
        

University of Bath

PHD

On modelling and simulation of plucked string instruments

Shabana, Wafaa Rezk

Award date:
2002

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019



On M odelling and Sim ulation of 
Plucked String Instrum ents

submitted by

Wafaa Rezk Shabana

for the degree of Doctor of Philosophy 

of the

University of Bath 
2002

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with its author. This 

copy of the thesis has been supplied on the condition that anyone who consults it is 

understood to recognise that its copyright rests with its author and that no quotation 

from the thesis and no information derived from it may be published without the prior 

written consent of the author.

This thesis may be made available for consultation within the University Library and 

may be photocopied or lent to other libraries for the purposes of consultation.

frvr-g!



UMI Number: U145902

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U145902
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



UNIVFS-ITY C 
LIBRARY

7 o  2 7  MAY 2002

IL'IL



Acknowledgments

I would like to express my sincere thanks to my supervisor Prof. John Fitch for 

his constant encouragement, endless support, fruitful discussions and above all 

his belief and confidence in me. Thank you for being there for me all the time. I 

would also like to thank Dr. Julian Padget for his help, patience and kindness. I 

would also like to express my gratitude to some other people who helped me in 

one way or another. Those are my colleagues whom I shared the office 1W2.26 

for quite some time. They have been wonderful, kind, supportive and helpful. I 

wish you all the best.

My grateful thanks, also, are due to my husband who introduced me to the 

wonderful world of Kalman filter. His deep discussions and invaluable comments 

have helped me greatly throughout the course of my study. I am also very grateful 

to my two lovely boys Ayman and Ahmed for everything they have given me. 

You guys keep me going. Simply you are the sound of life. My overwhelming 

gratitude is kept for a very special person, my mum without whose love, care, 

support, and prayers I would never be in this.position. May God bless you all.

Finally special thanks are due to the Egyptian Government and the Educa­

tional and Cultural Bureau in London for their financial support and help.



Abstract

During the last two decades physical modelling of real musical instruments has 

gained popularity as a tool for sound synthesis and computer music. The term 

physical modelling simply refers to the simulation of the sound-production mech­

anism of a real musical instrument. The instrument under study here is the 

classic acoustic guitar.

The modelling process starts by studying the vibrating string as it is the 

main source of vibration in any stringed musical instrument. The ideal vibrating 

string satisfies the one-dimensional (ID) wave equation which can be modelled 

accurately by using the digital waveguide techniques. Based on the principle of 

commuted waveguide and the extensions of the Karplus-Strong (KS) algorithm, 

a guitar model is designed.

Once a physically relevant model of the instrument is constructed, an analysis-

based synthesis scheme is developed for the estimation of the model parameters
n

as well as the excitation signals. Starting with a real guitar tone, the estimation 

process involves the following major steps:

— Estimation of the fundamental frequency, which in turn determines the nom­

inal delay of the string model. A new pitch detection algorithm based on the 

Dyadic Wavelet Transform is utilized for this purpose. The analysis wavelet is a 

quadratic spline wavelet. The construction of this wavelet is explained in detail. 

The performance of other wavelets has been investigated for comparison. Further­

more a comparative study between the proposed algorithm and the well-known 

autocorrelation function is presented.



— Based on sinusoidal modelling, the estimation of the recorded signal features 

such as frequency, amplitude, and phase is the next step in the analysis. A 

new Kalman filtering-based (EKF) technique is proposed for this task. Different 

models have been tested and the results of this algorithm are compared to those 

obtained by the more conventional Short-Time Fourier Transform (STFT) based 

analysis.

Once the model parameters are extracted, the excitation signals are estimated. 

Finally the re-synthesized signal is compared to the original and some error- 

analysis tests are performed on the EKF-residual signal.

The proposed new techniques are proven to be accurate, robust to noise, fast, 

and have the potential of real-time implementation.

Keywords: physical modelling, pitch detection, Wavelet transform, Kalman filter, 

Short-Time Fourier Transform, partials tracking.
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Chapter 1 

Introduction



Digital sound synthesis has become a very active field in Musical Acoustics 

and Computer Music. There are different techniques for sound synthesis such as 

additive synthesis, subtractive synthesis, nonlinear synthesis and physical mod­

elling synthesis. Physical modelling, in particular, has gained popularity during 

the last two decades. Unlike the other sound synthesis techniques, the physical 

modelling approach simulates the properties of the sound source rather than the 

properties of the sound itself. The term physical modelling simply refers to the 

simulation of the sound production mechanism of a certain musical instrument. 

This is achieved by studying the physics and mathematics that govern and control 

the behaviour of the instrument under study.

This chapter is organised as follows : section 1 presents an overview of the 

various physical modelling techniques. Some of the advantages and disadvantages 

of each technique are briefly described. In section 2 the construction of the 

acoustic guitar, as the instrument under study in this current work, is briefly 

considered. Finally the thesis outline is presented in section 3.

1.1 Physical M odelling Techniques

Sound synthesis by using simulated physical models has gained popularity as it 

offers the musician simpler tools for controlling and producing new and traditional 

musical sounds. Most often models are used to understand the physical phenom­

ena of the musical instrument and how it works. Sometimes the physical-model 

techniques are used to develop a model-based sound synthesizer.

In [62] Valimaki and Takala divide physical modelling techniques into five 

basic categories. These categories are:

•  Source-filter modelling.

•  Numerical solving of partial differential equations.
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•  Mechanical Models.

•  Modal synthesis.

•  Waveguide synthesis.

These approaches are summarised briefly in the following.

1. Source-filter modelling: this technique has been used for synthesizing speech 

and singing voices. In this case the system under study is decomposed into 

two subsystems, namely, the “excitation” and the “resonator” . For example 

the speech production mechanism where the interaction between the vocal 

cords and the vocal tract is modelled as a feed-forward system consisting 

of a source and a time-varying filter. In some musical instruments it is 

easy to separate the source and the filter but most musical instruments are 

more complicated systems than just a combination of two subsystems; for 

instance wind instruments.

2. Numerical solving of partial differential equations: the basic idea of this 

method is to approximate numerically the wave equation that governs the 

vibration of the object at a finite set of points. Although the finite differ­

ence method is accurate in reproducing the original waveform if the model 

parameters are correct, it is computationally very intensive. This technique 

has been applied to string instruments such as the guitar, the piano and 

the violin including the interaction between the player and the instrument.

3. Mechanical synthesis: in this case the acoustical system under study is 

modelled using simple mechanical elements such as masses, springs, and 

dampers. A system called CORDIS was the first to simulate a musical 

instrument as a collection of point masses that have certain elasticity and 

frictional characteristics [11]. These point masses are connected together 

through dampers and springs. A major simplification can be made by

3



considering each element as being one-dimensional. Although this method 

is implemented in real-time sound synthesis very successfully, again it is 

very intensive computationally.

4. Modal synthesis: this technique simulates the vibrating system as a col­

lection of subsystems. These subsystems could be strings, acoustic tubes, 

bridges, and instrument bodies. The subsystems are connected between 

different access points and interact together. Despite the generality of this 

technique, its complexity increases rapidly with the complexity of the un­

derlying structure.

5. Waveguide synthesis: this is based on the analytical solution of the differ­

ential equation that governs the propagation of waves in a medium. This 

method is very efficient in simulating not only the ID-vibratory systems 

but also 2D-systems and 3D-systems. It turned out to be the most impor­

tant method of all physical modelling methods. We will consider the digital 

waveguide synthesis of string instruments, in particular the acoustic guitar, 

in more detail in chapter 2.

A very thorough study of the evaluation of the various sound synthesis techniques 

is given in [56].

1.2 Construction o f the Acoustic Guitar

All string instruments have the same fundamental functional features. They all 

have a string-like structure as the primary source of vibration. When the string is 

excited by the player (plucked, bowed, or struck) it vibrates. Mathematically it 

can be represented by the one-dimensional wave equation. The strings are coupled 

to a resonating body for sound radiation, acoustic amplification, and colouring of 

the sound. The strings can also interact with each other via the bridge and the
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Sound rad iationE x c ita tio n

B od yP layer

string 1

string 2

string N

Figure 1.1: A model of a plucked-string instrument

nut [41]. A model showing the main elements and the inter-couplings of a typical 

plucked string instrument is shown in figure (1.1) (after Karjalainen et al. [59]).

The physics-based model used in this study is of the acoustic guitar as an 

example of a string instrument. The acoustic guitar has been studied extensively 

in the literature [22], [55] and [15].

The acoustic guitar features six strings each of which is about 64 cm in length. 

The material of the strings is either nylon (as in the classical style) or steel (as 

in folk and jazz). The strings are coupled to a resonating body through the 

bridge which plays a very important role. The bridge is usually made of wood 

(ebony). Traditionally it is glued directly to the top plate of the guitar body 

(sound-board). The guitar body is made mainly from wood. It consists of the 

top plate, the back plate, and the sides (ribs). The top plate or the sound board 

is considered as the most important part of the guitar as it determines the quality 

and character of the instrument’s sound. Both the back plate and the ribs are 

made from the same wood.

The strings of the guitar run above the finger-board which is attached to the 

neck. The finger-board is made from ebony and runs along the front of the sound­

board and is glued to the neck. Frets are made from metal and are mounted to the 

finger-board. The distance between any two frets is 1/17.817 times the shorter

5
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Figure 1.2: The various parts of the acoustic guitar

of the two distances to the bridge. The neck of the guitar varies in its design and 

shape but it is usually made from hard wood. The tuning machine is suited at 

the head of the guitar and it is used to tune the strings by adjusting the tension 

of each string. Figure (1.2) shows the various parts of the acoustic guitar [9]. A 

physically relevant model of the acoustic guitar is constructed in chapter 2.

1.3 Thesis Outline

One© a physics-based model is designed, it has to be calibrated to a certain 

instrument which is the objective of the analysis process.

Our goal in this thesis is to introduce new analysis tools for the analysis 

and synthesis of the guitar tones. Firstly we use a wavelet-based algorithm for 

pitch detection and estimation. This algorithm uses a quadratic spline wavelet 

as the analysis wavelet. The performance of some other wavelets is evaluated as 

well. Secondly we use a Kalman-based algorithm for partials tracking in guitar 

signals. The advantages and disadvantages of the new techniques are explained. 

Furthermore the results obtained by these tools are compared with the ones

6



obtained by the conventional methods for justification and validation.

This thesis is organised as follows: chapter 2 presents the guitar model con­

sidered in this current study. This model is designed by utilising the digital 

waveguide techniques and the commuted waveguide principle. In chapter 3 we 

propose an algorithm based on the Dyadic Wavelet Transform for estimating the 

pitch period. A comparative study between the proposed algorithm and the well- 

known autocorrelation function is also presented in this chapter. In chapter 4 

the analysis process started in chapter 3 continues by estimating the decay rates 

of the different partials present in the guitar signal. An algorithm based on the 

Extended Kalman Filter (EKF) theory is utilised for this task. Various tech­

niques for optimizing the performance of the proposed algorithm are described. 

The results of the algorithm are compared to those obtained by the Short-Time 

Fourier Transform analysis. In chapter 5 the estimation process of the underly­

ing guitar model is explained. This involves the estimation of the string model 

parameters, the body resonators’ parameters and the excitation signals. In this 

chapter a comparative study between the synthesized signal and the original one 

is also presented. This is done both in time and frequency domains. More­

over some error-analysis tests are performed on the residual (noise) signal of the 

EKF-algorithm to assess its accuracy. Chapter 6 presents the conclusions that 

summarize the performance of the proposed new algorithms. Finally the thesis 

summary and future work are presented in chapter 7.

7



Chapter 2

D igital W aveguide M odelling of 

the A coustic Guitar
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2.1 Introduction

In the previous chapter an overview of digital sound synthesis techniques is pre­

sented with emphasis on Physical Modelling. In this chapter the principles of 

digital waveguides as well as the model of the acoustic guitar considered in this 

work are presented. The digital waveguide model is based on the analytical solu­

tion of the differential equation that governs propagation of waves in a medium. 

This method has proven to be efficient in simulating one-dimensional vibratory 

systems as well as two and three-dimensional acoustic systems. The principles of 

digital waveguides have been developed by Smith [47], [49], [50], and [51].

Modelling the acoustic guitar can be divided into three functionally sepa­

rate systems: the excitation, the strings and the body. The vibratory motion 

of the string, as the main resonant system in any stringed musical instrument, 

is presented in section 2. In section 3 principles of the one-dimensional waveg­

uide technique of strings is described. The advantages of this technique are also 

presented in this section. The chapter continues by describing the well-known 

Karplus-Strong algorithm (KS-algorithm) for simulating plucked string tones. 

Advantages and disadvantages of this basic algorithm are presented as well as 

its extensions in section 4. Section 5 concerns with the commuted waveguide 

principle and body factoring technique. Finally the guitar model, based on the 

digital waveguide technique and extensions of KS-algorithm, is described. Fur­

ther extensions and other nonlinearities are also considered.

2.2 The Vibrating String

This section describes the wave equation that governs the vibratory motion of 

a string and its general solution by travelling waves. It continues by describing 

rigidly terminated strings as well as the behaviour of real strings.

9



2.2.1 Ideal and Lossless Vibrating String

Strings are the main resonant system in many musical instruments. When an 

ideal and lossless string is set into motion (i.e by plucking), it vibrates according 

to Newton’s second law [33]:

Force =  Mass * Acceleration

The vibratory motion of the string is expressed mathematically by the one­

dimensional wave equation given by:

Ty"  =  cy (2.1)

where

T  -  is the applied tension, 

e -  is mass per unit length, 

y = - yjg'Q -  is acceleration, and 

y" = -  is curvature.

Equation (2.1) describes the transverse vibrations on the string, where the 

relevant restoring force (per unit length) is given by the applied tension times 

the curvature of the string. This restoring force is balanced at any time by the 

product of the transverse acceleration and the mass density (inertial force per 

unit length).

D’Alembert’s solution of the wave equation is given by [16], [17], [9]:

y(x, t) = yr( x -  ct) +  yt(x +  ct) (2.2)

where c =  y/T /e  is the sound velocity, yr and yi are two arbitrary, twice differ­

entiable functions in both x  and t. These functions can be determined from the 

initial conditions. Equation (2.2) can be interpreted physically as “ the displace­

ment of a vibrating ideal and lossless string at any time is the sum of two waves
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travelling in opposite directions with speed c” . Note that any perfectly elastic 

medium, which is displaced along one dimension, can be modelled with equation

(2.2) using the appropriate variables; for instance an organ pipe or an air column 

of a clarinet.

2.2.2 Rigid Terminations

Rigid termination is the simplest case of terminating a string. A rigidly termi­

nated string can not move at all at the termination ends. For an ideal string of 

finite length L , that is rigidly terminated, the boundary conditions are:

2/(0, t) =  0

s/CM) = o

Consequently the travelling waves will be reflected at the ends with inverted 

polarity forming standing waves, i.e.

yi(ct) = —yr(—ct) 

yi(L + ct) =  - y r(L -  ct)

Therefore the vibratory motion of the string is periodic with period 2L/c. It is 

considered as a combination of several modes of vibration. It is worth mentioning 

here that, theoretically, harmonics of the string that have a node at the excitation 

point will be absent, i.e. if the string is excited at its mid point, then all the even 

harmonics will be absent [9] [34].

2.2.3 Lossy and Dispersive One-dimensional Wave Equa­

tion

In real strings physical phenomena that account for attenuating the vibratory 

motion are always present. Energies are lost via the string terminations and due
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to internal friction and air damping [9]. These losses damp the almost periodic 

vibration of the string and add to the wave equation a term that is proportional 

to y.

The lossy, one-dimensional wave equation is given by:

Ty" = ey  + f iy  (2.3)

where n  is a proportionality constant. The solution to this modified equation can 

be written as:

y (x , t) = yr(x -  ct) +  y^ x  +  c^  (2.4)

that is both the left-going and the right-going components decay exponentially 

in their respective direction of travel [49].

Stiffness is another property of a real string. It introduces a restoring force 

that is proportional to the fourth derivative of the string displacement. This re­

sults in increasing the wave propagation speed with frequency, i.e high frequencies 

propagate much faster than low ones. Hence the travelling waves are no longer 

static waves propagated with speed c and expressed as functions of {x -I- ct) and 

(x — ct). They will disperse as they propagate along the string (evolve with time). 

A stiff string is considered as an intermediate stage between an ideal string and 

an ideal bar. In almost all real strings losses increase with frequency [9].

2.3 The One-dimensional Digital W aveguide

In this section the principle of the digital waveguide model is described. It is 

mainly based on the idea of sampling the general solution (2.2) of the wave 

equation in both time and space. The efficiency of this model is that it can be 

implemented using digital filters and delay lines. Also the lossy and dispersive 

waveguide model of a real string is addressed. This section continues by describing 

the consolidation of all losses and dispersion to form a single-loop formulation.
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2.3.1 The One-dim ensional, Lossless W aveguide M odel

Waveguide modelling is an efficient method for simulating one-dimensional res­

onators such as a vibrating string, or a thin bar as well as wind and string 

instruments. Also this technique has proven to be useful in simulating two and 

three-dimensional vibrating systems like plates and drums [51].

The main idea of a digital waveguide model is to sample the solution of the 

wave equation in time and space in order to obtain a discrete-time model. By 

assuming that the travelling waveforms of the wave equation are band-limited 

signals to half the sampling frequency (Nyquist limit), the travelling waves can 

be sampled at intervals of T  seconds, corresponding to a sampling frequency of 

/ ,  =  1/T  samples per second. Sampling is carried out by the change of variables:

x  — x n = nX ,  t —» tm =  m T  (2.5)

for n, m  =  0 ,1 ,2 ,.. . ,  where X  =  c T  is the spatial sampling interval.

On substituting into the solution of the wave equation, equation (2.2), yields

y(n, m) =  y +(n — m)  -1- y~{n +  m) (2.6)

where

y+(n - m ) =  yr((n -  m)T)  

y~(n  +  m) = yi((n +  m)T)

This equation can be interpreted as a bi-directional delay line where the waveform 

y+(n — m) travels to the right and y~{n +  m) travels to the left. Amplitude of 

the signal at any point is obtained by summing values of the two components at 

that point. The block diagram of the one-dimensional digital waveguide is shown 

in figure (2.1). In figure (2.1) the output is taken at two arbitrary points x = 0 

and x  =  m X .
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y (n + m)
y-(n + l)

Figure 2.1: One-dimensional, ideal and lossless digital waveguide

y(n,m)

y  (n + m)

A{u)G(u)G(u>)

Figure 2.2: Lossy and dispersive ID-digital waveguide

2.3.2 Lossy and D isp ersive W aveguide M odel

Losses and dispersion of a real string can be implemented in the digital waveguide 

by inserting digital filters at the sampling points to simulate the damping effect 

of the energy of a real string.

Frequency-dependent losses in a real string cause exponential decay of the 

travelling waves. This effect is simulated in the digital waveguide model by 

multiplying the travelling waves at each time step by a frequency-dependent 

constant. Also stiffness of a real string, which causes dispersion, can be taken 

into account in the digital waveguide model by using an all-pass filter. Such a 

filter has the effect of non-uniform delay of the travelling waves [49]. The block 

diagram of a lossy and dispersive digital waveguide is shown in figure (2.2) where 

G(u) accounts for frequency-dependent factors (damping) and A(cj) accounts for 

frequency-dependent delay (dispersion).

14



Delay line

Delay line

Figure 2.3: Waveguide model for a terminated real string

2.3.3 Single-delay Line Loop Formulation

Since the string is considered as a linear and time-invariant system, all the losses 

and other non-linearities can be collected together at a minimum number of 

points. This simplification results in vast reduction of computational complexity 

in digital waveguide implementation. Figure (2.3) shows the digital waveguide 

model of a real, finite length string with rigid terminations [61]. Both Rb(z) 

and R a(z) are reflection filters that produce inversion and slightly frequency- 

dependent damping at the termination point (bridge) and the corresponding fret 

respectively. In 1998 Karjalanien et al. [61], have proposed the formulation of 

a single-delay loop model that is equivalent to the bi-directional model shown 

in figure (2.3). In this section we describe the single-delay loop model for an 

acoustic guitar with a transversal bridge force as its output. The model in figure

(2.3) can be modified as shown in figure (2.4).

H a , b { z )  represents the transfer function from point A to point B in the model, 

F(z)  is the transverse force at the bridge (the string model output), Z(z)  is the 

bridge impedance and I(z)  is the transfer function that represents the discrete 

time approximation of the continuous-time integration operator. The excitation 

signal X(z )  is divided into two equal parts Xi(z) ,  X 2(z) th a t are fed into the
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Delay-line

Delay-line

E2 ______  R2

Hr2,e2(z)
He2,l2(z)

Figure 2.4: Bi-directional waveguide model with force output at the bridge

delay lines at points E\ and E 2 respectively. An equivalent excitation signal 

X eq,Ei at point E\  is given by

Xeq,Ex ~  X2(z)HE2,L2{z)Ra{z)HLltEx +  X \ ( z )  

=  ^ . ( 1  + HE2,Ei(z)) (2.7)

where

H e 2,Ei {z) — HE2,L2( z ) Ra( z ) HLlfEi{z )

is the transfer function from point E2 to point E\.

Given that both Ai(z)  and A 2 (z) represent right-going and left-going travel­

ling acceleration waves respectively, the force output of the string model is given 

by

F{z) = Z (z ) I ( z ) (A 1(z) -  A 2(z)) 

= Z (z ) l ( z ) ( l  -  R b(z))Ai(z) (2.8)
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F(z)

Figure 2,5: SDL model with force output at the bridge

Input timbre filter P(z) S(z) Z(z)I(z)> "> ->• Output

Figure 2.6: A string model with plucking-point equalizer 

The acceleration signal A\(z)  is evaluated as

Ai(z)  = Ai  (z)Rb(z)HR2iE2 (z)HE2tEl (z)HEliRl ( z )

+  X eq,El(z)HEuRl(z)

= HEuR, ( z )Xeq,El(z)S(z)  (2.9)

where

S(z) =  (1/1 — Hioop(z)) -  is the string transfer function, and 

H i o o p ( z )  = Rb(z)HR2tE2(z)HE2fEl(z)HEltRl(z)

Hence the overall transfer function of the model from excitation to bridge equals

M * )  =  \  (J +  H E2,Eliz))HEuRl{z)S(z)(  1 -  R b(z))I{z)Z{z)  (2.10)

The block diagram of the model described by the previous equation is shown in 

figure (2.5). For practical sound synthesis the model in figure (2.5) can be further 

simplified to the following model in figure (2.6). In this figure the timbre control 

filter is a first or second-order recursive filter that can be adjusted for softer or 

sharper attack [18]. Filter P(z)  is a plucking point equalizer that brings about 

the effect of the plucking point. The string model can be implemented efficiently 

by using a delay line and a frequency-dependent filter as shown in figure (2.7).

Note that all digital filters used in the digital waveguide model must have 

gain less than or equal to unity for the whole model to be stable.
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2.4 The Karplus-Strong Algorithm  and its Ex­

tensions

The Karplus-Strong algorithm (KS) for a plucked string was developed by Karplus 

and Strong in 1981 [25]. It is based on the idea tha t a wave-table is modified 

while being read. The advantage of this technique is its simplicity to implement. 

In addition the produced sound is rich and natural. This section describes the 

algorithm and its extensions [25], [18].

2.4.1 The Plucked-string Algorithm

The KS-algorithm for a plucked string is based on re-circulating a signal around 

a delay line through a low-pass filter called the “loop filter” . The basic algorithm 

involves a delay line that is initially filled with random numbers and a low- 

pass filter. The low-pass filter commonly used in this algorithm is the two-point 

average filter. This filter determines its output by taking the average of the sample 

value currently emerging from the delay line and the value of the previous output 

of the delay line.

The difference equation of the string simulator is given by

, y ( n - L ) + y { n - L - l )  
y(n) = x(n)  + --------------- ----------------  (2.11)

where x(n) is the input signal at sample n , y(n) is the output signal at sample n, 

and L  is the delay line length. The block diagram of the KS-algorithm is shown 

in figure (2.8). The transfer function of the string simulator is

S (z )  =  1 /(1  -  z~lH ( z)) (2.12)

where

H(z) = (l + z~l )/2 (2.13)

is the filter transfer function. The amplitude response is defined as the magnitude 

response of the frequency response of the loop filter. It gives the gain of the filter
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Figure 2.7: Single delay-line loop model

as a function of the frequency [48]. The amplitude response of the loop filter is 

given by

G(uj) = \H(u))\ = | H(z  = eiuJ)\ = cos(cj/2) (2.14)

where u  =  2 7 t / / / s is the radian frequency.

Equation (2.14) shows the low-pass behaviour of the loop filter since the gain 

decreases with frequency according to the first quadrant of a cosine. Note that 

all the frequencies are restricted by the Nyquist limit. It is clear that the loop 

filter is necessary to bring about the decay effects of a plucked-string tone since 

the delay line is lossless.

The phase delay, defined as the time delay in seconds experienced by each 

harmonic, of the loop filter is half a sample (Ts/ 2) sec, whereas the delay line 

has a phase delay equal to its length. Therefore the total loop delay is (L  -1-1/2) 

samples and the period is (L + 1 /2) / f s sec, which corresponds to the perceived 

pitch.

The KS-algorithm is just an abstract algorithm that has nothing to do with the 

physics of plucked strings. In 1992, J.O.Smith has interpreted the KS-algorithm 

physically using the digital waveguide model [49]. It is clear that the algorithm 

shown in figure (2.8) is comparable with the single-delay line model shown in 

figure (2.7). However the KS-algorithm is efficient in simulating not only plucked- 

string tones but also drum-like tones by changing the initial condition [25]. In
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Filter , - l

Figure 2.8: The basic KS-algorithm

addition, the algorithm is simple and easy to implement. On the other hand, 

there are some drawbacks of the algorithm that will be addressed in the next 

subsection.

2.4.2 Extensions of the K S-Algorithm

As previously mentioned the loop filter is the main lossy part of the basic KS- 

algorithm. According to its magnitude response, the two-point average filter is 

just not enough to represent the frequency-dependent damping of a real string. 

Different choices have been made for the loop filter by Valimaki et al., [59], [62]. 

Throughout this thesis, a first order IIR-filter is used as the loop filter. The 

difference equation of this filter is given by

y(n) = g{ 1 +  a)x(n) -  ay(n -  1) (2.15)

where a is the filter parameter that determines its cut-off frequency and g is the 

filter gain at zero frequency, i.e. the DC-gain. For the filter to be stable, g must 

be less than unity at all frequencies and — 1 < a < 0. The transfer function of 

the one-pole filter is

„ W  .  f t t M  (2 ,6 )
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Both the magnitude response G i(lj) and the phase response 0i(u) of this filter 

are given by the following equations

G,(u}) = ■   (2.17)
y j  1 +  2acos((j) +  a2

„ . . /  a sinfij) \  . „
OAuj) =  tan (   —  ) (2.18)
u J \1 +  acos (u )J  v '

The one-pole filter is still simple and easy to implement. It is also found to be 

sufficient for high-quality analysis [55].

Another major drawback of the basic KS-algorithm is tuning. This problem 

results from the fact that delay line length must be of integer value. Hence, 

only pitches with discrete values can be produced using this algorithm. This 

introduces an increasing error with frequency. A solution to this problem is by 

introducing a fractional-delay filter in the feed-back loop of the KS-algorithm, 

which must have unity gain at all frequencies [60]. A first order all-pass filter is 

used as the fractional delay filter with the following difference equation

y(n) = c x ( n ) +  x(n  — 1) — c y ( n  — 1) (2.19)

where c is the only coefficient to be set that must be less than unity for stability. 

The transfer function of such a filter is

(a -* )

witliTphase response given by

„ . . /  — sin(cj) \  i /  —csin(o;) \
0/(u;) =  tan M ---------- ^ - r j - t a n  ( - ----------- y—r )  (2.21)

Vc +  cos(o;)/ Vl +  ccos(cj) /

W ith these extensions the extended KS-algorithm is shown in figure(2.9). The 

overall transfer function of the string simulator is

-  i ( 2 - 2 2 )

which is fully determined by the string length and the loop filter parameters a 

and g as well as the fractional delay filter parameter c. The relation between the 

filter parameter c and the fractional delay is explained in chapter 5.
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Figure 2.9: Extended KS-algorithm

2.5 The Commuted W aveguide and B ody Fac­

toring

A complete model of the acoustic guitar is divided functionally into three sub­

models. These models are namely: the excitation model, the string model, and 

the body model. Each of these models makes its own contribution to the radiated 

sound. For instance, the excitation model has information about the plucking 

event (plucking type and plucking point) and the initial amplitude level of the 

radiated sound. The string model simulates the vibratory motion of the guitar 

string. It also brings about the decay and dispersion effects of a real guitar tone. 

The guitar body is considered as the resonating system [9]. It is necessary for 

radiating sound since strings do not radiate sound effectively due to the fact 

that they act as dipoles [33]. The body is also necessary for sound colouration 

and directivity to the produced sound. This section describes the commuted 

waveguide principle as well as the body-model factoring technique.

2.5.1 The Comm uted W aveguide Principle

For high-quality synthesis, the acoustic guitar is modelled according to its func­

tional structure, i.e. a complete model includes Excitation model E ( z ), String 

model S(z)  and Body model B(z).  A block diagram of such a model is shown in 

figure(2.10) where S(n) is the unit impulse function.

Thus the transfer function of the output of such a model is
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Figure 2.10: A complete model of the guitar
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S(z)

Figure 2.11: Principle of commuted waveguide

Y(z)  = E(z)S(z)B(z)  (2.23)

The excitation is simply modelled as a wave-table or as a set of wave-tables [32]. 

The string model is efficiently modelled using the principle of the waveguide and 

the extensions of the Karplus-Strong algorithm as described in the aforemen­

tioned sections. Modelling the guitar body as a separate digital filter has been 

found far too expensive. This is due to the fact that the filter order must be 

rather high to fully model the guitar body [59]. To overcome this problem, the 

principle of commuted waveguide is utilized. The idea of this principle is based 

on commutation in linear systems.

Assuming that all three models are linear and time-invariant, the body model 

is commuted with the string model. Hence it is convolved with the excitation 

signal to yield an aggregate input signal x(n) [50], [59], as shown in figure (2.11).

The advantage of commuted waveguide is that it avoids the implementation 

of a separate high-order body filter. Also, the aggregated input signal can be 

pre-computed and stored in a wave-table. On the other hand, the commuted 

waveguide principle has some disadvantages. For instance, the loss of parametric
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control over the body modes as well as increasing memory requirement cost.

2.5.2 B ody-m odel Factoring

Body factoring is a compromise between commuted waveguide synthesis and body 

modelling as a separate digital filter. In this technique the guitar model is fac­

tored into its most-damped and least-damped resonances. The least-damped 

resonances have the main effect on the produced sound as well as the longest 

decays. Thereby these resonances can be reproduced in the final sound using 

separate reasonable-order digital filters, while the most-damped ones are left in 

the input signal x(n).

Karjalanien et al. have discussed methods for extracting such least-damped 

resonance [23]. The lowest damped resonances are the main air resonance (Helmholtz 

resonance), which occurs at about 100 Hz and the first mode of the top plate of 

the soundboard at about 200 Hz. The extracted resonances are reproduced in 

the synthetic sound using a second-order HR filter. A general second-order HR 

filter is given by [36]:

H {z) =  (2.24)
a0 T d\Z +  CL2 Z

where a*, i =  0 ,1 ,2  are the filter coefficients.

Body resonators can be implemented either in parallel or in cascade with the 

string model where the resonator requirements are different in each case. In par­

allel implementation, the output of each resonator is added to the output of the 

string model. This implies that the magnitude response of each resonator should 

have a resonance peak in a vicinity determined by bandwidth and center fre­

quency of each resonance, i.e. the resonator must attenuate all other frequencies 

with emphasis only on the centre frequency.

In a cascade implementation, the output of the string model is fed into the 

body model. In this case the body resonator must have one peak at the cen­

tre frequency and unity gain at all other frequencies. A hybrid implementation
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is a compromise between two such implementations where body resonators are 

connected in cascade and in parallel with the string model. A more detailed 

discussion between the advantages and disadvantages of each implementation is 

provided by Tolonen [55].

A parallel implementation is chosen for this work. Note that a separate exci­

tation signal is required for the body resonator in this implementation. Based on 

bilinear transformation, a second-order IIR-filter suitable for parallel implemen­

tation is given by [15]:

TT/ \ _  bo +  b\z~l +  b2z~2 
1-1- a i z ~ l -I- a2z ~2

where: 

b0 =  1 — b ;

& i = 0 ;

b2 =  b — 1 ; 

ai =  —26cos(o;o); 

a2 =  2b — 1 ;

8uj — and
Js

^ (l+ tan(£a;/2))'

Where /o is the centre frequency of the resonator and S f  is the resonator 

bandwidth in Hertz. Therefore, a body resonator is completely determined by its 

centre frequency and its 3-dB bandwidth. The advantages of the separate body 

resonator for least-damped resonances include the fact tha t the excitation signal 

is shortened due to removing the longest decay body resonance and hence less 

memory is required. In addition the least-damped resonance are in parametric

(2.25)
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Figure 2.12: The final guitar model

form for independent control. Furthermore such body resonators can be shared 

by all string models, which reduces the computational burden [23].

2.6 The Guitar M odel and its Extensions

The guitar model considered in this current work is basically a string model 5 (2 ) 

together with two body resonators Bi(z),  # 2(2 ) that correspond to the two least 

damped body resonances. The resonators are connected in parallel with the string 

model where each resonator has a transfer function given by equation (2.25). The 

guitar model is shown in figure (2.12) where x exc(n), Xbi(n) and Xb2 (n) are the 

excitation signals for the string model and the body resonators respectively.

Such a model can be extended in several ways to better simulate a physical 

string. In this section three basic extensions to the guitar model are addressed. 

These extensions are the plucking position, sympathetic vibration, and finally 

the two polarizations of the vibratory motion of the string.

2.6.1 The Plucking Position

The acoustic guitar is played by plucking the string between the bridge and the 

body fret using a plectrum, fingertips or finger-pick. The plucking event itself
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is a very complex one. It includes the plucking style, plucking position, and the 

interaction between the string and the player. When the string is plucked at any 

node of one of its vibrational modes, such a mode will not vibrate [9]. Introducing 

zeros uniformly distributed in the spectrum of the input signal can simulate the 

plucking position effect. In other words, this is done by filtering the input signal 

by a comb filter [18]. However, estimating the plucking point by searching for 

the missing modes in the spectrum is a difficult and unsolved task [55], [58]. 

Modelling the plucking position is not considered in the current work and its 

contribution is left in the excitation signal as will be described in chapter 5.

2.6.2 Sym pathetic Vibration

The phenomena of sympathetic vibration occur in stringed musical instruments 

when a string is set into motion by the vibration of another string. In this 

case all the partials of the plucked string that do not coincide with those of the 

sympathetic string will be highly attenuated. Meanwhile, the partials of the 

plucked string tha t coincide with those of the sympathetic vibration will strongly 

resonate. The effect of sympathetic vibration is incorporated in the guitar model 

by feeding in a copy of the string simulator with a small percentage of the output 

of another (plucked) string with different string length [18], [55]. Sympathetic 

vibration adds a reverberant feel to the produced sound as well as giving each 

pitch in the range of the instrument an individual character. Nevertheless the 

player can control these phenomena by damping the non-plucked strings.

2.6.3 Vertical and Horizontal V ibration of the String

The vibratory motion of a string is divided into longitudinal, torsional and 

transversal motions. While longitudinal and torsional vibrations are not promi­

nent in sound-synthesis of the acoustic guitar, they can be of significant impor­

tance in other stringed instruments [55], [24]. Hence the vibration of the string

27



is regarded as transversal vibration. In this kind of vibration, every point on the 

string vibrates in a plane that is normal to the string. The transversal vibration 

is further divided into horizontal (vibration along the soundboard) and vertical 

(vibration normal to the soundboard). It is also expressed as the sum of relatively 

related modes obtained by solving the wave equation of the string as described in 

section (2.2). The two polarizations vibrate in a slightly different manner which 

results in slightly different frequencies that create beats in the resulting sound. 

The two-stage decay rate of the guitar tones is another phenomenon of such 

dual-polarization [55]. In order to simulate this duality in the guitar model, two 

digital waveguides with a different L  for each string are used for every vibration 

plane [59], [24]. In our model only one of these polarizations is considered.

2.7 Summary

In this chapter, the basic principles of digital waveguide modelling as an efficient 

physical modelling technique for digital sound synthesis are presented. This tech­

nique has been applied to a vibrating string which is the main source of vibration 

in any stringed musical instrument. The basic elements of such a model are de­

lay lines and digital filters. This chapter also describes the equivalence between 

a bi-directional delay-line waveguide model and single-delay waveguide model. 

The Karplus-Strong algorithm for simulating plucked string tones and drum-like 

tones, as an abstract algorithm, is also presented. Some of the main extensions to 

the basic algorithm have been considered. Based on Karplus-Strong extensions 

and the principle of the commuted waveguide model, a complete model of the 

acoustic guitar has been designed. Further extensions and other non-linearities 

to the model have also been addressed in this chapter.
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Chapter 3

A W avelet-based P itch  D etector
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3.1 Introduction

In the previous chapter a physical model of the acoustic guitar is designed based 

on the principle of commuted digital waveguide and the extensions of the KS- 

algorithm. Once the model is designed, to simulate closely the physical behaviour 

of a real guitar and to be efficiently realizable in real time, its parameters have 

to be extracted. Thus the objective of the analysis process is to derive the string 

model parameters S ( z ), the body resonators’ Bi(z),  B 2(z) parameters and finally 

the excitation signals x exc(n), x&i(n), and x ^ n ) .

A general overview of the analysis process is shown in figure (3.1) which starts 

by estimating the pitch period of a recorded real guitar tone. This step provides 

the total delay of the string model since

L l  =  i  (3,1)

where /o is the estimated pitch period.

Unlike speech signals musical signals have a broad range of frequencies so there 

are some difficulties in estimating their pitch period. The autocorrelation function 

is one of the well-known time-domain pitch detectors. Despite its simplicity, the 

autocorrelation function has some disadvantages as will be explained further in 

the following section.

In this chapter an algorithm based on the Dyadic Wavelet Transform (DWT) 

is proposed for pitch estimation of musical signals. For this purpose a quadratic 

spline wavelet with certain criteria is constructed. The performance of both linear 

phase wavelets and minimum phase wavelets is also investigated. Furthermore 

a comparative study between this algorithm and the autocorrelation function is 

given. The new algorithm is applied not only to different guitar signals but also 

to a wide range of musical signals as well as some singing voices. The proposed 

algorithm is proven to be simple, accurate, fast, robust to noise and has the 

potential for real-time applications.
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Figure 3.1: An overview of the analysis process

This chapter is organized as follows: section 2 is devoted to the pitch detection 

problem and the autocorrelation algorithm. The performance of various window 

functions is evaluated. In section 3 principles of the Dyadic Wavelet Transform 

and its properties are presented. The construction of the wavelet used in the 

analysis is given in section 4 along with some other wavelets. In section 5 the 

implementation of the proposed algorithm is described. The algorithm is also 

tested for different musical signals and some singing voices. Results and discussion 

are presented in the last section.

It is worth mentioning here that the whole analysis process will be carried out 

on a single guitar tone to extract all the model parameters. In appendix B the 

analysis process will be examined for different guitar signals.

£3

3.2 P itch D etection  and the Autocorrelation Func­

tion

The pitch period is a fundamental parameter in the analysis process of any phys­

ical model. A pitch detector is basically an algorithm tha t determines the fun­

damental pitch period of an input musical signal. Pitch detection algorithms can 

be divided into two groups: time-domain pitch detectors and frequency-domain 

pitch detectors. A time-domain pitch detector is applied directly to the input 

signal. It estimates the pitch period by trying to find repeating patterns in
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the input signal. Zero-crossings, the autocorrelation function and the adaptive 

filtering are among the various techniques of time-domain pitch detectors. A 

frequency-domain pitch detector applies a Fourier Transform on a short segment 

of the signal. If the signal is periodic, then the spectrum has peaks at multiples of 

the fundamental. Examples of this category are the cepstrum and the maximum 

likelihood methods. In general, estimating the pitch period of a musical signal 

is not a trivial task due to some difficulties such as the attack transients, low 

frequencies, and high frequencies. For a detailed discussion about the various 

pitch detection techniques, see Roads [42].

In this current work, we consider the autocorrelation function as a well-known, 

time-domain pitch detector. It is a measure of similarity between a signal and 

translated (shifted) version of itself. The basic idea of the autocorrelation func­

tion is that periodicity of the input signal implies periodicity of this function and 

vice versa. For non-stationary signals the short-time autocorrelation function is 

defined as [39]

^ N —m —l

Ph,(m) = -  Y ,  [x(n +  l)w(n + l)][x(n -f- m  + l)w(n + m  + l)] (3.2)
n=0

for 0 < m < M0 — 1.

where w(n) is an appropriate window function, N  is the frame size, I is the 

starting frame index, m  is the autocorrelation parameter or time lag and M0 

is the total number of points to be computed in the autocorrelation function. 

In general the window function is an even function of compact support [38]. 

The effect of the window function is to taper the input signal smoothly to zero. 

Therefore the frame size N  has to be at least four times the fundamental period 

and the input signal x(n)  is assumed to be stationary within each frame.

The autocorrelation function has its highest peak at m  =  0 which equals to 

the average power of the input signal. To estimate the pitch period one searches 

for the local maxima in a meaningful range of m  for each frame /. The distance
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Figure 3.2: The guitar test signal

between two consecutive maxima is the pitch period of the input signal x(n). The 

estimated values of the local maxima can be further improved by using parabolic 

interpolation which is presented in more details in appendix A. Different window 

functions such as the rectangular, Hanning, Hamming, and Blackman windows 

are used in the analysis [38].

Table (3.1) shows the estimated pitch period for a particular recorded real 

guitar signal using various windows. The numbers given result from an imple­

mentation of the algorithm, but the results beyond the first decimal place can 

not have any reliance. Figure (3.2) shows the underlying guitar test signal which 

is an E2-tone with pitch period 330.4001Hz. The analysis starts after 226.75ms 

of the signal to avoid the attack transient. The window size is 22.7ms for all 

window functions and the sampling frequency f s is 44100 Hz.

Table (3.2) shows the estimated pitch period of the guitar tone using the 

Hamming window but with different frame size. It is clear that the estimated 

pitch differs slightly with the chosen frame size as well as the analysis window.

Despite the simplicity of the autocorrelation function it has some limitations. 

The choice of the window function, the frame size and the assumption that the
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Window function Estimated pitch(Hz)

Rectangular 330.3488

Hanning 330.4684

Hamming 330.4246

Blackman 330.5132

Table 3.1: Estimated pitch period using different windows

Window size (ms) Estimated pitch (Hz)

N=12.15 330.8757

N=18.23 330.6094

N=22.67 330.4246

Table 3.2: Estimated pitch using various frame size of the Hamming window

signal is stationary within each frame are among the main disadvantages of the 

autocorrelation function.

3.3 The W avelet Transform

This section serves as a basic introduction to the wavelet transform. The reader 

familiar with the wavelet theory can skip this section to the next one. The section 

starts by describing the fundamental requirements for a window function to be 

a wavelet. The C o n tin u o u s W avelet T ransfo rm  (CWT) as a time-frequency 

analysis tool is described next along with its properties. This section continues 

by describing a discrete version of this transform which is the D yadic  W avelet 

T ransfo rm  (DWT). Finally properties of the DWT are presented with emphasis 

on the one that is proven to be useful in pitch detection.
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3.3.1 The Continuous Wavelet Transform

The Continuous Wavelet Transform is a tool for time-frequency localization of 

non-stationary signals. It is based on a window function ip(t), called the mother 

wavelet or the analysis wavelet, which has to satisfy some requirements [26]:

(i) The mother wavelet has to be of finite energy. That is

G L2(R)

where L 2(R) is the space of all real-valued functions of finite energy.

(ii) ip(t) satisfies the admissibility condition which also implies tha t its mean 

value should be zero.

C ^ f ^ . o o  (3.3)
J - o o  M

where ^(cu) is the Fourier transform of 'ipit), i.e. f™oo,ip(t)dt = 0.

In other words the mother wavelet has to oscillate (i.e changes sign) as a wave 

in R. The admissibility condition is a necessary condition for the inversion of the 

CWT.

(iii) ip(t) has to decay fast, i.e decreases as t —> —oo or oo. A wavelet with 

compact support trivially satisfies this condition.

For a given mother wavelet ip(t), the Continuous Wavelet Transform is defined 

as [43]:
i r°° + _  h

wa,„um = -y= /  m  i> (— ) m (3.4)
va J - o o  a

where a G R + is called the dilation (scale) parameter, b G R  is the position

parameter that indicates where the mother wavelet is located, and ip(t) denotes

the complex conjugate of ip{t). Equation (3.4) measures the similarities between

a time-domain signal f ( t )  and the wavelets ipafiit) where

, . . 1 . , t  — b.
•y' a a

The coefficient ^  is for energy conservation. Viewing the wavelet as a window

function, we find that for large a (low frequency) the width widens whereas
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it is narrowing for small a (high frequency). Equation (3.4) is a time-domain 

representation of the continuous wavelet transform which can be viewed as a 

convolution (filtering) of the signal f ( t )  with a dilated version of the mother 

wavelet. Its frequency-domain representation is given by

where F(u;) is the Fourier Transform of f ( t )  which can be recovered from its 

CWT by using

where Cg is as defined in equation (3.3). Equation (3.6) is called the synthesis 

equation.

3.3.2 Properties of the Continuous W avelet Transform

In addition to its simple interpretation the CWT exhibits some other useful 

properties such as:

•  CWT is a linear transformation.

•  It satisfies the covariance property with respect to dilation and translation 

of the signal f (t ) .  For a fixed mother wavelet ip(t), if Wajb is the continuous£5
wavelet transform of a given signal /(£), i.e. f ( t )  —>• Wa,b then

(3.5)

(3.6)

f ( t ~ t o )  —> Wâ - tQ 

j f ( t / A) - f  Wa/X>b/X

for A > 0.

Conservation of energy. The Parseval’s identity for the Continuous Wavelet 

Transform is given by



That is, the energy of signal f ( t )  can be obtained, up to a constant, from 

the energy of its CWT. In other words, the CWT can be considered as an 

isometric operator.

•  Zooming-in property which is the most significant property of the CWT. In 

Short Time Fourier Transform (STFT) the width of the analysis window 

is fixed over the entire time-frequency plane. Contrary to the STFT, the 

CWT zooms in on the fine details (large scale) of the signal and zooms out 

for coarser trends of the signal (small scale). More about the Short-Time 

Fourier Transform is considered in the next chapter.

•  Constant-Q analysis. The CWT satisfies the additional property of constant- 

Q analysis. That is, the ratio between frequency resolution and frequency 

is always constant. This frequency-dependent resolution is the basis for the 

application of wavelet analysis to multi-resolution analysis and sub-band 

coding [54] .

3.3.3 The Dyadic W avelet Transform

In the CWT both the scale parameter a and the position parameter b are contin­

uous variables. Therefore the CWT is computationally very intensive and has a 

significant amount of redundant information. To reduce the computational com­

plexity, both parameters a and b are made discrete. In the discrete case only 

positive values of the scale parameter a will be taken into account. One of the 

possible different ways to discretise the parameters is

a = aJ0, b =  kboaJ0

where j  and k are integers, ao > 0 and bo > 0 are fixed. For all practical 

purposes Go will be set equal to 2 and bo will be set equal to 1. That is a = 2? 

and b = k2K This sampling of a and b is called the critical sampling.
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The Dyadic Wavelet Transform (DWT) of an arbitrary signal f ( t )  € L 2(R) is 

defined as [27]

D W T j( f )  = f{t) * 4>j{t) (3.8)

where * denotes convolution, and

In addition to its linearity and shift-invariance, DWT is sensitive to points of 

sharp variations or discontinuities of the signal, exhibiting local maxima around 

the points of sharp variation [27], [28], and [3]. This property is proven to be 

very useful in image processing, edge detection and pitch detection of speech 

signals [21].

An appropriately chosen wavelet for the purpose of pitch detection is a wavelet 

that is the first derivative of a smooth function [6]. Zero-crossings of musical 

signals can be considered as points of sharp variation and hence the DWT exhibits 

local maxima at these points across several consecutive scales. The pitch period is 

evaluated by measuring the time distance between two such consecutive maxima.

3.4 Construction of the Analysis W avelet

In general a basic wavelet has to satisfy a minimum set of constraints as men­

tioned before. For certain applications further conditions could be imposed on 

the analysis wavelet such as orthogonality, compactness or linear phase. In this 

section we construct the quadratic spline wavelet as the main analysis wavelet. 

Some other wavelets are described in this section as well. We start by presenting 

the basic mathematics behind the multi-resolution analysis and the construction 

of a minimum-phase wavelet. Such mathematical background is required for the 

construction of the quadratic spline wavelet. Finally this section presents another 

example of a linear phase wavelet which is the Morlet wavelet.
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3.4.1 W avelets and M ulti-resolution Analysis

The construction of an orthonormal family of basis function for L 2(R) starts with 

the solution (f>(t) of a dilation equation (two-scale equation). The wavelet i/>(t ) is 

then obtained from which is called the scale function. The basic form of a 

dilation equation is given by [53]

N - 1

4>{t) = Y J Ck4>{ 2 t - k )  (3.9)
fc=0

where N  is the number of the wavelet coefficients, and Ck £ 11 are the wavelet 

coefficients or the refinement coefficients. Since there are only N  nonzero coeffi­

cients in (3.9), <f>(t) has a compact support [0,N — 1]. It is difficult to obtain a 

solution (j)(t) by directly solving equation (3.9) due to the presence of the scale 

factor 2 [54]. Nevertheless a solution <j>(t) E 11 is ensured such that

/oo
(J)(t)dt =  1

■oo

by imposing
N - 1

5 3  ^  = 2 (3.10)
k = 0

This condition is called the conservation of area condition. It is worth men­

tioning here that condition (3.10) ensures the uniqueness of <p(t) but not the 

smoothness [53]. There are three different methods for solving equation (3.9):

1. The iteration method,

2. The recursive method, which is the most efficient way to evaluate 4>(t) and

3. The Fourier analysis method. This method gives the scale function (j)(t) as 

a distribution rather than an exact formula.

All the wavelets which have been used in this study are constructed using the 

recursive method as will be further explained in the following subsection.
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Taking the Fourier transform of equation (3.9) yields

*(«) =  t f ( | ) * ( | )  (3.11)

with

H{ u)  = \ Y , C^ k
k

= (3-12)
k

where H(u)  is the Fourier transform of a set of non-zero coefficients {/i*} =  

{Cfc/2}. It is a continuous and 27r-periodic function with H (0) =  1. For a family 

of the scale function (j>(t) and its translations to form an orthonormal family, i.e

(j)(t) <f)(t — m)dt = 0, fo r  m  /  0
J  —oo

and
poo

\<j>(t)\2dt =  1 (3.13)
J  ----1

the wavelet coefficients have to satisfy
TV—1

E ^ C t+2m = 0 (3.14)
k=0

for all m / 0 ,  with the additional condition

£ C 2  = 2 (3.15)
fc=0

Conditions (3.14) and (3.15) are known as the orthonormality conditions. Equiv­

alently the orthonormality conditions in the frequency domain are given by

\H(u )\2 + \H{w + tt)\2 = 1

For approximation with accuracy p, the Fourier transform of the scale function 

(f)(t) must have zero of order p at uj = 2irk, k /  0. This condition turns out to be 

a condition imposed on the wavelet coefficients such that
TV-1

£(-l)*Jfc">fc(*) =  0 (3.16)
k=0

40



for m  = 0 ,1 , . . .  ,p — 1. Equivalently in the frequency domain, H (lj) must have 

zero of order p at u  =  7r. That is

for k = 0 ,1 ,. . .  ,p  — 1. This condition is called the accuracy condition. It implies 

that H(w) =  0 at u  = n. In other words

£  h(k) =  m  =  1/2 (3.17)
keven kodd

From multi-resolution analysis, the wavelet function ip{t) is constructed from its 

scale function (j>(t) by the equation

N - 1

= V, dk <P{2t - k)
k=Q
N —l

= 5 3 ( - l ) *  CW-fc-! ^(2t — *) (3.18)
k= 0

That is ip(t) has the same coefficients as the scale function <f>(t) but in reverse 

order with alternating sign. This construction implies tha t i/j(t) has a compact 

support [0, N  — l] and orthogonal to its scale function <j){t) and its translations

<j)(t — m), i.e.

— m )d t  = 0 

for all m. The Fourier transform of ip(t) is

^ )  =  G ( | ) 0 ( | )  (3.19)

with

=  (3.20)
k

G(u)  is the Fourier transform of a finite family of nonzero coefficients {#*} =  

{dfc/2}. Again it is a continuous and 27r-periodic function with G(0) =  0. It
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follows from condition (3.18) that the mother wavelet is orthogonal to its own 

translations with or without dilation. Therefore

fJ  — <

ip(t — m)dt — 0 

for all m  such that m / 0 ,  and

ip(t) — m)dt  =  0/:
The conclusion is th a t the family {</>(£), 3 > 0, fc G Z} forms an orthonor­

mal basis for the space L 2(R) and hence, any function f ( t )  G L2(R) can be 

expressed as a linear combination of members of such a family. This family is 

called Daubechies’ wavelets [8]. Daubechies’ wavelets are continuous, of com­

pact support and of certain regularity. Except for the trivial case of the Haar 

wavelet these wavelets are neither symmetric nor anti-symmetric wavelets [7]. 

Two examples of Daubechies’ wavelets are described next.

3.4.1.1 The Haar Wavelet

The Haar wavelet is the simplest form of a wavelet and probably the oldest. It 

has been known in the literature since 1910 [13]. It is defined as

ip(t) = <

1 if 0 < t < 1/2 

- 1  if 1/2 <  t <  1

0 otherwise

and its corresponding scale function is given by

{ 1 if 0 < t < 1 

0 otherwise

The Haar wavelet has only two nonzero coefficients Cq =  Ci = 1. The Haar basis 

is an orthonormal family of compactly supported wavelets. It is a special case 

of Daubechies’ wavelets for N  = 2. The Haar wavelet is the only orthonormal
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0(f)

Figure 3.3: Haar scale function and its corresponding wavelet

wavelet with linear phase since it has a symmetry axis. The disadvantage of the 

Haar wavelet is that it is a discontinuous function. Figure (3.3) shows the Haar 

scale function and its corresponding wavelet.

3.4.1.2 T he D4-wavelet

The D4-wavelet is a continuous wavelet that has only four nonzero coefficients 

in its dilation equation, hence it has a compact support [0,3]. This wavelet does 

not have a closed algebraic form. Nevertheless it can be constructed numerically 

using the previous multi-resolution technique. The wavelet coefficients are

_ I +  n/ 3 _ 3  +  v/3
C0 -  — -j-— , Ci -  — -

„  3 — \/3  „  l - v / 3
C2 -  — j — , C3 -  — j —

The construction of this wavelet starts by constructing its corresponding scale 

function which satisfies the following two conditions

0 (0) =  0 (3) =  0,

0 (1) +  0 (2) =  1

By knowing the values of the scale function at integer values, then its values at all 

dyadic points {x = k/2*, j, k G Z}  are readily known from the dilation equation.
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Figure 3.4: D4-scale function

This dilation equation can be considered as an eigen-value equation that takes 

the form

T M  =  M

where

T  =  1 <  i, J <  iV -  2,

m = w)m\T
and T  stands for the vector transpose. Hence M  is an eigen-vector corresponding 

to the eigen-value A =  1. Once all the values of the scale function <f)(t) are known, 

the construction of the mother wavelet follows from equation (3.18). Figure (3.4) 

shows the D4-scale function. The corresponding wavelet is shown in figure (3.5).

3.4.2 C onstruction  o f th e Q uadratic Spline W avelet

Splines are piecewise polynomials with smooth fit. They have some properties 

that make them very useful in practice [57]. Unlike Daubechies’ wavelets, splines
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Figure 3.5: D4-Wavelet

are either orthogonal or of compact support but not both. That is, to retain 

orthogonality, compactness has to be dropped. In general, a spline </>w(£) of order 

N  has the following characteristics:

• It is a piecewise polynomial of order N  with compact support [0, N  +  1].

• It is not only continuous but also has (N  — l)-continuous derivatives, i.e.

€ C N~l .

• It is of accuracy p = (N + 1), i.e. the frequency response of the correspond­

ing low pass filter has a zero of order (TV + 1) at uj =  7r.

• It is a smooth and even function with certain regularity.

• The construction of (pw(t) is the convolution of the unit box (/>o(t) function 

(N + l)-times. That is

(f)N(t) = (j>0(t) * (f)0(t) * . . .  * (f)0(t)
S V /

N + 1

• The refinement coefficients are the binomial coefficients.

• It has a closed form in both time and frequency domains.
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The simplest example of a spline function is the Haar scale function <f>o(t) 

defined as before. It is a spline of order zero with accuracy p = 1. Its Fourier 

transform is given by

and the frequency response of the corresponding low pass filter is

/ 1  _l  c - * w

*(«) = (—
=  cos(w/2) (3.22)

In addition to the previous characteristics, the flexibility in designing correspond­

ing wavelets with certain criteria is the main advantage of spline functions. For 

pitch detection purposes the analysis wavelet has to be smooth, regular, and anti­

symmetric with compact support and the first or second derivative of a smooth 

function [28]. The analysis wavelet used in this thesis for pitch detection of mu­

sical signals is a quadratic spline wavelet. The construction of such a wavelet 

starts with the scale function that defines it. This is the quadratic spline <f>2(t) 

with the Fourier transform given by

f o )  =  H f y i  2( | )

=  ( s in (aV 2)

where

= e( 7' * w 1 ( 3 ' 2 3 )

1 + '  3 
H (U) =  ,1  +  g

=  e(-*3" /2) cos(w/2)3 (3.24)

It is the frequency response of the low pass filter {h(k)} = (1 /8 ,3 /8 ,3 /8 ,1 /8 } . 

Note that H(ui) satisfies

H{  0) =  1,

\H(ui)\2 + \H{u + tt)\2 < 1
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The Fourier transform of the corresponding wavelet is given by

${u) = G ( u / 2) 0(w/2) (3.25)

where G(lj) is a continuous, 27r-periodic function. It is the frequency response of 

a high pass filter {#(&)} such that G(uj) =  0.

Substituting from equation (3.23) into equation (3.25) yields

& «) =  e<-<3"/4> G(«/2) ( !^ ^ )  3 (3-26)

Choosing this wavelet to be the first derivative of a cubic spline implies tha t it

has a zero of order one at u  = 0. That is

$((*)) =  iu9{(jo) (3.27)

For the analysis wavelet to have the smallest support, we will consider the cubic 

spline given by

( 3 - 2 8 )

It is clear that 6{t) is a smooth function. Hence

^(W) =  «,«(-*-) ( 5 5 M )  4 (3.29)

Equating equation (3.26) and (3.29), yields

G(u) = 4 ie(- iw/2)sin(o;/2)

=  2(1 -  e{~iuj)) (3.30)

Hence ip(t) is an anti-symmetric wavelet, regular with small finite support [0,2]. 

Its corresponding high pass filter is given by {g{k)} = {2, —2}.

Figure (3.6) shows the quadratic spline scale function </>(t). The quadratic 

spline wavelet is shown in figure (3.7).
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Figure 3.8: Real part of Morlet wavelet
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Figure 3.9: Imaginary part of Morlet wavelet
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3.4.3 The Gaussian Wavelet

The Gaussian wavelet is basically a complex-sinusoid modulated with a Gaussian 

envelope. It is sometimes called the Morlet wavelet [20]. This wavelet is defined 

as

'lp(t) = e(iu} o*)e(-‘2/2) (3.31)

where its Fourier transform is defined as

tP(lu) =  e ( * ° (3.32)

It is worth mentioning here tha t the Morlet wavelet is not a mother wavelet since 

it does not satisfy the admissibility condition. Nevertheless such a wavelet is 

admissible when the constant ljo satisfies the condition 5 < ljq < 6 [26]. The 

reason for including this wavelet is that its performance has been evaluated as a 

linear phase wavelet for pitch detection purposes. The real and imaginary parts of 

the Morlet wavelet for ujq =  5.3 are shown in figures (3.8) and (3.9) respectively.

3.5 Algorithm  Im plementation

In this section we present the implementation aspects of the proposed algorithm. 

As previously mentioned the DWT has to be evaluated, theoretically, for all 

scales 2J for all j  varying from — oo to +oo. In practice since the input signal is 

generally measured with a finite resolution, a finite large scale and a nonzero fine 

scale limit the implementation. The fine scale is set equal to 1 (for normalization 

purposes) and the large scale is set equal to 2J [3]. Two FIR filters, namely, h and 

g characterize the DWT as well as the number of levels J. Such two filters h and 

g are the impulse responses of a low pass filter and a high pass filter respectively. 

Starting with the assumption that Sof = / ,  ho = h, and go = g where /  is a
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discrete input signal, the recursive algorithm is defined as

W j + i f  = 9] * S j f ,

s j+1f  =  hj  * S j f  (3.33)

for j  = 0 , 1 , . . . ,  J  — 1 and * denotes convolution. Both hj and gj denote the filters 

obtained from h and g by inserting 2J — 1 zeros between each two consecutive 

coefficients of the two filters respectively.

At each level j  the effect of the operator S  is to smooth the input signal, i.e 

to attenuate its high frequency components without altering its low frequency 

components. On the other hand the operator W  gives the details lost when the

signal is transformed from the previous scale to this new scale. Therefore the

DWT can be implemented as a FIR non-subsampled octave-band filter bank as 

shown in the figure (3.10). The main analysis wavelet used in the implementation 

is the quadratic spline wavelet with Fourier transform given by equation (3.29). 

The motivation behind the proposed algorithm is that points of zero-crossings 

of a musical signal (glottal closure of speech signals) are considered els points of 

sharp variations of this signal. Hence the transform exhibits local maxima at 

these points across several scales [28].

For each scale j, locate the positions of the local maxima of DWT that exceed 

a certain threshold with respect to the global maxima and within a certain local­

ization error. The points of zero crossings of a musical signal should have local 

maxima at the same points across several consecutive scales. For a certain scale 

the time distance between two consecutive such maxima gives the pitch period of 

the musical signal. The estimated values can be further improved by using several 

methods for curve fitting for best estimate of the local maxima. The parabolic 

interpolation, as previously described in the autocorrelation function, has been 

found adequate. The sampling rate for all test signals is 44.1 kHz and different 

window sizes of 22.7 and 34 ms have been used during the analysis. Experiments
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S o f  =  f

Figure 3.10: A FIR non-subsampled filter bank implementation of DWT

have shown that it is adequate to evaluate the dyadic wavelet transform across 

three consecutive scales only: 24, 25 and 26.

In addition to the quadratic spline wavelet, the performance of both minimum 

phase wavelets (Daubechies’ wavelets) and linear phase wavelets (Haar and Mor­

let) is also investigated. Our main interest is the analysis of the acoustic guitar 

tones. However the proposed algorithm has been implemented on a wide range 

of other musical signals such as a saxophone signal (wind instrum ent), a tanpura 

signal (an Indian drone instrument), a singing voice signal, and a conga rim-hit 

signal (drum family). Furthermore the algorithm has been applied to some other 

plucked string signals such as a bass and a pizzicato cello signal.

3.6 Results and Discussion

This section presents the simulation results of the proposed algorithm. The re­

sults of the main guitar test signal are presented first. The results using the Haar 

wavelet, D4-wavelet and the Morlet wavelet are also described. Next the results of
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Figure 3.11: A segment of the guitar signal

the other musical signals are presented. Finally a comparative discussion between 

the proposed algorithm and the autocorrelation function is presented.

3.6.1 T he A nalysis o f th e  G uitar Signal

Generally in the analysis of plucked string signals, the results show that it is 

sufficient to estimate the pitch period from the steadily decaying part of the 

signal several hundred milliseconds after the attack [55]. This is due to the fact 

that the pitch period of a plucked-string signal decreases as the signal attenuates. 

In the analysis of the E2-tone signal, shown in figure (3.2), the first 10000 samples 

have been discarded which amounts to 227 ms. A segment of the guitar signal 

of 500 samples is shown in figure (3.11). For the quadratic spline wavelet the 

estimated pitch is 330.3293 Hz. The results are shown in figure (3.12).

The performance of the other wavelets is found to be the same for this signal. 

Furthermore the smoothness of the minimum phase wavelet is investigated where 

a D20-wavelet [8] is used in the analysis. The results show that the smoothness 

of the analysis wavelet is not a crucial parameter.

The E2-tone is the main analysis test signal. However, the proposed algorithm
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Figure 3.12: Scales 24 and 25 of the guitar signal using the quadratic spline

Tone True Pitch Estimated pitch

E3

G1

661.8095

196.2381

662.0249

197.6210

Table 3.3: Estimated pitch period of various guitar signals

has been applied to a wide range of guitar signals. Figures (3.13) and (3.14) show 

the results of two other guitar signals. The estimated pitch periods are shown in 

table (3.3).

The performance of the algorithm has been also tested for a synthetic guitar 

signal with two pitch periods of 100Hz and 200Hz. The guitar signal and the 

results are shown in figure (3.15). The estimated pitch period using all test 

signals is 99.4222 Hz, i.e. the difference between the two pitch periods. This can 

be justified as the guitar signal having a missing fundamental of 100 Hz with 200 

Hz and 300Hz as the second and the third partials. Nevertheless this case is open 

for further investigation.
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3.6.2 The Analysis of other Musical Signals

The true pitch period of a D#saxaphone signal is 155.5144Hz. The estimated 

period is 154.7368Hz with relative error 0.005 where the relative error (r.e.) is 

defined as

r.e. =  abs(true pitch - estimated pitch)/true pitch 

For all used wavelets the estimated pitch is the same.

The tanpura signal is a very harmonically rich signal. Our results show that 

the proposed algorithm has the ability to detect not only the fundamental fre­

quency but also the frequency with the most energy present in the signal. In the 

case of the autocorrelation function a longer frame size has to be used in order 

to detect the fundamental of the tanpura signal not the strongest harmonic [10]. 

The estimated pitch period of this signal is 157.5Hz.

In the analysis of a male singing voice, the estimated pitch is 110.8040Hz. The 

autocorrelation function gives slightly different values depending on the analysis 

window as well as the frame size. Moreover in the analysis of a conga-rim signal, 

the algorithm classified this signal as an unpitched one since it failed to find local 

maxima that satisfy the previous criteria. The results of all test signals are shown 

in [10] and in appendix (A) and further explained in [46].

3.6.3 Discussion

The computational complexity of the proposed algorithm is O(NJ), for an input 

signal of length N evaluated across J scale. The constant depends on the number 

of nonzero coefficients present in the filters h and g. The algorithm is faster than 

the autocorrelation function since the length of the analysis wavelet is less than 

M0.

Unlike the autocorrelation function the proposed algorithm takes into account 

the non-stationary nature of musical signals. Besides the window function is not 

a crucial parameter since the quadratic spline wavelet can be used for all kinds
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of musical signals. Furthermore the frame size is not a crucial parameter since 

different frame sizes have been successfully used in the analysis. It is worth 

mentioning here that all the signals used are not professionally recorded and 

are subjected to one sort of noise or another. This implies that the proposed 

algorithm is robust to noise. It is also accurate if we use the relative error criteria 

as our measure of accuracy.

3.7 Summary

In this chapter we have presented a new algorithm for estimating the pitch periods 

of musical signals. The proposed algorithm is based on the dyadic wavelet trans­

form and a quadratic spline wavelet with certain criteria has been constructed 

for this purpose. This chapter has also presented the main advantages of the 

proposed algorithm over the well-known autocorrelation function. Further the 

effect of the analysis wavelet has been tested by using different wavelets and the 

quadratic spline wavelet has proven to be suitable for all test signals.
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Chapter 4

Kalm an Filtering Technique for 

Partials Tracking
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4.1 Introduction

As described in the previous chapter the objective of the analysis process is to 

provide the data required for calibrating the guitar model under consideration. 

The first step of the analysis process is estimating the pitch period of a recorded 

real guitar tone, which was presented in the previous chapter.

In this chapter the analysis process continues by studying the time-varying 

spectrum of the guitar tone. There are different tools for the analysis of this 

spectrum. The “heterodyne filter” was developed by Moorer in 1973 [42]. This 

filter implements a single frequency bin of the Discrete Fourier Transform (DFT) 

using the rectangular window. The instantaneous amplitude and frequency are 

estimated from the magnitude and phase derivative of the complex numbers pro­

duced by the sliding DFT. This technique was developed further by using the 

digital “phase vocoder” where the Fast Fourier Transform (FFT) is used to im­

plement the DFT along with the use of a non-rectangular window [42]. The phase 

vocoder is useful for the analysis of harmonic sounds whereas sounds with time- 

varying characteristics were difficult to analyse using this technique. In 1987, 

Smith developed another peak-tracking spectral analyzer, called PARSHL [52]. 

This technique is based on the Short-Time Fourier Transform (STFT) [2] [1] and 

canjie applied to in-harmonic sounds such as the piano. However, PARSHL has 

difficulty representing noise-like signals such as the attack part of many musical 

signals. In 1986, McAulay and Quatieri developed a similar technique for the 

analysis of speech signals [31]. In musical applications, this technique was de­

veloped further by Serra and Smith [45]. In 1990, they proposed the Spectral 

Modelling Synthesis (SMS) where musical signals can be represented as the sum 

of sinusoids and noise. This scheme is also built on top of the STFT. The basic 

idea adopted is that the guitar signal can be represented as a set of quasi-periodic 

stable partials (sinusoidal model) that correspond to the main modes of vibra­

tion of the string, and some added noise (the residual model) [55]. Each partial
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feature such as amplitude, frequency and phase values, has to be extracted. The 

decay rates of such partials determine the magnitude responses of the loop filter, 

as will be further discussed in the next chapter. Once the trajectories of all dis­

tinctive partials have been computed, the sinusoidal model is then synthesised 

using additive synthesis whereas the residual model is obtained by subtracting 

the sinusoidal model from the original signal. Thereafter the residual model will 

be post-processed to extract the excitation signals for the guitar model.

Our goal in this chapter is to present a new technique for partial tracking 

of musical signals. The proposed technique is based on the theory of the Ex­

tended Kalman filter [5]. The main principle adopted here is that the guitar 

signal can be represented as the sum of a deterministic model (sinusoidal model) 

and a stochastic model (residual model). Each partial of the sinusoidal model is 

modelled using three different state variables. Since the Kalman filter is a model- 

based technique, several models have been tested for our new technique. Different 

aspects of the implementation of the proposed technique are illustrated. Further­

more the advantages and disadvantages of the proposed technique are presented.

This chapter is organised as follows: section 2 is devoted to the Short-Time 

Fourier Transform (STFT) as an analysis tool for non-stationary signals. The 

analysis of the real guitar tone is carried out using this technique to extract the 

features of each partial. Some implementation aspects are also briefly described. 

In section 3, we introduce the mathematical definitions and notations which are 

needed for understanding the concept of the Kalman filter. The discrete-time 

Kalman filter is then described. The non-linear case is subsequently addressed 

with emphasis on the Extended Kalman filter technique. Different models that 

are used in the analysis are presented in section 4. Advantages and critiques of 

each model are also addressed. Section 5 presents the implementation aspects 

of the proposed algorithm, the results of the new algorithm being presented in 

section 6. Comparisons are also made with those derived from the Short-Time
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Fourier analysis. Finally the chapter summary is given in section 7.

4.2 Short-Tim e Fourier Transform-based Anal­

ysis

The purpose of this section is to estimate the time-varying spectrum of the 

recorded real guitar tone using the Short-Time Fourier Transform (STFT). We 

start by describing the principle of the STFT and its implementation and also 

consider the control parameters for the computation of the STFT. We then dis­

cuss the use of this transform for estimating the partial trajectories of the guitar 

signal.

4.2.1 The Short-Tim e Fourier Transform

Musical signals are non-stationary signals, i.e they evolve with time. In order 

to study the spectrum characteristics of such signals, the usual Discrete Fourier 

Transform (DFT) is not appropriate due to this non-stationary nature. Instead a 

time-dependent version of the DFT, known as the Short-Time Fourier transform 

(STFT), is utilised. It is based on the idea that a time-domain window, usually 

zero outside a certain interval, is moving or ‘hopping’ along the signal to be 

analysed. For each windowed segment, one computes the DFT which represents 

the spectrum of this segment. In practice the DFT can be implemented efficiently 

using the Fast Fourier Transform (FFT) when the size of the signal is restricted 

to a power of two [36], [38], and [40].

For a discrete-time signal x(n),  the STFT is defined [24] as
M - 1

X,(k)  =  ]T  w(n)x(n + lH)e~i“tn, f o r i  = 0 , 1 ,2 . . .  (4.1)
71=0

where w(n) is an appropriate window function, M  is the FFT size, k = 0 , 1 , . . . ,  M — 

1 is the bin index, Uk = 2irk/M is the radian frequency, n  is the time index param-
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eter, and H  is the hop size parameter, defined as the time advance (in samples) 

between the consecutive frames.

The result of STFT is a set of frames separated in time by the hop size. 

Each frame is represented by a complex-valued function called the spectrum 

which represents the amplitude and phase spectrum when transformed to polar 

coordinates. The spectral partials are represented in each frame as peaks in 

the spectrum. These peaks can be detected and their frequency, amplitude and 

phase evaluated, as will be described in the rest of this section. It is clear that 

the control parameters for STFT are the window function and its size, the hop 

size, and the FFT size. These parameters must be determined for each signal to 

be analysed.

4.2.2 Control Parameters for the STFT

In this section we discuss the control parameters for the STFT in more detail.

The choice of an appropriate window function is a compromise between the 

frequency resolution and the time resolution [14], [45]. A window function with a 

narrow main-lobe (i.e. better frequency resolution) and a very low side-lobe would 

be an ideal choice for many applications. A suitable window for the purpose of 

this analysis is the Hamming window, where the highest side-lobe is 43 dB below 

the main-lobe [35]. The Hamming window is defined as:

0.54 - 0 . 4 6 *  cos ( f ^ )  for n = 0 , 1 , 2 , . . . ,  N  -  1 

0 elsewhere

where N  is the window size. A graph of the Hamming window is shown in figure 

(4.1)

The window size, N,  is another crucial parameter in the analysis. The window 

size determines the time resolution of the analysis. A smaller window results in a 

better time resolution (but worse frequency resolution) and vice versa. Since the 

purpose of the analysis is to track closely-related partials, frequency resolution is
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Figure 4.1: The Hamming window with N=2048

favoured over time resolution. For pitched sounds, McAulay and Quatieri have 

reported that the window size should be at least two and a half times the pitch 

period [31]. In our implementation, the window size has been set to four times 

the pitch period.

Since the window size could be any integer (not necessarily a power of two), 

depending on the estimated pitch period, and also in order to enable the use of 

the FFT in the analysis, zero-padding is used [45]. Zero-padding is achieved by 

inserting zeros in the windowed segment buffer until the FFT size, M, is the 

nearest power of two which is at least twice the window size N.  The importance 

of zero-padding lies not only in the ability to use FFT, but also in increasing the 

frequency resolution of the analysis. In other words, zero-padding in the time 

domain is equivalent to frequency interpolation in the frequency domain [45].

Another crucial parameter in the implementation of STFT is the hop size 

parameter H. The choice of the hop size parameter is very much application- 

dependent. A smaller hop size implies a smoother spectrum at the expense of
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higher computational cost. For a Hamming window, a good choice for H  is one 

fourth of the window size [45], [1]. This means that there is 75% overlap between 

consecutive frames.

A further technique which may be used to improve the accuracy of the esti­

mated phase values is zero-phase windowing [45], [55], [29]. The importance of 

the accuracy of the estimated phase values stems from the fact that the residual 

signal is obtained from the original signal by subtracting the sinusoidal model in 

the time domain.

Zero-phase windowing can be implemented in practice by using the circular 

properties of the DFT, i.e. the windowed signal is considered to be periodic 

with period N  (which is the window size). So instead of applying the DFT to the 

windowed segment from [0, A —1], we use the segment from [(N+1)/2, (3N—1)/2]. 

In such a case, zero-padding is implemented by inserting zeros in the middle 

of the zero-phase windowed segment [55]. By using zero-phase windowing, a 

linear trend in the phase values, due to the windowing process, is avoided. It is 

worth mentioning here that the window size must be an odd number for zero- 

phase windowing to be applicable. In figure (4.2) a portion of the test signal is 

windowed using a Hamming window of length N  =  537. Zero-phase windowing 

is then utilised (as well as zero-padding) to a length of M  = 4096 to increase the 

frequency resolution.

The magnitude and phase spectrum of this zero-phase, zero-padded windowed 

segment are shown in figure (4.3). This is a typical frame in the STFT analysis. 

It is clear that the phase spectrum is nearly a constant value in the vicinity of a 

harmonic due to zero-phase windowing. This results in reducing the error of the 

estimated phase values.

Figure (4.4) shows a 3D-plot of the STFT of the E2-guitar test signal, shown 

in figure (3.2), showing the time-evolution of the signal partials.
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4.2 .3  P eak  D etectio n  and C ontinuation

The next step in the analysis process is to detect the peaks present in the spec­

trum. These peaks amount to the prominent spectral components of the guitar 

signal. This step is accomplished by using a peak detection algorithm, which is 

performed on a frame-by-frame basis by exploiting the nearly-harmonic nature 

of the guitar tone.

Performed on a dB-scale, this algorithm can be summarised as follows:

• For each frame I and every partial r, search for the maximum value in the 

magnitude spectrum within a certain frequency deviation /# , i.e. in the 

interval [r/o — Jd^ I o +  I d]> where /o is the estimated pitch period for the 

guitar signal. In the current implementation, a value of f o  — /o/4 has been 

found to be appropriate.
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•  If this maximum value corresponds to a local maximum, i.e. if

|x,(*OI > l*i(*-i)|,
|x,(*OI > |x,(fc + i)|

where |Aj(A;)| is the magnitude spectrum of frame I at bin index k , then 

this maximum value is marked as a peak.

•  The index, amplitude, frequency and phase values of such a peak are com­

puted.

•  If the amplitude value of such a peak is less than a certain magnitude 

threshold, this peak is ignored, i.e. a zero value is assigned to its magnitude. 

This step checks the validity of the detected peaks so that irrelevant peaks 

can be rejected. In our experiment, results show that a magnitude threshold 

of —70 dB has been found to be appropriate in our implementation (before 

the signal reaches the noise floor).

•  The detected magnitude values must be normalised in order to compensate

for the windowing effect. Hence the magnitude spectrum of each frame is

multiplied by a normalisation factor cn  given by:
N - 1 0

°N =  X /  ---“  win
n= 0 v

•  The frequencies and normalised magnitudes can be further improved by 

using parabolic interpolation [55], as previously described in chapter (3).

After scanning all frames for valid peaks, a peak continuation algorithm is utilised 

in order to provide for each partial’s trajectory for the sinusoidal part of the guitar 

signal. The basic idea of this algorithm is to link the valid peaks between frames, 

assuming that the partials are fairly stationary between frames. If we assume 

that we are currently at frame Z, the continuation algorithm can be simplified as 

follows:
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Parameter Value (samples)

window size 537

FFT size 4096

hop size 134

Table 4.1: Values of the STFT control parameters

•  If a peak exists in frame I +  1 tha t corresponds to an existing trajectory 

within a certain frequency deviation /# , then the peak is said to be advanced 

in time. The detected frequency, amplitude and phase values of this peak 

are assigned to the existing trajectory.

•  If there is no peak that corresponds to the existing trajectory within the 

assumed frequency deviation, then the peak is said to be killed entering 

frame / +  1. In such case, a triplet consists of zero amplitude, the same 

frequency as in frame I and the same phase value, plus a phase shift equal 

to d(f> = ujtH.

•  If there is a valid peak in the current frame that does not correspond to 

an existing trajectory, then a trajectory is born. A triplet is created in the 

previous frame with zero amplitude, the same frequency (of the peak) and 

the same phase of the peak minus a phase shift equal to d(f> = u rH.

Table (4.1) gives the values of the STFT control parameters used for the analysis 

of the guitar test signal. The analysis window is the Hamming window. Figure 

(4.7) shows the amplitude trajectories Er(l) of different partials of the guitar 

signal. It is clear that some of them are decaying exponentially. It is also clear 

from the figure that the second harmonic is very small compared to the other 

partials.

For more detailed discussion about the peak detection and the peak continu­

ation algorithm, we refer the reader to [31], [45] and [55].
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4.2.4 Problem s with the STFT

The STFT is a powerful tool for the analysis-synthesis of musical signals. How­

ever there are some limitations and disadvantages to this algorithm. The main 

problem associated with the STFT is the resolution of the analysis, which is 

directly related to the window size. According to the Heisenberg uncertainty 

principle, one can not know exactly what frequencies are present in a signal at 

a given instant of time. W hat one gets is a band of frequencies present in an 

interval of time. There is thus always a trade-off between time and frequency 

resolution.

In addition to the resolution problem there is also the assumption tha t the 

signal is stationary within each windowed segment. The computational complex­

ity is another problem associated with the STFT as will be further explained in 

the following chapters.

4.3 The Discrete Kalman Filter

This section serves as a basic introduction to the Kalman filter. It starts by 

describing the mathematical notation that is necessary to understand the princi­

ples of this filter. The discrete linear Kalman filter is then briefly presented. The 

section continues by describing the nonlinear model, in particular the extended 

Kalman filter model.

4.3.1 M athem atical N otation

The purpose of this section is to introduce some basic mathematical definitions 

that are often used in the terminology of the Kalman filter [5].

Given a random variable x , the variance of x  is defined as

var(x) — o 2 — E[(x — E(x))2] (4.2)
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where E(x)  is the expectation of z, i.e. the mean or average value of x. In a 

qualitative sense, the variance of z is a measure of the dispersion of x  about 

the mean value E(x).  Whenever the mean value is zero, the variance is just the 

second moment.

Equation (4.2) can be rewritten as

var(x) =  a2 = E (x 2) — (E(x))d (4.3)

The positive square root of the variance is called the standard deviation.

A random variable x  is said to be normal or Gaussian if its probability density 

function is given by

= (4.4)
V27rcr

where m x and a2 are the mean and variance of the random variable x  respectively. 

In what follows, the notation

x  ~  N{m x, a 2)

is used as a shorthand notation for a normal random variable. 

The covariance of two random variables x  and y is defined as

cov(x,y) = E[(x -  m x)(y -  m y)] (4.5)

It is a measure of how x  and y co-vary.

Consider a set of n random variables x i , x 2, . . .  , x n (also called variates). A 

vector random variable x  is defined as

Xi

X2
x =

Xr

In general, the components of x may be correlated and have nonzero means. The 

covariance matrix for x is defined as

72



var (x  i) cov(x 1, 2:2) ••• cov(x i , x n )

cov(x 2 ,xi) var(x 2) ••• cov(x 2 , xn)
C =

cov(xn,x  1) var(xn)

The terms along the major diagonal of the covariance matrix are the vari­

ances of the variates whereas the off-diagonal terms are their covariances. The 

covariance matrix C  of a vector random variable x  describes the variances and 

correlation structure of the n-variate.

A white noise is defined to be a stationary random process having a constant 

spectral density function.

4.3.2 The D iscrete-Tim e Kalman Filter

The Kalman filter is a computational algorithm that provides an efficient solution 

of the least-squares method. Its purpose is to estimate the state of a process from 

noisy measurements. The Kalman filter has a wide range of application areas. 

It has been proven to be useful in navigational and guidance systems, radar

tracking, sonar ranging and satellite orbit determination. In music applications, 

the Kalman filter has been used in audio restoration of electro-acoustic music [37], 

polyphonic-sources separation [63], and in the identification characteristics of 

woodwind instruments [6]. In this section, we briefly introduce the discrete, 

linear Kalman filter [5], [4], and [30].

Consider a discrete-time random process x, which is to be estimated, governed 

by the linear equation:

Xfc+l =  (f)k^k +  w k (4.6)

where
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x fc -  is an n  x 1 process state vector at time tk,

(f)k -  is the n x n state transition matrix, and 

w* ~  jV(0, Qk) -  is the process noise.

The state transition m atrix <j>k relates the state of the process at two time instants 

tk and tk+i in the absence of any noise. The measurements (or observations) of 

the process are assumed to occur at discrete instants of time ti, t2, . . . ,  according 

to the linear equation

y k = Hkx k +  v fc (4.7)

where

y k is an m  x 1 measurement vector at time tk,

H k is an m  x n measurement matrix, and 

v k ~ N ( 0 , R k) is the measurement noise.

Both Vfc and w* are assumed to be white noises of zero mean and normal dis­

tribution. Furthermore, we assume that their covariance structures are known, 

i.e

E(wk w j)  =

E(vk v f )  =

Qfc, if % =  k 

0 , otherwise

R k, if i = k 

0 , otherwise

and

E(vk w j )  =  0, for all i and k

where T  stands for the transpose of the vector. Now, assume that we have an 

initial estimate Stk of the state x* at this point in time tk. This estimate is based
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on our knowledge about the process prior to tk. Further, assume that the error 

covariance matrix P k associated with this estimate is known. Such a matrix is 

given by

Pk =  E[ek:e£]

= E [(xk -  Xfc)(x* -  *k)T}

where ek is the estimation error. Using the measurement y k, we seek to update 

our initial guess according to the equation

x fc =  x* +  K k[yk ~  H k± k] (4.8)

where K  is an n x m  matrix called the Kalman gain or the Kalman factor and

is chosen in order to minimise the error variance. The Kalman gain is given by

K k =  PkH Tk (HkPkH Tk +  R kY x (4.9)

The updated error covariance matrix associated with equation (4.8) is

Pk = ( I ~  K kHk)Pk (4.10)

where I  is the identity matrix. The algorithm is projected ahead via the following 

two equations

Xjt+i =  </>jfcXfc (4.11)

Pk+i — <i>kPk(t>l +  Qk (4-12)

Now the required quantities for the next time step £*+i are known as well as the 

measurement y fc+1. The last five equations comprise the Kalman filter algorithm 

and are summarised in figure (4.5). After a while the algorithm starts to depend 

more on the measurements and less on the initial values.
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4.3.3 The Extended Kalman Filter

In the previous section we presented the principles of the linear Kalman filter case. 

In this case the Kalman filter is considered to be the optimal linear estimator. 

In real life, however, there are many situations where the state process matrix 

and/or the measurement matrix are nonlinear. The technique employed in these 

situations is to linearise the model in order to fit into the linear case. There are 

two ways of linearisation. One is to linearise about some nominal trajectory in 

the state space that does not depend on the measurements. Such a technique is 

known as the linearised Kalman filter. The second method is to linearise about 

a trajectory that is continuously updated with the state estimates resulting from 

the measurements. In such a case the filter is known as the Extended Kalman 

filter (EKF). In what follows the equations of the EKF are briefly described.

Consider the case when both the state process matrix and the measurement

matrix are both non-linear functions in accordance with the equations

x =  f(x, t) +  w (t) (4.13)

y  =  h(x, t) +  v(t)  (4.14)

where f  is a vector function of size n x 1 . Each element f* is a function of the 

state variable vector x of n-variates. Also h  is a vector function of size m  x 1 , 

where h* is again a function of the vector state variable x. Both w  and v  are as 

defined previously, and y  is the measurement matrix of size m  x 1 .

If we have an initial estimate x^ for the state process vector x  at a time instant 

tk, then both f  and h  can be expanded about this estimate using Taylor series. 

For small values, the second and higher orders of the series are negligible.
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In the non-linear case, the state process matrix (j) is defined as

d f
dx* =

§ h .  . .
dxi 8X2 d x n

d h d h  . . d h
dxi dX2 d i n

d f n 8 f n  . . d f n
dx\ 8 x 2 dXn

(4.15)

(4.16)

and the measurement matrix H  is given by

*  =  ?ax
dhi dhi dh\
dx  i dx 2 dXn

dh2 dh,2 dh2
dx  i dx 2 dXn

dhm dhm . . , dhm
dx  i dx  2 d in

(4.17)

(4.18)

Hence the EKF recursive equations can be implemented as follows [12]

•  Compute the Kalman filter gain

K k =  PkH l  (HkPkH Tk +  R k)~l (4.19)

where P* is the initial estimate of the error covariance matrix associated 

with the initial estimate x^ (as previously described).

•  Update both the estimated state process and the error covariance matrix 

according to the following relations

Xfc =  x/c +  K k[yk -  h(xfc)]

Pk =  (I - K kHk)Pk 

•  Project ahead to the next step via the equations

Pk+i =  <t>kPk4ik +  Qh

(4.20)

(4.21)

(4.22)

(4.23)
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Note that both <j> and H  are obtained by evaluating the first partial derivative of 

the vector functions f  and h  along their respective trajectories.

4.4 M odelling

In this section we present the underlying model for parameter estimation of the 

guitar signal. The Kalman filter depends mainly on the choice of an appropriate 

model for the estimation process. This choice must be a compromise between 

simplicity and accuracy in describing the problem in hand. Therefore, different 

models have been tested for the task of parameter estimation of the guitar signal. 

We start this section by presenting the initial model that has been suggested. Cri­

tiques of this model are then discussed. A modified and final model is presented

along with its main advantages over the initial one.

4.4.1 The Initial M odel

Again we follow the same assumption that has been used before in the STFT: 

that the guitar signal can be represented as a sum of a stochastic model (sinu­

soidal) and a noise model (residual). In the ideal case, each partial should decay 

exponentially. Hence each partial of the guitar signal can be expressed as

yk(t) = A ke~Bkt cos (ukt +  9k) (4.24)

where

k is the partial number,

6k is the phase offset,

A k is the partial amplitude at zero time,

B k is the decay rate of the partial.
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Expanding the cosine function and substituting for the appropriate state vari­

ables, we have

Vk(t) = Xikx3k cos (ukt) -  x 2kX3k sin (cjkt) (4.25)

where the state variables of this partial are given by

X ik A k cos 0k

X 2k = A k sin 0k

X 3 k e~Bkt

Thus each partial is represented by three state variables. These variables deter­

mine its amplitude and its phase offset, as well as its rate of decay.

The guitar signal can therefore be expressed as

k = K

y(t) =  S s f c M  +  v (*) (4.26)
k= 1

where K  is the maximum number of partials present in the guitar signal and v(t) 

is a Gaussian white noise that represents the residual model.

This implies that the measurement is related to the state by the non-linear 

function h  given by

K

h  =  ^ 2  x ^ 3k cos (ukt) -  x 2kx 3k sin (ukt) (4.27)
k= 1

Hence the measurement transition matrix H,  which is a 1x3K  vector, is evaluated 

as

H  = K (4.28)

where

Hi = x 3i cos (uit) —x 3i sin (cjjt) ^  cos (uit) -  x 2i sin (cJit)'j J (4.29)
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for i = 1 , 2 , . . . ,  K.

In the discrete domain, the state transition matrix in this case evaluates to

fa Z  ••• Z

Z  (f>2 • • • Z
(4.30)

z z  •  • • 4>k
where Z  is a zero matrix of order 3 and

1 0 0

f a =  0 1 0

0 0 e~BiAt

(4.31)

for i =  1 , . . . ,  K,  and A t  is the sampling interval.

Figure (4.6) shows some estimated state variables of various partials using the 

initial model.

4.4.2 Initial M odel Critiques

Two major problems with this model can be noted. Firstly, the assumption that 

the partials are decaying exponentially does not hold in practice. This is due to 

non-linearities present in the true signal such as beats and two-stage decay. The 

initial model does not take this fact into account, which results in an incorrect 

estimation of some partials.

Secondly, the initial model also assumes the stationarity of the frequency of 

each partial (since frequency is not one of the state variables of each partial). This 

assumption again violates the nature of a musical signal where there is some sort 

of frequency modulation that needs to be taken into account.

Our objective is to build a model that takes into account the two-stage decay 

as well as the frequency and amplitude modulation of the guitar signal. A more

4.4.3 The Final M odel
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Figure 4.6: Various state variables using the initial model

82



realistic model represents each partial as

yk(m) = A k(m) cos (9k(m)) (4.32)

where A k(m) is the time-varying amplitude of the kth partial and 0k(m) is its 

instantaneous phase. The instantaneous phase is related to the instantaneous 

frequency f k(t) through the following relation

0k(m + l) = 2 n fk(m)At  +  9k(m) (4.33)

Hence the guitar signal can be expressed as
k = K

y ( m ) =  ^ 2  Â m)cos (0*(m)) + v(m) (4-34)
k= 1

In this case we define three state variables for each partial, namely the amplitude, 

the phase and the frequency. That is

Xli Ai(m)

%2i = 9i(m)

%3i _ f i(m)  _

for i = 1 , 2 , . . . ,  K.

In order to take into account the time-varying nature of the frequency and 

amplitude of each partial, both X\k and x^k are modelled as random walks. Hence 

the state transition matrix </> for this model is defined as in equation (4.30), with 

(j>i defined as
r 1 0 0

0 1 27rA t 

0 0 1

for i = The measurement matrix H  is defined as in equation (4.28),

with Hi defined as

(4.35)

Hi = (4.36)cos ( x 2i)  —Xu sin ( x 2i) —Xu sin (x 2i)2TrAt

It is clear that the measurement matrix H  is not a time-invariant matrix. There­

fore it has to be computed for each iteration step in the EKF loop.
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4.5 Simulation

The objective of the simulation is to provide the best estimate of the vector state 

variable x*. This vector describes a certain dynamic process at a time instance 

tk given a set of noisy measurements yi, y2, . . . ,  In this section we present the 

different implementation aspects of the proposed algorithm. It also describes the 

various techniques tha t are utilised to optimize the performance of the proposed 

algorithm.

4.5.1 Initialisation

The control parameters of the proposed algorithm are: the initial estimate of the 

state vector, the associated error covariance matrix, the total number of partials, 

the state covariance matrix, and the sampling interval. In order to start the 

recursive equations of the EKF algorithm, an initial estimate of the vector state 

variable x* at time instance tk is required. A prior knowledge of the process to 

be estimated is exploited. In our implementation the pitch detection algorithm, 

previously described in chapter 3, and a spectrum analysis are both utilised to 

provide this initial value. This step is found to be adequate for providing the 

required value. An initial estimate of the error covariance matrix Pk associated 

with Xfc is also required. In a statistical sense, this matrix gives the range over 

which the variates vary from their initial estimates [12]. Therefore in the case 

of no prior knowledge of the state, a large value for Pk is used.

In [37], Poli et al. suggested a new method for estimating the initial values 

Xfc and Pk. This is called the bootstrapping technique. In this technique the first 

segment of the test signal (say, the first 100 ms) is time-reversed and fed into the 

filter. Hence it provides the proper initial values for the resorted original signal. 

However we have not used this technique in our implementation.

Another parameter that has to be handelled properly is the state covariance
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matrix Q. This matrix represents the error in modelling as well as a real driving 

force. Thus a zero value for Q means that the state variable is a random constant 

rather than a random walk. It also indicates that the mathematical model is 

identical to the process in hand. Therefore a non-zero value for Q is used in 

our implementation. We expect Q to have a small value in high signal-to-noise 

ratio (SNR) segments of the guitar signal (the steady-state part) whereas it has 

a large value for the low SNR segments (the attack part of the signal). The 

value of Q used in our implementation is experimentally chosen, see section (4.6). 

Computation of both P  and Q is explained further in [5].

There are two more parameters that can be adapted to the problem in hand. 

These are the total number of partials K  to be estimated and the sampling in­

terval At.  The acoustic guitar signal has an insignificant amount of energy at 

frequencies higher than 3 to 4 KHz (disregarding the attack part) [59]. Conse­

quently we are not trying to model partials higher than this limit. Reducing the 

total number of partials K  is also motivated by the fact that the computational 

complexity of the algorithm is directly proportional to K.

Generally musical signals are sampled at sampling rate of f s = 44.1 KHz. This 

is to ensure that all the perceptual audio information is retained in the sample. 

According to the nature of the acoustic guitar signal that is previously described, 

the time step parameter defined as A t  =  1 / f s can be changed to A t  =  D / f s 

where D  is the number of samples to skip (time increment in samples). The 

effect of using a different sampling interval on the estimated values as well as the 

overall performance of the proposed algorithm is also investigated.

Another technique that is proven to be useful is adjusting the estimated val­

ues [63]. That is, if any of the variates is known to be limited to a certain interval, 

we adjust the estimated values to fall within this interval.

It is worth mentioning here that since the measurement (the sampled guitar 

signal) is scalar, the matrix inversion included in computing the Kalman gain
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vector (4.19) is reduced to just scalar division.

4.5.2 Sm oothing

Smoothing is another technique that can be performed to improve the estimated 

values of the EKF algorithm. In our case only a fixed-interval smoothing can 

be applied [5]. Another approach to smoothing is using two EKF algorithms 

properly combined together. One algorithm performs the forward filtering (the 

normal one) and the other performs the backward filtering [5], [37]. However in 

our implementation we did not apply smoothing of any type as the results were 

quite satisfactory but it remains as a possible improvement.

4.6 Simulation Results

In order to evaluate the performance of the proposed algorithm, it has been 

implemented for different synthesized signals with known state variables. Firstly 

we tested some noise-free signals. Then different values of noise have been added 

to the synthesized signals to check the robustness of the algorithm to noise. In 

almost all cases the algorithm is proven accurate in estimating the state variables 

and robust to noise. This step was found necessary also to gain insight on the 

values of some of the parameters of the EKF algorithm. It also gave us confidence 

in choosing the appropriate values for the algorithm to start.

We started the EKF algorithm with the initial values given in table (4.2). 

We started the analysis at time instance t = 0. Therefore the initial amplitude 

values of all partials are set equal to zeros as well as the instantaneous phase. The 

estimated frequencies from the spectrum analysis are used as the initial frequency 

values of the different partials. The process noise covariance matrix has been set 

to 0 .0 0 1 , 0 , and 0.1 in its main diagonal for the amplitude, phase and frequency 

of each partial respectively. The amplitude trajectories of some partials using
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Parameter Initial value

Number of partials K 14

Measurement variance R 0.1

Time increment D 10

Table 4.2: Initial values for the EKF algorithm

the proposed technique and the previous initial values are shown in figure (4.8). 

We noticed that the second partial was too small to be tracked as well as the 

I I th and the 12th partials. It is also clear that the results are comparable to 

those obtained by the STFT-based analysis. The overall decay of the tracked 

partials is nearly the same. The effect of using different Q values have been 

also tested. Our results show that the process covariance m atrix Q is a critical 

parameter and has to be carefully chosen. A prior knowledge of the signal to 

be analyzed and how the variates vary with time can be exploited. For instance 

if the state variable is known to time-vary slowly, then a small value for Q is 

used. The estimated fundamental frequency for different Q is shown in figure 

(4.9). The algorithm is also tested for different values of D. It is obvious that 

the maximum value of the time increment is limited by the sampling theorem. 

Using different values for D  has no direct effect on the ability of the filter to 

converge as shown in figure (4.10). Nevertheless it has a direct effect on the 

estimated run time of the algorithm. The maximum value of D  also shows a 

faster convergence of the filter and the best performance. Table (4.3) shows the 

estimated run time of the proposed algorithm (measured in seconds) for different 

four values of D  over the same number of measurements (10000 samples) of the 

guitar test signal. From this table it is clear that the run time is directly related 

to the time increment. We also noticed that the higher partials are too small 

to be tracked. This is also due to the fact that higher frequencies decay faster 

than the lower ones. Therefore the total number of partials can be reduced to 12
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Time increment D Number of iteration Estimated time (sec)

D=10 1000 5.7977

D= 8 1250 8.0623

D=5 2000 17.4566

D=4 2500 25.4711

Table 4.3: Estimated run time for different values of D.

partials instead of 14. As previously mentioned, the algorithm is faster for lower 

number of partials which is another motivation for reducing the total number of 

partials to be estimated. It is worth mentioning at this point that the two lowest 

body resonances are included in the algorithm.

4.7 Summary

This chapter started by introducing one of the most often used analysis/synthesis 

techniques, this is the Short-Time Fourier Transform algorithm. Various tech­

niques and algorithms have been utilised for partials tracking of guitar signals 

using this algorithm. Some of the main disadvantages of the STFT-based tech­

nique are also presented in this chapter. The main objective of this chapter, 

however, is introducing a new algorithm for partials tracking in guitar signals. 

The proposed new algorithm is based on the theory of the Extended Kalman Fil­

ter. Choosing the right model to better suit the problem in hand is not a trivial 

task unless some prior knowledge of the signal is exploited. Therefore different 

models have been tested for this purpose. Although the initial model was an 

obvious choice, the results were not satisfactory. The major problems associated 

with the initial model have been taken into account in the final model. In this 

model the guitar signal is modelled as the sum of a sinusoidal model and a sta­

tistical model. Each partial in the sinusoidal model is fully described by three
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state variables, namely, the amplitude, the frequency and the phase. Both the 

amplitude and the frequency are modelled as random walks in order to take into 

account their time-varying nature.

A pre-analysis step is utilised to provide the initial values for the filter to 

start. This step includes both the pitch detection algorithm and the spectrum 

analysis of the guitar test signal. This chapter also presents the details of the 

implementation aspects of the proposed algorithm along with some techniques to 

optimize the filter performance. Finally the experimental results are presented. 

These results are compared to the results obtained by the conventional STFT- 

based analysis for validation and justification. It is worth noting that this tracking 

method could be adapted to the SMS modelling system [45], with the potential 

for significant improvement.
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Chapter 5

Guitar M odel Param eters 

Estim ation
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5.1 Introduction

In this chapter the parameter estimation process of the underlying guitar model 

is described. This model is fully determined by the string model S ( z ), the two 

body resonators B \ ( z ), B 2(z) and the excitation signals x exc(n), x ^ (n) and Xb2(n) 

as previously described in chapter 2. For the estimation process of the model 

parameters we follow the same techniques proposed by Tolonen in [55].

Our goal in this chapter is to show that the EKF-based technique, described 

in the previous chapter, can be applied successfully for the analysis/synthesis 

process of the guitar signals. Therefore each step in the estimation process is ex­

plained using the STFT-based analysis and the EKF-based analysis. In addition 

a comparative study between the synthesized signal in both cases and the original 

signal is presented. Furthermore we try to assess the accuracy of the EKF-based 

algorithm. This is achieved by performing some statistical error-analysis tests on 

the residual (noise) signal obtained by the proposed algorithm.

This chapter is organised as follows: section 2 is devoted to the estimation 

of the string model parameters. This involves the estimation of the delay line 

length L and the loop filter parameters a, g. Thereafter the design of both the 

loop filter and the fractional delay filter is described. The computation of the 

sinusoidal model and the residual model is presented in section 3. Section 4 de­

scribes the design of the body resonators which is accomplished by estimating 

each resonator’s centre frequency and bandwidth. The computation of the ex­

citation signals of the string model and the two body resonators is presented in 

section 5. In section 6 a comparison between the synthesized signal in both cases 

and the original one is presented. Some statistical tests for the analysis of the 

EKF-residual signal are also given in this section. Finally the chapter summary 

is given in section 7.
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5.2 Estim ation of the String M odel Param eters

Recall from chapter 2 that the string model of the underlying guitar model in­

volves three main parts, namely, the loop filter H(z),  the delay line L  and the 

fractional delay filter F(z).  In the following subsections the estimation process 

of each part is further explained.

5.2.1 Loop Filter Design

The purpose of this section is to estimate the loop filter parameters a and g as 

well as the design of this filter. Recall that the loop filter is the main lossy part 

in the string model when an all-pass filter is used for fine tuning the pitch period. 

Therefore it determines the frequency-dependent damping of the synthetic signal. 

The aim of the analysis process, previously described in chapter 4, is to provide 

the amplitude trajectory of each partial of the real guitar signal. The damping 

factors of such trajectories determine the magnitude responses of the loop fil­

ter [59]. Once the prototype frequency response of the loop filter is computed, 

the loop filter is designed in a weighted least-square sense [55].

The design of the loop filter is organized as follows: first the decay rate of each 

amplitude trajectory is computed. Hence the frequency-dependent magnitude 

response of the loop filter is evaluated. A method for the loop filter design is 

then described.

5.2.1.1 Computation of the Decay Rates.

In this section the decay rate of each detected partial of the guitar signal is eval­

uated. In the ideal case, the amplitude trajectory should decay exponentially 

in the steady-state part of the signal. This situation is hardly met in prac­

tice due to non-linearities which result in fluctuations as previously shown in 

chapter 4. Smoother trajectories are obtained by integrating them backward in
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Figure 5.1: Schroeder-integrated curves of some partials in the STFT case

time [55]. This technique was first used by Schroeder for reverberation time mea­

surements [44]. In [19] Jot generalised this idea in the frequency domain to yield 

the energy decay relief curves. This is the backward integration of the STFT of 

a time-domain signal. Hence the decay rates of the partials at a discrete set of 

frequencies are computed. For each amplitude trajectory, the energy decay relief 

curves Ar(l) are defined as [55]:
oo

M l )  =  E  (S'1)
m = l

where Er(l) is the amplitude trajectory of the r th partial evaluated at frame 

number I and Ar(l) is the corresponding energy decay relief curve. Some of the 

computed curves are shown in figures (5.1) and (5.2) in the case of the STFT 

analysis and the EKF analysis respectively. It is clear that these curves are 

smoother with less fluctuations than the original ones. Therefore these curves 

are more appropriate for linear regression. For comparison purposes the curves 

are evaluated over the same number of samples in the STFT-analysis and the 

EKF-analysis.

It is important to clarify that the energy decay relief curves preserve only the 

decay rates of the original curves but they do not retain the original amplitude
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Figure 5.2: Schroeder-integrated curves of some partials in the EKF case.

levels. Therefore only the decay rates of the partials are obtained from these 

curves. Note that there is a difference in the sampling interval used in the STFT- 

analysis and the EKF-analysis. Hence we expect the curves in both cases to be 

slightly different. Nevertheless it is clear from figures (5.1) and (5.2) that the 

curves have nearly the same decay rates.

5.2 .1 .2  M ag n itu d e  R esponses of th e  Loop F ilte r

On a decibel scale each trajectory should be a straight line. A segment of every 

Schroeder-integrated curve is chosen to fit a straight line to it. The slope B k 

of each partial is evaluated. The corresponding magnitude response of the loop 

filter is computed as follows [59]:

9k = 1 0 ^  (5.2)

where L\ is the total delay estimated from chapter 3, H  is the hop size used in the 

STFT algorithm or the increment parameter D used in the EKF-algorithm and 

gk is the magnitude response of the loop filter corresponding to the kth partial.

Table (5.1) gives the estimated slopes of some partials in both cases of the 

STFT algorithm and the EKF algorithm.
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Partial number STFT EKF

first -0.2306e-03 -0.2396e-03

third -0.4913e-03 -0.5405e-03

fourth -0.4629e-03 -0.4659e-03

fifth -0.6138e-03 -0.6048e-03

Table 5.1: Slopes of various partials in the STFT and the EKF cases.

5.2.1.3 Computation of the Loop Filter Parameters

The values p* determine the desired magnitude responses of the loop filter at 

frequencies cOk of the k th partial. That is the prototype magnitude response 

of the loop filter. The purpose of this section is to design a loop filter that 

matches the overall decay rate of the guitar signal rather than the individual 

partial decay rate. We follow here the same design method previously described 

by Tolonen [55]. A weighted-least square method is used for determining the loop 

filter parameters. The function to be minimized is given by:

K —l

E = Y t W(k)[Gl(uj)~gkf  (5.3)
k=0

where K  is the number of partials incorporated in the filter design, W(k)  is an 

appropriate non-negative weighting function and Gi(u) is the loop filter magni­

tude response given by equation (2.17). The weighting function has to be chosen 

in a way such that partials of longer decay are weighted heavily than the ones 

with shorter decay. In [24] Valimaki et al. suggest the use of a value given by

W(k) = - i _  (5.4)
1 ~9k

The error function E  is minimized with respect to both a and g where

0 < g <  1,

- 1  < a <  0
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Parameter STFT EKF

a -0.0225 -0.0202

9 0.9994 0.9993

Table 5.2: Loop filter parameters

This is achieved by using optimization tools, e.g. MATLAB. For the small partials 

such as the second and the higher ones, the weighting function is set equal to 

zero.

At this point it is worth mentioning that we are trying to match the magnitude 

response of the loop filter rather than the phase response. This is due to the 

fact that the dispersion effect of the one-pole filter is too small to affect the 

result [24]. The estimated values of both a and g in the STFT algorithm and the 

EKF algorithm are shown in table (5.2).

5.2.2 Delay Line Estim ation

Recall from chapter 3 that the total delay of the string model is the real valued 

number L\ defined by [59]

where f s is the sampling rate and /o is the estimated pitch period. This delay 

can be further expressed as

Li =  L +  Di +  Df  (5'f>)

where

L  is the delay-line length which is an integer value,

Di is the phase delay of the loop filter, and 

D f  is the phase delay of the fractional delay filter.
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Once the loop filter is designed, the parameters a and g are determined. Ac­

cordingly the phase delay Di of the loop filter can be estimated. It is given

by

Oi(u)
Dr =

UJ
1 n / asmiuj)  \  /r

=  —  tan-1 (  --------) (5.7)
uj \1 +  acos(cj)/

where 0 i (uj) is the loop filter phase response given by equation (2.18). Equation

(5.7) gives the exact phase delay of the loop filter. It can be approximated for 

low frequencies by expanding the arctan function and ignoring the higher order 

terms. This yields

D, =  - ^  (5.8)
1 +  a

Hence the delay-line length evaluates to

L = floor(L\  -  Dt) (5.9)

where f loor (x) gives the nearest integer less than or equal to the real-valued 

argument x.

5.2.3 Fractional Delay Filter Design

The fractional delay filter is fully determined by its parameter c. In order to 

compute c, the phase delay of the fractional delay filter needs to be estimated. 

Recall from chapter 2 that the phase response of the fractional delay filter is given 

by
i  x _i /  — sinfw) \  i /  —csin((j) \  ,r i M
0/((j) =  tan ( ---------------T-r) -  tan M ------— ) (5.10)
/v '  \c  +  cos(cj) / Vl +  c c o s ( u j ) J  v '

Expanding the arctan function and ignoring terms of higher orders yields

9i(u)  =  +  ...c sin("J _  (5 .ii)
c +  cos(cj) l  +  c cos(cj)
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which can be further approximated for low frequencies to

„ , s —uj cuj 
° f (u}) =  T T T  +c +  1 1 -f- c

=  « ( ^ )  (5-12)

Therefore the phase delay of such filter evaluates to

D f  =
UJ

1 — c
1 +  c

where D f  is determined by

(5.13)

Df  = (Li — Dt) — L  (5.14)

Thus the parameter c is computed as

C= I T ^  (5-15>

5.3 Sinusoidal and Residual M odels

The purpose of this section is to compute the sinusoidal model that corresponds 

to the harmonic part of the guitar test signal as well as the residual model. The 

analysis process, previously described in chapter 4, describes the significant par­

tials present in the guitar signal in terms of their amplitude, phase, and frequency. 

To compute the sinusoidal model in the STFT-based analysis, the instantaneous 

amplitude Ek(m) and the instantaneous phase 9k(rn) corresponding to the kth 

partial need to be evaluated.

The output of the STFT-based analysis is a set of frames. Each partial k 

has three values, namely, amplitude Ak(l), frequency u)k(l) and phase <pk(l) at 

different frames I. These values are separated in time by the hop size parameter 

H.  The instantaneous amplitude Ek(m) at time instance m  is obtained by linearly
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interpolating the amplitude values between frames according to

E k(m) = A k(l -  1) +  — —) m  (5.16)

for m  =  0 , 1 , . . . ,  H  — 1.

To compute the instantaneous phase 0k(m), cubic interpolation between frames 

is utilised using the four available values ujk(l — 1), u k(l), <pk(l — 1) and ipk(l)- 

Cubic interpolation is given in more detail in [31].

The cubic function used in the interpolation is given by

0k{m) = £ + i r n  + r}m2 + (5-17)

where f , 7 , 77 and C are the polynomial coefficients tha t need to be determined. 

The solution of this polynomial evaluates to [31]

@k(™) =  <Pk(l — 1) +  u k(l — 1) m  +  77 m2 +  f  m 3 (5.18)

where

1  -  (5">>

< -  (5-201

I and II  are given by

I =  y>*(0 -  <Pk(l -  1) -  u k(l -  1) H  +  27rM 

I I  =  u k(l) - u k( l -  1)

Both 77 and f  are functions of the parameter M  which has to be chosen in such a

way to provide maximally smooth instantaneous phase [31]. This is obtained by

having M  equals to

M  =  round(q) (5.21)

where

1

q = 2 i <Pk(l -  1) +  H M l  -  1) -  M l )  +  f  ( M l )  -  M l  -  1))] (5-22)
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The round{x) defines the integer value that is closest to the argument x.

Note that this value of q is the root of the second derivative of Ok(m). Choos­

ing M  closest to q ensures that a maximally smooth instantaneous phase is ob­

tained [31].

By applying equation (5.18) at all frame boundaries, the phase envelope Qk(m ) 

is evaluated. Accordingly the sinusoidal model x Sin(m) is computed using additive 

synthesis. That is
k=N

X s i n i rn) = ^ 2  Ek(™>) cos(0fc(ra)) (5.23)
k=i

The value of N  in this sum means the number of partials present in the signal at 

time instance m. Hence the residual model x res(n) is computed using subtractive 

synthesis as follows

Xres(m) =  x(m) -  x sin(m) (5.24)

where x(m)  is the original guitar test signal. Figure (5.3) shows the real guitar 

test signal, the sinusoidal signal x Sin and the residual signal xres obtained using 

the STFT-based analysis. Note that the residual signal still includes the lowest 

body resonances.

In the EKF-based analysis, the algorithm provides the amplitude and phase 

trajectories at time instances separated by the sampling parameter D. Therefore 

thex instantaneous amplitude and phase are obtained by linear interpolation as 

previously described in the STFT-based analysis. Figure (5.3) shows the sinu­

soidal and residual signals obtained by the EKF-based algorithm.

Although the lowest body resonances have been extracted already by the 

EKF algorithm, we did not remove them from the residual signal. This is for 

comparison reasons with the STFT-residual signal which still includes the body 

resonances.
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Figure 5.3: Sinusoidal and residual models using the STFT
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5.4 Estim ation of the Body Resonators Param­

eters

In this section we present the estimation process of the body resonators B\(z)  

and B 2(z). Recall from chapter 3 that each resonator is fully determined by two 

parameters: the centre frequency a,’o and the bandwidth Au.  This section starts 

by describing the estimation of those parameters in the STFT-based analysis case 

followed by the estimation process in the EKF-based analysis.

In the STFT-based analysis the residual signal x res(m) contains information 

about the plucking event, the body response and the attack transient. To estimate 

the body resonator parameters, the STFT of the residual signal is computed. In 

this case the window size is adapted to four times the lowest body resonance. The 

centre frequencies cjoi and u>o2, corresponding to B\(z)  and B 2(z) respectively, is 

readily available from the STFT.

The amplitude trajectories of the lowest body resonances Ebx(l), Eb2(l) are 

obtained by utilising the peak detection and the peak continuation algorithms 

previously described in chapter 4. Figure (5.4) shows a 3D-plot of the STFT of 

the residual signal whereas Ebx(l) and Eb2(l) are shown in figure (5.4). Smoother 

trajectories are obtained by using the EDR curves as described in section (5.1). A 

straight line is fitted to each EDR curve on a dB-scale and its slope is computed. 

The radius of the resonator pole is then obtained by [55]

Tj = io V I20*^) for j  = 1,2 (5.25)

where Sj is the slope of the j th body resonator, Hi is the hop size parameter used 

in computing the STFT or the increment parameter D  in the EKF case, and r, 

is the corresponding pole radius. Note that Hi is different from H,  the hop size 

used in the previous STFT, since the window size is different. For values of rj

1 0 6
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Figure 5.5: 3D-plot of the STFT of the residual signal
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Figure 5.6: Amplitude trajectories of the body resonances using the STFT
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Estimated values B i (z ) B 2 ( z )

Slope

Centre frequency / 0 

Pole radius r  

Bandwidth A uj

-0.0006

100.78

0.999

0.002

-0.0006

212.78

0.999

0.002

Table 5.3: Body resonators parameters using the STFT

Estimated values B\(z) B 2{z )

Slope

Centre frequency / 0 

Pole radius r 

Bandwidth A u

-0.0009

102.29

0.999

0.002

-0.0004

209.01

0.999

0.002

Table 5.4: Body resonators parameters using the EKF

close to unity, the corresponding bandwidth A Uj is evaluated according to [36]

Acjjj ~  2(1  — Tj) (5.26)

The estimated values of cj0 i ,  w 02, n ,  r2, A c j i  and Alj2 using the STFT-based 

analysis are given in table (5.3). In the EKF-based analysis the two lowest 

bocfy resonances have been included already in the final model previously de­

scribed in chapter 4. Therefore there is no need to apply the filter once more 

for estimating the amplitude trajectories of the body resonances. The estimation 

process continues by estimating the decay rates of such trajectories and conse­

quently computing the corresponding bandwidth. This step is similar to that 

described in the STFT-based case. Figure (5.4) shows the amplitude trajectories 

of the two lowest body resonances. Table (5.4) shows the results of the estimated 

values using the EKF-based algorithm.
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5.5 Estim ation of the Excitation Signals

In this section, we present the estimation process of the excitation signals x exc, 

and Xb2 for the string model S(z)  and the body resonators Bi(z)  and B 2(z) 

respectively.

5.5.1 String M odel Excitation Signal

In [55] Tolonen has proposed a technique for estimating the string model exci­

tation signal. In his technique the residual signal x res(n) is post-processed to be 

applicable as an excitation signal for the string model. This is achieved by inverse 

filtering the original guitar signal, expressed as a sum of the sinusoidal model and 

the residual model, with the reciprocal of the string model S _1(z). That is

Xinv(z) = S~1(z) [.Xres(z) +  X sin(z)] (5.27)

where S(z)  is the string transfer function given by (2.22), X res(z) and X Sin(z) 

are the z-transforms of the residual and the sinusoidal models respectively. In 

the time-domain, equation (5.27) can be re-written as

•K invi j l )  — % rin v( j l )  ""t“ %s i n v i j )̂ (5.28)

where xrinv(n) is the inverse-filtered residual signal and x Sinv(n) is the inverse- 

filtered sinusoidal model. The inverse-filtered signal of the sinusoidal signal 

%sinv{ri) contains an estimation of the error produced by the string model [55]. 

The attack part of this signal is used to equalize the spectral content of the at­

tack part of the residual signal. Therefore the signal x Sinv(n) is truncated after

the attack part. This is achieved by multiplying this signal by the right half of 

a window function such as the Hanning window. Hence the excitation signal is 

given by

%excj) =  %sinv ( n)Whalf(n) + rinv (n) (5.29)
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Figure 5.8: String model excitation signal

where Whaif(n) is a one-sided window function. Note that the excitation signal 

Xexc,b{n) includes the body resonances as well. Therefore the excitation signal 

Xexcin) is obtained by subtracting the sinusoidal models of the body resonances 

from the signal xexĉ . That is

•^eic(^) — *̂ ezc,b(̂ ) %bsin\ (^) •Ebsir&ijl) (5.30)

where XbSi n i { n )  and Xbsin2 (n )  are the sinusoidal models of the first and second 

body resonance respectively. Figure (5.8) shows the excitation signal xexĉ (n) 

in the top figure whereas the excitation signal x exc(n) is shown in the bottom 

figure. The attack part of this signal poses one of the major problems with the 

STFT-based analysis; that is the trade-off between the time resolution and the 

frequency resolution briefly described in chapter 4. To resolve the lowest body 

resonance (100Hz), a wider window has been used in the analysis which, in turn, 

results in a poor time resolution. Therefore the time instance of the peak can 

not be determined accurately using the STFT technique.

In the EKF-based case, the excitation signal of the string model can be esti-
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Figure 5.9: String model excitation signal in the EKF-based case

mated by following the same procedure previously used in the STFT-based anal­

ysis. The results are shown in figure (5.9) where the excitation signal xexĉ {n) is 

shown in the top figure and the excitation signal x exc(n) is shown in the bottom 

figure.

5.5 .2  B o d y  R eson ators E xcita tion  S ignals

Recall that the second-order transfer function of the body resonator is given by

1 — z~^
B{z) = (1 -  6) j _  2f>COS(a;0) z_1 +  (26 — l)z -2

This filter has no realizable inverse since it has two zeros at z =  0 and z = 1. 

To estimate the excitation signal of each body resonance a pseudo-inverse filter 

is designed instead [55]. This filter can be written as

^  =  1 -  26cos(w0) z - 1 (26 -  1)2 - 2 5̂'31*
where
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Figure 5.10: Body resonator excitation signal in the STFT case

bf0 =  (1 -  b)[l -  e -^ o ] ,

UJ0 =  2 7 r / o / / s , 

b = 1 /(1  +  tan(Au;/2 )),

Alj is the 3-dB bandwidth of each resonator in radians.

The parameter bf0 gives the value of the numerator of the original body resonators
*

at the centre frequency /o of each resonance. Hence the inverse filter H ~l (z) is 

given by

H ~1(z) =  T (1 -  26cos(w0) (26 -  1) (5.32)
bh

The excitation signals Xbi(n) and (n) are then obtained by inverse-filtering the 

corresponding sinusoidal models Xbsini(n) and Xbsini(«) with the filter H ~1(z). 

That is

X bl(z) = H ~l ( z ) X b3ml(z)

X b2(z) = H - ' ( z ) X b3m2(z)

(5.33)

(5.34)
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Figure 5.11: Body resonator excitation signal in the EKF case

where Xbi(z), Xb2 {z), XbSini(z) and XbSin2 (z) are the z-transforms of the exci­

tation signals and the sinusoidal models of the lowest two body resonances [55]. 

Figures (5.10) and (5.11) show the sinusoidal model a:ftsini(n) (top) of the lowest 

body resonance and the excitation signal Xbi(n) (bottom) of the body resonator 

in the STFT and the EKF cases respectively.

5.6 R esults and D iscussion

In this section an analysis of the re-synthesized signal, obtained by the proposed 

techniques, is described. The results are compared to those obtained by the 

STFT-based technique. This section also presents a time-frequency analysis of 

the residual (noise) signal of the EKF-based technique along with some statistical 

analysis tests.
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5.6.1 Analysis of the Re-synthesized Signal

The re-synthesized signal is obtained by applying the excitation signals previously 

estimated to the guitar model.

This signal is shown in figure (5.12) where the top graph shows the original 

guitar signal, the middle graph shows the re-synthetic signal using the STFT- 

based technique and the bottom graph shows the corresponding signal in the 

EKF-based technique. It is worth mentioning here that the guitar model is just 

a linear model that is not capable of producing all non-linearities present in the 

real guitar signal. However, it is quite adequate for our purpose of study which is 

the analysis process rather than the modelling process itself. It is clear from the 

figure that the signals retain the original level of amplitude of the original one as 

well as the overall decay rate. In addition the re-synthetic signals have quite the 

same attack part up to the truncation point of the equalized signal.

The original signal and the re-synthesized signals using the STFT and the 

EKF techniques are appended to the thesis on an audio CD-rom.

5.6.2 Analysis of the Residual Signal

In this section we analyse the residual signal in order to have some insight on the 

performance of the proposed techniques. This is achieved by studying the residual 

signal properties in the time-domain and in the frequency-domain. Further the 

average value and the variance of the residual are computed. Generally the 

smaller the residual the more accurate is the estimation process.

Figure (5.13) shows the residual signals of the STFT and the EKF cases. A 

closer look at the attack part of the two signals is shown in figure (5.14) which 

imposes the time-resolution problem of the STFT-based technique. Some basic 

error-analysis tests have also performed on the residual signal. Table (5.5) shows 

the estimated values of the mean, the variance, and the standard deviation of 

this signal.
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Figure 5.12: The re-synthetic guitar signal
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Criteria The EKF-residual The STFT-residual

Average value 0.00083 0.0012

Variance 0.00082 0.0026

Standard deviation 0.0287 0.0512

Table 5.5: Statistical values of the residual signals
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Figure 5.15: FFT of the residual signal

£rom figure (5.13) it is clear that the EKF-residual signal is smaller than the 

STFT-residual signal. Comparing the estimated values in table (5.5) implies that 

the EKF-based technique is more efficient than the STFT-based analysis.

In the frequency-domain the spectrum of the residual signal is shown in figure 

(5.15). This figure shows that the spectrum of the STFT-residual signal has 

more partials with even higher magnitudes than the corresponding ones in the 

EKF-based technique.
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5.6.3 Discussion

Throughout this chapter the proposed EKF-based technique has proven to be 

efficient and accurate. This indicates that the proposed technique can be used 

not only for tracking but also for the calibration process. Nevertheless we believe 

that the calibration process is an open area for further improvement.

5.7 Summary

This chapter has presented the calibration process of the underlying guitar model. 

The estimation process is carried out in the STFT-based analysis as well as the 

EKF-based analysis. Each step in the estimation process is explained in details 

along with the main differences between the two techniques. This chapter has 

also presented an analysis of the re-synthetic signal and the residual signal.
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Chapter 6

Conclusions and Future Work
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Starting with a physically-relevant model of the acoustic guitar which is often 

described and used in the literature, some new tools for the analysis-based syn­

thesis of the guitar signals have been presented in this study. The new tools are 

the pitch detection algorithm and the partials tracking algorithm. The main re­

sults of the new techniques are presented in this chapter and the advantages and 

disadvantages of the proposed techniques are described. Finally, ideas for future 

work and some suggestions for improvements in both the modelling process and 

the analysis process are presented.

6.1 Thesis Summary

Physical modelling of a real musical instrument involves two major steps. The 

first step is the design of a relevant model that simulates closely the real instru­

ment. This is achieved by studying the physical structure of the instrument along 

with the mathematical equations that govern its behaviour. Second the physical 

model must be calibrated to a certain instrument which is accomplished by the 

analysis of real signals of this particular instrument. In our study we have focused 

on the second step.

After introducing a general overview of the various techniques of physical 

modelling, the construction of the instrument under study; the acoustic guitar, 

is briefly described in chapter 1 .

The design of a physically relevant model of the acoustic guitar is presented 

in chapter 2. In this chapter the principles of the digital waveguide technique 

are reviewed and the formulation of a single delay line model is illustrated. We 

also present the KS-algorithm for simulating plucked strings and drum-like tones. 

Based on the extensions of this algorithm and the principle of commuted waveg­

uide, a guitar model is designed. Other non-linearities that can be incorporated 

in the guitar model are briefly presented.
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Having designed a model of the acoustic guitar, the next step is the analysis of 

real guitar signals in order to calibrate the model. This analysis process starts by 

estimating the pitch period of the guitar signal which in turn determines the total 

delay of the string model. For this purpose a novel method has been presented 

in chapter 3. The new method is based on the dyadic wavelet transform and 

utilizes two FIR-filters for its implementation. The construction of an analysis 

wavelet with certain criteria; the quadratic spline wavelet, is explained in detail. 

The proposed algorithm has been implemented on a wide range of musical signals 

and the results are compared to those obtained by the autocorrelation function.

From the implementation and the simulation results, we conclude that the 

proposed algorithm is quite simple since only two FIR-filters are required for the 

analysis. These are the low-pass filter corresponding to the scale function and the 

high-pass filter corresponding to the analysis wavelet. The proposed algorithm 

has proven to be accurate, efficient and robust to noise.

The performance of various wavelets has been tested and the quadratic spline 

wavelet is proven to be appropriate for the analysis of a wide variety of musical 

signals. In addition, the frame size can be chosen arbitrarily as long as the min­

imum number of periods is preserved for estimating the pitch period. Therefore 

we conclude that the choice of either the analysis wavelet or the frame size is not 

as crucial as it is in the autocorrelation function. As previously mentioned the 

computational complexity of the proposed algorithm is O( NJ)  where N  is the 

size of the input signal and J  is the total number of scales. The main advantage 

of the proposed technique is tha t it is faster than the auto-correlation function 

and takes into account the non-stationary nature of musical signals. Finally the 

proposed algorithm is general in the sense that it can be applied not only to 

guitar signals but also to a wide class of musical signals.

Having estimated the pitch period, the next step in the analysis is to study 

the time-varying spectrum of the guitar signal. This step provides the partials’
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decay rates which consequently determine the magnitude response of the loop 

filter. Chapter 4 has presented a thorough study of this step. We start by 

describing one of the most commonly used techniques in the literature; that is 

the STFT-based analysis. Implementation aspects and simulation results using 

this technique are presented in detail. The main limitations of this technique are 

briefly described.

The novelty of chapter 4 stems from introducing a new technique for partials 

tracking in musical signals. The proposed technique is based on the theory of 

Kalman filter in non-linear systems. Different models have been tested, the imple­

mentation aspects of the algorithm are thoroughly presented and the simulation 

results are analysed in depth.

From this chapter we conclude that designing the correct model that fits the 

true signal is the core of the EKF technique. Once the model has been designed 

accurately, the computation of the state transition matrix and the measurement 

matrix is straightforward.

The results of the proposed technique show that it is accurate and robust 

to noise. The computational complexity of this technique is 0 ( M 2) where M  

is the total number of state variables to be estimated. This implies that the 

EKF-based technique is significantly faster than the STFT-based technique which
A

performs a series of FFT each of complexity O ( Nl og N)  for an iV-point input 

signal. Unlike the STFT-based technique which implements a peak detection 

and a peak continuation algorithm to provide the trajectories of each partial, 

the EKF-based technique provides the trajectories of each partial in one step. 

Further, the phase envelopes are obtained by linear interpolation instead of cubic 

interpolation as is the case in the STFT-based technique.

Another major advantage of the proposed technique over the STFT-based 

technique is the time-resolution. The fact that the maximum value of the time 

increment parameter D  is limited by the sampling theorem indicates tha t this
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technique takes into account the non-stationary nature of the musical signals. 

Hence the results of this technique can be considered as more reliable than the 

ones obtained by the STFT technique. It is worth mentioning here tha t due to 

the time-resolution problem of the STFT-based analysis, the whole process has to 

be carried out once more for extracting the lowest body resonances. In contrast, 

the lowest body resonances have already been included in the EKF model.

The proposed EKF-based algorithm has been tested mainly for guitar signals. 

However we believe that the algorithm can be applied to any musical signal that 

can be represented by the final model; for instance any plucked string signal. 

Nevertheless, the application of the proposed technique to other types of musical 

signals is ripe for further investigations.

On the other hand some parameters of the EKF-based algorithm have to 

be carefully chosen such as the measurement noise variance R  and the state 

covariance matrix Q. A prior knowledge of the signal to be analysed can be 

exploited. In our study the values of R  and Q  have been experimentally chosen.

At this point it is worth noting that all proposed techniques have been im­

plemented using MATLAB. They have the potential of real-time implementation 

and writing these algorithms in a more generic language like C is currently taking 

place. Having estimated the required values for calibrating the guitar model, the 

estimation process is explained in detail in chapter 5. we believe that this chap­

ter is of great importance as it assures the accuracy of the proposed EKF-based 

technique. In chapter 5 we have also presented an analysis of the re-synthesized 

signal as well as the EKF-residual signal.

6.2 Future Work

We believe that the topics introduced in this dissertation are just the beginning 

of a new era for digital sound synthesis techniques. There are still many things to
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be done in both the modelling process and the analysis process. In the modelling 

process, modelling the non-linearities present in real strings needs more careful 

study and new techniques for incorporating them are required. Modelling the 

guitar body as a digital filter as well as modelling the plucking point are still 

opened for further investigations. It is possible that the wavelet technique we 

have introduced may form a starting point for this difficult problem. We also 

believe that new techniques are required for the calibration process. This includes 

the design of the loop filter, the choice of the optimal weight function and the 

estimation of the excitation signals; more experimental and theoretical work is 

needed to clarify this area.

The EKF technique shows great promise in the modelling of instruments. 

Nonetheless a method for computing the state covariance matrix Q in musical 

signals is required. Also the application of the EKF technique to a wider range of 

musical signals needs to be studied, but we have shown its potential. The main 

obvious continuation of this study is to adapt the pitch detection algorithm as 

well as the partials tracking method for the SMS modelling system. We believe 

that these methods will lead to significant improvement in this technique, and 

offer the promise of real-time analysis.

6.3 Conclusions

To conclude, in this study we have presented novel methods for the analysis of 

musical signals. A new pitch detection algorithm is developed which has the 

potential of real-time implementation and is proven to be efficient and accurate. 

Another technique is developed for tracking the partials in plucked string signals, 

this new technique being simple, accurate and provides a substantial reduction 

of the computational complexity compared to the STFT-based technique.
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A ppendix A  

Paper from D A Fx99

This appendix is a copy of the paper A Wavelet-based Pitch Detector for Musical 

Signals by J. ffitch and W. Shabana, which was published in the Proceedings of 

DAFx99 [10].
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A WAVELET-BASED PITCH DETECTOR FOR MUSICAL SIGNALS

John Fitch 
Department o f Mathematical Sciences, 

University o f Bath,
Bath BA2 7A Y .U K  

e-mail: jpff@maths.bath.ac.uk

AB STRA CT

Physical modelling o f musical instalments is one possible 
approach to digital sound synthesis techniques. By the term 
physical modelling, we refer to the simulation of sound 
production mechanism o f a musical instrument, which is modelled 
with reference to the physics using wave-guides. One o f the 
fundamental parameters o f such a physical model is the pitch, and 
so pitch period estimation is one o f the first tasks o f any analysis 
of such a model.
In this paper, an algorithm based on the Dyadic Wavelet 
Transform has been investigated for pitch detection o f musical 
signals. The wavelet transform is simply the convolution of a 
signal f(t) with a dialated and translated version of a single 
function called the mother wavelet that has to satisfy certain 
requirements. There are a wide variety of possible wavelets, but 
not all are appropriate for pitch detection. The performance of 
both linear phase wavelets (Haar, Morlet, and the spline wavelet) 
and minimum phase wavelets (Daubechies’ wavelets) have been 
investigated. The algorithm proposed here has proved to be 
simple, accurate, and robust to noise; it also has the potential of 
acceptable speed. A comparative study between this algorithm and 
the well-known autocorrelation function is also given. Finally, 
illustrative examples of different real guitar tones and other sound 
signals are given using the proposed algorithm.

K EY W O RD S

Physical modeling -  wavelet transform -  pitch -  autocorrelation 
function.

1. IN TRO D U CTIO N

During the last two decades, physical modelling o f real musical 
instruments has gained popularity as a tool for sound synthesis 
and computer music. The term physical modelling refers to the 
simulation o f sound production mechanism and the behaviour of a 
real musical instrument [I] [2] [3],
In physical modelling o f a guitar (as a plucked string instrument), 
the ideal vibrating string is considered as the main source of 
vibration. It satisfies the one-dimensional wave equation, which 
can be modelled very accurately using digital wave-guide 
techniques [4]. Starting with a recorded real guitar tone, 
estimating the model parameters is one of the main tasks o f the 
analysis process. Hence, pitch period estimation is essential for 
extracting the other parameters. Unlike speech signals, musical 
signals have a broader range of frequencies, so there are some

Wafaa Shabana 
Department of Mathematical Sciences, 

University o f Bath,
Bath BA2 7AY, UK 

e-mail: wrs@maths.bath.ac.uk

difficulties in estimating their pitch period [5], The autocorrelation 
function is one o f the well-known time-domain pitch detectors. 
Despite its simplicity, the autocorrelation function has some 
disadvantages.
An algorithm based on the dyadic wavelet transform has been 
investigated for pitch estimation o f musical signals. The basic idea 
o f this algorithm is that, for an appropriately chosen wavelet, the 
dyadic wavelet transform exhibits local maxima at the points of 
sharp variation of the signal [6],
In this paper, the application of the proposed algorithm to a wide 
range of stringed musical signals as well as some other musical 
signals has been investigated. Further, a  comparative study 
between this algorithm and the autocorrelation function is 
presented. This paper is organized as follows: section 2 is devoted 
to the pitch detection problem and the autocorrelation algorithm. 
In section 3, principles o f the dyadic wavelet transform and its 
properties is presented. In section 4, implementation o f the 
proposed algorithm and the autocorrelation algorithm to a wide 
range of musical signals as well as singing voices is studied. 
Discussions and results are presented in section 5. Finally, section 
6 is devoted to the conclusion.

2. P IT C H  D E T E C T IO N  O F  M U SIC A L SIGN A LS

Pitch period is a fundamental parameter in the analysis process of 
any physical model. A pitch detector is basically an algorithm that 
determines the fundamental pitch period of an input musical 
signal. Pitch detection algorithms can be divided into two groups: 
time-domain pitch detectors and frequency-domain pitch 
detectors. Pitch detection o f musical signals is not a trivial task 
due to some difficulties such as the attack transients, low 
frequencies, and high frequencies.
Ih e  autocorrelation function is a time-domain pitch detector. It is 
a measure of similarity between a signal and translated (shifted) 
version of itself. The basic idea o f this function is that periodicity 
o f the input signal implies periodicity of the autocorrelation 
function and vice versa.
For non-stationary signals, short-time autocorrelation function for 
signal fin ) is defined as [7]:

. N-m-1

pt\(m ) - — ^ J / ( n + /) u ( n + /) ] |/ ( n + m + /) H ( n + m + /) ] ,  ( I )
N  n=0

0 5  m £ Af0 -1 ,
where w(n) is an appropriate window function, N is the frame 
size, 1 is the index of the starting frame, m is the autocorrelation
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parameter or time lag and Ma is the total number o f points to be 

computed in the autocorrelation function.
The autocorrelation function has its highest peak at m=0 which 
equals to the average power of the input signal. For each I, one 
searches for the local maxima in a meaningful range of m. The 
distance between two consecutive maxima is the pitch period of 
the input s ig n a l / ( n ) .  Different window functions such as 

rectangular, Hanning, Hamming, and Blackman windows have 
been used in the analysis. The choice o f an analysis window and 
the frame size are among the main disadvantages of the 
autocorrelation function.

3. DYADIC w a v e l e t  t r a n s f o r m

Wavelet transform is based on the idea of filtering a signal fit) 
with a dialated and translated versions of a prototype 
function ^ ( f )  • This function is called the mother wavelet and it 
has to satisfy certain requirements [8]. The Continuous Wavelet 
Transform (CW T) fo r/(t), is defined as [9];

C W T (f ,a ,b )  =  j ’f ( t y ¥ a_b ( t)d t,  (2)

where »|. ap) -  'i*(f b) - ae  R -  {0} is the scale parameter and 
a

b e  R is the translation parameter. In addition to its simple 
interpretation, the C W I' satisfies some other useful properties 
such as linearity and conservation of energy [8] [9]. For practical 
implementations, CW T is computationally very complex.
Dyadic Wavelet Transform fDWT), is the special case of CWT 
when the scale parameter is discretized along the dyadic grid

( 2 y ), j = I ,2 . . .  and b e  Z  [10], i.e.,
DWT(fj)= Wj f  = f ( t )  * *V2j (0  (3)

where * denotes convolution and ^  For an

appropriately chosen wavelet, the wavelet transform modulus 
maxima denote the points of sharp variations of the signal [6] [10]
[12]. This property o f DW T has been proven very useful for 
detecting pitch periods o f speech signals [11], An appropriately 
chosen wavelet is a wavelet that is the first derivative of a smooth 
function [6]. Zero-crossings of musical signals can be considered 
as points o f sharp variation of the signal and hence the dyadic 
wavelet transform exhibits local maxima at these points across 
several consecutive scales. The pitch period is evaluated by 
measuring the time distance between two such consecutive 

^m axim a.

4. IM PL EM EN TA T IO N

Theoretically, the Dyadic wavelet transform has to be evaluated

for all scales ( 2 J ), for j varying from - oo to + °° . For practical 
implementation, one is limited to a finite larger scale and a 
nonzero finer scale, since the input signal is generally measured 
with a finite resolution. The finer scale is equal to I (for 

normalization purposes) and the larger scale is equal to 2 J . The 
wavelet used in this analysis is the quadratic spline wavelet, which 
is the first derivative of the cubic spline 0 ( t )  , i.e.,

with

sin( to 14) (5)9 lw )  = exp( -iO))\t (a>M)
This wavelet is an anti-symmetric, regular and of compact
support. The corresponding scale function 4>(f) is the quadratic

spline with Fourier transform given by

s. . . . 3w ( sin(a»/2)'\ (6)4>(<w) = exp(-i— ) -----------  '2 { (0)12) j 
Figure I . show both 'F ( f )  and <£(0 respectively.

Two FIR filters, namely, a low-pass filter (/i(n )| and a high-pass 
filter (g(n)} characterize the discrete dyadic wavelet transform, 
and the number of levels J. Starting with S q /  = f  ho and 

g 0 = g ,  the recursive algorithm is defined as 

W j , ] f  =  g j * S j f

w  w
j= 0 ,I . . .J - I .

where hj  and g j  denotes the filters obtained from h and g  by

inserting V  - l  zeros between each two consecutive coefficients 
of the two filters respectively. Hence the DWT can be 
implemented as a FIR non-subsampled octave-band filter bank.

(a) quadratic spline wavelet (b) quadratic spline function

(7)

'V{eo) = io)9{(o). (4)

Figure (I )

5. R ESU L TS AND DISCUSSONS

The proposed algorithm has been implemented on a wide range of 
musical signals such as a saxophone signal (wind instrument-), a 
tanpura signal (an Indian drone instrument), a singing voice 
signal, and a conga rim -hit signal (drum family) but with 
emphasis on plucked string signals (a classical guitar tone, bass, 
pizzacato cello ...etc).
The sampling rate for all test signals is 44.1 kHz and different 
window size of 22.7 and 34 ms has been used. Experiments have 
shown that it is adequate to evaluate the dyadic wavelet transform

across three consecutive scales only 2 4 , 2 5 , and 2 6 .
In the analysis of plucked string signals, the results show that it is 
sufficient to estimate the pitch period from the steadily decaying 
part o f the signal several hundred milliseconds after the attack 
[13]. This is due to the fact that pitch period of plucked-string 
signal decreases as the signal attenuates. The test signal is a D- 
tone guitar and the estimated pitch period is 147 Hz. In this case, 
the relative error is (0.001). Results for guitar tone is shown in 
figure (2).
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The estimated pitch o f a D#-sax signal is 154.7368 Hz with 
relative error 0.005. Figure (3) shows results of the sax signal.
The lanpura signal is a very harmonically rich signal. Our results 
show that the proposed algorithm has the ability to detect not only 
the fundamental frequency but also the frequency with the most 
energy present in the signal. In the case of the autocorrelation 
function, the effect of the window function is to taper the function 
smoothly to 0. Hence, a longer frame size has to be used in order 
to detect the fundamental of the tanpura signal not the strongest 
harmonic. The estimated pitch period o f this signal is 157.5 Hz. 
Results of this signal are shown in figure (4).
Figure (5) shows results of the analysis of a male singing voice. 
The estimated pitch is 110.8040 Hz.
M oreover, in the analysis o f conga-rim signal, the algorithm 
classified this signal as unpitched one since it failed to find local 
maxima that satisfy the previous criteria.
For all test signals, the results can be further improved by using 
several methods of curve fitting for best estimate o f local maxima. 
The computational complexity of the proposed algorithm is 
O(NJ), for an input signal of length N evaluated across J scale. 
The constant depends on the number o f the nonzero coefficients 
present in the filters h and g. The algorithm is faster than the 
autocorrelation function since the length of the analysis wavelet is 
less than M  0 .

Different wavelets like Haar wavelet [14], a minimum-phase 
wavelet [14], and M orlet wavelet [15], have been used in the 
analysis to compare their performance. The spline wavelet has a 
superior performance. Results also show that the Haar wavelet has 
the potential of real-time implementation due to its simplicity and 
its accurate results.
Despite its simplicity, the autocorrelation function is 
computationally expensive when the appropriate frame size is 
used. Its main drawback is the choice o f a window function and 
assuming stationarity o f the signal within the frame, hence using a 
fixed frame size during the analysis process. M ore about the 
analysis process o f all test signals is found in [16].

6. C O NC LUSIO N S

An algorithm based on the Dyadic Wavelet Transform is 
investigated for pitch detection o f musical signals. The results 
show that the algorithm can be applied to a wide range of musical 
signals such as guitar, sax, cello, bass, tanpura as well as some 
singing voices. The algorithm is simple since only two FIR-filters 
are required for the analysis. It is accurate, efficient and robust to 
noise. The main advantage of the proposed algorithm is that it is 
fast compared to the autocorrelation function. Besides, the 
algorithm takes into account the non-stationarity of the input 
signal. Unlike the autocorrelation function, the frame size in not a 
crucial parameter since different frame sizes have been used 
successfully. On comparing the performance of different 
wavelets, the quadratic spline wavelet has a superior performance. 
Nevertheless, the algorithm has the potential of real-time 
implementation using the Haar wavelet due to its simplicity with 
minimal loss o f accuracy. Finally, the algorithm can classify 
unpitched signals.
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A ppendix B  

Parabolic Interpolation

The estimated values of the local maxima for the autocorrelation function and 

the wavelet-based pitch detector can be further improved by using parabolic 

interpolation. This is achieved by fitting a parabola to the maximum point, say 

A(x2, 2/2)> and its two adjacent points B(xi , y i )  and C{x$,y$).

The equation of the parabola is given by

y =  a x 2 +  bx  +  c (B.l)

where a , b and c are the coefficients of the parabola that need to be estimated. 

On substituting from A, B , and C  into equation ( B .l) yields

ax \  +  bxi  +  c (B-2)

a x \ + b x 2  + c (B.3)

a x \  + bx$ + c (B.4)

Subtract equation ( B.2) from equations ( B.3) and ( B.4)

2/2 ~ y \  =  a ( x \ - x \ )  + b(x2 - x { )  (B.5)

2/3 “ 2/1 =  o,{xj -  x\) +  b(x3 -  xi)  (B.6)

2 / i  =

2/2 =  

2 / 3  =
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Equations ( B.5) and ( B.6) can be rewritten as

I  =  a (x2 +  xi) +  b (B.7)

I I  = a ( x 3 + xi) +b  (B.8)

where I  and I I  are defined as

' -  i H o  <">

"  -  t S n  <B10)
To determine the coefficient a, subtract equations ( B.7) and ( B.8)

V  -  n )
( B n >

Using the value of a, the coefficient b can be determined from equation ( B.7) as

b = I  -  a (x2 +  xi)  (B.12)

By knowing the values of both a and 6, the coefficient c is determined from any

of equations ( B.2), ( B.3), or ( B.4). The maximum value of the parabola then

evaluates to

•Emax = (B.13)

b2Umax — C (B.14)
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A ppendix C 

A nalysis o f a D Guitar Signal

In this appendix we present the analysis of another guitar test signal which 

is shown in figure (C.l). The estimated pitch period of this signal using the 

quadratic spline wavelet is 147.027 Hz. The results are shown in figure (C.2).

Figure (C.3) shows the Fourier transform of this signal. From this figure it is 

clear that the second body resonance is too small (nearly missing). Therefore in 

the EKF-based model we have included only the first body resonance.

Some of the amplitude trajectories of this signal using the STFT-based tech­

nique are shown in figure (C.4). Figure (C.5) shows the corresponding results of 

the proposed EKF-based technique.
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A ppendix D 

A nalysis of a B Guitar Signal

In this appendix we present the analysis of another guitar test signal which 

is shown in figure (D.l). The estimated pitch period of this signal using the 

quadratic spline wavelet is 248.1836Hz. The results are shown in figure (D.2).

Figure (D.3) shows the Fourier transform of this signal. From this figure it 

is clear that partials above 3kHz are too small to be included in the EKF-based 

model. In addition, we have included only the first body resonance since the 

second is nearly missing.

The amplitude trajectories of the four lowest partials of the guitar signal using 

th^STFT-based analysis are shown in figure (D.4).

Figure (D.5 shows the trajectories of these partials using the EKF-based tech­

nique.
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