UNIVERSITY OF

BATH

University of Bath

PHD

Asymptotic and transient behaviour of nonlinear control systems

Townsend, Philip

Award date:
2007

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
« You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019



Asymptotic and Transient
Behaviour of Nonlinear Control
Systems

submitted by
Philip Townsend
for the degree of Doctor of Philosophy
of the
University of Bath
Department of Mathematical Sciences

2007

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with its author. This
copy of the thesis has been supplied on the condition that anyone who consults it is

understood to recognise that its copyright rests with its author and that no quotation

from the thesis and no information derived from it may be published without the prior

written consent of the author.

This thesis may be made available for consultation within the University Library and

may be photocopied or lent to other libraries for the purposes of consultation.

Signature of Author................. @ . Za/anan( ...........................

Philip Townsend



UMI Number: U237812

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Dissertation Publishing

UMI U237812
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346



UNIVERSITY OF 357

LIBRARY
35 -1 AUG 2853




Thanks

¢ I am extremely grateful to my supervisor, Professor Eugene Ryan, for guiding
and encouraging me throughout my PhD. I could not have asked for a better

supervisor.

o I would also like to thank Professor Achim Ilchmann from whom I learned a great
deal during my first year of study.

o Thanks must also go to my family, and in particular my wife, for being so sup-

portive, kind and patient over the last three years.

e Finally, I want to pass on my thanks to all the friendly staff in the Department
of Mathematical Sciences at the University of Bath and to the EPSRC for my
funded studentship.



ii

Summary

In this thesis, the problem of controlling both transient and asymptotic behaviour of so-
lutions of functional differential equations is addressed. The work begins, in Chapter 1,
with an introduction to basic control theory principles that will be used throughout.
This is followed by the introduction of a class of nonlinear operators in Chapter 2 and
the development of suitable existence theories for the associated system classes of func-
tional differential equations and inclusions in Chapter 3. A discussion is provided, in
Chapter 2, describing diverse phenomena, such as delays and hysteresis, that can be
incorporated in the class of operators.

Chapters 4-7 cover four areas of research. Chapter 4 examines the asymptotic and
transient behaviour of nonlinearly-perturbed linear systems of known relative degree;
a continuous feedback strategy is adopted and an approximate tracking result is pre-
sented. In Chapter 5 the class of systems considered is expanded to a large class
of nonlinear systems and a continuous feedback strategy is implemented in order to

achieve approximate tracking.

In Chapters 6 and 7 attention is restricted to systems of relative degree one, but this
limitation is compensated for by targeting an exact asymptotic tracking result. The
first investigation, in Chapter 6, involves a potentially discontinuous feedback con-
troller applied to a class of nonlinear systems, with comparisons made to an internal
model approach. Asymptotic tracking and approximate tracking are developed in uni-
son within a framework of functional differential inclusions. Finally, in Chapter 7, a
continuous controller is applied to single-input, single-output, nonlinear systems with

input hysteresis.
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Notation

GLa(R)
spec(B)

the natural numbers,

the real numbers,

= {0, 00),

the open right (left) half complex plane,

the set of n x n matrices over the ring of real polynomials,

the set of n x n matrices over the field of rational real functions,
the absolute value of a real number (modulus of a complex number),
the Euclidean inner product,

:= /{z, z), the Euclidean norm for z € R",

= {y € R"| ||z — y|| < 6}, open ball, radius § > 0, center z € R",
= B5(0),

denotes the closure of A C R",

denotes the transpose of the matrix B € R™*™,

denotes the set of invertible, real-valued, n X n matrices,

the spectrum (set of eigenvalues) of B € R™*™,

For an interval I C R, we denote the following spaces of functions z: I — RY by:

C(I,R9)
AC(I,RY)
ACioc(1,RY)
Com(I,RY)
LY(1,RY)
Il
Lige(I,R)
L*™(1,R9)
I1[loo
L?OOC(I’ Rq)
Wleo(I,RY)

l{}1,00

z|s

continuous functions,

absolutely continuous functions,

locally absolutely continuous functions,

continuous, piecewise monotone functions,

integrable functions z: I — R? with norm

= [, le(t)lldt < oo,

measurable, locally integrable functions,

measurable, essentially bounded functions with norm

= ess-supye Il (?)])

space of measurable, locally essentially bounded functions,
the Sobolev space of bounded functions z € AC(I,R?) with
derivative £ € L*°(I,R?) and norm

= |2lloo + lI£lloo

denotes the restrictionof z: I = R9to J C I.

X



Space of functions used in this thesis:

Let G be a domain in Ry x R, that is, a non-empty, connected, relatively open subset of
R4 x R A function f: G — RY is said to be a Carathéodory function, if the following
conditions are satisfied:

e f(t,-) is continuous for all ¢,
e f(-,y) is measurable for each fixed y,

e for each compact set A C G, there exists k € L} (I,R;) such that

Ift I < k@) Y(t,y) €A.

The following function spaces will also be used:

K ={v € C(R4+,Ry)|v(0) = 0 and 7 is strictly increasing},

K ={y€ K]|~v(s) > o0 as s — oo},

KL functions §: Ry x Ry — Ry such that, for each fixed s € R, the map
0(-,s) € K and the map 6(s, ) is decreasing to zero.



Chapter 1

Introduction

1.1 Control theory

Control theory is the area of applied mathematics concerned with analyzing and syn-
thesizing the behaviour of dynamical systems with inputs. By constructing appropriate
inputs, referred to as controls, the aim is to influence the behaviour of a system in some
desirable manner. Frequently, such controls are used to force the output of a system,

or class of systems, to perform a specific objective such as tracking a reference signal.

There are many facets to the study of control theory. One area, with strong links to
the calculus of variations, involves optimizing the behaviour of a system for which a
good mathematical model is known. A second branch, and focus of this thesis, involves
the study of uncertain systems of a known class where the idea is to construct a single
control strategy capable of achieving the desired objectives for every member of the

class. Such controls are known as universal controls.

In this thesis, universal control strategies are designed for a variety of system classes
with two specific types of control objective in mind. Firstly, we seek to control the
asymptotic behaviour of solutions, meaning that the long-term performance of solu-
tions achieves some prescribed goal. The second type of control objective deals with
the transient behaviour of solutions. The two objectives, paired together, ensure that
solutions not only attain a long-term goal, but perform in a prescribed manner through-
out. Both performance aspects are expanded upon in Section 1.2.

1.1.1 Closed-loop feedback

An essential concept in the development of universal control strategies is the idea of
feedback. A control scheme is sought in which, in the words of Fleming [16, Chapter 2],
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1.1.3 Motivating example

As an example, consider a simple pendulum with input force u as illustrated in Figure 1-
2. In this basic example, the effects of friction and air resistance are ignored and it

—mgsiny mg

Figure 1-2: A simple pendulum.

is assumed that the mass is concentrated at the end point of the pendulum. Setting
y to be the angle of rotation, measured anticlockwise, the governing equation for the
pendulum is given by the following nonlinear differential equation

mi(t) + mgsiny(t) = u(?), y(0) = yO’ (1.1)

where g is the gravitational constant and the mass of the pendulum is denoted m. An
anticlockwise force exerted by the control is considered to be the positive direction.

By measuring the angle of rotation, the output value of the system (y) can be com-
pared to a desired command signal and an input constructed using a suitable feedback
controller. Therefore, a closed-loop feedback problem can be considered in which the
aim is to control the behaviour of the pendulum. This example is not, itself, of great
importance in this thesis, however the particular structure of the formulated system
will motivate the discussion of several key structural assumptions later in this Chapter.

A variety of control objectives can be formulated and, in each case, we seek a control
strategy capable of forcing the output to achieve a particular task. In the example
above, a typical asymptotic control objective might be to stabilize the output y to a
chosen fixed value, such as the angles y = 0 or ¥ = =, at which the pendulum is ex-
actly vertical (equilibrium states when no input is applied). In addition, an objective
relating to transient behaviour could involve the development of a control that not only
ensures that the pendulum reaches a specific state but also maintains the pendulum
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within a set distance from that state throughout the evolution of the system output.
In Section 1.2, a discussion is provided detailing the main control objectives considered
in this thesis.

1.2 Control objectives

Two main types of control objective are considered. Primarily, controllers are designed
to influence the asymptotic performance of solutions to a variety of systems. The second
objective is to achieve prescribed transient behaviour of the solutions. The following

sections discuss the various aspects of each control objective.

1.2.1 Asymptotic performance

A great deal of attention has been paid to the asymptotic behaviour of solutions to
various control systems. An asymptotic objective with considerable history is the
problem of output stabilization. In this case, a controller is designed to ensure that,
as t — oo, the system output y(t) — 0. A wide range of papers tackle the problem,
with an early contribution to non-identifier based adaptive control (by which we mean
control strategies that involve no attempt at system identification) appearing in 1978
through the efforts of Feuer and Morse [14].

1.2.2 Exact asymptotic tracking

A natural evolution from the stabilization objective is the problem of tracking a refer-
ence signal. Here, the output is required to track asymptotically any chosen reference
function (denoted r throughout this thesis) from a class of signals R, in the sense that,
ast — oo, y(t) — r(t) — 0. We refer to such performance as exact asymptotic track-
ing. By writing the objective in this form, it is clear that, via the coordinate change
e(t) = y(t) — r(t), the problem of asymptotically tracking a reference signal can be
reduced to stabilization of the error signal e.

Two control methods frequently used to achieve exact asymptotic tracking objectives
are as follows: (i) continuous output feedback wherein an internal model, capable of
reproducing the class of reference signals, can be incorporated into the feedback loop,
(ii) discontinuous output feedback without recourse to an internal model. The two
methods are given further introduction in Sections 1.7.1 and 1.7.2 respectively. A (po-
tentially) discontinuous feedback strategy will be used in Chapter 6 and comparisons
will be made with the internal model approach.
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1.2.3 Approximate tracking

In some situations, particularly those in which practical issues are considered, an exact
asymptotic tracking objective may not be realistic. Instead, the idea of approrimate
tracking can be investigated. For some arbitrary A > 0, an output feedback strategy
is sought which ensures that, for every reference signal r € R, the tracking error
e(t) = y(t) — r(t) is ultimately bounded by A (that is, |le(t)|| < A for all ¢ sufficiently
large, often referred to as A-tracking). The results relating to systems with known
relative degree (in Chapters 4 and 5) involve an approximate tracking objective.

1.2.4 Transient behaviour

The trajectories of an asymptotically stable linear system may deviate significantly
from the origin, since guaranteed long-term performance (convergence to zero of all
solutions) does not exclude the possibility of large excursions in state space. In the
tracking case, this equates to a deviation by the output from the reference signal to be
tracked and hence the transient error may take large values. In both the stabilization
and tracking cases, such behaviour, particularly in practical situations, may be highly
undesirable and so, in this thesis, attention is paid to the transient behaviour of solu-

tions to differential equations.

In [20, Section 5.5], transient behaviour of linear systems taking the form & = Az
is discussed in detail and a new stability concept, referred to as (M, §)-stability is
introduced, combining information about decay rate and transient behaviour. Tran-
sient amplification of initial state perturbations is quantified through the notion of a
transient bound and the relationship between the transient bound and decay rate is

discussed.

Papers examining the transient behaviour of solutions to systems of equations are less
common in the literature than those pertaining to tracking and stabilization objectives.
However, we highlight two papers [48] and [26], discussed in more detail later in this
chapter, in which controllers capable of shaping the transient behaviour of solutions
are implemented. Some discussion of the transient response of control systems is also
provided in [3, Section 4.3] and illustrated using a speed control example. Other papers
considering the improvement of transient performance in tracking control include [38],

for example.
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1.3 The performance funnel

In order to control both the transient and asymptotic behaviour of solutions we intro-
duce the concept of a performance funnel, see Figure 1-3. The performance funnel was

first utilized in [26] and a full description is provided in the following definition.

Definition 1.3.1 (Performance Funnel) The performance funnel is given by
Ty = {(te) eR+x Rm| ipft) [lel| < 1}

associated with a function ip (the reciprocal of which determines the funnel boundary),

belonging to one of the following spaces of functions:

3= IU e W'I°°(R+,R) v20) = 0, y>(s) > 0 Vs > 0, liminfip(s) > O)J , or
s—¥00

= IV/V e >iCjoc("+,"+) { <N0)= 0, I%As) > 0 Vs> 0, lis%f%) = 1/A,
3¢c>0: (ps)<c[l+<0B)] for aa s >0},

with the convention that, if A= 0, then 1/A := 00 (and so p>{t) —>00 as t —»00).

The aim is an output feedback strategy ensuring that, for every reference signal r el/Z,
the tracking error e = y —r evolves within the funnel

Ball of radius i A ¢)

Error evolution

Figure 1-3: Prescribed performance funnel

Remark 1.3.2

(1) The assumption that <"A0) = 0 ensures that the tracking error can take any value

at the initial point (there is no requirement that a bound exist on the initial
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data). The conditions p{s) > 0 for all s > 0 and liminf*oo0 p(s) > 0 make sense
since they eliminate the possibility that the funnel has, or expands to, an infinite

radius (p(s) = 0) for non-zero s.

(ii) In Chapters 4 and 5 an approximate tracking objective is sought, in which case
we choose p G 4= The key assumption to note is that, since p G W 1,00(]JR--,R),
the function p is bounded and so the function 1/p, used to describe the funnel

boundary, will be bounded away from zero.

(iii)) In Chapters 6 and 7, the case of unbounded p is accommodated. By choosing
p G 4A) the aim is to include the possibility of an exact asymptotic tracking
objective, occurring in the case A= 0. Therefore p G ACioc(K+, K+) is sufficient,
but an additional restriction on the derivative of p is imposed. In this situation,
by remaining within the performance funnel, the error must decay to zero.

(iv) Observe that p is not required to be monotone, see Figure 1-4.

Error

A

Figure 1-4: A variation on the performance funnel

Example 1.3.3

(1) Let p satisfy liminf*oo p(#) > 1/A, then evolution within the funnel ensures
that the tracking error e is ultimately bounded by A (that is, |le(£)]| < A for all ¢
sufficiently large).

(ii) If p G 4>is chosen as the function 1 min{</T, 1}/A, then evolution within the
funnel ensures that the prescribed tracking accuracy A> 0 is achieved within the

prescribed time 7 > 0.

(iii) Suppose p G 3>a and pit) —¥Poo as t —00; the example p: [ +»tp, p G N suffices.
Evolution through the performance funnel then implies that an exact asymptotic

tracking objective is achieved and so e(?) —0 as t —o0.
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1.4 Prototype class of systems

When developing a universal control, an aim is to consider as large a system class as
possible and so, in this section, beginning with a simple prototype class of systems, we
build towards the larger system classes considered in this thesis.

1.4.1 Single-input, single-output systems

One of the most basic classes of control systems is that of linear, single-input (denoted
u), single-output (denoted y) scalar systems of the form

&(t) = az(t) + bu(t), z(0) = 20 € R, (1.2)
y(8) = cz(?), (1.3)

where a, b, ¢ € R. It is natural to assume that ¢b # 0. A variety of control objectives and
strategies have been investigated for this class of systems. Utilizing output feedback,
in which the input u will be a function of the output y, the most common objective
is to ensure that z(t) — 0 as t — co. Pioneering work by Morse [49] and more recent
research by Helmke and Pratzel-Wolters in [19] provide a detailed treatment of such

systems.

In the case wherein the values of a, b and ¢ are known, the output feedback strategy
u(t) := —ky(t) can be implemented, exploiting a high-gain property of the system class:
if ¢b > 0, there exists a critical value k* € R, namely k* = a/cb, such that, for each
fixed k > k*, (a — kcb) < 0, causing the system to be exponentially stable. In the case
when the sign of ¢b is known, but not necessarily positive, noting that (1.2) takes the
form

z(t) = (a — bke)z(t), z(0) = z° e R,

with solution z(t) = z0e(@=P)t exponential stability follows provided that (i) k and
cb are of the same sign and (ii) a/|cb| < |k|. More importantly, a great deal of research
has been conducted into adaptive controllers for the case when a, b and ¢ are unknown,
subject to the restriction that c¢b > 0. Here, a function k is used in a feedback control
given by the following:

u(t) = —k(E)y(2).

The intuition behind the controller is simple. By increasing k(t), the gain will eventually
be large enough so that (a — k(t)cb) < 0. The control should also be designed so that,
as y(t) approaches the origin, the rate of increase of the gain reduces. The adaptive
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control law
u(t) = —k(@t)y(t), k() =12(t), k(0)=k eR

is implemented in [8] in order to achieve the following objectives:
(i) a solution z(t) exists for all t € Ry,
(ii) the function k is bounded,
(iii) z(t) —» 0 as t — oo.

A disadvantage of the adaptive control scheme above is that the gain function k is
non-decreasing. A key feature of the work later in this thesis is that the controllers are
non-adaptive (in the sense that the gain is not generated by a differential equation)
with gain functions that can potentially decrease.

1.4.2 Unknown sign high-frequency gain

In [49], Morse posed the problem of achieving the three objectives above for the case
when the sign of ¢b is unknown and only the condition ¢b # 0 is imposed on the
system (1.2)-(1.3). More precisely, differentiable functions ¢ and u were sought with
the property that, for all cb # 0 and (z°, k°) € R2, the solution (z,k) of

i(t) = azx(t) + bu(cz(t), k(t)), z(0)=2°€R,
k() = plea(t), (1)), k(0) = K0

satisfies:
(i) a solution z(t) exists for all t € Ry,
(ii) k is bounded,
(iii) z(t) > 0 ast — oo.

Nussbaum [51] provided an answer to the problem with the following differentiable

functions:

u: (y, k) — (k2 + 1)h(k)y,
¥: (y, k) = y(k®+ 1),
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with the particular choice h(k) = cos(3k) exp(k?) sufficing. Morse [50] then simplified
this with the following control strategy:

u: (y, k) — k2 cos(k)y,
¥ (y, k) =y

Through the efforts of Willems and Byrnes [69], a more general control strategy, con-
taining, as a special case, the controller of Morse [50] above, was proposed:

¥: (y, k) = 3%
where the function v: R — R is bounded on compact sets and required to satisfy the
properties
1 k 1 k
lim sup —/ v(k)dk = o0, lim inf - / v(k)dk = —oo, (1.5)
k—oo K 0 k—oo k 0

developed from the so-called Nussbaum conditions introduced in [51].

1.4.3 Multi-input, multi-output systems

A more general class of systems must be considered if even basic mechanical examples
such as the pendulum (1.1) are to be incorporated. A generalization would be to
consider single-input, single-output systems with state z(t) € R™ and parameters A €
R™*" b € R™ and ¢ € R1*", but we widen the scope further to include multi-input
(u(t) € R™), multi-output (y(t) € R™) linear systems of the form

y(t) = Calt), (16)

#(t) = Az(t) + Bu(t),  z(0) =z° € R", }
where A € R™™ B € R*™*™, C € R™X™,

Observe that, in the case of the basic prototype (1.1), setting z; = y and z3 = g, the

system can be rewritten as follows:

[:bl(t) B [o 1 xl(t)]_’_ 0
iat)| |0 0] |za(t) 1

yt) =1 0] [x] Et;] : (1.7)

To(t

an@H{ﬂwm Fﬁﬂ=ﬁew,
m T2
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Clearly, the nonlinear term gsin(z1(t)) in (1.7) will necessitate the consideration of
a more general class of systems than those of the form (1.6), see the investigations in
Chapter 4. In order to handle multi-input, multi-output systems, several key structural

assumptions are introduced.

1.4.4 Minimum-phase condition

We say that a multi-input, multi-output linear system of the form (1.6) is minimum-
phase if the following condition holds:

I-A B —
det {3 o #0 VseCy. (1.8)

0

Denote the transfer function s — C(sI — A)~!B of a linear system of the form (1.6) by
G € R(s)™*™. For an output y produced by the system (1.6) starting at the zero initial
state with input u, the relation §(s) = G(s)a(s) holds between the Laplace transforms
g and 4 of the output and input respectively. As described in [21, Definition 2.1.1}, G
is a rational matrix with Smith-McMillan form

. feis) er(s) } -1 -1
dia yeery——,0,...,09 =(U(s G(s)(V (s ,
{29, 2 U(s)G(s)(V(5))
where U,V € R[s]™*™ are unimodular, rkg(,)G = r, €;,%; € R[s] are monic, coprime

and satisfy &;|€;+1, ¥it1|w; for i =1,...,r. Setting
T T
e(s) = H€i(3), 1/)(3) = Htpi(s),
i=1 i=1

a zero of G is a value sp such that £(sp) = 0 and sg is a pole of G if ¥(sp) = 0. Coppel [11,
Theorem 10] has shown (see also [21, Proposition 2.1.2]) that the minimum-phase con-
dition is equivalent to: (A, B) is stabilizable (characterized by the existence of a matrix
F € R™*" such that 0(A + BF) c C.), (C, A) is detectable (the pair (AT, CT) is sta-
bilizable), and the transfer function G has no zeros in the closed right half complex
plane.

For convenience in later chapters, we introduce some notation. Define, by L, the pro-
totype class of finite-dimensional, minimum-phase, m-input, m-output linear systems
(A, B, C) with sign-definite high-frequency gain, in the sense that either CB or —CB
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is positive definite (symmetry of CB is not assumed). Specifically,

L=1{(A B,C)|AeR™™ BeR™™ CecR™" mneN,
CB sign definite, (1.8) holds}.

1.4.5 State space transformation

It has been shown in [21, Lemma 2.1.3], for example, that, provided det(CB) # 0, the
state space can be decomposed into the direct sum R™ = im B®ker C and consequently
systems of the form (1.6) can be rewritten as follows:

§(t) = Ary(t) + Aaz(t) + CBu(t), y(0) =1, } (19)

2(t) = Azy(t) + Agz(2), z(0) = 20,

where A; € Rm*m A, ¢ Rm*x(n=m) A, ¢ R(n-m)xm angq 4, € R(-m)x(n-m) g gee
this, let V € R™ (™M) denote a basis of ker C and let S := [B(CB)~!, V], with inverse

S§71 = [fr] , where N =(VTV)"'vT[I-B(CB)™C),

whence the similarity transformation

S lg = [](\’;z] = H . Slas = [j‘ ﬁz], S-1B = lCOB] and CS = [I 0].
X z 4

3

(1.10)
Importantly, if the triple (A4, B,C) constitutes a minimum-phase system, it can be
shown that A4 is asymptotically stable. In other words, minimum-phase systems of the
form (1.9) have stable zero-dynamics (the residual dynamics when the input u is such
that the output y vanishes identically). Note that, in the case of the pendulum (1.7),
C=[I 0land B=[0 1/m]T, so CB = 0 and hence the system cannot be rewritten
in the form (1.9). In order to handle such systems, we first define what is meant by

the relative degree of a linear system.

1.4.6 Relative degree

Consider a system of the form (1.6). We define the relative degree of (1.6), denoted p,
for some p € N, by the property that CA'B =0 for i = 1,...,p—2 and CAP~1B # 0.
For example, the single-input, single-output system (1.2) with cb # 0 has relative de-
gree p = 1. An alternative characterization of the relative degree of such systems, at
the transfer function level, can be found in [21, Section 2.1].
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Much of the literature in the field of high-gain feedback stabilization and tracking for
systems of the form (1.6) imposes the condition that the relative degree must be 1,
however, considerable attention has also been paid to the p > 1 case, see for exam-
ple [48] and [33] among others. Here, we briefly discuss several notable papers that
consider tracking and stabilization of high relative degree systems.

Bullinger and Allgéwer [5] introduce an observer in conjunction with an adaptive con-
troller to achieve tracking with prescribed asymptotic accuracy A > 0. This is achieved
for a class of systems which are affine in the control, of known relative degree, and with
affine, linearly bounded drift term. Ye [71] considers linear minimum-phase systems
with nonlinear perturbation; the control objective is (continuous) adaptive A-tracking
with non-decreasing gain. Stabilization for systems of maximum relative degree in the
so-called “parametric strict feedback form” is achieved in [72] via a piecewise constant
adaptive switching strategy. Both these contributions use a backstepping procedure (an
algorithm for feedback control synthesis that implements a Lyapunov style approach,
see, for example, the description and basic example provided in [35]).

Note that the state space transformation used to interchange systems of the form (1.6)
and (1.9) is not applicable to the case when p > 1. In Chapter 5, a state space trans-
formation with similarities to (1.10) will be described for a class of systems with known

relative degree p > 1.

1.4.7 Control techniques for multi-input, multi-output systems

The study of multi-input, multi-output systems, whilst more complicated than the
single-input, single-output case, has developed in much the same way. Stabilization of
the output y, whilst maintaining boundedness of the state z and gain function k, was
achieved in [8] and, since then, many papers have investigated reference signal tracking
for such systems. Setting

e(t) = y(t) = r(t), € =y°—r(0),

system (1.9) can be rewritten as follows:

(1.11)

é(t) = Ar(e(t) + r(t)) + Agz(t) + CBu(t) — #(t), e(0) = €°,
z(t) = As(e(t) + r(t)) + Ag2(t), z(0) = 2°.

In [23], a class of systems of the form (1.6) is considered. Approximate tracking of
every reference signal in the Sobolev space W1 (R, R™) is assured via the following
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controller
u(t) = —k(t)e(t),
b = { (le®ll = Mlle®)ll, it llell 2 A, 112)
0, if [le(t)]l < A,
k(0) = k® e R.

The state z and associated gain function & remain bounded whilst the control strategy
guarantees that the output error approaches the closed ball By, that is, |le(t)|| — [, A]
as t — oo. In this sense, the output feedback strategy (1.12) is a A-servomechanism.
However, transient behaviour is not considered and, as mentioned in Section 1.2.4, this
may lead to undesirable behaviour in the form of large output excursions.

The paper [48] considers the class of systems (1.6) with known relative degree, satisfy-
ing the minimum-phase assumption, restricted to the single-input, single-output case
with high-frequency gain of known sign. Therein, a controller is introduced which guar-
antees the “error to be less than an (arbitrarily small) prespecified constant after an
(arbitrarily small) prespecified period of time, with an (arbitrarily small) prespecified
upper bound on the amount of overshoot.”

The controller in [48] is less flexible in its scope for shaping transient behaviour when
compared with the performance funnel approach in [26]. For example, an a priori
bound on the initial data is required. However, this is counter-balanced by the fact
that the class of systems in [26] is restricted to the relative degree 1 case. The controller
in [26] takes the simple form

u(t) = —a(p(®)lle)l)e(t), (1.13)

where a: [0,1) — R4 is a continuous, unbounded injection (for example a(s) =
1/(1 — 8)). The intuition behind the control strategy is that, if the error (e(t)) ap-
proaches the funnel boundary, the gain a(p(t)||e(t)||) increases which, in conjunction
with a high-gain property of the system class, precludes boundary contact. In [26],
both approximate tracking and stabilization are achieved with prescribed transient be-
haviour. In Chapter 4, the results on approximate tracking will be extended to the

case when the relative degree is known, but not necessarily 1.

1.5 Infinite-dimensional linear systems

A great deal of work has gone into developing a mathematical framework which en-
ables the generalization of the finite-dimensional results above to infinite dimensions.
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The motivation behind this lies in the desire to model and control more complex sys-
tems including those described by partial differential equations (distributed parameter
systems) and delay equations in which the state space is an infinite-dimensional func-
tion space. Background information on infinite-dimensional systems theory can be
found in [13]. An overview of universal adaptive control techniques, in an infinite-
dimensional setting, is provided in [43]. A basic example involving linear systems in
infinite dimensions consisting of finite-dimensional input and output spaces and an
infinite-dimensional Hilbert space X as the state space, is investigated in [57]. The
class of nonlinear operators discussed in Chapter 2 will allow for interesting infinite-
dimensional effects such as delays.

1.6 Nonlinear systems

Control objectives such as stabilization and reference signal tracking have also been
considered in the context of nonlinear systems with greater generality than the pro-
totypes discussed in Section 1.4. For instance, in [26], approximate tracking with
prescribed transient behaviour is achieved for a class of multi-input, multi-output,
infinite-dimensional nonlinear systems given by a functional differential equation of the

form
9(t) = g(p(t), (Ty)(t),u(t)), Ylj-no =¥° € C(|—h,0],R™),

where g is a continuous function, p represents a bounded perturbation and T is a non-
linear, causal operator. Controller (1.13) is applied in conjunction with a performance

funnel.

Jiang et al. [33] consider a large class of nonlinear systems which are single-input,
single-output, have known relative degree and zero-dynamics which are stable in an
appropriate sense. The emphasis therein lies on the nonlinear nature of the system
class; neither tracking nor transient behaviour is addressed. Numerous other papers
tackle nonlinear systems, see for example [54] and [56] which implement discontinuous
feedback methods (see the discussion in Section 1.7.2). The adaptive results in [34]
achieve stabilization of the output for a class of nonlinear systems via an adaptive
strategy based on a high-gain compensator, but transient behaviour is not considered.

Non-adaptive contributions are found in the work by Byrnes and Isidori [6] with ex-
tensions in {7]. The two papers cover stabilization and tracking for a class of relative-
degree-one nonlinear systems, with exogenous (disturbance) signals generated by an
exosystem. The exosystem is subject to a Poisson stability assumption, by which it is
meant that any point in the (compact and invariant) set of admissible initial condi-
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tions of the exosystem is an w-limit point of a (potentially different) point in the same
set. Systems of higher relative degree are also considered, see in particular [6, (33)],
and the authors state (without proof) that “these systems can reduced to systems of
(relative degree 1) by means of the semiglobal back-stepping lemma”. The main result
in [6, Proposition 7.1] pertains to practical tracking and applies high-gain principles
in conjunction with an internal model (discussed below in Section 1.7.1). Related in-
vestigations, based on high-gain properties and/or an internal model principle, can be
found in [37] and [52].

1.6.1 Class of nonlinear operators

To expand further the scope of investigations later in this thesis, a large class of non-
linear, causal operators, denoted 7;", will be discussed in Chapter 2. The simple
multi-input, multi-output linear system given by (1.9) will be used to provide insight
into the inclusion of the operator class, though the main motivation will come from
the wide range of hysteretic effects and other nonlinearities that the class of operators
admits. The operators 7;™ will then be incorporated in the system classes discussed in
Chapters 5, 6 and 7 as well as the existence theory developed in Chapter 3.

1.7 Control methods

As stated in Section 1.1, the control strategies developed in this thesis are universal.
This means that, for a class of systems satisfying structural assumptions such as the
ones discussed above in Section 1.4.3, a control strategy is devised that is capable of
achieving the control objectives for any system in the class.

Where possible, continuous feedback controllers will be constructed, akin to those men-
tioned already, see (1.4) and (1.13) for example. However, two alternative control
approaches are discussed below. The first method involves an internal model.

1.7.1 Internal models

The Internal Model Principle, see Wonham [70, Section 8.8], states that:

“A regulator is structurally stable only if the controller utilizes feedback of the regulated
variable and incorporates in the feedback loop a suitably reduplicated model of the dy-

namic structure of the exogenous signals which the regqulator is required to process.”

Wonham adds that, loosely speaking, the principle states:
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“every good regulator must incorporate a model of the outside world.”

The idea is to include an internal model, capable of generating the class of reference
signals to be tracked, in series interconnection with a feedback controller, as illustrated
in Figure 1-5. An internal model, applied in series with an adaptive stabilizer, was

implemented in [21, Section 5.1].

PN Feedback w E(t) = AE+Bw | u = Az 4 Bu Y
controller u=C¢+ Iw y=Czx
Internal model System

Figure 1-5: Feedback control with an internal model.

The internal model approach has more recently been investigated in conjunction with
a performance funnel in [24] for a class of linear systems of the form (1.6), with relative
degree 1 and sign-definite high-frequency gain, satisfying the minimum-phase assump-
tion. A controller was developed with an internal model to ensure prescribed transient
behaviour and an asymptotic tracking objective were achieved. Due to the linear na-

ture of the internal model, the class of reference signals considered is restrictive.

The controllers implemented in this thesis require no explicit knowledge of the system
beyond basic structural assumptions. However, comparisons will be made with the

above internal model approach.

1.7.2 Discontinuous control

Recall that, paraphrasing W M Wonham (70, Page 210], the internal model principle
states that every “good” regulator must incorporate a model of the outside world. The
principle may appear to suggest that, in order to achieve exact asymptotic tracking of a
particular class of reference signals via continuous feedback control, an internal model,
capable of replicating the signals to be tracked, is required. We will see in Chapter 6
that this may not always be the case and a continuous controller capable of ensuring ex-
act asymptotic tracking will be constructed. However, in the context of linear systems
with linear regulators (see, [70, 67]), “good” means “structurally stable”; in a more
general context of smooth nonlinear systems (see, [62]), “good” amounts to a “signal
detection” property. In effect, “good” implies some robustness property of the closed
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loop. The feedback structure that will be proposed in Chapter 6 is designed to ensure
tracking of any signal of class W1®°(R,,R™), yet it does not contain a model capable
of replicating this class of signals. For consistency with the internal model principle,
one must therefore conclude that the closed-loop system of Section 6.5.1 lacks some

robustness property.

The full generality of the control strategy developed in Chapter 6 does also, however,
encompass potentially discontinuous feedback controllers. It is well known that dis-
continuous feedback control can be used to achieve exact asymptotic tracking. In [55],
for example, the system class comprises nonlinearly-perturbed linear systems satisfying
standard assumptions such as the minimum-phase condition and appropriate bounds on
the nonlinearities. Exact asymptotic tracking of all reference functions on the Sobolev
space W1°(R,R™) is achieved via a discontinuous control which, for the purposes of
building a suitable existence theory for the system, is interpreted in a set-valued sense.

The use of a discontinuous controller in Chapter 6 and the presence of a large class
of nonlinear operators, discussed in Chapter 2, motivate the construction of a suitable
existence theory in Chapter 3. The main result of the chapter will prove the existence
of a maximal solution to a class of functional differential inclusions and is preceded
by an existence theorem proving the existence of a solution in the restricted case of

functional differential equations.

1.8 Applications

The main results of this thesis can be viewed as contributions which are analytical in
nature, addressing the question of existence of controllers which guarantee the two main
performance objectives under weak hypotheses. The high-gain feedback controllers
implemented here may be criticized, particularly in the cases when the direction of the
controller is unknown (and the techniques discussed in Section 1.4.2 are applied), for
the fact that, despite the input signal remaining bounded, control values could grow
too large to be feasible in many practical situations.

However, the work by Ilchmann and Trenn in [30] demonstrates the application of
a performance funnel controller, subject to input constraints, to a model for chemical
reactors. This illustrates that, in some situations, when the focus is shifted to controller
synthesis, practical applications may be possible. More recently, a performance funnel,
in conjunction with a proportional-integral controller and a high-pass filter, has been
applied to a two mass system modelled by functional differential equations, see [29];

additionally, the controller is implemented on a real plant, an electrical drive.
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1.9 Thesis overview

We follow this chapter with the introduction of a class of nonlinear operators 7™, in
Chapter 2, and provide a discussion of diverse phenomena, such as delays and hys-
teresis, that can be incorporated in 7,™. In Chapter 3, a suitable existence theory is
developed for systems of functional differential equations and inclusions involving the
operators T' € 7.

Chapter 4 examines the asymptotic and transient behaviour of a nonlinearly-perturbed
class of multi-input, multi-output, linear systems of known relative degree; a continu-
ous feedback strategy is implemented and an approximate tracking objective is sought.
In Chapter 5 the class of systems considered is expanded to a large class of nonlinear
systems and a continuous feedback strategy is implemented in order to achieve approx-

imate tracking.

The last two areas of research, in Chapters 6 and 7, restrict attention to systems
of relative degree one, but this limitation is compensated for by targeting an exact
asymptotic tracking result. The first investigation, in Chapter 6, involves a poten-
tially discontinuous feedback controller applied to a class of multi-input, multi-output
nonlinear systems. Asymptotic tracking and approximate tracking will be developed
in unison within a framework of functional differential inclusions, making use of the
existence theory developed in Chapter 3. Finally, Chapter 7 examines a class of single-
input, single-output, nonlinear systems subject to input hysteresis and a continuous

controller is implemented.

Following the completion of the main results in this thesis, there is a short section con-
taining several concluding remarks, followed by an appendix involving technical results
and a few basic concepts designed to make this thesis relatively self-contained.



Chapter 2
Class of nonlinear operators

In Chapter 4, nonlinearly-perturbed, multi-input, multi-output, linear systems will be
considered whilst, in Chapter 5, the class of systems will be expanded to encompass a
wider range of nonlinear systems described by functional differential equations. Inher-
ent in these are causal operators and so, in anticipation of the latter investigation, we
begin by introducing a class of nonlinear operators 7, that will play a central role in
Chapters 5, 6 and 7.

The first section of this Chapter provides the definition of the operator class and sev-
eral remarks on the properties of the operators. This is followed, in Section 2.2, by
a discussion of delays and hysteretic effects encapsulated by operators T € T,f:. The
inclusion of these nonlinear operators in the systems considered in later chapters moti-
vates the development of a suitable existence theory for functional differential equations

and inclusions in Chapter 3.

2.1 Class of operators

Fix m € N arbitrarily. For later convenience, we introduce some notation: for k,t € Ry,
w € C([—h,t],R™), 7>t and § > 0, define

C(w; h,t,7,6) == {v € C([=h,7],R™) | v|j=pn,y = w, [lv(s) —w®)]| <d Vs € [t,7]}.

Definition 2.1.1 (Operator class 7,)
An operator T is said to be of class T;™ if, and only if, the following hold.

(i) For some g € N, T: C([~h,0),R™) —» L= (R4,R?).

loc

20
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(i) For allt >0 and all z,y € C([—h,0),R™),

() = y(:) on [=h,t] = (Tz)(s) = (Ty)(s) for almost all s € [0,t].

(iii) For eacht > 0 and each w € C([—h,t],R™), there exist 7 > ¢, 6 >0 and cop > 0
such that, for all z,y € C(w;h,t,,4d),

ess-supse(, - |[(T2)(s) — (Ty)(s)ll < co supsefsr llz(s) —y(s)ll-
(iv) For every c; > 0, there exists co > 0 such that, for all y € C([—h,0),R™),

sup |ly@ll<a = ||(Ty)@)|| <ca foralmostallt>0.
t€[—h,o00)

Remark 2.1.2

(i) Property (ii) is a natural assumption of causality. Property (iv) is a bounded-
input, bounded-output assumption on the operator 7.

(ii) Property (iii) is a technical assumption of local Lipschitz type which is used in
establishing well-posedness of the closed-loop systems considered in later chap-
ters. To interpret (iii) correctly, we need to give meaning to Tz for a function
z € C(I,R™) on a bounded interval I of the form [—h,a) or [—h,a], where
0 < a < co. This we do by showing that T' “localizes”, in a natural way, to an
operator 7: C(I,R™) — L (J,RY), where J := I\ [~h,0). Let z € C(I,R™).

For each o € J, define z, € C([—h,0),R™) by

xa‘(t) = { I(t)’ te [_h’a]a

a:(a), t>o.
By causality, we may define Tz € L2 (J,R?) by the property
Tm|[0,a] = T$a|[o,g] Voeld

Henceforth, we will not distinguish notationally an operator T and its “localisa-

tion” T the correct interpretation being clear from context.

The following properties of the operator class 7;™, proved in [59], are assembled here
for convenience and subsequently used without further comment.
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(a) T7™ is a linear space:

Ty e T;lm = (a1T1 +a2T2) S T;Lm Yai,as € R.

(b) If b1 < hg, then 7y C 7,7 in the sense that
TeTr=TeT7,

where (Ty)(t) := (Ty|i_g, c0))(t) for all t € Ry and y € C({—hg, 00), R™).

(c) For all r € Who(R,R™), T € T;™ implies that T, € T,™, where T, is given by

(Try)(#) == (T +r))(@) V>0, yeC([—h,0),R™).

2.2 Examples of hysteresis and nonlinearities in 7,

In this section, several interesting phenomena encompassed by the operator class 7™
are highlighted. We begin with the simple prototype class of multi-input, multi-output,
linear systems.

2.2.1 Multi-input, multi-output, linear systems

Consider the class £ of finite-dimensional, minimum-phase, m-input, m-output linear
systems (A, B,C) with sign-definite high-frequency gain. Recall from Section 1.4.5

that, following an appropriate similarity transform, such systems can be rewritten as

9(t) = Ary(t) + A22(t) + CBu(t), y(0) = 4" 2.1)
2(t) = Asy(t) + Asz(t), 2(0) = 29, '

where, by the minimum-phase property, A4 is Hurwitz. Defining the function d (con-
tinuous and bounded) and operator T' (linear) by

d(t) :
(Ty)(@) :

Az (exp(Aqt)) 2P, } (2.2)

Aqy(t) + Ag fot (exp A4(t — s)) Asy(s)ds,

we see that the original system (A, B,C) € L can be recast in the form of the following
(linear) functional differential equation.

yt) = d(t) + (Ty)(t) + CBu(t), y(0) =y’ €R™. (2.3)
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The operator T, so defined, is clearly of class 7;". We will make use of this basic
prototype in Chapter 6.

2.2.2 Input-to-state stable systems

Let g: R? x R™ — RP be locally Lipschitz with g(0,0) = 0. For y € L (R4, R™), let

loc
(-, 2% y) denote the unique maximal solution of the initial-value problem

3(t) = g(=(t),y(t)), 2(0)=2" € R". (2.4)

Assume that system (2.4) is input-to-state stable (ISS), that is, there exist functions
9 € KL and v € Ko such that, for all (20,y) € R? x L2 (Ry,R™),

ll2(, 2% )l < 6(112°]l, t) + ess-[gltllp (lly(9)l) vt =0, (2.5)
s€lo,

see [60] and more recent papers such as [61], [64], and [1], and references therein, for a

detailed treatment of ISS systems.

Let W: R?P —» R™ be a locally Lipschitz function with the property that there exists
L > 0 such that |[W(2)| < L||z|| for all z. Therefore, assuming that system (2.4) has
output given by W (z(t, z°, y)) and fixing 2° € RP arbitrarily, we may define an operator
T: C(R4,R™) — LS (R,R™) by

(Ty)(t) = W((t, 2% p)). (2:6)
Proposition 2.2.1 The operator (2.6) is of class Tg™.

Proof. Observe that, in view of the input-to-state stability property (2.5) and the
properties of W, there exists ¢ > 0 such that, for all y € C(R4+,R™),

Il < c[1+ s 2] Vo 20
T7€[0,8

Assumptions (i), (ii) and (iv) of the class 7,™ clearly hold. To establish (iii), we

proceed as follows. Let t > 0, p > 0 and ¢ € C([0,t],R™). Let » > 0 and define

R := sup,¢jo II¢(7)||+7. By input-to-state stability there exists a compact set K C R?

such that, for all y with sup, g, |ly(7)|| < R we have z(s,2°,y) € K for all s > 0. Let

A > 0 be a Lipschitz constant for g(-,-) on the set K x Br. For all y,z € C(Ry+,R™)
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with yljo, = ¢ = z|jo,g and [|y(s)]|, lz(s)]| < R for almost all s € [0, + p],

8
ll2(s, 2% y) — 2(s, 2° )| S/O llg(=(7, 2°% y),y(7)) — g(2(7, 2° x), 2(7)) || dr
S
< [ 11 209) = 2t 22, 3) ]+ latr) — y(o) e
for all s € [t,t+ p]. By a version of Gronwall’s Lemma (see Appendix A) it follows that

l2(s, 2% y) = 2(s, 2%, z)|| < /\/ts exp(A(s — 7))lly(r) —z(7)|lds Vs € [t,t + p].

We may now conclude that there exists a constant cg > 0 such that, for all y,z €
C(R4,R™) with ylio.g = ¢ = zljo,g and ||y(s)]], |lz(s)|| < R for almost all s € [t,t + pl,

(Ty)(s) — (Tz)(s)| S cr sup |ly(s) —z(s)ll Vs € [t,t+p]
s€[t,i4p)

and so Property (iii) of Z;™ holds. O

We will make use of this fact in an example in Chapter 6.

2.2.3 Nonlinear delay systems

Let functions G;: R x R™ — RY, (t,y) — Gi(t,y), i = 0,...,n be measurable in ¢ and
locally Lipschitz in y uniformly with respect to ¢: precisely,

(G1) for each fixed y, Gi(-,y) is measurable,

(G2) for every compact K C R™ there exists a constant cg such that

IGi(t,y) — Gi(t,z)|| < c|ly—z| foraa.t Vyzek.
Fori=0,...,n, let h; € Ry and define h := max; h;. For y € C([—h,00),R™), let
0 n
(Ty)(t) = / Go(s,y(t+9) ds+ S Gilt,y(t — b)) forallt>0.  (27)
—ho i=1

Proposition 2.2.2 The operator (2.7) is of class T,™.
Proof. We consider, separately, the cases of point and distributed delays.

(i) Point delay. Let G: R x R™ — RY satisfy (G1) and (G2). Define 7" by

(Ty)(t) = G(t, y(t - h)),
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then, for t € Ry, (Ty)(t) is well defined and T': C([—h,0),R™) — L& (Ry,R9).

Property (ii) of class 7,™ clearly holds, whilst (G1) and (G2) are sufficient to show that
Properties (iii) and (iv) hold.

(i) Distributed delay. Let G: R x R™ — RY satisfy (G1) and (G2). Define T by

. 0
(Ty)(t) = / Gl + o).

Clearly, Properties (i) and (ii) of class 7;™ hold. Let § > 0, I be a bounded interval
and let t* := sup{t|t € I}, then properties (G1) and (G2) of G ensure the existence of
a constant c¢; such that

for a.a. t € [-h,t*] |Gt ) <a Yyl <4

Then, for all t € I and all y € C([—h, 00), R™) with sup;e[_p,o0) l¥(t)I| < 9,

0
Il < [ 1906, +8))lds < hessaup[G(s, 6+ ) < he

thus ensuring that Property (iv) of 7;™ is satisfied. It remains to prove that Prop-
erty (iii) holds. Lett > 0, 7 > t, § > 0 and w € C([-h,t],R™). Let y,z €
C(w; h,t,T,08), then, by (G2), there exists a constant co > 0 such that

1G(s,y(a)) — G(s, (o))l < colly(o) — z(o)l| for a.a. 5,0 € [-h,7].

Then, for s € [t, 7],

0

I(E)(s) — (Fz)(s)]| < / 16(0, y(s +0)) — 6(0, 2(s + o)) |do

~h

< hess-sup||G(o,y(s + o)) — G(o,z(s + 0))||
o€[—h,0]

<hey sup |y(s+o)—z(s+0)
SE[—h,0]

and hence

ess-sup ||(Ty)(s) — (Tz)(s)|| < heo sup |ly(s) — z(s)]|
s€(t,7) s€[t—h,7]

=hey sup |ly(s) — z(s)||-
S€[—h,7]
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Therefore, T' € . O

2.2.4 Hysteresis operators

Hysteresis is a property of systems that do not react instantly to the forces applied to
them or do not return completely to their original state. For example, hysteresis phe-
nomena can be used to describe the elastic and electromagnetic behaviour of various
materials in which a delay occurs between the application and removal of a force or
field and its subsequent effect. Other applications can also be found in economics and
biology. The word hysteresis is derived from the ancient Greek word for “deficiency”.
The term was coined by Sir James Alfred Ewing. We continue this section by mathe-
matically defining what we mean by a hysteresis operator.

A function f: Ry — Ry is said to be a time transformation if it is continuous, non-
decreasing and surjective. An operator ®: C(R4,R) — C(R4,R) is rate-independent
if, for every time transformation f,

(@(yo () = (2y)(f(t)) Vye CR4,R) VEER,.
Definition 2.2.3 ®: C(R4,R) — C(R4,R) is a hysteresis operator if @ is causal and
rate independent.

The numerical value set NVS @ of a hysteresis operator @ is defined by
NVS® i= {(@y)(t) |y € C(R,R), t € Ry}

A function y € C(R4,R) is called ultimately non-decreasing (non-increasing) if there
exists 7 € R4 such that y is non-decreasing (non-increasing) on [, 00); y is said to be
approzimately ultimately non-decreasing (non-increasing), if, for all € > 0 there exists

an ultimately non-decreasing (non-increasing) function z € C(R4, R) such that
ly(t) —z(t)| < e VteR;.

In [40], a general class of hysteresis operators ®: C(R4,R) — C(R4, R) is considered,
satisfying the following assumptions:

(N1) @ is causal,

(N2) for ally € C(R4,R) and all o € Ry, (Dys)(t) = (Pys)(0) for all t > o (recall the
definition of y, from Remark 2.1.2(ii) in the case h = 0),

(N3) ®(AC(R4,R)) C AC(R4,R),
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(N4) @ is monotone in the sense that, for all y € AC(R,R) with &y € AC(R;4,R),

(®y)'(t)y(t) >0 for a.a. t € Ry,

(N5) for each t > 0 and w € C([0,¢t],R) there exist 7 > t, A > 0 and § > 0 such that,
for all y,z € C(w;0,t,7,6),

sup |(@y)(s) — (2z)(s)| < A sup |y(s) — z(s)],

s€lt,r] se(t,r)

(N6) if y € C(R4+,R) is approximately ultimately nondecreasing and, furthermore,
lim;_, o0 y(t) = 00, then (Py)(t) converges to sup NVS @ as t — oo and (®(—y))(t)
converges to inf NVS® as t — oo,

(N7) if y € C(R4,R) is such that lim;_,oo(Py)(t) € intNVS @, then y is bounded,

(N8) for all 7 > 0 and all y € C([0,7),R), there exist a,b > 0 such that

sup |(®y)(s)| <a+b sup |y(s)| Vtelo,7).
s€(0,t] s€f0,1]

As discussed in [40], the operators satisfying (N1)-(N8) can take the form of many
physically motivated hysteretic effects, examples of which include backlash hysteresis,
elastic-plastic hysteresis and Preisach operators. In [25], it is demonstrated that the
operators satisfying assumptions (N1)-(N8), are of class 7. For illustration, we de-
scribe four particular examples of a hysteresis operator, namely relay, backlash and
elastic-plastic hysteresis and the rather more general Preisach operator.

Relay hysteresis

One of the more commonly referred to types of hysteresis is relay hysteresis, see for
example [36], [40] and [44]. Let a1 < ap and let p;: [a1,00) — R, pa: (—00,a2] — R be
continuous, globally Lipschitz and satisfy pi(a1) = p2(a1) and pi(az) = pa2(a2). For a
given input y € C(R4,R) to the hysteresis element, the output w(t) = (Ry)(t) is such
that (y(t), w(t)) € graph(p;) U graph(ps) for all t € R;: the value w(t) of the output
at t € Ry is either p;(y(2)) or p2(y(t)), depending on which of the threshold values ag
or a; was “last” attained by the input y.

For y € C(R4+,R) and t > 0, define

max S(y,t) if S(y,t) #0,
S@,t) =y ({ar,a2) N[0, 2], 7(y) F{—i’x " ifSEz 27:0
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Figure 2-1: Relay hysteresis.

We now make precise the definition of a relay hysteresis operator. For each £ € R,
define the operator R¢: C(R4,R) — C(R4,R) by

’

p2(y(t)) fy(t) < a,
p1(y(?)) ify(t) = az,

(Rey)(t) = 4 p2(y(t)) ffy(t) € (a1,a2), 7(y,t) # —1, y(7(y,1)) = a1,
p1(y(t)) if y(t) € (a1,a2), T(y,t) # —1, y(7(y,1)) = a2,
p2(y(t)) if y(t) € (a1,02), 7(y,t) = -1, £ L0,

| a1(y(2)) if y(t) € (a1,02), T(y,t) = -1, £ > 0.

The operator, so defined, is of class 7, (it is shown in [40, Section 5] that R satisfies
assumptions (N1)-(N8)). A relay hysteresis operator is illustrated in Figure 2-1.

Backlash hysteresis

The backlash operator, sometimes referred to as a play operator, is discussed in detail
in [4], [36] and [68]. Intuitively, the operator describes the input-output behaviour
of mechanical play between two elements. Consider a one-dimensional mechanical link
consisting of two components, denoted I and II (of width 2a) and illustrated in Figure 2-
2(a). The displacements of each part (with respect to some fixed datum) at time ¢ > 0
are given by y(t) and w(t) with |y(t) — w(t)| < a for all ¢, and w(0) := y(0) + b for
some pre-specified b € [—a,a]. Within the link there is mechanical play: that is to
say the position w(t) of II remains constant as long as the position y(t) of I remains
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(a) (b)
Figure 2-2: Backlash hysteresis.

within the interior of II. Thus, assuming continuity of y, we have w(t) = 0 whenever
ly(t) — w(t)] < a. For a given input y € C(R4,R), describing the evolution of the
position of I, denote the corresponding position of II by the output w(t) = (By)(t)

With a view to giving a precise definition of the backlash operator, we first define, for
each u € Ry, the function b,: R?2 — R by

bu(y,z) := max{y — p, min{y + p,x}}.

For all u € Ry and all £ € R, we introduce an operator B, ¢ defined on the space
Cpom (R4, R) of piecewise monotone functions, by defining, for every y € Cpm(R4, R),

bﬂ(y(o)i f)a for t =0,

B =
Bue@lt) { bu(y(®), (Bue@)(®:)), forti1 <t<t,ieN,

where 0 =ty < t; < t3 < ... is a partition of R} such that y is monotone on each of
the intervals [t;_1,¢;]. Note that the definition is independent of the choice of partition.
It is well known that the operator B,¢: Com(R4,R) — C(R4,R) can be extended
uniquely to a hysteresis operator B, ¢: C(R4,R) — C(R4,R), see, for example, [4].
The extended operator is of class 7' (for details, see [40]).

Elastic-plastic hysteresis

The elastic-plastic operator, sometimes called a stop operator, has much in common
with the backlash operator and models the relationship of stress and strain in a one-
dimensional elastic-plastic element. Provided that the stress (w) has magnitude less
than the yield stress (i), the strain y is related to w through the linear Hooke’s Law.

The stress, upon exceeding the yield value, remains constant under any increases in
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strain, though the elastic behaviour is instantly recovered when the strain is decreased.
The formal definition, as provided in [4] and [40], follows. First, define, for each u € Ry,
the function e;,: R — R by

eu(y) = min{u, max{—u, y}}.

For all 1 € Ry and all { € R, we introduce an operator £, ¢ on Cpm (R4, R) by defining
recursively, for every y € Cpm(R4,R),

eu(y(0) — €), fort =0,
eu(y(t) —y(ti) + (Eue(®)) (i), for ti_1 <t <t i €N,

(EueW))() = {

where 0 = tgp < t; < t3 < ... is a partition of Ry such that y is monotone on
each of the intervals [t;—1,t;]. Note that, as was the case with the backlash oper-
ator, the definition is independent of the choice of partition. It is shown in [40]
that £,¢: Com(R4,R) — C(R4,R) can be extended uniquely to a hysteresis opera-
tor £,¢: C(R4,R) — C(Ry,R) which is of class 7y (see [40, Proposition 14.5]). The
action of the elastic plastic operator is illustrated in Figure 2-3.

Eug (y)

- —

Figure 2-3: Elastic-plastic hysteresis.

Preisach and Prandtl operators

A more general type of operator in 7;™ is the Preisach operator, encompassing back-
lash and elastic-plastic hysteresis as well as Prandtl operators. An interesting feature
of Preisach operators is that the hysteresis action, for certain input functions, exhibits
nested loops in the corresponding input-output characteresistics. Below, we describe
both the Preisach and Prandtl operator in more detail.
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Let £: R+ —®R be a compactly supported and globally Lipschitz function with Lips-
chitz constant 1. Let fi be a signed Borel measure on R+ such that \nl(K) < oo for
all compact sets K C R+, where Vil denotes the total variation of fi. Denoting the
Lebesgue measure on R by jii, let w: R x R+ —* R be a locally (/if, <¢/x)-integrable
function and let w0 GR. The operator :C(R+,R) —=C(R+,R) defined by
o vi(BrX{r) (w)(1)
=/ w(s, hiil, {ds)n(dr) + o Vwg C(R+,R) VEGR+
Jo Jo

(2.8)
is called a Preisach operator (see [4]). Clearly, V" is a hysteresis operator and, under
the assumption that the measure /i is finite and w is essentially bounded, the operator
V'~ is Lipschitz continuous with Lipschitz constant |/i|(R+)[[u?||00, see [40]. Furthermore,
if the additional assumption that and w are non-negative valued is imposed, then,
as shown in [40], the operator (2.8) is of class 70.

Settir(p< u)(t) = /“\(Br e (W) () u(drye obtain the Prandtl operator V*: C(R+, R)
CR* vy e L,

roc

(Pcu)(£) = J/ {Broar)(w)(1)fi(dr) VUG C(R+,R) VEG R+. (2.9)
(0}

We illustrate the Prandtl operator for the case in which £ = 0 and the measure /i is
given by fi(E) = f1 [0, 5]). The operator takes the form

(VOu)(t)= J[ (I3fi(u)(t)dr VugC(R+,R) VtG R+
0
and is illustrated in Figures 2-4 and 2-5.

25

-15
t

Figure 2-4: Prandtl hysteresis.
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Figure 2-5: Input-output behaviour of Prandtl hysteresis.
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Chapter 3

Existence theory for functional
differential equations and

inclusions

The operator class 7", introduced in Chapter 2, facilitates the investigation of large
classes of nonlinear systems in later chapters. These systems take the form of (con-
trolled) functional differential equations or inclusions. The focus of this chapter will
be the development of existence theories for both functional differential equations and

inclusions.

3.1 Functional differential equations

Let h > 0 and T be a causal operator of class 7;™. Let D be a domain in R, x R™,
that is, a non-empty, connected, relatively open subset of R4 x R™. Define G := D x R?
and let f: G — R™ be a Carathéodory function. For t5 > O consider the initial-value
problem

y(t) = f(t,y(2), (Ty)(8), (t,y(t)) € D,

Ylinto] =¥° € C([=h,t0],R™),  (to,3°(to)) € D.

By a solution of (3.1), we mean a function y € C(I,R™) for some interval I of the

(3.1)

form [—h, p], to < p < 00 or [—h,w), tp < w < oo, such that y|j_p ) = ¥°, y|s is locally
absolutely continuous, y(t) = f(¢,y(t), (Ty)(t)) for almost all t € J and (¢,y(t)) € D
for all t € J, where J := I\ [—h,tp). A solution is said to be maximal if, and only if,
it has no proper right extension that is also a solution. A solution defined on [—h, c0)

is said to be global. An existence result for an initial-value problem similar to (3.1), in

33
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which the domain D is simply the space Ry x R™ and ¢, takes the specific value 0, was
provided in [25]. Both proofs are inspired by the existence result in [10, Chapter 2].

Theorem 3.1.1 For each ty > 0 and y° € C([—h, o], R™) with (to,y°(to)) € D,
(i) the initial-value problem (3.1) has a solution,
(it) every solution of (3.1) can be extended to a mazimal solution y: [—h,w) — R™,

(iii) if y: [—h,w) — R™ is a mazimal solution of (3.1) and w < oo, then, for every
o € [to,w) and compact set K C D, there exists t € [o,w) with the property that
(ta y(t)) ¢ K.

Proof. (i) By Property (iii) of Definition 2.1.1 and since D is relatively open, there
exist T > tg, co > 0 and 6 > 0 such that, for all y,z € C(¥°; h, to,T,d), the following
holds

ess-sup ||(Ty)(t) — (T2)(t)| < co sup |ly(t) —2(t)]

te[to,) tefto,r

We may assume, without loss of generality, that § € (0,1) and 7 > ¢ are sufficiently
small so that [to, 7] x Bs(y°(t0)) C D. Evidently

ly@®ll < max [ly°(s)|+8=1e1 Vte€[-h,T)
s€[—h,to)

and so, by Property (iv) of the operator T, there exists ca > 0 such that

I(Ty)(®)|| < c2 for a.a. te€ [to, 7]

Since f is a Carathéodory function, there exists an integrable function k: [to,7] — R
such that

£ty w)ll < &() Y (t,y,w) € [to, 7] x Bs(4°(to)) x Bey(0). (3.2)
Define I': [—h,7] — Ry by

0, t € [—h, to),
I'(t) = ,
fto k(s)ds, t€ [to,T]
and define p := tp + 3, where 0 < 8 < 7 — to, such that I'(p) < 6.

The next step is to construct a sequence (yn) of continuous functions [—h, p] — Ry,
with (t,yn(t)) € D for all t € [—h, p], as follows. Let n € N. For i = 1,...,n, define the
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sequence pi, = to + i(3/n and functions ¢ : [~h, p&] — R™ by the recursive formula:

0 —
i=1: yvlz(t) = yt),  te[-htol,
yo(tO)a t € (to, p}L],

ys (1), t e [—h,pi7 Y,
¥O(to) + [P/ f(s,5i71(5), (Tyir ) (s))ds, t€ (o572, k).

0

i>1: y;'l(t):={

Observe that, if i € {1,...,n — 1} and ||y},(t)|| < c1 for all t € [—h, p},], then we have
(a) |yt @)l < ¢ for all t € [—h, pi) and (b) ||(Tyh)(t)]| < c2 for all t € [to, p&] which,
in turn, implies that, for all ¢ € (i, pit1],

. t—B/n . .
lymt (2) = 4° (o) S/t £ (51 9n(5): (Tyr)(s))llds
t—B8/n
< /t K(8)ds
=TD(t - B/n) < 4.

Noting that |ly;(t)|| < maxe(_p1) [°(t)]] < 1 for all t € [—h, py], we may now infer
(by induction on ) that

li@®)| <e1 Vie{l,..,n} Vte[=h,pi]

For notational convenience, we write y, := y?. By causality of T, the sequence (yn),
so constructed, has the property that, for each n € N,
yo(t)a te [—h,to],
yn(t) = yo(tO)a te (th p’}l,]’ (33)
¥0(t0) + J5 "™ F(s,4n(s), (Tya)(s))ds, ¢ € (b, ).

Moreover, for all n € N, |lyn(t)|| < ¢ for all t € [—h, p] and so the sequence (yy) is
uniformly bounded.

We next prove that the sequence (y,) is equicontinuous. Let ¢ > 0. On the closed
interval [to, p], T is uniformly continuous and so there exists some * > 0 such that, for
s,t € [to, pl,

[t—s| <8 = |T(t) =T(s)| <e.
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Let n € N, s,t € [to, p] with |t — 8| < §*. Without loss of generality, we assume that

s < t. We consider three cases.

First, if tg < s < t < p}, then |Jyn(t) — ¥ ()|l = 0. Secondly, if ¢y < s < p} <t < p,

then t — p} < 6* and so
Iy () = yn ()| = llyn(t) — y°(to)l| S T(t — B/n) <e.
Thirdly, if pT < s <t < p then

lyn(t) = ya(s)l| < IT(t — p/n) — T'(s — p/n)| <e.

Recalling that yu|{_p i) = 30 for all n, we conclude that the sequence (y,) is equicon-
tinuous. Since (yy) is such that (¢, yn(t)) € [to, 7] x Bs(y°(t0)) C D for all n € N and all
t € [to, p], we may apply the Arzela-Ascoli theorem (see Appendix A, Theorem A.2.1),

extracting a subsequence if necessary, to conclude that the sequence (y,) converges

uniformly on [—h, p] to a continuous limit which we denote by y. Clearly yl|(_p i) = 0

and (t,y(t)) € D for all t € [to, p].

By Property (iii) of the operator T, limp—.oo(T'yn)(t) = (Ty)(t) for almost all t € [to, p]

and so, by the continuity of the function f(t,-,),

Jim f(t,yn(2), (Tya)(2)) = f(ty(2), (Ty)(t)) for aa. t € [to, o).

Noting that ||(Tyn)(8)|| < ¢ for all s € [tg, p] and invoking (3.2), we have

/(s y(8), (Ty) ()l < k(s) Vs € [to,p] VneN.

Therefore,
t

lim y F(8:yn(8); (Tyn)(s))ds =0V t € (to, ]

n—oo t—8

and, by the Lebesgue dominated convergence theorem (see Appendix A.2),

14 t
Jim [ 505,00(6), (@) (s = [ £(5,3(0), (Tu)e)ds V€ o,
to to

By (3.3), (3.4) and (3.5), it follows that

y(t) _ { yo(t)’ te [_h’ tO]a
V(to) + [, £(s,y(s), (Ty)(s))ds, t€ (to, ).

(3.4)

(3.5)
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Therefore, y is a solution of the initial-value problem (3.1).

(ii) Let y € C(I;,R™) be a solution of (3.1). Define
A:={(,2)| I, c 1, ze C(I,R™) is a solution of (3.1) with z|;, =y}.
On this non-empty set define a partial order < by
(I1,21) % (I2,22) <= suply <suply and 2|5 = 2.

We proceed to show that .4 has a maximal element, that is, an element (I*,2*) € A
such that, for all (I,2) € A, (I*,2*) <X (I,z) implies (I,z) = (I*,z*), in which case
z* € C(I*,R™) is a solution of (3.1) and is a maximal extension of the solution y €
C(I,R™). Let O be a totally ordered subset of A. Let w := sup{sup I|(/, z) € O} and
let 2*: [—h,w) — R™ be defined by the property that, for every (I,z) € O, 2*|; = z.
Then (w, z*) is in A and is an upper bound for O. By Zorn’s Lemma (see Appendix A,
Lemma A.2.4), it follows that A contains at least one maximal element.

(iii) Assume y € C([—h,w)R™) is a maximal solution of (3.1) and that w < oo.
Seeking a contradiction, suppose there exist ¢ € [to,w) and compact X C D such
that (¢,y(t)) € K for all t € [o,w). By boundedness of y and property (iv) of T, we
conclude that Ty is essentially bounded. Therefore, the function t — (t,y(t), (T'y)(t))
is essentially bounded and so, by continuity of f, it follows that g is essentially bounded
on the interval [tg,w). Therefore y is uniformly continuous on [—h,w) and so extends to
a function y* € C([—h,w],R™). Compactness of KX implies that we have (w,y*(w)) €
K C D. An application of the result of part (i), in the context of an initial-value
problem of the form (3.1), with w replacing ¢y and y* replacing 3°, yields the existence
of a solution y¢ € C([—hp],R™) for some p > w, with y®||_p.) = y, contradicting

maximality of y. 0O

Imposing a local Lipschitz assumption, uniqueness of solutions to functional differential
equations can also be established. A function g: G — R™ is said to be locally Lipschitz
in its second and third arguments, locally uniformly with respect to its first argument,
if

VY compact A C G 3L > 0 s.t.

(3.6)
lgtt,z,w) = gt 3,0)l < L[lle =yl + lu—ol]] ¥(t,2,), (t3,v) € A.

The following result is incorporated for independent interest, but will not be explicitly
called on during this thesis and so the proof (which relies on a fixed point argument
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akin to that of [41]) is relegated to the appendix (see Appendix B.1).

Lemma 3.1.2 Let g: G — R™ satisfy (3.6). For each to >0 and y° € C([—h,to],R™)
with (to, y°(to)) € D, the initial-value problem

() = g(t,y(t), TY®),  Yl-hso) =¥° € C[=h, 1o, R™), (to,3°(t0)) € D, (3.7)

has a unique mazimal solution, y: [—h,w) — R™. Furthermore, if w < oo, then for
every o € [to,w) and compact set K C D there exists t € [o,w) such that (t,y(t)) € K.

3.2 Existence theory for functional differential inclusions

In Chapter 6, a potentially discontinuous controller will be applied in a tracking prob-
lem in the context of a class of nonlinear systems modelled by functional differential
equations. The potential discontinuity will be embedded in a set-valued map and
interpreted accordingly. The set-valued nature of the resulting closed-loop system ne-
cessitates the development of a suitable existence theory and this is the main focus of

the current section.

The area of set-valued analysis is well developed, see the background results in Ap-
pendix C and references therein. Results pertaining to the existence of solutions for
differential inclusions can be found in [2] and [15], for example, though functional dif-
ferential inclusions are not considered. The existence theory in the present text is
influenced by [9, Theorem 3.1.7] and [39, Theorem 2D.5] though it essentially builds
on the result proved in [59, Chapter 3].

Let D be a domain in Ry x R™. Let (t,y,w) — G(t,y,w) C R™ be upper semicontin-
uous on G := D x RY, with non-empty, convex and compact values. Let h > 0 and T
be a causal operator of class 7;". For ty > 0, consider the initial-value problem

9(t) € G(t,y(t), (TY)(1), Yl=hto) =¥° € C([=h,ta, R™), (to,3°(t0)) € D. (3.8)

By a solution of (3.8), we mean a function y € C(I,R™) for some interval I of the
form [—h, p], to < p < 00 or [~h,w), to < w < 00, such that y|[_p ) = 0, y|u is locally
absolutely continuous, y(t) € G(t,y(t), (Ty)(t)) for almost all ¢t € J, and (¢,y(t)) € D
for all t € J, where J := I'\[—h,tp). A solution is said to be mazimalif it has no proper
right extension that is also a solution. The main goal of this chapter is to establish the
following.

Theorem 3.2.1 For each to > 0 and y° € C([—h, to], R™) with (to,y°(t)) € D,
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(i) the initial-value problem (3.8) has a solution,
(ii) every solution can be extended to a mazimal solution y: [—h,w) — R™,

(ii) ify: [—h,w) = R™ is a mazimal solution of (3.8) and w < oo, then for every o €
[to,w) and every compact set K C D, there ezxistst € [o,w) such that (¢,y(t)) € K.

Proof. (i) Let (e,) C (0,1) be a monotonically decreasing sequence with e, — 0 as
n — oo. By the Approximate Selection Theorem (see Appendix C, Theorem C.1.8),
for each n € N, there exists a locally Lipschitz function g,: G — R™ with

graph(g,) C graph(G) + B, . (3.9
By Theorem 3.1.1, for each n € N, the initial-value problem

y(t) = gn(ta y(t)’ (Ty) (t))a yl[—-h,to] = yO € C([—ha to]a Rm)’ (t(h yo(to)) €D,
has a maximal solution which we denote by yn: [—h,wn) — R™.

Recalling that D is a relatively open subset of R, x R™ and invoking property (iii) of
T € T;™, we may choose 6 > 0 sufficiently small and w* > to sufficiently close to ¢ so
that

[to,w*] X ﬁa(yo(to)) = KoCD

and there exists ¢g > 0 such that

ess-sup ||(Ty) (t)—(T2)(t)| < o max_[ly(t)—z()| Vy,z € C(%h,to,w",5). (3.10)
t€lto,w*] tefto,w*]

For each n € N, define

*

wp, := min{w*,wn }, Ap = {t € [to,wp)| llyn(t) — yo(to) | = é}

and
inf A,, if Ay # 0,
Pn = N .
Wy, if A, =0.
We claim that p, < w, for all n € N. Suppose otherwise, then there exists n € N
such that p, = w,. It follows that A, = 0 and so w, = w} < w*. Therefore,
(t,yn(t)) € Ko C D for all t € [to,wn), contradicting the final assertion of Lemma 3.1.2.

Therefore, p, < wy, for all n € N. Furthermore, for each n € N, y,(t) € Bs(y°(to)) for
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all t € [to, pn] and so

lyn(@®)]| < c1 = e ly®(s)|| + 6 for all t € [k, p,] and all n € N.

By property (iv) of T € T,™, there exists c; > 0 such that
[(Tyn)®)|| < c2 for a.a. t € [to,pn] and all n € N.
Write K1 := Kg % Enz and observe
(t, yn(t), (Tyn)(t)) € K1 for a.a. t € [to, ps) and all n € N.

Since G is upper semicontinuous with compact values, we may apply Proposition C.1.7
(see Appendix C) to conclude that the set Ko := G(K;) is compact. Let ¢z := 1 +

maxyek, ||v]|. Then, in view of (3.9),
llgn(t, y,w)|| < c3 for all (¢,y,w) € K1 and all n € N. (3.11)

Therefore,

lom(on) = 52 < [ Tim(@ldt = [ llon(t, un), (Tam)0)

to to

< C3|pn - tol VnéeN. (3.12)

Next, define p := inf,eN pn 2> to. Seeking a contradiction, suppose p = to. Fix n € N
sufficiently large so that c3|p, — to| < § and p, < w*. Recalling that p, < wn, we have

pn < min{w*,wp} = w} and so A, # @ and we arrive at a contradiction:
8 = |lya(pn) — 4°(to)|l < c3lpn — to] < &.
Therefore p € (tg,w*]. For each n € N, define
Zn = Unlitop] and  wn = (Tyn)|[t0,0]-
For all t € [to, p], (2n(t)) C Bs(y°(to)) and by (3.11),
|20(t)]| < c3 for a.a. t € [to,p] and all n € N. (3.13)

Therefore, the sequence (z,) C C([to, o}, R™) is uniformly bounded and equicontinu-
ous. By the Arzela-Ascoli theorem, and extracting a subsequence if necessary, we may
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assume that (z,) converges uniformly to z € C([to, p], R™).

To complete the proof, we adopt an argument akin to those adopted in the proof of |9,
Theorem 3.1.7] and [39, Theorem 2D.5].

By weak*-compactness of the unit ball in L*®([tp, p|,R™) (Alaoglu’s theorem, see Ap-
pendix A.2), together with (3.13), the sequence (2,) C L*®([to, o], R™) C L'([to, o], R™)
has a subsequence (which we do not relabel) with weak*-limit v € L*°([to, p], R™), that

is,
n—oo

iim [“p0), 2@t = [(GO0O)E Vpe LA RY (1)
to to

and so, a fortiori, the sequence (Z,) converges weakly in L!([to,p],R™) to v. Let
{€1,-+-,em} be a basis for R™. For £k = 1,..,m and t € [to,p], define py; €

L([to, p], R™) by
ex, S€E [to,t],
8) =
Pra(9) { 0, otherwise.
Setting p = pr¢ (k= 1,..,m and t € [to,p]) in (3.14) and integrating, we may now

conclude that

t
#(t) = lim za(t) =1 (to) + [ v(s)ds Ve ltopl

o
Therefore, z € AC([to, p], R™) and 2(t) = v(t) for almost all ¢ € [to, p].

Let y € C([~h, p],R™) denote the concatenation of 3° and 2, and write w := (TY)jt0,0)-
Therefore, yl|[_p) = 20, Ylito,o] = 2 € AC(lto, p), R™) and, to conclude that y is a
solution of the initial-value problem (3.8), it suffices to show that 2(t) € G(t, z(t), w(t))
for almost all t € [to, o].

By (3.10), we have

|lwn(t) — w(?)| < co rr{xtax] l|zn(8) — 2(8)|| for a.a. t € [to,p) and all n € N.  (3.15)
s€lto,p
Therefore, for almost all ¢ € [to, p], wn(t) — w(t) as n — co. Moreover,
)
[ loat®) = w®)ldt < colo — tol max_ fzn(s) — 2(s)| =0 a5 - .
to SE[to,p]

Therefore, (wy) converges (strongly) in L!([to, p], R™) to w.
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Define the function o: £; x R™ — R by

o(t,m & q) == max{(q,¢)| { € G(t,n, §)}-

Observe that, for each (¢,7,§) € K1, ¢ — o(t,n,€,q) is the support function (see
Appendix C.2) of the compact, convex set G(t,7,£) (and so is globally Lipschitz, see
Theorem C.2.2(ii)). Therefore, to establish that 2(t) € G(¢, z(t), w(t)) for almost all
t € [to, p), it follows from Theorem C.2.2(i) (see Appendix C.2) that it suffices to show
that

(g, 2(t)) < o(t,2(t),w(t),q) for a.a. t € [to,p] and all g € R™. (3.16)

By continuity of the maps ¢ — (g,¢) and ¢ — o(t,n,€,q) for all { € R™ and all
(t,n, &) € K4, (3.16) holds if, any only if,

(g,2(t)) < o(t, 2(t),w(t),q) for a.a. t € [to,p] and all ¢ € Q™, (3.17)

where Q™ C R™ is the set of vectors in R™ with rational coordinates. We proceed to
establish (3.17). First, we show that, for each ¢ € R™, the map (¢,7n,€) — o(t,n,&,9)
is upper semicontinuous on G. Let ¢ € R™ and (¢,7,€) € K; be arbitrary and define

*

o*:= limsup o(t,n,&,q).
¥ &) —(tn.€)

Let ((tk,nk,ﬁk)) C K, be a sequence converging to (¢,7,£) such that o(tk, 7k, &k, q) —
o* as k — oo. For each k € N, by compactness of G(tk, 1k, k) there exists { €
G (tk, nk, &) such that (g, () = o(tk, Mk, &k, ¢). The resulting sequence ({x) is contained
in the compact set Ko = G(K1) and so has a subsequence converging to ¢ € Ky. By
Proposition C.1.6 (see Appendix C), the graph of G is closed and so we may infer that
¢ € G(t,n, £). Therefore,

limsup U(tlanl)glaq) = lim a(hca”ka&kaQ)
('€~ (tm,€) k—oo

= k]lng(q, Ck) = (q, C) < U(t, ¢, Q)a

whence upper semicontinuity of o(-, -, -, q)-

For p € L*([to, p], R™),

|7 (t, 2n(8), wa (1), p(1))] < max Jlollflp(t)]| < esllp®)]| for a.a. t € [to, p] and all n € N.
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Furthermore, in view of (3.9),

(p(t), 2 (1)) = (P(t), gn(t, 2a(t), wn(2)))
< o(t, zn(t), wn(t),p(t)) + enllp(t)]| for a.a. t € [to, p] and all n € N,

and so

P 0
/t [(p(2), 2a(2)) = enllp(®)I]] S/ o(t,zn(t), wn(t),p(t))dt VneN.

to

Taking the limit superior as n — oo, invoking Fatou’s lemma (see Appendix A.2) and

upper semicontinuity of o(-,-, -, q), we have
p _ p

[ wo.zopar< [ ot s, w0, p0)at. (318)
0 0

Let ¢ € Q™ and let t € [to, p) be a Lebesgue point for the integrable functions z and
t— o(t, z(t),w(t),q). For 7 > 0, define p € L*=({[to, p], R™) by

T, §€[t,t+7|N|to,p,

os) i { U s€ TNk
0, otherwise.

By (3.18), we have

1 /HT [o(s, 2(s),w(s),q) — (g,2(s))] ds >0 V7 >0.

T Jt

Passage to the limit as 7 — 0 yields (g, 2(t)) < o(t, 2(¢), w(t), q), which is valid for all
t € [to, p] \ N(g), where N (q) is a set of measure zero which may depend on g € Q™.
Since Q™ is countable, Ugegm N (g) has measure zero and so we may conclude that (3.17)
(and hence (3.16)) holds. We have shown that y: [—h, p] — R™ is a solution of (3.8).

(ii) Let y e C(Jy,R™) be a solution of (3.8). Define
A:={(I,z)| I, c I, z € C(I,R™) is a solution of (3.8) with z|;, =y}.
On this non-empty set define a partial order < by
(I,21) X (I2,20) <= supl; <suplp and 2|5, = 2.

We proceed to show that .4 has a maximal element, that is, an element (I*,2*) € A
such that, for all (I,2) € A, (I* 2*) < (I, 2) implies (I,2) = (I*,2*), in which case
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z* € C(I*,R™) is a solution of (3.8) and is a maximal extension of the solution y €
C(I;,R™). Let O be a totally ordered subset of A. Let w := sup{sup I|(I,2) € O} and
let 2*: [—h,w) — R™ be defined by the property that, for every (I,z) € O, z*|r = z.
Then (w, z*) is in A and is an upper bound for O. By Zorn’s Lemma, it follows that

A contains at least one maximal element. This establishes assertion (ii).

(iif) Assume y € C{[—h,w),R™) is a maximal solution of (3.8) and that w < oc.
Seeking a contradiction, suppose there exist ¢ € [tp,w) and compact K C D such
that (¢,y(t)) € K for all t € [o,w). By boundedness of y and property (iv) of 7™, we
conclude that Ty is bounded. Therefore, the function t — (¢, y(t), (Ty)(t)) is essentially
bounded and so by Proposition C.1.7 and properties of G, it follows that g is essentially
bounded on [o,w). Therefore, y is uniformly continuous on [—h,w) and so extends to
a function y* € C([—h,w],R™). By compactness of K, we have (w,y*(w)) € K C D.
An application of Assertion (i) of the theorem (with w and y* replacing to and °,
respectively) yields the existence of a solution y¢ € C([—h, p], R™) for some p > w,
with y®|_pw) = y. This contradicts maximality of y. O



Chapter 4

Approximate tracking for
nonlinearly-perturbed linear
systems with known relative

degree

In this chapter, the approximate tracking and prescribed transient behaviour objectives
introduced in Section 1.2 are considered for a class of nonlinearly-perturbed multi-
input, multi-output, linear systems with known relative degree. The aim is to develop
a control strategy ensuring that the reference signal is tracked by the system output y
with prescribed asymptotic accuracy and guaranteed transient performance. This work
constitutes an extension, to higher relative degree, of the approach adopted in [26] in
which a performance funnel control objective is applied to a class of multi-input, multi-
output systems in the restricted relative-degree-one case.

For the class considered in [26], the control law is a special case of (4.10) developed
later in this chapter: the associated gain k is not monotone (non-decreasing) — which
contrasts with typical high-gain adaptive control schemes; k(¢) becomes large only
when the distance between the output and the funnel boundary becomes small which,
in conjunction with the underlying high-gain properties of the system class, precludes
boundary contact. Perhaps the most significant contribution of both the work in [26]
and the present text is the consideration of the transient behaviour. The results in this
chapter are based on [27].

45
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4.1 Introduction

We begin by introducing the class of systems and follow this with some remarks on the

related literature.

4.1.1 Class of systems

Definition 4.1.1 (System class N,) For p € N, N, is the class of nonlinearly-
perturbed (perturbation p), m-input (u(t) € R™), m-output (y(t) € R™) systems
(A, B,C,p) of the form

#(t) = Az(t) + Bu(t) +p(t,z(t)), =z(0)=2z"€R", } (4.1)

y(t) = Cz(t) eR™,

where A € R™", B € R™™ (C € R™" and p: Ry x R® — R"® are such that the

following assumptions hold.

(A1) (known relative degree and sign-definite high-frequency gain)
For some known p € N, CA*B = 0 fori = 1,...,p — 2 and CAP~1B is either

positive or negative definite.

(A2) (minimum-phase)

#0 for all s € C,.

(A3) (nonlinear perturbation)
The perturbation p: Ry X R™ — R™ is a Carathéodory function with the property
that, for some continuous ¢: R™ — Ry,

Ip(t,2)]l < $(Cx) ¥ (t,2) € Ry x R™.

Remark 4.1.2

(i) Recall from Section 1.4.6 that, if the transfer function s + C(sI — A)"!B =
0 CA*Bs~(*1) is non-trivial (not identically zero), then there exists p € N

such that CA'B = 0 for i = 1,..,p — 2 and CA?"!B # 0. Assumption (Al)
requires that p be known, and CA?~1B to be not only invertible, but also either
positive or negative definite. Note that symmetry of CA?~1B is not a require-

ment.
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(iv)

In the single-input single-output case, the hypothesis of sign definiteness is re-
dundant and (A1) is simply equivalent to positing that the transfer function is
of known relative degree p > 1. In the multi-input, multi-output context, (Al)
is restrictive: nevertheless the multi-input, multi-output case is included here as
this can be done with little extra analytical effort vis a vis the single-input, single-
output case. Linear systems satisfying Assumptions (Al) and (A2) are, at least
in the single-input single-output case, typical of the class of systems underlying
the area of high-gain adaptive control, as studied in [49], [8] and [45] for example.

Note that the minimum phase assumption implies that the unperturbed (p = 0)
system has exponentially stable zero dynamics, see, for example, [31, Section 5.1].

Even in the absence of a nonlinear perturbation p, the results in this chapter are
new. Perturbations satisfying (A3) can be incorporated with relative ease in the
analysis. A larger class of nonlinear systems, modelled by functional differential
equations, will be considered in Chapter 5.

Paper [48], discussed in Section 1.4.7, considers the class of systems (4.1) with
known relative degree, satisfying the minimum-phase assumption, restricted to
the single-input, single-output case with high-frequency gain of known sign. The
controller is adaptive with non-decreasing gain k, invokes a piecewise-constant
switching strategy, and is less flexible in its scope for shaping transient behaviour
(in particular, an a priori bound on the initial data is required).

4.1.2 Control objectives and the performance funnel

There are two control objectives, as follows:

(i)

(i)

approximate tracking, by the output y, of reference signals r of class R :=
WL®(R,,R™). In particular, for arbitrary A > 0, we seek an output feedback
strategy which ensures that, for every r € R, the closed-loop system has bounded
solution and the tracking error e(t) = y(t) —r(t) is ultimately bounded by A (that
is, |le(t)]] < A for all ¢ sufficiently large);

prescribed transient behaviour of the tracking error signal.

We capture both objectives in the concept of a performance funnel, as introduced in
Section 1.3,

Fo={(te) € Ry x R™| o(t) [le]l < 1}
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associated with a function ¢ (the reciprocal of which determines the funnel boundary)
belonging to the space of functions ® defined in Section 1.3, viz.

o= {(p € WIS(R,R)| 9(0) =0, p(s) > 0V s > 0, liminf ¢(s) > 0} .

The aim is an output feedback strategy ensuring that, for every reference signal r € R,
the tracking error e = y — r evolves within the funnel 7.

In the next section, Section 4.2, we describe the control strategy and present the closed-
loop system. The main result, Theorem 4.4.1, follows in Section 4.4.

4.2 The control

Let assumptions (A1) and (A2) hold, with relative degree p > 2; the relative degree 1
case will be treated separately.
4.2.1 Filter

The control approach adopted in this chapter (and Chapter 5) invokes an input filter
or linear pre-compensator of the form illustrated in Figure 4-1.

u —> (F,G) |—> ¢

Figure 4-1: Filter/pre-compensator.

Fixing p > 0 (arbitrarily), we formally introduce the filter given by

&it) = —p&(t) + i, &0) = &£ eR™,  i=1,...,p-2,

. (4.2)
Epmi(t) = —pbpr(t) +ut),  &-1(0) = &, eR™,

which, on writing (wherein I and 0 denote the m x m identity and zero matrices)

[ &i(t) ]| [(—ul T 0 --- 0 0 0]
(1) 0 —ul I -+ 0 0 0
—ul -
T I I I INe ) ) BT
€p—a(t) 0 0 0 - —pl I 0
[£p-1(2) J 0 0 0 -+ 0 —pI 1]
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may be expressed as

i(1) = F£(t) + Gu(t), £(0) = ¢® ¢ R(P-Vim. (4.4)

Remark 4.2.1

(i)

(ii)

For clarity of exposition, we have not chosen the most general presentation. The
matrix F in the filter (4.4) could have arbitrary negative eigenvalues on the

diagonal.

The intuition behind the filter (4.4) and the feedback control strategy, introduced
in the next section, is as follows. Writing

H = [7:0:0: e :0:0],
the transfer function from u to £i, with £° = 0, is given by
H(sI-F)-1G={s +fj,y-pl.

Therefore, with reference to Figure 4-2 below, the transfer function from the
signal  to the output y is given by

(s+M)p 1 C(sI-A)~1B = C[iil+ Alp~I(si—A)~IB = C(sI—A)~I[v,I+A]p~IB.

As will be shown in Lemma 4.3.1, this transfer function has the minimum phase
property and is of relative degree one: in other words, the triple (A, fii +
AJP-"B,C) defines a minimum-phase system of relative degree one with high-

frequency gain CAP~"B.

{A’{nl + Ay"B)C)

Figure 4-2: Input-output representation.

From existing results on relative degree one systems, see [26], and momentar-
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(ii)

ily regarding &; as an independent input variable, it is known that, in the case
wherein CAP~1B is positive definite, the choice & = —ke, for an appropriately
constructed gain k, achieves the control objectives for the system defined by the
triple (A, [ul + A]~! B, C); Theorem 4.4.2 extends this to the case of sign-definite
CAP~1B of unknown sign, asserting that the choice &1 = —v;(k,e) = v(k) e (see
Section 4.2.2) achieves the control objectives for the system. However, with p > 2,
&1 is not an independent input but instead is generated via the filter. The essence
of the strategy is a procedure which “backsteps” through the filter variables to
arrive at an input u which assures boundedness of the “mismatch” & — v(k)e,
which, in turn, ensures that the performance objectives are achieved (as will be

shown in Theorem 4.4.1).

The approach used in this chapter is in the spirit of the adaptive results in [71] and
the non-adaptive results in [26]). The paper [71] restricts the class of systems (4.1)
satisfying Assumptions (A1) and (A2) to the single-input, single-output case; the
control objective is (continuous) adaptive A-tracking with non-decreasing gain;
transient behaviour is not addressed, however nonlinear perturbations as in As-
sumption (A3) are allowed. The filter and the “backstepping” construction of
the feedback strategy in this chapter is akin to that of [71] and the procedure
also resembles the methodology of [33]. However, the controller in the latter

incorporates a non-decreasing adaptive gain and achieves output stabilization.

4.2.2 Feedback

Let ¢ € ® and let v: R — R be any C™ function with the properties

(4.5)

lim supy,_, o, ¥(k) = +00,
liminfg_.o v(k) = —00.

Introduce the projections

L

:R(p—l)m_)Rim, €=(&1""a€p-—1)H(s],"'agi)’ i':l)"'ap_la (46)

and define the C*° function

71: RxR™ — R™, (k,e) — 1i(k,e) :== —v(k)e, (4.7)
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with derivative (Jacobian matrix function) Dv;. Next, for ¢ = 2,..., p, define the C*®
function 7;: R x R™ x R(G=Dm _, R™ by the recursion
Yi(k, e, mi—1€) := yi-1(k, e, mi—2£)

+ (| Dyiz1 (ks €, migf) 1 k* (1 + [|mia€]|?) (/»‘Q_ifi—l +7i-1(k, €, 7Ti—2§)) , (4.8)
wherein we adopt the notational convention +;(k, e, m€) := v1(k,e). Define the C*®
function 7,: R x R™ x RC~D™ _ R™ a5 follows

7p(k7 €, 7rp—1§) = u'p_l'7p—-1 (ka €, 7rp—25)
+ :U'P_IHD'Yp—l (k, €, 7rp—2€)”2 K (1 + ||7rp—1£||2) (NZ—pgp—l + 'Yp—l(ka €, 7rp—-25)) .
(4.9)

For arbitrary r € R, the control strategy is given by
u(t) = =, (k(t), Cx(t) — r(t), £(t)),

k() = 1 (4.10)
1- (p@)lCz(@) - rt)ll)®

Remark 4.2.2

(i) A simple example of a function satisfying (4.5) is v: k — k cosk. The role of
the function v is similar to the concept of a “Nussbaum” function in adaptive
control. Note, however, that the requisite properties (4.5) are less restrictive than
(a) the “Nussbaum property” (see Section 1.4.2) as required in [71], for example,
or (b) the stronger “scaling invariant Nussbaum property”, as required in [33],
for example.

(ii) In the specific case of a system of relative degree p = 2, writing e(t) = Cz(t)—r(t),
setting p = 1 and omitting the argument ¢ for simplicity, the control strategy
takes the explicit form

u=v(k)e— [(/(k)llel)® + (v(k))*] k* [1 + lI€)1%)6,
k=[1-¢el?]™, 0=¢-v(kle, E=—¢+u, €0)=¢
(iii) If CAP~1B is known to be positive (respectively, negative) definite, the need for

the function v, with properties (4.5), in (4.7) is obviated and it may be replaced
by k — v(k) = —k, (k — v(k) = k), respectively.
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Remark 4.2.3 Inherent conservatism in the functions «; for the feedback law could
be improved if tighter estimates are used in the analysis; the design of & may allow
for different measures of the distance to the funnel boundary. These features relate to
issues of controller synthesis whilst, instead, the contribution here is considered to be
analytical in nature, addressing the question of existence of controllers which guarantee
performance under weak hypothesis.

4.2.3 Closed-loop system

The conjunction of (4.1), (4.4) and (4.10) defines the closed-loop initial-value problem

(t) = Az(t) + p(t, 2(t)) — Byo(k(t), Cx(t) — r(t),€(t)), 2(0) = «°,
f(t) = Ff(t) - G’Vp(k(t)a C.’If(t) - 'r(t)as(t))a 5(0) = £0a (41]_)

1

O = T wTcm e

Noting the potential singularity in the function k, some care must be exercised in
defining the concept of a solution of (4.11): a function (z,£): [0,w) — R™ x R(~1m
with 0 < w < o0, is deemed a solution of (4.11) if, and only if, it is absolutely
continuous, with (z(0),£(0)) = (29, £0), satisfies the differential equations in (4.11) for
almost all t € [0,w) and ¢(t) ||Cz(t) —r(t)|| < 1 for all t € [0,w). A solution is mazimal
if, and only if, it has no proper right extension that is also a solution. Observe that the

tracking objective is achieved if it can be shown that a solution exists and that every
solution can be extended to a (maximal) solution on R.

Theorem 4.2.4 Let (A, B,C,p) € N, with p > 1 and let p € . For everyr € R
and (22,€%) € R™ x RP=D™  application of the feedback (4.10) in conjunction with
the filter (4.4) to the system (4.1) yields the initial-value problem (4.11) which has
a solution and every solution can be extended to a mazimal solution. If a mazimal
solution of (4.11) on [—h,w) is bounded and such that the associated gain function k
is also bounded, then w = o00.

Proof. Define the open set
D:= {(t,z, £) € Ry x R® x R=Dm | oo(8)||Cx — r(t)]| < 1}
and

7 D= R™, (4,3,6) = 7 (1/(1 = (p@®)|Cz —r(®)I))?), Cz —1(2),£),
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the initial-value problem (4.11) may be recast on D as

£(t) = Az(t) + p(t, z(t)) — By, (¢, z(t),£(2)),
£(t) = F&(t) — Gs(t, 2(8), (1)), (4.12)
(0,2(0),£(0)) = (0,2°,£°) € D.

Setting ¢ = (z,€) and defining

f: D — R¥He-1)m

womrare [t es [oen- [

we may identify the initial-value problem (4.12) as a particular case of (3.1) as follows.

C(t) = f(ta C(t)), C(O) = CO c R"+(P—l)m'

Applying Theorem 3.1.1, we conclude: (i) the existence of a solution of (4.12) and
(ii) every solution can be extended to a maximal solution (z,£) € C([0,w),R™ x
R(=1)m), Furthermore, if there exists a compact set K C D such that (¢, z(t),&(t)) € K
for all ¢t € [0,w), then w = co.

Clearly, a solution (z,£): [0,w) — R™ x R(P~1™ of (4.12) is also a solution of (4.11)
(the converse is also true). Therefore, we may conclude that, for each (z°,£°) €
R” x R(°~1)™  the initial-value problem (4.11) has a solution and every solution can be

maximally extended.

Let (z,€): [0,w) — R™ x R®=D™ be a maximal solution of (4.11) and assume that
(z,€) is bounded and that the gain function & is also bounded. Then there exist ¢ > 0
and € > 0 such that ||z(t),£(t)|| < c and ¢(¢)||Cz(t) — r(t)]| < 1—¢ for all t € [0,w).
Seeking a contradiction, suppose that w < co. It follows that

K= {t2,8 eD|p@lcz-r®) <1-¢, @l <c, te 0w}

is a compact subset of D such that (¢, z(t),£(t)) for all t € [0,w). This contradicts the
final assertion of Theorem 3.1.1, and so w = co. a
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4.3 Preliminary lemmas

We present here a series of technical lemmas that will facilitate the main result of the

chapter.

Let (A, B,C,p) € N, with p > 2. Rewriting the conjunction of the system (4.1) and
the filter (4.4) as

[“'?“)] _
£(t)

y(t) = [C10] ””“)],

A ol [z] I B
) feeeo]
d

we prove the following technicality.

Lemma 4.3.1 For system (4.13), there ezist K € R™*@=1m gnd N € R(P—1mxn sych
that

C 0
Li=|N —NK| eRO+He-Dm)x(n+(-1)m)
0 I
is invertible and
A Ay T
A B 0 . ..
L o 1(;]L-1= A3 Aqy 0|, L G]: G], [Ci0)L~'=[I:0:0],

0 0 F

where T := [CA"“IB : 0] € R™*(e=1m gnd the matriz Ay € RV-™X(v=m) s sych that
spec(A4) C C_.

Proof. Define
Ki=[uI+AP2B:[ul+AP3B: ...} [uI+AB: B] ¢ R™X(-1m
and note that
AK —KF = [[uI+AP'Bi0:---:0], KG=B and CK=0.

Writing B := (uI + A)?~! B, we have CB = CA?~1B and so the triple (4, B, C) defines
a linear system of relative degree one. Let V € R™*("~™) be such that imV = ker C.
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The matrix

[C], with N := (VTV) VT [I - B(CA*~!B)™1C),

is invertible, with inverse
[B(CAP~'B)™iV].

Writing
c 0 3
B(CAP-1B)! K
L=|N —-NK| with L™= @ v
0 ! 0 0 I

and recalling that KG = B, CB =0 and CK = 0, we have

B
G

L 0] and [Ci0]L™'=[Ii0:0].

Moreover, noting that CAK = [CA?"'B:0:-.- 0] =:T and N[AK — KF] =0, we

have
A 0 CAB(CAP-'B)"1 CAV CAK Ay A, T
L . L7'= [NAB(CA*"'B)"! NAV N|AK - KF]| = |43 A4 0].
0 0 F 0 0 F

It remains to show that A4 has spectrum in open left half complex plane. Writing

sI-A 0 B

I—A B
M (s) = ls o and May(s) = 0 sI-F -GJ,
c 0 0
we have
I K 0 I kK 07 [sI-A AK—KF 0
Ms(s):=1|0 I O|Mxs)|lO I of = 0 sI-F -G
0 0 I 0 0 I c 0 0

In view of the particular structure of F', G and AK — K F, it is readily verified that

|det M3(s)| = | det Ma(s)|,  where My(s) = SICA [u1+81] Bl
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Define
I—-A —-A CAP-1B
U 0 Ul o oA 2
Ms(s) :== My(s) = —A; sl — Ay 0
0 I 0 I
I 0 0

By the minimum-phase property of the triple (A4, B,C), for all s € C4, we have
det My(s) # 0. We may now conclude that, for all s € Cy,

|det(C AP B) det(sI — Ag)| = | det Ms(s)| = | det My(s)| = | det M3(s)|
= | det Ma(s)| = |det(sI — F) det My(s)] #0,

and so spec(A4) C C_. This completes the proof. O
By Lemma 4.3.1, there exist K and N such that, under the coordinate change

y(t) y° 0 c 0

z(t) 0 z

zt)| =L £t) , Nl =L el L:=|N -NK|, (4.14)

£(t) £° 0 I
the conjunction of system (4.1) and filter (4.4) is represented by

y(t) = Ary(t) + A22(t) + Cp(t, z(t)) + CAP1B &(¢),
&(t) = Asy(t) + Asaz(t) + Np(t, z(t)),

£(t) = FE(t) + Gu(t),

((0),2(0),£(0)) = (3°, 2°,€°) € R™ x R*~™ x R(P~1)m

(4.15)

where A4 € R(m=—m)x(n=m) hag spectrum in open left half complex plane.

If (z,€): [0,w) — R™ x RP~1™ is a maximal solution of the nonlinearly-perturbed
closed-loop system (4.11), then, in view of (4.15) and writing

y(t) =Cz(t),  et)=yt)—r(t), & =4"-r(0), (4.16)
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we arrive at the following equivalent to (4.11),

é(t) = Aje(t) + Agz(t) + CAPT1BE (1) + f1(t), e(0) =€

z(t) = Ase(t) + Agz(t) + fa(t), 2(0) = 20 (4.17)
£(t) = FE(t) — Grp(k(t), e(t), (), £(0) =¢°
k(t) = 1/(1 = (@) lle®)])?),
where the functions f; and f» are given by
() = Aur(t) + Cplt, 2(t)) - (1), } wis)
fa(t) := Asr(t) + Np(t, z(t)).

Since (p(t)|le(t)]|)? < 1, properties of ¢ € & yield boundedness of the function e
which, together with boundedness of r, implies boundedness of y. By boundedness of
7, essential boundedness of 7 and Assumption (A3), we may now conclude that f; is
essentially bounded and f is bounded. Now observe that, since A4 is Hurwitz and f,
is bounded, the second of the differential equations in (4.17) implies that z is bounded.
‘We record these observations in the following.

Lemma 4.3.2 Let (A,B,C,p) € N, with p > 2. Let F, be a performance funnel
associated with o € ®. Let r € R and (z9,£°) € R™ x Re-Dm [ (2,€): [0,w) —
R™ x R(P=D™ 45 o mazimal solution of (4.11), then the functions y, z and e, given by
(4.14) and (4.16), are bounded. Furthermore, the functions fi and fa, given by (4.18),

are, respectively, essentially bounded and bounded.

The proofs of the main results (Theorems 4.4.1 and 4.4.2 below) rely crucially on a
further technicality: the signals 6; = u!~*&+7;(k, e, mi—1€), i = 1, ..., p—1, are bounded
(and, in particular, the “mismatch” 6; = ¢ — v(k)e is bounded). More precisely, we
have the following.

Lemma 4.3.3 Let the hypotheses of Lemma 4.8.2 hold. If (z,€): [0,w) — R xR(p—1)m
is a mazimal solution of (4.11), then the signal

6= (91, ooy 0,,_1): [O’w) N R(p—l)m
is bounded, where
0i(t) = p! () + i (k(t), e(t), maé(t),  i=1,...,p—1, (4.19)

with the notational convention v1(k, e, mo€) := y1(k, €).
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Proof. Assume that (z,€): [0,w) — R® x R(°~1)™ is a maximal solution of (4.11).
Write y(t) = Cz(t) and e(t) = y(t) — r(t) for all t € [0,w). By Lemma 4.3.1, there
exists an invertible linear transformation L under which the closed-loop system (4.11)
may be expressed in the form (4.17), wherein, by Lemma 4.3.2, e and z are bounded
and the functions f and fs, given by (4.18), are, respectively, essentially bounded and
bounded. By the first of equations (4.17), we may infer the existence of ¢; > 0 such
that
le@®l < cr(1+ ||&(@)]]) for a.a. t € [0,w).

By boundedness of ¢, e and essential boundedness of ¢, there exists ca > 0 such that

k(1) = 2k2(t)|02(t)(e(2), é(t)) + (D) (t) lle(t)1?| } (4.20)

<ck2(t) (1 + || (2)]]) for a.a. t € [0,w).
Since k(t) > 1 for all t € [0,w), we may now conclude the existence of c3 > 0 such that
I(E(2), e@))II* < caA(t)  where A(2) == k*(8) (1 + ll2(2)]I%)-
Then, writing c4,1 = c3/p > 0 and invoking (4.8), we have

(61(2),61(2)) < (61(1), —p&a(t) + &(0)) + 01 )| Dya (k(E), eI (R(B), D)

< (62(t), —16:1(2) +#’71(k(t) e(t))) + (61(2), &2(t))

+ V61 @) 1DY1 (k(2), e(E)Il v/ (ca/ ) A(2)

< ca1 = ulGr O + (81(2), 2(2)) + piB1(8), 71 ((2), e(t)))
+ ull6r ()17 1Dy ((2), e(t))II* At)

= ca1 — pll01@)[1% + (61(2), £2(2) + pr2(K(D), e(t), €1(2)))
= e — OO+ p(B:(2),6:(8)  for aa. tE€ [0,0).
Analogous calculations yield the existence of constants c42,...,c4,,—1 > 0, such that
(0:(2),0:(2)) < ca — pllOs@N® + p(Bi(t), 6:41(2)) aa. t€0,w), i=2,...,p—2

and
<9p—1(t)’ép—1(t)> < o1 = plfp-1(t)||* for aa. t € [0,w).
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Writing c4 = c4,1 + ... + €4,p—1, We have

d

%alle(t)ll2 < ca = pllO@IP + p(01(2), 02(8)) + -+ + p(Bp—2(t), 6p-1(2))

= ¢4 — u(6(t), PO(t)) for a.a. t € [0,w),

where P is a positive-definite, symmetric, tridiagonal matrix with all diagonal entries
equal to 1 and all sub- and superdiagonal entries equal to -1/2 (in fact, P is the
symmetric part of F'). By positivity of P, it follows that 6 is bounded. This completes
the proof of the lemma. O

4.4 Main results

4.4.1 Relative degree p > 2 case

Firstly, we consider systems of relative degree p > 2.

Theorem 4.4.1 Let (A, B,C,p) € N, with p > 2 and let F, be a performance funnel
associated with ¢ € ®. For every r € R and (z°,£9) € R™ x R(P-1™  application
of the feedback (4.10) in conjunction with the filter (4.4) to system (4.1) yields the
initial-value problem (4.11) which has a solution and every solution can be exrtended
to a mazimal solution. Every mazimal solution (z,€): [0,w) — R™ x R®~1D™ has the

properties:
(i) w = oo;
(ii) all variables (z,€), k and u are bounded;

(iii) the tracking error evolves within the funnel F, and is bounded away from the
funnel boundary, i.e. there ezxists € > 0 such that, for all t > 0, ¢(t) ||Cz(t) —
i) <1-e.

Proof. Let (z0,£0) € R" x R(°~1U™ be arbitrary. By Theorem 4.2.4, (4.11) has a so-
lution and every solution can be maximally extended. Let (z, £) be a maximal solution
of (4.11) with interval of existence [0,w). Writing y(t) = Cz(t), e(t) = y(t) —r(t) for all
t € [0,w) and invoking Lemma 4.3.1, there exists an invertible linear transformation L
which takes (4.11) into the equivalent form (4.17)-(4.18). Introducing 6, : [0,w) — R™
given by (4.19), viz.

01(t) = &1(t) — v(k(t))e(?),

then, by the first of equations (4.17), we have

é(t) = fa(t) + v(k(t)) CAP 'Be(t) for a.a. t € [0,w), (4.21)
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with
fa(t) := Aje(t) + Azz(t) + CAP1BO(t) + f1(2).

By Lemmas 4.3.2 and 4.3.3, the functions y, z, e, and 6 = (61,...,0,-1), given by
(4.19), are bounded which, together with essential boundedness of f;, implies essential
boundedness of f3. Therefore, there exists ¢ > 0 such that

(e(t), é(t)) < e5 + v(k(t)) {e(t), CAP" Be(t)) for a.a. t € [0,w). (4.22)
We are now in a position to prove boundedness of k. Writing
fo = % |(car B +car1B)7 |7, = lloarB
and recalling that CA?~! B is either positive definite or negative definite, we have
Bollell® < |(e,CAP~1Be)| < Bi]le|®* Ve e R™.

Define the continuous function 7: R — R as follows.

Case (a): If CAP~1B is positive definite, then set

S(k) = { ~bw(k),  v(k) 20,
—Bov(k),  v(k) <0.

Case (b): If CA°~! B is negative definite, then set

o e— Bov (k), v(k) >0,
®: { Bv(k), v(k)<DO.

Therefore,
v(k)(e,CAP 1Be) < —i(k)|le||? Ve € R™ Vk >0,

which, together with boundedness of e, ¢, essential boundedness of ¢ and (4.22), implies
the existence of ¢g > 0 such that

%(<f0(t)||t‘3(t)ll)2 = 20(t)(t)e®)|I? + 2¢°(t)(e(t), é(t))
< cg — 2¢%(t) #(k(2)) le@)||? for aa. t € [0,w).

By properties (4.5) of v, there exists a strictly increasing unbounded sequence (k;) in
(1,00) such that (¥(k;)) is also unbounded and strictly increasing. Seeking a contra-
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diction, suppose that k& is unbounded. For each j € N, define

i = inf{t € [0,w)| k(t) = kj41},
oj = sup{t € [0, 73]| P(k(t)) = D(k;)},
G; = sup{t € [0, ;]| k(t) = k;} < 0j.

It is readily verified that o; < 7; and k(o;) < k(7;). Then, for all j € N and all
t € [0, 7], we have k(t) > k; and D(k(t)) > D(k;). Therefore,
2 1 1 ,
(POe@®I)? 21- 21— = >0 Vielomn] VjeN
j 1
and so J
—(@Olle®)? < cs —2erD(k(t)) Vit lojm] VjieN.

Let j* € N be sufficiently large so that cg — 2¢c7i7(kj+) < 0. Then,

(e(m)lle(m))? = (e(os+)lle(a))? <o,

whence the contradiction
1 1
> 5 —
1— (p(m=)lle(m=))* 1= (p(oj+)lleloze)]

This proves boundedness of k.

= k(7j+) — k(aj+) > 0.

)2

Next we show boundedness of €, £ and u. Since k is bounded, there exists € > 0 such
that ¢(t)|le(t)|| <1 —¢€ for all ¢t € [0,w). By boundedness of y, z, 6 and k, it follows
from the recursive construction in (4.19) that, fori =1, ..., p—1, ; and &; are bounded.
Consequently z is bounded and, by (4.7) and (4.8), boundedness of 7, (and hence of u)
follows. Finally, by boundedness of z, £ and &, together with Theorem 4.2.4, we may
conclude that w = co. This completes the proof of the theorem. 0

4.4.2 Relative degree p =1 case

Secondly, we consider the case wherein the triple (A, B,C) defines a minimum-phase
system of relative degree p = 1. In this case, a filter is not necessary and the controller
simplifies to

1

) ' 4.23
1= (p@lICa(t) = r®)l)* (4.23)

u(t) = v(k(8)(Cx(t) —r(t), k(t)
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The closed-loop initial-value problem then becomes

#(t) = Az(t) + p(t, z(t)) + Bu(k(8))(Cz(t) - r(t)), z(0) =2°,
1 (4.24)

1= (e(@®)Cz(t) —r(®))*

In the case of sign-definite CB of known sign, the result of Theorem 4.4.2 is proved in

k(t) =

[26]; the general case of Theorem 4.4.2, wherein CB is of unknown sign, is new.

Theorem 4.4.2 Let (A,B,C,p) € N1 and let F, be a performance funnel associated
with ¢ € ®. For every r € R and 10 € R™, the initial-value problem (4.24) has a
solution and every solution can be extended to a mazimal solution. FEvery mazimal

solution z: [0,w) — R™ has the properties:
(i) w=oo;
(ii) z, k and u are bounded;

(iii) there ezists € > 0 such that, for allt >0, ¢(t)|Cx(t) —r(t)|| <1—€.
Proof. This is a straightforward modification of the proof of Theorem 4.4.1, essen-
tially excising all vestiges of the filter equations. a
4.5 Example

We illustrate the controller strategy (4.10) for the single-input, single-output, relative
degree two system with nonlinear perturbations, introduced in Section 1.1.3, modelling

a pendulum (with input force u):
i(t) + asiny(t) = bu(t), (4.25)

with unknown real parameters a and b # 0. Equation (4.25) is equivalent to (4.1) with

z(t) = (y(t), 9(t))7,

A= Y B=
0 0

The funnel is specified by the smooth function

0

NE C=[1:0], p(tz(t))=asiny(t), t >0.

10(1 — (0.1t —1)2), 0<t<10,

4.26
10, ¢ > 10, (4.26)

t*—*so(t)={
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which assures a tracking accuracy |e(t)] < 0.1 for all ¢ > 10. If non-zero b is of
unknown sign, then, choosing v: k — kcos k, writing e(t) = y(¢t) — r(¢) and suppressing
the argument ¢ for simplicity, the control strategy is

u = p(kcosk)e

~p[€ — (kcosk)e][(cosk — ksink)? €2 + k2 cos® k] k* [1 + €],
g (4.27)

k
§ =-pé+u, £(0) = 0.

Adopting the values a = , b= 1, p = 1, initial data (y(0),(0)) = (0,0) and reference
signal ¢t — r(t) = 1 cost, the behaviour of the closed-loop system (4.25)-(4.27) over the
time interval [0, 20] is depicted in Figure 4-3. The “peaks” in the control action occur
whenever the tracking error is close to the boundary of the funnel. However, if b # 0 is
known a priori to be positive, then the peaking behaviour is considerably mollified by
choosing the function v: k — —k in place of k — kcosk, in which case the strategy is

u = —ke— ¢+ ke][e? + k2] k* [1 + €]
E = [1 _ g02€2]_1 (428)
£ =—t+u, £(0) =0.

For the same parameter values and initial data as above, the behaviour (4.25), under
control (4.28), is shown in Figure 4-4.
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1
0
1
0 20
(a) The funnel and tracking error e
1
0
1
(b) The reference » and output y
4
k()
0
(¢) The function &
15
0
-15
0 20

(d) The control u

Figure 4-3: Unknown sign 6~ 0 :

control (4.27) applied to the nonlinear pendu-
lum (4.25).
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(a) The funnel and tracking error e

(b) The reference r and output y

(¢) The function k

0 20
(d) The control u

Figure 4-4: Known sign > 0: control (4.28) applied to the nonlinear pendulum (4.25).



Chapter 5

Approximate tracking for
nonlinear systems with known

relative degree

5.1 Introduction

In Chapter 4, an approximate tracking objective, with prescribed transient behaviour,
was achieved for a class of nonlinearly-perturbed systems of the form

#(t) = Az(t) + Bu(t) + p(t,z(t)), z(0) =z €R",
y(t) = Cx(t) € R™,

under the assumptions (A1)-(A3) listed in Section 4.1.1. The main results of Chap-
ter 4 can be extended to a larger class of nonlinear systems that invoke the class of
operators introduced in Chapter 2. In particular, we consider approximate tracking
of a reference signal in the context of a class of multi-input, multi-output dynamical
systems, modelled by functional differential equations. The system class encompasses
a wide variety of nonlinear effects, including hysteresis phenomena and delays.

This work is also a natural extension to that of [26], in which a class of infinite-
dimensional, m-input (u(t) € R™), m-output (y(¢) € R™), nonlinear systems (with
finite memory) given by a controlled functional differential equation of the form

9(t) = g(p(t), (Ty)(t),u(t)), yl-n0 = y° € C([~h,0,R™),

66
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is considered, where g is a continuous function, p represents a bounded perturbation and
T is a causal operator of class 7’m. An output feedback control structure is developed
which ensures approximate asymptotic tracking, with prescribed transient behaviour,
of any reference signal of class W 1,00(R+, Rm). Here, we extend these investigations to
incorporate higher-order systems, affine in the control, of the form

y™t) =Riy(t) + R2y™\t) + f Rpy~~I\t) +g(p(t), (Ty)(t)) + Tu(t) 5.1

where p € N is known, yW denotes the ith derivative of y and the matrix T is assumed
to be sign definite (equivalently, (v, Tv) = 0 v = 0). The structure for the system
implementing an error feedback strategy, where the error is the difference between the

output y and a reference signal r of class W 1,OQR+, Rm), is illustrated in Figure 5-1.

RO-iy{p-2

e=y—r

Dynamic Feedback Controller mre R

Figure 5-1: Structure of system (5.1).

This chapter is based on joint work with A. Ilchmann and E. P. Ryan in [28] and

is organized as follows. Sections 5.1.1 and 5.2 introduce the control objectives and
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the system class: Section 5.3 highlights several particular subclasses. In Section 5.4,
the control and feedback laws are constructed. The existence theory developed in
Chapter 3, see Theorem 3.1.1, will then be applied to the resulting closed-loop system
in Section 5.4.3. The main results on transient and asymptotic behaviour of the closed-
loop are given in Section 5.6 and illustrated in an example in Section 5.7.

5.1.1 Control objectives and the performance funnel

The two control objectives considered coincide with those of Chapter 4:

(i) approximate tracking, by the output y, of reference signals r of class R :=
Whoo(R4,R™);

(ii) prescribed transient behaviour of the tracking error signal.

As before, both objectives are captured by a performance funnel, see Definition 1.3.1,
Fo={(t,0) € Ry x R™| () e < 1)
associated with a function ¢ belonging to
®={peWhR,,R)| ¢(0)=0, ¢(s)>0foralls>0and lim inf o (s) > 0}.

The aim is an output feedback strategy ensuring that, for every reference signal r € R,
the tracking error e = y—r evolves within the funnel F,. As in Chapter 4, comparisons
can be made with the early contribution by Miller and Davison [48], in which the
attainment of prescribed transient behaviour for a class of single-input, single-output,
linear, minimum-phase systems with known high-frequency gain is considered. The
control strategy in [48] is adaptive with non-decreasing gain k and is less flexible in its

scope for shaping the transient behaviour.

The feedback structure implemented in this chapter mirrors that of the controller in
Chapter 4; it essentially exploits an intrinsic high-gain property of the system/filter
interconnection by ensuring that, if (¢, e(t)) approaches the funnel boundary, then the
gain attains values sufficiently large to preclude boundary contact. Boundedness of ¢
means that an exact asymptotic tracking objective cannot be enforced. However, in
the specific case of relative degree 1 systems, an exact asymptotic tracking objective

will be considered in Chapters 6 and 7.
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5.2 Class of systems

We subsume (5.1) in the following

£(t) = Az(t) + f(p(t), (Ty)(t), z(t)) + Bu(t),
y(t) = Cxz(t), (5.2)
xl[—h,O] =zl¢ C([_ha 0]’Rp‘m),

with
(0 I o0 0] 0]
0 o I 0 0
A=|: .. i | eremem po |1 e memxm, (53)
0 0 0 1 0
Ry Ry -+ R, R, r]
C= [I:0:---:0:0 €R™,™ f:R™xR?x R’™ — R’™ continuous. (5.4)

Observe that I' = CAP~1B. In the special case wherein f is given by
0

f(pa wsx) = ’ (5'5)
0

g9(p,w)
it is clear that (5.1) and (5.2) are equivalent.

Recalling Definition 2.1.1, in which the class of operators 7, was introduced, we now
formally define the class of systems considered in this chapter.

Definition 5.2.1 (System class X,)

For p € N, £, is the class of m-input, m-output systems (A, B,C, f,p, T, h) of the form
(5.2), where h > 0 quantifies the memory of the system, A, B and C are structured as
in (5.3)~(5.4) and satisfy

(B1) sign-definite high-frequency gain: T = CAP™1B is either positive definite or neg-
ative definite (equivalently, (v,Tv) =0 & v=0).

The functions f, p and operator T are such that

(B2) p € L(R4,R™),
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(B3) for some g €N, T: C([~h,00),R™) — L2 (R4, RY) is of class T;™,

(B4) f: R™ x R? x RP™ — RP™ is continuous and, for all non-empty compact sets

PCR™ W CRYI andY C R™, there ezists a constant co = co(P,W,Y) > 0
such that

If(p,w,z)|| < co for all (p,w,z) ePx W x {veR™|CveY}.

Remark 5.2.2

(1)

(i)

(iii)

Observe that
CA'B=0 fori=1,..,p—2and ' =CA’ !B is invertible. (5.6)

Therefore, recalling the definition of relative degree from Section 1.4.6, it follows
from (5.6) that, in the case f = 0, the linear system (A, B, C) is said to have rel-
ative degree p. Note that Assumption (B1) requires the strengthened assumption
that CAP~1B is either positive or negative definite. In the multi-input, multi-
output case, (B1) is rather restrictive, though we emphasize that symmetry of
CAP~1B is not required. By contrast, in the single-input, single-output case,
the assumption of sign definiteness is redundant and (B1) is simply equivalent to
positing that the relative degree of the linear triple (A, B, C) is known.

Recalling the definition of a minimum-phase system in Section 1.4.4, observe
that, due to the structure of the matrices A, B and C in (5.3)—(5.4) and Assump-
tion (B1), the linear system (A, B,C) is minimum phase.

Assumption (B4) constrains the nature of the dependence of f on its third ar-
gument: in particular, for compact sets P, W and Y, it posits boundedness of
fon PxW x C~}(Y). For example, (B4) holds if there exists a continuous
function 7: R™ x R? x R™ — R, such that ||f(p,w,z)| < 7(p,w,Cz) for all
(p,w,z). Assumption (B4) plays a crucial role in the later analysis: in its ab-
sence (i.e. if f is merely assumed to be continuous), the performance objectives
cannot be achieved (indeed, finite escape times can occur). For example, consider
the single-input, single-output, relative-degree-two system of the form (5.2), with
Ri,Ra=0,p=0,T=0,T =1 and f given by f(z1,22) = [z? —z2 0]T, as
follows.
1 (t) = r%(t), .i‘g(t) = 1U.

Assumptions (B1)—(B3) are trivially satisfied, but with Assumption (B4) relaxed,
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(iv)

(v)

5.3

in this example, the output z; cannot be influenced by the controller and will

exit the performance funnel in finite time.

The paper [6], discussed in Section 1.6, considers stabilization and tracking for a
class of relative-degree-one nonlinear systems and it is stated that the main results
can be achieved for higher relative degree systems by means of a semiglobal back-
stepping lemma. The multi-layered nature of the assumptions determining the
system class considered in [6] makes it difficult to assess the overlap with the class
of systems ¥,.

With reference to Figure 5-2, the system (5.2) can be thought of as the intercon-
nection of two blocks. The dynamical system represented by block A;, which can
be influenced directly by the system control u, is also driven by the output w from
the dynamic block Ag, as shown in Figure 5-2. The block A5 can be considered
as a causal operator mapping the system output y to w (an internal quantity,
unavailable for feedback purposes); it allows for infinite-dimensional (e.g. delays,
diffusions) and hysteresis (e.g. backlash) effects, as discussed in Chapter 2.

Ae: w=Ty

z = Az + f(p,w,z) + Bu
y=Czx

U ————>A7: {

Figure 5-2: System of class X,.

Subclasses of X,

5.3.1 Finite-dimensional linear prototype

For motivational purposes and comparison with the system class N,, considered in

Chapter 4, we examine a prototype linear system and show that all finite-dimensional

linear systems of this form are incorporated in the class X,. Consider an m-input,

m~output linear system of the form

w(t) = Aw(t) + Bu(t), w(0)=u®eR", y(t)=Cuw(t), (5.7)
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with relative degree p > 1, A € R™", B € R™™, €' € R™*", n > pm and positive-
definite or negative-definite high-frequency gain CAP~1B. Note that this prototype
class of systems is equivalent to A, in the case when the nonlinear perturbation in
Assumption (A3) of N, is identically zero. To show that the system (5.7) belongs to
the class X,, we present the following lemma.

Lemma 5.3.1 Consider a linear system of the form (5.7) with relative degree p € N.
Define

cim | 4 | eromn,  Bim(BiAB... 1A B) e RO
G
and let V € R™(=P™) pe such that im V = kerC. Then
(i) R*=kerC®imB;
(ii) the matriz

C

vl € R, where N = (VTV)"WT[I — B(CB)~'C] € RI—Pm)xm,

U=

is invertible, with inverse U~ = [B(CB)~' : V), and the triple
(A,B,C):= (UAU,UB,CU™") (5.8)

has the following structure (wherein I and 0 denote the m x m identity matriz

and zero matriz, respectively)

0 I 0 0 0
0 0 I 0 0
A=|" : ' |, B=|"],C=[:0:---i0:0:0], (5.9)
0O 0 .- 0 I 0 0
Ri Ry -+ Rp-1 R, S
P 0 - 0 0 Q] 0]

with[Ry: -~ 'R, S] = CAPU~Y,T = CAP"'B, P = NAPBI !, and Q = NAV;

(iii) 4f the system (5.7) is minimum phase, then spec(Q) C C_.
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We remark that, in the case p = 1, (5.9) is to be interpreted as

Ry S
P Q

~

b= lﬂ,é:[ﬁm. (5.10)

Parts of the following proof are implicit in the proofs of [31, Lemma 4.1.1] and [32,
Propositions 11.5.1 and 11.5.2] (in a general context of nonlinear systems); here, we

provide a simple, self-contained proof in the restricted context of linear systems.

Proof. STEP (i): First note that

CB= .
T *

and, since I is invertible, we see that CB € GL,n(R). Furthermore, NB = 0. Asser-
tion (i) then follows from the observation that, for any z € R", we have

v:=(—-B(CB)'C)z ckerC and w:=B(CB)"!Cz € im B,

andsor=v+ w.

STEP (ii): We now prove Assertion (ii). It is clear that &~! = [B(CB)™':V]. It
is also immediate that B := UB and C := CU~! have the structure given in (5.9).
Furthermore ,

UA=AU (5.11)
for some A of the form:
[0 I 0 0 O]
0O 0 I 0
AZ . . . . ,
o 0 ... 0 I 0
Ri Ry ... Ryy R, S
P, P, ... P,y P, Q

with R, € Rm*m P, ¢ Rv—em)xm i — 1 5 § € Rmx(=pm) Q = NAV €

R(n—pm)x(n—pm) and [Ry: .- R,:S] = CAPU~'. If p = 1, then A takes the form
shown in (5.10).
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Recalling that /B = 0, we see that

* r-1
[P} iP)=NAB(CB)™' =[0:--- (0! NAPB] ,
r-1 0
hence P, =0 for i = 2,...,p. Writing P = Py, it follows that A takes the form in (5.9)
and P = NAPBI1.

STEP (iii): Finally we prove part (iii) of the lemma. Writing

sI-A B U o u1?lo sI-A B
Mi(s)= |7 . My(s) = M =% ,
1) [ & o M=o 1(s)lo 1] l ¢ o
and

7 o0 o .. 0 0 0

—sI I 0 ... 0 0 0

o . 0 —sI I 0 0 0
M = N = '.. s

3(s) [A—sI —B}

0 0 ... —sI I 0 0

R Ry ... R,y R,—sI § T

P 0 ... 0 0 Q-sI 0]

we see that
| det M (s)| = | det Ma(s)| = | det M3(s)| = |detT det(sI — Q)|

By the minimum-phase property of (A, B,C), we have det(M;(s)) # 0 for all s € C4
and so det(sI — Q) # 0 for all s € C,. It follows that spec(Q) C C_ and hence
Assertion (iii) holds. O

Invoking the similarity transformation (5.8)—(5.9) and writing z° := Cu?, 20 := Nu®,
z(t) := Cw(t), it is readily verified that system (5.7) is equivalent to

H(t) = As(t) + F(p(0), (Ty) (), (1)) + Bult), (0) =a°, } (5.12)

y(t) = Cx(t),
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where A, B and C are as in (5.3)—(5.4), p: t — S(exp Qt)2°, T is the linear operator
given by

@0 =5 ( [ @ - Puss), ¢20

and the function f takes the special form (5.5) with g: R™ x R™ — R™ given by
g(p,w) :==p+w.

If (5.7) has sign-definite high-frequency gain, then CA?~1B = T' = CA?~1B is either
positive definite or negative definite and hence Assumption (B1) is satisfied. If we
assume that (5.7) has the minimum-phase property, then by Lemma 5.3.1 (iii), Q
has spectrum in C_: it follows that p € L*®(R4,R™) and T belongs to the class
of operators 7™ and so Assumptions (B2) and (B3) are satisfied. Assumption (B4) is
trivially satisfied. Therefore, the system class ¥, contains all m-input, m-output, finite-
dimensional, linear, minimum-phase systems of relative degree p with sign-definite high-

frequency gain.

5.3.2 Nonlinear systems

In [33, (1)] the following class of single-input, single-output systems is studied

\

£1(t) = z2(t) + fr(w(t), y(2)),

) =z,(t) + fomr(w(t), y(t)),

t) = yu(t) + fo(w(t),y(t)),
w(t) = q(w(t),y(?)),

y(t) = o

v

(5.13)

(501(0),---137/;(0), ())=(:c1, R p’wo) /

where v € R\ {0}, ¢: RP xR — RP and f;: RP xR — R, i = 1,...,p, are locally
Lipschitz functions. Denote, by 7', the mapping y — w induced by the subsystem
W = g(w, y) with initial condition w(0) = w®. Then (5.13) is equivalent to (5.2) (with
h =0 and m = 1). Moreover, if we assume that the subsystem v = g(w,y) is input-
to-state stable (ISS, see Section 2.2.2), then, as shown in Section 2.2.2, the operator T
is of class 7™, in which case system (5.13), interpreted in its equivalent form (5.2), is

of class Z,.

We remark that, in [33, (1)], an assumption of integral input-to-state stability (iISS) is
imposed on the subsystem w = g(w, y), by which it is meant that there exist functions
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6 € KL and 71,7, € Ky such that, for all (w9 y) € RP x L (R4, R™),

loc

i
y(llw(t,w®, y)ll) < 8(llw®],2) + fo 1a(ly(s))ds V>0,

see, for example, [63] and [33]. The condition is strictly weaker than the assumption
of ISS. In this respect, the full generality of the system class in [33] is not captured by
the class X,.

5.3.3 Delays and hysteresis

In Chapter 2, details of a variety of nonlinear effects incorporated in the operator
class 7,™ were provided. The class of systems X, inherits each of these nonlinearities,
including delay elements and a wide range of hysteresis operators, many of which are
physically motivated effects: as observed in [25], examples such as relay hysteresis,
backlash hysteresis, elastic-plastic hysteresis and Preisach operators are of class 7y .

5.4 The control

As in Chapter 4, a non-adaptive controller will be constructed, implementing a “back-
stepping” procedure in conjunction with a filter/pre-compensator. The backstepping
procedure is akin to that of [71, 33, 48].

Let ¢ € ® determine a performance funnel F,. We proceed to construct a feedback
structure which ensures that, for every reference r € R and when applied to any system
of class £,, the tracking error e = y—r evolves within F,. As in Chapter 4, we initially
assume p > 2; the case of systems with relative degree p = 1 will be treated separately

later in this chapter.

5.4.1 Filter

Fix g > 0 and recall the filter (4.2), introduced in Chapter 4,
&i(t) = —p&(t) + &, G0) =& eR™i=1,...,p—2,
ép—l (t) =—u gp—l(t) + u(t)a fp—l(o) = 52—1 €R™,
which, on writing &, F' and G as in (4.3), may be expressed as

£(t) = FE(t) + Gu(t), £(0) = €0 € Rle—Dm, (5.14)
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Remark 5.4.1 Recall from Chapter 4 that the parameter p € (0,00) in the matrix
F' can be incorporated into the analysis with relative ease. However, a more general

representation of the filter could involve arbitrary negative eigenvalues on the diagonal
of F.

5.4.2 Feedback

Define
+1, T positive definite,
s(T) =
—1, T negative definite.

Let v: R — R be any C* function with the property:

there exists a strictly increasing unbounded sequence (k;) such that (5.15)
the sequence (s(T")v(k;)) is strictly decreasing and unbounded. '

Recall, from (4.6), the projections
Wi:R(p—l)m_’Rim, §=(£1a"-a§p—l)H(€1a---1€i)a ’L=1,,P—1

The controller implemented in this chapter is constructed in much the same way as
that of Chapter 4. We repeat the recursive construction (4.7)-(4.9) for convenience,
beginning with the C* function

~v1: R x R™ — R™, (k,e) — v1(k,€) := —v(k)e, (5.16)
with derivative (Jacobian matrix function) Dvy;. For i = 2,...,p — 1, define the C*®°
function v;: R x R™ x RG-1)™ _, R™ by the recursion

Yi(k, e, mi1€) = vi-1(k, e, mi—2€)
+ | Dyic1(k, €, mim2€) |2 k* (1 + [Imiza€])?) (uz"'&-_l +7i-1(k, e,m-aé)) , (5.17)

wherein we continue to adopt the notational convention v, (k, e, mo€) := 1 (k, €). Define
the C* function 7,: R x R™ x R(°=1™ — R™ as follows

7p(ka €, ﬂ'p—lﬁ) = Mp_l'Yp—l(ka €, 77,0—26)

T | Dypr by e, mp—s) 2K (1 + [mpré) (;ﬁ-ps,,_l T yper(k e, w,,_ze)).
(5.18)
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Finally, we introduce the bijection
a:[0,1) - [1,00), s+—1/(1—23s). (5.19)

For arbitrary r € R, the control strategy is given by

) = ~15(K(0), C=(t) - (2) 1), } (5.20)

k(t) = a(¢*@®)[1Cz(t) — rt)]1?).
Remark 5.4.2

(i) If s(T') is known a priori, then the function v: k — —s(T')k is sufficient to ensure
property (5.15); if s(I") is unknown, then the function v: k — k cosk suffices.
In the latter case, the role of the function v is similar to that of a “Nussbaum”
function in adaptive control.

(ii) The function « in (5.19) may be generalized to any C* bijection a: [0,1) —
[1,00) with the property that o/ = d(a) for some function d; the particular
choice d(-) = (+)? yields the specific function adopted in (5.19) for simplicity of
presentation. In the case of general o, the term k4 in (5.17) and (5.18) should be
replaced by d?(k).

(ili) In the specific case of a system of relative degree p = 2, writing e(t) = Cz(t)—r(t)
and omitting the argument t for simplicity, the control strategy takes the explicit

form

u = pvk)e — p[(V'(k)|el)? + (w(k))?] k* [1 + ||€116,
k=[1-el?]™, 8=¢-v(ke, (5.21)
é =-pf+u, £(0) = EO'

We will make use of this controller in an example, see Section 5.7.

5.4.3 Well-posedness of the closed-loop system
The conjunction of the filter (5.14) and the feedback (5.20) applied to (5.2) yields the
initial-value problem

#(t) = Az(t) + f(p(t), (TCz)(t), 2(t)) — B, (k(t), Cx(t) — r(t),£(2),

£(t) = FE(t) — Grp(k(t), Cx(t) —r(t), £(2)),

k(t) = a(p*®)]ICz(t) — r(®)]?),

z|—no = 20 € C([—h,0],R™), &(s) =€ € RP-D™ Vs e [—h,0].

(5.22)
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By a solution of (5.22) on [—h,w) we mean a function (z,§) € C([—h,w),RP™ x
R-Dm) with 0 < w < 00, z|_pe = z° and &(s) = €° for all s € [—h,0], such
that (z,£)][0,.) is absolutely continuous, satisfies the differential equations in (5.22) for

almost all ¢ € [0,w) and avoids the singularity in « in the sense that

e@|Cx®) —rt)| <1 Vte0w).
To answer affirmatively the question of well-posedness of the closed-loop, we make use
of the existence theory constructed in Section 3.1.

Theorem 5.4.3 Let (A,B,C, f,p,T,h) € ¥, with p > 1 and let p € ®. For every
r € R and (z°,€%) € C([—h,0],RP™ x R@~—1D™)  application of the feedback (5.20)
in conjunction with the filter (5.14) to the system (5.2) yields the initial-value prob-
lem (5.22) which has a solution and every solution can be extended to a mazimal solu-
tion. If a mazimal solution of (5.22) on [—h,w) is bounded and such that the associated

gain function k is also bounded, then w = co.
Proof. Introducing the open set
D= {(t,a:, £) € Ry x RP™ x Re=Dm| ut) [Cz — r(t)]| < 1},
and defining, on D,
7 (62,6) = 7 (el (B)ICz — r@t)]I?), Cx — r(t), ),
the initial-value problem (5.22) may be recast on D as

£(t) = Az(t) + f(p(t), T(Cz)(t), x(t)) — B (¢ z(t), £(2)),
£(t) = FE(t) — Grp(t,2(2), £(1)),

(@,8)l1-n0) = (2°,€°) € C([=h, 0], RF™ x R~1m),
(0,2°(0),£%(0)) € D.

(5.23)

Setting ¢ = (z, £) and defining the Carathéodory function

Z:D x RY — RE-1)m

0

(t.6w) = 2t )= | ¢+ [(’)] F(p(®) w,7) - [g] 70,
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we can rewrite (5.23) as follows
() = 2(t:C), TO®),  Cli-no = ¢° € C(|~h, 0], RE~Dm), (5.24)

where the operator 7', given by (T¢)(t) = (TCz)(t), is of class 7;52;; “Dm+1 \We then
appeal directly to the existence result, Theorem 3.1.1, in Chapter 3 to conclude: (i) the
existence of a solution to (5.23) and (ii) every solution can be extended to a maximal
solution (x,£) € C([—h,o0),R(2*~1)™). Furthermore, if there exists a compact set
K € D such that (t,2(t),£(t)) € K for all t € [0,w), then w = oco.

Clearly, a solution (z,&): [—h,w) — RP™ x RC~1™m of (5.23) is also a solution of (5.22);
conversely, a solution (z,£): [—h,w) — RP™ x R(—1)m of (5.22) is a solution of (5.23).
Therefore, we may conclude that, for each (z0,£0) € R?™ x RP~1™ the initial-value

problem (5.22) has a solution and every solution can be maximally extended.

Let (z,€): [h,w) — RP™ x R(C~1™ be a maximal solution of (5.22). Assume that
(z,€) is bounded and that the gain function t — k(t) = a(¢?(t)||Cz(t) — r(t)||?) is
also bounded. Then there exist ¢ > 0 and € > 0 such that ||(z(t),£())|| < ¢ and
o)||Cx(t) — r(t)]] < 1 —¢ for all t € [0,w). Seeking a contradiction, suppose that
w < 0o. It then follows that

K= {(t,£€) € D| pt)|Cz —r(t)| <1-¢, (£, < c, t€[0,0]}
is a compact subset of D such that (t,z(t),£(t)) € D for all t € [0,w). This contradicts
the last assertion of Theorem 3.1.1, and so w = oo. O
5.5 Preliminary lemmas

Let (A,B,C, f,p,T,h) € £, with p > 2. Rewriting the conjunction of the nonlinear
system (5.2) and the filter (5.14) as

)] _[a o] [=@)] | [1 i B|
[é@)]_ - R 0] 1), (Tw)), “”*H ®, -
10 xz(t)

we have the following technicality.

Lemma 5.5.1 For system (5.25), there exist K € RP™¥(p~—1)m gng N g R(p—1)mxpm
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such that
C 0
L:=|{N =NK GR(Zp—l)m)((2p—1)m
0 I
is invertible and
Ay Ay T
Aol _, b Bl [o o
L0 FL =|As A4 0], LG:G’ [C:0]L™" =[I:0:0],
0O 0 Fr

where T := [['10] € R™*(~Um T .= CA?~'B and A4 € RP-1Dmx(=1)m 5 sych that
spec(A4) C C_..

Proof. The proof follows immediately from Lemma 4.3.1. O
In view of Lemma 5.5.1, there exist K and IV such that, under the coordinate change
t 0 C 0

y(t) 2(t) yo 40
z2(t)| =L e 2’| =L ol L:=|N -NK|, (5.26)
&(t) &0 0o I

the conjunction (5.25) of system (5.2) and filter (5.14) can be represented by

y(t) = Ary(t) + Azz2(t) + Cf(p(t), (Ty) (), =(t)) + T&i(2),
(t) = Asy(t) + Aaz(t) + N f(p(t), (Ty)(1), 2(2),

£(t) = F¢(t) + Gu(t),
(¥, za&)][—h,O] = (yO: z0’§0) € C([—h,O],Rm x Rlp=1m R(p—l)m),

(5.27)

where A4 € R-1mx(p=1)m hag spectrum in C_. If (z,€): [0,w) — RP™ x R(~1)m jg
a maximal solution of the nonlinear closed-loop system (5.22), then, in view of (5.27)

and writing

y(t) = Cz(t),  e(t) =yt)—r(t), elng=e()=1"()—r(0), (5.28)



CHAPTER 5. APPROXIMATE TRACKING II 82

we arrive at the following equivalent to (5.22)

é(t) = Are(t) + A22(t) + f1(t) + Téi (1),

£(t) = Asze(t) + Aqz(t) + f2(t),

£(t) = FE(t) — Gro(k(2), e(t), (1)), ¢ (5.29)
k(t) = a(e(t)lle®)]I?),

(e,2,6)|1-n0) = (€%, 2°,€%) € O([—h, 0], R™ x RP~1Im x Rle=Dm) |

where the functions f; and f; are given by

fi(t) = A1r(t) + Cf(p(t), (Ty)(¢), z(t)) — #(2), }
(5.30)

fa(t) := Asr(t) + N f(p(t), (Ty)(t), z(t)).

Since (p(t)|le(t)|])? < 1 for all ¢ € [0,w), the properties of ¢ € ® yield boundedness
of the function e which, together with boundedness of r, implies boundedness of y.
Since T is of class 7;™ and y is bounded, T’y is essentially bounded. By boundedness
of r, essential boundedness of 7 and p, and Assumption (B4), we may now conclude
(essential) boundedness of the functions f; and f,. Observing that A, is Hurwitz and
f2 is bounded, the second of the differential equations in (5.29) yields boundedness of

z. These observations are recorded in the following lemma.

Lemma 5.5.2 Let (A,B,C, f,p,T\h) € £, with p > 2. Let ¢ € &, 7 € R and
(z°,€0) € C([=h, 0], RP™ x RP=Dm)_ [f (z,€): [~h,w) — RP™ x RC~D™ 45 a mazimal
solution of (5.22), then the functions y, z and e, given by (5.26) and (5.28), are
bounded. Furthermore, the functions fi and fa, given by (5.30), are essentially bounded

and bounded, respectively.

As in Chapter 4, the proofs of the main results (Theorems 5.6.2 and 5.6.1 below) rely
on a further technicality: the signals §; = p!~%; + vi(k,e,m_1€), i = 1,...,p — 1, are
bounded. More precisely, we show the following.

Lemma 5.5.3 Let (A,B,C, f,p,T\h) € £, with p > 2. Let ¢ € &, r € R and
(20,€%) € C([=h, 0], R?™ x RP=1m) If (x,€): [=h,w) — RP™ x RC—1™ 45 o mazimal
solution of (5.22), then the function

= (..., op—])l [O,w) — R(p—1)m
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is bounded, where

0:(t) := pl T &) + vi(K(t), e(t), miaE(t)),  i=1,...,p—1, (5.31)
with the notational convention v,(k,e, mo€) := y1(k, €).

Proof. Assume that (z,€): [—h,w) — R?™ x R(°~1D™ is a maximal solution of (5.22).
Write y(t) and e(t) as described in (5.28). By Lemma 5.5.1, there exists an invertible
linear transformation L under which the closed-loop system (5.22) may be expressed in
the form (5.29), wherein, by Lemma 5.5.2, e and z are bounded and the functions f; and
f2 given by (5.30) are essentially bounded and bounded respectively. By boundedness
of z, essential boundedness of f; and the first of equations (5.29), we may infer the
existence of ¢; > 0 such that

e < (1 + l6(@®)ll) for aa. t € [0,0).

By boundedness of ¢, e, essential boundedness of ¢ and recalling that o/(s) = o?(s) > 1
for all s € [0,1), there exists a constant ¢ > 0 such that

k()] = 20/ (@) Nle@) 1) |[@* ) (e(t), () + @) (®)lle(®) 1|
< cok?(t) (1 + ||&1(@)||)  for a.a. t € [0,w).

Noting that we have arrived at the counterpart of (4.20), boundedness of # follows via
an argument analogous to that found in the proof of Lemma 4.3.3. O

5.6 Main results

5.6.1 Relative degree p > 2 case
We now arrive at the main result of the chapter.

Theorem 5.6.1 Let (A,B,C, f,p,T,h) € £, with p > 2 and let p € ® with associated
performance funnel F,. For each reference signal r € R and initial data (z9,€9) €
C([~h,0],RP™ x R(~1™)  application of the feedback (5.20), in conjunction with the
filter (5.14), to (5.2) yields the initial-value problem (5.22) which has a solution and
every solution can be mazimally extended. Every mazimal solution (z,€): [—h,w) —
RP™ x R(P=D™ phas the properties:

(i) w=oo;

(ii) z, &, k and u are bounded;
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(iii) the tracking error evolves within the funnel F, and is bounded away from the
funnel boundary, i.e. there exists € > 0 such that, for allt > 0, ¢(t)||Cz(t) -
r)<1-e.

Proof. Let (2%, %) be arbitrary. By Theorem 5.4.3, (5.22) has a solution and every
solution can be maximally extended. Let (z,£) be a maximal solution of (5.22) with
interval of existence [—h,w). Writing y(t) = Cx(t), e(t) = y(t) — r(t) for all t € [0,w)
and invoking Lemma 5.5.1, there exists an invertible linear transformation L which
takes (5.22) into the equivalent form (5.29)-(5.30). Introducing 6: [0,w) — R™ given
by (5.31), viz.

01(t) = &1(t) — v(k(t))e(t),

then the first of equations (5.29) yields

&(t) = f3(t) + v(k(t)) Te(t) for aa. t € [0,w), (5.32)

with
fg(t) = Ale(t) + Azz(t) + T, (t) + f1(t).

By Lemmas 5.5.2 and 5.5.3, the functions y, 2, e and § = (6, ...,6,-1), given by (5.31),
are bounded which, together with essential boundedness of f, implies essential bound-
edness of f3. Therefore, there exists c5 > 0 such that

(e(t), é(t)) < cs + v(k(t)) (e(t),Te(t)) for a.a. t € [0,w). (5.33)

We are now in a position to prove boundedness of k. Recalling that I is either positive
definite or negative definite, there exist constants Gy, 51 > 0 such that

Bollell® < (e, Te)| < Bulel® Ve € R™.
Define the continuous function 7: R — R as follows

P(k) = ~bv(k),  s(D)v(k) >0,
~Bov(k), s(T)v(k)<O0.

Observe that
v(k)(e,Te) < —s(T)o(k)|le|? Vee R™ Vk>0,

which, together with boundedness of e, ¢, essential boundedness of ¢ and (5.33), implies
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the existence of cg > 0 such that
%(so(t)lle(t)ll)2 = 20(t)(t)lle(®)]|? + 207 (t) {e(t), &(2))
< ¢ — 28(T) 9(k(2)) (p(®)lle@®)])? for a.a. t € [0,w).

In view of property (5.15) of v, there exists a strictly increasing unbounded sequence
(k;) in (1,00) such that the sequence (s(I")Z(k;)) is also strictly increasing, unbounded
and such that s(T')#(k;) > 0 for all j € N. Seeking a contradiction, suppose k is
unbounded on [0,w). For each j € N, define

7 o= inf{t € [0,0)] k(t) = ki),

oj :==sup{t € [0, 7;]| D(k(t)) = #(k;)}.

It can easily be verified that o; < 7; and k(o) < k(7;); moreover, for all j € N and all
t € [oj, 5], k(t) > k; and s(T")#(k(t)) > s(I')o(k;). Therefore,

(PN 2 a7 (k) 2 a7 k) = 1= = =1er >0 V€ loym] ViEN,
where o~ !: [1,00) — [0, 1) is the inverse of the bijection . Thus,
%@p(t)“e(t)")z < c6 — 2er8(D)o(k(t)) VE€ [o5,75] VjEN.
Let j* € N be sufficiently large so that cg — 2¢78(I")7(kj+) < 0. Then,

(e(ri)le(m))? < (plaj)lle(as)l)?,

whence the contradiction

2) = k(rj+) — k(oj+) > 0.

0> a(p?(7+)le(r) %) — e(p?(aj+)le(ase)]

This proves boundedness of k. Therefore, there exists ¢ > 0 such that (t)|le(t)|| < 1-¢
for all t € [0,w). By boundedness of §, e and k, together with continuity of the functions
i, it follows from the recursive construction in (5.31) that, for ¢ = 1,...,p— 1, & is
bounded. We may now deduce that z and ¢ are bounded and, by (5.16), (5.17), (5.18)
and (5.20), we may also infer boundedness of u. Finally, by boundedness of z, £ and
k, together with Theorem 5.4.3, we conclude that w = co. O
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5.6.2 Relative degree 1 case

For the case of sign-definite CB (of unknown sign), in which case the system has relative
degree 1, a filter is not necessary and the controller (5.20) simplifies to

u(t) = v(k(t))(Cz(t) — r(2)),

(5.34)
k(t) = a(p*@®lICz(t) — r(t)]?) -

The closed-loop initial-value problem then becomes

(t) = Az(t) + Br(k(t))(Cz(t) — r(t)) + f(p(t), T(Cz)(2), 2(2)),
k(t) = a(?(®)Cz(t) — r(®)11%) (5.35)
xl[—h,O} =1l¢ C([—h,O],Rm).

Theorem 5.6.2 Let (A, B,C, f,p,T,h) € £, and ¢ € ® with associated performance
funnel F,,. For each reference signalr € R, and initial data (2%, %) € C([—h,0], RP™ x
RP=1m) " application of the feedback (5.34) to (5.2) yields the initial-value problem
(5.35) which has a solution and every solution can be mazimally extended. Every maz-

imal solution z: [—h,w) — R™ has the properties:
(i) w=o0;
(i) z, k and u are bounded;
(iii) the tracking error evolves within the funnel F, and is bounded away from the

funnel boundary, i.e. there ezists € > 0 such that, for allt > 0, ¢(t)||Cz(t) —
r(t)]| <1—e.

Proof. The proof of Theorem 5.6.2 follows easily by modifying (all vestiges of the
filter equations are excised) the proof of Theorem 5.6.1. a

Remark 5.6.3 In the context of linear systems (see the prototype in Section 5.3.1)
with sign-definite CB of known sign, the counterpart of the above result was proved
in [26]; the general case wherein CB is of unknown sign was then considered in Chap-
ter 4. The nonlinear nature of systems in the class ¥, ensures that the above result
constitutes a generalization of the results in [26] and Chapter 4.

5.7 Examples

To allow for comparison with the simulations in Chapter 4, we illustrate the controller

strategy (5.20) applied to the following single-input, single-output, system of relative
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degree two:
§(t) + bosiny(t) + by (t)|y(t)] + (Ba,o(y))(t) = b2 u(t) (5.36)

where bp, by and by # 0 are unknown real parameters and B, represents a backlash
operator, as defined in Section 2.2, with parameters @ > 0 and b € [—a,a]. In the
absence of the nonlinearities, y|y| and B,;, the equation above is the same as the
example in Chapter 4. Equation (5.36) is equivalent to (5.2) with

_ | {01 1o . o
x(t)_[ﬂ(t)]’ A_[o 0]’ b= bz]’ c_[1.o], f(p’w’x)_[q]w

and the operator T given by (T'y)(t) = bosiny(t) + biy(t)|y(t)| + (Bap(v))(t), t € Ry
Setting h = 0 and p = 0, the resulting system (4, B, C, f,0,T,0) is of class Za.

Let A > 0. Fix 7 > 0 arbitrarily and define ¢ € ® by

t'—*w(t)={

Evolution within the associated performance funnel F, ensures a tracking accuracy

— (L —1)2 -
(1-(t-1)2), 0<t<r i~

Sl >

, t>T.

le(t)] < A for all t > 7. To accommodate the unknown sign of b, choose v: k — kcosk,
then, choosing £° = 0, writing e(t) = y(t) — r(t) and suppressing the argument ¢ for
simplicity, the control strategy (5.21) is

u = p(kcosk)e — p[(cosk — ksink)? e? + k% cos® k] k* [1 + €26,
k=[1—¢%?™", 0=¢— (kcosk)e, (5.38)
E=—pé+y,  £0)=0.

Example (i) For comparison with Chapter 4, let A = 0.1 and 7 = 10, so that
the prescribed tracking accuracy is again e(t) < 0.1 for all ¢ > 10. Setting b = %,
b1 =1 = b, p = 1 and adopting backlash hysteresis parameters a = %, b = 0, initial
data (y(0),9(0)) = (0,0) and reference signal ¢ — r(t) = 1 cost, the behaviour of the
closed-loop system (5.36)—(5.38) over the time interval [0, 20] is depicted in Figure 5-3.
The “peaks” in the control action occur whenever the tracking error is close to the
boundary of the funnel. However, if b # 0 is known a priori to be positive, then the
peaking behaviour is considerably mollified by choosing the function v: k& — —k in
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place of k — kcosk, in which case the strategy is

u = —ke — [¢ + ke][e? + k2] k*[1 + €7],
k=[1—¢22] 7, (5.39)
£ =—t+u, £(0) =o.
For the same parameter values and initial data as above, the behaviour (5.36), under
control (5.39), is shown in Figure 5-4.

Example (ii) To illustrate the diversity offered by the reference signal class R, we
take the reference to be tracked, r € R, to be the first component, (i, of the solution
of the following Lorenz system of equations:

z(t) = y(t)— (), z(0) =1,
y(t) = () — wpy(t) —=@)z(t), y(0)=0, (5.40)
2t) = z)yt) — =), 2(0) = 3.

It is well known that the unique global solution of (5.40) is bounded with bounded
derivative, see for example [65]. Let A = 0.05 and 7 = 25, so prescribed tracking
accuracy |e(t)| < 0.05 is achieved for all t > 25. Setting the filter coefficient to be pu =
10, whilst maintaining the values by = %, b1 = 1 = bg, backlash hysteresis parameters
a = %, b= 0 and initial data (y(0), §(0)) = (0,0) from Example (i), the behaviour of the
closed-loop system (5.36)-(5.38) over the time interval [0, 50] is depicted in Figure 5-5.
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1
0
1
(a) The funnel and tracking error e
1
0
1
0 20
(b) The reference r and output y
35
(¢) The function &
-15

(d) The control u

89

Figure 5-3: Unknown sign 62 7°0: control (5.38) applied to the nonlinear system (5.36).
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(a) The funnel and tracking error e

(b) The reference r and output y

35

(¢) The function &

(d) The control u

Figure 5-4: Known sign 62 > 0; control (5.39) applied to the nonlinear system (5.36).
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1
0
1
(a) The funnel and tracking error e
1
0
1
0 50
(b) The reference r and output y
35
*(w)
(¢) The function k
-15

(d) The control u

Figure 5-5: Tracking of a Lorenz component reference signal; system (5.36) with un-
known sign 62 70 and control strategy (5.39).



Chapter 6

Asymptotic tracking and

transient behaviour

A tracking problem is considered in this chapter in the context of a class of multi-
input, multi-output, nonlinear systems modelled by functional differential equations.
The key feature that distinguishes the current chapter (and Chapter 7 to follow) from
Chapters 4 and 5 is the consideration of asymptotic tracking in addition to approximate

tracking.

6.1 Introduction

In the precursors [26], Chapter 4 and Chapter 5 to the present chapter, an approrimate
tracking problem is addressed for various classes of systems. Let S be some given
system class and let R be a class of reference signals. As described in Chapter 1, by
approximate tracking, we mean attainment of the following: for any prescribed A > 0,
determine a continuous output (y) feedback strategy which ensures that, for every
system in S and every reference signal r € R, (i) the tracking error e = y—r is ultimately
contained in the ball of radius A centred at 0 (equivalently, limsup,_, |le(t)|| < A),
and (ii) the tracking error exhibits prescribed transient behaviour (that is, for some
suitable prescribed function ¢ with 0 < liminf;_,o () < 00, we have |le(t)|| < 1/¢(t)
for all ¢ > 0).

The results in this chapter encompass not only approximate tracking but also the
problem of asymptotic tracking with prescribed transient behaviour: in this case, an
output feedback strategy (possibly discontinuous) is sought which ensures that, for
every system of class S, every reference signal » € R and some suitable prescribed
function ¢, with p(t) — oo as t — oo, we have |le(t)|| < 1/p(t) for all ¢ > 0 (and so

92
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e(t) — 0 as t — 00). Both cases (approximate and asymptotic tracking) are analysed
within a unified framework of functional differential inclusions.

The focus of this chapter will be nonlinear systems (akin to those considered in [26]),
with control input «, modelled by functional differential equations of the form

§(t) = f(d@), (Ty)(®),u(®)), Yl-no =¥° € C([~h,0,R™), (6.1)

where f is continuous, T is a causal operator, d may be thought of as a continuous
and bounded disturbance, and & > 0 quantifies the “memory” of the system. As in
[26, 27, 28], the class R of reference signals is taken to be the space W1 (R ,R™).

This chapter is structured as follows. Section 6.2 formulates the control objectives
and, in Section 6.3, a full description of the system class S is provided. Section 6.5
details the feedback structure, the potentially discontinuous nature of which leads to an
interpretation of the closed-loop system in the form of a functional differential inclusion.
The existence theory developed in Chapter 3 for functional differential inclusions will
be applied to the closed-loop system in Section 6.5.3. The main results of this Chapter
on transient behaviour and asymptotic tracking for the closed-loop system are given in
Section 6.6. This Chapter is based on joint work in [58].

6.2 Control objectives and the performance funnel

To accommodate asymptotic tracking, the control aims in this chapter differ from those
introduced in Chapters 4 and 5. The two control objectives are:

(i) tracking of any reference signal r € R := W1 ®(R4,R™) by the output y. For
arbitrary A > 0, we seek an output feedback strategy which ensures that, for every
r € R, every solution of the closed-loop system is bounded and the tracking error
e = y — r is such that limsup,_, |le(t)|| < A if A > 0 or limy_.o fle(t)|| = O if
A=0;

(ii) prescribed transient behaviour of the tracking error.

As before, both objectives are captured in the concept of a performance funnel F,
associated, in this chapter, with a function ¢ belonging to ®,, viz.

D)= {90 € AO]OC(R+!]R) | 90(0) =0, (p(s) >0 Vs> 01 liﬂ&lf(ﬂ(s) = 1/’\,

Fe>0: ¢(s) <cll +¢(s)] for aa. s> 0},
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with the convention that, if A = 0, then 1/) := oo (and so ¢(t) — oo as t — 00).

If a feedback structure can be devised which ensures that, for every system of the
underlying class and every r € R, the graph of the tracking error e = y — r is properly
contained in F, then: (i) |le(t)|| < 1/¢(t) for all t € R,; (ii) transient behaviour is
determined by the choice of . A critical point to note in this chapter is that the case
A = 0 implies that ¢(t) — oo as t — oo, thereby ensuring the exact asymptotic tracking
objective.

The intuition underpinning the feedback structure proposed in Section 6.5 matches
that of the previous chapters, though a filter is not required. An intrinsic high-gain
property of the system class ensures that, if (¢, e(t)) approaches the funnel boundary,
then the control input attains values sufficiently large to preclude boundary contact.

6.3 Class of systems
Fix m € N arbitrarily. We now define the system class.

Definition 6.3.1 (System class S)
The class S is comprised of multi-input (u(t) € R™), multi-output (y(t) € R™), non-
linear systems (f,d, T, h) of the form (6.1), satisfying the following assumptions.

(S1) The function f: RP x R? x R™ — R™ is continuous.
(S2) For each compact set K C RP x RY, the continuous function yc: R — R, given by
7/C(s) = min {('U, f(lawa SU))' (law) ek, “’UH = 1}’ (62)

is such that either (i) limsup,_,. vk (8) = 0o, or (i) limsup,_, ., Yk (8) = oo.

(S3) d € C(R4,RP) is bounded.

(84) T: C(|—h,0),R™) — L2 (R4, R?) is of class T,™ (see the definition and discus-
sion in Chapter 2).

6.4 Subclasses of S

We highlight several subclasses of S.
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6.4.1 Linear prototype

A system (6.1) of class S, like (5.2) in Chapter 5 (see Remark 5.2.2), can be thought of
as an interconnection of two (sub) systems: the dynamical system A; and the system
As, formulated as a causal operator mapping the system output y to w, see Figure 6-1.

Ao: w=Ty

Figure 6-1: System of class S.

To illustrate this more clearly, consider the prototype class £ of finite-dimensional,
minimum-phase, multi-input (u(t)), multi-output (y(t)) linear systems (A, B, C) with
sign-definite high-frequency gain.

It was shown in Section 2.2.1 that, following an appropriate similarity transform, every
system described by (A4, B,C) € L could be rewritten in the form

g(t) = d(t) + (Ty)(t) + CBu(t), y(0) =1y’ €R™, (6.3)

where the function d and operator T were given by

d(t)
(Ty)(t)

Clearly, (6.3) is of the form (6.1) with . =0 and f: R™ x R™ x R™ — R™, (I,w,v)
l + w + CBv. Evidently, Assumption (S1) holds. Recalling that A4 is Hurwitz, we
see that (S3) and (S4) (with A = 0) are valid. It remains to show that (S2) also
holds. Recall that CB is sign definite and so either (i) CB > 0, or (ii) —CB > 0. Let
K c R™ x R™ be compact and define

(6.4)

Az(exp(A4t))z0 }
Aqy(t) + Ay fot (exp A4t - s)) Asy(s)ds.

e = min{(v,l +w) | (l,w) € K, ||v|] =1}.
Now, observe that

CB>0 = min{(v,CBv)| |v||=1}=3|(CB+(CB)T)7}|!
—~CB>0 = min{{v,CBv)| |v||=1}=—-3||CB+ (CB)T|
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Therefore,

(i) CB>0, s>0 => yx(s) > cc + 3s||(CB + (CB)T)7!||71, so (S2)(i) holds,
(i) —CB >0, <0 = ~x(s) > cx — 3s||CB + (CB)T||, so (S2)(ii) holds.
Systems with input nonlinearity

To illustrate the generality afforded by Assumption (S2), consider a single-input, single-
output (m = 1) system described by (4, B,C) € £ with a nonlinearity g in the input

channel
y(t) = Ary(t) + A22(t) + Bg(u(t)), y(0) =1y° (6.5)
2(t) = Asy(t) + Agz(t), z(0) = 20,

where 8 := CB is now a non-zero real number. We assume only that g: R — R

is a continuous unbounded function with bounded even part, for example, g: v +—
(14 v) cosv. Such a function can influence/reverse the polarity of an input signal u(-)
in a manner unpredictable by a controller. Defining d and T as in (6.4), system (6.5)
can be expressed as

y(t) = d(t) + (Ty)(t) + Bg(u(t)), y(0) =3° R,

which again is of form (6.1). Assumptions (S1), (S3) and (S4) clearly hold. Define
go and ge to be the odd and even parts, respectively, of the function Bg. To see
that (S2) holds, let £ C R x R be compact, define cx as above, and observe that, since
vgo(8V) = go(8) for all |v| =1 and all s € R, we have

Y(s) = min{v(l + w + ge(sv))| (I,w) € K, |[v] =1} + go(s)
2 cx — |ge(s)| + go(s) Vs. (6.6)

Since the function g, is odd and unbounded, there must exist an unbounded monotone
sequence (s,) (either strictly increasing or strictly decreasing) such that g,(s,) — 00
as n — oo which, together with boundedness of g. and (6.6), ensures yx(sp) — 00 as

n — oQ.

6.4.2 Nonlinear systems

Now consider a further generalization of systems of form (6.5) to nonlinear systems of
the form

90 = A, 2(0) + 9(u®), ¥(0)=4° R .
26) = oly(®), 2(0), 2(0) = 0 R, |
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with f; continuous, f locally Lipschitz, and (as above) g continuous and unbounded
with bounded even part (here, the parameter 3 is absorbed by g). Temporarily re-
garding y as an independent input to the second subsystem in (6.7), denote the unique
solution of the initial-value problem # = fo(y, ), 2(0) = 29, by 2(-, 2% y). If we now
assume that the second subsystem in (6.7) is input-to-state stable (ISS) (recall the
commentary in Section 2.2.2 or see [60]), then, for each 20 € RP, we may define an
operator C(R4,R) —» C(R4,R x RP) by

(Ty)(t) = (y(t), 2(t,2°,y)) VteR,.

This operator T is of class 7' (Assumption (S4) holds with A = 0, m = 1 and q¢ = p+1).
System (6.7) may be expressed as functional differential equation

J(t) = A((Ty)(E)) + g(u(t)), y(0) =1°,

which is of the form (6.1) with A = 0 and f: (z,w,v) — fi(w) + g(v). Evidently,
Assumption (S1) holds, Assumption (S3) is vacuous, and Assumption (S2) holds by
the same argument used in Section 6.4.1.

Remark 6.4.1 Recall that the class of operators 7, also accommodates a wide
range of nonlinear effects such as delays and hysteresis; see Chapter 2 for details and
also [25], [4], [40] for more background information.

6.5 Feedback control

We proceed to make precise the proposed output feedback structure. Let A > 0 and
w € ®). Let v: R — R be any continuous function with the properties
limsupv(k) = +oo and liminfur(k) = —oo, (6.8)
k—oo k—o0

for example, v: k + kcosk. Let a: [0,1) — R4 be a continuous, unbounded injection,

for example, a: s — s/(1 — s). Define

1
W= 2supyeg, o(t)’
0, otherwise.

if  is bounded,

If o > 0, let sat,: R™ — B := {v € R™| [[v]| < 1} be any continuous function with
the property that sat,(e) = ||e||~e for all ||e|| > g, in which case the control strategy
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takes the form

u(t) = —v(k(t))saty(y(t) — r(2)), }
k(t) = alp(t)lly(t) — r(t)]).

In the case p = 0, the control strategy is given formally by

u(t) = —v(k(®)ly(t) — r®)] = (w(t) — (), }
(6.9)

k(t) = ale®lly(t) — r@))-

We accommodate each case and the (potential) discontinuity in (6.9) by embedding
the control in a set-valued map 6, defined as follows:

0.(0) {ellell ™'}, i lel > p,
u\€) =
B, i el < w

and interpret both control strategies in the following unified, set-valued sense:

u(t) € —v(k(t)0u(y(t) — (1)), } (6.10)

k(t) = ale@®y() — @)

If, for a given linear system (A, B, C) of prototype class £, the polarity sgn(CB) of the
sign-definite high-frequency gain is known a priori, then the term v(k(t)) in (6.10) can
be replaced by k(t)sgn(CB).

6.5.1 Closed-loop system

Let A>0, p€ @), r € R and let D C Ry x R™ denote the set

{(t,¢Q) eRy xR™ | o()]|¢ —r(@)]| < 1}- (6.11)

Let (f,d,T,h) € S. The conjunction of (6.1) with (6.10) yields the following closed-loop
initial-value problem

y(t) € F(¢, y(t)a (Ty)(t))’ y|[—h,0] = yO € C([—ha O]aRm)a (612)

where the set-valued map (¢,y, w) — F(t,y,w) C R™, given by

F(t,y,w) = {f(d(t), w,u) | v € —v(alp(t)lly — r®)]))0uly — r(t)}, (6.13)
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is upper semicontinuous on D x R? with non-empty, convex, compact values. By a
solution of (6.12) we mean a function y € C(I,R™) on some interval I of the form
[~h,pl, 0 < p < o0 or [~h,w), 0 < w < oo, such that y|_po = 3°, y|s is locally
absolutely continuous, with (t,y(t)) € D for all t € J and §(t) € F(t,y(t), (Ty)(t)) for
almost all t € J, where J := I'\[—h,0). We will demonstrate that the control objectives
are achieved by establishing the following facts: (i) the initial-value problem (6.12) has
a solution; (ii) every solution can be extended to a maximal solution; (iii) every maximal
solution is global. In Theorem 6.5.1, it will be shown that facts (i) and (ii) hold and the
proof will rely on the existence theory (Theorem 3.2.1) developed in Section 3.2; fact
(iii) is the essence of the main result in Theorem 6.6.1. Before proceeding to establish
these facts, some commentary on the case A = 0 is warranted.

6.5.2 Commentary on the asymptotic tracking problem

Assume XA = 0, in which case we have u = 0, and so the associated formal control
structure (6.9) is potentially discontinuous. However, we remark that this need not
always be the case. For example, with the choices

v:kw— kcos(ck) and a:s— is’

where ¢ > 0, the feedback (6.9) is, in fact, continuous on the domain D, viz.
u(t) = ¥(t, y(t) — r(t)), (6.14)

with ¢ € C(D,R™) given by

— o)<l p(t)¢
) = -eoo (2 0080) () veoen @9

and so the map F' in (6.12) is singleton valued.

Example (i). Consider a single-input, single-output system (6.7) of the nonlinear
prototype class, with fi, f2: R = R and g: R — R given by

fily,z) = zsiny, foly,2) = —2le|+y, glu)=u'/ (6.16)
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As reference signal r € R, we take the first component r = {; of the (chaotic) solution
of the following Lorenz system of equations.

Gi(t) = (1/2)¢(t) - G(t), €1(0) =1,
$a(t) = (28/5)C1(t) — (1/10)¢a(t) — 2G1(H)Ca (), ¢2(0) =0, (6.17)
Ga(t) = 2G(t)¢a(t) — (8/30)Ca(t), ¢:(0) = 3.

Recall that the unique global solution of (6.17) is bounded with bounded derivative
(see for example [65]). Adopting control parameters ¢ = 1/4 and ¢: t — 2t, Figures 6-
2(a)-(c) depict the behaviour of the closed-loop system with zero initial state.

Example (ii). To further illustrate the controller strategy (6.9) we simulate a discon-
tinuous feedback strategy in this section for a nonlinear system with R2-valued input
u as follows:

J(t) = [”11 '

1

1

v+ [(1) ﬂ u(®) + v (o)l + [1

1] [(Ba,b(m))(t) + (Ba’b(yz))(t)] ,

(6.18)
where B, , represents a backlash operator (for details, see Section 2.2.4) with parameter

a= % and initial condition & = 0. Set

(Ty)(t) =

1] y+y@®ly®ll + H [(Bos@)® + (Bas@))®)], 20,
then, writing

dwu) =i |
f( 1wau)_w+ 0 1 u,

system (6.18) can be put in the form (6.1), with h = 0. The funnel is specified by the
smooth function t — ¢(t) = 2t which is such that ¢ € ®, and a tracking accuracy
lle@®)|l < 1/(2t) for all t € [0,w) is assured. Choosing v: & +— k cos k to accommodate for
the unknown direction of the control, writing e(t) = y(t)—r(t), setting a(s) = (1—s?)~!
and suppressing the argument t for simplicity, a possible control strategy is

u = —kcos(k)|le|| e,
e ) o)

For initial data (¥1(0),y2(0)) = (1/2,—1/2) and reference signals t +— 71(t) = sin2t
and t — ra(t) = cos2t, the behaviour of the system (6.18)—(6.19) over the time interval
[0,10] is depicted in Figures 6-3(a)-(c).
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1.5

1.5

(a) The funnel and tracking error e

1.5

1.5

(b) The reference signal » and output y

(¢) The control u

Figure 6-2: Illustration of the continuous control strategy (6.14)-(6.15).
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(a) The funnel and tracking error components el and ez

(b) The reference and output signals, n, r2, 31 and 32

(¢) The gain function k

Figure 6-3: Behaviour of the system (6.18)—6.19), tracking r\(?) = sin2£ and r2(?) =
cos2£.
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There are, of course, practical issues of synthesis of the control strategy (6.14)—(6.15).
Whilst later analysis (see the main result, Theorem 6.6.1) will establish the fact that
lim sup,_, o ¢(t)|ly(t) — r(t)|| < 1, and so boundedness of the control function u is as-
sured, practical computation of u(t) for large t may encounter numerical ill-conditioning
insofar as it involves the product of “large” and “small” quantities (since ¢(t) — oo
and |ly(t) — r(t)]| — 0 as t — o). These practical issues are not addressed here (the
purpose of this work is to highlight those performance characteristics that are attain-
able in principle): however, we remark that the ill-conditioning associated with the
case 4 = 0 may be circumvented (at the expense of some degradation in performance)
on setting A > 0 and replacing unbounded ¢ by a bounded function ¢ € @, with
lim inf;cgr, @(t) = 1/A, in which case, the guaranteed performance is weakened to that
of approximate tracking, as quantified by limsup,_,, [|y(t) — r(t)|| < A

6.5.3 Existence of solutions

Here, we will make use of the existence theory developed (with sufficient generality to
encompass (6.12)) in Chapter 3.

Theorem 6.5.1 Let (f,d,T,h) € S, A\ > 0 and ¢ € ®5. Then, for every reference
signal r € R and all initial data y° € C([—h,0],R™), application of the feedback (6.10)
to the system (6.1) yields the initial-value problem (6.12) which has a solution and
every solution can be extended to a mazimal solution y: [-h,w) — R™, 0 < w < oo.
Furthermore, if y: [—h,w) — R™ is a mazimal solution and there exist o > 0 and a
compact K C D such that (t,y(t)) € K for all t € [o,w), then w = co.

Proof. We identify the initial-value problem (6.12)-(6.13) as a particular case of (3.8)
(with G = F, to = 0 and D given by (6.11)):

y(t) € F(ta y(t)a (Ty)(t))a yl[—h,,D] = yO € C([—hs O]a ]Rm)a (01 yO(O)) €D, (620)

where

F(t,y,w) = {f(d(t), w,u) |u € —v(alp®)lly — r(®)IN)0u(y — r())}-

An application of Theorem 3.2.1 completes the proof. O
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6.6 Main result

We now arrive at the main result, statement (ii) of which asserts that the output of the
closed-loop system evolves within the performance funnel and is bounded away from
the funnel boundary.

Theorem 6.6.1 Let (f,d,T,h) € S, A > 0 and ¢ € ®). Then, for every reference
signal r € R and all initial data y° € C([—h,0],R™), application of the feedback (6.10)
to the system (6.1) yields the closed-loop initial-value problem (6.12)—(6.13) which has
a solution and each solution can be extended to a mazimal solution y: [—h,w) — R™.
Every mazimal solution y: [—h,w) — R™ has the properties:

(i) w= oo,

(ii) super, ()lly(E) —r@)] <1,

(iii) the function k: t — a(p(t)|y(t) — r(t)|) is bounded,

Remark 6.6.2 The conjunction of Assertions (i) and (ii) ensures that both control
objectives are attained. Assertion (iii) implies boundedness of the control. In the case
where (t) — oo ast — oo, Assertion (ii) implies asymptotic tracking: ||y(t)—r(t)|| — 0
as t — oo, that is, asymptotic tracking is assured.

Proof. Let r € R and 4° € C(|-h,0],R™). By Theorem 6.5.1, the closed-loop
inital-value problem (6.12)—(6.13) has a solution and every solution can be maximally
extended. Let y: [~h,w) — R™ be a maximal solution of (6.12). Defining e(t) =
y(t) — r(t) for all t € [0,w), we have

é(t) +7(t) € F(t,e(t) +r(t),(Ty)(t)) for a.a. t € [0,w). (6.21)

Since (t,y(t)) € D for all t € [0,w), it follows that (t)|le(t)|| < 1 for all t € [0,w). By
properties of ¢ € ), we may infer boundedness of the function e. Furthermore, since
r € R is bounded, we may conclude that y is bounded. Invoking Assumptions (S3) and
(S4) (in particular, property (iv) of the operator class 7,), we deduce the existence
of a non-empty, compact set K C RP x R? such that (d(t), (T'y)(t)) € K for almost all
t € [0,w). With this set, we associate the function vk, defined as in (6.2). Writing

Li={te[0,w)|lle®)]>p} and k() :=alp®)lle®)l) Vie0,w),
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we have

teX = (e(t), f(d(t), (Ty)(t), —v(k(t))lle(t)|| " e(t)))
< —lle@®l min{(u, f(v,w,v(k(t))w)) | (v,w) €K, |jull =1}
= =lle(®)llnc(v(k(2))). (6-22)

Noting that
teX = F(te(t)+r(),(Ty)) = {£(dt), (Ty)(t), —v(k())lle@®)]| " e(t) },
we may infer from (6.22) that
(e(t),v) < —vec(@k@)lle@®)| ¥ ve F(tet)+r(t),(Ty)t)) Yte.
Therefore, by (6.21) and essential boundedness of #, there exists co > 0 such that
(e(t), (1) < [co — wc(Wk®ON)]lle@®)|| for aa. t € =. (6.23)

By Assumption (S2), either (i) limsup,_, . 7x(8) = oo, or (ii) limsup,_,_,, 7c(s) =
00. Therefore, there exists an unbounded sequence (s,) C R, which is either strictly
increasing (in case (i)) or strictly decreasing (in case (ii)), such that the sequence
(7k(sn)) is unbounded and strictly increasing, with yx(s,) > 0 for all n € N. By
properties (6.8) and continuity of v, for every a, b € R the set {k > a| v(x) = b} is non-
empty. Let k1 € {x > a(})| v(k) = s1} be arbitrary and define the strictly-increasing
unbounded sequence (k) in (a(}),00) by the recursion kny1 := inf{x > k| v(x) =
sn+1}, and 50 k(¥ (kn)) = 7k (sn) — 00 as n — oo

‘We proceed to prove boundedness of k. Seeking a contradiction, suppose & is unbounded
(in which case, im(k) = im(a) = [«(0), 00)). For each n € N, define

Tp = inf{t € [0,w)| k(t) = kn+1},
on i=sup{t € [0, ]| (W (k(t))) = vk (v(kn))}-

We briefly digress to assemble some facts.

Proposition 6.6.3
(8) on <™ VneN.
(b) k(on) < k() VneN.
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(c) k(t) > kn Vi€|on,m VREN.
(d) v (w(k(t))) > v (v(kn)) >0 VteE|[on,m YneN

(€) [on, ™) C X for alln € N.

Proof.
(a) Suppese, for contradiction, that ¢, = 7, for some n € N. Then,

Y ($nt1) = Y (V(kni1)) = M (v(k(m))) = 1c(v(k(0n))) = 1 (¥ (ka)) = 1K (30),

which contradicts strict monotonicity of the sequence (yx(sn)).

(b) Suppose, for contradiction, that k(on) > k() = kn+1 for some n € N. Then, since
k(0) = a(0) < a(1/2) < knt1, there exists s < 0, < 7, such that k(s) = kn41, whence
the contradiction: 7, = inf{t € [0,w)| k(t) = kn41} < 5 < Tn.

(c) Suppose, for contradiction, that, for some n € N and t € [0y, 7], k(t) < kn. Then,
since k(7n) = kn41, there exists s € (oy, 7»] such that k(s) = k. Invoking the definition
of o, we arrive at a contradiction: o, < s < op.

(d) Suppose, for contradiction, that, for some n € N and t € [on, ], 7c(V(k(t))) <
Yk(v(kn)). Since

’YKZ(V(kn)) = '7)C(sn) < 7IC(3n+l) = 7K(V(kn+l>) = 'WC(V(k(Tn))),

it follows that, for some s € (on, ™), V(¥ (k(8))) = Y (v(kn)), which contradicts the
definition of oy,.

(e) Suppose, for contradiction, that, for some n € N, there exists t € [0y, 7] such that
t ¢ 3, then |le(t)|| < p. Note that a(0) < a(1) and, if 4 > 0, then a(up(t)) < a(d).

Therefore, we arrive at a contradiction.
a(3) < kn < k(t) = ap(t)lle®)]]) < a(3)-
0

We now return to the proof of Theorem 6.6.1. From assertions (c) and (d) of Proposition
6.6.3, we may infer that

1< o k) < a1 (k(E) = p@)le®)] <1 Vi€ o] VneN, (6.24)
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where o !: [@(0),00) — [0,1) is the inverse of the bijection a: [0,1) — im(a), and
—2¢°(t)lle®) (v (k) < —pt)1c@(k(?)) Vi€ [on, ] YneEN.  (6.25)

By properties of ¢ € ®,, there exists ¢; > 0 such that ¢(t) < ¢l + ¢(t)] for almost
all t which, together with (6.23), yields, for almost all t € T,

2 [o@)llel]* = 20()6() le(e) I + 2622 (e(t), £(0)
< 261 O+ Ot + 20°(E)le(t) (c0 — MW (k(2)))-

Invoking (6.24), (6.25) and boundedness of e, we may conclude the existence of c3 > 0
such that

%[(p(t)ﬂe(t)”]Z < o(t) [C2 —vc(v(k(@))] foraa. t€on, ™| VneN.  (6.26)

Fix n € N sufficiently large so that ¢z — yc(v(ks)) < 0. Recalling that yc(v(k(t))) >
Yk (v(ky)) for all ¢ € [op, 7], we have

2 lelle®I? <0 for a. t € fon, ]
and so ¢(7a)|le(Tn)]| < ¢(on)|le(on)||. Therefore,

k(tn) = a(p(m)lle(m)ll) < a(e(on)lle(an)l) = k(on),

which contradicts assertion (b) of Proposition 6.6.3. This proves boundedness of k (and
sovok:t— v(a(p®)|y(t) —r(t)|)) is also bounded). By boundedness of t — k(t) =
a(p)]le®)l)), it follows that sup,ejo..) p(t)||ly(t) — r(t)|| < 1, equivalently, there exists
e € (0,1) such that (t)||y(t) —r®)]| < 1 —¢ for all t € [0,w).

Finally, we show that w = oo. By boundedness of y, there exists ¢ > 0 such that
ly(®)|l < c3 for all t € [0,w). Suppose w < co. Then

K:={(t,v) €Ry xR™| p(t)[[v~r(t)| < 1—¢, |[v]l < cs, t € [0,w]}

is a compact subset of D with the property (¢,y(t)) € K for all t € [0,w), which
contradicts assertion (iii) of Theorem 3.2.1. Therefore, w = co. This completes the

proof. O
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6.7 Comparisons with an internal model approach

In [70, Page 210], the internal model principle loosely states that every “good” regulator
must incorporate a model of the outside world (in the sense that the feedback loop
incorporates a suitably reduplicated model of the dynamic structure of the exogenous
signals which the closed-loop system is required to track). Revisiting the commentary
from Section 1.7.2, in the context of linear systems with linear regulators, “good” means
“structurally stable” (see [70, 67]) and “good” amounts to a “signal detection” property
in a more general context of smooth nonlinear systems (see, [62]). The absence of an
internal model in the feedback structure proposed in this chapter leads us to conclude
that the closed-loop system of Section 6.5.1 lacks robustness in some sense.

The perceived lack of robustness in the control strategy may stem from the potential
singularity introduced via the injection « in the closed loop or from the unbounded
nature of the funnel function ¢. It is not unreasonable to expect that the adoption
of a bounded function ¢ (with attendant reduction in performance from asymptotic
to approximate tracking) might induce some robustness in the closed loop. However,
in the absence of a rigorous robustness analysis, the results in this chapter are mainly
of a theoretical nature, serving to illustrate those performance characteristics that are
attainable, in principle, under weak assumptions on the plant data.



Chapter 7

Asymptotic tracking for systems

with input hysteresis

In Chapter 6, a large class of multi-input, multi-output nonlinear systems was investi-
gated with two control objectives, namely asymptotic tracking and prescribed transient
behaviour. The generality afforded by Assumption (S2) of the system class S, allowing
for input nonlinearities that could affect the polarity of the input signal in a manner
unpredictable by a controller, was discussed in Section 6.4.1. In the current chapter,
a class of single-input, single-output systems is considered which allows for hysteretic

effects in the input channel.

7.1 Introduction

In [22], single-input, single-output nonlinear systems of the form

y(t) = f((t), Ty)(t) + B (2u)(t),  Yl-n0 =3° € C([~h, 0, R) (7.1)

are examined, where f € C(R x R, R) is assumed to be locally Lipschitz in its second
argument, p € L*°(R,,R) is a perturbation, T is a causal operator, h > 0 quantifies
the memory of the system, 8 € R is a non-zero real parameter and @ is a hysteresis
operator. The control objectives are approximate tracking and prescribed transient
behaviour. In the present chapter, we combine the ideas of Chapter 6 and [22] by
applying a variant of the controller studied in Chapter 6 to a system of the form (7.1).
The aim will be to ensure asymptotic tracking with prescribed transient performance.

Hysteresis in systems and control has recently received considerable attention in a va-
riety of applications, see for example the control of hysteresis in smart actuators in [66)

109
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and tracking control using piezoceramic actuators in [18], for example. Systems subject
to input hysteresis are considered in [40] and [42] as well as [22], the inspiration for this

chapter.

We consider single-input, single-output, nonlinear systems, modelled by functional dif-
ferential equations of the form (7.1), where 3 and h are as before, p € L*®(R;,R™),
T € T;! and f € C(R™ x R?,R) is locally Lipschitz in its second argument. The class
of reference signals to be tracked is given by R := WL (R4, R).

This chapter is structured as follows. In Section 7.2, the control objectives are detailed
and a full description of the system class (and several subclasses) is provided in Sec-
tion 7.3. The feedback control strategy and resulting closed-loop system are given in
Section 7.4 and an example can be found in Section 7.4.2. Finally, after the develop-
ment of a suitable existence theory in Section 7.4.3, the main result of the chapter can

be found in Section 7.5.

7.2 Control objectives and the performance funnel

The two control objectives considered here match the aims of Chapter 6 (in the single-

input, single-output case):

(i) tracking of any reference signal r € R by the output y. For arbitrary A > 0,
we seek an output feedback strategy which ensures that, for every r € R, the
closed-loop system has bounded solution and the tracking error e = y — r is such
that limsup,_, o, [le(t)|| < A if A > 0 or lim;_q |le(t)|| = 0 if A = 0;

(ii) prescribed transient behaviour of the tracking error.

Both objectives are again captured in the concept of a performance funnel
Fo={(t,e) € Ry x RI o(t) el < 1}
associated with a function ¢ belonging to ®,, introduced in Section 1.3, viz.
2= {9 € ACic®+,R+) | 9(0) =0, ¢(s) >0 Vs >0, liminfp(s) > 1/,
Je>0: @(s) <[l + p(s)] for a.a. s> 0},

with the convention that, if A = 0, then 1/\ := oo, in which case ¢ is unbounded and
¢(t) — oo as t — oo. The case A = 0 is of particular interest since, in this situation,
evolution within the funnel would imply that e(t) — 0 as t — oo and so an asymptotic
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tracking objective is attained.

The aim, as in previous chapters, will be to devise a feedback structure which ensures
that, for every system of the underlying class and every reference signal r € R, the
graph of the tracking error e = y — r is properly contained in F,, in the sense that
supyegr, ©(t)]e(t)] < 1 then the tracking objective (i) is attained and (ii) prescribed
transient behaviour is dictated by the choice of ¢.

7.3 Class of systems

7.3.1 Input hysteresis class

Recall the definition of a causal, rate-independent hysteresis operator (see Defini-
tion 2.2.3). We make precise the class of hysteresis operators that will be considered
in the input channel.

Definition 7.3.1 (Class O of hysteresis operators)
A causal and rate-independent operator ®: C(Ry,R) — C(R4,R) is said to be of class
O if the following hold.

(i) There exists co > 0 such that, for allt > 0 and all w € C([0,t],R), there exist
7>t and § > 0 such that

sup |(@u1)(t) — (Pu2)(t)] < co sup |ui(t) — ua(t)] V ui,us € C(w;0,t,7,d).
te[o,7) te[o,7]

(ii) For all p> 0 and all u € C([0, p),R), there exzists c; > 0 such that

sup |(®u)(s)| < c1(1+ sup |u(s)]) Vte€l0,p).
s€(0,1) s€[0,t]

(iii) There exist c; > 0 and c3 > 0 such that, for allu € C(R4,R) and allt € R,,
[u(t) >c2 = caud(t) < u(t) (Du)(t).

Remark 7.3.2

(i) To interpret (i) and (ii) correctly, recall the localization procedure described in
Remark 2.1.2, see Section 2.1.

(ii) Assumption (iii) is a weak sector-bounded condition that will be utilized in the
analysis later in this chapter. We remark that the hysteretic effects described in
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Chapter 2 such as the backlash, Preisach and Prandtl operators satisfy assump-
tion (iii) and are in the class O, see Section 7.3.3.

7.3.2 System class

Definition 7.8.83 (Hysteretic system class H)
The class of systems H is comprised of single-input, single-output nonlinear systems
(f,p,T,B,®,h) of the form (7.1) satisfying the following assumptions:

(H1) f: R™ x R? — R is continuous and f(z,-) is locally Lipschitz for every z € R;
(H2) p € L*(R4,R™);

(H3) T € T,};

(H4) B € R is non-zero;

(H5) ® € O.

Remark 7.3.4 With reference to Figure 7-1, a system (7.1) of class H can be thought
of in terms of interconnected subsystems A; and Ag, with A; driven by a perturbation
p, the input signal v = ®u and the output w from the system Ay. System A, is
formulated as a causal operator mapping the system output Y to w.

D —>
u—> v = du A1 g= f(p,w) + Bv y
w

————rAQ: w = TyJ<——

Figure 7-1: System of class H.

The setup bears a resemblance to the structure considered in Chapter 6 (see Figure 6-
1), however, the key difference in this work (and in the paper [22]) is the cascade formed
by the hysteresis operator (of class O) acting on the input.

7.3.3 Subclasses of H

We first examine a class of linear systems that form one of the more basic subclasses
of H.
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Linear prototype

Consider the particular subclass of £ (see Section 1.4.4) comprised of finite-dimensional,
minimum-phase, single-input (u(t) € R), single-output (y(t) € R) linear systems
(A, b,c) of relative degree one and introduce an input nonlinearity ® € . Consider
the following:

i(t) = Az(t) + b (du)(t), =z(0) = z°. (7.2)

As in Section 1.4.5 there exists a similarity transformation which takes system (7.2)
into the form

9(t) = A1y(t) + Ag2(t) + cb (Bu)(t),  y(0) =1,

2(t) = Asy(t) + Asz(t), 2(0) = 29, (7:3)

where, by the minimum-phase property, A4 is a Hurwitz matrix. Defining the function
p and operator T', as before, by

p(t) = Ag(exp(A4t))zo and (Ty)(t) := Ary(t) + A2 /ot (exp A4(t — s)) Asy(s)ds,

we see that the original system (7.2) can be recast in the form of a functional differential
equation
§(t) = p(t) + (Ty)(t) + b (Ru)(t), y(0) =y’ €R,

which is of the form (7.1) with h =0, 8 =cband f: Rx R - R, (z,w) — z + w.
Clearly, Assumptions (H1), (H4) and (HS5) hold. Recalling that A4 is Hurwitz, we see
that (H2) and (H3) (with parameter h = 0) are valid. Consequently the system is of
class H.

Nonlinear systems

We also highlight a particular subclass of H that will be utilized in an example. Con-
sider a class of single-input (u(t) € R), single-output (y(t) € R), nonlinear systems of
the form

9(t) = Ay(t), 2(1)) + B (2u)(t),  ¥(0) =1°€R, } (7.4)

2(t) = fa(y(1), 2(t)), 2(0) = 2° € R?,
with f; and fy locally Lipschitz, ® € O and 8 # 0. Temporarily regarding y as an
independent input to the second subsystem in (7.4) and following the procedure from

Section 2.2.2, denote the unique solution of the initial-value problem 2 = fa(y, 2),
z(0) = 2% by z(-,2%y). Assume that the second subsystem in (7.4) is input-to-state



CHAPTER 7. SYSTEMS WITH INPUT HYSTERESIS 114

stable (ISS) (see [60] or the commentary in Section 2.2.2), then, for each 20 € RP, we
may define an operator C(R;,R) — C(R4+,R x RP) by

(Ty)(t) :== (y(2),2(t,2%y)) VteR,.

This operator T is of class 7; (Assumption (H3) holds with h = 0). System (7.4) may
be expressed as functional differential equation

§(t) = 1((Ty) @) + B (Pu)(t), y(0) =1°,

which is of the form (7.1) with h = 0 and f: (z,w) — fi(w). Evidently, Assump-
tions (H1), (H4) and (H5) hold and Assumption (H2) is vacuous, therefore (7.4) is of

class H.

Delays and hysteresis

Recall, from Chapter 2, that nonlinear delay elements are incorporated in the operator
class 7;!, whilst the class 7' encompasses a wide range of hysteresis operators, includ-
ing many physically motivated effects: such as relay hysteresis, backlash hysteresis,
elastic-plastic hysteresis and Preisach operators (see Section 2.2.4).

In addition, the class O of input nonlinearities also incorporates a wide range of in-
teresting nonlinear effects. Clearly, Property (iii) of class @ imposes a significant
restriction when compared with the generality of 7,™, though hysteresis phenomena
such as relay and backlash operators meet this additional criterion. In particular, the
Preisach operator also satisfies Property (iii); a proof of this fact can be found in [22,
Appendix 1].

7.4 Output feedback

Let v: R — R be any locally Lipschitz function with the properties

limsupv(k) = +00 and liminfy(k) = —co. (7.5)
k—oo0 k—oo

Let a: [0,1) — R4 be a locally Lipschitz, unbounded injection; the example a: s

1/(1—s) provided in Chapter 6 suffices. For r € R, A > 0, ¢ € ®,, consider the control

strategy

u(t) = v(k(t)e®)(y(t) — r(t),
k(t) = a(p(®)ly(t) — r@))).

(7.6)
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Remark 7.4.1

(i) Note that the additional restriction imposed on o, namely that the function be
locally Lipschitz, is necessary to ensure the existence of a solution to the closed-
loop system discussed in the next section. This assumption was not required on
the corresponding function in the feedback developed in Section 6.5.

(ii) We will aim to prove that the feedback (7.6), applied to the cascade in Figure 7-
1, given by (7.1), achieves the specified control objectives. The output feedback
controller utilized in [22] is given by

u(t) = v(k(t)(y(t) — (1)),
k(t) = a(p(B)ly(t) — r®)]).

The key difference in the control (7.6), when compared to the controller in [22] is
the explicit presence of . The potential difficulty that may be faced in the case
of unbounded ¢ is addressed in Section 7.4.2.

7.4.1 Closed-loop system

Let A>0,p€ @), 7€ R and let D C Ry x R denote the set

{(t,y) e Ry xR| o(b)ly —r(t)] <1} (7.7)

Let (f,p,T,B,®,h) € H. The conjunction of (7.6) with (7.1) yields the following
closed-loop initial-value problem

y(t) = f(p(t), (Ty)(t) + B(2u)(t),  yl-n0 =¥° € C([~h,0},R),
u(t) = v(k(t)e(t)(y(t) — r(t)), (7.8)
k(t) = ae(®)ly(t) — r(t)]).

By a solution of (7.8), we mean a continuous function y: I — R on an interval of the
form [—h,p] with 0 < p < oo or of the form [—h,w), with 0 < w < oo, such that
(a) Ylj=no = y? and (b) y;, J := I'\[~h,0), is a locally absolutely continuous function,
with graph in D and satisfying the differential equation in (7.8) almost everywhere on
J.

As in previous Chapters, we shall demonstrate that the control objectives are achieved
by establishing that: (i) the initial-value problem (7.8) has a solution; (ii) every solution
can be extended to a maximal solution; (iii) every maximal solution is global. Facts (i)
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and (ii) are a consequence of the existence theory developed in Section 7.4.3 below,
whilst fact (iii) is the focus of the main result, Theorem 7.5.1.

7.4.2 Commentary on the asymptotic tracking problem

Consider the case A = 0, in which an exact asymptotic tracking objective is sought
(that is, for every 7 € R, y(t) — r(t) — 0 as t — o0). In Chapter 6 it was shown
that the control strategy developed was capable of ensuring an asymptotic tracking
objective via continuous feedback, provided an appropriate choice of a was utilized (see
Section 6.5.2). For comparison, we illustrate, in this section, the continuous feedback
control strategy (7.6) for a single-input, single-output system (7.4) of the nonlinear
prototype class, with 8 # 0 and fi, fo: R2 — R given by

fl(ya z)=ZSinys fg(y,z)=—z|z|+y.

Let the input nonlinearity ® be given by a backlash hysteresis operator B, with
parameters a > 0 and b € [—a, a] (for a full description, see Section 2.2.4).

Choosing @: t — 2t, v: k + kcos(ck) and a: s — 1/(1—s2), the control strategy takes
the form:

u(t) = ¢(t,y(t) — r(t)), (7.9)
with ¢ € C(D,R) given by

= co ¢ ()¢
¥(t,¢) = S(1—<p2(t)|g|2) (1—¢2(t)lc12> v (t,€) € D. (7.10)

As reference signal r € R, we take the first component r = {; of the (chaotic) solution
of the Lorenz system of equations given by (6.17).

With initial state (y(0),2(0)) = (—1/2,0) and parametersa = 1, b = 0, ¢ = 1/4 and
B =1, Figures 7-2(a)-(c) depict the behaviour of the closed-loop system.

Synthesis of the control strategy (7.9)-(7.10) could face the same practical issues raised
in Section 6.5.2. Though it will be established in later analysis (see Theorem 7.5.1) that
limsup,_, ., ¢(t)|y(t) — 7(t)| < 1 and that k& (and hence u) is bounded, numerical ill-
conditioning may occur in the computation of u(t) for large t. We remark, once more,
that this potential difficulty can be circumvented by setting A > 0 and replacing ¢ by
a bounded function ¢ € ®,, in which case, a weaker, approximate tracking objective is

ensured.
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L5

-1.5

(a) The funnel and tracking error e

1.5

L.5

(b) The reference » and output y

(¢) The control u

Figure 7-2: Control (7.9)-(7.10) applied to the nonlinear system (7.4).
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7.4.3 Existence theory

Let (f,p,T,0,®,h) € H,let A >0, p € ), 7 € R and let D C Ry x R be defined
as in (7.7). Consider the following family of initial-value problems, parameterized by
to € Ry,

y(t) = f(p(t), (Ty)(t) + B (2u)(t), Yl-h1o) = ¥° € C([=h, o], R),
u(t) = v(k()p(t)(y(t) — rt)), (7.11)
k(t) = a(p(t)ly(t) — r(t)).

By a solution of (7.11) we mean the generalization of the earlier concept of a solution:
a continuous function y: I — R on an interval of the form [—h, p] with tg < p <
or of the form [—~h,w), with tp < w < oo, such that (a) yl_ns) = y° and (b) yy,
J = I\ [~h,tp), is a locally absolutely continuous function, with graph in D and
satisfying the differential equation in (7.11) almost everywhere on J. We will prove the
following.

Theorem 7.4.2 For every ty € R, and every y° € C([—h,to],R) with (t,y°(t)) € D
for all t € [0,tp], the initial-value problem (7.11) has a unique mazimal solution y €
C|—h,w). Furthermore, ifw < oo, then limsup,_,, p(t)|y(t)—r(t)| = 1 (or equivalently,
limsup,_,, k(t) = o0).

The proof of Theorem 7.4.2 contains only minor modifications to the proof of [22,
Theorem 7.1} and so is relegated to the appendix, see Section B.2.

Remark 7.4.3 Note that only properties (i) and (ii) of the class of input nonlin-
earities @ are required in the proof of Theorem 7.4.2. Additionally imposing condi-
tion (iii) of O in the main result, below, will guarantee that, for each maximal solution
y € C([-h,w),R) of (7.8), w = oo.

7.5 Main result

Theorem 7.5.1 Let (f,p,T,8,®,h) € H, A > 0 and ¢ € ®5. Then for everyr € R
and all initial data y° € C([—h,0],R), application of the feedback (7.6) to the sys-
tem (7.1) yields the closed-loop initial-value problem (7.8) which has a unique mazimal
solution y: [-h,w) — R. Each mazimal solution y: [—h,w) — R is such that:

(1) w= o0,

(ii) there exists € € (0,1) such that, for allt € Ry, o(t)|y(t) —r(t)| £ 1 -k,
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(iii) the continuous functions u,®u: Ry — R and k: Ry — Ry are bounded.

Remark 7.5.2 Observe that, in the case when ¢(t) — co as t — oo, assertion (ii) of
Theorem 7.5.1 implies that |y(t) — r(t)] — 0 as t — oo, that is, asymptotic tracking is
assured.

Proof. Let r € R and 3° € C([~h,0],R) be arbitrary. Applying Thecrem 7.4.2 for
the special case in which t; = 0 yields the existence of a unique maximal solution
y: [-h,w) — R of (7.8), with 0 < w < co. Observe that, since (¢,y(t)) € D for all
t € [0,w) and r is bounded, it follows that y is bounded. By property (iv) of the
operator class '273, the function Ty is bounded. Writing

e(t) :=yt) —r@t), k() =alpe()le®)]), u(t)=uv(k(t))o(t)e(t) Vie0,w),
we have
é(t) = f(p(t), (Ty)(t)) + B (Pu)(t) — 7(t), for a.a. t € [0,w).

By boundedness of e, continuity of f, boundedness of Ty and since p and r are essen-
tially bounded, there exists cg > 0 such that

e(t)é(t) < cole(t)] + Pe(t) (Pu)(t) for a.a. t € [0,w). (7.12)
Hence, by properties of ¢, there exist ¢j,c2 > 0 such that
£ (p()e(t))? =200 + 22 (Be(t)é(?)

<210(t)(1 + (t))€(t) + 20° ()e(t)é(?)
< p(t)(ca + 2Bp(t)e(t) (Pu)(?))- (7.13)

We proceed by showing that k is bounded. Seeking a contradiction, suppose that k
is unbounded. By properties (7.5) of v, there exists a strictly-increasing unbounded
sequence (k,) in (a(1/2),00) such that (Bv(ky)) is a strictly-decreasing unbounded
sequence in (—o0,0). For each n € N, define

Tn = inf{t € [0,w)] k(t) = kny1}, 0o = sup{t € [0,7]| v(k(t)) = v(kn)} < Tn,

wherein the latter inequality holds since |v(k(7))| = |v(kn+1)| > |v(kn)|. We collect
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the following facts for later use.

kn(t) < k(t) and  |v(ka)| < |v(k(2))]

} Vt € [on, 7] Vn€eN, (7.14)
o(t)let)] = a7 (k(t)) 2 & (kn) > 1/2

where a~! denotes the inverse of the bijection a: [0,1) — [a(0),00). Property (iii)
of the class of nonlinearities O states that there exist A,6 > 0 such that, for all
u € C(R4,R) and all t € R4,

lu®) > A = sul(t) < u(t) (Pu)(t).

There exists N € N sufficiently large so that (1/2)|v(kn)| > A. By (7.14), it follows
that

lu(t)] = [v(k(®)p®)e(t)] > (1/2)lv(kn)| = A VEE [on, ] VR>N
and so, for all t € [on, 7] and alln > N
(k) p(t)e(t) (Bu)(t) = u(t) (Bu)(t) > 6ul(t) = 6(v(k(t))?p%(t)e*(t).  (7.15)

Since fv(k(t)) < Bv(k,) < O for all t € [on, 7] and all n € N, multiplying each side
of (7.15) by B/v(k(t)), we may conclude, from (7.14) and (7.15), that

B(t)e(t) (Bu)(t) < Bo*(t)X(t)ov(k(t)) < Be?(t)e?()dv(kn) Wt € [on,Tn] VYR >N
which, in conjunction with (7.13), yields
7:;%(@@)6(15))2 < p(t)(e2 + 280%(8) € () 0v (kn)) (7.16)
< o(t)(ca + 1/2B6v(kn)) Vt € [on,Ts] ¥n > N. (7.17)
Fix n* > N sufficiently large so that
c2 + 1/286v(ky) < 0,

then by (7.16), we have

@(Tnr)|e(Tnx)| < p(om=)le(ons)

I
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whence the contradiction

k(Tns) = a(S"(Tn*)Ie(Tn‘)D < a(cp(am)le(an-) ) = k(on+),

proving boundedness of k.

By boundedness of t — k(t) = a(p(t)|e(t)|), it follows that, for some £ € (0,1),
o(t)le(t)] <1—¢€forall t € [0,w). By Theorem 7.4.2, it follows that w = co. Finally,
boundedness of & and the product e ensures boundedness of the control u. By prop-
erty (ii) of the hysteresis class O, it follows that ®u is also bounded. This completes
the proof. O



Chapter 8

Conclusions

8.1 Concluding remarks

In this thesis, the problem of developing universal controllers, capable of influencing
both the transient and asymptotic behaviour of solutions of various classes of functional
differential equations, was addressed. Many of the systems considered involved a class
of nonlinear, causal operators that were shown to allow a diverse range of phenomena
to be incorporated.

The controllers designed in this thesis involved continuous output feedback in all cases
with the exception of the strategy developed in Chapter 6, in which a potentially discon-
tinuous controller was implemented, interpreted within the framework of a differential

inclusion.

The presence of the nonlinear operator and the potentially discontinuous control strat-
egy adopted in Chapter 6 necessitated the development of suitable existence theorems
for functional differential equations and inclusions with sufficient generality to encom-

pass each of the systems considered.

Chapters 4-7 in this thesis considered four different system classes. The first examina-
tion involved multi-input, multi-output, nonlinearly-perturbed, linear systems of known
relative degree and this was followed by an investigation of a larger class of multi-
input, multi-output, nonlinear systems modelled by controlled functional differential
equations, also having known relative degree. In Chapter 6, multi-input, multi-output
systems of relative degree 1 were considered, but the restriction on the relative degree
was counter-balanced by enhanced control aims and potentially nonlinear effects in the
input channel. Finally, in Chapter 7, single-input, single-output, nonlinear systems,
described by functional differential equations, were examined, with hysteretic effects
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permissible in the input channel.
For each of the four classes considered, the main requirements were:
(i) the resulting initial-value problem must have a global solution;
(ii) the state variables, gain function and control should remain bounded;
(iii) the control objectives must be attained.

The first control objective in each of the main chapters was tracking of a reference signal
by the output of the system considered. In Chapters 4 and 5, the objective was approz-
imate tracking, whilst in Chapters 6 and 7, the objective also incorporated asymptotic
tracking. The second control objective, namely prescribed transient behaviour of the

tracking error signal, was shared by all of the four main chapters.

The control objectives were captured in the concept of a prescribed performance funnel.
The feedback structures developed in this thesis essentially exploited an intrinsic high-
gain property of the systems examined by ensuring that, as the error approached the
funnel boundary, the gain function attained values sufficiently large so as to preclude
boundary contact.

Finally, the results of each chapter were illustrated with simulations of simple examples.

8.2 Further work

e The problem of asymptotic tracking for systems of known relative degree p > 1
was not tackled in this thesis and could play a role in future study involving

funnel control.

e The nonlinear class of systems considered in Chapter 5 were affine in the control.
It may be of interest to extend the investigations in this thesis to systems with
nonlinearities (or even hysteretic effects in the single-input, single-output case)

in the input channel.

o The approach of [24] involves an internal model described by a linear system of
equations. It may be possible to consider an expanded class of reference signals, in
the context of a funnel control problem, by adopting a nonlinear internal model,
as in [7] and [53], for example.



Appendix A

Background results

In this section of the appendix, several key definitions as well as the statements of
important results referred to in this thesis are provided.

A.1 Basic definitions

Let I be a closed, bounded interval.

Definition A.1.1 Let (X, | -||x) be a metric space. A set A C X is relatively compact

if the closure of A is compact.

Definition A.1.2 A family F c C(I,R") is said to be uniformly bounded if there
exists ¢ > 0 such that
lz@®)|| <ec Vtel VzelkF.

Definition A.1.3 A family F C C(I,R™) is said to be equicontinuous if, for alle > 0,
there exists 6 > 0 such that, for all s,t € I,

|s—t] <6 =>|z(s) —z(t)| <e VzeF.

A.2 Background results

Theorem A.2.1 (Arzela Ascoli) F ¢ C(I,R") is relatively compact if, and only if,

F is bounded and equicontinuous.

Theorem A.2.2 (Alaoglu’s Theorem)
If X 1is a normed vector space, the closed unit ball {f € X*|||f|| < 1} in X* is compact
under the weak* topology.
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For a proof, see {17, Theorem 5.18].

Lemma A.2.3 (Gronwall’s Lemma)

Let p> 0, ¢ € LI([t,t+ p],R) and ¢ € AC([t,t+ p],R) with the property that ¢(t) >0
forallt e [t,t+ p|. If € € L°([t,t + p],R) satisfies

£(s) < (s) + / CY(nE(r)dr Vs ettt g,

then
) < viyexn ([ omar) + [‘wmen( [(soas)ir voelut+al

A proof can be found in {12, Lemma 8.1], for example.

Lemma A.2.4 (Zorn) Let A # 0 be a partially ordered set. If every totally ordered
subset O C A has an upper bound, then A has at least one mazimal element.

Lemma A.2.5 (Fatou’s Lemma)
Let (fn) be a sequence of non-negative measurable functions I — R, then

/! lim inf f()dt < lim inf /[ Fu(t)dt.

A proof can be found in [17, Lemma 2.18], for example. Observe that the form used in
the proof of Theorem 3.2.1 is in fact the Reverse Fatou’s Lemma which states that if,
for the sequence (f,), there is a non-negative measurable function g: I — R such that
fn < gforallnand [, g(t)dt < oo, then

/lim sup fp(t)dt > lim sup/fn(t)dt.
I I

n—oo n—oo
This result follows by applying Fatou’s lemma to the sequence (g — fr).

Theorem A.2.6 (Lebesgue Dominated Convergence Theorem)
Let (fy) be a sequence in L*(I,R™) such that the following two conditions hold:

(i) fn — [ almost everywhere,

(ii) there exists a non-negative g € L'(I,R) such that || fo(t)|| < g(t) for almost all ¢
and all n.

Then f € L*(I,R™) and [, f(t)dt = limp—oo f; fn(t)dt.
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A proof can be found in [17, Theorem 2.24], for example.
Let (X, X) be a measurable space and let u be a measure on (X, X).

Definition A.2.7 A signed measure on (X,X) is a function i: ¥ — [—00,00] such
that

(i) (@) =0,
(ii) i1 assumes at most one of the values co and —oo,

(iie) if {E;} is a sequence of disjoint sets in X, then
[o ] o0
ﬂ(UEJ-) =D ME),
1 1
where the latter sum converges absolutely if i(UCE;) is finite.

Theorem A.2.8 (Jordan Decomposition Theorem)

If i is a signed measure, there erist unique measures u* and p~ such that i = p* +p~
and pt L op”.

For a proof, see [17, Theorem 3.4].

Definition A.2.9 We define the total variation of a signed measure fi to be the mea-
sure |4 given by
ol = p* 4+



Appendix B

Technical results

B.1 Proof of Lemma 3.1.2

Proof.
STEP 1: Existence of a unique solution on a small interval.
By Property (iii) of T € 7., there exist 6 > 0, co > 0 and 7 > tp such that, for all

Y,z € C(yoa h’a th 7, 5),

I(T4)(E) = (TN < 0 mese (o) =) for a.. ¢ € o,

We may assume, without loss of generality, that § € (0,1) and 7—tp > 0 are sufficiently
small so that [to, 7] x Bs(y°(to)) C D. For each p € (to, 7], define C,, := C(4°, h, to, p, 5)
which, equipped with the metric

(1, 2) = dp(y, 2) = P ly(®) — 2@,

is a complete metric space. Observe that, if y € C,, then (¢,y(t)) € D for all ¢ € [to, p].
For each p € (to, 7], define the operator Z, on C, by
yo(t)1 t € [—h, o),

VA t) =
(Zoy)(2) { °(to) + [ a(s,y(s), (Ty)(s))ds, t € (to, p)-

We proceed to show that Z, is a contraction. Define ¢; := maxse(_p ) |¥°(s)|| + 6. By
Property (iv) of T' € T, there exists cp > 0 such that

t ?u’;: ]]|y(t)|| < = |(Ty)@)| <c2 foraa.te [ty,T]
€|—n,T

127
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By the local Lipschitz property of g, there exists a constant c3 > 0 such that, for all
te [to,’l’ ],

”g(t7 Y, w) - g(t>zv$)” <cs [“y - z“ + “w - :CI[] Vy,z € B,y Vw,z € B,.

Write
g* = max{|lg(t,y, w)| | (t,y,w) € {to, 7] x Bs(y°(t0)) x Be,}-

Fix p* € (o, 7] sufficiently close to g so that
(p* —to)(g" + (co+ 1)cs) < 6.

Let p € (to,p*] and y € C,. By definition, (Z,y)|{—n,¢,) = ¥° and

t
1Zow)(®) - o) = ] [ sts,u66) ruycopas
< / " llg(s, y(s), (Ty)())lds < (p— to)g" < 6 Vt€ [to, -
Therefore (Z,y)(-) € Cp. Furthermore,

dp(Zpy, Zpz) = sup
telto,p)

< /tp llg(s, y(s), (Ty)(s)) — g(s, 2(s), (T=)(s))l|ds

[ (905, 9(5), (Ty)(s)) — g(s, 2(s), (T2)(s))]ds

0

< (p—to)es [ises[-ts? ITy)(s) = (T2) () +dp(v, 2)]

< (cot+1)(p—to)esdp(y,2) Vy,z€0C,.

Since (co + 1)(p — to)es < § < 1, it follows that Z,: C, — C, is a contraction. By
the contraction mapping theorem, Z, has a unique fixed point. We have shown that,
for each p € (to,p*], the initial-value problem (3.7) has a unique solution y € C,.
We stress that the uniqueness property of y holds only in relation to solutions in the
restricted class C),: there may exist another solution on the interval [—h, p] which is
not contained in the space C,. However, the following argument establishes uniqueness
of the solution on a sufficiently small interval. Let y* (not necessarily in Cy+) be any

solution on [—h, p*]. Define

infA, A #£0,

o * * _ .0 = =
A= {telto, ] lly* (&) —y ()l =6}, p: {p*, A=0.
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Clearly p > to and y := y*|[_s ) is in C,. Therefore, y is the unique solution of (3.7)
on the interval [—h, p].

STEP 2: Extended uniqueness: any two solutions must coincide on the intersection of
their domains.

Let y1: 1 — R™ and y2: I3 — R™ be solutions of (3.7) and, without loss of generality,
assume I C I;. For contradiction, suppose that y1|7, # y2. Let t* := inf{t € Iy |y1(t) #
y2(t)}. By the result in Step 1, the solutions y; and y, must coincide on some interval
[—=h, p], with p > to. Therefore, t* > to. An application of the result of Step 1 in
the context of an initial-value problem of the form (3.7), with t* replacing ¢y and
initial function y1|(_p ] € C([~h,t*], R™) replacing 10, yields the existence of a unique
solution y € C([—h, p|, R™) for some p > t*. It follows that y;(t) = y2(t) = y(t) for all
t € [—h, p|, contradicting the definition of ¢*.

STEP 3: Existence of a unique maximal solution.

Let P be the set of all p > g such that there exists a solution y, of (3.7) on the interval
[—h, p]. By Step 1, we know that P # (. Let w := supP and define y: [-h,w) — R™
by the property

Yl—hp) =Y VYPEP.

The function y is well-defined since, by Step 2, for all p1,p2 € P, we have y,, =
Yp1 l[—h,pz) Whenever py < py. Clearly y is a maximal solution and uniqueness follows
by Step 2.

STEP 4: Assume that y: [-h,w) — R™ is a maximal solution with w < co. Seeking
a contradiction, suppose there exist o € [to,w) and a compact set K C D such that
(t,y(t)) € K for all t € [o,w). Then y is bounded and, by Property (iv) of T' € 7,*, Ty is
essentially bounded. Therefore, the function t — (¢, y(t), (T'y)(t)) is essentially bounded
and so, by continuity of g, it follows that g is essentially bounded on the interval [to, w).
Therefore y is uniformly continuous on [—hk,w) and so extends to y* € C([—h,w],R™).
By compactness of K, we have (w,y*(w)) € K C D. An application of the result of
Step 1 in the context of an initial-value problem of the form (3.7), with w replacing ¢
and y* replacing 10, yields the existence of a unique solution y® € C([—h, p], R™) for
some p > w, with y®|(_4 ) = y. This contradicts maximality of y. O
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B.2 Proof of Theorem 7.4.2

Proof. Let tg € Ry and y° € C([—h,t],R) be such that (¢,4°(t)) € D for all t €
[O,to].

STEP 1: First, we establish the existence of a unique solution on an interval [—h, p]
with p > to sufficiently close to to. By Property (iii) of the operator class 7;}, there
exist 79 > to, 6o > 0 and cp > 0 such that, for all y;, y2 € C(y°; h, to, 70, d0),

ess-supiefg | T01) ) = (Ta) ()] < o max i (8) = wa(0).

We may assume that dp € (0,1) and 79 — top > 0 are sufficiently small so that
Do := [to, 70] % [y°(to) — b0,¥°(to) + 6] C D,
with ¢ bounded on the interval [to, 70]. Next, consider the map
U:D—R, (t2) v(ale®)lz—r@)))e)(z - ()

Since o and v are locally Lipschitz and by boundedness of 7 and ¢ on the interval
[to, T0), it follows that there exists ¢; > 0 such that

IU(t,Zl) ~U(t,22)| < c1]z — 22| V(% z1) < (t, z2) € Dy.

For each p € (to, 7o), define C5 := C(y% h,to,p,dp). Observe that, if y € CJ, then
(t,y(t)) € Dy for all t such that tg <t < p < 7p. Therefore, for each p € [to, 0], we
may define an operator U,: C5 — C([0, o], R) by

(Upy)(t) = U(t,y(t)) Vte0,0]
and record the following fact:
(Uppn)(t) = (Upae)(®)] < calwn(t) —2(t)] VE€[0,0] V1,32 €Cp. (B.1)
Define w € C([0, ], R) by
w(t) == U(t,y°(t)) Vt € [0,to).

In particular,
(Upy)(t) = w(t) Vte[0,t] VyeC).
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By hypothesis (i) of the hysteresis operator class O, there exist 71 € (to, 0], 51 € (0, &g
and ¢ > 0 such that

max |((I>vl)(t)—(¢’v2)(t)| SCQ max |’l)1(t)—’l)2(t)l V’U],’U2 EC(’UJ;O,to,Tl,(Sl). (B2)
tel0,m] te(0,n1]

Furthermore, by continuity of U, there exist 75 € (tp, 1] and 82 € (0, dp] such that if
pE (to,Tg], then

(Upy)(t) € C(w; 0,0, p,01) Vy € C(y°; hyto, p, 62) C CD. (B3)

For each p € (to, ), we define C, := C(y% h, to, p,62). Combining (B.3) with (B.1)
and (B.2), we may conclude that there exists c3 > 0 such that, for every p € (to, 73],

max [(@(Upy1))(t) — (2(Upy2)) ()| < 3 max |y1(t) — v2(t)] Vy1,92€Cp.  (BA)
te[0,p] te(0,p]

Furthermore, as a consequence of (B.4), there exists ¢4 > 0 such that, for every p €

(to, 2]
[(2(Up))(t) S ca VEE[0,p] Vy€EC,.

Equipped with the metric

(y1,92) = dp(y1,92) = tef[n_agfp] ly1(t) — y2 ()],

the metric space C, is complete. Now, for each p € (%o, 72|, define the operator C, on
C, by
y°(t), t € [~h,ta],

C =
(Cov)®) {yoa(g+ffof(p(s),(cry)(s»+ﬁ(¢(Upy>)(s>ds, Le (t0,0),

We proceed by showing that there exists p* € (to,72] such that, for all p € (to,p*],
C,(C,) C C, and C,, is a contraction (and so, for each such p, C, has a unique fixed
point). By Property (iv) of T € T;, there exists c5 > 0 such that, for every p € (to, p*],

I(Ty)@®) <cs for a.a.t € [to,p] Vy€C,.
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By the local Lipschitz property of f and essential boundedness of p, there exists a
constant cg > 0 such that

|f(p(t), z1) = f(p(t), z2)| < csllz1 — z2|

for a.a. t € [to, 2] and all z1, 23 € RY with ||z1|, |z2|| < cs.

Write
cr :=max{|f(g, )| | llgll < lIplloo, lIz]l < e5}-

Fix p* € (to, 72] sufficiently close to to so that

(p* —to)(cr + coce + calB] + calB]) < ba.

Let p € (to,p*] and y € C,. By definition, (Cpy)|[—p,to) = y° and

[(Coy)(t) — 4 (t0)] =

t
ft F@(5), (Ty)(s)) + B (B(U,))(s)ds
< / "\ F@(s), (Ty)(s)) + B (@(U,m))(s)lds
lo
< (p—to)(cr +calBl) < 62 VL€ [to,p]-

Therefore (C,y)(-) € C,, establishing the fact that C,(C,) C C, for all p € (to,p*].
Furthermore, for p € (to, p*] and y1,y2 € Cp,

L Gs), (T3n)(s) = F(p(s), (Ta)(5))

to

dp(Cpy1,Cpy2) = sup
tefto,p]

+ B(®(U,p1))(8) — B(B(U,y2))(s)]ds

< [ 156(5), (Tm) (o) = o), (Te)(e)
+ B(@(U,11))(5) - B(2(Upw2))(s)]ds
< (p=to) sup_ 1£2(0).(T)() = £ p(E), (T2) )

t€(to,pl

+16] sup [(B(Tpm))(O - (2(U1)) @)

t€lto,p

< (p — to)(cocs + calB|)dp(y1, y2)-
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Since (p — to)(coce + c3|B]) < d2 < 1, it follows that C,: C, — C, is a contraction.
Therefore, by the contraction mapping theorem, C, has a unique fixed point. We have
shown that, for each p € (to, p*], the initial-value problem (7.11) has a unique solution
in C,. We stress that the uniqueness property of y holds only in relation to solutions in
the restricted class C,: there may exist other solutions on the interval [—h, p] which are
not contained in the space C,. However, the following argument establishes uniqueness
of the solution on a sufficiently small interval. Let y* (not necessarily in C,.) be any
solution on [—h, p*]. Define

infA, A #0,

_ RN — —
A={teto,p’]|ly"() — o (00)| =6}, p: {p*, A=0.

Clearly p > to and y := y*|[_p,p is in C,. Therefore, y is the unique solution of (7.11)
on the interval [—h, p].

STEP 2: Extended uniqueness: any two solutions must coincide on the intersection of
their domains.

Let y1: I1 — R and y2: I — R be solutions of (7.11) and, without loss of generality,
assume I C I;. For contradiction, suppose that y1|7, # y2. Let t* := inf{t € I3 |y1(t) #
y2(t)}. By the result in Step 1, the solutions y; and y2 must coincide on some interval
[—h, p], with p > to. Therefore, t* > ty. An application of the result of Step 1 in the
context of an initial-value problem of the form (7.11), with ¢* replacing to and initial
function y1|(_p,+] € C([—h,t*], R) replacing 1/9, yields the existence of a unique solution
y € C([—h, p), R) for some p > t*. It follows that yi1(t) = y2(t) = y(t) for all t € [~h, p],
contradicting the definition of t*.

STEP 3: Existence of a unique maximal solution.

Let P be the set of all p > tg such that there exists a solution y, of (7.11) on the interval
[~h, p]. By Step 1, we know that P # 0. Let w := supP and define y: [—h,w) — R by
the property

Yl-hp) =Yp YPEP.

The function y is well-defined since, by Step 2, for all p;,p2 € P, we have y,, =
Yo |[—h.,p2] whenever py < p;. Clearly y is a maximal solution and uniqueness follows
by Step 2.

STEP 4: Assume that y: [-h,w) — R is a maximal solution with w < oo. Seeking
a contradiction, suppose limsup,_,, ¢(t)|y(t) — r(t)| < 1. Therefore, k, and hence u,
are bounded. By Property (iv) of the operator class 7;!, Ty is essentially bounded
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and, by Property (ii) of the hysteresis class O, ®u is bounded. From the differential
equation in (7.11), it now follows that ¥ is essentially bounded on [0,w). Therefore, y
is uniformly continuous on [—h,w) and so extends to y* € C([—h,w],R). Furthermore,

P@)ly* (W) = r(@)| = lim e()|y"(t) — r(t)] = limsup o (t)y(t) — r(®)] <1,

showing that (w,y*(w)) € D. An application of the result in Step 1 in the context of an
initial-value problem of the form (7.11), with w replacing to and y* replacing 30, yields
the existence of a unique solution y¢ € C([—h, p], R) for some p > w, with y®||_p.) = ¥
This contradicts maximality of y. O
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Set-valued analysis

C.1 Set-valued maps and upper semicontinuity

In what follows, X and Y are non-empty subsets of finite-dimensional Euclidean spaces.

We first introduce the concept of a set-valued map.

Definition C.1.1 (Set-valued map)
A set-valued map F between X and the subsets of Y is a map that assigns a non-empty
subset F(z) CY to each element x € X (the values of F' are the sets F(z) forz € X ).

A set-valued map is said to have convex values if F(z) is convex for all z € X and
compact values if F(z) is compact for all z € X.

Definition C.1.2 (Graph of a set-valued map)
The graph of a set-valued map F is defined as

graph(F) := {(z,y) e X x Y |y € F(z)}.

Definition C.1.3 (Upper semicontinuity)

A set-valued map F is said to be upper semicontinuous at z° € X if, for any open
neighbourhood N of F(x0), there exists an open neighbourhood M of z° with F(M) C
N. F is said to be upper semicontinuous if it is so at every z° € X.

A second concept, upper semicontinuity in the ‘e-sense’, is defined as follows.

Definition C.1.4 A set-valued map F is said to be upper semicontinuous in the e-
sense if, given € > 0, there ezists § > 0 such that F(z° + B;) ¢ F(z°) + B..

Remark C.1.5 In the case when F has compact values, the two above definitions of

upper semicontinuity coincide.

135
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We now assemble three important results used in the proof of Theorem 3.2.1 in Chap-
ter 3.

Proposition C.1.6 Let F be an upper semicontinuous, set-valued map on X with

closed values in Y, then graph(F) is closed.
A proof can be found in [2, Proposition 2, Page 41].

Proposition C.1.7 Let F be an upper semicontinuous, set-valued map on X, with
compact values in Y. If K C X is compact, then F(JC) := Uze"F(z) is compact.

For a proof, see [2, Proposition 3, Page 42].

The third result is the Approximate Selection Theorem (see for example [2, Theorem 1,
Page 84]). Given a set-valued map F on X with values in ¥, a selection for F is a
function x h* f{x) with the property that f(x) G F(x) for all x G X. An upper
semicontinuous map may not always possess a continuous selection, for instance, the

following (well-known) counter-example:

} forx < 0,
F(x) = , 1], forx = 0,
forx > 0

admits no continuous selection. Instead, we make use of the Approximate selection
theorem.

Graph(/e)

Graph(F) -l-eB

Graph(F)

Figure 1: Approximate selection for a set-valued map.

Theorem C.1.8 (Approximate Selection Theorem)

Let F be an upper semicontinuous, set-valued map from X to the convex subsets of
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Y. Then, for every € > 0, there exists a locally Lipschitz map fo: X — Y with range
contained in the convez hull of the range of F', and:

Graph(fe) C Graph(F) + €B.

The proof can be found in [2, Theorem 1, Page 84], for example.

C.2 Support functions

Let C € R™ be a non-empty, closed, convex set.

Definition C.2.1 The function oc: R™ — R given by

oc(q) == sup{{q,¢) | ¢ € C}
is the support function of C.

Theorem C.2.2 Let oc: R™ — R be the support function of the non-empty, closed,
convez set C, then the following hold.

(i) ¢ € C <> (q,¢) < oc(q) for all g € R™,

(ii) if C is compact, then oc is globally Lipschitz.

For a proof, see [39, Corollary 2D.2].
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