

University of Bath

PHD

Stochastic optimisation methods for cost-effective quality assessment in health

Fouskakis, Dimitris

Award date:
2001

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

Stochastic Optimisation M ethods
for Cost-Effective Quality

Assessment in Health
submitted by

Dimitris Fouskakis
for the degree of Ph.D.

of the

University of Bath
2001

C O P Y R IG H T

Attention is drawn to the fact that copyright of this thesis rests with its author.
This copy of the thesis has been supplied on the condition that anyone who consults
it is understood to recognise that its copyright rests with its author and that no
quotation from the thesis and no information derived from it may be published
without the prior written consent of the author.

This thesis may be made available for consultation within the University Library
and may be photocopied or lent to other libraries for the purposes of consultation.

Signature of Author

Dimitris Fouskakis

UMI Number: U1B1765

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U131765
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

W N m S K Y OF OATH s
LIBRARY |

3 5 2 0 JUN 2001
V*\S>

To

M y M other and Sister

Abstract

Patient sickness at admission to hospital is traditionally measured by using
logistic regression of mortality within 30 days of admission on 0(100) sickness
indicators to construct a sickness scale, employing classical variable selection
methods to find an “optimal” subset of 10-20 indicators. Such methods ignore
the considerable differences among the sickness indicators in cost of data collection,
which become crucial when admission sickness is used to drive programmes (now
under consideration in several countries, including the UK and US) that attem pt to
identify substandard hospitals by comparing observed and expected mortality (given
admission sickness). When both data-collection cost and accuracy of prediction of
30-day mortality are considered, a large optimisation problem arises in which costly
variables that do not predict well enough should be omitted from the scale.

In this dissertation I take a Bayesian decision-theoretic approach (based on
maximisation of expected utility) to solving this optimisation problem, using data
from a large US study of quality of hospital care in the 1980s. I use genetic
algorithms (GA), simulated annealing (SA), tabu search (TS), and other methods
from the optimisation literature to find (near-)optimal subsets of predictor variables.
I find that (i) the best versions of GA outperform the best versions of TS, with the
advantage for GA growing as the number p of variables available for constructing
the sickness scale increases; (ii) both GA and TS are sharply better than SA in
this problem for all values of p studied; and (iii) optimal subsets of variables that
compromise between data collection costs and predictive accuracy have the potential
to generate large cost savings in quality assessment programmes.

This work (a) provides a new perspective on variable selection in generalised
linear models, (b) offers new insights into the comparative advantages and flaws of
competing optimisation methods, and (c) produces results of direct use in health
policy.

Summary

An expert is a person who has made all the mistakes which can be made in a very
narrow field.

— Niels Bohr

In tro d u c tio n . An important topic in health policy is the assessment of the
quality of health care offered to hospitalised patients. Quality of care is usually
thought to depend mainly on three ingredients: (i) process, which is what health
care providers do on behalf of patients, (ii) outcomes, which are what happens to
patients as a result of the care they receive, and (iii) patient sickness at admission,
because the appropriateness of outcomes cannot be judged without taking account
of the burden of illness brought to the hospital by its patients.

A direct audit of the processes of care is usually regarded as the single most
informative component in an evaluation of quality, but process is much more
expensive to measure than outcomes or admission sickness. Interest has therefore
focused in recent years, in countries such as the United States and the United
Kingdom, on an indirect method of assessment—which might be termed the input-
output approach1—in which hospital outcomes (for instance, death within 30 days
of admission) are compared after adjusting for differences in inputs (sickness at
admission). The idea is to treat what goes on inside the hospital—process—as a
black box, with the contents of the box inferred by examining its outputs after
taking account of its inputs.

In d ire c t m easu rem en t o f q u a lity o f h e a lth care . In practice, to indirectly
measure quality of care at any given moment in time, this strategy proceeds by
(a) taking a sample of hospitals and a sample of patients in the chosen hospitals,
(b) obtaining death outcomes for the sampled patients (for example, from central
government data bases), (c) extracting information on admission sickness from the
medical records of these patients, (d) forming an expected mortality rate for each

1In the UK this approach is also referred to as league-table quality assessment, by analogy with
the process of ranking football teams.

iv

hospital based on (c), and (e) comparing observed and expected mortality to identify
unusual hospitals (on both the “good” and “bad” ends of the spectrum). Since this
would involve abstracting data from the charts of many thousands of patients if it
were attempted on a large scale, the cost-effective measurement of admission sickness
is crucial to this approach.

Quality of care assessment is a highly disease-specific activity: for instance, the
right admission sickness variables to examine for pneumonia would be quite different
from those for heart attack. With any given disease there will be on the order of
100 separate variables potentially available in the medical record that are directly or
indirectly related to admission sickness. In the case of pneumonia, for example, on
which I focus exclusively in this dissertation, a list of the important variables from
a clinical perspective would include such things as the systolic blood pressure on day

1 of admission, the presence or absence of prior respiratory failure, and the blood urea

nitrogen level (a measure of kidney functioning).

P rev io u s app roaches to co n s tru c tin g adm ission sickness scales. The
standard method for creating an expected mortality rate from these admission
sickness inputs in any given nation, such as the US or UK, is logistic regression,
with 30-day death as the outcome, and using a nationally-representative sample of
patients to normalise the expectation to average care across the nation. Typically
a frequentist variable-selection method—such as all-subsets regression—is employed
to find a parsimonious and clinically reasonable subset of the available sickness
variables. In a major US study conducted by the Rand Corporation, of quality
of hospital care for elderly patients in the late 1980s, this approach was used to
reduce the list of 83 available sickness indicators for pneumonia down to a core of
14 predictors.

As good as the resulting scale may be on grounds of simplicity and ease of
clinical communication, I take the view in this dissertation tha t—when the goal is
the creation of a sickness scale that may be used prospectively to measure quality
of care on a new set of patients not yet examined—the original Rand approach is
sub-optimal, because it takes no account of differences in the cost of data collection
among the available predictors (which varied for pneumonia from 10 seconds to 15
minutes of abstraction time per variable). The Rand approach represents a kind of
benefit-only analysis; I propose a cost-benefit analysis, in which variables are chosen
for the final scale only when they predict mortality well enough given how much
they cost to collect.

A large o p tim isa tio n p rob lem . Weighing data-collection costs against the
accuracy of prediction creates a large optimisation problem which cannot be solved

Dimitris Fouskakis (2001) Stochastic Optim isation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessm ent in Health

V

Figure 0-1: Boxplots of estimated expected utility as a function of number of
predictors, based on the Rand scale with p = 14 variables.

[

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of Variables

by brute-force enumeration: for example, when p = 83 it is necessary to compare
2P = 9.7 • 1024 subsets of sickness variables, and even at the rate of 100 subsets
examined per second—which is far faster than present computational resources
permit with desktop workstations—it would take more than 3 • 1015 years to find
the optimal subset by looking at all of them.

Suppose (a) the 30-day mortality outcome yi and data on p sickness indicators
(xn , . . . , xip) have been collected on n individuals sampled randomly from a
population V of patients with a given disease, and (b) the goal is to predict the
death outcome for n* new patients who will in the future be sampled randomly
from V , (c) on the basis of some or all of the predictors Xj, when (d) the marginal
costs of data collection per patient C\ , . . . , Cp for the Xj vary considerably. What is
the best subset of the Xj to choose, if a fixed amount of money is available for this
task and you are rewarded based on the quality of your predictions?

A B ayesian solution. To solve this problem I use a Bayesian decision-
theoretic approach based on maximisation of expected utility. The utility function
I use has two components, one to quantify data collection costs and one to keep

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

vi

track of predictive successes and failures on future patients. The data on which
I demonstrate this method in the dissertation consist of a representative sample
of n = 2,532 elderly American patients hospitalised in the period 1980-86 with
pneumonia, taken from the Rand study described above. Since data on future
patients are not available, I use a cross-validation approach in which (i) a random
subset of m observations is drawn for creation of the mortality predictions and (ii)
the quality of those predictions is assessed on the remaining (n — m) observations
(with this approach the expectation in the calculation of expected utility is over all
possible cross-validation splits).

I have performed a brute-force evaluation of all 214 = 16,384 possible subsets of
the predictors in the Rand scale based on averages across 500 random splits in each
case, with results as in Figure 0-1. It is clear that the full Rand scale is sharply
suboptimal, with scales based on 4-7 variables saving almost US$8 per patient,
which would translate into many millions of dollars or pounds if the league-table
approach were to receive widespread implementation in the US or UK.

S to ch astic o p tim isa tio n m ethods. Of course, this kind of brute-force
enumeration will not work with the full set of p = 83 variables available. In
the main part of the dissertation I compare a variety of stochastic optimisation
methods—including simulated annealing (SA), genetic algorithms (GA), and tabu
search (TS)—both in the p = 14 case where we know the right answer and in the
full p = 83 case where we do not. I have examined the geometry of the solution
space; studied the optimal allocation of CPU resources between (i) searching for new
models and (ii) increasing the number of cross-validation splits to obtain a better
estimate of the quality of models already visited; conducted a variety of sensitivity
analyses to examine the stability of my findings across alternative formulations; and
performed extensive simulations to obtain recommendations on the input settings to
the optimisation methods which maximise their performance. Results are as follows.

• The most up-to-date variations of GA—featuring (i) elitist strategies, (ii)
uniform or highly uniform crossover operators, (iii) the retention of 100%
of the previous population in each repetition, and (iv) the use of small to
moderate population sizes (e.g., 30-50)—outperform TS by an amount which
is small with p = 14 but large with p = 83. GA was the only method in the
83-variable case able to find good models in a modest amount of CPU time.

• However, with p = 14 GA is also the method whose performance depends most
critically on intelligent choice of input settings. TS is far more robust than
GA in the 14-variable case to sub-optimal choice of user-defined inputs.

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

vii

• Both GA and TS dramatically dominate SA for both values of p examined.

These findings are interesting because TS is almost unknown to statisticians and
there is a substantial body of folklore in statistics expressing the view that GA is
inferior (even to SA) in many optimisation problems.

The work presented here (a) provides a new perspective on variable selection in
generalised linear models, (b) offers new insights into the comparative advantages
and flaws of competing optimisation methods, and (c) produces results of direct use
in health policy.

Dimitris Fouskakis (2001) S tochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessm ent in Health

Acknowledgements

The mind is like a parachute: it functions only when it’s open.

— Anonymous

I feel deeply indebted to my supervisor and dear friend, Professor David Draper,
whose research interests served as a springboard for this thesis. I would also like to
thank him for his tireless assistance and substantial support throughout both my
MSc and PhD. Thanks also go to Dr Katherine Kahn and other physicians at the
Rand Corporation for providing data and clinical expert judgement as inputs to this
project, and to Dr William Browne for his comments on the dissertation. Special
thanks are due to the University of Bath for their financial support.

I would also like to thank my fellow office mates, past and present, especially
David Esparza and Fas Yousaf, for their friendship and humour, and all my friends,
both in Greece and the UK, for their encouragement and emotional support.

Furthermore, my special thanks go to my great friend and housemate Panos,
for simply being the best friend I had during all these years in Bath, and of course
to Katerina and Lampros for making this difficult year very special. Last but not
least, I would like to thank my girlfriend Vhyna for her devoted love, support and
understanding, and for making me so happy through the last two years.

To conclude with, I dedicate the present thesis to my mother Vaso and my sister
Kelly, for supporting me greatly during all these years with their love and affection.

Contents

D edication i

A bstract ii

Sum m ary iii

A cknowledgem ents viii

1 Introduction 1
1.1 The health policy background .. 1
1.2 Variable se lec tio n .. 3
1.3 C o n ten ts .. 5

2 Problem form ulation 8
2.1 Decision-theoretic a p p ro a c h ... 8

2.1.1 Data-collection utility .. 9
2.1.2 Predictive u t i l i t y ... 9

2.2 The goals of this p r o je c t ... 12

3 Stochastic optim isation 14
3.1 In troduction .. 14
3.2 Simulated annealing (SA) .. 16

3.2.1 Generic and problem-specific d e c is io n s .. 18
3.2.2 M odifications.. 21
3.2.3 Messy simulated annealing (M SA).. 27
3.2.4 SA S u m m a ry ...30

3.3 Threshold acceptance (T A).. 31
3.4 Genetic algorithms (G A) ... 33

3.4.1 Biological te rm in o lo g y ..33
3.4.2 The algorithm .. 34

ix

CONTENTS x

3.4.3 The Schema Theorem ..36
3.4.4 Implementation of G A ..38
3.4.5 M odifications..40
3.4.6 Genitor algorithm ... 52
3.4.7 CHC adaptive search a lg o r ith m ..52
3.4.8 GA su m m a ry ..53

3.5 Tabu search (T S) ..54
3.5.1 The algorithm ..55
3.5.2 Implementation and modifications of T S59
3.5.3 TS summary ..65

3.6 Summary of all optimisation methods s tu d i e d .. 65

4 R esu lts in th e case p = 14 67
4.1 In troduction ... 67
4.2 Full enumeration r e s u l t s ... 68
4.3 Geometry of the solution space .. 70
4.4 Optimal choice of N ... 73
4.5 Comparison of optimisation methods: preliminary r e s u lts75
4.6 A simulation experiment with p = 1 4 ...78

4.6.1 Tabu s e a rc h ... 79
4.6.2 Simulated a n n e a lin g ...80
4.6.3 Genetic algorithm ... 82

4.7 Comparison of optimisation methods: final results for p = 1 490
4.8 Sensitivity an a ly ses .. 91

4.8.1 Second full-enumeration run: different random number seed . 91
4.8.2 Third full-enumeration run: different choice of . . . 92V n ' n /

4.8.3 Quantitative comparison of the full-enumeration r u n s 93
4.8.4 Penalties and rewards for prediction accuracy and marginal

costs per v a riab le .. 94
4.8.5 Interaction t e r m s ... 95

5 R esu lts in th e case p = 83 97
5.1 In troduction ... 97
5.2 One-week r e s u l t s ..101
5.3 A simulation experiment with p — 8 3 ...104

5.3.1 Tabu s e a rc h ...106
5.3.2 Simulated a n n e a lin g ... 106

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

CONTENTS xi

5.3.3 Genetic algorithm ..109
5.4 Results with 24 hours of CPU t i m e ... I l l

5.4.1 Tabu s e a rc h ... I l l
5.4.2 Simulated annealing ... 112
5.4.3 Genetic algorithm ..113

5.5 Comparison of optimisation methods: final results with p = 83113

6 Conclusions and extensions 116
6.1 Summary of the project and its main f in d in g s ..116
6.2 Suggestions for future work .. 119

6.2.1 Improved simulated an n ea lin g ...123

Bibliography 132

Dimitris Fouskakis (2001) Stochastic Optim isation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

List of Figures

0-1 Boxplots of estimated expected utility as a function of number of
predictors, based on the Rand scale with p = 14 variables....................... v

3-1 The four temperature schedules in Table 3.1, with To = 1.0, Tf = 0.1,

and M — 1 ,000 ... 19

3-2 An example of decoding of the M-chromosome c = [(3 ,0), (1 ,1), (3 ,1),

(2 .0), (5,1)] to the chromosome (1 ,0 ,0 ,1 ,1) with respect to the
template (1, 0 ,0 ,1 ,1) ..28

3-3 Example of mutation of the M-chromosome c = [(3 ,0), (1 ,1), (3 ,1),

(2 .0), (5,1)]. Vertical arrows indicate places where allelic and genic
mutations are applied. Allelic mutation switches the bit, while genic
mutation randomly changes the position of the bit..29

4-1 Estimated expected utility as a function of number of predictors
retained, from the first full-enumeration run with p = 14.............................. 70

4-2 Tree of adjacent models (k = A) expanded out to four levels, with the
neighbourhood structure induced by moves based on one-bit flips. The
horizontal and vertical scales are arbitrary... 71

4-3 Perspective plot of the expected utility “surface” fo r the 4~variable tree
expanded out to four levels... 72

4-4 Performance of SA on a run that found the global optimum in the
p = 14 case, allowing the method 24 hours of CPU time at 400 MHz. 73

4-5 Actual expected utility as a function of N for a random-walk search
strategy (the horizontal scale is logarithmic)...74

4-6 Parallel boxplots comparing the three optimisation methods in the 14-
variable case.. 92

4-7 Like Figure 4~1 but with a different random number seed..........................93

4-8 Like Figures 4~1 cmd 4~7 but with (^J1, ẑ 1) = (| , §) instead of (| , |) . 93

xii

LIST OF FIG URES xiii

5-1 Estimated (real) expected utility as a function of number of predictors
retained, based on the 3,000 best models found from the one-week runs
with p — 83.. 103

6-1 Parallel boxplots comparing GA, ISA, and TS in the Invariable case. 129

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessm ent in Health

List of Tables

1.1 The full list of the 83 variables relevant to sickness at admission for
pneumonia patients, using Rand naming conventions.............................. 4

1.2 The final variables for pneumonia chosen by Rand.................................... 6

2.1 Cross-tabulation of actual versus predicted death status. The left-
hand table records the monetary rewards and penalties for correct and
incorrect predictions; the right-hand table summarises the frequencies
in the 2 x 2 tabulation...11

3.1 Families of temperature schedules for simulated annealing...........................19

3.2 Illustrative rules for tabu list size...62

4.1 The 14 variables in the Rand pneumonia admission sickness scale,
together with their approximate data collection costs per patient and
correlation with 30-day death (CHF = congestive heart failure). . . . 69

4.2 Renaming the 16 models with p = 4 .. 72

4.3 Preliminary comparison of GA, MSA, SA, TS, and TA. The
adaptive-N* method was used in all cases. Boldface indicates the
best result in each column for each CPU time constraint............................ 77

4.4 Results of the simulation study for TS with p = 14 (part 1). Values
in parentheses are Monte Carlo standard errors; entries are sorted by
adjusted means of P20.. 81

4.5 Results of the simulation study for TS with p = 14 (part 2)..........................82

4.6 Results of the simulation study for SA with p = 14 (part 1). Values
in parentheses are Monte Carlo standard errors; entries are sorted by
adjusted means of P20.. 83

4.7 Results of the simulation study for SA with p = 14 (part 2)..........................84

4.8 Results of the simulation study for SA with p = 14 (part 3)....................... 85

xiv

LIST OF TABLES xv

4.9 Results of the simulation study for GA with p = 14 (part 1). Values
in parentheses are Monte Carlo standard errors; entries are sorted by
adjusted means of p2o.. 87

4.10 Results of the simulation study for GA with p = 14 (part 2) .88
4.11 Results of the simulation study for GA with p = 14 (part 3) .89
4.12 Results of the simulation study for GA with p = 14 (part 4) .90
4.13 Comparison of the 20 best models of the first full-enumeration run

with the other 2 runs... 94
4.14 Pairwise rank correlations across the three full-enumeration runs as

a function of the number of variables in the model.......................................95

5.1 The full set of 83 variables, together with their approximate data
collection costs per patient, correlation r with 30-day death, and
presence in the original Rand 14~variable scale (part 1)............................. 98

5.2 The full set of 83 variables (part 2)..99
5.3 Input settings for the one-week runs...102
5.4 Distribution of model dimension in the 3,000 best models from the

one-week runs, by optimisation method..102
5.5 Summary of the 3,000 best and the 100 best models found in the one-

week runs..104
5.6 Input settings and results for the 3-hour runs of TS in the simulation

experiment with p = 83 (SDs in parenthesis)..107
5.7 Input settings and results for the 3-hour runs of SA in the simulation

experiment with p = 83 (SDs in parenthesis)..108
5.8 Input settings and results for the 3-hour runs of GA in the simulation

experiment with p = 83 (SDs in parenthesis; for explanation of other
symbols see Table 5.6)... 110

5.9 Input settings and results for the 24~hour run of TS in the simulation
experiment with p = 83..I l l

5.10 Input settings and results for the 24~hour run of SA in the simulation
experiment with p = 83..112

5.11 Input settings and results for the 24~hour run of GA in the simulation
experiment with p = 83..113

5.12 Comparison of the total number of utility evaluations achieved by the
three optimisation methods in the 24~hour runs.. 114

6.1 An ad hoc measure of the desirability of a variable in compromising
between predictive accuracy and data collection costs, in the casep = 14.122

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessm ent in Health

LIST OF TABLES xvi

6.3 Variable desirability values dj and the corresponding p j 1 values in the
14-variable case, using the desirability-to-probability transformation
given by equation (6.1)..124

6.4 Results of the simulation study for improved SA w ithp = 14 (part 1).
Values in parentheses are Monte Carlo standard errors; entries are
sorted by adjusted means of P20..126

6.5 Results of the simulation study for improved SA with p = 14 (part2). . 127
6.6 Results of the simulation study for improved SA with p = 14 (parts). . 128
6.7 Input settings and results for the 3-hour runs of ISA in the simulation

experiment with p — 83 (SDs in parenthesis).. 130

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

Chapter 1

Introduction

The last thing one knows when writing a book is what to put first.

— Blaise Pascal

1.1 The health policy background

In 1983 the US federal government established a Prospective Payment System
(PPS) in order to control the costs of reimbursing hospitals for care of elderly
and handicapped patients under the Medicare programme. Prior to 1983, under
the former retrospective payment system, the care was provided first and then the
government reimbursed the hospital. To the extent that this system contained
counterproductive economic incentives, the tendency was to over-treat patients in
an attem pt to increase profits. Under PPS, a fixed price for each episode of care was
established, so tha t in effect hospitals knew before the care was provided how much
they would be paid. At the time PPS began, concern arose that the new tendency
would be to under-treat patients, giving rise to the possibility of a decline in the
quality of hospital care offered under Medicare.

The assessment of the quality of health care offered to hospitalised patients is
an important topic in health policy. Quality of care is usually thought to depend
mainly on three ingredients (Donabedian 1981): process, which is what health care
providers do on behalf of patients, outcomes, which are what happens to patients
as a result of the care they receive, and patient sickness at admission, because the
appropriateness of outcomes cannot be judged without taking account of the burden
of illness brought to the hospital by the patient.

In 1985, the Rand Corporation began a study (Kahn et al. 1990b) of the effects
of PPS on quality of care. Approximately 16,500 elderly patients, aged 65 and

1

1 Introduction 2

over, hospitalised with one or another of {congestive heart failure, acute myocardial

infarction, hip fracture, pneumonia, cerebrovascular accident, depression}, were selected
in a nationally representative manner from five different states, each from a different
geographic region of the nation: California, Florida, Indiana, Pennsylvania and
Texas. Full details on the sampling plan are available in (Draper et al. 1990).

A direct audit of the processes of care is usually regarded as the single most
informative component in an evaluation of quality, but process is much more
expensive to measure than outcomes or admission sickness (Kahn et al. 1990a).
Interest has therefore focused in recent years, in countries such as the United
States and the United Kingdom, on an indirect method of assessment—which has
been termed the input-output approach (Draper 1995)—in which hospital outcomes
(for instance, death within 30 days of admission) are compared after adjusting for
differences in inputs (sickness at admission). (In the UK this approach is also referred
to as league-table quality assessment (Goldstein and Spiegelhalter 1996), by analogy
with the process of ranking football teams.) The idea is to treat what goes on
inside the hospital—process—as a black box, with the contents of the box inferred
by examining its outputs after taking account of its inputs (Daley et al. 1988).

In practice, to indirectly measure quality of care at any given moment in time,
this strategy proceeds by (a) taking a sample of hospitals and a sample of patients
in the chosen hospitals, (b) obtaining death outcomes for the sampled patients
(for example, from central government data bases), (c) extracting information
on admission sickness from the medical records of these patients, (d) forming
an expected mortality rate for each hospital based on (c), and (e) comparing
observed and expected mortality to identify unusual hospitals (in both tails of
the distribution). Since this would involve abstracting data from the charts of
many thousands of patients if it were attempted on a large scale, the cost-effective
measurement of admission sickness is crucial to this approach.

Quality of care assessment is a highly disease-specific activity: for instance, the
best admission sickness variables to examine for pneumonia would be quite different
from those for heart attack. With any given disease there will be on the order of
100 separate variables potentially available in the medical record that are directly or
indirectly related to admission sickness. In the case of pneumonia, for example, on
which I focus exclusively in this dissertation, a list of the important variables from
a clinical perspective (Kahn et al. 1990b) would include such things as systolic blood

pressure on day 1 of admission, the presence or absence of prior respiratory failure, and
the blood urea nitrogen level (a measure of kidney functioning).

The standard method for creating an expected mortality rate from these

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

1 Introduction 3

admission sickness inputs is logistic regression (Hosmer and Lemeshow 1989), with
30-day death as the outcome, and using a nationally-representative sample of
patients to normalise the expectation to average care across the nation. Typically
a frequentist variable-selection method—such as all-subsets regression (Weisberg
1985)—is employed to find a parsimonious and clinically reasonable subset of
the available sickness variables. In a major US study conducted by the Rand
Corporation, of quality of hospital care for elderly patients in the late 1980s, this
approach was used (Keeler 1993) to reduce the list of 83 available sickness indicators
for pneumonia down to a core of 14 predictors.

As good as the resulting scale may be on grounds of simplicity and ease of
clinical communication, I take the view in this dissertation tha t—when the goal is
the creation of a sickness scale that may be used prospectively to measure quality
of care on a new set of patients not yet examined—the original Rand approach is
sub-optimal, because it takes no account of differences in the cost of data collection
among the available predictors (in terms of abstraction time per variable, which
can readily be converted into costs, the range for pneumonia across the sickness
indicators was from 10 seconds to 15 minutes). The Rand approach represents a
kind of benefit-only analysis; I propose here a cost-benefit analysis, in which variables
are chosen for the final scale only when they predict mortality well enough given
how much they cost to collect.

In this dissertation I have chosen one of the Rand diseases, pneumonia, to
implement a method proposed by (Draper 1996) that uses logistic regression and
Bayesian utility analysis to construct a scale measuring sickness at admission that
balances accuracy and cost. Scales constructed with this method would help in the
process of league table quality assessment, by making the best use of public money
to identify substandard hospitals.

1.2 Variable selection

The Rand study (Kahn et al. 1990b) used disease-specific abstraction forms to
collect data about sickness at admission from the medical records of roughly 2,750
hospitalised patients per disease, although mortality information was only available
on about 2,550 patients per disease. Table 1.1 provides a full list of the 83 variables
relevant to sickness at admission gathered for pneumonia patients.

Rand used literature review, clinical judgement and disease-specific consensus
panels to identify variables that have been considered important clinical predictors
of either in-hospital death or death within 30 days of hospitalisation. Variables were

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

1 Introduction 4

Table 1.1: The full list of the 83 variables relevant to sickness at admission for
pneumonia patients, using Rand naming conventions.

Name Meaning Name Meaning
p.sbpdl

sbun
p_sobdl

pc_resps
pc.prf s
pc_blps
pJirdl

pc_cards
pc_xpnes
pc_endos

systolic blood pressure score
blood urea nitrogen
shortness of breath day 1
respiratory distress
prior respiratory failure
racbilateral process score
heart rate day 1
cardiomegaly score
pneumonia CXR score
endocarditis at admission

sage 2
pc.comas
pc_albms

s e p t ic
pc.phsps

ctemp
p.cpdl

p c .e f fs
pc_ambls
pc.cpks

age of patient
APACHE II coma score
Serum albumin score
septic complications
recently hospitalised
initial temperature
chest pain day 1
plural effusion score
ambulatory score
CPK score

p c .p ild s
pc June os
p c.p trcs
pc_hems
pc Jirs

pc_dthxs
pc_immns
pc_hephs

pc_rrs
pc.asprs

prior interstitial lung disease
home oxygen use
prior tracheostomy
hematologic history score
APACHE heart rate score
disease of thorax
immunocompromised
hepatobiliary history
APACHE respiratory rate score
co-morbid aspiration score

pc_antis
pc.pnems
pc.amins
pc.pcncs
pc.crods
pc_myels
pc_resds
pc_renls
dpc_nlcs

pc_nas

prior antibiotics score
prior pneumonectomy
prior aminophylline score
cancer score
Corodaker score
multiple myeloma
residence score
renal history score
new lung score
APACHE sodium score

pc.ahcts
pc.oxys

pc_ks
pc_xchfs

p_rrdl
p.condl
pc_co3s

pc.chf sm
pc_ers

pc.pbcs

APACHE hematocrit score
APACHE oxygenation score
APACHE potassium score
CHF chest X-ray score
respiratory rate day 1
confusion day 1
APACHE venus bicarb score
sum of CHF components
arrest in ER score
positive blood culture

pc.wbcs
pc.pcvas

sbp
pc_aps2
p.dbpdl

pc.pulms
pc.pedms
pc_f lu s

p c .b i l is
pc.pucs

APACHE WBC score
CVA score
systolic BP (admission)
Total APACHE II score
DIA blood press day 1
pulm. vase. cong. score
pulmonary edema score
influenza score
biliribin score
positive urine culture

pc_weezs
pc_pcpds
pc_pcrhs
pc_arrys
pc_alchs
pc_ngts

pc_rctot
pc_neurs
pc_imuns
pc_temp

wheezing at admission
morbid prior COPD score
co-morbid cirrh score
co-morbid arrhythmias score
co-morbid alcoholism score
co-morbid NGTS score
sum of morbid+comorbid
neurologic history score
immunologic history score
APACHE temperature score

pc_body
pc.pphps
pc.pchfs
pc_smkrs

pc.phs
p c .s te r s
pc.crdhs
pc.oncos
pc_muscs
pc_mbps

body system count
morbid pulm. hosp. score
co-morbid CHF score
co-morbid smokers score
APACHE PH score
co-morbid steroids score
cardiac history score
oncologic history score
musculoskeletal score
APACHE mean BP score

p c.crs
male

APACHE creatinine score
sex of the patient

pc_dxs DX score

Dimitris Fouskakis (2001) S tochastic Optim isation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessm ent in Health

1 Introduction 5

included only if (a) they accurately described the patient’s status at the time of
hospital admission, (b) they documented conditions occurring frequently enough to
be worth collecting, and (c) they were reliably recorded in the medical record. Rand
used logistic regression of death within 30 days of admission to build its sickness-
at-admission scale, employing backward selection from the full model with all 83
predictors listed in Table 1.1. (The total APACHE II score (Knaus et al. 1985) is
a pre-existing 36-point scale that measures sickness for patients in intensive care
units; it is the sum of a variety of subscales measuring such things as coma intensity
and respiratory rate. Most of the other variables are on 2- to 5-point scales.) They
chose (Keeler 1993) the model with 14 predictors shown in Table 1.2.

This is a reasonably good model on grounds of accuracy and parsimony—for
instance, its pseudo-R 2 value (Stata 1997) is 28.1% on 14 degrees of freedom, versus
33.4% for the full model with all 83 variables—but no account has been taken in
its construction of the data collection costs of the variables chosen. Expressed in
terms of time for a skilled data collector to abstract the variables from patient
medical records, the sickness indicators range from about 10 seconds to more than
15 minutes to collect. It is quite possible that a different subset of the predictors in
Table 1.1 would be more cost-effective in measuring quality of care in this way than
the full list of 14 variables.

1.3 Contents

The plan of the dissertation is as follows.
In this chapter I have given some general details on the health policy background,

by presenting the source of the problem and the way that Rand tried to solve it,
discussing the way that the variables for each disease were selected, and giving a
table of the final admission sickness variables (for pneumonia, the disease I have
chosen) that I will be using in the project.

In Chapter 2 I formulate the basic problem more precisely, by giving details on
the objectives and purpose of this work and describing the basic strategies I will
follow. I present the utility function whose expected value I will maximise, analyse
its components, and sketch some of the difficulties tha t need to be overcome.

In Chapter 3 1 give a full description of the optimisation algorithms I will compare
in the attem pt to maximise the expected utility specified in Chapter 2. I present
five different methods—genetic algorithms (GA), messy simulated annealing (MSA),
simulated annealing (SA), tabu search (TS), and threshold acceptance (TA)—analyse
their inputs together with the generic and problem-specific choices that need to be

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessm ent in Health

1 Introduction 6

Table 1.2: The final variables for pneumonia chosen by Rand.

Name Meaning
pc_aps2 Total APACHE II score

sage 2 Age of patient
p_sbpdl Systolic blood pressure score

pc_xchfs CHF chest X-ray score
sbun Blood urea nitrogen

pc.comas APACHE II coma score
pc.albms Serum albumin score
p_sobdl Shortness of breath day 1

pc_resps Respiratory distress
s e p tic Septic complications

p c .p rfs Prior respiratory failure
pc.phsps Recently hospitalised
pc_ambls Ambulatory score

ctemp Initial temperature

made, and discuss modifications to the standard methods required for this particular
problem.

Chapter 4 presents results in a special case involving only the p = 14 variables
used in the Rand scale, where direct examination of all possible models (“full
enumeration”) suffices to identify the best subsets. In this chapter the geometry
of the solution space is also explored. The quantity to be optimised cannot be
computed exactly in closed form, so I estimate it by Monte Carlo methods, and I
clarify the role of N , the number of simulation replications, in the optimisation
process. I present some preliminary findings comparing the five optimisation
techniques outlined in Chapter 3, in a version of the 14-variable case in which
all of the methods are severely constrained on the total CPU time available for the
search (no more than 20 minutes of CPU time at 400 Unix MHz), and I then present
results from a large simulation experiment to investigate the quality of the solutions
from the three main optimisation algorithms—GA, SA, and TS—as a function of the
method’s inputs. The chapter closes with a variety of sensitivity analyses exploring
the robustness of the problem formulation and results.

(The computations in this dissertation were performed on a variety of Unix
workstations whose CPU speeds ranged from 100 to 400 Unix MHz. I have
standardised all timings so that they are based on 400 Unix MHz. For comparison,
Unix MHz is typically 2-3 times faster than PC MHz in the types of calculations
employed here.)

Dimitris Fouskakis (2001) Stochastic Optim isation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessm ent in Health

1 Introduction 7

In Chapter 5 I present results for the case with all 83 variables, where the space
over which I am optimising is vastly larger, continuing the specialisation of the
results to the three main methods. Full enumeration is impossible in this situation,
so I have created a proxy for the list of the k best models (for k = 3,000) by running
each of GA, SA, and TS (with the best input settings in the 14-variable case) for a
week of CPU time, merging the results, removing duplicate subsets of variables, and
performing full enumeration on the 3,000 best models found in this way. I present
results for each of the three optimisation methods, in which each method is given a
budget of 3 hours of CPU time, using a variety of input settings, and I also provide
results in which each method was allowed 24 hours of CPU time. I conclude the
chapter with an overall comparison of the optimisation methods. Chapter 6 brings
the dissertation to a close with some discussion and comments on future work.

Having outlined what I have done, it would also perhaps be useful to point
out one thing I have not done. The statistical problem addressed here is variable
selection in generalised linear models, a topic which has generated a vast literature
and many ad hoc ideas. It is possible to conceive of two distinctly different questions
that a dissertation like this one could address:

• How well do some of the leading stochastic optimisation methods perform
when they are guided by one or more ad hoc variable selection heuristics?

• How well do such methods perform when they are not guided in this way?

Since in many optimisation problems it is difficult to generate such heuristics, I
regard both of these questions as interesting. I have chosen to answer the second
question in the work presented here; Chapter 6 gives some ideas for how the first
question might be addressed.

A portion of this work (mainly material from Chapter 2 and the preliminary
results from Chapter 4) was written up for publication for an optimisation journal
late in 1999 and is available in (Draper and Fouskakis 2000). We are now working
on three more papers: a review article on stochastic optimisation based on Chapter
3 for a statistical audience, a methodology paper for a statistics journal based on the
later results in Chapters 4 and 5 (and some of the ideas for future work in Chapter
6), and an overview paper for a health policy journal.

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

Chapter 2

Problem formulation

The whole is more than the sum of its parts.

— Aristotle

2.1 Decision-theoretic approach

I have argued in Chapter 1 that the goal in constructing a scale for measuring patient
sickness at admission should be to balance data-collection cost against accuracy of
prediction of an outcome such as 30-day mortality. When cost and accuracy are
weighed against each other, a large optimisation problem arises in which expensive
variables that do not predict well enough should be omitted from the scale. This
optimisation problem cannot be solved by brute-force enumeration: for example,
when p = 83 it is necessary to compare 2P = 9.7 • 1024 subsets of sickness variables,
and even at the rate of 100 subsets examined per second—which is far faster than
present computational resources permit using desktop workstations—it would take
more than 3 • 1015 years to find the optimal subset by looking at all of them.

Suppose (a) the 30-day mortality outcome yi and data on p sickness indicators
(x n , . . . , XiP) have been collected on n individuals sampled randomly from a
population V of patients with a given disease, and (b) the goal is to predict the
death outcome for m new patients who will in the future be sampled randomly from
V, (c) on the basis of some or all of the predictors Xj , when (d) the marginal costs
of data collection per patient c i , . . . ,cp for the Xj vary considerably. W hat is the
best subset of the Xj to choose, if a fixed amount of money is available for this task
and you are rewarded based on the quality of your predictions?

To solve this problem I take a Bayesian decision-theoretic approach (Bernardo
and Smith 1994) based on maximisation of expected utility. Any reasonable utility
function here will have two components, one quantifying data collection costs

8

2 Problem formulation 9

associated with the construction of a given sickness scale, the other rewarding and
penalising the scale’s predictive successes and failures.

2.1.1 Data-collection utility

I follow traditional statistical usage and refer to a subset of the Xj as a model One
difficulty with the problem statement above is that by definition the future patients
are unobserved, but—given that both the present and future samples are randomly
drawn from V —a random subsample of the available data will be a good proxy
for the future data. Thus to estimate the predictive success of a given model on
future patients I use the cross-validation idea (Hadorn et al. 1992) of (1) dividing
the available data at random into modelling and validation subsamples M and V, of
size um and n y = u — um (respectively); (2) fitting the model to the data in M; and
(3) evaluating its predictive accuracy on V. In Chapter 4 I present results with the
choice = (f j f) ; this chapter also contains some results on the sensitivity
of the findings to this choice.

In the approach presented here utility is quantified in monetary terms, so that the
data collection utility is simply the negative of the total amount of money required
to gather data on the specified predictor subset. Letting Ij = 1 if Xj is included in
a given model (and 0 otherwise), the data-collection utility associated with subset
I = (7i , . . . , Ip) for patients in the validation subsample is

p
UD(I) = —ny cjlj, (2 .1)

3=1

where Cj is the marginal cost per patient of data abstraction for variable j . In the
Rand study described in Chapter 1, the data—on which this dissertation is based—
consisted of a representative sample of 16,792 elderly American patients hospitalised
in the period 1980-86 with one of six high-prevalence diseases. As mentioned above,
I focus here on pneumonia, for which the sample size was n = 2,532; the marginal
costs per variable in this study were obtained by approximating the average amount
of time needed by qualified nurses to abstract each variable from medical records
and multiplying these times by the mean wage (about US$20 per hour in 1990) for
the abstraction personnel.

2.1.2 Predictive utility

To measure the accuracy of a model’s predictions, a metric is needed which quantifies
the discrepancy between the actual and predicted values, and in our problem this

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

2 Problem formulation 10

metric must come out in monetary terms on a scale comparable to that employed
with the data-collection utility. In the setting of this case study the actual values
yi are binary death indicators and the predicted values pi, based on statistical
modelling, take the form of estimated death probabilities. I have chosen an approach
to the comparison of actual and predicted values that involves dichotomising the pi
with respect to a cutoff, to mimic the decision-making reality tha t actions taken on
the basis of input-output quality assessment will have an all-or-nothing character
at the hospital level (for example, regulators must decide either to subject or not
subject a given hospital to a more detailed, more expensive quality audit based on
process criteria). Other, continuous, approaches to the quantification of predictive
utility are possible (e.g., a log scoring method (Bernardo and Smith 1994)); I intend
to explore this in future sensitivity analyses (not presented in this dissertation).

In the first step of the approach taken here, given a particular predictor subset I ,
I fit a logistic regression model to the modelling subsample M and apply this model
to the validation subsample V to create predicted death probabilities p{. In more
detail, letting ^ = 1 if patient i dies and 0 otherwise, and taking Xu , . . . , to be
the k sickness predictors for this patient under model I , the statistical assumptions
underlying logistic regression in this case are

(.Vi I P i) m~ P Bernoulli (pf), ^ ^

log (l^ r) = A> + Pix n + • • • + faxik-

I use maximum likelihood to fit this model, obtaining a vector (3 of estimated logistic
regression coefficients, from which the predicted death probabilities for the patients
in subsample V are given by

- l
(2.3)

where x m = 1 {p\ may be thought of as the sickness score for patient i under model
I). (If any of the predictors Xj are highly collinear, this problem should be solved
in one of the usual ways (Weisberg 1985) before fitting model (2.2); for example, if
a pair of predictors is highly correlated one of them could be dropped, or a scale
could be created from the two of them using principal components (Chatfield and
Collins 1980). This problem does not arise with the Rand data.)

In the second step of the approach taken here, I classify patient i in the validation
subsample as predicted dead or alive according to whether p{ exceeds or falls short

p! = l + exp |
i=0

•jXij

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

2 Problem formulation 11

Table 2.1: Cross-tabulation of actual versus predicted death status. The left-
hand table records the monetary rewards and penalties for correct and incorrect
predictions; the right-hand table summarises the frequencies in the 2 x 2 tabulation.

Rewards and
Penalties
Predicted

Died Lived
Actual Died

Lived
Cn C\2
C21 C22

Counts
Predicted

Died Lived
n n n i2
n21 n22

of a cutoff p*, which is chosen—by searching on a discrete grid from 0.01 to 0.99 by
steps of 0 .01—to maximise the predictive accuracy of model I. I then cross-tabulate
actual versus predicted death status in a 2 x 2 contingency table, rewarding and
penalising model I according to the numbers of patients in the validation sample
which fall into the cells of the right-hand part of Table 2 .1. (To clarify the role of
the probability cutoff, for each of the 99 values of p* from 0.01 to 0.99 I calculated
the entries in Table 2.1 and the resulting predictive utilities in equation (2.4), and
then chose the cutoff p* which maximises this utility. In practice the optimal cutoff
was typically around 0.4.) The left-hand part of this table records the rewards and
penalties in US$. The predictive utility of model I is then

2 2

^) = E E Clm'R'lm' (^'^)
l=\ m=l

The following process was used to elicit the utility values C*m. Clearly Cn and
C22 should be positive and Ci2 and C21 negative, and since it is easier to correctly
predict that a person lives than dies with these data (the overall pneumonia 30-day
death rate in our sample was 16%, so if you predict that every patient lives you will
be right about 84% of the time) it is natural to choose the C/m so that Cn > C22. It
is also clear from the fact that it is worse to label a “bad” hospital as “good” than
the other way around that one should take |Ci2| > IC21I, and furthermore that the
magnitudes of the penalties should exceed those of the rewards. It seemed natural
to specify the Cim by eliciting two kinds of information from health experts in the
US and UK: one of the four values, say Ci2, and the ratios of the other three Cjm
to this value.

Since the utility structure used here is based on the idea tha t hospitals have to
be treated in an all-or-nothing way in acting on the basis of their apparent quality,
the approach taken was (i) to attem pt to quantify the monetary loss L of incorrectly

Dimitris Fouskakis (2001) S tochastic Optim isation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessm ent in Health

2 Problem formulation 12

subjecting a “good” hospital to a detailed but unnecessary process audit and then
(ii) to translate this from the hospital to the patient level. A rough correspondence
may be made between the left-hand part of Table 2.1 at the patient level and a
hospital-level table with rows representing tru th (“bad” in row 1, “good” in row
2) and columns representing the decision taken (“process audit” in column 1, “no
process audit” in column 2). Unnecessary process audits then correspond to cell
(2 , 1) in these tables (hospitals where a process audit is not needed will typically
have an excess of patients who are predicted to die but actually live). Discussions
with health experts in the US and UK suggested that detailed process audits cost
on the order of L = US$5,000, and Rand data indicated that the mean number of
pneumonia patients per hospital per year in the US at the time of the Rand PPS
quality of care study was 71.8. This fixed C21 a t approximately = —$69.6.
The health experts judged that C12 should be the largest in absolute value of the
Cim, and—averaging across the expert opinions, expressed as orders of magnitude
base 2—the elicitation results were ^ = 2 , = 5 , and = | , finally
yielding (Cn, Ci2, C2i, C22) = $(34.8, —139.2, —69.6,8.7). The results in Chapters 4
and 5 below use these values; in Chapter 4 I also present a sensitivity analysis on
the choice of the C*m.

T o ta l ex p ec ted u tility . The overall expected utility function to be maximised
over I is then simply

E[U(I)] = E[Ud (I) + Up (I)\ . (2.5)

In practice I use Monte Carlo methods to evaluate this expectation, averaging over
N random modelling and validation splits. The optimal choice of N is an important
practical problem which I will address in Chapter 4.

2.2 The goals of this project

With p predictors to choose from, the expected utility maximisation is over 2P
possible subsets of variables. With the data described here it takes about 0.4 seconds
on a Sun UltraSPARC Enterprise 250 computer running Unix at 400Mhz to evaluate
E [!/(/)] for a single modelling/validation split with efficient code and p = 14, so (as
mentioned in Chapter 1) it is computationally infeasible given present computing
resources—even with a moderate choice of N —to perform exhaustive enumeration
for all p = 83 sickness indicators for pneumonia. Attention thus naturally focuses
on stochastic optimisation as a way to find “good” (near-optimal) subsets for large

V•

Dimitris Fouskakis (2001) Stochastic Optim isation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessm ent in Health

2 Problem formulation 13

In Chapters 4 and 5 I compare the usefulness of methods of stochastic
optimisation based on Markov Chain Monte Carlo, including simulated annealing
(SA (Kirkpatrick et al. 1983)), and competitors such as genetic algorithms (GA
(Holland 1975)), tabu search (TS (Glover 1989)), messy simulated annealing (MSA
(Kvasnicka and Pospichal 1995), and threshold acceptance (TA (Dueck and Scheuer
1990)) in solving this large optimisation problem. I use the case p = 14 for
pneumonia and for the predictors shown in Table 1.2 as a particularly valuable
testbed. By performing exhaustive enumeration with this setup to find the global
mode and a number of other apparently promising local modes, I can then try out
various optimisation strategies with a relatively small amount of search time to
get an idea of what will work best with p — 83. This work first of all provides a
new perspective on variable selection in generalised linear models and also offers
new insights into the comparative advantages and flaws of competing optimisation
methods. Finally I hope it will produce results of direct use in health policy.

Throughout the results of the simulation experiments presented here I have taken
the point of view that the only fair and practical way to compare optimisation
methods is to give each of them a fixed budget of CPU time, as opposed to a fixed
number of models (input configurations) visited. My reason for this choice is as
follows. The user of an optimisation algorithm has only her/his computer sitting in
front of her/him and a fixed budget of time in which to solve the current problem,
with other problems waiting to be solved in the future—in other words, spending
too much time on this problem has a real cost in terms of being able to spend less
time on future problems. From this viewpoint the only thing tha t matters is how
well any method performs with a fixed budget of CPU time. Suppose, for example,
that I have two optimisation methods, one of which can visit one model per second
and the other one model per day (because of huge overhead costs in maintaining
its internal algorithmic structure). If I give them both a budget of 1,000 models, it
might well be that the second one finds, say, a 10% better set of models, but the
first one obtains its results in less than 17 minutes and the other one requires almost
three years. It seems clear to me which one I would use.

Dimitris Fouskakis (2001) Stochastic Optim isation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

Chapter 3

Stochastic optimisation

Theory attracts practice as the magnet attracts iron.

— Karl Friedrich Gauss

3.1 Introduction

In the past 40 years many researchers have studied the problem of optimising an
objective function. One approach is stochastic optimisation, in which the search
for the optimal solution involves randomness in some way. In this dissertation I
consider a class of problems with a combinatorial nature, where the variables are
discrete. The problem of finding the optimal solution in this case is known as
combinatorial optimisation. If S denotes the finite set of all possible solutions, my
task is to maximise or minimise the objective function / : S —> 9ft. In the case of
maximisation, the problem is to find a solution iopt G S which satisfies

f (i opt) > f(i) for all i G S. (3.1)

It is easy to see that as the dimension of S increases the harder the task becomes,
and more time is needed to find the optimal, or at least a near-optimal, solution.
Another difficulty in this problem is the possibility of local optima. It is a usual
phenomenon for the objective function to have many local optima. So an algorithm
like the well-known local search, which only accepts moves with higher values of the
objective function than the previous move, is not a very good idea for this situation,
since it is likely that the search will get stuck in a local optimum.

A lg o r ith m 3 .1 . Local S ea r c h :

• Begin;

14

3 Stochastic optimisation 15

• Choose a random configuration istarti

® Set i .— istart)

• Repeat:

• Generate a new configuration j from the neighbourhood of i;

• I f fU) > /W then i := j;
• Until f (j) < f (i) for all j from the neighbourhood of i;

• End.

□

The disadvantages of local search algorithms can be formulated as follows:

• By definition, local search algorithms terminate in a local maximum and there
is generally no information as to the amount by which this local maximum
deviates from a global maximum;

• The obtained local maximum depends on the initial configuration, for the
choice of which generally no guidelines are available; and

• In general, it is not possible to give an upper bound for the computation time.

To avoid some of the above mentioned disadvantages, one might think of a number
of alternative approaches:

• Execution of the algorithm for a large number of initial configurations, say
M, at the cost of an increase in computation time; for M —> oo, such an
algorithm finds a global maximum with probability 1, if only for the fact that
a global maximum is encountered as an initial configuration with probability
1 as M —> oo;

• Use of information gained from previous runs of the algorithm to improve the
choice of an initial configuration for the next run;

• Introduction of a more complex generation mechanism, in order to be able
to “jump out” of the local maxima corresponding to the simple generation
mechanism. To choose the more complex generation mechanism properly
requires detailed knowledge of the problem itself; and

• Acceptance of moves which correspond to a decrease in the objective function
in a limited way.

Dimitris Fouskakis (2001) S tochastic Optim isation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessm ent in Health

3 Stochastic optimisation 16

In this dissertation I use three well-known methods (plus several variations on them),
each of which—because of its structure—manages to avoid the disadvantages of local
search algorithms. My goal is to find out which of these three methods performs best
in the problem posed in Chapter 2. In this Chapter I briefly analyse these methods,
give the exact algorithms, the advantages and disadvantages for each one, and I also
summarise the literature on optimal values of the inputs each of the algorithms uses.

3.2 Simulated annealing (SA)

The use of simulated annealing (SA) (Kirkpatrick et al. 1983) as a technique for
discrete optimisation dates back to the early 1980s. It was heralded with much
enthusiasm as it appeared to be both simple to implement and widely applicable,
and as a result of articles in popular scientific journals researchers from a wide
variety of disciplines experimented with it in the solution of their own problems.

The ideas that form the basis of SA were first published by (Metropolis et
al. 1953) in an algorithm to simulate the cooling of material in a heat bath—a
process known as annealing. If solid material is heated past its melting point and
then cooled back into a solid state, the structural properties of the cooled solid
depend on the rate of cooling. The annealing process can be simulated by regarding
the material as a system of particles, Essentially, the Metropolis algorithm simulates
the change in energy of the system when subjected to a cooling process, until it
converges to a steady “frozen” state. Thirty years later (Kirkpatrick et al. 1983)
suggested that this type of simulation could be used to solve optimisation problems.

SA is a stochastic local search technique to approximate the maximum of the
objective function / : S —> 5ft over a finite set 5. It is an iterative method that
randomly chooses elements y from a neighbourhood N(x) of the present solution.
The candidate y is either accepted as the new solution or rejected. It may be
accepted with a positive probability even if f (y) < f (x) , tha t is, even if it is worse
than the present solution. The search process can thus “climb uphill” to get out
local maxima. SA has proven quite successful in many applications (Van Laarhoven
and Aarts 1988), and thus anyone considering the use of SA today has access to a
wide range of literature covering both theoretical and empirical results.

The long-run behaviour of the search process depends critically on a(x,T,y) ,
the probability of accepting a candidate y given a present solution x. a(x,T, y)
is controlled by the parameter T, which is called the temperature by analogy to a
physical cooling process. To make the iterative search an inhomogeneous Markov
Chain, the temperature values are chosen independently of the process as a fixed

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality A ssessm ent in Health

3 Stochastic optimisation 17

sequence Tn, the temperature schedule. Usually the Metropolis acceptance probability
is used; that is, for T > 0,

f 1 if f l y) > f i x) 1
a(x,T ,y)-.= \ (3-2)

exp if f (v) < f i x)

From the Metropolis acceptance probability you can see that the better moves are
always accepted, but on the other hand there is a possibility to accept a move to
a worse solution than the present solution with probability exp t At high
temperatures, the system accepts moves almost randomly, regardless of whether
they are uphill or down. As the temperature is lowered, the probability of accepting
downhill moves drops and the probability of accepting uphill moves rises. Eventually
the system “freezes” in a locally or globally maximum state, and no further moves
are accepted. The rate at which T decreases as the number of iterations increases
is crucial. I will speak later about the temperature schedules that I will mostly be
using.

The candidate moves are chosen according to a generating probability G(x, •),
which is often the uniform or normal distribution on the neighbourhood N(x) . The
algorithm can be stated as follows:

A lgorithm 3 .2 . S im u la te d A n n e a lin g (SA):

Begin;
Choose a configuration istart/
Select the initial and final temperatures T0,T f > 0;
Select the temperature schedule;
Set % .— istart and T .— To,
Repeat:

Repeat:
Choose a new configuration j from the neighbourhood of i;
I f f { j) > f (i) then i :=j ;
Else

Choose a random u uniformly in the range (0,1);
I f u < exp ^ en i := j f eise i := i-

Until iteration count = Uiter;
Decrease T according to the temperature schedule;

Until stopping criterion = true;
i is the approximation to the optimal solution;

Dimitris Fouskakis (2001) Stochastic Optim isation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessm ent in Health

3 Stochastic optimisation 18

• End.

□

The final configuration at the end of the SA run can be reported as the
approximate solution, or the k best solutions found so far (for some reasonable
k > 1) can be maintained throughout the run and reported (this requires some
CPU and memory resources to implement but is often worthwhile).

It is worth noting that there is a substantial difference in outlook about SA
between the statistics and operational research (OR) communities. In statistics
the objective function / is usually a density function, G(x, •) is called the proposal
distribution, and SA is viewed as a Metropolis-Hastings algorithm (Aarts and Korst
1989) on a series of heated densities. By contrast, in the optimisation literature /
can be any function whose global maximum is sought, and the precise forms of the
generating probability G(x, •) and the acceptance probability are typically chosen
from much larger sets of possibilities (see Sections 3.2.1 and 3.2.2 below). See (Aarts
and Korst 1989; Geman and Geman 1984) for convergence results to local or global
optima for SA whether or not / is a density.

The algorithm given above is very general, and a number of decisions must be
made in order to implement it for the solution of a particular problem. These
can be divided into two categories. Firstly there are generic decisions which are
concerned with parameters of the annealing algorithm itself. These include factors
such as the initial temperature, the cooling schedule, the parameter niter, and the
stopping criterion. The second class of decisions is problem-specific and involves the
choice of the space of feasible solutions, the form of the objective function and the
neighbourhood structure employed.

Both types of decisions need to be made with care, as they have been shown to
affect the speed of the algorithm and the quality of the solutions obtained. There
has been much research into the theoretical convergence properties of the annealing
algorithm. This work does provide pointers as to what factors should be considered
in making both generic and problem-specific decisions, but of course these choices
depend on the nature of the problem you are trying to solve.

3.2.1 Generic and problem-specific decisions

The generic decisions basically involve the cooling schedule, including the upper and
lower limits for the temperature parameter and the rate at which it must be reduced.
The two cooling schedules which occur most widely in practice illustrate opposite

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 19

Table 3.1: Families of temperature schedules for simulated annealing.

Family Temperature Ti
Straight & - I) + H

Geometric 31 (I) " ' '
Reciprocal To

(T f M —To)+(To—T f)i

Logarithmic T oT /[log(M +l)-iog 2]
r / lo g (M + l) -r 0 log2+ (T o-T /)log(«+ l)

Figure 3-1: The four temperature schedules in Table 3.1, with Tq = 1.0, Tf = 0.1,
and M = 1,000.

Straight
Geometric
Reciprocal
Logarithmic

COo

a.

0 200 400 800 1000600

Number of Iterations

extremes. The first is the most commonly used and involves geometric reduction:

Tnew = T0id (1 — C). (3.3)

Experience (Stander and Silverman 1994) has shown that relatively small values of
e perform best and most reported successes in the literature use values between 0.2

and 0.01. This corresponds to fairly slow cooling. You can also define e, subject to

Dimitris Fouskakis (2001) S tochastic Optim isation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 20

the upper and lower limits for the temperature parameter and the final number of

Another parameter is the number of iterations at each temperature, niter- This is
usually related to the size of the neighbourhoods, or sometimes the solution space,
and may vary from temperature to temperature. For example, it is important to
spend a long time at lower temperatures to ensure that a local optimum has been
fully explored. This can be done by increasing the value of niter either geometrically
(by multiplying by a factor greater than one) or arithmetically (by adding a constant
factor) at each new temperature. Also you can determine niter based on feedback
from the process. For example it may be desirable to accept a certain number of
moves before decreasing the temperature. So you will probably have to spend a very
short amount of time at high temperatures when the acceptance rate is high, but on
the other hand it may take an infeasible amount of time to reach the required total
number of accepted moves in the case that temperature is low and the acceptance
rate is very small.

Another commonly used schedule, suggested by (Lundy and Mees 1986), executes
just one iteration at each temperature, but reduces temperature very slowly
according to the formula

where (3 is a suitable small value. You can of course easily define (3, subject to
the upper and lower limits for the temperature parameter and the final number of
iterations M .

A large number of cooling rates have been proposed in the literature. In Table
3 .11 show the most common ones—straight, geometric, reciprocal, and logarithmic—
indexed by the initial temperature To, the final temperature Tf, the run-length
M and the current iteration i, and Figure 3-1 plots these four schedules with
T0 = 1.0, Tf = 0 .1, and M = 1, 000. Both empirical evidence and the theoretical
research suggest that the precise shape of the family of cooling schedules is less
important than the amount of time SA spends in high, medium, and low temperature
ranges. So there is little to choose between, say, the geometric and Lundy-Mees
schedules, as long as they cool over the same range of temperatures at approximately
the same rate. In view of this result and those of experiments reported in the
literature, when using annealing for a new application it is probably best to start

iterations M . So if To and Tf are the initial and final limits for the temperature,
then you can take e to be

Dimitris Fouskakis (2001) Stochastic Optim isation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessm ent in Health

3 Stochastic optimisation 21

off with one of these two schedules first and only consider the others if these fail to
provide satisfactory results. In terms of deciding on the values of the parameters
for the schedule chosen, there is no easy way of achieving this; usually the best
parameters must be determined after much experimentation, and of course they are
subject to the nature of the problem you are solving.

On the problem-specific decisions, as with the generic decisions it is not possible
to set down a series of rules which will always define the best choice for a given
problem. However, it is possible to outline some properties which are desirable.
Firstly concerning the neighbourhood structure, it is good to be uniform and
symmetric, so tha t all the solutions have the same number of neighbours, and also if
i is a neighbour of j , then j should of course be a neighbour of i as well. If you want
to keep the computing time as low as possible it is important for the neighbourhood
structure and the cost function to be chosen in such a way tha t the calculations to
be made in every iteration can be carried out quickly and efficiently. So it is good
if the neighbourhoods are not large and complex, and if the solution space is not
constrained by strict feasibility conditions. Also the cost function is going to lead
the process towards local maxima, and so large plateau-like areas where the cost
function takes on equal values should be avoided. To keep the working solution
space small, it may be useful to try to have reasonably small neighbourhoods.
This enables a neighbourhood to be searched adequately in fewer iterations, but
conversely means that there is less opportunity for dramatic improvements to occur
in a single move. Thus there must be some compromise here but, in general, small
simple neighbourhoods are preferable to large complex ones.

3.2.2 M odifications

In this section I examine a number of modifications which have proved useful in
adapting the annealing algorithm for a number of different problems. It is worth
mentioning here that these modifications appear in the literature in only a few
examples, so it is better to consider them only in situations where the annealing
algorithm described so far fails to provide satisfactory results.

• A c c e p ta n c e p ro b a b ility

Firstly consider changing the acceptance probability. The use of the Boltzmann
distribution (Tipler 1969) in (3.2) arises entirely from the laws of thermodynamics,
and there is no reason to suppose that some other distribution would not perform
better in some specific examples. On the other hand the use of the Boltzmann

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 22

distribution has the advantage that it accepts downhill moves in such a way that
large declines in / have virtually no chance of acceptance, whereas small ones may
be accepted regularly.

The biggest problem with the Boltzmann distribution is the algorithm speed.
The calculation of exp at every iteration is quite a time-consuming
procedure, and so it might be better to evaluate a cheaper function. (Johnson
et al. 1989) suggests two possible methods of improvement. The first is to use the
function

a(x,T, y) := I 1 * f{y) * f {x) } , (3.6)
v ’ ,y> \ i + m z m i f / („) < / (*) / ’ v ’

which approximates the exponential (but note tha t this probability could go
negative). Even better than this is to use a discrete approximation represented
by a look-up table which can be calculated at a series of fixed values over the
range of possible values of . The approximation is then obtained by simply
rounding to the nearest integer and looking up the appropriate function
value. Finally there are a few researchers that have found that simpler functions
can give good results. For example (Brandimarte et al. 1987) uses the form

T ,A — I 1 ‘f S M ~ \ Ci 7)

(note again, however, that this probability can exceed 1); (Ogbu and Smith 1990)
and (Vakharia and Chang 1990) both use probabilities which are independent of

[f(y) ~ f (x)]> f°r different sequencing problems.

• C o o lin g

Consider now the case of different cooling schedules. Starting the process with
temperatures so high that almost all moves are accepted simply produces a series
of random solutions, each one of which might itself have been a starting solution.
So one may think that this approach spends too much time with random solutions,
making many non-useful and time consuming evaluations. Some researchers address
this problem by doing a very rapid cooling phase. They achieve this by reducing
temperature after a fixed number of acceptances, and so they use most of the time
in the middle part of the temperature range at which the rate of acceptance is
relatively small. (Connoly 1990) was the first to suggest a constant temperature
approach. Such a temperature must obviously be high enough to allow the process
to climb out of local optima, but cool enough to ensure that these local optima are

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessm ent in Health

3 Stochastic optimisation 23

visited. The problem with this approach is that a good temperature will not only
vary from problem type to problem type, but will vary for different instances of
the same problem. Finally (Downsland 1993) suggests a quite clever idea. Every
time a move is accepted the system cools according to the function T —>
and every time a move is rejected the system is heated according to the function
T —>■ (i J-Ty If P = k 7 then the system will need to go through k heating iterations
to balance one cooling. If the ratio of rejected moves to accepted moves is greater
than k the system heats up, if less the system cools. Thus this schedule theoretically
tends to converge to a situation in which the ratio is about k. As it is important to
adequately search the areas close to local optima without a significant temperature
increase, it is suggested that k should be governed by the size of the neighbourhoods
around these maxima.

• N e ig h b o u r h o o d s

In the annealing algorithms that have been described so far we are using the
assumption that the neighbourhood structure is well-defined and unchanging
throughout the algorithm. But this may not always be the case. We might have
improvements in the performance of the algorithm if we adjust the neighbourhood
structure as the temperature decreases. How can we achieve this? One way is to
put restrictions on the neighbourhood in some manner. An example is given in an
annealing heuristic for the placement phase of very large scale integrated circuit
(VLSI) design, in which rectangular blocks are placed on the chip area in such a
way as to minimise a combination of cost factors, described by (Sechen et al. 1988).
They include the horizontal and vertical translations of any block in the set of
valid neighbourhood moves. As only small translations tend to be accepted at low
temperatures, much time is wasted generating and rejecting longer translations. In
order to avoid this, a limit on the maximum translation length is imposed and this
is decreased as the temperature drops.

In situations where a penalty function is used to enforce constraints, the
neighbourhood size can be decreased by allowing only moves involving variables
which contribute to the violation of constraints. Finally (Tovey 1988) suggests that
better performance may be achieved if a reduced neighbourhood is used with a fixed
probability, and the full neighbourhood is used for the remaining iterations.

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 24

• Sam pling

The standard annealing process samples randomly from the current neighbourhood
of solutions. One problem with this approach may be that when the process is
very close to a local optimum most of the neighbouring solutions will involve a
decrease in the criterion function. So by doing random sampling it is quite possible
to accept some downhill moves before reaching the local optimum, and thus we may
never reach it. One solution to this problem is to make cyclic rather than random
sampling, to ensure that all neighbours are tried once before any are considered for
a second time. This also has the added advantage of avoiding the need to determine
a random neighbour. It should however be noted that there are also reports of
cyclic sampling having a negative effect on the solution quality for some annealing
implementations.

Another possible problem that has been reported occurs at the end of the.
algorithm. In this stage the system is relatively cool and much time is spent
evaluating moves which are rejected. This can be avoided by determining
the acceptance probability for each move in the neighbourhood, sampling the
neighbourhood using a weighted distribution given by these probabilities and
accepting automatically.

• The objective function

There are problems in which the difference in the objective function between the
current and the new solution is not calculated quickly. That makes the whole
algorithm very slow and inconvenient. (Tovey 1988) suggests that in these cases an
approximation may be a good idea. It is possible then to obtain some good results
with an objective function which does not precisely represent the true function. If
the true objective is evaluated only for each accepted move then the true maximum
out of all configurations visited can be retained.

The importance of the objective function in the annealing process has already
been discussed. We know that if the system is at a saddle-point between two valleys
then it will move to either with equal probability. If one choice leads to the global
maximum and the other to a local optimum, a move in the wrong direction may
never be recovered. Sometimes this is unavoidable, but in other cases a change in
the form of the objective may highlight the one direction as an improvement and
the other as a downhill move.

So you can see how important it is to use a “nice” objective function. The
situation described above was encountered by (Downsland 1993) for the rectangle

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessm ent in Health

3 Stochastic optimisation 25

problem. In this case a relaxation of the objective function identified the correct
move as uphill and the inferior move as downhill. But the problem was that the
new relaxed objective function was insufficient by itself to converge to “feasible”
solutions with no overlap. In order to use properties of both objective functions you
can express the criterion function as a weighted sum of the actual and the relaxed.
The temperature parameter will be the same for both acceptance functions, except
for the fact that it must be multiplied by different weighting factors for the two
different cost functions. Also the acceptance functions may be different; in particular
the best results were achieved when the acceptance probability distributions were
different—one being exponential and the other linear.

The problem with this method arises when the objective function involves a
penalty factor, so that it is very difficult to determine the correct weighting factors
for the different terms. In addition, when the true objective function takes on
relatively few integers values, it is often necessary to use other cost elements to guide
the annealing process across the resulting plateau-like areas. One way of avoiding
these difficulties is to solve the problem iteratively, trying to attain feasibility for
increasing values of the true objective function. In this way only the penalty function
is involved in the annealing cost, and thus no weighting decisions are required. The
solution space may also be reduced as it contains only those solutions which achieve
the current constant true cost.

The main disadvantage with this approach is that a globally optimal solution
with a cost value of zero must be found at each stage in order to attain feasibility.
In many situations this may be expecting too much of the annealing algorithm.

• C o m b in a tio n w ith o th er m eth o d s

Many researchers have noted that SA can perform better if it is used in combination
with other heuristic methods. In general this can be done by running these methods
before the annealing process is invoked (or after, in order to make an improvement
to the solution encountered by SA). However there are examples of heuristics being
used as a part of the annealing algorithm.

The most common is the use of a pre-processing heuristic in order to determine
a good starting solution for our algorithm. To do this we have to start our search
at a low temperature, because if we start it at a high one all the characteristics of
the good solution will be destroyed. Thus we have the advantage that we save a
substantial amount of solution time. However this method may get us caught in
a trap, since by starting with a good solution at low temperature the process may

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 26

never fully escape from the neighbourhood of the starting value.

Another way of incorporating some knowledge into the starting solution is to
pre-define some of its features. These could theoretically be destroyed during the
annealing process but this is unlikely at lower temperatures.

(Chams et al. 1987) used an approach in their colouring algorithm where they
incorporate annealing into a construction heuristic which works by building onto a
previous partial solution.

The use of a post-processing heuristic is also quite common in order to ensure
tha t at least a local maximum has been found. Some researchers suggest applying
the ascent phase more frequently, but it is difficult to determine when this should
be done. One extreme idea is to apply it after every accepted move.

• P a r a lle l im p lem en ta tio n s: sp e e d in g up th e a lg o r ith m

One of the major disadvantages of SA is that application of the algorithm may
require large amounts of computation time. Therefore, it is worthwhile investigating
possibilities of speeding up the algorithm, in order to keep computation time within
reasonable limits. In this respect, the increasing availability of parallel machines
offers an interesting opportunity to explore the possibilities of speeding up the SA
algorithm. T hat’s why research on parallel implementations of SA has evolved so
quickly in recent years. The key idea in designing parallel SA algorithms is to
distribute the execution of the various parts of SA over a number of communicating
parallel processors.

(Aarts and Korst 1989) identify three ways in which parallelism may be
introduced into the annealing process. The most common and simplest way is
to allow different processors to proceed with annealing using different streams of
random numbers, until the temperature is about to be reduced. Then, the best
result from all the processors is chosen and all processors start again from this
common solution at the new temperature. With this method, when the temperature
is high, we expect to have significantly different chains of solutions among the
different processors, but when the temperature drops to low values we expect that
the processors will end up with solutions very close in terms of neighbourhood
structure and cost.

A second method of parallel implementation is to use the processors to generate
random neighbours and test for acceptance independently. Once a processor finds a
neighbour to accept, then this is conveyed to all the other processors and the search
moves to the neighbourhood of the new current solution. Again with this strategy

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 27

we will have almost all the solutions accepted at high temperatures and so you can
say that the method at this point is wasteful, but as temperature decreases the
majority of solutions will be rejected and this will speed up the search considerably.
You can also consider using the two strategies just described together. You can start
with the first method, until the ratio of rejections to acceptances exceeds a certain
level and then switch to the second method.

Finally a third (but less common) method is to hold the current solution in
common memory and to allow all processors to act on it independently, each
one generating a neighbour and updating. However, it is possible that this will
result in two moves being made which both give an improvement when considered
independently, but result in a downhill move if they are both carried out.

Before closing this section about parallel SA as an attem pt to attain greater
speed, I briefly discuss two other alternative approaches that speed up the algorithm.

3.2,3 M essy simulated annealing (M SA)

In this section I introduce an idea proposed by (Kvasnicka and Pospfchal 1995),
where the original SA method is modified using ideas borrowed from the genetic
algorithms literature (see Section 3.4 below). Consider a function f (X) , with
variables Xi , X 2, . . . , X p, where Xi = 0 or 1. We call X \, X 2, . . . , X p the genes of
the chromosome X and their binary values alleles. Our aim is to find the maximum
o f / .

Let Q = {1, 2, . . . , p } x {0 , 1} be a set which contains all possible pairs (a,/?),
where a £ {1, 2 , . . . , p} is the gene name and (3 € {0,1} is the allele of gene a.
Then M-chromosomes of length I are defined by

c = [(<*i, A) , (a2, A) > • ■ •. (Qfi, A)] e Ql. (3.8)

The first pair specifies the allele of the oti gene, i.e. X ai = A- The second pair
(a2, A)» ^ a i 7̂ a 25 specifies gene <22, i.e., X a2 = A- In general we have

X ai = A if ai 7̂ aj f°r all j ~ 1* (3.9)

This means that the possible difficulty of overspecification of the genes with respect
to the target problem is handled by a first-come-first-served rule on a left-to-right
scan of the M-chromosome. There is still a possibility not all genes will be specified

Dimitris Fouskakis (2001) S tochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 28

Figure 3-2: An example of decoding of the M-chromosome c = [(3,0), (1, 1), (3,1),
(2,0), (5,1)] to the chromosome (1 ,0 ,0 ,1 ,1) with respect to the template (1,
0 , 0 , 1, 1).

(3,0),(1,1),(3,1),(2,0),(5,1)

(1,0 ,0 ,1,1)

after the scanning procedure. Then the non-specified ones are filled in by a template

t = (tu t2, . . . , t p) e { o , i } p. (3.10)

So if the qth gene is not specified, i.e., q ^ a* for all i < I, then its allele is equal to
the qth entry in the template t , i.e., X q = tq.

To understand the above more clearly here is an example (see Figure 3-2).
Consider p = I — 5 , the M-chromosome c = [(3,0), (1,1), (3,1), (2,0), (5,1)] and
the template t = (1, 0 , 0 , 1, 1). The chromosome X assigned to c by the decoding
procedure is then X = (1, 0 , 0 , 1, 1). We assign the allele 0 for X 3 because it appears
before the allele 1 in the M-chromosome, and for X4, which is not specified by c,
we use the fourth entry of the template t.

We use two kinds of transformation between the M-chromosomes (Figure 3-
3). First is the allelic mutation, where we change the alleles from 0 to 1 or
from 1 to 0 with probability paueie- Formally if we have the M-chromosome
c = [(<*1, f t) , (a2, f t) , • • •, (an, Pi)] we keep f t the same if r > paiieie, and we change
f t to its binary complement if r < paaeie, where 0 < r < 1 is a uniformly distributed
random number. Similarly we have the genic mutation where a* is kept the same
if r > Pgene, and ai = a*/ if r < pgene, where 1 < a# < k is a uniformly distributed
random integer, selected so that ai> ± c^. For paiieie and pgene it is best to use quite
small values like 0.05.

We can now use all the above ideas to construct a new SA algorithm. The idea
of the M-chromosomes can be applied in place of the proportional distribution.
So instead of doing manipulations with chromosomes X G {0 , 1}P, we use M -
chromosomes c G Ql, where I is approximately equal to p. The algorithm can

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessm ent in Health

3 Stochastic optimisation 29

Figure 3-3: Example of mutation of the M-chromosome c = [(3,0), (1, 1), (3 ,1),
(2,0), (5 ,1)]. Vertical arrows indicate places where allelic and genic mutations are
applied. Allelic mutation switches the bit, while genic mutation randomly changes
the position of the bit.

allelic genic
mutation mutation

I I
(3,0),(1,1),(3,1),(2,0),(5,1) (3,1),(1,1),(3,1),(5,0),(5,1)

be stated as follows:

A lg o r ith m 3.3. M e s s y S im u la te d A n n e a l in g (MSA):

begin
Choose an M-chromosome c star t and a template t s ta r t /
Select an initial temperature T0 > 0;
Select the temperature schedule;
Decode the M-chromosome cstart to the chromosome X starti
C . — Cstart) X . — X start) H • T o a n d t . t s tar t)

Repeat:
Repeat:

For 2 = 1 , . . . , / ;
Generate random t t uniformly in the range (0,1);
Change the gene i of c if r\ < pgene to its binary complement;

For 2 = 1 , . . . , / ;
Generate random 7*2 uniformly in the range (0,1);

I f r2 < Paiieie generate a uniform random integer in the range [1 ,p] which
is not equal to allele i and replace the allele i by this number;

Call the new M-chromosome cprop0sai;
Decode the M-chromosome cproposai to the chromosome X propo3ai;
I f f f X propoSal) ^ f '(^O then X .— X proposal and C .— CpTopoSal)
Else

Generate random u uniformly in the range (0,1);
I f u < exp ^ v^osai)-/(*) then X := X proposai and c := cproposai, else

X := X and c := c;
Until iteration count = niter;
Decrease T according to the temperature schedule;
Change template t := X ;

Until stopping criterion = true;

Dimitris Fouskakis (2001) Stochastic Optim isation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 30

• X is the approximation to the optimal solution;

• End.

□

According to (Kvasnicka and Pospfchal 1995), the resulting Messy Simulated
Annealing (MSA) algorithm is a robust and efficient stochastic optimisation method,
which is able to correctly find the maxima of deceptive or highly multimodal
objective functions.

3.2.4 SA Summary

In this section I have examined the SA algorithm, an approach which has the
ability to reach global (or near global) optimal solutions, according to the hundreds
of researchers that choose SA to solve their optimisation problems. Another
characteristic of the approach is generality; for instance there are no restrictions
regarding convexity and thus the method can handle objective functions with
multiple local maxima. By also occasionally accepting downhill moves the algorithm
manages to escape from local maxima, and to achieve results close to the global best.
The algorithm is also simple to implement, without involving any unusual tricks and
approaches, and is easy to program in any computer language. As far as the quality
of solutions obtained by the algorithm, for many applications this is at least as good
as, and sometimes much better than, those obtained by other algorithms, at least
according to the literature.

However, the disappointingly long running times needed even to approximate
convergence to the optimum, combined with the realisation that fine-tuning of
the cooling schedule and a careful choice of neighbourhood structure are needed
to get the best out of annealing, diminished some of the initial enthusiasm. The
solution to all these problems is to start making modifications to the basic algorithm.
But although these modifications improve the algorithm’s performance, they also
increase the number of decisions which must be made by the designer, and thus the
technique loses its simplicity and robustness. So the decision goes to the designer.

On the one hand you can use the basic algorithm, with the most obvious
neighbourhood structure, a geometric schedule, and a starting temperature
determined by only a few experiments, which is easy to implement and will probably
give you reasonable results; or on the other hand you can use a more complicated
version of the algorithm, with a cooling schedule determined as a result of extensive
experimentation, a neighbourhood structure decided by in-depth knowledge of the

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 31

problem characteristics. This is difficult to implement but also may result in a
powerful problem-specific approach. Of course you must not forget that even if
you have spent months trying to find the best values of your parameters, you are
always going to be uncertain about them and about the result of your algorithm.
For example one of the major problems is knowing when to stop, as there is always
the feeling that the next modification or parameter change may lead to dramatic
improvements in solution quality or computational requirements.

Overall it seems that SA is generally an applicable, flexible, robust and easy-to-
implement approximation algorithm, which is able to obtain near-optimal solutions
for a wide range of optimisation problems. However, computation times can be
long and in a number of cases other algorithms can be executed far quicker. For
problem areas where other algorithms are not practical, SA appears to be a powerful
optimisation tool.

3.3 Threshold acceptance (TA)

Threshold acceptance (TA) is a stochastic optimisation algorithm proposed by
(Dueck and Scheuer 1990) whose structure is similar to—perhaps even simpler
than—SA. Because of the similarity of the two algorithms, I will not give full
details about implementation and modification problems; see Section 3.2 for more
information.

Suppose again that our aim is to find the maximum of the objective function
/ : S — > 3ft over a finite set S. TA starts with an element x G S, which might be
randomly chosen. Then, a high number of iterations is performed. In each iteration
step the algorithm tries to replace its current solution with a new one, which is
randomly chosen from the neighbourhood N(x) of the present solution. Suppose
that the new candidate is y. Then in SA y is always accepted if f (y) > f (x) and
with a positive probability (proportional to the current temperature) if f (y) < f (x) .
On the other hand in TA y is accepted if and only if

/(*) - f (y) < t , (3 .ii)

for a given positive threshold value T. So the essential difference between SA and
TA consists of the different acceptance rules. TA accepts every new configuration
which is not much worse than the old one, while SA accepts worse solutions only
with rather small probabilities.

By allowing worse moves to be accepted during TA, it becomes possible to escape

Dimitris Fouskakis (2001) Stochastic Optim isation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 32

local maxima with regard to the given neighbourhoods. Usually at the beginning
of the algorithm the threshold value has a large positive value, so almost all moves
are accepted, while eventually the threshold is dropped to a positive value close to
zero, and so only improving solutions are accepted.

So we must have a sequence of positive decreasing numbers to use as our threshold
sequence during the algorithm. In (Dueck and Scheuer 1990), the threshold sequence
is exogenously given. Another idea is given by (Winker and Fank 1997), who
generate their threshold sequence from the empirical distribution of discrepancies
\ f{x) — f (y)\ as the run progresses. Finally a geometric sequence can be used (Volker
and Henrik 1995). If T0 is the starting value of the sequence, and Tf the final one,
then

Winker 1995), the choice of the threshold parameters is not too crucial for the
mean performance of the algorithm as long as it falls in a reasonable range.

An apparent advantage of TA is its greater simplicity. It is not necessary to
compute probabilities or to make decisions. Also according to (Dueck and Scheuer
1990), TA yields better results than SA (possibly in a considerably smaller amount
of time or “new configuration choice steps”). The algorithm can be stated as follows:

A lg o r ith m 3 .4 . T h r e s h o l d A c c e p t a n c e (TA):

• Begin.
• Choose a configuration istarti
• Select the initial and final threshold values To, 7 / > 0 ;
• Select the threshold sequence schedule;
® i •— istart and T .— To,
• Repeat:
• Repeat:
• Generate a new configuration j from the neighbourhood of i;

with M the overall desired number of iterations. According to (Chipman and

T0id(l ~ <0 , where e = 1new (3.12)

/ (*) - /O ') < T then i := j else i := i;
Until iteration count = niter;
Decrease T according to the threshold sequence schedule;

Until stopping criterion = true;
i is the approximation to the optimal solution;

End.

□

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 33

3.4 Genetic algorithms (GA)

The genetic algorithm (GA) was first introduced by (Holland 1975), and has become
a popular method for solving large optimisation problems with multiple local optima.
Many researchers have since claimed success with GA in a broad spectrum of
applications.

To call the GA paradigm “modern” today might seem to be stretching the
truth, since it was first developed 30 years ago. Holland and his associates at
the University of Michigan began to develop it in the 1960s and 1970s, but it was
Holland’s 1975 book, Adaptation in Natural and Artificial Systems, where the first
full, systematic and theoretical treatment of GA was contained. After that we have
a large range of books and articles on GA with many successful applications, ideas
for improvements, and results. For instance, (Goldberg 1989) and (Davis 1991) both
provide a useful description of the algorithm and a number of applications in a range
of problems. Also interesting applications of the algorithm can be found in recent
articles, including (Michalewicz and Janikow 1991), (South et al. 1993), (Rawlins
1991), (Whitley 1992), and (Franconi and Jennison 1997), where GA is compared
with SA for a statistical image reconstruction problem.

3.4.1 Biological term inology

The name GA originates from the analogy between the representation of a complex
structure by means of a vector of components, and the idea, familiar to biologists,
of the genetic structure of a chromosome. In this subsection I will introduce some
of the biological terminology that will appear throughout this section.

All living organisms consist of cells, and each cell contains the same set of one
or more strings of DNA called chromosomes. The chromosomes can also be divided
into penes, functional blocks of DNA, each of which encodes a particular protein.
For instance, a particular gene can represent the eye colour of the organism. Then
the different settings that this eye colour can take (e.g., brown, blue, etc.), are
called alleles. The position of each gene on the chromosome is called the locus. The
organisms may have multiple chromosomes in each cell. The complete collection
of genetic material is called the organism’s genome. Two individuals that have
identical genomes are said to have the same genotype. The genotype gives rise,
under fetal and later development, to the organism’s phenotype-its physical and
mental characteristics. Finally, organisms can be diploid, when their chromosomes
are arrayed in pairs, or can be haploid otherwise. In order now to produce a new off
spring, a crossover operation occurs. In each parent, genes are exchanged between

Dimitris Fouskakis (2001) S tochastic Optim isation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessm ent in Health

3 Stochastic optimisation 34

each pair of chromosomes to form a gamete (a single chromosome), and then gametes
from the two parents pair up to create a full set of chromosomes. Off-spring also
are subject to the mutation operator, in which single nucleotides (elementary bits of
DNA) are changed from parent to off-spring. The fitness of the organism, finally, is
defined as the probability that the organism will live to reproduce, or as a function
of the number of off-spring the organism has.

In GA the term chromosome typically refers to a candidate solution to a problem,
and most often is simply a binary 0-1 string. The genes are either single bits or short
blocks of adjacent bits that encode a particular element of the candidate solution.
The allele is either 0 or 1. The crossover operation is simply an exchange of sections
of the two parents’ chromosomes, while mutation is a random modification of the
chromosome which can be done by flipping the bit at a randomly chosen locus.

3.4.2 The algorithm

Suppose that our goal is to maximise a function g(X) of the vector X =
(X i , X 2, . . . , X P), where each X{, i = 1 ,2, . . . , p , is binary (taking the value 0 or
1). In the case that your vector is continuous it is usual to replace the variables
by binary expansions in order to run the algorithm. The basic GA starts by
randomly generating an even number n of binary strings of length p to form an
initial population,

v"2 -y2 y 2
■ ^ ■ 1 > ^ 2 j • • • j

: ; ; (3 .13)
y n yn yn

j a 2 j • • * >

A positive fitness / then is calculated as a monotone increasing function of g for each
string in the current generation and n parents for the next generation are selected,

V 1 V 1 Y 1 1 > 2 5 • • • j p
y 2 y 2 y 2
1 1 J 1 2 5 • ’ ‘ 5 p

■ ; : (3.14)

y n y n y n
J 1 i 1 2 5 • * • > z p

with replacement, with the probability pj of choosing the j th string in the current
population proportional to its fitness / j , i.e.,

Dimitris Fouskakis (2001) S tochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 35

Pj y'm r •
L ^ i - \ J i

(3.15)

The new parents are considered in pairs; for each pair we perform a crossover
operation with a pre-selected probability pc. If crossover occurs, an integer k is

each parent are exchanged to create two new strings. So, e.g., for the first pair of
parents, suppose that crossover occurred, so we create two new strings,

If crossover does not occur, the parents are copied unaltered into two new strings.
After the crossover operation, we perform a mutation operation with a pre-selected
probability pm. If mutation occurs, we simply switch the value at each string position
from 0 to 1 or vice versa. Mutation occurs independently at each element of each
string.

The algorithm is allowed to continue for a certain number of generations. On
termination, the string in the final population with the highest value of g can be
returned as the solution to our optimisation problem. But, since a good solution
may be lost during the algorithm, a more efficient strategy is to note the best, or
even better the 7 % best, solutions seen at any stage (for some reasonable 7) and
return these as a solution.

The population size n, parameters pc and pm and fitness function / must be
specified before the algorithm is applied. It is often reasonable to take / equal
to g , but in some problems a more careful choice may be required. In the next
subsections I discuss parameter choice and general implementation aspects of the
algorithm. The algorithm can be stated as follows:

A lg o rith m 3.5. G e n e t i c A l g o r i t h m (GA):

generated from the uniform distribution [1 ,p — 1] and the last (p — k) elements of

(3.16)

Begin;
Generate randomly an even number n of individuals X x of length p;
Evaluate the fitness f of each individual;
Repeat:

Select n new individuals Y x by replacement with probability proportional
to f ;

For every pair of Y l do:
Generate random 77 uniformly in the range (0,1);

Dimitris Fouskakis (2001) Stochastic Optim isation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 36

• I f ti < pc then generate a uniform random integer in the range [1 ,p — 1]
and exchange the (p — k) elements of each parent Y l;

• For every individual Y l do:
• For every bit in the individual do:
• Generate random 7*2 uniformly in the range (0,1);
• I f t2 < Pm switch the current element from 0 to 1 or vice versa;
• Save the best a% individuals for the next run, with Yopt the best;
• Generate the remaining n (l — a) individuals randomly and calculate their

fitness f ;
• Until stopping criterion = true;
• Y ^ is the approximation to the optimal solution;
• End.

□
Again a number of decisions must be made in order to implement the above

algorithm. The hope is that in simple problems GA will rapidly find optimal or
near optimal solutions. There are two major sources of difficulty for the algorithm.
Firstly, it has been noted that the proportion of the population having the optimal
value at each string position does not necessarily increase all the way to 1 as the
algorithm progresses and the likelihood of many such elements appearing together to
form an optimal solution can be very low. The second problem is that of genetic loss,
when all copies of the optimal value at a certain element of X disappear, despite the
presence of multiple copies in the initial population. Both these problems appear to
contradict the implications of the Schema Theorem, that a beneficial schema such
as the value 1 at any element of X in our examples is likely to propagate throughout
the population once a single copy occurs.

3.4.3 The Schema Theorem

The word schema comes from the past tense of the Greek word ex^ (echo, to have),
whence it came to mean shape or form. Suppose that we have two chromosomes

1 1 0 1 1 1 0

1 0 0 0 1 1 1 (3.17)

Then both are example of the schema

1 * 0 * * * * , (3.18)

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 37

where the symbol * denotes string positions at which no value is stipulated and thus
it can be replaced by a 0 or a 1. So the above schema H = (1 * 0 * * * *) specifies
X i = 1, X 3 = 0 in a vector X of length 7. It is clear that the chromosomes are
also instances of several other schemata. Some schemata may contain both, while
some others contain only one. It is obvious that each chromosome is an instance of
2P distinct schemata, where p is the string’s length. So, each time we evaluate the
fitness of a chromosome we can say that we are gathering the schemata of which it
is an instance. In a population of size n, we have n 2P schemata, but of course in
practice these numbers may be different, since we might have some overlappings or
have no representatives at all. Under certain plausible assumptions, it can be shown
that processing a population of size n in one generation processes O (n3) schemata.
It is clearly impossible to store the average fitness value explicitly. A solution to
this problem has been given by Holland through his well-known Schema Theorem.

Before we state some lemmas and the theorem, here is some notation that is
used below. We call the length of a schema the distance between the first and the
last defined (i.e., non *) position on the schema, and order the number of defined
positions. Thus the previously described schema H = (1 * 0 * * * *) has length 2

and order 2 . The fitness ratio is the ratio of the average fitness of a given schema to
the average fitness of the population. I am now ready to give the theorem together
with some useful lemmas; see (Holland 1975) for proofs and further details.

Lem m a 3.1. Under a reproductive plan in which a parent is selected in proportion
to its fitness, the expected number of instances of a schema S at time (t + 1) is given

by
E(S, t + 1) = f (S , t)N(S, t), (3.19)

where f (S , t) is the fitness ratio for the schema S, and N(S , t) is the number of
instances of 5, at time t.

Lem m a 3.2. If crossover is applied at time t with probability pc to a schema S of
length l(S), then the probability that S will be represented in the population at
time (t + 1) is bounded below by

P (S ,f + l) > l - ^ y [l - P (S , «)] , (3.20)

where p is the length of the chromosome.

Lem m a 3.3. If mutation is applied at time t with probability pm to a schema S
of order k(S), then the probability that S will be represented in the population at

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 38

time (t + 1) is bounded below by

P { S , t + 1) > l - p m k{S). (3.21)

Combining these results together we obtain the following theorem.

T h eo rem . S C H E M A : Using a reproductive plan in which the probabilities o f
crossover and mutation are pc and pm, respectively, and schema S o f order k(S)
and length l(S) has fitness ratio /(5 , t) at time t, then the expected number of
representatives o f schema S at time (t -f 1) is bounded below by

E (S , t + l) > i l - ^ ^ - [l - P (S , t)) - p m k (S) ^ f (S , t) N (S , t) . (3.22)

It follows from this theorem that short low-order schemata will increase their
representation provided their fitness ratio is slightly more than 1. So the ideal
situations are those where short, low-order schemata combine with each other to
form better and better solutions.

According to (Jennison and Sheehan 1995) we cannot easily create a similar
lower bound for the expected number of representatives of schema S at time (t + k),
where k > 2 , and that provides a limitation of Holland’s result. These authors also
noted that when the fitness ratio falls below 1 copies of the schema will start to
disappear, and then we would face the problem of genetic loss.

3.4.4 Im plem entation of GA

As was the case with SA, the algorithm implementer has to take a large number of
decisions in order to run the algorithm.

First of all: how many times should you run the algorithm? The best number
of runs, or of generations, would be one large enough to find the optimal solution,
but also small enough to reduce as much as possible the computation time. A
crucial question here is in each repetition of the algorithm how many models we
randomly generate. One approach is at the end of each repetition to clear the
current population and to produce randomly, at the beginning of the new repetition,
a new initial population. By doing this we are forcing the algorithm to look into
new regions, but on the other hand if the reproduction of the new population is
computationally expensive we lose time. The other extreme is to save time and move
the last population of the last repetition to the new repetition as it is; a compromise
is to keep a specific percentage a% of models from the current population in the

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 39

new repetition and randomly generate the rest.

Another decision has to do with the population size n, a number that of course
depends on the length of each string. Some researchers use small population sizes
in order to be able to repeat the algorithm longer, but others prefer to repeat the
algorithm fewer times in order to use large population sizes. Which of the two
methods is better? It is not clear. But because you will probably have a limit
to your computation time, you will have to find a tradeoff between the population
and generation sizes, since it would be impossible to use large numbers for both of
them. The best thing that you can do is to run your algorithm many times, by
using different population and generation sizes each time, and by trying a very large
population and small generation size, and also a very large generation and small
population size, you can discover which choice is best suited to your problem.

Implementation of GA also requires two probabilities, the probability of crossover
pc and the probability of mutation pm. Here things are clearer. Almost all researchers
agree that the probability of crossover must be fairly high (above 0.3), while the
probability of mutation must be quite small (less than 0 .1). Many researchers have
spent a lot of time trying to find the best values of these parameters. (De Jong
1975), for instance, ran a lot of experiments and at the end he indicated that the
best population size was 50-100 individuals, the best single-point crossover rate was
0.6 per pair of parents, and the best mutation rate was 0.001 per bit. These settings
became widely used in the GA community, even though it was not clear how well
GA would perform with these settings on problems outside De Jong’s test suite.
(Schaffer et al. 1989) spent over a year of CPU time systematically testing a wide
range of parameter combinations. They found that the best settings for population
size, crossover rate and mutation rate were independent of the problem in their test
suite. Finally a lot of work has been done by (Grefenstette 1986). He suggested that
in small populations (30, for example) it is better to use high values of the crossover
rate, such as 0.88. The best crossover rate decreases to 0.50 for population size 50
and to 0.30 for population size 80. Finally in most of his runs he used a mutation
rate of 0.01. The runs with mutation rate above 0.1 are more like a random search,
but also the absence (or a very small value) of mutation is also associated with
poorer performance.

Finally the implementer has to choose a good fitness function / . The theory says
/ must be positive and a monotone increasing function of your objective function
g. Also some researchers prefer their fitness function to take values in the interval
[0,1]. The choice is wide; the only guide is that your function must provide sufficient
selectivity to ensure that the algorithm prefers superior solutions to the extent that

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 40

it eventually produces an optimal (or at least near-optimal) answer. On the other
hand, selectivity must not be so strong that populations polarise at an early stage
and the potential advantages of maintaining a diverse collection of solutions are
lost. A frequent choice is / = g, probably the simplest one. Of course other more
complicated choices are also possible and they might be sometimes advantageous.
For example you can use / = exp (<7), or / = M + g for a suitable constant M.
Finally if you want to use perfectly the definition and produce a positive, monotone
increasing function of g which has values from 0 to 1, the best solution is probably
to use

f t YS - g f f l ~ min[g(A~)]
max[5 (X)] -m in [9 p O] ’

where maxfppQ] and min[^(X)] are (at least rough estimators of) the maximum
and minimum values of g , respectively.

There appear to be no guaranteed general rules for implementing GA. From
problem to problem there may be a huge difference, and so each problem needs its
own attention. The best thing you can do is run GA many times, by using different
settings each time, and at the end note which one performs best and use it from
then on.

3.4.5 M odifications

In this section I cover the most important and effective modifications of GA which
have proved useful for a number of different problems. Again, as in the SA case, it is
probably better to consider these modifications only in situations where the simple
algorithm fails to provide satisfactory results.

• Population size

We have already discussed the problem of population size in the previous section.
A question that really bothers a lot of researchers is how the performance of GA
is influenced by the population size. Obviously by using small populations we take
the risk of under-covering the solution space with the unfortunate result of never
finding a near-optimal solution, while on the other hand by using large populations
we start having serious computational delays and our algorithm becomes very
slow. (Goldberg 1989) reports that the optimal size for binary-coded strings grows
exponentially with the length of the string p. Of course if this is true the practical
performance of GA would be quite uncompetitive, especially in the case of large
p, with other optimisation methods. But fortunately, there are many authors that

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 41

agree that population sizes as small as 30 are often quite adequate. Also (Alander
1992) suggests that a value between p and 2p is not far from optimal for many
problems.

• Seeding

W hat kind of population to use initially (how to seed GA) also bothers a lot of
researchers. The most common idea is to randomly generate strings of Os and Is
and then proceed with the algorithm. On the other hand there are others who believe
that starting GA with a population of high-quality solutions, probably obtained from
another heuristic technique, can help the algorithm to find a near-optimal solution
quicker. It is also possible, however, that the chance of premature convergence to
an optimum that is only local may be increased with this strategy.

• Selection m echanism s

In the original GA, parents are selected by means of a stochastic procedure from
the population, and then a complete new population of offspring is generated which
then replaces their parents. In one variation of this idea, each offspring could replace
a randomly chosen member of the current population as it is generated. (De Jong
1975) introduced the idea of generation gap, where a proportion G was selected
for reproduction, and their offspring replaced randomly selected existing population
members.

Studies seem to indicate that GA performs better when populations do not
overlap, but in the case of incremental replacement we have the advantage of
preventing the occurrence of duplicates. So we are not wasting resources on
evaluating the same fitness twice, and also we are not distorting the selection process,
by giving more chances to a duplicate chromosome to reproduce.

Another good idea is to force the best member of the current population to be
a member of the next as well. With this method we keep track of the best solution
through the whole algorithm. Also (De Jong 1975) used an expected value model,
where chromosomes are forced to become parents more or less in line with their
expected frequencies as predicted by their fitness values, by following a policy of
random sampling without replacement.

Another idea is to compare the parents with the offspring, and instead of copying
the offspring directly to the new population, to copy the two best among the four
(the two parents and the two children) to the new population. So if the parents for
instance are “fitter” than their children, then they both survive, and we copy them

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 42

to the new population. This is called an elitist strategy.

Finally, consider the problem of having two chromosomes which are close to
different optima and the result of a crossover operator on them is worse than either.
To address this (Goldberg and Richardson 1987) defined a sharing function, over
the population which is used to modify the fitness of each chromosome, which can
take a simple linear form:

h(d) = (1 _ ® lf d < 'D) , (3.24)
\ 0 if d > D)

where d is the distance between 2 chromosomes (an obvious measure could be
Hamming distance, but this may cause problems; for more details refer to (Goldberg
and Richardson 1987)) and D is a parameter. So for each pair of chromosomes we
evaluate h(d) and then we calculate

Vj = Y h(di) (3-25)
i^j

for each chromosome j . Then we divide the fitness of each chromosome j by cr,,
and we replace the old fitness with the new values. The result of this will be that
chromosomes which are close will have their fitness devalued in relation to those
which are fairly isolated.

• F itn ess ca lcu la tio n

I have already mentioned some things about the fitness function. Its selection is
probably one of the most important and hardest decisions the implementer has to
make. I have already noted the risk of using the objective function as a fitness and
have given an example of a fitness function which seems to work fine in many cases.
Another approach is to use a scaling procedure based on the transformation

f = ag + P, (3.26)

where g is the objective function and a and (3 are obtained so that / obeys the
following conditions:

mean (/) = mean(p)

m ax(/) = p — max(g), (3.27)

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 43

where p is a constant. Another idea is to ignore totally 'the objective function and
use a ranking procedure instead. (Baker 1985) and (Reeves 1992) worked on these
areas with apparent success. In this approach potential parents are selected with
probability

« = <3-28)
where [fc] is the kth chromosome ranked in ascending order. So the best chromosome
[n] will be selected with probability roughly twice tha t of the median, whose
chance of selection is (Whitley 1989) also worked with this method and he
concluded that ranking should be preferred to scaling.

Finally an alternative is to use tournament selection (Goldberg and Deb 1991).
Suppose we have n chromosomes, and successive groups of T chromosomes are taken
and compared. We choose only the best one as a parent. When the n chromosomes
are exhausted, another random permutation is generated. The whole procedure is
repeated until n parents have been chosen this way. Each parent is then mated with
another chosen purely at random. It is obvious that the best chromosome will be
chosen T times in any series of n tournaments, the worst not at all, and the median
on average once.

• Crossover operators

In most applications, the simple crossover operator described previously has proved
extremely effective. However there are problems where more advance crossover
operators have been found useful. First of all consider the “string of chance”
crossover. Suppose we have the two chromosomes

1 1 0 1 0 0 0 1

1 1 0 1 1 1 0 0 (3.29)

These chromosomes have the same elements in the first four positions. Cases like this
are quite common, especially in the later stages of the algorithm. If the crossover
point is any of these four first positions, then the new string will not be a different
chromosome. (Booker 1987) and (Fairley 1991) have both suggested that it is better
to examine the parents and find the crossover points which would produce different
offspring, before applying the crossover operator. It was Fairley who implemented
this idea by using the “string of chance” crossover, which entails computing an
exclusive-or (XOR) between the parents. Only positions between the outermost Is
of the XOR string will be considered as crossover points. In our example, the XOR

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 44

string is
0 0 0 0 1 1 0 1. (3.30)

So only the last four positions will give rise to a different offspring.

In the simple crossover operator we randomly choose a single position and we
exchange the elements of the two parents, but there is no reason why the choice of
crossover points should be restricted to a single position. Many researchers have
claimed large improvements with the use of multi-point crossovers. Consider the
simplest case of two-point crossover and suppose we have the following strings:

0 1

1 0

1 0 1 1

0 0 0 1
0 0

1 0

If the chosen positions are the third and the seventh then we can produce the
following offspring:

0 1 0 0 0 1 0 0

1 0 1 0 1 1 1 0 (3.31)

by taking the first two and the last two elements from the one parent and the
rest from the other each time. Of course this is not the only kind of exchange we
can make. In the above example, for instance, we can randomly choose again two
positions in the one parent (suppose we again pick the third and seventh), and then
we can copy the third and the seventh elements of this parent and the rest from the
other. With this method we produce the following offspring:

1 0 0 0 1 1 0 0

0 1 1 0 0 1 1 0 (3.32)

The operator that has received the most attention in recent years is the uniform
crossover. It was studied in some detail by (Ackley 1987) and popularised by
(Syswerda 1989). Suppose we have the following strings:

1 0 0 0 1 0 1 0

0 1 0 1 0 0 1 1 (3.33)

Then for each position randomly (with probability usually 0.5) pick each bit from
either of the two parent strings. If you want to produce two offspring you can do

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 45

the above twice. So for example we can produce the following offspring:

0 0 0 1 0 0 1 0

1 1 0 0 1 0 1 1 (3.34)

In the first offspring, we have chosen the second, third, sixth, seventh, and eighth
element from the first parent, and the rest from the second, and in the second
offspring we have chosen the first, third, fourth, fifth, sixth and seventh bit from the
first parent, and the rest from the second.

A modified version of the uniform crossover is the version that the CHC Adaptive
Search Algorithm (Eshelman 1991) uses, which I will call highly uniform crossover.
This version crosses over half (or the nearest integer to \) of the non-matching
alleles, where the bits to be exchanged are chosen at random without replacement.
So for example if we have again the following parents,

1 0 0 0 1 0 1 0

0 1 0 1 0 0 1 1

we can see that the non-matching alleles are the first, second, fourth,
eighth, which are five in total. So we are going to cross three of them
(say) the first, second and fourth, and so the children produced will be

0 1 0 1 1 0 1 0

1 0 0 0 0 0 1 1

With this operator we always guarantee that the offspring are the
Hamming distance from their two parents.

(Sirag and Weisser 1987) used a different kind of generalised crossover, by
modifying the basic genetic operators in the spirit of SA. Thus, for example, the
crossover operator is modified by a threshold energy 6C which influences the way in
which individual bits are chosen. Briefly, as the offspring chromosome is generated,
there is a presumption in favour of taking bit (i + 1) from the same parent as bit i.
However, bit (i + 1) is taken from the other parent with probability

exp (- ^ r) > (3-37)

where T is a “temperature” parameter, which is slowly decreasing according to

(3.35)

fifth, and
randomly,

(3.36)

maximum

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 46

an “annealing schedule” . At high temperatures, this can be expected to behave
rather like the generalised uniform operator; as temperature moderates the number
of switches between parents decreases and it becomes more like the standard simple
crossover, while at very low temperatures it just copies one of the parents. Choosing
the best values of 6C and T may require some experimentation, as will the annealing
schedule.

These are the most common crossover operators. It is worth noting that there
is no similar section about mutation operators. This is not because there are not
other mutation operations available in the literature, but because I believe that for
a binary-coding chromosome the best idea is to use the standard one. Also mutation
is probably not as important as crossover in the problem posed in this dissertation.

• Inversion

In simple versions of GA the order of the elements in the string can have a large
effect on performance, because entire blocks of elements are crossed over together;
this will act, for example, to prevent interchanging the first element of one parent
with the last element of the other. One possibility for solving this problem is uniform
cross-over; another approach involves inversion, an operator which takes account of
order relationships. You can use it together with the crossover operator, and so
produce a larger variety of offspring. For instance suppose we have the following
chromosome:

1 0 1 1 0 0 1 0. (3.38)

We randomly choose two positions with different elements (the second and seventh,
say), and we just exchange these two positions (a two-bit swap). So the new
chromosome will look like

1 1 1 1 0 0 0 0. (3.39)

• A daptive operator probabilities

As we have already seen in simple GA, the probability of using either crossover
or mutation is fixed throughout, and usually crossover is applied with a high
probability (above 30-50%) while mutation is applied with low frequency (less than
1%). (Reeves 1992) found it useful to change this approach, and allow the mutation
rate to change during the run. The idea was to make the mutation rate inversely
proportional to the population diversity, in order to prevent or at least alleviate
the problem of premature convergence. (Booker 1987), on the other hand, used

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 47

an adaptive crossover rate, where the rate was varied according to a characteristic
called percent involvement

(Davis 1991) has further suggested that either crossover or mutation should be
applied at each iteration but not both. So at each step the algorithm has to decide
which operator is going to be used and this is achieved on a basis of a probability
distribution which he calls operator fitness. Usually we choose a number like 75%
for crossover fitness, and thus the crossover would be chosen three times as often
as mutation. In further development of this idea, we can allow operator fitness to
change during the run. A possibly good idea is to start with a high crossover fitness,
since crossover is more important at the beginning when the population is diverse,
but as the chromosomes start to converge it is clearly important to increase the
chance of finding different solutions, which can then be done only with mutation.

• Chrom osom e coding

Although the 0-1 binary setting is the obvious one in which to use GA, and also
is the one that we have to use for our problem, in this section I briefly describe
problems that have inputs with real values. In this case we can simply map the real
numbers onto binary strings of a desired degree of precision. Thus if an input takes
values in the interval [a, b] and is mapped to a string of length p , then the precision
is

b ~ a (3.40)
2p — 1

The problem in this case is that values which are close in the original space
may be far away in the new binary-mapped space. For example suppose that the
optimum value of a problem that we try to maximise is the real number 32, and we
are using a 6-bit chromosomes, so the binary optimal value is (1 0 0 0 0 0). A near-
optimal solution is the real number 31, which maps to (0 1 1 1 1 1), a completely
different string. Additionally the binary string (0 0 0 0 0 0), which is only one bit
different from the optimum, represents the numerical value 0 , which is far from the
optimum. This led Caruna (Caruna and Schaffer 1988) to advocate the use of a
Gray code mapping, but this introduces further problems in that there is no simple
algorithm for decoding a Gray code.

Despite these problems there are several empirical comparisons between binary
coding and real-valued or even multiple-character coding which have shown worse
performance than the binary choice. Examples include the (Kitano 1990) many-
character representation for graph-generation grammars, the (Meyer and Packard
1992) real-valued representation for condition sets, the (Montana and Davies 1989)

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 48

real-valued representation for neural-network weights, and the (Schultz-Kremer
1992) real-valued representation for torsion angles in proteins.

So how is one to decide on the correct coding for one’s problem? First of all
you have to remember that the performance of your algorithm depends a lot on the
problem and so there are no rigorous guidelines about which coding will work better.
Probably a good thing to do is to follow the idea of (Davis 1991), to use whatever
coding is the most natural on your problem and then devise a GA that can use that
coding.

• Sequence representation

Many problems of interests, such as the famous Travelling Salesman Problem, can
be most naturally represented as a permutation. The problem in this case is that
the original crossover operator then does not work. We can see why through the
following example. Suppose we have the following two parents:

15 2 4 3 6

2 5 3 6 4 1 (3.41)

Then if we assume that the crossover point is the fourth position we end up with
the following offspring:

1 5 2 6 4 1

2 5 3 4 3 6 (3.42)

which of course are invalid.

Several researchers have tried to find solutions to this problem and define new
operators. (Goldberg and Lingle 1985) defined the partially mapped crossover. This
operator uses two crossover points, and the section between these points defines
an interchange mapping. So in the above example suppose tha t the two crossover
points are the second and fifth:

5 2 4
5 3 6

3 6

4 1

These crossover points define the interchange mapping

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 49

5 ^ 5

2 ^ 3

4 <-> 6

and so we end up with the following offspring:

(3.43)

1 5 3 6 2 4

3 5 2 4 6 1 (3.44)

(Reeves 1992) used a Cl operator to solve a flowshop sequencing problem. This
operator works by randomly choosing a point, taking the first bit from the one parent
and filling the chromosome by taking in order each “legitimate” element from the
other parent. In our example suppose that we randomly choose the third position,

2 4 3
3 6 4

then our new offspring are going to be

1 5 2 3 6 4

2 5 1 4 3 6 (3.45)

Finally, as was the case with binary inputs, with permutation problems another
good idea is to use a uniform crossover. We generate randomly a crossover template
of Os and Is, where Is define elements taken from the one parent, while the other
elements are copied from the other parent in the order in which they appear in that
chromosome. Returning to the example, if we generate the template

1 0 1 1 0 0 (3.46)

then our two new offspring are

1 5 2 4 3 6

2 1 3 6 5 4 (3.47)

Mutation also needs to be re-defined for the case of a sequence representation.
(Reeves 1992) explored the exchange mutation, where you interchange two randomly

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 50

chosen elements of the permutation (a two-bit swap). Another idea is the shift
mutation, where you move a randomly chosen element a random number of places to
the left or right. Finally (Davis 1991) used the idea of a scramble sublist mutation,
in which you choose two points of the string at random, and randomly permute
(scramble) the elements between these two positions.

• H ybridisation

If your GA does not perform well and you want to enhance its effectiveness, you can
hybridise it with another heuristic in various ways. For example, many researchers
have described ways in which local neighbourhood search or extensions such as SA
can be embedded in GA in order to make it more effective.

(Goldberg 1989) described a method for incorporating neighbourhood search into
a GA, in a procedure he calls G-bit improvement W hat he simply did was to select
periodically some of the best strings for a search of a neighbourhood defined by
single-bit reversals. On completion of the neighbourhood search, the locally optimal
strings were re-introduced into the population for the next phase of the algorithm.
(Suh and Van Gucht 1987) also added a similar hybridisation to their GA, where
heuristic operators based on two-optimal search and SA were used alongside simple
crossover. Finally (Kapsalis et al. 1993) and (Beaty 1991) used a GA to make the
“top-level” decisions on the form of a solution, which was then taken and solved by
a problem-specific procedure. You can also devise special types of genetic operators,
which are more powerful than the simple crossover and mutation.

I now examine two of the best-known hybrid GAs, genetic local search and genetic
simulated annealing. The first of these has been proposed by several authors, mainly
for solving the travelling salesman problem (Jog et al. 1989; Ulder et al. 1991). The
algorithm has the following general form:

A lgorithm 3.6. G e n e t ic L o c a l S e a r c h :

• Initialisation;

• (Local Search and termination test). Apply Local Search (Algorithm 3.1) to
the n solutions in the current population. I f a prespecified stopping condition
is satisfied during the Local Search, stop the algorithm. I f the Local Search
is completed for all the n solutions, let the set of n obtained local optimal
solutions be the current population, and go to the next step;

• (Selection);

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 51

• (Crossoverj;

• (Mutation);

• Keep the best 100 a% and randomly generate the remaining n (l —a) individuals
to create the new population;

• Return to the second step.

□

The problem with this algorithm is the enormous computation time for finding n
local optimal solutions in each generation. A way to decrease this computation time
can be to search only a part of the neighbourhood solutions. For example, we can
use the strategy to search a randomly selected 10% of the neighbourhood solutions
in each local search procedure. If there are no solutions that improve the current
one in the 10% neighbourhood solutions, the local search procedure is terminated
without examining all the neighbourhood solutions.

Genetic SA has a similar general form:

A lgorithm 3 .7 . G e n e t ic S im u la te d A n n e a lin g :

• Initialisation;

• (SA and termination test). Apply SA (Algorithm 3.2) to the n solutions in the
current population. I f a prespecified stopping condition is satisfied during SA,
stop the algorithm. I f SA is completed for all the n solutions, let the set of n
obtained local optimal solutions be the current population, and go to the next
step;

• (Selection);

• (Crossover);

• (Mutation);

• Keep the best 100 a% and randomly generate the remaining n (l — a) individuals
to create the new population;

• Return to the second step.

□

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 52

It appears to be better to apply SA with constant temperature to each of the
n solutions in the current population, because by using constant temperature we
manage to avoid extreme deterioration of the current solution during the initial
state of annealing with high temperature. (Inshibuchi et al. 1995) suggested a way
to modify SA, by randomly selecting k neighbourhood solutions of the current one
and letting the best one be the candidate solution for the next transition in SA, in
order to improve the performance of genetic SA.

• Parallel im plem entation

A serious drawback of GA is its inefficiency when implemented on a sequential
machine. However, due to its inherent parallel properties, it can be successfully
implemented on parallel machines, in some cases resulting in a considerable speedup.
The first approach is to evaluate the fitness of each chromosome of the population
in parallel. This approach has been used by several authors, including (Talbi and
Bessiere 1991) and (Miihlenbein et al. 1988). The second approach is to allocate sub
populations of chromosomes to parallel processors which proceed independently for a
certain number of generations. You can simply insert the best chromosome that you
have found amongst all sub-populations into each of them. (Pettey et al. 1987) took
this route by donating and receiving the best individual once in every generation,
while (Cohoon et al. 1987) preferred to copy a randomly chosen subset of solutions
between the sub-populations following a relatively large number of generations.

3.4.6 Genitor algorithm

The genitor algorithm (Whitley 1989) was the first of what (Syswerda 1989) has
termed the “steady state” genetic algorithms. There are three differences between
the genitor algorithm and the “vanilla” (plain and simple) version of GA. First of
all at the reproduction stage we only produce one offspring. Then this offspring is
immediately placed back in the population, by replacing the least fit member. So at
the end our population will consist of half of the parents (the “fittest” ones) and all
the offspring. Finally the last difference is that in the genitor algorithm the fitness
is assigned according to rank (Baker 1985; Whitley 1989), and by that we maintain
a more constant selective pressure over the course of the search.

3.4.7 CHC adaptive search algorithm

The CHC adaptive search algorithm was developed by (Eshelman 1991). CHC stands
for cross-generational elitist selection, heterogeneous recombination and cataclysmic

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 53

mutation. This algorithm uses a modified version of uniform crossover, called HUX,
where exactly half of the different bits of the two parents are swapped. Then if our
population size is n, we draw the best n unique individuals from the parent and
offspring populations to create the next generation. HUX is the only operator used
by CHC adaptive search; there is no mutation.

In CHC adaptive search two parents are allowed to mate only if they are a certain
Hamming distance (say d) away from each other. This form of “incest prevention”
is designed to promote diversity. Usually we start with d = | , where p is the length
of the string. If the new population is exactly the same as the previous one, we
decrease d and we rerun the algorithm. When d becomes negative the result is the
divergence procedure in which we replace the current population with n copies of the
best member of the previous population, and for all but one member of the current
population we flip r x p bits at random where r is the divergence rate (for instance
the compromise value 0.5). We replace d by d = r (l — r)p and restart the algorithm.

3.4.8 GA summary

GA is an algorithm which has become quite popular in recent years, as an approach
to solving large and difficult optimisation problems. It is easy to write one
general GA computer program to address many different problems. Also it has
the advantage that it does not rely on unrealistic assumptions—such as linearity,
convexity, or differentiability of the criterion function—in contrast with some other
optimisation techniques. The only requirement is the ability to calculate a measure
of performance, which may be highly complicated and non-linear. It is therefore
evident that GA is quite robust. Furthermore, although it is possible to fine-tune
GA to work better on a given problem, it is nonetheless true that a wide range
of parameter settings (such as population sizes and crossover and mutation rates)
will give acceptable results. Another advantage of the algorithm is the ability of
the implementer to change it easily to model variations of the original problem,
in contrast with other methods where even relatively minor modifications to the
problem may cause severe difficulties. Finally there is great scope for implementing
GA in parallel.

Unfortunately, however, despite these important features, it seems from the
literature that GA may often be out-performed or fail badly even on simple problems.
In many papers, for instance (Franconi and Jennison 1997), authors have tried to
make comparisons between GA and other optimisation techniques, such as SA, and
in most cases GA did not win. Also the algorithm might need disappointingly

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 54

long running times to reach a near-optimal solution, especially in cases with high
dimensions. It remains to be seen how it will do on the problem posed in this
dissertation.

3.5 Tabu search (TS)

Tabu search (TS) is a “higher-level” heuristic procedure for solving optimisation
problems, designed to guide other methods to escape the trap of local optima.
Originally proposed by (Glover 1977) as an optimisation tool applicable to nonlinear
covering problems, its present form was proposed 9 years later by the same author
(Glover 1986), and with even more details several years later again in (Glover
1989). The basic ideas of TS have also been sketched by (Hansen 1986). Together
with SA and GA, TS has been singled out by the Committee on the next decade
of Operations Research in 1988 as “extremely promising” for future treatment of
practical applications. This stochastic optimisation method does not appear to be
well-known to statisticians (Fouskakis and Draper 1999), so I will spend more time
than usual on reviewing its literature.

The two key papers on TS are probably (Glover 1989; Glover 1990a); the first
analytically describes the basic ideas and concerns of the algorithm and the second
covers more advanced considerations. (Glover 1990b), a tutorial, and (Glover et
al. 1993), a users guide to TS, are also useful. Other authors who have made
contributions include (Cvijovic and Klinowski 1995), who specialised the algorithm
for solving the multiple minima problem for continuous functions, and (Reeves 1995),
who devoted a whole chapter to TS in his book Modern Heuristic Techniques for
Combinatorial Problems. In a variety of problem settings, TS has found solutions
superior to the best previously obtained by alternative methods. A partial list of
TS applications is as follows:

• Employee scheduling (Glover and McMillan 1986);
• Maximum satisfiability problems (Hansen and Jaumard 1990);
• Telecommunications path assignment (Oliveira and Stroud 1989);
• Probabilistic logic problems (Jaumard et al. 1991);
• Neural network pattern recognition (de Werra and Hertz 1989);
• Machine scheduling (Laguna et al. 1991);
• Quadratic assignment problems (Skorin-Kapov 1990);
• Travelling salesman problems (Malek et al. 1989);
• Graph colouring (Hertz and de Werra 1987);
• Flow shop (Taillard 1990);

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 55

• Job shop with tooling constraints (Widmer 1991);
• Just-in-time scheduling (Laguna and Gonzalez-Velarde 1991);

• Electronic circuit design (Bland and Dawson 1991); and

• Nonconvex optimization problems (Beyer and Ogier 1991).

3.5.1 The algorithm

Webster’s dictionary defines tabu or taboo as “set apart as charged with a dangerous
supernatural power and forbidden to profane use or contact ...” or “banned on
grounds of morality or taste or as constituting a risk ...” . TS scarcely involves
reference to supernatural or moral considerations, but instead is concerned with
imposing restrictions to guide a search process to negotiate otherwise difficult
regions. These restrictions operate in several forms, both by direct exclusion
of certain search alternatives classed as “forbidden” and also by translation into
modified evaluations and probabilities of selection.

Suppose we want to maximise an objective function f (X) of the vector X . TS
is divided into three parts: preliminary search, intensification, and diversification.
Preliminary search, the most important and the main part of the algorithm, works
as follows. TS starts from an initial solution. Then amongst all neighbouring
solutions, TS seeks the one with the highest value. This move might not lead to a
better solution, but enables the algorithm to continue the search without becoming
confounded by the absence of improving moves and to climb out of local optima.
This is one of the characteristic properties of the algorithm. In TS we keep moving
even if that means that we are going to a worse move. If there are no improving
moves (indicating a kind of local optimum), TS chooses the one that least degrades
the objective function. In order to avoid returning to the local optimum just visited,
the reverse move now must be forbidden. This is done by storing this move, or more
precisely a characterisation of this move, in a data structure—the tabu list—often
managed like a circular list, empty at the beginning and with a first-in-first-out
mechanism, so that the latest forbidden move replaces the oldest one. This list
contains a number s of elements defining forbidden (tabu) moves; the parameter s
is called the tabu list size. However, the tabu list may forbid certain relevant or
interesting moves, as exemplified by those that lead to a better solution than the
best one found so far. Consequently, an aspiration criterion is introduced to allow
tabu moves to be chosen anyway if they are judged to be sufficiently interesting.

Suppose for illustration that we have to maximise a function of a binary vector of
length 5, and take (0,1 ,0 ,0 ,1) with criterion value 10 as the initial solution. Then if

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 56

we define the neighbours to be just the vectors that we can create by changing each
time each value from zero to one or from one to zero (one-bit flips), we obtain the
following solutions (X i,. . . , X5), with hypothetical values of the criterion function:

Vector (1, 1, 0 , 0 , 1) (0 , 0, 0 , 0 , 1) (0 , 1, 1, 0 , 1) (0 , 1, 0 , 1, 1) (0 , 1, 0 , 0 , 0)
Value 9 8 5.4 7.1 7.3

From the above possible moves, none leads to a better solution. But in TS we keep
moving anyway, so we accept the best move among the five in the neighbourhood,
which is the vector (1, 1,0 ,0 ,1) with value 9. This move becomes our new one. In
order now to avoid going back to the previous solution we set tabu the move that
changes X \ from 1 back to zero. So among the next five neighbours,

Vector (0, 1, 0 , 0 , 1) (1, 0 , 0 , 0 , 1) (1, 1, 1, 0 , 1) (1, 1, 0 , 1 , 1) (1, 1, 0 , 0 , 0)
Value 10 8.1 9.7 7.9 6.9

the first one is tabu, the rest non-tabu. The aspiration criterion is simply a
comparison between the value of the tabu move and the aspiration value, which
is usually the highest value found so far (in our example 10). So because our tabu
move has value not larger than the aspiration value, it remains tabu, and so we
have to choose among the other four. From these the one with the best solution is
the third neighbour, (1, 1, 1, 0 , 1), with value 9.7. So now the move that changes X$
from 1 to 0 is tabu as well. Suppose that the tabu list size has been set to 4 for this
example, and continue the algorithm. Our next neighbours are

Vector (0 , 1, 1, 0 , 1) (1, 0 , 1, 0 , 1) (1, 1, 0 , 0 , 1) (1, 1, 1, 1, 1) (1, 1, 1, 0 , 0)
Value 5.4 9.2 9 3 6.5

The first and the third neighbours now are tabu, with values less than the aspiration
value for both, and so we have to search among the other three. Between these three
moves the best one is the second neighbour, (1,0 ,1, 0 ,1), with value 9.2. So now the
move that changes X 2 from 0 to 1 is tabu as well. Going one more step produces
the next neighbourhood,

Vector (0 , 0 , 1 , 0 , 1) (1, 1, 1, 0 , 1) (1, 0 , 0 , 0 , 1) (1, 0 , 1 , 1, 1) (1, 0 , 1, 0 , 0)
Value 10.8 9.7 8.1 7.1 6.1

The first, second, and third moves according to the tabu list are tabu. But the first
move has value larger that the aspiration value, and so its tabu status is cancelled.
So the non-tabu moves now are the first, fourth, and fifth, and among these the best
one is the first one, (0, 0 , 1, 0 , 1), with value 10.8 , which also replaces the best one
found so far.

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 57

We continue doing the above loop for a specified number of iterations. Of course
even for this part, the algorithm designer has to make several decisions, such as
the initial solution, the tabu list size, the aspiration criterion, the neighbourhood
structure and size (in case the size of the neighbourhood is very big it is probably
better to search among a subset of the neighbourhood), and the stopping rule.

After finishing with the preliminary search, intensification starts. We go to the
best solution found so far and clear the tabu list. The algorithm then proceeds
as in the preliminary search phase. If a better solution is found, intensification
is restarted. We can have a specified number of restarts; after that number the
algorithm goes to the next step. Also if the current intensification phase does not
find a better solution after a specified number of iterations, the algorithm goes to
the next step. Intensification provides a simple way to focus the search around the
current best solution. The designer here has to decide on the maximum number
of restarts that the algorithm will be allowed, and how many iterations without
improvement the algorithm will be allowed before going to the next part.

Finally we have the last part of the algorithm, diversification. We again clear the
tabu list, and set the s most frequent moves of the run so far to be tabu, where s is the
tabu list size. Then we choose a random state and proceed through the preliminary
search phase for a specified number of iterations. Diversification provides a simple
way to explore regions that have not been visited much. The designer here has to
decide on the number of iterations that will be spent in this part.

After the end of the third part, either you report your best solution as the optimal
result found, or (even better) you repeat the whole algorithm (all three parts). You
can repeat the whole algorithm many times, subject to a pre-specified number. I
will discuss parameter choice and general implementation aspects of the algorithm
in the subsections below.

The algorithm more formally can be stated as follows:

A lgorithm 3.8. T a b u S ea r c h (TS):

• Begin;
• Randomly choose a configuration istart and set i := istart',
• Evaluate the criterion function f(i);
• Set the aspiration value ol := lo, a small number;
• Determine s := Listlength, the length of the tabu list;
® Set Alove .— 0 and imax •— istart j
• Repeat:

Preliminary Search
Add i to the tabu list at position s;

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 58

Set s := s — 1. I f s = 0 then set s := Listlength;

Set Move := Move + 1, inbhd h o,nd f nbhd •= low, a small number;

For each neighbour j of i do:

I f f { j) > ol do:

I f f C?) — fn b h d then Set in b h d '= j and f n b h d -= / 0) ;

i f f (J) < d°i
I f j is in the tabu list go to the next neighbour;

Else if j is non-tabu and f (j) > fnbhd then set inbhd '= j and

f n b h d •— / (j) ;

Set OL .— IHdiX ('OL, f n b h d) and i .— tn b h d ;

I f f (,!) ^ f ifmax) then imax •—

I f Move 7 ̂maxmoves go back to Preliminary Search;

Else go to Intensification;

Set i := imax and clear the tabu list;

Repeat:

Do the Preliminary Search;

Until you find a better solution than imax • I f no improvements after Uint
iterations go to the next part;

Until Uimpr runs;

Diversification

Clear the tabu list and set the s most frequent moves to be tabu;

Randomly choose a configuration i;

Evaluate the criterion function f(i);

Repeat:

Do the Preliminary Search;

Until you have run it UdiV times;

Until you have run the whole algorithm rep times;

imax is the approximation to the optimal solution;

End.

□

Intensification

Repeat:

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 59

3.5.2 Im plem entation and m odifications of TS

From the above algorithm, it is clear that the designer has to make decisions for
a number of crucial elements of TS, such as neighbourhood sizes, types of moves,
tabu list structures, and aspirations conditions. Also you have to define values for
several parameters, such as maxmoves, riint, riimpr, ndiV and rep. There appears to
be surprisingly little advice in the literature about how to make these choices. I will
address this issue in Chapters 4 and 5 through simulation studies.

• N e ig h b o u rh o o d sizes and can d id a te lis ts

When the dimension of the problem is high, a complete neighbourhood examination
may be expensive in terms of CPU-time. For this reason, it is probably better, in
cases like this, to examine only the regions of the neighbourhood that contain moves
with desirable features.

One way of doing this is to use a neighbourhood decomposition strategy. You
simply decompose the neighbourhood into coordinated subsets at each iteration.
A TS aspiration threshold, or other means of linking the examination of subsets,
is commonly applied to limit the frequency of selecting moves from subsets whose
current alternatives are gauged less attractive. This strategy may be able both to
speed up the algorithm and to generate some diversity in the search. (Laguna et
al. 1991) have successfully applied this idea, and managed to limit the domains
of jobs that are shifted in machine scheduling, while (Fiechter 1994) has also
used this idea in travelling salesman problems. Finally (Semet and Taillard
1993) have succeeded in cutting down computation times by a factor of three
while simultaneously obtaining better solutions, by applying such a decomposition
approach to cyclically scan about one fourth of all possible moves at each iteration.

Another technique is elite evaluation candidate lists, in which you store a
collection of elite (highest evaluation, most promising) moves on a candidate list.
Then at each iteration, the moves belonging to the candidate list are examined first,
followed by a subset of the regular neighbourhood, gradually replacing candidate
list moves that are no longer attractive. Periodically, after many iterations or when
the quality of moves on the candidate list deteriorates below a chosen threshold,
a significantly larger portion of the current neighbourhood is examined in order to
reconstruct the candidate list. This technique is motivated by the assumption that
a good move, if not performed at the present iteration, will still be a good move
for some number of iterations. A simplified variant of this strategy is to perform
every move on the elite candidate list in succession, provided the move remains valid

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 60

when its turn arrives. (Glover et al. 1986) improved the technique by introducing
an aspiration level threshold that moves must satisfy in order to be selected.

In some applications it can be advantageous to isolate certain attributes of
moves that are expected also to be attributes of good solutions, and to limit
consideration to those moves whose composition includes some portion of these
“preferred” attributes. The preferred attribute candidate list technique seeks to
organise moves so that they do not have to be composed entirely of some special
elements. One or more of these elements are required to be incorporated in a “key
segment” of a move, so that all moves containing such a segment can be generated
efficiently.

Finally a type of candidate list that is highly exploitable by parallel processing
is a sequential fan candidate list. The main idea is to generate the 7 best alternative
moves at a given step, and then to create a fan of solution streams, one for each
alternative. The best few available moves for each stream are again examined, and
only the 7 best moves overall provide the 7 new streams at the next step.

• A ttributes

Suppose that our current solution is X now and we want to create a tentative solution
Xtriai, with X a binary vector. The most common and natural types of attributes
for a move X now to X triai are as follows:

1. Change of a selected variable from 0 to 1.

2 . Change of a selected variable Xj from 1 to 0.

3. The combined change of the previous two taken together.

4. Change of f { X now) to f { X trial).

5. Change of a function g{Xnow) to g{Xtrial).

6 . Change represented by the difference value g (X triai) — g(Xnow).

7. The combined changes of the previous two types for more than one function
g considered simultaneously.

Attributes 5-7 are based on a function g tha t may be strategically chosen to be
completely independent from the objective function / . For example we can choose
g to be a measure of the distance between the given solution and the best solution
found so far. Then with attribute 6 we can see if the trial solution leads the search
farther from or closer to the best solution found so far.

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 61

• Tabu restrictions

Suppose that a move that contains an attribute e from X now to X next is performed.
Then the reverse attribute e has to remain tabu for some time in order to prevent
reversing. Examples of kinds of tabu restrictions frequently employed are as follows.
A move is tabu if

• Xj changes from 1 to 0 where Xj previously had changed from 0 to 1.

• Xi changes from 0 to 1 where Xi previously had changed from 1 to 0 .

• At least one of the previous two occur. This condition is more restrictive than
either the first or the second separately, as it makes more moves tabu.

• Both the first two restrictions occur. This condition is less restrictive than
either the first or the second separately, as it makes fewer moves tabu.

• Both the first two restrictions occur, and in addition the reverse of these moves
occurred simultaneously on the same iteration in the past.

• g(X) receives a value u' that it received on a previous iteration, i.e., u' = g{X')
for some previously visited solution X ' .

• g(X) changes from u" to u where g(X) changed from v! to u" on a previous
iteration.

Again g is a function completely independent from the objective function / , and
can be, as before, the distance between the given solution and the best solution
found so far. Tabu restrictions are sometimes used to prevent repetitions rather
than reversals, as illustrated by stipulating the second condition that Xi previously
changed from 1 to 0, rather than from 0 to 1. These have a role of preventing
the repetition of a search path that leads away from a given solution. By contrast,
restrictions that prevent reversals help to prevent a return to a previous solution.
Hence tabu restrictions vary according to whether they are defined in terms of
reversals or duplications of their associated attributes.

• Tabu list size

The choice of tabu list size is crucial; if its value is too small, cycling may occur in
the search process, while if its value is too large, appealing moves may be forbidden,
leading to the exploration of lower quality solutions and producing a larger number
of iterations to find the solution desired. Empirically, tabu list sizes that provide

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 62

Table 3.2: Illustrative rules for tabu list size.

Static Rules

• Choose s to be a constant such as s = 7 or s = y/p, where p is the problem’s
dimension.

Dynam ic R ules

• Simple dynamic: Choose s to vary randomly or by systematic pattern, between
bounds Suiin und with smjn — 5 and Smax — 11 or Smin — 0.9\Jp and
S m a x — 1-1 y /P "

• Attribute-dependent dynamic: Choose s as in the simple dynamic rule, but
determine smin and smax to be larger for attributes tha t are more attractive
(based for example on quality or influence considerations).

good results often grow with the size of the problem. However, there appears to be
no single rule that gives good sizes for all classes of problems.

Rules to determine s, the tabu list size, are classified as static or dynamic. Static
rules choose a value for s that remains fixed throughout the run; dynamic rules allow
the value of s to vary. Table 3.2 gives examples of these rules. The values of 7 and
y/p (where p is the dimension of the problem) used in this table are only suggestive,
and represent parameters whose preferred values should be set by experiment for a
particular class of problems. But usually researchers use values between 7 and 20,
or between 0.5y/p and 2y/p, and in fact these values appear to work well for a large
variety of problems.

Practical experience indicates that dynamic rules are typically more robust than
static ones (Glover et al. 1993). This is probably the reason why many researchers
prefer to use non-fixed values for the tabu list size. For example (Taillard 1991), in
order to solve the quadratic assignment problem, selected the size randomly from
the interval [0.9 p, 1.1 p] and kept it constant for 2.2 p iterations before selecting a
new size by the same process. (Laguna et al. 1991) have effectively used dynamic
rules that depend on both attribute type and quality, while a class of dynamic rules
based on moving gaps was also used effectively by (Chakrapani and Skorin-Kapov
1993). Finally (Laguna and Glover 1993) systematically varied the list size over three
different ranges (small, medium and large), in order to solve telecommunications
bandwidth packing problems.

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 63

• A spiration criteria

As mentioned above, the role of aspiration criteria is to determine when tabu
restrictions can be overridden, and make a tabu move admissible. The appropriate
use of such criteria can be very important for enabling a TS method to achieve
its best performance level. The simplest and most common aspiration criterion is
the one tha t allows a tabu move to be selected if it leads to a solution better than
the best found so far. This criterion remains widely used, but other aspiration
criteria can also prove effective for improving the search. The literature on such
criteria identifies two types: move aspirations and attribute aspirations. When a
move aspiration criterion is satisfied, a move’s tabu classification is revoked,*while
when an attribute aspiration criterion is satisfied, an attribute’s tabu active status
is revoked.

Suppose tha t a trial solution X trial is generated by a tabu move. The following is
a list of the most common criteria for determining the admissibility of this solution:

• Aspiration by default: If all available moves are classified tabu, and are not
rendered admissible by some other aspiration criteria, the “least tabu” move
is selected. For example you can choose the move tha t loses its tabu status by
the least increase in the value of the objective function.

• Aspiration by objective (global form): A move aspiration is satisfied, permitting
X tT%al to be a candidate for selection, if f (X trial) > Cbest, where / is the
objective function and Cbest is the best solution found so far.

• Aspiration by objective (regional form): Subdivide the search space into regions
R. Let Cbest{R) denote the minimum /(A), with X G R. Then for X trial E R ,
a move aspiration is satisfied if f (X trial) > Cbest(R).

• Aspiration by search direction: Let direction(e) = improving if the most
recent move containing the reverse attribute of e, e, was an improving move,
direction(e) = nonimproving otherwise. An attribute aspiration for e is
satisfied, making e admissible, if direction(e) = improving and the current
trial move is an improving move, i.e., f (X tTial) > f (X now).

• Aspiration by influence: Let influence(e) = 0 or 1 according to whether
the move tha t establishes the value of tabustart(e) is a low-influence or high-
influence move, where tabustart(e) is the starting iteration of the tabu duration
for attribute e. Also let latest(L), for L = 0 or 1, equal the most recent
iteration that a move of influence level L was made. Then an attribute move

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 64

for e is satisfied, if influence(e) = 0 and tabustart(e) < latest(1). We can
also have multiple influence levels, L = 0 ,1 , . . . , and then the aspiration for e

The first of the above criteria is rarely applicable, but is understood automatically
to be part of any tabu search procedure. Also the last two criteria are attribute
aspirations rather than move aspirations.

The list above gives the simplest and most well-known aspiration criteria. For
applications that are more complex we might need more complicated criteria, one
of which is aspiration by strong admissibility.

D efin ition 3.1. A move is strongly admissible if it is admissible for selection and
does not rely on aspiration criteria to qualify for admissibility; or if it qualifies for
admissibility based on global aspiration by objective, by satisfying f (X trial) > Cbe s t .

• Aspiration by strong admissibility: Let lastnonimproveTnent equal the most recent
iteration that a nonimproving move was made, and let l a s t s tr(m g iy admissibie equal
the most recent iteration that a strongly admissible move was made. Then if
lOiStjionimprovement ^ lO'Si'strongiyadmissibiei we can reclassify every improving tabu
move to be a candidate for selection.

W ith the inequality iflsfnontmp7,ovenienf ^ two facts are
clear: that a strongly admissible improving move has been made since the last
nonimproving move, and that the search is currently generating an improving
sequence. Thus this type of aspiration ensures that the method will always proceed
to a local optimum whenever an improving sequence is created tha t contains at least
one strongly admissible move.

• Parallel processing

To speed up TS, again consider the case of parallel runs. According to (Glover et
al. 1993), concurrent examination of different moves from a neighbourhood often
makes it possible to reach a speed-up factor close to

where P is the number of processors, Tn is the sequential time to perform
the computation to be parallelised and Tu is the time associated with the non-
parallelisable part of the algorithm. For example Tn may correspond to the time

is satisfied, if there is an L > influence(e) such that tabustart(e) < latest(L).

ideal speed-up = (3.48)

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 65

spent in evaluating the neighbourhood and Tu may correspond to the update of the
information structure when a move is performed. Using such a technique, significant
speed-up can be achieved for many problems.

In more detail, the above parallelisation idea is to divide the neighbourhood into
P parts each about the same size, and evaluate each of these parts on a different
processor. Having done that, every processor computes the values of the moves that
are attributed to it. Then it communicates to the others its proposed move (the
best move it found) and receives (P — l) moves proposed from the other processors.
Every processor chooses and performs the best move proposed to (or by) it. If there
are many proposed moves that are of the same quality, the processors will retain,
for example, only the move that was proposed by the processor that has not had an
accepted proposition for the greatest number of iterations.

Another natural and simpler parallelisation process is to perform many
independent searches at a time, each starting with a different initial solution and/or
using a different set of parameters. Because of the fact that we have no restrictions on
this process, we can apply it for every problem, and surprisingly this straightforward
type of parallelisation has proven efficient for a number of processors not exceeding
a few dozen. (Taillard 1989; Taillard 1990; Taillard 1991) applied this method in
three different types of problems very successfully.

3.5.3 TS summary

Experiments have shown that TS is able to obtain results that match or surpass the
best known outcomes using other methods in a variety of optimisation problems.
At the same time, it is apparent that studies to date have only taken the first steps
in exploring this potential. Many more applications remain to be undertaken, and
many new possibilities for refining the basic processes of the method remain to be
tested. The most interesting thing about TS to me is tha t it appears to be almost
unknown in the statistics community: none of the 20 papers and book chapters I
was able to find on TS through an extensive electronic search are in the statistics
literature.

3.6 Summary of all optimisation m ethods studied

I conclude this chapter with a list of all optimisation methods studied in this
dissertation, together with a brief description of each and an indication of how
they are related to each other.

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

3 Stochastic optimisation 6 6

• Local search (greedy algorithm that only accepts uphill moves);

• Simulated annealing (SA; algorithm with neighbourhood structure and flexible
rule based on temperature for sometimes accepting downhill moves);

• Messy SA (hybrid between SA and GA: first use neighbourhood structure
motivated by GA ideas, then acceptance rule same as SA);

• Threshold acceptance (TA; a simplified version of SA, using a threshold value
instead of temperature);

• Genetic algorithm (GA; method with selection mechanisms (crossover,
mutation) instead of neighbourhood structure);

• Genetic local search (hybrid between local search and GA, using local search
to create the initial population);

• Genetic simulated annealing (hybrid of SA and GA: first SA to generate
population, then GA from there), messy SA and genetic SA are like two sides
of the same coin;

• Genitor algorithm (modification of GA in which the fittest parent is included
in the next generation along with a single child);

• CHC adaptive search (modification of GA in which (1) a version of uniform
crossover is used instead of simple crossover and (2) the two best are chosen
from both parents, both children and (3) the algorithm restarts itself when it
gets stuck); and

• Tabu search (TS; algorithm with neighbourhood structure, three phases
(preliminary search, intensification, diversification), and list of forbidden
moves to prevent circularity).

See Table 5.3 for an example of the inputs required by the three main methods
I will examine in the remainder of the dissertation: SA, GA, and TS.

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

Chapter 4

Results in the case p = 14

Everything should be made as simple as possible, but not simpler.

— Albert Einstein

4.1 Introduction

The most straightforward way to compare optimisation methods is to create a
test-case in which the tru th about all 2P models is known (up to small Monte
Carlo uncertainty), so that the actual quality of subsets discovered by any given
optimisation method may be ascertained. As noted in Chapter 1, I chose to do
this by performing three full enumerations1 of the estimated expected utility of all
2P = 16,384 possible subsets of the p = 14 variables chosen in the Rand sickness scale
for pneumonia (Table 1.2), in which each estimate of the expected utility—equation
(2.5)—was based on N = 500 random splits (this choice of N was sufficient to
yield a Monte Carlo standard error for each expected utility estimate of only about
US$0.05, which is small enough to reliably identify the good models).

Section 4.2 presents full-enumeration results for the first of the three repetitions
of the process. In Section 4.3 I explore the geometry of the solution space, and
Section 4.4 discusses the optimal choice of N during the stochastic optimisation
runs. In Section 4.5 I present some preliminary results comparing five of the most
promising optimisation methods described in Chapter 3: a genetic algorithm (GA),
messy simulated annealing (MSA), simulated annealing (SA), tabu search (TS), and
threshold acceptance (TA). Sections 4.6 and 4.7 describe the design and analysis of
a large simulation experiment on the three leading contenders to emerge from the
preliminary work: GA, SA, and TS. In Section 4.8 I conclude the chapter with the

1Each of these runs took 38 days of CPU time at 400 Unix MHz to complete.

67

4 Results in the case p = 14 6 8

results of four sensitivity analyses: (1- 2) the two additional full-enumeration runs,
one with a different random number seed to see how stable the findings were and one
with a different choice of the proportion of data points used in the modelling and
validation samples; (3) an analysis varying the penalties and rewards for prediction
accuracy and marginal costs per variable, and (4) a study of the effects of including
interaction terms in addition to main effects in the logistic regression modelling.

4.2 Full enumeration results

In the first full-enumeration run I used a modelling sample of ^ = | of the data
(1665 patients), and the remaining = | (867 patients) for the validation sample,
and I performed N = 500 random splits into the modelling and validation part in
each model. (All of the programming in this dissertation was in C (Kelly and Pohl
1995); the analysis of the results was conducted using S+ (Becker et al. 1993) and
S ta ta (Stata 1997).) Clinical experts in the US and UK were asked for reasonable
values of the data collection marginal costs (cj), as well as of the penalty and reward
factors in the predictive utility (the constants C u, C12, C21, C22 in Table 2.1), as
described in Chapter 2 . Data collection marginal costs were estimated as numbers
of minutes of abstraction time, at roughly $20/hour. Table 4.1 shows the costs of
all 14 variables together with their correlation with 30-day death (a measure of how
well they predict death within 30 days of admission).

Figure 4-1 presents parallel boxplots (Tukey 1977) of the estimated expected
utilities of the 16,384 models in the p = 14 case as a function of &, the number of
predictors in each model. The globally optimal model has four of the original 14
Rand variables—systolic blood pressure score, blood urea nitrogen (BUN), APACHE

II coma score, and shortness of breath day 1, which are marked with two asterisks
in Table 4.1—and achieves an estimated expected utility of —7.89 ± 0.05. Several
conclusions are evident from a detailed examination of this figure and the data on
which it is based, as follows.

• The trace of the median expected utilities (the white lines in the middle of the
boxes) as a function of k clearly shows the tradeoff between data collection
cost and predictive accuracy: for small k the models do not cost very much
but predict poorly, and for large k the predictions are excellent but the cost
is too high, so that the best models are in the middle. In particular the full
14-variable Rand scale is highly inefficient (and slightly worse in monetary
terms than using no sickness indicators at all, i.e., predicting death at random

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

4 Results in the case p = 14 69

Table 4.1: The 14 variables in the Rand pneumonia admission sickness scale,
together with their approximate data collection costs per patient and correlation with
30-day death (CHF = congestive heart failure).

Cost Cj
Variable (US$) Correlation Good?

Total APACHE II score (36-point scale) 3.33 0.39
Age of patient 0.17 0.17 *

Systolic blood pressure score (2-point scale) 0.17 0.29 **
CHF chest X-ray score (3-point scale) 0.83 0.10

Blood urea nitrogen (BUN) 0.50 0.32 **
APACHE II coma score (3-point scale) 0.83 0.35 **

Serum albumin score (3-point scale) 0.50 0.20 *
Shortness of breath day 1 (yes, no) 0.33 0.13 **

Respiratory distress (yes, no) 0.33 0.18 *
Septic complications (yes, no) 1.00 0.06

Prior respiratory failure (yes, no) 0.67 0.08
Recently hospitalised (yes, no) 0.67 0.14

Ambulatory score (3-point scale) 0.83 0.22
Initial temperature 0.17 -0 .06 *

Note: The final column of the table is explained in the text below.

with probability 0.16).

• The 20 best models include the same 3 variables 19 or more times out of 20, and
never include 5 of the other variables; the five best models are minor variations
on each other, and include 4-6 variables (thus no overwhelming significance
should be attached to the precise model identified by the double asterisks in
Table 4.1). The eight variables which occur frequently in the 20 best models
are identified with asterisks in the Table. The single best univariate predictor,
the total APACHE II score, does not appear in any of the good models because
it is so costly to collect—BUN and the APACHE II coma score predict death
(univariately) almost as well and are much cheaper to obtain.

• The best models cost almost US$8 per patient less than the full 14-variable
model, which would yield significant savings annually if the input-output
approach were to be implemented on a widespread basis.

• It will be seen in Section 4.8 that these results are stable across random
repetition, varying the proportions changing the utilities and data
collection costs, and including or not including interaction terms in the logistic

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

4 R esu lts in th e case p = 14 70

Figure 4-1: Estimated expected utility as a function of number of predictors retained,
from the first full-enumeration run with p = 14.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of Variables

modelling. I conclude that “tru th” in the 14-variable case has been identified
with sufficient accuracy to serve as a basis for comparing various stochastic
optimisation methods in their ability to recover that “tru th” when given a
limited amount of CPU time.

4.3 G eom etry of the solution space

Before experimenting with the optimisation algorithms I performed a small study
aiming to visualise the solution space. I wanted to have a rough idea of how smooth
this space is, how many local optima it has, and how far the global optimum is
from the other solutions. It is intuitively clear that it is far easier to optimise a
convex function than one without this property. Evidently convexity does not hold
in this problem, but I was curious to see in some sense “how far from convexity”
the objective function is in this case.

Optimisation methods such as SA and TS require the specification of a
neighbourhood structure across models, so that—having evaluated the quality of
a given model—one can judge where best to move next in the search for the global

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

4 R esu lts in th e case p = 14 71

Figure 4-2: Tree of adjacent models (k = 4) expanded out to four levels, with the
neighbourhood structure induced by moves based on one-bit flips. The horizontal and
vertical scales are arbitrary.

CVI

CM

2 4•4 •2 0

optimum. In the problem addressed here a model is a vector of p Is and Os specifying
the presence or absence of each predictor in the subset of available variables, and
a natural first choice for neighbourhood structure is based on moves which select a
single bit in the binary string and flip it from 0 to 1 or vice versa (1-bit flips).

Whatever the neighbourhood structure, the space of all possible models can
be visualised as a tree (Knuth 1968). Figure 4-2 shows the 24 = 16 models for
one particular choice of k = 4 variables chosen from among the 14 predictors
in the Rand scale, with the tree expanded out to four levels; Table 4.2 gives
the correspondence between the binary and decimal representations of the 16
models. The neighbourhood structure is evident—for example model 2/(0,0,0,1)
is a neighbour of models 1 /(0 ,0 ,0 ,0),8 /(1 ,0 ,0 ,1), 7/(0,1,0,1), and 6/(0,0,1,1).
Figure 4-3 is a perspective plot of the expected utility “surface” corresponding to
the tree in the previous figure. The X and Y axes match the horizontal and vertical
axes in Figure 4-2; the Z axis plots the estimated expected utilities of the 16 models
(from a full-enumeration exercise like that described earlier on), shifted so that the
median utility is zero.

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

4 R esu lts in th e case p = 14 72

Table 4.2: Renaming the 16 models with p = 4.

Model 0 0 0 0 0 0 0 1 0 0 10 0 10 0 10 0 0 0 0 11 0 10 1 10 0 1
Index 1 2 3 4 5 6 7 8
Model 0 1 1 0 10 10 1 1 0 0 0 1 1 1 10 11 1 1 0 1 1 1 1 0 1 1 1 1
Index 9 10 11 12 13 14 15 16

Figure 4-3: Perspective p lot of the expected utility surface” fo r the 4~variable tree
expanded out to four levels.

CO

04

O
N1

04

CO

<?

0
y

V -A

While it is true that the quality of a given model’s neighbours is sometimes similar
to that of the model itself, it is also evident that adjacent models can have sharply
different expected utilities, demonstrating the discontinuity of the solution space in
this problem: good models do not necessarily have good models as neighbours. This
has implications for the optimal search strategy—methods that spend considerable
time exploring local alternatives to good models may not perform as well as methods
that frequently make large jumps around the model space, but too much jumping
around in an unguided way will yield poor performance as well. This is going to
make the work of our optimisation algorithms difficult, since they need to be “clever”
enough to manage to escape the local optima and still find the global maximum in
a reasonable amount of CPU time.

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

4 R esu lts in th e case p = 14 73

Figure 4-4: Performance of SA on a run that found the global optimum in thep = 14
case, allowing the method 24 hours of CPU time at 400 MHz.

0 1000 2000 3000 4000 5000

Iteration Number

0 1000 2000 3000 4000 5000

Iteration Number

4.4 O ptim al choice of N

There is a final problem to address before examining the performance of the
optimisation algorithms: what is the optimal number N of utility evaluations across
modelling/validation splits? As we have seen from the full enumeration runs a value
like 500 gives us accurate results, but with a fixed budget of CPU time this may be
a luxury that cannot be afforded. With such a budget, if N is small you can visit a
lot of models, but you get a noisy estimate of how good each model is; if N is big
you know how good the models really are, but you can visit less models. By using a
value like 500, we cause the algorithm to visit a tiny number of models, which may
well not give it enough time to find the correct maximum. On the other hand a very
small value of N will give plenty of time for the algorithm to explore the solution
space, but the model the algorithm will report as the best may not be the best at
all. So there is another optimisation problem here, and it is intuitively clear that a
value of N somewhere in the middle has to be the optimal solution.

As an instance of this phenomenon, Figure 4-4 presents an example of the
performance of SA, in a run with p = 14 in which SA found the global optimum

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

4 Results in the case p — 14 74

Figure 4-5: Actual expected utility as a function of N for a random-walk search
strategy (the horizontal scale is logarithmic).

CO
oo

o
o>

1 5 10 50
N

M - 28,800

GO
GO

IB3t5 CM< O)
1 5 10 50

N

solution described in Section 4.2. I used a geometric cooling schedule from a starting
tem perature of 1 to a final temperature of 0 .001, and moves from one model to
another were based on 1-b it flips. The run consisted of 4,989 iterations, with N
beginning at 1 and increasing geometrically to 50, and the null model (with no
predictors) was used as the starting value. Four aspects of the run are plotted:
(apparent) estimated expected utility and N (the left- and right-hand vertical scales
in the upper panel), and dimension k of the current model and temperature (the
left- and right-hand scales in the lower panel). It is evident tha t from about iteration
3,000 to the end SA primarily visited good models with 3-7 predictors (the optimal
range in Figure 4-1), but the method spent much of its time before tha t point
looking at models known from the results in Section 4.2 to be inferior. This may
well be (in part) because values of N that were too small were used early in the
run: note, for example, that in the first 1,000 iterations (when N was at most 2) SA
found several models with apparent estimated expected utility of about —6 , which
is much larger than the actual utility of the best models.

To explore the optimal choice of iV in a simple setting, as a way of informing its
choice in the main experiments below, I compared two search strategies: random-
walk in model space (a) with N = 1, and (b) with N > 1. Each strategy was given a
budget of M utility evaluations (which is equivalent to a CPU constraint); strategy

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

4 Results in the case p = 14 75

(a) visited M models chosen at random from the 16,384 possible models in the
p = 14 case, with each model having its expected utility evaluated only once, whereas
strategy (b) visited ^ models at random and estimated the expected utility as an
average of N evaluations across random modelling/validation splits. I made a total
of 11 separate runs at each value of M, using N = 1,2,5,10,15,20,25,30,36,40,
and 50. In each simulation replication the actual expected utility (from the full-
enumeration results of Section 4.2) of the model with the maximum apparent
expected utility across all models visited was recorded, and I repeated this exercise
m = 3,000 times for each value of N and for M varying from 3,600 to 28,800.
Monte Carlo error was estimated in the usual way for the mean of IID draws from
a population, namely S E (E) = , where E and se are the sample mean and
standard deviation, respectively, of the m replications at each setting of N and M .

Figure 4-5 summarises the results for the extremes of M I examined. The
roughly quadratic curves (with 95% uncertainty bands plotted as solid vertical lines)
trace out the mean actual expected utility as a function of N across the simulation
replications; the horizontal line in each plot (with 95% uncertainty bands as dotted
lines) gives the results from a separate set of runs with N = 1 for comparison.
For M — 3,600 the optimum N is attained between 5 and 10, with the results for
N = 50 about as bad as those with N = 1. When the number of utility evaluations
is increased by a factor of 8 , both strategies naturally find better models and the
optimal N increases to about 10 (although values of N between 10 and 30 do almost
as well as N = 10). Even though strategies (a) and (b) are much less sophisticated
than those examined in Section 4.6, I found that the results described here are a
good guide to the sensible choice of N when more intelligent global optimisation
methods are used instead.

4.5 Comparison of optimisation methods: prelim
inary results

I first completed a preliminary comparison, on the p — 14 case, of five stochastic
optimisation methods: a genetic algorithm (GA), messy simulated annealing (MSA),
simulated annealing (SA), tabu search (TS), and threshold acceptance (TA). To give
all of the methods a realistically small amount of CPU time with p = 14 (to simulate
the situation with larger p), I made a number of runs forcing each method to only
use 10 or 20 minutes of CPU time at 400 Unix MHz. The neighbourhood structure
for TS was based on 1-b it flips; with TA and SA I alternated 1-b it flips with a

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

4 Results in the case p = 14 76

second move type: 2-b it swaps, in which a random subset of two variables is chosen
and their inclusion indicators, if different, are interchanged. Results in Table 4.3
were averaged over 100 Monte Carlo repetitions and rounded to the nearest integer.

In these runs I also implemented an improvement involving adaptive choice of
N: previously in a fixed-iV run with (say) N = 10 all models were evaluated with
N = 10. In the adaptive method (i) 20 models are chosen at random to initialise
the search and evaluated with N* = 10, creating a league table of the current 20
best models; and (ii) a new model is chosen and evaluated once. If its apparent
utility would seem to place it somewhere in the current league table, the utility is
evaluated for (N * — 1) = 9 more random splits and the average over the N* values is
computed—if it still belongs in the league table it is added at the appropriate place;
if not it is discarded. I found that this adaptive-N* approach was significantly better
than the fixed-A" approach for all optimisation methods I examined.

There is some evidence (Aarts and Korst 1989) tha t SA can perform particularly
badly when the surface to be optimised is very rough, and this point by itself would
suggest focussing on runs with large values of N for SA. It is certainly true that
running SA with a constant value of N = 5 would produce a clearer picture of the
quality of the models it manages to visit, but with a fixed budget of CPU time it
would be able to visit 5 times fewer models with this approach. The adaptive-A*
method offers the benefit of not spending too much time on apparently bad models
without running too large a risk of overlooking models that are actually good.

Table 4.3 presents the results of the preliminary comparison with 10 and 20

minutes of CPU time. The adaptive-A* method was used throughout. In the
version of TS studied here I chose the following user-defined settings: the simplest
aspiration criterion described in Section 3.5.2, a tabu list size of 7 (I held these first
two choices constant throughout the entire dissertation), r repetitions of the whole
search process (where r varied from 1 to 11 as a function of A and the amount of
CPU time allowed), 6 preliminary searches, 9 intensification searches, a maximum of
4 random restarts within each intensification search (a restart occurred whenever the
globally best solution found so far was located), and 2 diversification searches. The
version of SA in this preliminary comparison employed a geometric cooling schedule
from a maximum temperature of 1.0 to a minimum of 0.1. The version of MSA used
in Table 4.3 was identical to SA except with gene and allele mutation probabilities
both set to 0.5. In this version of TA I varied the threshold, on the utility scale,
geometrically throughout the run from an initial value of 1.0 to a minimum of 0 .1.
Finally, in the version of GA whose results are given in Table 4.3 the population
size was 40, I used one-bit crossover with probability 0.7, the mutation probability

Dimitris Fouskakis (2001) Stochastic Optim isation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessm ent in Health

4 Results in the case p = 14 77

Table 4.3: Preliminary comparison of GA, MSA, SA, TS, and TA. The adaptive-N*
method was used in all cases. Boldface indicates the best result in each column for
each CPU time constraint.

10 minutes CPU time

Method N*

20 Best Models Found
Number of Mean (SD) Actual Rank of

20 Actual Best Actual Utility Best Worst
TS 5 11 -8 .3 6 (0.29) 4 103
TA 3 10 -8 .43 (0.37) 2 119
SA 1 9 -8.65 (0.64) 2 1,321

MSA 3 4 -8 .84 (0.51) 1 499
GA 2 1 -9 .58 (0.64) 9 2,379

20 minutes CPU time

Method N*

20 Best Models Found
Number of Mean (SD) Actual

20 Actual Best Actual Utility Best
Rank of
Worst

TS 15 15 -8 .2 6 (0.32) 1 153
TA 10 12 -8 .30 (0.29) 1 67
SA 4 13 -8 .32 (0.30) 1 102

MSA 3 8 -8 .57 (0.43) 1 190
GA 1 3 -9 .22 (0.77) 6 5,562

was 0 .001, and the fitness and objective functions g and f were taken to be equal
(this also remains true throughout the whole dissertation).

Each row in the Table 4.3 represents the best of eight runs, corresponding to
N* = {1,2,3,4,5,10,15,20}. In keeping with the likely use of this method in health
policy, in which a list of the b best models would be presented to decision-makers
for a check on clinical face-validity, I examined three summaries of how well each
method recovered the b = 20 best models from the full-enumeration exercise: (1)
how many of the actual 20 best models were in each method’s announced list of 20

best, and the actual ranks of the (2) best and (3) worst models in the apparent 20
best. (In column 4 of Table 4.31 also report the mean and standard deviation of the
actual utility of the 20 best models found by each method.) In these preliminary
comparisons (and others not shown here for reasons of space) I found that TS was
the overall best method in this problem (routinely able to find about 75% of the 20
best models in only 20 minutes of CPU time), with TA and SA not far behind; MSA
came in an unimpressive fourth, and GA decisively brought up the rear. Given that
differences of 0.20 or more on the utility scale are large in practical terms in this

Dimitris Fouskakis (2001) Stochastic Optim isation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessm ent in Health

4 Results in the case p = 14 78

problem (because of the financial implications of such differences), the utility results
in Table 4.3 convey a similar message.

By looking at the geometry of the solution space it was clear in Section 4.3
th a t good methods in this problem need to strike a compromise between respecting
the local neighbourhood structure and making bold jumps around the model space.
Careful examination of GA and TS results indicates that the cross-over operation
inherent in the version of GA used here makes insufficient use of the modest amount
of continuity present in this problem, while TS appears to achieve a happy balance
between local exploration of good models and occasional leaps into fruitful new
territory. It is the diversification stage of TS that appears to give it the edge over
GA and SA in this problem.

4.6 A simulation experiment w ith p = 14

On the basis of the preliminary results I chose (a) to explore a wider variety of
implementations of GA, in an attempt to overcome its poor performance, and (b) to
focus only on GA, SA, and TS, because the other two methods either did not perform
well or are minor variations on the three main approaches. There is a surprising
lack in the literature of advice on the best input settings to choose for GA, SA,
and TS, so I decided to conduct a large simulation experiment in the 14-variable
case to explore the effects of the input settings. As with the preliminary runs in the
previous section, I wanted to restrict each method to a realistically small amount of
CPU time; for the main experiment I chose 20 minutes at 400 Unix MHz.

It was also clear from the preliminary results that a single run of any given
method with any particular set of inputs gave a quite noisy estimate of the
performance, so I made 30 runs, with different starting random seeds, for each
input setting, and averaged the results. I used the adaptive-iV* method, which has
already been shown to clearly dominate the fixed-A” approach, and I varied N* as
another parameter in the simulation design.

The main outcome variable I examined was the percentage p2o of the actual
20 best models found with each set of inputs (other obvious outcomes such as the
actual utility of the best models found correlated strongly with p2o, as is clear
from Table 4.3). Since Figure 4-1 shows that there are a number of models whose
performance is close to optimal, I chose P20 to mimic the decision-making reality
that in practice, instead of giving the health policy colleagues with whom I would
be working a single best model, it would be better to give them the q best models
(for a value of q, with p = 14, like 20) and let them choose on grounds that were

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

4 Results in the case p = 14 79

partly statistical and partly clinical. The number of repetitions of the experiment
at each input setting, 30, was chosen to make the Monte Carlo standard error small
enough so that differences of 0.05 in p2o between two methods or input settings
would be detectable.

4.6.1 Tabu search

With TS in this problem there are six user inputs to vary:

• r, the total number of repetitions of the algorithm (this varied from 1 to 6 in
the experiment);

• N*, the maximum number of random modelling/validation splits on which the
estimated expected utility is based (the actual number was either 1 or N* in
accordance with the adaptive method). This varied from 2 to 20;

• Z, the number of preliminary searches per repetition (this varied from 2 to 21);

• i, the number of intensification searches per repetition (this varied from 2 to
40);

• t, the maximum number of random restarts in each intensification search (this
varied from 0 to 8); and

• d , the number of diversification searches per repetition (this varied from 1 to
15).

In all parts of the experiment, for all three optimisation methods, the final ranges of
the inputs used in the simulation study were chosen from preliminary runs to span
a range of performance from bad to good to bad again (as far as that input was
concerned).

A full factorial across all six of these inputs is not possible because many of
them lead to CPU times much greater than the target of 1,200 seconds. By trial
and error I was able to find 49 combinations of input settings, each of which took
approximately 20 minutes of CPU time. The actual CPU time varied by input
settings from a mean across the 30 runs of 1075 sec to 1575 seconds, so I have
calculated both raw summaries and results adjusted (via regression) for differences
in CPU time.

Tables 4.4-5 summarise the results of the simulation study for TS. Its
performance varied noticeably according to input settings, from an adjusted mean
for P20 of 39% to 65%. I tried fitting linear models to the data in these tables

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

4 Results in the case p = 14 80

to evaluate the effects of each of the TS inputs on performance, but these effects
proved complicated to quantify because of strong and high-order interactions among
the inputs. Only one clear pattern emerges: good runs tend to have input values in
the middle, and bad runs tend to have values at the extremes, of the ranges used.
It is fairly impressive that the best input settings of TS can find about 2/3 of the
best models among a collection of 16,384 with only 20 minutes of CPU time.

4.6.2 Simulated annealing

With simulated annealing in this problem there are five user inputs to vary:

• r, the total number of iterations (this varied in the experiment from 130 to
2500);

• N*, as in TS (this again varied from 2 to 20);

• T0 and T/, the initial and final values of the temperature (these varied
across the five settings (T/,To) = (10.0 , 1.0), (10.0 , 0 .1), (2.5,0 .1), (1.0 , 0 .1),
(0.5,0.05)); and

• sc, the schedule used to decrease the temperature (1 = straight, 2 = geometric,
3 = reciprocal, 4 = logarithmic).

By trial and error I was able to find 108 combinations of input settings (almost
a full factorial), each of which took approximately 1,200 seconds. The actual CPU
time again varied by input settings, this time from a mean (across the 30 runs)
of 986 to 1471 seconds, so as before I calculated both raw summaries and results
adjusted (via regression) for differences in CPU time.

The performance of SA in this problem, summarised in Tables 4.6-8, varied
dramatically according to input settings (substantially more than with TS), from
an adjusted mean for p2o of 0% to 56%. I again tried fitting linear models, but
the effects again proved complicated to quantify because of strong and high-order
interactions among the inputs. Some conclusions emerging from the tables are as
follows.

• SA’s performance was disappointing when compared with that of TS: the best
SA runs were below the median TS results. (However, in Chapter 6 I report
results of an improved SA method that are much better.)

• Small values of N (up to 10) appear best.

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

4 Results in the case p = 14 81

Table 4.4: Results of the simulation study for TS with p = 14 (part 1). Values in
parentheses are Monte Carlo standard errors; entries are sorted by adjusted means
° f P20 •

P20 (% of 20 Actual
Best Models Found)

r N* I t d
Mean CPU
Time (sec)

Raw
Mean

Raw
SD

Adjusted
Mean

1 10 10 6 00 3 1158 0.631 (0 .020) 0.109 0.649
5 6 2 7 2 2 1362 0.641 (0.016) 0.089 0.635
2 10 2 4 6 4 1313 0.635 (0.016) 0.090 0.634
4 9 2 4 1 2 1386 0.636 (0.017) 0.091 0.627
2 5 14 15 5 1 1243 0.611 (0.016) 0.089 0.619
1 10 9 12 3 3 1273 0.615 (0.015) 0.084 0.619
1 14 11 2 0 1 1253 0.611 (0.019) 0.106 0.618
6 7 2 4 2 2 1574 0.650 (0.017) 0.095 0.618
5 5 9 3 3 2 1300 0.615 (0.018) 0.099 0.616
5 8 2 4 1 3 1500 0.631 (0.013) 0.070 0.608
3 10 2 4 2 2 1321 0.605 (0.013) 0.069 0.603
2 5 9 10 3 14 1200 0.590 (0.019) 0.106 0.603
1 14 2 11 0 1 1247 0.595 (0.019) 0.106 0.602
1 10 12 6 1 2 1230 0.590 (0.024) 0.134 0.599
3 5 12 9 4 3 1318 0.600 (0.018) 0.096 0.599
5 5 4 7 3 2 1326 0.600 (0.018) 0.098 0.598
1 20 4 6 4 2 1258 0.591 (0.032) 0.174 0.597
1 14 3 5 6 2 1291 0.593 (0 .021) 0.113 0.595
5 5 3 9 3 2 1377 0.601 (0.015) 0.083 0.593
6 6 2 4 2 2 1256 0.586 (0.018) 0.100 0.593
2 10 2 5 4 5 1332 0.595 (0 .021) 0.116 0.592
1 7 11 18 5 10 1223 0.581 (0.015) 0.080 0.592
3 5 7 9 3 7 1239 0.583 (0.017) 0.091 0.591
4 10 10 10 0 1 1350 0.595 (0.019) 0.105 0.590
1 6 11 30 5 2 1228 0.578 (0 .020) 0.112 0.588
4 5 6 9 4 3 1345 0.591 (0.013) 0.070 0.587
1 10 21 7 1 1 1200 0.571 (0.017) 0.093 0.584
1 6 20 14 6 2 1074 0.555 (0 .021) 0.114 0.584
6 5 3 6 2 3 1325 0.583 (0.015) 0.081 0.581
2 9 7 2 2 4 1217 0.568 (0.019) 0.103 0.579
2 12 3 7 2 3 1521 0.601 (0.019) 0.103 0.576
5 4 6 7 2 4 1278 0.560 (0.019) 0.102 0.563
6 4 4 7 2 3 1253 0.548 (0 .022) 0.119 0.555
4 5 6 9 0 4 1328 0.556 (0.017) 0.095 0.554
1 18 2 3 6 1 1253 0.546 (0.034) 0.185 0.553
1 7 12 28 8 5 1411 0.561 (0.015) 0.084 0.549
1 5 17 38 0 15 1248 0.541 (0.018) 0.096 0.549

Dimitris Fouskakis (2001) Stochastic Optim isation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality A ssessm ent in Health

4 Results in the case p = 14 82

Table 4.5: Results of the simulation study for TS with p = 14 (part 2).

P20 (% of 20 Actual
Best Models Found)

r N* I i t d
Mean CPU
Time (sec)

Raw
Mean

Raw
SD

Adjusted
Mean

6 3 6 9 3 4 1343 0.536 (0.016) 0.089 0.532
1 5 19 35 5 7 1298 0.530 (0.016) 0.087 0.531
6 4 5 3 2 8 1306 0.526 (0 .022) 0.122 0.527
1 5 20 40 8 10 1319 0.526 (0.016) 0.089 0.525
6 6 4 2 2 3 1319 0.523 (0 .022) 0.122 0.522
1 20 3 5 0 2 1240 0.475 (0.027) 0.147 0.483
2 10 4 2 1 6 1300 0.441 (0.027) 0.148 0.442
2 10 4 8 1 2 1541 0.446 (0.035) 0.193 0.418
3 2 15 35 8 2 1448 0.430 (0 .020) 0.110 0.413
1 15 5 3 1 6 1191 0.398 (0.047) 0.257 0.412
1 15 6 12 1 5 1523 0.431 (0.039) 0.214 0.406
5 8 4 1 1 3 1327 0.395 (0.028) 0.155 0.392

• (T/,To) = (1.0 , 0 .1) and (0.5,0.05), the lowest initial and final temperatures,
appear best.

• The reciprocal and logarithmic schedules appear best in this problem.

• (T /,T0) = (10.0 , 1.0), large N , and the straight schedule perform badly.

4.6.3 G enetic algorithm

With GA in this problem there are six user inputs to vary:

• r, the total number of repetitions (this varied from 2 to 237);

• N*, as in TS and SA (this varied for GA from 2 to 15);

• n, the population size (I used the three settings 30, 50, and 80);

• (c, pc) , the crossover strategy (I used c = 1 (simple), 2 (uniform), and 3 (highly
uniform crossover). With the first strategy I used a crossover probability
pc = 0.88 when the population size was 30, 0.5 when the population size was
50 and 0.3 when the population size was 80.

• (e>Pm), elitist or non-elitist strategy. (In the case of the elitist strategy with
highly uniform crossover there is a possibility for the new population to be

Dimitris Fouskakis (2001) Stochastic Optim isation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessm ent in Health

4 Results in the case p = 14 83

Table 4.6: Results of the simulation study for SA with p = 14 (part 1). Values in
parentheses are Monte Carlo standard errors; entries are sorted by adjusted means
o f P 2 0 -

P20 (% of 20 Actual
Best Models Found)

r N* Tf T0 sc
Mean CPU
Time (sec)

Raw
Mean

Raw
SD

Adjusted
Mean

1050 4 1 0.1 3 1146 0.538 (0 .021) 0.113 0.555
1000 5 0.5 0.05 1 1087 0.515 (0.016) 0.088 0.551
860 5 0.5 0.05 2 1134 0.523 (0.023) 0.125 0.544
900 5 2.5 0.1 3 1140 0.520 (0 .021) 0.116 0.539

1120 3 1 0.1 3 1015 0.470 (0.023) 0.127 0.530
240 10 0.5 0.05 4 1113 0.501 (0.018) 0.097 0.530
240 10 1 0.1 4 1085 0.490 (0.027) 0.150 0.527
900 5 1 0.1 3 1138 0.505 (0.018) 0.098 0.524

1400 4 1 0.1 2 1191 0.521 (0.026) 0.145 0.524
500 10 10 0.1 3 1278 0.550 (0 .021) 0.115 0.523
600 10 1 0.1 2 1279 0.550 (0 .022) 0.118 0.523
450 10 1 0.1 3 1315 0.556 (0 .021) 0.115 0.512

1110 5 10 0.1 3 1326 0.555 (0.025) 0.136 0.512
600 10 0.5 0.05 1 1394 0.576 (0 .021) 0.116 0.511
430 10 0.5 0.05 2 1383 0.566 (0.017) 0.093 0.505
130 20 0.5 0.05 4 1216 0.506 (0.019) 0.105 0.500
150 15 0.5 0.05 4 1059 0.450 (0.023) 0.124 0.496
300 10 0.5 0.05 3 1214 0.500 (0.018) 0.099 0.494
500 5 10 0.1 4 1172 0.483 (0.018) 0.101 0.492
450 10 2.5 0.1 3 1352 0.541 (0.016) 0.089 0.490

1600 2 0.5 0.05 1 1028 0.423 (0.019) 0.103 0.479
1550 3 1 0.1 2 1146 0.461 (0.024) 0.129 0.479
240 10 2.5 0.1 4 10 86 0.441 (0.026) 0.142 0.479
130 20 10 0.1 4 1161 0.461 (0 .021) 0.117 0.474
630 5 1 0.1 4 1347 0.521 (0 .022) 0.122 0.472

1200 5 2.5 0.1 2 1139 0.451 (0 .021) 0.114 0.471
1500 2 1 0.1 3 1068 0.425 (0.026) 0.140 0.468
350 10 10 0.1 4 1467 0.556 (0.018) 0.100 0.467
520 5 0.5 0.05 4 1226 0.476 (0.019) 0.105 0.467

1500 2 2.5 0.1 3 1042 0.410 (0.024) 0.132 0.461
150 15 1 0.1 4 1089 0.425 (0 .021) 0.117 0.461
290 15 0.5 0.05 1 1300 0.495 (0.029) 0.157 0.461
130 20 2.5 0.1 4 1193 0.455 (0 .020) 0.112 0.456

1200 5 1 0.1 2 1158 0.443 (0 .022) 0.122 0.456
1360 2 0.5 0.05 2 1053 0.408 (0.023) 0.128 0.456
1400 5 1 0.1 1 1161 0.441 (0.017) 0.092 0.454

170 15 0.5 0.05 3 1258 0.471 (0.025) 0.136 0.451

Dimitris Fouskakis (2001) S tochastic Optim isation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessm ent in Health

4 Results in the case p = 14 84

Table 4.7: Results of the simulation study for SA with p = 14 (part 2).

P2Q (% of 20 Actual
Best Models Found)

r N* Tf T0 sc
Mean CPU
Time (sec)

Raw
Mean

Raw
SD

Adjusted
Mean

150 15 2.5 0.1 4 1141 0.428 0.024) 0.131 0.447
200 15 10 0.1 4 1440 0.525 0.023) 0.126 0.445

1600 4 1 0.1 1 1194 0.443 0.024) 0.134 0.444
1900 2 2.5 0.1 2 1112 0.408 0.019) 0.105 0.436
700 5 0.5 0.05 3 1319 0.476 0 .022) 0.118 0.436

1900 2 1 0.1 2 1140 0.416 0 .022) 0.118 0.435
280 15 10 0.1 3 1374 0.490 0.031) 0.169 0.431

1770 3 1 0.1 1 1168 0.421 0.017) 0.095 0.431
630 5 2.5 0.1 4 1468 0.516 0 .022) 0.121 0.427
600 10 1 0.1 1 1062 0.381 0.033) 0.183 0.426
680 4 1 0.1 4 1307 0.460 0.025) 0.136 0.424
910 2 2.5 0.1 4 1038 0.363 0.027) 0.149 0.416
130 20 1 0.1 4 1177 0.405 0.024) 0.130 0.412

1400 5 10 0.1 2 1237 0.421 0.024) 0.130 0.408
250 15 0.5 0.05 2 1393 0.471 0.030) 0.165 0.407
200 15 1 0.1 3 1245 0.420 0 .022) 0.121 0.404
760 3 1 0.1 4 1207 0.406 0.029) 0.160 0.403
600 10 2.5 0.1 2 1212 0.405 0.027) 0.148 0.400
190 20 2.5 0.1 3 1346 0.448 0.028) 0.155 0.399
630 10 10 0.1 2 1153 0.381 0.023) 0.126 0.396
200 15 2.5 0.1 3 1174 0.386 0 .020) 0.110 0.394
145 20 0.5 0.05 3 1273 0.418 0.028) 0.156 0.393
910 2 1 0.1 4 1046 0.338 0 .020) 0.112 0.388

1640 2 10 0.1 3 1099 0.351 0.023) 0.128 0.384
2100 2 1 0.1 1 1163 0.366 0.024) 0.130 0.378

170 20 0.5 0.05 2 1271 0.398 0.024) 0.134 0.374
1160 2 0.5 0.05 3 1128 0.350 0.028) 0.151 0.373
1000 2 0.5 0.05 4 1162 0.360 0.025) 0.136 0.372

200 20 0.5 0.05 1 1348 0.420 0 .022) 0.122 0.370
2100 2 10 0.1 2 1182 0.363 0.017) 0.095 0.368

350 15 1 0.1 2 1338 0.406 0.027) 0.150 0.360
190 20 1 0.1 3 1399 0.420 0.029) 0.161 0.353
180 20 10 0.1 3 1265 0.371 0.027) 0.150 0.349
410 15 1 0.1 1 1209 0.350 0.035) 0.191 0.346

1050 2 10 0.1 4 1194 0.333 0.027) 0.147 0.334
410 15 2.5 0.1 2 1471 0.418 0.031) 0.170 0.327
240 20 1 0.1 2 1390 0.368 0.026) 0.140 0.304

1450 5 2.5 0.1 1 1077 0.263 0 .021) 0.117 0.303
240 20 2.5 0.1 2 1158 0.290 0.025) 0.137 0.303

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

4 Results in the case p = 14 85

Table 4.8: Results of the simulation study for SA with p = 14 (part 3).

P20 (% of 20 Actual
Best Models Found)

r N* T f To sc
Mean CPU
Time (sec)

Raw
Mean

Raw
SD

Adjusted
Mean

360 15 10 0.1 2 1201 0.300 0.027) 0.147 0.299
2100 2 2.5 0.1 1 1091 0.250 0.019) 0.104 0.285

260 20 1 0.1 1 1197 0.256 0.028) 0.152 0.257
750 10 2.5 0.1 1 1095 0.220 0.027) 0.149 0.254

1600 5 10 1 4 1120 0.210 0.019) 0.105 0.235
680 10 10 1 4 986 0.151 0 .021) 0.117 0.221

1800 5 10 0.1 1 1261 0.228 0.025) 0.137 0.207
350 15 2.5 0.1 1 1060 0.156 0 .022) 0.121 0.202

2350 2 10 1 4 1193 0.191 0.017) 0.092 0.193
230 20 10 0.1 2 1098 0.160 0.024) 0.132 0.193

2400 2 10 1 3 1232 0.193 0.017) 0.095 0.182
260 20 2.5 0.1 1 1075 0.108 0.019) 0.105 0.149

2360 2 10 0.1 1 1203 0.145 0.017) 0.095 0.143
1900 5 10 1 2 1314 0.180 0 .021) 0.115 0.141
2450 2 10 1 2 1243 0.153 0.015) 0.082 0.138
2100 5 10 1 1 1361 0.186 0 .022) 0.121 0.132
2500 2 10 1 1 1267 0.155 0.018) 0.101 0.132
870 10 10 1 3 1123 0.105 0.015) 0.084 0.129
820 10 10 0.1 1 1087 0.085 0.016) 0.086 0.121
320 20 10 1 4 1093 0.086 0.015) 0.080 0.121
840 10 10 1 2 1097 0.086 0 .022) 0.118 0.120
470 15 10 1 3 1086 0.075 0 .012) 0.067 0.112
260 20 10 0.1 1 994 0.040 0.009) 0.051 0.107

1800 5 10 1 3 1407 0.171 0 .020) 0.107 0.102
480 15 10 1 2 1105 0.070 0.014) 0.077 0.100
580 15 10 0.1 1 1210 0.098 0.024) 0.133 0.094
360 15 10 1 4 1147 0.068 0.014) 0.074 0.085

1000 10 10 1 1 1202 0.076 0.013) 0.073 0.075
360 20 10 1 2 1128 0.050 0 .011) 0.061 0.073
340 20 10 1 3 1133 0.036 0 .012) 0.064 0.058
360 20 10 1 1 1163 0.033 0.009) 0.051 0.044
800 15 10 1 1 1426 0.055 0 .010) 0.057 0.000

Note: Negative adjusted mean £>20 values have been truncated at 0
but appear in rank order corresponding to their untruncated values.

exactly the same as the previous one. In this case I decrease d, the certain
Hamming distance that the two strings are away from each other; usually the
starting value of d is where p is the size of the strings. If d becomes negative

Dimitris Fouskakis (2001) Stochastic Optim isation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality A ssessm ent in Health

4 Results in the case p = 14 8 6

then I perform a kind of diversification. I replace the current population with
n (the population size) copies of the best member of the previous population,
and for all but one member of the new population I flip half of the bits at
random. Then the algorithm is restarted.) In the elitist strategy you compare
the offspring with the parents and choose the best two among the four; with the
non-elitist you always choose the offspring. With the elitist strategy mutation
is not performed; in the case of the non-elitist strategy mutation occurs with
probability pm = 0 .01; and

• k: At the end of each repetition, I either clear the population and randomly
generate a new one (k — 0), or I keep the population as it is and use it as the
starting population for the new runs (k = 100).

Here I was able to perform a full factorial experiment of 144 combinations, each
of which was targeted to take approximately 1,200 seconds. As with TS and SA, the
actual CPU time varied by input settings from a mean (across the 30 runs) of 988 to
1,994 seconds (this variation is essentially due to the adaptive-N* strategy), so as
before I have calculated both raw summaries and results adjusted (via regression)
for differences in CPU time.

The performance of GA, summarised in Tables 4.9-12, again varied even more
dramatically according to input settings than with SA, from an adjusted mean of
0% to 66% (better than any settings of TS or SA). The conclusions in this case are
clearer than with the other two algorithms.

• It is far better to use elitist strategies and at the end of every repetition to
keep the population, instead of generating a new one and losing valuable time.

• The uniform and highly uniform crossover strategies are much better than the
simple one-bit crossover. This and the previous conclusion help to explain why
GA looked so bad in the preliminary comparison: the more recent versions of
GA in the literature, with elitist strategies and more complicated crossover
operations, vastly outperform the “vanilla” GA of (Holland 1975).

• Again small values of N* (up to 10) appear best.

• Smaller values of the population size n (30 and 50) gave better results than
runs with population size 80.

Dimitris Fouskakis (2001) S tochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

4 Results in the case p = 14 87

Table 4.9: Results of the simulation study for GA with p = 14 (part 1). Values in
parentheses are Monte Carlo standard errors; entries are sorted by adjusted means
0 f P 2 Q -

P20 (% of 20 Actual
Best Models Found)

r N* n Pc Pm c e k
Mean CPU
Time (sec)

Raw
Mean

Raw
SD

Adjusted
Mean

22 2 80 0 0 2 1 100 1231 0.646 (0.013) 0.070 0.665
98 5 50 0 0 3 1 100 1301 0.655 (0.015) 0.083 0.664
46 2 50 0 0 2 1 100 1282 0.638 (0.019) 0.103 0.650
20 5 50 0 0 2 1 100 1307 0.630 (0.018) 0.100 0.638
16 10 30 0 0 2 1 100 1236 0.590 (0.023) 0.125 0.608
74 10 30 0 0 3 1 100 1282 0.591 (0.011) 0.058 0.603

166 2 50 0 0 3 1 100 1267 0.585 (0.014) 0.074 0.599
165 5 30 0 0 3 1 100 1335 0.588 (0.013) 0.072 0.593
89 2 80 0.3 0 1 1 100 1328 0.560 (0.018) 0.098 0.566
79 2 50 0.5 0 1 1 100 1095 0.525 (0.016) 0.087 0.561

9 5 80 0 0 2 1 100 1348 0.556 (0.016) 0.090 0.560
124 2 30 0 0 2 1 100 1453 0.565 (0.026) 0.140 0.554
158 2 80 0 0 3 1 100 1598 0.568 (0.020) 0.108 0.538
36 5 80 0.3 0 1 1 100 1342 0.531 (0.023) 0.126 0.535

237 2 30 0 0 3 1 100 1341 0.526 (0.014) 0.077 0.530
85 5 30 0 0 2 1 100 1818 0.571 (0.034) 0.187 0.513
66 5 80 0 0 3 1 100 1306 0.498 (0.024) 0.133 0.507

8 10 50 0 0 2 1 100 1399 0.501 (0.022) 0.121 0.498
35 15 30 0 0 3 1 100 1200 0.470 (0.025) 0.138 0.492
40 5 50 0 0 1 1 100 1245 0.451 (0.031) 0.171 0.468
21 2 50 0 0.01 2 0 100 1129 0.431 (0.024) 0.131 0.463
20 5 50 0.5 0.01 1 0 100 1214 0.425 (0.035) 0.191 0.446
21 5 30 0 0.01 2 0 100 1180 0.408 (0.030) 0.164 0.433
26 5 30 0.88 0.01 1 0 100 1260 0.418 (0.033) 0.179 0.433
48 2 30 0 0.01 3 0 100 988 0.380 (0.027) 0.150 0.430
21 10 30 0.88 0 1 1 100 1275 0.416 (0.027) 0.147 0.429

104 2 30 0.88 0 1 1 100 1210 0.406 (0.028) 0.154 0.428
9 15 30 0 0 2 1 100 1312 0.410 (0.026) 0.142 0.418

66 2 30 0.88 0.01 1 0 100 1111 0.383 (0.026) 0.140 0.417
37 10 50 0 0 3 1 100 1144 0.365 (0.028) 0.153 0.395
92 2 30 0 0.01 2 0 100 1534 0.411 (0.028) 0.154 0.390
27 2 50 0 0.01 3 0 100 1409 0.395 (0.023) 0.124 0.390
36 5 30 0 0.01 3 0 100 1631 0.423 (0.026) 0.142 0.389
97 2 50 0.5 0.01 1 0 100 1942 0.458 (0.026) 0.140 0.383
41 2 80 0.3 0.01 1 0 100 1301 0.373 (0.032) 0.176 0.382
81 5 30 0.88 0 1 1 100 1551 0.388 (0.030) 0.166 0.365
13 2 80 0 0.01 2 0 100 1266 0.346 (0.024) 0.129 0.360
13 2 80 0 0.01 3 0 100 1264 0.331 (0.018) 0.101 0.346
36 15 30 0.88 0 1 1 100 1290 0.320 (0.037) 0.200 0.331

Dimitris Fouskakis (2001) S tochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

4 Results in the case p = 14 8 8

Table 4.10: Results of the simulation study for GA with p = 14 (part 2).

P 20 (% of 20 Actual
Best Models Found)

r N * n P c P m c e k
Mean CPU
Time (sec)

Raw
Mean

Raw
SD

Adjusted
Mean

11 5 50 0 0.01 3 0 100 1348 0.326 (0.022) 0.120 0.330
11 5 50 0 0.01 2 0 100 1338 0.311 (0.031) 0.171 0.316
18 5 80 0.3 0.01 1 0 100 1338 0.303 (0.029) 0.157 0.308
16 10 50 0.5 0 1 1 100 1271 0.290 (0.026) 0.145 0.303
13 10 50 0.5 0.01 1 0 100 1572 0.300 (0.036) 0.197 0.273
11 10 30 0 0.01 2 0 100 1385 0.265 (0.028) 0.153 0.263
11 10 30 0 0.01 3 0 100 1386 0.231 (0.030) 0.163 0.230
13 10 30 0.88 0.01 1 0 100 1390 0.221 (0.040) 0.220 0.219
6 5 80 0 0.01 2 0 100 1306 0.188 (0.025) 0.135 0.197
6 5 80 0 0.01 3 0 100 1282 0.173 (0.018) 0.096 0.185

15 15 50 0.5 0 1 1 100 1315 0.176 (0.031) 0.171 0.184
29 10 80 0 0 3 1 100 1429 0.171 (0.020) 0.110 0.164
10 10 80 0.3 0.01 1 0 100 1234 0.133 (0.021) 0.114 0.151
13 10 80 0.3 0 1 1 100 1294 0.138 (0.019) 0.103 0.148
5 10 50 0 0.01 2 0 100 1289 0.131 (0.021) 0.113 0.142
7 15 30 0 0.01 2 0 100 1422 0.146 (0.028) 0.155 0.140
8 15 30 0.88 0.01 1 0 100 1263 0.120 (0.027) 0.147 0.134
9 10 80 0 0 2 1 100 1419 0.135 (0.014) 0.074 0.129

21 2 30 0 0.01 2 0 0 1288 0.110 (0.014) 0.078 0.121
16 15 50 0 0 3 1 100 1116 0.075 (0.014) 0.076 0.109
7 15 30 0 0.01 3 0 100 1407 0.108 (0.016) 0.089 0.103

15 2 50 0.5 0.01 1 0 0 1162 0.066 (0.012) 0.063 0.094
20 2 30 0 0.01 3 0 0 1275 0.078 (0.010) 0.053 0.091

5 10 50 0 0.01 3 0 100 1252 0.071 (0.014) 0.079 0.087
8 2 80 0 0.01 3 0 0 1376 0.085 (0.010) 0.057 0.084

10 5 30 0 0.01 2 0 0 1296 0.073 (0.013) 0.073 0.083
4 15 50 0 0 2 1 100 1300 0.073 (0.011) 0.058 0.083

23 2 30 0.88 0.01 1 0 0 1344 0.075 (0.012) 0.066 0.078
8 2 80 0 0.01 2 0 0 1277 0.063 (0.010) 0.055 0.076

20 2 30 0 0 2 1 0 1221 0.055 (0.010) 0.056 0.075
12 2 50 0 0.01 3 0 0 1270 0.060 (0.010) 0.057 0.073
8 15 50 0.5 0.01 1 0 100 1436 0.080 (0.017) 0.091 0.073

12 2 80 0.3 0.01 1 0 0 1195 0.048 (0.010) 0.053 0.071
22 2 30 0.88 0 1 1 0 1198 0.043 (0.009) 0.048 0.066
19 2 50 0.5 0 1 1 0 1339 0.060 (0.009) 0.051 0.064
31 2 30 0 0 3 1 0 1279 0.051 (0.008) 0.046 0.064

8 2 80 0 0 2 1 0 1282 0.051 (0.009) 0.048 0.063
8 5 50 0.5 0 1 1 0 1257 0.046 (0.009) 0.050 0.062

19 2 50 0 0 3 1 0 1289 0.050 (0.010) 0.052 0.061

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

4 Results in the case p = 14 89

Table 4.11: R esu lts o f the sim u la tion s tudy fo r G A w ith p = 14 (part 3).

P20 (% of 20 Actual
Best Models Found)

r N* n Pc Pm c e k
Mean CPU
Time (sec)

Raw
Mean

Raw
SD

Adjusted
Mean

12 2 80 0 0 3 1 0 1329 0.055 (0.010) 0.053 0.060
14 2 80 0 0 1 1 0 1295 0.050 (0.007) 0.039 0.060
3 15 50 0 0.01 2 0 100 1270 0.046 (0.010) 0.057 0.060

12 2 50 0 0.01 2 0 0 1449 0.070 (0.012) 0.068 0.060
6 15 80 0.3 0.01 1 0 100 1399 0.063 (0.014) 0.076 0.060
6 5 50 0 0.01 2 0 0 1299 0.050 (0.010) 0.052 0.059
4 5 80 0 0.01 2 0 0 1382 0.056 (0.010) 0.053 0.055

85 5 30 0.88 0.01 1 0 0 1310 0.046 (0.009) 0.047 0.055
3 10 80 0 0.01 2 0 100 1391 0.056 (0.011) 0.062 0.054

10 5 30 0 0 2 1 0 1317 0.045 (0.007) 0.040 0.052
14 5 30 0 0 3 1 0 1269 0.036 (0.008) 0.041 0.050
12 2 50 0 0 2 1 0 1375 0.048 (0.009) 0.048 0.048
11 5 30 0.88 0 1 1 0 1303 0.038 (0.008) 0.044 0.047
3 10 80 0 0.01 3 0 100 1348 0.043 (0.010) 0.052 0.046
8 5 50 0.5 0.01 1 0 0 1310 0.038 (0.008) 0.042 0.046
6 5 50 0 0.01 3 0 0 1371 0.045 (0.008) 0.042 0.045
6 5 80 0.3 0.01 1 0 0 1387 0.046 (0.008) 0.045 0.044
6 10 30 0.88 0.01 1 0 0 1342 0.040 (0.008) 0.046 0.044
5 10 30 0 0.01 3 0 0 1237 0.025 (0.007) 0.036 0.043
7 10 30 0 0 3 1 0 1238 0.025 (0.005) 0.025 0.042
6 5 80 0.3 0 1 1 0 1297 0.031 (0.007) 0.040 0.041
4 5 80 0 0 2 1 0 1398 0.043 (0.007) 0.038 0.040
9 5 30 0 0.01 3 0 0 1370 0.038 (0.010) 0.052 0.038
4 5 80 0 0.01 3 0 0 1469 0.050 (0.010) 0.055 0.037
6 5 50 0 0 2 1 0 1321 0.030 (0.007) 0.036 0.037
3 10 80 0.3 0 1 1 0 1224 0.015 (0.004) 0.023 0.034
9 5 50 0 0 3 1 0 1352 0.031 (0.006) 0.030 0.034
7 15 80 0 0 3 1 100 1327 0.028 (0.007) 0.040 0.034
2 10 80 0 0.01 2 0 0 1309 0.025 (0.006) 0.031 0.033
2 10 80 0 0.01 3 0 0 1387 0.035 (0.009) 0.047 0.033
3 15 50 0.5 0.01 1 0 0 1265 0.018 (0.007) 0.040 0.032
2 15 50 0 0.01 2 0 0 1283 0.015 (0.004) 0.023 0.026
5 15 50 0 0.01 3 0 100 1537 0.048 (0.010) 0.054 0.026
2 10 80 0 0 2 1 0 1311 0.018 (0.004) 0.024 0.026
6 10 30 0 0.01 2 0 0 1444 0.035 (0.010) 0.054 0.025
2 15 80 0 0 2 1 100 1396 0.028 (0.007) 0.038 0.025
6 5 80 0 0 3 1 0 1564 0.050 (0.010) 0.052 0.024
7 15 80 0.3 0 1 1 100 1415 0.030 (0.009) 0.051 0.024
5 10 50 0.5 0 1 1 0 1319 0.015 (0.004) 0.023 0.022

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

4 Results in the case p = 14 90

Table 4.12: Results of the simulation study for GA with p = 14 (part 4)-

P20 (% of 20 Actual
Best Models Found)

r N* n Pc Pm c e k
Mean CPU
Time (sec)

Raw
Mean

Raw
SD

Adjusted
Mean

3 10 80 0.3 0.01 1 0 0 1332 0.015 0.005) 0.026 0.020
2 15 50 0 0.01 3 0 0 1365 0.018 0.005) 0.027 0.019
4 15 30 0.88 0.01 1 0 0 1329 0.013 0.005) 0.029 0.019
3 10 80 0 0 3 1 0 1433 0.023 0.006) 0.034 0.015
2 15 50 0 0 2 1 0 1308 0.006 0.003) 0.017 0.015
4 15 30 0 0.01 2 0 0 1441 0.023 0.007) 0.040 0.014
5 10 30 0.88 0 1 1 0 1343 0.010 0.004) 0.024 0.014
4 10 50 0 0.01 2 0 0 1649 0.050 0.009) 0.047 0.013
2 15 80 0 0 3 1 0 1503 0.025 0.007) 0.036 0.008
3 15 50 0 0 3 1 0 1392 0.010 0.007) 0.020 0.007
6 10 30 0 0 2 1 0 1471 0.020 0.004) 0.024 0.007
4 15 30 0 0 1 1 0 1370 0.006 0.003) 0.017 0.007
4 15 30 0 0 2 1 0 1473 0.016 0.005) 0.027 0.003
2 15 80 0 0.01 2 0 100 1553 0.026 0.008) 0.043 0.003
5 10 50 0 0 3 1 0 1513 0.020 0.007) 0.036 0.001
5 10 50 0.5 0.01 1 0 0 1573 0.023 0.006) 0.034 0.000
5 15 30 0 0 3 1 0 1465 0.006 0.003) 0.017 0.000
4 15 30 0 0.01 3 0 0 1548 0.015 0.005) 0.026 0.000
4 15 50 0.5 0 1 1 0 1583 0.016 0.006) 0.033 0.000
4 10 50 0 0.01 3 0 0 1660 0.026 0.007) 0.040 0.000
2 15 80 0 0.01 3 0 100 1634 0.023 0.007) 0.038 0.000
4 10 50 0 0 2 1 0 1670 0.020 0.007) 0.038 0.000
3 15 80 0.3 0.01 1 0 0 1911 0.030 0.007) 0.038 0.000
2 15 80 0 0.01 3 0 0 1994 0.033 0.009) 0.047 0.000
2 15 80 0 0 2 1 0 1979 0.028 0.006) 0.033 0.000
2 15 80 0 0.01 2 0 0 1984 0.025 0.008) 0.045 0.000
3 15 80 0.3 0 1 1 0 1889 0.011 0.005) 0.025 0.000

Notes: (1) Negative adjusted mean P20 values have been truncated at 0 but appear
in rank order corresponding to their untruncated values. (2) For crossover

schedules 2 and 3 the pc column is not applicable.

4.7 Comparison of optimisation methods: final
results for p = 14

Figure 4-6 summarises all of the simulation results for the three methods in the
14-variable case. TS has the best median performance across all input settings
examined, and the smallest variability of performance from worst to best. The best
input settings for GA lead to the overall best performance of any method, but other

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

4 Results in the case p = 14 91

choices for GA’s tuning constants lead to the absolute worst results. “Vanilla” SA
is in the middle, dominated by the other two methods. If the problem solved here
is typical of other binary-input optimisation problems with a moderate number of
{ X j , j = 1, . . . ,p}, then a brief summary of the advice arising from this study would
be as follows: if you do not have a lot of time to investigate input settings in detail,
then try (i) GA with an elitist strategy, keeping the whole population at the end
of each iteration, a uniform or highly uniform crossover operator, and a fairly small
population size (e.g., 30-50); and (ii) TS with whatever “generic” set of inputs
seems reasonable to you (based perhaps on Section 4.6.1). (As mentioned above,
see Chapter 6 for results with an improved version of SA.)

It is common practise in “vanilla” SA to take the highest point seen so far by the
end of the run and apply an uphill search. I did not do this for several reasons: (1)
Strictly speaking this is a hybrid of SA and local search, and for complete fairness in
comparing TS, SA, and GA I decided in the main runs not to implement any hybrid
strategies, so that the pure versions of each method were being compared. If I were
to add a local search to the end of SA, for fairness I would need to do so also at
the end of TS and GA, and one would expect this addition to have a similar effect
on all three methods. (2) It would be quite difficult to decide how to choose N in
the local search, and adding a local search at the end would increase the difficulty
of stopping the algorithm with a fixed budget of CPU time. (3) Given the extreme
multimodality of the objective function being maximised in this dissertation, I do
not believe that adding a local search at the end in this way would significantly
improve the results of any of the three main methods I examined.

4.8 Sensitivity analyses

4.8.1 Second full-enumeration run: different random num
ber seed

As noted in Section 4.1, I made three full-enumeration runs with p = 14, the first
of which was summarised in Section 4.2. In the second run I used exactly the same
inputs as in the first, except the random seed, to explore the sensitivity of the
findings described previously to random variation. The best model this time had 6
variables—age of patient, systolic blood pressure score, blood urea nitrogen, APACHE

II coma score, shortness of breath day 1, and initial temperature—and also achieved
an estimated expected utility of —7.89 ±0.05. Figure 4-7, based on the second full-
enumeration run, is analogous to Figure 4-1, and almost identical in its qualitative

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

4 R esu lts in th e case p = 14 92

Figure 4-6: Parallel boxplots comparing the three optimisation methods in the In
variable case.

GA SA TS

Optimisation Method

and quantitative conclusions: for example, the 20 best models still include the same
3 variables 18 or more times out of 20, and never include 6 other variables; and the
5 best models are minor variations on each other, and include 3-7 variables. The
best model on the second run contains exactly the same variables as that on the
first, with the addition of two more variables that also frequently occurred among
the 20 best models in the first run.

4.8.2 Third full-enumeration run: different choice of ,\ n 7
n y \
n)

In the third full-enumeration run I used a modelling sample of ^ | (867 patients)
and a validation sample of ^ = | of the data (1665 patients), rather than the other
way around, to see how sensitive the results were to this aspect of the problem
formulation. Figure 4-8, based on the third run, is analogous to Figure 4-1 and 4-7
and conveys virtually the same messages. The best model this time was identical to
the one in the first run, although because of the change in the ratio its utility
was a bit lower: —8.20 ± 0.03.

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

4 R esu lts in th e case p = 14 93

Figure 4-7: Like Figure 4~1 but with a different random num ber seed.

Ml
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of Variables

Figure 4-8: Like Figures 4~1 and 4~7 but with = Q , |) instead of (| , |) .

m'Miii
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of Variables

4.8.3 Quantitative comparison of the full-enumeration runs

Table 4.13 ranks the 20 best models according to full-enumeration run 1 and
compares these ranks with those of the same models in runs 2 and 3. The

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

4 Results in the case p = 14 94

Table 4.13: Comparison of the 20 best models of the first full-enumeration run with
the other 2 runs.

Rank in Run
Model 1 2 3

0 0 1 0 1 1 0 1 0 0 0 0 0 0 1 2 1
0 1 1 0 1 1 0 1 0 0 0 0 0 1 2 1 6
0 1 1 0 1 1 1 1 0 0 0 0 0 0 3 9 12
0 0 1 0 1 1 0 1 1 0 0 0 0 0 4 7 5
0 0 1 0 1 1 0 1 0 0 0 0 0 1 5 6 3
0 1 1 0 1 1 0 1 1 0 0 0 0 0 6 4 9
0 0 1 0 1 1 0 0 1 0 0 0 0 0 7 8 7
0 0 1 0 1 1 1 1 0 0 0 0 0 0 8 10 11
0 0 1 0 1 1 0 1 1 0 0 0 0 1 9 3 10
0 1 1 0 1 1 0 1 1 0 0 0 0 1 10 12 8
0 1 1 0 1 1 0 1 0 0 0 0 0 0 11 5 2
0 0 1 0 1 1 0 0 0 0 0 0 0 1 12 15 13
0 1 1 0 1 1 0 0 1 0 0 0 0 0 13 14 15
0 0 1 0 1 1 0 0 1 0 0 0 0 1 14 13 14
0 0 1 0 1 1 0 0 0 0 0 0 0 0 15 11 4
0 0 1 0 1 1 1 1 0 0 0 0 0 1 16 16 16
0 0 1 0 1 1 1 1 1 0 0 0 0 0 17 21 18
0 1 1 0 1 1 1 1 0 0 0 0 0 1 18 22 23
0 0 1 1 1 1 0 1 0 0 0 0 0 0 19 17 17
0 1 0 0 1 1 0 1 1 0 0 0 0 1 20 18 21

correspondence is strong but not perfect; the pairwise correlations between these
three sets of ranks are 0.75, 0.85, and 0.86. To examine the correspondence in a
bit more detail, I ranked all of the ^-variables models (for k = 2 , . . . , 12) according
to runs 1-3 and computed the rank correlations as a function of k , with results
as in Table 4.14. The median pairwise correlation never drops below 0.84, with
the minimum never falling below 0.68. I conclude that results from the first full-
enumeration run are stable enough—in their definition of “tru th” with p = 14—to
use in comparing stochastic optimisation methods, as far as (a) random variation
from the Monte Carlo evaluation of the estimated expected utilities and (b) choice
of (I?J L, across the two possibilities (| , |) and Q , |) are concerned.

4.8.4 Penalties and rewards for prediction accuracy and
marginal costs per variable

How sensitive are the optimality results to the specific choices of C/m, the penalties
and rewards for prediction accuracy, and Cj, the data collection marginal costs per

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

4 Results in the case p = 14 95

Table 4.14: Pairwise rank correlations across the three full-enumeration runs as a
function of the number of variables in the model

Number of Pairwise
Variables Correlations

k Min Median Max
2 .898 .907 .986
3 .960 .976 .980
4 .916 .925 .961
5 .800 .899 .916
6 .820 .836 .951
7 .681 .839 .841
8 .850 .896 .927
9 .804 .874 .904

10 .868 .935 .942
11 .917 .921 .968
12 .977 .981 .983

variable, given in Chapter 2? Starting with the values noted in that chapter, I
multiplied all the C/m by/c = 2 , 3 , . . . , 8 and | , . . . , | (holding the data collection
costs constant at their Chapter 2 values throughout) and recomputed the 20 best
models in each instance in the p = 14 case. Results were highly stable: for instance,
with k = 2, 14 of the original 20 best models were still among the 20 best, and for
11 of the 14 variables, the frequencies of occurrence in the 20 best models differed
by 10% or less. I then multiplied all the Cj by the same k values (this time holding
the penalties and rewards constant at their Chapter 2 values) and again recomputed
the 20 best models. Here the findings were even more robust: for example, with
k = 2, 18 of the original 20 best were still among the new 20 best, and for all 14
variables, the frequencies of occurrence in the 20 best models differed by 10% or less
uniformly. Other sensitivity analyses are of course possible; some will be described
in Chapter 6.

4.8.5 Interaction term s

When constructing an admission sickness scale from available predictors X j ,
it is possible to include not only main effects (the X j themselves) but also
interactions and quadratic terms (of the form (X j — X j) (Xk — Xk) and (X j — X j) 2,
respectively). How sensitive are the results presented here to omission of interaction
and quadratic terms among the predictors? As an approximate answer to this

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

4 Results in the case p = 14 96

question, I used the entire pneumonia data set (n = 2,532) to find all 2-
way interactions (including quadratic terms) among the 14 variables which had
z = \(3/SE(j3)\ > 2 when added one by one to the 14-variable model. There
were 5 such interactions out of a possible 105: between pairs of variables
(1,4), (1,5), (1,7), (1,12), and (2,13) (using the ordering of variables in Table 4.1). I
then used TS (with the best input settings from Table 4.4) with 20, 40, 80, 160, and
320 minutes of CPU time at 400MHz on the 19-variable model formed by adding the
5 new interaction terms. With a CPU time limit of 20 minutes, only one interaction
appeared among the 20 best models, and for CPU time constraints in excess of
40 minutes none of the interactions appeared among the 20 best. I conclude that
interactions play only a minor role in this problem and their omission has little effect
on the findings presented here.

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

Chapter 5

Results in the case p = 83

I cannot do it without computers.

— William Shakespeare, The Winter’s Tale

5.1 Introduction

In this chapter I describe work I have done with the full set of p = 83 variables.
Tables 5.1 and 5.2 summarise all the predictors, together with their data collection
costs and their simple correlations with 30-day death. It is evident that the original
Rand 14-variable scale did a good job of choosing many of the variables which,
by themselves, predict death. But which subset provides the best cost-benefit
compromise?

In answering this question, the contrast with the 14-variable case could not
be more extreme, because with p = 83 the space of all possible models is almost
unimaginably large. If all 6 billion people on the planet each had a computer capable
of making 10 full-enumeration runs per second (each based on N = 500 Monte
Carlo expected utility evaluations)—which is much faster than current desktop
workstations can manage—it would still take more than 5 million years to rank-
order all of the 9.7 • 1024 models, and even then each model’s expected utility would
only be known up to a Monte Carlo standard error of US$0.05. Fortunately, this is
not my goal; I wish only to identify some good models and to see how well the leading
stochastic optimisation methods from Chapter 4 can find them. This chapter is a
summary of work in progress; I intend to continue exploring the 83-variable case as
part of the publication process.

An examination of Tables 5.1-5.2 shows that some of the variables in the p = 83
case that were not in the p = 14 case did not have very high correlation with death,

97

5 Results in the case p — 83 98

Table 5.1: The full set of 83 variables, together with their approximate data collection
costs per patient, correlation r with 30-day death, and presence in the original Rand
14-variable scale (part 1).

In

Variable
Cost Cj
(US$) r

Rand
Scale?

Good?
(p = 14)

Good?
ip = 83) %

systolic blood pressure score 0.17 0.29 * ** ** 73
age of patient 0.17 0.17 * *

blood urea nitrogen 0.50 0.32 * ** ** 100
APACHE II coma score 0.83 0.35 * ** ** 83

shortness of breath day 1 0.33 0.13 * ** * 31
serum albumin score 0.50 0.20 * *

respiratory distress score 0.33 0.18 * *
septic complications 1.00 0.06 *

prior respiratory failure 0.67 0.08 *
recently hospitalised 0.67 0.14 *

racbilateral process score 0.50 0.08
initial temperature 0.17 -0.06 * * ** 71

heart rate day 1 0.17 0.16 * 10
chest pain day 1 0.17 -0.15 * 31

cardiomegaly score 0.50 0.07
plural effusion score 0.50 0.05

pneumonia CXR score 0.67 -0.02
ambulatory score 0.83 0.22 *

endocarditis at admission 0.50 0.02
CPK score 0.67 0.09

prior antibiotics 0.17 -0.02 * 3
prior interstitial lung disease 0.17 0.02

home oxygen use 0.33 0.10
prior pneumonectomy 0.17 -0.02

prior tracheostomy 0.17 -0.02
prior aminophylline score 0.17 0.01
hematologic history score 0.50 0.16

cancer score 0.50 0.02
APACHE heart rate score 0.50 0.09

Corodaker score 0.33 -0.01
disease of thorax 0.33 0.05
multiple myeloma 0.17 -0.02 * 2

immunocompromised 0.17 0.01
residence score 0.33 0.24

hepatobiliary history 0.17 0.06
renal history score 0.33 0.25

APACHE respiratory rate score 0.33 0.24 * 8
new lung score 0.33 0.01

co-morbid aspiration score 0.17 0.09 * 7
APACHE sodium score 0.67 0.14

APACHE hematocrit score 0.50 0.10

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

5 Results in the case p = 83 99

Table 5.2: The full set of 83 variables (part 2).
In

Cost Cj Rand Good? Good?
Variable___________(US$) r Scale? (p = 14) (p = 83) %

APACHE WBC score 0.50 0.11
APACHE oxygenation score 0.50 0.12

CVA score 0.33 0.14
APACHE potassium score 0.33 0.04

admission SBP 0.17 -0.20 ** 64
CHF chest X-ray score 0.83 0.10 *
APACHE total score 3.33 0.39 *
respiratory rate day 1 0.17 0.22 ** 92
DIA blood press day 1 0.17 0.02

confusion day 1 0.17 0.30 * 25
pulm vase cong score 0.17 0.07

APACHE venus bicarb score 0.50 0.16
pulmonary edema score 0.17 0.06

sum of CHF components 1.83 0.11
influenza score 0.17 -0.04 * 2

arrest in ER score 0.17 0.17 * 48
biliribin score 0.50 0.03

positive blood culture 0.17 0.17
positive urine culture 0.17 0.14
wheezing at admission 0.17 -0.02

body system count 0.83 0.33
morbid prior copd score 0.17 -0.02
morbid pulm hosp. score 0.17 0.03
co-morbid cirrhosis score 0.17 0.01 * 2

co-morbid CHF score 0.17 0.08 * 33
co-morbid arrhythmias score 0.17 0.03

co-morbid smokers score 0.17 -0.05
co-morbid alcoholism score 0.17 -0.03 * 15

APACHE PH score 0.33 0.23
co-morbid NGTS score 0.17 0.13

co-morbid steroids score 0.17 0.01 * 1
sum of morbid+comorbid 2.50 0.29

cardiac history score 0.17 0.06
neurologic history score 0.17 0.28 * 1
oncologic history score 0.17 0.02

immunologic history score 0.17 0.01
musculoskeletal score 0.17 0.17 * 5

APACHE temperature score 0.33 0.02
APACHE mean BP score 0.33 0.08
APACHE creatinine score 0.33 0.20

DX score 0.33 0.07
sex of the patient 0.17 0.02

Note: The final three columns of the table are explained in the text below.

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

5 Results in the case p = 83 100

suggesting that the dimensionality of the space worth searching was less than that
implied by including all 83 predictors. However, (a) many of the new variables did
in fact have quite a high marginal correlation with death (in fact, higher than some
of the variables in the final 14-variable Rand scale), and (b) with p = 83 I wanted
to learn about how well the three optimisation methods performed in a very high
dimensional space and without a great deal of “coaching” about the value of the
possible inputs. In Chapter 6 I explore the “value added” of improving SA’s choice
of which variables to bring in and take out of the current working model by using
a measure that takes correlation with death into account; see Section 6.1 for results
of this approach both with p = 14 and p = 83.

Since full enumeration is impossible with p = 83, the first task was to create a
workable proxy for it. To create such a proxy I did the following.

• First I chose one “good” input configuration each from tabu search (TS),
simulated annealing (SA), and the genetic algorithm (GA) (from Tables 4.4,
4.6, and 4.9), where “good” means a compromise between the best results
from p — 14 and a desire for each method to visit a lot of models. In practice I
chose an input configuration for each method that was among the top 15 with
p = 14; and

• Then I ran each algorithm with these “good” configurations for one week of
CPU time at 400 MHz on the p = 83 case (using random starting models).
Each method visited about 630,000 models in that time; the total across the
three methods was 1,900,377, although this figure included a lot of duplicate
models. (Everything about the 83-variable case was ponderous: the resulting
file required 1.8 gigabytes of disk storage, and processing it in St a t a required
1 gigabyte of virtual memory.)

• I eliminated all of the duplicates, arriving finally at 825,635 unique models
visited by the three methods in one week each. I then sorted these models
on their apparent utility (in each case N was either 1 or 4 or 5, based on the
adaptive method), and extracted the 3,000 best models on this basis. Finally I
then ran the full-enumeration program on these 3,000 models (with N = 500)
to find their “real” , as opposed to apparent, expected utility, and sorted them
one more time on their real utility values.

In this chapter the 3,000 models, and their utilities obtained in this way, will be
regarded as “tru th” for the purpose of comparing GA, SA, and TS with p = 83.

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

5 Results in the case p = 83 101

A full experiment comparing these three methods, like that in Section 4.6 in
the 14-variable, case would have taken far too long, for two reasons: (a) with 83
variables a single evaluation of the estimated expected utility took 1.3 seconds at
400 Unix MHz, 3.3 times longer than with p = 14, and (b) 20 minutes of CPU
time was far from sufficient for any of the methods to begin finding good models.
So instead I performed an abbreviated experiment guided by the results in the 14-
variable case. I chose the 10 best input settings for each method from the tables in
Sections 4.6.1-4.6.3, and gave each algorithm 3 hours of CPU time at each setting,
repeating this process 5 times in each case and averaging the results to diminish
random variation in the findings. To get a preliminary idea of how much better
the optimisation methods could do with a larger CPU budget, I also made one run
with each method, using the highest-performance settings with p = 14 and allowing
the methods 24 hours of CPU time in each case. In the remaining sections of this
chapter I summarise the results of these experiments.

5.2 One-week results

Table 5.3 gives the input settings used by the three optimisation methods in the
one-week runs. Because the adaptive-N* method was in use, the number of
modelling/validation splits on which each model’s estimated quality was based varied
from 1 to 5; in the end the distribution of the actual N used with the 3,000 best
models found (on the basis of apparent utility) was (69,31)% across the values
N = (1,5). 81% of the 3,000 best models (Table 5.4) were found by GA, with
19% discovered by TS and only 1 out of the entire 3,000 (0.03%) obtained by SA.
When I restricted attention only to those models with N > 1, for which the utility
determination was more accurate, the results were even more striking in favour of
GA: 95% from GA, 5% from TS, 0.1% from SA. This is the first indication tha t GA
may overwhelmingly be the best method with p = 83.

Figure 5-1 summarises the estimated (real) expected utility from the 3,000 best
models found in the one-week runs, as a function of the number of variables in the
model. This plot is a rough analogue of Figures 4-1, 4-7, and 4-8, with the roughness
appearing because this is not a full enumeration of all models with 1-22 variables.
Even so, the approximately quadratic shape traced out by the medians and maxima
of most of the boxplots is clear, and demonstrates tha t in the 83-variable case the
best models have 5-10 variables. This is only slightly larger than with p = 14,
where the optimal range was 4-7, even though the optimisation methods have 69
more variables to work with; this is because the Rand scale harvested so many of

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

5 Results in the case p = 83 102

Table 5.3: Input settings for the one-week runs.

Tabu Search Simulated Annealing
Input Value Input Value

N* 5 N* 4
of Preliminary Searches 9 Initial Temperature 1.0

of Intensification Searches 10 Final Temperature 0.1
Maximum # of Restarts

Within Each Intensification 3
Temperature

Schedule Reciprocal
of Diversification Searches 14

Genetic Algorithm
Input Value

N* 5
Population Size 50

Crossover Probability —

Mutation Probability 0
Crossover Strategy Highly Uniform

Elitist Strategy? Yes
Percentage of

Population Retained 100%

Table 5.4: Distribution of model dimension in the 3,000 best models from the one-
week runs, by optimisation method.

Method
All N N > 1

Mean SD % Mean SD %
GA 7.5 1.7 81.20 7.3 1.4 94.9
SA 18.0 0.0 0.03 18.0 0.0 0.1
TS 14.9 2.0 18.77 12.5 1.2 5.0

Total 8.9 3.4 100.0 7.6 1.8 100.0

the variables with good univariate predictive performance. Table 5.4 summarises
the dimensions of the models found by the three methods; it is clear from this table
that GA achieves its good results by finding its way faster (from a random starting
point) to the smaller models where the best utilities are concentrated.

In a manner analogous to the situation with p = 14, where policy-makers might
well wish to look among the (say) 20 best models for the one finally chosen in the
league-table quality analysis, in the 83-variable case a larger value like the 100 best
models might be useful. Table 5.5 presents an overall summary of the 3,000 best and

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

5 R esu lts in th e case p = 83 103

Figure 5-1: Estimated (real) expected utility as a function of number of predictors
retained, based on the 3,000 best models found from the one-week runs with p = 83.

£ 05

LU
T3 O

■Iii
I I

| l

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Number of Variables

the 100 best models found in the one-week runs, including the “real” utilities (with
Monte Carlo standard error US$0.05) from the full-enumeration run with N = 500
(all of the 100 best models were found with GA). The gap between real and apparent
utilities (the latter being based typically only on about N = 5) is more than US$1
on average across the 100 best models, demonstrating the value of conducting a
full-enumeration exercise once the optimisation methods have found a number of
candidate models.

Columns 6 and 7 of Table 5.1 identify the most promising variables from the one-
week runs. The second of these columns gives the percentage of time each variable
appeared among the 100 best models if that frequency was at least 1%. 61 of the
83 variables fail this test. The six most common variables in the 100 best models,
denoted with double asterisks in column 6, were blood urea nitrogen, respiratory

rate day 1, APACHE II coma score, systolic blood pressure score, initial temperature,

and admission systolic blood pressure. Four of these variables were identified in the
parallel exercise with p = 14, but two are new: it would appear that there is
extra information in the actual values of the admission systolic blood pressure and
respiratory rate on day 1, above and beyond what is present in the similar scales

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

5 Results in the case p = 83 104

Table 5.5: Summary of the 3,000 best and the 100 best models found in the one-week
runs.

Summary
3,000 Best 100 Best

Mean SD Min Max Mean SD Min Max
N 2.2 1.9 1 5 4.4 1.4 1 5

Dimension 8.9 3.4 1 22 7.1 1.1 5 10
Apparent Utility -7.14 0.33 -7.48 -5.44 -6 .67 0.51 -7 .48 -5.44

Real Utility -8.60 0.65 --11.95 -7.47 -7 .75 0.07 -7.82 -7.47

among the 14 Rand variables.
The overall best model found in the one-week runs had 7 variables: systolic

blood pressure score, blood urea nitrogen, APACHE II coma score, initial temperature,

admission SBP, respiratory rate day 1, and arrest in ER score. The real utility achieved
by this model, —7.47, is only US$0.43 better than the corresponding figure with
p = 14; this is again a consequence of the Rand 14-variable scale being so heavily
packed with variables with good univariate predictive behaviour.

5.3 A simulation experiment with p = 83

As mentioned in Section 5.1, in the 83-variable case I carried out a smaller
experiment (due to computer time constraints) exploring the performance of TS,
SA, and GA as a function of input settings. I chose small variations on the 10 best
settings for each method with p = 14, with the aim of producing runs that would
take 3 hours of CPU time each, and I repeated each of these runs 5 times with
different random number seeds and averaged the results. Several of the methods
performed so poorly that there was no point in using the percentage of the 100 (or
3,000) best models found as the main outcome; I focused instead on the following
three performance summaries.

• The dimensions of the models visited. Tables 5.4-5 and Figure 5-1 show that
this is a good proxy for the quality of the models: if a method only finds
models with (say) 15-25 variables then it has not found good models;

• The apparent utilities of the 100 best models visited. It would have taken
too long to evaluate the real utilities of all of these models; to give a flavour
of what those results would have been I merged the 5 runs with any given
input settings and method, extracted the 10 best according to their apparent
utilities, and did full-enumeration on these 10 best; and

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

5 Results in the case p = 83 105

• A measure of the efficiency of each method in finding as many of the 3,000
best models as possible. This score will be explained below.

I focused both on all models visited during the 3-hour runs and on the 100 best
models found in each of these runs.

To motivate the efficiency measure I used, suppose that we are only interested
in the top five models, and we wish to summarise the quality of the subset of these
models found by a given method. Imagine that one method found models (1,2,4),
and another method found models (2,3,4,5). Which of the two methods is better?
To decide this, I attach a linear weight to each of the top five models, so that the
best model has weight 5 and the worst 1. Then a deficiency score may be computed
by summing the weights of the five best models that were not found by the method.
So method one above would have a deficiency of 4 (since models 3 and 5 are missing,
which corresponds to weights 3 and 1 respectively), and method two would have a
deficiency of 5 (since only model 1 is missing). So according to this measure the run
that found models (1, 2, 4) is slightly better. Instead of monitoring the deficiency I
report the efficiency of the method, which is the sum of all the numbers from 1 to
5 in the above example, minus the deficiency. Thus method one tha t found models
(1, 2, 4) has an efficiency score of 11, while method two that found models (2, 3,
4, 5) has an efficiency score of 10, out of a possible 15 = Y a =i the simulation
experiment, each run with a given input setting visited a random number of models,
typically on the order of 1,000-10,000; for each run the efficiency score was computed
across all models visited.

As was true in the 14-variable case, the actual CPU times of the runs fluctuated
around their target value of 10,800 seconds (3 hours) at 400 Unix MHz. Because
of computing limitations I was not able to make enough runs to serve as the basis
of a reliable adjustment for CPU variations, so I present unadjusted findings in the
tables. Even with some variation in CPU time, clear patterns emerge as to which
methods (and which input settings) perform best.

In what follows it will be seen that GA ended up contributing most of the good
models to the proxy “tru th” , which might appear to provide a favoured status for
GA when the methods are compared. I do not believe that this interpretation
is justified, for the following two reasons: (1) The proxy was created by giving all
three methods—GA, SA, and TS—an equal chance to contribute good models to the
eventual listing of the best models, because all three methods had the same amount
of CPU time (1 week). (2) The only way in which the proxy appeared in my results
with p = 83 was in the calculation of the efficiency measure; an appreciation of the
performance of the methods which has nothing at all to do with the proxy may be

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

5 Results in the case p = 83 106

gained by looking at the mean real utility rows in Tables 5.6-5.8.

5.3.1 Tabu search

Table 5.6 summarises the input settings and results from the experimental runs on
TS with p = 83 (naming conventions for inputs are as in Section 4.6.1; the rows
with a single (double) asterisk refer to the 100 (10) best models found). In these
runs N* varied from 5 to 20, the total number of runs from 1 to 4, the number of
preliminary searches from 2 to 14, the number of intensification searches from 2 to
15, the maximum number of restarts within the intensification search from 0 to 6,
and the number of diversification searches from 1 to 4. The mean CPU times of the
runs ranged from 10,044 to 15,361 seconds, with the total number of models visited
during the approximately 3 hours of CPU time varying from 686 to 2,330.

Most of the input settings examined resulted in searches that concentrated
on models with too many variables to have good performance—the mean model
dimension in the 100 best models ranged from 9.5 to 29.7, with most of the minimum
dimensions above 10 and many of the maximum dimensions above 20. Input settings
3 and 4 gave the best results, yielding real utilities for the 10 best models of
about US$—8.60 and routinely finding about 4 of the 6 best variables from the
full-enumeration runs, but none of the 50 TS runs managed an efficiency score
greater than 0, i.e., not a single model among the 3,000 best was ever visited. Three
hours of CPU time does not appear to be enough for TS to get anywhere near the
global optimum (although this does not mean that 3 hours was a bad choice for
the experiment; as will become clear below, GA’s performance with 3 hours of CPU
time is already rather good).

5.3.2 Simulated annealing

Table 5.7 gives the input configurations and results for each of the 10 runs I made
using SA with p = 83 (naming conventions for the inputs are as in Section 4.6.2). In
these runs N* varied from 3 to 10, the initial and final temperatures ranged from 0.5
to 10.0 and 0.05 to 0.1, respectively, and I examined all four temperature schedules.
The mean CPU times actually observed varied from 8,629 to 12,947 seconds. SA
typically visited a lot more models than TS—its total number of models ranged from
1,434 to 8,762—but in most cases the great majority of these models were examined
with N = 1, indicating that SA was having a hard time finding good models.

The typical dimensions of the models visited by SA were even larger than with
TS: the mean dimension across the 100 best models varied across the input settings

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

5 Results in the case p = 83 107

Table 5.6: Input settings and results for the 3-hour runs of TS in the simulation
experiment with p = 83 (SDs in parenthesis).

Input
Run

1 2 3 4 5 6 7 8 9 10
r 1 3 2 4 2 1 2 3 3 2

N* 15 7 7 9 8 15 20 9 5 11
I 10 2 2 2 14 9 11 2 9 2
i 6 (4 4 15 12 2 4 3 4
t 3 2 6 1 5 3 0 2 3 1
d 3 2 4 2 1 3 1 2 2 3

Run
Result 1 2 3 4 5 6 7 8 9 10
Mean
CPU 1.00 1.07 1.54 1.33 1.20 1.04 1.39 1.44 1.34 1.03

(10K sec)
(N = 1) 74 233 134 340 664 57 272 357 403 211
(N > 1) 645 1467 2196 1627 1350 629 598 1476 1828 941

Mean* 28.0 13.9 12.7 9.5 18.5 29.7 27.3 14.3 14.6 18.9
Dimension (3.1) (3.0) (2.0) (1.9) (3.4) (5.4) (3.3) (3.9) (2.1) (3.0)

Min*
Dimension 26.6 10.4 10.2 6.2 13.4 27.8 24.6 11.0 9.8 16.4

Max*
Dimension 29.8 18.8 16.4 15.6 24.0 32.2 34.2 18.0 20.8 22.8

Mean*
Apparent -15.0 -10.1 -9.5 -9.4 -11.6 -15.4 -14.9 -10.7 -10.5 -11.8

Utility
Mean**

Real -13.0 -9.4 -8.6 -8.6 -10.4 -13.1 -12.6 -9.8 -9.7 -10.2
Utility
Mean** 23.1 10.9 9.3 6.8 12.6 23.1 22.4 11.5 10.8 14.7

Dimension (0.3) (1.2) (0.9) (1.4) (4.2) (0.3) (0.8) (1.6) (3.7) (1.4)
6**
Best 1 3 4 4 2 1 2 2 2 2
Mean

Efficiency 0 0 0 0 0 0 0 0 0 0

Notes: (1) # (A T = 1) is the number of models visited with N = 1, and analogously for
(N > 1); # 6 Best is the number of the variables marked with two asterisks in column 6 of

Table 5.1 which occurred at least 50% of the time in the 10 best runs. (2) Rows marked with one
(or two) asterisks refer to the 100 (or 10) best models found.

from 15.3 to 25.0, the minimum dimension never dropped (on average) below 12.4,
and the maximum was frequently above 25. The mean apparent utility in the 100
best models fell below —10 for seven of the 10 input settings, and the mean real
utility in the 10 best models found was below —9 with eight of the 10 settings. SA

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

5 Results in the case p = 83 108

Table 5.7: Input settings and results for the 3-hour runs of SA in the simulation
experiment with p — 83 (SDs in parenthesis).

Run
Input 1 2 3 4 5 6 7 8 9 10

N* 4 5 5 5 3 10 10 5 4 10
To 1.0 0.5 0.5 2.5 1.0 0.5 1.0 1.0 1.0 10.0
Tf 0.1 0.05 0.05 0.1 0.1 0.05 0.1 0.1 0.1 0.1

Cooling
Schedule 3 1 2 3 3 4 4 3 2 3

Run
Result 1 2 3 4 5 6 7 8 9 10
Mean
CPU 1.23 0.86 1.22 1.01 0.97 0.91 1.29 0.86 1.26 0.92

(10K sec)
(N = 1) 7663 5326 6230 3736 5901 182 1062 3993 6813 1170
(N > 1) 1099 533 1093 1285 941 1252 1459 912 1149 818

Mean* 22.4 23.5 22.1 18.6 22.6 16.4 15.3 19.5 25.0 15.5
Dimension (5.4) (1.1) (2.4) (3.9) (4.4) (3.5) (4.6) (3.5) (2.7) (3.6)

Min*
Dimension 17.6 17.8 18.4 15.6 17.8 14.0 12.8 15.6 19.8 12.4

Max*
Dimension 28.2 31.4 27.8 23.0 29.4 19.2 18.2 25.8 31.0 19.6

Mean*
Apparent -11.0 -11.8 -11.1 -10.3 -11.3 -9 .7 -9.2 -10.4 -11.9 -9.9

Utility
Mean**

Real -9.5 -11.3 -10.4 -9.0 -9.6 -9.0 -8.2 -9.2 -10.5 -8.8
Utility
Mean** 14.8 20.3 18.8 13.0 14.0 10.6 9.9 13.6 20.4 11.1

Dimension (1.5) (1.3) (0.8) (0.9) (2.7) (1.3) (0.9) (1.1) (1.0) (1.1)
6**
Best 1 2 2 3 2 3 3 1 5 4
Mean

Efficiency 0 0 0 0 0 0 0 0 0 0

Notes: See Table 5.6.

typically only found 1-3 of the six best variables among its 10 best models, and
(as was true for TS) never achieved an efficiency of discovering any of the 3,000
best models above 0. Input setting 6 was the best, but overall SA’s performance
with p = 83 is, if anything, even worse than in the 14-variable case. (However, in
Chapter 6 I report results of an improved SA method that are much better.)

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

5 Results in the case p = 83 109

5.3.3 G enetic algorithm

Table 5.8 presents the input settings and results from the simulation study for GA
with p = 83 (naming conventions for the inputs are as in Section 4.6.3). In the runs
reported on here N* varied from 2 to 10, I used three different crossover operators
(one-way or simple, uniform, and highly uniform), the elitist strategy was used in
all cases (meaning that there was no mutation), the population was retained at the
start of each new repetition in all runs, and the population size ranged from 30 to
80. Mean CPU times varied from 9,590 to 14,485 seconds. GA visited on average
between 2,959 and 12,470 models as a function of input settings. The mean ratio
of visits with N = 1 to those with N > 1 is consistently greater than 1; this was a
marker of poor performance with SA, but interestingly GA, as the rest of the table
shows, achieves good results even so.

Input settings 9 and 10—the only ones with the one-way crossover operator—
performed much worse than the other eight settings examined; I will say no more
about them. Apart from this, the dimensions of the models visited by GA are
much closer to the region of good performance as indicated by Figure 5-1: the
mean dimensions of the best 100 models with the best input settings for GA were
consistently below 10, and the minima were frequently below 6. This translates into
comparatively excellent results for the apparent utility of the 100 best models (often
below —8) and the real utility of the 10 best (never much greater than —8). The 10
best models typically had between 7 and 9 variables on average, and most of the six
best predictors from Table 5.1 were frequently located.

GA is the first method to achieve non-zero efficiencies: in absolute terms the
proportions of the best 3,000 models found are not stunning (the maximum possible
efficiency score is about 4.5 million), and the standard deviations show that there
is considerable random variation in efficiency achieved (every input setting had at
least one run with efficiency 0), but several of the input settings with GA managed
to attain efficiencies of 40,000 to 235,000 on average with 3 hours of CPU time,
and one run attained an efficiency (732,623) equivalent to having found the 254
top models among the 3,000 best. Input setting 8—with N* = 5, a population
size of 30, elitist and highly uniform crossover strategies, and 100% retention of
the current population at the start of each new repetition—is both the clear GA
favourite and the overall winner across all methods, although GA settings 1 and 6
are also promising.

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

5 Results in the case p — 83 110

Table 5.8: Input settings and results for the 3-hour runs of GA in the simulation
experiment with p = 83 (SDs in parenthesis; for explanation of other symbols see
Table 5.6).

Run
Input 1 2 3 4 5 6 7 8 9 10

N* 2 5 2 5 10 10 2 5 2 2
n 80 50 50 50 30 30 50 30 80 50
Pc 0.3 0.5
Pm 0 0 0 0 0 0 0 0 0 0

Crossover
Strategy 2 3 2 2 2 3 3 3 1 1

Elitist
Strategy? yes yes yes yes yes yes yes yes yes yes

k 100 100 100 100 100 100 100 100 100 100

Run
Result 1 2 3 4 5 6 7 8 9 10
Mean
CPU 1.06 1.11 1.17 1.10 1.15 1.13 0.96 1.35 1.45 1.07

(10K sec)
(N = 1) 6622 3963 9449 3343 1664 1920 7826 7210 9343 7178
(N > 1) 2926 1957 2586 2065 1295 1285 1958 2265 3127 2114

Mean* 9.6 9.8 9.7 9.9 11.1 8.6 11.4 8.7 19.0 21.3
Dimension (1.4) (0.6) (0.8) (0.4) (2.1) (1.0) (0.8) (1.4) (2.4) (1.1)

Min*
Dimension 6.2 5.2 6.4 6.8 8.0 5.4 6.4 5.4 15.8 17.6

Max*
Dimension 13.8 14.8 12.8 13.4 14.6 12.2 17.4 12.2 23.8 26.0

Mean*
Apparent -6 .9 -7 .8 -6 .6 -7 .5 -8 .3 -7 .7 -7 .6 -7 .2 -9 .9 -10.6

Utility
Mean**

Real -8 .1 -8 .3 -8 .1 -8 .2 -8 .1 -8 .0 -8 .6 -7 .8 -10 .6 -10.8
Utility
Mean** 7.9 9.0 8.5 9.1 7.5 7.6 8.8 7.1 16.0 19.2

Dimension (1.9) (1.3) (1.1) (1.1) (0.8) (1.4) (2.4) (1.3) (1.2) (1.2)
#6**
Best 4 4 6 4 2 4 3 5 6 4
Mean

Efficiency 57.7 10.0 10.2 1.1 0.3 37.9 0.2 234.7 0 0
(IK)
SD

Efficiency 95.2 15.9 18.9 2.5 0.8 64.6 4.3 299.4 0 0
(IK)
Max

Efficiency 225.1 37.7 43.7 5.6 1.7 149.9 9.7 732.6 0 0
(IK)

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

5 Results in the case p = 83 111

Table 5.9: Input settings and, results for the 24~hour run of TS in the simulation
experiment with p = 83.

Input r N* I i t d Result
CPU
Time

Number of Models
Visited With

N = 1 N > 1
Value 27 5 10 6 3 3 Value 86,402 37,235 5,653

100 Best Models
Dimension Apparent Utility

Result Mean SD Min Max Mean SD Min Max
Value 9.54 1.49 6 13 -7 .80 0.131 --7.89 -7 .19

10 Best Models
Real Utility Dimension

Result Mean SD Mean SD # 6 Best
Value -8.53 0.199 8.20 1.03 2

5.4 Results with 24 hours of C PU tim e

It is interesting to consider how much better the optimisation methods would do
with a larger budget of CPU time than 3 hours. To obtain preliminary information
along these lines, I chose the best input configuration for each of TS, SA, and GA
from the p = 14 results and made one run with 24 hours of CPU time for each of
these input settings. In a manner analogous to the results in the previous section I
looked at results both for all models visited and for the 100 best models found (on
the basis of apparent utility), and I also extracted the 10 best models found by each
method and ran the full-enumeration program to obtain their real utilities. The
actual CPU times for all three methods matched almost perfectly the target of 24
hours (86,400 seconds) because, after estimating values of the input parameters so
that the runs would finish at around 24 hours I simply halted the C programs when
that amount of CPU time was reached.

5.4.1 Tabu search

Table 5.9 summarises the input settings and results from the 24-hour run with TS
in the 83-variable case. The input configuration closely resembles, but does not
match exactly, input setting 9 from Table 5.6 (except of course for the number r
of repetitions of the whole algorithm, which is 9 times larger with 24 hours than
with 3). The performance of TS is naturally much better with 24 hours of CPU
time: across the 100 best models the mean dimension has dropped to 9.5 (minimum

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

5 Results in the case p = 83 112

Table 5.10: Input settings and results for the 24~hour run of SA in the simulation
experiment with p — 83.

Input N* T0 Tj
Cooling
Schedule Result

CPU
Time

Number of Models
Visited With

N = 1 N > 1
Value 4 1.0 0.1 3 Value 86,404 62,912 1,004

100 Best Models
Dimension Apparent Utility

Result Mean SD Min Max Mean SD Min Max
Value 20.4 3.39 17 32 -10.2 0.346 -10.5 -9 .10

10 Best Models
Real Utility Dimension

Result Mean SD Mean SD # 6 Best
Value -10.6 0.452 18.2 1.13 5

6, maximum 13) and the mean apparent utility has fallen to —7.8, and among the
10 best the mean real utility has declined to —8.5 and the mean dimension to 8.2.
Unfortunately it is still true that the efficiency of this run was 0, so TS has still not
made its way to the best models (with this input configuration, at least).

5.4.2 Simulated annealing

Table 5.10 gives the input settings and results for the 24-hour run with SA,
which was identical to configuration 1 in the 3-hour runs. A comparison with
the corresponding column of Table 5.7 reveals that SA has managed little or no
improvement on its 3-hour performance, even with a budget of CPU time eight
times the previous size, and (because of random variation) has actually appeared
to go backwards in some respects. The 24-hour SA run does look better than its
3-hour counterpart in the number of the six high-frequency good variables (Table
5.1) it has found, but this is only because it is fixated on models with far too many
predictors. Like TS, simulated annealing failed to find a single one of the 3,000
best models from the one-week full-enumeration runs in 24 hours, but in all other
important respects the 24-hour TS run uniformly dominated that of SA.

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

5 Results in the case p = 83 113

Table 5.11: Input settings and results for the 2f.-hour run of GA in the simulation
experiment with p = 83.

Input N* n Pc Pm c e k Result
CPU
Time

Number of Models
Visited With

N = 1 N > 1
Value 2 80 — 0 2 1 100 Value 86,402 104,204 10,706

100 Best Models
Dimension Apparent Utility

Result Mean SD Min Max Mean SD Min Max
Value 8.47 0.936 7 11 -5.66 0.256 -5.92 -4.64

10 Best Models
Real Utility Dimension

Result Mean SD Mean SD # 6 Best
Value -7.91 0.160 8.40 1.07 2

5.4.3 Genetic algorithm

Table 5.11 provides the input settings and some summaries from the 24-hour run
with GA, which again used inputs that were identical to the first input configuration
for GA in the 3-hour runs. Unlike SA, GA has made good use of the extra CPU
time: for example, in comparison to the mean of the corresponding 3-hour runs, the
mean dimension of the 100 best models is 12% lower, and the attained real utility
(—7.91) is not far from the global optimum of —7.47 found with the full enumeration
based on the one-week runs. This particular 24-hour GA run managed to find 9 of
the best 3,000 models, ranging in rank from 71 to 2,222, yielding an efficiency score
of 17,127. (This is lower than the mean of the 3-hour runs due to random variation;
the same reason explains why only 2 of the 6 best variables appeared with at least
50% frequency across all models visited.) Once again GA dominates both of the
other two methods across the 24-hour runs, although TS has closed the gap.

5.5 Comparison of optim isation methods: final
results with p = 83

• GA is the clear winner in the 83-variable case with both 3 and 24 hours of
CPU time at its disposal (but see the results for p = 83 in Section 6.2.1 on the
performance of the improved version of simulated annealing). The best input

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

5 Results in the case p = 83 114

Table 5.12: Comparison of the total number of utility evaluations achieved by the
three optimisation methods in the 24~hour runs.

Method N*

Number of
Models Visited With

Number of
Utility

EvaluationsN = 1 N > 1
TS 5 37,235 5,653 65,500
SA 4 62,912 1,004 66,928
GA 2 104,204 10,706 125,616

settings for the 83-variable case I have found so far are as follows: N* = 5,
population size 30, highly uniform crossover strategy, elitist selection (and
therefore no mutation), and retention of 100% of the current members of the
population at the beginning of each repetition of the algorithm. These settings
are similar to those that came in second (out of 144 combinations examined) in
the p = 14 case, so they appear to be robust to the dimension of the problem,
at least in the range from fairly small to fairly large.

• TS came in second with p = 83, which is something of a contrast with the 14-
variable case, where the best implementations of the two methods did about
equally well. Of the input configurations I examined for TS with 83 variables
the best was the following: 4 overall repetitions of the algorithm, N* = 9, 2
preliminary searches, 4 intensification searches, 1 maximum restart within the
intensification process, and 2 diversification searches.

• Vanilla SA again came a poor third in the 83-variable case, with the amount by
which it trailed the other two methods growing as p increases. (As mentioned
above, see Chapter 6 for results with an improved version of SA.)

• It is interesting to speculate about the reason for GA’s dominance. Table 5.12
compares the three optimisation methods in the number of utility evaluations
each is able to achieve in the 24-hour runs. (Similar results are evident with
the 3-hour runs.) In the same amount of CPU time, and bearing in mind that
the programs for all three methods were written with an attem pt at equal
efficiently in the same language, GA is able to find the time to evaluate almost
twice as many utilities as the other two methods. I believe that this difference is
attributable to the amount of extra “overhead” required by TS and SA that is
not present in GA: SA spends a noticeable amount of time making calculations
(involving expensive calls to the logarithm and exponential functions) to

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

5 Results in the case p = 83 115

support its cooling schedule and acceptance probabilities, and TS uses a fair
amount of CPU time managing the tabu list.

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

Chapter 6

Conclusions and extensions

Q: How long should a [person's] legs be?

A: Long enough to reach the ground.

— Abraham Lincoln

6.1 Summary of the project and its main findings

In this dissertation I used data from a 5-year study conducted by the Rand
Corporation in the 1980s, of approximately 2,532 people in the US, to construct cost-
effective scales measuring the sickness-at-admission of elderly patients hospitalised
with pneumonia (Chapter 1). Starting with a model chosen by Rand with 14 sickness
variables, my aim was to find a smaller model that achieves a better compromise
between predictive accuracy and data collection costs. I began with a problem
formulation proposed by (Draper 1996), in terms of maximisation of expected utility,
to achieve this compromise in a way that is relevant to health policy (Chapter 2).
The space of all possible models in the 14-variable case is small enough to permit
a full enumeration of accurate estimates of the expected utility of all 214 = 16,384
subsets of the predictors. These estimates are based on a Monte Carlo evaluation
of the expected utility using averages of N random splits of the available data into
modelling and validation subsamples. By conducting the full enumeration in the 14-
variable case (with N = 500) I showed that, with realistic costs, the optimal solution,
if implemented in a league-table or input-output approach to quality assessment on
a wide scale, could result in significant monetary savings.

The main problem, however, was that there were not just 14 sickness variables
originally available for pneumonia—there were p = 83, and 283 is such a large
number of models that full enumeration fails. It was clear from the 14-variable case

116

6 Conclusions and extensions 117

that the expected utility function has many local optima. A global optimisation
method is needed, and it has been shown that stochastic optimisation is a promising
option in the presence of a large number of local solutions. So I conducted a
literature review of more than 100 articles from the stochastic optimisation literature
(Chapter 3), and identified five approaches for further study: genetic algorithms
(GA), messy simulated annealing (MSA), simulated annealing (SA), tabu search
(TS), and threshold acceptance (TA). The general problem I addressed from an
optimisation point of view is that of maximising a real-valued function of a binary
input vector of length p.

After exploring the geometry of the solution space and the optimal choice of
N (Chapter 4), I performed a preliminary simulation experiment with the five
optimisation methods listed above in the p = 14 case, using the full-enumeration
results as tru th against which the methods could be compared. It was clear that
MSA and TA were either dominated by, or special cases of, the other methods, so I
dropped them from further study, focusing only on GA, SA, and TS. Of these SA is
an old friend for statisticians, but TS is almost unknown in the statistics community
and among many statisticians GA, for some reason, has a bad reputation. I found
in the literature review that little was known about the optimal input settings for
these three methods, so I conducted a large simulation experiment to investigate
the quality of the solutions from each optimisation algorithm as a function of the
method’s inputs.

Using what worked best with p — 141 then tackled the 83-variable case (Chapter
5). Instead of attempting an impossible task—complete full enumeration of all
2P = 9.7 • 1024 models—I created a proxy for tru th by giving the best versions of
each of GA, SA, and TS from the 14-variable runs each one week of CPU time (at
400 Unix MHz), collecting the 3,000 apparently best models found in this way, and
performing a full enumeration on them. Finally, I conducted a limited simulation
study of a number of the most promising input settings from the p = 14 case in the
broader world of p = 83. Computing time constraints and the size of the solution
space ensured that my work with p = 83 to date is only part of the story; I intend
to continue this work for publication.

My main findings are as follows.

• As mentioned above, a method like the one used here, based on treating
variable selection as a decision problem in a way that trades off data collection
cost against predictive accuracy, can potentially save a great deal of money
when the purpose of the model-building is the construction of a scale that will
be used to predict outcomes for future individuals. This conclusion has wide

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

6 Conclusions and extensions 118

implications (a) for variable selection in generalised linear models generally
and (b) specifically in health policy, in the league-table quality assessment
process described in Chapter 1.

• As is reasonable intuitively, the optimal choice of N is neither too small nor
too large. Values between 2 and 10 work best in my problem; the best value
varies with optimisation method but does not seem to depend strongly on p.

• The overall winner among the three major methods I examined was GA in
both the 14- and 83-variable cases. However, GA is the method that changes
its behaviour the most dramatically as you change the input settings: versions
of GA had both the best and the worst performance with p = 14. More recent
variations of GA, employing an elitist selection strategy (without mutation)
and uniform or highly-uniform crossover, vastly outperformed the “vanilla”
version of GA first proposed in the 1970s. Two other factors appear important
to achieve good performance of GA in this problem: retention of 100% of the
current members of the population at the beginning of each repetition of the
algorithm, and a small to moderate population size. W ith p = 83 the highly
uniform crossover strategy performed better than the uniform.

• TS comes in second to GA, and by an amount that seems to grow as p increases.
TS has the advantage over GA of stability as a function of input settings: it
is hard to make TS either very good or very bad by your choice of the inputs.
To the extent that the inputs matter, it appears best to make the algorithm
spend most of its time in the intensification search, followed by the preliminary
search, and to spend the least time in diversification.

• It is interesting that the versions of GA that perform the best do so by
(a) shutting off the mutation operation altogether and (b) keeping 100% of
the current population as “start-up” individuals at each repetition of the
algorithm, because both of these choices would seem to cut down on GA’s
ability to explore regions of the model space that differ sharply from those
already examined. In the language of TS it is as though the optimal settings
of GA choose an algorithm with a great deal of intensification and almost no
diversification, which agrees at least partially with the previous conclusion.

• “Vanilla” SA may be an old friend, but it does not appear to be anywhere near
the current best method for global optimisation in problems with binary inputs
and multiple local maxima: it came a poor third to the other two methods both

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

6 Conclusions and extensions 119

with p = 14 and 83, and the gap between it and the other two widened as p
increased. For anybody who insists on using vanilla SA anyway, in this problem
I found that (a) the logarithmic and reciprocal cooling schedules outperformed
the geometric schedule which is so often favoured in the literature, and the
straight schedule was by far the worst; (b) with p = 83 the logarithmic schedule
was better than the reciprocal; and (c) (T0,T /) = (1.0,0.1) and (0.5,0.05)
worked best as starting and finishing temperatures.

• Finally, it appears that GA gains its advantage over TS and SA by requiring
less computational “overhead” in deciding where next to move: TS uses a lot
of CPU time managing the tabu list, and the best cooling schedules for SA
involve repeated expensive calls to the logarithm and exponential functions.

6.2 Suggestions for future work

I intend to continue this work in several directions as I move toward additional
publications based on it. The following is a list of possible future work.

• Increase the size of the simulation experiment in the 83-variable case. It is
possible that the best input settings with p = 83 may differ substantially from
those in the 14-variable case. A more complete full-enumeration exercise than
the one in Chapter 5 can be based on the observation from Table 5.1 that
more than | of the 83 variables never appear (and indeed that only 13 of them
occur more than 10% of the time) in the 3,000 best models already found;

• Use an intelligent way to cut the neighbourhood size down from 83 to some
much smaller number, in TS and SA, for the 83-variable case. In the present
implementation of TS, when it is at a given model it has to evaluate 83 utilities
to decide where to move next;

• Demonstrate the following point: if you want to force a given variable into
the modelling this can easily be accommodated with this approach: instead
of looking for the best subset from among the inputs (a:i,. . . ,x p), you force
(say) xi into the model and look for the best subset from among the inputs
(^2, . . . , xp) to add to x\.

• Explore one or more hybrid strategies; here are two examples.

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

6 Conclusions and extensions 120

- Given a budget of k hours, say, spend something like 0.7 A; running GA,
and then spend the remaining time running something like TS to locally
explore the best regions found by GA.

- In SA, for instance: with k = 3 hours of CPU time, divide the first two
hours (say) up into (say) four blocks of 30 minutes each; within each
block use a different starting point; use a fairly large value of the final
temperature like 0.1; get the 10 best models from each block; merge
them and eliminate replicates to end up with (say) a models; and then
use the final 1 hour to compute the N = 500 “real” utilities of the best
a models (where a should be the appropriate number in order to do
full-enumeration in 1 hour).

• See if parallelising the code for one or more of the optimisation methods results
in an increase in performance.

• Try modifying an optimisation method such as TS in a way that is more
directly informed by clinical judgement, e.g., swapping variables in and out of
the model according to a grouping by body system (variables X \ to x \ 2 have
to do with the lungs, x \ $ to x 2q the heart, and so on).

• Explore different forms of the utility function altogether. Two examples are
as follows.

- The main purpose to which sickness-at-admission scales are to be put
is in trying to identify good and bad hospitals by comparing observed
mortality rates to expected rates given admission sickness (Chapter 2).
In view of this I will try reformulating the problem so that utility is
assessed at the hospital level rather than at the patient level, possibly
leading to sickness scales that are even more relevant to health policy
quality assessment.

- Try a continuous utility function such as the log scoring rule mentioned
in Chapter 2.

• How does the performance of this approach depend on the overall sample size
n (in our case, 2,532)? It is intuitively reasonable that the quality of the
decision about whether a hospital is “good” or “bad” would be lower with
a much smaller data set. I could test this by setting up a simulation world
in which I know the right answer and seeing how often the correct decisions

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

6 Conclusions and extensions 121

are made as a function of n. More specifically, to do this right you would
have to generate a lot of hospitals with varying quality of care and sickness at
admission and see how many bad and good hospitals were correctly identified
by input-output analysis based on the optimal sickness scale as a function of
n.

• In SA there is a temperature interval in the middle in which the chain is moving
around well (before this point it moves wildly from one bad model to another,
after this point it gets stuck at whatever local mode it has found). To defeat
this sort of behaviour I can look at the run from (say) iteration 1,000 to 5,000
in a 10,000-iteration run, find the best (say) 10 models during that interval,
and either rapidly cool around them or revisit them with a much larger value
of N .

• Do additional sensitivity analyses; for instance, with the Cim in Table 2.1 in a
way other than using the same multiplier across all four.

• Finally, I mentioned at the end of Chapter 1 that there were at least two
distinct questions of interest here: (1) How well do some of the leading
stochastic optimisation methods perform when they are guided by one or more
ad hoc variable selection heuristics? (2) How well do such methods perform
when they are not guided in this way? I have concentrated so far on question
(2); in future work I will look at question (1). Here are two possibilities:

- There is a big literature on variable selection in regression (ignoring
data collection costs) which could provide ideas on how to focus the
optimisation search (hints from stepwise regression methods, residual
analysis, and so on). For example, suppose you have four variables you
are already sure should be in the scale, and you are thinking about three
new ones. By looking at the covariance matrix of all seven variables you
can see if the new ones are likely to provide new information for predicting
y above and beyond that already present in the old variables.

- Using regression results on the “benefit” (only) of each variable to inform
a method like TS when it is deciding on things like aspiration criteria.

- It is not hard to construct measures of the desirability of a variable that
trade off data collection costs and predictive accuracy in an ad hoc way.
Table 6.1 presents one such measure in the 14-variable case. First, scale
the marginal costs Cj by calculating mî c: ; small values are good. Then,

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

6 Conclusions and extensions 122

Table 6.1: An ad hoc measure of the desirability of a variable in compromising
between predictive accuracy and data collection costs, in the case p = 14.

Cost Cj Correlation (1) (2) dj =
Variable (US$) r. Good? ^ =%p- (1) ■ (2)

APACHE II score 3.33 0.39 20 1.0 20.0
Age of patient 0.17 0.17 * 1 2.3 2.3

SBP score 0.17 0.29 ** 1 1.3 1.3
CHF chest X-ray score 0.83 0.10 5 3.9 19.5

Blood urea nitrogen 0.50 0.32 ** 3 1.2 3.7
APACHE II coma score 0.83 0.35 ** 5 1.1 5.6

Serum albumin score 0.50 0.20 * 3 2.0 5.9
Shortness of breath 0.33 0.13 ** 2 3.0 6.0
Respiratory distress 0.33 0.18 * 2 2.2 4.3
Septic complications 1.00 0.06 6 6.5 39.0

Prior resp. failure 0.67 0.08 4 4.9 19.5
Recently hospitalised 0.67 0.14 4 2.8 11.1

Ambulatory score 0.83 0.22 5 1.8 8.9
Initial temperature 0.17 -0.06 * 1 6.5 6.5

do something similar with the correlations with the ratio ; again the
good variables are small on this. Now take the product dj, as in the final
column of the table. As it happens, this particular ad hoc desirability
measure correlates well with whether or not a given variable appeared
frequently in the 20 best models with p = 14; in fact, the predictors with
the eight smallest values of dj agree with the eight variables possessing
one or more asterisks in Table 6.1. Of course, the only way we know this
is to have gone through the exercise of maximising expected utility as in
Chapters 2 and 4; other ad hoc measures might well look just as plausible,
and how can we choose among them? Also, the last column in the table
rank-orders the variables in desirability but says nothing about how many
should be used to achieve the optimal tradeoff. Nevertheless, one possible
application of the dj, when normalised to probabilities in some way, would
be to make a method like TS more intelligent in deciding which variable
to bring next into the current model.

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

6 Conclusions and extensions 123

6.2.1 Improved simulated annealing

The performance of plain (“vanilla”) simulated annealing in Chapters 4 and 5
was disappointing, so I decided to make another set of SA runs incorporating two
improvements: the idea at the end of the previous section for teaching the stochastic
optimisation methods about the desirability of the predictor variables, and the tabu
search idea of random restarts. A detailed examination of a number of SA output
files revealed that, even with temperature schedules that dropped the temperature
slowly and with fairly high final temperatures, SA tended to get stuck in a local
maximum of the criterion function fairly early in the run (e.g., as early as 1,500
model evaluations into a run with a planned 5,000 model evaluations). To try for
better simulated annealing results I defined an improved SA (ISA) algorithm, as
follows:

(1) ISA begins by choosing 20 models completely at random and evaluating their
estimated expected utility (EEU) values using N* replications (this is to
initialise the league table of the 20 best models found so far).

(2) Next ISA starts the stochastic search at the null model (with no predictors),
which becomes the current model, and computes its EEU value using the
adaptive-AT* method (Section 4.5).

(3) ISA then begins proposing moves away from the current model using one-bit
flips (at locations in the binary string governed by a pointer tha t scans from
1 to p and back again to 1) and the variable desirability criterion of Table
6.1. From the desirability values dj in the last column of that table I created
probabilities p and p°ut—for flipping a 0 to a 1 and vice versa, respectively—
using the transformation from desirability to probability given by

P f = Pmin + (ftnax - Pmin) e~c(di _1), (6.1)

where (Pmim Pmax, c) are tuning constants to be specified by the user and p°ut
is simply taken to be 1 — pjn. Here pm[n and pmax govern how dogmatic the
inclusion and exclusion processes should be, and c controls the rate at which
desirability translates into probability of inclusion (recall that by construction
small values of dj represent greater desirability, and the smallest possible
value is 1). Some experimentation led me to the choices (PmmjPmax, c) =
(0.1,0.9,0.1), which yielded the inclusion probabilities in Table 6.2 in the 14-
variable case. A move away from the current model is then governed by two

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

6 Conclusions and extensions 124

Table 6.3: Variable desirability values dj and the corresponding p™ values in the In
variable case, using the desirability-to-probability transformation given by equation
(6.1).

Variable (j) dj p f
APACHE II score 20.0 0.220

Age of patient 2.3 0.802
SBP score 1.3 0.876

CHF chest X-ray score 19.5 0.226
Blood urea nitrogen 3.7 0.711

APACHE II coma score 5.6 0.605
Serum albumin score 5.9 0.590
Shortness of breath 6.0 0.585
Respiratory distress 4.3 0.675
Septic complications 39.0 0.118

Prior resp. failure 19.5 0.226
Recently hospitalised 11.1 0.391

Ambulatory score 8.9 0.463
Initial temperature 6.5 0.562

processes in sequence: first a move is either proposed or not at random based
on the and p°ut values, and then if a move is proposed it either takes place or
not according to the usual SA acceptance probabilities. For example, with the
p f1 values in Table 6.2, if the current model is (0 ,0 , . . . , 0) ISA proposes a move
to (1,0, . . . ,0) with probability 0.220; suppose this proposal is turned down.
ISA then proposes a move from (0,0, . . . , 0) to (0 ,1 , . . . , 0) with probability
0.802; suppose this proposal is accepted. Then the move to this new model
actually takes place or not with probability given by the usual SA acceptance
regime based on the adaptive-W* method for evaluating the EEU. And so on.

(4) Step (3) is repeated until the algorithm gets stuck in the same place for
k consecutive iterations, where—again after some experimentation—I chose
k = 50 as a good compromise between effective exploration of local optima
and effective search of the whole space. If k successive steps without a move
take place at any time during the run, ISA implements a random restart: the
temperature is again set to T0, a random initial model is generated, and cooling
from this temperature begins all over again exactly as it did at the beginning
of the entire algorithm. Throughout the run the league table of 20 best models
is constantly updated.

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

6 Conclusions and extensions 125

(5) Steps (3) and (4) are then iterated until the desired amount of CPU time has
been exhausted.

I performed a simulation experiment with ISA similar to the one with vanilla SA
whose results were given previously in Section 4.6.2. As in the earlier experiment
there were five user inputs to vary:

• r, the total number of loops from 1 to 14 in the location of the pointer used
to propose a one-bit flip (this is chosen to achieve the specified target of CPU
time);

• N* (this varied from 2 to 20, as in vanilla SA);

• T0 and T/, the initial and final values of the temperature (these again varied
across the five settings (T0,X/) = (10.0,1.0), (10.0,0.1), (2.5,0.1), (1.0,0.1),
(0.5,0.05)); and

• sc, the schedule used to decrease the temperature (as before 1 = straight, 2 =
geometric, 3 = reciprocal, 4 = logarithmic).

I used the same 108 combinations of input settings (almost a full factorial) as
with vanilla SA, each of which took approximately 1,200 seconds. The actual CPU
time again varied by input settings, this time from a mean (across the 30 runs)
of 1010 to 1695 seconds, so as before I calculated both raw summaries and results
adjusted (via regression) for differences in CPU time. Tables 6.4-6.6 summarise the
results, which are much better than those for vanilla SA: the best input settings
achieve an adjusted mean value of P20, the percentage of the actual 20 best models
found in the run, of over 70%. For the very best input settings adjusted mean
P20 = 74.2%; the corresponding value for vanilla SA was 55.5%, and TS and GA
only achieved 64.9% and 66.5%, respectively.

Some further conclusions emerging from Tables 6.4-6.6 are as follows.

• The logarithmic and reciprocal schedules performed best in the optimisation
problem studied here using ISA: all 15 of the best input settings either had
sc = 4 or 3 (12 of these were logarithmic), and all 16 of the worst input settings
had sc = 1 or 2.

• The effect of the initial and final temperatures on performance was complicated
and was linked (as was true with vanilla SA) to the cooling schedule: for
example, 14 of the 16 worst input settings had (T0,T /) = (10.0,1.0) or

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

6 Conclusions and extensions 126

Table 6.4: Results of the simulation study for improved SA with p = 14 (part 1).
Values in parentheses are Monte Carlo standard errors; entries are sorted by adjusted
means o fp 2Q.

P20 (% of 20 Actual
Best Models Found)

N* To Tf sc
Mean CPU
Time (sec)

Raw
Mean

Raw
SD

Adjusted
Mean

15 0.5 0.05 4 1349 0.748 0.016) 0.114 0.742
20 0.5 0.05 4 1494 0.753 0.017) 0.143 0.734
15 10 0.1 4 1360 0.715 0.017) 0.089 0.708
20 10 0.1 4 1349 0.706 0.017) 0.120 0.700
20 2.5 0.1 4 1495 0.708 0.016) 0.110 0.689
10 0.5 0.05 4 1251 0.685 0.018) 0.109 0.688
15 2.5 0.1 4 1407 0.698 0.018) 0.090 0.687
10 10 0.1 4 1408 0.690 0.018) 0.102 0.679
15 0.5 0.05 3 1127 0.655 0.014) 0.088 0.669
10 1 0.1 4 1057 0.648 0.017) 0.103 0.668
20 1 0.1 4 1278 0.660 0.015) 0.141 0.660
10 0.5 0.05 3 1088 0.640 0.017) 0.101 0.657
10 2.5 0.1 4 1453 0.671 0.017) 0.090 0.656
15 1 0.1 3 1156 0.635 0.021) 0.105 0.646
15 1 0.1 4 1032 0.620 0.017) 0.120 0.642
10 0.5 0.05 1 1188 0.628 0.013) 0.085 0.636
5 0.5 0.05 4 1126 0.608 0.013) 0.078 0.622

10 0.5 0.05 2 1094 0.601 0.025) 0.450 0.618
15 0.5 0.05 1 1129 0.598 0.020) 0.104 0.612
20 0.5 0.05 3 1175 0.600 0.020) 0.138 0.610

4 1 0.1 4 1056 0.590 0.018) 0.101 0.610
5 10 0.1 4 1040 0.588 0.014) 0.099 0.610
5 0.5 0.05 1 1205 0.601 0.019) 0.085 0.608
5 1 0.1 4 1102 0.580 0.018) 0.073 0.596

10 1 0.1 3 1010 0.571 0.015) 0.088 0.595
20 0.5 0.05 2 1113 0.578 0.015) 0.108 0.593
20 1 0.1 3 1138 0.578 0.016) 0.110 0.591

5 0.5 0.05 3 1110 0.576 0.019) 0.092 0.591
15 0.5 0.05 2 1091 0.566 0.019) 0.104 0.583
20 0.5 0.05 1 1093 0.563 0.015) 0.109 0.580
10 2.5 0.1 3 1371 0.588 0.014) 0.087 0.580
5 2.5 0.1 4 1557 0.601 0.014) 0.080 0.576

10 1 0.1 1 1179 0.565 0.018) 0.094 0.574
5 0.5 0.05 2 1091 0.555 0.014) 0.092 0.572

15 1 0.1 1 1318 0.563 0.017) 0.094 0.565

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

6 Conclusions and extensions 127

Table 6.5: Results of the simulation study for improved SA with p = 14 (part2).

P20 (% of 20 Actual
Best Models Found)

N* To Tf sc
Mean CPU
Time (sec)

Raw
Mean

Raw
SD

Adjusted
Mean

10 1 0.1 2 1159 0.550 (0.018) 0.086 0.561
15 10 0.1 3 1237 0.556 (0.018) 0.082 0.560
15 2.5 0.1 3 1318 0.560 (0.012) 0.103 0.557
5 1 0.1 1 1435 0.565 (0.014) 0.094 0.551

20 2.5 0.1 3 1296 0.550 (0.017) 0.108 0.549
3 1 0.1 4 1300 0.551 (0.016) 0.106 0.549
5 1 0.1 2 1219 0.540 (0.017) 0.077 0.546
2 1 0.1 4 1090 0.525 (0.016) 0.088 0.542

15 1 0.1 2 1210 0.535 (0.014) 0.108 0.541
2 0.5 0.05 4 1174 0.531 (0.022) 0.074 0.541

10 10 0.1 3 1407 0.546 (0.020) 0.946 0.535
20 1 0.1 1 1279 0.533 (0.012) 0.088 0.533

5 2.5 0.1 3 1373 0.541 (0.014) 0.081 0.533
4 1 0.1 3 1138 0.518 (0.014) 0.803 0.531
2 0.5 0.05 3 1154 0.518 (0.019) 0.072 0.530
5 1 0.1 3 1214 0.523 (0.018) 0.096 0.529

20 10 1 4 1464 0.543 (0.082) 0.075 0.527
2 0.5 0.05 1 1219 0.518 (0.016) 0.092 0.524
5 10 1 4 1412 0.536 (0.018) 0.080 0.524
5 10 0.1 3 1282 0.523 (0.020) 0.098 0.523
2 2.5 0.1 4 1409 0.531 (0.019) 0.101 0.520
2 10 0.1 4 1442 0.531 (0.016) 0.090 0.517
2 0.5 0.05 2 1232 0.510 (0.017) 0.101 0.515
4 1 0.1 1 1282 0.510 (0.146) 0.093 0.510

10 2.5 0.1 2 1367 0.518 (0.018) 0.066 0.510
4 1 0.1 2 1270 0.506 (0.013) 0.078 0.507
3 1 0.1 2 1259 0.500 (0.019) 0.103 0.502

15 10 1 4 1426 0.515 (0.020) 0.109 0.502
3 1 0.1 3 1269 0.500 (0.010) 0.101 0.501
3 1 0.1 1 1240 0.496 (0.013) 0.101 0.500

10 10 1 4 1695 0.535 (0.015) 0.084 0.498
10 2.5 0.1 1 1343 0.500 (0.022) 0.111 0.495
5 2.5 0.1 1 1418 0.506 (0.014) 0.099 0.494
2 1 0.1 3 1186 0.485 (0.172) 0.076 0.494
5 2.5 0.1 2 1403 0.496 (0.017) 0.077 0.485
2 1 0.1 1 1303 0.483 (0.015) 0.101 0.481
2 1 0.1 2 1298 0.481 (0.019) 0.077 0.480

Dimitris Fouskakis (2001) Stochastic Optimisation Methods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

6 Conclusions and extensions 1 2 8

Table 6.6: Results of the simulation study for improved SA with p = 14 (parts).

P20 (% of 20 Actual
Best Models Found)

N* To Tf sc
Mean CPU
Time (sec)

Raw
Mean

Raw
SD

Adjusted
Mean

20 10 0.1 3 1184 0.471 (0.018) 0.124 0.480
20 1 0.1 2 1174 0.468 (0.015) 0.107 0.478
10 10 1 3 1694 0.501 (0.014) 0.056 0.464
5 10 1 1 1483 0.480 (0.013) 0.086 0.462

10 10 1 2 1489 0.480 (0.025) 0.099 0.461
10 10 1 1 1603 0.483 (0.016) 0.098 0.454
2 2.5 0.1 3 1383 0.461 (0.018) 0.073 0.452

15 2.5 0.1 2 1309 0.450 (0.016) 0.111 0.448
2 2.5 0.1 1 1473 0.461 (0.013) 0.082 0.444

10 10 0.1 1 1201 0.435 (0.025) 0.097 0.442
5 10 0.1 1 1430 0.451 (0.021) 0.074 0.438
5 10 0.1 2 1449 0.451 (0.018) 0.093 0.436

20 10 1 3 1429 0.448 (0.013) 0.107 0.435
5 10 1 3 1352 0.441 (0.018) 0.076 0.435
5 10 1 2 1474 0.450 (0.019) 0.069 0.433
2 10 0.1 3 1562 0.458 (0.016) 0.085 0.433

15 2.5 0.1 1 1379 0.440 (0.013) 0.111 0.431
2 10 1 4 1490 0.438 (0.019) 0.075 0.419
2 10 1 3 1433 0.430 (0.015) 0.083 0.417
2 2.5 0.1 2 1477 0.430 (0.014) 0.077 0.413

15 10 1 3 1341 0.418 (0.013) 0.113 0.413
15 10 0.1 1 1255 0.408 (0.021) 0.116 0.410
15 10 1 1 1271 0.408 (0.016) 0.077 0.409
10 10 0.1 2 1149 0.395 (0.018) 0.097 0.407
20 2.5 0.1 1 1138 0.388 (0.018) 0.137 0.401
20 2.5 0.1 2 1124 0.380 (0.016) 0.124 0.394

2 10 0.1 2 1487 0.411 (0.020) 0.081 0.393
2 10 0.1 1 1400 0.403 (0.016) 0.076 0.392

15 10 1 2 1454 0.403 (0.016) 0.101 0.388
15 10 0.1 2 1073 0.361 (0.014) 0.089 0.380
2 10 1 1 1377 0.381 (0.018) 0.094 0.373
2 10 1 2 1350 0.378 (0.026) 0.082 0.372

20 10 1 1 1096 0.320 (0.020) 0.104 0.337
20 10 1 2 1174 0.305 (0.019) 0.097 0.315
20 10 0.1 1 1084 0.273 (0.014) 0.096 0.291
20 10 0.1 2 1073 0.233 (0.013) 0.096 0.252

Dimitris Fouskakis (2001) S tochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

6 C onclusions an d ex ten sion s 129

Figure 6-1: Parallel boxplots comparing GA, ISA, and TS in the 1^-variable case.

o -

GA ISA TS

Optimisation Method

(10.0,0.1) (when straight or geometric schedules were used), but two of the
top four input settings also had (To,7/) = (10.0,1.0) (when the schedule was
logarithmic).

• In general low values of N for the logarithmic and reciprocal schedules,
and high values of N for the straight and geometric schedules, performed
badly with ISA. The worst combination was a high value for the initial
temperature together with large N for the straight and geometric schedules.
It is noteworthy in comparing ISA to vanilla SA that large values of N work
so well with ISA when the best cooling schedule is chosen (all 16 of the best
input settings have N > 10). This appears to be due not so much to the
random-restart feature in ISA as to the use of desirability to search for good
variables to include in the model.

• With the modifications of SA involving random restarts and the inclusion and
exclusion of variables based on desirability, the new ISA outperforms both of
the versions of TS and GA studied in Chapter 4 in the p = 14 case. Figure
6.1 gives parallel boxplots of the results from GA, ISA, and TS across all
input configurations examined; the maximum across the three methods was

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

6 Conclusions and extensions 130

Table 6.7: Input settings and results for the 3-hour runs of ISA in the simulation
experiment with p = 83 (SDs in parenthesis).

Run
Input 1 2 3 4 5 6 7 8 9 10

N* 15 20 15 20 20 10 15 10 15 10
To 0.5 0.5 10.0 10.0 2.5 0.5 2.5 10.0 0.5 1.0
Tf 0.05 0.05 0.1 0.1 0.1 0.05 0.1 0.1 0.05 0.1

Cooling
Schedule 4 4 4 4 4 4 4 4 3 4

Run
Result 1 2 3 4 5 6 7 8 9 10
Mean
CPU 0.88 0.96 1.12 1.11 0.77 1.08 0.86 0.88 0.98 1.12

(10K sec)
(N = 1) 4642 5326 8108 7995 4718 5169 5554 8426 6727 7053
(N > 1) 212 533 109 97 107 273 124 187 109 120

Mean* 16.3 14.4 19.9 19.0 15.7 18.1 17.1 19.4 19.6 15.9
Dimension (3.5) (4.3) (2.4) (1.4) (2.4) (2.1) (2.6) (1.1) (1.2) (3.8)

Min*
Dimension 0.8 1.0 1.0 1.0 1.4 1.0 1.0 1.0 1.0 4.6

Max*
Dimension 32.6 29.0 35.0 32.2 29.6 29.8 32.2 31.8 33.4 26.6

Mean*
Apparent -10.9 -10.2 -11.4 -10.9 -10.2 --11.0 -10.6 -11.3 -11.1 -10.2

Utility
Mean**

Real -8.5 -7.8 -8.6 -8.2 -8.1 -8.3 -8.2 -8.8 -8.6 -8.3
Utility
Mean** 7.3 6.6 6.4 5.0 4.9 6.3 5.1 7.5 6.6 7.3

Dimension (1.4) (0.7) (1.4) (1.2) (1.1) (2.8) (1.2) (2.9) (1.5) (3.4)
#6**
Best 3 5 3 3 3 3 3 4 3 3
Max

Efficiency 0 14.7 0 0 2.9 8.3 2.9 0 0 0
(IK)

attained by ISA, although TS still has the largest median and the smallest
variability around the median (which gives some idea of typical performance
of the algorithms without a lot of fine-tuning). This comparison is not quite
fair to TS and GA, because the versions studied earlier did not have the benefit
of the desirability idea. In any case ISA is perhaps best viewed as a hybrid
method, incorporating ideas both from SA and TS, and it would seem that if

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessm ent in Health

6 Conclusions and extensions 131

a great deal of hybridising experimentation is allowed all three methods would
be likely to perform about the same (in fact, if you combine ideas from several
methods it is no longer even meaningful to talk about a contest between the
three approaches).

Table 6.7 summarises the performance of the improved SA method in the p = 83
case (naming conventions for the inputs are as above). As with GA, TS, and ordinary
SA, I took the ten best input configurations from the p = 14 case and made five
runs with different random number seeds, in each case allowing a budget of three
hours of CPU time. In the runs reported on here N* varied from 10 to 20, I used
two different cooling schedules (logarithmic in most of the cases, and in one case
reciprocal) and the initial and final temperatures ranged from 0.5 to 10.0 and 0.05
to 0.1, respectively. The mean CPU times actually observed varied from 7,700 to
11,200 seconds. The total number of models visited by ISA ranged from 4,854 to
8,613 (much better than vanilla SA), and in most of the cases the great majority of
these models were examined with N = 1.

It is evident from the mean real utility and mean dimension rows of this table
that the two new ideas in ISA have led to a dramatic improvement over vanilla SA;
in fact, ISA performs about as well as GA (the previously best method) with p = 83.
In future work I intend to quantify how much of ISA’s improvement is due to the
random restart idea and how much to the introduction of the desirability criterion.

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

Bibliography

Aarts EHL, Korst JHM (1989). Simulated Annealing and Boltzmann Machines.
Chichester: Wiley.

Ackley D (1987). A Connectionist Machine for Genetic Hill-climbing. Dordrecht:
Kluwer.

Alander JT (1992). On optimal population size of genetic algorithms. Proceedings
CompEuro 92, 65-70. IEEE Computer Society Press.

Baker JE (1985). Adaptive selection methods for genetic algorithms. In
Proceedings of an International Conference on Genetic Algorithms and Their
Applications (Davis L, ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.

Beaty S (1991). Instruction Scheduling using Genetic Algorithms. Ph.D.
Dissertation, Colorado State University.

Becker RA, Chambers JM, Wilks AR (1993). The New S Language. Pacific Grove,
CA: Wadsworth &: Brooks/Cole.

Bergeret F, Besse P (1997). Simulated annealing, weighted simulated annealing
and genetic algorithm at work. Computational Statistics, 12, 447-465.

Bernardo JM, Smith AFM (1994). Bayesian Theory. New York: Wiley.

Beyer D, Ogier R (1991). Tabu learning: a neural network search method for
solving nonconvex optimization problems. Proceedings of the International
Joint Conference on Neural Networks. Singapore: IEEE and INNS.

Bland JA, Dawson GP (1991). Tabu search and design optimization. Computer-
Aided Design, 23, 195-202.

Booker LB (1987). Improving search in genetic algorithms. In Genetic Algorithms
and Simulated Annealing (Davis L, ed.). San Mateo, CA: Morgan Kaufmann.

Brandimarte P, Conterno R, Laface P (1987). FMS production scheduling by
simulated annealing. Proceedings of the 3rd International Conference on
Simulation in Manufacturing, 235-245.

132

BIBLIO G RAPH Y 133

Caruna RA, Schaffer JD (1988). Representation and hidden bias: Gray vs. binary
coding for genetic algorithms. Proceedings of the fifth International Conference
on Machine Learning. San Mateo, CA: Morgan Kaufmann.

Cohoon JP, Hegde SU, Martin WN, Richards D (1987). Punctuated equilibria:
a parallel genetic algorithm. In Genetic Algorithms and Their Applications:
Proceedings of the Second International Conference on Genetic Algorithms
(Grefenstette JJ, ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.

Connoly DT (1990). An improved annealing scheme for the QAP. European
Journal of Operational Research, 46, 93-100.

Chakrapani J, Skorin-Kapov J (1993). Massively parallel tabu search for the
quadratic assignment problem. Annals of Operations Research, 41, 327-341.

Chams M, Hertz A, de Werra D (1987). Some experiments with simulated
annealing for colouring graphs. European Journal of Operational Research,
32, 260-266.

Chatfield C, Collins AJ (1980). Introduction to Multivariate Analysis. London:
Chapman Sz Hall.

Chipman JS, Winker P (1995). Optimal industrial classification by threshold
accepting. Control and Cybernetics, 24, 477-494.

Cvijovic D, Klinowski J (1995). Tabu search: An approach to the multiple minima
problem. Science, 267, 664-666.

Davis L (1991). Handbook of Genetic Algorithms. New York: Van Nostrand
Reinhold.

Daley J, Jencks S, Draper D, Lenhart G, Thomas N, Walker J (1988). Predicting
hospital-associated mortality for Medicare patients with stroke, pneumonia,
acute myocardial infarction, and congestive heart failure. Journal of the
American Medical Association, 260, 3617-3624.

De Jong KA (1975). An Analysis of the Behavior of a Class of Genetic Adaptive
Systems. Ph.D. Dissertation, University of Michigan.

de Werra D, Hertz A (1989). Tabu search techniques: a tutorial and an application
to neural networks. OR Spektrum, 11, 131-141.

Donabedian A (1981). Advantages and limitations of explicit criteria for assessing
the quality of health care. Milbank Memorial Fund Quarterly—Health and
Society, 59, 99-106.

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

BIBLIO G RAPH Y 134

Downsland KA (1993). Some experiments with simulated annealing techniques for
packing problems. European Journal of Operational Research, 68, 389-399.

Draper D (1995). Inference and hierarchical modeling in the social sciences (with
discussion). Journal of Educational and Behavioral Statistics, 20, 115-147,
233-239.

Draper D (1996). Hierarchical models and variable selection. Technical Report,
Department of Mathematical Sciences, University of Bath, UK.

Draper D, Fouskakis D (2000). A case study of stochastic optimization in
health policy: problem formulation and preliminary results. Journal of Global
Optimization, 18, 399-416.

Draper D, Kahn K, Reinisch E, Sherwood M, Carney M, Kosecoff J, Keeler E,
Rogers W, Savitt H, Allen H, Wells K, Reboussin D, Brook R (1990). Studying
the effects of the DRG-based Prospective Payment System on Quality of Care:
Design, sampling, and fieldwork. Journal of the American Medical Association,
264, 1956-1961.

Dueck G, Scheuer T (1990). Threshold acceptance: A general purpose
optimization algorithm appearing superior to simulated annealing. Journal
of Computational Physics, 90, 161-175.

Eshelman L (1991). The CHC adaptive search algorithm: How to have safe search
when engaging in nontraditional genetic recombination. In Foundations of
Genetic Algorithms (Rawlins G, ed.). San Mateo, CA: Morgan Kaufmann.

Fairley A (1991). Comparison of methods of choosing the crossover point in the
genetic crossover operation. Department of Computer Science, University of
Liverpool.

Fiechter CN (1994). A parallel tabu search algorithm for large traveling salesman
problems. Discrete Applied Mathematics, 51, 243-267.

Fouskakis D, Draper D (1999). Review of Tabu Search, by F Glover and M Laguna,
Amsterdam: Kluwer (1997). The Statistician, 48, 616-619.

Franconi L, Jennison C (1997). Comparison of a genetic algorithm and simulated
annealing in an application to statistical image reconstruction. Statistics and
Computing, 7, 193-207.

Geman S, Geman D (1984). Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, PA M I—6, 721-741.

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

BIBLIO G RAPH Y 135

Gilks WR, Richardson S, Spiegelhalter DJ (1996). Markov Chain Monte Carlo in
Practice. London: Chapman & Hall.

Glauber RJ (1963). Time-dependent statistics of the Ising model. Journal of
Mathematical Physics, 4, 294-307.

Glover F (1977). Heuristics for integer programming using surrogate constraints.
Decision Sciences, 8, 156-166.

Glover F (1986). Future paths for integer programming and links to artificial
intelligence. Computers and Operations Research, 13, 533-549.

Glover F (1989). Tabu search-Part I. ORSA Journal on Computing, 1, 190-206.

Glover F (1990). Tabu search-Part II. ORSA Journal on Computing, 2, 4-32.

Glover F (1990). Tabu search: A tutorial. Interfaces, 20, 74-94.

Glover F, Glover R, Klingman D (1986). The threshold assignment algorithm.
Mathematical Programming Study, 26, 12-37.

Glover F, McMillan C (1986). The general employee scheduling problem: an
integration of management science and artificial intelligence. Computer and
Operational Research, 15, 563-593.

Glover F, Taillard E, de Werra D (1993). A user’s guide to tabu search. Annals
of Operations Research, 41, 3-28.

Goldberg DE (1989). Genetic Algorithms in Search, Optimization and Machine
Learning. Reading, MA: Addison-Wesley.

Goldberg DE, Deb K (1991). A comparative analysis of selection schemes used in
genetic algorithms. In Foundations of Genetic Algorithms (Rawlins G, ed.).
San Mateo, CA: Morgan Kaufmann.

Goldberg DE, Deb K, Kargupta H, Harik G (1993). Rapid, accurate optimization
of difficult problems using fast messy genetic algorithms. Illigal Report
No. 9300Ji, Illinois Genetic Algorithms Laboratory, Department of General
Engineering, University of Illinois, Urbana.

Goldberg DE, Deb K, Korb B (1990). Messy genetic algorithms revisited: Studies
in mixed size and scale. Complex Systems, 4, 415-444.

Goldberg DE, Korb B, Deb K (1989). Messy genetic algorithms: Motivation,
analysis, and first results. Complex Systems, 3, 493-530.

Goldberg DE, Lingle R (1985). Alleles, loci and the travelling salesman problem.
In Genetic Algorithms and Their Applications: Proceedings of the Second

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessm ent in Health

BIBLIO G RAPH Y 136

International Conference on Genetic Algorithms (Grefenstette J J, ed.).
Hillsdale, NJ: Lawrence Erlbaum Associates.

Goldberg DE, Richardson J (1987). Genetic algorithms with sharing for
multimodal function optimization. In Genetic Algorithms and Their
Applications: Proceedings of the Second International Conference on
Genetic Algorithms (Grefenstette J J, ed.). Hillsdale, NJ: Lawrence Erlbaum
Associates.

Goldstein H, Spiegelhalter DJ (1996). League tables and their limitations:
Statistical issues in comparisons of institutional performance (with discussion).
Journal of the Royal Statistical Society, Series A , 159, 385-444.

Grefenstette JJ (1986). Optimization of control parameters for genetic algorithms.
IEEE Transactions on Systems, Man, and Cybernetics, 16(1), 122-128.

Hadorn D, Draper D, Rogers W, Keeler E, Brook R (1992). Cross-validation
performance of patient mortality prediction models. Statistics in Medicine,
11, 475-489.

Hansen P (1986). The steepest ascent mildest descent heuristic for combinatorial
programming. Congress on Numerical Methods in Combinatorial
Optimization. Capri, Italy.

Hansen P, Jaumard B (1990). Algorithms for the maximum satisfiability problem.
Computing, 44, 279-303.

Hertz A, de Werra D (1987). Using tabu search techniques for graph coloring.
Computing, 29, 345-351.

Holland JH (1975). Adaptation in Natural and Artificial Systems. Ann Arbor:
University of Michigan Press.

Hosmer DW, Lemeshow S (1989). Applied Logistic Regression. New York: Wiley.

Inshibuchi H, Misaki S, Tanaka H (1995). Modified simulated annealing
algorithms for the flow shop sequencing problem. European Journal of
Operational Research, 81, 388-398.

Jaumard B, Hansen P, Poggi di Aragao M (1991). Column generation methods
for probabilistic logic. ORSA Journal on Computing, 3, 135-148.

Jencks S, Daley J, Draper D, Thomas N, Lenhart G, Walker J (1988). Interpreting
hospital mortality data: The role of clinical risk adjustment. Journal of the
American Medical Association, 260, 3611-3616.

Dimitris Fouskakis (2001) S tochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

BIBLIO G RAPH Y 137

Jennison C, Sheehan N (1995). Theoretical and empirical properties of the genetic
algorithm as a numerical optimizer. Journal of Computational and Graphical
Statistics, 4, 296-318.

Jog P, Suh JY, Gucht DV (1989). The effects of population size, heuristic crossover
and local improvement on a genetic algorithm for the traveling salesman
problem. In Proceedings of the Third International Conference on Genetic
Algorithms (Schaffer JD, ed.). San Mateo, CA: Morgan Kaufmann.

Johnson DS, Aragon CR, McGeoch LA, Schevon C (1989). Optimization by
simulated annealing: an experimental evaluation; part I, graph partitioning.
Operational Research, 37, 865-892.

Kahn K, Brook R, Draper D, Keeler E, Rubenstein L, Rogers W, Kosecoff J
(1988). Interpreting hospital mortality data: How can we proceed? Journal of
the American Medical Association, 260, 3625-3628.

Kahn K, Rogers W, Rubenstein L, Sherwood M, Reinisch E, Keeler E, Draper
D, Kosecoff J, Brook R (1990). Measuring quality of care with explicit
process criteria before and after implementation of the DRG-based Prospective
Payment System. Journal of the American Medical Association, 264, 1969-
1973.

Kahn K, Rubenstein L, Draper D, Kosecoff J, Rogers W, Keeler E, Brook R
(1990). The effects of the DRG-based Prospective Payment System on quality
of care for hospitalized Medicare patients: An introduction to the series.
Journal of the American Medical Association, 264, 1953-1955 (with editorial
comment, 1995-1997).

Kapsalis A, Smith GD, Rayward-Smith VJ (1993). Solving the graphical Steiner
tree problem using genetic algorithms. Journal of the Operational Research
Society, 44, 44.

Keeler E, Kahn K, Draper D, Sherwood M, Rubenstein L, Reinisch E, Kosecoff J,
Brook R (1990). Changes in sickness at admission following the introduction
of the Prospective Payment System. Journal of the American Medical
Association, 264, 1962-1968.

Kelley A, Pohl I (1995). A Book on C, third edition. Redwood City, CA:
Benjamin/Cummings.

Kirkpatrick S, Gelatt CD, Vecchi MP (1983). Optimization by simulated
annealing. Science, 220, 671-680.

Dimitris Fouskakis (2001) S tochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

BIBLIO G RAPH Y 138

Kitano H (1990). Designing neural networks using genetic algorithms with graph
generation system. Complex Systems, 4, 461-476.

Knaus WA, Draper EA, Wagner DP, Zimmerman JE (1985). APACHE II: A
severity of disease classification system for severely ill patients. Critical Care
Medicine, 13, 818-829.

Knuth DE (1968). The Art of Computer Programming. Volume 1: Fundamental
Algorithms. Reading, MA: Addison-Wesley.

Kvasnicka V, Pospfchal J (1995). Messy simulated annealing. Journal of
Chemometrics, 9, 309-322.

Laguna M, Barnes JW, Glover F (1991). Tabu search methods for a single machine
scheduling problem. Journal of Intelligent Manufacturing, 2, 63-74.

Laguna M, Glover F (1993). Bandwidth packing: A tabu search approach.
Management Science, 39, 492-500.

Laguna M, Gonzalez-Velarde JL (1991). A search heuristic for just-in-tim e
scheduling in parallel machines. Journal of Intelligent Manufacturing, 2, 253-
260.

Lundy M, Mees A (1986). Convergence of an annealing algorithm. Mathematical
Programming, 34, 111-124.

Malek M, Guruswamy M, Pandya M, Owens H (1989). Serial and parallel
simulated annealing and tabu search algorithms for the travelling salesman
problem. Annals of Operations Research, 21, 59-84.

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953).
Equation of state calculation by fast computing machines. Journal of Chemical
Physics, 21, 1087-1091.

Meyer TP, Packard NH (1992). Local forecasting of high-dimensional chaotic
dynamics. In Nonlinear Modeling and Forecasting (Casdagli M, Eubank S,
ed.). Reading, MA: Addison-Wesley.

Michalewicz Z, Janikow CZ (1991). Genetic Algorithms for numerical
optimization. Statistics and Computing, 1, 75-91.

Montana DJ, Davies LD (1989). Training feedforward networks using genetic
algorithms. Proceedings of the International Joint Conference on Artificial
Intelligence. San Mateo, CA: Morgan Kaufmann.

Muhlenbein H, Gorges-Schleuter M, Kramer O (1988). Evolution algorithms in
combinatorial optimization. Parallel Computing, 7, 65-85.

Dimitris Fouskakis (2001) S tochastic Optim isation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessm ent in Health

BIBLIO G RAPH Y 139

Ogbu FA, Smith DK (1990). The application of the simulated annealing
algorithm to the solution of the n/m /C m ax flowshop problem. Computers
and Operational Research, 17, 243-253.

Oliveira S, Stroud G (1989). A parallel version of tabu search and the path
assignment problem. Heuristics for Combinatorial Optimization, 4, 1-24.

Pettey CB, Leuze MR, Grefenstette JJ (1987). A parallel genetic algorithm.
In Genetic Algorithms and Their Applications: Proceedings of the Second
International Conference on Genetic Algorithms (Grefenstette JJ, ed.).
Hillsdale, NJ: Lawrence Erlbaum Associates.

Rawlins GJE (1991). Foundations of Genetic Algorithms. San Mateo, CA: Morgan
Kaufmann.

Reeves CR (1992). A genetic algorithm approach to stochastic flowshop
sequencing. Proceedings of the IEEE Colloquium on Genetic Algorithms for
Control and Systems Engineering. Digest No. 1992/106, London: IEEE.

Reeves CR (1995). Modem Heuristic Techniques for Combinatorial Problems.
London: McGraw-Hill.

Schaffer JD, Caruana RA, Eshelman LJ, Das R (1989). A study of control
parameters affecting online performance of genetic algorithms for function
optimization. In Proceedings of the Third International Conference on Genetic
Algorithms (Schaffer JD, ed.). San Mateo, CA: Morgan Kaufmann.

Schultz-Kremer S (1992). Genetic algorithms for protein tertiary structure
prediction. In Parallel Problem Solving from Nature 2 (Manner R, Manderick
B, ed.). North-Holland.

Sechen C, Braun D, Sangiovanni-Vincetelli A (1988). Thunderbird: A complete
standard cell layout package. IEEE Journal of Solid-State Circuits, SC-23,
410-420.

Semet F, Taillard E (1993). Solving real-life vehicle routing problems efficiently
using tabu search. Annals of Operations Research, 41, 469-488.

Sirag DJ, Weisser PT (1987). Towards a unified thermodynamic genetic operator.
In Genetic Algorithms and Their Applications: Proceedings of the Second
International Conference on Genetic Algorithms (Grefenstette JJ, ed.).
Hillsdale, NJ: Lawrence Erlbaum Associates.

Skorin-Kapov J (1990). Tabu search applied to the quadratic assignment problem.
ORSA Journal on Computing, 2, 33-45.

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

BIBLIO G RAPH Y 140

South MC, Wetherill GB, Tham MT (1993). Hitchhiker’s guide to genetic
algorithm. Journal of Applied Statistics, 20, 153-175.

Stander J, Silverman BW (1994). Temperature schedules for simulated annealing.
Statistics and Computing, 4, 21-32.

Stata Reference Manual, Release 5. College Station, TX: Stata Press.

Suh JY, Van Gucht D (1987). Incorporating heuristic information into genetic
search. In Genetic Algorithms and Their Applications: Proceedings of the
Second International Conference on Genetic Algorithms (Grefenstette JJ, ed.).
Hillsdale, NJ: Lawrence Erlbaum Associates.

Syswerda G (1989). Uniform crossover in genetic algorithms. In Proceedings of
the Third International Conference on Genetic Algorithms (Schaffer JD, ed.).
San Mateo, CA: Morgan Kaufmann.

Taillard E (1989). Parallel tabu search for the job shop scheduling problem.
Research Report ORWP 89/11. DMA Lausanne, Switzerland: EPFL.

Taillard E (1990). Some efficient heuristic methods for the flow shop sequencing
problem. European Journal of Operational Research, 47, 65-74.

Taillard E (1991). Robust tabu search for the quadratic assignment problem.
Parallel Computing, 17, 443-455.

Talbi EG, Bessiere P (1991). A parallel genetic algorithm applied to the mapping
problem. SIAM News, July 1991, 12-27.

Tipler PA (1969). Foundations of Modern Physics. New York: Worth.

Tovey CA (1988). Simulated simulated annealing. AJMMS, 8, 389-407.

Tukey JW (1977). Exploratory Data Analysis. Reading, MA: Addison-Wesley.

Ulder NLJ, Aarts EHL, Bandelt HJ, Van Laarhoven PJM, Pesch E (1991). Genetic
local search algorithms for the traveling salesman problem. In Parallel Problem
Solving from Nature (Schwefel HP, Manner R, ed.). Berlin: Springer.

Vakharia AJ, Chang YL (1990). A simulated annealing approach to scheduling a
manufacturing cell. Naval Research Logistics, 37, 559-577.

Van Laarhoven PJM, Aarts EHL (1988). Simulated Annealing and Boltzmann
machines. Chichester: Wiley.

Volker N, Henrik P (1995). A modification of threshold accepting and its
application to the quadratic assignment problem. OR Spektrum, 17, 205-210.

Weisberg S (1985). Applied Linear Regression, second edition. New York: Wiley.

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessm ent in Health

BIBLIO G RAPH Y 141

Whitley D (1989). The GENITOR algorithm and selection presure: why rank-
based allocation of reproductive trials is best. In Proceedings of the Third
International Conference on Genetic Algorithms (Schaffer JD, ed.). San
Mateo, CA: Morgan Kaufmann.

Whitley D (1992). Foundations of Genetic Algorithms 2. San Mateo, CA: Morgan
Kaufmann.

Widmer M (1991). Job shop scheduling with tooling constraints: a tabu search
approach. Journal of Operation Research Society, 42, 75-82.

Winker P, Fank KT (1997). Application of threshold accepting to the evaluation
of the discrepancy of a set of points. SIAM Journal on Numerical Analysis,
34, 2028-2042.

Dimitris Fouskakis (2001) Stochastic Optimisation M ethods Ph.D. Thesis, Bath
for Cost-Effective Quality Assessment in Health

