

University of Bath

PHD

Applications of solid modelling to component inspection with coordinate measuring
machines

Walker, Ian

Award date:
1991

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

Applications of Solid Modelling

To

Component Inspection with Coordinate Measuring Machines

Submitted by

Ian Walker

for the degree of Doctor of Philosophy

of the University of Bath

1991

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with its author. This

copy of the thesis has been supplied on condition that any one who consults it is

understood to recognise that its copyright rests with its author and that no quotation

from the thesis and no information derived from it may be published without the

prior written consent of the author.

This thesis may be made available for consultation within the University Library

and may be photocopied or lent to other libraries for the purposes of consultation.

Note that the term author covers both the researcher and supervisor.

UMI Number: U047317

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U047317
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

UIWVEr]3!fY OF BATH
ycr-'av

n i 22FEBi993

P h jd

OVERVIEW

Inspection by coordinate measuring machines (CMMs) is widely used to assess the

quality of manufactured components. One purpose of such inspection is to esti­

mate the accuracy of machined geometric features and check that they are

manufactured within specified tolerances. CMM inspection is slow, and time could

be saved by automating the planning and measurement analysis stages of the

inspection process.

Solid modelling is a means of representing three dimensional solid objects

using computers complete with geometric information, and has a wide range of

engineering applications. Because the models contain geometric information, solid

modelling is also useful for automating CMM inspection.

The work described in this thesis involves using set theoretic solid modelling

to automate stages of the CMM inspection process and may be split into three parts:

(i) Developing a method of attaching geometrical tolerances to solid

models.

(ii) Using the toleranced model to generate an inspection plan, consisting of

points to measure and a probe path.

(iii) Using the results of inspection and the model to verify that the meas­

ured features he within the given tolerances.

Tolerances are attached as a form of attribute to the solid model and are

added as the model is defined. Such attributes allow other non-geometric informa­

tion to be assigned to the model, and thus enable, for example, control parameters

for inspection planning to be defined.

The inspection planning involves first automatically generating inspection

points using appropriate inspection attributes and the tolerance information. Then

the solid model is used to determine a path through the points for the CMM measur­

ing probe. This path is collision-free and also is constructed with the aim of

minimising the time spent on inspection.

Finally the measured results are collected and used with the toleranced solid

model to check that the various geometric tolerances have not been violated. The

checking is done as defined in the British Standards BS308 (Part 3 1972) on

geometric tolerances.

ACKNOWLEDGEMENTS

I would like to thank Dr Andrew Wallis for his valuable input and support to the
work described within this thesis.

In addition I would like to thank Dr Adrian Bowyer, Dr Zhirong Li and Dr Yun-
feng Zhang for their assistance during the writing of this thesis.

Finally I would like to thank all others who have contributed to this work.

CONTENTS
CHAPTER 1 : INTRODUCTION .. 1

1.1 Introduction ... 1
1.2 Inspection of Machined Components 1
1.3 Coordinate Measuring Machines 4
1.4 Solid Modelling : Description 7

1.5 Boundary Representation and Set Theoretic Modelling .. 8
1.6 Automating CMM Inspection 11

1.6.1 Automation of CMM Inspection Planning 11
1.6.2 Automatic Analysis of Measurements 12

1.7 Objectives of this Research 15
1.8 Outline of Developed System 17

1.8.1 Representating the Toleranced Component 17
1.8.2 Generating Inspection Points 22
1.8.3 Generation of Collision-Free Inspection Paths ... 22
1.8.4 Analysis of Measurements 24

1.9 Layout of This Thesis 24
CHAPTER 2 : LITERATURE SURVEY 27

2.1 Introduction ... 27
2.2 Automating Component Inspection 27

2.2.1 Motives for Automation 27
2.2.2 Current Status of Automatic Inspection 28

2.3 Coordinate Measuring Machines 31
2.3.1 Benefits of Inspection by Coordinate Measuring .. 31
2.3.2 Current Coordinate Measuring Machine Technology . 32

2.4 Solid Modelling .. 33
2.4.1 Development of Set Theoretic Solid Modellers ... 33

2.4.2 Applications of Set Theoretic Solid Modellers .. 35
2.5 Generating Surface Points 38

2.5.1 Generating A Regular Grid of Points 38

2.5.2 Interval Arithmetic 39
2.6 Set Theoretic Model Reconstruction 40
2.7 Selection of Inspection Points 42
2.8 Path Planning .. 46

2.8.1 Efficient Paths 46
2.8.2 Collision Detection 48

2.9 Tolerance Representation and Definition 52
2.9.1 Assigning Tolerances to Solid Models 52
2.9.2 Definition of Geometric Tolerances 55

2.10 Extraction of Feature Information 47
2.11 Automatic Checking of Geometric Tolerances 58

CHAPTER 3 : GENERATING THE SURFACE POINTS 59
3.1 Introduction ... 59
3.2 Considerations .. 59
3.3 Faceted Models .. 63

3.3.1 Description of Faceted Models 63
3.3.2 Methods of Generating Surface Points on Faceted

Models .. 66
3.3.3 Division and Pruning 70
3.3.4 An Algorithm for Faceted Models 73
3.3.5 Examples .. 77

3.4 Curved Surface Models 81
3.4.1 Description of Curved Surface Models 81
3.4.2 Extending the Faceted Algorithm 81

3.4.3 An Algorithm for Curved Surface Models 82
3.4.4 Examples ... 86

3.5 Other Methods of Generating Points 88

3.6 Conclusions .. 88

CHAPTER 4 : GROWING SET THEORETIC SOLID MODELS 90
4.1 Introduction ... 90
4.2 The Concept of Growing 91
4.3 Set Theoretic Tree Reconstruction and Growing 99

4.4 Growing Correction for Facetted Models 106
4.4.1 Introduction ... 106
4.4.2 Elimination of New Vertices 107
4.4.3 Repositioning Planar Half Spaces 114
4.4.4 An Algorithm for Correction of Grown Models 118
4.4.5 Limitations .. 118

4.5 Growing for Measuring Probes 119
4.5.1 Principle and Methods 119
4.5.2 Examples .. 124

4.6 Conclusions .. 126

CHAPTER 5 : SELECTING THE INSPECTION POINTS 128

5.1 Introduction ... 128

5.2 Detecting and Eliminating Inaccessable Points 129
5.2.1 An Algorithm for Detection of Unreachable

Points .. 129
5.2.2 Results of Applying Algorithm to Examples 133
5.2.3 Extending the Algorithm for General Probes 135

5.3 Selection of Inspection Points 140

5.3.1 Distribution Considerations 140
5.3.2 Quantity Considerations 142
5.3.3 Examples of Declustering Points 143

5.4 Conclusions .. 145
CHAPTER 6 : GENERATING THE MEASURING PATH 147

6.1 Introduction ... 147
6.2 Determining Time-Efficient Paths 148

6.2.1 Cost Functions 148
6.2.2 Travelling Salesman Problem and Path Generation . 151
6.2.3 Generating An Intial Time-efficient Probe Path .. 152

6.3 Collision Detection and Avoidance 154
6.3.1 Methods of Collision Detection for Facetted

Models .. 154
6.3.2 Collision Avoidance for Facetted Models 157
6.3.3 Examples .. 161

6.4 Path Planning for Alternative Probes 163
6.6 Conclusions .. 165

CHAPTER 7 : ASSIGNING ATTRIBUTES TO SOLID MODELS 167
7.1 Introduction ... 167
7.2 The Existing Model Description Language and its

Compiler ... 168
7.3 Assigning Attributes in The Model Description

Language ... 171
7.4 Attributes ... 173

7.4.1 Review of Geometrical Tolerances 173
7.4.2 Tolerance and Datum Attributes 181

7.4.3 General Attributes 182
7.5 Using Attributes for Inspection Planning 183

7.6 Conclusions .. 184
CHAPTER 8 : ANALYSES OF MEASURED D A T A 185

8.1 Introduction ... 185
8.2 Extraction of Information about Geometric Entities ... 186

8.2.1 Introduction ... 186
8.2.2 Extracting Geometric Information from the Solid

Model ... 187
8.2.3 Extracting Geometric Information from

Measurements ... 190
8.3 Tolerance Zones ... 191

8.3.1 Zone Characteristics and Derivation 191
8.3.3 Range of Tolerance Zones 196

8.4 Tolerance Checks .. 196
8.4.1 Types of Checks 196
8.4.2 Checking Tolerances Applied to Planes 197

8.4.3 Axis Tests .. 200
8.4.4 Cylinder, Cone and Sphere Tests 204

8.5 Conclusions .. 206

CHAPTER 9 : CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 208
9.1 Conclusions .. 208
9.2 Further Work ... 210

9.2.1 Growing ... 210
9.2.2 Point Generation 211
9.2.3 Path Generation 211

9.2.4 Attributes ... 212
9.2.5 Analysis ... 212

REFERENCES .. 213
APPENDIX 1 : COLLECTING THE MEASUREMENTS 222

Al.l Introduction ... 222
Al.2 The Hardware ... 222
Al.3 Controlling the Probe 222
Al.4 Probing the Points 223
Al.5 Measuring the Component 224

APPENDIX 2 : EXAMPLE OF ALGORITHMS 226
A2.1 Introduction .. 226
A2.2 Selecting Inspection points 226
A2.3 Growing for The Probe 227
A2.4 Path Generation .. 228
A2.5 Analysis .. 229

L IST OF FIGURES

Figure 1.1 Flow chart of automated inspection system.......... 19
Figure 1.2 Toleranced engineering drawing of component 20
Figure 1.3 Solid model description of component 21
Figure 3.1(a) Missing cyclic errors 61
Figure 3.1(b) Missing errors of lobed shapes 61
Figure 3.2(a) Correct method of probing 62
Figure 3.2(b) Ambiguous probing of edges 62
Figure 3.3(a) Faceted cylinder 65
Figure 3.3(b) Alternative approximations 65
Figure 3.4(a) Membership testing 67
Figure 3.4(b) Membership truth tables 67
Figure 3.5 Division and pruning 71
Figure 3.6(a) Half-space sub-space intersection 74
Figure 3.6(b) Construction of grid points 74
Figure 3.7(a) Points selected at grid nodes 76
Figure 3.7(b) Points randomly displaced from nodes 76
Figure 3.8 Generating points on curved surfaces 85
Figure 4.1 Difference between Growing and Scaling 92
Figure 4.2 Difference between Growing and Shifting 94
Figure 4.3 Topology changes 96
Figure 4.4 Topology changes of unioned shapes 98
Figure 4.5 Tree reconstruction 100
Figure 4.6(a) Topology changes with three half spaces 103
Figure 4.6(b) Conservative model 103
Figure 4.7 Topology changes due to redundant sub-models 104
Figure 4.8 Calculation of shifted vertex from original Ill
Figure 4.9 Counter example to eliminating of vertices 112
Figure 4.10 Repositioning half space solution to Fig 4.9 116
Figure 4.11 Using grown model to detect collisions 120
Figure 4.12(a) Shrinking a cylinder to a point 122
Figure 4.12(b) Growing a block for a cylinder 122
Figure 5.1(a) Vertical CMM Measuring Probe 130
Figure 5.1(b) Model of probe 130
Figure 5.2 Points which are not accessable to the probe 131
Figure 5.3(a) Cranked probe 137
Figure 5.3(b) Model of cranked probe 137
Figure 5.4(a) Reachable and unreachable points 138
Figure 5.4(b) Detecting reachable points 138
Figure 6.1(a) Collision avoidance using safe plane 150
Figure 6.1(b) Inefficiency of safe plane step 150
Figure 6.2 Collision path for probe arm 156
Figure 6.3(a) Generating search rays 159
Figure 6.3(b) Collision avoidance using search rays 159
Figure 6.4 Avoiding unwanted path steps using test rays 160
Figure 7.1 Sample of model description language 170
Figure 7.2 Example of using attribute functions 172
Figure 7.3 Alternative planes of tolerances for axis 175
Figure 7.4 Effects of range on tolerance 177
Figure 8.1 Interpretation of tolerances applied to planes 199
Figure 8.2(a) Planar area tolerances applied to axis 203
Figure 8.2(b) Cylindrical volume tolerances for axis 203

Figure 8.3(a) Tolerance zones for spheres and cylinders 205
Figure 8.3(b) Tolerance zones for cones 205
Figure 8.4 Example of CONCENTRICITY tolerance analysis 207
Figure A2.1 Surface points .. 230
Figure A2.2 Reachable points 230
Figure A2.3 Inspection points 231
Figure A2.4 Grown test rig (probe tip)........................... 231
Figure A2.5 Grown test rig (probe arm)........................... 232
Figure A2.6 Grown test rig (probe head).......................... 232
Figure A2.7 Inspection path for angled face 233
Figure A2.8 Inspection path for semi-circle 233
Figure A2.9 Inspection path for pocket feature 234
Figure A2.10 Inspection path for angled face 234
Figure A2.ll Inspection path for pocket feature 235
Figure A2.12 Inspection path for semi-circle 235
Figure A2.13(a) Results of SQUARENESS test 236
Figure A2.13(b) Results of ANGULARITY test 237
Figure A2.13(c) Results of SQUARENESS test 238
Figure A2.13(d) Results of FLATNESS test 239
Figure A2.13(e) Results of ANGULARITY test 240
Figure A2.13(f) Results of ROUNDNESS test 241
LIST OF TABLES
Table 2.1 Quantity of points for features 45
Table 4.1 Growth of reconstructed models 105
Table 7.1(a) Tolerances of FORM 178
Table 7.1(b) Tolerances of ATTITUDE 179
Table 7.1(c) Tolerances of LOCATION 180
Table 8.1 Identification of quadrics 180
Table 8.2(a) Zone types for tolerances of FORM 193
Table 8.2(b) Zone types for tolerances of ATTITUDE 194
Table 8.2(c) Zone types for tolerances of LOCATION 195
LIST OF PLATES
Plate 3.1 Block with regular grid of points 79
Plate 3.2 Block with points randomly displaced from nodes 80
Plate 3.3 Facetted cylinder with regular grid of points 80
Plate 3.4 Cylindrical surface with surface points 87
Plate 3.5 A more complicated example 87
Plate 4.1 Crucifix and grown crucifix 113
Plate 4.2 Topology changes due to grown crucifix 113
Plate 4.3 Groove and incorrectly grown groove 117
Plate 4.4 Groove and corrections 117
Plate 4.5 Topology changes due to growing for probe arm 125
Plate 4.6 The grown model after correction 125
Plate 5.1 Reachable points .. 134
Plate 5.2 Declustered points 144
Plate 6.1 Path generated for test piece feature 162
Plate 6.2 Collision avoidance 162
Plate A2.1 Surface points ... 242
Plate A2.2 Topology changes 242
Plate A2.3 Corrected grown model 243

CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter describes inspection by Coordinate Measuring Machines (CMM) and

current working practices. The theory of solid modelling is then described and this

is followed by a description of the areas where the inspection process can be

automated. The aims of the project described in this thesis are then given followed

by an overview of the resulting automated inspection system.

The chapter concludes with a description of the layout of the thesis.

1.2 Inspection of Machined Components

Once engineering components have been designed they are manufactured using

various machining and forming techniques. An important subset of the range of

manufacturing techniques is that of metal-cutting or machining, and the work

described in this thesis is concerned with machined components.

It is necessary to have some means of checking whether the resulting

manufactured component fulfills the original design specification, and this is done

by the process of inspection. Component inspection enables the quality of produc­

tion to be monitored, and also provides useful feedback into the manufacturing pro­

cess. Such feedback can be used to correct errors or to detect machining faults.

Inspection is a means of collecting information about the shape and dimen­

sions of a machined component using various measuring procedures. The results

of such measurements are then used to assess any discrepancies between the origi­

nal specification and the final component. Constraints are applied to specify the

acceptable deviation of the machined component from the original design using

tolerances. The nature of such constraints will depend on the application for

which the component is being developed.

Two types of tolerances can be applied to a component;

(i) Dimensional Tolerances - These constrain the allowed variation of

dimensions (e.g such as length, radii)

(ii) Geometrical Tolerances - These constrain the allowed variation of

geometrical properties (e.g the Squareness of one plane to another, the

Roundness of a cylinder)

British Standards BS308 defines the standards used for representation and interpreta­

tion of both tolerances and should be consulted for further information. Tolerances

are currently represented within the 2-Dimensional Engineering Drawings of the

component.

The component specification (e.g. engineering drawings) will define its dimen­

sions and required shape. Inspection for checking the shape involves measuring

geometrical dimensions of the component. There are various ways of collecting

such information:

(a) Manually using various general purpose measuring instruments, each

designed to measure a particular geometric dimension or angle.

(b) Automatically using computer-controlled CMM which use touch-sensitive

probes to measure the component shape.

(c) Automatically using computer vision inspection systems which use cam­

eras, and image analysis packages to check the accuracy of component

shape.

Collecting information manually is slow and the growing use of numerically

controlled machine-tools has meant that methods of faster inspection are needed to

keep up with production. Added to this are the problems of human error during

inspection which may result in inaccurate or inconsistent results. In view of this,

techniques of automating inspection have been developed.

Automatic inspection of component geometry has been done using touch-

sensitive measuring probes. These probes indicate when contact is made with the

surface of an object, and together with suitable feedback devices for determining

the probe position, are used to collect the three dimensional coordinates of points

on the surface of the component.

The probe may, in principle, either be incorporated into the machine-tools, or

be external to the machining environment in numerically controlled Coordinate

Measuring Machines. The concept of inspection as part of the machine cycle

appears attractive, with immediate feedback being available to adaptively control

the machining process. However, current technology does not enable measure­

ments to be made with the accuracy required for the inspection of geometric shape.

The harsh cutting environment hinders such accuracy, where effects due to tem­

perature and clamping of the component may be considerable. Further, the com­

puting power of an average machine-tool adds constraints to the methods of

analysis of measurement results, and only allows limited feedback control.

As a contrast, CMM inspection allows accuracy within the limits of the

measuring equipment and as a result has become readily accepted as part of the

quality control aspect of the manufacturing process. Further, should technology

improvements enable accurate inspections during cutting, techniques developed for

CMMs could be easily adapted.

Automated computer vision inspection offers an alternative to CMM inspection.

However, once again current technology does not enable measurement to the

required accuracy for inspection of geometric shape, and most visual inspection

systems are accompanied by CMM technology for critical measurements.

1.3 Coordinate Measuring Machines

The British Standard BS6808 defines the coordinate measuring machine as:

"A machine having a series of movable members, a sensing probe and a workpiece

support member which can be brought into a fixed and known relationship with

points on the workpiece surface, and the coordinates of these points can be

displayed or otherwise determined with respect to the origin of the coordinate sys­

tem".

-4-

The same standard also describes the variety of different types of CMMs, which are

used to collect three-dimensional information about a test component in the form of

three-dimensional coordinates of surface points.

The measuring machines are used in manufacturing processes which rely

heavily on precision engineering. Rolls-Royce, Lister-Petter and Bendix Ltd are

examples of companies who use CMMs for inspection, with the machines installed

on the shop floor. CMMs are used in applications covering a broad range of

manufacturing batch sizes from total inspection of small batches to sample inspec­

tion of large batches.

The machines are generally connected to a small computer which drives the

probe around the test component probing the surface at pre-determined locations.

In some instances, the computer also does some simple analysis of the measured

results and displays the feature information resulting, for example, from least-

square fits of surfaces to the measured points. Such information is used to com­

pare the nominal with the measured geometry.

In current practice, the selection of points and the choice of path is done

manually and prior to the inspection. This requires a certain amount of skill in

deciding which location points to inspect and in deciding how many points should

be inspected. The choice of point location depends on the geometry and applica­

tion of the various component features which are being measured. The number of

points depends on the size of the features and the types of tolerances applied to

them. Both the location and the number of points are influenced by the type of

analysis carried out on the results to check the geometric shape.

-5-

Methods of constructing inspection paths for CMMs vary, but fall into two

categories. One technique is for technicians to "teach" the path manually by mov­

ing the CMM through the motions that constitute the inspection path. The sequence

of path steps saved to a file may be replayed by CMMs used to inspect components.

This technique is used at Rolls-Royce and Lister-Petter and, although being adapt­

able to various components and probe types, clearly is tedious and time consuming.

A second technique is to produce inspection paths using off-line part-programming

in much the same way that numerically controlled machine-tool paths are gen­

erated. Bendix, for example, adopts this approach which, although having some

advantages over manual programming, is still time consuming and also needs

verification tests before use.

When replaying the taught or programmed path, the CMMs controller interprets

the path instructions and drives the probe to collect the measurements. The paths

usually includes several datum points which are used to align the coordinate system

of the component and the CMM. By making the assumption that the orientation of

the component is roughly as expected and by measuring the datum points, a

transformation between the two coordinate systems is derived. This transformation

is used to modify the inspection locations defined in the probe path to obtain the

correct points on the component. This removes the need for jigs and clamps for

holding the component in a fixed position.

In many cases only limited analysis of the results of measuring are performed.

Currently, comparisons between original and measured parameters are the main

output of CMM inspection.

-6-

1.4 Solid Modelling: Description

In order to automate the inspection planning and measurement analysis stages of

CMM inspection, a computer representation of the geometry of the component is

required. Solid modelling is a technique of representing the geometry of three-

dimensional objects on a computer and the work in this thesis is concerned with

the application of such modelling to the automation CMM inspection.

Methods and techniques of solid modelling vary, but all involve building the

model by enclosing the volume occupied by the component with surfaces.

Effectively, three-dimensional space is divided into two regions, one representing

the object solid, the other representing air. A solid modelling system usually

comprises a data structure containing the geometric description of objects together

with a set of procedures for performing various tasks, such as the calculation of the

volume or the generation of pictures of the model.

The solid modelling scheme must fulfill several requirements to enable

representation of real objects. The representation must be rigid, be invariant under

geometric transformations, and also must only represent physically realisable

shapes. Other desirable properties of the modelling system include ease of use and

the ability to support efficient and numerically robust algorithms for computation

tasks.

There are many solid modellers in current use, and most can be classified into

one of two types: boundary representations, or set theoretic representations. The

difference, as described in section 1.5, lies in the information used to represent the

object and both techniques of solid modelling have advantages and disadvantages.

Some solid model systems use a hybrid approach which exploits the advantages of

both representations but also inherits some of the disadvantages.

1.5 Boundary Representation and Set Theoretic Modelling

The approach most commonly used in commercial solid modelling systems is

boundary representation. Boundary representation stores models of objects as a list

of edges, vertices and surfaces. A complicated data structure is used to relate these

entities in such a way as to define the object. Consistency is generally checked

using rules or formulae. As an example, Eulers’ formulae, which define relation­

ships between the number of faces, edges and surfaces, are often used in a valid

boundary representation model to check consistency of shape.

In boundary representations, certain geometrical information (e.g. vertices,

edges) is readily available and little or no processing is required to extract it.

Further, the representations are generally unambiguous, being explicitly defined by

vertices, edges and surfaces.

The problems of such a representation are well known and described in Sec­

tion 2.4.1. In summary, apart from requiring the complicated data structure and

definition procedures, it is also difficult to ensure the representation is valid and

consistent.

Set theoretic solid modellers do not exhibit this problem. In this scheme, an

object is represented as the set theoretic combination of simpler objects, known as

primitives. The set theoretic operators union, difference and intersection are used

to build the required shape from these primitives. The primitives can be a finite

set of simple bounded shapes, such as cylinders, cuboids and spheres, or can be

semi-infinite surfaces, known as a half spaces.

A half space surface splits three-dimensional space into two regions; one

region consisting of points above the surface and one region consisting of points

below it. A solid model can be constructed with half spaces by using one of the

two regions to represent object solid and by using the other region to represent the

air outside the object solid.

Set theoretic solid modelling guarantees consistency of representation, and

thus always represents a physically realisable object. The data structures needed to

store such models are simple to build, with no concern for vertices, edges and sur­

faces or how they influence each other. Drawbacks are non-uniqueness of

representation and the difficulty of extraction of geometric information. The latter

arises because, in general, the geometric information of the component cannot

always be derived directly from the information on the constituent primitives since

not all of a primitive surface is guaranteed to lie on the model surface. The primi­

tive contribution to the surface, for example, may be effected by another, separate

primitive.

Interactive modification is an expensive process in both modelling schemes.

Boundary representations require recalculation of edges and vertices, and changes

to set theoretic models require the recalculation of the complete set theoretic

expression. The boundary scheme does have the advantage of being able to easily

support local changes since it has all the geometric information explicitly available

-9-

and this can be used to isolate areas where recalculation is required. Such localisa­

tion is not possible with set theoretic models where it is difficult to predict how

changes to the primitives within the model will effect the complete model. This

has been a factor in encouraging the commercial applications of boundary represen­

tations, where the major use seems to be in interactively building pictures of com­

ponents.

Current hybrid solid modellers usually allow models to be built as set

theoretic expressions and then generate a boundary representation for subsequent

processing. It is a much more difficult problem, however, to constuct a set

theoretic model from a boundary representation.

The work in this thesis has been developed for a set theoretic modelling

scheme in order to take advantage of the properties of robustness, consistency and

simplicity of construction. As mentioned above, boundary representations can (and

are) be generated from set theoretic models although the process is computationally

expensive and should only be done as and when it is necessary.

-10-

1.6 Automating CMM Inspection

There are two obvious candidates for automation during the various stages of CMM

inspection; automation of inspection planning and automation of the anaylsis of the

measurements collected by the CMM.

1.6.1 Automation of Inspection Planning

CMMs were introduced to reduce inspection time without affecting accuracy and

also to enable integration of inspection into Flexible Manufacturing Systems.

Further integration of CMM inspection is possible by automating the inspection

path-planning stages. This will provide a number of benefits including:

(a) More efficient inspection systems as human interaction would no longer be

required. The manual planning of inspection relies on human interpretation of

engineering drawings, and this in turn is dependent on the experience and skill of

the technicians. Automatic planning would remove this dependency.

(b) Provision of a basis for standardising current industrial inspection practices and

thus encouraging a consistently high level of manufacturing quality.

(c) The time taken for inspection planning is never a bottleneck to the manufactur­

ing process, but it is probably still worth mentioning that by automating the plan­

ning of inspection the speed of the task is made dependent on the always improv­

ing processing power of computers.

-11-

1.6.2 Automatic Analysis of Measurements

There are three steps in the process of automating the analysis of measurements

made by CMM using a solid modelling system;

(a) Representation of Tolerances

A scheme is required for representing tolerances within the solid model. This is a

non-trivial problem for both types of tolerances (and both Set theoretic and Boun­

dary Rep Models). Dimensional tolerances require references to dimensions within

the model and geometric tolerances require references to geometric entities within

the model, neither of which are available within solid models. Extra non-geometric

information is required (such as labels of geometric entities) to support such refer­

ences.

(b) Validation of Toleranced Models

Tolerances (dimensional and geometrical) applied to components do interact and it

is possible to apply tolerances in such a way as to make manufacturing the com­

ponent impossible (e.g. keeping to one tolerance may always violate another).

Once tolerances have been applied to a component, the toleranced model should be

validated to ensure that such inconsistencies have not occurred. The problem is a

formidable task to do manually but can be automated since interaction of engineer­

ing tolerances is a well understood area. Since, however, it is a problem concerned

with the nature of engineering tolerances rather than component inspection, it is

considered to be beyond the scope of this thesis.

-12-

(c) Interpretation and Checking of Tolerances

The dimensional and geometrical tolerances applied to the model have to be inter­

preted in terms of constraints which can be measured by the CMM. The measure­

ments collected by CMM are then used to ascertain whether the machined com­

ponent fulfills the design requirements and check that none of the tolerances

specified in the design are violated. By having computer access to geometric and

tolerance information of the component, rigorous analysis is possible, thus allowing

automatic detection of tolerance violations.

The work in this thesis has restricted attention to the problem of representation and

interpretation of geometric tolerances within set theoretic models. This is because

of the following reasons;

(a) Set theoretic models are built constructively by combining geometric primitives.

Thus the geometric entities are defined independently before being combined to

construct the object. This offers a means of representing geometric tolerances as

attributes of geometric entities and enables their specification at the same time the

entities are defined. The need for a complicated referencing scheme is thus

reduced, although some means of referencing datum entities is still required.

(b) The interpretation of geometric tolerances is in terms of 3-Dimensional con­

straints which can in many cases be checked using CMM measurements directly.

Dimensional tolerances are defined within a 2-Dimensional context (i.e. within the

view of an Engineering Drawing) and require further processing in order to deter­

mine the constraints which they apply within 3-Dimensions. (This processing can

-13-

be quite daunting especially when the constraints on edges and vertices are con­

cerned).

(c) Many of the constraints imposed by dimensional tolerances can be represented

as geometrical tolerances.

(d) Consideration of geometric tolerances and solving the problems of their

representation and interpretation within solid models provides a foundation for

research into the problems posed by dimensional tolerances.

-14-

1.7 Objectives of This Research

The main objective of this research is to automate the planning stage and the

analysis of measurement results stage of component inspection by Coordinate

Measuring Machines. One approach to inspection planning would be to automati­

cally generate the inspection plan from geometric information of the component

stored on a computer. This approach automates the stages where technicians

currently do the work manually. The objective of the work described within this

thesis is to use set theoretic solid model representation of components as a source

of geometric information for automating CMM inspection.

The models are constructed complete with geometric tolerance information.

This information is used in making decisions about inspection locations on the

component surface and also is used to define the necessary tests which are needed

on the resulting measurement data during the analysis stage.

Few current solid modellers allow tolerance information to be included with

the geometric information. A technique which considers tolerances as attributes of

the model is developed in the work described in this thesis. (Chapter 7 and

Chapter 8 describe geometric tolerances and their representation within set theoretic

models in more detail).

Before the planning of the inspection of a component can occur, a decision

has to be made about where to inspect and about the quantity of probing points to

use. The decision depends on the geometric shape of the parts of the component

to be checked and the tolerances applied (different tolerance types, in general,

-15-

require a different number of points). This thesis describes techniques of automati­

cally selecting sets of probing points for a toleranced set theoretic model.

Given the set of surface points, a collision-free path is required for the

measuring probe. Solid modelling representations can be used for collision detec­

tion and an aim of this project is to demonstrate an algorithm which enables colli­

sion detection and path-correction for simple CMM probes. This can then be used

to automatically generate collision-free measuring paths.

Once the measurements have been collected, tests are required to determine

whether the measured features of the object satisfy the tolerances defined in the

specification. A toleranced set theoretic solid model will contain the nominal

geometrical information of the object together with the tolerance information, and

this thesis aims to show how such a model can be used in the analysis of the

results and for finding tolerance errors.

The algorithms described in this thesis were designed for set theoretic solid

models using planar half-space primitives and measuring probes with three degrees

of freedom which is adequate for a large number of applications. Suggestions for

extensions are given where possible.

-16-

1.8 Outline of Developed System

The purpose of this section is to describe the inspection system developed within

this thesis and to compare the techniques with current practices, highlighting where

new work has been done. Figure 1.1 displays the developed inspection system as a

flowchart. Each step will now be considered in turn.

1.8.1 Representing the Toleranced Component

Currently machined components are designed and represented as two-dimensional

drawings consisting of two or more planar views of the component. The diagrams

are drawn with dimensions and tolerances using standards described in BS308. In

most cases a Computer Aided Design package is used to help create these diagrams

which are then passed onto the inspection team. Figure 1.2 gives an example of a

toleranced drawing of one of the components used as a test piece for the work

developed in this thesis.

The solid model representation of the machined components is constructed

using a computer user interface which enables geometric primitives to be defined

and combined. (For the modelling scheme used at Bath University, this interface

consisted of a structured Model Description Language based on PASCAL. A com­

piler, written in FORTRAN, is used to process the source code and generate the set

theoretic representation of the component). The work done in this thesis required

extending the traditional set theoretic representation scheme so that non-geometric

attributes could be added to geometric primitives. This allows the specification of

geometric tolerances. Fig 1.3 shows a section of the language used to define the

-17-

shape in Fig 1.2 and shows how some of the geometric tolerances are defined.

The idea of attributes of geometric entities cannot be as easily implemented

within traditional boundary representation models which contain lists of edges,

faces and vertices. However most user interfaces to such modelling schemes allow

components to be built constructively in the same way as set theoretic models (hid­

ing the underlying boundary structure from the user) and it is possible to label lists

of vertices, edges and faces with attributes. This would allow the same scheme

developed within this thesis to be used on Boundary Representations. It is worth

noting that the set theoretic approach allows the expensive calculation of edges,

vertices and faces to be left until needed.

Dimensional tolerances require references to dimensional information and this

is not explicitly available within either modelling scheme. A more complicated

scheme is required to enable identification of the toleranced dimensions and this

has been targeted as a topic for further work.

-18-

Create
Toleranced
Engineering

Drawing

Collect Measured
Results using CMM

Manually Inspect
Results for Tolerance

Violations

Manually Select
Inspection Points

and
CMM Probe Path

Current Practice of CMM Inspection

Collect Measured
Results using CMM

Create Toleranced
Solid Model

Automatically
Generate Coordinates

of Surface Points
using the Solid Model

Automatically Detect
Tolerance Violations
Using Measurements

and Solid Model

Automatically Generate
Collision-free Path

using Inspection Points
and Solid Model

Automatically Generate
Inspection Points using
the Surface Points and

Solid Model

Automated CMM Inspection System
Described in this Thesis

Figure 1.1 Flow chart of automated inspection system.

©

T
o

o
in
a -

9__4

0 O 3 S P

Figure 1.2 Toleranced engineering drawing of component.

- 20 -

FUNCTION base_box(lowcorn:Point,highcorn:Point): Set
; Defines the base block and assigns the datums for measuring.

Sets {x_space,y_space,zspace,cub_oid){
x_space := space(pt(-1.0,0.0,0.0),lowcorn)
y space := space(pt(0.0,-1.0,0.0),lowcorn)
z~space := space(pt(0.0,0.0,-1.0),lowcorn)

x space := attribute (x_space,meas_datum,“X_MEAS_DATUM")
z s p a c e := attribute (z_space,meas_datum,”Z_MEAS_DATUM“)

x_space := datum (x_space,"A_DTM”)
y_space := datum (y_space,”B_DTMM)

c u b o i d := x s p a c e & y_space i z_space
x space := space (pt(1.0,0.0,0.C),highcorn)
y space := space (pt(0.0,1.0,0.0),highcorn)
z~space := space (pt(0.0,0.0,1.0),highcorn)

y space := attribute (y_space,meas_datum,"Y_MEAS_DATUM")

x_space := datum (x_space,“C_DTM")
y space := datum (y_space,"E_DTM”)
z~space := datum (z_space,"F_DTM")
cub oid := cub_oid & x_space & y_space & z_space

RETURN (cub oid)

Build stepped through hole
Centre (x=35,y=70) ; Outer Radius = 20 ; Depth = 20 ;

; Inner Radius = 10 ; Depth = 40 ; Diff
cylrad := 20.0
radprop := cylrad/dev
nfacets := cylfacetnum (cylrad,radprop)
temp_cyl := cylinder(In (z dir, p t (35.0, 70.0,150.0)) ,cylrad,nfacets)
temp_cyl := t e m p c y l & space (z_dir,pt(35.0,70.0,45.0));
t e m p c y l := t e m p c y l £ space (-z_dir,pt (35.0,70.0,20.0))
t e m p c y l := colour (temp_cyl,3)

temp_cyl := attribute (temp cyl,gen feat,
"CYL_AXIS : DO.O 0.0 T.O R20.5 P35.0 70.0 150.0M);

temp_cyl := datum (tempcyl,"G_DTMM)

; axis - plane sq
t e m p c y l := col set (tempcyl,SQUARENESS,0.75,p t (0.0,0.0,0.0),"-DF_DTM“)
temp_cyl := attribute (temp_cyl,inspect,”110.0”)
fyr_demo := f y r d e m o - temp_cyl
cylrad := 10.0
radprop := cylrad/dev
nfacets := cylfacetnum (cylrad,radprop)
temp_cy1 := cylinder(ln (z dir,pt(35.0,70.0,150.0)),cylrad,nfacets)
t e m p c y l := t e m p c y l i space (z_dir,pt(35.0,70.0,25.0))
temp cyl ': = temp cyl i space (-z_dir,pt (35.0, 70.0,-5.0))
t e m p c y l := colour <temp_cyl,4)

; axis - plane par
temp_cyl := tol_set (tempcyl,PARALLELISM,0.5,p t (0.0,1.0,0.0),"-DA_DTM”)
temp_cyl := attribute (temp_cyl,inspect,MI5.0”)
temp_cyl := datum (temp_cyl, *'H DTMM)
t e m p c y l := attribute (tempcyT,gen feat,

"CYL_AXIS : DO.O 0.0 T . O R10.C P35.0 70.0 150.0")
; axis - axis cone

t e m p c y l := tol_set (temp_cyl,CONCENTRICITY,0.5,p t (0.0,0.0,0.0),M-DG_DTM")
fyr_demo := fyr_demo - temp_cyl

Figure 1.3 Set theoretic solid model description of component.

- 21 -

1.8.2 Generating Inspection Points

The decision about where to measure the component is currently done manually

using the toleranced 2-Dimensional engineering drawing. Skilled technicians select

inspection points during the teaching and/or programming of the CMM, and base

their decisions on experience. As with drawings there are Computer packages

which make the task easier.

The work developed in this thesis is novel in that it uses toleranced solid

model representations of components to generate the inspection points, i.e. the 3-

dimensional coordinates of points on the components’ surface which are to be

measured. The algorithms (written in C) applied to solid models in order to gen­

erate these points are specific to set theory representations, being reliant on the

existance of component half spaces. However it seems probable that similar algo­

rithms can be developed for the faces of boundary representations if required.

There are two parts to the generation of points as implemented in this thesis.

Firstly a superset of surface points are generated for the geometric model. Then a

subset of inspection points are selected from this. The selected points are depen­

dent on the geometric tolerances applied to the model and the physical geometry of

the CMM probe used to measure the component at the inpection points; generally

the probe will not be able to reach all of the component surface. (The task of

determining which points can be reached is a special case of the collision detection

problem described in 1.8.3 below).

1.8.3 Generation of Collision-Free Inspection Path

-22-

Once a decision has been made on where to measure the component, an inspection

path is required for the CMM probe. This is currently done manually by skilled

technicians who teach and/or program the CMM, possibly with the aid of computer

user interfaces.

A new application of solid model is developed in this thesis by using the

models for automatically generating collision free inspection paths. The algorithms

(written in C) developed use set-theoretic representations to estimate grown models

which can be used with ray casting techniques to detect collisions. The grown

models are estimated by modifying the existing representation and this is much

easier with set theoretic modelling than boundary representation were extra care is

necessary to ensure that the modified model will still be a valid representation.

Collision avoidance is only one issue of generating an inspection path. It is

clearly advantageous to reduce the time taken for the CMM to collect the measure­

ments and this can be done by keeping the distance travelled by the probe to a

minimum. The algorithms developed in this thesis partly achieve this by associat­

ing a cost with probe motion and choosing a sequence of motion which minimises

this cost. (In practice, however, the cost of probe motion is not only dependent on

the distance travelled, but also on the type of probe, i.e. whether it is swivel or not

and on the nature of the CMM being used; for example, at Bath University, motion

in the y-axis was much faster than that in the x-axis). The principle of having a

cost function of probe motion can always be applied, although the nature of such a

function is highly dependent on the CMM.

-23-

1.8.4 Analysis of Measurements

The CMM collects the 3-Dimensional coordinates of points lying on the component

surface. These measurements are then used to determine whether the component

has been machined correctly and whether any errors which have occurred are

within the permitted tolerance constraints. Currently this is done using software to

calculate least-square fits to the surface entities and a user interface to enable com­

parison of nominal and measured geometric entities. Less sophisticated though

more common techniques rely on manual comparison of the measured and nominal

parameters.

The work done in this thesis uses the set theoretic solid model representation

as the nominal shape and compares the measurements against this model. Surface

fitting algorithms are used were necessary to estimate the parameters of the toler­

anced geometric entities. Algorithms have been developed to calculate the Toler­

ance Zones associated with the toleranced entities and tests are made to check that

the entities defined by the measured parameters lie within this zone. (Tolerance

Zones are specified in Standards BS308 Part 3 although the work in this thesis

identifies a failing within these specifications).

1.9 Layout of This Thesis

Chapter 2 describes the current literature and work done on related topics. The

current status in automated inspection, solid modelling, collision-free path planning

and attributes in solid models are reviewed in this chapter.

-24-

To generate inspection points automatically three problems have to be solved.

Firstly the generated points must lie on the surface of the component and secondly

the points must be reachable by the probe. Thirdly the points must be sufficient in

number and in layout for the inspection task. In view of this, the task of generat­

ing inspection points has been split into two sections. Chapter 3 describes methods

of generating the coordinates of model surface points. An algorithm is described

for models which use only planar half-spaces and a separate algorithm is given for

curved surface models.

Since probe access is a consideration in selecting inspection points and this

requires a collision avoidance algorithm, Chapter 4 describes a technique of grow­

ing set theoretic solid models which is useful for collision detection. This chapter

also illustrates how model growing is used for collision detection for simple

probes.

Chapter 5 describes techniques of selecting a set of inspection points from a

set of surface points. The points are tested for access by the probe and a selection

of inspection points is made based on the nature of the feature and the tolerance of

the surface containing the point.

Chapter 6 describes methods of using the grown and ungrown modes in gen­

erating a probe path which passes through the inspection points. The problems of

collision detection and avoidance are considered here as well as the problem of

reducing inspection time.

-25-

Chapter 7 describes a method of assigning non-geometrical information about

geometric shapes, or entities, within the component by assigning attributes within

set theoretic models. Geometrical tolerances are given as an example of such attri­

butes. The algorithm was implemented using a model definition language written

at Bath University and this is outlined in this chapter.

Chapter 8 describes methods of using the solid models and measured results

to determine if the geometrical tolerances have been violated. Feature extraction,

tolerance zones and the methods of comparisons between the measured points and

the model are described here.

Finally, Chapter 9 offers conclusions and suggestions for further work on all

aspects of the project.

-26-

CHAPTER 2

LITERATURE SURVEY

2.1 Introduction

This chapter describes work already done in fields related to the work described in

this thesis. There are only a limited amount of publications dealing directly with

the applications of solid modelling to automatic Coordinate Measuring Machine

(CMM) component inspection. However, there are many papers which are relevant

to the various separate stages of the project.

2.2 Automating Component Inspection

2.2.1 Motives for Automation

In justifying the automation of inspection by CMMs, three major reasons have been

suggested over the last decade. In 1980, R. Gilheany [1] highlighted the extra

burden being imposed on inspection departments by new numerically controlled

machining techniques. These meant machining was being completed much quicker

than inspection. The same problem was also spotted by S. P. Black [2] in the

same year. It was clear then that some means of decreasing the time required for

inspection was required, the benefits being a higher inspection rate and hence

potentially better quality control.

With the development of automated flexible manufacturing systems (FMS) a

second reason arose for automating inspection. In a recent paper published in

-27-

1988, J. A. Bosch [3] describes how the trend over the last few years has been

towards using coordinate measuring machines operated by a host computer. He

states that this has been a direct result of the demand for flexible inspection. Many

companies, including Rolls Royce, Bendix Ltd and IBM, have on-line coordinate

measuring machines controlled automatically by a computer as part of a flexible

manufacturing cell, the computers being used both to drive the CMM around pre­

programmed inspection paths and to collect and analyse the results of measure­

ment.

J. Raja and U. P. Sheth [4] offer a more strategic motive for automating

inspection. They state that inspection can become an effective tool for process

control by providing appropriate feedback into the process. They go on to say that

this requires a systematic method of relating manufacturing errors to machine tool

and process parameters which will lead to a greater understanding of the process.

The idea is still in its infancy, with currently only limited in-process gauging being

attempted to provide local feedback, but will become more realisable as inspection

becomes automated.

In conclusion, motives for automating inspection are the need for speed, flexi­

bility, rapid feedback of results for process control and increasing emphasis on

high quality manufacturing.

2.2.2 Current Status of Automatic Inspection

Computer controlled inspection is already used heavily in industry. However, little

work appears to have been done on automating the planning of inspection.

-28-

J. Raja and U. P. Sheth [4] describe a system which helps develop inspection

plans using an inspection database in addition to a CAD/CAM drawing database.

The CAD/CAM database contains information about components as two-dimensional

drawings and the inspection database holds inspection sequences for various

features. A component inspection sequence is built up from a file containing a

representation of the component features. The system they describe plans inspec­

tion sequences for the checking of several tolerance types, such as out-of-

roundness, roughness and dimension.

A similar approach to inspection planning is used by H. D. Park and O. R.

Mitchell [5]. In their paper, they proposed the development of a rule-based sys­

tem which would automatically generate an inspection procedure given design

features and feature combinations. The inspection plans generated would be for a

computer vision inspection system.

The biggest drawback to such planning is the need to update the database and

rule-base as features are changed or new features introduced. They state that in

many cases, this can be avoided by slightly modifying the derived inspection plan

to accommodate the small changes for features not already represented in the data­

base.

There is much literature covering the automation of the planning of computer

vision inspection systems. This type of component inspection, involving cameras

and image analysis algorithms, is a growing field. In their paper mentioned above,

H. D. Park and O. R. Mitchell describe an inspection planning system which uses

boundary representation solid models to relate the camera image features to design

-29-

features.

Despite the attraction of computer vision inspection, there are still some prob­

lems which hinder accuracy of measurement. M. P. Groover and E. W. Zimmers

[6] mention three problems. Firstly, the resolution of the image has to be high

enough to enable measurements to be made at an acceptable level of accuracy.

Secondly, recognising light and dark areas of a component imposes limitations on

lighting requirements. Finally, there are limitations imposed by the feature recog­

nition ability.

N. Atkins and S. Derby in their paper, describe a system which automatically

generates an inspection program for CMMs using solely data input from a CAD/CAM

database [7]. The system is designed as part of a low-cost high-speed computer

vision system to make low-accuracy tolerance inspections which are complimented

with CMM measurements of the more critical dimensions. As described in their

paper, the technique uses a mixture of graphically-aided manual input and pre­

defined macros to develop inspection paths. The macros take geometrical parame­

ters as arguments and return an appropriate path for the feature. Although the sys­

tem does contain a boundary representation of the component and its features, this

is used only for graphical representations and not in the generation of the inspec­

tion plan.

This approach has the advantage of enabling a graphical user-interface to the

task of inspection planning. However, the path-planning is dependent on the

operator, who may still be required to modify the probe path manually and who

also has to make corrections for collisions or time wasting moves which arise in

-30-

the resulting path. In fact, the collision detection itself is done manually by view­

ing the path via the user interface.

No literature has been found which describes the use of solid modelling

representations to automatically generate inspection plans for CMM inspection.

2.3 Coordinate Measuring Machines

2.3.1 Benefits of Inspection by Coordinate Measuring Machines

Manual CMM inspection is very rarely used today. Gilheany and Treywin list three

main advantages of computer controlled CMM inspection [1] . Firstly, quicker

inspection has led to a greater throughput and cost savings. Secondly, automatic

component alignment has meant that there is no requirement for component jig and

fixtures, which need to be designed, calibrated and stored. This advantage was

also recognised by B. Liddle [8]. Finally, rapid collection and analysis of inspec­

tion results means information can be quickly available for processing.

M. K. Groover compiled a list of benefits in his report [9] in which speed is

mentioned. This list also includes flexibility and Groover highlights the fact that

CMMs can inspect a variety of different part configurations with minimal change­

over time. He goes on to state that not only are CMMs inherently more accurate

and precise than the traditional manual techniques used, but they are more con­

sistent and, when connected to computers, are less prone to human errors.

In summary, the main advantages of computer controlled CMM inspection are

speed, flexibility, reduced cost and accuracy. The machines also simplify the task

-31-

of integration into manufacturing systems, as mentioned by various authors, such as

J.A. Bosch [3] and I. Bowman [10].

2.3.2 Current Coordinate Measuring Machine Technology

The main development of CMM technology has been the increase in computer

sophistication. A recent survey carried out by the journal Quality Today [11]

shows that the standard of software supplied with CMM systems is considerable,

including graphic display of inspection results, three dimensional contour analysis

of surfaces, and FMS link facilities. The development of user-friendly software

packages for CMM inspection is also a current trend, with some systems using

graphics to help in developing inspection paths and in displaying the results of

measurement.

Work is being done on integration of CMM into flexible manufacturing sys­

tems. A. Sostar [12] describes techniques of integration, and concludes that prob­

lems which arise during production and measurement processes can be remedied as

CMM software technology improves. Integration is also encouraged by hardware

improvements, and a recent development has been automation of loading and

unloading of components onto CMMs.

In the production of CMMs, higher accuracy, speed and low cost seems to be

the major trend. Touch sensitive probes with greater sensitivity and higher sophis­

tication are being developed, and the machines themselves are being designed to

withstand shop-floor environments.

-32-

In summary, the current trends in CMM technology are improved computer

sophistication and more robust hardware.

2.4 Solid Modelling

2.4.1 Development of Set Theoretic Solid Modellers

There is much literature available on solid modelling techniques, which have had

wide applications in computer graphics before being used in CAD/CAM systems. It

is generally agreed that most solid modellers fall into two categories; boundary

representation and set theoretic (also known as constructive solid geometry (CSG)).

A. Requicha describes and compares both types in his 1983 reviews on the history

and research of solid modelling [13], [14]. The reviews also illustrated that set

theoretic modelling was not as widely used as boundary representation, which

appeared to be the nature of many available commercial solid modellers.

In 1983, A. Requicha [15] described the necessary characteristics of a

representation of rigid solids. These included formal properties, such as validity,

unambiguity and uniqueness of representations, and informal properties such as

conciseness, ease of creation and efficacy in the context of application. C. Brown

[16] offers similar classification in his paper describing the mathematical and

representational aspects of solid modelling. Set theoretic modellers have the

advantage of satisfying the validity, unambiguity, ease of creation and conciseness

properties, and so would seem to be a natural choice for solid representation.

However, the drawbacks with set theoretic representation, such as non­

uniqueness and not having geometrical information readily available, was seen as a

-33-

disadvantage for most applications. K. Howard [17] offers a list of advantages of

boundary representations over set theoretic which have played a part in their accep­

tance. His list include the fact that boundary representation is in keeping with the

historical tendency of designers to think in terms of object edges and intersections.

(A more likely reason is the fact that they were well understood from research in

computer graphics, with set theoretic modelling being a relatively new idea.)

The problems with boundary representation are well documented. Such

modellers need a large and complicated database to represent objects and also a set

of extra rules to maintain consistency. The former is the storage for edges, vertices

and faces and the latter are combination rules, such as Euler’s formulae [18] .

Thus, research has been encouraged into overcoming the problems of set theoretic

modelling.

In a recent paper, J.R. Woodwark (1989) [19] summarises the progress made

over the last ten years. Object space sub-division algorithms [20] & [21] have

been developed to considerably reduce time taken on processing models. These

have the effect of spatially localising information and increasing the efficiency of

model rendering algorithms.

Localisation of information within set theoretic models is the major concern

of the work done on the theory of constituents [22] and also of the work done on

active zones [23]. These papers also address the non-uniqueness of set theoretic

expressions which leads to problems such as creation of over-complicated represen­

tations of objects, and the hindering of any subsequent feature recognition algo­

rithms.

-34-

Many objects contain blends between surfaces to form features such as fillets.

One method of representing such blend surfaces is by using algebraic surfaces [24]

. These representations are much simpler than the traditional method of parametric

patches. Much work has concentrated on way of determining the algebraic equa­

tion of the blend from the equations of the surfaces between which the blend

occurs. Woodwark describes a method of blending based on Liming’s formula [25]

, A. Middleditch and K. Sears [26] offer an alternative formulation, and recent

work has been done by J. Warren [27]. One advantage of representing blends as

algebraic surfaces is that it allows blends of blends to be easily generated, and

clearly increases the range of shapes representable by set theoretical modellers.

Further, current developments in computer algebra techniques encourage the use of

implicit algebraic representation of shapes [28].

2.4.2 Applications of Set Theoretic Solid Modellers

There are many engineering applications where visualising three dimensional com­

ponents is advantageous, and the earliest uses of solid modelling was in the genera­

tion of pictures. J. Woodwark and A. Bowyer describe algorithms for generating

pictures from set theoretic models using ray casting techniques which have better

than linear time complexity behaviour [29]. The algorithms use spatial division

and model pruning methods, and the paper shows several examples of forms of

output including wire-frame and shaded pictures, and the generation of surface tex­

ture using fractals.

-35-

Extracting other information from solid models, such as volume and mass pro­

perties, are also mentioned in the above paper. A. Wallis goes a step further and

describes procedures for obtaining other data from solid models [30] . In his

paper, he describes an interrogator which extracts dimensional data from solid

models, using an interactive interface which provides similar software tools to

engineer’s hand measuring tools.

J. Woodwark suggests that solid modelling has applications to cutting tool-

path verification [31] and in his thesis, A. Wallis describes methods of doing

this [32]. He describes algorithms for generating volumes swept by cutting tools

as they move along tool-paths. These may be differenced from a model of the

blank uncut block, and the resulting shape may then be interrogated to assess the

accuracy of the path.

Sweeping solid models has other applications, such as mechanism design and

robot path planning, where analysis of interference between moving objects is

required. R. R. Martin describes determination of sweep volumes using differential

geometry theory [33]. Interference checking is the process of deciding whether

there is a volume of solid which is common to two or more solid models. This

can be done by intersecting the two models and deciding if the resulting model

contains solid or not, i.e. is null. For boundary representation, the intersection cal­

culation is difficult, but the subsequent null object detection reduces to the test of

whether or not there is a boundary in the resulting shape. For set theoretic

representation, intersection is trivial but null object detection becomes a problem,

with many existing algorithms resorting to calculation of boundaries [34].

-36-

So far, boundary models have been favoured in the field of feature recogni­

tion. The recognition of geometric features within models has obvious applications

in process planning and other decision making systems. J. Woodwark describes

the problems of both forms of modellers in his speculations on the recognition

problem [35], but argues that the robustness and tendency of algorithms for set

theoretic modellers to be easily theoretically justified makes them the better choice.

However, as highlighted by G. Jared [36] , the problem of feature recognition

seems to be strongly dependent on application and thus probably cannot be solved

using only the geometric information present within the model. This seems to sug­

gest a need for assigning more information to the solid model, such as non­

geometric attributes, which provide the necessary data for unique recognition.

Indeed, such an approach is used by D. Pemg, Z. Chen and R. Li in extracting

machining feature information from set theoretic models [37] . They build set

theory trees with primitive nodes containing extra information about the primitives,

which is used for recognition.

There are many other applications of solid modellers being investigated. P.

Sabella and I. Carlbom describe applications in modelling oil reservoirs [38]. V.

Alagar, T. Bui and K. Periyasamy are amongst a group of researchers investigating

the automatic generation of finite element meshes using CSG models [39].

There has been little work done on applying solid models to the task of

inspection planning. In their planning of visual inspection, D. R. Mitchell and H.

D. Park use a boundary representation solid model to link database feature infor­

mation to the features recognised from a camera image, and thus enable

-37-

comparisons between the ideal and measured component. However, the inspection

plan and results analysis is done independently of the model. Considerable work

has been done on introducing non-geometric information into solid modellers, such

as tolerance information [see Section 2.8], but little has been done on the subse­

quent application of such models to inspection planning.

In summary, solid modelling is still finding new applications in a large range

of manufacturing areas, but has yet to be fully applied to the task of inspection

planning.

2.5 Generating Surface Points

2.5.1 Generating a Regular Grid of Points

Little work has been done on using solid model representations to determine a set

of points lying on the surface of objects. The closest work has been in generating

finite element meshes.

S. Tan and M. Yuen describe an algorithm which uses spatial division tech­

niques to generate meshes [40] . In their work they describe a spatial division

algorithm together with procedures for clipping the resulting boxes to surface and

maintaining continuity of the mesh. In theory, the mesh nodes obtained from the

division sub-spaces can be used as surface points.

V. Alagar, T. Bui and K. Periyasamy have also considered the problem of

generating meshes from set theoretic solid models [39]. They describe a method

which builds the mesh constructively by combining meshes already existing for

-38-

primitives. The paper describes how joining of meshes is done, but does not

describe how the original meshes are calculated.

The main drawback with this approach being applied to point generation is

that the meshes, although variant in selected regions, are essentially regular and

thus the resulting set of points may miss cyclic deformations, i.e. deviations which

occur at regular places throughout the measured surface.

This suggests that these finite element mesh generation techniques are not

suitable for the generation of inspection surface points.

2.5.2 Interval Arithmetic

Chapter 3 of this thesis describes an algorithm which is used to generate surface

points on models containing curved surface half-spaces. The algorithm needs to

calculate estimates of the range of normal direction of the curved surfaces over

cuboid boxes of differing position and size, and to do this, interval arithmetic is

used.

The subject of interval arithmetic has been well documented. R. Moore has

written several definitive books offering rigorous analysis of the theory of interval

arithmetic [41] . The arithmetic allows conservative estimates on the range of

functions whose argument(s) vary over an interval(s). The technique is to define

rules of addition and multiplications of intervals, and to evaluate the function using

the intervals over which the arguments vary as arguments themselves.

There have been many papers published which describe methods of making

the estimates of interval arithmetic less conservative, specifically by considering the

-39-

various ways of re-writing polynomial and rational functions. S. Pai considers the

benefits of various standard forms, such as centred form and mean value form [42]

. E. Hansen describes a method of obtaining tighter bounds on function estimates

by introducing a new generalized interval arithmetic, which offers a different

interpretation of intervals [43].

For surface point generation, estimates are required for the range of normal

direction of polynomial surfaces within cuboids. The problem of conservative esti­

mates is only significant for third or higher order polynomials, and since a majority

of component surfaces are quadric, resulting in linear normal equations, little or no

improvement is obtained by using the various suggested techniques for obtaining

better estimates.

2.6 Reconstruction of Set Theoretic Model Expressions

A method of detecting collisions between moving objects which relies on the grow­

ing set theoretic solid models is described in Chapters 5 and 6. Chapter 4 of this

thesis describes how reconstruction of set theoretic expression enables set theoretic

models to be grown. Model reconstruction as a technique is not new and this sec­

tion describes research done in this area.

Set theoretic model reconstruction involves transforming the set theoretic

expression to another form. The new expression still represents the same object

but is more relevant to the particular application.

J. Goldfeather, S. Molnar, G. Turk and H. Fuchs [44] use model reconstruc­

tion techniques to efficiently generate pictures from solid models. They argue that

-40-

normalizing a set theoretic expression to a union-of-intersections expression enables

faster rendering in depth-buffer algorithms. The algorithms are developed for

bounded primitives.

The normalization algorithm involves using equivalence mapping of expres­

sions, and the authors mention that combinatorial explosions in the size of the

resulting expression is a potential problem. To overcome this, they suggest tech­

niques of geometric pruning based on bounding boxes. Although these prove to be

adequate for bounded primitives, where bounding boxes are well defined, no

simplification methods are given for handling unbounded primitives such as planar,

or higher degree half spaces. If such half spaces are used in a model, normaliza­

tion could lead to a large increase in the size of the set theoretic expression, and

hence greatly hinder subsequent processing.

Y. Lee and K. Lee use set theoretic tree reconstruction to make feature

unification and recognition easier [45] & [46]. They claim that the problems of

non-uniqueness and the lack of localisation within the tree can be overcome by

moving tree primitive nodes such that the expression still represents the same

object, but feature primitives are "closer" together within the tree. The moving of

nodes is suggested as an alternative to duplication within the tree. Again, the

rewriting algorithm depends on equivalence mapping.

The modeller for which the algorithms are developed is based on bounded

primitives. Each primitive is stored as a set of attributes describing the geometric

nature of the primitive, and this information is used in deciding where to move

nodes. The algorithm, therefore, cannot cope with more general models

-41-

constructed out of simpler primitives, such as planar half spaces. These simpler

primitive modellers allow more flexibility, but increase the non-uniqueness of

representations by introducing numerous new ways of describing a feature.

In summary, set theoretic model reconstruction is being used to attempt to

solve several problems and seems to be more successful on modellers which use

bounded primitives. These modellers provide a little more information than those

which use unbounded primitives but add complexity by introducing redundant sur­

face segments.

2.7 Selection of Inspection Points

The selection of sets of inspection points for checking features is currently per­

formed manually. As described in Chapter 1, this requires a certain amount of

skill. Little work has been done on automating this task.

The British Standard BS7172, however, offers suggestions for choosing

inspection points for common geometric shapes such as planes, cylinders, spheres

and cones [47]. As the standard states, no absolute guidance is possible because

the chosen points must take into account the machining process and intended func­

tion of the component.

For planes, the standard suggests aiming for uniform coverage to ensure a

genuine representation, but also suggests avoiding regular spacing which would

miss periodic surface deformations.

For spheres, the standard considers distributing N points on the surface of a

sector of a sphere, radius r , enclosed between two parallel planes, separated by

-42-

distance h. This is done by calculating nc parallel planes and distributing N /nc

points on each of the nc circles which are obtained by intersecting the planes with

the sphere. The value of nc is calculated as the nearest integer to:

Nh
(2nr)

The standard goes on to suggest ways of avoiding regularity.

For cylinders, a similar approach is suggested, with alternate odd and even

number of points on each circle again to reduce regularity.

Finally, for cones a cone section is considered between two planes, a distance

h apart and with their normal directions aligned with the axis of the cone. The

circles of intersection of these planes with the cone have radii r j , r 2 where

r 2 > r i- The value of nc is now taken as the nearest integer to:

1_
2 i 2N { h * + (r 1 - r lY }

{ n(r j + r 2) }.

An extra parameter, s is calculated and this is the reduction in number of points to

distribute on each circle as the cone apex is approached. This parameter is

estimated from:

s =
2K(r2 - r 1)

{ h l + (r2 — ri) }

-43-

The guidelines are sufficient for manual inspection, where the operator can

adapt the suggestions to the particular component being inspected. However, they

do not help in automating the technique since such reasoning is difficult to incor­

porate within algorithms which use solid models. This is because the variable h in

the above equations is not readily available within the model. Another problem is

that, although the circles can be calculated for the quadrics as specified, not all cir­

cles may actually lie on the component surface since only part of the quadric half

space may contribute to the real surface of a model. Hence success depends on

how closely the features within the component resemble the complete primitives

for which the points have been chosen. Further, points on some of the circles

chosen may be impossible to reach with the inspection probe.

The standard, however, does offer useful information on choosing the quantity

of points which is dependent on the tolerance being checked. Table 2.1 summar­

ises the suggested quantities. A basic rule is that tolerances of form, such as

roundness and flatness, require more points than tolerances of location and attitude,

such as position and parallelism.

-44-

F eature T olerance Type M inim um Points R ecom m ended

Plane All Types 3 9

Sphere All Types 4 9

Cylinder
Attitude
Location 5

12

Form 15

Cone
Attitude
Location 6

12

Form 15

Table 2.1: Suggested and minimum quantity of inspection points
for various features and tolerance types.

- 45 -

2.8 Path Planning

2.8.1 Efficient Paths

The problem of driving the probe around a set of three-dimensional coordinates in

such a way as to minimise the total distance travelled is related to the travelling-

salesman problem, where a salesman has to visit a number of cities and spend

minimum time travelling. The problems are not identical, since the CMM probe is

not constrained to using particular pre-determined paths whereas the travelling

salesman must use roads. (There are thus less constraints on the CMM probe then

there are on the salesman). The travelling-salesman problem has been the topic of

much research, finding applications in a wide range of areas.

The major trend in the work has been to develop algorithms which solve the

problem quickly. The problem has been proven to be NP-hard and thus can be

solved exactly in computation time which is of exponential order. For cases which

require an exact solution, algorithms have been developed which depend on

branch-and-bound methods used in operational research. The idea is to succes­

sively divide the possible solutions into smaller sets, which have a lower bound on

the cost of the solution, until a set containing one solution is found. J.Little et al

describe the technique, which uses a cost matrix approach, in detail [48] . The

computation time for various cases is given in the same paper and seems to suggest

that 40 cities is an upper bound on the size of the problem it can handle within

reasonable time. (The authors go on to state that adding ten cities results in a

about a ten-times increase in computation time).

-46-

An exact solution is not always required, and in many cases one which is in

some sense close to optimum will suffice. In view of this, several heuristic algo­

rithms have been developed to solve the problem. These involve starting with a

known initial solution consisting of an ordering of cities, and making changes in

this ordering which reduce the cost. Eventually a minimum, w'hich may be global

or local, is found when no further changes can be done to reduce the cost S. Lin

and B. Kemighan describe an algorithm which attempts to makes as many changes

to the ordering as it can at each iteration [49]. E. Aarts et al suggest a simulated

annealing approach where the number of changes made at each stage reduces in

subsequent iterations [50]

The heuristic algorithms have limited use for problems with more than 100

cities, although success is very dependent on the initial solution chosen and the

nature of the problem. From a probe path planning point of view, where the cities

become inspection points on the component surface, the expected number of points

can vary from 30 to 300, and any restriction on the number of points should be

avoided. Further, the costs of moving the probe from one point to another is a

non-trivial calculation.

Travelling-salesman algorithms require the calculation of all costs before

searching for a solution and this can be a time-consuming exercise in itself. In

view of this, and the unpredictability of success with heuristic algorithms, the

probe path problem has not been considered as a case of the travelling-salesman

problem in the work described in this thesis.

-47-

The nearest-neighbour problem is defined as the problem of finding points in

a set which are closest to some fixed point. Several algorithms exist for doing this

and P.Vaidya describes an algorithm for the all-nearest-neighbours of a point in a

set of size n points in time which is of the order nlogn [51]. The algorithm uses

recursive division methods to obtain a set of spatially related boxes, each box con­

taining a single point. Voronoi diagram methods provide another means of calcu­

lating nearest-neigbours since these points are exactly the Voronoi neighbours.

A path can be constructed by selecting the nearest neighbour to a point at

each stage. Although non-optimal, the nature of such a path can be controlled

more easily than those paths generated by travelling-salesman methods. In some

cases, for example, a group of points may be required to be inspected together, and

this can be done trivially using attributes and the nearest-neighbour method of path

planning.

2.8.2 Collision Detection

As the CMM probe moves around the component taking measurements, collisions

between the probe and the component should be avoided. Thus some means of

detecting collisions during path planning is required. The path consists of an

ordered list of three-dimensional coordinates and the collision detection algorithm

needs to be able to decide if the probe can move along straight lines between adja­

cent points without colliding with the object.

If the volume swept by the probe in moving between the two points is

modelled as a set-theoretic expression, then the problem becomes one of assessing

-48-

whether or not the set-theoretic expression derived from intersecting the component

representation with this swept volume representation is null. The construction of

swept volumes for the probe is easy since the probe only consists of cylindrical

and spherical elements. However, null-object detection is a non-trivial problem

and often involves calculation of the object boundary. R. Tilove describes methods

of spatial localization and primitive redundancy detection which lead to more

efficient null-object detection algorithms by only evaluating boundaries when

necessary [34].

V. Alagar, T. Bui and K. Periyasamy describe applying the principles of solid

modelling and sweep volumes to robotics [52]. They develop a reasoning system

based on a solid modelling representation and describe methods of detecting colli­

sion, using intersection calculations and null object detection, and methods of con­

trolling assembly operations.

In his paper, S. Cameron describes a method for detecting whether an object

is null or not. The approach starts with bounded primitives and propagates the

bound values throughout the set-theoretic expression to yield bounds on the com­

ponent and its various component sub-models. These bounds are known as S-

bounds, and having calculated the S-bounds for the model, Tilove’s methods are

applied again to detect null-volume. The S-bounds help reduce computation and,

in some cases, are enough to detect null-objects [53].

S. Cameron also describes a method of collision detection which uses a notion

of extrusion into space-time to model motion, and describes methods of interfer­

ence detection based on models of these extrusions [54] . The technique is

-49-

superior to sweeping since the relative state of the moving objects can be extracted

from the extrusions at any given time, and this information is lost in swept models.

However, if only one object is in motion this offers no advantages from a collision

detection point of view.

C. Mirolo and E. Pagelio describe a technique for collision detection using a

boundary representation solid modeller [55]. The approach is restricted to using

polyhedral primitives and involves iterative search algorithms to determine whether

an object will collide with another when moved along a given direction. The tech­

nique is computationally complex and involves consideration of various cases in

order to account for all possibilities. However, the paper claims a run-time of

order log3n for n primitives and the approach does have the advantage of yielding

information about the intersection, such as which face of a polyhedron is hit, and

this is useful for algorithms which avoid collisions by automatically moving around

obstructions.

K. Kondo and K. Kimura describe an alternative approach to collision detec­

tion which involves calculating the available free-space within a manipulator work

space [56]. The method uses a grid-based wave-front propagation technique and

models the obstacles and manipulator approximately using a boundary representa­

tion solid modeller. The algorithm successfully handles a large number of manipu­

lator shapes and could be used for CMM probe path-planning. However, the com­

putational cost for such a general approach suggests developing methods which can

take advantage of the simple geometry of most CMM probes.

-50-

T. Lozano-Perez and M. Wesley describe an algorithm for planning collision-

free paths among convex polyhedral obstacles which uses the concept of growing

the obstacles to create forbidden regions, and in using vertices of these regions to

derive the path [57]. The obstacles are represented as vertices and the forbidden

regions are approximated by translating these vertices appropriately. The paper

gives a useful insight into the problems of growing when considering the motion of

general polyhedral shapes, includin rotations as well as translations. They extend

their ideas to introduce a configuration space approach in a later work [58]. In

this paper, configuration space obstacles are defined as the geometric objects which

represent all the positions of object A that cause collisions with the object B. The

configuration space obstacles are constructed by selecting a vertex of object A and

calculating a difference set between the set representing object B and the selected

vertex of A. The paper proves that if the selected vertex of A lies within this new

set, then the intersection between the two objects is non-null; i.e. collision does

occur, and this enables the problem of collision detection to be reduced to one of

determining whether a point lies within a set. The paper offers rigorous analysis

for the two-dimensional case and demonstrates how the ideas can be extended to

three-dimensions, where the configuration space obstacles are approximated.

Chapter 4 describes a method of growing set theoretic models of components

to obtain new models which can be used for the detection of collisions between a

CMM probe and a component. The probe is modelled as two cylinders and a

sphere, and a grown model is constructed for each of these probe parts. The

grown model is an approximation to the configuration space obstacle which results

-51-

from selecting the centroid of the (symmetrical) probe parts, rather than a vertex,

and calculating the difference set as explained above. Collisions can thus be

detected by testing these centroid points against the corresponding grown model.

The Lozano-Perez algorithms described above uses graph search techniques to

determine an appropriate path for the obstacle A. A similar graph-based approach

is used by L. Fu and D. Liu, who describe a method of determining the minimum-

distance collision-free path using a visibility graph constructed from the obstacle

vertices [59]. Such methods work well for two-dimensional path planning, but in

three-dimensions, the shortest-distance path is no longer guaranteed to pass through

vertices. This problem is overcome by calculating approximate solutions using

"phantom" vertices introduced within edges. The closeness of such approximation

depends on the locations of these extra vertices.

2.9 Tolerance Representation and Definition

2.9.1 Assigning Tolerances to Solid Models

In their paper, J. Shah and D. Miller state that a geometric model defined in terms

of low level geometric and topological entities or primitives contains insufficient

information for the geometric reasoning required by most CIM programs. [60] .

They offer a list of applications which require extra information and this list

includes group technology coding, variant and generative process planning and NC

toolpath generation. Their paper goes on to describe a component part definition

system consisting of a dual solid modeller (i.e using both boundary and set

theoretic representations) to define the nominal geometry; a feature model to

-52-

capture the semantics of the geometry; and variational attributes to specify toler­

ances and surface finish. The scheme still relies on attaching non-geometric infor­

mation directly to the solid model in order to allow communication between these

three parts of the system.

The problem of assigning tolerances as attributes to set theoretic solid modell­

ers was considered by Requicha [61]. He describes a method which uses a varia­

tional graph which is related to the faces of primitives in the solid model and

which contains variational non-geometric information such as tolerances. The

graph allows the relationship between the various features to be established and

uses an indexing scheme for naming primitive faces based on the position of the

primitive within the set theoretic expression. Algorithms are described for building

the graph incrementally as attributes are assigned to the appropriate features.

The method allows limited editing of the set theoretic model after the applica­

tion of attributes. However, there is a large memory overhead in using the graph

structure, primarily due to the indexing scheme required to localise primitive faces

within the set theoretic expression.

The work highlights the need for being able to define simple features, such as

planes, cylinders and axes, and distinguishes between entities, such as axes, and the

measured entities. Axes in this scheme are defined in terms of symmetric features,

such as prisms, cylinders or cones, with extra information to remove ambiguities.

Tolerances are checked in terms of tolerance zones which are built by shrink­

ing appropriate model features and subtracting them from their expanded versions.

-53-

Although this approach is directly applicable to form tolerances, such as roundness,

no indication is given as to how such a zone is constructed for non-measured enti­

ties such as axes.

U. Roy and C. Liu develop a method of tolerance representation which uses a

hybrid structure of set theoretic and boundary representation together with a

representational tree of attributes [62]. They argue that the set theoretic descrip­

tion is useful for establishing the spatial constraints between features and that the

boundary representation allows easy access to the "low-level" feature information.

Various graph structures are used to maintain relationship between the features and

attributes. The method makes it mandatory to include boundary representations of

components and primitives and thus is expensive computationally and in memory.

In representing non-measurable entities, such as axes, it is assumed that other

entities exist which define them, such as two intersecting planes. This leads to an

unnecessary, and unwarranted increase in the size of the model since the non-

measurable entities are implicitly defined by existing measurable entities.

P. Ranyak and R. Fridshal also describe a method for assigning attributes to

solid models [63] . The paper describes the construction of a "Dimension and

Tolerance Model" in conjunction with a boundary representation of the component.

However, the paper does not make it clear how this additional model is used in

conjunction with the solid model.

N. Bernstein and K. Preiss also discuss representation of dimensional and

tolerance information within boundary representation solid modellers [64]. Little

-54-

is said about the details of attribute assignment, with the authors mostly describing

in detail the nature of the tolerance information. The method seems to adopt the

structure of boundary representation but redefines the constituent features, such as

faces, edges and vertices, to include extra information about constraints. The paper

does offer rigorous analysis of tolerance representation, particularly size tolerances,

and defines a method of calculating constraints imposed on the boundary features

by tolerances.

The representation schemes described above have been developed with the

aim of representing dimensional and size tolerance information in solid models.

By restricting attention to geometric tolerances, the problem is reduced consider­

ably since the toleranced features are realisable geometric entities. Chapter 7

describes a method of assigning such tolerances to set theoretic solid models.

2.9.2 Definition of Geometric Tolerances

The British Standard BS308 Part 3 describes the definition and interpretation of

geometric tolerances currently in use [65]. The most commonly used tolerances

are roundness, squareness, angularity and position. A scheme developed for the

representation and verification of geometric tolerances must be able to consider

these.

A. Fleming offers a useful analysis of determining the total constraint applied

to a feature within a component by the application of geometric tolerances to vari­

ous parts of the component [66]. The paper describes relationships between vari­

ous tolerance zones, features and datums, and offers a method of determining the

-55-

constraint applied to a feature using networks of zones and datums. This allows

the validity and meaning of such tolerances to be assessed when they are applied,

but the paper does not describe how such information helps in checking that the

tolerances hold after measurement.

F. Etesami describes a method of tolerance verification using boundary

representation models [67] . The tolerance information is used to construct the

boundary representation of a component model built from constructors. These

constructors represent the allowed variation of the nominal feature, and the paper

describes how they are built for entities such as axes, for which he assumes a

cylindrical form. Tolerance checking involves extracting the appropriate feature

parameters from measured data and testing them against the constructors. It is not

clear what advantages, if any, this method has over direct results analysis using the

solid model.

The maximum-material-condition tolerance is the subject of a rigorous

analysis carried out by R. Jayaraman and V. Srinivasan [68]. They formalise the

theory of such geometric tolerances in terms of assembly and material bulk require­

ments and conclude that current industrial practices are inadequate for their alterna­

tive, more powerful, tolerance specification. Maximum-material constraints are

tolerances used to control assembly and as such require information about the vari­

ous independent components. The work described in Chapter 7 and Chapter 8 of

this thesis deals with single components and geometric tolerances whose applica­

tion are restricted to these components, and thus such an alternative specification is

not needed.

-56-

2.10 Extraction of Feature Information

Extracting geometric parameter information, such as axis directions or radii,

directly from solid models has received little or no attention, with most methods

using primitives which explicitly have such information as part of their definition.

This requires a modeller which uses bounded primitives. Using attributes to attach

the geometric information to the modeller is an alternative approach and allows

unlimited definition of features and their parameters. This is advantageous since,

in general, the definition of features depends on the subsequent applications.

The identification of quadrics from their polynomial representation is men­

tioned in Chapter 8 of this thesis. This is done using eigen value and eigen vector

methods and is fully described in a book by N. V. Efimov [69]

The fitting of planes to measured point data described in Chapter 8 of this

thesis is done using principal component analysis. This is fully described by C.

Cakir in his thesis [70].

Extracting geometric parameter information from measured data requires

parameter-estimation procedures. Given that the entity type is known in advance,

these procedures use numerical methods to obtain the information. V. Pratt

describes a set of algorithms for fitting algebraic surfaces to point data [71]. He

claims that fitting algebraic surfaces directly is more efficient than the fitting of

parametric surfaces. However,, for inspection purposes, it is exactly parameters,

namely radii, centre coordinates, and conic angles, which are required for analysis

and hence an appropriate parametric fitting is clearly more relevant.

-57-

A. Forbes in an NPL report, describes algorithms for computing least-squares

best-fit geometric elements to data [72]. These procedures use a Gauss-Newton

iteration approach to estimate the required parameters for planes, cylinders, cones

and spheres. Chapter 8 describes how the results of these methods are used in

tolerance verification.

2.11 Automatic Checking of Geometric Tolerances

One piece of recent work dealing with the determination of geometric deviations

using coordinate measuring machine data is a paper written by W. Elmaraghy, H.

Elmaraghy and Z. Wu [73]. The work restricts attention to geometric tolerances

applied to cylindrical features and lists the various tests required in all cases. The

feature parameters are estimated using a nonlinear optimization approach which is

similar to the Guass-Newton method described in the NPL report (see Section

2 .10).

-58-

CHAPTER 3

GENERATING THE SURFACE POINTS

3.1 Introduction

The first stage in the automatic generation of a CMM probe path is the generation

of a set of points lying on the surface of the component. This requires a computer

representation of the component containing information about its geometry, and an

algorithm which uses such a representation to derive a set of surface points.

Solid modelling is clearly a suitable representation scheme, but no references

have been found to algorithms for generating a set of points lying on the surface of

solid models, the models based on either set theoretic or boundary representations.

The set theoretic solid modelling scheme used in the work described in this

thesis is based on implicit half space equations. The equations may represent

planar or curved surfaces. In this chapter, a method of generating a set of points

on the surface of such a model is described. Two algorithms are described. The

first is for faceted models, i.e. models constructed from planar half spaces only.

The second algorithm is for the more complex problem of curved-surface models.

3.2 Considerations

The points being generated are for a particular inspection task and this imposes

certain constraints on the positioning of the points.

-59-

Firstly, the distribution of the points over the object surface is important. If

the points are too close together, time is wasted during inspection. Many points

are measured within a small area, but with a limited increase in information, since

the data are not representative of the whole surface. In this way, clusters of points

lead to inefficient inspection.

Conversely, points too far apart will lead to an increase in the chances of

missing localised defects or surface errors during inspection. Clearly, the wider the

spacing between the probing points, the less representative the measured points are

of the particular surface.

Finally, a distribution of points that is regular would not be ideal, either, since

common types of defects due to machining are cyclic within the object surface, i.e

the surface errors occur at regular spacing intervals. These errors would again be

missed if the points are perfectly regular and lie on the regions of surface where

there are no errors [Fig 3.1(a)]. A lobed shape is a particular example of this prob­

lem [Fig 3.1(b)].

Inspection at points which lie on edges or vertices of the object is generally to

be avoided. Problems arise because probing an edge or vertex is not a well-

defined procedure. When the finite sized probe hits the edge or vertex, the point of

contact between the probe and the component cannot be determined. Hence the

coordinates which the probe measured cannot be related to the coordinates of the

point of contact, and this results in error [Fig 3.2].

-60-

a c e

Figure 3.1(a) Missing cyclic errors.

A c t u a l C y l i n d e r

c u l a r l u S p a c e d P o i n t s

Figure 3.1(b) Missing errors of lobed shapes.

-61-

Figure 3.2(a) Correct method of probing.

Figure 3.2(b) Ambiguous probing of edges.

Not all the geometric features of a component will require inspection, and

selection of features depends on how critical their dimensions are. Further, some

features may require more careful inspection than others. In view of this, only

points for selected features should be generated, and the number of the points

should be in some way related to the tolerancing of the feature.

The algorithm for generating points needs to be capable of yielding an accept­

able point set for any object. An algorithm which is generative in the sense that it

would take a set theoretic solid model as input and use this to automatically gen­

erate a set of points with the above properties would suffice. However, the solid

model on its own would not allow feature selection or feature-based distributions,

since these factors require additional information about the object which cannot be

determined from the geometry, such as design purposes and tolerance information.

In view of this, algorithms have been developed for solid models which have non-

geometric information attached to them as attributes (see Chapter 7 for description

of the method used to attach attributes to solid models).

3.3 Faceted Models

3.3.1 Description of Faceted Models

The set theoretic representation of objects consists of the boolean combination (i.e.

set theoretic operations) of sets which represent volumes of solid. A region of

space is also specified, known as the object space, which defines the region in

which this representation is true.

-63-

With faceted models, the solid volume sets are represented by planar inequali­

ties of the form ax + by + cz + d < 0. The coordinates of points (x ,y ,z) which

satisfy this inequality are within solid, and the coordinates of points which satisfy

the logical inverse of the inequality lie in air. The plane, therefore, divides space

into two regions, one consisting of solid the other of air, and for this reason is

known as a planar half space. Points which lie on the planar surface clearly satisfy

the equation ax + by + cz + d = 0. Further, the planar normal direction, (a ,b ,c),

points from the solid region into the air region.

Objects consisting solely of planar surfaces can be built using set theoretic

combinations of such planar half spaces. Objects which contain cylinders and

cones, may be represented to any required level of accuracy using the same kind of

half spaces. For example, a cylinder can be approximated by the intersection of

planes whose normal is perpendicular and pointing away from the cylinder axis

[Fig 3.3(a)]. Clearly the higher the number of planes, the closer the approximation

is to the actual shape.

The location of planes (within the approximation) relative to the actual surface

is dependent on how the feature is to be used. For point generation, were we

require points lying on the cylinder surface, it is sufficient for the points to lie

close to the surface and in air. Hence the approximations would be built with the

half space planes being tangential to the circumference for external features, such

as the cylinder described above. In the case of an internal feature, however, such

as a cylindrical hole, this approximation would give air where there is solid. An

alternative approximation may then be required [Fig 3.3(b)].

-64-

Figure 3.3(a) Facetted cylinder.

So 1 i d Rea 1o n si o n s

Figure 3.3(b) Alternative approximations.

-65-

The inspection technique (described fully in Appendix 1) involves driving the

probe to a point offset from the object surface, and then moving the probe slowly

towards the object until it hits the surface and a measurement is taken. The gen­

erated inspection points are used to decide the position of the offset points. Once a

measurement has been made, they play no further part in the inspection task, and

thus the accuracy of their location is not an important factor. It follows from this

that the accuracy of the faceted model is not a crucial factor in the generation of

inspection points, and that the method of approximation is unimportant.

Curved half spaces can be used to model simple quadrics, such as cylinders,

cones and spheres. In this representation, half spaces are not planar but second-

degree polynomials in x , y and z. Clearly this offers increased accuracy, but the

higher order of complexity required for consideration of these second-degree

representations appears unnecessary when the accuracy of location of the points is

not important.

In conclusion, for inspection of components which consist of planar, cylindri­

cal, conic or spherical features the faceted models are adequate approximations for

generating surface points.

3.3.2 Methods of Generating Surface Points on Faceted Models

Points which lie on the surface of a solid model satisfy two conditions. Firstly

they lie on the surface of at least one of the constituent planar half spaces. How­

ever, not all points lying on the half spaces will lie on the surface of the model,

and so secondly the points must also satisfy a surface membership test [Fig 3.4(a)].

-66-

For P o i n t P

H a l f S p a c e A

S o l i d

H a l f S p a c e B

M o d e l : A n B

a n b
(SOLID) n (SOLID) = (SOLID)

F o r P o i n t S :

a n b
(SOLID) n (SFCE) - (SFCE)

F o r P o i n t T :

A n b
(SOLID) PI (AIR) - (AIR)

Figure 3.4(a) Membership testing.

n SOLID AIR SFCE
SOLID SOLID AIR SFCE

AIR AIR AIR AIR
SFCE SFCE AIR SFCE

U SOLID | AIR SFCE
SOLID SOLID SOLID SOLID

AIR SOLID AIR SFCE
SFCE SOLID SFCE SFCE

Union Table Intersection Table

-- SOLID | AIR SFCE
SOLID AIR SOLID SFCE

AIR SOLID AIR SFCE
SFCE SFCE SFCE AIR

Di fTerence Table

Figure 3.4(b) Membership truth tables.

-67-

The test requires evaluation of the set theoretic expression defining the component,

and this is done by calculating the plane equation for each half space at the test

point and classifying each result as solid, surface or air. The truth tables for set

theory operations as defined in solid modelling, shown in Fig 3.4(b), are then used

to calculate the result of the set theoretic expression at the test point. (Precise

membership testing requires consideration of regularised set theory operators.

These extend the truth tables to consider cases where the two operands are comple­

mentary surfaces and avoid introduction infinitessimally thin sections of surface

which can arise when such surfaces are combined).

The points can be chosen in various ways. For example, it is possible to

make a random selection of pairs of points within the object space, with the coor­

dinates of one point being in air and coordinates of the other being within the

object. These could then be used to determine a surface point by calculating the

intersection between the surface of the model and a line joining the two randomly

generated points. However there is no control over the distribution of points in

this method.

An alternative approach is to generate a three-dimensional grid within the

object space and test the grid nodes for surface membership. However, the

chances of the grid nodes lying on the object surface is small. Also, even though

the points may be regularly spaced within the volume, this does not, in general,

imply anything about the nature of the distribution over the object’s surface. So,

again, there is no control over the distribution.

-68-

The object space is a cuboid and is bounded by planes whose normal direc­

tions are parallel to the coordinate axes. These bounding planes could be used to

generate points by using ray casting methods. A grid would be constructed on one

or more of three perpendicular planes and rays cast into the object space. The

points at which the rays hit the object surface become the test points. This method

has the advantage of not requiring further membership tests, since the test points

are already known to lie on the surface, but again allows little control over distri­

bution. Success depends on how the object is orientated relative to the coordinate

planes, and on how the grid is defined.

All methods considered so far have only used the set theoretic model descrip­

tion at the time of carrying out the membership tests for points. A method which

also uses the surface information contained within the set theoretic expression to

select the surface points would make more efficient use of the model. In view of

this, an algorithm which uses the planar half space equations to generate test points

has been developed. The algorithm generates a grid of test points on each half

space for membership testing, and selects the successful points as the surface

points. The distribution of the points over each half space is now determined by

the spacing of the grid, and, although this does not guarantee control over the glo­

bal object surface, it does allow local control over the distribution of points on

each half space.

Because the half space may or may not contribute to the surface of the model,

considering all half spaces in turn is clearly inefficient, since more membership

tests will be done than are necessary. This is also true for half spaces where only

-69-

a small part of the half space contributes surface to the model. The half space will

be gridded throughout the object space and all grid nodes will be tested, even

though only a small region contributes surface to the component.

In view of this, an algorithm which first applies spatial division and pruning

techniques has been developed. Before describing the algorithm in full, the ideas

and principle of object space division will be described.

3.3.3 Division and Pruning

In the set theoretic solid model representation, most of the object space will consist

of solid regions within the object and air regions outside the object. The remainder

will be surface. For many applications such as ray casting and surface point gen­

eration, it is this surface region which needs to be considered.

Binary spatial division of the object space involves repeatedly dividing the

space into two regions and constructing two new set theoretic models which are

valid for each of these two regions. In general, these new models will be simpler

than the original as half spaces which do not pass through the new smaller regions

can be removed from their expressions. If, after division, a half space is detected

which does not pass through a given region, then the region must lie either within

solid or air for that half space. Thus the half space contribution will be constant

and the set theoretic expression can be simplified by replacing the half space refer­

ence with the appropriate contribution [Fig 3.5]. This makes membership testing

quicker within each region.

-70-

M O D E L
A B C D

1 f S p a c e

P 1 a n ev 1 s l o n

Ha 1 f S p a c e C
1 f

AFTER DIVISION

Sub~ModeI

a n e n c n <solid>
Sub - Modt

(SOLID) n B n C O D

AFTER PRUNING

P r u n e d Sub~Model

a n b n c
P r u n e d Su b ' Mo d e l

b n c n d

Figure 3.5 Division and pruning.

-71-

A further advantage of division is obtained by a process known as pruning.

This uses set theoretic rules for combination with air and solid to simplify expres­

sions further. For example, anything, either solid, surface or air, intersected with

air will always yield air. Similarly, anything unioned with solid will always yield

solid [Fig 3.4(b), Fig 3.5]. Using these rules, a set theoretic expression can be

simplified, and, more importantly, regions consisting totally of air or solid can be

detected.

Division continues within each new region until pruning results in

simplification, either to air or solid, or until some division criterion is not met.

This criterion is a function of complexity of the set theoretic expression and the

size of the region. If the expression contains a large number of half spaces, then

division is encouraged unless the size of the region is below a given level.

The decision of where to divide a region can be made in several ways. For

most applications, dividing parallel to coordinate axes and half way along the larg­

est side is simple and sufficient. When models consist entirely of planar half

spaces, however, cleverer division strategies can be developed. For example, it is

possible to determine zones within the regions which lie between the half spaces,

and to select a zone which maximises the chances of model simplification through

pruning.

The division technique generates a list of sub-space regions and associated

simple set theoretic expressions which potentially contain surface.

-72-

3.3.4 An Algorithm for Faceted Models

The algorithm for generating points on the surface of faceted models begins by

applying division and pruning techniques to yield a list of simpler sub-spaces and

sub-models which are known to contain surface. Each sub-model is then con­

sidered in turn.

The contribution from each half space has now been isolated to a list of sub­

space regions. In constructing a grid of points for each half space it is required to

maintain uniformity throughout the half space. Thus a grid origin is determined

for each half space and also a pair of orthogonal grid axes which lie within the

planar surface. These grid parameters, the origin and the axis directions, are deter­

mined when the half space is first encountered during processing of the sub-space

list.

The algorithm determines a rectangle in the plane of each half space which

bounds the region contained within the sub-space. The rectangle is derived using

the points of intersection between the half space and sub-space [Fig 3.6(a)].

If the half space has not been encountered before, two of the intersection

points are used to determine one axis direction, and calculation of the vector pro­

duct with the plane normal yields the other. The rectangle is then calculated by

projecting all intersection points into these axes and selecting the extreme points

along each axis. The grid origin is selected as the comer with the lowest coordi­

nates relative to the axes [Fig 3.6(b)].

-73-

HALF

m t e r s e c t i o n

FiSUre 3 6(a
Space s»b-

intersection.

r'o j e c t -1 ons

Pc9 O u t 8 i d o S u b . s
pace

A SC
3 g £,

<?A7 ’T ~ s

/

/ / >
/

/

Bound
R ec t

e d
QngJ,

G r ^ o f Po i n t:

Figure 3.6(b)
™c'ion o f g n d _ol.

Points.

• 74 .

If the half space has been encountered before, the axis directions and the ori­

gin are already known and the lowest grid node nearest to the intersection points is

determined and used as the local grid start point. In this way, regularity is main­

tained throughout the half space.

Each grid node point is now tested. Firstly, they must lie within the sub­

space. Since the rectangle bounds the region, this will not be true for all grid

nodes. Secondly, they must lie on the object’s surface, and this involves member­

ship testing against the sub-model defined for the particular sub-space. Successful

points are collected as surface points.

A regular grid is not always desirable as mentioned earlier. In view of this,

the grid nodes themselves are not chosen as inspection points. Instead, a point is

selected in a square which is centred at the grid node. A randomly-generated or

user-defined table is used to determine a sequence of offsets from the grid nodes

[Fig 3.7]. Each table entry consists of a pair of axial lengths which are used to

determine a point offset from the node.

Points lying on edges and vertices can be avoided by specifying a minimum

allowed distance between the points and other half spaces within the sub-model set

theoretic expression. If a point is closer than this minimum distance to another

half space, then it is considered to lie on its surface. A modified membership test

which allows the extra operand type of "half space under consideration" and which

has extra entries within the operator truth tables to accommodate the new type is

used. In this way only points which lie on the particular

-75-

Figure 3.7(a) Points selected at grid nodes.

S U R F A C E P O

G R I D N O D E E f

Figure 3.7(b) Points randomly displaced from nodes.

half space being considered will be chosen, since only these points will pass the

membership test. (A further test should be made to handle the case where identical

half spaces are referenced within the sub-model; they should clearly be treated in

the same way).

However, for faceted approximations to curved surfaces, this modified test

should not be used since, although edges exist within the model, they do not exist

in reality and so in these cases points can lie on edges. Currently to overcome

this, the modified test is only applied if the normals between the two planes differ

by a significant amount, but this potentially allows edge points to be generated in

non-curved faceted features. An exact method would be to use attributes to recog­

nise when two half spaces under consideration are both part of the same faceted

approximation.

Appropriate attributes are attached to the model to define features for inspec­

tion. These are applied as the model is built. Further, the grid unit size is input as

a parameter, and by attaching it as an attribute of the half space, different half

spaces can have different grid spacings. The choice of spacing depends on the

inspection task and the area of contribution the half space makes to the object’s

surface.

3.3.5 Examples

The plates described here contain pictures of results of running the program on a

collection of models. The pictures are wire-frame descriptions derived from the

set-theoretic solid model, and the points are shown as crosses.

-77-

Plates 3.1 and 3.2 are results for a cuboid block. They illustrate the

difference between using the grid nodes as surface points and using points offset

from the nodes. Clearly, the first is a special case of the second with zero offsets.

Attributes have been uses to select three of the six face planes.

Plate 3.3 show results for a faceted internal cylinder. Different grid spacings

are used for the block and cylinder, and clearly the points on the cylinder have not

avoided edges. The points lie on the grid nodes in this example.

-78-

Plate 3.2 Block with Points Randomly Displaced from Nodes

-79-

3.4 Curved Surface Models

3.4.1 Description of Curved Surface Models

Curved surface models contain set theoretic expressions between non-planar half

spaces which are represented as polynomials in jc , y and z. The inequality

P (x ,y ,z) < 0 defines regions of solid. For completeness, an algorithm was

developed which generates a set of surface points for curved-surface models.

Although more accurate and able to represent a larger number of shapes more

easily, curved-surface models add an extra level of complexity. For example, ray

casting now becomes a matter of finding roots of higher degree polynomials and

surface-surface intersection tests are difficult.

The non-linearity of the surfaces makes it difficult to classify the half spaces

as contributing surface, solid or air to cuboid sub-spaces. For planes, this test is

easy, but for higher order polynomials it is difficult to detect whether or not a

curved surface intersects a box or not. Division and pruning thus becomes more

difficult and a conservative test based on the value, or potential, of the polynomial

at the sub-space corners is used to decide if the polynomial intersects the box or

not.

The problem of generating surface points again involves considering a list of

sub-models which may contain surface.

3.4.2 Extending the Faceted Algorithm

-81-

The faceted algorithm relied on the linearity of the planar half spaces in order to

generate a grid of points. With curved surface models, the problems associated

with gridding the half spaces are considerable.

Firstly, determining an orthogonal pair of axes for the grid involves determin­

ing a set of curves lying in the surface which are perpendicular where they inter­

sect. Such curves can be obtained by calculating the intersection curves between

orthogonal planes and the surface. Thus, the sub-space is divided into a grid of

planes and the curves corresponding to the intersection of these planes with the

curved half space form the surface grid.

However, it is difficult to determine whether these curves of intersection have

a real range. Geometrically, this is related to the problem of determining whether

the plane intersects the surface. For simple cases, such as, for example, a sphere,

this may be possible to detect, but for general polynomials this is not easy with

algebraic representations of surfaces. Further complications arise when closed

curves occur, since termination conditions have to be found.

Secondly, selecting equally spaced points along a given curve involves solving

a integral equation. Again this is difficult and requires the use of numerical tech­

niques.

In view of these problems, an alternative algorithm has been developed which

uses techniques from interval arithmetic. The principles and techniques of interval

arithmetic are fully discussed by R. Moore (see Section 2.5.2 for references).

3.4.3 An Algorithm for Curved Surface Models

-82-

As with the algorithm for faceted models, the algorithm for curved half spaces gen­

erates a list of sub-spaces containing half spaces. A plane is then determined

which faces most of the half space segment lying within the sub-space and this

plane is used to determine a set of surface points. The plane is, in some sense, the

most tangential to the surface in the sub-space.

For each half space, the polynomial equation of the normal is obtained using

partial differentiation. For a majority of widely used features, such as cones,

cylinders and spheres, these derivatives are linear. Ideally, the mean normal over

the sub-space is now required, and this involves calculating the integral

I (Px J y J>z) dS
„ _ A . _______________

j d S

where As is the surface region lying within the subspace, P (x ,y ,z) is the equation

of the surface and Px, Py and Pz are partial derivatives of P . However, such an

integral is difficult to compute since the area As is not readily available, and a less

accurate but simpler method which uses interval arithmetic is used.

Interval arithmetic is used to determine the range of direction of the surface

normals within this sub-space by evaluating the partial derivative polynomials for

the intervals which define the sub-space. The midpoint of the resulting intervals

are then chosen as the plane normal direction. This bears little resemblance to the

integral above, which is weighted by the distribution of the normals rather than just

their range, but the estimate suffices for the cases where a sub-space contains parts

of cylinders, cones and spheres.

Once the direction has been determined, a plane is determined outside the

sub-space with a normal direction pointing in. A grid is constructed lying within

this plane in the same way as with faceted models, being bounded by the projec­

tions of the sub-space corners into the plane. Surface points are generated by cast­

ing rays from the grid nodes along the planar normal, and determining the intersec­

tion points with the sub-model [Fig 3.8].

If the sub-space within which the sub-model is defined is sufficiently small,

then the surface of all half spaces passing through the sub-space will be locally flat

(i.e. almost planar within the sub-space). If a plane is determined as described

above for a half space within this sub-space, then normal direction of this plane

will be parallel to most of the normal directions of the half space within the sub­

space. Hence, a majority of the rays cast from this plane along its normal direction

will intersect the half space, and hence generate a tentative surface point.

This method allows no control over distribution since a new plane has to be

calculated for each intersection between sub-spaces and half spaces. Edges and

vertices are still avoided by not selecting points which are close to the zeroes of

two or more curved surfaces. Attributes are used to define inspection features and

grid sizes. Control of the distribution is left totally to the post processing-

algorithms described in Chapter 5.

-84-

0

.SP*

3.4.4 Examples

The algorithm has been successively used on common quadric features, such as

cylinders and spheres, and on objects containing these features. The pictures illus­

trate results.

Plate 3.4 displays the results for a single cylinder. The picture was generated

by ray-casting into the set theoretic solid model and the line segments represent the

points. The lines are orientated at a direction normal to the surface. Attributes are

attached to the model to select only the curved surface features for surface point

generation.

Plate 3.5 shows a feature comprising of a mixture of cylindrical and faceted

features. Attributes were used to give different grid units to the various features.

Plate 3.4 Cylindrical Surface with Surface Points

Plate 3.5 A More Complicated Curved Surface Example

-87-

3.5 Other Methods of Generating Points

From the previous sections, it is clear that finding a satisfactory method which

allows total control of point distribution is difficult. For common features, such as

those for which geometrical tolerances are defined, attributes may allow better con­

trol by allowing more information to be transferred to the point generation pro­

gram. For example, if a set theoretic expression is known to represent a cylinder,

this information together with appropriate parameters may be useful in determining

inspection points. British Standard BS7172 [section 2.7] offers appropriate guide­

lines, and these could be used to calculate a set of points for one size of each

feature. These points can then be transformed to fit any size.

The problem with this technique is that although, for example, cylinders,

cones and spheres, are used in the definition of the model, they may not contribute

significantly to the surface of the resulting model. As an example, consider the

component obtained when one cylinder, A, is differenced from another, B, whose

axis is orthogonal to A. All points lying on the surface common to both A and B

will not lie on the component’s surface.

For curved surface models, an alternative is to generate points on a faceted

version and use these as ray casting nodes to obtain the real points. For simple

quadrics, and with the appropriate attribute information, it is an easy matter to

automatically facet the features. For higher order surfaces, however, it is not clear

how to automatically construct faceted approximations other than by hand.

3.6 Conclusions

-88-

The method of generating surface points on faceted models described here fulfills

all considerations of inspection point generation, except that there is limited control

on distribution of points. Edges and vertices are avoided, and simple attributes,

which may be geometrical tolerances, allow selection of features with varying grid

unit sizes.

Since the distribution of points is a global property of the set of points, it is

unreasonable to expect a point generation algorithm to be able to control fully the

distribution and fulfill all considerations described in Section 3.2 above. To do so

would add an extra level of complexity since the distribution of points would need

to be recalculated every time a new point is added. A much better approach is to

modify the set of points after generation as a post process step when all the neces­

sary information is available. This involves eliminating points in order to make the

distribution better, and thus requires that a sufficient number of points have been

generated initially. Chapter 5 describes the selection of inspection points from the

set of surface points.

If a feature has been tagged for inspection, but the point generation algorithm

failed to yield a set of points, a smaller grid size is needed. In principle, the pro­

gram can iteratively find the grid size which first yields an appropriate number of

points. Such an algorithm may be slow, depending on the original grid unit size

and the contribution the feature makes to the surface, and perhaps a better method

would be to derive a grid size from an estimate of the surface area of the feature.

In either case, it is clear that automatically estimating the grid size is a feasible

option.

-89-

CHAPTER 4

GROWING SET THEORETIC SOLID MODELS

4.1 Introduction

Having generated a set of surface points for a component, the next stage is to

select a set of inspection points. Inspection points have to be accessible to the

CMM probe, and thus the probe should be able to reach them without colliding with

any other part of the component. Further, when measuring an object, unexpected

collisions between the probe and the object must be avoided. To overcome these

problems a means of detecting collisions at the inspection planning stage is

required.

Ray casting along straight line path segments into the model will detect colli­

sions which would occur when a point moves along the path segment. Although

this method would detect obstructions along path segments, successful passage for

a point does not always imply safe passage for probes which have finite volumes.

An improved ray casting approach to the problem of collision detection has been

developed which is based on increasing the volume of solid occupied by the

model. By appropriately enlarging the model, the probe can be treated as a point

relative to this expanded model and normal ray casting techniques can be applied.

(As mentioned in Chapter 2, this is related to the configuration space approach

described by T. Lozano-Perez. This chapter describes how the configuration space

obstacle for a CMM probe can be approximated using a set theoretic model).

-90-

A grown set theoretic model is defined as a set of points whose minimum dis­

tance from the original model is less than a growth parameter, d . The concepts

and techniques of growing set theoretic solid models are described in this chapter,

followed by a description of how the techniques can be applied to collision detec­

tion for CMM measuring probes.

4.2 The Concept of Growing

The effect of growing a set theoretic model is to displace the surface boundary

along its outward normal. This is not the same thing as increasing the model size

by scaling, which would maintain the relative positional relationships between

features. For example, growing a model which contained a cylindrical hole would

produce a new model in which the radius of the cylinder is smaller. Scaling the

same model would produce a model in which the cylinder will have a larger

radius. In general, growing has the result of expanding external features and con­

tracting internal features [Fig 4.1].

The set theoretic solid model definition consists of the set theoretic combina­

tions of half space primitives. Each primitive may or may not contribute to the

surface of the model. A new model is constructed by maintaining the same set

theoretic expression, and changing the half spaces. These new half spaces are

chosen to be offset from the original half spaces in a direction parallel to the sur­

face normals. If difference operators have been re-written in terms of intersections

and half space complements, then this new model will contain surface segments

offset from the original surfaces.

-91-

S C A L E D M O D E L

P L A N V I E W O F O R I G I N A L C Y L I N D R I C A L H O L E

\

;r o w \ v o d e l x

Figure 4.1 Difference between Growing and Scaling.

The above can be readily applied to faceted models where the change to half

spaces involves shifting planes. However, the new model constructed in this way

is only an approximation of the grown model. This becomes clear when the

behaviour at edges and vertices are considered. Fig 4.1 shows the correct grown

model (obtained by applying the definition given in Section 4.1) which results

when growing a component consisting of a square block with a vertical cylindrical

hole. The comers of the block have become rounded comers i.e. cylindrical sur­

faces, and this will be the case for all edges. In the same way, vertices will

become spherical surfaces in the grown model. In contrast, the model obtained by

shifting the planar faces will contain edges similar to those in the scaled model as

shown in Fig 4.2. The approximation to the grown model will contain the

correctly grown model as a sub-set, as Fig 4.2 shows, and so gives a conservative

estimation which is adequate for collision detection.

For simple curved half-spaces entities, such as cones, cylinders and spheres, it

is possible to calculate a grown entity given the parameters which define the origi­

nal entity, (i.e. the axial direction, radii etc). However, if the half spaces are

curved, it is not clear how to derive a new half space which is offset from the ori­

ginal half space. Indeed, the only successful way seems to be to fit a surface equa­

tion through a set of offset points. Further, the behaviour at edges and vertices of

intersections between curved surfaces becomes much more complicated. However

curved surfaces can be approximated to an arbitrary degree by facetted models and

so restricting attention to facetted models does not unduly restrict the possible

applications of the developed techniques.

-93-

O R I G I N A L M O D E L

S H : r T E D H A L F S P A C E MOD E L
GROWN MO D E L

Figure 4.2 Difference between Growing and Shifting half spaces.

-94-

A half space planar equation has the form:

P (x ,y ,z) = ax + by + cz +d < 0

To shift the half space a distance X along its normal requires the shift operator

S i(P) defined as:

S jXP) = P - X

Thus to obtain an approximation to a grown facetted model, Sy(P) is applied to all

half spaces P (.x ,y ,z) within the model.

The new model obtained by shifting half spaces may have the same topology

as the original model. However, this is not always the case. Because of the global

nature of the half spaces, it is difficult to determine or control the changes which

occur in the complete model when a half space is moved. For example, if one half

space passes through another during the growing process, a half space which did

not contribute surface in the original model may now do so in the grown model

[Fig 4.3]. This could result in unwanted topology changes within the grown

model.

-95-

MODEL B2 - B1 * B2 n B1

BEFORE GROW INC

SPACE a ":

/ j m . / j.

OCK

!

j&r r

I
/ m . . . _ 1

Wt?

HALE S:"

MW

AFTER CROWING

1;
F SPACE Ev

V 1
1 1

: ~

/ZZ'/ \i
I 1

SPACE A 1 j
'

sw s. _____

Figure 4.3 Topology changes due to Half space A
passing through H alf space B

Not all topology changes are unwanted. For example, when a component

contains internal features, such as slots and holes, growing of the model results in

the contraction of such features. If the growing involves shifting surfaces a

sufficiently large distance, internal features may disappear from the grown model.

Another example of topology change can occur when features are unioned

together. For example, if a cylinder is unioned with a block, new edges may

appear at the boundary as the block face grows into the cylinder and the cylinder

position is unchanged [Fig 4.4]. This kind of topology change is not of concern

for the application of growing described in this thesis (namely, collision detection)

since the resulting model encloses the expected grown model and so is a conserva­

tive approximation.

Intuitively, all objects can be grown in a sensible and consistent way without

unwanted topology changes, and in practice this appears to be true for a majority

of cases. Topology changes occur in facetted models when new vertices appear in

the grown model, or when vertices which exist in the original model no longer

exist in the grown model. This occurs when a half space passes through an inter­

section point of three or more planes, i.e. when the relative position of such a point

to a planar half space changes. Section 4.4.1 describes the reasons for this in more

detail; it is sufficient here to say that when such events occur, there is a greater

chance of changing the vertices of the model.

-97-

MODEL B u C

C Y L I N D E R C

N E W
V E R T E X

Mr ;r o w i n g G R O W N M O D E i

Figure 4.4 Topology changes during growing of
cylinder unioned with block.

-98-

4.3 Set Theoretic Tree Reconstruction and Growing

The set theoretic expressions representing any model may be rewritten with

differences redefined in terms of intersection and complement operators. For

example, in differencing planar half space represented by the implicit equation

Q (x ,y ,z) from planar half space represented by P (x ,y ,z), the following rule is

used:

p - Q = p n Q

where Q is the complement of Q . Planar half space complements are constructed

by negating the coefficients of the half space, namely a , b> c and d .

Consider a set theoretic expression consisting of half spaces and boolean

operations between them. Difference operators can be removed from the expres­

sion by rewriting them in terms of intersections of complements, and this results in

a new expression. By distributing intersections over unions in this new expression,

an expression consisting of the union of intersect-models can be obtained, with

these intersect-models consisting solely of intersections between half spaces [Fig

4.5]. (This is directly analogous to the distribution of multiplication over addition

to yield the sum-of-product form).

-99-

M O D E L B1 — B2

B L O C K B 1 F n G n H D K

B L O C K 5 2 A O B O C P i D

31 — 82 -- 81 P i B2
* (F n c n H O K i n c A U B u c u o)

H

D I S T R I B U T E D M O O E l

3i — B2 = (f o c o h o k O a) u <f n g n h r , k n s) u (F n c n H n K n c) u
< f n g n h n k n d >

F F

c f n c n h n k n c)

K

H

(F n c n H O K O B)

(F O c O h O k O a) - (A I R) (F P l G n H P i K n D) ■ (A I R)

Figure 4.5 Tree Reconstruction. Some intersect-models can be
pruned to air.

-100-

If an intersect-model is non null then, since it contains only intersections

between half spaces, it is convex. Further, the cases where an intersecting point

between three or more planar half spaces, (i.e. a tentative vertex), within the

intersect-model can change its position relative to any other half space within the

same intersect-model will result in topology changes which always give conserva­

tive estimates to the exact grown sub-model. To see, consider when there are four

half spaces which intersect at a point, T . When the half spaces are shifted a dis­

tance X along their normals, the intersection point T will be translated a distance

which is greater than the shifted distance X and hence will pass through half spaces

[Fig 4.6(a)]. The effect of this is to introduce three new vertices. However, this

case is not a problem because the resulting grown intersect-model is still a conser­

vative estimate of the exact grown intersect-model [Fig 4.6(b)]. (In fact, the case

is similar to the example already discussed in Section 4.2 where a block and

cylinder are unioned together).

If the intersect-model is null it is quite possible that shifting half spaces will

result in a non-null intersect-model as half spaces which face each other pass

through each other and introduce new solid regions. This in turn will lead to

topology changes in the total model since new contributions of solids are unioned

into it. If the null intersect-models are detected, these can be trivially removed

from the model just by removing an intersect-model and a union operator pair from

the distributed model expression. This can be done because the union between null

and any model M , say, always results in M . Of course, null object detection is

non-trivial as described in chapter 2, but algorithms may be able to exploit the fact

-101-

that each intersect-model consists only of intersections between planar half spaces.

For example, half spaces facing each other can be detected, and intersect-models

consisting such pairs of half spaces are null.

Another problem arises with redundant intersect-models. These are non-null

intersect-models which are completely contained within other intersect-models, and

thus whose contribution to the model is not needed. When half spaces are shifted

to grow the model, it is possible for a half space within this intersect-model to pass

through a half space intersection point of the intersect-model which contains it. As

Fig 4.7 shows, this results in topology changes as new vertices appear. As with

null intersect-models, redundant intersect-models can be trivially removed from the

model although their detection is not simple.

If the null and redundant intersect-models are removed, the resulting model

now consists of the union of a list of convex sub-models. Growing each sub­

model will result in a new grown intersect-model as described above. The union

of these intersect-models will then result in the grown original model.

Null object detection aside, another problem with this approach is the com­

binatorial increase in the number of half spaces which occurs during distribution.

Limited simplification is possible. Repeated half spaces within sub-models can be

removed. However, the resulting models are, in general, very large [Table 4.1].

-102-

h a l f s p a c e b

Figure 4.6(a) Topology changes with three or more half-spaces.

n

S P A C E

S O L I D R E G I O N

S P A C EAL

S H I F T E D
H A L F S P A C E S

Figure 4.6(b) The changes produce a conservative model.

-103-

R E D U N D A N T I N T E R S E C T - M O D E L

;N T l E S E C T - M O

U N S H I F T E D
H A L F S P A C E :

Figure 4.7 Topology changes when redundant
intersect-models are grown.

-104-

Expression Size Intersections Unions New Size

79 6 33 461

129 7 57 12,623

137 34 34 2,321

187 35 58 54,907

211 41 64 285,397

Table 4.1 Increase in size of set theoretic model expressions
after distributing intersections over unions.

-105-

Processing such models without further simplification is not feasible, and so

methods of simplifying the distributed expression are needed. However, it is

difficult to see where such simplification can occur whilst retaining the property of

having intersections distributed over unions.

In view of this problem, an alternative was sought which is based on the ori­

ginal set theoretic expression and which detects and corrects any topology changes

which occur after shifting half spaces.

4.4 Growing Correction for Facetted Models

4.4.1 Introduction

As mentioned earlier, the topology of facetted models changes when the list of ver­

tices of the model changes. In these models a vertex is an intersection point of at

least three planes which has two properties. Firstly, it lies on the surface of the

model. Secondly, it is at the end of an edge of this model. When the list of ver­

tices changes, an intersection point has lost or gained one or two of these proper­

ties.

An intersection point gains the first property when it changes from lying in air

or solid with respect to the model to lying on the surface of the model. This

means that the result of the membership test described in Chapter 3 changes and by

determining which half space contributions within the test have changed, it is pos­

sible to determine which half spaces have changed position relative to the intersec­

tion point.

-106-

An intersection point will lose the first property when it changes from lying

on the surface of the model to lying within air or solid with respect to the model.

Again the membership test can be used to ascertain which half spaces have

changed position relative to the vertex.

The second property of vertices, that of lying at the end of a model edge, is

more difficult to detect and so does not help in detection and correction of topol­

ogy changes. It can be used to determine whether an intersection point which lies

on the surface, tentative vertex is a real vertex of the model, or whether it lies on a

locally flat region of the model surface.

During the growing process, internal features will contract and, if surfaces are

displaced far enough, may disappear. Hence disappearing vertices are to be

expected. However, the emergence of new vertices after growing is an indication

of unwanted changes in topology, and an algorithm has been developed which

attempts to correct topology by eliminating such vertices.

4.4.2 Elimination of New Vertices

Each half space intersection point is uniquely defined by the half spaces which pass

through it. Since each half space in the ungrown model has exactly one

corresponding half space in the grown model, it is possible to map the intersection

points in the ungrown model to those on the grown model. If a list of vertices also

exists for both grown and ungrown model, it is possible to construct lists of newly

appeared vertices and disappeared vertices.

-107-

A half space P{x,y,z) can contribute solid, air or surface to a vertex

(Vi ,v2 ,v3), and this is determined from the sign of P (v j ,v2 ,v3). A new vertex

can only appear because the contribution from one or more of the half spaces in

the set theoretic expression has changed. By comparing the contributions of half

spaces to the new vertex in the grown model with the contributions to the

corresponding vertex in the original model, it is possible to determine which half

space contributions have changed. Correction of the grown model then involves

shifting these half spaces (in the grown model) back towards their original

ungrown model locations so that contributions are restored to their original type.

Not all half spaces can be shifted back. The grown model contains surface

offset from the original model surface. If the half spaces contributed surface in the

original model, then it is likely that they will do so in the grown model, the excep­

tions being when internal features, such as holes and slots, collapse during grow­

ing. Shifting back the "surface" half spaces is clearly incorrect, and such half

spaces are classified as non-shiftable. Half spaces may, therefore, be categorised as

either shiftable or non-shiftable, and corrections are made by only shifting back the

shiftable half spaces.

The set of shiftable half spaces is determined from the vertices of the original

model. If one of these vertices lies on a half space, then that half space is

classified as non-shiftable. The remaining half spaces are classified as shiftable.

This test is conservative with respect to identifying half spaces which contribute to

the surface since a half space may pass through a vertex without forming part of

the model surface. As an example, consider a cylinder unioned onto a cuboid block

-108-

such that one of the sides of the cuboid passes through the centre of the cylinder,

and also such that this cuboid side has the same length as the cylinder diameter

[Fig 4.4]. The cuboid side passes through the joining vertices, but does not form

part of the surface which is defined by the union of cylinder and block.

As described above, half spaces are only allowed to be shifted one way; that

is back along the direction from which they were shifted during growing. The dis­

tance shifted depends on the required contribution change. For example, if the

contribution required at (v! ,v2 ,v3) is air and the half space P (x ,y ,z) contributes

solid, a X is required such that the new half space S^(P) contributes air. Since

motion is restricted to moving back along the plane normal, this means finding a

X > 0 such that P (vj ,v2 ,v3) + X > 0, or X > —P(vi ,v2 ,v3). A X is chosen

which is just sufficient to alter the contribution as required.

In some cases, the new vertices which have appeared in the grown model will

be at the intersection point of shiftable half spaces and located such that there are

no shiftable half spaces contributing to it that may be shifted to correct it. In this

case, the vertex itself has to be shifted in order to correct the contributions from

other half spaces. The vertex is moved by selecting a shiftable half space on

which it lies and shifting it in the same way as described above and relative to the

half spaces whose contributions are incorrect.

As changes are made to the model, the list of new vertices is updated. If a

vertex lies on one or more half spaces which have been shifted, its new position is

calculated. This involves determining the translation which occurs along each

-109-

plane-plane intersection line passing through the vertex as half spaces are shifted,

and then shifting the vertex appropriately [Fig 4.8]. In some cases, this newly

positioned intersection point is no longer a real vertex, since shifting a half spaces

usually eliminates sets of vertices.

The technique just described works for a large number of examples, but fails

for one noticeable case. If two half spaces which both contributed surface in the

original model pass through each other, i.e. change relative positions, any shiftable

half spaces which used to lie between them will introduce new vertices which can­

not be eliminated. One example of this is a groove built from three blocks [Fig

4.9]. The algorithm described above will move the shiftable half spaces back to

make the correct contribution, but this is impossible since the position relative to

the original surface half spaces no longer exists in the grown model. Moving the

half space to correct a vertex will always introduce an new vertex [Fig 4.9].

In summary, eliminating vertices works for many simple examples, such as

the crucifix built using differences. Plate 4.1 shows the crucifix and the grown

crucifix after correction by eliminating vertices. Plate 4.2 shows the incorrect

topology which occurs after growing of the model.

The problems caused by surface half spaces passing through each other seems

to suggest a more fundamental algorithm which attempts to maintain the relative

positioning of half spaces.

-110-

P A C E

O R I G I N A L V E R T E X

T O W N H A L F S P A C E S

D I R E C T I O N S

N E W V E R T E X W

W - V ’ a n * b n

Figure 4.8 Calculation of shifted vertex from original.

-Ill-

M O D E L : B1 — 8 2 — B3 - B1 n B2 n B3

B L O C K B 3
/ / / / / / /

B L O C K B1

CROWN MODEL

: 2 \ / B 3 jtur
82 \ r - ^ - B 3

[B C | A! il c A fBJ 1 i ! i 6 J1 J "/ L ~_Ji ^
C O R R E C T S H A P E C O R R E C T S H A P E

X B 1

B C O R R E C T R E L A T I V E t O C B C O R R E C T R E L A T I V E T O A

Figure 4.9 Counter example to elimination of vertices algorithm
Since half space C has passed through half space A, the intermediate half
space B cannot be corrected by elimination of new vertices. The algorithm

will attempt to correct B relative to C (or A) with the results shown.

-112-

Plate 4.1 Crucifix and grown crucifix. Topology has been corrected
using elimination of vertices algorithm.

Plate 4.2 Topology changes which occur when the crucifix is grown

-113-

4.4.3 Repositioning Planar Half Spaces

The simplest case of half spaces passing through each other is when parallel half

spaces are shifted through each other, as in the groove in Fig 4.9, and attention is

restricted to this case.

Lists are built, for both grown and ungrown models, of half spaces whose

normals lie along the same straight line. These lists are ordered relative to the

position of the half spaces along the line, and the differences in relative positioning

of half spaces within the two models can is detected. Corrections, made to the

grown model, can only be done by shifting shiftable half spaces back along their

normals until their position in the list of grown half spaces is the same as their

position in the list of the ungrown half spaces.

It is easy to detect when two non-shiftable half spaces pass through each other

by comparing the corresponding lists. If, in the ungrown model, there are shiftable

half spaces lying between such a pair of non-shiftable ones, it is impossible to

place them in the same relative positions within the grown model.

To explain why, consider an example. Let an ordered list of parallel half

spaces, A , B , C , D exist in the ungrown model, with half spaces A and D being

non-shiftable, and half spaces B and C being shiftable. By definition, no part of

the non-shiftable half spaces lie on the surface of the ungrown model. Suppose

further that on growing the model, half space A passes through half space D.

Since the new relative positions of half spaces A and D cannot be altered in the

grown model, it is impossible to obtain the original ordering of A , B , C , D by

-114-

only shifting half spaces B and C .

Topology changes which occur when non-shiftable half spaces pass through

each other are unavoidable. They arise mostly when grooves or slots close in on

themselves and hence are expected. However, problems can arise when the shift-

able half spaces which used to lie between them alter the topology of the model.

(This occurs because the intersection points between the shiftable planes and pairs

of other planes in the model have changed position relative to the two non-shiftable

half spaces which have passed through each other). By repositioning the shiftable

half spaces to be at the same position as the non-shiftable half space to which they

are parallel, new surface segments can be avoided [Fig 4.10].

Since new vertices can be introduced by half spaces passing through edges,

vertices or plane intersection points, this repositioning algorithm, which only con­

siders parallel half spaces, will not correct all possible topology changes. How­

ever, the algorithm is effective as a pre-process step to the elimination of vertices

algorithm.

Plate 4.3 shows the groove and the result of growing the groove. Plate 4.4

displays the corrected grown model. The crosses mark where new vertices still

exist in the correction, and the plate shows the correction due to elimination of ver­

tices and the repositioning of half-spaces. For the former, four new vertices appear

and for latter only two occur, as expected when the groove closes.

-115-

I N C O R R E C T C R O W N
M O D E L

U N G R O W N M O D E L

H A L F S P A C E B M E R G E D T O
P A R A L L E L S U R F A C E H A L F S P A C E

h---
J O R R E C T G R O W N M O D E L

U N C R O W N
Figure 4.10 Repositioning half-space solution to Fig 4.9

The algorithm merges the intermediate half space to the parallel half
space which it use to lie between.

-116-

Plate 4.3 Groove and Incorrect grown Groove

Plate 4.4 Groove and Corrections. Crosses mark the new vertices
which exist in both corrections.

-117-

4.4.4 An Algorithm for Correction of Grown Models

The correction algorithm implemented uses the repositioning algorithm as a pre-

process step :o the elimination of vertices algorithm.

Firstly, difference operators are removed from the model, and the expression

is rewritten in terms of intersections and complements.

This model is then grown by shifting the planar half spaces along their nor­

mals. A new model is produced with the newly positioned half spaces.

The algorithm considers the grown and ungrown model. Firstly, the non

shiftable half spaces are identified by calculating the real vertices of the ungrown

model. Secondly, the repositioning algorithm is used to reposition the parallel half

spaces within the grown model so that they are in the same relative positions as

those in the ungrown model. If any changes are made, a new grown model is

created containing these changes.

Next the algorithm generates the vertices of the grown model. Once the ver­

tices are collected, together with their corresponding half spaces, a list of newly

appeared vertices is built. The algorithm then attempts to eliminate these vertices

by shifting half spaces.

4.4.5 Limitations

So far, no example has been found for which the algorithm has not given correct

results. There is potentially a problem of introducing new vertices when half

spaces are shifted back during both the repositioning and elimination stages of the

algorithm, but this does not appear to happen in practice.

-118-

The new vertices which arise due to the union of certain features, like the

cylinder and block described above, are not eliminated since both the cylinder

planes and the block planes pass through the comers at the union boundary. Hence

there are no shiftable planes available to correct the problem.

A majority of topology changes occur when redundant (i.e. not contributing

surface to the model) half spaces pass through plane intersection points and thus

change their contribution relative to these points. Since these half spaces are often

parallel to non-redundant half spaces the restriction of the repositioning algorithm

to parallel half spaces is sufficient for a majority of cases. In principle, the reposi­

tioning algorithm can be extended to consider half spaces which do not intersect

within the object space before or after growing.

4.5 Growing for Measuring Probes

4.5.1 Principle and Methods

The collision detection techniques described in this Chapter 6 are to be used in

determining a collision-free probe path for a CMM measuring probe. Ray casting

into models along probe path segments determines whether the segment is free

from collision for a point travelling along it. This is only useful for detecting

obstructions for single point probes [Fig 4.11].

-119-

OBSTRUCTED PATH
AND RAY

RAYS

INSPECTION POINTS

\
SPHERICAL PROSE

SPHERICAL PROBE

OBSTRUCTED PATH AND RAY

-ROBE SHRUNK TO POINT

UNCROWN MODEL CROWN MODEL

Figure 4.11 Using grown model and ray-casting
to detect collisions.

-120-

If the measuring probe is modelled as a single sphere, then growing the model

by a distance greater than the probe radius enables the probe to be considered as a

point with respect to the grown model in collision detection algorithms. Hence,

ray casting into the grown model may be used to detect collisions between the

spherical probe and the original model [Fig 4.11]. (The distance grown must be

greater than the probe radius to avoid collisions which occur because the probe just

touches the surface).

The work described in this thesis considers a simple vertical probe, as shown

in Fig 5.1. This is modelled as two cylindrical parts and a spherical probe tip.

The reverse of the operations needed to shrink a cylinder to a point can be applied

to the model to obtain a grown model which can be used in detecting collisions for

cylindrical parts of the probe. Two operations are needed to reduce a cylinder to a

point. Firstly a shift in the cylindrical axes direction of a distance equal to the

height of the cylinder will reduce the cylinder to a planar disc. Secondly, a shift in

a plane perpendicular to the axis of a distance which is the radius of the cylinder

will reduce the disc to a point [Fig 4.12(a)].

In growing the faceted model for the cylindrical parts of the probe, the two

transformations have to be reversed. Thus the half spaces are firstly shifted in a

direction along the cylinder axis for a distance equal to the height of the cylinder,

and in the opposite sense in which the cylinder was reduced. Next the half spaces

are shifted outwards along the components of their planar normals which lie in the

plane perpendicular to the cylindrical axis [Fig 4.12(b)]. The order of shifting is

unimportant.

-121-

S H I F T ALONG ^ X I S

+
^LANAR S H I F T S

+
RESULT INC

POINT
PLANAR DISC

CYLINDER

Figure 4.12(a) Shrinking a cylinder to a point.

SHI FT INC ALONC AXIS
IN OPPOSITE DIRECTION

CUBOID

o
Li SHIFTS IN AXi

O

PLANE

RESULTING CRCA'N
CUBOID

Figure 4.12(b) Growing a block for the cylinder.

-122-

For the simple three-segment probe considered in this thesis, each of the

separate segments need to be considered in turn and a grown model generated for

each part. Hence there will be three grown models, one for each segment. Colli­

sion detection techniques will use all three models to ensure that all segments of

the probe do not collide with the component.

The growing techniques described for this simple probe can be applied to any

segmented probe which has no moving parts (the cranked probe shown in Fig 5.3

for example); by considering each segment in turn and determining the appropriate

growing operation. Swivel probes contain a rotatable probing arm which is

mounted in a spherical block, the probe head. The probing tip is also spherical.

The probe tip and probe head can be considered using the same techniques as for

the simple vertical probe described above. For the movable probe arm, a new

model is required for each orientation of the arm. This is because the directions of

shift needed to reduce the cylinder to a point are dependent on the orientation of

the cylinder. The grown model can be calculated by rotating the model so that the

arm is a vertical cylinder, and then by applying the vertical cylindrical growing

operations.

-123-

4.5.2 Examples

The example component used in Chapter 3 is shown in Plate 4.5. The picture

shows the result of growing the model for the probe arm by shifting half spaces.

The new vertices which appeared are marked as crosses. The cylindrical stepped

hole and the groove are destroyed by the growing as previously non-contributing

half-spaces are shifted into the model. Plate 4.6 shows the results of running the

correction algorithm where the hole and groove are recovered.

-124-

"^TIafe^^3*Tfie~^poTogy cringes which occur when a modelis
grown for the probe arm. Crosses mark where new vertices arise.

Plate 4.6 The grown model after correction

-125-

4.6 Conclusions

Set theoretic reconstruction has been used for various applications, as described in

Section 2.6. However the work has dealt mainly with bounded primitives, and

uses the properties of bounded boxes to simplify expressions. Such simplification

is not available with planar half space primitives.

Growing obstacles for path planning has been used by T. Lozano-Perez and

M. Wesley [Section 2.8.2]. Their work restricted attention to polyhedral models

and built the grown models by shifting the vertices. Since the objects considered

are closed and convex, topology changes are not a problem. Growing set-theoretic

models in effect extends this idea to include a broader range of shapes and,

although consistent shapes are guaranteed, extra care has to be taken in maintaining

the expected topology.

The growing algorithm in this chapter involves shifting planar half spaces, and

this restricts its applicability to facetted models. An alternative approach is

required for curved surfaces. However, it is possible to calculate the equations of

grown half spaces for simple quadrics (i.e. cones, cylinders and spheres) given the

ungrown half space equation, and this will enable the majority of engineering

applications to be considered using a similar algorithm. Restricting to facetted

models, however, also makes correction to changed topology possible and the algo­

rithms implemented in this chapter have been successful on all trials.

In conclusion, it is worth noting that topology changes usually occur when a

model has been defined untidily and contains an excessive amount of half spaces

-126-

which do not contribute surface. For example, if a crucifix is modelled as the

union of two blocks, growing will not lead to topology changes. However, if it is

defined in the inferior way of differencing four blocks from each comer of a fifth,

then extra half spaces which are redundant in the model will create problems when

the model is grown. This suggests that efficient modelling approaches will lead to

less problems when growing models.

-127-

CHAPTER 5

SELECTING THE INSPECTION POINTS

5.1 Introduction

In manual CMM programming, the selection of points for inspection is done by the

technicians who program the CMM. They base their selection on experience and on

the type of features and tolerances being checked. There are no rigid rules, since

the selection depends on the purpose of the inspection task. For the work

described in this thesis, the inspection results are to be used in the checking of

geometric tolerances.

The techniques described in this chapter process the surface points generated

using the algorithms described in Chapter 3. Two types of processing are done.

Firstly, a technique is described for selecting a set of points which can be

reached by the CMM measuring probe. Whether a point can be reached depends

the location of the point, on the geometry of the probe and on the path of motion

used to reach it. A simple vertical probe is considered, and this is modelled as two

vertical cylinders and a sphere. Section 5.2.3 suggests how the techniques

developed can be extended for more complex probes. The actual path of the probe

is described fully in Chapter 6 and Appendix 1. In summary, the probe will be

driven to a point which is offset from the surface. The offset distance is specified

as a parameter to the system and the offset direction is the negated probing direc­

tion which is derived from the surface normal at the point being measured.

-128-

The desired properties of inspection point sets were described in Section 3.2.

The second type of processing described in this chapter is the techniques used to

select a point set with the required properties from the set of reachable points.

5.2 Detecting and Eliminating Inaccessible Points

5.2.1 An Algorithm for Detection of Unreachable Points

The simple measuring probe is modelled as two vertical cylinders and a sphere. A

wide cylinder represents the probe head which supports the probing arm, which is

represented as a thin and long cylinder, and the probing tip, which is represented

by a small sphere [Fig 5.1]. The dimensions are chosen to enclose the real probe,

which contains a conical probe arm and a stepped cylindrical probe head.

Not all surface points can be reached by the probe. For example, points lying

on faces whose normal is opposite to the positive Z-axis, such as undercuts, are

clearly impossible to reach using the probe described above. Further, some points

may be obscured by features which obstruct any one of the probe segments. They

may be too close to another surface, or too far down a narrow hole or slot for the

probe to reach them [Fig 5.2]. An algorithm which detects such points is described

which uses the techniques of growing set theoretic solid models introduced in the

previous chapter.

-129-

- - P R O B E H E A D

Q R O B E A R M - -

P R O B E T I P

Figure 5.1(a) Vertical CMM Measuring Probe.

T H I N V E R T I C A L
C Y L I N D E R

W I D E V E R T I C A L
C Y L I N D E R

Figure 5.1(b) Exploded model of the probe as two cylinders
and one sphere.

-130-

O R I G I N A L
P O S I T I O N

F I N A L
P O S I T I O N

S U R F A C E

O F F S E T P O I N T

1
I

Figure 5.2 Points which are not accessible to the probe.

-131-

A grown model is created for each of the probe segments; thus there are three

models, one for the sphere, one for the thin cylinder and one for the wide cylinder.

The growing transformation results in shrinking each probe segment to its centroid

point. Hence the sphere is shrunk to its centre, and the cylinders are shrunk to

points lying at the midpoints of their axes.

During measurement of a component, the probe is driven first to a point in air

which is offset from each surface point and then driven towards the surface point.

This two step motion requires two tests to be made for each surface point. Firstly,

the offset point should be checked for probe accessibility. Secondly a test is

required to make sure that in moving from the offset point to the surface the probe

does not collide with any other surface. This is only a real problem, however,

when the direction from which the probe approaches the surface, i.e. the probing

direction, is not vertical and so only these cases need both tests.

It follows that either one or two tests may be required for each surface point.

To test accessibility of the offset points for the vertical probe, a test is made to

determine whether the probe can move vertically downwards to the point from a z

coordinate plane which is known to be above the component. This safe plane is

defined as an attribute of the component model (see Chapter 7). To detect a colli­

sion in moving from the safe plane to the offset point, a ray is cast downward from

the safe plane (into the grown model) to the offset point. If no surface is hit, the

second test is carried out if required. This involves casting a ray from the offset

point along the probing direction and checking that the hit surface is the one on

which the original surface point lies.

-132-

The ray casting is done into each of the grown models. However, the tests

are for the position of the centroid of each probe segment. For the sphere the tests

can be made directly to the offset points since the probe tip will pass through these

points during inspection. For the cylinders, the tests need to be carried out for the

points through which the cylinder centroids will pass as the probe moves. These

points are calculated from the original offset point by the appropriate translations

which, for the simple probe, are parallel to the z axis. A parameter file is used to

hold the various dimensions of the probe and to consequently derive the appropri­

ate length of translation.

5.2.2 Results of Applying the Algorithm to Examples

Plate 5.1 shows results applied to the model consisting of blocks and vertical

cylinders built on and into a rectangular block which was shown in Chapter 3.

The points have been generated using different grid units for different features and

only the protruding block and stepped hole are considered. Points inaccessible to

the probe in moving from the safe plane have been removed. These included those

points too far down the protruding block and cylindrical hole, as well as those

points lying on the stepped hole ledge too close to the sides of the hole. Where

access was denied by the protruding block to the wide cylinder, such as the side of

the stepped hole closest to the block, points were also removed.

-133-

Plate 5.1 Reachable Points for test piece protruding block
and stepped cylindrical block

-134-

5.2.3 Extending the Algorithm for General Probes

The probe modelled above is one example of many kinds of probes in use. Here

we discuss how the algorithm could be extended to three commonly used alterna­

tive probes.

A probe whose probing arm is cranked, so that undercuts can be measured

[Fig 5.3(a)] can be modelled as four segments, with two cylinders used to model

the cranked probing arm, one vertical and one horizontal [Fig 5.3(b)]. The tests

for collision detection for the two vertical cylinders are similar to those for the

simple probe. Since the surface inspection points define the position of the probing

tip, the transformation required to obtain the corresponding position for the cen­

troid of these vertical cylinders must now take into consideration the length of the

horizontal arm of the probe.

However, applying the same method to the horizontal cylinder would result in

the elimination of points which are reachable, such as those on an undercut. A

collision would be detected as the probe arm moved vertically downwards, but in

practice the point would not be reached by such a vertical displacement. Instead,

the probe would be driven to the point lying on the undercut in two or more steps.

For example, by moving the arm vertically downwards along a known clear path

and then moving the probe towards the point in a plane perpendicular to the Z-axis

[Fig 5.4(a)].

By testing for the vertical cylinders, the points on the undercuts which

genuinely cannot be reached are eliminated. This is because if collision between

-135-

the probe head or the vertical arm occurs when the probe tip is positioned at the

required point, then the point cannot be reached [Fig 5.4(a)].

In order to prevent elimination of reachable points, special procedures can be

used whenever such an undercut occurs. These would start by carrying out the test

for the spherical probe tip as described in the previous Section. If no collisions

occurred, then the test for the horizontal probe arm could be done against the

appropriately grown model as with the simple probe. This test would separate

points which lie on an undercut from those which do not.

If a collision for the probe tip is detected, a ray could be cast from the point

of collision on the surface along a direction parallel to the axis of the horizontal

cylindrical probe arm and towards the vertical probe axis. By collecting the inter­

section points of this ray and choosing the last point at which the ray leaves solid

before hitting the axis, a clear point for the probe tip could be found. This point

could then be used to determine a new test offset point for the horizontal cylinder

[Fig 5.4(b)]. The vertical cylinders would also need to be checked again at this

new point. If no such point exists, or if the subsequent checking detects collisions,

then the original offset point is unreachable.

-136-

P R O B E H E A D

P R O B E A R M

P R O B E T I P

Figure 5 3 (a)Cranked Probe.

V

V

\

W I D E V E R T I C A L
C Y L I N D E R

/

T H I N V E R T I C A L
C Y L I N D E R

T H I N H O R I Z O N T A L
C Y L I N D E R

/

)o S P H E R E

Figure 5.3(b) Exploded model of the probe as three cylinders
and one sphere.

J=o / 1=0
L_

Figure 5.4(a) Reachable and unreachable points lying on undercuts.

C Y L I N D E R A X I S

T E S T R A
S E A R C H R A Y P I

+
P 2

Figure 5.4(b) Detecting reachable points on undercuts using
test rays.

-138-

The above procedure effectively attempts to determine the existence of a path

segment from the safe plane to the offset point. For a majority of the points, the

tests described for the simple probe are sufficient for detecting unreachable points,

and only surfaces whose normal faces downwards will require such procedures.

Further, since the decision about whether a probe can reach the point or not

depends on the geometry of the probe, the procedures will necessarily be probe

specific; it is difficult to derive general procedures which can handle all types of

probes.

The multi-probe tip, which consists of several horizontal probes and a vertical

probe, is another commonly used probe. An algorithm which uses the procedures

described above and those in the previous section can be developed for this case,

assuming that a specific probe has been selected for the point being checked. Such

a selection could be made based on the probe geometry and the surface normal at

the point. An alternative would be to test all probes and select one, if any, which

can reach the offset point.

Finally, another common type of probe in use is the swivel probe, which con­

sists of a spherical probe head supporting a cylindrical probe arm and spherical

probe tip. The arm can be orientated at various angles. The accessibility for the

probe head can be checked in the usual way for each point. The offset points cal­

culated for the centroid of the spherical head will be dependent on the orientation

of the arm. For the swivel probes currently in use, the number of allowed orienta­

tions is finite and by using the grown models, a different one for each orientation,

and testing the three swivel probe centroid points, a collision-free position for the

-139-

probe can, in theory, be found. Information about the surface normal will help in

reducing the number of orientations to try.

Once it has been established that the probe head can be positioned correctly,

the next problem is to determine whether there is a collision-free path for the

swivel probe from the safe plane. The solution to this is non-unique and an algo­

rithm is required which determines a path segment consisting of translations and

rotations. Algorithms exist for path-planning of robots which involve solving prob­

lems such as these (see Section 2.8). The grown model at each orientation will

help in the collision-detection stages of these algorithms.

5.3 Selection of Inspection Points

5.3.1 Distribution Considerations

As described in Section 3.2, the distribution of inspection points is an important

factor in the control of the success of inspection. To summarise, the distribution

should not contain groups or clusters of points but should be sufficient to be

representative of the surface.

The generation of surface points described in Chapter 3 uses grid techniques

together with perturbation parameters to obtain a distribution with the required pro­

perties. Elimination of points which cannot be reached, however, may remove

some of these properties, and result in the undesired localisation and clustering of

points described above. A post-processing algorithm is used to de-cluster these

points in an attempt to improve the distribution.

-140-

The algorithm builds a list of point clusters for each feature. Each clusters is

built by calculating the centroid of the cluster and only adding new points if they

are within a given distance of this centroid. The centroid is updated each time, and

if d is the distance used, all points will approximately be within 2d of each other.

Given the list of clusters, surplus points can be eliminated by only selecting

one inspection point from each cluster. This will generate a de-clustered point set

but care is needed to avoid an unacceptable reduction in the number of points for a

feature.

A problem with eliminating points in this way is that the resulting point set

may no longer be representative of the surface. For example, if the point set con­

sisted of four points for a plane inspection task and three are co-linear, elimination

of the fourth point would render the set of inspection points useless for planar

analysis. This example extends directly for quadrics where elimination of the

wrong points will results in co-planar point sets. It is trivial to check for these

cases before points are eliminated.

In general, however, when given a choice of points to eliminate, the aim

should be to obtain a set of points which enables most benefit from subsequent

analysis. This depends on the kind of analysis which is to be carried out and the

algorithms which will be used. For example, if least-squares fit algorithms are

used in the analysis of measurements, then the effect each point, or subset of

points, has on the accuracy of these surface fitting algorithms can be used to select

the best set of points. Such selection will rely on statistical methods based on

detection of outliers or influence points.

-141-

5.3.2 Quantity Considerations

The number of points is clearly an important factor in inspection; too few and the

data will not be representative; two many and the inspection becomes inefficient.

The number of points depends on the inspection task and the feature being

inspected. If a tolerance of form, such as roundness or flatness, is being checked

where the shape of the surface is important, then the more points the better, subject

to efficiency of inspection.

If a tolerance of attitude or location is to be checked, then fewer points are

needed subject to the minimum for the particular feature. For example, three

points are necessary for a plane. The BS7172 standard offers guidelines for the

required number of points in assessing geometrical errors (see Section 2.7).

The declustering algorithm uses the number of points suggested in BS7172 to

determine an optimum size of the cluster. The algorithm starts by clustering points

subject to:

d = (point grid spacing for feature/2)

If the number of points in the point set is more than the required number, N, but

the number of clusters is less, an iterative procedure is used to determine the d

which gives the closest number of clusters to N. The procedure reduces d by half

at each iteration until the required number of clusters is obtained or the distance is

less than a specified limit.

-142-

Similarly, if the number of points and clusters are much greater than the sug­

gested number an iterative procedure is used which increments d, by an increment

/, until the required number is obtained. (In some cases both the parameter d

described above and the parameter i may be used to obtain the required clustering,

with the algorithm terminating when either or both parameters become smaller than

some specified limit).

Once the desired number of clusters have been found, a point is chosen from

each cluster to yield a distribution with the required properties.

5.3.3 Examples of Declustering Points

Plate 5.2 shows the results of declustering the points shown in plate 5.1. The clus­

ters have been removed and since only three of the five faces of the protruding

block have been toleranced, only points on these faces remain.

-143-

H

H

Plate 5.2 Declustered set of points for object shown
in plate 5.1.

-144-

5.4 Conclusions

The techniques of collision detection using grown models can be used to determine

whether or not points can be reached by a measuring probe. The complexity of

such a problem, however, depends on the geometry of the measuring probe and its

number of degrees of freedom. The algorithm described has been implemented for

the simple three-segment probe and can be extended for many other types,

although it is less efficient for use with the swivel probe.

The problem with the swivel probe is the need to generate a collision-free

path from one point to another for a probe which can pass through a number of

fixed orientations. This is analogous to the problem of robot path-planning which

moves a robot from one orientation and position to another. The problem can be

simplified if it is assumed that the probe only changes orientation above the z- safe

plane with motion to the offset points only consisting of translation, as with the

simpler fixed probes. The techniques described above then can be used for each

fixed orientation of the swivel probe.

Little work has been done on automating the selection of inspection points.

British Standard BS7172 offers guidelines for the selection of points for simple

features such as planes, spheres, cones and cylinders and these guidelines have

been followed in choosing the number of points in the algorithms described.

The distribution and number of points can effectively be controlled after point

generation by the elimination of points. Since elimination tries to obtain the sug­

gested number of points for each feature, the original quantity is unimportant and

-145-

hence, in general, it would be beneficial to start with an excessive number and

allow the post-point generation algorithms select an appropriate subset.

The problem of finding the best distribution of points for the inspection of

features is non-trivial. The influence of each point or each set of points on the

whole distribution needs to be assessed, with influence being measured in terms of

the effects the points have on the subsequent analysis. The points which have least

influence can be omitted. However, eliminating a set of points may have a

different effect on the distribution than eliminating each point individually, and so

the problem becomes more complicated. Further, it is not clear how to measure

the influence of point sets for, say, simple analyses such as least squares fit, and

thus such techniques have not been developed in the project described here.

-146-

CHAPTER 6

GENERATING THE MEASURING PATH

6.1 Introduction

Chapter 3 and Chapter 5 described algorithms which take as input a solid model of

a component and generate a set of surface points for use in CMM inspection of the

component. In order to measure the component at this set of surface points, a

CMM measuring probe is driven around the component. Full details of collecting

CMM measurements are given in Appendix 1. In order for the CMM to reach the

inspection points, a three-dimensional path which passes through the coordinates of

points offset from the surface points is required. This measuring path should be

time-efficient and also must avoid unwanted collisions with the component. This

Chapter describes an algorithm for detection of such collisions and illustrates how

such an algorithms is used to construct an inspection path for the probe.

Currently, such paths are decided by skilled technicians. They are either pro­

grammed off-line as a part program or manually taught to the CMM. Both methods

are tedious and time-consuming, and also prone to time wastage through human

errors. This makes the path generation stage of inspection an obvious candidate

for automation.

This chapter describes an algorithm for automatic path generation which use

set theoretic solid model representations of components. Two major problems are

addressed. Firstly, a method of finding a time-efficient path through the surface

-147-

offset points is discussed. Secondly, a technique is described for detecting

unwanted collisions and modifying the probe path to avoid them. A simple verti­

cal probe is considered and collisions are detected using the model growing and

ray-casting methods described in Chapter 4, with tests being made for each seg­

ment of the probe. This does restrict attention to faceted models, but given that

curved surfaces can be approximated to any degree by facets, this does not limit

the techniques described.

6.2 Determining Time-efficient Paths

6.2.1 Cost Function

In order to assess the time-efficiency of a path, the time taken in moving the probe

between points needs to be estimated. The cost function is a calculation which

does this for two points by calculating the cost of moving between the two points.

Such a function can be complicated, including factors specific to the CMM and/or

its environment. In this thesis a simple model has been used which only considers

the distance to be travelled between points; more complicated models can be

derived as part of future research.

The time taken for the CMM probe to move between two points is a function

of the distance travelled by the probe; the greater the distance, the longer the time.

Thus, if point P has coordinates (xi,yi,z{) and point Q has coordinates (^2J2»Z2)

then an idea of the time taken, or cost, in moving from P to Q is given by the dis­

tance between the two points, d where:

-148-

d = ((X 2 - x x)2 + (y 2 - y i)2 + (z 1 - z {)2)'1

If a collision is detected when planning a direct path from P to Q , then extra

path steps will be needed to move around the obstruction. This will affect the cost

value, which should be modified to include the extra distance travelled. An algo­

rithm for moving around obstructions is discussed in Section 6.3.2. Such an algo­

rithm can be applied at this stage to determine the cost.

A conservative estimate of this cost can be obtained by using the z - safe plane

which is known to be above the component described in Chapter 5. The cost of

moving around the obstruction can be estimated by calculating the total distance

travelled in moving from the first offset point to the second offset point via the

safe-plane. This is a three step motion. In step 1 the probe moves vertically

upwards to the safe-plane. In step 2 the probe moves in the safe-plane to a point

above the destination point. In step 3 the probe moves vertically down to the desti­

nation point [Fig 6.1(a)]. Both the offset points are known to be reachable from

the safe-plane because of the method of their selection described in Chapter 5.

The estimate will be conservative since it employs an algorithm which is indepen­

dent of the component geometry [Fig 6.1(b)].

-149-

S A F E P L A N E

P R O B E P A T H
N S P E C T I O N
P O I N T S ^

C O M P O N E N T S U R F A C E

Figure 6.1(a) Collision avoidance using safe plane.

P R O B E P A T H V I A S A F E P L A N E

M O R E E F F I C I E N T
P R O B E P A T H

Figure 6.1(b) Inefficiency of safe plane steps.

If, for the CMM, a particular coordinate axis direction has a greater accelera­

tion or velocity than another, then motion in this direction should be encouraged to

reduce the time taken for motion. The cost function can be modified to reflect

such preference by using coordinate weights, wx, wy, wz > 0 to bias the cost for a

particular axial direction. The cost estimate, d , then becomes:

d = (w x (x2 - x lj1 + wy (y2 - y 1j1 + wz (z2 - z l)2) 2

6.2.2 The Travelling Salesman Problem and Path Generation

The measuring probe must pass through every offset point, and as shown in the

previous section, motion between each pair of points has a cost associated with it.

An efficient path would minimise the total cost of the journey, calculated by sum­

mation of the cost of each path segment. This is the well known travelling-

salesman problem, where a salesman must visit all cities such that the total dis­

tance travelled is a minimum.

After consideration of various algorithms [see Section 2.7.1], it was decided

that such methods are unsuitable for probe path planning. The major drawback is

that most algorithms which found a solution limit the number of points that can be

considered and this would present a problem for an inspection system which needs

to consider components consisting of a broad range of sizes and features.

Heuristic algorithms for solving the travelling salesman problem would be

more suitable, being capable of handling a larger number of points. However,

these are computationally slow, and do not offer any guarantee of yielding a path

-151-

which is any more efficient than, say, one which is obtained by nearest-neighbour

methods.

One other drawback of using travelling salesman algorithms is that the costs

associated with moving from one offset point to all other offset points needs to be

known in advance. For the cost function described in Section 6.2.1 it is necessary

to determine if motion between pairs of points are collision-free and for the scheme

of collision detection described in this chapter, this will involve ray-casting from

each point to all others, a computationally expensive operation in itself requiring

n rays to be cast. Since heuristic algorithms would then be applied to yield

an approximate solution, it is difficult to see the benefits of such algorithms in the

case of probe path planning.

In view of this, a nearest-neighbour approach is used whilst not generating the

most efficient path does produce an adequate path. The use of attributes to attach

extra information to features in the component (see Chapter 7) can be used to

influence how the path is constructed. For example, an attribute can be attached

which groups half spaces together and hence points which lie on the half spaces.

Then when determining a time-efficient path, the grouping can be used to force the

grouped points to be inspected together.

6.2.3 Generating An Initial Time-efficient Probe Path

An algorithm has been implemented for deriving a time-efficient probe path. The

algorithm uses collision detection techniques based on model growing and ray-

casting techniques described in Chapter 4. The model which has been grown for

-152-

the spherical probe tip is used to generate a path through points which are offset

from the generated surface points.

As the model is built, information in the form of attributes is attached to the

half spaces and set theoretic operators. These attributes, for example, include the

grid spacing used for the point generation algorithms (see Chapter 7 for more

information). The method enables such attributes to be attached to geometric enti­

ties within the model as they are constructed, and thus allow a grouping of those

half spaces which are pertinent to a particular entity. Each surface point lies on a

particular half space and the grouping of the half spaces defines a corresponding

grouping of surface points. The same grouping can be applied to the offset points

required for the path planning stage.

The algorithm considers each offset point in turn. The points are first ordered

on their x -coordinate and y -coordinate, and the first path point is chosen to be the

point with the smallest x value. This choice is arbitrary but does ensure that the

path begins at one side of the component.

The next point chosen has to fill two criteria. Firstly, it has to be within the

same group as the previous point. Secondly, it must have the minimum cost func­

tion value of all remaining points in the group.

The costs are evaluated for moving from the current point to the remaining

points in the current group, and the point which has minimum cost is chosen. If

there are no more points within the current group, the point with the minimum cost

of all remaining points is chosen and the group to which this point belongs

-153-

becomes the next group.

The algorithm creates a list of path steps representing the probe path. Where

collisions occur, obstacles are avoided using the three-step safe-plane path segment

described in Section 6.2.1. The path generated in this way does not yet avoid col­

lisions which occur between the non-spherical segments of the probe, and this is

the task of the next process.

6.3 The Detection and Avoidance of Collisions

6.3.1 Method of Collision Detection for Facetted Models

The algorithm for detection of collisions for facetted models used the same tech­

niques as those described in Chapter 5 for determining whether a point can be

reached by the probe. The probe is modelled as three segments, two vertical

cylinders and a sphere, and three grown models were created, one for each of the

probe segments. The initial probe path was generated using the model grown for

the sphere and so already avoided any unwanted collisions which occurred during

motion of the probe tip (see Section 6.2.3). The path has next to be checked for

collision between either of the two cylinders and the model.

The path is first tested for the thin cylinder segment representing the probe

arm which supports the spherical probe tip. The model is grown such that the

cylindrical segment is reduced to the centroid point lying on the axis. Thus the

path has to be checked for the points through which this centroid passes as the

probe moves, and these are calculated from the original offset points. Collisions

are detected by ray casting along the path which the centroid of the cylinder

-154-

follows as the initial path is followed.

Once the probe arm has been tested, the path is finally checked for the wide

cylinder. Again the model is grown so that the centroid is considered, and the path

through which this centroid passes is checked using ray casting methods. If colli­

sions are detected for either of the cylindrical parts of the probe then the three-step

safe-plane path segment is inserted as when generating the initial probe path for the

spherical probe part.

All three segments of the probe have to be considered since detection of a

successful path for one segment does not give an indication of the success of the

path for the other segments. However, since all points can be reached from the

safe-plane, and because the probe arm is thin, if there are no collisions between the

spherical probe and the component, then there will often be no collisions between

the other parts of the probe. This occurs because clearance of the probe tip from

the safe-plane will often imply clearance of the probe arm from the safe plane

since the cylindrical arm has smaller radius. However, there are still cases where

the spherical tip would be clear and the probe arm would not be [Fig 6.2].

The order of checking of segments is arbitrary since the three segments again

are treated independently. There will, in general, be a different path for each ord­

ering since each test could lead to path modification with the insertion of safe-

plane path segments. Which ordering is best for reducing the number of

modifications is not clear, and perhaps is a topic for future work.

-155-

O R I G I N A L P R O B E
P O S I T I O N

F I N A L P R O B E
P O S I T I O N

I N S P E C T I O N P O I N T I N S P E C T I O N P O I N T

S E C T I O N O F
C O M P O N E N T S U R F A C E

Figure 6.2 Path which is collision-free for the probe tip
but not for the probe arm.

-156-

6.3.2 Collision Avoidance for Facetted Models

So far, collisions which have been detected have been avoided by inserting a safe-

plane path segment into the path. This extra path segment forces the probe to

move up to a plane known to be clear of the component and then drives the probe

to the second point via this plane. Such an approach may result in unnecessarily

large probe movements to the safe-plane to avoid collisions which may be avoided

with smaller translations [Fig 6.1].

A more efficient algorithm for avoiding collisions would use the set theoretic

model description to produce a path segment which drives the probe around the

obstruction. In this way, a move-around path is developed which depends on the

component geometry in the locality of the collision point. There are often many

paths that could be taken to avoid a collision occurring between the probe and the

component when moving between two offset points. An algorithm has been imple­

mented which uses recursive trial and error methods.

The algorithm considers the start and end of each safe-plane path segment

within the generated path, together with the point of collision, or hit. The model

which corresponds to the probe part for which the collision was detected is used to

generate a collision avoidance path segment in the following way.

Four perpendicular test rays lying in the hit plane are cast from the hit point

[Fig 6.3(a)] into the model. For each ray, the point at which the ray first leaves

solid is found. From the resulting list of boundary points, the point closest to the

destination point is chosen. A new path point is inserted into the probe path which

-157-

is offset from this point, in the direction normal to the hit plane. [Fig 6.3(b)]. A

test is made to check that this new path point can be reached directly from the pre­

vious path point. If not, an alternative point is chosen from the remaining ray

intersection points. If all intersection points fail to be reachable then the safe-plane

path segment is used.

If a suitable point is found, then this new path point is then used as a new

start point. The above algorithm is then repeated until a clear path exists to the

destination point or the obstruction is deemed too difficult or too expensive to

avoid, in which case the safe-plane path segment is used.

-158-

P A T H R A Y
S E A R C H R A Y S

O F F S E T P O I N T

C O L L I S I O N
P O I N T

Figure 6.3(a) Generating search rays from collision point
between path points.

N E W P A T H P O I N T

N E W P A T H
S E A R C H RA

P O I N T A T W H I C H S E A R C H R A Y L E A V E S S O L I D

Figure 6.3(b) Collision avoidance using search rays.

-159-

P A T H T E S T R A Y N E W P A T H T E S T R A Y

O F F S E T
P O I N T N E W P A T H

S T E P

C O M P O N E N T

C O L L I S I O N - F R E E P A T H
v

T E S T R A Y
C I N A L

C O L L I S I O N - F R E E
P A T H

Figure 6.4 Avoiding unwanted path steps using test rays

-160-

As each new path step is generated, it is tested for both accessibility from the

previous step and from the original first point. In this way, redundant steps can be

avoided. If the new step cannot be reached directly from the original start point,

then the start point can be updated to be the next point in the new path segment

and the test redone until a step which is reachable is found [Fig 6.4].

6.3.3 Examples

Plate 6.1 shows the path for a test piece consisting of blocks and cylinders. Plate

6.2 demonstrates how the probe moves around obstructions. The red path is

obstructed since the probe head will collide with the protruding block. The green

path shows the corrected path using the described search-ray algorithm.

-161-

TTafFO**TatF"generate<J for test piece features
and stepped cylindrical hole.

Plate 6.2 Collision avoidance. The red path shows collision
steps and the green path shows the corrected path.

-162-

6.4 Path Planning for Alternative Probes

The algorithms developed so far are concerned with one particular type of probe

consisting of two vertical cylinders and a spherical probe tip. All probes have

spherical tips, but some have different probe arms and more degrees of freedom.

Examples of these are the cranked probe, where the probe arm consists of two

cylinders, one vertical and one horizontal, and the swivel probe where the probe

arm can be positioned at a number of different orientations.

Assuming the existence of collision detection and avoidance algorithms, the

time-efficient algorithms can be applied as they stand, although for the swivel

probe extra parameters may be needed to calculate the costs associated with obtain­

ing specific orientations of the probe arm. Hence, the cost function will no longer

only depend on the distance between the two points but also on the various orienta­

tion transformations which occur in moving from one point to the other. The

cranked probe requires no modification of the cost function since motion is still

purely translational.

The swivel probe introduces a new problem to path planning. With each path

point, there is now a required orientation and so the path segments will have also

to list the sequence of orientations required in moving from one point to another.

Such a path is non unique since there will be many ways of obtaining the desired

orientation. For example, the probe could move an arbitrary distance along the line

joining the two points, rotate until the desired orientation is obtained and then con­

tinue along the line until at the second point. Clearly this defines an infinite

number of possibilities. Thus a method is required for generating a sequence of

-163-

steps from one point to another. Further, a search has to be made for a collision-

free solution and, to accommodate cases when such a solution does not exist, a cri­

terion has to be used to decide when enough possibilities have been tried.

The safe-plane path segment can still be used to avoid collisions as they

occur. The collision detection algorithms for the cranked probe are the same as

those for the simple vertical probe. If a safe-plane path segment has to be added,

the considerations mentioned in Chapter 5 for cranked probes need to be used in

determining how to move to and from the safe-plane.

However, the swivel probe requires a different approach since the linear trans­

lation of each different orientated probe arm requires a different grown model.

Path-planning now requires algorithms similar to those used in robot path-planning

for determining a collision-free sequence of rotations and translations between

points. The grown model would be useful in the detection of collisions in such

algorithms.

For swivel probes, the loci of the probe tip and arm are no longer linear since

during orientation changes they will move along an arc. Ray-casting along the arcs

is one solution, although intersection calculations will now involve non-linear equa­

tions. These present no difficulty so long as the probe is stationary when being

rotated in which case the probe loci is circular. However, new complexities are

introduced if the probe is swivelled and translated at the same time. In this case

arcs could be approximated as linear segments and the usual ray-casting methods

used.

-164-

In summary, cranked probes require little or no changes to the path generation

algorithms. Swivel probes present new problems as a result of the extra degrees of

freedom and non-linear path segments.

This is also true in avoiding collisions and in improving safe-plane path seg­

ments. The cranked probe can be successfully navigated around obstructions using

the same algorithms as described above, but the swivel probes need special pro­

cedures to take into account the possible orientations.

6.6 Conclusions

This chapter has described various algorithms used for path planning of a simple

measuring probe, modelled by two vertical cylinders and a spherical probe tip.

The algorithms have been applied to examples of various complexity and success­

fully generated collision-free measuring paths which have been subsequently used

to collect measurements.

Work on collision detection using solid models has been considered in several

other projects [Section 2.8.2]. The approach used here is new in that it uses a set

theoretic solid model to calculate the free-space available to the probe by growing

the obstacle, i.e the component.

Extending the algorithms to curved-surfaces and alternative probes creates

various problems. To solve these requires solving the collision-detection problem

for more complex modelling in the form of curved-surfaces, and for probes with

different degrees of freedom. The techniques used in the algorithms described in

this chapter involve growing models and ray-casting, and this restricts

-165-

consideration to facetted models. However, the basic approach of generating the

path for the spherical probe tip and correcting it where collisions for the other

probe segments occur is a valid and workable solution for both facetted and curved

surface models.

CHAPTER 7

ASSIGNING ATTRIBUTES TO SOLID MODELS

7.1 Introduction

In many engineering applications of solid modelling, non-geometrical information

about components is required in addition to their geometric description. For exam­

ple, the colour of surfaces is necessary for picture generation and the density of

material is required to calculate mass. Certain features may need to be tagged with

names for later reference in the same way datums are labelled in engineering draw­

ings.

From an inspection point of view, parameters are required for the point gen­

eration and the probe-path determination algorithms. Further, geometric tolerances,

consisting of non-geometrical information such as the tolerance type and tolerance

width, are required for the analysis of measurements.

This chapter describes a method of attaching non-geometrical information to

set theoretic solid models. The technique used involves assigning attributes to a

set theoretic expression. (The effect of this is to introduce a new type of operator,

the dyadic attribute operator, which assigns a list of attributes to an operand which

is a set theoretic expression). Attributes can be assigned to groups of half spaces

which define geometric entities, (i.e. axes, planar surfaces, spheres, cylinders,

cones) of the component.

-167-

The technique has been implemented for a solid modeller developed at Bath

University which uses a model description language to build the models. However,

the choice of attribute functions and techniques used to implement them are appli­

cable to any model description language. The first part of this chapter describes

how the language definition and its compiler have been improved to enable attri­

butes as described above to be attached to a model as it is built. The second part

of the chapter describes some of the types and applications of attributes which can

be applied using this method, with particular attention to geometrical tolerancing.

7.2 The Existing Model Description Language and its Compiler

The modeller uses planar half spaces as its basic primitive. More complicated

primitives can be constructed from these using set theory operators defined within

the language. Curved surface half spaces can be constructed by the arithmetic

combinations of these planar half spaces. For example, if the planar half space A,

represented by polynomial P(x,y,z) , is orthogonal to the planar half space B,

represented by polynomial Q(x,y,z) , then a cylinder, radius r , whose axis lies

along the line of intersection between A and B is represented by the second-degree

polynomial, S(x,y,z) , where:

S(x ,y , z) = (P(x,y, z))2 + (Q(x,y , z))2 - r 2

The language consists of the usual datatypes, such as integers and reals, but

also has some geometric types such as points, lines and planes, and a special type

for storing set theoretic expressions, called a set. Arithmetic operations can be

-168-

applied to all datatypes except sets, and set theory operators apply to sets only. In

addition, there is a set of geometric functions which apply transformations to

geometric datatypes and sets. Examples include the scaling function and the rota­

tion function. A model is built as a single set using the set theoretic combination

of other sets.

The procedure box, which builds a cuboid given two diagonal comers, is

shown in Fig 7.1 to illustrate the syntax of the language. The planar half-spaces

which correspond to the cuboid sides are built as sets and the intersection between

all the resulting six sets is written into another set.

The language enables planar half-spaces to have a colour attached to them,

but this is the only non-geometric information considered. It is attached to sets

using a function defined within the language.

A compiler is used to compile and run the source code written in the model

description language to create a model description file. This file contains a list of

planar half-spaces and an expression, written in reverse-polish order, containing

references to the half spaces together with set theoretic operators, constants and

arithmetic operators.

The set datatype contains the list of planar half spaces, constants and opera­

tors which define the set. A planar half space is stored as four floating point

numbers, containing the plane equation coefficients a, b , c , d and an extra field

for storing the colour code.

Function to build cuboid from opposite corner points

FUNCTION box(minpt:Point, maxpt:Point) :Set

Variable definitions
Sets {minxf, minyf, minzf,maxxf, maxyf, maxzf)
Sets {cuboid}
Points {x_vec, y_vec, z_vec,mx_vec, my_vec, mz_vec}

{

Define normal directions to faces
x_vec := p t (1,0,0)
y_vec := p t (0,1,0)
z_vec := p t (0,0,1)

mx_vec
my_vec

- x_vec
-y_vec

mz vec := - z vec
cornerDefine planes (as sets) passing through lowest

minxf := space(mx_vec,minpt)
minyf := space(my_vec,minpt)
minzf := space(mz_vec,minpt)

Define planes (as sets) passing through highest corner
maxxf := space(x_vec,maxpt)
maxyf := space(y_vec,maxpt)
maxzf := space(z_vec,maxpt)

Intersect faces together to form cube
cuboid := minxf & minyf & minzf & maxxf &

maxyf & maxzf
Return result

RETURN(cuboid)

Figure 7.1 Sample of model description language.

7.3 Assigning Attributes in The Model Description Language

The language requires extra functions to allow attributes to be assigned. These

functions take as their arguments a set variable and the attribute information. The

types of attributes needed for attaching geometric tolerances to models are dis­

cussed in section 7.4.

Three attribute functions have been implemented. tol_set assigns tolerances

to the argument set, datum labels a set with a text string, and attribute assigns a

single attribute to the set together with a code which is to allow the user to identify

the attribute. The function attribute allows any datatype, except sets, to be con­

sidered as an attribute for the argument set.

The example in Fig 7.2 shows how the attribute functions are used to label

and tolerance the faces of the block shown in Fig 7.1.

The colour field of the half-space representation is now changed to be a

pointer to an attribute list, and colour is now considered an attribute of half spaces.

The list contains the attribute information together with the length of set theory

expression, or scope, for which the attribute is valid. In this way, the segment of

model to which the attribute applies is identified.

When an attribute is assigned to a set, it is added to the attribute list for the

first half space within the reverse-polish list which represents the set theoretic

expression of the set. The scope of the attribute is also added to the list. The other

half spaces of the set may themselves have attribute lists valid over sub-segments

of the set theoretic expression stored in the set.

-171-

Function to build toleranced cuboid from opposite corner points

FUNCTION tol__box(minpt: Point, maxpt: Point) : Set

Variable definitions
Sets {minxf, minyf, minzf,maxxf, maxyf, maxzf}
Sets {cuboid}
Points {x_vec, y_vec, z_vec,mx_vec, my_vec, mz_vec}

{
Define normal directions to faces

x_vec
y_vec
z vec

= pt(l,0,0)
= p t (0,1,0)
= pt(0,0,l)

mx_vec : = -- x_vec
my_vec := • y_vec
mz_vec := - z_vec

Define planar faces
minxf := space(mx_vec,minpt)
minyf := space(my_vec,minpt)
minzf := space (mz vec,minpt)

maxxf
maxyf
maxzf

= space(x_vec,maxpt)
= space(y_vec,maxpt)
= space (z vec,maxpt)

Label datum reference plane
maxyf := da;um (maxyf,"Y-MAX FACE")

Tolerance parallel and perpendicular planes
minyf :=

tol_set (maxyf,PARALLELISM,0.5,p t (0,0,0) , "

maxxf :=
tol_set maxyf,SQUARENESS,0.5,p t (0, 0, 0) , ”Y

Calculate and return result
cuboid := minxf & minyf & minzf & maxxf &

maxyf & maxzf

RETURN(cuboid)

Y-MAX FACE)

-MAX FACE)

Figure 7.2 Example of using attribute functions.

The new compiler creates an attribute file together with the model file. The

attribute file is directly related to the model file in that every planar half space has

an entry in the attribute file. The scope of the attributes are also written to the

attribute file and so the information is dependent on the structure of the reverse-

polish expression written to the model file. If this expression is altered, then the

scope will no longer be valid.

7.4 Attributes

7.4.1 Review of Geometric Tolerances

Geometric tolerances are assigned to various geometric entities of a component in

order to maintain the quality of production. The geometric entities, as defined by

BS308 part 3, consist of planes, axes and simple quadrics, namely spheres, cylinders

and cones. Some tolerances reference other geometric entities as datums, and these

are either planes or axes. The tolerances fall into three categories: form, attitude

and location.

Form tolerances are applied to the surface of features and as such are res­

tricted to planes and simple quadrics. They do not reference datums. They define

the allowed variation in surface shape and include the tolerances of FLATNESS and

ROUNDNESS.

Attitude tolerances constrain the orientation of one geometric entity relative to

one or more other geometric entities. The entities that can be constrained by atti­

tude tolerances are planes and axes, including axes of cylinders and cones. The

constraint is made relative to datums. Examples are PARALLELISM, SQUARENESS

-173-

and ANGULARITY. In some cases, depending on the types of the toleranced and

datum entities, a direction is required to define the plane within which the con­

straint holds. Fig 7.3 shows two possible planes of constraints which geometric

tolerances can define for an axis of a block.

Location tolerances constrain the relative position of geometric entities. As

with attitude tolerances, they are restricted to axes and planes, and also reference

datums. Again, depending on the type of toleranced and datum entities, a direction

may be required to define the plane of constraint. Examples of location tolerance

are POSITION, SYMMETRY and CONCENTRICITY.

The interpretation of geometric tolerances involves using the tolerance infor­

mation to determine a tolerance zone. This may be a planar area, or a planar or

cylindrical volume. In most cases, the information required to specify the tolerance

zone can be determined from the toleranced entity and datum entity types. One

exception is planar area tolerance zones which require extra information in the

form of a direction to define the plane within which the area applies [Fig 7.3].

Another exception occurs when axes are toleranced. Although the planar volume

zone type for axes can be determined from the types of the toleranced and datum

entities, extra information is required to distinguish between axes zone types which

are planar areas and cylindrical volumes. Chapter 8 describes the relationship

between entities and zones in greater detail.

-174-

D A T U M

v ' v n r t n • ̂ r
\ l Z r i b l A o i ’JLLTA;

Figure 7.3 Two alternative tolerance planes for axis. A direction
field is needed to select the required plane.

-175-

Checking the tolerance involves testing that the measured geometric entity lies

within the given zone. However, the extent of the entity to which the zone is to be

applied, or the range of the tolerance zone, is not defined. To see how this effects

interpretation of tolerances see Fig 7.4 which illustrates how increasing the range

of a planar area tolerance applied to an axis effectively reduces the allowed devia­

tion of the axis.

No information is given about this range of tolerance zone in the British Stan­

dard BS308 Part 3 on geometric tolerances which implies that the range may be

deduced from the engineering drawing. Whilst such a deduction is possible by a

human inspector working from a drawing, it does not form the basis for an

automatic approach based on solid modelling. The necessary information can be

extracted from the model by assuming that the toleranced entity is bounded, and

that the bounds of the entity define the range of the zone. Chapter 8 describes how

this is done.

The table 7.1 describes the tolerances, zones and other requirements for the

various geometric tolerances considered. The standard BS308 Part 3 and Chapter 8

of this thesis should be consulted for further information.

-176-

M A X I M U M
A L L O W E D
)EV I A T I O N

) L E R A N C E Z O N E

N O M I N A L E N T I T Y

M A X I M U M
A L L O W E D

D E V I A T I O N

R A N G E O F
T O L E R A N C E Z O N E N O M I N A L E N T I T

Figure 7.4 The effects of different ranges on tolerance
zones. The longer the range effectively increases the constraint on

allowed deviations.

-177-

Form Tolerances

Tolerance Features Datums Direction

Flatness Planes Only No Datums No Direction

Roundness
Spheres

No Datums No DirectionCylinders

Cones

Cylindricity Cylinders Only No Datums No View Direction

Table 7.1(a) Tolerances of FORM.

-178-

Attitude Tolerances

Tolerance Features Datums Direction

Squareness

Axis Axis Planar Direction

Axis Plane Optional Direction

Plane Line No Direction

Plane Plane No Direction

Parallelism

Axis Axis Optional Direction

Axis Plane No Direction

Plane Axis No Direction

Plane Plane No Direction

Angularity

Axis Axis Planar Direction

Axis Plane Optional Direction

Plane Axis No Direction

Plane Plane No Direction

Table 7.1(b) Tolerances of ATTITUDE.

-179-

Location Tolerances

Tolerance Features Datums Direction

Axis Axis Planar Direction

Position Axis Plane Planar Direction

Plane Axis No Direction

Plane Plane No Direction

Concentricity Axis Only Axis Only No Direction

Axis Two Axes Planar Direction
Symmetry Axis Two Planes Optional Direction

Plane Two Planes No Direction

Table 7.1(c) Tolerances of LOCATION.

-180-

7.4.2 Tolerance and Datum Attributes

The description of geometric tolerances above suggests an attribute containing four

pieces of information. A code is required to define the tolerance type and a float­

ing point number is required to define the tolerance value, or tolerance width. For

planar area tolerances, a direction is required to define the plane within which the

area applies. For tolerances which reference datums, a method of defining the

referenced entity is required. The method chosen is to allow the user to attach a

name to such datum entities (as an attribute), and then use this name to reference

them. Thus a text string is required to identify the datums. (The string field can

also be used to define any other information for the tolerance; for example, to

define whether a maximum-material constraint should be applied)

Geometric entities are toleranced using the function tol_set which has the four

necessary arguments in addition to the set argument. The function is applied to the

bounded entities as they are defined. Transformations on sets and arithmetic opera­

tions on half spaces will remove tolerances from the set and thus tolerances should

only be applied to the entity when it has been correctly located, orientated and is

of the correct size.

When no direction is needed for tolerance interpretation, a direction of zero

length is given. This is used to decide between planar area tolerance zones and

cylindrical volume tolerance zones when applied to axes (see Section 7.4.1); if a

non-zero direction is present, then a planar area zone is assumed, (see Chapter 8).

-181-

Datums are defined using the function datum which has one argument, the

datum name, in addition to the set argument. Tolerances can only reference enti­

ties labelled using this function. Since the labels do not depend on the geometry

of the entity, they will survive transformation and arithmetic operations on sets.

7.4.3 General Attributes

General attributes may be applied to models using the attribute function. This

function allows any non-set single data type such as integers, floating point

numbers, points and strings to be assigned to sets, together with a user defined

code which is used to specify the attribute type.

The function has three arguments in addition to the set argument; the user-

defined code, the attribute information and a flag to determine how the attribute

propagates across geometric transformations. This is necessary because some attri­

butes, such as geometric tolerances, become invalid if the entity to which they

apply is subject to geometric transformations. These attributes will be discarded

during such transformations. Others, such as colour, are independent of the

geometry of the entity and so will be retained during transformations.

General attributes allow various types of non-geometric information, such as

material type or density, to be assigned to sets, and, in principle, the tolerance and

datum attributes can be assigned using general attributes. Each tolerance argument

could be applied as a separate attribute and hence a tolerance can have an arbitrary

number of fields. Similarly datums could be applied as a general attribute with a

special code to define it as a datum required specifically for the tolerances.

-182-

To summarise, the definition of general attributes can allow the definition of

more specialised attributes with any number of arguments.

7.5 Using Attributes for Inspection Planning

Tolerance (and datum) attributes are assigned to entities in order to specify a qual­

ity of production by applying constraints to the allowed deviations of the shape and

size of entities. Geometric tolerances are readily represented as attributes of solid

models since they apply to 3-Dimensional geometric entities. Dimensional toler­

ances in contrast are applied to 2-Dimensional entities such as planar distances and

radii. A different method of attaching attributes to solid models would be required

to include such tolerances.

General attributes are used at the inspection planning stage to define parame­

ters required by the point generation and path generation algorithms. These

include the grid spacing for points (Chapter 3) and the half space grouping infor­

mation for path generation (Chapter 6).

The attributes are also used to label planes required as measuring datums for

coordinate system alignment during measuring. The CMM used for measuring the

component will usually have a different coordinate system to the model and, in

order to align the two systems, a transformation matrix is calculated from the

results of probing the labelled measure datum planes (see Appendix 1).

Chapter 8 describes how attributes can be used in the identification of

geometric entities given its set theoretic description and also in the extraction of

specific geometric parameters, such as radii and axial directions, from the same

-183-

expression. This is useful during the analysis of inspection results.

7.6 Conclusions

The problem of assigning attributes and tolerances to solid models has been con­

sidered by various authors. This chapter describes a method which attaches such

non-geometric information to sub-segments of set theoretic expression within a

solid model. The approach is similar to that used by A. Requicha [see Section

2.9], but by restricting attention to geometric tolerances there is no need for the

face labelling scheme.

The techniques described in this chapter offer a method of representing

geometric tolerances in set theoretic solid models. The method inherits the advan­

tages of set theoretic solid models, such as simplicity in description, but also inher­

its the disadvantage of being difficult to change once built. If a new geometric

entity is added or an old entity is removed, then the set theoretic expression will

change and the range of influence of attributes may become invalid. In general,

the model has to be re-compiled every time a change is made and this makes

interactive changes difficult.

The ability to assign general attributes has several applications within

automated inspection, and clearly can be used for other purposes within manufac­

turing.

-184-

CHAPTER 8

ANALYSIS OF MEASURED DATA

8.1 Introduction

This chapter describes methods of processing the results of coordinate inspection to

check that the measured features of the component lie within specified geometric

tolerances. This is done using a set theoretic solid model of the component which

has appropriate geometric tolerances assigned as attributes using the techniques

described in Chapter 7. The techniques have been developed for faceted solid

models, where half spaces consist of planes only, but indication is given where

possible to show how they can be applied to curved half spaces.

The first part of this chapter describes how geometric information is extracted

from both the solid model and from the measurement results. This information is

needed for the algorithms which check that the component shape lies within the

specified geometric tolerances. The type of information required depends on the

type of tolerance and the geometric entity (i.e. axis, plane, cylinder, cone or

sphere) within the component to which the tolerance applies.

Algorithms which check that the geometric entities lie within the specified

tolerance have been developed. The algorithms apply the idea of tolerance zones

discussed in the British Standard on geometric tolerances BS308 Part 3. How

these zones are constructed is described in the second part of this chapter.

-185-

Finally the algorithms which check the tolerances are described. These algo­

rithms compare the geometric information extracted from the measured results with

the corresponding nominal information in the solid model. Tolerance zones are

used to decide whether any discrepancies between the two are within the specified

geometric tolerances.

8.2 Extraction of Information About Geometric Entities

8.2.1 Introduction

BS308 part 3 describes the entities to which geometric tolerances can be applied.

The work in this chapter considers axes, planes, cylinders, cones and spheres.

Chapter 7 provided an overview of the tolerances which are applied to these enti­

ties, and identified the following: FLATNESS, ROUNDNESS, CYLINDRICITY, POSITION,

CONCENTRICITY, SYMMETRY, SQUARENESS, PARALLELISM and ANGULARITY.

The tolerances constrain parameters which define the size and position of the

entities. The parameters constrained depends on the entity and the tolerance. The

following lists all the parameters which may be constrained for each entity.

(a) For an axis, they consist of the axis direction and location

(b) For a plane, they consist of the normal direction and position.

(c) For a sphere, they consist of the location of the centre and the radius.

(d) For a cylinder, they consist of the axial information specified in (a)

together with the radius

(e) For a cone, they consist of the axial direction, the position of the apex

-186-

and the cone half-angle

This geometric parameter information is not explicitly available in the solid model,

and the next section describes techniques for extracting it.

When a component is inspected a set of measured points is obtained. These

points have to be processed to extract the parameters for comparison with the

corresponding expected or nominal parameters contained in the solid model and

Section 8.2.3 describes techniques for doing this.

8.2.2 Extracting Geometric Information from the Solid Model

The solid model consists of a set theoretic expression containing half spaces and

set theory operators. As described in Chapter 7, geometric tolerances are applied

to geometric entities within the component by attaching tolerance attributes to the

segment of set theory expression which defines the entity.

The set theoretic expression completely defines the geometric entity and in

principle it should be possible to both identify the entity and extract the required

geometric parameters. In practice both of these problems are difficult.

For facetted models, algorithms for identification of the quadric entity types

(i.e. whether they are a cone, cylinder or sphere) become complex. Because of

this, attributes are used to attach "labels" to the set theory expressions which

represent the geometric entities and thus enable identification.

Models which use curved surface half spaces will not have this problem since

it is possible to identify the simple quadrics (sphere, cone and cylinder) from an

-187-

implicit polynomial equation. Methods exist (see Section 2.10) which use eigen

values and eigen vectors to transform the half space polynomial to a canonical

polynomial. Classification of the quadric can be made by considering the

coefficients of this polynomial [Table 8.1]. The canonical form also enables the

geometric parameters to be extracted, again by considering the coefficients.

Difficulties arise with identification if the original polynomial defining the quadric

is ill-conditioned, i.e. if the difference in magnitudes between the coefficients is

large. When this occurs, the coefficients within the canonical polynomial become

sensitive to floating point inaccuracies which arise during the transformation from

the original polynomial, and this leads to incorrect identification of the simple qua­

dric. However, by using the same scheme of attributes as that used for facetted

models this problem of incorrect quadric identification through ill-conditioning is

avoided.

Once the type of geometrical entity type is known, the parameter information

can be extracted. Again this is easier for curved surfaces, which can use eigen

value techniques, although ill-conditioning still produces problems. For facetted

models, assumptions have to be made about the way the entity has been modelled.

(The non-uniqueness of representations within solid models was discussed in

Chapter 2). Alternatively, the geometric parameter information can also be

attached as attributes to the set theory expression describing the entity. This makes

extraction of parameter information quicker at a cost of introducing redundant

information.

-188-

Equation Coefficients Class Quadric Type

ax2 + by2 + z2
a > 0 , b > 0 , c > 0 Point

a > 0 , b > 0 , c < 0 Cone

ax2 + by2 + cz2 + d

a > 0, b > 0 , c > 0 , d < 0

a = b = c

Sphere

a > 0 , b > 0, c > 0 , d < 0

a * b * c

Ellipsoid

a > 0 , b > 0, c < 0 , d < 0 One-Sheet Hyperboloid

a > 0 , b < 0 , c < 0 , d < 0 Two-Sheet Hyperboloid

ax2 + by2 + d

a > 0, b > 0, d < 0

a = b

Cylinder

a > 0 , b > 0 , d < 0

a * b

Elliptic Cylinder

a > 0 , b < 0 , d < 0 Hyperbolic Cylinder

ax2 + by2 + 2wz
a > 0, b > 0, w < 0 Elliptic Paraboloid

a > 0, b < 0, w < 0 Hyperbolic Paraboloid

ax2 + 2\vz a > 0, w * 0 Parabolic Cylinder

Table 8.1 Identification of quadrics from
second-degree polynomials.

-189-

Tolerance checking algorithms described in this thesis use attributes as the

mechanism for obtaining geometric parameter information from solid models.

8.2.3 Extracting Geometric Information From Measurements

For geometric tolerances which apply to surfaces, such as FLATNESS and ROUND­

NESS, the measured points themselves can be used directly to test the tolerance.

However, for checking all other geometric tolerances, information is required about

the geometric parameters within the measured entities.

If the entity type is known in advance, algorithms exist for extracting the

required parameters for planes, cylinders, spheres and cones.

One general method is to fit, using constrained least squares or eigen vector

methods, a general quadric to the measured points which has the form:

P = ax2 + by2 + cz2 + 2 eyz + 2fx z + 2 gxy + lu x + 2yy + 2wz + d

Then using the coefficients, the required information can be derived using similar

techniques to those described in Section 8.2.2. In principle, this method also

enables the type of entity which the measured points best represent to be deter­

mined. In practice, the coefficients are nearly always ill-conditioned and because

of floating point inaccuracies in their calculation, this leads to incorrect conclusions

about entity types and also further inaccuracies in calculation of the corresponding

geometric parameters.

In view of this, algorithms developed at the National Physical Laboratory

(NPL) which use constrained least squares methods to estimate directly the entity

-190-

parameters from the measured point data are used. The methods are iterative pro­

cedures based on Gauss-Newton search methods, and different procedures are used

for different entities. The nominal parameters, i.e. those extracted from the

corresponding entities within the solid model, are used as the initial conditions for

iteration.

Using these NPL algorithms, the parameter information required for the vari­

ous geometric tolerance tests are extracted from the measured point set. Fig 8.4

and Appendix 2 show examples of the use of these algorithms.

8.3 Tolerance Zones

8.3.1 Zone Characteristics and Derivation

For tolerances which require the comparisons of measured entities with nominal

entities, a tolerance zone is used. The tolerance zone is the region within which

the measured entity should lie. There are three types of zone defined by British

Standard BS308 Part 3; planar area, planar volume and cylindrical volume. The

type of zone depends on the tolerance type, the type of entity and the type of any

datum entities which are referenced. As explained in Chapter 7, extra information

in the form of a viewing direction is also required in some cases to completely

specify the zone if it is a planar area type. This direction defines the normal to the

plane in which the area zone lies.

The relationship between the zone and tolerances, features and datums is sum­

marised in Table 8.2. (BS308 should be consulted for more details). Generally,

zones defined by cylindrical volumes or planar areas are used to check axes, and

-191-

planar volumes are used to check planes. The datum feature is used mostly to

specify the orientation of the zone, although for some cases it also specifies the

zone type. For example, PARALLELISM of an axis with respect to a datum plane

requires a planar volume, SQUARENESS of an axis with respect to a datum plane

requires a planar area or cylindrical volume. If there is a choice between planar

area or cylindrical volume for an axis, the existence of a viewing direction in the

list of attributes which specify the tolerance is assumed to imply that a planar area

zone is required.

The width of the planar zone, or radius of cylindrical zone, is determined

from the tolerance value. The position of the zone depends on whether the toler­

ance is a location or attitude type (see Chapter 7 for types of Geometric Toler­

ances). If it is a location, then the position is fixed relative to some datum. If an

attitude, then the position is not relevant.

In summary, the tolerance type, toleranced entity type and the datum entity

type are considered in determining the tolerance zone. Extra information is

obtained from the model in the form of attributes, such as the viewing direction, or

from the set theoretic expression defining the entity. The latter case includes infor­

mation about the extent or range of the tolerance zone, and this is the topic of the

next section.

-192-

Form Tolerances

Tolerance Entity Zone Type

Flatness Plane Only Planar Volume

Roundness

Sphere Only Spherical Volume

Sphere and Direction Planar Area

Cylinder Only Cylindrical Volume

Cones Only Conical Volume

Cylindricity Cylinders Only Cylindrical Volume

Table 8.2(a) Zone types for tolerances of FORM.

-193-

Attitude Tolerances

Tolerance Entity Datums Zone Type

Squareness

Axis Axis Planar Direction

Axis and Direction Plane Planar Area

Axis Only Plane Cylindrical Volume

Plane Line Planar Volume

Plane Plane Planar Volume

Parallelism

Axis and Direction Axis Planar Area

Axis Only Axis Cylindrical Volume

Axis Plane Planar Volume

Plane Axis Planar Volume

Plane Plane Planar Volume

Angularity

Axis Axis Planar Area

Axis and Dire ction Plane Planar Area

Axis Only Plane Cylindrical Volume

Plane Axis Planar Volume

Plane Plane Planar Volume

Table 8.2(b) Zone types for tolerances of ATTITUDE.

-194-

Location Tolerances

Tolerance Entity Datums Zone Type

Position

Axis Only Axis Cylindrical Volume

Axis and Direction Axis Planar Area

Axis Only Axis Cylindrical Volume

Axis and Direction Plane Planar Area

Plane Axis Planar Volume

Plane Plane Planar Volume

Concentricity Axis Only Axis Only Cylindrical Volume

Symmetry

Axis and Direction Two Axes Planar Area

Axis and Direction Two Planes Planar Volume

Axis Only Two Planes Cylindrical Volume

Plane Only Two Planes Planar Volume

Table 8.2(c) Zone types for tolerances of LOCATION.

-195-

8.3.3 Range of Tolerance Zones

As described in Chapter 7, the range of the tolerance zone is not defined for

geometric tolerances as specified in BS308. For example, the extent of planar or

cylindrical volumes for axes has not yet been determined. Fig 7.2 shows how

important this information is for checking of tolerances.

For this reason, it is assumed that tolerances are applied to bounded entities

from which the range can be derived. For example, if an axes of a cylinder is

toleranced, then given that the cylinder is bounded, the range of the zone can be

determined by casting a ray into the set theoretic description of the cylinder, and

calculating the intersection points. These points can then be used to determine the

upper and lower bounds on the zone in the direction of the axis.

8.4 Tolerance Checks

8.4.1 Types of Checks

In order to assess whether geometric tolerances are satisfied, the measured point

data has to be compared with the toleranced nominal component description for

each toleranced entity. The type of checks required depend on the tolerance type

and the entity to which it applies.

As mentioned in section 8.2.3, FLATNESS and ROUNDNESS tolerances which

constrain the surface variations can be checked by using the measured point set

directly.

-196-

Other checks involve calculation of the tolerance zone and comparison of

measured entities with the zone. The calculations required are dependent on the

type of the entity and the zone.

As described in Chapter 7, geometrical tolerances can be used to constrain the

relative positioning or orientation between geometric entities. In these cases, the

geometric parameters of the measured datums are extracted and used to determine

the rotational and translational transformations required to align the nominal datum

entity in the model to the measured datum entity. These transformations are then

applied to the parameters of toleranced nominal entities which reference the datum

in order to obtain the expected parameters relative to the measured datums. By

comparing the corresponding measured entity parameters against these expected

entity parameters, the relative constraints can be checked.

The comparisons fall into three categories; tests on plane entities, tests on axis

entities and tests on quadric entities. For details about various geometric toler­

ances, consult British Standards BS308 and Chapter 7 of this thesis.

8.4.2 Checking Tolerances Applied To Planes

The tests on planes are the most straightforward since they only involve projection

of a set of points in a given direction, and distance calculations. All tolerance

zones on planes are planar volumes. Further, since the points measured lie on the

planes, the tests involve direct analysis of the point data by comparison with a

nominally correct plane.

-197-

The FLATNESS test is the most straightforward. The tolerance restricts the

variation of surface in the planar direction. A plane is fitted to the measured points

using principal component analysis techniques (see Section 2.10) and the maximum

distance between the measured points in a direction parallel to the planar normal is

calculated. If this is within the given tolerance width, then the plane is within

tolerance.

Tolerances of attitude applied to planes, such as SQUARENESS, PARALLELISM

and ANGULARITY, reference datums, which may be axes or planes. The normal

direction of the expected plane is calculated using the transformations described in

Section 8.4.1 above. The maximum distance between the measured points in this

direction is then calculated. As before, if this is within the given tolerance width,

then the plane is within tolerance.

Tolerances of position again reference datums, and transformations are applied

to determine the expected nominal planes. This time, since the location of the

plane is being checked, the maximum distance between the measured points and

the expected nominal plane in the direction of the planar normal is calculated. The

expected nominal plane is assumed to be at the centre of the tolerance zone and so

the calculated distances must lie within half the tolerance width. POSITION is han­

dled this way. SYMMETRY references two datums which must be of the same

entity type. Two nominal planes are calculated for this case, one for each datum,

and a mean is taken as the expected plane. The test then proceeds as with the oth­

ers.

-198-

T O L E R A N C E D P L A N E I N S P E C T I O N P O I N T S

F O R M T O L E R A N C E A T T I T U D E T O L E R A N C E_
P r o j e c t i o n o f p o i n t s i n p l a n e r d i r e c t i o n

n u s t l i e w i t h i n b a n d o f t o l e r a n c e v a l u e

w i d t h

Prco i e c i i o n o f points in direction
d e t e r n i n e d by d a t u n C s) n u s t l i e w i t h i n

b a nd o f t o l e r a n c e v a l u e w i d t h

L O C A T I O N T O L E R A N C E

P r o j e c t i o n o f p o i n t s i n p l a n a r d i r e c t i o n

n u s t l i e w i t h i n he 1 f • t o 1e r a n c e r a n g e o f

p o s i t i o n d e t e r n i n e d by d a t u n C s)

Figure 8.1 Interpretation of tolerances applied to planes.

-199-

8.4.3 Axis Tests

Axis tests involve comparison of lines with tolerance zones. The measured points

themselves cannot be used directly to test the tolerance since the tolerance applies

to an entity which cannot be measured directly, i.e the axis. Instead, geometric

parameters which define the axis, namely the direction and location, have to be

extracted from the measured points using the methods described in Section 8.2.3.

For tolerances which reference datums, the expected nominal test axis is

derived from the datums using the appropriate transformations in the same way as

described for the plane tests. For SYMMETRY tolerances, where there are two

datums, the parameters of the test axis is calculated by taking the mean of the two

sets of expected parameters which have been derived from the two datums.

The tolerance zone can be either planar area, planar volume or cylindrical

volume. The orientation of the zone is obtained from the nominal (expected) axis,

and if the zone type is planar area, the plane direction of the zone is specified

within the tolerance attribute attached to the entity.

As described in Section 8.3.3, the set theoretic expression to which a tolerance

applies defines a bounded nominal region. By replacing the nominal half spaces

within this expression with the measured half spaces, the corresponding measured

region is obtained, and this also will be bounded. The checks on axes involve cal­

culating the range of the measured axis which lies within the measured region.

This is done by ray-casting along the measured axis into the measured region and

calculating the two intersection points. In order to check the tolerance, these points

-200-

are compared against the tolerance zones as described below.

Tolerance of attitudes, such as SQUARENESS, PARALLELISM and ANGULARITY,

require the orientation and width of the zone. The location tolerances such as

POSITION, SYMMETRY and CONCENTRICITY in addition require the position of the

zone. For such cases, the zone is centred about the nominal axis.

Fig 8.2(a) illustrates how attitude tolerance zones which are planar areas are

checked. The test has to determine whether the segment of the axis which lies

within the measured region also lies within the given tolerance zone. The end

points of the measured axis within the region are calculated as described above. A

test direction which is perpendicular to both the normal direction of the plane

within which the zone lies and the nominal axis direction is calculated. The dis­

tance between the two points in this test direction is determined and if this distance

is less than the tolerance width, then the axis lies within tolerance.

For location tolerance zones which are planar areas, the same calculation as

for attitude planar areas is done to obtain the end points of the measured axis

within the measured region and also to determine test direction. As described

above, because the zone is for a location tolerance it is centred at the nominal axis,

and so the distance between each of the measured axis end points and the nominal

axis must be less than half the tolerance width if it is to lie within the specified

tolerance.

Fig 8.2(b) illustrates the case for an attitude tolerance and a cylindrical

volume tolerance zone. The two measured axis end points for the measured region

-201-

are calculated as before. The distance between these points in a plane perpendicu­

lar to the nominal axis is calculated. For the measured axis to remain within toler­

ance, this distance must be less than the diameter of the cylindrical tolerance zone,

and this diameter is exactly the tolerance width.

For location tolerance zones which are cylindrical volumes, the distance of

each end point of the measured axis from the nominal axis is required. For each

end point, the distance is calculated in a plane containing the nominal axis and the

end point. The nominal axis is assumed to be at the centre of the tolerance zone

and so each calculated distance must be less than the radius of the cylindrical zone,

i.e. less than half the tolerance value.

Planar volume zones for attitude tolerances again require the measured axis

end points within the measured region. The distance between these points is calcu­

lated in the direction of the normal to the nominal plane. This distance must be

less than the tolerance value for the axis to lie within the specified tolerance.

Finally, planar volume zones for location tolerances require the distance

between the measured axis end points and the nominal plane to be less than half

the specified tolerance value (using the fact that the nominal plane is at the centre

of the zone). The required calculations are made as described above.

-202-

P L A N A R D I R E C T I O N NON I N A L A X I S

M E A S U R E D
A X I SP L A N E

M E A S U R E D
E N T I T Y

A X I S E X T R E M A P O I N T S

T O L E R A N C E W I D T H

Figure 82(a) Interpretation of planar area tolerances
applied to axes.

N O M I N A L A X I S

/ \

/ / \

M E A S U R E D
A X I S

A X I S E X T R E M A
P O I N T S

T O L E R A N C E
W I D T H

Figure 82(b) Interpretation of cylindrical volume tolerances
applied to axes.

-203-

8.4.4 Sphere, Cylinder and Cone Tests

The tolerance of ROUNDNESS is assigned to the surface of cylinders, cones and

spheres. Since the tolerances constrain the variation of the surface, the measured

points can be used directly in testing the tolerance. However, in order to calculate

the variations of the surface, the geometric parameters for the measured entity must

first be extracted from the measured points using techniques described in Section

8.2.3.

When testing spheres (Fig 8.3(a)), the distance between the measured centre

and each measured point is calculated. The maximum difference between these

distances must be less than the tolerance width if the sphere is to satisfy the toler­

ance constraints.

When testing cylinders (Fig 8.3(a)), the distance between the measured axis

and each measured point is calculated. The maximum difference between these

distances must be less than the tolerance width if the cylinder is to satisfy the toler­

ance constraints.

When testing cones (Fig 8.3(b)), the half angle and location of apex of the

measured cone is used to calculate the distances between the measured points and

the measured axis. The maximum difference between these distances must be less

than the tolerance width if the cone is to satisfy the tolerance constraints.

-204-

O U T E R LIMIT
, I N N E R L I M I T

S P H E R I C A L
S U R F A C E

O U T E R L I M I T

C Y L I N D R I C A L
S U R F A C E

I N N E R L I M I T

Figure 8.3(a) Tolerance zones for spheres and cylinders.

O U T E R L I M I T

I N N E R L I M I T

Figure 8.3(b) Tolerance zones for cones.
-205-

8.5 Conclusions

The methods described in this chapter have been implemented and used with suc­

cess to analyse results of the component shown in Plate 6.1. Each of the toler­

anced features are considered in turn and the results are shown in Fig 8.4.

The set theoretic solid model is used throughout to determine the geometric

parameters of nominal entities, which are then used for the comparisons. Specified

datums also are used in determining these nominal test parameters and as a general

rule should be inspected in order to allow constraints on relative positions and

orientations to be checked.

The procedures return values which reflect the deviation of the measured

features from the nominal features.

-206-

Tolerance Type : CONCENTRICITY Zone Type: CYLINDRICAL VOLUME
Nominal Entity description

Entity type : AXIS Axis type : CYL_AXIS

Location of Axis : 35.000000 70.000000 150.000000
Axis Direction : 0.000000 0.000000 1.000000
Cylinder Radius : 10.000000

Number of Measured Points * 13

Measured Entity

Location of A-xis
Axis Direction
Cylinder Radius

Datum Description

34.916999 71.055946 149.994059
-0.000770 0.005607 0.999984
9.981178

Datum Label : G_DTM Datum Type : AXIS Axis Type : CYL_AXIS

Location of Axis : 35.000000 70.000000 150.000000
Axis Direction : 0.000000 0.000000 1.000000
Cylinder Radius : 20.000000

Number of Measured Points : 14

Measured Datum

Location of Axis
Axis Direction
Cylinder Radius

34.736282 70.122606 149.999487
-0.002504 -0.001404 0.999996
19.435869

Expected Nominal Axis

Location of Axis : 35.077143 70.228697 149.744737
Axis Direction : -0.002504 -0.001404 0.999996
Cylinder Radius : 20.000000
Axis / Measured Entity Intersection points

Point 1: 35.013122 70.033136 -5.158507
Point 2: 34.990037 70.201352 24.841013

Test Result

Test Value for Point 1 : 0.612209
Test Value for Point 2 : 0.448288

Tolerance Wiath : 0.500000
Result of Test (0=ln Tolerance, -l=not): -1

Figure 8.4 Results of CYLINDRICITY tolerance checking for stepped
hole in component shown in Plate 3.5.

-207-

CHAPTER 9

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

9.1 Conclusions

The project described in this thesis has demonstrated successfully how set theoretic

solid modelling can be used to automate the planning and execution stages of CMM

inspection. The algorithms have been developed to work in conjunction with a set

theoretic solid modelling system at Bath University although the principles are

applicable to any set theoretic modelling system.

The ability to attach attributes to models, such as geometrical tolerances, has

enabled the non-geometric requirements of the inspection process to be incor­

porated within the model description. Two types of attributes have been identified;

those which are totally independent of the position and orientation of the entities to

which they apply, such as colour, and those which are dependent on the position

and orientation of the entities, such as geometric tolerances. The distinction is

needed to determine whether or not a specified attribute remains valid after the

entity to which it applies has been subjected to geometric transformations.

The use of attributes provides a means of control both over the distribution of

inspection points and over the number of points generated. The final selection of

inspection points depends on the analysis for which the measurements are to be

used. For example, it is likely that different parameter estimation routines will

benefit from different types of distributions. It has been demonstrated that generat-

-208-

ing an inspection point set by starting with an initial set of surface points and elim­

inating points from this set is a successful way of controlling the size and point

distribution of the resulting point set.

In previous work, model growing techniques have been investigated in the

context of obstacle configuration space (see Section 2.8.2) in path-planning. None

of these techniques have used set theoretic solid models. This project has

developed a method of approximating the configuration space of a component

which corresponds to motion of a CMM probe by growing set theoretic models, and

demonstrated how the resulting models can be used to automatically generate a

collision-free inspection path for a CMM measuring probe.

Time-efficiency of the inspection path is controlled using a cost function.

This enables the efficiency of the path to be related to a particular coordinate

measuring machine; each machine can have its own cost function which will con­

tain parameters to describe its performance characteristics.

Finally, the project has successfully demonstrated how the measured results

can be used together with the toleranced set theoretic model to check that the com­

ponent meets the required specification. This has been done for commonly used

geometrical tolerances by using guidelines given in British Standards BS308.

The assignment of geometrical tolerances as defined in British Standards

BS308 to two-dimensional drawings is incomplete in the sense that the range of the

tolerance zone is not fully defined. The extra information required to bound the

zone can be added to the model by only specifying tolerances to bounded entities

-209-

within the component.

The algorithms have been used successfully on a range of models containing

planar half spaces and Appendix 2 shows the results of using the system to inspect

a component consisting of various geometric entities. (The described algorithms

have been implemented on a Sun 3/160 Workstation).

9.2 Further Work

9.2.1 Growing

As described in Chapter 4, growing set theoretic models is not directly extendable

to models containing curved surface half spaces. Further work may be done in this

area, starting with the consideration of models which use a restricted class of

curved surfaces, such as simple quadrics (i.e. spheres, cylinders and cones). Attri­

butes can be attached to aid in identification of these surfaces, as described in

Chapter 8, and appropriate growing procedures can be investigated for each

geometric entity which would involve deriving a new polynomial from the original

half space polynomial. Again care will be needed in maintaining the topology, and

another area for further work is to investigate whether similar correction techniques

as those in Chapter 4 can be used. As an alternative to this, techniques of

automatically faceting the quadrics can be investigated to enable direct application

of the techniques described in Chapter 4.

Investigations can be done to establish whether methods of tree reconstruction

are more successful for curved surface modellers where increases in the number of

half spaces will not be as large as they are for faceted models. Also, work can be

-210-

done to investigate whether attributes can be used to convey useful information to

the reconstruction algorithms in order to reduce the time taken and the size of the

model.

9.2.2 Point Generation

As suggested in Chapter 5 the procedures and algorithms used to analyse the meas­

urement results should be considered during the initial selection of inspection

points. In the work described in this project, the analysis of measured points is

based on least square fits to measured point sets. Given that the measured points

are collected at the selected inspection points, further work is possible in determin­

ing a selection of points whose distribution is the "best" for the least-squares fitting

algorithms.

9.2.3 Path Generation

Extending the path generation algorithms to accommodate swivel probes is clearly

a topic for further work. Techniques from robot-path planning may be needed.

One approach is to only rotate the probe when positioned at a safe distance from

the component. In this way motion close to the component consists only of trans­

lations and hence can be analysed using techniques described in Chapter 6, with a

different grown model for each orientation of the probe.

The path-planning algorithm in Chapter 6 generates an initial time-efficient

test path and then tests this path against each of the grown models generated for

the probe parts. The path is translated for each model so that it represents the

motion of the appropriate probe part as the path is followed. When collisions

-211-

occur, the path is modified and this will effect the efficiency of the original path.

Further work can be done on developing alternative strategies to this. For exam­

ple, investigation can be made to ascertain whether a better alternative is to

translate the models rather than some initial test path. By unioning these translated

models together the free-space available to all the probe parts is represented in a

single model and, in principle, this model can be used to generate a collision-free

path which does not require further modification.

Finally further work can be done in determining whether attributes attached to

the model can be used to create more efficient paths for the probe.

9.2.4 Attributes

Chapter 8 describes how attributes are used to extract the geometric parameters of

entities. Currently such parameter information attributes are applied "manually" to

the various entities as the model is built. Such information has already been used

to build the entity in the first place and a topic for further work is to investigate

methods of deriving and assigning such attributes automatically when the com­

ponent is built.

9.2.5 Analysis

Automatically extracting geometric parameter information from the solid model

would be a useful tool for analysis and would remove the need of assigning such

redundant information using attributes.

-212-

References

1. Gilheany, R and Trey win, E.T, "Developments in 3-D Measuring Machines &

Associated Software," Proc. Metrology Conference NELEX 80 Int., L K Tool

& Co Ltd, 7 - 9 October, paper 2.2

2. Black, S.P, "Utilisation of 3-Coordinate Measuring Machines," Proc. Metrol­

ogy Conference NELEX 80 Int., Caterpillar Tractor Company Ltd, 7 - 9

October, paper 2.4

3. Bosch, J.A, "Flexible Inspection for Flexible Manufacturing," Machine and

Tool BLUE BOOK, pp. 52 - 56, September 1988.

4. Raja, J and Sheth, U.P, "Integration of Inspection Into Automated Manufactur­

ing System," Recent Developments in Production Research, pp. 119 - 124,

Elsevier Science Publishers B.V., Amsterdam, 1988.

5. Park, H.D and Mitchell, O.R, "CAD Based Planning and Execution of Inspec­

tion," Proc Computer Society Conference on Computer Vision & Pattern

Recognition, pp. 858 - 863, 1988.

6. Groover, M.P and Zimmers Jr. E.W, CAD/CAM : Computer-Aided Design and

Manufacturing, Prentice-Hall, New Jersey, USA, 1984.

7. Atkins, N.W and Derby, S, "An Interactive Graphics Application for Com­

puter Aided Development of Inspection Programs for Coordinate Measuring

Machines," Proc 15th Des Auto Conf in Computer Aided and Computational

Design, pp. 213-221, Montreal, Sept 17-21 1989.

-213-

8. Liddle, B, "Coordinate Measuring Machines Keeping Pace with NC Machine

Tool Users," Proc. 6th Int. Conf. on Automated Inspection and Product Con­

trol, pp. 213 - 236, Ferranti Ltd U.K., Birmingham, 27-29 April 1982.

9. Groover, M.P, Automation, Production Systems, and Computer Integrated

Manufacturing, Prentice-Hall, New Jersey, USA, 1987.

10. Bowman, I, "Is CMM Integrations Missing Link?," Automation: Journal o f

Automated Control, vol. 23 No 5, pp. 30 - 33, July 1987.

11. Quality Today, Three Dimensional Coordinate Measuring Machine Survey,

pp. sl7-s32, January 1989.

12. Sostar, A, "Coordinate Measuring Techniques in Quality Assurance," Robotics

and Computer-Integrated Manufacturing, vol. 4 No 1/2, pp. 259 - 265, Great

Britain, 1988.

13. Rquicha, A.A.G and Voelcker, H.B, "Solid Modelling: A Historical Summary

and Contemporary Assessment," IEEE Computer Graphics and Applications,

pp. 9 - 24, March 1982.

14. Requicha, A.A.G and Voelcker, H.H, "Solid Modelling: Current Status and

Research Directions," Production Automation Project, Univ. of Rochester,

October 1983.

15. Requicha, A.A.G, "Representations for Rigid Solids: Theory, Methods and

Systems," Computing Surveys, vol. 12 No 4, pp. 437 - 461, December 1980.

16. Brown, C.M, "Some Mathematical and Representational Aspects of Solid

Modelling," IEEE Trans, on Pattern Analysis and Machine Intelligence, vol.

-214-

PAMI-3 No 4, pp. 444 - 453, 4 July 1981.

17. Howard, K.L, "Solid Modelling: its Application in the Real World of

Engineering and Industrial Design," Computer Graphics ’85, pp. 365 - 380,

Online Publications, Pinner, U.K, 1985.

18. Wilson, P.R, "Euler Formulas and Geometric Modelling," IEEE Computer

Graphics and Applications, pp. 25 - 36, August 1985.

19. Woodwark, J.R, "Taming Set Theoretic Solid Models," Proc. BCS Conf. State

o f The Art Seminar, New Tools for Shape Modelling, London, Thurs 18th May

1989.

20. Woodwark, J.R and Quinlan, K.M, The Derivation o f Graphics from Volume

Models by Recursive Subdivision o f the Object Space.

21. Woodwark, J.R and Quinlan, K.M, "Reducing the Effect of Complexity on

Volume Model Evaluation," Computer-Aided Design, vol. 14 No 2, pp. 89 -

95, University of Bath, 1982.

22. Woodwark, J.R, "Elimination of Redundant Primitives from Set Theoretic

Solid Models Using Constituents," U.K.S.C Report, April 1988.

23. Woodwark, J.R, "Generalizing Active Zones for Set Theoretic Solid Models,"

Internal Report, U.K.S.C Report 182, IBM, Jan 1988.

24. Zhang, D and Bowyer, A, "CSG Set Theoretic Solid Modelling and NC

Machining of Blend Surfaces," Proc. 2nd ACM Symposium on Computational

Geometry, New York, June 1986.

-215-

25. Woodwark, J.R, Blends in Geometric Modelling, IBM (UK) Scientific Centre,

Winchester, Winchester.

26. Middleditch, A.E and Sears, K.H, Blend Surfaces for Set Theoretic Volume

Modelling Systems, Poly of Central London, Tech Memo 84:4, 1985.

27. Warren, J, "Blending Algebraic Surfaces," ACM Trans Graphics, vol. 8 No 4,

pp. 263 - 278, Oct 1989.

28. Bowyer, A, Davenport, J.H, Milne, P.S, Padget, J, and Wallis, A, "Applica­

tions of Computer Algebra in Solid Modelling," Proc 1987 Eurocal Confer­

ence, Liepzig.

29. Woodwark, J.R and Bowyer, A, "Better & Faster Pictures From Solid

Models," Computer Aided Engineering, pp. 17 - 24, February 1986.

30. Wallis, A.F and Woodwark, J.R, "Interrogating Solid Models," Proc. CAD

C onf, 1984.

31. Woodwark, J.R, "Shape Models In Computer Integrated Manufacture - A

Review," Computer-Aided Engineering, pp. 103 - 112, IBM United Kingdom

Scientific Centre, June 1988.

32. Wallis, A, Toolpath Verification Using C. S. G., PhD Thesis, 1989.

33. Martin, R.R and Stephenson, P.C, "Sweeping of Three-Dimensional Objects,"

Computer-Aided Design, vol. 22 No 4, pp. 223 - 234, May 1990.

34. Requicha, A.A.G and Tilove, R.B, "A Null Object Detection Algorithm for

Constructive Solid Geometry," Communications o f the ACM , vol. 27 No 7,

pp. 684 - 694, July 1984.

-216-

35. Woodwark, J.R, "Some Speculations on Feature Recognition," Computer-

Aided Design, vol. 20 No 4, pp. 189-196, May 1988.

36. Jared, G, "The Feature Recognition Battle - Latest From The Front," Proc.

BCS Conf. State o f The Art Seminar, New Tools for Shape Modelling, Lon­

don, Thurs 18th May 1989.

37. Pemg, D.B, Chen, Z, and Li, R, "Automatic 3D Machining Feature Extraction

from 3D CSG Solid Input," Computer Aided Design, vol. 22 No 5, June 1990.

38. Sabella, P and Carlbom, I, "An Object-Oriented Approach To The Solid

Modeling of Empirical Data," IEEE Computer Graphics & Applications, pp.

24 - 35, September 1989.

39. Alagar, V.S, Bui, T.D, and Periyasamy, K, "Semantic CSG Trees for Finite

Element Analysis," Computer-Aided Design, vol. 22 No 4, pp. 194 - 198, May

1990.

40. Tan, S.T and Yuen, M.M.F, "Integrating Solid Modelling with Finite-Element

Analysis," Computer-Aided Engineering Journal, pp. 133 - 137, August 1986.

41. Moore, R E, Methods and Applications o f Interval Analysis, S.I.A.M Philadel­

phia, 1979.

42. Pai, S.N, "Interval Analysis," MSc Thesis, University o f Bath, 1972.

43. Hansen, E.R, A Generalized Interval Arithmetic, pp. 7 - 1 8 .

44. Goldfeather, J and Molnar, S, "Near Real-Time CSG Rendering Using Tree

Normalisation and Geometric Pruning," IEEE Computer Graphics and Appli­

cations, pp. 20 - 28, 1989.

-217-

45. Lee, Y.C and Jes, K.F.J, "A New CSG Tree Reconstruction Algorithm for

Feature Representation," Proc. Computer in Engineering 1988, pp. 521 - 528,

July 31 - Aug 4 1988.

46. Lee, Y.C and Fu, K.S , "Machine Understanding of CSG Extraction

and Unification of Manufacturing Features," IEEE Computer Graphics and

Applications, vol. 7 No 1, pp. 20 - 32, Jan 1987.

47. British Standards Institute, "British Standard Guide to the Assessment of Posi­

tion, Size, and Departure from Nominal Form of Geometric Features.," British

Standards, vol. BS 7172, London, 1989.

48. Little, J.D.C, Murty, K.G, Sweeney, D.W, and Karel, C, "An Algorithm for

the Travelling Salesman Problem," Operations Research, vol. 11, p. 972,

1963.

49. Lin, S, "Computer Solutions of Travelling Salesman Problem," System Tech.,

vol. 44, pp. 2245-2269, 1965.

50. Aarts, E.H.L, Korst, J.H.M, and Van Laarhoven, P.J.M, "A Quantitative

Analysis of the Simulated Annealing Algorithm: A Case Study for the Trav­

elling Salesman Problem," Journal o f Statistical Physics, vol. 50 No 1/2, pp.

187 - 206, 1988.

51. Vaidya, P.M, "An 0(n log n) Algorithm for the All-Nearest-Neigbors Prob­

lem," Discrete Computational Geometry, vol. 4, pp. 101 - 115, 1989.

52. Alagar, V. S, Bui, T.D, and Periyasamy, K, "Reasoning System for Solid

Modelling Techniques Applicable to Robotics," Proc IFAC Robot Control

-218-

(SYROCO ’88), pp. 493 - 498, Karlsruhe, Oct 5-7 1988.

53. Cameron, S, "Efficient Intersection Tests for Objects Defined Constructively,"

International Journal o f Robotics Research, vol. 8 No 1, pp. 3 - 25, February

1989.

54. Cameron, S, "Modelling Space and Time," New Tools for Shape Modelling,

BCS Conference Documentation Displays Group, London, May 1989.

55. Mirolo, C and Pagello, E, "A Solid Modelling System for Robot Action Plan­

ning," IEEE Computer Graphics and Applications, pp. 55 - 69, January 1989.

56. Kondo, K and Kimura, F, "Collision Avoidance using a Free-space Enumera­

tion Method Based on Grid Expansion," Advanced Robotics, vol. 3 No 3, pp.

159 - 175, 1989.

57. Lozano-Perez, T and Wesley, M. A, "An Algorithm for Planning Collision-

Free Paths Among Polyhedral Obstacles," Communications o f the ACM , vol. 2

No 10, pp. 560 - 570, 1979.

58. Lozano-Perez, T, "Spatial Planning: A Configuration Space Approach," IEEE

Transactions on Computers, vol. C - 32(2), pp. 108 - 120, Feb 1983.

59. Fu, L-C and Liu, D-Y, "An Efficient Algorithm for Finding a Collision-free

Path Among Polyhedral Obstacles," Journal o f Robotic Systems, vol. 7 No 1,

pp. 129 - 137, 1990.

60. Shah, J. J. and Miller, D. W, "A Structure for Supporting Geometric Toler­

ances in Product Definition Systems for CIM," Manufacturing Review, vol. 3

No 1, March 1990.

“219-

61. Requicha, A.A.G and Chan, S.C, "Representation of Geometric Features,

Tolerances, and Attributes in Solid Modelers Based on Constructive

Geometry," IEEE Journal o f Robotics and Automation, vol. RA-2, no. 3, Sep­

tember 1986.

62. Roy, U and Liu, C.R, "Feature-Based Representational Scheme of a Solid

Modeler for Providing Dimensioning and Tolerancing Information," Robotics

and Computer-Integrated Manufacturing, vol. 4 No 3/4, pp. 335-345, 1988.

63. Ranyak, P S and Fridshal, R, "Features for Tolerancing a Solid Model," Com­

puters in Engineering ASME ConfProc, vol. 1, pp. 275-280, 1988.

64. Bernstein, N S and Preiss, K, "Representation of Tolerance Information in

Solid Models," Proc 15th Design Automation Conference, ASME Des Eng

Div, vol. 19 No 1, pp. 37 - 48, Montreal, 1989.

65. British Standards Institute, "Engineering Drawing Practice Part 3 : Geometri­

cal Tolerancing," British Standards, vol. BS 308, London, 1972.

66. Fleming, A, "Geometric Relationships Between Toleranced Features,"

Artificial Intelligence, vol. 37 , pp. 403-412, 1988.

67. Etesami, F, "Tolerance Verification through Maunufactured Part Modelling,"

Proc 15th Design Automation Conference - ASME Des Eng Div, vol. 19 No 1,

pp. 37-48, Montreal, 1989.

68. Jayaraman, R and Srinivasan, V, "Geometric Tolerancing I & n," IBM J Res

Develop, vol. 33 No 2, pp. 90 - 124, March 1989.

-220-

69. Efimov, N, "An Elementary Course In Analytical Geometry (Parts I & II),"

The Commonwealth and International Utility o f Science, Technology,

Engineering and Liberal Studies.

70. Cemal, C, "Component Inspection," Phd Thesis University o f Bath , 1989.

71. Pratt, V, "Direct Least-Squares Fitting of Algebraic Surfaces," Computer

Graphics, vol. 21 No 4, pp. 145 - 152, July 1987.

72. Forbes, A.B, "Least Squares Best-Fit Geometric Elements," Internal Report,

NPL Report DITC 140/89, April 1989.

73. Elmaraghy, W. H., Elmaraghy, H. A., and Wu, Z, "Determination of Actual

Geometric Deviations Using Coordinate Measuring Machine Data," Manufac­

turing Review, vol. 3 No 1, pp. 32 - 39, March 1990.

-221-

APPENDIX 1

COLLECTING THE MEASUREMENTS

A l.l Introduction

Having generated the probe path, the component has to be measured using the

CMM. This chapter describes how measurements were collected using a PC-

controlled CMM.

A1.2 The Hardware

The CMM consists of three moving axes which are driven by stepper motors. Each

axis can be driven at one of seven different speeds. The speeds are selected as

integers by the PC and sent within a coded string to the CMM. Thus speed seven is,

for example, much faster than speed one. The axes have high inertia and air bear­

ings are used to enable smoother motion.

If changes in speed are made too sharply from one direction to another, the

motors will slip and the axes will come to a rest. Similarly, if the probe hits a sur­

face too fast, the CMM hardware will bring motion to a stop. Thus motion close to

the component needs to be reasonably slow.

The PC is a standard IBM compatible machine fitted with a digital I/O card for

sending signals to and receiving signals from the CMM.

A1.3 Controlling the Probe

-222-

Since only speeds and not positions are controlled, and the real values of these

speeds is dependent on external conditions of the environment, driving the probe in

an arbitrary direction at slow speeds was difficult. For this reason, the direction for

probing points during measurements was restricted to axial directions, and the axis

direction was selected as that closest to the surface normal at the surface inspection

point. This surface information is available within the solid model.

For driving the probe between points which are far apart, the axis speed is

calculated from the distance between the two points in the axial direction. The

probe is driven at the fastest speed defined by the distance until close to its destina­

tion and is then brought gradually to a stop.

Such control makes it difficult to drive the probe along an arbitrary straight

line and this causes problems when motion is close to the component, where devia­

tion from the expected line of motion sometimes leads to unexpected collisions.

The probe path consists of two types of steps. The first specifies accurate

positioning of the probe and precedes the taking of a measurement. The second is

used when moving the probe between non-measure points, like a safe-plane or obs­

tacle avoidance step described in Chapter 6, when accurate positioning is not as

important. Two different position tolerances were used to account for these.

The control was implemented in the C language on the PC.

A1.4 Probing the Points

A touch-sensitive probe is used to collect the measurements. Measurements are

taken by moving the probe slowly towards the object surface until contact is made.

-223-

Before the probe hits the surface it is in a state known as armed. Once it hits the

surface, however, the probe becomes disarmed and the CMM hardware takes control

by moving the probe back along the direction it was travelling. This is known as

backing-off and is controlled entirely by the CMM hardware. A measurement is

taken by the PC when the probe first re-arms and this required continuous monitor­

ing of the state of the probe.

The measurement recorded is for the centre of the probe. The correct coordi­

nate for the surface points needed to be calculated and this is done using the probe

radius and surface normal obtained from the solid model.

The component is measured at the specified measuring points along the path

and the results written to a file for further processing.

A1.5 Measuring the Component

The coordinate systems between the model and the CMM are unlikely to have the

same origin. Further, the component need not be correctly orientated and hence a

transformation matrix is required to align the two systems. A further complication

arises with the CMM used to test the software since the coordinate system of the

CMM is left-handed. This is accounted for by reflecting the path data in the x-axis.

The CMM has a measuring table whose coordinate in the z-direction is fixed.

There is also a datum block on the CMM which is used to initialise parameters,

such as the coordinates of the ends of the axes and the z-coordinate of the measur­

ing table.

-224-

Attributes in the solid model are used to define three measure datum planes

and these are probed before measuring begins. If the orientation of the component

is approximately correct, the probing of these planes can be done automatically.

An assumption is made that one of the measure datums is the surface of the com­

ponent in contact with the measuring table. In this way, only two points on the

second plane and a single point on the third need to be probed. These three points,

together with the equation of the measuring table plane and the three measure

datum planes are used to derive the transformation matrix.

-225-

APPENDIX 2

EXAMPLE OF ALGORITHMS

A2.1 Introduction

To illustrate the various aspects of the inspection planning system, the algorithms

have been applied to a test shape consisting of planar faces, vertical and angled

cylinders, and a triangular pocket [fig A2.1]. The probe model consists of two

vertical cylinders and spherical probe tip. This chapter contains the results of

applying the algorithms described in this thesis and highlights the properties of the

system.

A2.2 Selecting Inspection Points

Plate A2.1 shows the points which are generated using the grid nodes as surface

points. Attributes have been used to select various entities, including the angled

face and cylinder, the pocket and the protruding block. The points are clearly reg­

ularly spaced on the planar faces, each with a different grid spacing. However,

clusters of points are seen on the cylindrical entities.

Some points are also clearly unreachable, such as those in the bottom comers

of the triangular pocket or those lying on the ledge of the stepped semi-cylindrical

hole.

Fig A2.1 shows the points for the semi-cylindrical hole in more detail. A

lower grid spacing assigned to the "ledge" has yielded more points in this example

-226-

and Fig A2.2 shows the results after elimination of the unreachable points. The

only surviving ledge points are those nearest the edge.

Points lying on the lower half of the semi-cylindrical hole have been classified

as unreachable because of interference between the protruding block of the test rig

and the probe head. Similarly, the points within the angled cylinder cannot be

reached because of the vertical probe arm. Finally, points within the thin blind

hole are also classified as unreachable because the probe sphere is unable to be

positioned at the required offset point. Currently, the offset distance is fixed for all

entities, but this may be assigned as a entity attribute and thus would allow smaller

or larger offset distances.

Fig A2.3 shows the final selection of inspection points for this entity. Clus­

ters have now been removed from the upper cylinder and the recommended

number of points, 13, has been achieved.

A2.3 Growing for The Probe

Plate A2.2 shows the result of growing the model for the cylindrical probe arm.

The crosses mark where new vertices have arisen and hence where topology

changes have occurred. Vertices have appeared where the cylinders on the comers

of the pocket which have shrunk to introduce extra solid at the union boundary

with the pocket sides. New vertices also occur when the bounding plane of the

lower semi-cylindrical entity shifts up into the model.

Plate A2.3 illustrates the corrected model. The semi-cylindrical hole has been

reset to the full length of the block. However, vertices which occur at the

-227-

boundary of cylinders and other planes have not been corrected. This is because

the half-spaces which have introduced the new vertices also lie on vertices in the

ungrown model and hence there are no shiftable half-spaces available to correct the

vertices.

Fig A2.4, A2.5 and A2.6 illustrate the three grown models corresponding to

the three probe segments. In the model grown for the probe tip, the blind hole is

very thin and hence requires a very small offset distance for probing points. On

the model for the probe arm, the angled cylinder has closed signifying that no

points can be reached using the given probe. Finally, the model for the probe head

illustrates how the approximation to the grown model through shifting half-spaces

becomes more conservative when large growing displacements are considered. The

cylindrical edges of the protruding block disappear as the middle segment of the

block grows.

A2.4 Path Generation

The result of weighting the path so that motion in the x-axis direction is preferred

over motion in the y-axis is shown in figures A2.7, A2.8 and A2.9 for various

stages of a measuring path. The path is generated for three entities; the triangular

pocket, the semi-cylindrical stepped hole and the angled face. (The y-axis direc­

tion is towards the top of the page). The three-dimensional nature of the path

makes it difficult to visualise, however certain information can be glimpsed by

comparing with the figures in A2.10, A 2.ll and A2.12 where all axes are given

equal weight.

-228-

The path starts with the angled face. For the even-weighted path, the nearest

point is chosen in each case and the path moves down the face. Having missed a

point on one end of the face, the path does a back-trace when it reaches the other

end. This illustrates the entity-based approach of the path, where all points on the

entity are considered before moving on, and the less-than optimal nature of

nearest-neighbour path search. For the y-axis weighted path, the angled face is

considered first again, but moving down the face is now more expensive than mov­

ing across. Thus the path does not miss a point at one end and hence does not

have to back trace.

The evenly weighted path then selects the nearest entity, which is the pocket

and works its way around there before finishing with the stepped hole. Similarly,

the y-axis weighted path goes on to probe its cheapest neighbour, the stepped hole,

and then goes on to inspect the pocket.

A2.5 Analysis

The results of inspection are shown in Fig A2.13. Most entities were found not to

lie within the required tolerance. The slanted face is the worst as can be seen by

considering the results in figures A2.13(b) and A2.13(d).

-229-

- H -

Figure A2.1 Surface points generated for stepped
semi-circle feature of test rig.

Figure A2.2 Reachable sub-set of points.

-230-

Figure A2.3 Final selected inspection points.

Figure A 2A Test rig grown for probe tip.

-231-

Figure A2.5 Test rig grown for probe arm.

Figure A2.6 Test rig grown for probe head.

Figure A2.7 Inspection path for angled face feature of
test rig with motion weighted against y-axis.

Figure A2.8 Inspection path for semi-circle feature of
test rig with motion weighted against y-axis.

-233-

Figure A2.9 Inspection path for pocket feature of
test rig with motion weighted against y-axis.

Figure A2.10 Inspection path for angled face feature of
test rig with equal axis weighting.

-234-

Figure A 2 .ll Inspection path for pocket feature of
test rig with equal axis weighting.

Figure A2.12 Inspection path for semi-circle feature of
test rig with equal axis weighting.

-235-

Tolerance Type : SQUARENESS Zone Type: PLANAR VOLUME

Nominal E n t i ty D esc r ip t ion

E n t i ty Type : PLANE
Half Space Equation : 0.00O000 -1 .000000 0.000000 90.000000

Number of Measured Points 10

Measured E n t i ty

Half Space Equation : -0 .002750 -0 .997208 -0 .014665 90.604141

Datum D e s c r ip t io n

Datum Label : X0_DTM E n t i ty Type : PLANE

Half Space Equation : -1 .000000 0.000000 0.000000 0.000000

Number of Measured Points • 0

Expected Nominal Entity

Test plane : 0.000000 -l.C'10000 0 .000000 90.000000

Tolerance Test Result

Tolerance Width : 0 .100000
Range of Point D i s ta n ce s : 0 .153110
Resu l t o f Test (0=in t o l e r a n c e , - l = n o t) : -1

Figure A2.13(a) Results of SQUARENESS tolerance test
for test rig.

-236-

Tolerance Type : ANGULARITY Zone Type: PLANAR VOLUME

Nominal Entity Description

Entity Type : PLANE
Half Space Equation : 0.644488 0.000000 0.764614 -82.143630
Number of Measured Points 14

Measured Entity

Half Space Equation : 0.597107 0.041647 0.798589 -79.774050

Datum Description

Datum Label : Z1_DTM Datum Type : PLANE
Half Space Equation : O . O O n O O O 0.000000 1.000000 -40.000000

Number of Measured Points 0

Expected Nominal Entity

Half Space Equation :0.644438 0.000000 0.764614 -82.143630

Tolerance Test Result

Tolerance Width : 0.500000
Range of Point Distances • 2.259281

Result of Test (0=in tolerance, -l=not): -1

Figure A2.13(b) Results of ANGULARITY tolerance test
for test rig.

-237-

Tolerance Type : SQUARENESS Zone Type: PLANAR VOLUME

Nominal Entity Description

Entity Type : PLANE
Half Space Equation : 0.00U000 0.000000 1.000000 -25.000000

Number of Measured Points 8

Measured Entity

Half Space Equation : 0.000487 -0.000668 0.999751 -23.088208

Datum Label : ZHOLE_DTM Entity Type : AXIS Axis Type : CYL_AXIS
Location of Axis : 40.000000 0.000000 25.000000
Axis Direction : 0.000000 0.000000 1.000000
Cylinder Radius : 10.000000

Number of Measured Points : 0

Expected Nominal Entity

Half Space Equation : 0.000000 0.000000 1.000000 -25.000000

Tolerance Test Result

Tolerance Width : 0.100000
Range of Point Distances : 0.012000
Result of Test (0=in tolerance, -l=not): 0

Figure A2.13(c) Results of SQUARENESS tolerance test
for the test rig.

-238-

Tolerance Type : FLATNESS Zone Type: PLANAR VOLUME

Nominal Entity Description

Entity Type : PLANE
Half Space Equation : 0.6 4 «t 4 88 0.000000 0.764614 -82 . 143630

Number of Measured Points : 14

Measured Entity

Half Space Equation : 0.59'. 107 0.041647 0.798589 -79.774050

Expected Nominal Entity

Half Space Equation : 0.59'>L07 0.041647 0.798589 -79.774050

Tolerance Test Result

Tolerance Width : 0.100000
Range of Point Distances : 5.173707
Result of Test (0=in tolerance, -l=not): -1

Figure A2.13(d) Results of FLATNESS tolerance test
for the test rig.

-239-

Tolerance Type : ROUNDNESS Zone Type: CYLINDRICAL VOLUME.

Nominal Entity Description

Entity Type : CYLINDER Axis Type : CYL_AXIS

Location of Axis : 50.000000 80.000000 25.000000
Axis Direction : 0.000000 0.000000 1.000000
Cylinder Radius 10.000000

Number of Measured Points . 11

Measured Entity

Location of Axis : 49.576116 79.989677 25.009381
Axis Direction : 0.022313 -0.017641 0.999595
Cylinder Radius 10.466326

Range of Point Distances : [10.5270 90,10.377974]
Tolerance Width : 0.100000
Result of Test (0=in tolerance, -l=not): -1

Figure A2.13(e) Results of ANGULARITY tolerance test
for the test rig.

Tolerance Type : ANGULARITY Zone Type: PLANE VOLUME

Nominal Entity Description

Entity Type : PLANE
Half Space Equation : -0.707107 0.707107 0.000000 -11.213210

Number of Measured Points : 16
Measured Entity
Half Space Equation : -0.71-5479 0.706960 0.005545 -11.396518

Datum Description

Datum Label : X0_DTM Entity Type : PLANE

Half Space Equation : -1.000000 0.000000 0.000000 0.000000

Number of Measured Points : 0

Expected Nominal Entity

Half Space Equation : -0.7O7107 0.707107 0.000000 -11.213210
Tolerance Test Result

Tolerance Width : 0.100000
Range of Point Distances : C .158552
Result of Test (0 = in toler« nee, -l=not) : -1

Figure A2.13(f) Results of ROUNDNESS tolerance test
for the test rig.

-241-

Plate A2.2 The topology changes which occur when test rig
is grown for the probe aim Crosses mark where new vertices

occur.

Plate A2.1 Surface points for test rig.

Plate A2.3 The grown test rig after correction.

-243-

Applications of 3-D Solid Modelling to Coordinate Measuring Inspection

L Walker and A. F. Wallis

Manufacturing Group, School of Mechanical Engineering, Bath University,
Claverton Down, Bath, BA2 7AY

Summary
This paper describes a set of algorithms for the automation of component

inspection using coordinate measuring machines. Solid modelling techniques are
used to describe the component, and this model is then used to generate a set of
inspection points and a collision-free probe path. The model is also used in the
analysis of the resulting measurements. The algorithms have been implemented in
a system that will handle the range of form, location and attitude tolerances, as
defined by BS 308, for planar, cylindrical, conical and spherical features.

Introduction
Much research has been carried out into the automation and computerisation of
various aspects of engineering design, component manufacture and inspection. One
such area of research is the use of coordinate measuring machines (CMMs) for the
automation of component inspection. The advantages of using such machines
include a decrease in the time required* for inspection, greater accuracy of
inspection and greater flexibility.
Most CMMs are programmed manually by moving the measuring probe through a
sequence of moves then it will later repeat Developments in the computer
software for use with CMMS has concentrated on simplifying this programming task
and on the analysis of the measured data. Some work has been done on the
automation of CMM programming, based on the generation of a database of paths
for known features [1]. Other researchers have investigated the use of rule-based
systems for the automatic generation of inspections procedures [2].
This paper presents a technique for the automatic inspection o f components using a
CMM, based on a computer solid model of the component

The requirements of any technique that is to automate completely the use of CMMs
for component inspection are:
1. A method of describing the shape of the component to be inspected, including

its dimensions and tolerances.
2. An algorithm for the determining of a set of points at which to probe the

surface of the component, based on the shape of its features and the specified
tolerances.

-1-

3. An algorithm for generating a path for the CMM to follow such that the points
may be probed.

4. A technique for relating the coordinates of the measured points to the
component dimensions and tolerances, and reporting any that are in error.

This paper is divided into four main sections, based on each of these requirements.

Modelling the Component
Solid modelling is a technique for representing the shape of three-dimensional
objects within a computer. It has been successfully used as the basis for
automating a range of engineering tasks, including toplpath generation for NC
machining and finite element mesh generation [3].
The details of the various schemes used to implement solid modelling, and the
advantages and disadvantages of each have been described elsewhere [4]. The
properties inherent in all solid modelling schemes that are of particular relevance to
the work described in this paper are: solidity, rigidity and invariance under
geometric transformations. Additional requirements for the modelling scheme are
the ability to represent the range of surface geometries found in engineering
components and the ability to support efficient and numerically robust algorithms.
The scheme chosen for this work is that of set-theoretic (CSG) solid modelling. In
this scheme, an object is represented as the set-theoretic combination o f simpler
objects (primitives). The set-theoretic operators union, difference and intersection
are used to build the required shape from these primitives. The primitives used are
half-spaces - surfaces that divide three-dimensional space into regions that
represent either solid or air. Using these primitives, a set of bounded shapes, such
as cylinders, cuboids and spheres, can be constructed, and, using combinations of
these and further half-spaces a wide range of engineering components may be
modelled. Thus, although the surface of the model is made from parts of the
surfaces of the various half-spaces, other parts of the half-space surfaces will lie
inside or outside the model (in solid or air).
The solid modelling system used in this work allows the use of polynomial half­
spaces, with the boundary being the zeros of a polynomial expression in the x, y
and z coordinate variables. Most of the surfaces used in engineering components
may thus be accurately modelled by the system.
Few solid modellering systems allow tolerance information to be included with the
geometric information [5]. Clearly the representation of tolerances within the
model is required for the automated generation o f inspection points. The technique
adopted is to allow the user to attach tolerance attributes to features on the model.
This approach allows tolerances which apply to the geometry of shapes, i.e
geometrical tolerances, to be defined as the model is defined. Geometrical
tolerances have direct interpretation in terms of the geometric features of the
object, and thus are a natural way of describing quality of shape.

The solid models used to represent components that are to be inspected are
described using an input language [6] (graphical input is also available). The input
language has a rich set of functions that may be used to define and manipulate
shapes. Figure 1 shows part of the input file used to describe the component
model shown in figure 2. The functions that are of particular importance to this
work are the datumO and tol_setO functions. The first of these allows the user to
define a surface as a datum for future reference. The second is used to attach a
tolerance attribute to a feature. If this is a location or attitude tolerance, then the
tolerance may relate to a datum surface defined previously. A general purpose
attributeO function is used to define axes of features, select point generation grid
sizes and set up coordinate datum surfaces for the CMM.

Generating the Probing Points
Having described the model of the component that is to be inspected, the next
stage of the process is to generate a set o f points that lie on the model
corresponding to points on the component that are to be probed. These points
must satisfy a number of constraints. Firstly they must lie on the surface of the
model. Secondly the points must be reachable by the probe. Thirdly the set of
points used to check each feature must be sufficient in number and in a pattern
suitable for the inspection of that feature.
Points need only be generated on those model features that have been toleranced,
or are datum surfaces. The number of points required for each feature is
dependent on the tolerance applied to that feature (different tolerance types, in
general, require a different number of points).

The method used to generate a set of surface points is first to generate a pattern of
points on (parts of) the surface of the component model. A set o f surface points is
then chosen from this set For the purpose o f point and path generation and
checking, a facetted approximation of the model is sufficient so all non-planar
surfaces in the model are facetted at this stage.

Each half-space in the model that represents part o f a toleranced feature is
considered separately. A regular rectangular grid, with a pitch that may be
specified by the user when tolerancing the feature, is generated lying in the plane
of the half-space. A point is positioned to lie within each grid square. These
points are positioned at a (user-specified) random distribution of angle and
direction from the centre of each square. This random offset reduces the
likelyhood of regular or cyclic errors in the surface being undetected. As the
points are generated they are tagged as belonging to a ‘feature group*. Each group
corresponds to a single feature in the model (which may comprise several half­
spaces).

This set of points now needs to be processed to remove those points that do not lie
on the surface of the model. Each point may be tested using a membership test.

-3-

This is a computationally simple task for a set-theoretic modelling system, and
hence quick to perform. The point is compared with each half-space in the set-
theoretic model and classified as to which side (air or solid) it is located. The
half-space on which the point lies is treated as a special case and is classified as
surface. These classifications may then be combined using DeMorgan’s rules to
yield a classification for the point Those points that lie in ‘air* or ‘solid’ are
removed from further consideration.

Points that lie close to edges of the component, which may cause problems during
inspection, may be detected by checking the distance from the point to the half­
spaces that form edges in the component model.

Each surface point is now tested to see if the CMM probe, can be positioned at that
point without any part of the probe intersecting (colliding) with the component
The CMM used by the authors was a 3-axis machine with a touch probe fixed in a
vertical orientation. For collision detection purposes, the probe may be modelled by
two cylinders and a sphere as shown in figure 3. Thus the problem of detecting
collisions is one of detecting intersections between the sphere and cylinders and the
component model. In addition to checking for static collisions, collisions that
occur when the probe is moving relative to the component need to be detected.
One method of achieving this is to check for intersections between the volume
swept by the probe model and the model of the component Such null-object
detection tests are time consuming, especially when the two models nearly, but do
not quite, intersect

The approach taken is to simplify the test by shrinking each o f the elements in the
probe model to a point separately, and creating new versions of the component
model that are grown by a corresponding amount Checking for static intersections
between the probe model and the component model is then simplified to testing the
point and the grown component model using the membership-test described
previously. Furthermore, intersections that occur between the probe moving along
a straight line path and the component may be found by detecting intersections
between the straight-line corresponding to the path swept by the point and the
grown models.

The task of detecting intersections between a line and a model is relatively simple
to perform - it is the same as that required when generating ray-traced pictures of
such models. The line is compared with each half-space in the model, and
intersection points between the line and each half-space generated. Each of these
points are membership-tested and if any of the tests result in a solid classification
then the line intersects the model. The first, or last, point at which the line
intersects the model may be found by sorting the points by their distance from one
end of the line before testing each.

Figure 4 shows a version of the component model grown for the thin vertical

-4-

cylinder of the probe. Note that the shapes of the various features in the model
have changed (and one of the holes has disappeared completely). Details o f the
algorithm used are not given in this paper, but are given in [7]. It may however be
noted that model growing, unlike scaling, is not a simple task.

A Z-safe plane is defined that is a horizontal plane positioned above the object to
be measured. For each surface point, a probing point is generated that is offset by
a small distance (typically a few millimeters) from the surface point in the
direction of the coordinate axis that is closest to the outward-pointing surface
normal vector direction. This is the location from which the CMM will probe the
surface (the CMM is limited to probe in directions parallel to one of its coordinate
axes). The surface normal vector is obtained directly from the half-space equation.

Owing to the fixed vertical attitude of the probe, all reachable points are
approachable from above and so a default path to each surface point consisting of a
vertical descent from the Z-safe plane to the probing point followed by a straight-
line path to the surface point is assumed. The two line segments for this path are
tested against each of the three grown models, and if any intersections are found,
then point is rejected.

At this stage, a set of points has bee'' generated, all o f which lie of the surface of
the model, and all of which may be replied by the probe. In general the original
grid pitch is chosen to yield a number of points that is greater than will be required
for the inspection of each feature. Points are now removed from the set in order to
give a valid number of points for the inspection of each feature. The British
Standard BS 7172 gives guidelines on selecting the number of points for checking
a range of tolerance types, and on the. distribution .of such points, and these
guidelines have been followed.

Surface points that are on the same feature are grouped into clusters o f points that
are closer together than the pitch of the point generation grid. For inspection
purposes, only one point in each cluster will be selected, thus ensuring that the
points chosen for measuring are widely-spaced. If more clusters remain than the
number of points that are required, then the maximum size of each cluster is
increased until the required number are left Similarly, the cluster size is reduced
if there are too few clusters. When the required number of clusters is reached, one
point is selected from each cluster.

If insufficient points remain for any feature, then the user is warned. Further tests
could be made at this stage to detect undesirable (for example co-linear)
distributions of points.

The inspection points may be displayed on the computer screen, and points added
or removed if desired. Figure 5 shows a set of surface points for checking some of
the features in the model shown previously.

Generating the Probing Path
Having generated a set of surface and probing points, the next stage is to generate
a path that, when followed by the CMM probe, will pass through all the points. In
generating this path, there are three main aims:
1. The path must not result in any collisions between the probe and the

component (assuming that the component is correct!).
2. The path should be such that the time taken to drive the probe along it is not

excessive.
3. The time taken to generate the path should not be excessive.

This task is similar to the travelling salesman problem, which is well known to
mathematicians. Many of the techniques used to solve that problem are not
suitable for the probe path generation task due to the relatively large number of
points and the lack of prior knowledge of the ‘distance* between each point An
alternative heuristic approach is adopted.

Since the path from each probing point to its associated surface point has already
been checked, the probe path is generated by constructing a path through the set o f
probing points, and then inserting probing moves at each of these points.

A cost function is defined which returns a value proportional to the time taken to
drive the CMM probe between any two points. The current implementation
calculates a cost dependent on the square root of the weighted addition o f the
distance between the points in each of the coordinate directions. The weighting
values are used since the time taken for the CMM to move the same distance in
each of the three coordinate directions is different A more complicated cost
function that takes account of the affect of accelerating and decelerating the probe
CMM could be used.

The probe path is generated as a list of points that are either probing points or via-
points. The probing-points are those generated previously, in addition the their
(x,y,z) coordinates, are tagged with the probing direction vector, and a reference to
the half-space on which the corresponding surface point lies. The via-points,
which are inserted in order to avoid collisions between the probe and the
component, are recorded as (x,y,z) coordinates.

The first probing point is chosen as the probing point with the smallest x-
coordinate value. The next point is chosen by considering all of the probing points
in the same feature group as the current point that have not yet been included in
the path. The cost of moving to each of these points is calculated, and the point
with the minimum cost is chosen as the next point and added to the probe path.
This process is repeated until all the points in the current feature group have been
added to the path. The next point is then chosen as the point (within any feature
group) with the lowest cost and the current feature group updated. This process

continues until all the points have been added to the path.

When calculating the cost of moving to the next probing point, the path to reach
that point must be considered. Initially a straight-line path is assumed and this is
tested for possible collisions using the method described in the previous section. If
a collision is detected, then the path to this point must be modified. Two
techniques are considered when modifying the path.

The simplest alternative, which is used if a better path cannot be found, is to insert
two via-points at the height of the Z-safe plane, one directly above the current point
and the other above the new probing point This guarantees that the probe path
will avoid any collision since a vertical path down to each probing point has
already been checked, but clearly, large movements to and from the Z-safe plane
may be generated.

A better path is searched for by modifying the direct straight-line path between the
points. Starting at the points at which the path intersects the model (ie the points
where the probe would hit the component), test vectors are generated that lie in the
plane of the model surface at the collision point The locations where these
vectors leave the surface of the model are found, and the path modified to pass
through a via-point that is offset from one of these points. The point chosen is the
one closest to the destination point of the motion (see figure 6). This new path is
then checked for collisions, and, if necessary, the process is repeated.

This concludes the path generation stage. The path may be displayed and could be
amended at this stage if required. The probe path data is transferred to the CMM,
which then follows the path, probing the component at each probing point For
each probing point the coordinates where the probe contacts the component are
recorded, together with its respective probing-point and the half-space and feature
from which it was generated. An inspection path is shown in figure 7.

Analysing the Results
Each toleranced feature in the component is checked individually. The contact
points that correspond to that feature are first extracted from the list o f contact
points. For some types of tolerance these points may be compared directly with
the model. With other tolerance types, surfaces or axes have to be fitted to the
measured points, and these compared to the tolerance zone defined by the tolerance
specified for the feature.

Checking Planar Features
Flatness tolerances are checked by first fitting a plane to the set of measured points
that correspond to a feature. The distance from each measured point to this best-fit
plane is calculated and compared with the specified tolerance. Points that are out-

of-tolerance are noted.
Attitude tolerances (squareness, parallelism and angularity) and position tolerances
require comparison between the measured plane and some datum feature (a plane
or line). If the datum plane is a measured (fitted) plane, then a transformation
matrix is derived that maps the nominal datum plane onto the measured datum
plane. This transformation is then applied to the nominal plane corresponding to
the plane that is being checked. The distance from each measured point to this
transformed plane is calculated, and points that are out-of-tolerance are noted.
If the datum feature is an axis (which cannot be measured directly), then this axis
is first generated from the best-fit surface through the set of measured points for
the datum feature (cylinder or cone).

Checking Non-planar Features
Roundness tolerances are checked by first fitting a surface (cylinder or sphere) to
the set of measured points that correspond to a feature. The distance from each
measured point to this best-fit surface is calculated and compared with the specified
tolerance. Points that are out-of-tolerance are noted.
When checking attitude and position tolerances, a comparison has to be made
between the position and orientation of a test-axis fitted to the measured points and
a datum feature (a plane or axis). A tolerance zone, as defined in BS 308 Part 3,
is generated about the nominal position of the feature being measured. The spatial
limits of the zone are defined partly by attributes attached to the measured and
datum features, and partly by the position of the measured feature’s surfaces.
Test points are generated (using the line-model intersection test previously
described) at locations where the test-axis intersects the surface of the nominal
feature. These test points are compared with the tolerance zone, an£ if they lie
outside the zone, then the feature is out-of-tolerance.
The fitting of planes to point sets is achieved using principle components analysis.
Other surfaces are fitted using an iterative algorithm developed at N.P.L. [8]. A
report is printed that gives the deviation of each measured feature from its nominal
position. Features that are out-of-tolerance are highlighted and the measured points
corresponding to them may be displayed on the computer screen.

Implementation Details
The solid modelling techniques used by the software described in the paper are
based on the work of Woodwark, Quinlan and Bowyer [6],[9]. An important
aspect of the technique is that of spatial division and pruning. If the point
membership tests used in the point and path generation and testing programs where
implemented as described above, then the time taken to perform these tasks would
be excessively large. In practice, the model is spatially divided into a number of
simpler models, each of which is valid for a small region of space. When
performing a membership-test, the point only need be compared with the simple

-8-

model for the region that contains the point

The software is written in a mixture of FORTRAN-77 and C, running on a Sun 3.

Conclusions
The work described in this paper has demonstrated that solid modelling techniques
can be used to automate the planning and analysis stages of component inspection
using CMMS. Set theoretic model definition has proved to be a natural base for
attaching geometric tolerances to models. The point and path generation and
measurement analysis algorithms have been tested on a range of models and have
been found to be robust

Acknowledgements
The project that this paper describes in part was supported by an SERC quota
award.

References

[1] Raja, J. and Sheth, U P. Integration of Inspection into Automated
Manufacturing Systems Recent Developments in Production Research, pp. 119
- 124, Elsevier Science Publishers B.V., Amsterdam, 1988

[2] Park, H D . and Mitchell, O.R. CAD based Planning and Execution of
Inspection Proc. Computer Society Conference of Computer Vision and
Pattern Recognition, pp. 858 - 863, 1988

[3] Woodwark, J.R. Shape models in Computer Integrated Manufacture - a
review CAE Journal, June 1988, pp. 103 - 112

[4] Requicha, AA.G . Representations for Rigid Solids: Theory, Methods and
Systems Computing Surveys, VoL 12, No. 4, pp. 437 - 461, Dec. 1980

[5] Requicha, A A .G . Representation of tolerances in solid modelling: issues and
alternative approaches Proc. General Motors Symposium, Detroit, USA, 1983,
pp. 3 - 2 2

[6] Woodwark, J.R., and Bowycr, A. Better and Faster Pictures from Solid
Models DEE Computer Aided Engineering Journal, V3, No 2 (1986)

[7] Walker, L CMM Path Planning and Solid Modelling, PhD. thesis (in
preparation), University of Bath.

[8] Forbes, A.B., Least Squares Best-fit Geometric Elements, Internal NPL Report
DITC 140/89, April 1989.

[9] Woodwark, J.R. and Quinlan, K.M. Reducing the Effect of Complexity on
Volume Model Evaluation CAD Journal, Vol. 14, 1982, pp. 89 - 95.

FUNCTION create_top_block (in_dev:Real): Set
Integers {num_fac}
Reals {r_prop}
Sets (end_cyls, mid_box, res_pro, sid_spac}

{
block_end_pt :*» pt (45.0, 35.0,25.0)
r_jprop : ™ 8.0/ in_dev
num_fac cylfacetnum (8.0fr_prop)
end_cyls :« cylinder(In (z_dir,blovk_end_pt) ,8.0,num_fac)

& space (z_dir,pt (45.0,45.0,54.0))
end_cyls := attribute (end_cyls,gen_feat,

"CYL_AXIS : DO.0 0.0 1.0 R8.0 P45.0 35.0 25.0");
end_cyls tol_set (end_cyls,PARALLELISM,0.l,pt(1.0,0.0,0.0),"-DZ0_AX")
res_pro :« slide (end_cyls,In(x_dir,blovk_end_pt),30.0)
res_pro := spin (res__pro, In(z_dir,blovk_end_pt) ,PI/4.0)
res_pro :■ attribute (res_pro,gen_feat,

"CYL_AXIS : DO.O 0.0 1.0 R8.0 P66.2132 56.2132 25.0");
res_pro := tol_set (res_pro,PARALLELISM, 0.l,pt(0.0, 0.0, 0.0) , "-DZ0_AX")
res__pro := tol_set (res_pro,SQUARENESS, 0.l,pt(0.0,1.0, 0.0) , "-DZ1_DTM")
res_pro := end_cyls I res_pro
mid_box := space(-x_dir,blovk_end_pt)& space (x_dir,pt(75.0,35.0,25.0))

& space (z_dir,pt(45.0,45.0,54.0)) & space (-z_dir,pt(45.0,35.0,35.0))
mid_box := spin (mid_box,In(z_dir,blovk_end_jpt) ,PI/4.0)
sid_spac :« space (-y_dir,pt(45.0,27.0, 25.0))
sid_spac spin (sid_spac,In(z_dir,blovk_end__pt),PI/4.0)
sid_spac tol_set (sid_spac,PARALLELISM,0.l,pt(0.0, 0.0, 0.0),"-DYANG_FACE")
mid_box := mid_box & sid_spac
sid_spac := space(y_dir,pt(45.0, 43.0,25.0))
sid_spac spin (sid_spac,In(z_dir,blovk_end_pt),PI/4.0)
sid_spac :* datiam (sid_spac, "YANG_FACE")
mid_box := mid_box & sid_spac
res__pro : = res_pro I mid_box
RETURN (res_jpro)

Figure 1. Model definition

Figure 2. An image of the component model

THIN VERTICAL
CYLINOER

WIDE VERTICAL
CYLINDER

n~SPHERE

Figure 3. The probe model

Figure 4. A ‘grown* component model

Figure 5. A set of surface points

PATH RAY

SEARCH RAYS

O F F S E T P O I N T

COLLISION
POINT

Figure 6a. Generating test vectors from a collision point

NEW PATH P O I N T

NEW PATH

SEARCH RAY

P O I N T AT WHICH SEARCH RAY L E A V E S S O L I D

Figure 6b. A modified path segment with new path (via) point

Figure 7. A probe path

