a subsequent screen, which may be
the next part of a program, or may be a help screen that provides more detailed
information on the selected keyword. This approach is particularly popular in
a graphic-based operating system, where a mouse can be used to highlight and
select the hypertext.

Icon
In computing terms, an icon is a graphical representation of a physical item,
usually either a file or a peripheral, so that, for example, a small picture of a disk
drive is displayed on-screen to indicate the actual presence of a disk drive.

M enu Bar
This is normally displayed in a window at the top of the screen . Permanently
available functions are classified into groups and the group headings are displayed
as the options of a menu bar.

PopU p Menu
This is a window which appears usually in the middle of the display, requesting
the user to select from a menu block. The user selects by scrolling through the
options and the window disappears when the selection is made.

x

P u ll Dow n M enu
This appears only if the user actually selects an entry in the menu bar by clicking
on it with a pointer. A subsidiary menu block will “drop down” under each
heading for further selection.

R eal T im e
This is used to describe a computer system whose response is fast enough to
satisfy human users. In simulation terms, the simulation model equations must
be solved by the computer within a given model timestep. Berry [1] has further
defined the terms Hard Real Time and Soft Real Time: A Hard Real Time
system is one which has “the solution time equals to the model time step under
all conditions with output synchronized with the real (clock) time”. A Soft Real
Time system is one which has “the soultion time generally be less than the model
timestep but occassionally may be greater” .

Tagging
This is an item used to describe the process of marking a series of items for later
processing. This might involve marking a group of files to be deleted from a
disk drive, or perhaps a set of elements of a picture that are to be printed in a
particular colour.

U IM Ss: User Interface Management Systems.
They are software packages that support the implementation of user interfaces
which are both portable and consistent. Strict separation of the interface from
the application is encouraged, so that the user and the application do not com
municate directly, but only via a UIMS.

W IM P
W - present information to users via multiple Windows on the display.
I - representing pictorially as Icons the data objects with which the system is
concerned.
M - using a Mouse to select graphical objects.
P - menus which popup automatically on the screen or which a user can pull
down from a menu bar.

W indow
This is a specified (usually rectangular) area of the physical screen through which
a user views a particular aspect of the interaction with a particular task.

W indow M an ag er
This is a X window client that provides a screen layout policy and allocates
resources for all the clients running concurrently on the same server. Re-sizing
and decorating windows are its common responsibilities. Effectively, it determines
the “look and feel” of an application.

W Y SIW Y G What You See Is What You Got.
This describes interfaces in which the actual effect of any action is reflected
upon the display immediately. This effectively provides a natural status message
confirming that the action has been carried out.

X A thena W idget Set
This is a set of programming objects built upon the Xtk ToolKit. It provides an
even higher level of abstraction than Xtk ToolKit and allows programming in a
limited object-oriented style.

X tk ToolK it
This is a set of interface components and control mechanism built upon the basic
libraries of the X Window System. It provides a policy free, higher abstraction
programming utility for interface programmer to build a graphical user interface.

X W indow System
This was developed at MIT as a distributed, network transparent, device in
dependent, multitasking windowing and graphic system. It is based on the
client/server model in which an application program is run independently as
a client while the system is run as a server, servicing the client via protocol
calls. Multiple applications can be displayed on the same screen and each one
can use many windows. Overlapping and hidden windows, text with soft fonts,
and two-dimensional graphic drawings are supported.

L ist o f P r in cip a l Sym bols

CPU Central Processing Unit.

DMA Direct Memory Access.

DRAM Dynamic Random Access memory

EPROM Erasable Programmable ROM.

I/O Input/O utput

MHz Frequecy in million cycles per second.

MMI The research project: Man Machine Interface.

N-way crossbar A large bank of switches that can be controlled to

allow any combination of connections of N inputs and

N outputs.

RISC Reduced Instruction Set Computer.

ROM Read Only Memory

Simulator The latest version of the Real Time Power System

Simulator developed at Bath University.

SRAM Static Random Access memory

UART Universal Asynchronous Receive and Transmit Device.

VLSI Very Large Scale Integrated Circuit.

VSC Video and System Controller.

C hapter 1

Introduction

1.1 P ow er S ystem S im ulation

A system for the generation and distribution of electrical power is one of the

most important and complex utilities of modern life. With an ever increasing

demand from the public and industry, the system is always pushed to operate

at a very high standard. With the recent public concern for the environment

and the privatization of the Central Electricity Generating Board and the twelve

regional electricity boards, the British power system is expected to perform even

better. This places a considerable demand on the planning of new power plants

and the training of power system operators.

The British National Grid is a very complex network, which is made up of more

than eighty generators, four hundred busbars and one thousand two hundred

lines. There exists the need to provide some aids to the power system engineers

in analyzing such a. transmission system. In particular, the transient stability

study of a power system subjected to severe disturbances such as network faults

and outages are especially important in accessing the stability performance of the

1

system. The requirement can best be satisfied by a high performance real time

power system simulator which is capable of producing fast and accurate results

of the power system under study.

1.2 B a th U n iv ersity R eal T im e P ow er S y stem
Sim ulator

Bath University has been active in the field of the development of simulators for

studying the electro-mechanical transient behaviour of the British power system

since the early 1980s. Dale [2] simulated a four machine power system which laid

the foundation for Berry [3], who further developed the simulator and expanded

it to run a twenty machine study. Both simulators were producing results in

real time. Over the years, as the power system to be studied became larger

and larger, the simulator also evolved at a rapid pace. The corresponding user

interface was expanded to control the simulator efficiently. This was due to the

increased facilities and commands offered by the simulators.

In 1988, it was decided that Bath University was to design and implement a real

time power system simulator which would be capable of simulating the whole

National Grid system. Undoubtedly, the simulator would be complex and the

quantity of data produced would be overwhelming. In addition, new facilities

must be provided to help engineers in studying the complex power system. It

is precisely under these requirements that a Man Machine Interface needs to be

implemented for that new simulator.

1.3 U ser In terface

Traditionally, the most important criteria in building a computer is to make it

execute commands as quickly as possible. If a company could afford to own a

mainframe computer in those days, it was used primarily as a number cruncher.

Efforts were dedicated to make batch programs turn around quicker and hence

productivity was increased. Very often, the user must adapt to the machine

rather than the other way round. Needless to say, mainframe computers are not

very user friendly and are very difficult to use. even to this day.

As computers get more and more power, more resources can be freed to satisfy

human needs, e.g. a bit-mapped colour graphic screen can be used to display

sophisticated data. At the same time, software can become increasingly complex

and is therefore more difficult to use. This can be seen from the numerous

commercial tutorials available to cater for the training of novice users in using

various packages, e.g. word processors, spreadsheets, and desk top publishing

software. Some people may regard this as a step backward. However, it should

be realized that there is a totally different class of users today. While most

computer operators were computer literate in the past, today’s users are not.

Most of them probably have no previous experience in using a computer before

attempting to type out a letter with a word processor. They might have little

conceptual awareness in computers. Thus, as computers get more progressive,

the least common denominator in the computer proficiency of users actually gets

lower. The need for good user interfaces get more acute.

On the other hand, people now realize that it is important to make a computer

easy to use. Hence, user interface must be integrated into the early design stage of

a computer project [4]. In the past. it was more likely to be an after-thought when

the product was actually finished. Since the 1970s, much research effort has been

made to investigate how a computer can best interact with the user. Window Icon

Mouse Popup menu (WIMP) 1 was one of the successful concepts developed at

the Xerox Corporation’s Palo Alto Research Center. Since its appearance, more

and more computer systems with similar interfaces have been produced. The

situation was promoted by the success of Apple’s Macintosh [5] in the business

and education communities. Nowadays, a bit-mapped graphics screen, with a

pointing device (e.g. a mouse) and a window system has been identified with a

good user interface. Such a system is generally called a graphical user interface.

Although these systems might be easy to use for a novice user, they can be

quite frustrating to use for an expert user. Obviously, there are different sets

of constraints and requirements imposed by these categories of people. Different

applications have different requirements. Different users behave differently in

using the same application. Even a single user does not always act consistently.

Whiteside [6] has carried out studies to show that “Interface styles are not related

to performance or preference (but careful design is)” . As a result, the problems

of user interface design can not be solved merely by the advances in computer

hardware and software. A more vigorous and fundamental study into how people

behave and interact with computers to solve problems is thus more desirable, if

not essential. Nevertheless, the choice' of a proper interface style does in some way

help the user in accepting a particular application. It, is important to research

into what users want in different applications and hence a suitable interface can

be designed for power system engineers in using the real time power system

simulator.

1 Refer to Glossary

4

1.4 G raphical U ser Interface

In recent years, Graphical User Interlaces (GUIs) have become very popular

among today’s powerful computer workstations. In particular, the X Window

System [7] is now recognized as the industry standard in the field of user interface

design. The success of the system can be attributed to the following factors:

1. Hardware independence. An application developed on one hardware con

figuration can easily be ported to another. The user interface behaves

consistently across a spectrum of hardware.

2. Versatile interface building tools. There is a rich library of functions and

some high level software objects are available to help the programmer in

building a powerful user interface.

3. Policy free. The X Window System does not impose any design policy on

the interface design. Only mechanisms are provided. The programmer is

free to implement whatever interface is suitable for an application.

A GUI usually presents information in the What You See Is What You Got

(WYSIWYG) 2 style. Because of this, the user can understand the application

better and the information produced can be easily digested. The Direct Ma

nipulation technique helps the user further by providing better control over the

application. Multiple and overlapping windows aid the user’s short term mem

ory by accomplishing an application task as quickly as possible. Hence, the X

Window System as a GUI is a very powerful tool in implementing user interfaces.

2Refer to Glossary

5

1.5 A b ou t th e T hesis

The design of a. good MMI depends on a thorough understanding of the human

behaviour and psychology. Chapter 2 addresses the issues of various human fac

tors. A set of design “guidelines” are derived in designing a MMI. The pros and

cons of what interface design system, i.e. UIMS 3 or toolkit 4 is best suitable for

building the MMI are also weighed. Chapter 3 introduces the X Window System

as a powerful Graphical User Interface (GUI) tool. The reasons behind why it

was adopted to implement the MMI are also discussed. The computer operating

system, Helios [S], is presented in Chapter 4. Together with the computer hard

ware (a powerful multiprocessor Transputer [9] system with a high performance

VSC graphics system [10]) discussed in Chapter 5, these two chapters serve to

give a technical background of the computer system that the MMI and the Sim

ulator are operating on. The design concepts and the implementation techniques

of the MMI are given in Chapter 6. As the X Window System was not designed

for producing animation graphics, t he method adopted to overcome the problem

and the compromises made in the design are also discussed. The powerful fea

tures and some screen dumps of the MMI are presented in Chapter 7. Chapter

6 and Chapter 7 illustrate how the MMI has been successfully implemented to

satisfy the requirements of a user friendly interface for a. large and complex sim

ulator. Chapter 8 discuss what further work is needed to enhance the MMI and

a conclusion is made in Chapter 9.

3 Refer to Glossary
4R,efer to Glossary

G

C hapter 2

U ser Interface D esign

2.1 In trod u ction

User interface design is a very difficult business. It is the combination of two

distinct disciplines: psychology and computer science. A good psychologist must

be sympathetic and understanding towards people while a computer scientist

must be mathematical and precise. A good user interface designer must be an

expert in these two different worlds. The job is made harder by the fact that

the history of user interface design is even shorter than that of computer itself.

Hence, little experience can be learnt from the past. Coupled with the fact that

there is not a set of right or wrong guidelines in the design process, it is indeed

a very difficult task to design a good user interface.

This chapter deals with the user interface design from the psychological point of

view and the various human factors relevant in the design process are discussed.

Any interface designer must realize what people are, what they want and how

they behave, before they can be helped. Having gathered these human qualities,

the designer needs to explore how a user views a computer and a program in

7

his own mind. Users usually construct internal models of the systems they use.

Obviously, discrepancies and conflicts would emerge if the designer’s model does

not match with that of his user. In order to actually implement an interface,

various issues must be addressed and these will be discussed later in the chapter.

As far as building tools are concerned, there are generally two types available,

namely UIMS 1 and Toolkit 2. The merits of these two methods are also examined.

2.2 H um an Factors

People are different. Each person has his own characteristics. It is thus impos

sible to categorize humans into different pigeon holes and give a label to each

one of them. Fortunately, there are certain features which are unique to the

Homo Sapien. It is possible to discuss human factors in general terms so that

a better understanding can be gained as to how thoughts, learning and reac

tion to external stimuli are organized. Consequently, an interface designed for a

category of users, within a certain application, can then be suitably produced.

Unfortunately, humans have limited cognitive resources. It is impossible for them

to explore every problem in depth as it takes too long to accomplish. Most of

ten, humans will not bother to examine the problem. Thus, it is possible for

someone to maintain inconsistent beliefs. For example, a user might exhibit non-

transitive preferences behaviour. Normally, preferences should be transitive. If

A is preferred to B, and B to C, then A should be preferred to C. However,

it is possible that a user might prefer form-filling to command line interpreter;

he might prefer direct-manipulations to form-filling. Yet, he might also prefer

command-line interpretation to direct-manipulations. These inconsistent beliefs

can survive within a user’s mind as long as they are not weighed at the same

1 Refer to Glossary
2Refer to Glossary

time. Nevertheless, gaining an insight into how humans behave does give a set

of proper guidelines as what is good or bad. It just has to be borne in mind that

it is not possible to satisfy all of the users some of the time; some of the users all

of the time; but simply some of the users some of the time.

2.2 .1 M e m o ry M o d el

Humans have transducers to transmit external stimulus to the five sensory mem

ories, namely touch, smell, sight, hearing and taste. Information is buffered in

a memory for about a quarter of a second. These memories have large capacity

but need refreshing from time to time if information is to be retained. This can

be done by repeating the external stimulus. To remember something for a longer

time, the mind must attend to a particular sense and select a sensory memory.

Once a memory has been selected, information is processed and copied to a

small S h o rt T erm M em ory (STM), also called the Working Memory, where

consciousness resides and where thinking is done. The STM has only a small

capacity. It is said that [11] only a total of seven plus or minus two things in the

STM can be retained at any one time. If the information is unused, it is lost after

20 seconds. However, the information can be retained indefinitely by a refreshing

process called rehearsal. Inside the STM, data is stored into abstractions, called

chunks, which are arranged into a hierarchy with further sub-chunks below each

chunk. Apparently, the more a chunk can abstract, the more information can

be associated with it and hence more information is stored. Hence, the STM

becomes more efficient.

The experience of forming a chunk in the mind is called closure. If people are

9

inhibited from forcing a closure, they will make inefficient use of STM and become

liable to the risk of losing information from it as they attend to the interference.

Sometimes, it is possible for a closure to interfere with other awaiting closures. If

this happens, a termination error is said to have occurred. When automatic cash

tellers were first introduced in the high streets, some people very often forgot

to retrieve their cards after cash had been dispensed. The closure of the task

of getting cash had interfered with the task of retrieving card. A better user

interface was introduced to solve the problem: cash is dispensed if and only if

the card has been retaken by the user.

STM is both resource and data limited. If there is not enough data given, it is said

to be data limited. More resource is needed to compensate for the inadequacy of

data in order to make use of it. For example, wearing a pair of glasses not only

cures short-sightedness, but might actually improve hearing as some resource is

called back to attend to hearing, rather than used to improve limited data, i.e.

eye sight. On the other hand, if too much data is presented, the resource is

stressed and data processing can fail. Thus, too little or too much data is a bad

thing.

After 5 seconds residing in the STM, information is shifted to the Long Term

M em o ry (LTM) which can record information indefinitely. The LTM has a

very large capacity and low decay rate. Unfortunately, memory access becomes

increasingly difficult without rehearsal because of interference from other memo

ries, and it takes a relatively long time to recall information. The performance of

the LTM can be improved by elaboration techniques, using mnemonics or mental

imaginary. In a crowded screen with a dozen covering windows, it is common to

use icons to represent temporarily unused windows. This can both save screen

space and keep the user in mind what windows were there lying unused.

10

Both STM and LTM can suffer from the interference effect. For example, learning

a new interactive system is influenced by previous experience. Such interference

is called Carry-Over or Conceptual Capture. For STM, P rim in g is more acute.

It is the effect of putting an idea into someone’s head and make it easier for

him to use. For example, although external doors should be designed to open

outwards, how many times have you tried to push open an external door outside

a building in order to rush inside? As a result, when a user is under pressure,

he often resort to stereotyped behaviours, regardless of previous experience or

training. It is thus important to create an user interface which does not violate

traditional conventions and actions resulting from it must not be disastrous or

irreversible.

2 .2 .2 Se lf-regu la tion

Humans are self-regulating creatures. They tend to adjust themselves well to

compensate for external changes in order to maintain a previously balanced con

dition. For example, sweating is used to dissipate excessive heat so that the body

temperature is maintained at a comfortable value. In designing an user interface,

if a system is made easy to use, it will only be used to do more difficult things.

If it is safer to use, it will only be used in more extreme circumstances. With the

advances in motor cars, road accidents happen even more frequently than in the

past. Hence, users are not better off in either case. It might be desirable to make

an interface difficult to use in certain respect just to keep the user from becoming

too comfortable. Conversely, the user should be alert in using the application in

any case.

11

2.2 .3 F lex ib il ity

Satisficing is a form of local optimization where awareness or avoidance of the cost

of establishing an overall best-choice leads to the acceptance of a good-enough

choice [12]. People do not like to research into looking for an optimal solution

to accomplish a task. They are satisfied with learning a basic set of commands

which can enable them to get their work finished. That is why not many users like

reading the user manual before using an application. Unless it is too difficult to

use, they will stick to whatever methods they have accidentally discovered. That

is, until disaster strike in the future. Therefore, a flexible system must permit

users to adopt theoretically non-optimal strategies for particular tasks and allow

different users to make their tradeoffs at different levels.

2 .2 .4 S k i l l /R u le /K n o w le d g e

Human capabilities can be broken down into three categories: Knowledge, Rules,

and Skills [13]. Initially, knowledge is gained by consciously working through

a system. Later, rules are derived from experience. Improved proficiency leads

to improved skill. This improvement is often achieved unconsciously throughout

development. The learning curve is very steep in the beginning and gradually

flattened at a later stage. Finally, a skill is acquired subconsciously but cannot

be recalled voluntarily. Do you remember which foot you first raise to walk after

sitting down for a while in a chair? Likewise, as a user becomes more familiar to

a particular user interface, the details of how a task is accomplished are missed

out. If the user has developed a bad habit at an early stage, it is perhaps too late

to cure it later. Thus it is better to assist the user in the learning stage to ease

the transition from knowledge to skill. Moreover, a user is much more motivated

12

if the transition is smooth.

2.3 M od el T heories

A user uses a computer to accomplish tasks with a specific aim in mind as about

which tasks should be done and some ideas as to how the tasks can be carried

out. Gradually, a user develops a model of the system being used. This is

modeling because humans have a natural tendency to understand, to model their

environment: both to be able to control it and to be able to think about it. Such

models can be categorized as :

1. specific and an a ly tic

the computer works in this way or that way.

2. m e tap h o rica l

the computer works like a typewriter.

3. te leo lo g ica l/an th ro p o m o rp h ic

the computer does not like this, it wants to do that.

The nature of these models as devised by the user depends very much on the

training and education background acquired in the past as well as previous ex

perience with a similar system. To some extend, the models are also governed by

the designer of the computer and the user interface.

On the other hand, computers also have models of their users, derived either

implicitly or explicitly by their designers. A designer usually defines a C anon

ical M odel to describe the potential users of his system. The term canonical

13

means “according to formula” . For example, the designer of a spread sheet may

assume the user would never have a database larger than 1 GBytes. The model

is implemented in the form of a program which a user interacts with.

Intrinsically, models/programs are not equivalent. Indeed, it would be incredible

if the designer’s thought matches exactly with that of the user. In order to ease

the problem, it is conventional practice to improve the information bandwidth of

the user interface so that each (the computer and the user) can gain a better pic

ture of the other. Practically, this is done by training courses, better documented

manuals, or a better user interface.

There are two ways in which a user interface can be improved:

1. Increasing the coherence between the models and the programs. However, it

is neither possible nor desirable to have two identical models. The canonical

model must have some advantages over the user, i.e. speed, resolution and

persistence.

2. Decreasing reliance on the coherence. This can be done by increasing the

information capacity of the user interface. Unfortunately, human brains

have a limited capacity for storing and processing information.

It appears that a compromise must be reached between the two methods

2 .3 .1 B o t t le n e c k s

Other than the mismatches between models and programs, another obstacle

which affects the communication between a computer system and its user is the

14

bottleneck. Bottlenecks exhibit themselves in three ways:

1. T h e Von N eu m an n B o ttleneck

A computer has limited capacity for processing and transferring informa

tion. If there is too much data waiting to be dealt with, the response time

taken for a computer to service a data request will be lengthened.

2. T h e In te rface B o ttlen eck

• The computer input/output Bottleneck.

For example, the screen is not big enough or of high enough resolution.

• The user input/output Bottleneck.

The user’s senses are not fast enough to response to the computer. For

example, playing a video game.

3. T h e M en ta l B o ttlen eck

The information waiting for the user is just too much for him to digest. The

user can not remember all the details displayed on the screen. He might

even find it difficult to grasp the significance of a piece of data.

One way of widening bottlenecks is to use F ilte ring . A computer can use cache

memory to store only that most frequently accessed data so as to avoid the slower,

though larger external memory. Restricting the amount of information given by

the user gives the computer a chance to deal with the input. Temporarily, irrele

vant information is not displayed on the screen, assuming that it can be accessed

at a later stage. Advice are available to the user to assist him in understanding

the output.

15

2 .3 .2 M a g ica l th in k in g and N o n -D e te r m in ism

When a model is inadequate, a user develops magical thinking, so as to com

pensate for the missing data. This could happen if the user does not have an

adequate knowledge of the system. Alternatively, if a system is intrinsically un

predictable, it appear to be non-deterministic, or behaves randomly, to the user.

For example, in a windowing system, some pop-up menus are created when the

user is idle so that the system resource is not wasted. Thus, when a menu is

popped up, it could do so either very quickly (created already) or slowly (not

yet created). The result is totally undetermined. If the user is not aware of this

resource exploitation policy, he will start to create a mythical model on his mind

to explain the system’s inconsistent behaviour. If, in the beginning, he found

that a menu is popped up quickly when the left mouse button is pressed (by

pure coincidence), he might think that the left button is a sort of accelerator for

popping up menus. Just imagine what he might think when pressing the same

button has no effect, or even slows down the popping up of a menu.

Hence, a technical view of the system gives the user conceptual power. However,

it is quite unreasonable to assume that the user has to learn how a particular

application is implemented before using it. Why should the user know that the

programmer has allowed for only a maximum of 100 lines for buffering so that

the system would crash when 101 lines of data are entered? One way to minimize

the damage is to provide safety checkings in the codes. If a user has entered 100

lines, issue a warning and stop accepting any more lines. Another way is to make

the system behave consistently, even at the expense of efficiency. For example,

all pop up menus can be created once at the beginning of an application.

16

2 .3 .3 P r o je c tio n and T ransferrance

Having developed a system model, the user will tend to interact with the system

as if it were part of the model. The user will project wishes on to the system and

expects the system to behave in the same manner.

Sometimes, a user does not only make a P ro jec tio n on his own model, but one

from someone else. T ransference is said to have taken place. In user interface

design, this means that a user transfers models learnt with other systems on to

the present one, thereby making the interface design more difficult. If a system

is totally new to a user, this can be very frustrating. However, if the system

looks similar to a previous one, the user might form a distorted model of the new

system. The user can either make a lot of mistakes or be unable to understand

the new system at all.

2.4 In teraction S ty les

The way in which a user interacts with a computer is dictated by the interaction

style that the user interface has imposed upon the application. Traditionally,

computer programs use M odes to simplify applications. However, the benefits

of using modes are superseded by their short-falls. Instead the WYSIWYG [12]

style of presentation has gained popularity over the years. This leads to the

introduction of “D irec t M an ip u la tio n ” [14], which has now become the norm

in modern user interfaces. The reasons behind its success and its effects on user

interface design are now examined.

17

2 .4 .1 M o d es

A mode is defined as “The information in the computer system affecting the

meaning of what the user sees and does” [12]. It is used to ease the communication

bottlenecks between the user and the computer as non-essential information is

concealed from the user. Effectively, the communication bandwidth is widened by

binding more meanings to a particular key on the keyboard when it is in different

modes. More commands can be accommodated as a result. The program can also

be made simpler from the designer’s point of view. Another advantage of using

modes is that the user is protected from making fatal mistakes. For example, a

file can only be destroyed if the user has pressed a certain key and the system has

toggled into another mode. It prevents the user from deleting the file accidentally.

However, modes can be a great disadvantage to the user as information is hidden.

This could be either forgotten or not noticed by the user. The system gives the

user no clue about how it got to its present state or does not tell the user enough

for him to be quite certain what the current state is. Obviously, this can cause a

lot of confusion for the users.

George Polya [15] states in his P rin c ip le of N on-Sufficient R eason that “if

you do not have sufficient reason to doubt things are different (when solving

problems) treat them as the same”. This effectively means that a system should

not work differently unless it gives the user sufficient information to tell the modes

apart. Otherwise, the user can not be certain of the present system state.

Hick’s law [16] states that: “The user’s decision time is proportional to the log

arithm of the number of choices known to be open to him”. So, it is too easy

to forget what state qf a system is in and how it will interpret commands: the

18

more modes there are, the more likely the system will use an inappropriate mode.

Even if the user knows exactly which mode a system is in, his reaction time will

increase.

Karl Popper’s B erk e ley ’s R azo r [17] states that, “All entities are ruled out

except those that are perceived”. If “entities” equates with “information”, that

rules out hidden information that the user can not perceive. So fewer modes

makes a user see clearer in a system.

“Out of sight, out of mind” Modes should be avoided as much as possible.

2 .4 .2 W h a t Y ou S ee is W h a t Y ou G ot

One way to use fewer modes is to use the WYSIWYG [12] style of presentation.

In WYSIWYG, there is a simple relation between information transm itted from

the computer to the user and the results obtained, i.e. what the user can see

(information transm itted from computer to user) equals what the user gets (in

formation transmitted from computer to results). If the system has no hidden

information, the user can manipulate what is seen, without fear of unseen side-

effects. The system model can be understood and relevant parts can be readily

memorized by the user without prior system experience. The user may generalize

his knowledge and is confident as to what has happened. The designer can use

this principle to meet clearly definite user expectations with specific techniques.

19

2 .4 .3 D ia lo g u e M o d els

A dialogue model is an abstract model that is used to describe the standard of

the dialogue between a user and an interactive system. There are three types [18]

of dialogue models:

• Transition Network

The progress of a dialogue can be viewed as a series of transitions from

one state to another. The dialogue may be in a particular state awaiting

input from the user, and it will progress to one of the several next states

depending on the nature of the input received. This can be represented

as a transition network. Each state is represented by a node. Transition

between nodes is indicated by directed arcs connecting the two nodes; a

label on the arc indicates the condition under which it is traversed. The

Question and Answer structure dialogue is one example.

• Grammars

The dialogue between a user and a computer system can take the form

of context-free grammar. It is similar to the natural language, spoken be

tween two people. In the case of human-computer interaction, two distinct

languages are employed: the user uses a language to enter commands to

programs, and the computer uses another to communicate the results of

these commands.

• Events

This model is based on the concept of an input event that is found in a

number of graphics packages. In these packages, the input devices (e.g.

mouse) are treated as sources of events. Each input device generates one or

more events when the user interacts with it. An event has a name or number

20

that indicates the nature of the interaction, plus several data values that

characterize the interaction. For example, a mouse movement generates a

series of events recording the x, y coordinates of the movement. Depending

on whether any button is pressed or released, further events are generated.

Typically, a pop-up menu will then be displayed, prompting for further user

actions or displaying some system messages resulting from the events.

The merits of a dialogue model can be established by evaluating it according to

the following qualities [19] :

1. N aturalness

The model does not cause the user significantly to alter his normal approach

to the task in order to interact with the system.

2. C onsistency

Expectations that the user built up using one part of a system are not

violated by the idiosyncratic changes in the convention used in another

part.

3. N on-redundancy

The user does not have to input more than the minimum amount of in

formation for the system’s operations. This has the merit of making the

interaction both quicker and less prone to errors.

4. Supportiveness

The model should provide assistance to the user in running the system. The

quantity and quality of instructions, the nature of error messages and the

use of positive feedback for the user’s instruction are measures of a good

dialogue model.

21

5. F lex ib ility

The model should cater for or tolerate different levels of user familiarity

and performance. Such flexibility implies that the dialogue is able to adapt

either its states or the input it will accept. For example, short-cuts should

be provided for an experienced user so that he can avoid issuing simple,

but tedious, commands.

6. Less b u rd en on th e u se r’s STM

As humans have limited STM, the structure of a dialogue should be orga

nized in such a way that related commands are grouped together so that

closure can be achieved more frequently. In this way, the memory demand

on a user can be reduced to a minimum.

All the three dialogue models, Transition Network, Grammars and Events, have

pros and cons in each of the criteria. However, it is argued [18] that it is possible

to create a user interface that can only be described in the event model, but not

in the other two models, i.e an event model has more descriptive power. Hence,

it should be formed as the basis for the internal representation used in a system.

Although it might be necessary to use the other two models occasionally, it is

only necessary to implement run-time support for the event; the other two can

then be translated into this form.

2 .4 .4 D ir e c t M a n ip u la tio n

Having established a WYSIWYG presentation style and event dialogue model,

it is only natural to combine the two and implement the D irec t M an ip u la tio n

interaction style for a user interface. The objects of interest are directly visible

and direct reversible incremental actions can be applied to them whenever the

22

user feels appropriate. Complex command language syntax and “hard to digest”

data are replaced by direct manipulation and pictorial objects respectively. It

is usually implemented as a graphic system with pictures or icons to represent

objects and data. The user uses a mouse pointer to manipulate the objects

directly. Commands are usually organized and displayed inside a pop-up menu

and the user can use the mouse pointer to select an option.

Another advantage of direct manipulation is that the feedback is immediately

visible. A user can then determine if his last action has the desired effect. If

not, he can easily reverse the process and issue another command. The visual

feedback enhances the user’s learning process enormously. A user becomes more

confident and feels that he is in control of the system. A beginner can learn the

basic functionalities of the system very rapidly.

Shneiderman [19] suggested an interesting example to illustrate the power of

direct manipulation. In it, a driver uses the steering wheel to turn a car in

whichever direction he wants. He can see the outside world clearly and can

adjust to it as soon as it is necessary. Then, imagine what it would be like if he

can only type a command line into a keyboard in order to control the car and

the result is printed out as a sequence of numerical data!

Direct manipulation has been a well researched subject [20-28]. Results have

led to successful learning methods and better user interfaces. However, direct

manipulation does have some drawbacks as well [19] :

1. Spatial or visual representation is not necessarily an improvement. The

content of graphic representation is a critical determinant of utility. The

wrong information, or a too clustered presentation can lead to greater con-

23

fusion [19].

2. The user must learn the meaning of components of the graphic represen

tation. It takes time to learn. Besides, graphics do not have universal

meanings. For example, a Danish or Thai trash can will look different from

an American one [29,30].

3. Graphic representation may be misleading. The user may rapidly grasp

the analogical representation but then make an incorrect conclusion about

permissible action. For example, the waste bin in most computer systems

behaves more like a paper shredder as the action of dumping a file there is

irreversible.

4. Graphic representation may take excessive screen display space. Thus the

computer input/output bottleneck is further squeezed.

5. For an experienced user, it becomes more tedious to move around the sys

tem using a mouse pointer than typing direct and complex, but powerful,

commands.

There are some methods which can reduce some of these problems:

The first provides a text label in the user’s own dialect besides a graphic ob

ject. Though a trash can looks different in each country, the meaning of the

pictogram can be understood by the user. Alternatively, the graphics can be

better documented.

The second provides short cuts for the experts so that it is not necessary to go

through the whole sequence of commands that a novice user has to invoke in

order to accomplish a complex task.

24

2.5 C olour

In the context of user interface design, the effective use of colour can convey

much information to the user and help him learn to use the system. Conversely,

a bad choice of colour scheme can seriously confuse the user and make the system

totally unusable. Hence, a basic understanding of the colour theory is vital to a

successful user interface design.

Information presented in colour is easier to identify and is easier to distinguish in

the periphery of the visual field. It is also learnt faster and remembered longer

than information coded by shape, size and brightness [31]. It is possible to make

use of colour and apply it to:

1. visually group objects together in order to bring a sense of order to a com

plex scene. Repeated occurrences of an object in a single scene or across

multiple scenes can be collected together.

2. differentiate an object from its surroundings and make it stand out from

the background.

Effectiveness of the choice of colours depends on the types of coding chosen for

the application and on the expectation of the user. There are two methods of

coding for colour:

1. N om inal Codes

associate a set of unrelated colours with certain states of a system, e.g. the

colour scheme used to distinguish a live line (red), a neutral line (brown)

and an earth line (yellow and green) inside a domestic three pins plug.

25

2. Ordinal Codes

imply an ordering of the values of one or more variables by arranging colour

in a specific order, e.g. the voltages of busbars within an electricity trans

mission system can be colour coded according to their magnitudes.

Although it is easy to design a colour system with a computer, it is very difficult

to make effective use of it. The designer lacks the knowledge as how colour can

be applied in a system. MacDonald [32] compares that situation with the case

of Do It Yourself type of work. It might to easy to collect all the essential parts

of a wardrobe, assembling them together in a pleasing and practical structure

is another matter. Over the years, a lot of research has been spent on studying

colour. Some guidelines can be drawn from some of the previous work [32-34]:

1. Association of Colour

Users can be conditioned into having certain expectations about the mean

ing of colours, due to their association with natural, emotional, cultural or

technical contexts.

• colour ordering may correspond to natural phenomenon, e.g. the ra

diation of a black body goes from black-red-yellow-white.

• colour has the ability to evoke an emotional response or to trigger

memories, e.g. warm hues (red, orange, yellow) can imply action or

comedy, cool hues (green, blue, grey) can imply passivity or sadness

• colours can have a cultured or geographical association. In Western

culture, red = stop = danger, while green = go = safety.

• colours can have technical or contextual associations. In the display of

medical body-scan images, it is customary to indicate healthy tissues

by red or yellow and diseased areas by green or purple.

26

2. Information Coding Principle

Coding can be used to increase the information content of the display or

improve the display by making it easier to interpret.

• colour can be used in conjunction with other visual attributes such as

shape, size, brightness, etc, to help the user in interpreting the display

more positively by reinforcing the information, and also help those

users with impaired colour vision.

• the number of colours used on a display should be restricted to about

12, or as few as 5 in some critical cases, if they are to be identified

unambiguously under a wide variety of viewing conditions.

• colour codings should be used to group related items together, even

though they might be physically separated. Conversely, unrelated ad

jacent items can be differentiated by applying a set of distinct colours.

• colour changes can be used to dynamically identify states changes.

3. Performance of the Human Visual System

The biological structure of the human eyes dictate how different colours are

reacted to under different environments.

• the eye is most sensitive to yellow-green and least sensitive to red and

blue, under normal daylight conditions.

• the luminance ratio between a character and the background should

be about 10-1, for optimum legibility. Dark characters on a light

background need to use bolder fonts than light characters on a dark

background.

• displays of large areas of saturated colour may lead to visual fatigue or

confusion after prolonged viewing. Also, after-images of strong colours

may appear in the complementary colours.

27

• a combination of intense primary colours red/green/yellow/blue, should

be avoided as they can cause unpleasant “variations” in the image.

Colour combinations that contrast in lightness as well as hue should

be used in order to assist the perception of edges.

2.6 U ser Interface D evelop m en t T ools

Creating a good user interface for a system is very difficult. There are no guide

lines or techniques which guarantee that the software will be easy to use and user

interface designers have generally proven to be poor at providing interfaces that

users like. It is important to realize that an application’s interface can account for

a significant fraction of the code. Surveys of artificial-intelligence applications, for

example, report that 40 to 50 % of the code and runtime memory are devoted to

interface aspects [35]. The production and maintenance costs are high for systems

using interactive graphic interfaces, demanding up to 50 % of the entire system

development time and as much as 60 % of maintenance costs [36]. Therefore, tools

and methods are critical to the development of quality interfaces [37]. There is

great interest in developing tools to help design and implement interfaces.

2 .6 .1 S ep a ra tio n o f In terface and A p p lic a tio n

There are two reasons for separating user interface from application code:

• to enhance reuse

• to provide high quality interfaces

28

In the past, interfaces to applications have been developed using ad hoc and

low level techniques. The interface is frequently buried within the application

code in a manner which both hinders maintenance, and makes the reuse of the

methods within a different application time consuming [38]. Inconsistent inter

action methods and badly structured systems are the direct results. Separation

lets specialists develop the user interface and the application independently. It

also promotes interface consistency across applications, and let designers add or

combine application functions in new ways. It is observed that consistency is a

critical area in user satisfaction [39].

The earliest approach to separation was to maintain a strict division of respon

sibility between the user interface and the application: the application did the

work and the user interface communicated with the user. However, the user in

terface must have sufficient access to application internals to keep the user aware

of application semantics (the application objects and operation) [40]. For ex

ample, a good user interface protects the user from invoking an operation that

cannot be executed successfully. On the other hand, if the user interface has too

much knowledge of the application, the distinction between user interface and

application blurs.

Clearly, a good user interface has some knowledge of application semantics. The

questions are how much knowledge is necessary and how should it be captured?

To address theses problems, it is necessary to experiment with different interfaces

for different application as quickly as possible, i.e. rap id p ro to ty p in g is needed

for evaluating the performance of a particular interface. There are generally

two types of development tools available for the user interface designers to create

user interfaces rapidly, namely User Interface Management Systems U IM Ss, and

29

T o o lk its , which are the subjects of the next section.

2 .6 .2 U IM S and T oolk it

The advantages of using user interface tools are:

1. Better Interface

• rapid prototyping and implementation

• easier to incorporate changes during design stages

• one application can have many interfaces

• more effort can be expended on the user interface tools than may be

practical on any single interface because the tools are reusable

• different applications can have a more consistent interface because they

have been created with the same user interface tools

• easier to investigate different styles for an interface, thereby providing

a unique look and feel for a program

• easier for many specialists to be involved

2. User interface is easier to design and economical to maintain:

• code is better structured and more modular

• higher reliability because code is created automatically from a higher

level specification

• interface specification can be represented, validated and evaluated

more easily

• device dependencies are isolated in the user interface and the applica

tion is portable across a range of computer hardware and software

30

Although user interface development tools are generally good at defining the

static layout of an interface through direct manipulation, they are not very useful

in helping to create the user interface’s dynamic behaviors. [41].

UIM S

Lee [41] defines a UIMS as “a software architecture in which the implementation of

an application’s user interfaces is clearly separated from that of the application’s

underlying functionality. The separation is true both physically (separate code

modules) and logically”. In practice, a UIMS is an integrated set of tools that

help a programmer to create and manage many aspects of interfaces.

The UIMS helps both with designing and implementing the interface and so

encompass a broad class of programs [41-48]. As many as six main different

categories of UIMS, classified according to implementation methods, have been

reported [42].

Toolkit

Lee [41] defines a toolkit as “a library of components like menu, command but

tons and scroll bars. Programmers access the interface system through their

operating system’s standard language/library calling process.” There are three

kinds of toolkits [42] : The first uses a collection of procedures that can be called

by the application program, e.g. Macintosh Toolbox [5]. The second uses an

object-oriented programming styles with inheritance, which makes it easier for

the designer to customize the interface techniques, e.g. M IT’s X Window Sys

31

tem Manager [49]. The third adds design constraints to object-oriented toolkits.

Constraints let the designer specify relationship among objects and have the re

lationship maintained by the system, e.g. Grow [50], Coral [51].

T oolk it-U IM S C om parison

Over the years, the toolkit has been more successful than the UIMS [41,52]. The

growing success of MIT’s X W indow S ystem [7] is a very good example. The

reasons behind this can be explained by the fact that the UIMS is inferior to the

Toolkit in the following respects:

• UIMS has a limited range of interfaces. Since it allows interface specification

at a higher level, the range of interfaces that can be created is limited.

• Some UIMS rely on obscure techniques, e.g. a special interpreted specifica

tion language. This is unfamiliar to programmers and interface designers.

Moreover, the language is usually inferior to established general purpose

language and hence the performance is degraded.

• UIMS is inadequate in direct manipulation interfaces. The strict separa

tion of application and interface codes usually results in a low-bandwidth

communication between the two.

2.7 C onclusions

This chapter has described most of the design aspects of a good user interface.

The theories, guidelines, models and methods developed here will form the tools

32

for building up the Man Machine Interface and the reader has been given the

philosophy behind the design criteria of the research project.

In summary, a good interface should be designed in the following manners:

1. The limitation of the Short Term Memory and Long Term Memory of hu

mans should be understood.

• The closure of a task should be completed rapidly to avoid interference.

• The amount of data presented to the user must be neither too much

nor too little. Filtering can be used to reduce the information flow

from the computer to the user.

2. The interface should not be made too easy to use so that it is not pushed

to its limits.

3. Non-optimal strategies should be allowed to let the user to accomplish par

ticular tasks. The skill levels and preferences of different users should be

catered for in a single interface.

4. A smooth learning transition, knowledge-rule-skill, should be provided to

motivate the user .

5. The conceptual model of the interface should be simple so that the user can

understand the system and make fewer mistakes.

6. The interface should behave consistently so that the user’s Magical Think

ing about the system is eliminated.

7. The interface should not violate conventional wisdom because the user

might bring forward experience learned in another system to the new one.

33

8. Mode should be avoided. Instead, event driven direct manipulation and

WYSIWYG should be used to provide:

• Naturalness

• Consistency

• Non-redundancy

• Supportiveness

• Flexibility

• Less burden on the user’s Short Term Memory

9. Colour should be used effectively to:

• associate and differentiate relationships between objects.

• display pleasant looking graphics to enable the user to understand the

data displayed.

10. Separation of Interface and Application should be maintained to enhance

portability of the Interface.

11. The toolkit should be used as the main tool as building the interface as it

is more flexible and powerful.

34

C hapter 3

T he X W indow System

3.1 In trod u ction

The advent of powerful microprocessors, bit-mapped graphics and colour display

has allowed graphical user interfaces (GUIs) to become the norm in the field

of man machine interface design. In the past few years, a number of powerful

GUIs have been introduced which take advantage of the advances in computer

hardware. For example, Macintosh interface [5], X Window System [7], Win

dows [53], Open Windows [54], Presentation Manager [55], DEC Windows [56]

and GEM [57] are very popular among today’s most powerful computer worksta

tions. Basically, a GUI system can be identified as one which has the following

characteristics:

1. a pointing device, e.g. a mouse.

2. on-screen menus that can appear or disappear under user control.

3. windows that can graphically display what the computer is doing.

4. icons that can represent some application objects, e.g. files, directories.

35

5. dialogue boxes, buttons, slides, and a variety of other graphical widgets

that let the user tell the computer what to do and how to do it.

Not every GUI has all of the above features. For example, some GUIs do not use

icons. Some GUIs require mice while others might use trackballs or keyboards as

input devices. However, all GUIs allow the user to interact with an application

by direct manipulation 1 The apparent success of these GUIs is due to the fact

that a GUI is easy to learn and use for the novice user while at the same time

complex information can be presented to the more experienced user.

Despite the competition from various GUIs, the X Window System, or simply

“X”, has become more and more popular among the powerful computer worksta

tions. Some of the success can be attributed to the powerful features and design

philosophy of X. This chapter introduces the history, design philosophy, software

hierarchy and general features of X.

3.2 H isto ry

X was developed at MIT in the early 1980’s. It was the result of two indepen

dent groups at MIT having simultaneous need for a window system. The Angus

System [58] requires a debugging environment for multiprocess distributed appli

cations. A window system was regarded as the best solution. Project Athena [59]

needed to integrate a large quantity of workstations, from a variety of hardware

manufacturers, with bitmap displays.

1The importance and advantage of using direct manipulation as an interface style are dis
cussed in Chapter 2: User Interface Design.

36

The W Window System [60] was developed at Stanford University. It was in turn

produced as an alternative VGTS [61] for the V System [62]. The W Window

System produces graphics windows based on a simple display-list mechanism,

with limited functionality. A Unix version of the W Window System [63] was

acquired by MIT and X was later produced to overcome some of the shortcomings

of the W Window System and satisfy the local requirements at MIT.

In 1986, version 10 release 4 of the X Window System was released by the Athena

team. Later, in January 1988, a consortium with most of the leading workstation

manufacturers was formed by MIT to develop X further and had it adopted as

an ANSI standard. Since then, X has been implemented on a variety of hardware

and operating systems. The X Window System running on the Helios operating

system [8] was based on version 11 release 2 of the MIT X Window System. The

MMI was implemented using the Helios X Window System [64].

3.3 D esig n P h ilosop h y

The design philosophy of the X Window System can be revealed by examining

the set of requirements laid down by the early developers [65] :

1. The system should be implementable on a variety of hardware with different

bitmap displays and input devices.

2. Applications must be device independent so that different applications be

have consistently across different hardware. If hardware is upgraded in the

future, an application should be immune to the changes.

37

3. The system must be network transparent so that an application is allowed

to make use of some remote resources across the network which is made

up of a variety of machines or computer operating systems. This is es

pecially useful when running a complex application. The calculation part

of the application can be run on a remote and powerful mainframe com

puter while the graphics display is shown locally on a smaller but cheaper

microcomputer.

4. Multiple applications must be allowed to be displayed concurrently so that

the user can make use of different applications at the same time.

5. Many different applications and management interfaces must be supported.

The system must be policy free and should not impose any restriction upon

an application. Instead, a rich set of interface components and control

mechanisms should be provided for the interface programmers. The “look

h feel” and interaction style is up for the individual programmer.

6. Overlapping windows, including output to partially obscured windows, must

be supported so that a great variety of interface can be implemented.

7. A hierarchy of resizeable windows and many windows that can be brought

up simultaneously, should be available. These features are useful to an

application with a lot of graphical output and the programmer is freed

from the burden of implementing window clipping and input control.

8. High-performance, high-quality support for text, two dimensional graphics

and imaging should be supported. Programmers can build up different sets

of graphics models on top of the X Window System in order to cater for

different application requirements.

9. The system should be extensible so that it is relatively easy to add exten

sions to it which are suitable for a particular application.

38

3 .4 Softw are H ierarchy

The X Window System is based on the client/server model. This is in answer

to requirements two and three discussed in the last section. Fig. 3.1 shows the

system structure of a typical X Window System.

3 .4 .1 X S erver , X C lient and X P ro to co l

X achieves device independence by providing a complete virtual “display” in

software. This includes the keyboard, mouse (and/or other pointing devices),

screen or screens and the controlling processor. An X server is a software program

used to control the display. It contains the main device-dependent part of the X

Window System and performs the following tasks:

1. allows access to the display by multiple clients.

2. interprets network messages from clients.

3. passes user inputs to the client by sending network messages.

4. draws two dimensional graphics.

5. maintains complex data structures.

An X client (application) is a program running on the X Window System making

requests of the server to produce graphics and receive user inputs.

Multiple clients can have connections open to a server simultaneously and a

client can have connections open to multiple servers at the same time. The

39

client and server might be resident on the same computer, or they may be very

widely separated but connected to a network. The essential tasks of a server

are to multiplex requests from clients to the display, and demultiplex keyboard

and mouse inputs back to the clients. A client communicates with the server by

sending packets of instructions, obeying a set of network rules, the X Protocol [66].

The communication takes place asynchronously and is dependent on the user’s

inputs, i.e. it is event driven.

Typically, the server is implemented as a single sequential process, using round-

robin scheduling among the clients [65]. The block- stream X Protocol is layered

on top of a reliable duplex (8-bit) byte stream to facilitate client/server commu

nication. The protocol requests generated by a client are variable-length data

packets, followed by a 16-bit field specifying length, and one or more bytes of

additional data. The added data might be numeric parameters and coordinates,

text string to be printed, or raw bit-map data in scan line order.

3 .4 .2 X lib , X T o o lk it, In tr in sics and W id g e ts

A client program is usually implemented using a library of more than two hundred

function calls and macros, the Xlib [67], which provides a procedure interface to

the X Protocol. A client calls procedures in the Xlib to send window management

and drawing requests to the server. The server sends event notifications to the

client in response to user actions and screen geometry changes. The Xlib queues

events and packages them into a record structure. An application periodically

polls the library for the next event.

The Xlib provides a powerful low-level interface but this flexibility introduces a

40

major drawback: it is hard to write even a simple program. Therefore, the X

Toolkit (Xtk) [68], was introduced to:

1. reduce the programming effort needed to write an X application. For ex

ample, a simple program which requires forty executable statements to

implement on the Xlib, took only just five using the Xtk [69].

2. allow user customization. User preferences, e.g. colours, fonts, ... etc., can

be specified in just a few lines of text in a user preference file.

3. cache data on the application side and minimize the latency introduced by

the round trip queues as an application makes a request to the server.

As X is policy free, it recognizes that no single comprehensive set of user interface

tools is likely to be acceptable for standardization. In order to maximize the

utility and acceptability of the new interface library, Xtk has been divided into

two separable pieces:

1. The Intrinsics Layer. This is a mostly policy free foundation upon which

widgets and applications are built. The layer contains functions and data

structures to:

• create, organize and destroy widgets.

• negotiate over screen real estates when a widget changes size.

• implement more sophisticated widgets built upon a few basic ones.

2. The Widget Set. A widget is a user interface component implemented using

calls to the Intrinsics and Xlib, e.g. a scroll bar. The Athena Widget Set [70]

was distributed to serve as an example of how commonly seen user interface

41

components can be written. Many applications use only basic widgets; a

few supplement these with application specific widgets. It is possible to

design different sets of widgets based on the same Xtk. Hence, the “look

and feel” of an application can be determined by the choice of a widget set.

3.5 F eatu res

3 .5 .1 E v e n ts and B u fferin g

An event is a packet of information generated by the server when certain actions

occur. Events can be generated in the following ways:

1. by the input devices. For example, moving the mouse pointer can generate

tens of events in a row.

2. by the changes in window status. For example, when part of a window is

obscured by another one, an event is generated.

3. by the clients connecting to the server. For example, a client might generate

an event to notify another client in order to initiate the transfer of data.

The server maintains one event queue, on which all events are placed. Different

types of events can be selected for each client. The Xlib maintains one event

queue for each client, on which the selected events are placed. When an event is

generated, it is placed on the server queue. Periodically, the events in the server

queue are transferred over the network to the Xlib queues. Thus, it is possible

that more than one client will receive a copy of the same event data if they each

42

select it. As the Xlib event queues are buffered, it is possible that an user action

will not get noticed by a client if there are too many events queued. Likewise,

a client’s requests are queued in its Xlib output queue and sent contiguously to

the server once in a while. Thus, delays often occur. For instance, the drawing

requests produced by a client will not appear on a window until the Xlib output

buffer queue is flushed and the requests processed by the server. Functions are

provided to let a client to manipulate its input and output event queues so that

it can:

1. search the input event queue sequentially for a particular type of event.

2. remove a particular event from the input event queue which might be

pushed back for later use.

3. wait for the next available event from the input event queue.

4. clear the input event queue by throwing away all the events.

5. flush the output event queue and force all the requests to the server imme

diately.

As events can arrive in any order, the structure of code used to handle them is

thus predetermined. Every program contains an event loop in which each event is

received and processed. Depending on the types of events received, the program

takes the corresponding actions. Each event is accompanied by a block of data

which can be examined to obtain the necessary information associated with the

event.

43

3 .5 .2 W in d o w s

An X server controls a bitmapped screen. In order to make it easier to view and

control many different tasks simultaneously, the screen is divided up into smaller

areas called windows. A window is a rectangular area that can display graphical

outputs and receive user inputs. Windows on the screen can be arranged so that

they are visible or so they cover each other completely or partially. There are a

few characteristics of windows:

1. The hierarchy of the windows is arranged like a tree. Hence, each window

has a parent, except the very first window, the root window, which is created

by the X server at start up. Though a child window may be positioned

partially or completely outside its parent window, all graphical outputs

that are outside the parent window’s boundary are clipped.

2. A window has a position, which locates the upper left corner relative to its

parent’s corner, a certain width and height, and usually a border. Since

several windows may have the same parent, a window must also have a

stacking order among its siblings to determine which window will be visible

if they overlap.

3. A window has characteristics referred to as depths and visual types, which

together dictates its colour characteristics. The depth is the number of

bits available for each pixel to represent colour (or grey scale). The visual

type represents the way pixel values are translated to produce colour or

monochrome output on the monitor.

4. A window can either be InputOutput or InputOnly. InputOutput windows

may receive inputs and may be used to display outputs. InputOnly windows

can only receive inputs.

44

5. A window has a set of attributes which control many aspects of the appear

ance and response of it. For example, the colour or pattern used for the

border and background of a window are determined by the attributes.

6. The graphics content of a window are not stored by the X server. A client

has to be able to redraw the content of an obscured window when it becomes

visible again. Otherwise, the content will be blanked.

3 .5 .3 W in d o w M an ager

The X Window System provides only the mechanism for implementing an user

interface, not the policy for determining how the interface should behave. Under

X, the policy can be provided by a separate program called “Window Manager”,

which is just an ordinary client program. It should be noted that it is not abso

lutely necessary to have a Window Manager present to supervise clients. In fact,

the clients should behave consistently regardless of whether a Window Manager

is present in the system.

Client programs have to negotiate with the Window Manger, which is responsible

for determining all matters of how the screen should be used. The clients should

offer the Manager “window hints” of their wishes. The Manager can then use

any available algorithms to satisfy these requests as fairly as it can.

A Window Manager can be used to emulate other window systems. For instance,

it is possible to make an X client to look like an application running under the

Presentation Manager [55]. Thus, the “look and feel” of an application can be

determined by the choice of a Window Manager.

45

3 .5 .4 R eso u rces

In order to reduce network traffic, it is necessary to restrict the flow of data

between the server and the clients. The X Widow System uses an integer ID

number to identify a resource which can be a window, cursor or font, ... etc.

Whenever an operation is to be performed on a window (or any other resource),

the ID of the window is used in one argument to the routines. Hence, only a

single integer representing a data structure is sent over the network with an Xlib

routine call, instead of the entire structure.

3 .5 .5 C olour

For each coordinates on a two dimensional screen, an N-bit pixel is stored. The

number of bits in a pixel value and how a value translates into a colour is hardware

dependent. One bit per pixel is used for the monochrome and between four and

twelve bits per pixel are used for the pseudocolour hardware. Each pixel value

is used as an index into a colour map and obtains red, green and blue (RGB)

intensities. The colour map can be changed dynamically, so that a given pixel

value can represent different colours over time.

X provides an interface for the programmer to write applications covering the

spectrum in a consistent manner. In addition, multiple applications can coexist

within a single colour map so that they always show true colour on the screen.

Hence, pixel values are not coded explicitly into applications and the server is

responsible for managing the colour map and colour map allocation is expressed

in hardware independent terms.

46

There are two ways to obtain pixel values by a client. In the simplest request,

the client specifies RGB values, and the server is responsible for allocating an

arbitrary pixel value and sets the colour map so that the pixel value represent

the closest colour the hardware can provide. A pixel value can be shared by

multiple clients and the colour map entry for it cannot be changed by the client.

The server also provides a colour database that clients can use to translate string

names of colours into RGB values tailored for the particular display. In this

way, an application is protected from variation in colour representation among

displays.

For the second request, writable map entries can be allocated by the server for

the client. There are three common uses of this request. One is simply to allocate

a number of “unrelated” pixel values. A second use is in imaging application,

where it is convenient to be able to perform simple arithmetic on pixel values.

A third form of allocation arises in applications that need some form of overlay

graphics so that it is possible to draw and then erase graphics without disturbing

existing window contents.

/

3 .5 .6 G raph ics and T ext

Graphics operations in X are expressed in terms of relatively high level concepts,

e.g. line, rectangles and fonts. This promotes device independence as well as

reducing network traffic.

There are two forms of offscreen images supported in X: bitmaps and pixmaps. A

bitmap is a single plane (bit) rectangle. A pixmap is an N-plane (pixel) rectangle,

where N is the number of bits per pixel used by the particular display. Arbitrary

47

size of bitmaps and pixmaps are allowed as long as the computer memory is large

enough. Bitmaps are primarily used as masks in clipping graphics. They are

also used to construct cursors and icons. Pixmaps are mostly used for storing

frequently drawn graphics and as temporary backing store for pop-up menus.

All graphics and text requests include a logic function and a plane-select mask

to modify the operations. Given a source and a destination pixel, the function

is computed bitwise on the corresponding bits of the pixels, but only on bits

specified in the plane-select mask. In the simplest case, a single source pixel is

taken to combine with every pixel in a rectangular region of a window. This is

used to fill a region with a colour. Depending on the logic function or masks,

different effects can be achieved.

X provides functions to draw arbitrary combination of straight lines and curved

segment. A line has attributes to determine how it should be drawn, e.g. solid

or dashed. For high performance text, X provides direct support for bitmap

fonts. An application can use an arbitrary number of fonts, provided that there

is enough computer memory. To achieve this, the client specifies a font name

and make a request to the server which then caches the font information on the

server side.

3 .5 .7 In p u t D ev ices

The X Protocol is designed for use with a mouse having up to three buttons.

An application can selectively receive events on the movement of the mouse and

whether each button is pressed or released. Each event contains the current mouse

coordinates, the current state of all button and modifier keys, and a timestamp

48

when the event occurs.

Clients can define arbitrary shapes for use as mouse cursors. A cursor is defined

by a source bitmap, a pair of pixel values with which to display the bitmap, a

mask bitmap that defines the precise shape of the image, and a coordinate within

the source bitmap that defines the “hot spot” of the cursor. A window is said to

contain the mouse if the hot spot of the cursor is within a visible portion of the

window or one of its subwindows.

For the keyboard, a client can selectively receive events following the pressing or

the release of a key. In order to promote portability, a key press is translated to a

key event first. Each key event contains the key code of the key that was pressed.

In order to bind more meanings to a key press, a mask is used to indicate which

modifier keys and pointer button were being held down just before the event. A

modifier key is a key like Shift or Control that can modify the meaning of a key

event. The keycode for each physical key never changes on a particular server,

but the key with the same symbol on it on different brands of equipment may

generate different key codes. Clients then translate the key event into a keysym

which is a defined construct that corresponds to the meaning of a key event.

Finally, a keysym can be translated to its ASCII value.

3.6 C onclusion

This chapter has described the history, design philosophy, software hierarchy

and general features of the X Window System. The reasons why the MMI is

implemented using X can be categorized as follow:

49

1. X is highly portable across a range of hardware. So, future upgrade of the

MMI only requires minimum changes.

2. X provides only mechanism but not policy in designing an user interface.

The “look and feel” of an application can be determined entirely by the

programmer. By adopting a different Widget Set or Window Manager, the

application can be made to emulate some other commonly available window

systems.

3. Overlapping and resizeable windows in a hierarchy are important for pre

senting complex data by placing less burden on the user’s short term mem

ory.

4. High performance, high quality support for text, two dimensional graphics

and images are useful in presenting graphical output.

However, X does have some drawbacks. For instance, X was not designed for

animation. So, it is inadequate in producing fast and flicker free animation.

The importance of animation and the method derived to solve the problem are

presented in Chapter 6: The Interface. Nevertheless, the X Window System

provides an excellent environment and versatile utilities to implement a powerful

user interface.

50

WorkstationClient 2
M W v V A

Client 1

Athena
Widget Set

Xt ToolKit
X serverX Lib

Device-independentX Lib

Operating system-dependent

Operating
.system

Operating
system

NetworkProtocol
packets
1- 1.1. >-►

KeyboardScreen Printer

Operating
system .

Network
Device
drivers

Client 2

Client 1

Display
screen Keyboard Mouse

Figure 3.1: Structure of a typical X Window System

51

C hapter 4

C om puter System Hardware

4.1 In trod u ction

Parallel processing has been used to implement the real time power system sim

ulators at Bath University [2,3,71], The simulation algorithms can be broken

down into a number of tasks which can be executed simultaneously on a number

of processing nodes. There are two advantages of using a multiprocessor system:

Firstly, the computing power can be scaled up by adding more processing boards

to the computer system without major modification to the simulation program.

Secondly, because of the inherent parallel nature of the simulation problem, a

relatively low cost multiprocessor system can be used to achieve satisfactory re

sults which might otherwise only be feasible on a very expensive single processor

computer.

The computer hardware used in the implementation of the MMI project is a lo

cally designed multi-transputer system. A nineteen inch rack is used to host a

number of processing boards. A maximum of sixteen boards can be accommo

dated. The connections of the boards are not hard wired. Instead, the boards

52

can be configured by the user in software.

The present five transputer rack is made up of the following processing boards:

1. Three T800 processing boards to provide the main computing power for

the system.

2. One link topology configuration board to configure the topology of all the

boards in the rack.

3. One I/O board to provide I/O services for the system.

4. One graphics board to provide high resolution bit-mapped graphics and to

receive inputs from a mouse and a keyboard.

Interprocessor communications among the boards can be achieved in two ways:

The first exploits the high speed transputer links [9]. The second makes use of a

locally designed backplane [72]. While the former is adequate for the requirements

of most parallel applications, the latter provides a fast and effective means for

massive data transfer.

Fig. 4.1 shows the architecture of the multiprocessor system.

This chapter presents the functionalities, structures and operations of the process

ing boards. In addition, the backplane system for interprocessor communication

is discussed.

53

4.2 T h e T 800 P rocessin g B oard s

4 .2 .1 M ain S tru ctu re

The T800 processing boards are the main processing units of the multiprocessor

transputer system and run the Helios Operating System [8]. Each board is made

up of the following components:

1. One Inmos T800 transputer [9].

2. One mega byte of DRAM.

3. Multiprocessor bus interface.

4. Local and multiprocessor bus arbiter logic.

5. High speed line drivers to connect the transputer links to the other boards

via the backplane.

Fig. 4.2 shows the block diagram of a T800 processing board.

The T800 transputer is a VLSI single chip computer. It is made up of a RISC

cpu which has a limited number of registers and simple machine instructions, 4

KBytes on chip fast SRAM, and four high speed DMA controlled serial links.

The links have a maximum operating speed of 20 Mbits per second and are

used for fast interprocessor communications. The address and data signals are

multiplexed on its 32 bit memory bus. A built in memory controller is used to

provide DRAM control and refresh timing.

Fig. 4.3 shows the internal functional block diagram of a T800 transputer.

54

The internal processor speed is link selectable and is generated by a 5 MHz

external clock. In this way, the the CPU clock speed can be scaled up to 25 MHz

with the peripheral circuits operating at 5 MHz, thereby avoiding the conventional

problems of driving a circuit running at a high clock speed.

The T800 transputer can be booted from either one of its four communication

links or from a ROM. The Helios Operating System is loaded up by a Tripos [73]

shell script file which brings up a I/O server from the Tripos environment. The

server then initiates the processing boards by sending bootstrap instructions to

them via the links.

4 .2 .2 In terp ro cesso r C o m m u n ica tio n s

Interprocessor communication between the T800 processing boards can be achieved

via the transputer links. Alternatively, the boards can communicate via the lo

cally implemented backplane which is described in the next section. Essentially,

the 32 bit transputer bus is connected to the shared memory bus via a bus

transceiver. In other words, each processing board can access the local memory

of another board via the backplane and regard all the available memory as a pool

of shared global memory.

Hence, there are three main types of memory access cycles:

1. Local memory accessed by the on-board T800.

2. Off-board memory accessed by the on-board T800.

3. Local memory accessed by an off-board T800.

55

A simple method was adopted to identify the address of each memory location in

each processing board as seen by an off-board processor. A unique number is as

signed to each multiprocessor transputer rack that houses the processing boards.

This provides a unique page within the whole memory span of the transput

ers. Each processing node has its own unique identity number within the page.

The most significant byte of the address location denotes the rack number and

the third most significant nibble indicates the identity number of the processing

board. As there are at most sixteen processing boards in the rack, all transputer

memory locations can be uniquely identified.

4 .2 .3 M em o ry M ap A rra n g em en t

The memory map of a T800 begins at 00000000H and ends at fffffffFH, of which one

MByte is used by the Helios Operating System. The TSOO recognizes 80000000H

as its base address and the rest of one Mbyte is paged onto the memory page start

ing at 80000000H and ending at 800fffffH. The top four Kbytes from 80000000H

to SOOOOfffH is not known to the Helios Operating System and can safely be used

outside the Helios environment. It contains various information for bootstrap

ping, house keeping services, and interprocessor communication semaphore.

4.3 L ink T op ology C onfiguration B oard

The Link Topology Configuration Board, LTCB, is used to allow full connectivity

to be achieved in the nineteen inch transputer rack with up to sixteen transputers.

The transputers can be configured by software in any arbitrary topology that is

best suitable for an application.

56

The LTCB is essentially a 64-way static transputer link crossbar. There are

two types of crossbar: dynamic and static. The dynamic crossbar allows link

configuration to occur during the execution of a program. Effectively, direct links

are established between all of the transputers. The static crossbar only allows link

configuration before a program is initiated. The links connected are effectively

a “hard” connection. Hence, the operating speed does not have to be high. In

addition, the data bandwidth of the data flowing through the transputer links

can be kept to a maximum and the delays in the links are only due to buffering

and switching hardware. As a result, it is cost effective to adopt a static crossbar

in the implementation of the LTCB [74].

The IMS-C004, or C004 in short, crossbar is specifically developed by INMOS [75]

for link topology configuration in a transputer system. It is a 32-link crossbar

which has thirty-two inputs and thirty-two outputs. The I/O can be connected

inside the C004 to form any combination of link paths. Hence, one C004 can

fully interconnect eight transputers together (Fig. 4.4).

The switch link is running at ten or twenty Mbits per second and has a worst

case delay of two bit-time. The link signals are resynchronized before output

and hence can be cascaded to any depth to form bigger switches. Switching is

achieved by thirty-two 32-to-l multiplexors which are controlled by thirty-two

6-bit latches. Five bits select the input to be connected to the output and the

sixth enables or disables the output.

A rack of sixteen transputers can be split into four groups of four. One C004 can

produce full interconnectivity for any two groups. Hence, six C004s are used to

connect all the groups together (Fig. 4.5).

57

The five transputer rack used in the MMI project is connected in such a way that

maximum practical connectivity is achieved. Fig. 4.6 shows the interconnection

of the transputers.

4.4 In p u t/O u tp u t B oard

The I/O board was designed and built by Hafeez [76]. It is based on the Philips

SCC68070 [77] microprocessor, and is connected to a number of external devices

in order to provide I/O services for the multiprocessor transputer system. A

bidirectional, two wire data line made up of an IMSC012 link adapter is used to

link the I/O board to the multiprocessor transputer system. Fig. 4.7 shows the

block diagram of the I/O board.

The SCC68070 is a 16/32 bit microprocessor which has the same instruction set,

programming model, internal mode as the more popular 68000 microprocessor to

provide software compatibility. It has a 16 MByte addressing range and a 68000

compatible bus interface operating at 10MHz.

A on chip Memory Management Unit (MMU) is used to support virtual memory

and to provide segment protection against illegal access.

A two channel Direct Memory Access (DMA) Controller is available to provide

fast data transfer. DMA channel one is connected to a Shugart Associates System

Interface (SASI) parallel bus which has a data transfer rate of approximately

4Mbytes per second. A 60Mbytes hard disk is connected to the interface to

provide mass storage while a tape streamer is used to back up the hard disk.

DMA channel two of the SCC68070 is used by the floppy disk controller DP8474

58

to transfer data to and from a 800Kbytes floppy disk drive which reads and writes

files in Tripos format [73].

For interrupts generated by external devices, two programmable auto-vectors are

available to register software routines to service them. This saves the CPU from

having to poll the devices constantly. In hardware, a serial interface is used to

connect the SCC68070 to the external devices.

The SCC68070 uses an Inter-integrated circuit (72C) bus interface to connect it

to a real time clock PCF8583 and an I/O expander PCF8574, which can be used

to provide a parallel centronic interface for a printer. The (72C) bus interface

is a two wire, bi-directional serial bus operating independently of the centralized

bus arbiter.

4.5 B ack p lan e

There are two methods that the T800 processing boards can use to communicate

with each other. The first uses a 32bit 80MBit per second multiprocessor bus, the

backplane, shared by the processing boards. The second exploits the link bus for

the T800 links. The first method was specially developed at Bath University to

provide a powerful means for interprocessor communication in a multiprocessor

environment.

The backplane runs at a clock speed of 20MHz and there are about 500 nanosec

ond interval between the address and data phases [72]. During that time, around

ten other bus accesses can be started and/or finished on the same bus signal

wires.

59

The backplane does not use any asynchronous handshake, address or cycle val

idation signals and is not customized for any particular processor. Each T800

processing board is connected to the backplane via I/O latching address and data

buffers. When a piece of information is put on the bus during an interproces

sor write cycle, it will only stay on for a short period of time. This allows the

information to be latched by all the T800 processing boards which are ready to

latch it at the time. On the other hand, when an interprocessor read is initiated

by a T800, the data return is allowed as a separate cycle, which can occur at

an indeterminate interval after initialization of the cycle. As a result, a variable

access time for read cycles is achieved.

As the bus access is interleaved, it is possible that many bus accesses are made to

the same processor. The problem can be solved by having two signals, SUCCESS

and FAIL. When a cycle appears on the backplane, all processors decode the

address of it. However, only one of them responds. If a processor has latched

the information and carried out the cycle, the SUCCESS signal is then set by it.

Otherwise, the FAIL signal is set instead. A failure leads to an automatic resend

of the cycle two hundred and fifty nanosecond later by the initiating processor.

4.6 B u s A rb itra tion

In order to achieve optimum arbitration speed (i.e. to decide which T800 gets

the next access to the bus), the arbitration mechanism has to be as fast as the

multiprocessor bus access mechanism. Instead of using a standard centralized

bus arbiter, a specialized distributed arbiter was developed. For processors with

difficulty in getting time on the bus, limited priority shifting is provided.

60

The four least significant bits of the arbiter control signals are used for the fixed

priority of a processor, which is set by the geographical position of the processor

in the nineteen inch transputer rack. The most significant bits are used to change

the processor priority under certain conditions. They are:

1. DATA - which makes sure that the priorities of the returning data phase

accesses are always high as a processor is waiting to receive the data.

2. FAIR - which indicates that a processor has failed for more than sixteen

time slots for trying to access the bus.

3. BDCST - which makes sure the rapid completion of the broadcast cycle.

A broadcast cycle is one which is used by a processor to broadcast data

to all other processors connected to the same backplane. Hence, the cycle

is always of high priority. When a cycle is initiated by a T800, all other

processors decode the present write cycle and pretend that it was meant

for them. The SUCCESS and FAIL signals are then returned as before. If

there is any FAIL signal, the broadcasting processor will then resend the

cycle. At the same time, the processors which succeed in capturing the

cycle will ignore subsequent broadcast cycles until a complete cycle occurs.

4.7 G raphics B oard

The graphics board is responsible for providing graphics output, handling mouse

and keyboard devices and serving as a T800 processing node. The board enables

the five transputer rack to function as a basic X Window System workstation [78].

It is made up of the following devices:

61

1. One Microcore board [79].

2. One T800 transputer with 4 Mbytes of DRAM.

3. An INMOS G178 colour palette.

4. An external mouse and a keyboard connected to the graphics board via the

Microcore board.

Fig. 4.8 shows the arrangement of the graphics board.

4 .7 .1 M icrocore B oard

The Microcore Board was developed by Philips Components Ltd. as an evaluation

circuit. It is made up of the following main components:

1. A SCC68070 [77] microprocessor running at 9.83 MHz to handle an external

mouse and a keyboard.

2. A VSC [10] to output high resolution bit-mapped graphics.

3. One Mbyte of display memory to hold the bit-mapped graphics.

4. A 64 Kbytes EPROM to hold an assembler program, MouseKey, which

is responsible for setting up the VSC registers, polling mouse inputs and

servicing keyboard interrupts. The program is listed in Appendix 6.

62

V ideo System Controller (VSC)

The VSC is a VLSI device integrating a 68000 family system controller and a bit

mapped colour graphic display controller. It offers full bit-mapped organization

and can directly drive up to 2 Mbytes of RAM. The on-chip DRAM controller

can support up to 1.5 Mbytes of DRAM and controls access to the unspecialised

system of video DRAM. System ROM and peripherals are accessed by chipselect

signals. In addition, a coprocessor interface is provided to allow very high speed

memory access and manipulation.

As well as providing a variety of bit-map graphics manipulation, e.g. mosaic

graphic effects, the CPU can access any memory locations even during active

video display lines. Hence, system performance is greatly boosted.

The VSC is programmable via its registers and the local system is set up to have a

display resolution of 720x480 at four bits per pixel, operating in interlaced mode.

4 .7 .2 T 800

The T800 functions in a manner similar to that of the transputers on the other

T800 processing boards described in the previous section. In addition, it is also

responsible for writing bit-mapped graphics to the VSC for display and receiving

mouse and keyboard data which are used by the X Window System [64].

There are two banks of memory: One bank has 4 Mbytes. The T800 memory is

paged into two hundred and fifty six pages each of which is 16 Mbytes. The 4

Mbytes lie within the local page which starts at 80H and is used for running the

63

Helios operating system [8]. This bank is refreshed and maintained by the T800.

The second bank of 1 MByte is used as display memory which is refreshed by the

VSC. The T800 can access this bank via handshake on the VSC’s coprocessor

interface. To the T800, this display memory starts at 00H. In addition, the 68070

also places the mouse and keyboard data into specific memory locations within

the display memory for the T800 to read and write.

Fig.4.9 shows the memory arrangement.

4 .7 .3 G 178 C olour P a le t te

The colour palette, INMOS G178 [80], is used for flexible RGB output by fine

tuning the intensities of the three primary colours: red, green and blue. The

palette contains a colour lookup table in RAM which appears in the TSOO’s

logical memory page 01H. Hence, the T800 can read and write into the table. As

four bits per pixel is used for the VSC, only a maximum of sixteen pixel values

can be valid at a time. In other words, only sixteen colours can be seen on the

screen simultaneously. This is adequate in displaying the simulation data.

4 .7 .4 M ou se

The Logitech Series Two mouse [81] is a programmable serial pointing device

with three buttons. The assembler program, MouseKey, is used to handle mouse

inputs activated by the user. When initiated, MouseKey enters an infinite loop

and polls for mouse inputs. When the mouse is activated by the user, it will

transmit a protocol of messages to the 68070 via the UART at the baud rate of

one thousand two hundred. When the 68070 has correctly received an event, the

64

data is transferred to a sixteen bit address and an eight bit flag is set. Three

sixteen bit addresses are used to hold the x, y positions and button state of the

mouse. All the data and flag locations are pre-agreed between the 68070 and the

T800. The flag is reset by a server running on the T800 once the data is read

and the whole process then repeats itself.

4 .7 .5 K ey b o a rd

The keyboard is IBM AT [82] compatible. The assembler program, MouseKey,

is used to gather data from the keyboard. Each key press generates a unique

code and when the key is released, bit seven of that code is set. When there

is a key event (either a key press or a key release), the keyboard generates an

interrupt to the 68070. Level four autovector is used by the processor to handle

the interrupt. The vector is then disabled to prevent the processor from further

interrupt. When the serial data has been converted into parallel form and read

by the 68070, it is placed into a sixteen bit address and an eight bit flag is set.

The data address and the flag locations are pre-agreed between the 68070 and

T800. The flag is reset by a server running on the T800 once the data is read.

After reactivating the interrupt vector when data is written, the 68070 is ready

to accept new keyboard inputs.

4.8 C onclusion

The structure of the computer hardware used in the project has been described

in the above sections. The computer is built as a multiprocessor system with a

number of transputer processing boards and some additional functional boards.

65

The T800 processing boards provide the main processing power for the system.

The I/O board provides the I/O facilities. The graphics board provides high

resolution graphics and is also responsible for handling a mouse and a keyboard.

A link topology configuration board is used to enable the system to be configured

in any arbitrary ways in software by the user. Interprocessor communication is

achieved either by the high speed transputer links or by the backplane. The

computer system is readily scalable and is highly cost effectively for parallel

processing. Because of the parallel nature of power system simulation algorithms,

the multiprocessor system provides the best solution for the problem.

66

32 bit 80 Mbyte per second Multiprocessor Bus

Bus
Interface

Bus
Interface

Bus
Interface

1 M Byte
DRAM

1 M Byte
DRAM

1 M Byte
DRAM

1 M Byte
DRAM

Link
Topology

Configuration
Circuit

T 8 0 0 T 8 0 0 T 8 0 0 T 8 0 0

I
Links

I
Links Links Links

4 M Byte
DRAM

Graphics
Board

Micro
Core
Board

6 8 0 7 0

VSC

T800

Links

Board

Transputer Link Bus

Mouse
Keyboard

RGB
output

Floppy Disk
Drive
Hard Disk
Drive and
Streamer

Terminal

Figure 4.1: Architecture of the multiprocessor system

67

Multiprocessor Bus

Bus Control
Signals

Loc Ext Req

Local
Bus Ext Loc Ack

Exit
Loc Acc

Loc
Event

Control and Arbitration Signals

External to
Local Cycle

Buffers

Local to
External

Cycle Buffers

Local
Register

Set

Local
Decoder

T800

Bus
Arbi te r

1 M Byte
Local

Memory

Local
Arb i te r

Shared Memory Bus Buffers

Local Access
Buffers

Transputer Link Bus

Figure 4.2: Block diagram of a T800 processing board

68

6 4 bit Floating Point Unit

Systems
Services —

3 2 bi t
processor

Link
Timers Services

4 K Byte 4 Link
on-ch ip RAM Interface

External
Memory Event
Interface

Serial
Links

Figure 4.3: Internal functional block diagram of a T800 transputer

69

From
Transputer 1

From
Transputer 8

l ink 1n 0 l ink ou t 0
1 1
2 2
3 3

C004

l ink in 2 8 l ink ou t 2 8
29 29
30 3 0
31 31

To
Transputer 1

To
Transputer 8

Figure 4.4: One C004 interconnecting eight transputers together

70

C004C004

C004

C004

C004

C004

G4

Each line represents 16 transputer links

Figure 4.5: Six C004s interconnecting four groups of transputers

71

00

Figure 4.6: Interconnection of the five transputer rack

72

Memory data
and address

data

RS 232

C Bus

VS C

128 K
ROM

6 8 0 7 0

I/O
Expander

1 B y t e DRAM

F l o p p y D i s k
I n t e r f a c e

R S 2 3 2 - C
L e v e l T r a n s l a t o r

Link
A d a p t o r

R e a l T i m e
C l o c k

P a r a l l e l
C e n t r o n i c
I n t e r f a c e

S A S I B us
I n t e r f a c e

To the Hard
Disk and Tape
Streamer

To the Floppy
Disk Drive

Link Out

Link In

To the
Termina

To the
Printer

Figure 4.7: Block diagram of the I/O board

73

Links
(in/out)

To the
Mouse

To the
Keyboard

System
Bus RGB

Output

6 8 0 7 0

VSC

T 8 0 0
Control
C i rcu i t s

Data
B u f f e r s /
La tches

1 M Byte
DRAM

Info
B u f f e r s /
La tches

Colour
P a l e t t e

Keyboard
In te r f a c e

Mouse
I n te r f a c e

Video
DRAM

Figure 4.8: Arrangement of the graphics board

74

Full T800 Map (4G)

VSC Map (4 M)

✓ 003F FFFE

Bonk 4
includes internalj f

VSC registers
[003F FFCO - 003F FFFE]

Bonk 3

Bank 2

Video and
System RAM

(0.5M)

Bank 1

V "
\

oo\o 0000
\
\

1 (Micro-core)
\ 16 M

0020 oboo
\
\
\

16 M

'7FFF FFFF

7F

7E

7D

Page 00

0010 oooo \

0000 0000_

i n

4 M

4 n

4 M

4 n

OOCO 0000
\

\

0 0 8 0 ^ 0 0 0
\

\
0040 0005

\

0000 0000

Lower 1
only available

6 bits 4 Mb>1es aPPear
‘reflected’ 4 times

16 n

16 M

05

04

03

02

01 (DEC2)
00 (VRAM)
’ ” ” 0000 0000

Page 80 (Local) 16 M 16 M

Local Map (1M)

Local RAM
(1 M)

8000 OFFF
\

8000 0000

I

BOFO 0000
\80E 0 0000

800FFFFF

0040 0000 v
0 0 2 0 0 0 0 0 i00 0 00008000 0000 <a0J20J)QPQ. _

16 M

16 M

16 M

89
88
87

86

85

84

83

82

81

T800 base
address (Local)

80
\ /

8000 0000

4 Kbytes on-chip
SRAM

1 Mbytes appears 256 pages of
‘reflected’ 16 times 16 Mbytes, defined

by Mem AD24-31

Figure 4.9: Graphics board memory arrangement between the T800 and VSC

75

C hapter 5

T he H elios Operating System

5.1 In trod u ction

The choice of an operating system is relatively limited once the choice for the un

derlying computer hardware has been decided. The Bath mulitprocessor system

based on the Inmos T800 transputers 1 naturally leads to two choices of operating

systems:

1. Transputer Developement System (TDS).

2. Helios Operating System [8].

TDS is implemented in Occam [83] which is the native language of transputers.

However, Occam is not very popular among other processors other than trans

puters. This seriously undermines the portability of the Simulator and a total

rewrite of the software might be needed in the future. Hence, TDS was not

considered as a viable option.

1 Described in Chapter “Computer System Hardware”

76

Helios was developed by a software company, Perihelion Software Limited, which

has a close working relationship with Bath University. The earlier version of

the Simulator was developed under the Tripos operating system [73] which some

members in that company were involved with. Helios is in itself a powerful

operating system with advanced features as expected from a modern operating

system. The native language of the system is “C” which is a very popular high

level language [84]. Programs developed under Helios are then portable across a

spectrum of computer hardware and operating systems 2. Hence, it is only natural

to adopt Helios as the new operating system to implement the next version of

the Simulator.

The success of Helios among transputer users can be attributed to its advanced

features and the facilities it provides to help to develop parallel programs. This

chapter examines the design philosophy, structures and features of the operating

system in detail.

5.2 O verview

5.2 .1 D e s ig n P h ilo so p h y

Helios is a distributed operating system designed for multiuser, multiproces

sor systems. Although it was originally developed for transputers based multi

processor computers, it has been ported to a range of other computer hard

ware [8]. The hardware can be a powerful single processor workstation or a

network of processors. SUN [85] is an example of the former while the Bath

2 A version of the Simulator has been ported to the Apollo workstation running the Domain
operating system

77

multiprocessor system 3 is an example of the latter.

Essentially, a Helios system is made up of a group of processing nodes, communi

cating and collaborating via the interconnecting network. Local processor groups

are collected together to form a larger, hierarchical network. Auxiliary devices

such as disk drives and printers can be connected to any clusters of processors

and shared by every processing node in the network. Processors within a Helios

system are not tied down to one user. Instead, they can be allocated dynamically

so that the system can be expanded and modified easily with a minimum loss in

performance.

Helios provides a consistent and uniform mechanism for accessing resources. For

instance, identical system calls, such as Create, Locate and Open, can be used

to manipulate processors, files and programs. This is achieved by writing system

tasks that adopt a consistent server interface and obey a set of well defined

protocol, the General Server Protocol.

To promote hardware portability, Helios hides the distributed nature of the com

puter architecture from the user. This layer of transparency enables a user to

run parallel programs without prior knowledge of the processor network. Thus,

carefully constructed programs can run across a platform of hardware without

any software modification.

3Described in Chapter: “Computer Hardware”

78

5.2 .2 S tru c tu re

Helios is made up of two major layers: The inner layer, Nucleus, runs on each node

of the network and supports resource, communication and task management. The

outer layer, User Layer, is made up of system servers and user programs.

The Nucleus consists of a few libraries and tasks. Its core is the Kernel which

supplies the most elementary functions to the operating system. The Kernel is

made up of the library, KernelLib, and some independent system processes. As

a Nucleus must be present in every processing node, it is kept reasonably small.

All higher level supports are implemented by servers and run on the User Layer.

The User Layer is also made up of a few libraries to support an environment

to run C programs [84]. Servers are available to provide some operating system

level facilities to access the underneath computer resource. For instance, the

Network Server (NS) and the Task Force Manager (TFM) are used to let a user

utilize the entire network in a transparent way. A user interface, Shell, is situated

near the top of the User Layer. This is responsible for interpreting ASCII string

commands and providing an Unix like environment for accessing the operating

system [63]. User tasks are located right at the top of the User Layer.

In practice, Helios is built on a number of interacting tasks and a collection of

libraries to support them. These tasks and libraries are distributed among the

Nucleus and the User Layer. Details are described in the following sections.

79

C lient/Server M odel

Depending on their functionalities, tasks are categorized as clients and servers.

Servers are responsible for controlling the hardware resources and clients are used

to interact with servers to provide services to higher level tasks. A set of well

defined protocols, GSP, is used to regulate the communications between clients

and servers. Each server has a Dispatcher process, which waits for requests on

its server port, and several processes to actually carry out the services required.

The GSP allows servers to be stateless so that they are not affected by crashes

and communication losses. This makes Helios more robust in a multiprocessor

environment. If a request is made to access an object, it follows the GSP. Fig.

5.1. shows the control vector of a request. The first three fields of the structure

give offsets into the data vector which contains ASCII strings that define the

object and its context. This capability is used by a server to check if a client

has authority to access the context object. If a client has no capability, then no

context name is given and the target name is given in null.

Some examples of the Helios servers are the Processor Manager (ProcMan) and

the Loader supported at the Nucleus layer. Both are described in more detail in

Section: “Servers”.

Libraries

The libraries provide procedural interfaces to the operating system. The run time

libraries are situated at the highest level. The Posix library is used to provide

Unix compatibility so that the user can port existing programs from a Unix to

80

a Helios environment. Thus, a wealth of software is opened up as Unix is a well

established operating system, making Helios more acceptable to new users.

As most of Helios is implemented in C, a CLib is provided to support standard C

programs. The floating point calculations are supported in FpCLib. The library,

FpLib is a processor dependent floating point library used by FpCLib. However,

a user can choose to write customized libraries and link them in place of the

standard libraries.

A general interface to the operating system is provided by the SysLib which is

described in the Section: “Nucleus”. The server end of the GSP protocol is

supported by a set of procedures in ServLib. UtiLib has various procedures such

as string manipulation and debug supports. The Kernel has its own library,

KernelLib, which implements the lowest level operating system procedures and

it is described in Section: “Kernel”. As the Kernel has to deal with the hardware

directly, some of the routines in KernelLib are written in assembly language.

Nam ing

Every item in a Helios network is regarded as an object. A naming system is

used to uniquely identify each object and the advantages in this approach are [8]:

1. Any objects, e.g. tasks or user files, can be accessed in a consistent manner.

2. No specific knowledge about the network topology is required from the user.

3. With sufficient authority, all network services are available to the user.

4. Network extensions and modifications are dynamically accommodated.

In order to ensure that each object is unique, an unified naming scheme is im

plemented by Helios. A local name table is maintained by the Nucleus in each

processor so that all the objects in the processor are contained. The tables are

arranged hierarchically, just like a conventional hierarchical file system. Like the

Unix operating system, files are grouped together into directories and directories

are grouped together to form higher level directories. The root directory is situ

ated right at the top. In Helios, the Unix concept is extended to include all the

objects in the network. Each object is uniquely identified by its position in the

hierarchy. A 32-bit descriptor is associated with each object name in the name

table so that messages can be relayed to a server port and be serviced.

An example of a hierarchical network is shown in Fig. 5.2 The network is made up

of two subnetworks, group A and group B. In order to merge the two subnetworks

together, a higher node is inserted as the parent of group A and group B. The

original names of the two groups need only minor changes. For example, the

printer in group A was named “/ GroupA /02/printer”. In the merged network,

the new name is then “/SiteA/GroupA/02/printer” . There can be more than

one object with the name “printer” and each one can be uniquely identified as

the objects are distributed in different positions in the hierarchy.

5.3 T h e N u cleu s

The nucleus is the core of the Helios operating system and it is copied to every

processor in the network. It is the minimum system that must be present in every

processing node. The main purpose of the nucleus is to control the resources of

a single processor and to integrate them into the global network. As the nucleus

is present in every processing node, it is kept reasonably small for efficiency

82

purposes. Hence, it only implements the most basic system support. Higher level

system services such as file servers, resource managers and distribution of parallel

tasks are implemented as high level servers which are added onto the nucleus.

The nucleus is made up of the following main components:

1. Kernel

2. System Libraries (SysLib)

3. Loader

4. Processor Manager (ProcMan)

5. Input Output Controller (IOC)

The structures and functions of these components are described in the following

sections.

5.3.1 T h e K ern el

The Kernel is directly responsible for managing the hardware resources of a pro

cessing node. It contains KernelLib, which is a library of low-level procedures,

and a few independent system processes, e.g. RAM disc server, FIFO server, to

provide the following services:

1. Memory Management

2. Semaphores Management

83

3. Communication Primitives Support

4. Task Management

5. Event Handling

6. List Management

M em ory M anagem ent

A processing node’s memory is made up of a number of blocks which are collected

together and organized into larger chunks called pools. When the system is

booted up, all the free memory is collected into a pool, called the FreePool.

When a task is created, the Kernel allocates a small pool from the FreePool and

gives it to the task for its own use. When the task is finished, the Kernel combines

the task pool with any other free memory blocks which are contiguous to it and

puts them back to the FreePool.

Sem aphores M anagem ent

In a multiprocessor environment, it is important to have a mechanism to protect

critical data and to synchronize processes. A semaphore is often used for such

purposes. Basically, a semaphore is just a counter which allows access to it by a

single process one at a time. The process of reading or writing to the semaphore

is performed in a single indivisible operation. The Kernel provides two routines,

Wait and Signal, to increment and decrement a semaphore counter respectively.

If the semaphore counter is decremented to a value smaller than zero by a Wait

84

operation, the task is suspended. Similarly, if the semaphore counter is increased

to a value greater than zero, the task is restarted.

C om m unication Prim itives Support

Helios uses message passing as the main means of communication and it is the

lowest level of communication implemented by the Kernel. The communication

provided is asynchronous, “unreliable”, blocking and point to point. Error check

ing or re-transmission are not supported at the Kernel level. Instead, they are

the responsibilities of higher level procedures.

There are two primitives for transmitting and receiving data: PutMsg sends a

message to a port, which is a software entity identified by a 32-bit descriptor,

PORT, in the port table. GetMsg receives a message from a local port. There

are two types of message passing: The first only involves processes and ports on

the local processor. The second might involve a number of intermediate ports for

relaying a message from a local port to a remote port on another processor. The

detail of communication is explained in more depth in Section: “Communication

Methods in Helios”.

Task M anagem ent

The Kernel provides procedures for initiating and killing tasks. The tasks are

created and manipulated in the Nucleus level by the ProcMan and do not run at

the Kernel level.

85

In order to create a task, the processor loads the program image of the task in to

the memory, and the Kernel routine InitTask is called. This routine allocates the

stack, heap memory and the static data from the image header and the module

header respectively. The module initialization code is used to initialize the static

data. A module table is used to allow sharing of code segments by different tasks

by containing an entry associated with each module.

The Kernel routine, KillTask, is used to terminate all the processes belonging to

a given task.

Event Handling

The Event signal line is the only external hardware input on the transputer other

than the four links. This acts like an interrupt and is shared between many

devices as there is only one event signal.

The Kernel routines, SetEvent, is responsible for installing an event handler rou

tine. A high priority kernel process waits for events to be signalled. When an

event is raised, the event list is scanned and the relevant event handler is called in

turn. To avoid event handlers from being suspended, direct calls to the message

routines are prohibited. The kernel routine, RemEvent, is used to remove an

event handler from the event list.

List M anagem ent

To provide efficient dynamic data management, the kernel data is arranged into

a number of double-linked lists. As a by product, the routines used by the Kernel

for internal data link-lists management are made available to the user.

A list is made up of nodes (Fig. 5.3). In practice, the head points to the first

node and the tail points to the last node in the list. The earth node is used to

make sure that none of the nodes in the list has a null pointer and avoids special

cases in list handling routines. A node can be used to form the start of a larger

data structure so that a number of these structures can be linked together.

Routines are provided to initiate a list, insert a node before or after a given node,

remove a node, add or remove a node to the head or tail of a list, walk through

a list and apply a function to each node, and walk through a list and search for

a node which satisfies a certain criterion.

5 .3 .2 S y s te m Library (SysL ib)

SysLib is a resident sharable library which provides a general interface to the

operating system services. These services are similar to those provided by the

Unix system calls [63]. To promote portability, this library is independent of any

programming language. In fact, many SysLib procedures are only higher level

interfaces to the underlying low level message interactions.

The main task of the SysLib is to interact with server processes. It directs requests

to the IOC and operates a few small housekeeping functions such as monitoring

87

the system resources allocated to a task and releasing them to the system pool

when the task is finished.

5.3 .3 L oader

The Loader is an autonomous process responsible for loading programs and data

structures into a processor’s memory. A directory interface is supported to ex

amine and manipulate all loaded objects.

5.3 .4 P r o c e sso r M an ager (P r o cM a n)

The ProcMan is an autonomous process responsible for managing the hardware

resources of a processor. It prepares the underlying structure necessary to run

a task before it is created. During the lifetime of a task, it is managed by the

ProcMan. When it dies, the ProcMan will tidyup all the resources used by the

task. A standard directory interface is provided by the ProcMan to examine and

manipulate the running tasks. The ProcMan is also responsible for creating a

name table for all the objects, e.g. tasks associated with the local processor.

The table is used by the IOC to search for an object (more details in Section:

“Naming” and Section: “IOC”).

Special attention is required from the processor if an exception occurs, e.g. stack

overflow, arithmetic overflow and console attention. A signal is sent to the Proc

Man responsible for the task. The ProcMan then reports the exception to the

program by invoking an exception routine provided either by the runtime system

or by the program itself.

5.3 .5 I /O C on tro ller (IO C)

When a task is created, the ProcMan also spawns an internal IOC process for it.

The process is responsible for handling I/O requests from the rest of the network

on that task.

For every processor, there is a name table containing all the names of the objects

associated with it. All IOCs on the processor can access the table. When a

request is made to an IOC about an object, the Controller will try to locate the

name of that object in the name table by interacting with a server, Name Server.

The server is in fact just a child process spawned by the IOC when an access

to the name table is needed. If the search is successful, the request is passed on

to the server whose port is indicated in the table entry. Then, the object can

be accessed by the server. However, if the object name is not present, the IOC

will initiate a distributed search amongst the neighbouring processors until either

the name is found or not. Sometimes, the search will propagate throughout the

entire network. When the name is finally located, an entry for it is created in the

name table saving any future search for the object.

An IOC process is also created for each link of a processor. The process is used to

respond and propagate distributed search requests. It also functions as an agent

for tasks in the remote processors when they need to access objects that are local

to the IOC.

5.4 C om m u n ication M eth od s in H elios

There are four levels of communication methods available in Helios:

89

1. Language Level I/O . This is the highest communication level and is highly

language dependent. A stream is opened for a file with a specified name

which is later used as an identifier to allow data transfer to or from the

file. The data recovery is high and hence the routines in this level are used

to form a higher level interface for the data communication between two

Helios objects.

2. Posix Level I/O . The routines in this level are used for data communication

between two Helios objects. If a file is used to transfer data to or from it, a

file descriptor is created to identify the underlying file stream. If the data

is being read from or written to a task, then a pipe or a FIFO is associated

with the file descriptor. An error recovery mechanism is also available.

3. System Level I/O . The routines here use Helios streams for data commu

nication. Error recovery and data integrity checking are also available to

safeguard communication. Although the overhead of these routines might

be high, programs written with them are more portable and safer.

4. Kernel Level I/O . This is the lowest level of communication supported by

Helios. They provide a means of fast communication and are supported in

the Kernel level. More detail is shown in the next section.

The communication overheads in the case of a transmitter and a receiver re

siding on adjacent processors using the above communication methods can be

summarized in the table below [86]:

Table 5.1: Communication performance using Helios primitives
Message size

(bytes)
Posix level
read /write

(micro second)

System level
Read/Write

(micro second)

Kernel level
GetMsg/PutMsg
(micro second)

4 1110 1100 125

90

5.4.1 K e rn e l L evel I /O

Helios M essage Structure

A Helios message is made up of three parts: a header, a control vector and a data

vector (Fig. 5.4). Both the destination and the reply ports of the message are

specified. The maximum amount of data that can be contained in one message is

64 KByte. If the amount of data to be transfered is variable, the data size should

be added into the DataSize field. As the message body is divided into control and

data parts, the message can be transmitted from or received into different areas

of memory. Either or both of these portions of the message might be missing.

Helios Ports

A port is a software entity that is created by the Kernel to make message passing

transparent to the user. A port table is used to hold all the ports available

to a processor and each port is identified by a 32-bit number, PORT (Fig. 5.5).

“Index” is used as a word offset into the port table. “Cycle” is used to differentiate

between the states of the port as it might be reused over and over again for passing

different messages. “Uses” is used for garbage collecting ports which are unused

as a program is crashed or failed to tidyup.

There are two types of ports: The first is a local port for messages communicating

between processes on the same processor. The second is a surrogate port for

relaying messages from a remote process to another one on other processor.

91

Com m unication Prim itives

There are three message passing routines supported at the Kernel level:

1. NewPortQ.

2. PutMsg(MCB).

3. GetMsg(MCB).

When a program needs a new port, it calls NewPort to locate an unused slot in

the port table. After initialization, the routine returns a descriptor for the port.

If there is not a free slot in the table, the routine looks for the least recently used

slot and reuses it. In order to maximize the time elapsed between a port being

freed and its slot being used, the slots are allocated in a cyclic order.

Before a message can be sent, it must be initialized to a special format. For that

purpose, InitMCB and a set of message marshaling routines are used to prepare

a Message Control Block (MCB) for a piece of data (Fig. 5.6).

PutMsg first checks the validity of a port descriptor in the port table. If it is

correct, the message header is transmitted on the port channel, followed by the

control vector and then the data vector. As it takes a while to transm it a message,

some processes might not be able to wait. Hence, a timeout is specified in the

MCB header. Upon expiry of the timeout, the routine returns with an error code.

A timeout of -1 makes the routine waits for an indefinite period of time.

GetMsg checks the port descriptor contained in the MsgHdr.Dest field and waits

for a message header from the channel. It then receives the control vector and

92

data vector according to the values of MsgHdr.ContSize and MsgHdr.DataSize

respectively. Similar to PutMsg, GetMsg also operates with a timeout and a

timeout value of -1 causes the routine to wait indefinitely.

If a program can not afford to wait for the message transmission to finish or

timeout, in the case of a failure, it should spawn a child process to perform the

communication. The parent process should be allowed to attend to some other

jobs. Moreover, a port can be shared by several processes but only one of them

can be active at one time. Hence, a program which has to wait for messages on

more than one port has to spawn a child process at each port.

Network M essages

If a message is destined for a port on another processor, it must be relayed over

more than one port. The structure of such a relay port, Surrogate Port, is shown

in Fig. 5.7. The mechanism for transferring such a message is as follow:

The Helios interprocessor communication is based on the transputer link struc

ture. A Link structure is associated with each serial link. A high priority Kernel

process, called Link Guardian (LG), is responsible for controlling each link. As

messages have to pass through a hardware link to a neighboring processor, the

LGs effectively control the network message traffic.

When a message is sent, PutMsg detects the types of the destination port. If the

message is meant for a local port, everything behaves as described in the previous

section. However, PutMsg behaves differently if the port is not a local one.

93

After being granted a link, PutMsg transmits the protocol header byte, MsgHdr

structure, control and data vectors, if any are present. When the protocol header

byte and MsgHdr header are intercepted by the LG, the reply port in the header is

replaced by the descriptor of a newly allocated surrogate port in the port table.

The surrogate port holds all the information needed to route a reply message

to the originating processor from the destination port. LG then looks up the

destination port in the port table and its type is examined. If the port is a local

one and a receiver is waiting for the message, LG sends the header to the receiver

and waits for the control and data vectors to be taken by the receiver via the

link. Then LG resumes control. If there is no receiver present, the message is

put into a buffer temporarily and queued for later delivery. If the destination

port is a surrogate port and the next link is available, LG then transmits the

protocol byte and message header. The control and data vectors are received

simultaneously and are transmitted down the link when it is ready. If the link is

busy, the message is stored into a buffer and queued for later transmission. The

message is thrown away if no buffer is available.

When there is too much traffic, a message could be thrown away. Then, an

exception message is generated and sent back to the reply port. Although the

LG makes slightly more effort in delivering the exception messages, they might

still be lost if the network traffic is too heavy.

5.5 Servers

The system servers, Network Server (NS) and Task Force manager (TFM), are

fundamental to the network management of a distributed Helios system. The

Host Server is valuable in providing I/O facilities to a Helios network. The three

94

servers are described in this section.

5.5 .1 N etw o rk Server (N S)

The Network Server is used to initiate and control the Helios network. It is

distributed hierarchically among the network with each of its separate component

responsible for each subnetwork.

A text file contains a description of the physical configuration of the network,

the type of processor in each processing node, any special hardware attached to

a node and how each node is connected to the other nodes. A program, called

rmgen, is used to generate a resource map from this file. The NS will configurate

the Helios network according to this map.

5 .5 .2 Task Force M anager (T F M)

The Task Force Manager is a hierarchically distributed server. It is made up of a

number of identical servers which are distributed throughout the Helios network.

Each of these servers are responsible for controlling a TFM portion of the whole

network.

The TFM maintains detailed information about the resources that it controls. It

also gathers information about the relative loading of the subnetworks and the

connectivities between them. The TFM has the capability of allocating jobs for

each subnetwork and is responsible for load balancing. It processes all client level

program execution requests and analyses the current state of the network. The

component tasks are then distributed throughout the network according to the

95

following criteria: Optimal allocation of resources; polarization of different user

task force; maximum efficiency of interprocessor communications; maximum par

allelism. As Helios does not support dynamic load balancing, the best mapping

must be achieved before the task force 4 is executed.

After a task force has been scheduled, the TFM then keeps track of each compo

nent task. When all components have been terminated, the client is informed.

5 .5 .3 H o st Server

Helios can be bootstrapped from ROM, disk or a host machine which is used to

provide I/O services to the Helios network, e.g. console and disk access. The Bath

system uses a Tripos [73] system as the host machine. A host server runs under

the Tripos operating system and is responsible for booting up Helios, emulating

the host machine as a Helios node, providing I/O services and debugging support.

When booting up Helios, the Host Server will take the Helios Nucleus image from

the disk and load it on the Boot Root Node via the communication link. Once

the image has been successfully loaded, the processor will jump to the KStart

function in the KernelLib and start up the Kernel. After that, the rest of Helios

is loaded on that node. A LinkGuardian process will be started by the Kernel in

each link and one of them will send back a message to the Host Server to indicate

a successful boot.

Once Helios has been booted up, the Host Server is ready to receive messages

from the rest of the network. The Server is made up of a main loop which waits for

4 A task force is a collection of tasks

96

messages, and a few servers which deal with objects like the file system, console,

etc. Messages will be forwarded to the appropriate server as they come in.

The Host Server has a server called IOProcessor which emulates the host node

as a Helios node so that the node does not need special treatment.

As well as providing I/O services, the Host Server also supports a certain amount

of debugging. This includes examining the processor memory and debugging

program code. The Kernel trace vector, which is an array in the Kernel, is

also interpreted by the Host Server so that system processes can read and write

information in the vector for tracing program error.

5.6 P arallel P rogram m ing S u p p ort

There are two ways to run parallel programs under Helios:

1. using Component Distribution Language (CDL).

2. writing parallel algorithms with Helios libraries.

5.6 .1 C D L

CDL is used for coarse grained parallel problems. In each case, there are several

programs running separately and communications between them are via pipes.

For example, the output of a compiler can be directed via a pipe to a linker when

a program is being compiled. Thus, the whole process is speeded up.

97

There are two ways that CDL can be used: The user can either explicitly declares

the components of each task in the task force, or write a CDL script to define the

task force. The CDL syntax is an extended version of the Unix C Shell [63]. In

addition to the Unix pipe constructor, four other parallel constructors are used:

reverse pipe, simple parallel, subordinate and farm. A complex task force can be

described precisely by using these constructors.

5.6 .2 P ara lle l A lg o r ith m

Although CDL is quite flexible in allowing user to specify how a task force can be

constructed, it is rather inefficient in dealing with fine grained parallel problems.

Either it is too tedious to write a detailed CDL script or the efficiency is not

satisfactory.

Helios provides library routines for creating tasks and some other necessary pro

gramming constructs to enable the user to write parallel programs from scratch.

The user can then make use of the intrinsic parallelism in the problem and tailor

make a parallel solution for it. However, the disadvantage of this method is that

the user has to be well acquainted with Helios.

5.7 C onclusion

The design philosophy, structures and features of the Helios operating system

have been examined in this chapter. The reasons for the adoptation of the system

can be identified as:

98

1. High portability of the programs developed under the operating system.

As Helios offers Unix compatibility, the “C” programs developed under the

system are readily portable.

2. Advanced and powerful operating system support for multiprocessor envi

ronment. Facilities such as task management and primitive communication

supports are valuable in parallel processing. Due to the inherent parallel

nature of the power system simulation problem, Helios in a multiprocessor

environment offers the most cost effective solution.

99

struct

};

IOCComm on{
Offset Contex;
Offset Name;
Offset Next;
Capability Access;

Fig.5.1 Structure of a Helios Input Output Controller Data

100

SITE A

Group A Group B

Processor (J) 1 (|)2

I I
(J)3 Processor (J) 1

I
Fung Printer Hard Disc

usr acc bin

I
<J)2

I
<(>3

I
Kevin Console Floppy

disc

usr acc bin

Figure 5.2: An example of a hierarchical Helios network

101

struct

struct

N ode {
struct Node *Next;
struct Node *Prev;

Fig.5.3a Structure of a Helios Node

L ist {
struct Node *Head;
struct Node *Earth
struct Node ♦Tail;

Fig.5.3b Structure of a Helios List

102

struct

struct

M essage {
struct MsgHdr MsgHdr;
word Control]...];
byte Data]...];

Fig.5.4a Structure of a Helios Message

M sg H d r {
unsigned DataSize: 16;
unsigned DataSize: 16;
unsigned DataSize: 16;
Port Dest;
Port Reply;
word FnRc;

Fig.5.4b Structure of a Helios Message Header

103

typedef

typedef

};

struct {
INT16 Index;
byte Cycle;
byte Flags;
P O R T

Fig.5.5a Structure of a

struct P o r t {
byte Type;
byte Cycle;
bits TxState: 2;
bits RxState: 2;
bits Flags: 4;
byte Uses;
Channel Chan;
word *TxId;
word *RxId;
P o rt

Fig.5.5b Structure of a Helios Message Port

104

typedef struct M C B {
MsgHdr MsgHdr;
word TimeOut;
word * Control;
word *Data;

}; M C B

Fig.5.6 Structure of a Helios Message Control Block

105

struct IOCComm on{
byte Type;
byte Cycle;
byte Flags;
byte Uses;
Port Port;
word *TxId;
word UnUsed;

Fig.5.7 Structure of a Helios Surrogate Port

106

C hapter 6

The Interface

6.1 In trod u ction

Interactive power system simulators have been available for some time [87-103].

The analysis of power system performance can be enhanced by close interaction

between the engineer and the computation. Recent development in high quality

bit-mapped graphics displays and powerful microcomputers are encouraging the

major revision of computing practice for power system analysis.

This chapter presents a survey of the previously developed power system sim

ulators around the world. The uniqueness of the Bath system, and hence the

problems associated with it, are also highlighted. Having discussed some user

interface theories *, X Window concepts 2, the host computers hardware 3 and

the operating system 4, it is then possible to present the conceptual organization

of the MMI. The software hierarchy, dialogue model, presentation style, inter

action style, colour scheme and various design issues as raised in Chapter 2 are

1 Refer to Chapter 2
2 Refer to Chapter 3
3 Refer to Chapter 4
4 Refer to Chapter 5

107

discussed. Finally, the importance and problems encountered in implementing

real time animation, and its effects on the user interface design are also addressed.

Throughout this chapter, emphasis is placed on power system simulators, and

power system engineers are regarded as the end users.

6.2 Su rvey o f Interactive Pow er S y s te m S im ulators

6 .2 .1 H is to r y

The benefits of using an interactive system are: “to give the user an excellent

qualitative ‘feel’ for the behaviour of the system, and to aid greatly in the selec

tion of alternatives, anticipation of problems, and interpretation of results” [87].

This is in stark contrast to the batch-processing computers that power system

engineers relied on in the early days of computing. Those systems might be fast

for computation, they were very poor in user interface and the interaction with

the user was always hampered by inadequate displays and low rates of data com

munication. The engineer felt isolated from the computation process and it had

the following consequences 5 :

1. It took longer to make a closure in the mind as the computation turn around

time was usually very long.

2. There was not a smooth skill/rule/knowledge transition process. A user

was highly demotivated.

5Refer to Chapter 2 for the background information in the criticism

108

3. The communication bandwidth between the user and the program was very

limited because of :

• the computer input/output bottleneck, e.g. poor displays for simula

tion results.

• the mental bottleneck, e.g. the data output to the user were usually

in numerical form which was extremely hard to digest.

4. A user could not understand the computer program and hence his model of

the system was inadequate and faulted, i.e. magical thinking might arise.

In conclusion, early day batch processing computer systems were very bad for

user interface and led to poor performance of the power system engineers using

such a system in analyzing a power system.

With the advent of high quality colour displays, powerful microprocessor tech

nologies and related breakthroughs in computer hardware, it is now possible to

build a high performance and interactive computer system. In particular, as

the importance of Man Machine Interface has now been realized, the needs, be

haviours and characteristics of human beings are much better understood. A

system which a user actually wants and can use to accomplish his task, can now

be developed to help in analyzing a power system, without being distracted and

hindered by the tools used.

6 .2 .2 C h a ra cter istic s o f an In tera ctiv e S y s te m

Before proceeding any further, it is necessary to discuss the characteristics of

an interactive system, so that a comparison of the various simulators that will

109

be presented can be made. The characteristics of an interactive system can be

identified as :

1. allowing the engineer to make modifications as to how the simulator should

be run and what subsequent actions should be taken, during the course of

simulation.

2. maintaining a dialogue between the engineer and the computer. The com

munication between user and computer may be terminated and reopened at

any time and either may interrupt the other at reasonable intervals without

fear of offending.

3. not requiring the user to store large amounts of precalculated informa

tion. The computer should have the ability to quickly calculate any desired

quantity so that the user can look at different data at will without excessive

waiting.

6 .2 .3 S u rv ey

Undril [87] addressed the importance of an interactive working environment and

assessed the computer requirements as to how an interactive system could best

be set up. The software structure and some man machine interface theories were

also discussed. The system was mainly text based.

Alvarado [89] introduced several new concepts in user interface. A user could

build up complex command sequences within a text file, called macros. Macros

could be called iteratively during the program provided that they were pre-defined

before program initialization. A user could custom-define faults without repro

110

gramming, simply by changing a configurable text file. Software monitors could

be placed anywhere within the power system network, as defined in a text file.

They were used to examine the flow of current in detail. The system was also

mainly text based.

With the introduction of high performance microcomputers, emphasis has been

placed on utilizing graphics to display simulation data. The dialogue between

user and computer was based on selecting a text menu or entering a command

line via a keyboard [91-96,100,102,103]. As WIMP systems became more pop

ular, windowing systems with mouse pointers were used implementing the user

interfaces of several simulators [98,99,101]. In particular, Fujiwara [90] used ani

mation to display dynamically changing data, in order to give user a vivid picture

of the system state. Chan [97] argued the inadequacy of text-based dialogue and

adapted direct manipulation techniques to let a user issue commands and interact

with the power system entities displayed on a one-line diagram. Some interesting

user interface theories as applied in a power system simulator were also addressed.

6 .2 .4 T h e B a th S y ste m

Bath University has been developing power system simulators since early in the

last decade [2,3]. As the complexity of the simulated power system grows, so does

the user interface evolve at a rapid speed. The user commands and simulation

results become ever more complicated. The user interface created by Dale [2] was

command line based, with animation diagrams and graph plots used to display

simulation results. Two monitors were used to enhance communication between

the user and the computer. A colour monitor was used to display the power

system and a monochrome one was used to display the dialogues between the

111

user and the computer, i.e. user commands and system messages. Berry [3]

introduced a one-line diagram to display a portion of the whole power system

so that various system quantities could be displayed to inform the user of the

association between geographically related machine groups.

The current Bath power system simulator [1] has the following advanced features:

1. The power system under study is huge, i.e. the whole of the British National

Grid Transmission System which is made up of a network of more than 400

busbars and 1200 lines. A large amount of simulation data is produced.

If too much data is presented to the user, a mental bottleneck would be

produced. If, however, too little data is given, the user is unable to analyze

the power system. Besides, the physical limitation of how much data can

be displayed clearly within a screen also imposes problems on the user

interface.

2. The simulator is to be run in real time 6. Special tools and design concepts

are needed to help the user in carrying out an efficient power system study.

This problem is quite unique among all the simulators as discussed above.

It is precisely under these two circumstances that the MMI is implemented.

6.3 S y stem C onfiguration

The following gives a description of the hardware and software used for the im

plementation of the MMI.

6Refer to Glossary

112

6.3 .1 H ardw are

The power system simulator hardware 7 is made up of the followings:

• three transputer boards, each with one T800 transputer [9], 1 MByte of

RAM

• one transputer link topology card with one T800 transputer, 1 MByte of

RAM

• one graphics board, with one T800 transputer, one VSC graphics processor

[10] and 4 MBytes of video RAM.

• one I/O card with a Philips 68070 [77] microprocessor

• one 45 MByte hard disc

• one 800 KByte floppy disc

• one console (a monochrome display and a keyboard)

• one bit-mapped colour monitor, of resolution 720 x 480 pixels

• one pointing device, in this case, a mouse

• one keyboard

6 .3 .2 S oftw are

The MMI is implemented in a very portable way. The only machine dependent

part is contained within a single program module. W ith a system supporting the

7Refer to Chapter 4 for a comprehensive description of the hardware

113

X Window System [7] and Helios Operating System [8], the MMI can be ported

across easily. Fig. 6.1 illustrates the the software hierarchy of the MMI.

The organizations of the software can be broken down into the followings:

• Athena Widget Set, Xt Toolkit and X Lib are used to implement most of

the MMI.

• The programming language used to implement the MMI is C [84].

• The MMI is made up of a number of program modules which can be sep

arately compiled and then linked together. A full description is presented

in Section 6.5 (The Structure of the MMI).

• All hardware dependent routines are contained within a single program

module to make the MMI more portable.

6.4 C on cep tu a l M od el

The Real Time Power System Simulator is organized as in Fig. 6.2.

The simulator is split into four layers, namely the U ser In te rface , A pplication

In te rface , S im u la tio n C ode and D ata . The function of each layer is discussed

below:

114

6 .4 .1 U ser In terface

A user does not interact with the simulation code and data directly, but rather

all the I/O are done via the User Interface. In other words, the simulator is

protected and insulated from human errors.

This layer is implemented using the X Window System and is responsible for:

1. presenting the “look and feel” of the simulator

2. translating all the external input from the user into a set of predefined

calls to the Application Interface. The user’s requests are treated as asyn

chronous events and an event handler residing in the User Interface is used

to intercept and process them before re-directing them to the application

interface.

3. processing the output data from the Application Interface to the user in a

predefined format which is specified by the User Interface.

6 .4 .2 A p p lic a tio n In terface

The Application Interface is a library of function calls. It is responsible for

servicing all the requests from the User Interface by either reacting with the data

directly (reading and saving data) or with the Simulation Code which is made

up of a number of calculation tasks executing in parallel, e.g. reading the voltage

level of a certain busbar from the network server.

115

6 .4 .3 S im u la tio n C od e and D a ta

The Simulator is organized into a parallel network server and a number of ma

chine servers which are distributed around the Transputer Network. The machine

servers are running independently in parallel and will communicate with the net

work server only when it is necessary. The Application Interface accesses the

Simulator by sending requests to the network server. This is a one-way com

munication, i.e. the network server is passive while the Application Interface is

activated by the User Interface which is itself event driven. The network server

can not interfere with either the Application Interface nor the User Interface, ex

cept when the whole Simulator is failing and requires urgent user response. This

situation rarely occurs and so the user is not disturbed too often.

6 .4 .4 V ir tu a l M ach in e

The partitioning of the Simulator into 4 layers forms a virtual machine in the

user’s mind. The User Interface serves as the front-end of the machine, with the

Application Interface as the I/O processor and the Simulation Codes running the

engine. The advantages of this virtual machine are:

1. A user need not be aware of the internal organization of the simulator. The

“look and feel” of the system is dependent only on the User Interface. This

implies that the Simulator could be modified substantially in the Simulation

Code and internal simulation data structures without the user ever noticing

the difference. Hence, the cost of maintenance and upgrade is significantly

reduced. As the user’s own conceptual model of the Simulator is simplified

this leads to an reduction in user anxiety.

116

As a user is saved from learning the underlying operating system and hard

ware, future upgrade of the simulator does not require another learning

period from the user, who will already be familiar with the external inter

face. Such consistency helps the user in gaining confidence in running a

new Simulator and reduces user errors when switching from one system to

another.

2. Modifying the User Interface alone can give the Simulator a different “look

and feel” if required. This can be done with minor changes to the external

interface layer only, without ever touching the Simulation Codes.

If a user is comfortable with a certain graphics environment, having spent

a substantial amount of time with it, the transition period could be a lot

smoother if the simulator has similar “look and feel” as the other system.

3. Because a user cannot interact with the Application Interface and Simula

tion Code directly, the system can anticipate the possible behaviours of the

user. All the user’s requests are handled via the User Interface which has

only a limited amount of states and function calls. Hence, the simulator is

less prone to human errors and is therefore more robust.

4. The User Interface is not tied up to the Data directly (other than file for

mats). Hence, restructuring the Simulation Data to suit future calculations

algorithms does not require the User Interface to be modified. This ensures

the consistency of the “look and feel” of the Simulator.

5. As the Simulator is split up into different layers, research can be diverted

into implementing the Interface and Simulation Codes independently. Each

researcher can upgrade a program without the fear of upsetting another, as

long as a set of protocols is agreed beforehand, i.e. a predefined application

interface is used.

117

Separating Interface from Application provides maximum flexibility and porta

bility of the Simulator.

6.5 S tru ctu re o f the M M I

The MMI is made up of a number of program modules:

1. A M a ste r M o d u le is responsible for:

• initializing X Window

• initializing internal MMI data structures

• initializing the initial MMI screen

• providing connections between menu buttons displayed and their as

sociated functional modules.

2. F unction m odu les which are responsible for providing services to various

menu buttons.

3. L ib ra ry m odu les which are responsible for providing sharable facilities to

backup function modules.

As X Window is asynchronous, i.e. event driven, the master module will go into

an infinite loop pending user inputs after all initializations are finished.

6.5 .1 S creen L ayout

The display screen is divided into 3 areas:

118

1. A banner at the top represents the top level options.

2. A large rectangle just below the banner represents the display area.

3. A long rectangle on the right hand side represents the sub-menu options.

Other than some pop-up menus (windows), no windows are overlapping. This

gives the user a clear view of the system who is free to choose to look at different

menus and their corresponding displays. It places less burden on the short term

memory of the user.

6 .5 .2 M en u s

There are basically two types of menus:

1. Top Level M enus

They are always visible and selectable. The main functions they provide

are:

• N e tw o rk - which displays a one-line network diagram of the power

system under study.

• T im e H is to ry - which displays the time history plots of some of the

power system variables.

• O p e ra tio n s - which provides a menu to modify the simulator’s be

haviour.

• S et P o in ts - which provides a menu to change or examine various

power system variables.

119

• F au lts - which provides a menu to select a fault file under a specific

directory.

• H elp - which provides a hyper-text style help menu.

• Q u it S im u la to r - quit the simulator.

Only a maximum of two options can be selected at a time in order to avoid

confusion for the user. The “Network” and “Time History” options are

mutually exclusive, i.e. only one of them can be selected at a time. The

functionalities of these options are explained in details in Chapter 7.

2. S ub-M enus

Most top level menus have a set of sub-menus associated with them. They

provide further specific functions related to a top level menu. In this way,

a user is protected from being presented with too many menu options at a

given time, i.e. to ease the Interface Bottleneck. Besides, some top level

menus are not compatible so that they cannot exist together. For example,

page switching (discussed later in Section: Animation) for the network’s

animation cannot co-exist with the time history plots. Once a top level

option is selected, its related sub-menu will be brought up. In some cases,

these are in the form of a pop-up menu, visible only when requested by the

user’s direct-manipulations over a graphical object.

6.6 In teraction Style

The MMI adapts the WYSIWYG and Direct manipulation philosophies. A user

does not have to memorize any commands. (However, if he wishes, he can type

commands at the console.) The MMI is passive in nature. Nothing, other than

the simulation, will happen unless the user has issued a command. All commands

120

available are displayed on a menu. A user just have to use a mouse pointer to

click on a menu button in order to:

1. issue a command

2. change a power system parameter via a software calculator, appearing in

the form of a pop-up menu

3. select an item, e.g. a file

In the one-line diagram, a power system entity, (e.g. a busbar), can be selected

by clicking the mouse pointer over the graphics item representing it. Hence, the

user is made to believe that he is directly manipulating a power system object.

As graphics provides more vivid information about the entity and its surrounding

environment, (e.g. the connection between busbars), it is a much better method

than memorizing the abstract name of a busbar and typing commands at the

console. By using a mouse pointer, a user can make use of most of the MMI,

except in a few cases when the keyboard is needed to input a file name.

6 .6 .1 F eedback

In order to assure the user of his action, visual feedback is provided. For those

actions which require a long execution time, the cursor of the mouse pointer

is changed to a watch, indicating that the system is now busy processing the

last command. At the same time, the user is prohibited from issuing any more

commands. This is because the old and new commands might be conflicting.

Once the last command has been processed, the cursor then changes its shape

back to a large “X” and the user is allowed to issue new commands again.

121

6 .7 T h e U se o f Colour

Because the VSC system provides only 16 colours, which can be displayed si

multaneously, a simple colour scheme is used throughout the design of the MMI.

Colour is used in two main areas:

1. Menu

2. Data Display

6 .7 .1 M en u

The use of colour occurs in the following areas:

• Menus of different levels or functionalities have different background colours.

This gives the user extra information about the nature of a menu.

• All menu options within the same menu have the same background colour

so that a user can associate them as belonging to the same group.

• Black is used as the border colour surrounding each menu. This effectively

highlights a menu and makes it stand above its surroundings.

• All menu labels are drawn in dark blue colour. By experiment, it was

observed that this colour stands out on all the remaining 15 background

colours. This also causes less confusion for the user as the background

colour of a menu alone is enough to give him information about a menu.

122

6 .7 .2 D a ta D isp la y

The use of colour lies in the following areas:

• Black is used as the background colour as the remaining 15 foreground

colours can be distinguished easily. This provides more choices of colours

for representing different data.

• Different categories of power system entities have different colours. For

example, a busbar is drawn in dark blue while an electrical line is drawn in

cyan. Busbars of different voltage levels are drawn in different colours.

• As animation is used, colour is not used to represent dynamically changing

data, except where animation alone is inadequate, e.g. in a PQ-Chart,

the moving pointers change colour depending on whether the associated

machine is generating or absorbing power.

6.8 A n im a tio n

Animation can be used to display simulation results dynamically so that the

power system’s states can be monitored continuously. As well as giving the user

information on what the system was doing a short time ago, animation also

tells the direction that the system is presently going. It is in contrast to the

traditional time history plots, which tell the past position of a system but not its

future direction.

In order to achieve reasonable animation, necessary criteria must be defined. In

an engineering application, animation must satisfy the following:

123

1. Flicker Free. If the animation is unpleasant to look at, it is very difficult to

examine the data.

2. Fast Display. The frame rate, i.e. number of pictures displayed per second,

must be reasonably fast so that a minimum of simulation data is lost.

According to experience, a figure of about 10 is just enough to keep up

with the data updating rate of the present power system simulator.

For the second criterion, it is enough to devise a good algorithm in updating

animation data. The following algorithm illustrates the idea:

1. G et Power System D ata

2. U se th is data to calculate the new inform ation for anim ation

3. Erase the previous picture

4. Draw the new picture with the new data

Steps 1-4 are repeated indefinitely.

However, the above algorithm is not enough to achieve flicker free animation.

The intermediate stage, after the graphics have been removed and before they are

redrawn, causes blanking of part of the screen. The rapid drawing and redrawing

causes these blanking parts to blink in front of the user because the residue image

of the last image interferes with the “empty graphics” . No m atter how fast the

graphics are updated, the human eyes are irritated because of this flicker. There

are 3 methods to solve the problem:

1. D ouble Buffering

124

2. Colourmap M anipulation

3. Selective U p d a tin g of G raphics

6 .8 .1 D o u b le B uffering

There are two pages of graphics, i.e. two chunks of memory the size of each is

enough to hold the whole bitmap of the screen. One is called the visual page and

the other is called the active page. The visual page is displayed to the user, and

the active page is updated in the background, i.e. hidden from the user. Then,

the pages are switched over. This process continues indefinitely. This method is

sometimes called P age F lipping.

Take the example shown in Fig.6.3.

In practice, the switching is done by switching a certain register within the graph

ics processor so that the visual and active pages are interchanged according to

the value of that register. As the operation involved is extremely fast, there is no

blinking on the graphics screen and the human eye is fooled into seeing a screen

of graphics updated smoothly. Of course, if the graphics system does not support

more than one page, page flipping is not possible.

In order to facilitate double buffering, some modifications to the previous algo

rithm are needed.

There are now two pages of graphics, each of which is updated independently and

a separate link-list of graphics must be associated with each page. Otherwise the

pages will be mixed up with each other as new system data is produced for each

125

frame.

The following is a modified version of the algorithm:

1. Blank Visual Page

2. G et Power System D ata

3. Draw Graphics on A ctive Page

4. Switch over Visual and A ctive Pages

5. G et Power System D ata

6. U se D ata to calculate the new information for A ctive Page

7. Erase A ctive Page Graphics

8. Draw A ctive Page with new information

9. Switch betw een A ctive Page so that A ctive Page becom es Visual

Page and vice versa

Steps 5 - 1 0 are repeated indefinitely.

6 .8 .2 C o lou rm ap M a n ip u la tio n

The appearance of a colour on a screen is determined by its corresponding pixel

value. A pixel value is an index used to identify a particular colourcell within

a colourmap. For instance, the colour “red” looks red on the screen because its

associated pixel value is 224, i.e. I l l 000 00 for a 8-bit per pixel colour display.

126

It means that the graphics processor is using 8 bits to describe a pixel value. The

most significant 3 bits indicate the intensity of one primary colour, red; the next

3 bits - green; and the least significant 2 bits - blue. A pixel value must not be

confused with its corresponding colourcell, e.g. a pixel value of 1 will select the

first colourcell. Therefore, by setting different bits of a pixel value, the appearance

of the colour associated with that pixel value will be changed accordingly. This

system now has 28 = 255 colourcells here, which can be displayed simultaneously

on the screen. However, the maximum number of colour that can be produced

for a display, which has 8 bits available for each primary colour, is 2563 (about

16 million).

Assume that there are 255 pixel values and with two pages of graphics. Here,

a page is only a software entity, i.e. a link-list is used to describe each page.

It is possible to divide the colourcells into 2 sets, with 127 colourcells for each

page, page 0 and page 1. Set 0 comprises the colourcells used by page 0 and

set 1 contains those used by page 1. The remaining 1 colourcell is used for

the background colour in both pages. The following algorithm illustrates the

principle:

1. G et Power System Data

2. U se these data to calculate the new inform ation for Page 1

3. Set all the pixel values in Set 0 to background colour so that Page

0 is now erased.

4. U pdate the link-list of Page 1 with the new data

5. Draw Page 1 with Set 1 colourcells so that Page 1 appears

6. Switch over Page 0 and Page 1, Set 0 and Set 1

127

If, however, the maximum number of colour that can be displayed is limited,

there will not be sufficient colours for each page to convey information.

6 .8 .3 S e le c t iv e G raph ics U p d a tin g

Flickering occurs most severely when the power system model is in a steady state,

i.e. there is not much change in the animation graphics and the computer system

just erases a piece of graphics and redraws it later. If the original algorithm

is modified in such a way that only the graphics which have been updated are

changed, then computer time is saved and also the graphics are not erased as

often as before. In a steady state, the picture is in fact intact. However, during

transient state, nearly all the graphics are changed. Then, the above checking of

graphics will slow animation down and actually make the flickering worse.

The problem can be reduced by redrawing a piece of graphics immediately after

it has been erased. In this way, none of the graphics is left “blank” for too long.

6 .8 .4 W h a t th e M M I has ad o p ted

The MMI adapted the method of double buffering for animation for the following

reasons:

1. The VSC system supports two page operation in hardware.

2. The software algorithm is the simplest in all three methods.

3. Colourmap manipulation is troublesome and wasteful in pixel usage.

128

4. In a power system transient state, the complicated method used in updating

graphics selectively does not work well.

Unfortunately, X does not yet support double buffering. Therefore, it is necessary

to derive a method to combine the capability of the VSC with X.

6 .8 .5 D o u b le B u ffer in g and X

For the animation program, a rectangle of the screen is controlled by the VSC

directly. X is only aware of its existence but has no access to the graphics there.

A set of low level graphics, i.e. writing directly to the screen memory, is used to

draw animation graphics. X is left to control the other aspects of the MMI, e.g.

reporting the position and state of the mouse pointer over the rectangle so that

the user can select any graphics inside it. It looks as though X knows where the

graphics are, even though they are not drawn by it.

The following algorithm is used:

1. U se X to initialize screen

2. Define a rectangle on the screen for VSC

3. Draw all those graphics, which will not be changed during anima

tion , on the Visual Page

4. Copy everything on the screen, i.e. Visual Page, to A ctive Page

5. U se D ouble Buffering as suggested in the above section

129

As the VSC does not support partial page switching, i.e. part of the visual page

is switched over with part of the active page, the action of switching pages is

restricted only when the mouse pointer is within the rectangle. When the mouse

pointer is outside, the screen behaves as if only one page exists so that only

the last updated visual page image and X graphics are visible. Otherwise, the

graphics produced by X will be only visible on the visual page but not on the

active page. Those graphics will appear to be blinking as the two pages are

switched over repeatedly.

The advantage of the above method has the best of both world, i.e. smooth

animation (double buffering) and X for MMI. However, this combination does

have some drawbacks:

1. Inconsistent application style. X does not know VSC and VSC does not

know X. The MMI has to make different allowance for the two systems.

2. X is asynchronous. Graphics drawn by X do not appear instantly. If these

graphics are not copied to the active page, they will appear to be blinking

when page switching takes place later. It is very difficult to control the

timing and it is usually done by trial and error.

However, smooth animation is too important and the above short-comings can

be tolerated by careful planning and programming. Experience shows that a user

quickly adapts to the behaviour of this MMI and is not deterred from using the

simulator. Hence, a good engineering compromise has been reached.

130

MMI

Athena Widget Set

Xt Tool Kit
X Lib

C Language

Figure 6.1: Software hierarchy of the MMI

131

i /p

user

o / p

user i / p

interface application
interface

(X Window) (internal)
(external)

o / p

i / p

o/p

i / p

o / p

i / p o / p

data

simulation
codes

^ -------------INTERFACE--------------------------- APPLICATION - ►

Figure 6.2: Organization of the real time power system simulator

132

Frame
1

Frame
2

Frame
3

Visual Page Active Page
(seen by user) (hidden from user)

1

1 2

2
Switch
Over 1

2

2 3

3
Switch
Over 2

Blanked i n i t i a l l y

Update An i ma t i on Data

Erase Old P i c t u r e

Update An i ma t i on Data

Figure 6.3: An example showing the effects of double buffering

133

C hapter 7

Features of The Interface

7.1 In trod u ction

The design theories, software hierarchy and various interface implementation

techniques have been described in the last chapter. It is therefore appropriate to

now present the various features of the MMI so that its basic functionalities and

characteristics can be understood.

After the procedure of starting up of the MMI is described in the next section,

the reader is guided around the system and the features of the MMI are unveiled

in the subsequent sections. An example 1 is used as a vehicle to help to drive

home the ideas. Descriptions of X Window 2 [64], Helios operating system 3 [8]

and hardware 4 have been presented in previous chapters. A full description of

the Simulator is given by Berry [3].

1For simplicity’s sake, a four machine system [2] serves as the power system to be studied.
Appendix 5 contains the relevant features of the four machine simulation used to demonstrate
the implementation of the MMI.

2 Refer to Chapter 3
3Refer to Chapter 4
4 Refer to Chapter 5

134

7.2 G ettin g S tarted

The user must create the following directories under the same parent directory

in which the object codes of the Simulator and the Interface reside:

1. study - which contains the power system study files used by the Simulator.

2. help - which contains the help files used by the Simulator.

3. plot - which contains the time history plot files saved in some earlier runs

of the Simulator and which are used by the Time History option.

4. fault - which contains the files defining various power system sequences,

e.g. a busbar fault followed by the opening of a circuit line. The files are

used by the Fault option.

5. pic - which contains the files defining the pictorial representations of power

system networks. The files are used by the Network option.

To run the four machine study, the user has to type the following text on the

console:

% source m4start

where % is the Helios shell prompt and m4start is the shell script file containing

all the necessary commands for bringing up the Simulator and the Interface. A

description of the file m4start is given in Appendix 1.

Fig. 7.1 shows the screen after initialization is completed.

135

The system is now ready for user input and either one of the Top Level Menus

can be selected.

7.3 N etw ork

The Network option is responsible for presenting a one-line diagram of the power

system to be studied and provides means for the user to use direct-manipulation,

via a mouse, to interact with the system, e.g. issuing commands and getting

information. There are two pop-up menus for that purpose, a Parameters Menu

and a Meters Menu. A number of menu options, the Network Sub-menu options,

are also available for providing further services.

Fig. 7.2 shows the screen of the Network option. Fig. H.5 shows a similar screen

in colour.

7 .3 .1 T h e m o u se

There are three buttons on the mouse. Basically, the mouse is used to select an

option from the Network Sub-menu and to interact directly with the graphical

objects on the one-line diagram.

For the first function, only the left hand button can be used to select an option

from the menu.

For the second function, the three buttons have different meanings. Numbering

from left to right:

136

• Button 1 is used to pop up the Parameters Menu and let the user change

the parameters of the selected object.

• Button 2 is used to pop up the Meters Menu and let the user select a meter

to monitor the behaviour of the selected object.

• Button 3 is used to tag an object. The colour of the label of the object

will toggle between red and white. All objects of the same power system

type and with red labels are presented together when the Vector Diagram

is selected.

7 .3 .2 P a ra m eter M enu

The user can change the parameters of three types of power system objects, i.e.

machines, busbars or electrical lines. As the menu is popped up, the one-line

diagram will stop its activity and animation is frozen. The Parameters Menu

will change its menu of parameters according to the object selected. When a

parameter is selected, a software calculator, in the form of a pop-up window, will

be popped up. A menu bar is used to display the information of the selected

parameter. Some basic calculator functions are provided to help the user in

entering data. The user can enter a numerical value for that parameter either

by using the mouse to click on the calculator or by typing keys on a keyboard.

Once the user has finished with the menu, the one-line diagram will resume its

activities and animation starts again.

Fig. 7.3 shows the screen of the Parameters Menu for a machine. Fig. H.9 shows

a similar screen in colour.

Fig. 7.4 shows the screen of the Parameters Menu for a busbar.

137

Fig. 7.5 shows the screen of the Parameters Menu for an electrical line.

Fig. 7.6 shows the screen of a software calculator updating the avr value of a

machine.

7 .3 .3 M e te r s M enu

The Meters Menu is used to present a menu of meters which are used to monitor

the behaviours of a machine or a busbar.

Fig. 7.7 shows the screen of the Meters Menu.

There are four meters available:

• M ach ine D iag ram - this presents a detailed description of the machine.

A number of small meters are used to display the numerical values of the

machine parameters.

Fig. 7.8 shows the screen of the Machine Diagram. Fig. H.12 shows a

similar screen in colour.

• V ecto r D iag ram - this displays the vectors of the rotor angles of a group

of machines or the vectors of the voltages of a group of busbars. A different

colour is used to represent each vector.

Fig. 7.9 shows the screen of the Vector Diagram displaying the vectors of

the rotor angles of a group of machines. Fig. H.l shows a similar screen in

colour.

• T im e H istory Diagram - this displays the time history plots of the states

138

of a machine. A panel of buttons is available for the user to examine the plot

of any one of the ten states of the machine at a time. This is a simplified

time history diagram. A more powerful graph plotter, the “Time History”

option, is available as a Top Level option.

Fig. 7.10 shows the screen of the Time History Diagram displaying a plot

of the rotor angle of a machine. Fig. H.8 shows a similar screen in colour.

• R u n n in g G rap h D iagram - this monitors two parameters of a machine

simultaneously. Up to eight seconds of the parameters’ histories are dis

played. As new data is produced, the currently oldest data is lost, oper

ating on a First In First Out basis. Thus this diagram behaves like an

oscilloscope. To assist the user in viewing the traces, facilities are available

to freeze animation, expand or shrink the y-axis. The parameters available

for selection are identical to those in the Time History Diagram. A button

labelled “Run Sequence” can be used to start a pre-defined power system

sequence. This is useful for examining the effects of a certain power system

sequence on the power system network.

Fig. 7.11 shows the screen of the Running Graph Diagram. Fig. H .ll

shows a similar screen in colour.

7 .3 ,4 N etw o rk S u b -m en u

There are three types of option available:

1. G lobal V iew D iagram : At start up, only a portion of the power system

network is shown in the large Network window and it is called the current

Network Diagram. The Global View Diagram displays the whole power

139

system network. For a complex power system, the one-line diagram could

be very large. It is thus inappropriate to have the whole picture displayed

at the same time. The Interface will only display a portion of the lower

left hand corner of the picture initially. Later, the user can pick up other

part of the network by moving a rectangular frame around the Global View

Diagram. Everything lies within the frame will be selected and displayed in

the new Network Diagram. The current Network Diagram is shown in red

while the rest of the system is drawn in other colours. A full description of

how a one-line diagram is produced is given in Appendix 2.

Fig. 7.12 shows the screen of the Global View Diagram.

2. Network: When the Machine Diagram, Vector Diagram, or Running

Graph Diagram is brought up, the Network Diagram is hidden from the

user. The Network Diagram can be made active again if the Network op

tion is selected.

3. Sequence Specification: It is possible to specify a sequence of actions

to be applied to the power system. A detailed description of constructing

a sequence is discussed in Appendix 3. The user can either specify the

sequence interactively by direct-manipulation with the graphical objects

on the one-line diagram or reading in a previously prepared text file. There

are five options available for specifying a sequence:

(a) New Sequence - this starts a new sequence. When this option is se

lected, the mouse pointer is changed to the shape of a hand. The user

can change the parameters of a machine, a busbar or an electrical line

one by one. Hence, only button 1 of the mouse is active.

Fig. 7.13 shows the screen when a new sequence is to be selected.

(b) End Sequence - this ends a new sequence and the mouse pointer is

changed back to a large “X”.

140

(c) Table Sequence - this displays a table of a previously defined sequence.

Fig. 7.14 shows the screen with a table of a given sequence.

(d) Load Sequence - this pops up a menu of text files. The user can load

up a text file and use the content of it to specify a new sequence.

Fig. 7.15 shows the screen with a menu of sequence files.

(e) Save Sequence - this allows the user to save the current specified se

quence into a text file for latter use.

Fig. 7.16 shows the screen of the Interface prompting the user for an

output file name.

Fig. 7.17 shows the screen of the Interface prompting the user to input

some optional data in specifying a sequence.

Fig. 7.18 shows the screen of the Interface accepting the input of duration

time in specifying a sequence.

7.4 T im e H istory

The Time History option is responsible for displaying the time history plots for

the machines in the power system. There are two methods of displaying the plots:

1. Up to four graphs can be superimposed together on a large window, Graph

Window, with a unique colour representing each graph.

Fig. 7.19 shows the screen of four graphs displayed together. Fig. H.4

shows a similar screen in colour.

2. The large Graph Window is divided into four smaller windows, each dis

playing a graph.

141

Fig. 7.20 shows the screen of four graphs displayed separately. Fig. H.10

shows a similar screen in colour.

The advantage of using the two display methods is that the user can either

compare the graphs together or study them in isolation.

There are a number of options available to assist the user in studying the power

system:

1. C o lo u r - The user can choose the colour of each graph separately.

2. G rid - The user can toggle this button to turn on or olf a matrix of lines

superimposed on the graphs.

3. Save - The user can save a graph into a binary file for later use.

Fig. 7.21 shows the screen of the interface prompting the user for an output

file name.

4. P lo t - The user can plot a new graph on its own, and erase the last one.

5. S am e - The user can superimpose a new graph on the existing graphs.

6. R ead - The user can read in a binary file, saved in a previous session, and

use it to display a new graph.

Fig. 7.22 shows the screen of the interface prompting the user for an input

file name.

7. T ab le - The user can pop up a window to display the numerical data of

the graphs in a table for examination.

Fig. 7.23 shows the screen of a table displaying the numerical data of a

graph.

142

8. D a ta - The user can choose to plot the parameters of any one of the

available power system machine.

Fig. 7.24 shows the screen of the Interface prompting the user to select a

machine.

9. X -ax is - The user can change the x-axis of the graph to any one of the

parameters available for plotting. The default is time, in second.

10. Y -axis - The user can pick any one of the parameters to use as the y-axis

variable.

11. v ariab le - The user can choose to plot the system, busbar or machine

parameters.

7.5 O p eration

Fig. 7.25 shows the screen of the Operation option. Fig. H.3 shows a similar

screen in colour.

The Operation option provides the following facilities:

1. displaying the current log buffer size 5 in seconds.

2. displaying the current simulation time step 6 in seconds.

3. setting the reference angle of the rotor angle of a power system machine.

The rotor angle can be calculated with reference to:

5A log buffer is a software buffer used to contain the simulation results of a power system
machine. It is updated indefinitely when the Simulator is functioning.

6 It is the time step used in calculating the numerical solution in solving the power system
matrices.

143

• Mean rotor position - which is the average of all the rotor positions of

all the machines in the power system.

• 50 Hz - which is the rotor angle of the slack busbar used in the power

system network reference frame operating at a frequency of 50 Hz.

• Busbar voltage angle - which is the voltage angle of the busbar con

nected to the machine.

4. restoring the Simulator model to its previously remembered state.

5. remembering the current state of the Simulator model.

6. holding the Simulation Model temporarily.

7. releasing the Simulation Model from its previously frozen state.

8. changing the log buffer size via a pop up software calculator.

Fig. 7.26 shows the screen of how the log buffer size is changed.

9. changing the simulation time step via a pop up software calculator.

7.6 Set p o in ts

The user can change the set points or parameters of some power system objects

by two methods. The first is to use direct-manipulation to interact with the

graphical objects on the one-line diagram from the Network option. The second

is to invoke the Set Point option. In addition, the parameters of a governor

and an avr can also be changed via this option. As direct-manipulation is then

impossible, the user has to select whichever power system object by picking an

entry from a table of objects displayed on a pop-up menu. Once an entry is

144

selected, the same input procedure as used in the Network option is used to

update a parameter.

As well as changing the set points or parameters of some power system objects, a

spread sheet is available to assist the user in monitoring some of these numerical

values. The numerical data of the set points or parameters of a machine, busbar,

electrical line, set, governor or an avr can be arranged into a matrix of data, in

the form of a number of spread sheets. Only one spread sheet may be viewed at

a time. Facilities are provided to:

1. sort the data in ascending order.

2. sort the data in descending order.

3. display the minimum values of parameters since starting up of the Simula

tor.

4. display the maximum values of parameters since starting up of the Simula

tor.

5. reset the minimum and maximum values of parameters.

6. update the spread sheet data in order to display new simulation results.

Fig. 7.27 shows the screen of the first pop up menu of the Set Points option.

Fig. 7.28 shows the screen of selecting a machine from a pop-up menu.

Fig. 7.29 shows the screen of selecting a busbar from a pop-up menu.

Fig. 7.30 shows the screen of selecting an electrical line from a pop-up menu.

145

Fig. 7.31 shows the screen of selecting a governor.

Fig. 7.32 shows the screen of changing a parameter of a governor. Fig. H.6 shows

a similar screen in colour.

Fig. 7.33 shows the screen of selecting an avr.

Fig. 7.34 shows the screen of changing a parameter of an avr.

Fig. 7.35 shows the screen of a spread sheet of machines.

Fig. 7.36 shows the screen of a spread sheet of busbars.

Fig. 7.37 shows the screen of a spread sheet of electrical lines. Fig. H.7 shows a

similar screen in colour.

Fig. 7.38 shows the screen of a spread sheet of sets.

Fig. 7.39 shows the screen of a spread sheet of avrs.

Fig. 7.40 shows the screen of a spread sheet of governors.

7.7 F au lts

The user can either specify a sequence from the Network option or the Faults

option. This provides a flexible means to enable the same function to be achieved

146

via different paths 7. A table containing all of the available text files is popped

up for selection. When a file has been selected, its content is displayed so that

the user is reminded of the function of the file.

Fig. 7.41 shows the screen of the popped up table of files.

Fig. 7.42 shows the screen of the content of a selected file. Fig. H.2 shows a

similar screen in colour.

7.8 H elp

A hypertext 8 style help menu is used to guide the user in using the Interface.

Fig. 7.43 shows the screen of the initial help menu. Fig. H.13 shows a similar

screen in colour. The title of the current help page is shown on the top right

hand corner while the title of the last help menu page is shown at the bottom

right hand corner of the help menu. The user can refer to the last menu page

relative to the present one by clicking the button labelled “Last Topic” .

The highlighted keywords can be selected by the user and they lead to further

menu pages, giving more information about them, with additional keywords. The

menu is divided into a set of interconnected menu pages with the highlighted

keywords serving as some sort of gateways connecting the pages. By placing

the label of an additional menu within the context of a help file gives the user

extra information about the keywords and its relationship with the current help

information [104].

7The importance of this idea is discussed in Chapter 2.
8Refer to Glossary

147

The m ethod of creating a system of hypertext menu is given in Appendix 4.

7.9 Q uit S im ulator

The user can quit the Simulator by selecting this option. The large window

displaying all the components of the Interface is popped down and the screen is

restored to the default X Window background.

148

Network Time History Operations Set Points Faults Help Quit Simulator

S3

Figure 7.1: Start up screen of the MMI

Network Tine History Operations Set Points Faults Help Quit Simulator

NETMORK

TineSee
153728.7
F p a n c

R*te
15.9

52.G -r

5 0 . 0-- 1

48.0 ±
50.000

Four Machine Power System

1805.8 52.5
SCOTLAND

PENT 4 DEES 4
1.000 0.999

■299.6 V /
-4.1

DINORMIG
337.1
30.4

SCOT4
1.005

DIN04 NMAL4 CEGB4
1.000 0.993 0.994

11244.0
1015.5

NMALES CEGB

Global View

Network Diagram

New Sequence

Append Sequence

End Sequence

List Sequence

Save Sequence

Load Sequence

Run Sequence

Figure 7.2: One-line diagram of the four machine study

SCOTLANDTine History Qperat:Network Help Quit Simulator
Reference : 1*052

Global ViewNETMORK Governor Reference t 0*4738

Tap RatioFour* Haohint P<
Real Power 1806

New SequenceReturn To Main Menu

SCOTLAND
Append Sequence

Tii*eS«e
193865.S

PENT 4
1.000

DEES 4
0.999 End Sequence

List Sequence

52.0
Save Sequence

DIN04
1.000

CECB4
0.994 Load Sequence50.0 —I

Run Sequence
-299.6
-4.1

337.1
30.4

11244. 01
1015.548.0 DINORMIG CEGBNMALES

Figure 7.3: Menu of the set points of a machine

Network Time History Operations Set Points Faults Help Quit Simulator

NETMORK

TineSec
48.5
F p a m c
Rat*
5.8
Freq Hz
52.0 -p

5 0 . 0-- 1

48.0 JL

50.000

Four* Mach

PEN

DEES4

Real Load Power : 2 9 8 9 |

Reactive Load Power : -501.9 |

Fault On

Fault Off

Return To Main Menu
l .o o o A.999

S3

SCOT4
1.005

DIN04 NMAL4 CEGB4
1.000 0.993 0.994

■299.6 \ /
-4.1

DINORMIG
337.1
30.4

11244.0
1015.5

NMALES CEGB

Global View

Network Diagram

New Sequence

Append Sequence

End Sequence

List Sequence

Save Sequence

Load Sequence

Run Sequence

Figure 7.4: Menu of the set points of a busbar

Time History Set Points HelpNetwork Operations Faults Quit Simulator

Global ViewNETMORK

Network DiagramFour* Machine Power* System
SCOT4
1.005 New Sequence

Switch Line Out
Append Sequence

Switch Line InTineSec
154063.8

pENT Return To Hain Menu

i .o o F T =
End Sequence

List SequenceFpeq Hz
52.0

Save Sequence

NMAL4
0.993

CEGB4
0.994 Load Sequence

Run Sequence
-299.6
-4.1

337.1
30.4

11244. O1
1015.548.0

DINORMIG NMALES CEGB

Figure 7.5: Menu of switching in/out of a line

Quit SimulatorHelpTime Hi A— tultsNetwork
Reference : 1*05185SCOTLAND : Avr

Global ViewNETMORK

Network DiagramFou
5COT4
1.005 SequenceNew

CLEAR

SAVE CANCEL Negate Append Sequence
TimeSco
154130.1

PENT 4
1.000

DEES 4
0.999 End SequenceF r a m

Rate
15.9

List Sequence

52.0
Save Sequence

NMAL4
0.993

CEGB4
0.994

DIN04
1.000 Load Sequence50.0

SequenceRun
337.1
30.4

11244. 01
1015.5

-299.6
-4.148.0 CEGBNMALESDINORMIG

50.000

Figure 7.6: Modifying the avr reference of a machine

Network Set Points Faults Quit SimulatorTime History Operations Help

Global ViewNETMORK Network Meters

Four Machine Power Machine Diagram SC0T4
1.089Running Graph New Sequence

Time Historg
Return To Main Menu

Append Sequence

PENT 4
1.000

DEES4
0.999 End Sequence

List Sequence

52.0
Save Sequence

DIN04
1.000

CEGB4
0.994 Load Sequence

SequenceRun
337.1
30.3

11244.0
1015.548.0

DINORMIG NMALES CEGB

Figure 7.7: Mena of network meters

Network Tine History Operations Set Points Faults Help Quit Sinulator

Global ViewSCOTLAND Urof PU Ut Uf PUPU
1.3 1.2 1.2 S .5 1.2 1.2 Network Pi a y am

Sequence

i . ei . e i . e 2.7 e .e 0.0

Append Sequence
TineSco
154277.3

- 1.2 - 1.20.7 0.8 0.8 0.0 End SequenceFmw
Rato
8.0 1.032 1.005 1.415 0.474 0.474l .e e e

List Sequence52.52 MUarMW QRotor Angle 30.0Frcq Hz
3986.00 MM

52.0 90 DEG
Save Sequence

Load Sequence50.0 180

Run Sequence

48.0 3986.00-90 3986.00 0.0 MUar
SCOTLANDGeneratingR e f : B u s b a r U o1 t « 9 *

Figure 7.8: A detailed machine diagram

Network Time History Operations Set Points Faults Help Quit Simulator

ISCOTLAND

IiMeSeo
154394.7

Fp a m *
Rate
16.0

52.0 -p

5 0 .0 -----1

48.0 JL

50.000

Rotox* Ansrles DEG

90

180

-90

Ref = weisrhted M e a n rotor

SCOTLAND

-2.5

NMALES

-42.2

CEGB

12.9

DINORMIG

-97.8

Global View

Network Diagram

New Sequence

Append Sequence

End Sequence

List Sequence

Save Sequence

Load Sequence

Run Sequence

Figure 7.9: A detailed vector diagram of four machines

Network Tine History Operations Set Points Faults Help Quit Simulator

NETMORK

TincSeo
198.2

F p * m*
Rut#
15.9
Fpcq Hx

52.0 -r

5 0 . 0-- 1

48.0 ±
50.000

Four Machine Power Su

Pmu Qmvar SlipMore Delt Quit

SCOTLAND0.4ta|ror PU

fine Se§s

TZZZT

•299.6 V /
-4.1

DINORMIG
337.1
30.4

COT 4
..005

CEGB4
0.994

11244.0
1015.5

NMALES CEGB

Global View

Network Diagram

New Sequence

Append Sequence

End Sequence

List Sequence

Save Sequence

Load Sequence

Run Sequence

Figure 7.10: Time history plot of a machine

Network Time History Operations Set Points Faults Help Quit Simulator

0.523

1.003

|Delt(Bbar)|r~Vt
PMw QMvar

Slip Vf
Vr Gref

Vpos

Trace 1

Expand Yftxis

Shrink Yftxis

Restore Yftxis

$ Run Sequence

Quit

8 Seconds Period

SCOTLAND
Rotor Angle PEG

Vt PU

Figure 7,11: Running graph of a machine

Network Time History Operations Set Points Faults Help Quit Simulator

Global Geographical View

500x500+50 +0

Cancel

Global View

Network Diagram

New Sequence

Append Sequence

End Sequence

List Sequence

Save Sequence

Load Sequence

Run Sequence

Figure 7.12; Globed view of the whole network diagram

Network Time History Operations Set Points Faults Help Quit Simulator

NETHORK

TineSco
359.1
F m l m c
Rate
3.8
Freq Hz
52.0 -r

5 0 . 0 I

48.0 ±
50.000

Four Machine Power System

1805.9
52.5

SCOTLAND

PENT 4 DEES 4
1.000 0.999

-299.6 V /
-4.1

DINORUIG
337.1
30.3

SCOT4
1.005

DIN04 NUAL4 CEGB4
1.000 0.993 0.994

11244.0
1015.5

NMALES CEGB

Global View

Network Diagram

New Sequence

Append Sequence

End Sequence

List Sequence

Save Sequence

Load Sequence

Run Sequence

Figure 7.13: Specifying a new sequence

Network Time History Operations Set Points Faults Help Quit Simulator

Global View

Four* Machin# Power Syitcm

Sequence Table New Sequence

fcbar DEES4 FaultOn Seq 2000 log
bbar DEES4 FaultOff Seq 120 ud Append Sequence

End Sequence

List Sequence

52.0 t
Save Sequence

Load Sequence5 0 . 0 ---1 Insert DeleteAppend

Run Sequence
-299.6
-4.1

337.1
30. 3

11244.0
1015.548.0 JL CEGBDINORUIG NMALES

Figure 7.14: Table of content of a newly constructed sequence

Network Time History Operations Set Points Faults Help Quit Simulator

NETWORK

T i neSec
49S.2
Frame
R a t e
15.9
Freq Hz
52.0 T

50. 0 ---1

4 8 . 0 JL

50.000

Four Machine Power System

Data Files

41ineout
41inein

OK Cancel

-299.6 \ I J 337.1-4.1 30.3
DINORMIG

SCOT4
1.005

CECB4
0. 994

\
NWALES

11244
1015 , - o

CEGB

Global View

Network Diagram

New Sequence

Append Sequence

End Sequence

List Sequence

Save Sequence

Load Sequence

Run Sequence

Figure 7.15: Selecting a sequence file

Network Tine History | Operations Set Points Faults Help Quit Sinulator

Global ViewNETWORK

Four Machine Power System
Input Output F ile Name

Sequence1889.9
92.5

sco: Clear Cancel
d Sequence

DEES 4
0.999

PENT 4
1.880 End Sequence

List SequenceFreqt Hz
52.8

Save Sequence

NMAL4
8.993

CEGB4
0.994 Load Sequence58.0 -I

Run Sequence
337.1
30.3

11244.8
1815.548.8 NMALES CEGBDINORMIG

Figure 7.16; Specifying the ouput file name for a stored sequence

Network Tine History Operations Set Points Faults Help Quit Sinulator

NETWORK

TineSeo
692.8
F r a h e
Rate
5 .8
Fr*««i Hx
52.0 t

5 0 . 0-- 1

48.0 ±
50.000

Four Machine Power Systnn

180552.!

4
95

line PENT4-SC0T4J Out

Tine Update Log

P]
17000“

ok Cancel
W. 999

DIN04 NMAL4 CEGB4
l.eee 0.993 0.994

-299.6 V /
-4.1

DINORI4IG
337.1
30.3

11244.0
1015.5

NMALES CEGB

Global View

Network Diagran

New Sequence

Append Sequence

End Sequence

List Sequence

Save Sequence

Load Sequence

Run Sequence

Figure 7.17: Specifying the detail of an event

Time History Set PointsNetwork Operations HelpFaults Quit Simulator

Global ViewNETMORK

Network DiagramFour Maohino Power System

New Sequence

line PENT4-SC0T4: Out Append Sequence
T i neSeo
692.8 Log

Cancel End Sequence

List Sequence

52.8
Save Sequence

CANCEL NegateSAVE CEGB4
0.994T J7 9 W Load Sequence

Run Sequence
337.1
30.3

-299.6
-4.1

11244. 01
1015.548.0

NMALESDINORMIG CEGB

Figure 7.18: S p e c i fy in g - the time duration of an event

1 Network Tine History Operations Set Points Faults Help Quit Simulator

DINORLJIG-(Rotor Angle PU>
NWALES-(Rotor Angle PU>

CEGB-(Rotor Angle PU>
SCOTLAND-(Rotor Angle PU)

10Time Secs

Separate Mode
**** □ □ □
Operations

Grid Table

Plot Same

Read Save

Plot Variables j

Data SCOTLAND

X Axis Time

Delt
Syster-II BBar ||j

Pmw Imvar

Tap Vf Vr Vt

Gref Vpos Tm Slip

!at Eqd Fddrl Eqdd

Vbd Vbq Id iq
■-----------

Figure 7.19: Four superiinposed graphs

Network Time History Operations Set Points Faults Help Quit. Simulator

Rotor Angle PU DINORMIC

I------ E— TTime Sees

Rotor Angle PU CEGB
fcrS-

TimeSec*

Rotor Angle PU NMALES Rotor Angle PU SCOTLAND

1 Superimpose Mode ~|

□ 1 II I E
Operations]

Grid Table
Plot Same
Read Save

Plot Variables

Data SCOTLAND

X Axis Time

Delt

System BBar

Pmw |)mvar

0 Vf Vr Vt

|Gref Vpos Tm |siip

|>at Eqd Eddd ^qdd

| Vbd Vbq Id iq

Figure 7.20: Four separately displayed graphs

Network Tine History Operations Set Points Faults Help Quit Simulator

Separate ModeDINORUIG-(Rotor Angle PU)
NWALES-(Rotor Angle PU) SCOTLAND-(Rotor Angle PU)

Operations

Input Output File Name Grid Table

Plot Same

Read SaveClear Cancel

Plot Variables

Data SCOTLAND
me

DeltY Ax
Machine

Pmw -ar

Tap

'pos

Eqd Eddd Eqdd

Vbd Vbq10Time Secs

Figure 7.21: Specifying the output file name for the data of a graph

Network Time History Operations Set Points Faults Help || Quit Simulator
r=

Plot Data FilesDINORUIG-(Rotor Angle PU)
NUALES-(Rotor Angle PU>

fung-pjot
dinorwig-sat
def
dinorwig-avr
dinorwig-vt

fung.try
dinoruig-delt
abc
dinorwig-vf

Operations

Plot Variables

SCOTLAND

X Axis

Y Axis

|System|| BBar Machine
Cancel

fime Delt

Time Secs

Figure 7.22: Selecting an input data file

Network Tine History Operations Set Points Faults Help Quit Simulator

DINORWIG-(Rotor Angle PU)
NWALES-(Rotor Angle PU) SCOTLAND-(Rotor Angle PU)

3.2-

l.fr-

Graph#2
Graph#3 Graph#4

DINORWIG

Time Secs Rotor Angle PU
--- 1

0.000
0.040
0.080
0.120
0.160
0.200
0.240
0.280
0.320
0.360
0.400
0.440
0.480
0.520
0.560

"ok

-1.707
-1.707
-1.707
-1.707
-1.707
-1.707
-1.707
-1.707
-1.707
-1.707
-1.707
-1.707
-1.707
-1.707
-1.707

Separate Mode

Operations

Grid Table

Plot Same
Read Save

Plot Variables

Data SCOTLAND

X Axis Time

Delt

|System 11 BBar |Machine

~Pmw~] |}t>ivarj

Tap | Vf | v t |
Gref |Vpos H T] H
>at Eqd Eddd] S
Vbd Vbq 1 Iq 1

Figure 7.23: Table diaplaying the numerical data of a graph

Network Time History Operations Set Points Faults Help Quit Simulator

Separate ModeDINORUIG-(Rotor Angle PU)
NUALES-(Rotor Angle PU)

Machines Available

cegb
NWALES OperationsSCOTLAND

Grid Table

Plot Same

Read Save

Plot Variables

Data SCOTLAND

TimeX Axis
DeltY Axis

|System 11 BBar Machine
Cancel

pime l)elt Pmw *ar

Tap

fpos

Eqd Eddd

Vbd Vbq10Time Secs

Figure 7.24: Selecting a machine as the new data source for graph plotting

Network Time History Operations Set Points Faults Help Quit Simulator

Logging Period 5 (ms)

Simulation Time Step 0,04 (ms)

In Network Diagram «. Time History

Rotor Angle is referenced to:

Mean Rotor Bus Bar 50 Hz Freg

Restore System State

Remember System State

Hold Simulator Model

Change Logging Period
Change Simulation Time Step

Return To Main Menu

Figure 7.25: The Operation Menu

Network Time History Operations Set Points Faults Help Quit Simulator

Logging Period 5 (ms)

Simulation Tine Step 0,04 (ms)

In Network Diagram J. Time History

Rotor Angle is referenced to:
Mean Rotor Bus Bar 50 Hz Freq

Restore System State
Remember System State

Hold Simulator Model

Enter Log Interval:

-INO-

0 ♦ CLEAR

SAVE CANCEL Negate

Figure 7.26: Changing the logging period

Network Time History Operations Set Points Faults Help Quit Simulator

Group

Bbar

Return To Main Menu

Spread Sheet

Governor Parameters

Avr Parameters

Line

Figure 7.27: Set points menu

Network Time History Operations Set Points Faults Help Quit Simulator

Hachines available

D H M M m H H cegb
NUALES SCOTLAND

Update Cancel

Figure 7.28: Selecting a machine for modification

Network Time History Operations Set Points Faults Help Quit Simulator

Bus Bars available

I i H S V H H l PENT4
■ DIN04 CEGB4 m NWAL4 SC0T4

%

Update Cancel

Figure 7.29; Selecting a busbar for modification

Network Tine History Operations Set Points Faults Help Quit Simulator

Lines available

| DEES4-PENT4:L2
PENT4-: DIN04-PENT4:LI
DIN04-PENT4:L2 DEES4-PENT4:L3
DEES4-CEGB4: DEES4-NUAL4:
DEES4-SC0T4: PENT4-CEGB4:
PENT4-NUAL4: PENT4-SC0T4:
CEGB4-NUAL4:
NUAL4-SC0T4:

CEGB4-SC0T4:

%

Update Cancel

Figure 7.30: Selecting a line for modification

Network Tine History Operations Set Points Faults Help Quit Sinulator

Govs available

m sm m m | penbgov

Update Cancel

Figure 7.31: Selecting a governor for notification

Network Tine History Operations Set Points Faults Help Quit Simulator

G000

Mode Const Power

Valve Time Const ^ ------------------ w 0.3

High Pressure Time Const 0.5

Reheat Time Const 10

Proportion of Torque from HPcyl 1

Maximum Valve Position 1.1

Minimum Valve Position -1.1

MaxRate of Change of Valve Pos 0.2

MinRate of Change of Valve Pos -5

Update Adjust Cancel

Figure 7.32; Menu of set points of a governor

Network Time History Operations Set Points Faults Help Quit Simulator

Avrs available

Update Cancel

Figure 7.33: Selecting an avr for modification

Network Time History Operations Set Points Faults Help Quit Simulator

A001 ^
--- kUV

Mode Auto

Forward Path Gain 30

Second Order Damping Factor 0*3

Forward Path Time Constant 0

Feedback Path Gain 0

Feedback Path Time Constant 0

Maximum Field Voltage 2

Minimum Field Voltage 0

MaxRate of Change of FieldVolt 3

MinRate of Change of FieldVolt -2

Update Adjust Cancel

Figure 7.34: Mena of set points of an avr

Network Time History Operations Set Points Faults Help Quit Simulator

Spreadsheet for 4 Groups Bus Bar Line Set Avr Gov

Name Vt Vr Tmo Hz P9 09 Tap No
Maximum 1.00469 1.07279 0.823371 50.0001 11244 1015.5
Croup SCOTLAND CEGB CEGB DI NORM IG CEGB CEGB
Minimum 0.993181 1.0364 -0.885077 50.0001 -1797.8 -24.6607
Group NMALES NMALES DINORMIC DINORMIC DINORMIG DINORUIG

1.00589 6
DINORMIG DINORMIG
1 1
CEGB CEGB

NUALES 1.0364 0.250176 50.0001 337.143 30.387 1 1
CEGB 0.993695 1.07279 0.823371 50.0001 11244 1015.5 1 1
DINORUIG 0.999972 1.05301 -0.885077 50.0001 -1797.8 -24.6607 1.00589 6
SCOTLAND 1.00469 1.05185

%

0.473561 50.0001 1805.85 52.5283 1 1

OK II Sort (Ascend) Sort (Descend) Update Data Reset Max/Min

Figure 7.35: Spreadsheet of all the available machines

Network Time History Operations Set Points Faults Help Quit Simulator

Spreadsheet for 6 Bbars Group Bus Bar Line Set Avr Gov

Name Status Vmag PI Q1 Yr Yx Fr Fx
Maximum
Bbar
Minimum
Bbar

1.00469 7050.73 187.998
SC0T4 CEGB4 CEGB4
0.993181 0.000190731 -501.94
NWAL4 DIN04 DEES4

7140.49 502.804 0 0
CEGB4 DEES4 DEES4 DEES4
0.000190811 -190.391 0 0
DIM04 CEGB4 DEES4 DEES4

NWAL4 NoFault 112.696 67.8974 114.248 -68.8329 0 0
CEGB4 NoFault 0.993695 7050.73 187.998 7140.49 -190.391 0 0
DEES4 NoFault 0.99914 2988.64 -501.94 2993.79 502.804 0 0
PENT4 NoFault 0.999649 237.876 -108.989 238.043 109.065 0 0
DIN04 NoFault 0.999791 0.000190731 0 0.000190811 0 0 0
SC0T4 NoFault 1.00469 1242.38 -23.0996 1230.8 22.8844 0 0

%

OK Sort (Ascend) Sort (Descend) Update Data Reset Max/Min

Figure 7.36: Spreadsheet of all the available busbars

Spreadsheet for 15 Lines Group Bus Bar Set Avr Gov
Name Status B Tap
Maximum
Line
Minimum
Line

1.0308 7730.81 220 1
DEES4-SC0T4: NUAL4-SC0T4: DIN04-PENT4 J LI DEES4-PENT4 J L1
-594.561 0 -200 1
NWAL4-SC0T4 J PENT4-J PENT4-J DEES4-PENT4 J LI

NUAL4-SC0T4: In 7730.81 0 1
PENT4-SC0T4: In -24.5471 1899.61 0 1
CEGB4-NUAL4: In -14.9109 ^ 79.0945 0 1
PENT4-CEGB4: In -2.4097 ^ 19.573 0 1
DEES4-CEGB4: In -0.0272 0.6801 0 1
PENT4-: In 0 0 -200 1
DIN04-PENT4:L1 In 0.0073 0.121 220 1
DIN04-PENT4:L2 In 0.0094 0.1385 124.06 1
PENT4-NUAL4: In 0.0348 1.9251 0 1
DEES4-PENT4:L2 In 0.095 1.264 52.38 1
DEES4-PENT4:L1 In 0.095 1.264 52.38 1
DEES4-PENT4:L3 In 0.2034 2.0261 0 1
CEGB4-SC0T4: In 0.2317 4.5942 0 1
DEES4-NUAL4: In 0.3008 8.3052 0 1
DEES4-SC0T4: In 1.0308 17.6785 0 1

OK Sort (Ascend) Sort (Descend) Update Data Reset Max/Min

Network Time History Operations Set Points Faults Help Quit Simulator

Figure 7.37: Spreadsheet of all the available lines

Spreadsheet for 4 Sets Group Bus Bar Line Avr Gov

Name MVA H Rt Xt
Maximum 14024 5,22 0.07 4.7
Set CECB01 NWAL01 DIN001 DIN001
Minimum 330 3.84 0 0
Set DIN001 CEGB01 CEGB01 CEGB01

DIN001 & 4.5 0.07 4.7
NUAL01 1465.8 % 5.22 0 0
SC0T01 3986 4.17 0 0
CEGB01 14024 3.84 0 0

OK Sort (Ascend) Sort (Descend) Update Data Reset Max/Min

Network Time History Operations Set Points Faults Help Quit Simulator

Figure 7.38: Spreadsheet of all the available sets

Network Time History Operations Set Points Faults Help Quit Simulator

GovGroup Bus Bar Line SetSpreadsheet for 1 Avrs
Vfmax Vfmin pVfmax pVfminName Status

-2
AOOi
-2
AOOI

0.3
AOOI
0.3
AOOI

Maximum
Avr
Minimum
Avr

AOOI AOOIAOOi AOOi

AOOI AOOi

AOOI Auto 0.3

Reset hax/MinUpdate DataSort (Ascend) Sort (Descend)

Figure 7.39: Spreadsheet of all the available avrs

Network Time History Operations Set Points Faults Help Quit Simulator

Spreadsheet for 2 Govs Group Bus Bar Line Set Avr
Name Status Ta Tb Tc K1 Vpmax Vpmin pVpmax pVpmin

0.3 0.5 10 1 1.1 -1.1 0.2 0
GOOO GOOO GOOO GOOO GOOO GOOO GOOO
0.3 0.5 10 1 1.1 -1.1 0.2 -5
GOOO GOOO GOOO GOOO GOOO GOOO GOOO GOOO

Maxim um

Gov
Minimum
Gov

pembgov
G000

RegTorgue(0.04
ConstPower

jm
0.3

0.5
0.5

10
10

1.1
1.1

0
- 1.1

0.2
0.2

-5
-5

OK Sort (Ascend) Sort (Descend) Update Data Reset hax/Min

Figure 7.40: Spreadsheet of all the available governors

Network Time History Operations Set Points Faults Help Quit Simulator

Fault Files

41ineout
41inein

*

OK Cancel

Figure 7.41: Menu of fault files

Network Time History Operations Set Points Faults Help Quit Simulator

Sequence Table

£bar DEES4 FaultOn Seq 2000 log
bbar DEES4 FaultOff Seq 120 ud

1*

OK Insert Append Delete

Figure 7.42: Table displaying the content of a selected fault file

Network Time History Operations Set Points Faults Help Quit Simulator

Real Time Power System Simulator Help Menu Introduction

rhis is the first of a series of help menus designed to help you understand
dw the W R f f l works and how to use the facilities provided.

rhis help menu knows about iimulation Model and

('ou may get more information about any subject by clicking the pointer on
ie of the highlighted words. Then, a new passage of help will be displayed
uhich will tell you more about that particular subject.

rhis is a very simple implementation of

:opyright <c>: 3E3EES March, 1991. B H G B B S S l .

OK Last Topic: INTRODUCTION

Figure 7.43: Hypertext help menu

C hapter 8

Further Work

The MMI is the first Graphical User Interface, GUI, developed for the present

real time power system simulator. It opens up scope for further development in

the field of man machine interface design for engineering problems.

Traditionally, the man machine interface has not played a major role in the

development of power system simulators at Bath University [2,3]. The present

MMI brings to the user pleasant benefits of a carefully designed user interface.

Unfortunately, some new problems, which have never been considered before, are

created. For instance, mixing real time flicker free animation with a window

system requires much work to solve the problem. The choice of menu items

and how they should be positioned on the screen generates much debate. It

is easier to refine a product than to create it from scratch. Once the user has

more experience with the MMI, criticisms naturally arise. In order to serve the

diversity of users, flexible methods can be constructed to make modifications of

the interface easier. The introduction of the following features could be used to

satisfy most user requirements:

1. It should be possible to design a window manager to take care of the user’s

192

requirements during run time. The user can specify a number of interface

features, e.g. colour of a window, from a pop up window during run time.

This is better than customizing the interface by listing the user’s require

ments in a text file which is the common practice of most X Window System

applications [65]. The proposed method is more dynamic and the user make

changes easier. Sometimes, a user does not know what to change before the

application is used. Obviously, it must also be possible to save the new

modifications in a text file so that the user does not have to go through the

whole customization process every time the application is used.

2. For more fundamental customization, such as the choice of menu items in a

pop up menu and how they should be positioned, a more complex method

must be adopted. The present MMI adopts the toolkit rather than the

UIMS approach U It should be feasible to develop a UIMS to function

on top of the present system. Ambitious user should be allowed to make

more basic alterations of the interface by interacting with the UIMS prior

to the running of the simulator. In any case, a default interface should

be provided to cater for those users who are only interested in running the

simulator and have no need for changing the interface in any way other than

some cosmetic changes which are accommodated by the window manager

as described above. The present MMI is a very good example of how a user

friendly and powerful interface can be built.

Lastly, it is possible to alter the “look and feel” of an X application by adopt

ing a new widget set 2. The present MMI was implemented with the Athena

Widget Set [70] which offers the most basic functions expected from a widget

set. Unfortunately, applications written with this widget set are not particular

to o lk its and User Interface Management Systems (UIMS) are described in Chapter “User
Interface Design” and Chapter “The Interface”

2 Refer to Chapter “X Window System”

beautiful in appearance. In order to “beautify” the interface, the Motif Widget

Set [105] is a very good choice. As well as being a powerful widget set offering

more features than the Athena Widget set, it is fast gaining popularity among

today’s X applications. By adopting Motif, the new MMI should ease anxiety

from the new users.

194

C hapter 9

C onclusion

A user friendly Man Machine Interface has been successfully implemented for

a real time power system simulator running on the multiprocessor transputer

system with high resolution bit-mapped colour graphics. The whole system is

used to simulate and study the electro-mechanical transient behaviours of the

British National Grid transmission system in real time.

The MMI is made up of two parts: the application interface and the user inter

face. The application interface is a library of application specific function calls

which are responsible for interacting with the user interface in order to provide

services that alter and obtain application data. The user interface is responsible

for servicing the user requests in controlling the Simulator to carry out power

system study. A set of carefully researched design guidelines have been adopted

to ensure the usability of the interface. They are obtained from studying the

human psychology, colour theory and various modern interface techniques. In

addition, comprehensive facilities are provided to help the user in carrying out

power system studies.

The MMI is implemented as a WYSIWYG type interface which has a close re

195

lationship between user expectations and graphics output. In this way, the user

can understand the MMI more and is in better control of it. Direct Manipulation

has been shown to be a powerful technique for human-computer interaction as

it successfully associate user actions and the application functions together. The

user can readily interact with application objects by directly manipulating it us

ing a mouse pointer. The application outputs are presented vividly in graphical

forms which can be easily understood.

The X Window System has been adopted to implement the MMI. It offers a rich

set of interface objects, e.g.pop-up menus and slide bars, as well as a comprehen

sive library of programming functions, Xlib, in aid to implement a user interface.

X does not dictate how an interface should look like or behave. It only provides

mechanisms. Hence, the “look and feel” of a user interface depends entirely on

the programmer or on the choice of a Window Manager.

Unfortunately, X was not designed to provide animated graphics. A carefully

designed method is used to implement flicker-free animation: a library of low

level graphics routines are written to draw graphics directly on the video memory

of the graphics processor, VSC. Two pages of memories are provided for double

buffering, i.e. one page to display animation on the monitor while the other

page was updated in the background. The result has been satisfactory in that

the animation produced is fast and flicker- free. Careful compromise has been

reached in bringing X and the animated graphics together.

The MMI has been implemented successfully in meeting the objective of providing

a powerful and user friendly interface to a complex power system simulator. As

it is the first project of its kind for the simulator developed at the School of

Electrical Engineering, Bath University, it indicates that a proper user interface

196

is both feasible and desirable. As well as demonstrating how a user interface can

be implemented, the MMI project also opens up scopes for further development

by studying the strength and weakness of the present MMI. In the future, power

system engineers should be benefited from a carefully constructed man machine

interface mediating between the simulator and the users.

197

R eferences

[1] T. Berry, K. Chan, R. W. Dunn, and F. Ng. Real time power system
training simulator. In 25th UPEC Proceedings, pages 671-674, 1990.

[2] L. A. Dale. Real Time Modelling of Multi-machine Power System. PhD
thesis, Bath University, School of Electrical Engineering, 1986.

[3] T. Berry. Real Time Modelling of Complex Power System using Parallel
Processing. PhD thesis, Bath University, School of Electrical Engineering,
1989.

[4] T. Hagen. A conceptual basis for graphical input and interaction. In
Methodology of Interaction, pages 239-246. Amsterdam, 1980.

[5] Macintosh is a registered trademark of apple computers, inc.

[6] J. Whiteside. User performance with command menu, and iconic interface.
In The OX Association for Computing Machinery, pages 185-191, Apr.
1985.

[7] The x window system is a registered trademark of the massachusetted in
stitute of technology.

[8] Prentice-Hall. The Helios Operating System, 1989.

[9] Prentice-Hall. Transputer Reference Manual, 1988.

[10] Philips Components Ltd. VSC: SCN66470 Video and System Controller,
1988.

[11] G. A. Miller. The magic number 7, plus or minus 2: some limits on our
capacity to process information. In Psychological Review, volume 63, pages
81-97, 1956.

[12] H. Thimbleby. W hat you see is what you have got - a user engineering
principle for manipulative display. In ACM Conference on Software, Er
gonomics:, 1983.

[13] J. Rassmussen. Skills, rules and knowledge; signals, signs and symbols and
other distinctions in human performance models. In IEEE Trans Systems,
Man and Cybernetics, pages 257-266.

198

[14] B. Shneiderman. Direct manipulation: a step beyond programming lan
guages. In IEEE Computer, pages 57-69, Aug. 1983.

[15] G. Polya. Mathematical Discovery. John Wiley, 1981.

[16] W. E. Hick. On the rate gain of information. In Q. J. Experiemental
Psychology, volume 4, pages 11-26, 1952.

[17] K. R. Popper and J. C. Eccles. The Self and its Brian. Springer Interna
tional, 1977.

[18] M. Green. A survey of 3 dialogue models. In ACM Transaction on Graphics,
volume 5, pages 244-275, July 1986.

[19] B. Shneiderman. Designing the User Interface: Strategies for Effective
Human Computer Interactions. Addison-Wesley, 1987.

[20] P. Heckel. The Elements of Friendly Software Design. Warner Books, 1984.

[21] E. L. Hutchins. Direct manipulation interfaces. In User centered systems
design: new perspectives on Human Computer Interactions. Lawrence Erl-
baum Associates, Hillsdale, N.J., 1986.

[22] G. Polya. How to solve it. Doubleday, 1956.

[23] M. Montessori. The Montessori Method. Schocken, 1964.

[24] J. Bruner. Toward a Theory of Instruction. Harvard University Press, 1966.

[25] J. M. Carroll, J. C. Thomas, and A. Malhotra. Presentation and represen
tation in design proble solving. In British Journal of psychology, volume 71,
pages 143-153, 1980.

[26] S. Papert. Mindstorms: Children, Computers and Powerful Ideas. Basic
Books Inc., 1980.

[27] R. Arnheim. Visual Thinking. University of California Press, 1972.

[28] M. Wertheimer. Productive Thinking. Harper and Row, 1959.

[29] J. Ossner. Transnational symbols: The rule of pictograms and models in
the learning process. In In Designing User Inerface for International use,
pages 11-38. Elsevier Science Publication, Amsterdam, 1990.

[30] P. Sukaviriya and L. Morgan. User interface for asia. In In Designing User
Inerface for International use, pages 11-38, Amsterdam, 1990. Elsevier
Science Publication.

[31] G. M. Murch. Human factors of colour displays tutorial no. 24 notes. In
Siggraph, July 1987.

[32] L. W. MacDonald. Using colour effectively in displays for computer-human
interface. In Displays, July 1990.

199

[33] G. M. Murch. Physiological principles for the effective use of color. In IEEE
Computer Graphics and Application, pages 49-53, Nov. 1984.

[34] J. A. Wise and N. C. Abi-Samra. The Design of Display Systems for Elec
trical Control Centres. Westinghouse Electric Corporation.

[35] D. G. Bobrow, S. Mittal, and M. J. Stefik. Expert systems: Perils and
promise. In The OX Association for Computing Machinery, pages 880-
894, Sept. 1986.

[36] J. A. Sutton and R. H. Sprague. A study of display generation and man
agement in interactive business applications. Technical Report 31804, IBM
San Remo Lab, 1978.

[37] W. D. Hurley and J. L. Sibert. Modelling user interface-application inter
faces. In IEEE Software, pages 71-77, Jan. 1989.

[38] H. Lieberman. There is more to menu systems than meets the screen. In
Computer Graphics, volume 19, pages 181-189, 1985.

[39] H. W. Dzida and W. D. Itzfeldt. Factors of user perceived quality of in
teractive systems. Technical Report 40, Institut Fur Software Technolgie,
1978.

[40] J. Rhyne. Tools and methodology for user interface development. In Com
puter Graphics, pages 78-87, Apr. 1982.

[41] E. Lee. User-interface development tools. In IEEE Software, pages 31-35,
May 1990.

[42] B. A. Myers. User-interface tools: Introduction and survey, pages 15-23,
Jan. 1989.

[43] D. R. Olsen. A context for user interface management. In IEEE Computer
Graphics and Application, pages 33-42, Dec. 1984.

[44] R. L. Read and M. L. Smith. A light-weight uims. In Software-Practice
and Experience, volume 21, pages 13-33, Jan. 1991.

[45] D. J. Kasik, M. A. Lund, and H. W. Ramsey. Reflection on using a uims
for complex applications. In IEEE Software, pages 54-89, Jan. 1989.

[46] R. Hartson. User-interface management control and communication. In
IEEE Software, pages 62-70, Jan. 1989.

[47] J. D. Foley. Models and tools for the designers of user-computer interfaces.
Technical report, Dept. EE and CS, The George Washington University,
Washington, DC, USA.

[48] P. J. Hayes and P. A. Szekely. Design alternatives for user interface manage
ment system based on experience with cousin. Technical report, Computer
Science Dept., carnegie-Mellon University, Pittsburgh, PA, USA.

200

[49] J. McCormack and P. Asente. X 11 toolkit for the x window manager. In
Proc ACM SIGGraph Symp., User-interface Software, pages 46-55, 1988.

[50] P. S. Barth. Grow: An object-oriented approach to graphical interface. In
ACM Transaction on Graphics, pages 142-172, Apr. 1986.

[51] P. Szekely and B. Myers. Coral: A user-interface toolkit based on graphical
objects and constraints, pages 36-45, Nov. 1988.

[52] M. A. Linton, J. M. Vlissides, and P. R. Calder. Composing user interfaces
with interviews. In IEEE Computer, Feb. 1989.

[53] Windows is a registered trademark of microsoft.

[54] Open windows is a registered trademark of sun microsystems.

[55] Presentation manager is a registered trademark of microsoft.

[56] Dec windows is a registered trademark of digital equipment corp.

[57] Gem is a registered trademark of digital research.

[58] B. Liskov and R. Scheifler. Guardian and action: Linguistic support for ro
bust, distributed programs. In ACM Trans. Program Lang. Syst, volume 5,
pages 381-404, July 1983.

[59] E. Balkovich, S. Lerman, and R. P. Parmelee. Computing in higher ed
ucation: The athena experience. In The OX Association for Computing
Machinery, volume 28, pages 1214-1224, Nov. 1985.

[60] P. Asente. W: reference manual. Dept Computer Science, Stanford Uni
versity, Calif, U.S.A., 1984.

[61] K. A. Lantz and W. Norwicki. Structured graphics for distributed systems.
In ACM Trans. Graph, volume 3, pages 23-51, Jan. 1984.

[62] D. Cheriton. The v kernel: A software base for distributed systems. In
IEEE Software, volume 1, pages 19-42, Apr. 1984.

[63] Unix is a registered trademark of at&t.

[64] Prentice-Hall. Helios X Window Manual, 1990.

[65] R. W. Scheifler and J. Gettys. The x window system. In ACM Transaction
on Graphics, volume 5, pages 79-109, Apr. 1986.

[66] R. W. Scheifler. X Window System Protocol, 1987.

[67] J. Gettys, R. Newman, and R. W. Schiefler. Xlib - C Language Interface.
Massachusetted Institute of Technology, 1987.

[68] J. McCormack, P. Asente, and R. Swick. X Toolkit library - C Language
Interface. Massachusetted Institute of Technology, 1987.

201

[69] D. S. H. Rosenthal. A simple x l l client program, or, how hard can it really
be to write ‘hello, world’. In USENIX Conference Proceedings, 1987.

[70] R. R. Swick and M. S. Ackerman. The x toolkit: more bricks for building
user-interfaces, or, widgets for hire. In USENIX Conference Proceedings,
1987.

[71] T. Berry. Real time simulation of power system transient behaviours. In IEE
3rd International Conference on Power System Monitoring and Control
Conference, 1991.

[72] R. W. Dunn. A new architecture of high performance parallel computer
for use in condition monitoring of large diesel engine. In IEE Conference
Publication, Sept. 1989.

[73] MetaComco. Introduction to Tripos, 1986.

[74] M. B. Daley. A Link Topology Controller for a Sixteen Transputer Multi
processor System. BSc thesis, Bath University, School of Electrical Engi
neering, 1988.

[75] Ims c004 programmable link switch, 1987.

[76] M. Hafeez. An Expandable Input/Output and Graphics System for Dis
tributed Memory Parallel Computer. PhD thesis, Bath University, School
of Electrical Engineering, 1990.

[77] Philips Components Ltd. 16/32-Bit Highly-integrated Microprocessor
SCC68070 User Manual Parti-Hardware, 1988.

[78] IXI. MIT X Window System Manual Set: 0, 1, 2, 3, 1988.

[79] Philips Components Ltd. Microcore: An evaluation board for 68070 and
VSC, 1987.

[80] G178 colour palette, data sheet, 1987.

[81] Logitech. Logitech mouse user’s manual, 1988.

[82] IBM AT is a registered trademark of the international business machines.

[83] D. May. Occam. In SIGPLAN notices, volume 18, pages 69-79, Apr. 1983.

[84] S. L. Harbison and G. L. Steele. C: A Reference Manual. Prentice-Hall,
1987.

[85] Sun workstation is a registered trademark of sun microsystem, inc.

[86] J. Powell and N. Garnett. Helios performance measurement. Technical
Report 22, Perihelion Software, 1990.

[87] J. M. Undril. Interactive computation in power system analysis. In IEEE
Proceedings, volume 2, pages 1009-1018, July 1974.

202

[88] U. G. Knight. Computers in power system planning. In IEEE Proceedings,
volume 62, pages 872-883, July 1974.

[89] F. L. Alvarado, S. K. Mong, and M. K. Enns. A fault program with macros,
monitors, and direct compensation. In IEEE Trans, on Power Apparatus
and Systems, volume 104, pages 1109-1120, May 1985.

[90] R. Fujiwara and Y. Kohno. User-friendly workstation for power systems
analysis. In IEEE Trans, on Power Apparatus and Systems, volume 104,
pages 1370-1376, June 1985.

[91] C. H. Lo, M. D. Anderson, and E. F. Richards. An interactive power system
analyser with graphics for educational use. In IEEE Transactions on Power
Systems, volume 2, pages 174-181, May 1986.

[92] H. Diab, M. Yehia, and I. Abou-Hassan. Parallel computer graphic simula
tion of the lebanese electric power system. In IEEE Computer Applications
in Power, pages 38-42, 1989.

[93] D. C. Yu, S. Chen, and R. F. Bischke. A pc oriented and graphical sim
ulation package for power system study. In IEEE Transactions on Power
Systems, volume 4, pages 353-360, Feb. 1989.

[94] R. Bonert. Interactive simulation of dynamic systems on a personal com
puter to support teaching. In IEEE Transactions on Power Systems, vol
ume 4, pages 380-383, Feb. 1989.

[95] M. Daneshdoost and R. Shaat. A pc based integrated software for power
system education. In IEEE Transactions on Power Systems, volume 4,
pages 1285-1292, Aug. 1989.

[96] G. Zhang and A. Bose. Scenario building for operator training simula
tors using a transient stability program. In IEEE Transactions on Power
Systems, volume 4, pages 1542-1549, Oct. 1989.

[97] S. Chan. Interactive graphics interface for power system network analysis.
In IEEE Computer Applications in Power, pages 34-38, 1990.

[98] S. S. Miller and M. R. Ward. Implementation and use of a transient stability
post-processor. In IEEE Computer Applications in Power, pages 19-24,
1990.

[99] D. C. Yu, S. Chen, and R. J. Kalscheur. A pc based interactive graphical
simulation and analysis package for a power plant electrical auxiliary sys
tem. In IEEE Transactions on Power Systems, volume 5, pages 628-634,
May 1990.

[100] W. Long. Emtp: A powerful tool for analyzing power system transients. In
IEEE Computer Applications in Power, pages 36-41, 1990.

203

101] K. F. Chan and J. Ding. Interactive network planning and analysis on a
personal computer. In IEEE Computer Applications in Power, pages 43-47,
Jan. 1990.

1021 B. Valiquette. Microcomputer based power network control centre simualtor
for education. In IEEE Transactions on Power Systems, volume 5, pages
474-481, May 1990.

1031 M. Ahmadiaan and A. Brameller. Power system operator training simu
lator. In Proceedings of the 10th Power System Computation Conference,
pages 717-724, Aug. 1990.

104] L. Koved and B. Shneiderman. Embedded menus: Selecting items in con
text. In The OX Association for Computing Machinery, volume 29, pages
312-318, Apr. 1986.

105] R. J. Rost. X and Motif Quick Reference Guide. DEC Press, 1990.

1061 F. Ng. Computer Aided Design in Large Power System Simulation. BSc
thesis, Bath University, School of Electrical Engineering, 1988.

107] E. Marr. Eace02 - electromechanical equivalents for power system stability
studies. Technical Report CC/R252, CEGB Computing Services Depart
ment.

1081 F. J. Gilchrist. RaceOl-a.c. reduction program. Technical Report CC/P510,
CEGB Computing Services Department.

1091 E. Roe. Prasm-linear analysis of transient stability program. Technical
Report CC/N784, CEGB Computing Services Department.

1101 H. W. Dommel and N. Sato. Fast transient stability solutions. In IEEE
Trans, on Power Apparatus and Systems, pages 1643-1650, 1972.

l l l l B. Stott. Power system dynamic response calculations. In IEEE Proceed
ings, volume 67, pages 219-241, 1979.

1121 J. Arrillaga, C. P. Arnold, and B. J. Harker. Computer modelling of elec
trical power systems. John Wiley, 1983.

1131 Computer representations of exciatation systems. In IEEE Trans, on Power
Apparatus and Systems, volume 87, pages 1460-1464, 1968.

1141 Dynamic models for steam and hydro turbines in power system studies. In
IEEE Trans, on Power Apparatus and Systems, volume 1973, pages 1904—
1915, 1973.

1151 Y. B. Lee. Sensitivity and optimal control studies of power systems. PhD
thesis, Bath University, School of Electrical Engineering, 1975.

1161 H. Lu. Optimization studies of single machine power system. PhD thesis,
Bath University, School of Electrical Engineering, 1979.

204

[117] P. A. Hazell. Co-ordinate excitation control and governing of turbogenera
tors. PhD thesis, Bath University, School of Electrical Engineering, 1981.

[118] F. Busemann and W. Casson. Results of full-scale stability tests on the
british 132kv grid system. In IEE Proceedings, volume 105, pages 347-362,
1958.

[119] E. C. Scott. Multi-generator transient stability performance under fault
conditions. In IEE Proceedings, volume 110, pages 1051-1064, 1963.

[120] G. Shackshaft and R. Neilson. Results on stability tests of underexcited
120mw generator. In IEE Proceedings, volume 119, pages 175-18, 1972.

[121] D. W. Olive. New techniques for the calculation of dynamic stability. In
IEEE Trans, on Power Apparatus and Systems, volume 85, pages 767-777,
1966.

205

A p p en d ix A

Starting up the Sim ulator

The content of the shell script file, m4start, as used in Chapter 7, is given below:

h e lio s /b in /sh e ll

rem ote -d 02 pownet

rem ote -d 02 read stu d y/m 4b 6

rem ote -d 01 m mi -geom etry 718x478+ 0+ 0

-helpfile intro -network pic/fourm ach

The functions of the file are:

1. loading the power system network server onto processor 02 and initializing

the Simulator.

2. loading the read server onto processor 02 and reading in the input study

file: study/m4b6.

3. creating a number of machine tasks from the input study file.

4. distributing the machine tasks around the network of transputer processors.

206

5. loading the Interface onto processor 01.

6. initializing X, screen layout and the Interface with the help file and network

diagram.

The user can customize the shell script file for different power system study. The

choices of screen layout, help file and initial network diagram are also controllable

by the user.

207

A p p e n d ix B

Pow er System One-line diagram

In tro d u ctio n

The Network option in the MMI needs to display a one-line diagram of the power

system under study. The diagram must be prepared by the user before the

MMI is started. The diagram can be constructed either by using an interactive

picture editor [106] or by editing a text file specifying the picture. This appendix

illustrates how a one-line diagram can be specified by the latter method.

The whole one-line diagram is confined to a square which has a dimension of

1500x1500 points. The origin of the square is located at the bottom left hand

corner. A smaller moving square of dimension 500x500 points is used to specify

which portion of the whole diagram is to be displayed. When the MMI is brought

up, the default is to move the smaller square to the bottom left hand corner of the

larger square, thus covering the area from (0,0) to (500,500). Anything outside

this boundary is clipped.

208

C om m an d s

The followings show the valid keywords and their corresponding arguments in

specifying a one-line diagram:

G et arg l

A large one-line diagram can be made up of a number of smaller sub-pictures

which are contained in separate files. A master file is used to specify all the

smaller files in making up the whole diagram. This keyword specifies that the

MMI should read in a new file, whose name is given by argl, and uses the content

of the file as the new input. When this new file is finished, the MMI should carry

on reading in the interrupted file until the end. The whole process can be iterative.

P ictu re x arg l y arg2

If the “Picture” keyword is not present, the input graphics coordinates are as

sumed to be relative to the origin, i.e. (0,0). When a large network diagram

is to be specified, it is usually made up of a few smaller files which might be

constructed one by one with the origin located at (0,0). The “picture” keyword

informs the MMI that the incoming graphics has a different origin and it is located

at (argl,arg2).

Item arg l

The data structure of the one-line diagram is made up of a list of items. Each

item consists of a number of elements which might be a line, a box, a circle or a

text string. The keyword “item”, whose name is given by argl, indicates that all

209

the elements following this declaration belong to this item.

Line arg l arg2 arg3 arg4 arg5

Specify a line element starting from (argl,arg2) to (arg3,arg4) with the colour

given by arg5.

B ox arg l arg2 arg3 arg4 arg5

Specify a box element starting from (argl,arg2) to (arg3,arg4) with the colour

given by arg5.

C ircle a rg l arg2 arg3 arg4

Specify a circle element with centre (argl,arg2) and a radius of arg3 with the

colour given by arg4.

T ext arg l arg2 arg3 arg4

Specify a text at (argl,arg2) whose content is specified by arg3, with the colour

given by arg4.

End

Specifies the end of the current input file.

210

E x a m p le

The following is the text file used to specify the one-line diagram of the four

machine power system study *. The circles represent the machine groups, the

rectangle represent the busbars and the lines represent the transmission lines.

The pointer within a circle is used to indicate the rotor angle of the machine

group with respect to its busbar voltage angle. The magnitude of a busbar

voltage is displayed inside a rectangle. The two numbers beside a circle represent

the real and reactive power of a machine group. A positive value indicates that

the machine group is generating power and a negative number indicates that

power is being absorbed.

Item "SC0T4"
box 420 400 480 460 blue
text 430 450 "SC0T4" white

Item "DEES4"
box 280 260 340 320 blue
text 290 310 "DEES4" white

Item "PENT4"
box 120 260 180 320 blue
text 130 310 "PENT4" white

Item "DIN04"
box 110 100 170 160 blue
text 120 150 "DIN04" white

Item ,,CEGB4"
box 420 100 480 160 blue
text 430 150 "CEGB4" white

Item "NWAL4"
box 280 100 340 160 blue
text 290 150 "NWAL4" white

^ h e diagram is used in Chapter “Features of the MMI”

211

Item "DINORWIG 1

circle 142 50 30 cyan
line 140 82 140 100 cyan
text 122 12 "DINORWIG" white

Item "NWALES"
circle 310 50 30 cyan
line 310 82 310 100 cyan
text 290 12 "NWALES I I white

Item "CEGB"
circle 450 50 30 cyan
line 450 82 450 100 cyan
text 450 12 "CEGB" white

Item "SCOTLAND 1

circle 340 430 30 cyan
line 360 430 420 430 cyan
text 320 382 "SCOTLAND" white

Item "DEES4-PENT4:L1 I I

line 280 300 180 300 cyan

Item "DEES4-PENT4:L2 I I

line 280 290 180 290 cyan

Item "PENT4-:"
line 120 290 100 290 cyan
line 110 220 90 220 cyan
line 100 240 100 220 cyan
box 95 240 105 270 Magenta
line 100 270 100 290 cyan

Item "DIN04-PENT4:L1 I I

line 140 160 140 260 cyan

Item "DIN04-PENT4:L2 1

line 130 160 130 260 cyan

Item "DEES4-PENT4:L3 1

line 280 270 180 270 cyan

Item "DEES4-CEGB4:"
line 340 290 440 290 cyan
line 440 290 440 160 cyan

212

tem "DEES4-NWAL4:"
ine 310 260

tem "DEES4-SC0T4:"
ine 340 300
ine 440 300

tem "PENT4- CEGB4:
ine 170 215
ine 170 215
ine 430 160

tem "PENT4- NWAL4:
ine 160 260
ine 300 200
ine 300 200

tem "PENT4-SC0T4:
ine 150 340
ine 150 340
ine 430 340

tem "CEGB4-NWAL4:
ine 420 120

tem "CEGB4- SC0T4:
ine 470 160

tem "NWAL4-SC0T4:
ine 330 200
ine 460 200
ine 460 200

tem "title"
ext 80 465
ine 75 450

end

310 160 cyan

440 300 cyan
440 400 cyan

170 260 cyan
430 215 cyan
430 215 cyan

160 200 cyan
160 200 cyan
300 160 cyan

150 320 cyan
430 340 cyan
430 400 cyan

340 120 cyan

470 400 cyan

330 160 cyan
460 400 cyan
330 200 cyan

"Four Machine Power System"
300 450 red

White

213

A p p en d ix C

Specifying a sequence for the
power system

The Simulator provides commands to build up a complex sequence of modifica

tions to the power system under study. The user can write a text file to contain all

the commands [2]. Alternatively, the MMI provides a visual means to allow the

user construct a sequence by interacting with the objects on the one-line diagram

in the Network option. The former method is straight forward. However, the

user must have a fair understanding of the whole power system network before

hand. The latter method allows the user to examine the geographical locations

and connectivities of all the objects on the network. Besides, additional informa

tion about each object can be monitored as the simulation is running. This gives

the user a dynamic control over the whole network. This appendix describes the

procedure used to construct a sequence and all the commands available.

214

C on stru ctin g a sequence

In it ia tin g a se q u en ce

The user selects the “Start Sequence” on the Network Sub-menu 1 to initiate a

sequence. The shape of the mouse pointer will be changed into a hand to confirm

the user’s action. The user can then specify a sequence by modifying the various

power system objects.

S p ec ify in g a m o d ifica tio n

The user uses the same method in modifying an object during a sequence as

described in Chapter: “Feature of the MMI”. After the modification, a new

popup window is displayed. There are three further commands which can be

selected. The user can click on three command buttons to toggle on and off the

commands. A window is used to display the information about the object and

the modifications made to it. The three commands are:

1. Ud: Although a modification has been made to the object, the Simulator is

not informed of the change yet. It is possible to specify the modifications

of a group of objects without updating the Simulator. The actual updating

of all the simulation data is delayed until the “ud” command is issued.

2. Log: All simulation data is stored in log buffers. This commands forces the

Simulator to flush the contents of the buffers so that new simulation data

is stored.

1 Refer to Chapter: “Feature of the MMI” for a description of the Network Sub-menu.

215

3. Seq: This command is used to specify the duration of a modification. For

instance, it is possible to specify how long a busbar fault should last.

E n d in g a seq u en ce

The user can end a sequence by selecting the “End Sequence” on the Network

Sub-menu. The shape of the mouse pointer will be changed back into a large “X”

to confirm the user’s action.

M o d ify in g an ob ject

M o d ify in g a M a ch in e G roup

The parameters of a machine group that can be modified are:

1. AVR reference.

2. Governor reference.

3. Tap ratio.

4. Real generating power.

M o d ify in g a B u sb a r

The parameters of a busbar that can be modified are:

216

1. Real load power.

2. Reactive load power.

3. Busbar fault on.

4. Busbar fault off.

M o d ify in g a L ine

A line can be either:

1. Switched in.

2. Switched out.

A n E xam p le

The following is an example used to apply a 120ms busbar fault at the busbar

DEES4, for the four machine study 2. Comment lines are started with a

* Flush the log buffer and wait for 2000ms.
* Then, apply a busbar fault at DEES4.
* Update the simulator data.

busbar DEES4 faulton seq 2000 log ud

* Wait for the busbar fault for 120ms.
* Then take off the busbar fault.

busbar DEES4 faultoff seq 120

2Refer to Appendix: “The Four Machine Power System” .

217

A p p en d ix D

D esigning a H ypertext H elp
M enu

A hypertext help menu is made up of a number of help files each of which is

identified by a keyword. A help file might contain a number of keywords which

lead to further explanations of them. This helps to reduce the burden on the

user’s short term memory by leaving out temporarily irrelevant materials.

The MMI help system is made up of a number of files which are located under

the directory HELPDIR. A text file, HELPDBASE, is used to map a keyword to

its associated input file. When the MMI is started up, it searches for a default

file, HELPDEFAULTFILE, and uses it as its first help file. These three macros,

HELPDIR, HELPDBASE, and HELPDEFAULTFILE are specified in the header

file, dir.h. Hence, by recompiling the corresponding files, new values can be

assigned.

Every help file must be preprocessed by a program, prehelp, before it can be

used. After running through the preprocessor, a new help file is generated for

each original text file. The new file has a “.hip” suffix. This process helps to

218

guarantee the validity of the help files before the MMI is started.

Inside a help file, each keyword is enclosed by a pair of square brackets, “[]”. If

a picture is to be included in the file, the picture file name is enclosed by a pair

of curly brackets, “{ }”. The format of the picture file is specified in Appendix:

“Power System One-Line Diagram”.

The following is an example of such a file:

A real time [Power System] simulator needs a user friendly
[Man Machine Interface]. The following is a picture of the
four machine power system:
{fourmach}

In this case, there are two keywords: “Power System” and “Man Machine Inter

face” . The user can get more information about them by selecting the keywords.

In addition, a picture is included in the menu whose name is specified by “four-

mach”.

The file, HELPDBASE, then specifies the mapping between a keyword and its

corresponding input file. The following is an example:

"Power System" power
"Man Machine Interface" mmi

The keyword “Power System” leads to another help file, “power” . Similarly, the

keyword “Man Machine Interface” is associated with the file, “mmi”.

When the MMI brings up the help menu, all the keywords within the text are

highlighted. The user can use the mouse pointer to click on a keyword and bring

219

up a new help menu with a set of new keywords. The name of the most recently

displayed help file is indicated in the bottom right hand corner of the help menu.

This is used to provide a short cut for the user to refer back to the last shown

page.

220

A p p en d ix E

The Four M achine Power
System

In tro d u ctio n

The four machine power system was simplified from a large-scale CEGB system

which was a representation for summer night light load conditions with a Scotland

to CEGB transfer of five hundred mega watt [2]. The three lumped machines

and the reduced network were produced by the CEGB using dynamic and static

reduction methods [107,108]. An eigenvalue study [109] was applied to check that

the reduced system retained the main system modes with sufficient accuracy. The

reduced system was originally used to study the behaviours of the Dinorwig pump

storage station under different operating conditions, following a dual circuit line

outage between Deeside and Pentir. It was found that the system exhibited the

main local, group and system modes of oscillation for the Dinorwig section [2].

Fig. 7.2 shows the schematic of the four machine system.

This appendix examines the methods used to model a power system and the

221

numerical techniques used to solve the system equations. This is a summary of

the work of Dale [2].

P ow er S y stem M od elin g

A set of first order nonlinear differential equations are used to represent each ma

chine and a set of algebraic equations are used to represent the interconnecting

network. The Simulator represents each machine group by a second order AVR,

third order governor and a fifth order voltage behind reactance model. Only bal

anced three phase conditions are modeled. A general purpose equivalent 7r circuit

is used to represent a circuit branch so that either lumped parameter transmission

lines or power transformers can be modeled. Norton equivalent sources, which

include the action of a variable tap transformer, are used to represent the ma

chine group for interfacing them to the network. Hence, the machine stator and

transmission network are represented by a system of purely algebraic equations

which couple the machine differential equations. The time response calculation

is then a differential-algebraic initial value problem. The general form of such a

problem is then:

p y = f (y i x) (E - 1)

0 = Q(y,x) (E.2)

where y is a vector of integrable variables such as machine and control system

states, # is a vector of the non-integrable algebraic variables and p represents the

derivative with respect to time. In general T and Q are non-linear functions and

222

thus the non-integrable network variables cannot be eliminated algebraically.

S y n ch ro n o u s M ach in e M o d el

The model is based on an idealized machine which is symmetrical about the axes

of the field windings and that of the interpolar space, known as the direct and

quadrature axes respectively. The original three phase quantities along these axes

are resolved by Park’s transformation.

As far as the idealization of the machine is concerned, hysteresis, saturation and

eddy currents are neglected. Besides, a sinusoidal stator flux distribution around

the air gap is assumed for the mutual effects with the rotors. For transient

stability, only one shunt circuited winding in each axes is used to represent damper

windings and lumped eddy current effects.

Subsequently, a seventh order machine is obtained and it is made up of a set

of equations in terms of voltage behind subtransient reactance [2]. This model

is particularly useful in simulation as the machine equivalent voltages are states

and it is not necessary to compute them for the network calculations. To simplify

further, the seventh order model is reduced to fifth order [2].

Machine Torque Equation

Te = E" -U + E l - I , - (x"t - X '‘) ■h - 1 , (E.3)

Swing Equations

pu> = (Tm — Te — Tlo) /M (E.4)

p 6 = w (E.5)

223

Electrical equations

pe i = ((x , - x';) - i , - e :) / r ; (E.6)

PE'q = (v , - (Xd - x'd) - h - E ' q) /T'd0 (E.7)

pE'; = (E'q - (X ’d - xZ) ■ Id - E ';)/T ^ (E.8)

= E'Z + X'Z Iq - K - I d (E.9)

►-T0
0$1

'
-a

*1II (E.10)

T h e N etw o rk C a lcu la tio n

As the transmission network dynamic effects are neglected, a steady-state nodal

analysis of the network can be applied to E.2 and yield the following specific

form:

I{E,V) = Y - V (E .ll)

where I is a vector of current injections. / is determined from the machine

internal voltages E and/or busbar voltages V in the case of voltage dependent

loads. Y is the network nodal admittance matrix which is sparse for most large

power systems. The elements of this matrix are fixed with respect to time, under

a given switching condition.

Each branch of the transmission network may be represented by the general

purpose single phase equivalent 7r circuit if balance three phase operations and

symmetrical three phase faults are assumed.

To interface the synchronous machine model, the stator equations are referred

224

into the network reference frame and forms the Norton equivalent source. The

resulting equations form a complicated admittance matrix which requires modifi

cation every time step and the network matrix cannot be represented by complex

numbers but a 2x2 array for each admittance term is needed.

To reduce the computing effort required to solve the network equation, a con

stant complex matrix is formed. The saliency effect is included by adjusting the

machine current injection iteratively. Unfortunately, convergence of this method

can be troublesome [110-112] and it may be necessary to add extra current injec

tion to give reliable results. To eliminate the need for iterative network solution

completely, subtransient saliency in the fifth order model is neglected. In this

way, the nodal admittance matrix is then complex, sparse and constant for a

given network condition. Faults, line outages and transformer tap changes must

be obtained by recalculating Y in E .ll.

C on tro l S y s te m s

The synchronous machine excitation system and prime mover characteristics must

be included to complete the basic power system model. The general practice is to

represent these systems using a number of standard linearized models [113,114].

The Simulator uses simplified AVR and governor models similar to those used in

the previous optimization studies [115-117].

Neglecting rate and position limits, the differential equations for these control

systems are linear in their state variables and control input quantities and can

be arranged as:

225

Equations E.12 and E.13 can be combined to give the first order equation:

nV — y _ v _ /'p I's'i
P 3 (T,T9) 3 (T,Tg) ‘ (TsTg) err (• ■*

If the stabilizing feedback gain Ks is set to zero then the AVR reduces to a simple

first order lag. If the open-circuit machine is also considered as a single lag stage

then a second order closed loop system is formed. The resulting closed loop gain

is of the form:

Gc(s) = - — r (E.16)
S2 + 2AgU)n + LO2

where Kc is the closed loop DC gain, un is the natural frequency (rad/s) and Ag

is the damping factor.

Since one per unit terminal voltage on open circuit is generated for one per unit

field voltage, the machine has unity gain. Given the machine time constant, T 'do,

and the AVR gain, Kg, the AVR time constant, T5, can be determined for a

specified damping factor, Ag.

The governor model assumes an infinite steam source at the high pressure cylinder

governor valve. The valve is controlled by machine speed and is followed by two

time constants representing steam flows through the high pressure pipe work and

the reheater. The following equations are yielded:

„ T / _ _ 1 t / , (Tmo-KtU)
PVpOS — rp ^pos “b rp (E - 17)

-La -L a
pTml = TfVpos ~ 7fTml (E.18)

J - b - Lb

pTm 2 = TpTml ~ 7pTm2 (E.19)

M a g n etic S a tu ra tio n

So far, the dynamic and algebraic equations are for idealized synchronous ma

chines and magnetic saturation is neglected. However, the importance of includ

ing magnetic saturation effects in response calculations had been demonstrated

by the CEGB [118-120].

For a full representation of magnetic saturation, a step by step finite element

analysis of the flux paths of every machine modeled is too expensive. Alterna

tively, it is possible to simplify the representation by using saturation factors

obtained from the machine open circuit terminal voltage / field current curve.

However, the non-linearities introduced during saturation makes this approach

unsuitable.

A more practical approach is to assume that both mutual and leakage path of the

rotor circuits are saturated equally [121]. The saturated subtransient reactances

then vary slightly with saturation factor and it is justifiable to replace them

with the unsaturated values. The differential equations can be rearranged into

227

a pseudo-linear form which is suitable for direct solution by introducing new

non-integrable variables. The saturation factor is expressed as:

I< = l + o (E.20)

and the non-integrable variables are:

pE" = {(X, - X ‘‘) ■ Iq - E' ̂ - a E l) /T l (E.21)

PE'q = (V, - {Xd - X'd) -Id- E q - aE'q) /T ‘do (E.22)

PEq = ^Eq + aE'q- (X ‘d - X ' ;) - I J - E q - a E ' ^ / T l (E.23)

To maintain the stability of the implicit integration technique, it is important to

make the non-integrable variables as independent from the integrable variables

as possible. For this reason Id and Iq are replaced with Vd and Vq which are less

strongly coupled to E"d and E".

S olu tion T echniques

The power system models used in the Simulator are described above and the

resulting equations can be arranged in the following pseudo-linear state space

form:

py = A • y + B • u(y, x) (E.24)

228

where u is a vector of non-integrable variables, which are some non-linear function

of y and x , such that A and B are constant matrices. As a direct solution for

the integrable variables is possible, this form is particularly convenient for fast

execution using implicit integration methods.

The simulator uses a partitioned method whereby the non-integrable variables x

are extrapolated. The integrable variables yk+i are obtained using an algebraic

integration method. A better estimate of xk+i is then computed from equation

E.24 and the procedure iterated until x and y converge.

The implicit trapezoidal integration method was chosen for its stability properties

which allow fairly large integration steps to be taken while solution reliability

is ensured. The pseudo-linear form of the dynamic equations can be used to

give constant integration matrices for a given system condition enabling fast

calculation.

E xtrap o la tion Functions

The non-integrable variables are extrapolated using a variable order function.

The strategy adopted is described below:

1. Immediately following a network or local machine parameter discontinuity,

a zero order function is used:

ak+i = ak (E.25)

2. One step after a discontinuity, a first order function is used:

cik. — 2 ak CLk—\ (E.26)

229

3. Two steps after a discontinuity and during normal running, a second order

function is used:

ajfe+i = 3ak - 3a*_i + ak-2 (E.27)

The machine rotor angle is also extrapolated. When referred back to the network

reference frame, the extrapolated busbar voltage can then have an appropriate

phase shift.

In tegra tion A lgorithm

The implicit trapezoidal difference equation is:

y k + i = y k + x [F (y k) + ^ (y * + i)] (E.28)

When applied to the pseudo-linear matrix form of equation E.24 this yields:

and hence:

Vk+i — Vk + — [-A-2/k + B Uk + Ayfc+i -f Bufc+ i] (E.29)

r h i f r h i
Vk+1 = ! - - A { I + 2 A

Vk + (E.30)

where I is the identity matrix.

Both A and B are sparse matrices and hence the solution of this set of linear

equations can best be solved by direct Gaussian elimination rather than multi

plying by the non-sparse inverse matrix. Gaussian elimination is equivalent to

forward and backward substitution using triangular matrices.

230

A p p en d ix F

A ssem bler listing of the
keyboard and m ouse data
capturing routines

* This will reside in EPROMS to set
* 1. VSC
* 2. MOUSE
* 3. KEYBOARD
* And then loop and read mouse whenever it is moved.
*
* Also checks to see if the co-processor wants the 68070 to
* carry out 16-bit read/write operations for it.
*

* LAST UPDATED... 25-oct-89 RWD
* KEYBOARD INTERRUPT ROUTINE ADDED ... 25-Jan-90 F.NG
*

* The keyboard generates INTI when a key is pressed and VSC
* resets INTI when reading data from LS322 (serial to parallel).
* INTI generates a level 4 interrupt to VSC which looks at INTVEC
* and multiply it by 4 to get instruction which is a jump to
* routine INTKEY. There the key data is read and bit 7 of LIR is
* reset to enable further interrupt from keyboard.
*

PICR2
EPROM

EQU
EQU

BERRVEC EQU
LOGICTR EQU
*

$80004027
$180008
$8
$140000

peripheral interrupt control reg.
EPROM ENTRY LOCATION
BUS ERROR VECTOR LOCATION
LOCATION IN THIRD RAM BLOCK TO TRIGGER
THE LOGIC ANALYSER

231

ACIA EQU $80002010
UMR EQU $1
USR EQU $3
UCS EQU $5
UCR EQU $7
THR EQU $9
RHR
*

EQU $B
T

XLOC EQU $7FFF0
YLOC EQU $7FFF2
BUTTON EQU $7FFF4
MOFLAG EQU $7FFF8
ACFLAG EQU $7FFF9
CODATA E q u $7FFFA
COADD EQU $7FFFC
STACK
*

EQU $7F800

FLAGVAL EQU
*

$FF

*
INTSON EQU $2000
INTSOFF EQU $2700
*

acia base addr.
mode reg
status reg
clock select reg
command reg
transmit hold reg
reciever hold reg

shared memory mouse x position
shared memory mouse y position
shared memory mouse button information
shared memory mouse semaphore flag,
shared memory access semaphore flag,
data transfer location,
access address pointer.
2000 byte for stack

flag value for T800
have been updated

means values

enable interrupt — > 0
7 means interrupt level under 7 is
disabled, i.e. no interrupt at all

* The following is specific to the keyboard interrupt routine
*

INTVEC1 EQU $70 level 4 autovector for INTI interrupt
INTVEC2 EQU $F0 level 4 autovector for INTI interrupt
KEYBOARD EQU $1FFC01 keyboard access address pointer
KEYDATA EQU $7FFE2 keyboard data transfer location
KEYFLAG EQU $7FFE4 tells transputer if a key is pressed
IENABLE EQU $C0 tells LIR that we are using level 4
IDISABLE EQU $8F tells LIR that we are not using ints
IACK EQU $80 tells LIR to loose the interrupt
LIR EQU $80001001 register holding interrupt level

*
RORG $0

¥
BEGIN:
£

EQU *

*
DC.L STACK,EPROM RESET VECTOR & STACK POINTER

T

START : MOVE. W #INTSOFF,SR MASK OFF ALL INTERRUPTS " " 1

232

LP1

*

*

*

LEA .L START,AO GET THE ADDRESS OF THE START
LEA.L BERRVEC,A1 SET START OF VECTOR AREA
MOVE.W #$100,DO SET UP A LOOP COUNTER
MOVE.L A0,(A1)+ POINT BUS ERROR VECTOR TO RE-START
DBRA D0,LP1 LOOP UNTIL $400 BYTES COPIED

KEYBOARD SETUP

LEA.L INTKEY,AO address of keyborad interrupt routine
MOVE.L AO,INTVEC1 save pointer in the level 4 vector
MOVE.L AO,INTVEC2 save in 'on chip' vector, just incase
ANDI.B #IDISABLE,LIR remove any pending interrupt
MOVE.B KEYBOARD,DO clear int from keyboard after reset
ANDI.B #IDISABLE,LIR remove any pending interrupt

VSC SETUP

LEA.L $1FFFE0,A0 point at the VSC registers.
MOVE.W #$168,0(A0) set up a the csr

This sets:-

1. FAST PAGE DRAM
2. 133ns EPROM DTACK

* the next bit waits until the display has just entered frame fly-back
*
VSC1: BTST #7,1(AO) ; check the status register

BNE.S VSC1 ; wait for it
VSC2: BTST #7,1 (AO) ; check it again, now it is low

BEQ.S VSC2 ; and wait on it to go high again

MOVE.W #$DF00,2(A0)

THIS GIVES

setup DCR1 in VSC

* 28 MHz clock
* display enabled
* 65 Hz scan
* interlaced
* normal frequency
* non-full screen
* logical screen
* 4 bits per pixel
* no frame grab

233

no ICA, no DCA
start address = 2

MOVE.W #$400,4(A0)

♦
CLR.B 7 (A0)

RESET

M0VEA.I. #XL0C,A0
MOVE.L #$3,DO

VSC4: CLR.L (A0) +

*
DBRA DO,VSC4

T

* To set up UART
*
*

MOUSE defaults to 12

LEA.L ACIA,A0
M0VE.B #0,PICR2
MOVE.B #$05,UCR(A0)

ACIA1: BTST #3,USR(A0)
BEQ.S ACIA1
MOVE.B #$0A,UCR(A0)
M0VE.B #$13,UMR(A0)
MOVE.B #$33,UCS(A0)
M0VE.B #$2A,UCR(A0)
M0VE.B #$3A,UCR(A0)
MOVE.B #$4A,UCR(A0)
M0VE.B #$05,UCR(A0)

lower 16 address bits in VSR = $400
border=black.

Obvious Really

Last four long words to clear,
Set up a loop counter

1200 baud

shift it into an address register
initialise the picr2 register
enable the receiver and transmitter
see if the transmit shift reg is empty
wait until it is empty
disable the receiver and transmitter
8 bits no parity 2 stop bit & CTS
set recieve and transmit to 1200 baud
reset the reciever, DISABLE TX RX
reset the transmitter, DISABLE TX RX
reset the error status, DISABLE TX RX
now enable the reciever & transmitter

The Internal Loop.
The higher and lower order bytes are swaped
to make it comptable with T800.

CLR.B MOFLAG initialise the mouse flag
CLR.B ACFLAG initialise the access flag
CLR.B KEYFLAG initialise the keyboard flag
MOVE.W #INTS0N,SR turn on all interrupts
ORI.B #IENABLE,LIR set INTI to level 4

ENTERL00P:

ICH1:
MOVE.B ACFLAG,D5 TEST TO SEE IF AN ACCESS IS REQUIRED
BEQ.S N0ACC1 IF =0 THEN NO ACCESS REQUEST

ADD1: MOVE.L COADD,D6 GET THE ACCESS ADDRESS ***
0K12: ROL.W #8 ,D6 SHUFFLE

SWAP D6 IT

234

COREAD1:
COEND1:
NOACC1:

ICH2:

ADD2:
0K22:

C0READ2:
C0END2:
N0ACC2:

ROL.W #8,D6 ABOUT TO CORRECT FORM
MOVE.L D6,A1 AND PUT IT IN AN ADDRESS REGISTER.
CMP .B #1 ,D5 SEE IF IT IS A READ
BEQ.S COREAD1 IF READ THEN READ DATA
MOVE.W CODATA,0(A1) ELSE, WRITE THE DATA
BRA.S COEND1 GO TO END
MOVE.W 0(A1),CODATA STORE THE DATA TO BE READ
CLR.B ACFLAG RESET THE FLAG TO INDICATE COMPLETION

BTST #0,USR(AO) GOT A CHAR YET
BEQ.S ICH1 IF NOT THEN WAIT
MOVE.B USR(AO),D0 GET THE UART STATUS
ANDI.B #$FO,DO STRIP FOR ERROR BITS
BNE UERR IF NOT OK THEN DUMP AND RESET
MOVE.B RHR(AO),D0 ELSE, GET THE DATA TO DO

MOVE.B DO ,D1 MAKE A COPY OF IT
ANDI.B #$F8,D1 STRIP OUT THE SWITCH BITS
CMPI.B #$80,D1 CHECK TO SEE IF IT IS A SWITCH BYTE
BNE ENTERLOOP IF NOT THEN DUMP IT
MOVE.B DO,BUTTON byte 1 = BUTTON

MOVE.B ACFLAG,D5 TEST TO SEE IF AN ACCESS IS REQUIRED
BEQ.S N0ACC2 IF =0 THEN NO ACCESS REQUEST
MOVE.L COADD,D6 GET THE ACCESS ADDRESS ***
ROL.W #8 ,D6 SHUFFLE
SWAP D6 IT
ROL.W #8 ,D6 ABOUT TO CORRECT FORM
MOVE.L D6,A1 AND PUT IT IN AN ADDRESS REGISTER.
CMP .B #1 ,D5 SEE IF IT IS A READ
BEQ.S C0READ2 IF READ THEN READ DATA
MOVE.W CODATA,0(A1) ELSE, WRITE THE DATA
BRA.S C0END2 GO TO END
MOVE.W 0(A1),CODATA STORE THE DATA TO BE READ
CLR.B ACFLAG RESET THE FLAG TO INDICATE COMPLETIO

BTST #0,USR(AO) GOT A CHAR YET
BEQ.S ICH2 IF NOT THEN WAIT
MOVE.B USR(AO),D2 GET THE UART STATUS
ANDI.B #$F0,D2 STRIP FOR ERROR BITS
BNE UERR IF NOT OK THEN DUMP AND RESET
MOVE.B RHR(AO),D2 ELSE, GET THE DATA TO DO

235

ICH3:
MOVE.B ACFLAG,D5 TEST TO SEE IF AN ACCESS IS REQUIRED
BEQ.S N0ACC3 IF =0 THEN NO ACCESS REQUEST

ADD3: MOVE.L C0ADD,D6 GET THE ACCESS ADDRESS ***
0K32: ROL.W #8 ,D6 SHUFFLE

SWAP D6 IT
ROL.W #8,D6 ABOUT TO CORRECT FORM
MOVE.L D6,A1 AND PUT IT IN AN ADDRESS REGISTER.
CMP .B #1 ,D5 SEE IF IT IS A READ
BEQ.S C0READ3 IF READ THEN READ DATA
MOVE.W CODATA,0(A1) ELSE, WRITE THE DATA
BRA.S C0END3 GO TO END

C0READ3: MOVE.W 0(A1),CODATA STORE THE DATA TO BE READ
C0END3: CLR.B ACFLAG RESET THE FLAG TO INDICATE COMPLETION
N0ACC3:
*

BTST #0,USR(AO) GOT A CHAR YET
BEQ.S ICH3 IF NOT THEN WAIT
MOVE.B USR(AO),D3 GET THE UART STATUS
ANDI.B #$F0,D3 STRIP FOR ERROR BITS
BNE UERR IF NOT OK THEN DUMP AND RESET

♦
MOVE.B RHR(AO),D3 ELSE, GET THE DATA TO DO

ICH4:
MOVE.B ACFLAG,D5 TEST TO SEE IF AN ACCESS IS REQUIRED
BEQ.S N0ACC4 IF =0 THEN NO ACCESS REQUEST

ADD4: MOVE.L COADD,D6 GET THE ACCESS ADDRESS ***
0K42: ROL.W #8 ,D6 SHUFFLE

SWAP D6 IT
ROL.W #8 ,D6 ABOUT TO CORRECT FORM
MOVE.L D6,A1 AND PUT IT IN AN ADDRESS REGISTER.
CMP .B #1 ,D5 SEE IF IT IS A READ
BEQ.S C0READ4 IF READ THEN READ DATA
MOVE.W CODATA,0(A1) ELSE, WRITE THE DATA
BRA.S C0END4 GO TO END

C0READ4: MOVE.W 0(A1),CODATA STORE THE DATA TO BE READ
C0END4: CLR.B ACFLAG RESET THE FLAG TO INDICATE COMPLETION
N0ACC4:
*

BTST #0,USR(AO) GOT A CHAR YET
BEQ.S ICH4 IF NOT THEN WAIT
MOVE.B USR(AO),D0 GET THE UART STATUS
ANDI.B #$F0,D0 STRIP FOR ERROR BITS
BNE UERR IF NOT OK THEN DUMP AND RESET
MOVE.B RHR(AO),D0 ELSE, GET THE DATA TO DO

ADD.B DO ,D2 ADD TO FIRST X INCREMENT
EXT.W D2 sign extend it
MOVE.W D2,XL0C copy it to the required location.

ICH5:
MOVE.B ACFLAG,D5 TEST TO SEE IF AN ACCESS IS REQUIRED
BEQ.S N0ACC5 IF =0 THEN NO ACCESS REQUEST

ADD5: MOVE.L COADD,D6 GET THE ACCESS ADDRESS ***
0K52: ROL.W #8,D6 SHUFFLE

SWAP D6 IT
ROL.W #8 ,D6 ABOUT TO CORRECT FORM
MOVE.L D6,A1 AND PUT IT IN AN ADDRESS REGISTER.
CMP.B #1,D5 SEE IF IT IS A READ
BEQ.S C0READ5 IF READ THEN READ DATA
MOVE.W CODATA,0(A1) ELSE, WRITE THE DATA
BRA.S C0END5 GO TO END

COREAD5: MOVE.W 0(A1),CODATA STORE THE DATA TO BE READ
C0END5: CLR.B ACFLAG RESET THE FLAG TO INDICATE COMPLETION
N0ACC5:
*

BTST #0,USR(A0) GOT A CHAR YET
BEQ.S ICH5 IF NOT THEN WAIT
MOVE.B USR(AO),D0 GET THE UART STATUS
ANDI.B #$F0,D0 STRIP FOR ERROR BITS
BNE.S UERR IF NOT OK THEN DUMP AND RESET

♦
MOVE.B RHR(AO),D0 ELSE, GET THE DATA TO DO

ADD.B DO ,D3 ADD TO FIRST Y INCREMENT
EXT.W D3 sign extend it

*
MOVE.W D3,YLOC copy it to the required location.

MOVE.B #FLAGVAL,MOFLAG ; set up flag and
BRA ENTERLOOP start again

UERR: MOVE.B #$06,UCR(AO) RESET THE ERROR BITS, DISABLE RECEIVER
MOVE.B #$05,UCR(AO) RE-ENABLE THE RECEIVER
BRA ENTERLOOP START AGAIN

*

*
* KEYBOARD INTERRUPT ROUTINE FOLLOWS
*

INTKEY: MOVE.B KEYBOARD,KEYDATA ; read data in
MOVE.B #FLAGVAL,KEYFLAG ; set keyboard flag to indicate new data
ANDI.B #IDISABLE,LIR ; remove any pending interrupts

237

FIN:

ORI.B #IACK,LIR
ORI.B #IENABLE,LIR
RTE

END

; acknowledge any interrupt to make sure
; set interrupts to level 4 i.e. ON
; return

238

A ppendix G

Circuit Diagram

S h eet 1 and 2

Graphics Board for the Five Transputer Rack.

239

A ppendix H

Screen D um ps

(

240

241

Quit SimulatorPoirit

Global ViewSCOTLANDAnglosDINORMIC
Net.wor*. Biagra*

Append Sequence

DINORWIG

Hof * Might«a noon rotor

F ig. H . l A d eta iled v ec to r d iagram o f four m ach ines

242

DIHORMIG

Network

f r n f f l i r i ■ M M

i ? * ' T . ' * I i h _ e * . *

Time History I Operations Set Point!

18.0

5 0 .0 0 0

DEES4 FaultOn Soq 2000 log
DEES4 FaultOff Seq 120 ud ^

rrj*
-----r- —r̂ rrr,_ | q]

.tutiafA

299.6 11244.0
1 0 1 9 .9

n h a l e s

Global Vie*

Network D i a c |
F - - ■ r __________;-- as?

New Sequence 1

I Apfend Seqjence

End Sequence 3

I List Sequence h

I Save Sequence 1

1 Sequence }

1 Run Sequence

F ig . H .2 T able d isp lay in g th e con ten t o f a se lec ted file

243

NeUort- Diagr
Biagra* * hi*' History

Hnf.-w flrQle is referenced to:

HpL-er'pd Sequwa

Simulator Model

Change LooginQ Period

Sinuletion Tine Step

Ret*m To Ita

C10

F ig . H .3 T h e op era tion m enu

244

DINORUIG-(Rotor Angle PU> MML£S-<ftotef Awglt PU>
SCOTLAND-<Potor Angle PU> CHt-fMor Anglt PU>

F ig . H .4 Four su p er im p o sed graphs

245

Fi
g.

H.

5
O

ne
-li

ne

di
ag

ra
m

of

th
e

fo
ur

m

ac
hi

ne

246

F ig . H .6 M enu o f se t p o in ts o f a governor

247

-t-Pli a

F ig. H .7 S p read sh eet o f all th e available lines

248

1 1 2 7 1 . S
i m . i

F ig. H .8 T im e h isto ry p lo t o f a m achine

249

9IN0RM1C

F ig . H .9 M enu o f th e se t p o in ts o f a m ach ine

Fig. H .10 Four sep ara te ly displayed graphs

251

Our* ' itajiAflidrif
HetworV

Fig. H . l l R unn ing graph of a m achine

252

Fig. H .12 A d eta iled m ach ine d iagram

U r t f PtlTorRotio

R o to r A n glo
3986

3 9 8 6 .0 0

SCOTLANDConor*ting'

SimulatorFault r

253

rur tq N$

. 1

1 1 2 4 4 .9
1 9 1 9 .9

dinormig

Fig. FI. 13 H y p e rtex t help m enu

‘THXTOIWm
JiZ___
D1 Ol D2 02 D3 03 D4 04 D5 05 D6 06 D7 07 D8 08 D9 09 DIO OlO
OC►CLK2332 i-

09IRX45RAM

JU3_
10 B911 B812 B713 B614 B515 B416 B317 B2 BO Bi
PC5M53US5B_

■VS.CMEHN A12Q__
DO oo D1 Oi D2 02 D3 03 D4 04 D5 05 D6 06 D7 07
OC►CLK74P3T4

U46C

BESET.N.

U42E

I

JJ21_
DOD1D2D3D4D5D6D7D8D9DIODll
D12D13D 14D 15REQ1ACKiREQ2ACK2DONEDTCRDYASUDSmi

MD4MDSHD6MD7MD8MD9MDIOMD11MD12MD13MD14MD1SRASCAS1CAS2CAS3CAS4WR1WR2DTCSCGCYREQCYACKVO

DTACK

T 2CKOUTXIX2

LDS V5UDS V6INT V7CS PCLKIPA HRPCSROM VSYNCCSIO HSYNCCSYNC XT/4 BLANKXT/2 DAXTAL1 M/SXTAL1 RSTINTSTW-------

C9lOnF
AVDD

VSCRSTN

:snQLK
07 -J08 — 09 —OlO —

LSBH i05ffo

U42A

U52__
C1-*-
C l -
C2-*-
02- T XII TX2I RXIO RX20xĜrr

TXIO
TX20 RXII RX2I

VPP157&r
„ R17
4K7R164K7

