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Abstract

Patient sickness at admission to hospital is traditionally measured by using 
logistic regression of mortality within 30 days of admission on 0(100) sickness 
indicators to construct a sickness scale, employing classical variable selection 
methods to find an “optimal” subset of 10-20 indicators. Such methods ignore 
the considerable differences among the sickness indicators in cost of data collection, 
which become crucial when admission sickness is used to drive programmes (now 
under consideration in several countries, including the UK and US) that attem pt to 
identify substandard hospitals by comparing observed and expected mortality (given 
admission sickness). When both data-collection cost and accuracy of prediction of 
30-day mortality are considered, a large optimisation problem arises in which costly 
variables that do not predict well enough should be omitted from the scale.

In this dissertation I take a Bayesian decision-theoretic approach (based on 
maximisation of expected utility) to solving this optimisation problem, using data 
from a large US study of quality of hospital care in the 1980s. I use genetic 
algorithms (GA), simulated annealing (SA), tabu search (TS), and other methods 
from the optimisation literature to find (near-)optimal subsets of predictor variables. 
I find that (i) the best versions of GA outperform the best versions of TS, with the 
advantage for GA growing as the number p of variables available for constructing 
the sickness scale increases; (ii) both GA and TS are sharply better than SA in 
this problem for all values of p studied; and (iii) optimal subsets of variables that 
compromise between data collection costs and predictive accuracy have the potential 
to generate large cost savings in quality assessment programmes.

This work (a) provides a new perspective on variable selection in generalised 
linear models, (b) offers new insights into the comparative advantages and flaws of 
competing optimisation methods, and (c) produces results of direct use in health 
policy.



Summary

An expert is a person who has made all the mistakes which can be made in a very 
narrow field.

— Niels Bohr

In tro d u c tio n . An important topic in health policy is the assessment of the 
quality of health care offered to hospitalised patients. Quality of care is usually 
thought to depend mainly on three ingredients: (i) process, which is what health 
care providers do on behalf of patients, (ii) outcomes, which are what happens to 
patients as a result of the care they receive, and (iii) patient sickness at admission, 
because the appropriateness of outcomes cannot be judged without taking account 
of the burden of illness brought to the hospital by its patients.

A direct audit of the processes of care is usually regarded as the single most 
informative component in an evaluation of quality, but process is much more 
expensive to measure than outcomes or admission sickness. Interest has therefore 
focused in recent years, in countries such as the United States and the United 
Kingdom, on an indirect method of assessment—which might be termed the input- 
output approach1—in which hospital outcomes (for instance, death within 30 days 
of admission) are compared after adjusting for differences in inputs (sickness at 
admission). The idea is to treat what goes on inside the hospital—process—as a 
black box, with the contents of the box inferred by examining its outputs after 
taking account of its inputs.

In d ire c t m easu rem en t o f q u a lity  o f h e a lth  care . In practice, to indirectly 
measure quality of care at any given moment in time, this strategy proceeds by
(a) taking a sample of hospitals and a sample of patients in the chosen hospitals,
(b) obtaining death outcomes for the sampled patients (for example, from central 
government data bases), (c) extracting information on admission sickness from the 
medical records of these patients, (d) forming an expected mortality rate for each

1In the UK this approach is also referred to as league-table quality assessment, by analogy with 
the process of ranking football teams.
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hospital based on (c), and (e) comparing observed and expected mortality to identify 
unusual hospitals (on both the “good” and “bad” ends of the spectrum). Since this 
would involve abstracting data from the charts of many thousands of patients if it 
were attempted on a large scale, the cost-effective measurement of admission sickness 
is crucial to this approach.

Quality of care assessment is a highly disease-specific activity: for instance, the 
right admission sickness variables to examine for pneumonia would be quite different 
from those for heart attack. With any given disease there will be on the order of 
100 separate variables potentially available in the medical record that are directly or 
indirectly related to admission sickness. In the case of pneumonia, for example, on 
which I focus exclusively in this dissertation, a list of the important variables from 
a clinical perspective would include such things as the systolic blood pressure on day 

1 of admission, the presence or absence of prior respiratory failure, and the blood urea 

nitrogen level (a measure of kidney functioning).

P rev io u s  app roaches to  co n s tru c tin g  adm ission  sickness scales. The 
standard method for creating an expected mortality rate from these admission 
sickness inputs in any given nation, such as the US or UK, is logistic regression, 
with 30-day death as the outcome, and using a nationally-representative sample of 
patients to normalise the expectation to average care across the nation. Typically 
a frequentist variable-selection method—such as all-subsets regression—is employed 
to find a parsimonious and clinically reasonable subset of the available sickness 
variables. In a major US study conducted by the Rand Corporation, of quality 
of hospital care for elderly patients in the late 1980s, this approach was used to 
reduce the list of 83 available sickness indicators for pneumonia down to a core of 
14 predictors.

As good as the resulting scale may be on grounds of simplicity and ease of 
clinical communication, I take the view in this dissertation tha t—when the goal is 
the creation of a sickness scale that may be used prospectively to measure quality 
of care on a new set of patients not yet examined—the original Rand approach is 
sub-optimal, because it takes no account of differences in the cost of data collection 
among the available predictors (which varied for pneumonia from 10 seconds to 15 
minutes of abstraction time per variable). The Rand approach represents a kind of 
benefit-only analysis; I propose a cost-benefit analysis, in which variables are chosen 
for the final scale only when they predict mortality well enough given how much 
they cost to collect.

A  large  o p tim isa tio n  p rob lem . Weighing data-collection costs against the 
accuracy of prediction creates a large optimisation problem which cannot be solved

Dimitris Fouskakis (2001) Stochastic Optim isation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessm ent in Health
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Figure 0-1: Boxplots of estimated expected utility as a function of number of
predictors, based on the Rand scale with p = 14 variables.
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by brute-force enumeration: for example, when p =  83 it is necessary to compare 
2P = 9.7 • 1024 subsets of sickness variables, and even at the rate of 100 subsets 
examined per second—which is far faster than present computational resources 
permit with desktop workstations—it would take more than 3 • 1015 years to find 
the optimal subset by looking at all of them.

Suppose (a) the 30-day mortality outcome yi and data on p sickness indicators 
(xn , . . . ,  xip) have been collected on n individuals sampled randomly from a 
population V  of patients with a given disease, and (b) the goal is to predict the 
death outcome for n* new patients who will in the future be sampled randomly 
from V , (c) on the basis of some or all of the predictors Xj, when (d) the marginal 
costs of data collection per patient C\ , . . . ,  Cp for the Xj vary considerably. What is 
the best subset of the Xj to choose, if a fixed amount of money is available for this 
task and you are rewarded based on the quality of your predictions?

A B ayesian solution. To solve this problem I use a Bayesian decision- 
theoretic approach based on maximisation of expected utility. The utility function 
I use has two components, one to quantify data collection costs and one to keep

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health
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track of predictive successes and failures on future patients. The data on which 
I demonstrate this method in the dissertation consist of a representative sample 
of n  =  2,532 elderly American patients hospitalised in the period 1980-86 with 
pneumonia, taken from the Rand study described above. Since data on future 
patients are not available, I use a cross-validation approach in which (i) a random 
subset of m  observations is drawn for creation of the mortality predictions and (ii) 
the quality of those predictions is assessed on the remaining (n — m) observations 
(with this approach the expectation in the calculation of expected utility is over all 
possible cross-validation splits).

I have performed a brute-force evaluation of all 214 =  16,384 possible subsets of 
the predictors in the Rand scale based on averages across 500 random splits in each 
case, with results as in Figure 0-1. It is clear that the full Rand scale is sharply 
suboptimal, with scales based on 4-7 variables saving almost US$8 per patient, 
which would translate into many millions of dollars or pounds if the league-table 
approach were to receive widespread implementation in the US or UK.

S to ch astic  o p tim isa tio n  m ethods. Of course, this kind of brute-force 
enumeration will not work with the full set of p =  83 variables available. In 
the main part of the dissertation I compare a variety of stochastic optimisation 
methods—including simulated annealing (SA), genetic algorithms (GA), and tabu 
search (TS)—both in the p =  14 case where we know the right answer and in the 
full p =  83 case where we do not. I have examined the geometry of the solution 
space; studied the optimal allocation of CPU resources between (i) searching for new 
models and (ii) increasing the number of cross-validation splits to obtain a better 
estimate of the quality of models already visited; conducted a variety of sensitivity 
analyses to examine the stability of my findings across alternative formulations; and 
performed extensive simulations to obtain recommendations on the input settings to 
the optimisation methods which maximise their performance. Results are as follows.

• The most up-to-date variations of GA—featuring (i) elitist strategies, (ii) 
uniform  or highly uniform crossover operators, (iii) the retention of 100% 
of the previous population in each repetition, and (iv) the use of small to 
moderate population sizes (e.g., 30-50)—outperform TS by an amount which 
is small with p = 14 but large with p = 83. GA was the only method in the 
83-variable case able to find good models in a modest amount of CPU time.

•  However, with p =  14 GA is also the method whose performance depends most 
critically on intelligent choice of input settings. TS is far more robust than 
GA in the 14-variable case to sub-optimal choice of user-defined inputs.

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health
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•  Both GA and TS dramatically dominate SA for both values of p examined.

These findings are interesting because TS is almost unknown to statisticians and 
there is a substantial body of folklore in statistics expressing the view that GA is 
inferior (even to SA) in many optimisation problems.

The work presented here (a) provides a new perspective on variable selection in 
generalised linear models, (b) offers new insights into the comparative advantages 
and flaws of competing optimisation methods, and (c) produces results of direct use 
in health policy.

Dimitris Fouskakis (2001) S tochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessm ent in Health
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Chapter 1 

Introduction

The last thing one knows when writing a book is what to put first.

— Blaise Pascal

1.1 The health policy background

In 1983 the US federal government established a Prospective Payment System  
(PPS) in order to control the costs of reimbursing hospitals for care of elderly 
and handicapped patients under the Medicare programme. Prior to 1983, under 
the former retrospective payment system, the care was provided first and then the 
government reimbursed the hospital. To the extent that this system contained 
counterproductive economic incentives, the tendency was to over-treat patients in 
an attem pt to increase profits. Under PPS, a fixed price for each episode of care was 
established, so tha t in effect hospitals knew before the care was provided how much 
they would be paid. At the time PPS began, concern arose that the new tendency 
would be to under-treat patients, giving rise to the possibility of a decline in the 
quality of hospital care offered under Medicare.

The assessment of the quality of health care offered to hospitalised patients is 
an important topic in health policy. Quality of care is usually thought to depend 
mainly on three ingredients (Donabedian 1981): process, which is what health care 
providers do on behalf of patients, outcomes, which are what happens to patients 
as a result of the care they receive, and patient sickness at admission, because the 
appropriateness of outcomes cannot be judged without taking account of the burden 
of illness brought to the hospital by the patient.

In 1985, the Rand Corporation began a study (Kahn et al. 1990b) of the effects 
of PPS on quality of care. Approximately 16,500 elderly patients, aged 65 and

1



1 Introduction 2

over, hospitalised with one or another of {congestive heart failure, acute myocardial 

infarction, hip fracture, pneumonia, cerebrovascular accident, depression}, were selected 
in a nationally representative manner from five different states, each from a different 
geographic region of the nation: California, Florida, Indiana, Pennsylvania and 
Texas. Full details on the sampling plan are available in (Draper et al. 1990).

A direct audit of the processes of care is usually regarded as the single most 
informative component in an evaluation of quality, but process is much more 
expensive to measure than outcomes or admission sickness (Kahn et al. 1990a). 
Interest has therefore focused in recent years, in countries such as the United 
States and the United Kingdom, on an indirect method of assessment—which has 
been termed the input-output approach (Draper 1995)—in which hospital outcomes 
(for instance, death within 30 days of admission) are compared after adjusting for 
differences in inputs (sickness at admission). (In the UK this approach is also referred 
to as league-table quality assessment (Goldstein and Spiegelhalter 1996), by analogy 
with the process of ranking football teams.) The idea is to treat what goes on 
inside the hospital—process—as a black box, with the contents of the box inferred 
by examining its outputs after taking account of its inputs (Daley et al. 1988).

In practice, to indirectly measure quality of care at any given moment in time, 
this strategy proceeds by (a) taking a sample of hospitals and a sample of patients 
in the chosen hospitals, (b) obtaining death outcomes for the sampled patients 
(for example, from central government data bases), (c) extracting information 
on admission sickness from the medical records of these patients, (d) forming 
an expected mortality rate for each hospital based on (c), and (e) comparing 
observed and expected mortality to identify unusual hospitals (in both tails of 
the distribution). Since this would involve abstracting data from the charts of 
many thousands of patients if it were attempted on a large scale, the cost-effective 
measurement of admission sickness is crucial to this approach.

Quality of care assessment is a highly disease-specific activity: for instance, the 
best admission sickness variables to examine for pneumonia would be quite different 
from those for heart attack. With any given disease there will be on the order of 
100 separate variables potentially available in the medical record that are directly or 
indirectly related to admission sickness. In the case of pneumonia, for example, on 
which I focus exclusively in this dissertation, a list of the important variables from 
a clinical perspective (Kahn et al. 1990b) would include such things as systolic blood 

pressure on day 1 of admission, the presence or absence of prior respiratory failure, and 
the blood urea nitrogen level (a measure of kidney functioning).

The standard method for creating an expected mortality rate from these
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admission sickness inputs is logistic regression (Hosmer and Lemeshow 1989), with 
30-day death as the outcome, and using a nationally-representative sample of 
patients to normalise the expectation to average care across the nation. Typically 
a frequentist variable-selection method—such as all-subsets regression (Weisberg 
1985)—is employed to find a parsimonious and clinically reasonable subset of 
the available sickness variables. In a major US study conducted by the Rand 
Corporation, of quality of hospital care for elderly patients in the late 1980s, this 
approach was used (Keeler 1993) to reduce the list of 83 available sickness indicators 
for pneumonia down to a core of 14 predictors.

As good as the resulting scale may be on grounds of simplicity and ease of 
clinical communication, I take the view in this dissertation tha t—when the goal is 
the creation of a sickness scale that may be used prospectively to measure quality 
of care on a new set of patients not yet examined—the original Rand approach is 
sub-optimal, because it takes no account of differences in the cost of data collection 
among the available predictors (in terms of abstraction time per variable, which 
can readily be converted into costs, the range for pneumonia across the sickness 
indicators was from 10 seconds to 15 minutes). The Rand approach represents a 
kind of benefit-only analysis; I propose here a cost-benefit analysis, in which variables 
are chosen for the final scale only when they predict mortality well enough given 
how much they cost to collect.

In this dissertation I have chosen one of the Rand diseases, pneumonia, to 
implement a method proposed by (Draper 1996) that uses logistic regression and 
Bayesian utility analysis to construct a scale measuring sickness at admission that 
balances accuracy and cost. Scales constructed with this method would help in the 
process of league table quality assessment, by making the best use of public money 
to identify substandard hospitals.

1.2 Variable selection

The Rand study (Kahn et al. 1990b) used disease-specific abstraction forms to 
collect data about sickness at admission from the medical records of roughly 2,750 
hospitalised patients per disease, although mortality information was only available 
on about 2,550 patients per disease. Table 1.1 provides a full list of the 83 variables 
relevant to sickness at admission gathered for pneumonia patients.

Rand used literature review, clinical judgement and disease-specific consensus 
panels to identify variables that have been considered important clinical predictors 
of either in-hospital death or death within 30 days of hospitalisation. Variables were
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Table 1.1: The full list of the 83 variables relevant to sickness at admission for  
pneumonia patients, using Rand naming conventions.

Name Meaning Name Meaning
p.sbpdl 

sbun 
p_sobdl 

pc_resps 
pc.prf s 
pc_blps 
pJirdl 

pc_cards 
pc_xpnes 
pc_endos

systolic blood pressure score 
blood urea nitrogen 
shortness of breath day 1 
respiratory distress 
prior respiratory failure 
racbilateral process score 
heart rate day 1 
cardiomegaly score 
pneumonia CXR score 
endocarditis at admission

sage 2 
pc.comas 
pc_albms 

s e p t ic  
pc.phsps 

ctemp 
p.cpdl 

p c .e f fs  
pc_ambls 
pc.cpks

age of patient 
APACHE II coma score 
Serum albumin score 
septic complications 
recently hospitalised 
initial temperature 
chest pain day 1 
plural effusion score 
ambulatory score 
CPK score

p c .p ild s  
pc June os 
p c.p trcs  
pc_hems 
pc Jirs 

pc_dthxs 
pc_immns 
pc_hephs 

pc_rrs 
pc.asprs

prior interstitial lung disease 
home oxygen use 
prior tracheostomy 
hematologic history score 
APACHE heart rate score 
disease of thorax 
immunocompromised 
hepatobiliary history 
APACHE respiratory rate score 
co-morbid aspiration score

pc_antis
pc.pnems
pc.amins
pc.pcncs
pc.crods
pc_myels
pc_resds
pc_renls
dpc_nlcs

pc_nas

prior antibiotics score 
prior pneumonectomy 
prior aminophylline score 
cancer score 
Corodaker score 
multiple myeloma 
residence score 
renal history score 
new lung score 
APACHE sodium score

pc.ahcts  
pc.oxys 

pc_ks 
pc_xchfs 

p_rrdl 
p.condl 
pc_co3s 

pc.chf sm 
pc_ers 

pc.pbcs

APACHE hematocrit score 
APACHE oxygenation score 
APACHE potassium score 
CHF chest X-ray score 
respiratory rate day 1 
confusion day 1 
APACHE venus bicarb score 
sum of CHF components 
arrest in ER score 
positive blood culture

pc.wbcs 
pc.pcvas 

sbp 
pc_aps2 
p.dbpdl 

pc.pulms 
pc.pedms 
pc_f lu s  

p c .b i l is  
pc.pucs

APACHE WBC score 
CVA score
systolic BP (admission) 
Total APACHE II score 
DIA blood press day 1 
pulm. vase. cong. score 
pulmonary edema score 
influenza score 
biliribin score 
positive urine culture

pc_weezs
pc_pcpds
pc_pcrhs
pc_arrys
pc_alchs
pc_ngts

pc_rctot
pc_neurs
pc_imuns
pc_temp

wheezing at admission 
morbid prior COPD score 
co-morbid cirrh score 
co-morbid arrhythmias score 
co-morbid alcoholism score 
co-morbid NGTS score 
sum of morbid+comorbid 
neurologic history score 
immunologic history score 
APACHE temperature score

pc_body 
pc.pphps 
pc.pchfs 
pc_smkrs 

pc.phs 
p c .s te r s  
pc.crdhs 
pc.oncos 
pc_muscs 
pc_mbps

body system count 
morbid pulm. hosp. score 
co-morbid CHF score 
co-morbid smokers score 
APACHE PH score 
co-morbid steroids score 
cardiac history score 
oncologic history score 
musculoskeletal score 
APACHE mean BP score

p c.crs
male

APACHE creatinine score 
sex of the patient

pc_dxs DX score
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1 Introduction 5

included only if (a) they accurately described the patient’s status at the time of 
hospital admission, (b) they documented conditions occurring frequently enough to 
be worth collecting, and (c) they were reliably recorded in the medical record. Rand 
used logistic regression of death within 30 days of admission to build its sickness- 
at-admission scale, employing backward selection from the full model with all 83 
predictors listed in Table 1.1. (The total APACHE II score (Knaus et al. 1985) is 
a pre-existing 36-point scale that measures sickness for patients in intensive care 
units; it is the sum of a variety of subscales measuring such things as coma intensity 
and respiratory rate. Most of the other variables are on 2- to 5-point scales.) They 
chose (Keeler 1993) the model with 14 predictors shown in Table 1.2.

This is a reasonably good model on grounds of accuracy and parsimony—for 
instance, its pseudo-R 2 value (Stata 1997) is 28.1% on 14 degrees of freedom, versus 
33.4% for the full model with all 83 variables—but no account has been taken in 
its construction of the data collection costs of the variables chosen. Expressed in 
terms of time for a skilled data collector to abstract the variables from patient 
medical records, the sickness indicators range from about 10 seconds to more than 
15 minutes to collect. It is quite possible that a different subset of the predictors in 
Table 1.1 would be more cost-effective in measuring quality of care in this way than 
the full list of 14 variables.

1.3 Contents

The plan of the dissertation is as follows.
In this chapter I have given some general details on the health policy background, 

by presenting the source of the problem and the way that Rand tried to solve it, 
discussing the way that the variables for each disease were selected, and giving a 
table of the final admission sickness variables (for pneumonia, the disease I have 
chosen) that I will be using in the project.

In Chapter 2 I formulate the basic problem more precisely, by giving details on 
the objectives and purpose of this work and describing the basic strategies I will 
follow. I present the utility function whose expected value I will maximise, analyse 
its components, and sketch some of the difficulties tha t need to be overcome.

In Chapter 3 1 give a full description of the optimisation algorithms I will compare 
in the attem pt to maximise the expected utility specified in Chapter 2. I present 
five different methods—genetic algorithms (GA), messy simulated annealing (MSA), 
simulated annealing (SA), tabu search (TS), and threshold acceptance (TA)—analyse 
their inputs together with the generic and problem-specific choices that need to be
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Table 1.2: The final variables for pneumonia chosen by Rand.

Name Meaning
pc_aps2 Total APACHE II score

sage 2 Age of patient
p_sbpdl Systolic blood pressure score

pc_xchfs CHF chest X-ray score
sbun Blood urea nitrogen

pc.comas APACHE II coma score
pc.albms Serum albumin score
p_sobdl Shortness of breath day 1

pc_resps Respiratory distress
s e p tic Septic complications

p c .p rfs Prior respiratory failure
pc.phsps Recently hospitalised
pc_ambls Ambulatory score

ctemp Initial temperature

made, and discuss modifications to the standard methods required for this particular 
problem.

Chapter 4 presents results in a special case involving only the p = 14 variables 
used in the Rand scale, where direct examination of all possible models ( “full 
enumeration”) suffices to identify the best subsets. In this chapter the geometry 
of the solution space is also explored. The quantity to be optimised cannot be 
computed exactly in closed form, so I estimate it by Monte Carlo methods, and I 
clarify the role of N , the number of simulation replications, in the optimisation 
process. I present some preliminary findings comparing the five optimisation 
techniques outlined in Chapter 3, in a version of the 14-variable case in which 
all of the methods are severely constrained on the total CPU time available for the 
search (no more than 20 minutes of CPU time at 400 Unix MHz), and I then present 
results from a large simulation experiment to investigate the quality of the solutions 
from the three main optimisation algorithms—GA, SA, and TS—as a function of the 
method’s inputs. The chapter closes with a variety of sensitivity analyses exploring 
the robustness of the problem formulation and results.

(The computations in this dissertation were performed on a variety of Unix 
workstations whose CPU speeds ranged from 100 to 400 Unix MHz. I have 
standardised all timings so that they are based on 400 Unix MHz. For comparison, 
Unix MHz is typically 2-3 times faster than PC MHz in the types of calculations 
employed here.)
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In Chapter 5 I present results for the case with all 83 variables, where the space 
over which I am optimising is vastly larger, continuing the specialisation of the 
results to the three main methods. Full enumeration is impossible in this situation, 
so I have created a proxy for the list of the k best models (for k = 3,000) by running 
each of GA, SA, and TS (with the best input settings in the 14-variable case) for a 
week of CPU time, merging the results, removing duplicate subsets of variables, and 
performing full enumeration on the 3,000 best models found in this way. I present 
results for each of the three optimisation methods, in which each method is given a 
budget of 3 hours of CPU time, using a variety of input settings, and I also provide 
results in which each method was allowed 24 hours of CPU time. I conclude the 
chapter with an overall comparison of the optimisation methods. Chapter 6 brings 
the dissertation to a close with some discussion and comments on future work.

Having outlined what I have done, it would also perhaps be useful to point 
out one thing I have not done. The statistical problem addressed here is variable 
selection in generalised linear models, a topic which has generated a vast literature 
and many ad hoc ideas. It is possible to conceive of two distinctly different questions 
that a dissertation like this one could address:

• How well do some of the leading stochastic optimisation methods perform 
when they are guided by one or more ad hoc variable selection heuristics?

•  How well do such methods perform when they are not guided in this way?

Since in many optimisation problems it is difficult to generate such heuristics, I 
regard both of these questions as interesting. I have chosen to answer the second 
question in the work presented here; Chapter 6 gives some ideas for how the first 
question might be addressed.

A portion of this work (mainly material from Chapter 2 and the preliminary 
results from Chapter 4) was written up for publication for an optimisation journal 
late in 1999 and is available in (Draper and Fouskakis 2000). We are now working 
on three more papers: a review article on stochastic optimisation based on Chapter 
3 for a statistical audience, a methodology paper for a statistics journal based on the 
later results in Chapters 4 and 5 (and some of the ideas for future work in Chapter 
6), and an overview paper for a health policy journal.
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Chapter 2 

Problem formulation

The whole is more than the sum of its parts.

— Aristotle

2.1 Decision-theoretic approach

I have argued in Chapter 1 that the goal in constructing a scale for measuring patient 
sickness at admission should be to balance data-collection cost against accuracy of 
prediction of an outcome such as 30-day mortality. When cost and accuracy are 
weighed against each other, a large optimisation problem arises in which expensive 
variables that do not predict well enough should be omitted from the scale. This 
optimisation problem cannot be solved by brute-force enumeration: for example, 
when p =  83 it is necessary to compare 2P =  9.7 • 1024 subsets of sickness variables, 
and even at the rate of 100 subsets examined per second—which is far faster than 
present computational resources permit using desktop workstations—it would take 
more than 3 • 1015 years to find the optimal subset by looking at all of them.

Suppose (a) the 30-day mortality outcome yi and data on p sickness indicators 
( x n , . . . ,  XiP) have been collected on n individuals sampled randomly from a 
population V  of patients with a given disease, and (b) the goal is to predict the 
death outcome for m  new patients who will in the future be sampled randomly from 
V,  (c) on the basis of some or all of the predictors Xj , when (d) the marginal costs 
of data collection per patient c i , . . .  ,cp for the Xj vary considerably. W hat is the 
best subset of the Xj to choose, if a fixed amount of money is available for this task 
and you are rewarded based on the quality of your predictions?

To solve this problem I take a Bayesian decision-theoretic approach (Bernardo 
and Smith 1994) based on maximisation of expected utility. Any reasonable utility 
function here will have two components, one quantifying data collection costs

8



2 Problem formulation 9

associated with the construction of a given sickness scale, the other rewarding and 
penalising the scale’s predictive successes and failures.

2.1.1 Data-collection utility

I follow traditional statistical usage and refer to a subset of the Xj as a model One 
difficulty with the problem statement above is that by definition the future patients 
are unobserved, but—given that both the present and future samples are randomly 
drawn from V —a random subsample of the available data will be a good proxy 
for the future data. Thus to estimate the predictive success of a given model on 
future patients I use the cross-validation idea (Hadorn et al. 1992) of (1) dividing 
the available data at random into modelling and validation subsamples M  and V, of 
size um and n y  = u — um (respectively); (2) fitting the model to the data in M; and 
(3) evaluating its predictive accuracy on V. In Chapter 4 I present results with the 
choice =  ( f j f ) ;  this chapter also contains some results on the sensitivity
of the findings to this choice.

In the approach presented here utility is quantified in monetary terms, so that the 
data collection utility is simply the negative of the total amount of money required 
to gather data on the specified predictor subset. Letting Ij =  1 if Xj is included in 
a given model (and 0 otherwise), the data-collection utility associated with subset 
I  =  (7i , . . . ,  Ip) for patients in the validation subsample is

p
UD(I) = —ny cjlj, (2 .1)

3=1

where Cj is the marginal cost per patient of data abstraction for variable j .  In the 
Rand study described in Chapter 1, the data—on which this dissertation is based— 
consisted of a representative sample of 16,792 elderly American patients hospitalised 
in the period 1980-86 with one of six high-prevalence diseases. As mentioned above, 
I focus here on pneumonia, for which the sample size was n =  2,532; the marginal 
costs per variable in this study were obtained by approximating the average amount 
of time needed by qualified nurses to abstract each variable from medical records 
and multiplying these times by the mean wage (about US$20 per hour in 1990) for 
the abstraction personnel.

2.1.2 Predictive utility

To measure the accuracy of a model’s predictions, a metric is needed which quantifies 
the discrepancy between the actual and predicted values, and in our problem this
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metric must come out in monetary terms on a scale comparable to that employed 
with the data-collection utility. In the setting of this case study the actual values 
yi are binary death indicators and the predicted values pi, based on statistical 
modelling, take the form of estimated death probabilities. I have chosen an approach 
to the comparison of actual and predicted values that involves dichotomising the pi 
with respect to a cutoff, to mimic the decision-making reality tha t actions taken on 
the basis of input-output quality assessment will have an all-or-nothing character 
at the hospital level (for example, regulators must decide either to subject or not 
subject a given hospital to a more detailed, more expensive quality audit based on 
process criteria). Other, continuous, approaches to the quantification of predictive 
utility are possible (e.g., a log scoring method (Bernardo and Smith 1994)); I intend 
to explore this in future sensitivity analyses (not presented in this dissertation).

In the first step of the approach taken here, given a particular predictor subset I , 
I fit a logistic regression model to the modelling subsample M  and apply this model 
to the validation subsample V  to create predicted death probabilities p{. In more 
detail, letting ^  =  1 if patient i dies and 0 otherwise, and taking Xu , . . .  , to be 
the k sickness predictors for this patient under model I , the statistical assumptions 
underlying logistic regression in this case are

(.Vi I P i) m~ P Bernoulli (pf), ^  ^

log ( l^ r )  =  A> +  Pix n +  • • • +  faxik-

I use maximum likelihood to fit this model, obtaining a vector (3 of estimated logistic 
regression coefficients, from which the predicted death probabilities for the patients 
in subsample V  are given by

- l
(2.3)

where x m =  1 {p\ may be thought of as the sickness score for patient i under model 
I). (If any of the predictors Xj are highly collinear, this problem should be solved 
in one of the usual ways (Weisberg 1985) before fitting model (2.2); for example, if 
a pair of predictors is highly correlated one of them could be dropped, or a scale 
could be created from the two of them using principal components (Chatfield and 
Collins 1980). This problem does not arise with the Rand data.)

In the second step of the approach taken here, I classify patient i in the validation 
subsample as predicted dead or alive according to whether p{ exceeds or falls short

p! = l  +  exp |
i=0

•jXij
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Table 2.1: Cross-tabulation of actual versus predicted death status. The left-
hand table records the monetary rewards and penalties for correct and incorrect 
predictions; the right-hand table summarises the frequencies in the 2 x 2 tabulation.

Rewards and 
Penalties 
Predicted 

Died Lived
Actual Died 

Lived
Cn C\2
C21 C22

Counts
Predicted 

Died Lived
n n n i2
n21 n22

of a cutoff p*, which is chosen—by searching on a discrete grid from 0.01 to 0.99 by 
steps of 0 .01—to maximise the predictive accuracy of model I. I then cross-tabulate 
actual versus predicted death status in a 2 x 2 contingency table, rewarding and 
penalising model I  according to the numbers of patients in the validation sample 
which fall into the cells of the right-hand part of Table 2 .1. (To clarify the role of 
the probability cutoff, for each of the 99 values of p* from 0.01 to 0.99 I calculated 
the entries in Table 2.1 and the resulting predictive utilities in equation (2.4), and 
then chose the cutoff p* which maximises this utility. In practice the optimal cutoff 
was typically around 0.4.) The left-hand part of this table records the rewards and 
penalties in US$. The predictive utility of model I  is then

2 2

^ ) = E E  Clm'R'lm' (^'^)
l=\ m=l

The following process was used to elicit the utility values C*m. Clearly Cn  and 
C22 should be positive and Ci2 and C21 negative, and since it is easier to correctly 
predict that a person lives than dies with these data (the overall pneumonia 30-day 
death rate in our sample was 16%, so if you predict that every patient lives you will 
be right about 84% of the time) it is natural to choose the C/m so that Cn > C22. It 
is also clear from the fact that it is worse to label a “bad” hospital as “good” than 
the other way around that one should take |Ci2| >  IC21I, and furthermore that the 
magnitudes of the penalties should exceed those of the rewards. It seemed natural 
to specify the Cim by eliciting two kinds of information from health experts in the 
US and UK: one of the four values, say Ci2, and the ratios of the other three Cjm 
to this value.

Since the utility structure used here is based on the idea tha t hospitals have to 
be treated in an all-or-nothing way in acting on the basis of their apparent quality, 
the approach taken was (i) to attem pt to quantify the monetary loss L  of incorrectly
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subjecting a “good” hospital to a detailed but unnecessary process audit and then 
(ii) to translate this from the hospital to the patient level. A rough correspondence 
may be made between the left-hand part of Table 2.1 at the patient level and a 
hospital-level table with rows representing tru th  ( “bad” in row 1, “good” in row
2) and columns representing the decision taken (“process audit” in column 1, “no 
process audit” in column 2). Unnecessary process audits then correspond to cell 
(2 , 1) in these tables (hospitals where a process audit is not needed will typically 
have an excess of patients who are predicted to die but actually live). Discussions 
with health experts in the US and UK suggested that detailed process audits cost 
on the order of L = US$5,000, and Rand data indicated that the mean number of 
pneumonia patients per hospital per year in the US at the time of the Rand PPS 
quality of care study was 71.8. This fixed C21 a t approximately =  —$69.6.
The health experts judged that C12 should be the largest in absolute value of the 
Cim, and—averaging across the expert opinions, expressed as orders of magnitude 
base 2—the elicitation results were ^  =  2 , = 5 , and =  | ,  finally
yielding (Cn, Ci2, C2i, C22) =  $(34.8, —139.2, —69.6,8.7). The results in Chapters 4 
and 5 below use these values; in Chapter 4 I also present a sensitivity analysis on 
the choice of the C*m.

T o ta l ex p ec ted  u tility . The overall expected utility function to be maximised 
over I  is then simply

E[U(I)] = E[Ud (I) + Up (I)\ .  (2.5)

In practice I use Monte Carlo methods to evaluate this expectation, averaging over 
N  random modelling and validation splits. The optimal choice of N  is an important 
practical problem which I will address in Chapter 4.

2.2 The goals of this project

With p predictors to choose from, the expected utility maximisation is over 2P 
possible subsets of variables. With the data described here it takes about 0.4 seconds 
on a Sun UltraSPARC Enterprise 250 computer running Unix at 400Mhz to evaluate 
E  [!/(/)] for a single modelling/validation split with efficient code and p =  14, so (as 
mentioned in Chapter 1) it is computationally infeasible given present computing 
resources—even with a moderate choice of N —to perform exhaustive enumeration 
for all p = 83 sickness indicators for pneumonia. Attention thus naturally focuses 
on stochastic optimisation as a way to find “good” (near-optimal) subsets for large 

V•
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In Chapters 4 and 5 I compare the usefulness of methods of stochastic 
optimisation based on Markov Chain Monte Carlo, including simulated annealing 
(SA (Kirkpatrick et al. 1983)), and competitors such as genetic algorithms (GA 
(Holland 1975)), tabu search (TS (Glover 1989)), messy simulated annealing (MSA 
(Kvasnicka and Pospichal 1995), and threshold acceptance (TA (Dueck and Scheuer 
1990)) in solving this large optimisation problem. I use the case p = 14 for 
pneumonia and for the predictors shown in Table 1.2 as a particularly valuable 
testbed. By performing exhaustive enumeration with this setup to find the global 
mode and a number of other apparently promising local modes, I can then try out 
various optimisation strategies with a relatively small amount of search time to 
get an idea of what will work best with p — 83. This work first of all provides a 
new perspective on variable selection in generalised linear models and also offers 
new insights into the comparative advantages and flaws of competing optimisation 
methods. Finally I hope it will produce results of direct use in health policy.

Throughout the results of the simulation experiments presented here I have taken 
the point of view that the only fair and practical way to compare optimisation 
methods is to give each of them a fixed budget of CPU time, as opposed to a fixed 
number of models (input configurations) visited. My reason for this choice is as 
follows. The user of an optimisation algorithm has only her/his computer sitting in 
front of her/him  and a fixed budget of time in which to solve the current problem, 
with other problems waiting to be solved in the future—in other words, spending 
too much time on this problem has a real cost in terms of being able to spend less 
time on future problems. From this viewpoint the only thing tha t matters is how 
well any method performs with a fixed budget of CPU time. Suppose, for example, 
that I have two optimisation methods, one of which can visit one model per second 
and the other one model per day (because of huge overhead costs in maintaining 
its internal algorithmic structure). If I give them both a budget of 1,000 models, it 
might well be that the second one finds, say, a 10% better set of models, but the 
first one obtains its results in less than 17 minutes and the other one requires almost 
three years. It seems clear to me which one I would use.
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Chapter 3 

Stochastic optimisation

Theory attracts practice as the magnet attracts iron.

— Karl Friedrich Gauss

3.1 Introduction

In the past 40 years many researchers have studied the problem of optimising an 
objective function. One approach is stochastic optimisation, in which the search 
for the optimal solution involves randomness in some way. In this dissertation I 
consider a class of problems with a combinatorial nature, where the variables are 
discrete. The problem of finding the optimal solution in this case is known as 
combinatorial optimisation. If S  denotes the finite set of all possible solutions, my 
task is to maximise or minimise the objective function / :  S  —> 9ft. In the case of 
maximisation, the problem is to find a solution iopt G S  which satisfies

f ( i opt) > f(i )  for all i G S. (3.1)

It is easy to see that as the dimension of S  increases the harder the task becomes, 
and more time is needed to find the optimal, or at least a near-optimal, solution. 
Another difficulty in this problem is the possibility of local optima. It is a usual 
phenomenon for the objective function to have many local optima. So an algorithm 
like the well-known local search, which only accepts moves with higher values of the 
objective function than the previous move, is not a very good idea for this situation, 
since it is likely that the search will get stuck in a local optimum.

A lg o r ith m  3 .1 . Local  S ea r c h :

•  Begin;

14
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•  Choose a random configuration istarti

® Set i .— istart)

•  Repeat:

•  Generate a new configuration j  from the neighbourhood of i;

•  I f  fU )  > /W  then i := j;
•  Until f ( j )  < f ( i )  for all j  from the neighbourhood of i;

•  End.

□

The disadvantages of local search algorithms can be formulated as follows:

•  By definition, local search algorithms terminate in a local maximum and there 
is generally no information as to the amount by which this local maximum 
deviates from a global maximum;

•  The obtained local maximum depends on the initial configuration, for the 
choice of which generally no guidelines are available; and

• In general, it is not possible to give an upper bound for the computation time.

To avoid some of the above mentioned disadvantages, one might think of a number 
of alternative approaches:

•  Execution of the algorithm for a large number of initial configurations, say 
M, at the cost of an increase in computation time; for M  —> oo, such an 
algorithm finds a global maximum with probability 1, if only for the fact that 
a global maximum is encountered as an initial configuration with probability 
1 as M  —> oo;

•  Use of information gained from previous runs of the algorithm to improve the 
choice of an initial configuration for the next run;

• Introduction of a more complex generation mechanism, in order to be able 
to “jump out” of the local maxima corresponding to the simple generation 
mechanism. To choose the more complex generation mechanism properly 
requires detailed knowledge of the problem itself; and

•  Acceptance of moves which correspond to a decrease in the objective function 
in a limited way.
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3 Stochastic optimisation 16

In this dissertation I use three well-known methods (plus several variations on them), 
each of which—because of its structure—manages to avoid the disadvantages of local 
search algorithms. My goal is to find out which of these three methods performs best 
in the problem posed in Chapter 2. In this Chapter I briefly analyse these methods, 
give the exact algorithms, the advantages and disadvantages for each one, and I also 
summarise the literature on optimal values of the inputs each of the algorithms uses.

3.2 Simulated annealing (SA)

The use of simulated annealing (SA) (Kirkpatrick et al. 1983) as a technique for 
discrete optimisation dates back to the early 1980s. It was heralded with much 
enthusiasm as it appeared to be both simple to implement and widely applicable, 
and as a result of articles in popular scientific journals researchers from a wide 
variety of disciplines experimented with it in the solution of their own problems.

The ideas that form the basis of SA were first published by (Metropolis et 
al. 1953) in an algorithm to simulate the cooling of material in a heat bath—a 
process known as annealing. If solid material is heated past its melting point and 
then cooled back into a solid state, the structural properties of the cooled solid 
depend on the rate of cooling. The annealing process can be simulated by regarding 
the material as a system of particles, Essentially, the Metropolis algorithm simulates 
the change in energy of the system when subjected to a cooling process, until it 
converges to a steady “frozen” state. Thirty years later (Kirkpatrick et al. 1983) 
suggested that this type of simulation could be used to solve optimisation problems.

SA is a stochastic local search technique to approximate the maximum of the 
objective function / :  S  —> 5ft over a finite set 5. It is an iterative method that 
randomly chooses elements y from a neighbourhood N(x)  of the present solution. 
The candidate y is either accepted as the new solution or rejected. It may be 
accepted with a positive probability even if f ( y )  < f (x) ,  tha t is, even if it is worse 
than the present solution. The search process can thus “climb uphill” to get out 
local maxima. SA has proven quite successful in many applications (Van Laarhoven 
and Aarts 1988), and thus anyone considering the use of SA today has access to a 
wide range of literature covering both theoretical and empirical results.

The long-run behaviour of the search process depends critically on a(x,T,y) ,  
the probability of accepting a candidate y given a present solution x. a(x,T, y)  
is controlled by the parameter T, which is called the temperature by analogy to a 
physical cooling process. To make the iterative search an inhomogeneous Markov 
Chain, the temperature values are chosen independently of the process as a fixed
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3 Stochastic optimisation 17

sequence Tn, the temperature schedule. Usually the Metropolis acceptance probability
is used; that is, for T  > 0,

f 1 if f l y )  > f i x )  1
a(x,T ,y)-.=  \  (3-2)

exp if f ( v )  <  f i x )

From the Metropolis acceptance probability you can see that the better moves are 
always accepted, but on the other hand there is a possibility to accept a move to 
a worse solution than the present solution with probability exp t At high
temperatures, the system accepts moves almost randomly, regardless of whether 
they are uphill or down. As the temperature is lowered, the probability of accepting 
downhill moves drops and the probability of accepting uphill moves rises. Eventually 
the system “freezes” in a locally or globally maximum state, and no further moves 
are accepted. The rate at which T  decreases as the number of iterations increases 
is crucial. I will speak later about the temperature schedules that I will mostly be 
using.

The candidate moves are chosen according to a generating probability G(x,  •), 
which is often the uniform  or normal distribution on the neighbourhood N(x) .  The 
algorithm can be stated as follows:

A lgorithm  3 .2 . S im u la te d  A n n e a lin g  (SA ):

Begin;
Choose a configuration istart/
Select the initial and final temperatures T0,T f  >  0;
Select the temperature schedule;
Set % .— istart and T  .— To,
Repeat:

Repeat:
Choose a new configuration j  from the neighbourhood of i;
I f  f { j )  > f ( i )  then i :=j ;
Else

Choose a random u uniformly in the range (0,1);
I f  u < exp ^ en i := j f eise i := i-

Until iteration count = Uiter;
Decrease T  according to the temperature schedule;

Until stopping criterion = true; 
i is the approximation to the optimal solution;
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3 Stochastic optimisation 18

•  End.

□

The final configuration at the end of the SA run can be reported as the 
approximate solution, or the k best solutions found so far (for some reasonable 
k > 1) can be maintained throughout the run and reported (this requires some 
CPU and memory resources to implement but is often worthwhile).

It is worth noting that there is a substantial difference in outlook about SA 
between the statistics and operational research (OR) communities. In statistics 
the objective function /  is usually a density function, G(x,  •) is called the proposal 
distribution, and SA is viewed as a Metropolis-Hastings algorithm (Aarts and Korst
1989) on a series of heated densities. By contrast, in the optimisation literature /  
can be any function whose global maximum is sought, and the precise forms of the 
generating probability G(x,  •) and the acceptance probability are typically chosen 
from much larger sets of possibilities (see Sections 3.2.1 and 3.2.2 below). See (Aarts 
and Korst 1989; Geman and Geman 1984) for convergence results to local or global 
optima for SA whether or not /  is a density.

The algorithm given above is very general, and a number of decisions must be 
made in order to implement it for the solution of a particular problem. These 
can be divided into two categories. Firstly there are generic decisions which are 
concerned with parameters of the annealing algorithm itself. These include factors 
such as the initial temperature, the cooling schedule, the parameter niter, and the 
stopping criterion. The second class of decisions is problem-specific and involves the 
choice of the space of feasible solutions, the form of the objective function and the 
neighbourhood structure employed.

Both types of decisions need to be made with care, as they have been shown to 
affect the speed of the algorithm and the quality of the solutions obtained. There 
has been much research into the theoretical convergence properties of the annealing 
algorithm. This work does provide pointers as to what factors should be considered 
in making both generic and problem-specific decisions, but of course these choices 
depend on the nature of the problem you are trying to solve.

3.2.1 Generic and problem-specific decisions

The generic decisions basically involve the cooling schedule, including the upper and 
lower limits for the temperature parameter and the rate at which it must be reduced. 
The two cooling schedules which occur most widely in practice illustrate opposite
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Table 3.1: Families of temperature schedules for simulated annealing.

Family Temperature Ti
Straight &  - I )  +  H

Geometric 31 ( I ) " ' '
Reciprocal To

(T f M —To)+(To—T f )i

Logarithmic T oT /[log(M +l)-iog  2]
r / lo g (M + l) -r 0 log2+ (T o-T / )log(«+ l)

Figure 3-1: The four temperature schedules in Table 3.1, with Tq =  1.0, Tf =  0.1, 
and M  =  1,000.

Straight
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extremes. The first is the most commonly used and involves geometric reduction:

Tnew =  T0id (1 — C ). (3.3)

Experience (Stander and Silverman 1994) has shown that relatively small values of 
e perform best and most reported successes in the literature use values between 0.2 

and 0.01. This corresponds to fairly slow cooling. You can also define e, subject to
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3 Stochastic optimisation 20

the upper and lower limits for the temperature parameter and the final number of

Another parameter is the number of iterations at each temperature, niter- This is 
usually related to the size of the neighbourhoods, or sometimes the solution space, 
and may vary from temperature to temperature. For example, it is important to 
spend a long time at lower temperatures to ensure that a local optimum has been 
fully explored. This can be done by increasing the value of niter either geometrically 
(by multiplying by a factor greater than one) or arithmetically (by adding a constant 
factor) at each new temperature. Also you can determine niter based on feedback 
from the process. For example it may be desirable to accept a certain number of 
moves before decreasing the temperature. So you will probably have to spend a very 
short amount of time at high temperatures when the acceptance rate is high, but on 
the other hand it may take an infeasible amount of time to reach the required total 
number of accepted moves in the case that temperature is low and the acceptance 
rate is very small.

Another commonly used schedule, suggested by (Lundy and Mees 1986), executes 
just one iteration at each temperature, but reduces temperature very slowly 
according to the formula

where (3 is a suitable small value. You can of course easily define (3, subject to 
the upper and lower limits for the temperature parameter and the final number of 
iterations M .

A large number of cooling rates have been proposed in the literature. In Table 
3 .11 show the most common ones—straight, geometric, reciprocal, and logarithmic— 
indexed by the initial temperature To, the final temperature Tf,  the run-length 
M  and the current iteration i, and Figure 3-1 plots these four schedules with 
T0 =  1.0, Tf  =  0 .1, and M  =  1, 000. Both empirical evidence and the theoretical 
research suggest that the precise shape of the family of cooling schedules is less 
important than the amount of time SA spends in high, medium, and low temperature 
ranges. So there is little to choose between, say, the geometric and Lundy-Mees 
schedules, as long as they cool over the same range of temperatures at approximately 
the same rate. In view of this result and those of experiments reported in the 
literature, when using annealing for a new application it is probably best to start

iterations M .  So if To and Tf  are the initial and final limits for the temperature, 
then you can take e to be
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off with one of these two schedules first and only consider the others if these fail to 
provide satisfactory results. In terms of deciding on the values of the parameters 
for the schedule chosen, there is no easy way of achieving this; usually the best 
parameters must be determined after much experimentation, and of course they are 
subject to the nature of the problem you are solving.

On the problem-specific decisions, as with the generic decisions it is not possible 
to set down a series of rules which will always define the best choice for a given 
problem. However, it is possible to outline some properties which are desirable. 
Firstly concerning the neighbourhood structure, it is good to be uniform and 
symmetric, so tha t all the solutions have the same number of neighbours, and also if 
i is a neighbour of j ,  then j  should of course be a neighbour of i as well. If you want 
to keep the computing time as low as possible it is important for the neighbourhood 
structure and the cost function to be chosen in such a way tha t the calculations to 
be made in every iteration can be carried out quickly and efficiently. So it is good 
if the neighbourhoods are not large and complex, and if the solution space is not 
constrained by strict feasibility conditions. Also the cost function is going to lead 
the process towards local maxima, and so large plateau-like areas where the cost 
function takes on equal values should be avoided. To keep the working solution 
space small, it may be useful to try to have reasonably small neighbourhoods. 
This enables a neighbourhood to be searched adequately in fewer iterations, but 
conversely means that there is less opportunity for dramatic improvements to occur 
in a single move. Thus there must be some compromise here but, in general, small 
simple neighbourhoods are preferable to large complex ones.

3.2.2 M odifications

In this section I examine a number of modifications which have proved useful in 
adapting the annealing algorithm for a number of different problems. It is worth 
mentioning here that these modifications appear in the literature in only a few 
examples, so it is better to consider them only in situations where the annealing 
algorithm described so far fails to provide satisfactory results.

•  A c c e p ta n c e  p ro b a b ility

Firstly consider changing the acceptance probability. The use of the Boltzmann 
distribution (Tipler 1969) in (3.2) arises entirely from the laws of thermodynamics, 
and there is no reason to suppose that some other distribution would not perform 
better in some specific examples. On the other hand the use of the Boltzmann
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3 Stochastic optimisation 22

distribution has the advantage that it accepts downhill moves in such a way that
large declines in /  have virtually no chance of acceptance, whereas small ones may
be accepted regularly.

The biggest problem with the Boltzmann distribution is the algorithm speed. 
The calculation of exp at every iteration is quite a time-consuming
procedure, and so it might be better to evaluate a cheaper function. (Johnson 
et al. 1989) suggests two possible methods of improvement. The first is to use the 
function

a(x,T, y)  := I  1 . . . . . .  * f{y)  *  f {x)  }  , (3.6)
v ’ ,y> \ i  + m z m  i f / ( „ )  < / ( * )  / ’ v ’

which approximates the exponential (but note tha t this probability could go 
negative). Even better than this is to use a discrete approximation represented 
by a look-up table which can be calculated at a series of fixed values over the 
range of possible values of . The approximation is then obtained by simply
rounding to the nearest integer and looking up the appropriate function
value. Finally there are a few researchers that have found that simpler functions 
can give good results. For example (Brandimarte et al. 1987) uses the form

T  ,A — I  1 ‘f  S M  ~  \  Ci 7)

(note again, however, that this probability can exceed 1); (Ogbu and Smith 1990) 
and (Vakharia and Chang 1990) both use probabilities which are independent of 

[f(y) ~  f ( x )]> f°r different sequencing problems.

•  C o o lin g

Consider now the case of different cooling schedules. Starting the process with 
temperatures so high that almost all moves are accepted simply produces a series 
of random solutions, each one of which might itself have been a starting solution. 
So one may think that this approach spends too much time with random solutions, 
making many non-useful and time consuming evaluations. Some researchers address 
this problem by doing a very rapid cooling phase. They achieve this by reducing 
temperature after a fixed number of acceptances, and so they use most of the time 
in the middle part of the temperature range at which the rate of acceptance is 
relatively small. (Connoly 1990) was the first to suggest a constant temperature 
approach. Such a temperature must obviously be high enough to allow the process 
to climb out of local optima, but cool enough to ensure that these local optima are
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visited. The problem with this approach is that a good temperature will not only 
vary from problem type to problem type, but will vary for different instances of 
the same problem. Finally (Downsland 1993) suggests a quite clever idea. Every 
time a move is accepted the system cools according to the function T  —> 
and every time a move is rejected the system is heated according to the function 
T  —>■ ( i J-Ty  If P =  k 7  then the system will need to go through k heating iterations 
to balance one cooling. If the ratio of rejected moves to accepted moves is greater 
than k the system heats up, if less the system cools. Thus this schedule theoretically 
tends to converge to a situation in which the ratio is about k. As it is important to 
adequately search the areas close to local optima without a significant temperature 
increase, it is suggested that k should be governed by the size of the neighbourhoods 
around these maxima.

•  N e ig h b o u r h o o d s

In the annealing algorithms that have been described so far we are using the 
assumption that the neighbourhood structure is well-defined and unchanging 
throughout the algorithm. But this may not always be the case. We might have 
improvements in the performance of the algorithm if we adjust the neighbourhood 
structure as the temperature decreases. How can we achieve this? One way is to 
put restrictions on the neighbourhood in some manner. An example is given in an 
annealing heuristic for the placement phase of very large scale integrated circuit 
(VLSI) design, in which rectangular blocks are placed on the chip area in such a 
way as to minimise a combination of cost factors, described by (Sechen et al. 1988). 
They include the horizontal and vertical translations of any block in the set of 
valid neighbourhood moves. As only small translations tend to be accepted at low 
temperatures, much time is wasted generating and rejecting longer translations. In 
order to avoid this, a limit on the maximum translation length is imposed and this 
is decreased as the temperature drops.

In situations where a penalty function is used to enforce constraints, the 
neighbourhood size can be decreased by allowing only moves involving variables 
which contribute to the violation of constraints. Finally (Tovey 1988) suggests that 
better performance may be achieved if a reduced neighbourhood is used with a fixed 
probability, and the full neighbourhood is used for the remaining iterations.
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• Sam pling

The standard annealing process samples randomly from the current neighbourhood 
of solutions. One problem with this approach may be that when the process is 
very close to a local optimum most of the neighbouring solutions will involve a 
decrease in the criterion function. So by doing random sampling it is quite possible 
to accept some downhill moves before reaching the local optimum, and thus we may 
never reach it. One solution to this problem is to make cyclic rather than random 
sampling, to ensure that all neighbours are tried once before any are considered for 
a second time. This also has the added advantage of avoiding the need to determine 
a random neighbour. It should however be noted that there are also reports of 
cyclic sampling having a negative effect on the solution quality for some annealing 
implementations.

Another possible problem that has been reported occurs at the end of the. 
algorithm. In this stage the system is relatively cool and much time is spent 
evaluating moves which are rejected. This can be avoided by determining
the acceptance probability for each move in the neighbourhood, sampling the 
neighbourhood using a weighted distribution given by these probabilities and 
accepting automatically.

•  The objective function

There are problems in which the difference in the objective function between the 
current and the new solution is not calculated quickly. That makes the whole 
algorithm very slow and inconvenient. (Tovey 1988) suggests that in these cases an 
approximation may be a good idea. It is possible then to obtain some good results 
with an objective function which does not precisely represent the true function. If 
the true objective is evaluated only for each accepted move then the true maximum 
out of all configurations visited can be retained.

The importance of the objective function in the annealing process has already 
been discussed. We know that if the system is at a saddle-point between two valleys 
then it will move to either with equal probability. If one choice leads to the global 
maximum and the other to a local optimum, a move in the wrong direction may 
never be recovered. Sometimes this is unavoidable, but in other cases a change in 
the form of the objective may highlight the one direction as an improvement and 
the other as a downhill move.

So you can see how important it is to use a “nice” objective function. The 
situation described above was encountered by (Downsland 1993) for the rectangle

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessm ent in Health



3 Stochastic optimisation 25

problem. In this case a relaxation of the objective function identified the correct 
move as uphill and the inferior move as downhill. But the problem was that the 
new relaxed objective function was insufficient by itself to converge to “feasible” 
solutions with no overlap. In order to use properties of both objective functions you 
can express the criterion function as a weighted sum of the actual and the relaxed. 
The temperature parameter will be the same for both acceptance functions, except 
for the fact that it must be multiplied by different weighting factors for the two 
different cost functions. Also the acceptance functions may be different; in particular 
the best results were achieved when the acceptance probability distributions were 
different—one being exponential and the other linear.

The problem with this method arises when the objective function involves a 
penalty factor, so that it is very difficult to determine the correct weighting factors 
for the different terms. In addition, when the true objective function takes on 
relatively few integers values, it is often necessary to use other cost elements to guide 
the annealing process across the resulting plateau-like areas. One way of avoiding 
these difficulties is to solve the problem iteratively, trying to attain feasibility for 
increasing values of the true objective function. In this way only the penalty function 
is involved in the annealing cost, and thus no weighting decisions are required. The 
solution space may also be reduced as it contains only those solutions which achieve 
the current constant true cost.

The main disadvantage with this approach is that a globally optimal solution 
with a cost value of zero must be found at each stage in order to attain feasibility. 
In many situations this may be expecting too much of the annealing algorithm.

•  C o m b in a tio n  w ith  o th er  m eth o d s

Many researchers have noted that SA can perform better if it is used in combination 
with other heuristic methods. In general this can be done by running these methods 
before the annealing process is invoked (or after, in order to make an improvement 
to the solution encountered by SA). However there are examples of heuristics being 
used as a part of the annealing algorithm.

The most common is the use of a pre-processing heuristic in order to determine 
a good starting solution for our algorithm. To do this we have to start our search 
at a low temperature, because if we start it at a high one all the characteristics of 
the good solution will be destroyed. Thus we have the advantage that we save a 
substantial amount of solution time. However this method may get us caught in 
a trap, since by starting with a good solution at low temperature the process may
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never fully escape from the neighbourhood of the starting value.

Another way of incorporating some knowledge into the starting solution is to 
pre-define some of its features. These could theoretically be destroyed during the 
annealing process but this is unlikely at lower temperatures.

(Chams et al. 1987) used an approach in their colouring algorithm where they 
incorporate annealing into a construction heuristic which works by building onto a 
previous partial solution.

The use of a post-processing heuristic is also quite common in order to ensure 
tha t at least a local maximum has been found. Some researchers suggest applying 
the ascent phase more frequently, but it is difficult to determine when this should 
be done. One extreme idea is to apply it after every accepted move.

•  P a r a lle l im p lem en ta tio n s: sp e e d in g  up  th e  a lg o r ith m

One of the major disadvantages of SA is that application of the algorithm may 
require large amounts of computation time. Therefore, it is worthwhile investigating 
possibilities of speeding up the algorithm, in order to keep computation time within 
reasonable limits. In this respect, the increasing availability of parallel machines 
offers an interesting opportunity to explore the possibilities of speeding up the SA 
algorithm. T hat’s why research on parallel implementations of SA has evolved so 
quickly in recent years. The key idea in designing parallel SA algorithms is to 
distribute the execution of the various parts of SA over a number of communicating 
parallel processors.

(Aarts and Korst 1989) identify three ways in which parallelism may be 
introduced into the annealing process. The most common and simplest way is 
to allow different processors to proceed with annealing using different streams of 
random numbers, until the temperature is about to be reduced. Then, the best 
result from all the processors is chosen and all processors start again from this 
common solution at the new temperature. With this method, when the temperature 
is high, we expect to have significantly different chains of solutions among the 
different processors, but when the temperature drops to low values we expect that 
the processors will end up with solutions very close in terms of neighbourhood 
structure and cost.

A second method of parallel implementation is to use the processors to generate 
random neighbours and test for acceptance independently. Once a processor finds a 
neighbour to accept, then this is conveyed to all the other processors and the search 
moves to the neighbourhood of the new current solution. Again with this strategy
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we will have almost all the solutions accepted at high temperatures and so you can 
say that the method at this point is wasteful, but as temperature decreases the 
majority of solutions will be rejected and this will speed up the search considerably. 
You can also consider using the two strategies just described together. You can start 
with the first method, until the ratio of rejections to acceptances exceeds a certain 
level and then switch to the second method.

Finally a third (but less common) method is to hold the current solution in 
common memory and to allow all processors to act on it independently, each 
one generating a neighbour and updating. However, it is possible that this will 
result in two moves being made which both give an improvement when considered 
independently, but result in a downhill move if they are both carried out.

Before closing this section about parallel SA as an attem pt to attain greater 
speed, I briefly discuss two other alternative approaches that speed up the algorithm.

3.2,3 M essy simulated annealing (M SA)

In this section I introduce an idea proposed by (Kvasnicka and Pospfchal 1995), 
where the original SA method is modified using ideas borrowed from the genetic 
algorithms literature (see Section 3.4 below). Consider a function f ( X ) ,  with 
variables Xi ,  X 2, . . . ,  X p, where Xi =  0 or 1. We call X \, X 2, . . . ,  X p the genes of 
the chromosome X  and their binary values alleles. Our aim is to find the maximum 
o f / .

Let Q = {1, 2, . . . , p }  x {0 , 1} be a set which contains all possible pairs (a,/?), 
where a  £ {1, 2 , . . . ,  p} is the gene name and (3 € {0,1} is the allele of gene a. 
Then M-chromosomes of length I are defined by

c =  [(<*i, A ) , (a2, A ) > • ■ •. (Qfi, A)] e Ql. (3.8)

The first pair specifies the allele of the oti gene, i.e. X ai =  A- The second pair 
(a2, A)» ^  a i 7̂  a 25 specifies gene <22, i.e., X a2 =  A- In general we have

X ai =  A if ai 7̂  aj f°r all j  ~  1* (3.9)

This means that the possible difficulty of overspecification of the genes with respect 
to the target problem is handled by a first-come-first-served rule on a left-to-right 
scan of the M-chromosome. There is still a possibility not all genes will be specified
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Figure 3-2: An example of decoding of the M-chromosome c =  [(3,0), (1, 1), (3,1), 
(2,0), (5,1)] to the chromosome (1 ,0 ,0 ,1 ,1) with respect to the template (1, 
0 , 0 , 1, 1).

(3,0),(1,1),(3,1),(2,0),(5,1)

(1,0 ,0 ,1,1)

after the scanning procedure. Then the non-specified ones are filled in by a template

t = (tu t2, . . . , t p) e { o , i } p. (3.10)

So if the qth gene is not specified, i.e., q ^  a* for all i < I, then its allele is equal to 
the qth entry in the template t , i.e., X q = tq.

To understand the above more clearly here is an example (see Figure 3-2). 
Consider p = I — 5 , the M-chromosome c =  [(3,0), (1,1), (3,1), (2,0), (5,1)] and 
the template t =  (1, 0 , 0 , 1, 1). The chromosome X  assigned to c by the decoding 
procedure is then X  =  (1, 0 , 0 , 1, 1). We assign the allele 0 for X 3 because it appears 
before the allele 1 in the M-chromosome, and for X4, which is not specified by c, 
we use the fourth entry of the template t.

We use two kinds of transformation between the M-chromosomes (Figure 3-
3). First is the allelic mutation, where we change the alleles from 0 to 1 or
from 1 to 0 with probability paueie- Formally if we have the M-chromosome
c = [(<*1, f t) ,  (a2, f t) ,  • • •, (an, Pi)] we keep f t  the same if r > paiieie, and we change 
f t  to its binary complement if r < paaeie, where 0 <  r  <  1 is a uniformly distributed 
random number. Similarly we have the genic mutation where a* is kept the same 
if r > Pgene, and ai =  a*/ if r  < pgene, where 1 <  a# < k is a uniformly distributed 
random integer, selected so that ai> ±  c^. For paiieie and pgene it is best to use quite 
small values like 0.05.

We can now use all the above ideas to construct a new SA algorithm. The idea 
of the M-chromosomes can be applied in place of the proportional distribution. 
So instead of doing manipulations with chromosomes X  G {0 , 1}P, we use M -
chromosomes c G Ql, where I is approximately equal to p. The algorithm can
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Figure 3-3: Example of mutation of the M-chromosome c = [(3,0), (1, 1), (3 ,1), 
(2,0), (5 ,1)]. Vertical arrows indicate places where allelic and genic mutations are 
applied. Allelic mutation switches the bit, while genic mutation randomly changes 
the position of the bit.

allelic genic
mutation mutation

I  I
(3,0),(1,1),(3,1),(2,0),(5,1) (3,1),(1,1),(3,1),(5,0),(5,1)

be stated as follows:

A lg o r ith m  3.3. M e s s y  S im u la te d  A n n e a l in g  (MSA): 

begin
Choose an M-chromosome c star t  and a template t s ta r t /
Select an initial temperature T0 > 0;
Select the temperature schedule;
Decode the M-chromosome cstart to the chromosome X starti
C . —  Cstart)  X  . —  X start) H  • T o  a n d  t  . t s tar t )

Repeat:
Repeat:

For 2 =  1 , . . . , / ;
Generate random t t  uniformly in the range (0,1);
Change the gene i of c if  r\ < pgene to its binary complement;

For 2 =  1 , . . . , / ;
Generate random 7*2 uniformly in the range (0,1);

I f  r2 <  Paiieie generate a uniform random integer in the range [1 ,p] which 
is not equal to allele i and replace the allele i by this number;

Call the new M-chromosome cprop0sai;
Decode the M-chromosome cproposai to the chromosome X propo3ai;
I f  f f X propoSal) ^  f '(^O then X  .— X proposal and C .— CpTopoSal)
Else

Generate random u uniformly in the range (0,1);
I f u <  exp ^ v^osai)-/(*) then X  := X proposai and c := cproposai, else 

X  := X  and c := c;
Until iteration count = niter;
Decrease T  according to the temperature schedule;
Change template t := X ;

Until stopping criterion = true;
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•  X  is the approximation to the optimal solution;

•  End.

□

According to (Kvasnicka and Pospfchal 1995), the resulting Messy Simulated 
Annealing (MSA) algorithm is a robust and efficient stochastic optimisation method, 
which is able to correctly find the maxima of deceptive or highly multimodal 
objective functions.

3.2.4 SA Summary

In this section I have examined the SA algorithm, an approach which has the 
ability to reach global (or near global) optimal solutions, according to the hundreds 
of researchers that choose SA to solve their optimisation problems. Another 
characteristic of the approach is generality; for instance there are no restrictions 
regarding convexity and thus the method can handle objective functions with 
multiple local maxima. By also occasionally accepting downhill moves the algorithm 
manages to escape from local maxima, and to achieve results close to the global best. 
The algorithm is also simple to implement, without involving any unusual tricks and 
approaches, and is easy to program in any computer language. As far as the quality 
of solutions obtained by the algorithm, for many applications this is at least as good 
as, and sometimes much better than, those obtained by other algorithms, at least 
according to the literature.

However, the disappointingly long running times needed even to approximate 
convergence to the optimum, combined with the realisation that fine-tuning of 
the cooling schedule and a careful choice of neighbourhood structure are needed 
to get the best out of annealing, diminished some of the initial enthusiasm. The 
solution to all these problems is to start making modifications to the basic algorithm. 
But although these modifications improve the algorithm’s performance, they also 
increase the number of decisions which must be made by the designer, and thus the 
technique loses its simplicity and robustness. So the decision goes to the designer.

On the one hand you can use the basic algorithm, with the most obvious 
neighbourhood structure, a geometric schedule, and a starting temperature 
determined by only a few experiments, which is easy to implement and will probably 
give you reasonable results; or on the other hand you can use a more complicated 
version of the algorithm, with a cooling schedule determined as a result of extensive 
experimentation, a neighbourhood structure decided by in-depth knowledge of the
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problem characteristics. This is difficult to implement but also may result in a 
powerful problem-specific approach. Of course you must not forget that even if 
you have spent months trying to find the best values of your parameters, you are 
always going to be uncertain about them and about the result of your algorithm. 
For example one of the major problems is knowing when to stop, as there is always 
the feeling that the next modification or parameter change may lead to dramatic 
improvements in solution quality or computational requirements.

Overall it seems that SA is generally an applicable, flexible, robust and easy-to- 
implement approximation algorithm, which is able to obtain near-optimal solutions 
for a wide range of optimisation problems. However, computation times can be 
long and in a number of cases other algorithms can be executed far quicker. For 
problem areas where other algorithms are not practical, SA appears to be a powerful 
optimisation tool.

3.3 Threshold acceptance (TA)

Threshold acceptance (TA) is a stochastic optimisation algorithm proposed by 
(Dueck and Scheuer 1990) whose structure is similar to—perhaps even simpler 
than—SA. Because of the similarity of the two algorithms, I will not give full 
details about implementation and modification problems; see Section 3.2 for more 
information.

Suppose again that our aim is to find the maximum of the objective function 
/ :  S  — > 3ft over a finite set S. TA starts with an element x  G S, which might be 
randomly chosen. Then, a high number of iterations is performed. In each iteration 
step the algorithm tries to replace its current solution with a new one, which is 
randomly chosen from the neighbourhood N(x)  of the present solution. Suppose 
that the new candidate is y. Then in SA y is always accepted if f ( y )  > f (x )  and 
with a positive probability (proportional to the current temperature) if f (y)  < f (x) .  
On the other hand in TA y is accepted if and only if

/(* )  -  f (y)  < t , (3 .ii)

for a given positive threshold value T. So the essential difference between SA and 
TA consists of the different acceptance rules. TA accepts every new configuration 
which is not much worse than the old one, while SA accepts worse solutions only 
with rather small probabilities.

By allowing worse moves to be accepted during TA, it becomes possible to escape
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local maxima with regard to the given neighbourhoods. Usually at the beginning 
of the algorithm the threshold value has a large positive value, so almost all moves 
are accepted, while eventually the threshold is dropped to a positive value close to 
zero, and so only improving solutions are accepted.

So we must have a sequence of positive decreasing numbers to use as our threshold 
sequence during the algorithm. In (Dueck and Scheuer 1990), the threshold sequence 
is exogenously given. Another idea is given by (Winker and Fank 1997), who 
generate their threshold sequence from the empirical distribution of discrepancies 
\ f{x) — f (y)\  as the run progresses. Finally a geometric sequence can be used (Volker 
and Henrik 1995). If T0 is the starting value of the sequence, and Tf  the final one, 
then

Winker 1995), the choice of the threshold parameters is not too crucial for the 
mean performance of the algorithm as long as it falls in a reasonable range.

An apparent advantage of TA is its greater simplicity. It is not necessary to 
compute probabilities or to make decisions. Also according to (Dueck and Scheuer
1990), TA yields better results than SA (possibly in a considerably smaller amount 
of time or “new configuration choice steps”). The algorithm can be stated as follows:

A lg o r ith m  3 .4 . T h r e s h o l d  A c c e p t a n c e  (TA):

• Begin.
•  Choose a configuration istarti
•  Select the initial and final threshold values To, 7 /  > 0 ;
•  Select the threshold sequence schedule;
® i •— istart and T  .— To,
• Repeat:
• Repeat:
•  Generate a new configuration j  from the neighbourhood of i;

with M  the overall desired number of iterations. According to (Chipman and

T0id(l ~  <0 , where e =  1new (3.12)

# / ( * )  -  /O ') <  T  then i := j  else i := i;
Until iteration count = niter;
Decrease T  according to the threshold sequence schedule; 

Until stopping criterion = true; 
i is the approximation to the optimal solution;

End.

□
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3.4 Genetic algorithms (GA)

The genetic algorithm (GA) was first introduced by (Holland 1975), and has become 
a popular method for solving large optimisation problems with multiple local optima. 
Many researchers have since claimed success with GA in a broad spectrum of 
applications.

To call the GA paradigm “modern” today might seem to be stretching the 
truth, since it was first developed 30 years ago. Holland and his associates at 
the University of Michigan began to develop it in the 1960s and 1970s, but it was 
Holland’s 1975 book, Adaptation in Natural and Artificial Systems, where the first 
full, systematic and theoretical treatment of GA was contained. After that we have 
a large range of books and articles on GA with many successful applications, ideas 
for improvements, and results. For instance, (Goldberg 1989) and (Davis 1991) both 
provide a useful description of the algorithm and a number of applications in a range 
of problems. Also interesting applications of the algorithm can be found in recent 
articles, including (Michalewicz and Janikow 1991), (South et al. 1993), (Rawlins
1991), (Whitley 1992), and (Franconi and Jennison 1997), where GA is compared 
with SA for a statistical image reconstruction problem.

3.4.1 Biological term inology

The name GA originates from the analogy between the representation of a complex 
structure by means of a vector of components, and the idea, familiar to biologists, 
of the genetic structure of a chromosome. In this subsection I will introduce some 
of the biological terminology that will appear throughout this section.

All living organisms consist of cells, and each cell contains the same set of one 
or more strings of DNA called chromosomes. The chromosomes can also be divided 
into penes, functional blocks of DNA, each of which encodes a particular protein. 
For instance, a particular gene can represent the eye colour of the organism. Then 
the different settings that this eye colour can take (e.g., brown, blue, etc.), are 
called alleles. The position of each gene on the chromosome is called the locus. The 
organisms may have multiple chromosomes in each cell. The complete collection 
of genetic material is called the organism’s genome. Two individuals that have 
identical genomes are said to have the same genotype. The genotype gives rise, 
under fetal and later development, to the organism’s phenotype-its physical and 
mental characteristics. Finally, organisms can be diploid, when their chromosomes 
are arrayed in pairs, or can be haploid otherwise. In order now to produce a new off­
spring, a crossover operation occurs. In each parent, genes are exchanged between
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each pair of chromosomes to form a gamete (a single chromosome), and then gametes 
from the two parents pair up to create a full set of chromosomes. Off-spring also 
are subject to the mutation operator, in which single nucleotides (elementary bits of 
DNA) are changed from parent to off-spring. The fitness of the organism, finally, is 
defined as the probability that the organism will live to reproduce, or as a function 
of the number of off-spring the organism has.

In GA the term chromosome typically refers to a candidate solution to a problem, 
and most often is simply a binary 0-1 string. The genes are either single bits or short 
blocks of adjacent bits that encode a particular element of the candidate solution. 
The allele is either 0 or 1. The crossover operation is simply an exchange of sections 
of the two parents’ chromosomes, while mutation is a random modification of the 
chromosome which can be done by flipping the bit at a randomly chosen locus.

3.4.2 The algorithm

Suppose that our goal is to maximise a function g(X)  of the vector X  =  
( X i , X 2, . . . , X P), where each X{, i  = 1 ,2, . . . , p ,  is binary (taking the value 0 or 
1). In the case that your vector is continuous it is usual to replace the variables 
by binary expansions in order to run the algorithm. The basic GA starts by 
randomly generating an even number n of binary strings of length p to form an 
initial population,

v"2 -y2 y 2
■ ^ ■ 1  > ^ 2  j  • • • j

: ; ; (3 .13)
y n  yn  yn

j  a 2  j  • • * >

A positive fitness /  then is calculated as a monotone increasing function of g for each 
string in the current generation and n parents for the next generation are selected,

V 1 V 1 Y 1 1 > 2 5 • • • j p
y 2 y 2  y 2
1  1 J 1  2 5 • ’ ‘ 5 p

■ ; : (3.14)

y n  y n  y n
J 1 i 1 2  5 • * • > z p

with replacement, with the probability pj of choosing the j th string in the current 
population proportional to its fitness / j ,  i.e.,
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Pj y'm r • 
L ^ i - \  J i

(3.15)

The new parents are considered in pairs; for each pair we perform a crossover 
operation with a pre-selected probability pc. If crossover occurs, an integer k is

each parent are exchanged to create two new strings. So, e.g., for the first pair of 
parents, suppose that crossover occurred, so we create two new strings,

If crossover does not occur, the parents are copied unaltered into two new strings. 
After the crossover operation, we perform a mutation operation with a pre-selected 
probability pm. If mutation occurs, we simply switch the value at each string position 
from 0 to 1 or vice versa. Mutation occurs independently at each element of each 
string.

The algorithm is allowed to continue for a certain number of generations. On 
termination, the string in the final population with the highest value of g can be 
returned as the solution to our optimisation problem. But, since a good solution 
may be lost during the algorithm, a more efficient strategy is to note the best, or 
even better the 7 % best, solutions seen at any stage (for some reasonable 7 ) and 
return these as a solution.

The population size n, parameters pc and pm and fitness function /  must be 
specified before the algorithm is applied. It is often reasonable to take /  equal 
to g , but in some problems a more careful choice may be required. In the next 
subsections I discuss parameter choice and general implementation aspects of the 
algorithm. The algorithm can be stated as follows:

A lg o rith m  3.5. G e n e t i c  A l g o r i t h m  (GA):

generated from the uniform distribution [1 ,p  — 1] and the last (p — k) elements of

(3.16)

Begin;
Generate randomly an even number n of individuals X x of length p; 
Evaluate the fitness f  of each individual;
Repeat:

Select n new individuals Y x by replacement with probability proportional 
to f ;

For every pair of Y l do:
Generate random 77 uniformly in the range (0,1);
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• I f  ti < pc then generate a uniform random integer in the range [1 ,p  — 1]
and exchange the (p — k) elements of each parent Y l;

• For every individual Y l do:
•  For every bit in the individual do:
• Generate random 7*2 uniformly in the range (0,1);
• I f  t2 < Pm switch the current element from 0 to 1 or vice versa;
• Save the best a% individuals for the next run, with Yopt the best;
• Generate the remaining n (l — a) individuals randomly and calculate their

fitness f ;
• Until stopping criterion = true;
• Y ^  is the approximation to the optimal solution;
• End.

□
Again a number of decisions must be made in order to implement the above 

algorithm. The hope is that in simple problems GA will rapidly find optimal or 
near optimal solutions. There are two major sources of difficulty for the algorithm. 
Firstly, it has been noted that the proportion of the population having the optimal 
value at each string position does not necessarily increase all the way to 1 as the 
algorithm progresses and the likelihood of many such elements appearing together to 
form an optimal solution can be very low. The second problem is that of genetic loss, 
when all copies of the optimal value at a certain element of X  disappear, despite the
presence of multiple copies in the initial population. Both these problems appear to
contradict the implications of the Schema Theorem, that a beneficial schema such 
as the value 1 at any element of X  in our examples is likely to propagate throughout 
the population once a single copy occurs.

3.4.3 The Schema Theorem

The word schema comes from the past tense of the Greek word ex^ (echo, to have), 
whence it came to mean shape or form. Suppose that we have two chromosomes

1 1 0  1 1 1 0

1 0 0 0 1 1 1 (3.17)

Then both are example of the schema

1 * 0 * * * * ,  (3.18)
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where the symbol * denotes string positions at which no value is stipulated and thus 
it can be replaced by a 0 or a 1. So the above schema H  = ( 1 * 0 * * * * )  specifies 
X i  = 1, X 3 = 0 in a vector X  of length 7. It is clear that the chromosomes are 
also instances of several other schemata. Some schemata may contain both, while 
some others contain only one. It is obvious that each chromosome is an instance of 
2P distinct schemata, where p is the string’s length. So, each time we evaluate the 
fitness of a chromosome we can say that we are gathering the schemata of which it 
is an instance. In a population of size n, we have n 2P schemata, but of course in 
practice these numbers may be different, since we might have some overlappings or 
have no representatives at all. Under certain plausible assumptions, it can be shown 
that processing a population of size n in one generation processes O (n3) schemata. 
It is clearly impossible to store the average fitness value explicitly. A solution to 
this problem has been given by Holland through his well-known Schema Theorem.

Before we state some lemmas and the theorem, here is some notation that is 
used below. We call the length of a schema the distance between the first and the 
last defined (i.e., non *) position on the schema, and order the number of defined 
positions. Thus the previously described schema H  = ( 1 * 0 * * * * )  has length 2 

and order 2 . The fitness ratio is the ratio of the average fitness of a given schema to 
the average fitness of the population. I am now ready to give the theorem together 
with some useful lemmas; see (Holland 1975) for proofs and further details.

Lem m a  3.1. Under a reproductive plan in which a parent is selected in proportion 
to its fitness, the expected number of instances of a schema S  at time (t + 1) is given

by
E(S, t + 1) =  f (S ,  t )N(S,  t), (3.19)

where f ( S , t )  is the fitness ratio for the schema S,  and N( S , t )  is the number of
instances of 5, at time t.

Lem m a  3.2. If crossover is applied at time t with probability pc to a schema S  of 
length l(S),  then the probability that S  will be represented in the population at 
time (t +  1) is bounded below by

P (S ,f  +  l) >  l - ^ y [ l - P ( S , « ) ] ,  (3.20)

where p is the length of the chromosome.

Lem m a  3.3. If mutation is applied at time t with probability pm to a schema S  
of order k(S),  then the probability that S  will be represented in the population at
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time (t +  1) is bounded below by

P { S , t +  1) > l - p m k{S).  (3.21)

Combining these results together we obtain the following theorem.

T h eo rem . S C H E M A :  Using a reproductive plan in which the probabilities o f
crossover and mutation are pc and pm, respectively, and schema S  o f order k(S)  
and length l(S) has fitness ratio /(5 , t) at time t, then the expected number of 
representatives o f schema S  at time (t -f 1) is bounded below by

E ( S , t  + l ) >  i l - ^ ^ - [ l - P ( S , t ) ) - p m k ( S ) ^ f ( S , t ) N ( S , t ) .  (3.22)

It follows from this theorem that short low-order schemata will increase their 
representation provided their fitness ratio is slightly more than 1. So the ideal 
situations are those where short, low-order schemata combine with each other to 
form better and better solutions.

According to (Jennison and Sheehan 1995) we cannot easily create a similar 
lower bound for the expected number of representatives of schema S  at time (t + k), 
where k > 2 , and that provides a limitation of Holland’s result. These authors also 
noted that when the fitness ratio falls below 1 copies of the schema will start to 
disappear, and then we would face the problem of genetic loss.

3.4.4 Im plem entation of GA

As was the case with SA, the algorithm implementer has to take a large number of 
decisions in order to run the algorithm.

First of all: how many times should you run the algorithm? The best number 
of runs, or of generations, would be one large enough to find the optimal solution, 
but also small enough to reduce as much as possible the computation time. A 
crucial question here is in each repetition of the algorithm how many models we 
randomly generate. One approach is at the end of each repetition to clear the 
current population and to produce randomly, at the beginning of the new repetition, 
a new initial population. By doing this we are forcing the algorithm to look into 
new regions, but on the other hand if the reproduction of the new population is 
computationally expensive we lose time. The other extreme is to save time and move 
the last population of the last repetition to the new repetition as it is; a compromise 
is to keep a specific percentage a% of models from the current population in the
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new repetition and randomly generate the rest.

Another decision has to do with the population size n, a number that of course 
depends on the length of each string. Some researchers use small population sizes 
in order to be able to repeat the algorithm longer, but others prefer to repeat the 
algorithm fewer times in order to use large population sizes. Which of the two 
methods is better? It is not clear. But because you will probably have a limit 
to your computation time, you will have to find a tradeoff between the population 
and generation sizes, since it would be impossible to use large numbers for both of 
them. The best thing that you can do is to run your algorithm many times, by 
using different population and generation sizes each time, and by trying a very large 
population and small generation size, and also a very large generation and small 
population size, you can discover which choice is best suited to your problem.

Implementation of GA also requires two probabilities, the probability of crossover 
pc and the probability of mutation pm. Here things are clearer. Almost all researchers 
agree that the probability of crossover must be fairly high (above 0.3), while the 
probability of mutation must be quite small (less than 0 .1). Many researchers have 
spent a lot of time trying to find the best values of these parameters. (De Jong 
1975), for instance, ran a lot of experiments and at the end he indicated that the 
best population size was 50-100 individuals, the best single-point crossover rate was
0.6 per pair of parents, and the best mutation rate was 0.001 per bit. These settings 
became widely used in the GA community, even though it was not clear how well 
GA would perform with these settings on problems outside De Jong’s test suite. 
(Schaffer et al. 1989) spent over a year of CPU time systematically testing a wide 
range of parameter combinations. They found that the best settings for population 
size, crossover rate and mutation rate were independent of the problem in their test 
suite. Finally a lot of work has been done by (Grefenstette 1986). He suggested that 
in small populations (30, for example) it is better to use high values of the crossover 
rate, such as 0.88. The best crossover rate decreases to 0.50 for population size 50 
and to 0.30 for population size 80. Finally in most of his runs he used a mutation 
rate of 0.01. The runs with mutation rate above 0.1 are more like a random search, 
but also the absence (or a very small value) of mutation is also associated with 
poorer performance.

Finally the implementer has to choose a good fitness function / .  The theory says 
/  must be positive and a monotone increasing function of your objective function 
g. Also some researchers prefer their fitness function to take values in the interval 
[0,1]. The choice is wide; the only guide is that your function must provide sufficient 
selectivity to ensure that the algorithm prefers superior solutions to the extent that
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it eventually produces an optimal (or at least near-optimal) answer. On the other 
hand, selectivity must not be so strong that populations polarise at an early stage 
and the potential advantages of maintaining a diverse collection of solutions are 
lost. A frequent choice is /  =  g, probably the simplest one. Of course other more 
complicated choices are also possible and they might be sometimes advantageous. 
For example you can use /  =  exp (<7), or /  =  M  +  g for a suitable constant M.  
Finally if you want to use perfectly the definition and produce a positive, monotone 
increasing function of g which has values from 0 to 1, the best solution is probably 
to use

f t  YS -  g f f l  ~  min[g(A~)]
max[5 (X )] -m in [9 p O ] ’

where maxfppQ] and min[^(X)] are (at least rough estimators of) the maximum 
and minimum values of g , respectively.

There appear to be no guaranteed general rules for implementing GA. From 
problem to problem there may be a huge difference, and so each problem needs its 
own attention. The best thing you can do is run GA many times, by using different 
settings each time, and at the end note which one performs best and use it from 
then on.

3.4.5 M odifications

In this section I cover the most important and effective modifications of GA which 
have proved useful for a number of different problems. Again, as in the SA case, it is 
probably better to consider these modifications only in situations where the simple 
algorithm fails to provide satisfactory results.

•  Population size

We have already discussed the problem of population size in the previous section. 
A question that really bothers a lot of researchers is how the performance of GA 
is influenced by the population size. Obviously by using small populations we take 
the risk of under-covering the solution space with the unfortunate result of never 
finding a near-optimal solution, while on the other hand by using large populations 
we start having serious computational delays and our algorithm becomes very 
slow. (Goldberg 1989) reports that the optimal size for binary-coded strings grows 
exponentially with the length of the string p. Of course if this is true the practical 
performance of GA would be quite uncompetitive, especially in the case of large 
p, with other optimisation methods. But fortunately, there are many authors that
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agree that population sizes as small as 30 are often quite adequate. Also (Alander 
1992) suggests that a value between p and 2p  is not far from optimal for many 
problems.

•  Seeding

W hat kind of population to use initially (how to seed GA) also bothers a lot of 
researchers. The most common idea is to randomly generate strings of Os and Is 
and then proceed with the algorithm. On the other hand there are others who believe 
that starting GA with a population of high-quality solutions, probably obtained from 
another heuristic technique, can help the algorithm to find a near-optimal solution 
quicker. It is also possible, however, that the chance of premature convergence to 
an optimum that is only local may be increased with this strategy.

• Selection m echanism s

In the original GA, parents are selected by means of a stochastic procedure from 
the population, and then a complete new population of offspring is generated which 
then replaces their parents. In one variation of this idea, each offspring could replace 
a randomly chosen member of the current population as it is generated. (De Jong 
1975) introduced the idea of generation gap, where a proportion G was selected 
for reproduction, and their offspring replaced randomly selected existing population 
members.

Studies seem to indicate that GA performs better when populations do not 
overlap, but in the case of incremental replacement we have the advantage of 
preventing the occurrence of duplicates. So we are not wasting resources on 
evaluating the same fitness twice, and also we are not distorting the selection process, 
by giving more chances to a duplicate chromosome to reproduce.

Another good idea is to force the best member of the current population to be 
a member of the next as well. With this method we keep track of the best solution 
through the whole algorithm. Also (De Jong 1975) used an expected value model, 
where chromosomes are forced to become parents more or less in line with their 
expected frequencies as predicted by their fitness values, by following a policy of 
random sampling without replacement.

Another idea is to compare the parents with the offspring, and instead of copying 
the offspring directly to the new population, to copy the two best among the four 
(the two parents and the two children) to the new population. So if the parents for 
instance are “fitter” than their children, then they both survive, and we copy them
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to the new population. This is called an elitist strategy.

Finally, consider the problem of having two chromosomes which are close to 
different optima and the result of a crossover operator on them is worse than either. 
To address this (Goldberg and Richardson 1987) defined a sharing function, over 
the population which is used to modify the fitness of each chromosome, which can 
take a simple linear form:

h(d) =  ( 1 _ ® lf d < 'D ) ,  (3.24)
\  0 if d > D )

where d is the distance between 2 chromosomes (an obvious measure could be 
Hamming distance, but this may cause problems; for more details refer to (Goldberg
and Richardson 1987)) and D  is a parameter. So for each pair of chromosomes we
evaluate h(d) and then we calculate

Vj =  Y  h(di) (3-25)
i^j

for each chromosome j . Then we divide the fitness of each chromosome j  by cr,, 
and we replace the old fitness with the new values. The result of this will be that 
chromosomes which are close will have their fitness devalued in relation to those 
which are fairly isolated.

•  F itn ess  ca lcu la tio n

I have already mentioned some things about the fitness function. Its selection is
probably one of the most important and hardest decisions the implementer has to
make. I have already noted the risk of using the objective function as a fitness and 
have given an example of a fitness function which seems to work fine in many cases. 
Another approach is to use a scaling procedure based on the transformation

f  = ag + P, (3.26)

where g is the objective function and a  and (3 are obtained so that /  obeys the 
following conditions:

mean ( /)  =  mean(p)

m ax(/) =  p  — max(g), (3.27)
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where p  is a constant. Another idea is to ignore totally 'the objective function and 
use a ranking procedure instead. (Baker 1985) and (Reeves 1992) worked on these 
areas with apparent success. In this approach potential parents are selected with 
probability

«  = <3-28)
where [fc] is the kth chromosome ranked in ascending order. So the best chromosome 
[n] will be selected with probability roughly twice tha t of the median, whose 
chance of selection is (Whitley 1989) also worked with this method and he 
concluded that ranking should be preferred to scaling.

Finally an alternative is to use tournament selection (Goldberg and Deb 1991). 
Suppose we have n  chromosomes, and successive groups of T  chromosomes are taken 
and compared. We choose only the best one as a parent. When the n chromosomes 
are exhausted, another random permutation is generated. The whole procedure is 
repeated until n  parents have been chosen this way. Each parent is then mated with 
another chosen purely at random. It is obvious that the best chromosome will be 
chosen T  times in any series of n  tournaments, the worst not at all, and the median 
on average once.

•  Crossover operators

In most applications, the simple crossover operator described previously has proved 
extremely effective. However there are problems where more advance crossover 
operators have been found useful. First of all consider the “string of chance” 
crossover. Suppose we have the two chromosomes

1 1 0  1 0  0 0 1

1 1 0 1 1 1 0 0 (3.29)

These chromosomes have the same elements in the first four positions. Cases like this 
are quite common, especially in the later stages of the algorithm. If the crossover 
point is any of these four first positions, then the new string will not be a different 
chromosome. (Booker 1987) and (Fairley 1991) have both suggested that it is better 
to examine the parents and find the crossover points which would produce different 
offspring, before applying the crossover operator. It was Fairley who implemented 
this idea by using the “string of chance” crossover, which entails computing an 
exclusive-or (XOR)  between the parents. Only positions between the outermost Is 
of the XOR string will be considered as crossover points. In our example, the XOR
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string is
0 0 0 0 1 1 0 1. (3.30)

So only the last four positions will give rise to a different offspring.

In the simple crossover operator we randomly choose a single position and we 
exchange the elements of the two parents, but there is no reason why the choice of 
crossover points should be restricted to a single position. Many researchers have 
claimed large improvements with the use of multi-point crossovers. Consider the 
simplest case of two-point crossover and suppose we have the following strings:

0 1 

1 0

1 0  1 1  

0 0 0 1
0 0 

1 0

If the chosen positions are the third and the seventh then we can produce the 
following offspring:

0 1 0  0 0 1 0  0

1 0  1 0  1 1 1 0  (3.31)

by taking the first two and the last two elements from the one parent and the 
rest from the other each time. Of course this is not the only kind of exchange we 
can make. In the above example, for instance, we can randomly choose again two 
positions in the one parent (suppose we again pick the third and seventh), and then 
we can copy the third and the seventh elements of this parent and the rest from the 
other. With this method we produce the following offspring:

1 0  0 0 1 1 0  0

0 1 1 0 0 1 1 0 (3.32)

The operator that has received the most attention in recent years is the uniform 
crossover. It was studied in some detail by (Ackley 1987) and popularised by 
(Syswerda 1989). Suppose we have the following strings:

1 0  0 0 1 0  1 0

0 1 0 1 0 0 1 1 (3.33)

Then for each position randomly (with probability usually 0.5) pick each bit from 
either of the two parent strings. If you want to produce two offspring you can do
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the above twice. So for example we can produce the following offspring:

0 0 0 1 0  0 1 0

1 1 0 0 1 0 1 1 (3.34)

In the first offspring, we have chosen the second, third, sixth, seventh, and eighth 
element from the first parent, and the rest from the second, and in the second 
offspring we have chosen the first, third, fourth, fifth, sixth and seventh bit from the 
first parent, and the rest from the second.

A modified version of the uniform crossover is the version that the CHC Adaptive 
Search Algorithm (Eshelman 1991) uses, which I will call highly uniform crossover. 
This version crosses over half (or the nearest integer to \ )  of the non-matching 
alleles, where the bits to be exchanged are chosen at random without replacement. 
So for example if we have again the following parents,

1 0  0 0 1 0  1 0  

0 1 0  1 0  0 1 1

we can see that the non-matching alleles are the first, second, fourth, 
eighth, which are five in total. So we are going to cross three of them 
(say) the first, second and fourth, and so the children produced will be

0 1 0  1 1 0  1 0  

1 0  0 0 0 0 1 1

With this operator we always guarantee that the offspring are the 
Hamming distance from their two parents.

(Sirag and Weisser 1987) used a different kind of generalised crossover, by 
modifying the basic genetic operators in the spirit of SA. Thus, for example, the 
crossover operator is modified by a threshold energy 6C which influences the way in 
which individual bits are chosen. Briefly, as the offspring chromosome is generated, 
there is a presumption in favour of taking bit (i +  1) from the same parent as bit i. 
However, bit (i +  1) is taken from the other parent with probability

exp ( - ^ r )  > (3-37)

where T  is a “temperature” parameter, which is slowly decreasing according to

(3.35)

fifth, and 
randomly,

(3.36) 

maximum
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an “annealing schedule” . At high temperatures, this can be expected to behave 
rather like the generalised uniform operator; as temperature moderates the number 
of switches between parents decreases and it becomes more like the standard simple 
crossover, while at very low temperatures it just copies one of the parents. Choosing 
the best values of 6C and T  may require some experimentation, as will the annealing 
schedule.

These are the most common crossover operators. It is worth noting that there 
is no similar section about mutation operators. This is not because there are not 
other mutation operations available in the literature, but because I believe that for 
a binary-coding chromosome the best idea is to use the standard one. Also mutation 
is probably not as important as crossover in the problem posed in this dissertation.

•  Inversion

In simple versions of GA the order of the elements in the string can have a large 
effect on performance, because entire blocks of elements are crossed over together;
this will act, for example, to prevent interchanging the first element of one parent
with the last element of the other. One possibility for solving this problem is uniform 
cross-over; another approach involves inversion, an operator which takes account of 
order relationships. You can use it together with the crossover operator, and so 
produce a larger variety of offspring. For instance suppose we have the following 
chromosome:

1 0 1 1 0 0 1 0. (3.38)

We randomly choose two positions with different elements (the second and seventh, 
say), and we just exchange these two positions (a two-bit swap). So the new 
chromosome will look like

1 1 1 1 0 0 0 0. (3.39)

•  A daptive operator probabilities

As we have already seen in simple GA, the probability of using either crossover 
or mutation is fixed throughout, and usually crossover is applied with a high 
probability (above 30-50%) while mutation is applied with low frequency (less than 
1%). (Reeves 1992) found it useful to change this approach, and allow the mutation 
rate to change during the run. The idea was to make the mutation rate inversely 
proportional to the population diversity, in order to prevent or at least alleviate 
the problem of premature convergence. (Booker 1987), on the other hand, used
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an adaptive crossover rate, where the rate was varied according to a characteristic 
called percent involvement

(Davis 1991) has further suggested that either crossover or mutation should be 
applied at each iteration but not both. So at each step the algorithm has to decide 
which operator is going to be used and this is achieved on a basis of a probability 
distribution which he calls operator fitness. Usually we choose a number like 75% 
for crossover fitness, and thus the crossover would be chosen three times as often 
as mutation. In further development of this idea, we can allow operator fitness to 
change during the run. A possibly good idea is to start with a high crossover fitness, 
since crossover is more important at the beginning when the population is diverse, 
but as the chromosomes start to converge it is clearly important to increase the 
chance of finding different solutions, which can then be done only with mutation.

• Chrom osom e coding

Although the 0-1 binary setting is the obvious one in which to use GA, and also 
is the one that we have to use for our problem, in this section I briefly describe 
problems that have inputs with real values. In this case we can simply map the real 
numbers onto binary strings of a desired degree of precision. Thus if an input takes 
values in the interval [a, b] and is mapped to a string of length p , then the precision 
is

b ~ a (3.40)
2p — 1

The problem in this case is that values which are close in the original space 
may be far away in the new binary-mapped space. For example suppose that the 
optimum value of a problem that we try to maximise is the real number 32, and we 
are using a 6-bit chromosomes, so the binary optimal value is (1 0 0 0 0 0). A near- 
optimal solution is the real number 31, which maps to (0 1 1 1 1 1), a completely 
different string. Additionally the binary string (0 0 0 0 0 0), which is only one bit 
different from the optimum, represents the numerical value 0 , which is far from the 
optimum. This led Caruna (Caruna and Schaffer 1988) to advocate the use of a 
Gray code mapping, but this introduces further problems in that there is no simple 
algorithm for decoding a Gray code.

Despite these problems there are several empirical comparisons between binary 
coding and real-valued or even multiple-character coding which have shown worse 
performance than the binary choice. Examples include the (Kitano 1990) many- 
character representation for graph-generation grammars, the (Meyer and Packard
1992) real-valued representation for condition sets, the (Montana and Davies 1989)
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real-valued representation for neural-network weights, and the (Schultz-Kremer
1992) real-valued representation for torsion angles in proteins.

So how is one to decide on the correct coding for one’s problem? First of all 
you have to remember that the performance of your algorithm depends a lot on the 
problem and so there are no rigorous guidelines about which coding will work better. 
Probably a good thing to do is to follow the idea of (Davis 1991), to use whatever 
coding is the most natural on your problem and then devise a GA that can use that 
coding.

•  Sequence representation

Many problems of interests, such as the famous Travelling Salesman Problem, can 
be most naturally represented as a permutation. The problem in this case is that 
the original crossover operator then does not work. We can see why through the 
following example. Suppose we have the following two parents:

15  2 4 3 6

2 5 3 6 4 1 (3.41)

Then if we assume that the crossover point is the fourth position we end up with 
the following offspring:

1 5  2 6 4 1

2 5 3 4 3 6 (3.42)

which of course are invalid.

Several researchers have tried to find solutions to this problem and define new 
operators. (Goldberg and Lingle 1985) defined the partially mapped crossover. This 
operator uses two crossover points, and the section between these points defines
an interchange mapping. So in the above example suppose tha t the two crossover
points are the second and fifth:

5 2 4 
5 3 6

3 6

4 1

These crossover points define the interchange mapping
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5 ^ 5  

2 ^ 3  

4 <-> 6

and so we end up with the following offspring:

(3.43)

1 5  3 6 2 4 

3 5 2 4 6 1 (3.44)

(Reeves 1992) used a Cl operator to solve a flowshop sequencing problem. This 
operator works by randomly choosing a point, taking the first bit from the one parent 
and filling the chromosome by taking in order each “legitimate” element from the 
other parent. In our example suppose that we randomly choose the third position,

2 4 3
3 6 4

then our new offspring are going to be

1 5 2 3 6 4  

2 5 1 4  3 6 (3.45)

Finally, as was the case with binary inputs, with permutation problems another 
good idea is to use a uniform crossover. We generate randomly a crossover template 
of Os and Is, where Is define elements taken from the one parent, while the other 
elements are copied from the other parent in the order in which they appear in that 
chromosome. Returning to the example, if we generate the template

1 0 1 1 0 0 (3.46)

then our two new offspring are

1 5  2 4 3 6

2 1 3 6 5 4 (3.47)

Mutation also needs to be re-defined for the case of a sequence representation. 
(Reeves 1992) explored the exchange mutation, where you interchange two randomly
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chosen elements of the permutation (a two-bit swap). Another idea is the shift 
mutation, where you move a randomly chosen element a random number of places to 
the left or right. Finally (Davis 1991) used the idea of a scramble sublist mutation, 
in which you choose two points of the string at random, and randomly permute 
(scramble) the elements between these two positions.

•  H ybridisation

If your GA does not perform well and you want to enhance its effectiveness, you can 
hybridise it with another heuristic in various ways. For example, many researchers 
have described ways in which local neighbourhood search or extensions such as SA 
can be embedded in GA in order to make it more effective.

(Goldberg 1989) described a method for incorporating neighbourhood search into 
a GA, in a procedure he calls G-bit improvement W hat he simply did was to select 
periodically some of the best strings for a search of a neighbourhood defined by 
single-bit reversals. On completion of the neighbourhood search, the locally optimal 
strings were re-introduced into the population for the next phase of the algorithm. 
(Suh and Van Gucht 1987) also added a similar hybridisation to their GA, where 
heuristic operators based on two-optimal search and SA were used alongside simple 
crossover. Finally (Kapsalis et al. 1993) and (Beaty 1991) used a GA to make the 
“top-level” decisions on the form of a solution, which was then taken and solved by 
a problem-specific procedure. You can also devise special types of genetic operators, 
which are more powerful than the simple crossover and mutation.

I now examine two of the best-known hybrid GAs, genetic local search and genetic 
simulated annealing. The first of these has been proposed by several authors, mainly 
for solving the travelling salesman problem (Jog et al. 1989; Ulder et al. 1991). The 
algorithm has the following general form:

A lgorithm  3.6. G e n e t ic  L o c a l  S e a r c h :

•  Initialisation;

• (Local Search and termination test). Apply Local Search (Algorithm 3.1) to 
the n solutions in the current population. I f  a prespecified stopping condition 
is satisfied during the Local Search, stop the algorithm. I f  the Local Search 
is completed for all the n solutions, let the set of n obtained local optimal 
solutions be the current population, and go to the next step;

•  (Selection);
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•  (Crossoverj;

•  (Mutation);

•  Keep the best 100 a% and randomly generate the remaining n ( l  —a) individuals 
to create the new population;

•  Return to the second step.

□

The problem with this algorithm is the enormous computation time for finding n 
local optimal solutions in each generation. A way to decrease this computation time 
can be to search only a part of the neighbourhood solutions. For example, we can 
use the strategy to search a randomly selected 10% of the neighbourhood solutions 
in each local search procedure. If there are no solutions that improve the current 
one in the 10% neighbourhood solutions, the local search procedure is terminated 
without examining all the neighbourhood solutions.

Genetic SA has a similar general form:

A lgorithm  3 .7 . G e n e t ic  S im u la te d  A n n e a lin g :

• Initialisation;

• (SA and termination test). Apply SA (Algorithm 3.2) to the n solutions in the 
current population. I f  a prespecified stopping condition is satisfied during SA, 
stop the algorithm. I f  SA is completed for all the n solutions, let the set of n 
obtained local optimal solutions be the current population, and go to the next 
step;

•  (Selection);

•  (Crossover);

•  (Mutation);

•  Keep the best 100 a% and randomly generate the remaining n ( l  — a) individuals 
to create the new population;

•  Return to the second step.

□
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It appears to be better to apply SA with constant temperature to each of the 
n  solutions in the current population, because by using constant temperature we 
manage to avoid extreme deterioration of the current solution during the initial 
state of annealing with high temperature. (Inshibuchi et al. 1995) suggested a way 
to modify SA, by randomly selecting k neighbourhood solutions of the current one 
and letting the best one be the candidate solution for the next transition in SA, in 
order to improve the performance of genetic SA.

•  Parallel im plem entation

A serious drawback of GA is its inefficiency when implemented on a sequential 
machine. However, due to its inherent parallel properties, it can be successfully 
implemented on parallel machines, in some cases resulting in a considerable speedup. 
The first approach is to evaluate the fitness of each chromosome of the population 
in parallel. This approach has been used by several authors, including (Talbi and 
Bessiere 1991) and (Miihlenbein et al. 1988). The second approach is to allocate sub­
populations of chromosomes to parallel processors which proceed independently for a 
certain number of generations. You can simply insert the best chromosome that you 
have found amongst all sub-populations into each of them. (Pettey et al. 1987) took 
this route by donating and receiving the best individual once in every generation, 
while (Cohoon et al. 1987) preferred to copy a randomly chosen subset of solutions 
between the sub-populations following a relatively large number of generations.

3.4.6 Genitor algorithm

The genitor algorithm (Whitley 1989) was the first of what (Syswerda 1989) has 
termed the “steady state” genetic algorithms. There are three differences between 
the genitor algorithm and the “vanilla” (plain and simple) version of GA. First of 
all at the reproduction stage we only produce one offspring. Then this offspring is 
immediately placed back in the population, by replacing the least fit member. So at
the end our population will consist of half of the parents (the “fittest” ones) and all
the offspring. Finally the last difference is that in the genitor algorithm the fitness 
is assigned according to rank (Baker 1985; Whitley 1989), and by that we maintain 
a more constant selective pressure over the course of the search.

3.4.7 CHC adaptive search algorithm

The CHC adaptive search algorithm was developed by (Eshelman 1991). CHC stands 
for cross-generational elitist selection, heterogeneous recombination and cataclysmic
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mutation. This algorithm uses a modified version of uniform crossover, called HUX, 
where exactly half of the different bits of the two parents are swapped. Then if our 
population size is n, we draw the best n  unique individuals from the parent and 
offspring populations to create the next generation. HUX  is the only operator used 
by CHC adaptive search; there is no mutation.

In CHC adaptive search two parents are allowed to mate only if they are a certain 
Hamming distance (say d) away from each other. This form of “incest prevention” 
is designed to promote diversity. Usually we start with d =  | ,  where p is the length 
of the string. If the new population is exactly the same as the previous one, we 
decrease d and we rerun the algorithm. When d becomes negative the result is the 
divergence procedure in which we replace the current population with n  copies of the 
best member of the previous population, and for all but one member of the current 
population we flip r x p bits at random where r  is the divergence rate (for instance 
the compromise value 0.5). We replace d by d =  r ( l  — r)p  and restart the algorithm.

3.4.8 GA summary

GA is an algorithm which has become quite popular in recent years, as an approach 
to solving large and difficult optimisation problems. It is easy to write one 
general GA computer program to address many different problems. Also it has 
the advantage that it does not rely on unrealistic assumptions—such as linearity, 
convexity, or differentiability of the criterion function—in contrast with some other 
optimisation techniques. The only requirement is the ability to calculate a measure 
of performance, which may be highly complicated and non-linear. It is therefore 
evident that GA is quite robust. Furthermore, although it is possible to fine-tune 
GA to work better on a given problem, it is nonetheless true that a wide range 
of parameter settings (such as population sizes and crossover and mutation rates) 
will give acceptable results. Another advantage of the algorithm is the ability of 
the implementer to change it easily to model variations of the original problem, 
in contrast with other methods where even relatively minor modifications to the 
problem may cause severe difficulties. Finally there is great scope for implementing 
GA in parallel.

Unfortunately, however, despite these important features, it seems from the 
literature that GA may often be out-performed or fail badly even on simple problems. 
In many papers, for instance (Franconi and Jennison 1997), authors have tried to 
make comparisons between GA and other optimisation techniques, such as SA, and 
in most cases GA did not win. Also the algorithm might need disappointingly
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long running times to reach a near-optimal solution, especially in cases with high 
dimensions. It remains to be seen how it will do on the problem posed in this 
dissertation.

3.5 Tabu search (TS)

Tabu search (TS) is a “higher-level” heuristic procedure for solving optimisation 
problems, designed to guide other methods to escape the trap of local optima. 
Originally proposed by (Glover 1977) as an optimisation tool applicable to nonlinear 
covering problems, its present form was proposed 9 years later by the same author 
(Glover 1986), and with even more details several years later again in (Glover 
1989). The basic ideas of TS have also been sketched by (Hansen 1986). Together 
with SA and GA, TS has been singled out by the Committee on the next decade 
of Operations Research in 1988 as “extremely promising” for future treatment of 
practical applications. This stochastic optimisation method does not appear to be 
well-known to statisticians (Fouskakis and Draper 1999), so I will spend more time 
than usual on reviewing its literature.

The two key papers on TS are probably (Glover 1989; Glover 1990a); the first 
analytically describes the basic ideas and concerns of the algorithm and the second 
covers more advanced considerations. (Glover 1990b), a tutorial, and (Glover et 
al. 1993), a users guide to TS, are also useful. Other authors who have made 
contributions include (Cvijovic and Klinowski 1995), who specialised the algorithm 
for solving the multiple minima problem for continuous functions, and (Reeves 1995), 
who devoted a whole chapter to TS in his book Modern Heuristic Techniques for 
Combinatorial Problems. In a variety of problem settings, TS has found solutions 
superior to the best previously obtained by alternative methods. A partial list of 
TS applications is as follows:

•  Employee scheduling (Glover and McMillan 1986);
• Maximum satisfiability problems (Hansen and Jaumard 1990);
• Telecommunications path assignment (Oliveira and Stroud 1989);
•  Probabilistic logic problems (Jaumard et al. 1991);
•  Neural network pattern recognition (de Werra and Hertz 1989);
• Machine scheduling (Laguna et al. 1991);
•  Quadratic assignment problems (Skorin-Kapov 1990);
•  Travelling salesman problems (Malek et al. 1989);
•  Graph colouring (Hertz and de Werra 1987);
•  Flow shop (Taillard 1990);
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•  Job shop with tooling constraints (Widmer 1991);
•  Just-in-time scheduling (Laguna and Gonzalez-Velarde 1991);

•  Electronic circuit design (Bland and Dawson 1991); and

•  Nonconvex optimization problems (Beyer and Ogier 1991).

3.5.1 The algorithm

Webster’s dictionary defines tabu or taboo as “set apart as charged with a dangerous 
supernatural power and forbidden to profane use or contact ...” or “banned on 
grounds of morality or taste or as constituting a risk ...” . TS scarcely involves 
reference to supernatural or moral considerations, but instead is concerned with 
imposing restrictions to guide a search process to negotiate otherwise difficult 
regions. These restrictions operate in several forms, both by direct exclusion 
of certain search alternatives classed as “forbidden” and also by translation into 
modified evaluations and probabilities of selection.

Suppose we want to maximise an objective function f ( X )  of the vector X .  TS 
is divided into three parts: preliminary search, intensification, and diversification. 
Preliminary search, the most important and the main part of the algorithm, works 
as follows. TS starts from an initial solution. Then amongst all neighbouring 
solutions, TS seeks the one with the highest value. This move might not lead to a 
better solution, but enables the algorithm to continue the search without becoming 
confounded by the absence of improving moves and to climb out of local optima. 
This is one of the characteristic properties of the algorithm. In TS we keep moving 
even if that means that we are going to a worse move. If there are no improving 
moves (indicating a kind of local optimum), TS chooses the one that least degrades 
the objective function. In order to avoid returning to the local optimum just visited, 
the reverse move now must be forbidden. This is done by storing this move, or more 
precisely a characterisation of this move, in a data structure—the tabu list—often 
managed like a circular list, empty at the beginning and with a first-in-first-out 
mechanism, so that the latest forbidden move replaces the oldest one. This list 
contains a number s of elements defining forbidden (tabu) moves; the parameter s 
is called the tabu list size. However, the tabu list may forbid certain relevant or 
interesting moves, as exemplified by those that lead to a better solution than the 
best one found so far. Consequently, an aspiration criterion is introduced to allow 
tabu moves to be chosen anyway if they are judged to be sufficiently interesting.

Suppose for illustration that we have to maximise a function of a binary vector of 
length 5, and take (0,1 ,0 ,0 ,1) with criterion value 10 as the initial solution. Then if
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we define the neighbours to be just the vectors that we can create by changing each 
time each value from zero to one or from one to zero (one-bit flips), we obtain the 
following solutions (X i,. . .  , X5), with hypothetical values of the criterion function:

Vector (1, 1, 0 , 0 , 1) (0 , 0, 0 , 0 , 1) (0 , 1, 1, 0 , 1) (0 , 1, 0 , 1, 1) (0 , 1, 0 , 0 , 0)
Value 9 8 5.4 7.1 7.3

From the above possible moves, none leads to a better solution. But in TS we keep 
moving anyway, so we accept the best move among the five in the neighbourhood, 
which is the vector (1, 1,0 ,0 ,1) with value 9. This move becomes our new one. In 
order now to avoid going back to the previous solution we set tabu the move that 
changes X \  from 1 back to zero. So among the next five neighbours,

Vector (0, 1, 0 , 0 , 1) (1, 0 , 0 , 0 , 1) (1, 1, 1, 0 , 1) (1, 1, 0 , 1 , 1) (1, 1, 0 , 0 , 0)
Value 10 8.1 9.7 7.9 6.9

the first one is tabu, the rest non-tabu. The aspiration criterion is simply a 
comparison between the value of the tabu move and the aspiration value, which 
is usually the highest value found so far (in our example 10). So because our tabu 
move has value not larger than the aspiration value, it remains tabu, and so we 
have to choose among the other four. From these the one with the best solution is 
the third neighbour, (1, 1, 1, 0 , 1), with value 9.7. So now the move that changes X$ 
from 1 to 0 is tabu as well. Suppose that the tabu list size has been set to 4 for this 
example, and continue the algorithm. Our next neighbours are

Vector (0 , 1, 1, 0 , 1) (1, 0 , 1, 0 , 1) (1, 1, 0 , 0 , 1) (1, 1, 1, 1, 1) (1, 1, 1, 0 , 0)
Value 5.4 9.2 9 3 6.5

The first and the third neighbours now are tabu, with values less than the aspiration 
value for both, and so we have to search among the other three. Between these three 
moves the best one is the second neighbour, (1,0 ,1, 0 ,1), with value 9.2. So now the 
move that changes X 2 from 0 to 1 is tabu as well. Going one more step produces 
the next neighbourhood,

Vector (0 , 0 , 1 , 0 , 1) (1, 1, 1, 0 , 1) (1, 0 , 0 , 0 , 1) (1, 0 , 1 , 1, 1) (1, 0 , 1, 0 , 0)
Value 10.8 9.7 8.1 7.1 6.1

The first, second, and third moves according to the tabu list are tabu. But the first 
move has value larger that the aspiration value, and so its tabu status is cancelled. 
So the non-tabu moves now are the first, fourth, and fifth, and among these the best 
one is the first one, (0, 0 , 1, 0 , 1), with value 10.8 , which also replaces the best one 
found so far.
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We continue doing the above loop for a specified number of iterations. Of course 
even for this part, the algorithm designer has to make several decisions, such as 
the initial solution, the tabu list size, the aspiration criterion, the neighbourhood 
structure and size (in case the size of the neighbourhood is very big it is probably 
better to search among a subset of the neighbourhood), and the stopping rule.

After finishing with the preliminary search, intensification starts. We go to the 
best solution found so far and clear the tabu list. The algorithm then proceeds 
as in the preliminary search phase. If a better solution is found, intensification 
is restarted. We can have a specified number of restarts; after that number the 
algorithm goes to the next step. Also if the current intensification phase does not 
find a better solution after a specified number of iterations, the algorithm goes to 
the next step. Intensification provides a simple way to focus the search around the 
current best solution. The designer here has to decide on the maximum number 
of restarts that the algorithm will be allowed, and how many iterations without 
improvement the algorithm will be allowed before going to the next part.

Finally we have the last part of the algorithm, diversification. We again clear the 
tabu list, and set the s most frequent moves of the run so far to be tabu, where s is the 
tabu list size. Then we choose a random state and proceed through the preliminary 
search phase for a specified number of iterations. Diversification provides a simple 
way to explore regions that have not been visited much. The designer here has to 
decide on the number of iterations that will be spent in this part.

After the end of the third part, either you report your best solution as the optimal 
result found, or (even better) you repeat the whole algorithm (all three parts). You 
can repeat the whole algorithm many times, subject to a pre-specified number. I 
will discuss parameter choice and general implementation aspects of the algorithm 
in the subsections below.

The algorithm more formally can be stated as follows:

A lgorithm  3.8. T a b u  S ea r c h  (TS):

•  Begin;
•  Randomly choose a configuration istart and set i := istart',
•  Evaluate the criterion function f(i );
•  Set the aspiration value ol := lo, a small number;
•  Determine s := Listlength, the length of the tabu list;
® Set Alove .— 0 and imax •— istart j
•  Repeat:

Preliminary Search
Add i to the tabu list at position s;
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Set s := s — 1. I f  s = 0 then set s := Listlength;

Set Move := Move +  1, inbhd h o,nd f nbhd •= low, a small number; 

For each neighbour j  of i do:

I f  f { j )  > ol do:

I f  f  C?) — fn b h d  then Set in b h d  '=  j  and f n b h d  -=  / 0 ) ;

i f  f (J)  <  d°i
I f  j  is in the tabu list go to the next neighbour;

Else if j  is non-tabu and f ( j )  > fnbhd then set inbhd '= j  and

f n b h d  •— / ( j ) ;

Set OL .— IHdiX ('OL, f n b h d ) and i .— tn b h d ;

I f  f  (,!) ^  f  ifmax) then imax •—

I f  Move 7  ̂maxmoves go back to Preliminary Search;

Else go to Intensification;

Set i := imax and clear the tabu list;

Repeat:

Do the Preliminary Search;

Until you find a better solution than imax • I f  no improvements after Uint 
iterations go to the next part;

Until Uimpr runs;

Diversification

Clear the tabu list and set the s most frequent moves to be tabu; 

Randomly choose a configuration i;

Evaluate the criterion function f(i );

Repeat:

Do the Preliminary Search;

Until you have run it UdiV times;

Until you have run the whole algorithm rep times; 

imax is the approximation to the optimal solution;

End.

□

Intensification

Repeat:
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3.5.2 Im plem entation and m odifications of TS

From the above algorithm, it is clear that the designer has to make decisions for
a number of crucial elements of TS, such as neighbourhood sizes, types of moves,
tabu list structures, and aspirations conditions. Also you have to define values for 
several parameters, such as maxmoves, riint, riimpr, ndiV and rep. There appears to 
be surprisingly little advice in the literature about how to make these choices. I will 
address this issue in Chapters 4 and 5 through simulation studies.

•  N e ig h b o u rh o o d  sizes and  can d id a te  lis ts

When the dimension of the problem is high, a complete neighbourhood examination 
may be expensive in terms of CPU-time. For this reason, it is probably better, in 
cases like this, to examine only the regions of the neighbourhood that contain moves 
with desirable features.

One way of doing this is to use a neighbourhood decomposition strategy. You 
simply decompose the neighbourhood into coordinated subsets at each iteration. 
A TS aspiration threshold, or other means of linking the examination of subsets, 
is commonly applied to limit the frequency of selecting moves from subsets whose 
current alternatives are gauged less attractive. This strategy may be able both to 
speed up the algorithm and to generate some diversity in the search. (Laguna et 
al. 1991) have successfully applied this idea, and managed to limit the domains 
of jobs that are shifted in machine scheduling, while (Fiechter 1994) has also 
used this idea in travelling salesman problems. Finally (Semet and Taillard
1993) have succeeded in cutting down computation times by a factor of three 
while simultaneously obtaining better solutions, by applying such a decomposition 
approach to cyclically scan about one fourth of all possible moves at each iteration.

Another technique is elite evaluation candidate lists, in which you store a 
collection of elite (highest evaluation, most promising) moves on a candidate list. 
Then at each iteration, the moves belonging to the candidate list are examined first, 
followed by a subset of the regular neighbourhood, gradually replacing candidate 
list moves that are no longer attractive. Periodically, after many iterations or when 
the quality of moves on the candidate list deteriorates below a chosen threshold, 
a significantly larger portion of the current neighbourhood is examined in order to 
reconstruct the candidate list. This technique is motivated by the assumption that 
a good move, if not performed at the present iteration, will still be a good move 
for some number of iterations. A simplified variant of this strategy is to perform 
every move on the elite candidate list in succession, provided the move remains valid
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when its turn arrives. (Glover et al. 1986) improved the technique by introducing 
an aspiration level threshold that moves must satisfy in order to be selected.

In some applications it can be advantageous to isolate certain attributes of 
moves that are expected also to be attributes of good solutions, and to limit 
consideration to those moves whose composition includes some portion of these 
“preferred” attributes. The preferred attribute candidate list technique seeks to 
organise moves so that they do not have to be composed entirely of some special 
elements. One or more of these elements are required to be incorporated in a “key 
segment” of a move, so that all moves containing such a segment can be generated 
efficiently.

Finally a type of candidate list that is highly exploitable by parallel processing 
is a sequential fan candidate list. The main idea is to generate the 7  best alternative
moves at a given step, and then to create a fan of solution streams, one for each
alternative. The best few available moves for each stream are again examined, and 
only the 7  best moves overall provide the 7  new streams at the next step.

•  A ttributes

Suppose that our current solution is X now and we want to create a tentative solution 
Xtriai, with X  a binary vector. The most common and natural types of attributes 
for a move X now to X triai are as follows:

1. Change of a selected variable from 0 to 1.

2 . Change of a selected variable Xj from 1 to 0.

3. The combined change of the previous two taken together.

4. Change of f { X now) to f { X trial).

5. Change of a function g{Xnow) to g{Xtrial).

6 . Change represented by the difference value g ( X triai) — g( Xnow).

7. The combined changes of the previous two types for more than one function 
g considered simultaneously.

Attributes 5-7 are based on a function g tha t may be strategically chosen to be 
completely independent from the objective function / .  For example we can choose 
g to be a measure of the distance between the given solution and the best solution 
found so far. Then with attribute 6 we can see if the trial solution leads the search 
farther from or closer to the best solution found so far.
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•  Tabu restrictions

Suppose that a move that contains an attribute e from X now to X next is performed. 
Then the reverse attribute e has to remain tabu for some time in order to prevent 
reversing. Examples of kinds of tabu restrictions frequently employed are as follows. 
A move is tabu if

•  Xj changes from 1 to 0 where Xj previously had changed from 0 to 1.

• Xi changes from 0 to 1 where Xi previously had changed from 1 to 0 .

•  At least one of the previous two occur. This condition is more restrictive than 
either the first or the second separately, as it makes more moves tabu.

•  Both the first two restrictions occur. This condition is less restrictive than 
either the first or the second separately, as it makes fewer moves tabu.

• Both the first two restrictions occur, and in addition the reverse of these moves 
occurred simultaneously on the same iteration in the past.

•  g(X)  receives a value u' that it received on a previous iteration, i.e., u' =  g{X')  
for some previously visited solution X ' .

• g(X)  changes from u" to u where g(X)  changed from v! to u" on a previous 
iteration.

Again g is a function completely independent from the objective function / ,  and 
can be, as before, the distance between the given solution and the best solution 
found so far. Tabu restrictions are sometimes used to prevent repetitions rather 
than reversals, as illustrated by stipulating the second condition that Xi previously 
changed from 1 to 0, rather than from 0 to 1. These have a role of preventing 
the repetition of a search path that leads away from a given solution. By contrast, 
restrictions that prevent reversals help to prevent a return to a previous solution. 
Hence tabu restrictions vary according to whether they are defined in terms of 
reversals or duplications of their associated attributes.

• Tabu list size

The choice of tabu list size is crucial; if its value is too small, cycling may occur in 
the search process, while if its value is too large, appealing moves may be forbidden, 
leading to the exploration of lower quality solutions and producing a larger number 
of iterations to find the solution desired. Empirically, tabu list sizes that provide
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Table 3.2: Illustrative rules for tabu list size.

Static Rules

•  Choose s to be a constant such as s = 7 or s =  y/p, where p is the problem’s 
dimension.

Dynam ic R ules

•  Simple dynamic: Choose s to vary randomly or by systematic pattern, between 
bounds Suiin und with smjn — 5 and Smax — 11 or Smin — 0.9\Jp and
S m a x  —  1-1 y /P "

•  Attribute-dependent dynamic: Choose s as in the simple dynamic rule, but 
determine smin and smax to be larger for attributes tha t are more attractive 
(based for example on quality or influence considerations).

good results often grow with the size of the problem. However, there appears to be 
no single rule that gives good sizes for all classes of problems.

Rules to determine s, the tabu list size, are classified as static or dynamic. Static 
rules choose a value for s that remains fixed throughout the run; dynamic rules allow 
the value of s to vary. Table 3.2 gives examples of these rules. The values of 7 and 
y/p (where p is the dimension of the problem) used in this table are only suggestive, 
and represent parameters whose preferred values should be set by experiment for a 
particular class of problems. But usually researchers use values between 7 and 20, 
or between 0.5y/p and 2y/p, and in fact these values appear to work well for a large 
variety of problems.

Practical experience indicates that dynamic rules are typically more robust than 
static ones (Glover et al. 1993). This is probably the reason why many researchers 
prefer to use non-fixed values for the tabu list size. For example (Taillard 1991), in 
order to solve the quadratic assignment problem, selected the size randomly from 
the interval [0.9 p, 1.1 p] and kept it constant for 2.2 p iterations before selecting a 
new size by the same process. (Laguna et al. 1991) have effectively used dynamic 
rules that depend on both attribute type and quality, while a class of dynamic rules 
based on moving gaps was also used effectively by (Chakrapani and Skorin-Kapov
1993). Finally (Laguna and Glover 1993) systematically varied the list size over three 
different ranges (small, medium and large), in order to solve telecommunications 
bandwidth packing problems.
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•  A spiration  criteria

As mentioned above, the role of aspiration criteria is to determine when tabu 
restrictions can be overridden, and make a tabu move admissible. The appropriate 
use of such criteria can be very important for enabling a TS method to achieve 
its best performance level. The simplest and most common aspiration criterion is 
the one tha t allows a tabu move to be selected if it leads to a solution better than 
the best found so far. This criterion remains widely used, but other aspiration 
criteria can also prove effective for improving the search. The literature on such 
criteria identifies two types: move aspirations and attribute aspirations. When a 
move aspiration criterion is satisfied, a move’s tabu classification is revoked,*while 
when an attribute aspiration criterion is satisfied, an attribute’s tabu active status 
is revoked.

Suppose tha t a trial solution X trial is generated by a tabu move. The following is 
a list of the most common criteria for determining the admissibility of this solution:

•  Aspiration by default: If all available moves are classified tabu, and are not 
rendered admissible by some other aspiration criteria, the “least tabu” move 
is selected. For example you can choose the move tha t loses its tabu status by 
the least increase in the value of the objective function.

• Aspiration by objective (global form): A move aspiration is satisfied, permitting 
X tT%al to be a candidate for selection, if f ( X trial) >  Cbest, where /  is the 
objective function and Cbest is the best solution found so far.

•  Aspiration by objective (regional form): Subdivide the search space into regions 
R. Let Cbest{R) denote the minimum /(A ), with X  G  R. Then for X trial E R , 
a move aspiration is satisfied if f ( X trial) > Cbest(R ).

•  Aspiration by search direction: Let direction(e) =  improving if the most 
recent move containing the reverse attribute of e, e, was an improving move, 
direction(e) =  nonimproving otherwise. An attribute aspiration for e is 
satisfied, making e admissible, if direction(e) = improving  and the current 
trial move is an improving move, i.e., f ( X tTial) > f ( X now).

•  Aspiration by influence: Let influence(e) = 0 or 1 according to whether 
the move tha t establishes the value of tabustart(e) is a low-influence or high- 
influence move, where tabustart(e) is the starting iteration of the tabu duration 
for attribute e. Also let latest(L), for L =  0 or 1, equal the most recent 
iteration that a move of influence level L  was made. Then an attribute move
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for e is satisfied, if influence(e) = 0 and tabustart(e) < latest( 1). We can
also have multiple influence  levels, L = 0 ,1 , . . . ,  and then the aspiration for e

The first of the above criteria is rarely applicable, but is understood automatically 
to be part of any tabu search procedure. Also the last two criteria are attribute 
aspirations rather than move aspirations.

The list above gives the simplest and most well-known aspiration criteria. For 
applications that are more complex we might need more complicated criteria, one 
of which is aspiration by strong admissibility.

D efin ition  3.1. A move is strongly admissible if it is admissible for selection and 
does not rely on aspiration criteria to qualify for admissibility; or if it qualifies for 
admissibility based on global aspiration by objective, by satisfying f ( X trial) > Cbe s t .

•  Aspiration by strong admissibility: Let lastnonimproveTnent equal the most recent 
iteration that a nonimproving move was made, and let l a s t s tr(m g iy admissibie  equal 
the most recent iteration that a strongly admissible move was made. Then if 
lOiStjionimprovement ^  lO'Si'strongiyadmissibiei we can reclassify every improving tabu 
move to be a candidate for selection.

W ith the inequality iflsfnontmp7,ovenienf ^  two facts are
clear: that a strongly admissible improving move has been made since the last 
nonimproving move, and that the search is currently generating an improving 
sequence. Thus this type of aspiration ensures that the method will always proceed 
to a local optimum whenever an improving sequence is created tha t contains at least 
one strongly admissible move.

•  Parallel processing

To speed up TS, again consider the case of parallel runs. According to (Glover et 
al. 1993), concurrent examination of different moves from a neighbourhood often 
makes it possible to reach a speed-up factor close to

where P  is the number of processors, Tn is the sequential time to perform 
the computation to be parallelised and Tu is the time associated with the non- 
parallelisable part of the algorithm. For example Tn may correspond to the time

is satisfied, if there is an L > influence(e) such that tabustart(e) < latest(L).

ideal speed-up = (3.48)
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spent in evaluating the neighbourhood and Tu may correspond to the update of the 
information structure when a move is performed. Using such a technique, significant 
speed-up can be achieved for many problems.

In more detail, the above parallelisation idea is to divide the neighbourhood into 
P  parts each about the same size, and evaluate each of these parts on a different 
processor. Having done that, every processor computes the values of the moves that 
are attributed to it. Then it communicates to the others its proposed move (the 
best move it found) and receives (P — l)  moves proposed from the other processors. 
Every processor chooses and performs the best move proposed to (or by) it. If there 
are many proposed moves that are of the same quality, the processors will retain, 
for example, only the move that was proposed by the processor that has not had an 
accepted proposition for the greatest number of iterations.

Another natural and simpler parallelisation process is to perform many 
independent searches at a time, each starting with a different initial solution and/or 
using a different set of parameters. Because of the fact that we have no restrictions on 
this process, we can apply it for every problem, and surprisingly this straightforward 
type of parallelisation has proven efficient for a number of processors not exceeding 
a few dozen. (Taillard 1989; Taillard 1990; Taillard 1991) applied this method in 
three different types of problems very successfully.

3.5.3 TS summary

Experiments have shown that TS is able to obtain results that match or surpass the 
best known outcomes using other methods in a variety of optimisation problems. 
At the same time, it is apparent that studies to date have only taken the first steps 
in exploring this potential. Many more applications remain to be undertaken, and 
many new possibilities for refining the basic processes of the method remain to be 
tested. The most interesting thing about TS to me is tha t it appears to be almost 
unknown in the statistics community: none of the 20 papers and book chapters I 
was able to find on TS through an extensive electronic search are in the statistics 
literature.

3.6 Summary of all optimisation m ethods studied

I conclude this chapter with a list of all optimisation methods studied in this 
dissertation, together with a brief description of each and an indication of how 
they are related to each other.
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•  Local search (greedy algorithm that only accepts uphill moves);

•  Simulated annealing (SA; algorithm with neighbourhood structure and flexible 
rule based on temperature for sometimes accepting downhill moves);

•  Messy SA (hybrid between SA and GA: first use neighbourhood structure 
motivated by GA ideas, then acceptance rule same as SA);

•  Threshold acceptance (TA; a simplified version of SA, using a threshold value 
instead of temperature);

•  Genetic algorithm (GA; method with selection mechanisms (crossover, 
mutation) instead of neighbourhood structure);

•  Genetic local search (hybrid between local search and GA, using local search 
to create the initial population);

•  Genetic simulated annealing (hybrid of SA and GA: first SA to generate 
population, then GA from there), messy SA and genetic SA are like two sides 
of the same coin;

•  Genitor algorithm (modification of GA in which the fittest parent is included 
in the next generation along with a single child);

•  CHC adaptive search (modification of GA in which (1) a version of uniform 
crossover is used instead of simple crossover and (2) the two best are chosen 
from both parents, both children and (3) the algorithm restarts itself when it 
gets stuck); and

• Tabu search (TS; algorithm with neighbourhood structure, three phases 
(preliminary search, intensification, diversification), and list of forbidden 
moves to prevent circularity).

See Table 5.3 for an example of the inputs required by the three main methods 
I will examine in the remainder of the dissertation: SA, GA, and TS.
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Chapter 4 

Results in the case p  = 14

Everything should be made as simple as possible, but not simpler.

— Albert Einstein

4.1 Introduction

The most straightforward way to compare optimisation methods is to create a 
test-case in which the tru th  about all 2P models is known (up to small Monte 
Carlo uncertainty), so that the actual quality of subsets discovered by any given 
optimisation method may be ascertained. As noted in Chapter 1, I chose to do 
this by performing three full enumerations1 of the estimated expected utility of all 
2P =  16,384 possible subsets of the p =  14 variables chosen in the Rand sickness scale 
for pneumonia (Table 1.2), in which each estimate of the expected utility—equation 
(2.5)—was based on N  =  500 random splits (this choice of N  was sufficient to 
yield a Monte Carlo standard error for each expected utility estimate of only about 
US$0.05, which is small enough to reliably identify the good models).

Section 4.2 presents full-enumeration results for the first of the three repetitions 
of the process. In Section 4.3 I explore the geometry of the solution space, and 
Section 4.4 discusses the optimal choice of N  during the stochastic optimisation 
runs. In Section 4.5 I present some preliminary results comparing five of the most 
promising optimisation methods described in Chapter 3: a genetic algorithm (GA), 
messy simulated annealing (MSA), simulated annealing (SA), tabu search (TS), and 
threshold acceptance (TA). Sections 4.6 and 4.7 describe the design and analysis of 
a large simulation experiment on the three leading contenders to emerge from the 
preliminary work: GA, SA, and TS. In Section 4.8 I conclude the chapter with the

1Each of these runs took 38 days of CPU time at 400 Unix MHz to complete.
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results of four sensitivity analyses: (1- 2) the two additional full-enumeration runs, 
one with a different random number seed to see how stable the findings were and one 
with a different choice of the proportion of data points used in the modelling and 
validation samples; (3) an analysis varying the penalties and rewards for prediction 
accuracy and marginal costs per variable, and (4) a study of the effects of including 
interaction terms in addition to main effects in the logistic regression modelling.

4.2 Full enumeration results

In the first full-enumeration run I used a modelling sample of ^  =  |  of the data 
(1665 patients), and the remaining =  |  (867 patients) for the validation sample, 
and I performed N  =  500 random splits into the modelling and validation part in 
each model. (All of the programming in this dissertation was in C (Kelly and Pohl 
1995); the analysis of the results was conducted using S+ (Becker et al. 1993) and 
S ta ta  (Stata 1997).) Clinical experts in the US and UK were asked for reasonable 
values of the data collection marginal costs (cj), as well as of the penalty and reward 
factors in the predictive utility (the constants C u, C12, C21, C22 in Table 2.1), as 
described in Chapter 2 . Data collection marginal costs were estimated as numbers 
of minutes of abstraction time, at roughly $20/hour. Table 4.1 shows the costs of 
all 14 variables together with their correlation with 30-day death (a measure of how 
well they predict death within 30 days of admission).

Figure 4-1 presents parallel boxplots (Tukey 1977) of the estimated expected 
utilities of the 16,384 models in the p = 14 case as a function of &, the number of 
predictors in each model. The globally optimal model has four of the original 14 
Rand variables—systolic blood pressure score, blood urea nitrogen (BUN), APACHE 

II coma score, and shortness of breath day 1, which are marked with two asterisks 
in Table 4.1—and achieves an estimated expected utility of —7.89 ±  0.05. Several 
conclusions are evident from a detailed examination of this figure and the data on 
which it is based, as follows.

•  The trace of the median expected utilities (the white lines in the middle of the 
boxes) as a function of k clearly shows the tradeoff between data collection 
cost and predictive accuracy: for small k the models do not cost very much 
but predict poorly, and for large k the predictions are excellent but the cost 
is too high, so that the best models are in the middle. In particular the full 
14-variable Rand scale is highly inefficient (and slightly worse in monetary 
terms than using no sickness indicators at all, i.e., predicting death at random
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Table 4.1: The 14 variables in the Rand pneumonia admission sickness scale,
together with their approximate data collection costs per patient and correlation with 
30-day death (CHF = congestive heart failure).

Cost Cj
Variable (US$) Correlation Good?

Total APACHE II score (36-point scale) 3.33 0.39
Age of patient 0.17 0.17 *

Systolic blood pressure score (2-point scale) 0.17 0.29 **
CHF chest X-ray score (3-point scale) 0.83 0.10

Blood urea nitrogen (BUN) 0.50 0.32 **
APACHE II coma score (3-point scale) 0.83 0.35 **

Serum albumin score (3-point scale) 0.50 0.20 *
Shortness of breath day 1 (yes, no) 0.33 0.13 **

Respiratory distress (yes, no) 0.33 0.18 *
Septic complications (yes, no) 1.00 0.06

Prior respiratory failure (yes, no) 0.67 0.08
Recently hospitalised (yes, no) 0.67 0.14

Ambulatory score (3-point scale) 0.83 0.22
Initial temperature 0.17 -0 .06 *

Note: The final column of the table is explained in the text below.

with probability 0.16).

•  The 20 best models include the same 3 variables 19 or more times out of 20, and 
never include 5 of the other variables; the five best models are minor variations 
on each other, and include 4-6 variables (thus no overwhelming significance 
should be attached to the precise model identified by the double asterisks in 
Table 4.1). The eight variables which occur frequently in the 20 best models 
are identified with asterisks in the Table. The single best univariate predictor, 
the total APACHE II score, does not appear in any of the good models because 
it is so costly to collect—BUN and the APACHE II coma score predict death 
(univariately) almost as well and are much cheaper to obtain.

•  The best models cost almost US$8 per patient less than the full 14-variable 
model, which would yield significant savings annually if the input-output 
approach were to be implemented on a widespread basis.

•  It will be seen in Section 4.8 that these results are stable across random 
repetition, varying the proportions changing the utilities and data
collection costs, and including or not including interaction terms in the logistic
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Figure 4-1: Estimated expected utility as a function of number of predictors retained, 
from the first full-enumeration run with p = 14.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of Variables

modelling. I conclude that “tru th” in the 14-variable case has been identified 
with sufficient accuracy to serve as a basis for comparing various stochastic 
optimisation methods in their ability to recover that “tru th” when given a 
limited amount of CPU time.

4.3 G eom etry of the solution space

Before experimenting with the optimisation algorithms I performed a small study 
aiming to visualise the solution space. I wanted to have a rough idea of how smooth 
this space is, how many local optima it has, and how far the global optimum is 
from the other solutions. It is intuitively clear that it is far easier to optimise a 
convex function than one without this property. Evidently convexity does not hold 
in this problem, but I was curious to see in some sense “how far from convexity” 
the objective function is in this case.

Optimisation methods such as SA and TS require the specification of a 
neighbourhood structure across models, so that—having evaluated the quality of 
a given model—one can judge where best to move next in the search for the global
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Figure 4-2: Tree of adjacent models (k = 4) expanded out to four levels, with the 
neighbourhood structure induced by moves based on one-bit flips. The horizontal and 
vertical scales are arbitrary.
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optimum. In the problem addressed here a model is a vector of p Is and Os specifying 
the presence or absence of each predictor in the subset of available variables, and 
a natural first choice for neighbourhood structure is based on moves which select a 
single bit in the binary string and flip it from 0 to 1 or vice versa (1-bit flips).

Whatever the neighbourhood structure, the space of all possible models can 
be visualised as a tree (Knuth 1968). Figure 4-2 shows the 24 =  16 models for 
one particular choice of k = 4 variables chosen from among the 14 predictors 
in the Rand scale, with the tree expanded out to four levels; Table 4.2 gives 
the correspondence between the binary and decimal representations of the 16 
models. The neighbourhood structure is evident—for example model 2/(0,0,0,1) 
is a neighbour of models 1 /(0 ,0 ,0 ,0),8 /(1 ,0 ,0 ,1), 7/(0,1,0,1), and 6/(0,0,1,1). 
Figure 4-3 is a perspective plot of the expected utility “surface” corresponding to 
the tree in the previous figure. The X  and Y  axes match the horizontal and vertical 
axes in Figure 4-2; the Z  axis plots the estimated expected utilities of the 16 models 
(from a full-enumeration exercise like that described earlier on), shifted so that the 
median utility is zero.
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Table 4.2: Renaming the 16 models with p =  4.

Model 0 0 0 0 0 0 0 1 0 0 10 0 10  0 10  0 0 0 0 11 0 10  1 10  0 1
Index 1 2 3 4 5 6 7 8
Model 0 1 1 0 10  10 1 1 0  0 0 1 1 1 10 11 1 1 0  1 1 1 1 0 1 1 1 1
Index 9 10 11 12 13 14 15 16

Figure 4-3: Perspective p lot of the expected utility surface” fo r  the 4~variable tree 
expanded out to four levels.
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While it is true that the quality of a given model’s neighbours is sometimes similar 
to that of the model itself, it is also evident that adjacent models can have sharply 
different expected utilities, demonstrating the discontinuity of the solution space in 
this problem: good models do not necessarily have good models as neighbours. This 
has implications for the optimal search strategy—methods that spend considerable 
time exploring local alternatives to good models may not perform as well as methods 
that frequently make large jumps around the model space, but too much jumping 
around in an unguided way will yield poor performance as well. This is going to 
make the work of our optimisation algorithms difficult, since they need to be “clever” 
enough to manage to escape the local optima and still find the global maximum in 
a reasonable amount of CPU time.
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Figure 4-4: Performance of SA on a run that found the global optimum in thep = 14 
case, allowing the method 24 hours of CPU time at 400 MHz.
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4.4 O ptim al choice of N

There is a final problem to address before examining the performance of the 
optimisation algorithms: what is the optimal number N  of utility evaluations across 
modelling/validation splits? As we have seen from the full enumeration runs a value 
like 500 gives us accurate results, but with a fixed budget of CPU time this may be 
a luxury that cannot be afforded. With such a budget, if N  is small you can visit a 
lot of models, but you get a noisy estimate of how good each model is; if N  is big 
you know how good the models really are, but you can visit less models. By using a 
value like 500, we cause the algorithm to visit a tiny number of models, which may 
well not give it enough time to find the correct maximum. On the other hand a very 
small value of N  will give plenty of time for the algorithm to explore the solution 
space, but the model the algorithm will report as the best may not be the best at 
all. So there is another optimisation problem here, and it is intuitively clear that a 
value of N  somewhere in the middle has to be the optimal solution.

As an instance of this phenomenon, Figure 4-4 presents an example of the 
performance of SA, in a run with p = 14 in which SA found the global optimum
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Figure 4-5: Actual expected utility as a function of N  for a random-walk search 
strategy (the horizontal scale is logarithmic).
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solution described in Section 4.2. I used a geometric cooling schedule from a starting 
tem perature of 1 to a final temperature of 0 .001, and moves from one model to 
another were based on 1-b it flips. The run consisted of 4,989 iterations, with N  
beginning at 1 and increasing geometrically to 50, and the null model (with no 
predictors) was used as the starting value. Four aspects of the run are plotted: 
(apparent) estimated expected utility and N  (the left- and right-hand vertical scales 
in the upper panel), and dimension k of the current model and temperature (the 
left- and right-hand scales in the lower panel). It is evident tha t from about iteration 
3,000 to the end SA primarily visited good models with 3-7 predictors (the optimal 
range in Figure 4-1), but the method spent much of its time before tha t point 
looking at models known from the results in Section 4.2 to be inferior. This may 
well be (in part) because values of N  that were too small were used early in the 
run: note, for example, that in the first 1,000 iterations (when N  was at most 2) SA 
found several models with apparent estimated expected utility of about —6 , which 
is much larger than the actual utility of the best models.

To explore the optimal choice of iV in a simple setting, as a way of informing its 
choice in the main experiments below, I compared two search strategies: random- 
walk in model space (a) with N  =  1, and (b) with N  > 1. Each strategy was given a 
budget of M  utility evaluations (which is equivalent to a CPU constraint); strategy
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(a) visited M  models chosen at random from the 16,384 possible models in the 
p = 14 case, with each model having its expected utility evaluated only once, whereas 
strategy (b) visited ^  models at random and estimated the expected utility as an 
average of N  evaluations across random modelling/validation splits. I made a total 
of 11 separate runs at each value of M, using N  =  1,2,5,10,15,20,25,30,36,40, 
and 50. In each simulation replication the actual expected utility (from the full- 
enumeration results of Section 4.2) of the model with the maximum apparent 
expected utility across all models visited was recorded, and I repeated this exercise 
m  =  3,000 times for each value of N  and for M  varying from 3,600 to 28,800. 
Monte Carlo error was estimated in the usual way for the mean of IID draws from 
a population, namely S E (E )  =  , where E  and se  are the sample mean and
standard deviation, respectively, of the m  replications at each setting of N  and M .

Figure 4-5 summarises the results for the extremes of M  I examined. The 
roughly quadratic curves (with 95% uncertainty bands plotted as solid vertical lines) 
trace out the mean actual expected utility as a function of N  across the simulation 
replications; the horizontal line in each plot (with 95% uncertainty bands as dotted 
lines) gives the results from a separate set of runs with N  =  1 for comparison. 
For M  — 3,600 the optimum N  is attained between 5 and 10, with the results for 
N  = 50 about as bad as those with N  =  1. When the number of utility evaluations 
is increased by a factor of 8 , both strategies naturally find better models and the 
optimal N  increases to about 10 (although values of N  between 10 and 30 do almost 
as well as N  =  10). Even though strategies (a) and (b) are much less sophisticated 
than those examined in Section 4.6, I found that the results described here are a 
good guide to the sensible choice of N  when more intelligent global optimisation 
methods are used instead.

4.5 Comparison of optimisation methods: prelim­
inary results

I first completed a preliminary comparison, on the p — 14 case, of five stochastic 
optimisation methods: a genetic algorithm (GA), messy simulated annealing (MSA), 
simulated annealing (SA), tabu search (TS), and threshold acceptance (TA). To give 
all of the methods a realistically small amount of CPU time with p  =  14 (to simulate 
the situation with larger p), I made a number of runs forcing each method to only 
use 10 or 20 minutes of CPU time at 400 Unix MHz. The neighbourhood structure 
for TS was based on 1-b it flips; with TA and SA I alternated 1-b it flips with a
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second move type: 2-b it swaps, in which a random subset of two variables is chosen 
and their inclusion indicators, if different, are interchanged. Results in Table 4.3 
were averaged over 100 Monte Carlo repetitions and rounded to the nearest integer.

In these runs I also implemented an improvement involving adaptive choice of 
N: previously in a fixed-iV run with (say) N  = 10 all models were evaluated with 
N  = 10. In the adaptive method (i) 20 models are chosen at random to initialise 
the search and evaluated with N* =  10, creating a league table of the current 20 
best models; and (ii) a new model is chosen and evaluated once. If its apparent 
utility would seem to place it somewhere in the current league table, the utility is 
evaluated for (N * — 1) =  9 more random splits and the average over the N* values is 
computed—if it still belongs in the league table it is added at the appropriate place; 
if not it is discarded. I found that this adaptive-N* approach was significantly better 
than the fixed-A" approach for all optimisation methods I examined.

There is some evidence (Aarts and Korst 1989) tha t SA can perform particularly 
badly when the surface to be optimised is very rough, and this point by itself would 
suggest focussing on runs with large values of N  for SA. It is certainly true that 
running SA with a constant value of N  =  5 would produce a clearer picture of the 
quality of the models it manages to visit, but with a fixed budget of CPU time it 
would be able to visit 5 times fewer models with this approach. The adaptive-A* 
method offers the benefit of not spending too much time on apparently bad models 
without running too large a risk of overlooking models that are actually good.

Table 4.3 presents the results of the preliminary comparison with 10 and 20 

minutes of CPU time. The adaptive-A* method was used throughout. In the 
version of TS studied here I chose the following user-defined settings: the simplest 
aspiration criterion described in Section 3.5.2, a tabu list size of 7 (I held these first 
two choices constant throughout the entire dissertation), r  repetitions of the whole 
search process (where r  varied from 1 to 11 as a function of A  and the amount of 
CPU time allowed), 6 preliminary searches, 9 intensification searches, a maximum of 
4 random restarts within each intensification search (a restart occurred whenever the 
globally best solution found so far was located), and 2 diversification searches. The 
version of SA in this preliminary comparison employed a geometric cooling schedule 
from a maximum temperature of 1.0 to a minimum of 0.1. The version of MSA used 
in Table 4.3 was identical to SA except with gene and allele mutation probabilities 
both set to 0.5. In this version of TA I varied the threshold, on the utility scale, 
geometrically throughout the run from an initial value of 1.0 to a minimum of 0 .1. 
Finally, in the version of GA whose results are given in Table 4.3 the population 
size was 40, I used one-bit crossover with probability 0.7, the mutation probability
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Table 4.3: Preliminary comparison of GA, MSA, SA, TS, and TA. The adaptive-N* 
method was used in all cases. Boldface indicates the best result in each column for  
each CPU time constraint.

10 minutes CPU time

Method N*

20 Best Models Found 
Number of Mean (SD) Actual Rank of 

20 Actual Best Actual Utility Best Worst
TS 5 11 -8 .3 6  (0.29) 4 103
TA 3 10 -8 .43  (0.37) 2 119
SA 1 9 -8.65 (0.64) 2 1,321

MSA 3 4 -8 .84  (0.51) 1 499
GA 2 1 -9 .58  (0.64) 9 2,379

20 minutes CPU time

Method N*

20 Best Models Found 
Number of Mean (SD) Actual 

20 Actual Best Actual Utility Best
Rank of 
Worst

TS 15 15 -8 .2 6  (0.32) 1 153
TA 10 12 -8 .30  (0.29) 1 67
SA 4 13 -8 .32  (0.30) 1 102

MSA 3 8 -8 .57  (0.43) 1 190
GA 1 3 -9 .22  (0.77) 6 5,562

was 0 .001, and the fitness and objective functions g and f  were taken to be equal 
(this also remains true throughout the whole dissertation).

Each row in the Table 4.3 represents the best of eight runs, corresponding to 
N* =  {1,2,3,4,5,10,15,20}. In keeping with the likely use of this method in health 
policy, in which a list of the b best models would be presented to decision-makers 
for a check on clinical face-validity, I examined three summaries of how well each 
method recovered the b = 20 best models from the full-enumeration exercise: (1) 
how many of the actual 20 best models were in each method’s announced list of 20 

best, and the actual ranks of the (2) best and (3) worst models in the apparent 20 
best. (In column 4 of Table 4.31 also report the mean and standard deviation of the 
actual utility of the 20 best models found by each method.) In these preliminary 
comparisons (and others not shown here for reasons of space) I found that TS was 
the overall best method in this problem (routinely able to find about 75% of the 20 
best models in only 20 minutes of CPU time), with TA and SA not far behind; MSA 
came in an unimpressive fourth, and GA decisively brought up the rear. Given that 
differences of 0.20 or more on the utility scale are large in practical terms in this
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problem (because of the financial implications of such differences), the utility results 
in Table 4.3 convey a similar message.

By looking at the geometry of the solution space it was clear in Section 4.3 
th a t good methods in this problem need to strike a compromise between respecting 
the local neighbourhood structure and making bold jumps around the model space. 
Careful examination of GA and TS results indicates that the cross-over operation 
inherent in the version of GA used here makes insufficient use of the modest amount 
of continuity present in this problem, while TS appears to achieve a happy balance 
between local exploration of good models and occasional leaps into fruitful new 
territory. It is the diversification stage of TS that appears to give it the edge over 
GA and SA in this problem.

4.6 A simulation experiment w ith p  =  14

On the basis of the preliminary results I chose (a) to explore a wider variety of 
implementations of GA, in an attempt to overcome its poor performance, and (b) to 
focus only on GA, SA, and TS, because the other two methods either did not perform 
well or are minor variations on the three main approaches. There is a surprising 
lack in the literature of advice on the best input settings to choose for GA, SA, 
and TS, so I decided to conduct a large simulation experiment in the 14-variable 
case to explore the effects of the input settings. As with the preliminary runs in the 
previous section, I wanted to restrict each method to a realistically small amount of 
CPU time; for the main experiment I chose 20 minutes at 400 Unix MHz.

It was also clear from the preliminary results that a single run of any given 
method with any particular set of inputs gave a quite noisy estimate of the 
performance, so I made 30 runs, with different starting random seeds, for each 
input setting, and averaged the results. I used the adaptive-iV* method, which has 
already been shown to clearly dominate the fixed-A” approach, and I varied N* as 
another parameter in the simulation design.

The main outcome variable I examined was the percentage p2o of the actual 
20 best models found with each set of inputs (other obvious outcomes such as the 
actual utility of the best models found correlated strongly with p2o, as is clear 
from Table 4.3). Since Figure 4-1 shows that there are a number of models whose 
performance is close to optimal, I chose P20 to mimic the decision-making reality 
that in practice, instead of giving the health policy colleagues with whom I would 
be working a single best model, it would be better to give them the q best models 
(for a value of q, with p =  14, like 20) and let them choose on grounds that were

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health



4 Results in the case p =  14 79

partly statistical and partly clinical. The number of repetitions of the experiment 
at each input setting, 30, was chosen to make the Monte Carlo standard error small 
enough so that differences of 0.05 in p2o between two methods or input settings 
would be detectable.

4.6.1 Tabu search

With TS in this problem there are six user inputs to vary:

•  r, the total number of repetitions of the algorithm (this varied from 1 to 6 in 
the experiment);

•  N*, the maximum number of random modelling/validation splits on which the 
estimated expected utility is based (the actual number was either 1 or N* in 
accordance with the adaptive method). This varied from 2 to 20;

• Z, the number of preliminary searches per repetition (this varied from 2 to 21);

•  i, the number of intensification searches per repetition (this varied from 2 to 
40);

•  t, the maximum number of random restarts in each intensification search (this 
varied from 0 to 8); and

• d , the number of diversification searches per repetition (this varied from 1 to 
15).

In all parts of the experiment, for all three optimisation methods, the final ranges of 
the inputs used in the simulation study were chosen from preliminary runs to span 
a range of performance from bad to good to bad again (as far as that input was 
concerned).

A full factorial across all six of these inputs is not possible because many of 
them lead to CPU times much greater than the target of 1,200 seconds. By trial 
and error I was able to find 49 combinations of input settings, each of which took 
approximately 20 minutes of CPU time. The actual CPU time varied by input 
settings from a mean across the 30 runs of 1075 sec to 1575 seconds, so I have 
calculated both raw summaries and results adjusted (via regression) for differences 
in CPU time.

Tables 4.4-5 summarise the results of the simulation study for TS. Its 
performance varied noticeably according to input settings, from an adjusted mean 
for P20 of 39% to 65%. I tried fitting linear models to the data in these tables
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to evaluate the effects of each of the TS inputs on performance, but these effects 
proved complicated to quantify because of strong and high-order interactions among 
the inputs. Only one clear pattern emerges: good runs tend to have input values in 
the middle, and bad runs tend to have values at the extremes, of the ranges used. 
It is fairly impressive that the best input settings of TS can find about 2/3 of the 
best models among a collection of 16,384 with only 20 minutes of CPU time.

4.6.2 Simulated annealing

With simulated annealing in this problem there are five user inputs to vary:

• r, the total number of iterations (this varied in the experiment from 130 to 
2500);

• N*, as in TS (this again varied from 2 to 20);

• T0 and T/, the initial and final values of the temperature (these varied 
across the five settings (T/,To) =  (10.0 , 1.0), (10.0 , 0 .1), (2.5,0 .1), (1.0 , 0 .1), 
(0.5,0.05)); and

•  sc, the schedule used to decrease the temperature (1 =  straight, 2 =  geometric, 
3 =  reciprocal, 4 =  logarithmic).

By trial and error I was able to find 108 combinations of input settings (almost 
a full factorial), each of which took approximately 1,200 seconds. The actual CPU 
time again varied by input settings, this time from a mean (across the 30 runs) 
of 986 to 1471 seconds, so as before I calculated both raw summaries and results 
adjusted (via regression) for differences in CPU time.

The performance of SA in this problem, summarised in Tables 4.6-8, varied 
dramatically according to input settings (substantially more than with TS), from 
an adjusted mean for p2o of 0% to 56%. I again tried fitting linear models, but 
the effects again proved complicated to quantify because of strong and high-order 
interactions among the inputs. Some conclusions emerging from the tables are as 
follows.

• SA’s performance was disappointing when compared with that of TS: the best 
SA runs were below the median TS results. (However, in Chapter 6 I report 
results of an improved SA method that are much better.)

•  Small values of N  (up to 10) appear best.
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Table 4.4: Results of the simulation study for TS with p = 14 (part 1). Values in 
parentheses are Monte Carlo standard errors; entries are sorted by adjusted means 
° f  P20 •

P20 (% of 20 Actual 
Best Models Found)

r N* I t d
Mean CPU 
Time (sec)

Raw
Mean

Raw
SD

Adjusted
Mean

1 10 10 6 00 3 1158 0.631 (0 .020) 0.109 0.649
5 6 2 7 2 2 1362 0.641 (0.016) 0.089 0.635
2 10 2 4 6 4 1313 0.635 (0.016) 0.090 0.634
4 9 2 4 1 2 1386 0.636 (0.017) 0.091 0.627
2 5 14 15 5 1 1243 0.611 (0.016) 0.089 0.619
1 10 9 12 3 3 1273 0.615 (0.015) 0.084 0.619
1 14 11 2 0 1 1253 0.611 (0.019) 0.106 0.618
6 7 2 4 2 2 1574 0.650 (0.017) 0.095 0.618
5 5 9 3 3 2 1300 0.615 (0.018) 0.099 0.616
5 8 2 4 1 3 1500 0.631 (0.013) 0.070 0.608
3 10 2 4 2 2 1321 0.605 (0.013) 0.069 0.603
2 5 9 10 3 14 1200 0.590 (0.019) 0.106 0.603
1 14 2 11 0 1 1247 0.595 (0.019) 0.106 0.602
1 10 12 6 1 2 1230 0.590 (0.024) 0.134 0.599
3 5 12 9 4 3 1318 0.600 (0.018) 0.096 0.599
5 5 4 7 3 2 1326 0.600 (0.018) 0.098 0.598
1 20 4 6 4 2 1258 0.591 (0.032) 0.174 0.597
1 14 3 5 6 2 1291 0.593 (0 .021) 0.113 0.595
5 5 3 9 3 2 1377 0.601 (0.015) 0.083 0.593
6 6 2 4 2 2 1256 0.586 (0.018) 0.100 0.593
2 10 2 5 4 5 1332 0.595 (0 .021) 0.116 0.592
1 7 11 18 5 10 1223 0.581 (0.015) 0.080 0.592
3 5 7 9 3 7 1239 0.583 (0.017) 0.091 0.591
4 10 10 10 0 1 1350 0.595 (0.019) 0.105 0.590
1 6 11 30 5 2 1228 0.578 (0 .020) 0.112 0.588
4 5 6 9 4 3 1345 0.591 (0.013) 0.070 0.587
1 10 21 7 1 1 1200 0.571 (0.017) 0.093 0.584
1 6 20 14 6 2 1074 0.555 (0 .021) 0.114 0.584
6 5 3 6 2 3 1325 0.583 (0.015) 0.081 0.581
2 9 7 2 2 4 1217 0.568 (0.019) 0.103 0.579
2 12 3 7 2 3 1521 0.601 (0.019) 0.103 0.576
5 4 6 7 2 4 1278 0.560 (0.019) 0.102 0.563
6 4 4 7 2 3 1253 0.548 (0 .022) 0.119 0.555
4 5 6 9 0 4 1328 0.556 (0.017) 0.095 0.554
1 18 2 3 6 1 1253 0.546 (0.034) 0.185 0.553
1 7 12 28 8 5 1411 0.561 (0.015) 0.084 0.549
1 5 17 38 0 15 1248 0.541 (0.018) 0.096 0.549
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Table 4.5: Results of the simulation study for TS with p =  14 (part 2).

P20 (% of 20 Actual 
Best Models Found)

r N* I i t d
Mean CPU 
Time (sec)

Raw
Mean

Raw
SD

Adjusted
Mean

6 3 6 9 3 4 1343 0.536 (0.016) 0.089 0.532
1 5 19 35 5 7 1298 0.530 (0.016) 0.087 0.531
6 4 5 3 2 8 1306 0.526 (0 .022) 0.122 0.527
1 5 20 40 8 10 1319 0.526 (0.016) 0.089 0.525
6 6 4 2 2 3 1319 0.523 (0 .022) 0.122 0.522
1 20 3 5 0 2 1240 0.475 (0.027) 0.147 0.483
2 10 4 2 1 6 1300 0.441 (0.027) 0.148 0.442
2 10 4 8 1 2 1541 0.446 (0.035) 0.193 0.418
3 2 15 35 8 2 1448 0.430 (0 .020) 0.110 0.413
1 15 5 3 1 6 1191 0.398 (0.047) 0.257 0.412
1 15 6 12 1 5 1523 0.431 (0.039) 0.214 0.406
5 8 4 1 1 3 1327 0.395 (0.028) 0.155 0.392

• (T/,To) =  (1.0 , 0 .1) and (0.5,0.05), the lowest initial and final temperatures, 
appear best.

•  The reciprocal and logarithmic schedules appear best in this problem.

•  (T /,T0) =  (10.0 , 1.0), large N , and the straight schedule perform badly.

4.6.3 G enetic algorithm

With GA in this problem there are six user inputs to vary:

•  r, the total number of repetitions (this varied from 2 to 237);

•  N*, as in TS and SA (this varied for GA from 2 to 15);

•  n, the population size (I used the three settings 30, 50, and 80);

•  (c, pc) , the crossover strategy (I used c =  1 (simple), 2 (uniform), and 3 (highly 
uniform crossover). With the first strategy I used a crossover probability 
pc =  0.88 when the population size was 30, 0.5 when the population size was 
50 and 0.3 when the population size was 80.

•  (e>Pm), elitist or non-elitist strategy. (In the case of the elitist strategy with 
highly uniform crossover there is a possibility for the new population to be

Dimitris Fouskakis (2001) Stochastic Optim isation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessm ent in Health



4 Results in the case p = 14 83

Table 4.6: Results of the simulation study for SA with p = 14 (part 1). Values in 
parentheses are Monte Carlo standard errors; entries are sorted by adjusted means 
o f P 2 0 -

P20 (% of 20 Actual 
Best Models Found)

r N* Tf T0 sc
Mean CPU 
Time (sec)

Raw
Mean

Raw
SD

Adjusted
Mean

1050 4 1 0.1 3 1146 0.538 (0 .021) 0.113 0.555
1000 5 0.5 0.05 1 1087 0.515 (0.016) 0.088 0.551
860 5 0.5 0.05 2 1134 0.523 (0.023) 0.125 0.544
900 5 2.5 0.1 3 1140 0.520 (0 .021) 0.116 0.539

1120 3 1 0.1 3 1015 0.470 (0.023) 0.127 0.530
240 10 0.5 0.05 4 1113 0.501 (0.018) 0.097 0.530
240 10 1 0.1 4 1085 0.490 (0.027) 0.150 0.527
900 5 1 0.1 3 1138 0.505 (0.018) 0.098 0.524

1400 4 1 0.1 2 1191 0.521 (0.026) 0.145 0.524
500 10 10 0.1 3 1278 0.550 (0 .021) 0.115 0.523
600 10 1 0.1 2 1279 0.550 (0 .022) 0.118 0.523
450 10 1 0.1 3 1315 0.556 (0 .021) 0.115 0.512

1110 5 10 0.1 3 1326 0.555 (0.025) 0.136 0.512
600 10 0.5 0.05 1 1394 0.576 (0 .021) 0.116 0.511
430 10 0.5 0.05 2 1383 0.566 (0.017) 0.093 0.505
130 20 0.5 0.05 4 1216 0.506 (0.019) 0.105 0.500
150 15 0.5 0.05 4 1059 0.450 (0.023) 0.124 0.496
300 10 0.5 0.05 3 1214 0.500 (0.018) 0.099 0.494
500 5 10 0.1 4 1172 0.483 (0.018) 0.101 0.492
450 10 2.5 0.1 3 1352 0.541 (0.016) 0.089 0.490

1600 2 0.5 0.05 1 1028 0.423 (0.019) 0.103 0.479
1550 3 1 0.1 2 1146 0.461 (0.024) 0.129 0.479
240 10 2.5 0.1 4 10 86 0.441 (0.026) 0.142 0.479
130 20 10 0.1 4 1161 0.461 (0 .021) 0.117 0.474
630 5 1 0.1 4 1347 0.521 (0 .022) 0.122 0.472

1200 5 2.5 0.1 2 1139 0.451 (0 .021) 0.114 0.471
1500 2 1 0.1 3 1068 0.425 (0.026) 0.140 0.468
350 10 10 0.1 4 1467 0.556 (0.018) 0.100 0.467
520 5 0.5 0.05 4 1226 0.476 (0.019) 0.105 0.467

1500 2 2.5 0.1 3 1042 0.410 (0.024) 0.132 0.461
150 15 1 0.1 4 1089 0.425 (0 .021) 0.117 0.461
290 15 0.5 0.05 1 1300 0.495 (0.029) 0.157 0.461
130 20 2.5 0.1 4 1193 0.455 (0 .020) 0.112 0.456

1200 5 1 0.1 2 1158 0.443 (0 .022) 0.122 0.456
1360 2 0.5 0.05 2 1053 0.408 (0.023) 0.128 0.456
1400 5 1 0.1 1 1161 0.441 (0.017) 0.092 0.454

170 15 0.5 0.05 3 1258 0.471 (0.025) 0.136 0.451
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Table 4.7: Results of the simulation study for SA with p = 14 (part 2).

P2Q (% of 20 Actual 
Best Models Found)

r N* Tf T0 sc
Mean CPU 
Time (sec)

Raw
Mean

Raw
SD

Adjusted
Mean

150 15 2.5 0.1 4 1141 0.428 0.024) 0.131 0.447
200 15 10 0.1 4 1440 0.525 0.023) 0.126 0.445

1600 4 1 0.1 1 1194 0.443 0.024) 0.134 0.444
1900 2 2.5 0.1 2 1112 0.408 0.019) 0.105 0.436
700 5 0.5 0.05 3 1319 0.476 0 .022) 0.118 0.436

1900 2 1 0.1 2 1140 0.416 0 .022) 0.118 0.435
280 15 10 0.1 3 1374 0.490 0.031) 0.169 0.431

1770 3 1 0.1 1 1168 0.421 0.017) 0.095 0.431
630 5 2.5 0.1 4 1468 0.516 0 .022) 0.121 0.427
600 10 1 0.1 1 1062 0.381 0.033) 0.183 0.426
680 4 1 0.1 4 1307 0.460 0.025) 0.136 0.424
910 2 2.5 0.1 4 1038 0.363 0.027) 0.149 0.416
130 20 1 0.1 4 1177 0.405 0.024) 0.130 0.412

1400 5 10 0.1 2 1237 0.421 0.024) 0.130 0.408
250 15 0.5 0.05 2 1393 0.471 0.030) 0.165 0.407
200 15 1 0.1 3 1245 0.420 0 .022) 0.121 0.404
760 3 1 0.1 4 1207 0.406 0.029) 0.160 0.403
600 10 2.5 0.1 2 1212 0.405 0.027) 0.148 0.400
190 20 2.5 0.1 3 1346 0.448 0.028) 0.155 0.399
630 10 10 0.1 2 1153 0.381 0.023) 0.126 0.396
200 15 2.5 0.1 3 1174 0.386 0 .020) 0.110 0.394
145 20 0.5 0.05 3 1273 0.418 0.028) 0.156 0.393
910 2 1 0.1 4 1046 0.338 0 .020) 0.112 0.388

1640 2 10 0.1 3 1099 0.351 0.023) 0.128 0.384
2100 2 1 0.1 1 1163 0.366 0.024) 0.130 0.378

170 20 0.5 0.05 2 1271 0.398 0.024) 0.134 0.374
1160 2 0.5 0.05 3 1128 0.350 0.028) 0.151 0.373
1000 2 0.5 0.05 4 1162 0.360 0.025) 0.136 0.372

200 20 0.5 0.05 1 1348 0.420 0 .022) 0.122 0.370
2100 2 10 0.1 2 1182 0.363 0.017) 0.095 0.368

350 15 1 0.1 2 1338 0.406 0.027) 0.150 0.360
190 20 1 0.1 3 1399 0.420 0.029) 0.161 0.353
180 20 10 0.1 3 1265 0.371 0.027) 0.150 0.349
410 15 1 0.1 1 1209 0.350 0.035) 0.191 0.346

1050 2 10 0.1 4 1194 0.333 0.027) 0.147 0.334
410 15 2.5 0.1 2 1471 0.418 0.031) 0.170 0.327
240 20 1 0.1 2 1390 0.368 0.026) 0.140 0.304

1450 5 2.5 0.1 1 1077 0.263 0 .021) 0.117 0.303
240 20 2.5 0.1 2 1158 0.290 0.025) 0.137 0.303
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Table 4.8: Results of the simulation study for SA with p =  14 (part 3).

P20 (% of 20 Actual 
Best Models Found)

r N* T f To sc
Mean CPU 
Time (sec)

Raw
Mean

Raw
SD

Adjusted
Mean

360 15 10 0.1 2 1201 0.300 0.027) 0.147 0.299
2100 2 2.5 0.1 1 1091 0.250 0.019) 0.104 0.285

260 20 1 0.1 1 1197 0.256 0.028) 0.152 0.257
750 10 2.5 0.1 1 1095 0.220 0.027) 0.149 0.254

1600 5 10 1 4 1120 0.210 0.019) 0.105 0.235
680 10 10 1 4 986 0.151 0 .021) 0.117 0.221

1800 5 10 0.1 1 1261 0.228 0.025) 0.137 0.207
350 15 2.5 0.1 1 1060 0.156 0 .022) 0.121 0.202

2350 2 10 1 4 1193 0.191 0.017) 0.092 0.193
230 20 10 0.1 2 1098 0.160 0.024) 0.132 0.193

2400 2 10 1 3 1232 0.193 0.017) 0.095 0.182
260 20 2.5 0.1 1 1075 0.108 0.019) 0.105 0.149

2360 2 10 0.1 1 1203 0.145 0.017) 0.095 0.143
1900 5 10 1 2 1314 0.180 0 .021) 0.115 0.141
2450 2 10 1 2 1243 0.153 0.015) 0.082 0.138
2100 5 10 1 1 1361 0.186 0 .022) 0.121 0.132
2500 2 10 1 1 1267 0.155 0.018) 0.101 0.132
870 10 10 1 3 1123 0.105 0.015) 0.084 0.129
820 10 10 0.1 1 1087 0.085 0.016) 0.086 0.121
320 20 10 1 4 1093 0.086 0.015) 0.080 0.121
840 10 10 1 2 1097 0.086 0 .022) 0.118 0.120
470 15 10 1 3 1086 0.075 0 .012) 0.067 0.112
260 20 10 0.1 1 994 0.040 0.009) 0.051 0.107

1800 5 10 1 3 1407 0.171 0 .020) 0.107 0.102
480 15 10 1 2 1105 0.070 0.014) 0.077 0.100
580 15 10 0.1 1 1210 0.098 0.024) 0.133 0.094
360 15 10 1 4 1147 0.068 0.014) 0.074 0.085

1000 10 10 1 1 1202 0.076 0.013) 0.073 0.075
360 20 10 1 2 1128 0.050 0 .011) 0.061 0.073
340 20 10 1 3 1133 0.036 0 .012) 0.064 0.058
360 20 10 1 1 1163 0.033 0.009) 0.051 0.044
800 15 10 1 1 1426 0.055 0 .010) 0.057 0.000

Note: Negative adjusted mean £>20 values have been truncated at 0 
but appear in rank order corresponding to their untruncated values.

exactly the same as the previous one. In this case I decrease d, the certain 
Hamming distance that the two strings are away from each other; usually the 
starting value of d is where p is the size of the strings. If d becomes negative

Dimitris Fouskakis (2001) Stochastic Optim isation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality A ssessm ent in Health



4 Results in the case p = 14 8 6

then I perform a kind of diversification. I replace the current population with 
n  (the population size) copies of the best member of the previous population, 
and for all but one member of the new population I flip half of the bits at 
random. Then the algorithm is restarted.) In the elitist strategy you compare 
the offspring with the parents and choose the best two among the four; with the 
non-elitist you always choose the offspring. With the elitist strategy mutation 
is not performed; in the case of the non-elitist strategy mutation occurs with 
probability pm = 0 .01; and

• k: At the end of each repetition, I either clear the population and randomly 
generate a new one (k — 0), or I keep the population as it is and use it as the 
starting population for the new runs (k = 100).

Here I was able to perform a full factorial experiment of 144 combinations, each 
of which was targeted to take approximately 1,200 seconds. As with TS and SA, the 
actual CPU time varied by input settings from a mean (across the 30 runs) of 988 to 
1,994 seconds (this variation is essentially due to the adaptive-N* strategy), so as 
before I have calculated both raw summaries and results adjusted (via regression) 
for differences in CPU time.

The performance of GA, summarised in Tables 4.9-12, again varied even more 
dramatically according to input settings than with SA, from an adjusted mean of 
0% to 66% (better than any settings of TS or SA). The conclusions in this case are 
clearer than with the other two algorithms.

• It is far better to use elitist strategies and at the end of every repetition to
keep the population, instead of generating a new one and losing valuable time.

•  The uniform and highly uniform crossover strategies are much better than the 
simple one-bit crossover. This and the previous conclusion help to explain why 
GA looked so bad in the preliminary comparison: the more recent versions of 
GA in the literature, with elitist strategies and more complicated crossover 
operations, vastly outperform the “vanilla” GA of (Holland 1975).

•  Again small values of N* (up to 10) appear best.

•  Smaller values of the population size n (30 and 50) gave better results than
runs with population size 80.
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Table 4.9: Results of the simulation study for GA with p = 14 (part 1). Values in 
parentheses are Monte Carlo standard errors; entries are sorted by adjusted means 
0 f P 2 Q -

P20 (% of 20 Actual 
Best Models Found)

r N* n Pc Pm c e k
Mean CPU 
Time (sec)

Raw
Mean

Raw
SD

Adjusted
Mean

22 2 80 0 0 2 1 100 1231 0.646 (0.013) 0.070 0.665
98 5 50 0 0 3 1 100 1301 0.655 (0.015) 0.083 0.664
46 2 50 0 0 2 1 100 1282 0.638 (0.019) 0.103 0.650
20 5 50 0 0 2 1 100 1307 0.630 (0.018) 0.100 0.638
16 10 30 0 0 2 1 100 1236 0.590 (0.023) 0.125 0.608
74 10 30 0 0 3 1 100 1282 0.591 (0.011) 0.058 0.603

166 2 50 0 0 3 1 100 1267 0.585 (0.014) 0.074 0.599
165 5 30 0 0 3 1 100 1335 0.588 (0.013) 0.072 0.593
89 2 80 0.3 0 1 1 100 1328 0.560 (0.018) 0.098 0.566
79 2 50 0.5 0 1 1 100 1095 0.525 (0.016) 0.087 0.561

9 5 80 0 0 2 1 100 1348 0.556 (0.016) 0.090 0.560
124 2 30 0 0 2 1 100 1453 0.565 (0.026) 0.140 0.554
158 2 80 0 0 3 1 100 1598 0.568 (0.020) 0.108 0.538
36 5 80 0.3 0 1 1 100 1342 0.531 (0.023) 0.126 0.535

237 2 30 0 0 3 1 100 1341 0.526 (0.014) 0.077 0.530
85 5 30 0 0 2 1 100 1818 0.571 (0.034) 0.187 0.513
66 5 80 0 0 3 1 100 1306 0.498 (0.024) 0.133 0.507

8 10 50 0 0 2 1 100 1399 0.501 (0.022) 0.121 0.498
35 15 30 0 0 3 1 100 1200 0.470 (0.025) 0.138 0.492
40 5 50 0 0 1 1 100 1245 0.451 (0.031) 0.171 0.468
21 2 50 0 0.01 2 0 100 1129 0.431 (0.024) 0.131 0.463
20 5 50 0.5 0.01 1 0 100 1214 0.425 (0.035) 0.191 0.446
21 5 30 0 0.01 2 0 100 1180 0.408 (0.030) 0.164 0.433
26 5 30 0.88 0.01 1 0 100 1260 0.418 (0.033) 0.179 0.433
48 2 30 0 0.01 3 0 100 988 0.380 (0.027) 0.150 0.430
21 10 30 0.88 0 1 1 100 1275 0.416 (0.027) 0.147 0.429

104 2 30 0.88 0 1 1 100 1210 0.406 (0.028) 0.154 0.428
9 15 30 0 0 2 1 100 1312 0.410 (0.026) 0.142 0.418

66 2 30 0.88 0.01 1 0 100 1111 0.383 (0.026) 0.140 0.417
37 10 50 0 0 3 1 100 1144 0.365 (0.028) 0.153 0.395
92 2 30 0 0.01 2 0 100 1534 0.411 (0.028) 0.154 0.390
27 2 50 0 0.01 3 0 100 1409 0.395 (0.023) 0.124 0.390
36 5 30 0 0.01 3 0 100 1631 0.423 (0.026) 0.142 0.389
97 2 50 0.5 0.01 1 0 100 1942 0.458 (0.026) 0.140 0.383
41 2 80 0.3 0.01 1 0 100 1301 0.373 (0.032) 0.176 0.382
81 5 30 0.88 0 1 1 100 1551 0.388 (0.030) 0.166 0.365
13 2 80 0 0.01 2 0 100 1266 0.346 (0.024) 0.129 0.360
13 2 80 0 0.01 3 0 100 1264 0.331 (0.018) 0.101 0.346
36 15 30 0.88 0 1 1 100 1290 0.320 (0.037) 0.200 0.331
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Table 4.10: Results of the simulation study for GA with p = 14 (part 2).

P 20 (% of 20 Actual 
Best Models Found)

r N * n P c P m c e k
Mean CPU 
Time (sec)

Raw
Mean

Raw
SD

Adjusted
Mean

11 5 50 0 0.01 3 0 100 1348 0.326 (0.022) 0.120 0.330
11 5 50 0 0.01 2 0 100 1338 0.311 (0.031) 0.171 0.316
18 5 80 0.3 0.01 1 0 100 1338 0.303 (0.029) 0.157 0.308
16 10 50 0.5 0 1 1 100 1271 0.290 (0.026) 0.145 0.303
13 10 50 0.5 0.01 1 0 100 1572 0.300 (0.036) 0.197 0.273
11 10 30 0 0.01 2 0 100 1385 0.265 (0.028) 0.153 0.263
11 10 30 0 0.01 3 0 100 1386 0.231 (0.030) 0.163 0.230
13 10 30 0.88 0.01 1 0 100 1390 0.221 (0.040) 0.220 0.219
6 5 80 0 0.01 2 0 100 1306 0.188 (0.025) 0.135 0.197
6 5 80 0 0.01 3 0 100 1282 0.173 (0.018) 0.096 0.185

15 15 50 0.5 0 1 1 100 1315 0.176 (0.031) 0.171 0.184
29 10 80 0 0 3 1 100 1429 0.171 (0.020) 0.110 0.164
10 10 80 0.3 0.01 1 0 100 1234 0.133 (0.021) 0.114 0.151
13 10 80 0.3 0 1 1 100 1294 0.138 (0.019) 0.103 0.148
5 10 50 0 0.01 2 0 100 1289 0.131 (0.021) 0.113 0.142
7 15 30 0 0.01 2 0 100 1422 0.146 (0.028) 0.155 0.140
8 15 30 0.88 0.01 1 0 100 1263 0.120 (0.027) 0.147 0.134
9 10 80 0 0 2 1 100 1419 0.135 (0.014) 0.074 0.129

21 2 30 0 0.01 2 0 0 1288 0.110 (0.014) 0.078 0.121
16 15 50 0 0 3 1 100 1116 0.075 (0.014) 0.076 0.109
7 15 30 0 0.01 3 0 100 1407 0.108 (0.016) 0.089 0.103

15 2 50 0.5 0.01 1 0 0 1162 0.066 (0.012) 0.063 0.094
20 2 30 0 0.01 3 0 0 1275 0.078 (0.010) 0.053 0.091

5 10 50 0 0.01 3 0 100 1252 0.071 (0.014) 0.079 0.087
8 2 80 0 0.01 3 0 0 1376 0.085 (0.010) 0.057 0.084

10 5 30 0 0.01 2 0 0 1296 0.073 (0.013) 0.073 0.083
4 15 50 0 0 2 1 100 1300 0.073 (0.011) 0.058 0.083

23 2 30 0.88 0.01 1 0 0 1344 0.075 (0.012) 0.066 0.078
8 2 80 0 0.01 2 0 0 1277 0.063 (0.010) 0.055 0.076

20 2 30 0 0 2 1 0 1221 0.055 (0.010) 0.056 0.075
12 2 50 0 0.01 3 0 0 1270 0.060 (0.010) 0.057 0.073
8 15 50 0.5 0.01 1 0 100 1436 0.080 (0.017) 0.091 0.073

12 2 80 0.3 0.01 1 0 0 1195 0.048 (0.010) 0.053 0.071
22 2 30 0.88 0 1 1 0 1198 0.043 (0.009) 0.048 0.066
19 2 50 0.5 0 1 1 0 1339 0.060 (0.009) 0.051 0.064
31 2 30 0 0 3 1 0 1279 0.051 (0.008) 0.046 0.064

8 2 80 0 0 2 1 0 1282 0.051 (0.009) 0.048 0.063
8 5 50 0.5 0 1 1 0 1257 0.046 (0.009) 0.050 0.062

19 2 50 0 0 3 1 0 1289 0.050 (0.010) 0.052 0.061
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Table 4.11: R esu lts  o f  the sim u la tion  s tudy  fo r  G A w ith  p  =  14 (part 3).

P20 (% of 20 Actual 
Best Models Found)

r N* n Pc Pm c e k
Mean CPU 
Time (sec)

Raw
Mean

Raw
SD

Adjusted
Mean

12 2 80 0 0 3 1 0 1329 0.055 (0.010) 0.053 0.060
14 2 80 0 0 1 1 0 1295 0.050 (0.007) 0.039 0.060
3 15 50 0 0.01 2 0 100 1270 0.046 (0.010) 0.057 0.060

12 2 50 0 0.01 2 0 0 1449 0.070 (0.012) 0.068 0.060
6 15 80 0.3 0.01 1 0 100 1399 0.063 (0.014) 0.076 0.060
6 5 50 0 0.01 2 0 0 1299 0.050 (0.010) 0.052 0.059
4 5 80 0 0.01 2 0 0 1382 0.056 (0.010) 0.053 0.055

85 5 30 0.88 0.01 1 0 0 1310 0.046 (0.009) 0.047 0.055
3 10 80 0 0.01 2 0 100 1391 0.056 (0.011) 0.062 0.054

10 5 30 0 0 2 1 0 1317 0.045 (0.007) 0.040 0.052
14 5 30 0 0 3 1 0 1269 0.036 (0.008) 0.041 0.050
12 2 50 0 0 2 1 0 1375 0.048 (0.009) 0.048 0.048
11 5 30 0.88 0 1 1 0 1303 0.038 (0.008) 0.044 0.047
3 10 80 0 0.01 3 0 100 1348 0.043 (0.010) 0.052 0.046
8 5 50 0.5 0.01 1 0 0 1310 0.038 (0.008) 0.042 0.046
6 5 50 0 0.01 3 0 0 1371 0.045 (0.008) 0.042 0.045
6 5 80 0.3 0.01 1 0 0 1387 0.046 (0.008) 0.045 0.044
6 10 30 0.88 0.01 1 0 0 1342 0.040 (0.008) 0.046 0.044
5 10 30 0 0.01 3 0 0 1237 0.025 (0.007) 0.036 0.043
7 10 30 0 0 3 1 0 1238 0.025 (0.005) 0.025 0.042
6 5 80 0.3 0 1 1 0 1297 0.031 (0.007) 0.040 0.041
4 5 80 0 0 2 1 0 1398 0.043 (0.007) 0.038 0.040
9 5 30 0 0.01 3 0 0 1370 0.038 (0.010) 0.052 0.038
4 5 80 0 0.01 3 0 0 1469 0.050 (0.010) 0.055 0.037
6 5 50 0 0 2 1 0 1321 0.030 (0.007) 0.036 0.037
3 10 80 0.3 0 1 1 0 1224 0.015 (0.004) 0.023 0.034
9 5 50 0 0 3 1 0 1352 0.031 (0.006) 0.030 0.034
7 15 80 0 0 3 1 100 1327 0.028 (0.007) 0.040 0.034
2 10 80 0 0.01 2 0 0 1309 0.025 (0.006) 0.031 0.033
2 10 80 0 0.01 3 0 0 1387 0.035 (0.009) 0.047 0.033
3 15 50 0.5 0.01 1 0 0 1265 0.018 (0.007) 0.040 0.032
2 15 50 0 0.01 2 0 0 1283 0.015 (0.004) 0.023 0.026
5 15 50 0 0.01 3 0 100 1537 0.048 (0.010) 0.054 0.026
2 10 80 0 0 2 1 0 1311 0.018 (0.004) 0.024 0.026
6 10 30 0 0.01 2 0 0 1444 0.035 (0.010) 0.054 0.025
2 15 80 0 0 2 1 100 1396 0.028 (0.007) 0.038 0.025
6 5 80 0 0 3 1 0 1564 0.050 (0.010) 0.052 0.024
7 15 80 0.3 0 1 1 100 1415 0.030 (0.009) 0.051 0.024
5 10 50 0.5 0 1 1 0 1319 0.015 (0.004) 0.023 0.022
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Table 4.12: Results of the simulation study for GA with p = 14 (part 4)-

P20 (% of 20 Actual 
Best Models Found)

r N* n Pc Pm c e k
Mean CPU 
Time (sec)

Raw
Mean

Raw
SD

Adjusted
Mean

3 10 80 0.3 0.01 1 0 0 1332 0.015 0.005) 0.026 0.020
2 15 50 0 0.01 3 0 0 1365 0.018 0.005) 0.027 0.019
4 15 30 0.88 0.01 1 0 0 1329 0.013 0.005) 0.029 0.019
3 10 80 0 0 3 1 0 1433 0.023 0.006) 0.034 0.015
2 15 50 0 0 2 1 0 1308 0.006 0.003) 0.017 0.015
4 15 30 0 0.01 2 0 0 1441 0.023 0.007) 0.040 0.014
5 10 30 0.88 0 1 1 0 1343 0.010 0.004) 0.024 0.014
4 10 50 0 0.01 2 0 0 1649 0.050 0.009) 0.047 0.013
2 15 80 0 0 3 1 0 1503 0.025 0.007) 0.036 0.008
3 15 50 0 0 3 1 0 1392 0.010 0.007) 0.020 0.007
6 10 30 0 0 2 1 0 1471 0.020 0.004) 0.024 0.007
4 15 30 0 0 1 1 0 1370 0.006 0.003) 0.017 0.007
4 15 30 0 0 2 1 0 1473 0.016 0.005) 0.027 0.003
2 15 80 0 0.01 2 0 100 1553 0.026 0.008) 0.043 0.003
5 10 50 0 0 3 1 0 1513 0.020 0.007) 0.036 0.001
5 10 50 0.5 0.01 1 0 0 1573 0.023 0.006) 0.034 0.000
5 15 30 0 0 3 1 0 1465 0.006 0.003) 0.017 0.000
4 15 30 0 0.01 3 0 0 1548 0.015 0.005) 0.026 0.000
4 15 50 0.5 0 1 1 0 1583 0.016 0.006) 0.033 0.000
4 10 50 0 0.01 3 0 0 1660 0.026 0.007) 0.040 0.000
2 15 80 0 0.01 3 0 100 1634 0.023 0.007) 0.038 0.000
4 10 50 0 0 2 1 0 1670 0.020 0.007) 0.038 0.000
3 15 80 0.3 0.01 1 0 0 1911 0.030 0.007) 0.038 0.000
2 15 80 0 0.01 3 0 0 1994 0.033 0.009) 0.047 0.000
2 15 80 0 0 2 1 0 1979 0.028 0.006) 0.033 0.000
2 15 80 0 0.01 2 0 0 1984 0.025 0.008) 0.045 0.000
3 15 80 0.3 0 1 1 0 1889 0.011 0.005) 0.025 0.000

Notes: (1) Negative adjusted mean P20 values have been truncated at 0 but appear 
in rank order corresponding to their untruncated values. (2) For crossover 

schedules 2 and 3 the pc column is not applicable.

4.7 Comparison of optimisation methods: final 
results for p  =  14

Figure 4-6 summarises all of the simulation results for the three methods in the 
14-variable case. TS has the best median performance across all input settings 
examined, and the smallest variability of performance from worst to best. The best 
input settings for GA lead to the overall best performance of any method, but other
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choices for GA’s tuning constants lead to the absolute worst results. “Vanilla” SA 
is in the middle, dominated by the other two methods. If the problem solved here 
is typical of other binary-input optimisation problems with a moderate number of 
{ X j , j  =  1, . . .  ,p}, then a brief summary of the advice arising from this study would 
be as follows: if you do not have a lot of time to investigate input settings in detail, 
then try  (i) GA with an elitist strategy, keeping the whole population at the end 
of each iteration, a uniform or highly uniform crossover operator, and a fairly small 
population size (e.g., 30-50); and (ii) TS with whatever “generic” set of inputs 
seems reasonable to you (based perhaps on Section 4.6.1). (As mentioned above, 
see Chapter 6 for results with an improved version of SA.)

It is common practise in “vanilla” SA to take the highest point seen so far by the 
end of the run and apply an uphill search. I did not do this for several reasons: (1) 
Strictly speaking this is a hybrid of SA and local search, and for complete fairness in 
comparing TS, SA, and GA I decided in the main runs not to implement any hybrid 
strategies, so that the pure versions of each method were being compared. If I were 
to add a local search to the end of SA, for fairness I would need to do so also at 
the end of TS and GA, and one would expect this addition to have a similar effect 
on all three methods. (2) It would be quite difficult to decide how to choose N  in 
the local search, and adding a local search at the end would increase the difficulty 
of stopping the algorithm with a fixed budget of CPU time. (3) Given the extreme 
multimodality of the objective function being maximised in this dissertation, I do 
not believe that adding a local search at the end in this way would significantly 
improve the results of any of the three main methods I examined.

4.8 Sensitivity analyses

4.8.1 Second full-enumeration run: different random num­
ber seed

As noted in Section 4.1, I made three full-enumeration runs with p =  14, the first 
of which was summarised in Section 4.2. In the second run I used exactly the same 
inputs as in the first, except the random seed, to explore the sensitivity of the 
findings described previously to random variation. The best model this time had 6 
variables—age of patient, systolic blood pressure score, blood urea nitrogen, APACHE 

II coma score, shortness of breath day 1, and initial temperature—and also achieved 
an estimated expected utility of —7.89 ±0.05. Figure 4-7, based on the second full- 
enumeration run, is analogous to Figure 4-1, and almost identical in its qualitative
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Figure 4-6: Parallel boxplots comparing the three optimisation methods in the In­
variable case.

GA SA TS

Optimisation Method

and quantitative conclusions: for example, the 20 best models still include the same 
3 variables 18 or more times out of 20, and never include 6 other variables; and the 
5 best models are minor variations on each other, and include 3-7 variables. The 
best model on the second run contains exactly the same variables as that on the 
first, with the addition of two more variables that also frequently occurred among 
the 20 best models in the first run.

4.8.2 Third full-enumeration run: different choice of ,\ n 7
n y \
n )

In the third full-enumeration run I used a modelling sample of ^  |  (867 patients)
and a validation sample of ^  =  |  of the data (1665 patients), rather than the other 
way around, to see how sensitive the results were to this aspect of the problem 
formulation. Figure 4-8, based on the third run, is analogous to Figure 4-1 and 4-7 
and conveys virtually the same messages. The best model this time was identical to 
the one in the first run, although because of the change in the ratio its utility 
was a bit lower: —8.20 ±  0.03.
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Figure 4-7: Like Figure 4~1 but with a different random  num ber seed.

Ml
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Number of Variables

Figure 4-8: Like Figures 4~1 and 4~7 but with =  Q , | )  instead of ( | ,  | ) .

m'Miii
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of Variables

4.8.3 Quantitative comparison of the full-enumeration runs

Table 4.13 ranks the 20 best models according to full-enumeration run 1 and 
compares these ranks with those of the same models in runs 2 and 3. The
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Table 4.13: Comparison of the 20 best models of the first full-enumeration run with 
the other 2 runs.

Rank in Run 
Model 1 2  3

0 0 1 0 1 1 0 1 0 0 0 0 0 0 1 2 1
0 1 1 0 1 1 0 1 0 0 0 0 0 1 2 1 6
0 1 1 0 1 1 1 1 0 0 0 0 0 0 3 9 12
0 0 1 0 1 1 0 1 1 0 0 0 0 0 4 7 5
0 0 1 0 1 1 0 1 0 0 0 0 0 1 5 6 3
0 1 1 0 1 1 0 1 1 0 0 0 0 0 6 4 9
0 0 1 0 1 1 0 0 1 0 0 0 0 0 7 8 7
0 0 1 0 1 1 1 1 0 0 0 0 0 0 8 10 11
0 0 1 0 1 1 0 1 1 0 0 0 0 1 9 3 10
0 1 1 0 1 1 0 1 1 0 0 0 0 1 10 12 8
0 1 1 0 1 1 0 1 0 0 0 0 0 0 11 5 2
0 0 1 0 1 1 0 0 0 0 0 0 0 1 12 15 13
0 1 1 0 1 1 0 0 1 0 0 0 0 0 13 14 15
0 0 1 0 1 1 0 0 1 0 0 0 0 1 14 13 14
0 0 1 0 1 1 0 0 0 0 0 0 0 0 15 11 4
0 0 1 0 1 1 1 1 0 0 0 0 0 1 16 16 16
0 0 1 0 1 1 1 1 1 0 0 0 0 0 17 21 18
0 1 1 0 1 1 1 1 0 0 0 0 0 1 18 22 23
0 0 1 1 1 1 0 1 0 0 0 0 0 0 19 17 17
0 1 0 0 1 1 0 1 1 0 0 0 0 1 20 18 21

correspondence is strong but not perfect; the pairwise correlations between these 
three sets of ranks are 0.75, 0.85, and 0.86. To examine the correspondence in a 
bit more detail, I ranked all of the ^-variables models (for k =  2 , . . . ,  12) according 
to runs 1-3 and computed the rank correlations as a function of k , with results 
as in Table 4.14. The median pairwise correlation never drops below 0.84, with 
the minimum never falling below 0.68. I conclude that results from the first full- 
enumeration run are stable enough—in their definition of “tru th” with p = 14—to 
use in comparing stochastic optimisation methods, as far as (a) random variation 
from the Monte Carlo evaluation of the estimated expected utilities and (b) choice 
of ( I?J L, across the two possibilities ( | ,  | )  and Q , | )  are concerned.

4.8.4 Penalties and rewards for prediction accuracy and 
marginal costs per variable

How sensitive are the optimality results to the specific choices of C/m, the penalties 
and rewards for prediction accuracy, and Cj, the data collection marginal costs per
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Table 4.14: Pairwise rank correlations across the three full-enumeration runs as a 
function of the number of variables in the model

Number of Pairwise
Variables Correlations

k Min Median Max
2 .898 .907 .986
3 .960 .976 .980
4 .916 .925 .961
5 .800 .899 .916
6 .820 .836 .951
7 .681 .839 .841
8 .850 .896 .927
9 .804 .874 .904

10 .868 .935 .942
11 .917 .921 .968
12 .977 .981 .983

variable, given in Chapter 2? Starting with the values noted in that chapter, I 
multiplied all the C/m by/c =  2 , 3 , . . . , 8  and | , . . . ,  |  (holding the data collection 
costs constant at their Chapter 2 values throughout) and recomputed the 20 best 
models in each instance in the p = 14 case. Results were highly stable: for instance, 
with k = 2, 14 of the original 20 best models were still among the 20 best, and for 
11 of the 14 variables, the frequencies of occurrence in the 20 best models differed 
by 10% or less. I then multiplied all the Cj by the same k values (this time holding 
the penalties and rewards constant at their Chapter 2 values) and again recomputed 
the 20 best models. Here the findings were even more robust: for example, with 
k =  2, 18 of the original 20 best were still among the new 20 best, and for all 14 
variables, the frequencies of occurrence in the 20 best models differed by 10% or less 
uniformly. Other sensitivity analyses are of course possible; some will be described 
in Chapter 6.

4.8.5 Interaction term s

When constructing an admission sickness scale from available predictors X j , 
it is possible to include not only main effects (the X j  themselves) but also 
interactions and quadratic terms (of the form (X j — X j ) (Xk — Xk) and (X j — X j ) 2, 
respectively). How sensitive are the results presented here to omission of interaction 
and quadratic terms among the predictors? As an approximate answer to this
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question, I used the entire pneumonia data set (n =  2,532) to find all 2- 
way interactions (including quadratic terms) among the 14 variables which had 
z =  \(3/SE(j3)\ > 2 when added one by one to the 14-variable model. There 
were 5 such interactions out of a possible 105: between pairs of variables
(1,4), (1,5), (1,7), (1,12), and (2,13) (using the ordering of variables in Table 4.1). I 
then used TS (with the best input settings from Table 4.4) with 20, 40, 80, 160, and 
320 minutes of CPU time at 400MHz on the 19-variable model formed by adding the 
5 new interaction terms. With a CPU time limit of 20 minutes, only one interaction 
appeared among the 20 best models, and for CPU time constraints in excess of 
40 minutes none of the interactions appeared among the 20 best. I conclude that 
interactions play only a minor role in this problem and their omission has little effect 
on the findings presented here.
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Chapter 5 

Results in the case p  =  83

I cannot do it without computers.

— William Shakespeare, The Winter’s Tale

5.1 Introduction

In this chapter I describe work I have done with the full set of p =  83 variables. 
Tables 5.1 and 5.2 summarise all the predictors, together with their data collection 
costs and their simple correlations with 30-day death. It is evident that the original 
Rand 14-variable scale did a good job of choosing many of the variables which, 
by themselves, predict death. But which subset provides the best cost-benefit 
compromise?

In answering this question, the contrast with the 14-variable case could not 
be more extreme, because with p = 83 the space of all possible models is almost 
unimaginably large. If all 6 billion people on the planet each had a computer capable 
of making 10 full-enumeration runs per second (each based on N  = 500 Monte 
Carlo expected utility evaluations)—which is much faster than current desktop 
workstations can manage—it would still take more than 5 million years to rank- 
order all of the 9.7 • 1024 models, and even then each model’s expected utility would 
only be known up to a Monte Carlo standard error of US$0.05. Fortunately, this is 
not my goal; I wish only to identify some good models and to see how well the leading 
stochastic optimisation methods from Chapter 4 can find them. This chapter is a 
summary of work in progress; I intend to continue exploring the 83-variable case as 
part of the publication process.

An examination of Tables 5.1-5.2 shows that some of the variables in the p =  83 
case that were not in the p = 14 case did not have very high correlation with death,
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Table 5.1: The full set of 83 variables, together with their approximate data collection 
costs per patient, correlation r with 30-day death, and presence in the original Rand 
14-variable scale (part 1).

In

Variable
Cost Cj 
(US$) r

Rand
Scale?

Good? 
(p =  14)

Good? 
ip = 83) %

systolic blood pressure score 0.17 0.29 * ** ** 73
age of patient 0.17 0.17 * *

blood urea nitrogen 0.50 0.32 * ** ** 100
APACHE II coma score 0.83 0.35 * ** ** 83

shortness of breath day 1 0.33 0.13 * ** * 31
serum albumin score 0.50 0.20 * *

respiratory distress score 0.33 0.18 * *
septic complications 1.00 0.06 *

prior respiratory failure 0.67 0.08 *
recently hospitalised 0.67 0.14 *

racbilateral process score 0.50 0.08
initial temperature 0.17 -0.06 * * ** 71

heart rate day 1 0.17 0.16 * 10
chest pain day 1 0.17 -0.15 * 31

cardiomegaly score 0.50 0.07
plural effusion score 0.50 0.05

pneumonia CXR score 0.67 -0.02
ambulatory score 0.83 0.22 *

endocarditis at admission 0.50 0.02
CPK score 0.67 0.09

prior antibiotics 0.17 -0.02 * 3
prior interstitial lung disease 0.17 0.02

home oxygen use 0.33 0.10
prior pneumonectomy 0.17 -0.02

prior tracheostomy 0.17 -0.02
prior aminophylline score 0.17 0.01
hematologic history score 0.50 0.16

cancer score 0.50 0.02
APACHE heart rate score 0.50 0.09

Corodaker score 0.33 -0.01
disease of thorax 0.33 0.05
multiple myeloma 0.17 -0.02 * 2

immunocompromised 0.17 0.01
residence score 0.33 0.24

hepatobiliary history 0.17 0.06
renal history score 0.33 0.25

APACHE respiratory rate score 0.33 0.24 * 8
new lung score 0.33 0.01

co-morbid aspiration score 0.17 0.09 * 7
APACHE sodium score 0.67 0.14

APACHE hematocrit score 0.50 0.10
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Table 5.2: The full set of 83 variables (part 2).
In

Cost Cj Rand Good? Good?
Variable___________(US$) r Scale? (p = 14) (p = 83) %

APACHE WBC score 0.50 0.11
APACHE oxygenation score 0.50 0.12

CVA score 0.33 0.14
APACHE potassium score 0.33 0.04

admission SBP 0.17 -0.20 ** 64
CHF chest X-ray score 0.83 0.10 *
APACHE total score 3.33 0.39 *
respiratory rate day 1 0.17 0.22 ** 92
DIA blood press day 1 0.17 0.02

confusion day 1 0.17 0.30 * 25
pulm vase cong score 0.17 0.07

APACHE venus bicarb score 0.50 0.16
pulmonary edema score 0.17 0.06

sum of CHF components 1.83 0.11
influenza score 0.17 -0.04 * 2

arrest in ER score 0.17 0.17 * 48
biliribin score 0.50 0.03

positive blood culture 0.17 0.17
positive urine culture 0.17 0.14
wheezing at admission 0.17 -0.02

body system count 0.83 0.33
morbid prior copd score 0.17 -0.02
morbid pulm hosp. score 0.17 0.03
co-morbid cirrhosis score 0.17 0.01 * 2

co-morbid CHF score 0.17 0.08 * 33
co-morbid arrhythmias score 0.17 0.03

co-morbid smokers score 0.17 -0.05
co-morbid alcoholism score 0.17 -0.03 * 15

APACHE PH score 0.33 0.23
co-morbid NGTS score 0.17 0.13

co-morbid steroids score 0.17 0.01 * 1
sum of morbid+comorbid 2.50 0.29

cardiac history score 0.17 0.06
neurologic history score 0.17 0.28 * 1
oncologic history score 0.17 0.02

immunologic history score 0.17 0.01
musculoskeletal score 0.17 0.17 * 5

APACHE temperature score 0.33 0.02
APACHE mean BP score 0.33 0.08
APACHE creatinine score 0.33 0.20

DX score 0.33 0.07
sex of the patient 0.17 0.02

Note: The final three columns of the table are explained in the text below.
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suggesting that the dimensionality of the space worth searching was less than that 
implied by including all 83 predictors. However, (a) many of the new variables did 
in fact have quite a high marginal correlation with death (in fact, higher than some 
of the variables in the final 14-variable Rand scale), and (b) with p = 83 I wanted 
to learn about how well the three optimisation methods performed in a very high­
dimensional space and without a great deal of “coaching” about the value of the 
possible inputs. In Chapter 6 I explore the “value added” of improving SA’s choice 
of which variables to bring in and take out of the current working model by using 
a measure that takes correlation with death into account; see Section 6.1 for results 
of this approach both with p = 14 and p = 83.

Since full enumeration is impossible with p = 83, the first task was to create a 
workable proxy for it. To create such a proxy I did the following.

•  First I chose one “good” input configuration each from tabu search (TS), 
simulated annealing (SA), and the genetic algorithm (GA) (from Tables 4.4, 
4.6, and 4.9), where “good” means a compromise between the best results 
from p — 14 and a desire for each method to visit a lot of models. In practice I 
chose an input configuration for each method that was among the top 15 with 
p =  14; and

• Then I ran each algorithm with these “good” configurations for one week of 
CPU time at 400 MHz on the p = 83 case (using random starting models). 
Each method visited about 630,000 models in that time; the total across the 
three methods was 1,900,377, although this figure included a lot of duplicate 
models. (Everything about the 83-variable case was ponderous: the resulting 
file required 1.8 gigabytes of disk storage, and processing it in St a t  a required 
1 gigabyte of virtual memory.)

•  I eliminated all of the duplicates, arriving finally at 825,635 unique models 
visited by the three methods in one week each. I then sorted these models 
on their apparent utility (in each case N  was either 1 or 4 or 5, based on the 
adaptive method), and extracted the 3,000 best models on this basis. Finally I 
then ran the full-enumeration program on these 3,000 models (with N  = 500) 
to find their “real” , as opposed to apparent, expected utility, and sorted them 
one more time on their real utility values.

In this chapter the 3,000 models, and their utilities obtained in this way, will be 
regarded as “tru th” for the purpose of comparing GA, SA, and TS with p =  83.
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A full experiment comparing these three methods, like that in Section 4.6 in 
the 14-variable, case would have taken far too long, for two reasons: (a) with 83 
variables a single evaluation of the estimated expected utility took 1.3 seconds at 
400 Unix MHz, 3.3 times longer than with p =  14, and (b) 20 minutes of CPU 
time was far from sufficient for any of the methods to begin finding good models. 
So instead I performed an abbreviated experiment guided by the results in the 14- 
variable case. I chose the 10 best input settings for each method from the tables in 
Sections 4.6.1-4.6.3, and gave each algorithm 3 hours of CPU time at each setting, 
repeating this process 5 times in each case and averaging the results to diminish 
random variation in the findings. To get a preliminary idea of how much better 
the optimisation methods could do with a larger CPU budget, I also made one run 
with each method, using the highest-performance settings with p = 14 and allowing 
the methods 24 hours of CPU time in each case. In the remaining sections of this 
chapter I summarise the results of these experiments.

5.2 One-week results

Table 5.3 gives the input settings used by the three optimisation methods in the 
one-week runs. Because the adaptive-N* method was in use, the number of 
modelling/validation splits on which each model’s estimated quality was based varied 
from 1 to 5; in the end the distribution of the actual N  used with the 3,000 best 
models found (on the basis of apparent utility) was (69,31)% across the values 
N  =  (1,5). 81% of the 3,000 best models (Table 5.4) were found by GA, with 
19% discovered by TS and only 1 out of the entire 3,000 (0.03%) obtained by SA. 
When I restricted attention only to those models with N  > 1, for which the utility 
determination was more accurate, the results were even more striking in favour of 
GA: 95% from GA, 5% from TS, 0.1% from SA. This is the first indication tha t GA 
may overwhelmingly be the best method with p =  83.

Figure 5-1 summarises the estimated (real) expected utility from the 3,000 best 
models found in the one-week runs, as a function of the number of variables in the 
model. This plot is a rough analogue of Figures 4-1, 4-7, and 4-8, with the roughness 
appearing because this is not a full enumeration of all models with 1-22 variables. 
Even so, the approximately quadratic shape traced out by the medians and maxima 
of most of the boxplots is clear, and demonstrates tha t in the 83-variable case the 
best models have 5-10 variables. This is only slightly larger than with p =  14, 
where the optimal range was 4-7, even though the optimisation methods have 69 
more variables to work with; this is because the Rand scale harvested so many of

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health



5 Results in the case p = 83 102

Table 5.3: Input settings for the one-week runs.

Tabu Search Simulated Annealing
Input Value Input Value

N* 5 N* 4
#  of Preliminary Searches 9 Initial Temperature 1.0

#  of Intensification Searches 10 Final Temperature 0.1
Maximum #  of Restarts 

Within Each Intensification 3
Temperature

Schedule Reciprocal
#  of Diversification Searches 14

Genetic Algorithm
Input Value

N* 5
Population Size 50

Crossover Probability —

Mutation Probability 0
Crossover Strategy Highly Uniform

Elitist Strategy? Yes
Percentage of 

Population Retained 100%

Table 5.4: Distribution of model dimension in the 3,000 best models from the one- 
week runs, by optimisation method.

Method
All N N  > 1

Mean SD % Mean SD %
GA 7.5 1.7 81.20 7.3 1.4 94.9
SA 18.0 0.0 0.03 18.0 0.0 0.1
TS 14.9 2.0 18.77 12.5 1.2 5.0

Total 8.9 3.4 100.0 7.6 1.8 100.0

the variables with good univariate predictive performance. Table 5.4 summarises 
the dimensions of the models found by the three methods; it is clear from this table 
that GA achieves its good results by finding its way faster (from a random starting 
point) to the smaller models where the best utilities are concentrated.

In a manner analogous to the situation with p  =  14, where policy-makers might 
well wish to look among the (say) 20 best models for the one finally chosen in the 
league-table quality analysis, in the 83-variable case a larger value like the 100 best 
models might be useful. Table 5.5 presents an overall summary of the 3,000 best and
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Figure 5-1: Estimated (real) expected utility as a function of number of predictors 
retained, based on the 3,000 best models found from the one-week runs with p = 83.
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the 100 best models found in the one-week runs, including the “real” utilities (with 
Monte Carlo standard error US$0.05) from the full-enumeration run with N  =  500 
(all of the 100 best models were found with GA). The gap between real and apparent 
utilities (the latter being based typically only on about N  =  5) is more than US$1 
on average across the 100 best models, demonstrating the value of conducting a 
full-enumeration exercise once the optimisation methods have found a number of 
candidate models.

Columns 6 and 7 of Table 5.1 identify the most promising variables from the one- 
week runs. The second of these columns gives the percentage of time each variable 
appeared among the 100 best models if that frequency was at least 1%. 61 of the 
83 variables fail this test. The six most common variables in the 100 best models, 
denoted with double asterisks in column 6, were blood urea nitrogen, respiratory 

rate day 1, APACHE II coma score, systolic blood pressure score, initial temperature, 

and admission systolic blood pressure. Four of these variables were identified in the 
parallel exercise with p =  14, but two are new: it would appear that there is 
extra information in the actual values of the admission systolic blood pressure and 
respiratory rate on day 1, above and beyond what is present in the similar scales
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Table 5.5: Summary of the 3,000 best and the 100 best models found in the one-week 
runs.

Summary
3,000 Best 100 Best

Mean SD Min Max Mean SD Min Max
N 2.2 1.9 1 5 4.4 1.4 1 5

Dimension 8.9 3.4 1 22 7.1 1.1 5 10
Apparent Utility -7.14 0.33 -7.48 -5.44 -6 .67 0.51 -7 .48 -5.44

Real Utility -8.60 0.65 --11.95 -7.47 -7 .75 0.07 -7.82 -7.47

among the 14 Rand variables.
The overall best model found in the one-week runs had 7 variables: systolic 

blood pressure score, blood urea nitrogen, APACHE II coma score, initial temperature, 

admission SBP, respiratory rate day 1, and arrest in ER score. The real utility achieved 
by this model, —7.47, is only US$0.43 better than the corresponding figure with 
p =  14; this is again a consequence of the Rand 14-variable scale being so heavily 
packed with variables with good univariate predictive behaviour.

5.3 A simulation experiment with p  =  83

As mentioned in Section 5.1, in the 83-variable case I carried out a smaller 
experiment (due to computer time constraints) exploring the performance of TS, 
SA, and GA as a function of input settings. I chose small variations on the 10 best 
settings for each method with p = 14, with the aim of producing runs that would 
take 3 hours of CPU time each, and I repeated each of these runs 5 times with 
different random number seeds and averaged the results. Several of the methods 
performed so poorly that there was no point in using the percentage of the 100 (or
3,000) best models found as the main outcome; I focused instead on the following 
three performance summaries.

•  The dimensions of the models visited. Tables 5.4-5 and Figure 5-1 show that 
this is a good proxy for the quality of the models: if a method only finds 
models with (say) 15-25 variables then it has not found good models;

•  The apparent utilities of the 100 best models visited. It would have taken 
too long to evaluate the real utilities of all of these models; to give a flavour 
of what those results would have been I merged the 5 runs with any given 
input settings and method, extracted the 10 best according to their apparent 
utilities, and did full-enumeration on these 10 best; and
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•  A measure of the efficiency of each method in finding as many of the 3,000 
best models as possible. This score will be explained below.

I focused both on all models visited during the 3-hour runs and on the 100 best 
models found in each of these runs.

To motivate the efficiency measure I used, suppose that we are only interested 
in the top five models, and we wish to summarise the quality of the subset of these 
models found by a given method. Imagine that one method found models (1,2,4), 
and another method found models (2,3,4,5). Which of the two methods is better? 
To decide this, I attach a linear weight to each of the top five models, so that the 
best model has weight 5 and the worst 1. Then a deficiency score may be computed 
by summing the weights of the five best models that were not found by the method. 
So method one above would have a deficiency of 4 (since models 3 and 5 are missing, 
which corresponds to weights 3 and 1 respectively), and method two would have a 
deficiency of 5 (since only model 1 is missing). So according to this measure the run 
that found models (1, 2, 4) is slightly better. Instead of monitoring the deficiency I 
report the efficiency of the method, which is the sum of all the numbers from 1 to 
5 in the above example, minus the deficiency. Thus method one tha t found models 
(1, 2, 4) has an efficiency score of 11, while method two that found models (2, 3, 
4, 5) has an efficiency score of 10, out of a possible 15 =  Y a =i the simulation 
experiment, each run with a given input setting visited a random number of models, 
typically on the order of 1,000-10,000; for each run the efficiency score was computed 
across all models visited.

As was true in the 14-variable case, the actual CPU times of the runs fluctuated 
around their target value of 10,800 seconds (3 hours) at 400 Unix MHz. Because 
of computing limitations I was not able to make enough runs to serve as the basis 
of a reliable adjustment for CPU variations, so I present unadjusted findings in the 
tables. Even with some variation in CPU time, clear patterns emerge as to which 
methods (and which input settings) perform best.

In what follows it will be seen that GA ended up contributing most of the good 
models to the proxy “tru th” , which might appear to provide a favoured status for 
GA when the methods are compared. I do not believe that this interpretation 
is justified, for the following two reasons: (1) The proxy was created by giving all 
three methods—GA, SA, and TS—an equal chance to contribute good models to the 
eventual listing of the best models, because all three methods had the same amount 
of CPU time (1 week). (2) The only way in which the proxy appeared in my results 
with p  =  83 was in the calculation of the efficiency measure; an appreciation of the 
performance of the methods which has nothing at all to do with the proxy may be

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health



5 Results in the case p =  83 106

gained by looking at the mean real utility rows in Tables 5.6-5.8.

5.3.1 Tabu search

Table 5.6 summarises the input settings and results from the experimental runs on 
TS with p = 83 (naming conventions for inputs are as in Section 4.6.1; the rows 
with a single (double) asterisk refer to the 100 (10) best models found). In these 
runs N* varied from 5 to 20, the total number of runs from 1 to 4, the number of 
preliminary searches from 2 to 14, the number of intensification searches from 2 to 
15, the maximum number of restarts within the intensification search from 0 to 6, 
and the number of diversification searches from 1 to 4. The mean CPU times of the 
runs ranged from 10,044 to 15,361 seconds, with the total number of models visited 
during the approximately 3 hours of CPU time varying from 686 to 2,330.

Most of the input settings examined resulted in searches that concentrated 
on models with too many variables to have good performance—the mean model 
dimension in the 100 best models ranged from 9.5 to 29.7, with most of the minimum 
dimensions above 10 and many of the maximum dimensions above 20. Input settings 
3 and 4 gave the best results, yielding real utilities for the 10 best models of 
about US$—8.60 and routinely finding about 4 of the 6 best variables from the 
full-enumeration runs, but none of the 50 TS runs managed an efficiency score 
greater than 0, i.e., not a single model among the 3,000 best was ever visited. Three 
hours of CPU time does not appear to be enough for TS to get anywhere near the 
global optimum (although this does not mean that 3 hours was a bad choice for 
the experiment; as will become clear below, GA’s performance with 3 hours of CPU 
time is already rather good).

5.3.2 Simulated annealing

Table 5.7 gives the input configurations and results for each of the 10 runs I made 
using SA with p =  83 (naming conventions for the inputs are as in Section 4.6.2). In 
these runs N* varied from 3 to 10, the initial and final temperatures ranged from 0.5 
to 10.0 and 0.05 to 0.1, respectively, and I examined all four temperature schedules. 
The mean CPU times actually observed varied from 8,629 to 12,947 seconds. SA 
typically visited a lot more models than TS—its total number of models ranged from 
1,434 to 8,762—but in most cases the great majority of these models were examined 
with N  =  1, indicating that SA was having a hard time finding good models.

The typical dimensions of the models visited by SA were even larger than with 
TS: the mean dimension across the 100 best models varied across the input settings
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Table 5.6: Input settings and results for the 3-hour runs of TS in the simulation 
experiment with p  =  83 (SDs in parenthesis).

Input
Run

1 2 3 4 5 6 7 8 9 10
r 1 3 2 4 2 1 2 3 3 2

N* 15 7 7 9 8 15 20 9 5 11
I 10 2 2 2 14 9 11 2 9 2
i 6 ( 4 4 15 12 2 4 3 4
t 3 2 6 1 5 3 0 2 3 1
d 3 2 4 2 1 3 1 2 2 3

Run
Result 1 2 3 4 5 6 7 8 9 10
Mean
CPU 1.00 1.07 1.54 1.33 1.20 1.04 1.39 1.44 1.34 1.03

(10K sec)
#  (N  =  1) 74 233 134 340 664 57 272 357 403 211
#  (N  > 1) 645 1467 2196 1627 1350 629 598 1476 1828 941

Mean* 28.0 13.9 12.7 9.5 18.5 29.7 27.3 14.3 14.6 18.9
Dimension (3.1) (3.0) (2.0) (1.9) (3.4) (5.4) (3.3) (3.9) (2.1) (3.0)

Min*
Dimension 26.6 10.4 10.2 6.2 13.4 27.8 24.6 11.0 9.8 16.4

Max*
Dimension 29.8 18.8 16.4 15.6 24.0 32.2 34.2 18.0 20.8 22.8

Mean*
Apparent -15.0 -10.1 -9.5 -9.4 -11.6 -15.4 -14.9 -10.7 -10.5 -11.8

Utility
Mean**

Real -13.0 -9.4 -8.6 -8.6 -10.4 -13.1 -12.6 -9.8 -9.7 -10.2
Utility
Mean** 23.1 10.9 9.3 6.8 12.6 23.1 22.4 11.5 10.8 14.7

Dimension (0.3) (1.2) (0.9) (1.4) (4.2) (0.3) (0.8) (1.6) (3.7) (1.4)
#  6**
Best 1 3 4 4 2 1 2 2 2 2
Mean

Efficiency 0 0 0 0 0 0 0 0 0 0

Notes: (1) #  (A T = 1) is the number of models visited with N  = 1, and analogously for 
#  (N  > 1); #  6 Best is the number of the variables marked with two asterisks in column 6 of 

Table 5.1 which occurred at least 50% of the time in the 10 best runs. (2) Rows marked with one 
(or two) asterisks refer to the 100 (or 10) best models found.

from 15.3 to 25.0, the minimum dimension never dropped (on average) below 12.4, 
and the maximum was frequently above 25. The mean apparent utility in the 100 
best models fell below —10 for seven of the 10 input settings, and the mean real 
utility in the 10 best models found was below —9 with eight of the 10 settings. SA
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Table 5.7: Input settings and results for the 3-hour runs of SA in the simulation 
experiment with p — 83 (SDs in parenthesis).

Run
Input 1 2 3 4 5 6 7 8 9 10

N* 4 5 5 5 3 10 10 5 4 10
To 1.0 0.5 0.5 2.5 1.0 0.5 1.0 1.0 1.0 10.0
Tf 0.1 0.05 0.05 0.1 0.1 0.05 0.1 0.1 0.1 0.1

Cooling
Schedule 3 1 2 3 3 4 4 3 2 3

Run
Result 1 2 3 4 5 6 7 8 9 10
Mean
CPU 1.23 0.86 1.22 1.01 0.97 0.91 1.29 0.86 1.26 0.92

(10K sec)
#  (N  =  1) 7663 5326 6230 3736 5901 182 1062 3993 6813 1170
#  (N > 1) 1099 533 1093 1285 941 1252 1459 912 1149 818

Mean* 22.4 23.5 22.1 18.6 22.6 16.4 15.3 19.5 25.0 15.5
Dimension (5.4) (1.1) (2.4) (3.9) (4.4) (3.5) (4.6) (3.5) (2.7) (3.6)

Min*
Dimension 17.6 17.8 18.4 15.6 17.8 14.0 12.8 15.6 19.8 12.4

Max*
Dimension 28.2 31.4 27.8 23.0 29.4 19.2 18.2 25.8 31.0 19.6

Mean*
Apparent -11.0 -11.8 -11.1 -10.3 -11.3 -9 .7 -9.2 -10.4 -11.9 -9.9

Utility
Mean**

Real -9.5 -11.3 -10.4 -9.0 -9.6 -9.0 -8.2 -9.2 -10.5 -8.8
Utility
Mean** 14.8 20.3 18.8 13.0 14.0 10.6 9.9 13.6 20.4 11.1

Dimension (1.5) (1.3) (0.8) (0.9) (2.7) (1.3) (0.9) (1.1) (1.0) (1.1)
#  6**
Best 1 2 2 3 2 3 3 1 5 4
Mean

Efficiency 0 0 0 0 0 0 0 0 0 0

Notes: See Table 5.6.

typically only found 1-3 of the six best variables among its 10 best models, and 
(as was true for TS) never achieved an efficiency of discovering any of the 3,000 
best models above 0. Input setting 6 was the best, but overall SA’s performance 
with p = 83 is, if anything, even worse than in the 14-variable case. (However, in 
Chapter 6 I report results of an improved SA method that are much better.)
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5.3.3 G enetic algorithm

Table 5.8 presents the input settings and results from the simulation study for GA 
with p =  83 (naming conventions for the inputs are as in Section 4.6.3). In the runs 
reported on here N* varied from 2 to 10, I used three different crossover operators 
(one-way or simple, uniform, and highly uniform), the elitist strategy was used in 
all cases (meaning that there was no mutation), the population was retained at the 
start of each new repetition in all runs, and the population size ranged from 30 to 
80. Mean CPU times varied from 9,590 to 14,485 seconds. GA visited on average 
between 2,959 and 12,470 models as a function of input settings. The mean ratio 
of visits with N  = 1 to those with N  > 1 is consistently greater than 1; this was a 
marker of poor performance with SA, but interestingly GA, as the rest of the table 
shows, achieves good results even so.

Input settings 9 and 10—the only ones with the one-way crossover operator— 
performed much worse than the other eight settings examined; I will say no more 
about them. Apart from this, the dimensions of the models visited by GA are 
much closer to the region of good performance as indicated by Figure 5-1: the 
mean dimensions of the best 100 models with the best input settings for GA were 
consistently below 10, and the minima were frequently below 6. This translates into 
comparatively excellent results for the apparent utility of the 100 best models (often 
below —8) and the real utility of the 10 best (never much greater than —8). The 10 
best models typically had between 7 and 9 variables on average, and most of the six 
best predictors from Table 5.1 were frequently located.

GA is the first method to achieve non-zero efficiencies: in absolute terms the 
proportions of the best 3,000 models found are not stunning (the maximum possible 
efficiency score is about 4.5 million), and the standard deviations show that there 
is considerable random variation in efficiency achieved (every input setting had at 
least one run with efficiency 0), but several of the input settings with GA managed 
to attain efficiencies of 40,000 to 235,000 on average with 3 hours of CPU time, 
and one run attained an efficiency (732,623) equivalent to having found the 254 
top models among the 3,000 best. Input setting 8—with N* =  5, a population 
size of 30, elitist and highly uniform crossover strategies, and 100% retention of 
the current population at the start of each new repetition—is both the clear GA 
favourite and the overall winner across all methods, although GA settings 1 and 6 
are also promising.
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Table 5.8: Input settings and results for the 3-hour runs of GA in the simulation 
experiment with p = 83 (SDs in parenthesis; for explanation of other symbols see 
Table 5.6).

Run
Input 1 2 3 4 5 6 7 8 9 10

N* 2 5 2 5 10 10 2 5 2 2
n 80 50 50 50 30 30 50 30 80 50
Pc 0.3 0.5
Pm 0 0 0 0 0 0 0 0 0 0

Crossover
Strategy 2 3 2 2 2 3 3 3 1 1

Elitist
Strategy? yes yes yes yes yes yes yes yes yes yes

k 100 100 100 100 100 100 100 100 100 100

Run
Result 1 2 3 4 5 6 7 8 9 10
Mean
CPU 1.06 1.11 1.17 1.10 1.15 1.13 0.96 1.35 1.45 1.07

(10K sec)
#  (N = 1) 6622 3963 9449 3343 1664 1920 7826 7210 9343 7178
#  (N  > 1) 2926 1957 2586 2065 1295 1285 1958 2265 3127 2114

Mean* 9.6 9.8 9.7 9.9 11.1 8.6 11.4 8.7 19.0 21.3
Dimension (1.4) (0.6) (0.8) (0.4) (2.1) (1.0) (0.8) (1.4) (2.4) (1.1)

Min*
Dimension 6.2 5.2 6.4 6.8 8.0 5.4 6.4 5.4 15.8 17.6

Max*
Dimension 13.8 14.8 12.8 13.4 14.6 12.2 17.4 12.2 23.8 26.0

Mean*
Apparent -6 .9 -7 .8 -6 .6 -7 .5 -8 .3 -7 .7 -7 .6 -7 .2 -9 .9 -10.6

Utility
Mean**

Real -8 .1 -8 .3 -8 .1 -8 .2 -8 .1 -8 .0 -8 .6 -7 .8 -10 .6 -10.8
Utility
Mean** 7.9 9.0 8.5 9.1 7.5 7.6 8.8 7.1 16.0 19.2

Dimension (1.9) (1.3) (1.1) (1.1) (0.8) (1.4) (2.4) (1.3) (1.2) (1.2)
#6**
Best 4 4 6 4 2 4 3 5 6 4
Mean

Efficiency 57.7 10.0 10.2 1.1 0.3 37.9 0.2 234.7 0 0
(IK)
SD

Efficiency 95.2 15.9 18.9 2.5 0.8 64.6 4.3 299.4 0 0
(IK)
Max

Efficiency 225.1 37.7 43.7 5.6 1.7 149.9 9.7 732.6 0 0
(IK)
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Table 5.9: Input settings and, results for the 24~hour run of TS in the simulation 
experiment with p =  83.

Input r N* I i t d Result
CPU
Time

Number of Models 
Visited With 

N = 1  N > 1
Value 27 5 10 6 3 3 Value 86,402 37,235 5,653

100 Best Models
Dimension Apparent Utility

Result Mean SD Min Max Mean SD Min Max
Value 9.54 1.49 6 13 -7 .80  0.131 --7.89 -7 .19

10 Best Models
Real Utility Dimension

Result Mean SD Mean SD #  6 Best
Value -8.53 0.199 8.20 1.03 2

5.4 Results with 24 hours of C PU  tim e

It is interesting to consider how much better the optimisation methods would do 
with a larger budget of CPU time than 3 hours. To obtain preliminary information 
along these lines, I chose the best input configuration for each of TS, SA, and GA 
from the p = 14 results and made one run with 24 hours of CPU time for each of 
these input settings. In a manner analogous to the results in the previous section I 
looked at results both for all models visited and for the 100 best models found (on 
the basis of apparent utility), and I also extracted the 10 best models found by each 
method and ran the full-enumeration program to obtain their real utilities. The 
actual CPU times for all three methods matched almost perfectly the target of 24 
hours (86,400 seconds) because, after estimating values of the input parameters so 
that the runs would finish at around 24 hours I simply halted the C programs when 
that amount of CPU time was reached.

5.4.1 Tabu search

Table 5.9 summarises the input settings and results from the 24-hour run with TS 
in the 83-variable case. The input configuration closely resembles, but does not 
match exactly, input setting 9 from Table 5.6 (except of course for the number r  
of repetitions of the whole algorithm, which is 9 times larger with 24 hours than 
with 3). The performance of TS is naturally much better with 24 hours of CPU 
time: across the 100 best models the mean dimension has dropped to 9.5 (minimum
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Table 5.10: Input settings and results for the 24~hour run of SA in the simulation 
experiment with p — 83.

Input N* T0 Tj
Cooling
Schedule Result

CPU
Time

Number of Models 
Visited With 

N  = 1 N  > 1
Value 4 1.0 0.1 3 Value 86,404 62,912 1,004

100 Best Models
Dimension Apparent Utility

Result Mean SD Min Max Mean SD Min Max
Value 20.4 3.39 17 32 -10.2 0.346 -10.5 -9 .10

10 Best Models
Real Utility Dimension

Result Mean SD Mean SD #  6 Best
Value -10.6 0.452 18.2 1.13 5

6, maximum 13) and the mean apparent utility has fallen to —7.8, and among the 
10 best the mean real utility has declined to —8.5 and the mean dimension to 8.2. 
Unfortunately it is still true that the efficiency of this run was 0, so TS has still not 
made its way to the best models (with this input configuration, at least).

5.4.2 Simulated annealing

Table 5.10 gives the input settings and results for the 24-hour run with SA, 
which was identical to configuration 1 in the 3-hour runs. A comparison with 
the corresponding column of Table 5.7 reveals that SA has managed little or no 
improvement on its 3-hour performance, even with a budget of CPU time eight 
times the previous size, and (because of random variation) has actually appeared 
to go backwards in some respects. The 24-hour SA run does look better than its 
3-hour counterpart in the number of the six high-frequency good variables (Table
5.1) it has found, but this is only because it is fixated on models with far too many 
predictors. Like TS, simulated annealing failed to find a single one of the 3,000 
best models from the one-week full-enumeration runs in 24 hours, but in all other 
important respects the 24-hour TS run uniformly dominated that of SA.
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Table 5.11: Input settings and results for the 2f.-hour run of GA in the simulation 
experiment with p =  83.

Input N* n Pc Pm c e k Result
CPU
Time

Number of Models 
Visited With 

N  = 1 N  > 1
Value 2 80 — 0 2 1 100 Value 86,402 104,204 10,706

100 Best Models
Dimension Apparent Utility

Result Mean SD Min Max Mean SD Min Max
Value 8.47 0.936 7 11 -5.66 0.256 -5.92 -4.64

10 Best Models
Real Utility Dimension

Result Mean SD Mean SD #  6 Best
Value -7.91 0.160 8.40 1.07 2

5.4.3 Genetic algorithm

Table 5.11 provides the input settings and some summaries from the 24-hour run 
with GA, which again used inputs that were identical to the first input configuration 
for GA in the 3-hour runs. Unlike SA, GA has made good use of the extra CPU 
time: for example, in comparison to the mean of the corresponding 3-hour runs, the 
mean dimension of the 100 best models is 12% lower, and the attained real utility 
(—7.91) is not far from the global optimum of —7.47 found with the full enumeration 
based on the one-week runs. This particular 24-hour GA run managed to find 9 of 
the best 3,000 models, ranging in rank from 71 to 2,222, yielding an efficiency score 
of 17,127. (This is lower than the mean of the 3-hour runs due to random variation; 
the same reason explains why only 2 of the 6 best variables appeared with at least 
50% frequency across all models visited.) Once again GA dominates both of the 
other two methods across the 24-hour runs, although TS has closed the gap.

5.5 Comparison of optim isation methods: final 
results with p  =  83

• GA is the clear winner in the 83-variable case with both 3 and 24 hours of 
CPU time at its disposal (but see the results for p =  83 in Section 6.2.1 on the 
performance of the improved version of simulated annealing). The best input
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Table 5.12: Comparison of the total number of utility evaluations achieved by the 
three optimisation methods in the 24~hour runs.

Method N*

Number of 
Models Visited With

Number of 
Utility 

EvaluationsN  = 1 N  > 1
TS 5 37,235 5,653 65,500
SA 4 62,912 1,004 66,928
GA 2 104,204 10,706 125,616

settings for the 83-variable case I have found so far are as follows: N* =  5, 
population size 30, highly uniform crossover strategy, elitist selection (and 
therefore no mutation), and retention of 100% of the current members of the 
population at the beginning of each repetition of the algorithm. These settings 
are similar to those that came in second (out of 144 combinations examined) in 
the p = 14 case, so they appear to be robust to the dimension of the problem, 
at least in the range from fairly small to fairly large.

• TS came in second with p =  83, which is something of a contrast with the 14- 
variable case, where the best implementations of the two methods did about 
equally well. Of the input configurations I examined for TS with 83 variables 
the best was the following: 4 overall repetitions of the algorithm, N* =  9, 2 
preliminary searches, 4 intensification searches, 1 maximum restart within the 
intensification process, and 2 diversification searches.

• Vanilla SA again came a poor third in the 83-variable case, with the amount by 
which it trailed the other two methods growing as p increases. (As mentioned 
above, see Chapter 6 for results with an improved version of SA.)

• It is interesting to speculate about the reason for GA’s dominance. Table 5.12 
compares the three optimisation methods in the number of utility evaluations 
each is able to achieve in the 24-hour runs. (Similar results are evident with 
the 3-hour runs.) In the same amount of CPU time, and bearing in mind that 
the programs for all three methods were written with an attem pt at equal 
efficiently in the same language, GA is able to find the time to evaluate almost 
twice as many utilities as the other two methods. I believe that this difference is 
attributable to the amount of extra “overhead” required by TS and SA that is 
not present in GA: SA spends a noticeable amount of time making calculations 
(involving expensive calls to the logarithm and exponential functions) to
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support its cooling schedule and acceptance probabilities, and TS uses a fair 
amount of CPU time managing the tabu list.
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Chapter 6 

Conclusions and extensions

Q: How long should a [person's] legs be?

A: Long enough to reach the ground.

— Abraham Lincoln

6.1 Summary of the project and its main findings

In this dissertation I used data from a 5-year study conducted by the Rand 
Corporation in the 1980s, of approximately 2,532 people in the US, to construct cost- 
effective scales measuring the sickness-at-admission of elderly patients hospitalised 
with pneumonia (Chapter 1). Starting with a model chosen by Rand with 14 sickness 
variables, my aim was to find a smaller model that achieves a better compromise 
between predictive accuracy and data collection costs. I began with a problem 
formulation proposed by (Draper 1996), in terms of maximisation of expected utility, 
to achieve this compromise in a way that is relevant to health policy (Chapter 2). 
The space of all possible models in the 14-variable case is small enough to permit 
a full enumeration of accurate estimates of the expected utility of all 214 =  16,384 
subsets of the predictors. These estimates are based on a Monte Carlo evaluation 
of the expected utility using averages of N  random splits of the available data into 
modelling and validation subsamples. By conducting the full enumeration in the 14- 
variable case (with N  =  500) I showed that, with realistic costs, the optimal solution, 
if implemented in a league-table or input-output approach to quality assessment on 
a wide scale, could result in significant monetary savings.

The main problem, however, was that there were not just 14 sickness variables 
originally available for pneumonia—there were p = 83, and 283 is such a large 
number of models that full enumeration fails. It was clear from the 14-variable case
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that the expected utility function has many local optima. A global optimisation 
method is needed, and it has been shown that stochastic optimisation is a promising 
option in the presence of a large number of local solutions. So I conducted a 
literature review of more than 100 articles from the stochastic optimisation literature 
(Chapter 3), and identified five approaches for further study: genetic algorithms 
(GA), messy simulated annealing (MSA), simulated annealing (SA), tabu search 
(TS), and threshold acceptance (TA). The general problem I addressed from an 
optimisation point of view is that of maximising a real-valued function of a binary 
input vector of length p.

After exploring the geometry of the solution space and the optimal choice of 
N  (Chapter 4), I performed a preliminary simulation experiment with the five 
optimisation methods listed above in the p = 14 case, using the full-enumeration 
results as tru th  against which the methods could be compared. It was clear that 
MSA and TA were either dominated by, or special cases of, the other methods, so I 
dropped them from further study, focusing only on GA, SA, and TS. Of these SA is 
an old friend for statisticians, but TS is almost unknown in the statistics community 
and among many statisticians GA, for some reason, has a bad reputation. I found 
in the literature review that little was known about the optimal input settings for 
these three methods, so I conducted a large simulation experiment to investigate 
the quality of the solutions from each optimisation algorithm as a function of the 
method’s inputs.

Using what worked best with p — 141 then tackled the 83-variable case (Chapter 
5). Instead of attempting an impossible task—complete full enumeration of all 
2P = 9.7 • 1024 models—I created a proxy for tru th  by giving the best versions of 
each of GA, SA, and TS from the 14-variable runs each one week of CPU time (at 
400 Unix MHz), collecting the 3,000 apparently best models found in this way, and 
performing a full enumeration on them. Finally, I conducted a limited simulation 
study of a number of the most promising input settings from the p = 14 case in the 
broader world of p = 83. Computing time constraints and the size of the solution 
space ensured that my work with p =  83 to date is only part of the story; I intend 
to continue this work for publication.

My main findings are as follows.

•  As mentioned above, a method like the one used here, based on treating 
variable selection as a decision problem in a way that trades off data collection 
cost against predictive accuracy, can potentially save a great deal of money 
when the purpose of the model-building is the construction of a scale that will 
be used to predict outcomes for future individuals. This conclusion has wide
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implications (a) for variable selection in generalised linear models generally 
and (b) specifically in health policy, in the league-table quality assessment 
process described in Chapter 1.

• As is reasonable intuitively, the optimal choice of N  is neither too small nor 
too large. Values between 2 and 10 work best in my problem; the best value 
varies with optimisation method but does not seem to depend strongly on p.

•  The overall winner among the three major methods I examined was GA in 
both the 14- and 83-variable cases. However, GA is the method that changes 
its behaviour the most dramatically as you change the input settings: versions 
of GA had both the best and the worst performance with p = 14. More recent 
variations of GA, employing an elitist selection strategy (without mutation) 
and uniform or highly-uniform crossover, vastly outperformed the “vanilla” 
version of GA first proposed in the 1970s. Two other factors appear important 
to achieve good performance of GA in this problem: retention of 100% of the 
current members of the population at the beginning of each repetition of the 
algorithm, and a small to moderate population size. W ith p  =  83 the highly 
uniform crossover strategy performed better than the uniform.

• TS comes in second to GA, and by an amount that seems to grow as p increases. 
TS has the advantage over GA of stability as a function of input settings: it 
is hard to make TS either very good or very bad by your choice of the inputs. 
To the extent that the inputs matter, it appears best to make the algorithm 
spend most of its time in the intensification search, followed by the preliminary 
search, and to spend the least time in diversification.

•  It is interesting that the versions of GA that perform the best do so by 
(a) shutting off the mutation operation altogether and (b) keeping 100% of 
the current population as “start-up” individuals at each repetition of the 
algorithm, because both of these choices would seem to cut down on GA’s 
ability to explore regions of the model space that differ sharply from those 
already examined. In the language of TS it is as though the optimal settings 
of GA choose an algorithm with a great deal of intensification and almost no 
diversification, which agrees at least partially with the previous conclusion.

•  “Vanilla” SA may be an old friend, but it does not appear to be anywhere near 
the current best method for global optimisation in problems with binary inputs 
and multiple local maxima: it came a poor third to the other two methods both
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with p = 14 and 83, and the gap between it and the other two widened as p 
increased. For anybody who insists on using vanilla SA anyway, in this problem 
I found that (a) the logarithmic and reciprocal cooling schedules outperformed 
the geometric schedule which is so often favoured in the literature, and the 
straight schedule was by far the worst; (b) with p  =  83 the logarithmic schedule 
was better than the reciprocal; and (c) (T0,T /) =  (1.0,0.1) and (0.5,0.05) 
worked best as starting and finishing temperatures.

•  Finally, it appears that GA gains its advantage over TS and SA by requiring 
less computational “overhead” in deciding where next to move: TS uses a lot 
of CPU time managing the tabu list, and the best cooling schedules for SA 
involve repeated expensive calls to the logarithm and exponential functions.

6.2 Suggestions for future work

I intend to continue this work in several directions as I move toward additional 
publications based on it. The following is a list of possible future work.

•  Increase the size of the simulation experiment in the 83-variable case. It is 
possible that the best input settings with p =  83 may differ substantially from 
those in the 14-variable case. A more complete full-enumeration exercise than 
the one in Chapter 5 can be based on the observation from Table 5.1 that 
more than |  of the 83 variables never appear (and indeed that only 13 of them 
occur more than 10% of the time) in the 3,000 best models already found;

• Use an intelligent way to cut the neighbourhood size down from 83 to some 
much smaller number, in TS and SA, for the 83-variable case. In the present 
implementation of TS, when it is at a given model it has to evaluate 83 utilities 
to decide where to move next;

•  Demonstrate the following point: if you want to force a given variable into 
the modelling this can easily be accommodated with this approach: instead 
of looking for the best subset from among the inputs (a:i,. . .  ,x p), you force 
(say) xi into the model and look for the best subset from among the inputs 
(^2, . . . ,  xp) to add to x\.

•  Explore one or more hybrid strategies; here are two examples.
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-  Given a budget of k hours, say, spend something like 0.7 A; running GA, 
and then spend the remaining time running something like TS to locally 
explore the best regions found by GA.

-  In SA, for instance: with k =  3 hours of CPU time, divide the first two 
hours (say) up into (say) four blocks of 30 minutes each; within each 
block use a different starting point; use a fairly large value of the final 
temperature like 0.1; get the 10 best models from each block; merge 
them and eliminate replicates to end up with (say) a  models; and then 
use the final 1 hour to compute the N  = 500 “real” utilities of the best 
a  models (where a  should be the appropriate number in order to do 
full-enumeration in 1 hour).

• See if parallelising the code for one or more of the optimisation methods results 
in an increase in performance.

•  Try modifying an optimisation method such as TS in a way that is more 
directly informed by clinical judgement, e.g., swapping variables in and out of 
the model according to a grouping by body system (variables X \  to x \ 2 have 
to do with the lungs, x \ $  to x 2q the heart, and so on).

•  Explore different forms of the utility function altogether. Two examples are 
as follows.

-  The main purpose to which sickness-at-admission scales are to be put 
is in trying to identify good and bad hospitals by comparing observed 
mortality rates to expected rates given admission sickness (Chapter 2). 
In view of this I will try reformulating the problem so that utility is 
assessed at the hospital level rather than at the patient level, possibly 
leading to sickness scales that are even more relevant to health policy 
quality assessment.

-  Try a continuous utility function such as the log scoring rule mentioned 
in Chapter 2.

•  How does the performance of this approach depend on the overall sample size 
n  (in our case, 2,532)? It is intuitively reasonable that the quality of the 
decision about whether a hospital is “good” or “bad” would be lower with 
a much smaller data set. I could test this by setting up a simulation world 
in which I know the right answer and seeing how often the correct decisions
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are made as a function of n. More specifically, to do this right you would 
have to generate a lot of hospitals with varying quality of care and sickness at 
admission and see how many bad and good hospitals were correctly identified 
by input-output analysis based on the optimal sickness scale as a function of 
n.

•  In SA there is a temperature interval in the middle in which the chain is moving 
around well (before this point it moves wildly from one bad model to another, 
after this point it gets stuck at whatever local mode it has found). To defeat 
this sort of behaviour I can look at the run from (say) iteration 1,000 to 5,000 
in a 10,000-iteration run, find the best (say) 10 models during that interval, 
and either rapidly cool around them or revisit them with a much larger value 
of N .

•  Do additional sensitivity analyses; for instance, with the Cim in Table 2.1 in a 
way other than using the same multiplier across all four.

•  Finally, I mentioned at the end of Chapter 1 that there were at least two 
distinct questions of interest here: (1) How well do some of the leading 
stochastic optimisation methods perform when they are guided by one or more 
ad hoc variable selection heuristics? (2) How well do such methods perform 
when they are not guided in this way? I have concentrated so far on question
(2); in future work I will look at question (1). Here are two possibilities:

-  There is a big literature on variable selection in regression (ignoring 
data collection costs) which could provide ideas on how to focus the 
optimisation search (hints from stepwise regression methods, residual 
analysis, and so on). For example, suppose you have four variables you 
are already sure should be in the scale, and you are thinking about three 
new ones. By looking at the covariance matrix of all seven variables you 
can see if the new ones are likely to provide new information for predicting 
y above and beyond that already present in the old variables.

-  Using regression results on the “benefit” (only) of each variable to inform 
a method like TS when it is deciding on things like aspiration criteria.

-  It is not hard to construct measures of the desirability of a variable that 
trade off data collection costs and predictive accuracy in an ad hoc way. 
Table 6.1 presents one such measure in the 14-variable case. First, scale 
the marginal costs Cj by calculating mî c: ; small values are good. Then,
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Table 6.1: An ad hoc measure of the desirability of a variable in compromising 
between predictive accuracy and data collection costs, in the case p = 14.

Cost Cj Correlation (1) (2) dj =
Variable (US$) r. Good? ^  =%p- (1) ■ (2)

APACHE II score 3.33 0.39 20 1.0 20.0
Age of patient 0.17 0.17 * 1 2.3 2.3

SBP score 0.17 0.29 ** 1 1.3 1.3
CHF chest X-ray score 0.83 0.10 5 3.9 19.5

Blood urea nitrogen 0.50 0.32 ** 3 1.2 3.7
APACHE II coma score 0.83 0.35 ** 5 1.1 5.6

Serum albumin score 0.50 0.20 * 3 2.0 5.9
Shortness of breath 0.33 0.13 ** 2 3.0 6.0
Respiratory distress 0.33 0.18 * 2 2.2 4.3
Septic complications 1.00 0.06 6 6.5 39.0

Prior resp. failure 0.67 0.08 4 4.9 19.5
Recently hospitalised 0.67 0.14 4 2.8 11.1

Ambulatory score 0.83 0.22 5 1.8 8.9
Initial temperature 0.17 -0.06 * 1 6.5 6.5

do something similar with the correlations with the ratio ; again the 
good variables are small on this. Now take the product dj, as in the final 
column of the table. As it happens, this particular ad hoc desirability 
measure correlates well with whether or not a given variable appeared 
frequently in the 20 best models with p =  14; in fact, the predictors with 
the eight smallest values of dj agree with the eight variables possessing 
one or more asterisks in Table 6.1. Of course, the only way we know this 
is to have gone through the exercise of maximising expected utility as in 
Chapters 2 and 4; other ad hoc measures might well look just as plausible, 
and how can we choose among them? Also, the last column in the table 
rank-orders the variables in desirability but says nothing about how many 
should be used to achieve the optimal tradeoff. Nevertheless, one possible 
application of the dj, when normalised to probabilities in some way, would 
be to make a method like TS more intelligent in deciding which variable 
to bring next into the current model.
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6.2.1 Improved simulated annealing

The performance of plain ( “vanilla”) simulated annealing in Chapters 4 and 5 
was disappointing, so I decided to make another set of SA runs incorporating two 
improvements: the idea at the end of the previous section for teaching the stochastic 
optimisation methods about the desirability of the predictor variables, and the tabu 
search idea of random restarts. A detailed examination of a number of SA output 
files revealed that, even with temperature schedules that dropped the temperature 
slowly and with fairly high final temperatures, SA tended to get stuck in a local 
maximum of the criterion function fairly early in the run (e.g., as early as 1,500 
model evaluations into a run with a planned 5,000 model evaluations). To try for 
better simulated annealing results I defined an improved SA (ISA) algorithm, as 
follows:

(1) ISA begins by choosing 20 models completely at random and evaluating their 
estimated expected utility (EEU) values using N* replications (this is to 
initialise the league table of the 20 best models found so far).

(2) Next ISA starts the stochastic search at the null model (with no predictors), 
which becomes the current model, and computes its EEU value using the 
adaptive-AT* method (Section 4.5).

(3) ISA then begins proposing moves away from the current model using one-bit 
flips (at locations in the binary string governed by a pointer tha t scans from 
1 to p and back again to 1) and the variable desirability criterion of Table 
6.1. From the desirability values dj in the last column of that table I created 
probabilities p and p°ut—for flipping a 0 to a 1 and vice versa, respectively— 
using the transformation from desirability to probability given by

P f  = Pmin +  (ftnax -  Pmin) e~c(di _1), (6.1)

where (Pmim Pmax, c) are tuning constants to be specified by the user and p°ut
is simply taken to be 1 — pjn. Here pm[n and pmax govern how dogmatic the 
inclusion and exclusion processes should be, and c controls the rate at which 
desirability translates into probability of inclusion (recall that by construction 
small values of dj represent greater desirability, and the smallest possible
value is 1). Some experimentation led me to the choices (PmmjPmax, c) =
(0.1,0.9,0.1), which yielded the inclusion probabilities in Table 6.2 in the 14- 
variable case. A move away from the current model is then governed by two
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Table 6.3: Variable desirability values dj and the corresponding p™ values in the In ­
variable case, using the desirability-to-probability transformation given by equation 
( 6.1).

Variable (j) dj p f
APACHE II score 20.0 0.220

Age of patient 2.3 0.802
SBP score 1.3 0.876

CHF chest X-ray score 19.5 0.226
Blood urea nitrogen 3.7 0.711

APACHE II coma score 5.6 0.605
Serum albumin score 5.9 0.590
Shortness of breath 6.0 0.585
Respiratory distress 4.3 0.675
Septic complications 39.0 0.118

Prior resp. failure 19.5 0.226
Recently hospitalised 11.1 0.391

Ambulatory score 8.9 0.463
Initial temperature 6.5 0.562

processes in sequence: first a move is either proposed or not at random based 
on the and p°ut values, and then if a move is proposed it either takes place or 
not according to the usual SA acceptance probabilities. For example, with the 
p f1 values in Table 6.2, if the current model is (0 ,0 , . . . ,  0) ISA proposes a move 
to (1,0, . . .  ,0) with probability 0.220; suppose this proposal is turned down. 
ISA then proposes a move from (0,0, . . . ,  0) to (0 ,1 , . . . ,  0) with probability 
0.802; suppose this proposal is accepted. Then the move to this new model 
actually takes place or not with probability given by the usual SA acceptance 
regime based on the adaptive-W* method for evaluating the EEU. And so on.

(4) Step (3) is repeated until the algorithm gets stuck in the same place for 
k consecutive iterations, where—again after some experimentation—I chose 
k =  50 as a good compromise between effective exploration of local optima 
and effective search of the whole space. If k successive steps without a move 
take place at any time during the run, ISA implements a random restart: the 
temperature is again set to T0, a random initial model is generated, and cooling 
from this temperature begins all over again exactly as it did at the beginning 
of the entire algorithm. Throughout the run the league table of 20 best models 
is constantly updated.
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(5) Steps (3) and (4) are then iterated until the desired amount of CPU time has 
been exhausted.

I performed a simulation experiment with ISA similar to the one with vanilla SA 
whose results were given previously in Section 4.6.2. As in the earlier experiment 
there were five user inputs to vary:

•  r, the total number of loops from 1 to 14 in the location of the pointer used 
to propose a one-bit flip (this is chosen to achieve the specified target of CPU 
time);

•  N* (this varied from 2 to 20, as in vanilla SA);

•  T0 and T/, the initial and final values of the temperature (these again varied 
across the five settings (T0,X/) =  (10.0,1.0), (10.0,0.1), (2.5,0.1), (1.0,0.1), 
(0.5,0.05)); and

•  sc, the schedule used to decrease the temperature (as before 1 =  straight, 2 =  
geometric, 3 =  reciprocal, 4 =  logarithmic).

I used the same 108 combinations of input settings (almost a full factorial) as 
with vanilla SA, each of which took approximately 1,200 seconds. The actual CPU 
time again varied by input settings, this time from a mean (across the 30 runs) 
of 1010 to 1695 seconds, so as before I calculated both raw summaries and results 
adjusted (via regression) for differences in CPU time. Tables 6.4-6.6 summarise the 
results, which are much better than those for vanilla SA: the best input settings 
achieve an adjusted mean value of P20, the percentage of the actual 20 best models 
found in the run, of over 70%. For the very best input settings adjusted mean 
P20 =  74.2%; the corresponding value for vanilla SA was 55.5%, and TS and GA 
only achieved 64.9% and 66.5%, respectively.

Some further conclusions emerging from Tables 6.4-6.6 are as follows.

•  The logarithmic and reciprocal schedules performed best in the optimisation 
problem studied here using ISA: all 15 of the best input settings either had 
sc =  4 or 3 (12 of these were logarithmic), and all 16 of the worst input settings 
had sc = 1 or 2.

•  The effect of the initial and final temperatures on performance was complicated 
and was linked (as was true with vanilla SA) to the cooling schedule: for 
example, 14 of the 16 worst input settings had (T0,T /) =  (10.0,1.0) or
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Table 6.4: Results of the simulation study for improved SA with p = 14 (part 1). 
Values in parentheses are Monte Carlo standard errors; entries are sorted by adjusted 
means o fp 2Q.

P20 (% of 20 Actual 
Best Models Found)

N* To Tf sc
Mean CPU 
Time (sec)

Raw
Mean

Raw
SD

Adjusted
Mean

15 0.5 0.05 4 1349 0.748 0.016) 0.114 0.742
20 0.5 0.05 4 1494 0.753 0.017) 0.143 0.734
15 10 0.1 4 1360 0.715 0.017) 0.089 0.708
20 10 0.1 4 1349 0.706 0.017) 0.120 0.700
20 2.5 0.1 4 1495 0.708 0.016) 0.110 0.689
10 0.5 0.05 4 1251 0.685 0.018) 0.109 0.688
15 2.5 0.1 4 1407 0.698 0.018) 0.090 0.687
10 10 0.1 4 1408 0.690 0.018) 0.102 0.679
15 0.5 0.05 3 1127 0.655 0.014) 0.088 0.669
10 1 0.1 4 1057 0.648 0.017) 0.103 0.668
20 1 0.1 4 1278 0.660 0.015) 0.141 0.660
10 0.5 0.05 3 1088 0.640 0.017) 0.101 0.657
10 2.5 0.1 4 1453 0.671 0.017) 0.090 0.656
15 1 0.1 3 1156 0.635 0.021) 0.105 0.646
15 1 0.1 4 1032 0.620 0.017) 0.120 0.642
10 0.5 0.05 1 1188 0.628 0.013) 0.085 0.636
5 0.5 0.05 4 1126 0.608 0.013) 0.078 0.622

10 0.5 0.05 2 1094 0.601 0.025) 0.450 0.618
15 0.5 0.05 1 1129 0.598 0.020) 0.104 0.612
20 0.5 0.05 3 1175 0.600 0.020) 0.138 0.610

4 1 0.1 4 1056 0.590 0.018) 0.101 0.610
5 10 0.1 4 1040 0.588 0.014) 0.099 0.610
5 0.5 0.05 1 1205 0.601 0.019) 0.085 0.608
5 1 0.1 4 1102 0.580 0.018) 0.073 0.596

10 1 0.1 3 1010 0.571 0.015) 0.088 0.595
20 0.5 0.05 2 1113 0.578 0.015) 0.108 0.593
20 1 0.1 3 1138 0.578 0.016) 0.110 0.591

5 0.5 0.05 3 1110 0.576 0.019) 0.092 0.591
15 0.5 0.05 2 1091 0.566 0.019) 0.104 0.583
20 0.5 0.05 1 1093 0.563 0.015) 0.109 0.580
10 2.5 0.1 3 1371 0.588 0.014) 0.087 0.580
5 2.5 0.1 4 1557 0.601 0.014) 0.080 0.576

10 1 0.1 1 1179 0.565 0.018) 0.094 0.574
5 0.5 0.05 2 1091 0.555 0.014) 0.092 0.572

15 1 0.1 1 1318 0.563 0.017) 0.094 0.565
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Table 6.5: Results of the simulation study for improved SA with p = 14 (part2).

P20 (% of 20 Actual 
Best Models Found)

N* To Tf sc
Mean CPU 
Time (sec)

Raw
Mean

Raw
SD

Adjusted
Mean

10 1 0.1 2 1159 0.550 (0.018) 0.086 0.561
15 10 0.1 3 1237 0.556 (0.018) 0.082 0.560
15 2.5 0.1 3 1318 0.560 (0.012) 0.103 0.557
5 1 0.1 1 1435 0.565 (0.014) 0.094 0.551

20 2.5 0.1 3 1296 0.550 (0.017) 0.108 0.549
3 1 0.1 4 1300 0.551 (0.016) 0.106 0.549
5 1 0.1 2 1219 0.540 (0.017) 0.077 0.546
2 1 0.1 4 1090 0.525 (0.016) 0.088 0.542

15 1 0.1 2 1210 0.535 (0.014) 0.108 0.541
2 0.5 0.05 4 1174 0.531 (0.022) 0.074 0.541

10 10 0.1 3 1407 0.546 (0.020) 0.946 0.535
20 1 0.1 1 1279 0.533 (0.012) 0.088 0.533

5 2.5 0.1 3 1373 0.541 (0.014) 0.081 0.533
4 1 0.1 3 1138 0.518 (0.014) 0.803 0.531
2 0.5 0.05 3 1154 0.518 (0.019) 0.072 0.530
5 1 0.1 3 1214 0.523 (0.018) 0.096 0.529

20 10 1 4 1464 0.543 (0.082) 0.075 0.527
2 0.5 0.05 1 1219 0.518 (0.016) 0.092 0.524
5 10 1 4 1412 0.536 (0.018) 0.080 0.524
5 10 0.1 3 1282 0.523 (0.020) 0.098 0.523
2 2.5 0.1 4 1409 0.531 (0.019) 0.101 0.520
2 10 0.1 4 1442 0.531 (0.016) 0.090 0.517
2 0.5 0.05 2 1232 0.510 (0.017) 0.101 0.515
4 1 0.1 1 1282 0.510 (0.146) 0.093 0.510

10 2.5 0.1 2 1367 0.518 (0.018) 0.066 0.510
4 1 0.1 2 1270 0.506 (0.013) 0.078 0.507
3 1 0.1 2 1259 0.500 (0.019) 0.103 0.502

15 10 1 4 1426 0.515 (0.020) 0.109 0.502
3 1 0.1 3 1269 0.500 (0.010) 0.101 0.501
3 1 0.1 1 1240 0.496 (0.013) 0.101 0.500

10 10 1 4 1695 0.535 (0.015) 0.084 0.498
10 2.5 0.1 1 1343 0.500 (0.022) 0.111 0.495
5 2.5 0.1 1 1418 0.506 (0.014) 0.099 0.494
2 1 0.1 3 1186 0.485 (0.172) 0.076 0.494
5 2.5 0.1 2 1403 0.496 (0.017) 0.077 0.485
2 1 0.1 1 1303 0.483 (0.015) 0.101 0.481
2 1 0.1 2 1298 0.481 (0.019) 0.077 0.480
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Table 6.6: Results of the simulation study for improved SA with p = 14 (parts).

P20 (% of 20 Actual 
Best Models Found)

N* To Tf sc
Mean CPU 
Time (sec)

Raw
Mean

Raw
SD

Adjusted
Mean

20 10 0.1 3 1184 0.471 (0.018) 0.124 0.480
20 1 0.1 2 1174 0.468 (0.015) 0.107 0.478
10 10 1 3 1694 0.501 (0.014) 0.056 0.464
5 10 1 1 1483 0.480 (0.013) 0.086 0.462

10 10 1 2 1489 0.480 (0.025) 0.099 0.461
10 10 1 1 1603 0.483 (0.016) 0.098 0.454
2 2.5 0.1 3 1383 0.461 (0.018) 0.073 0.452

15 2.5 0.1 2 1309 0.450 (0.016) 0.111 0.448
2 2.5 0.1 1 1473 0.461 (0.013) 0.082 0.444

10 10 0.1 1 1201 0.435 (0.025) 0.097 0.442
5 10 0.1 1 1430 0.451 (0.021) 0.074 0.438
5 10 0.1 2 1449 0.451 (0.018) 0.093 0.436

20 10 1 3 1429 0.448 (0.013) 0.107 0.435
5 10 1 3 1352 0.441 (0.018) 0.076 0.435
5 10 1 2 1474 0.450 (0.019) 0.069 0.433
2 10 0.1 3 1562 0.458 (0.016) 0.085 0.433

15 2.5 0.1 1 1379 0.440 (0.013) 0.111 0.431
2 10 1 4 1490 0.438 (0.019) 0.075 0.419
2 10 1 3 1433 0.430 (0.015) 0.083 0.417
2 2.5 0.1 2 1477 0.430 (0.014) 0.077 0.413

15 10 1 3 1341 0.418 (0.013) 0.113 0.413
15 10 0.1 1 1255 0.408 (0.021) 0.116 0.410
15 10 1 1 1271 0.408 (0.016) 0.077 0.409
10 10 0.1 2 1149 0.395 (0.018) 0.097 0.407
20 2.5 0.1 1 1138 0.388 (0.018) 0.137 0.401
20 2.5 0.1 2 1124 0.380 (0.016) 0.124 0.394

2 10 0.1 2 1487 0.411 (0.020) 0.081 0.393
2 10 0.1 1 1400 0.403 (0.016) 0.076 0.392

15 10 1 2 1454 0.403 (0.016) 0.101 0.388
15 10 0.1 2 1073 0.361 (0.014) 0.089 0.380
2 10 1 1 1377 0.381 (0.018) 0.094 0.373
2 10 1 2 1350 0.378 (0.026) 0.082 0.372

20 10 1 1 1096 0.320 (0.020) 0.104 0.337
20 10 1 2 1174 0.305 (0.019) 0.097 0.315
20 10 0.1 1 1084 0.273 (0.014) 0.096 0.291
20 10 0.1 2 1073 0.233 (0.013) 0.096 0.252
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Figure 6-1: Parallel boxplots comparing GA, ISA, and TS in the 1^-variable case.

o  -

GA ISA TS

Optimisation Method

(10.0,0.1) (when straight or geometric schedules were used), but two of the 
top four input settings also had (To,7/) =  (10.0,1.0) (when the schedule was 
logarithmic).

• In general low values of N  for the logarithmic and reciprocal schedules, 
and high values of N  for the straight and geometric schedules, performed 
badly with ISA. The worst combination was a high value for the initial 
temperature together with large N  for the straight and geometric schedules. 
It is noteworthy in comparing ISA to vanilla SA that large values of N  work 
so well with ISA when the best cooling schedule is chosen (all 16 of the best 
input settings have N  > 10). This appears to be due not so much to the 
random-restart feature in ISA as to the use of desirability to search for good 
variables to include in the model.

• With the modifications of SA involving random restarts and the inclusion and 
exclusion of variables based on desirability, the new ISA outperforms both of 
the versions of TS and GA studied in Chapter 4 in the p = 14 case. Figure 
6.1 gives parallel boxplots of the results from GA, ISA, and TS across all 
input configurations examined; the maximum across the three methods was
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Table 6.7: Input settings and results for the 3-hour runs of ISA in the simulation 
experiment with p = 83 (SDs in parenthesis).

Run
Input 1 2 3 4 5 6 7 8 9 10

N* 15 20 15 20 20 10 15 10 15 10
To 0.5 0.5 10.0 10.0 2.5 0.5 2.5 10.0 0.5 1.0
Tf 0.05 0.05 0.1 0.1 0.1 0.05 0.1 0.1 0.05 0.1

Cooling
Schedule 4 4 4 4 4 4 4 4 3 4

Run
Result 1 2 3 4 5 6 7 8 9 10
Mean
CPU 0.88 0.96 1.12 1.11 0.77 1.08 0.86 0.88 0.98 1.12

(10K sec)
#  (N  = 1) 4642 5326 8108 7995 4718 5169 5554 8426 6727 7053
#  (N > 1) 212 533 109 97 107 273 124 187 109 120

Mean* 16.3 14.4 19.9 19.0 15.7 18.1 17.1 19.4 19.6 15.9
Dimension (3.5) (4.3) (2.4) (1.4) (2.4) (2.1) (2.6) (1.1) (1.2) (3.8)

Min*
Dimension 0.8 1.0 1.0 1.0 1.4 1.0 1.0 1.0 1.0 4.6

Max*
Dimension 32.6 29.0 35.0 32.2 29.6 29.8 32.2 31.8 33.4 26.6

Mean*
Apparent -10.9 -10.2 -11.4 -10.9 -10.2 --11.0 -10.6 -11.3 -11.1 -10.2

Utility
Mean**

Real -8.5 -7.8 -8.6 -8.2 -8.1 -8.3 -8.2 -8.8 -8.6 -8.3
Utility
Mean** 7.3 6.6 6.4 5.0 4.9 6.3 5.1 7.5 6.6 7.3

Dimension (1.4) (0.7) (1.4) (1.2) (1.1) (2.8) (1.2) (2.9) (1.5) (3.4)
#6**
Best 3 5 3 3 3 3 3 4 3 3
Max

Efficiency 0 14.7 0 0 2.9 8.3 2.9 0 0 0
(IK)

attained by ISA, although TS still has the largest median and the smallest 
variability around the median (which gives some idea of typical performance 
of the algorithms without a lot of fine-tuning). This comparison is not quite 
fair to TS and GA, because the versions studied earlier did not have the benefit 
of the desirability idea. In any case ISA is perhaps best viewed as a hybrid 
method, incorporating ideas both from SA and TS, and it would seem that if
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a great deal of hybridising experimentation is allowed all three methods would 
be likely to perform about the same (in fact, if you combine ideas from several 
methods it is no longer even meaningful to talk about a contest between the 
three approaches).

Table 6.7 summarises the performance of the improved SA method in the p = 83 
case (naming conventions for the inputs are as above). As with GA, TS, and ordinary 
SA, I took the ten best input configurations from the p = 14 case and made five 
runs with different random number seeds, in each case allowing a budget of three 
hours of CPU time. In the runs reported on here N* varied from 10 to 20, I used 
two different cooling schedules (logarithmic in most of the cases, and in one case 
reciprocal) and the initial and final temperatures ranged from 0.5 to 10.0 and 0.05 
to 0.1, respectively. The mean CPU times actually observed varied from 7,700 to 
11,200 seconds. The total number of models visited by ISA ranged from 4,854 to 
8,613 (much better than vanilla SA), and in most of the cases the great majority of 
these models were examined with N  = 1.

It is evident from the mean real utility and mean dimension rows of this table 
that the two new ideas in ISA have led to a dramatic improvement over vanilla SA; 
in fact, ISA performs about as well as GA (the previously best method) with p = 83. 
In future work I intend to quantify how much of ISA’s improvement is due to the 
random restart idea and how much to the introduction of the desirability criterion.
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