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Abstract

colourless (els) mutants were isolated in two independent ENU mutagenesis screens for 

recessive zebrafish mutations. All homozygous mutant alleles are embryonic lethal, 

whereas heterozygotes are phenotypically wild-type, els mutants present a lack of all 3 

types of pigment cells, intestinal aganglionosis and a severe reduction in most other 

neurons and glia of the peripheral nervous system, in combination with an inner ear 

defect. The homozygous els phenotype is reminiscent of homozygous Dominant 

megacolon (Dom) mouse mutants, a model for the human congenital Waardenburg- 

Shah Syndrome (WS4). Mutations in the transcription factor SoxlO, a member of the 

highly conserved Sox protein family characterised by their HMG-type DNA binding 

domain, have been identified in Dom (SoxlODom) mice and in some WS4 patients. 

Consequently, we proposed that sox 10 was a good candidate gene for the els locus.

To verify this proposal, we cloned a soxl 0 homologue by RT-PCR and RACE PCR and 

confirmed its true identity by sequence alignment, phylogenetic and in situ 

hybridisation analysis. We demonstrated that soxl 0 expression was disrupted in els 

mutants. Furthermore, we showed that the els locus and sox 10 were tightly linked on the 

distal end of LG 3, and identified mutant lesions in soxlO in 3 of the els mutant alleles. 

Ectopic expression of wild-type sox 10 under the control of a heatshock promoter 

rescued melanophores to a wild-type morphology and migrational behaviour, whereas 

equivalent constructs expressing mutant proteins failed to do so. Taken together, our 

results very strongly support the hypothesis that els encodes soxlO.

Furthermore, we investigated whether the expression patterns of soxlO and its closest 

homologues sox9a and sox9b overlapped and whether either of the Sox9 proteins might 

show functional redundancy with SoxlO, at least in the melanophore lineage.
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Chapter 1 -  Introduction

Zebrafish as a model organism

The zebrafish, Danio rerio (formerly known as Brachydanio rerio), belongs to the 

Super-Order Teleostei (bony fish) and the Family Cyprinidae. It is native to the rivers of 

India and Pakistan where it is found in rather shallow waters of 20-28°C. Zebrafish live 

socially in schools. The adult fish is about 4-5cm long, males tend to be of a slimmer 

build than females and richer in colour with a slight yellowish or reddish undertone 

especially on the anal fin (Riehl and Baensch, 1996).

Adults usually spawn in early morning where females lay up to 300 transparent eggs 

approximately 0.7mm in diameter. Larvae hatch at 2-3 days after fertilisation and start 

to swim and feed freely after 5 days. Maturity is reached after approximately 3 months 

depending on food supply and water temperature.

Zebrafish are widely used for toxicological studies in industrial laboratories.

Only recently have its advantages as a model organism in developmental and genetic 

studies been fully appreciated. Zebrafish breed easily in captivity and can be kept fairly 

cheaply at high densities. The eggs are fertilised externally and their embryos are 

transparent, which enables cell biological studies in the developing embryo such as 

single cell labelling with vital dyes. Likewise, analysis of in situ mRNA hybridisations 

in whole-mount embryos is possible.

The advantages for genetic studies are large family size, the short life cycle of 

approximately 90 days and ease with which recessive mutations can be created by 

placing males into a mutagen solution containing the point mutation inducing substance 

ethylnitrosourea (ENU).

In teleosts, a fairly recent, in evolutionary terms, genome duplication was 

proposed to have taken place more than 100 million years ago (Amores et al., 1998). 

Duplicated genes might have been lost during evolution unless they evolved to develop 

new functions or acquired new regional or temporal specificity. Thus, for every gene in 

mouse one has to consider the possibility of two homologues in zebrafish that have split 

the gene’s original function between themselves. This might be a disadvantage to this 

model organism, since potentially two such paralogues have to be isolated and analysed.
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However, the duplication, degeneration, complementation (DDC) model predicts that 

duplicates may become preserved by degenerative loss of complementary gene 

subfunctions from the duplicate copy (Force et ah, 1999). Hence, a complex mammalian 

gene function might be shared complementarily by two zebrafish homologues. For 

example, in mammalian mutants, a late gene function might be obscured by defects or 

premature death of the embryo caused by the gene’s essential early function. In 

zebrafish however, this might be overcome by the separation of these two functions 

(Postlethwait et al., 1999).

Zebrafish are a particularly suitable model organism to study neural crest 

development. Apart from the general advantages mentioned above like easy access and 

transparency of embryos, the neural crest cells in zebrafish are significantly larger and 

fewer in number compared to neural crest cells in avian or mammalian embryos (Raible 

et al., 1992) facilitating cell biological manipulations.

Large-scale mutagenesis screens in zebrafish for recessive 

mutants

Systematic mutagenesis screens were first carried out in invertebrates such as 

Drosophila (Nuesslein-Volhard et al., 1984; Wieschaus et al., 1984) and C. elegans 

(Kemphues et al., 1988). However, large-scale screens in vertebrate organisms such as 

mouse are difficult due to high costs involved in keeping and breeding such large 

numbers of animals.

In contrast, zebrafish, with its short life cycle, large family size, small space 

requirements and transparent externally fertilised embryos proves to be a very suitable 

vertebrate model system in which a large-scale saturation screen can be attempted. 

Mullins has described in detail the most efficient and reliable method to conduct such a 

mutagenesis screen (Mullins and Nuesslein-Volhard, 1993) using ethylnitrosourea 

(ENU) as the mutagen of choice (Mullins et al., 1994).

To date, two major mutagenesis screens have been reported. One was carried out 

in the Massachusetts General Hospital by W. Driever and his colleagues (Driever et al.,

1996). They screened 2383 mutations affecting embryonic and early larval 

development, resulting in identification of 220 genetic loci. In parallel in Tuebingen, 

Germany, C. Nuesslein-Volhard and her colleagues identified a total of 4264 mutants of 

which 1163 were characterised in more detail. By complementation crosses, 894
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mutants were assigned to 372 genes which were important in various developmental 

processes (Haffter et al., 1996a). Mutant phenotypes identified in the screen were 

organised into many phenotypic groups such as mutations affecting early development, 

formation of body axes, development of organs, pigment cells and mutations with an 

adult phenotype (Haffter et al., 1996a). Most of the mutations isolated were embryonic 

lethal. Since ENU is known to cause mostly point mutations or small deletions, 

embryonic lethality indicated that the function of these genes was indispensable in 

development and thus no other gene was able to fully compensate for the loss.

However, with an average allele frequency of 2.4 it was statistically possible to obtain 

mutations located in various regions of the same gene. Thus, for some loci mutants with 

weaker phenotypes were identified; for others, adult viable phenotypes were created 

making the study of the gene’s role in development a lot easier. The 79 isolated adult 

viable and 19 semiviable mutations were described in more detail in (Haffter et al., 

1996b).

Neural crest development

Although the neural crest is derived from the ectoderm it has often been referred to as 

the fourth germ layer. A discrete set of originally multipotent cells eventually become 

specified and differentiate into an incredibly diverse range of derivatives. The neural 

crest was first described in avian embryos by His (His, 1868 cited in Le Douarin and 

Kalcheim, 1999) as a strip of cells located between the neural tube and the overlying 

dorsal ectoderm, which he called “Zwischenstrang”. Since then, techniques to identify, 

visualise and trace single neural crest cells have led to a better understanding of the 

underlying processes of neural crest development not only in avians, but also in 

amphibians, fish and mammals. Even so, a lot of progress has yet to be made to resolve 

details of the mechanisms controlling neural crest development.

The formation of the neural crest

The neural crest delaminates from the dorsal neural tube in a rostrocaudal manner. 

Neurulation in avians, amphibians and mammals involves the induction of the neural 

plate from the ectoderm, followed by an elevation of the lateral margins of the neural 

plate called neural folds, which finally fuse at the dorsal midline to give rise to the
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neural tube. In contrast, the neural tube in teleosts like the zebrafish and in caudal 

regions of avians is formed by a process called secondary neurulation, whereby a 

ventral thickening of the ectoderm can be observed. This structure, called a neural keel, 

then cavitates to give rise to the neural tube (Lamers et al., 1981). The neural crest cells 

delaminate from the lateral edges of the neural keel and converge towards the dorsal 

midline (Raible et al., 1992; Kimmel et al., 1995; Thisse et al., 1995; Baker and 

Bronner-Fraser, 1997b; Le Douarin and Kalcheim, 1999).

The molecular mechanisms underlying neural induction and the subsequent 

formation of the neural crest are still not fully understood. During neurulation the 

ectoderm gets divided into non-neural ectoderm and neural plate, which give rise to the 

epidermis and the neural tube, respectively. This process is thought to be regulated by a 

gradient of bone morphogenetic protein-4 (BMP-4; an epidermalising factor) 

originating from ectodermal cells, which is generated by a gradient of a BMP inhibitor 

(neuralising factor) such as noggin and chordin (Smith and Harland, 1992; Piccolo et 

al., 1996) secreted by the future axial mesoderm (organizer region). Dorsal ectoderm, 

which by default adopts a neural fate (reviewed in Weinstein and Hemmati-Brivanlou,

1997), would be epidermalised by BMP-4 if factors like noggin and chordin did not 

prevent BMP-4 from binding to its receptor (Piccolo et al., 1996; Zimmerman et al.,

1996). Hence, epidermis is only formed furthest from the organiser (future axial 

mesoderm and notochord), whereas neural tube is formed adjacent to this source of 

noggin and chordin. The neural crest forms at the interface between neural plate and 

non-neural ectoderm.

There are several models of neural crest induction (reviewed by Baker and 

Bronner-Fraser, 1997b).

Albers proposed (Albers, 1987) that a change in ectodermal competence to a signal 

from the organiser could give rise to neural plate, the neural crest and finally epidermis. 

Raven and Kloos were the first scientists to suggest that neural crest induction might 

involve signals from the archenteron roof (paraxial mesoderm) directly underlying the 

prospective neural crest region but, most importantly, that this induction was 

independent from the induction of the neural plate (Raven and Kloos, 1945). They could 

show in grafting experiments that medial archenteron roof was able to induce both 

neural plate and neural crest markers from overlying competent ectoderm, whereas 

lateral archenteron roof induced neural crest markers only. Marchant and colleagues 

further investigated these proposed inducing abilities of mesoderm. They conclude the
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existence of a neural crest inducer originating from the dorsal (axial) mesoderm creating 

a gradient along the dorsolateral (paraxial) mesoderm. In vitro, dorsal mesoderm was 

able to induce neural plate markers like Xsox2 proximally and neural crest markers like 

Xslug at a distance. If dorsal mesoderm was replaced by dorsolateral mesoderm in those 

conjugates, neural crest markers were expressed next to the inducing tissue, whereas 

ablation of dorsolateral mesoderm in early gastrula embryos resulted in loss of the 

neural crest population (Marchant et al., 1998).

A third model suggests that interactions between the neural plate and adjacent non- 

neural ectoderm (future epidermis) induce the neural crest. This has been indicated by 

grafting experiments in amphibians (Rollhauser-ter Horst, 1980; Moury and Jacobson, 

1990) and avians (Selleck and Bronner-Fraser, 1995). Juxtaposed neural plate and 

ventral epidermis were found to be sufficient to generate neural crest derivatives in 

axolotl embryos. Although both tissues contributed to the generation of neural crest 

cells, most neural crest formed from the neural plate gave rise to melanocytes, whereas 

epidermal cells formed neurons of the dorsal root ganglion (Moury and Jacobson,

1990).

Can any of these models fully explain the induction of neural crest? BMP-4 is 

sufficient to repress neural and induce epidermal fates (Wilson and Hemmati-Brivanlou, 

1995). Thus, a role in dorsoventral patterning of the ectoderm was suggested by which 

the neural plate and the non-neural ectoderm could be specified. This is achieved by a 

delicate balance of BMP and BMP antagonist levels such as chordin and the neural crest 

could be induced by intermediate levels of BMP-4. This balance can be manipulated by 

overexpression studies. If BMP-4 is overexpressed in early Xenopus embryos by mRNA 

injection, the neural plate area is reduced, but without affecting actual neural crest 

formation lining the border (LaBonne and Bronner-Fraser, 1998). Prospective neural 

crest cells can be identified by their expression of the zinc finger transcription factor 

XSlug (Mayor et al., 1995; LaBonne and Bronner-Fraser, 1998). Thus, BMP-4 seems to 

be important in defining the location of the neural plate borders. In contrast, 

overexpression of chordin expands the region of Xslug expression laterally at the 

expense of non-neural ectoderm. However, at no concentration of chordin, and thus of 

BMP-4, could wild-type levels of XSlug expression be observed (LaBonne and 

Bronner-Fraser, 1998). Furthermore, LaBonne and her colleagues never observed 

melanocytes being formed in ectodermal explants overexpressing chordin. Taken 

together, this suggests that BMP might provide an initial weak neural crest specification
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at the borders of the lateral neural plate, but additional signals derived from either the 

adjacent non-neural ectoderm and/or underlying mesoderm may then be required to 

enhance and maintain neural crest induction at wild-type levels (LaBonne and Bronner- 

Fraser, 1998).

Members of the Wnt and FGF family have been found to alter the 

anteroposterior characteristics of noggin-induced neural plate tissue (McGrew et al.,

1997). Recently, it has also been shown that there is a direct requirement for Wnt 

signalling in neural crest formation. In contrast to chordin alone, conjugates of chordin- 

expressing and XWnt-8 or eFGF-expressing explants were able to induce wild-type 

expression levels of Xslug. Furthermore, a significant number of melanocytes were 

formed in this chordin-induced neural tissue (LaBonne and Bronner-Fraser, 1998).

Since XWnt-8 is a downstream target of eFGF, it was tested whether the induction of 

neural crest was achieved by eFGF directly and through XWnt-8 signalling. When a 

dominant negative mutant of XWnt-8 was co-expressed, the ability of eFGF to induce 

Xslug expression in chordin-expressing explants was drastically reduced. This 

suggested an indirect role for eFGF in neural crest formation, whereas XWnt-8 was 

shown to have a direct effect on neural crest induction in vitro and in vivo (LaBonne and 

Bronner-Fraser, 1998).

Could the role of XWnt-8 in neural crest and somite formation be connected? Paraxial 

mesoderm (prospective somites) is a potent neural crest inducing tissue. Since a dnWnt 

has been shown to disrupt somite formation, it is possible that the mechanism by which 

XWnt-8 acts on neural crest formation involves disrupting mesoderm, which in turn 

fails to induce neural crest. This hypothesis could be disproved by LaBonne and 

Bronner-Fraser. They demonstrated that neural crest failed to form even when dnWnt 

was exclusively expressed in the ectoderm and that the requirement for XWnt-8 in 

neural crest induction was thus independent of any role it might have in mesoderm 

(LaBonne and Bronner-Fraser, 1998).

A similar role for a member of the Wnt family in patterning the mediolateral polarity 

(dorsoventral axis after formation of the neural tube) has been shown for XWnt7B in 

Xenopus (Chang and Hemmati-Brivanlou, 1998). XWnt7B was able to induce neural 

crest when co-injected with noggin into ectodermal explants. Presumptive neural crest 

was visualised by staining for Xslug and Xtwist. This induction still took place after 

neuralising explants by dissociation and thus even in absence of epidermis. In
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overexpression studies in vivo, XWnt7B also expanded the expression domain of the 

neural crest marker Xtwist.

In summary, the current model suggests a two-signal induction process leading 

to neural crest formation. Firstly, BMP levels have to be decreased sufficiently by 

inhibiting the interaction between BMP and its receptor by neuralising factors like 

chordin or noggin. The induced neural tissue is of anterior character and can then be 

caudalised by factors such as FGF.

This decreased level of BMP signalling also specifies the lateral border regions of the 

neural plate and renders them competent to respond to lateralising (dorsalising) Wnt 

signals that enhance and maintain neural crest induction. Signals involved in the 

patterning of the mediolateral character of the open neural plate (future dorsoventral 

axis of the neural tube) are thought to be derived from the notochord (e.g. hedgehog 

promoting ventral neural fates like floorplate and motor neurons) and from the non- 

neural ectoderm (e.g. Xwnt7B mediating dorsal cell fates like neural crest and 

roofplate).

Overexpression of Slug alone appears insufficient to induce neural crest at wild-type 

levels. However, once Slug is induced by BMP/Wnt like signals it seems to regulate its 

own expression. Thus, Slug appears to have a role in neural crest fate maintenance, 

additionally to a later role in neural crest migration.

This model is broadly consistent with results of studies in zebrafish. The 

zebrafish mutant swirl was shown to encode bmp2b and to be necessary for neural crest 

formation (Nguyen et al., 1998). swirl mutants have a severely dorsalised phenotype, 

whereas chordino mutants, a chordin homologue, are ventralised. This is consistent 

with the interplay of BMP-4 and chordin in dorsoventral patterning of the frog embryo. 

Aside from ventral cell-types, laterally-derived neural crest progenitors, labelled with 

,/fc/d, are severely reduced or absent in swirl mutants. However, this region is enlarged 

in somitabun (smad5) and to a lesser degree in snailhouse (bmp7) mutants, two other 

genes of the BMP pathway. The phenotype of these 3 mutants were explained by the 

activity of a morphogen. Different levels of BMP activity induce differential gene 

expression along the dorsoventral axis (Nguyen et al., 1998; Barth et al., 1999). This 

results in the specification of various cell-types, which is also observed in frogs. Thus, 

to induce neural crest, low levels of BMP (swirl) are necessary at the border between 

the neural plate and the non-neural ectoderm. However, consistent with frogs, it was
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proposed that additional factors apart from BMP may be required for neural crest 

induction (Nguyen et al., 1998).

Neural crest segregation, specification and migration

The neural crest is induced in bilateral bands of cells at the margin of the neural plate 

and is labelled by fkd6  from about 90% epiboly (Odenthal and Nuesslein-Volhard,

1998). Such fkd6  expressing cells are observed posterior to a region stained with 

floating head (flh), which will give rise to the prospective dorsal diencephalon (Masai et 

al., 1997; Barth etal., 1999).

Neural crest segregation, like induction, occurs in a rostrocaudal sequence. At the 

anteroposterior level of somite 8 the neural keel starts to segregate from the overlying 

neuroepithelium at 15hpf and the neural tube has formed from the neural keel by 

cavitation at 17hpf. In contrast to the non-neural ectoderm, the basal lamina covering 

the neural tube is discontinuous at this stage and might thus enable the segregation of 

neural crest cells from the dorsal neural tube. This process is finished by 19hpf and 

neural crest cells are closely associated with the now continuous basal lamina of the 

neural tube (Raible et al., 1992). Neural crest cells in zebrafish are approximately twice 

the size of their avian equivalents and less numerous. In fact, zebrafish on average 

contain 3-5 times fewer premigratory neural crest cells per segment than avians (Raible 

etal., 1992).

Migration o f  neural crest cells

Migration of cranial and trunk neural crest cells show differences in the timing and 

choice of pathway. In avian embryos, cephalic neural crest cells are located anterior to 

somite 5 (Baroffio et al., 1991). The first cranial neural crest cells in birds start to 

migrate as a sheet from above the mesencephalon at the 6 somite stage and follow a 

subectodermal pathway (Baker et al., 1997a). At the hindbrain level, neural crest cell 

migration progresses in distinct bands corresponding to branchial arches (Le Douarin 

andKalcheim, 1999).

Similarly, cranial neural crest cells in zebrafish just caudal to the developing eye, start 

to migrate subectodermally at 15-16hpf. Cells from each axial level contribute to a 

specific pharyngeal segment (Schilling and Kimmel, 1994) and these segment 

restrictions appear to be generated sequentially in a rostrocaudal manner. Thus, all cells
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labelled as early as 12hpf in the rostralmost regions exclusively contribute to the 

mandibular or hyoid arches, but cells labelled more caudally at the same time migrate 

into 3 adjacent segments (Schilling and Kimmel, 1994).

In avians, the neural crest population located above or caudal to somite 5 is 

referred to as the trunk neural crest (Sieber-Blum, 1990). Trunk neural crest cells in 

vertebrates follow two conserved migrational pathways, the medial (ventromedial) and 

the lateral (dorsolateral) pathway.

Neural crest cells first enter the medial pathway at approximately 16-17hpf in zebrafish. 

The onset of neural crest migration in the trunk is linked to the differentiation of the 

somites. Premigratory neural crest cells are not in contact with the dorsal somite 

surface, but begin to probe the latter with long pseudopodia (Raible et al., 1992). As 

somites differentiate they elongate along the dorsoventral axis bringing the dorsal 

somite surface in contact with neural crest cells. This elevation is concomitant with the 

start of neural crest migration ventrally between the neural tube and the somite at 18hpf 

at the level of somite 8 (Raible et al., 1992). In contrast to birds and mammals, cells 

enter the pathway at any axial level along the somite. By the time they reach the ventral 

edge of the neural tube they all seem to have converged towards the middle of the 

somite (Raible et al., 1992). Avian and mammalian neural crest cells however are 

restricted to the rostral part of the somite (Rickmann et al., 1985; Bronner-Fraser, 1986). 

Approximately 4 hours after cells have started migration on the medial pathway in 

zebrafish, some neural crest cells additionally enter the lateral pathway. They disperse 

from the dorsalmost part of the neural tube and migrate dorsolaterally, then ventrally 

between the somite and the overlaying epidermis (Raible et al., 1992). Neural crest cells 

in zebrafish do not seem to be restricted to a region along the somite when they enter 

the lateral pathway, similarly to observations on the medial pathway. Interestingly, 

neural crest cells in mouse seemed to enter both pathways simultaneously (Serbedzija et 

al., 1990), whereas in avians, a 24 hour delay has been reported between the onset of the 

two pathways (Erickson et al., 1992).

Derivatives o f  the cranial and trunk neural crest

Cell lineages derived from cranial and trunk neural crest cells are broadly overlapping. 

However, cartilage precursors are only formed from the cranial neural crest, whereas 

sympathetic neurons for example, are only derived from the trunk neural crest cell 

population.
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The cell-types derived from the cranial neural crest have been extensively 

studied by Schilling and Kimmel. By labelling single neural crest cells with a 

fluorescent dye and recording their fate they were able to construct a fate map of 

cranial neural crest located in the region between the eye and the first somite (Schilling 

and Kimmel, 1994). It was shown that neural crest in the mesencephalic and rostral 

rhombencephalic region consisted of 6 tiers of cells. Whereas the anterioposterior 

position of neural crest cells determined which pharyngeal segment they would 

contribute to, the cell-type could be predicted from the mediolateral position. The most 

lateral tier of cells exclusively gave rise to neurons in cranial ganglia. More medial tiers 

2-5 gave rise to Schwann or satellite glial cells and pigment cells, whereas the most 

dorsally located neural crest cells in tier 4-6 differentiated into cartilage and connective 

tissues forming head structures (ectomesenchymal fates; Schilling and Kimmel, 1994). 

This fate map established for the cranial region in zebrafish seemed to roughly correlate 

to the avian fate map of that region (Noden, 1987). However, a similar study carried out 

by Dorsky, revealed some discrepancies with Schilling’s fate map (Dorsky et al., 1998). 

When Dorsky labelled cranial neural crest cells, neurons were derived exclusively from 

a lateral position in agreement with Schilling’s study. However, pigment cells mostly 

arose from medially located neural crest cells and glia from all positions, although 

slightly fewer from medial positions. Most strikingly, cartilage precursors were labelled 

equally in all mediolateral positions (Dorsky et al., 1998).

The discrepancies between the two studies might be explained, if different cell layers 

had been labelled. Schilling states that he only labelled the most peripheral 20% of 

neural crest cells, whereas Dorsky claims to have labelled representatives of all layers. 

88% of all labelled clones seem to be fate restricted prior to the onset of migration and 

gave rise to a single cell-type. This is very different to data reported for the cranial 

neural crest population in avians (Baker et al., 1997a). Using isochronic isotopic 

transplantation of cranial neural crest cells between quail and chicken embryos they 

showed that all neural crest precursors could give rise to all derivatives regardless of 

when they started their migration. Thus, in contrast to results reported in zebrafish 

(Raible and Eisen, 1994; Schilling and Kimmel, 1994; Raible and Eisen, 1996), she 

concluded that neither early nor late migrating cranial neural crest populations were 

lineage restricted. Furthermore, early neural crest cells contributed equally to dorsal and 

ventral fates, whereas derivatives formed by late neural crest cells were confined to 

dorsal regions and gave rise to fewer ectomesenchymal fates. However, these
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transplants in avians consisted of strips of neural crest cells, 10-15 cells wide and 

spanning the length of the mesencephalon. These grafts likely contained cells of various 

fate-restrictions and thus might have appeared to be multipotent as a group.

In avian and mammalian embryos, neural crest cells in the trunk give rise 

entirely to non-ectomesenchymal derivatives such as neurons of the sensory and 

sympathetic ganglions, Schwann cells and pigment cells. Enteric neurons and glia are 

derived from three locations in avians. The neural crest above somites 1-7, the vagal 

region, forms the majority of the enteric nervous system colonising the gut in a 

rostrocaudal sequence. Neural crest above the lumbosacral spinal cord contributes 

mostly to enteric ganglia in the colorectum whereas some neural crest originating from 

the anterior trunk region colonises the esophagus and anterior part of the stomach 

(Durbec et al., 1996; Bums and Le Douarin, 1998). In zebrafish, trunk neural crest also 

forms fin mesenchyme, an ectomesenchymal fate (Smith et al., 1994).

Most neural crest cells migrating on the medial pathway in zebrafish are fate- 

restricted. They give rise to single cell phenotypes, whereas only 20% produce multiple 

derivative clones (Raible and Eisen, 1994). Labelling single neural crest cells at 

different time points revealed that the number of neural crest precursors producing 

multiple phenotypes decreased with time as those precursor cells undergo progressive 

fate restriction. Sensory and sympathetic neurons are only derived from neural crest 

cells that start migrating before 18hpf, whereas time of migration is less important for 

all other derivatives. Raible and his colleagues could also demonstrate that at least some 

neural crest cells were specified before they reached their final destination. Some neural 

crest cells, like precursors for dorsal root ganglia (DRG) exhibited identifiable and 

reproducible migration patterns; others started to synthesize melanin (melanophores).

Neural crest progeny migrating on the lateral pathway consists of type-restricted 

precursors only and exclusively gives rise to clones of either all melanin-positive 

(melanophores) or all melanin-negative (xanthophores and iridophores) (Raible and 

Eisen, 1994).

How do neural crest cells become specified?

There are two models of neural crest development that attempt to explain how this wide 

variety of different neural crest derivatives is formed. The first one assumes that neural 

crest cells are predetermined to generate specific cell-types. In the second model all 

neural crest cells are equivalent initially and later become fate restricted to give rise to
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various cell-types by localised environmental signals they encounter during their 

migration (Raible and Eisen, 1995). Published results seem to indicate that a 

combination of both, intrinsic differences between cells and environmental cues might 

be involved in neural crest specification.

Some support for the first model is observed by single cell labelling of 

premigratory neural crest cells above the zebrafish trunk with lysinated rhodamine 

dextran. Most trunk neural crest cells on the medial pathway generated derivatives of a 

single phenotype (Raible and Eisen, 1994). Furthermore, all labelled neural crest cells 

on the lateral pathway produced clones of pigment cells that were either all melanin- 

positive or all melanin-negative (Raible and Eisen, 1994). Similarly, 88% of rhodamine 

dextran labelled premigratory cranial neural crest cells generated progeny of single cell- 

types (Schilling and Kimmel, 1994). Although results in these studies clearly 

demonstrate that cells give rise to only a single neural crest fate, they do not show the 

potential of these cells. It was not investigated, whether the same neural crest cells could 

still change their fate, if they were placed in a different environment, for example. In 

fact, there are indications from studies described below that the specification status of 

neural crest cells in vivo is not in agreement with the one predicted by the first model.

The second model proposed a fate restriction for neural crest cells during their 

development in response to intrinsic or extrinsic cues. Evidence supporting this model 

was provided by (Raible and Eisen, 1996). They studied cell-type restrictions of trunk 

neural crest cells migrating on the medial pathway using single cell labelling. They 

asked, whether early and late migrating populations of neural crest cells had different 

fate potential. In their observation, 20% of clones migrating early on the medial 

pathway gave rise to multiple phenotype clones, whereas two hours later, cells 

migrating at the same axial level only produced single phenotype clones (Raible and 

Eisen, 1996). To test, whether these cells had undergone progressive fate-restriction and 

also changed their developmental potential, they used transplantation studies. As an 

example, they specifically investigated a possible change in neuronal potential. They 

found that trunk neural crest cells migrating on the medial pathway early (EMC, in 

segment 7 before 18hpf) gave rise to sensory neurons of the DRG, glia and pigment 

cells. However, late migrating neural crest (LMC, in segment 7 after 18hpf) had lost 

their potential to generate sensory neurons under those environmental conditions.

In their experiments, EMC transplanted into older hosts and thus migrating at the same 

time as endogenous LMC were still able to give rise to DRG neurons, whereas
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transplanted into an even later host (21-23.5hpf) they no longer were able to do so. They 

suggested that a possible change in an environmental signal or a progressive fate- 

restriction might be responsible for the loss of ability to generate DRG neurons. LMC 

transplanted into younger hosts did not gain the ability to produce sensory neurons 

even under the “early” environment, EMC are usually subjected to. However, if such 

LMC were transplanted into those early hosts after ablation of the EMC population they 

migrated ventrolaterally to fill in the EMC positions. They were able to give rise to 

DRG and thus functionally replaced the early neural crest population. Raible and Eisen 

concluded that LMC and EMC still have the same developmental potential although 

they exhibit intrinsic conditional biases towards creating specific fates in their normal 

environment (Raible and Eisen, 1996).

Specification of trunk neural crest derivatives in avians appears to be similar to 

zebrafish. Henion and Weston (Henion and Weston, 1997) asked whether the 

composition of fate-restricted and unrestricted precursors changed within a neural crest 

population over time. They randomly labelled single neural crest cells of a primary 

neural crest cell culture by injection of a lineage tracer. Cells were grown in a medium 

permissive for neuronal, glial and pigment cell fates and identified with cell-type 

specific markers at various time points. They found that the initial neural crest 

population, which had emerged from the neural tube explant and was labelled during the 

first 6 hours consisted of both pluripotent (55.5%) and fate-restricted precursors 

(44.5%). However, 87% of neural crest cells labelled at 30-36 hours after emergence 

were fate-restricted. This progressive fate-restriction had also been reported for 

zebrafish trunk neural crest cells on the medial pathway (Raible and Eisen, 1996).

They further asked in this study, at what stages different cell lineages separated from 

each other. The neurogenic lineage seemed to become specified between 13-16 hours 

and 30-36 hours before the glial and melanogenic lineages and was the first one to start 

migration. Fate-restricted melanogenic precursors emerged last from the neural tube, but 

prior to overt differentiation, which was true for all sublineages. Since these fate- 

restrictions were observed under a presumably uniform cell culture environment, they 

concluded that intrinsic differences between precursor populations or cell-cell 

interactions must be responsible for neural crest diversity rather than environmental 

cues alone. Those distinct subpopulations might then respond to the present 

environment in different ways promoting separate developmental pathways (Henion and 

Weston, 1997).
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In summary, the studies described above seem to fit a model for neural crest 

specification that is a combination between the two extreme original models. In this 

refined model, the initial population of neural crest cells consists of a mixture of fate- 

restricted and multipotent precursors, which become progressively fate-restricted over 

time.

How can two adjacent cells with equivalent potential adopt different fates?

There are two mechanisms described in the literature. The first involves lateral 

inhibition, by which cells to be specified complementarily instruct each other; in the 

second mechanism, cells respond differently to the same signal depending on their 

distance from it.

Cornell and Eisen investigated how cells with apparently equivalent developmental 

potential in the lateral neural plate could be specified to form either neural crest cells or 

Rohon-Beard spinal sensory neurons. They found that cells singled out to be precursors 

for Rohon-Beard neurons expressed deltaA, which bound to the Notch receptor induced 

in the surrounding cells. Notch-Delta signalling was shown to be necessary to prevent 

these surrounding cells from adopting the Rohon-Beard fate and allowing them to 

become neural crest instead (Cornell and Eisen, 2000).

The Wnt signalling pathway on the other hand was shown to be involved in making 

specific fates from the neural crest. Dorsky presented evidence that suggested a role for 

Wnt-1 and/or Wnt-3a in specifying pigment cell fates in the cranial region (Dorsky et 

al., 1998). Wnt-1 and Wnt-3a expressed in the anterior dorsal neural keel seemed to 

promote pigment fates in adjacent neural crest cells at the expense of neurons and glia. 

Interestingly, the formation of ectomesenchymal fates was not affected in any way by 

these Wnt signals further supporting previous data that those fates represented a 

separate neural crest lineage from the non-ectomesenchymal derivatives such as neurons 

and pigment cells (Le Douarin and Teillet, 1974).

Pigmentation mutants and the colourless mutation

A great number of mutations isolated in the Tuebingen screen affect neural crest 

derivatives and especially pigment cells. In total, 285 mutations within 94 distinct genes 

were found, which affect various aspects of embryonic and larval pigment development 

such as pigment specification, distribution and survival (Haffter et al., 1996a). The 

second screen carried out in Boston identified 54 genes (Driever et al., 1996).
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Pigmentation mutants from the Tuebingen screen were described in detail by (Kelsh et 

al., 1996) and mutants were distributed into 7 classes according to their phenotype.

Class I describes mutants such as colourless (els), with no or strongly reduced numbers 

of all 3 types of chromatophores, melanophores, xanthophores and iridophores. Mutants 

in class II show a reduced number of only one chromatophore, e.g. xanthophores or 

iridophores in salz (sal) and shady (shd), respectively, whereas mutants with a reduced 

number of melanophores, like sparse (spa), are listed in class III. Class IV contains 

mutants with altered pigment patterns like choker (cho), which forms morphologically 

normal chromatophores in a pattern different to wild-type larvae. Moonshine (mon) is a 

representative of Class V mutants, which develop a surplus of chromatophores in 

ectopic locations. Class VI contains 10 subgroups each describing a reduced 

chromatophore pigmentation phenotype as can be seen in albino (alb) embryos, 

whereas class VII describes mutants with altered chromatophore morphology such as 

union jack (uni) (Kelsh et al., 1996).

The colourless mutation in zebrafish

The colourless phenotype was initially described by (Kelsh et al., 1996) and (Malicki et 

al., 1996). colourless seemed to have the most dramatic phenotype of all pigment 

mutants, since it lacked all 3 types of chromatophores and thus suggested an important 

role during pigment cell development, els first arose spontaneously within the rose 

stock kept in Tuebingen (clst3). It was defined as having no chromatophores apart from 

a fully pigmented eye and additionally showing an early ear defect. Very few remaining 

chromatophores were observed in some individuals in normal positions although 

melanophores, where present, were unusually small and only found on the dorsal stripe. 

In a more recent study (Kelsh and Eisen, 2000b) it was shown that the pigmentation 

defect resulted from a decrease of actual melanoblast number, not disrupted melanin 

synthesis. Fewer melanoblasts were labelled with dct in els embryos compared to wild- 

type siblings at 27hpf and migration of these dcf-positive cells seemed to be impaired. 

Furthermore, the number of migrating neural crest cells on the lateral pathway (fated to 

become all three types of pigment cells; Raible and Eisen, 1994) was drastically reduced 

in homozygous mutant embryos. However, premigratory neural crest labelled with fkd6  

was formed and maintained in apparently normal numbers in els embryos up to 24hpf.
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els embryos also show severe defects in other non-ectomesenchymal fates such as 

peripheral neurons and peripheral ganglion glia. The number of enteric neurons was 

severely reduced and enteric glia were either also severely reduced or absent at 7dpf. 

Sensory neurons of the DRG were reduced anteriorly as early as 2dpf, but absent 

posteriorly at 7dpf and sympathetic neurons also could not be detected at 9 dpf. 

Although cranial ganglion neurons appeared normal, satellite glia associated with 

cranial ganglia and Schwann cells around cranial nerves were markedly reduced in els 

embryos at 24hpf.

Ectomesenchymal neural crest derivatives such as craniofacial skeletal structures and 

median fin mesenchyme in head and trunk form normally in els siblings (Kelsh and 

Eisen, 2000b).

In addition to those defects in neural crest derivatives, els has an early effect on 

ear development and morphology first detectable around 36hpf (Kelsh et al., 1996; 

Malicki et al., 1996; Whitfield et al., 1996). By 3dpf the size of the otic capsule is 

slightly smaller and by 5dpf the tiny ear contains two small otoliths and only one 

sensory patch (Malicki et al., 1996; Whitfield et al., 1996).

All els mutant alleles show a recessive phenotype. In the Tuebingen screen 4 

colourless alleles were isolated, called elsty22f, clste275, clstw2 and clslw11.The latter two 

were derived from the same mutagenised family founder male. In the Boston screen two 

els alleles were originally classified as mutants with defective ear morphology 

combined with abnormal pigment pattern. They were named golas (jgos) and the two 

alleles gosm24] and gosm618 (Driever et al., 1996; Malicki et al., 1996). gosm241 was 

described to exhibit a weaker phenotype than gosm618, but unfortunately the stock seems 

to have been lost since.

Mutations affecting els and golas failed to complement each other and thus are allelic. 

As a result, gosm618 was renamed clsm618 (Malicki et al., 1996).

The els gene acts cell-autonomously at least in the pigment cell lineages and 

homozygous mutants, which will be referred to as els embryos hereafter, die at lOdpf 

(Kelsh et al., 1996; Kelsh and Eisen, 2000b).
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Genetic disorders characterised by congenital 

hypopigmentation in mouse and humans

As discussed earlier the neural crest represents an important group of cells responsible 

for the development of many embryonic structures such as craniofacial connective 

tissues, sensory and autonomic ganglia, the enteric nervous system and pigmentation. 

Genetic disorders affecting one or more neural crest derivatives are termed 

neurocristopathies. By far the most commonly observed neurocristopathies are those 

that affect pigment development. These show a wide variety of phenotypes ranging 

from absence of pigmentation due to deficient melanin synthesis to abnormal 

distribution of pigment cells during development. On this basis it is possible to group 

the majority of congenital hypopigmentary disorders into 2 types.

The first type of disorders are caused by mutations in genes that code for proteins 

involved in the formation of the melanosome and melanin pigment at the subcellular 

level such as tyrosinase. Hypopigmented areas in such mutants contain melanocytes, but 

lack the melanin pigment.

The second type of hypomelanoses affect proteins which act at the tissue level and are 

responsible for migration, proliferation, survival or specification of the melanocyte 

lineage. Mutations in these genes result in absence of melanocytes in hypopigmented 

areas.

Human disorders and their mouse models affecting melanin 

synthesis

Oculocutaneous albinism (OCA) represents an example of the first type of pigmentary 

disorders. Ocular and cutaneous melanocytes are distributed normally but are unable to 

synthesise melanin. OCA mutations have been classified by (King et al., 1995) 

depending on the location of the genetic lesion. Mutations in the gene encoding 

tyrosinase results in OCA1 (Barton et al., 1988). Tyrosinase catalyses the first two steps 

of melanin synthesis, the hydroxylation of tyrosine to dihydroxylphenylalanine (DOPA) 

and the oxidation of DOPA to DOPAquinone. The tyrosinase gene is the albino (c) 

locus of the mouse (reviewed in Oetting, 1998). In OCA2, mutations affect the P protein 

(murine pink-eyed dilution locus p) of unknown function, but known to be associated 

with the membrane matrix of melanosomes, whereas OCA3 results from genetic lesions
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in the tyrosinase related protein 1, trp-1 (Gardner et al., 1992; Boissy et al., 1996). 

TRP1, a DHICA oxidase, also has its functions in the melanin synthesis pathway, distal 

to tyrosinase. The brown (b) locus represents the murine TRP1 gene (reviewed in 

Oetting, 1998). Other forms of OCA such as Hermansky-Pudlak syndrome and 

Chediak-Higashi syndrome exhibit defects in addition to those in melanosomes (Boissy 

andNordlund, 1997).

Human disorders and their animal models affecting the distribution 

of melanocytes

The majority of hypomelanoses present with aberrant distribution of melanocytes and 

their underlying molecular defects affect various stages during melanocyte 

development. Animal models help to enlighten the genetic and biological basis of each 

of these human diseases. Table 1.1 summarises the most common human congenital 

pigmentary disorders and their mouse models.

Piebaldism and its murine homologue dominant white spotting (W)

Piebaldism was already recognised by the ancient Romans due to its striking phenotype 

of often symmetrical white patches of skin and hair located on the head, chest and limbs 

of affected individuals (reviewed in Spritz and Ortonne, 1998). Pigmentation of the 

retina and irises is normal and there are no visual or hearing defects in human patients. 

Thus, piebaldism is thought to be a lineage-specific disorder of neural crest derived 

melanoblasts in skin and hair (Murphy et al., 1992; Steel et al., 1992).

Piebaldism is a rare autosomal dominant disorder (1:100 000) and inherited with equal 

frequencies in males and females. It is caused by mutations in KIT, a transmembrane 

type III receptor of the tyrosine kinase family (Giebel and Spritz, 1991). Signalling by 

this receptor requires binding of its ligand, an embryonic growth factor called Steel 

factor, SLF, to the extracellular ligand binding domain. Upon binding SLF, the receptor 

dimerises activating the intracellular tyrosine kinase domain, which then 

autophosphorylates specific tyrosine residues within the kinase domain. This enhances 

the binding of other proteins such as kinases, which mediate activation of downstream 

targets of the KIT-dependent signal transduction pathway (Morrison-Graham and 

Takahashi, 1993).

The dominant phenotypes of human piebaldism show differences in severity depending
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Summary of the most common human congenital pigmentary disorders and their mouse 
models

WS1 WS2 WS3 WS4 rec WS4 dom HSCR2 HSCR Piebald CDHS
Gene j PAX3 MITF PAX3 EDN3, EDNRB SO X 10 EDNRB RET. GDNF PAX3
Locus 2q35 3q12 2q35 20ql3.2 22ql3 13q22 lO qll.l 4ql2 2q35
mode of inheritance { aut. dom. aut. dom. aut. dom. aut. recess. aut. dom. aut. recess. aut. dom. aut. dom. aut. dom.
mouse model splotch mi splotch lethal spotting, Is Dom/.Dom piebald lethal, sl n/k white spotting, W 

1:5000 1:100 000
splotch

Frequency j 1:40 000 1:40 000 1:40 000 very rare 1:40 000 rare n/k
M:F ratio equal equal equal equal 4:1 2 ' \ B 4 : f f  P  equal 4-1
Hypopigmentation j V V V V V occ. V X V
heterochromic irides V ■ 1  - vJi: r * occ. V X
dystopia canthorum j W" x  "  V X X
sensorineural deafness V V V X 
Megacolon j rare V rare V V 
craniofacial defects mild V

V
V

occ. V
-------------------

x  V
extensive V rare V

more severe V
. . , • ^  i

Table 1.1: A summary of known Waardenburg Syndrome and Hirschsprung Disease like disorders and their mouse models. Description of 
human phenotypes have been taken mainly from (Spritz, 1998 in Nordlund et al., 1998; Spritz and Ortonne, 1998 in Nordlund et al., 1998; 
Boissy and Nordlund, 1997; Pingault et al., 1997; Kuhlbrodt et al., 1998b; Pingault et al., 1998a; Southard-Smith et al., 1999). Phenotypes 
important in defining a particular syndrome are ticked, distinctive missing phenotypes are crossed out. Abbreviations: WS1-4, Waardenburg 
Syndrome 1-4; HSCR, Hirschsprung Disease; CDHS, Craniofacial-Deafness-Hand Syndrome; EDN3, Endothelin 3; EDNRB, Endothelin 
receptor B; GDNF, Glia derived neurothrophic factor; aut. dom./recess., autosomal dominant/recessive; mi, microthalmia; Is, lethal spotting; 
s', piebald lethal; Dom, Dominant megacolon, W, dominant white spotting, occ., occasional; n/k, not known; M, male; F, female.
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on the site of lesion. The most severe phenotypes are observed from some missense 

substitutions within the conserved tyrosine kinase domain. The resulting mutant protein 

acts dominant negatively and thus upon dimerisation, heterozygotes have only 25% of 

the normal amount of functional KIT receptor dimers. In contrast, loss of function 

mutations caused by premature truncations of the protein in the N-terminal ligand 

binding domain result in only a 50% reduction of functional receptors and hence milder 

phenotypes due to haploinsufficiency (reviewed in Spritz, 1998).

Several animal models for piebaldism are known. Heterozygous dominant white 

spotting (W) and Steel (SI) mutant mice display piebald-like phenotypes (Spritz, 1998). 

The W locus encodes the mouse homologue of the c-Kit tyrosine kinase receptor, 

whereas the Steel locus was identified as the c-Kit ligand, Steel factor (SLF). 

Furthermore, the zebrafish locus sparse (spa) encodes a c-kit homologue (Parichy et al., 

1999).

All 3 animal models show depigmented areas reminiscent of the human phenotype. In 

addition, heterozygous W-mutant mice may also show hypoplastic anemia, mast cell 

deficiency and sterility (Spritz, 1998; Spritz and Ortonne, 1998) not yet observed in any 

patients or in the zebrafish mutant spa. Thus, mutations in c-Kit in mouse affect the 

development of melanocytes, hematopoietic precursors and primordial germ cells. 

Occasionally, W mutant mice can show abnormalities in the enteric plexus, known as 

Hirschsprung disease, which has also been described once in a human patient 

(Mahakrishnan and Srinivasan, 1980). Only one patient with a homozygous mutation in 

KIT has been reported. The child had no hair and skin pigmentation, blue irides, 

deafness, hypotonia, severe brachycephaly and was generally developmentally retarded 

(Hulten et al., 1987). This phenotype was reminiscent of viable homozygous Wv/W v 

mutant mice (Spritz, 1998).

By studying the zebrafish mutant allele spab5, a requirement of c-kit for melanophore 

migration and survival was demonstrated and confirmed previous studies in the mouse 

mutants (Parichy et al., 1999). spcf5 is likely a functional null allele, since it lacks the 

tyrosine kinase domain. In spab5 mutants, a greater proportion of melanophores were 

observed closer to their sites of origin compared to wild-types indicating a role for c-kit 

in the migration of this cell-type. By TUNEL staining it was demonstrated that from day 

4 melanophores within the epidermis apoptosed in spab5 mutants providing evidence for 

a role in survival and maintenance of the melanophore lineage. In contrast to mouse, it 

was shown that spa was not essential for melanoblast differentiation since numerous
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melanoblasts were formed from the neural crest in homozygous spab5 mutants. Also, in 

contrast to mouse but not humans, no overt defects in primordial germ cells or 

hematopoietic precursors were observed in zebrafish (Parichy et al., 1999). These 

differences between mammalian and zebrafish c-Kit function might point to a partial 

functional redundancy with an additional Kit-like receptor (Parichy et al., 1999), which 

could have been maintained after the additional genome duplication event in teleosts 

(Postlethwait et al., 1998; Force et al., 1999).

The fam ily o f  Waardenburg Syndromes

The classical Waardenburg syndrome (WS) was first described by Waardenburg, a 

Dutch ophthalmologist in 1951 (Waardenburg, 1951). It is defined as an autosomal 

dominant disorder with piebald-like pigmentation abnormalities of skin and hair in 

combination with pigment abnormalities of the iris (heterochromia irides), lateral 

displacement of the inner canthi of the eyes, which causes a broadening of the base of 

the nose (dystopia canthorum) and absence or reduction of melanocytes in the cochlea 

(sensorineural deafness) (Spritz and Ortonne, 1998). Occasionally, patients also exhibit 

Hirschsprung disease, in which intrinsic ganglion cells of the myenteric (Auerbach) and 

submucosal (Meissner) plexi of the gastrointestinal tract are absent along a variable 

length of the gut. This aganglionosis causes blockage of affected regions and results in 

the formation of an enlarged region proximally, known as megacolon. This phenotype 

was named after Harald Hirschsprung, a Danish physician, who first noted a megacolon 

in newborn babies (Hirschsprung, 1888).

WS has since been subdivided into 4 subtypes, WS1-WS4, on the basis of the 

combination of these phenotypes and will be described individually.

Waardenburg Syndrome type I  (WS1), Waardenburg Syndrome type III (WS3), 

Craniofacial-Deafness-Hand Syndrome (CDHS) and their mouse model 

Splotch (Sp)

WS1 represents the classical WS as described above. It is a rare (1:20 000 - 1:40 000) 

disorder and is inherited in an autosomal dominant manner with equal frequencies in 

males and females (Spritz and Ortonne, 1998).

The phenotype of WS3, also called Klein-Waardenburg Syndrome, is identical to WS1, 

but is associated with additional musculoskeletal abnormalities of the face, limbs and 

upper torso (Spritz and Ortonne, 1998).
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CDHS again bears strong similarities with WS1, but exhibits much more severe 

craniofacial abnormalities and anomalies of the hands (Asher et al., 1996).

Like WS1, both WS3 and CDHS are inherited in an autosomal dominant fashion with 

the same equal male and female frequencies as observed in WS1.

To date, all cases of WS1 are associated with lesions in PAX3, a gene encoding a 

paired-box domain transcription factor which additionally contains a homeobox DNA 

binding domain (Tassabehji et al., 1992). Surprisingly, it was shown that WS1, WS3 

and CDHS are allelic and thus all 3 disorders are associated with mutations in PAX3 

(Hoth et al., 1993; Asher et al., 1996). Lesions have been identified in all 4 structural 

domains, the two DNA binding domains paired-box and homeobox domain, in the 

octapeptide and in the serine-threonine-proline-rich segment. Presumably, the loss of 

distinct regions of PAX3 prevents certain interactions with other transcription factors 

important in the protein’s many roles in development. A correlation between different 

lesions and distinguishable phenotypes such as WS1, WS3 or CDHS could not yet be 

established. However, the majority of mutations in the PAX3 gene result in WS1.

The Splotch (Sp) mouse mutants caused by lesions in Pax3 are reminiscent of 

WS1 patients (Spritz, 1998). Heterozygotes of these semidominant mutations in Pax3 

exhibit white spotting in the most distal region such as the tip of the tail, and/or 

abdomen and feet. Homozygotes have severe neural tube defects (spina bifida and 

overgrowth of neural tissue) and developmental abnormalities in several neural crest 

derived structures such as total lack of body pigmentation and abnormalities in spinal 

ganglia, DRG, sympathetic and enteric ganglia (Auerbach, 1954; Lang et al., 2000). 

Sp/Sp mutant mice die in utero on E l3 (Russell, 1947). Only one child with apparently 

homozygous WS1 has been reported. Its symptoms were more severe than the 

heterozygous phenotype including dysmorphic facial features, almost completely white 

hair and extensive loss of skin pigmentation (Zlotogora et al., 1995).

Pax3 was shown to be expressed early in the embryonic primitive streak, differentiating 

dorsal neuroepithelium, neural crest derived structures and regions of the adult brain 

(Goulding et al., 1991; Goulding et al., 1993). Recently, Pax3 was proposed to be 

required early during neural crest development to expand a pool of fate-restricted 

progenitor neural crest cells such as melanoblasts, but not for their migration (Homyak 

et al., 2001). Thus, even in homozygous Sp/Sp mutants, melanocytes and other neural 

crest derived neural tissues were observed in characteristic locations, but in fewer
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numbers. The phenotype of WS1, WS3 and CDHS patients is also consistent with an 

early role for PAX3 affecting the proliferation of several neural crest derivatives.

Waardenburg Syndrome type II  (WS2)

Waardenburg Syndrome type II is an autosomal dominant disorder that affects 

approximately 1:20 000 -  1:40 000 newborns with equal frequencies in males and 

females. Clinically, the disease is vaguely defined with patients presenting a similar 

phenotype to WS1, but lack dystopia canthorum (reviewed in Spritz, 1998). 

Pigmentation defects in skin, hair and eyes tend to be less severe than in WS1 and 

hearing loss due to a lack of melanocytes in the cochlea is not always present 

(Tassabehji et al., 1994).

At least in some individuals with WS2, a mutation in MITF, a basic helix-loop- 

helix-leucine zipper protein, has been identified. Studies on mutant mouse 

{microphthalmia) and zebrafish {nacre) MITF homologues have been crucial in 

elucidating possible biological mechanisms underlying WS2.

Heterozygous microphthalmia {mi) mice show white spotting on the belly, head and tail 

and reduced pigmentation in the iris. Homozygotes on the other hand have small 

unpigmented eyes, lack all melanocytes in the skin and in the inner ear, rendering them 

deaf. Some strong mi alleles additionally have a deficiency in retinal pigment cells, in 

mast cells and deficiency in secondary bone resorption (osteopetrosis) (Steingrimsson et 

al., 1994). The original mi allele derived from an irradiated male shows semidominance 

and a strong phenotype (Hodgkinson et al., 1993). Other alleles such as eyeless-white 

(mf™) and cloudy-eyed {mfe) are recessive and spotted {misp) has a normal appearance 

(Steingrimsson et al., 1994).

Mi, typically for basic helix-loop-helix-leucine zipper proteins, binds DNA through the 

basic domain and forms homo-and heterodimers utilising the helix-loop-helix and the 

leucine zipper domain (reviewed in Kadesch, 1993). This mode of action also helps to 

explain the differences reported for the various alleles, whereby a mutation severely 

affecting the protein’s function, but retaining its ability to dimerise causes a dominant or 

semidominant appearance due to dominant negative action. A recessive allele is 

predicted to encode a loss of function allele, e.g. a prematurely truncated protein or one 

with a non-fimctional dimerisation domain (Steingrimsson et al., 1994).

Surprisingly, the human alleles in family WS.026 and WS.002 show dominance 

although the mutations affect splice sites in the first few exon boundaries and very
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severely truncate the protein. Surely, this protein then should act as a null allele and thus 

be recessive as observed in various mouse mi alleles (Tassabehji et al., 1994). Two 

possible explanations have been proposed. The MITF gene dosage might be more 

critical in humans than in mouse (haploinsufficiency) or perhaps the altered splice site 

could lead to exon skipping and thus to a protein that can still dimerise and act in a 

dominant negative manner (Tassabehji et al., 1994).

During mouse development, m itf is expressed in presumptive melanoblasts contributing 

later to skin pigmentation and melanocytes in the stria vascularis of the inner ear. 

Furthermore, expression was observed in the embryonic heart and there was weak 

staining in the outer retinal layer of the eye. In adults, m itf was highly expressed in the 

heart and at lower levels in skeletal muscle (Hodgkinson et al., 1993). Mitf acts cell 

autonomously, consistent with coding for a transcription factor. It was shown to be 

required for committed melanoblast survival in premigratory neural crest cells perhaps 

by inducing a set of trophic genes (Homyak et al., 2001). Later during melanocyte 

differentiation Mitf is thought to activate and regulate pigmentation gene expression by 

binding to M-box elements in the promoter of target genes. Such M-box elements were 

found in at least 3 enzymes involved in pigmentation, tyrosinase, tyrosinase-related 

protein 1 and 2, and in in vitro studies, Mitf was able to transcriptionally activate a 

reporter gene driven by an M-box element in conjunction with a TATA box of a 

pigmentation gene promoter (Hemesath et al., 1994).

Fairly recently, the zebrafish orthologue of mzT/'has been cloned, nacre (nac), 

and was shown to be highly important in melanophore development (Lister et al., 1999). 

Homozygous nacw2 fish lack neural crest derived melanophores throughout embryonic 

development. In adults, the pigmentation of the retinal epithelium is normal, but the 

number of xanthophores is slightly reduced and the number of iridophores is increased 

by approximately 40% at day 3. It was shown that nacre functioned early within the 

pigment lineage since early melanoblast markers such as tyrosinase-related protein 2 

(itrp2), now called dopachrome tautomerase (dct; Kelsh et al., 2000c), and spa were 

almost or entirely absent from neural crest cells. Wild-type neural crest cells 

transplanted into nacw2 hosts differentiated into melanophores with wild-type 

morphology indicating cell-autonomy for nacre within this lineage consistent with 

mouse mi. No overt defects in any other neural crest derivatives such as neurons and 

glia of the peripheral nervous system and craniofacial structures were detected. 

Interestingly, it was demonstrated that nacre was able to induce ectopic pigment cells of
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abnormal morphology when misexpressed. This pigmentation was observed 5 hours , 

earlier than in wild-types and in cells of non-crest origin since expression of dct in those 

cells was apparent before the onset of neural crest cell migration. These findings support 

a role for nacre as a melanogenic factor activating the differentiation program possibly 

in cooperation with additional transcription factors (Lister et al., 1999).

The lack of the retinal phenotype in zebrafish observed in humans and mice could be 

explained by the identification of a second mzY/’homologue. Mitfb was shown to act 

redundantly with Mitfa (Nacre) in the retinal pigment epithelium (RPE; Lister et al., 

2001). Mitfb can also explain the recessive phenotype in nacre embryos, since it was 

able to induce ectopic melanophores in nacre embryos.

In summary, both mouse and fish m itf mutants model the human phenotype of 

WS2 very well. During development, Mitf appears to have an early role in melanoblast 

survival and later in differentiating melanocytes by regulating the transcription of 

pigmentation genes such as tyrosinase. MITF itself was shown to be directly regulated 

by PAX3, which would explain the similar phenotypes of WS2 and WS1/WS3. It thus 

suggests that the defects observed in at least some WS1 patients might partially result 

from the inability of PAX3 to regulate MITF (Watanabe et al., 1998).

Recessive Waardenburg Syndrome type 4 (WS4)

Waardenburg syndrome type 4, also known as Waardenburg-Shah Syndrome, combines 

certain phenotypes exhibited in WS3 with Hirschsprung disease, although there is no 

deafness and sometimes the extent of hypopigmentation is more extreme (Gross et al.,

1995). Shah and his colleagues reported studies on 12 babies all of whom had white 

forelocks, eyebrows and eyelashes and intestinal obstruction. At least 8 exhibited 

normal pigmentation of the eyes and at least 6 of them lacked dystopia canthorum or 

white skin patches. None of them had detectable deafness, all of them died 3-38 days 

after birth and the locus seemed inherited in an autosomal recessive manner (Shah et al., 

1981). Lesions in the human endothelin-3 (EDN3) gene have now been discovered in 

patients suffering from the recessively inherited WS4 (Edery et al., 1996; Hofstra et al.,

1996). EDN3 is a 21 amino acid peptide that binds to the endothelin receptor B 

(EDNRB).

The natural mouse mutation, lethal spotting (Is), was mapped to the Edn3 locus 

and serves as a useful animal model for WS4. The Is phenotype is caused by a point

43



mutation that prevents the conversion of preproendothelin-3 to its functional form 

(Baynash et al., 1994).

Furthermore, targeted disruption of the endothelin-3 (Edn3) gene in mice also gave rise 

to recessively inherited spotted coat colour and Hirschsprung disease reminiscent of the 

human WS4 phenotype. Homozygous edn3/edn3 mutant mice have black eyes and dark 

coat patches on their head and hips, but 70-80% of their coats lack melanocytes. Their 

ileum and cecum is largely distended, the entire colon is aganglionic and only 

approximately 15% of homozygous mice survive to adulthood.

Studies indicated that EDN3 promoted survival and differentiation of melanoblasts in 

neural tube cultures (Lahav et al., 1996).

Transgenic experiments were employed to enlighten the aganglionic phenotype in mice. 

To label enteric neuroblasts, the dopamine-beta-hydroxylase (DBH) promoter was used 

to drive lacZ expression in this cell-type, but enteric neuroblasts were never observed in 

the distal colon of Is/Is embryos (Kapur et al., 1992; Kapur et al., 1993). Retarded 

colonisation was first evident at the junction of the small and large intestine. This 

suggests a pancolonic defect in Is/Is mice and thus an important role for Edn3 to ensure 

complete colonisation of the gut (Kapur et al., 1993).

Dominant Waardenburg Syndrome type 4/Hirschsprung Disease

This autosomal dominant form of WS4 affects approximately 1:40 000 newborns with 

approximately 4 times higher frequencies in males than in females. WS4 patients 

present with pigmentation anomalies of skin and hair and sensorineural deafness, 

similar to WS1. In addition WS4 patients suffer from aganglionic megacolon, but 

usually lack dystopia canthorum and musculoskeletal malformations (Pingault et al., 

1998a; Southard-Smith et al., 1999).

The mouse mutant dominant megacolon, Dom, arose spontaneously in the 

Mouse Mutant Stock Centre of the Jackson Laboratory, Bar Harbor, ME (Lane and Liu, 

1984). It is a particularly interesting model for WS4 as it mimics well the variable 

penetrance and expressivity of the megacolon phenotype in affected patients (Southard- 

Smith et al., 1999). The heterozygous Dom/+ phenotype, similar to homozygous lesions 

in Edn3 (Is/Is mice) and Ednrb (sl/sl mice), has been described as white belly spot, white 

feet and deficiencies of myenteric ganglion cells. By embryonic day 5 (E5) 

pigmentation anomalies become apparent and by E10 heterozygous mice appear 

malnourished whereas their abdomens look distended due to underlying megacolon
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(Lane and Liu, 1984). Hearing loss in mice is difficult to assess, but circling and 

hyperactivity was observed (Pingault et al., 1998a). This behaviour is known as 

waltzing syndrome and suggestive of inner ear defects (Deol et al., 1986). The life span 

of Dom/+ mice usually ranges from 2 days to 12 months depending on the genetic 

background. Homozygous Dom/Dom mice generally exhibit a more severe phenotype 

and die in utero around E l3 (Lane and Liu, 1984).

Dom was mapped to chromosome 15 (Lane and Liu, 1984) between microsatellite 

markers D15Mit68 and D15Mit2 (Pingault et al., 1997) and found to encode SoxlO, an 

HMG domain type transcription factor (Herbarth et al., 1998; Southard-Smith et al.,

1998). In mice, SoxlO expression is first detected at E8.5 (Southard-Smith et al., 1999), 

is found in newly forming cranial and trunk neural crest cells in wild-type and 

SoxlODom/Dom mice by E9.5 and in melanoblasts on the lateral pathway and all cranial, 

dorsal root, sympathetic and enteric ganglia later in embryonic development. From E9.5 

to El 2.5, SoxlO expression is observed in the epithelium of the otic vesicle, later in the 

developing cochlea and vestibule and in the organ of Corti in adult mice. SoxlO 

expression levels generally decrease over time and by E l3.5 migrating melanoblasts are 

Soxl  ̂ -negative including those migrating into the stria vascularis of the inner ear 

(Watanabe et al., 2000).

In homozygous SoxlODom/Dom mice SoxlO levels are drastically reduced in cranial 

ganglia and nerves at E l0.5 and all SoxlO expression is lost by El 1.5 apart from in the 

most caudal neural crest. Thus, in contrast to wild-types, no Soxl 0-positive cells can be 

detected in homozygote gut sections at E14.5 (Herbarth et al., 1998; Southard-Smith et 

al., 1998). Heterozygous SoxlO1Dom/+ mice exhibit the same expression patterns as wild- 

types, but levels are overall reduced. Enteric neuron number is decreased and 

colonisation is somewhat retarded from El 1.0 over the entire length of the gut, not just 

in the large intestine as described for Is/Is and sl/sl mice. Even so, growth and rotation of 

the intestine proceeds normally (Kapur et al., 1996). In one study, 14 out of 22 

SoxlODom,+ mice had extensive aganglionosis at E l4 varying between being localised 

only in the distal part of the rectum and as proximal as the ileocaecal junction (Puliti et 

al., 1996). In Northern blot hybridisations SoxlO transcripts were detected in heart, 

brain, lung, skeletal muscle and testes in adult mice (Southard-Smith et al., 1999).

After SoxlO was shown to cause the Dom phenotype, heterozygous lesions were also 

detected in the human SOX10 homologue in previously unidentified WS4 patients 

(Pingault et al., 1998a; Southard-Smith et al., 1999). Like in mice, patients also show a
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variable phenotype even within a family, which has been hypothesised to be due to 

modifier loci. Mice show a fully penetrant phenotype on a mixed C3HHeB:FeJLe- 

axC57BL/6JLeB6 (C3xB6) background, whereas lethality is higher (70% versus 18%) 

and head spotting is lower (3% versus 50%) on a B6 background compared to a C3 

background (Southard-Smith et al., 1999). Similarly, all SoxlODoml+ mice completely 

lack enteric ganglion cells in the distal large intestine on a B6 background in 

comparison to only one third on C3 (Kapur et al., 1996). One such locus modifying the 

pigmentation and loss of hearing phenotype in humans has been mapped to 

chromosome 21 (Puffenberger et al., 1994a). A similar modifier locus has been found 

on mouse chromosome 10, which segregates with the mast cell growth factor (MGF), a 

c-Kit ligand, and thus makes a good candidate gene (Southard-Smith et al., 1999).

In human embryos, SOX10 is expressed in the neural crest at 4 weeks, in all 

cranial ganglia, DRG, cranial and spinal nerves, the otic vesicle and in the entire 

sympathetic and parasympathetic ganglion chain by 5-6 weeks. At 6 weeks of age, also 

enteric ganglia, cranial foregut, oesophagus, stomach and lungs, but not yet the CNS are 

SOX10-positive. Later on, at 17-25 weeks, SOXIO is mostly observed in several parts of 

the brain, in lung and kidneys (Bondurand et al., 1998a). In adults, transcripts were 

detected in Northern Blot hybridisations in the heart, brain, colon, small intestine, lung, 

skeletal muscle, testes, ovary, pancreas, bladder, prostate, stomach, spinal cord, trachea 

and adrenal gland (Bondurand et al., 1998a; Southard-Smith et al., 1999). These high 

transcript levels in brain and spinal cord in humans is consistent with SoxlO expression 

observed in rodent glial cells (Kuhlbrodt et al., 1998a). Also, like in mice, expression 

seen in the entire intestinal tract, stomach, small intestine and colon corresponds to the 

developing enteric nervous system (Southard-Smith et al., 1999).

Mouse and human expression patterns are very similar albeit not identical. Only humans 

show expression in the cephalic neural crest giving rise to cartilaginous structures in 

nasal bones, in the fetal and adult cerebral cortex, in major brain nuclei, heart, prostate 

and testis (Bondurand et al., 1998a).

Inoue and colleagues recently identified a novel SOXIO mutant allele in a patient with 

myelination deficiencies in the CNS and PNS in addition to hypopigmentation, long- 

segment HSCR, heterochromic irides, deafness, dystopia canthorum and nystagmus 

(Inoue et al., 1999). This finding was quite surprising since long-segment HSCR and 

facial malformations are usually associated with mutations in RET and PAX3, 

respectively. Also, such myelination defects have not yet been reported for SoxlO in any
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model organism (Inoue et al., 1999). They can be accredited to a role for SoxlO in 

myelin development and maintenance though since SoxlO is expressed in Schwann cells 

and oligodendrocytes known to produce myelin. SoxlO also interacts with myelin- 

related transcription factors such as Oct6, Pax3 and EGR2 (Kuhlbrodt et al., 1998a). 

Furthermore, a child diagnosed with Yemenite Deaf-Blind Syndrome was found to 

exhibit a heterozygous SOXIO mutation. The girl presented patches of hypo-and 

hyperpigmentation on trunk and extremities, grey hair, white eyebrows and eyelashes, 

severe hearing loss, nystagmus and dental abnormalities, but no dystopia canthorum or 

HSCR (Bondurand et al., 1999).

Several roles for SoxlO during neural crest development have been suggested 

such as involvement in survival, migration and differentiation. Recent studies have 

demonstrated synergistic activation of several target genes by SoxlO with partner 

factors. For example, Pax3 and SoxlO bind to enhancer elements in the cRet (Lang et 

al., 2000) and in the M itf promoter (Bondurand et al., 2000; Potterf et al., 2000) and 

SoxlO also interacts synergistically with Tst-l/Oct6/SCIP (Kuhlbrodt et al., 1998a). 

However, further studies will be required to fully elucidate SoxlO’s complex 

involvement during neural crest development.

Hirschsprung Disease/Waardenburg Syndrome (HSCR2)

Puffenberger and his colleagues studied a large Mennonite pedigree in which 6.3% of 

affected individuals had bicoloured irides, 2.5% were hypopigmented, 5.1% showed 

hearing loss and 7.6% had a white forelock additional to the HSCR phenotype. This 

autosomal recessive disease was named Hirschsprung Disease/Waardenburg Syndrome 

or Hirschsprung disease type 2 (HSCR2) and mapped to chromosome 13q22, as did 

endothelin receptor B (EDNRB) encoding a G protein-coupled receptor (Puffenberger et 

al., 1994a; Puffenberger et al., 1994b).

HSCR2 is distinguished from WS4 by the presence of bicoloured irides. However, in 

contrast to WS1 and WS3, dystopia canthorum is absent in both WS4 and HSCR2. It 

was estimated that approximately 95% of HSCR2 caused by mutations in EDNRB 

resulted in short-segment aganglionosis (Chakravarti, 1996).

Its mouse model, the piebald-lethal (sl) mouse, also exhibits a white colour coat 

in addition to megacolon (Hosoda et al., 1994). The hypomorphic allele piebald (s) only 

shows 20% white coat spotting and almost never enteric aganglionosis even in 

homozygous s/s mutants. Heterozygous sl mice appear to be normal, whereas in the
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homozygous state, over 90% of the coat pigmentation is lost apart from very small dark 

asymmetrical regions on the head and hips, eyes are black and pups never survive to 

adulthood. Abnormalities in the inner ear were also described (Hosoda et al., 1994). The 

intestinal region distal to the sigmoid colon usually lacks myenteric ganglion neurons 

causing distension and sometimes even perforations in more proximal regions. The 

melanoblast marker trp-2 (dct) is lost by E l0.5 in Ednrb/Ednrb mice, whereas it is still 

present in W and Sl mutant mice at El 1 indicating that EDNRB may function upstream 

of c-kit and Steel factor in melanoblast development (Hosoda et al., 1994). Gariepy and 

colleagues (1998) were able to show that EDNRB was needed in the enterics lineage 

after the latter had segregated from the melanocyte precursors. With transgenic sl/sl rats 

containing the Ednrb gene under the control of a human dopamine-beta-hydroxylase 

(DBH) promoter, which directs Ednrb expression to the enteric nervous system 

precursors, the megacolon phenotype was rescued, but not the coat pigmentation defect. 

Kapur demonstrated in sl/sl <-> wild-type aggregation chimeras that EDNRB although 

being a receptor had a non-cell autonomous effect on melanoblasts and neuroblasts 

indicating that inter-cellular signals downstream of EDNRB influence colonisation. 

Hence, wild-type neuroblasts were able to rescue migration of sl mutant neural crest 

cells in some chimeric embryos (Kapur et al., 1995).

Shin and his colleagues could further show a temporal requirement of EDNRB between 

E10 and El 2.5 for the migration of both melanoblasts and enteric neuroblasts (Shin et 

al., 1999).

Although the severity of defects in Ednrb and Edn3 mutant mice are similar as 

one might expect since they act as receptor and its ligand during development it is 

interesting to note that the Edn3 phenotype appears to be milder. This could be 

explained by slight redundancy with closely related endothelins, Ednl and Edn2, which 

are known to be able to bind to EDNRB albeit with lower affinity (Hosoda et al., 1994).

Lethal white foal syndrome (LWFS) also represents a homologous congenital 

disorder to HSCR2 in horses. In its homozygous state it is characterised by white coat 

colour and aganglionosis of the bowel. Heterozygotes exhibit a specific coat colour 

pattern known as overo, but no intestinal defects. The location of the mutant lesion was 

placed in the EDNRB gene (Yang et al., 1998).
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Dominant Hirschsprung Disease without pigmentation defects

An autosomal dominantly inherited form of Hirschsprung disease was found to be 

caused by mutant lesions in the proto-oncogene RET (REarranged during Transfection; 

Edery, Lyonnet et al. 1994; Romeo, Ronchetto et al. 1994). Apart from Hirschsprung 

disease, RET, a receptor tyrosine kinase, has previously been implicated in multiple 

endocrine neoplasia type 2A and B (MEN2A, B) and medullary thyroid carcinoma, but 

never in pigmentation anomalies (Spritz, 1998). It was estimated that mutations in RET 

account for approximately 50% of HSCR cases, of which 75% involve long-segment 

aganglionosis (Chakravarti, 1996). The latter is defined by the extent of the 

aganglionotic tract reaching proximal to the splenic flexure (Romeo et al., 1994).

In zebrafish, the orthologue of c-ret is expressed in spinal motoneurons, 

pronephric ducts, cranial ganglia, pharyngeal arches and the enteric nervous system 

(Bisgrove et al., 1997).

During mouse development, c-ret is expressed in sensory, autonomic and enteric 

ganglia, the Wolffian duct and in the ureteric bud epithelium. Mice with a targeted 

homozygous mutation in c-ret exhibit defects in kidney development, total 

aganglionosis posterior to the proximal stomach, lack the superior cervical ganglia 

(SCG) and die soon after birth (Romeo et al., 1994; Schuchardt et al., 1994). In contrast 

to humans, c-ret in mice behaves in an autosomal recessive manner.

Homozygous targeted mutations in one of c-Ref s ligands, Glial cell-line derived 

neurotrophic factor (GDNF), results in a very similar and equally severe phenotype 

(Schuchardt et al., 1994). It was demonstrated in vitro that RET signalling via GDNF is 

necessary and sufficient (together with the GPI-linked co-receptors) for development of 

cultured neuronal cells, whereby GDNF promotes survival, proliferation and 

differentiation of c-ret positive enteric neural crest cells during E12.5-E13.5. This is 

consistent with increased programmed cell death observed by TUNEL staining in 

enteric neural crest cells in homozygous c-ret mutant mice (Taraviras et al., 1999). 

Mutations in Pcdc3, Sox 10 and c-ret can result in an aganglionic phenotype. Consistent 

with this, results indicated that Pax3 and Sox 10 together might be required to activate a 

c-ret enhancer element (Lang et al., 2000). Thus, the failure of dysfunctional SoxlO or 

Pax3 to activate c-ret expression sufficiently might account for the enteric phenotype 

observed in these mutants.
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Sox10 as a candidate gene for the colourless mutation

As described in the previous section, there are numerous neurocristopathies reported in 

mice and humans affecting pigmentation in combination with defects in other neural 

crest derivatives (Table 1.1). Most of those loci present with similar combinations of 

phenotypes to els embryos, but can be excluded as candidate genes for els after more 

careful analysis of their defects.

The extent and severity of aganglionosis in els embryos is most reminiscent of c- 

ret mutations in mice. Like els, c-ret behaves in an autosomal recessive manner and 

homozygous mice exhibit total aganglionosis posterior to the proximal stomach (Romeo 

et al., 1994; Schuchardt et al., 1994). In humans, RET mutations are dominant, but still 

present long-segment aganglionosis in 75% of all cases (Chakravarti, 1996). However, 

neither in mice nor humans pigmentation anomalies are associated with the c-ret/RET 

locus and this makes RET an unlikely candidate for els.

The PAX3 locus associated with WS1, WS3 and CDHS can be excluded for 

similar reasons. All three human disorders involve craniofacial defects like dystopia 

canthorum (reviewed in Spritz, 1998), whereas ectomesenchymal derivatives are 

unaffected in els embryos. Furthermore, megacolon associated with aganglionosis is 

only very rarely observed in patients with PAX3 mutations and is not present in the one 

patient reported with homozygous WS1 (Zlotogora et al., 1995) or homozygous splotch 

mice (Russell, 1947; Auerbach, 1954).

Likewise, mutations in KIT and MITF mostly cause pigmentation defects and 

again, megacolon is only very rarely observed (Mahakrishnan and Srinivasan, 1980). 

Although the phenotype of homozygous mice and humans is aggravated, there are no 

reports of aganglionosis.

Mutations in EDN3 and EDNRB are both recessively inherited in mice and men 

and combine defects in pigmentation and enteric nervous system. The homozygous 

enteric ganglion phenotype appears to be milder compared to homozygous els embryos, 

since even s/s and Is/Is mutant mice only lack enteric ganglia in the posterior gut (Kapur 

et al., 1992; Kapur et al., 1993; Hosoda et al., 1994). However, this could be caused by 

the genetic background or species specific differences.

els embryos exhibit a grossly abnormal ear morphology (Kelsh et al., 1996; Malicki et 

al., 1996; Whitfield et al., 1996). However, deafness has not been reported in WS4
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patients with lesions in EDN3 and only in 5.1% of HSCR2 patients suffering from 

lesions in EDNRB (Puffenberger et al., 1994a).

Furthermore, Ednrb/Ednrb mouse mutants lack the extensive defects in the peripheral 

nervous system such as cranial ganglia and DRG observed in els embryos (Southard- 

Smith et al., 1998).

The pigmentation defect in els embryos is caused by a severely reduced number 

of melanoblasts. Similarly, in homozygous Sox 10Dom/Dom mice melanoblasts are absent 

from El 0.5 (Southard-Smith et al., 1998). The extent and severity of the enteric ganglia 

phenotype of els mutants is strongly reminiscent of homozygous Sox 10Dom/Dom mice.

The latter exhibit extensive aganglionosis over the entire length of the gut by E l 4.5 

(Southard-Smith et al., 1998). Furthermore, Soxl(Pom/Dom mice and els embryos have 

extensive peripheral nervous system defects outside the enteric lineage, for example in 

cranial ganglia and DRG (Herbarth et al., 1998; Southard-Smith et al., 1998). 

els embryos exhibit inner ear defects, since only a single sensory patch and 2 small 

otoliths are formed (Whitfield et al., 1996). In mice, Sox 10 is expressed in the 

developing ear and although hearing loss has not yet been conclusively demonstrated, 

circling and hyperactivity has been observed in Soxl(Potn heterozygotes suggesting inner 

ear defects (Pingault et al., 1998b). Lastly, ectomesenchymal neural crest derivatives 

contributing to the craniofacial skeleton for example are unaffected in both els and 

SoxlODom mutants.

In summary, of all the known pigmentation loci, homozygous els embryos 

appear to be most reminiscent of homozygous Soxl(Pom/Dom mouse mutants and thus, 

Sox 10 was chosen as the most promising candidate gene for the zebrafish colourless 

mutation.

The Sox gene family of transcription factors and their role in 

development

There are a number of different groups of DNA binding proteins, each of which are 

characterised by their DNA binding domain. The latter consists of conserved structural 

motifs such as the basic helix-loop-helix motif, leucine zippers or zinc fingers. In 1990, 

Tjian and his coworkers (Jantzen et al., 1990) discovered a novel DNA binding domain 

in the gene for the RNA polymerase I transcription factor UBF. This region is repeated 

six times in UBF and each of them shows high homology to two domains of High
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Mobility Group 1 (HMG1) proteins, which gave this new binding domain its name. 

Genes that were found to contain such an HMG domain were classified as members of 

the HMG box superfamily. Since Tjian and his colleagues first recognised the HMG 

box as a binding domain, many more members have been isolated from organisms as 

diverse as mammals, insects, plants and fungi. This indicates that a putative ancestral 

gene giving rise to the HMG box superfamily predates the separation of animal and 

fungal kingdoms at least 1000 million years ago (Laudet et al., 1993).

Separation of HMG box proteins into two major subfamilies based 

on the properties of their DNA binding domain

Several groups have attempted to partition this superfamily into smaller subfamilies by 

comparing the identity of the most conserved HMG domain between members. On 

average, the HMG domains are comprised of 80 amino acids and show approximately 

25% sequence identity between different homologues. There are only 3 residues 

conserved in >80% of all members, P at position 8, W at position 45 and K at position 

53 of the alignment published by (Laudet et al., 1993). Based on this sequence 

alignment an unrooted phylogenetic Fitch tree was calculated dividing the HMG box 

superfamily into two distinct subfamilies, the HMG/UBF and the TCF/SOX subfamily.

Members of the HMG/UBF subfamily such as HMG-1, UBF-1, ABF2, 

TETHMG and CCG1 contain two or more HMG domains (Laudet et al., 1993) and 

references therein). HMG-1 like proteins are ubiquitously present in all eukaryotes and 

roles have been suggested in DNA replication and nucleosome assembly. They bind 

DNA in a manner that is independent of sequence, but instead recognise certain DNA 

structures in vitro like four-way junction DNA and (CA)n repeats forming the latter 

(Ferrari et al., 1992; Peters et al., 1995). Such four-way junction DNA structures can be 

generated in vivo by recombination events and by intrastrand base pairing of inverted 

repeats (Bianchi et al., 1989).

The TCF/SOX subfamily includes transcription factors like TCF-1, LEF-1, 

MATA1 and SRY-like Sox genes (Laudet et al., 1993 and references therein). 

Interestingly, with their single HMG domains they recognise both particular DNA 

structures like four-way junctions and also specific heptameric consensus sequences on 

target genes based on the motif 5’ (A/T A/T C A A A/T G) 3’ (Harley et al., 1994). The 

human SRY binding domain was reported to exhibit a greater affinity for junction DNA
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in vitro than for the specific DNA binding site. The interaction between SRY and DNA 

which is already distorted, closely mimics the final structure that is formed after specific 

binding and conformational bending of the DNA, but is much less costly energetically. 

However, once bound to the consensus motif, the interaction between DNA and protein 

is much stronger. Ferrari and her coworkers proposed a model to explain how this 

subfamily of HMG domain proteins were still able to act through sequence specificity 

even though binding to kinked unspecific DNA is favoured. They suggested that the 

concentration of HMG 1-like proteins recognising distorted DNA with great affinity was 

much higher than of transcription factors like SRY and so would bind with higher 

probability. Statistically, SRY would get displaced from these sites and restricted to its 

DNA specific, undistorted binding sites, which HMG 1-like proteins were unable to bind 

(Ferrari et al., 1992).

The 3 dimensional structure of the HMG domain with and without being bound to 

consensus target DNA was solved with the use of NMR by 2 separate groups (van 

Houte et al., 1995; Werner et al., 1995). Irrespective of the presence of DNA the domain 

forms three a-helices, with helix I antiparallel to helix II forming the long arm of a 

twisted L-shape, and with helix III forming the short arm. A hydrophobic core supports 

this concave structure.

In the TCF/SOX subfamily this L-shape recognises the heptameric consensus 

motif as described above and binds to the minor groove of target DNA. This is an 

unusual mode of action as most other transcription factors bind to the major groove of 

DNA. As a result, a bend of up to 130° is induced in the target DNA which slightly 

unwinds the helix and thus functions to organise the local chromatin structure (Pevny 

and LovellBadge, 1997). Furthermore, close proximity to other transcription factors that 

bind to the major groove becomes physically possible and facilitates the formation of 

transcriptionally active multiprotein complexes (Wolffe, 1994; Wemer and Burley,

1997). Because of their ability to bend DNA, members of this gene family have also 

been known as architectural transcription factors (Grosschedl et al., 1994). To initiate 

the widening of the minor groove, it was demonstrated that Ile-168 in human SRY (can 

be replaced by Met or Phe in other sequence-specific HMG box proteins) disrupts the 

base pair stacking at the site of insertion by intercalating between two AT basepairs. 

(Love et al., 1995; Peters et al., 1995; Wemer et al., 1995). In one of the many human 

46X,Y sex reversal mutations, Ile-168 is replaced by Thr resulting in a diminished DNA
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binding affinity by two orders of magnitude compared to wild-type SRY (Wemer et al., 

1995).

Subdivision of the SOX family based on overall sequence and 

structural homologies

Within the TCF/SOX family, the SRY-type SOX proteins are the best characterised 

group of transcription factors. Until recently, a SOX protein was distinguished from 

TCF/LEF proteins by its high amino acid identity (>50%) within its HMG domain to 

that of the founding member of this group, mouse SRY. Thus, genes containing such an 

SRY-type HMG box were called Sox genes (Pevny and LovellBadge, 1997).

Koopman and his colleagues have proposed a new method to identify members 

of the SOX protein subfamily (Bowles et al., 2000). They suggest using the 

conservation of key motifs within the HMG domain as an alternative criterion to define 

Sox genes. They argue that SRY is not the most suitable representative for the SOX 

protein family as it is the only member which has no homologues outside the 

mammalian lineage. Additionally, most likely because of their location on the Y 

chromosome, the rate of evolution for SRY homologues is a lot faster and hence the 

subgroup of SRY genes is clearly more divergent than others . If the homology to the 

SRY HMG domain was to be used to identify SOX proteins, >50% amino acid identity 

was a too stringent criterion. Their argument is backed up by the recently isolated 

huSOX30 and ceSOXJ proteins, which only show 48% and 46% sequence identity to hu 

SRY, respectively. However, their latest alignment of HMG domain sequences revealed 

that the motif RPMNAFMVW is common to all non-SRY SOX protein members and 

they suggest this as the most reliable signature to distinguish SOX proteins in future 

(Bowles et al., 2000).

SOX proteins were thus divided into 10 subgroups A-J (Figure 1.1). The subdivisions 

based on the phylogenetic alignment of HMG domain sequences are consistent with the 

grouping of SOX proteins based on overall structural and functional motifs of the entire 

protein sequence. Such structural motifs include the conservation of intron positions, 

whereas functional motifs refer to additional domains characteristic for the subgroup. 

Members of the subgroup D for example (Sox5, Sox6, Soxl3 and Sox23), are 

characterised by a leucine zipper domain, which was shown to be capable of 

homodimerization (Lefebvre et al., 1998). This dimerization only indirectly interferes
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with DNA binding in that it reduces the affinity of the dimer for single Sox consensus 

binding sites. For the long variant of Sox5,L-Sox5 heterodimerization with Sox6 has 

also been demonstrated (Lefebvre et al., 1998). Whereas most members of subgroups 

B1 (Soxl, Sox2, Sox3 and Soxl9), C (Sox4, Soxl 1, Sox22 and Sox24), E (Sox8, Sox9 

and SoxlO) and F (Sox7, Soxl7 and Soxl8) have one or two transactivation domains, 

subgroup B2 proteins (Soxl4 and Sox21) contain a repression domain (Uchikawa et al., 

1999; Bowles et al., 2000).

Sox proteins exhibit very high sequence conservation within the DNA binding domain, 

especially between members of the same subgroup. Furthermore, Sox proteins often 

show overlapping regions of expression and thus, the question of how they can still 

regulate the transcription of target genes in a cell-type specific manner arises.

How Sox genes exhibit cell-specific transcriptional regulation and 

their role in development

Several mechanisms might be expected to contribute to this specificity such as 

additional specific flanking nucleotides to each side of the consensus binding motif and 

other functional domains in addition to the DNA binding domain. Furthermore, 

synergistic activity with other cell-type specific transcription factors might increase the 

specificity dramatically in some cases.

The recognition motifs to which SOX proteins have been shown to bind vary 

very little in sequence both in vivo and in vitro (Kamachi et al., 1999; Mertin et al.,

1999). The binding affinity might be increased slightly by specific flanking nucleotides 

to each side of the core element AACAAT, as was demonstrated for the human SOX9 

and SRY protein in vivo (Mertin et al., 1999).

The angle SOX proteins introduce by binding to DNA depends largely on the 

binding site and thus is also fairly similar. Hence, the specificity cannot be explained 

solely by selective binding to downstream targets or by introducing the correct degree 

of bending. For example, both HMG domains of SOX1 and SOX9 from chicken were 

able to bind equally well to the Sox binding site in the Col2al minimal enhancer 

element, which is only a target of SOX9 in vivo (Kamachi et al., 1999).

There are indication that other domains might contribute significantly to 

specificity apart from the DNA binding domain and the C-terminal transactivation 

domain. Cell-type specificity of SOX1, SOX2 and SOX9 is observed in vivo, despite of
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1
Consensus d h i k r p m n a f  m v w s r g e r r k  i a q q n p d m h n  s e i s k r l g k r  w k l l s e s e k r

V J  V_________________ J  v,__

A M SRY------------Q-V---------  H- L S-Q- T----Q— C- — S-T-A-
H SRY-------------RV--------- I---- DQ--- M-LE--R-R Q--YQ —  M-T-A— W

B 1  C/M/H SOX1 -RV---------  Q--- M — E — K---- -AE — VM— A 
C SOX2 -RV--------- Q--- M--E--K----  A E ---------A--
M/H SOX2 -RV---------------- Q-- M — E— K---------------A E -------- T--
C SOX3 -RV--------- Q--- M--E--K----  A D --------DA--
M/H S0X3 -RV--------- Q---M-LE--K---------------A D -----TDA---
ZF S O X 19  -K V ------------------ Q------ M— E — K----------------------------A E ----------- TDA-------

B 2  C/M /H  S 0 X 1 4   Q------M— E— K-------- ----------------- A E ---------------- A----
ZF SOX21 — V ---------------AQ---M-LD--K---- --------- G E ------- D---
C SOX21 — V ---------------- Q-- M--E--K----  A E ---------A--
H SOX21 — V --------- AQ--- M — E — K---- --------- A E ----- T-----

M SOX4 
H SOX4 
ZF SOX11 
C SOX11 
M SOX11 
M SOX12 
H SOX22

Q -----------  QI---- -ME-S-------A ------------------KD-D-
q -----------  QI---- -ME-S-------A -------------  KD-D-
Q-----------  KI---- -ME-S-------A ----------- —  M-KD—
q -----------  KI---- -ME-S-------A ------------- — M-KD—
q ------------ KI —  —  -ME-S A ---------- — M-KD---

 QH -MD-W A ------- R Q— QD—
q -----------  QH---- -MD-W-------A -------- R- -Q— QD 

M/H SOX5--------- P-----------  AKD--------L-AF------N----- 1— S----AMTNL— Q
M SOX6----------- P-----------  AKD---- -L-AF--------N-----1 —  S- — SM-NQ— Q
M SOX13---------- S-----------  AKD---- -L-AF--------S----- 1— S---- SMTNQ— Q

C SOX8 P-V------- ---- AQAA--
M/H SOX8 P-V------- ---- AQAA--
C SOX9 P-V------- ---- AQAA--
M/H SOX9 P-V------- ---- AQAA--
C SOXIO P-V------- ---- AQAA--
M/H SOXIO P-V------- ---- AQAA—

L-D-Y-HL—  A-L— T----L -R N--
L-D-Y-HL—  A-L— T----L -R-------
L-D-Y-HL—  A-L— T----L -R— N----
L-D-Y-HL—  A-L— T----L -R— N----
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Figure 1.1: Alignment of HMG domain sequences, modified from (Bowles et al., 2000)

HMG domains of Sox protein representatives for each subgroup from zebrafish, Danio rerio (ZF), chicken, Gallus gallus (C), mouse, Mus 

musculus (M), human, Homo sapiens (H), Xenopus laevis (X) and Caenorhabditis elegans (Ce) were aligned with ClustalW. The subgroups are 

labelled A-J and the accession numbers for each gene are shown (Acc. No.). Identical amino acids to the consensus sequence (top) are 

represented by dashes. Amino acids conserved across all Sox genes are underlined in the consensus sequence, whereas residues which form the 3 

a-helices are bracketed. Mouse LEF1 and TCF1 sequences are included as outgroups.
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that all 3 C-terminal domains by themselves show strong transactivation of 

Chloramphenicol Acetyl Transferase (CAT) regardless of cell-types when fused to the 

GAL4 DNA binding domain (Ng et al., 1997; Kamachi et al., 1999; Kamachi et al.,

2000). The N-terminal synergy domain of some Sox proteins such as SoxlO was shown 

to be required for interaction with partner factors (Kuhlbrodt et al., 1998a), but in 

addition, the region just C-terminal to the HMG domain also makes a minor 

contribution (Kamachi et al., 1999). Partner transcription factors might then confer 

tissue specificity of transcriptional regulation by their restricted expression. 

Furthermore, specificity might be improved by stabilising the binding of the SOX 

protein to its DNA target site by the partner factor. Such binding sites for SOX proteins 

and partner factors have been identified on the 8-crystallin enhancer for SOX2 and 

8EF3 (Kamachi et al., 1995; Kamachi et al., 1999); SOX2 and Oct3/4 on the FGF4 

enhancer (Dailey et al., 1994; Ambrosetti et al., 1997); SOX9, SF1, GATA and WT1 on 

the anti-Muellerian hormone (AMH) enhancer (Marshall and Harley, 2000); SOX9, L- 

SOX5 and SOX6 on the Col2al minimal enhancer (Lefebvre et al., 1998); and SOXIO 

and PAX3 on the MITF promoter (Bondurand et al., 2000; Potterf et al., 2000).

Aims of the project

The neural crest has been recognised as a highly important embryonic structure that 

gives rise to a great number of various derivatives such as neurons and glia of the 

peripheral nervous system (PNS), the enteric nervous system (ENS), craniofacial 

cartilage structures and pigment cells. The underlying processes and timing involved in 

specifying those different cell fates from multipotent precursors is still largely 

unknown. Not surprisingly, there are numerous human congenital diseases, generally 

termed neurocristopathies, in which either specification, survival, proliferation or 

differentiation of one or more neural crest derivatives has been disrupted.

Waardenburg Shah Syndrome (WS4) patients and their mouse model, the Dominant 

megacolon mouse (Dom), present with defects in most neural crest derivatives and are 

caused by lesions in the transcription factor SOXIO (Herbarth et al., 1998; Pingault et 

al., 1998a; Southard-Smith et al., 1998). As a result, SOXIO was suggested to be a key 

factor in neural crest development (Pevny and LovellBadge, 1997).

The phenotype of the zebrafish pigment mutant colourless (els; Kelsh et al., 1996; 

Malicki et al., 1996) is highly reminiscent of these mammalian SoxlO mutants
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(described in detail in a previous section of this chapter) and thus, sox 10 was proposed 

to be a promising candidate gene for the els locus.

The aim of this project is to investigate whether els encodes a zebrafish sox 10 

orthologue. This was attempted by

i) Cloning a soxlO homologue from zebrafish embryos

ii) Testing whether soxl 0 maps to the same locus on LG3 as els

iii) Testing for mutant lesions in at least one of the soxl 0 alleles

iv) Attempting to rescue the colourless mutant phenotype by injecting wild-type

soxlO cDNA inducible by a heatshock promoter

v) Analysis of the embryonic expression pattern of wild-type and els mutants

knowing that els acts cell-autonomously at least within the pigment lineage 

(Kelsh and Eisen, 2000b).
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Chapter 2 -  Materials and Methods

Fish husbandry

Wild-type and mutant embryos were obtained from the University of Oregon. Crosses 

were set up as described in Westerfield (1995), eggs were collected from successful 

matings on the following morning with the use of a tea-strainer. After rinsing with RO 

water, eggs were transferred to a Petri-dish containing embryo medium (5mM NaCl,

0.17mM KC1, 0.33mM CaCb, 0.33mM MgS04 ,10 ‘5% methylene blue to suppress 

fungal growth). The embryos were raised at 28.5°C and staged according to Kimmel et 

al. (1995). Embryos to be live mounted or sorted were anaesthetised in a 0.2% solution 

of 3-aminobenzoic acid ethyl ester (“Tricaine”, Sigma) prior to analysis.

Primer design and sequences

Primers were designed with the use of two programs. First, suitable primer pairs for 

PCR amplifications were suggested by Primer3

(http://waldo.wi.mit.edu/cgi-bin/primer/primer3.cgi/primer3 www.cgi).

Primer pairs, each containing at least 1-2 GC clamps at the 3’end were then analysed for 

hairpins, dimers, crossdimers and melting temperature (Tm) with a second program, 

NetPrimer (http://www.premierbiosoft.com/netprimer/netprimer.html).

Only primers with a rating of at least 80 (out of 100; NetPrimer) were selected. 

Sequencing primers were directly designed and analysed with NetPrimer. Primers S21, 

S22 and S23 were obtained from MWG-Biotech AG, lOnmol scale of synthesis and 

HPSF purification. All other primers were ordered from Gibco BRL Lifetechnologies 

with standard purification and 50nmol synthesis scale. Primers used for site-directed 

mutagenesis were additionally PAGE purified.

Primers used to clone and map soxlO

5'SOX 10*: 5' AAG GCC GGA TCC ATG AAY GCN TTY ATG GTN TGG 3 ’

3'SOX 10*: 5' AAG GCC GGA TCC GGY TGR TAY TTR TAR TCN GG 3'
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5GSP: 5’ TCC GTC TCG TTC AGC AGT CTC CAC AGC 3’

N5GSP: 5’ GGC GTT GTG CAG GTG CGG ATA TTG ATC C 3’

3GSP: 5’ AAG CTG TGG AGA CTG CTG AAC GAG ACG G 3’

N3GSP: 5’ TAT CGA GGA GGC CGA GCG CTT GAG G 3’

S9: 5’ AGG TCT GGC TGG AGT GGG CGT AGT AGG 3’

S10: 5’ CGA TGA TTT TTA GCA CAC ACA CAC ACC 3’

SI 1: 5’ ACC GTG ACA CAC TCT ACC AAG ATG ACC 3’

SI2: 5’ AAA ATC ATC GAA ACA CTC GCC TGC ACC 3’

S13: 5’ CAT GAT AAA ATT TGC ACC CTG AAA AGG 3’

S14: 5’ GTA TTT ATT TAC TTA CCC AAT GTT AGG 3’

*.. .In those degenerate primers, the letter “Y” stands for C or T, “R” for A or G, 

“N” could be either A, C, G or T.

Primers used to search for mutant lesions

S19: 5’ GCA GCA AGA GCA AAC CGC ACG 3’

S20: 5’ TGG TAG GGG GCG TTG GAG GGC 3’

S21: 5 ’ ACC TAC CGA AGT CAC CTG TGG 3 ’

S22: 5’ GAT ATT GAT CCG CCA GTT TCC 3’

S24: 5’ AAT CGC ATT ACA AGA GCC TGC 3’

S25: 5 ’ CCA GGG AAG TGT GTT TCA CTC 3 ’

S26: 5’ TAT ACA TAC GGC ATC TCC AGC 3’

S27: 5’ AGT TTG TGT CGA TTG TGG TGC 3’

Primers used to make the soxlO heatshock construct

Cla I-S21: 5’ CCA TCG ATA CCT ACC GAA GTC ACC TGT GG 3’

S21-Xba I: 5’ GCT CTA GAG TTT GTG TCG ATT GTG GTG C 3’

Primers used to make the sox9a and sox9b heatshock constructs

S9A-1: 5’ GGA TCC AAG CTT ATC GAT TTC G 3’

S9A-2: 5’ GCT CTA GAG CTT TTT CAG TGC ACA TTC AGG C 3’

S9B-1: 5 ’ CCA TCG ATG GAT CTG TGT GTG TTT CAG CAG C 3 ’
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S9B-2: 5’ GCT CTA GAG CTG CTG ATA GTG ATT CAG GCG 3’

Primers used to sequence the sox9a and sox9b constructs

9A/B19: 5’ GTG CTG AAG GGY TAC GAC TGG 3’

9A20: 5’ GGT GGT GGG AGG AGT GGG CGG 3’

9A22: 5’ CCT GCG CCC ACA CCA TAA ACG 3’

9A24: 5’ ACC CAC ATC TCG CCC AAC GCC 3’

9A25: 5’ GCT CGT TGT AAT GGC TCG GGC 3’

9A26: 5’ CAA AAC GGC AGC CCT CAA AGC 3’

9B20: 5’ GGT GGT GGG TGG TGT GGG GGG 3’

9B22: 5’ CTT GAG CCC AAA CCA TAA ACG 3’

9B24: 5’ ATG CGC TGT TCA GAG CCC TGC 3’

9B25: 5’ CCT CTG CTG GTG CTG CTC GCC 3’

9B26: 5’ AGT ACC TGC CTC CGC ACG GGG 3’

Primers used for site-directed mutagenesis

m618-»WTl: 5’ GCT CAG CAA AAC ACT GGG GAA GCT GTG GAG ACT GC 3’ 

m618—»WT2: 5’ GCA GTC TCC ACA GCT TCC CCA GTG TTT TGC TGA GC 3’ 

WT1—»tw2: 5’ GGGCGC AGA TGG CGG GTA AAC GCA GAT AAA GAG 3’

WT2->tw2: 5 ’ CTC TTT ATC TGC GTT TAC CCG CCA TCT GCG CCC 3 ’

WT1-*Y83X: 5’ AGG TGC TGA ACG GGT AAG ACT GGA CGC TCG TGC 3’ 

WT2-»Y83X: 5’ GCA CGA GCG TCC AGT CTT ACC CGT TCA GCA CCT 3’ 

WT1->E189X: 5’ AGC TCA GAG GCC TAG GCC CAC TCT GAG GGT GAG G 3’ 

WT2-»E189X:5’ CCT CAC CCT CAG AGT GGG CCT AGG CCT CTG AGC T 3’

Polymerase Chain Reactions (PCR)

PCR conditions (MgCh, dNTP and primer concentrations) were optimised with a 

scheme of 12 reactions varying all parameters in combinations (Figure 2.1). The Tm 

calculated by NetPrimer, determined by nearest neighbour analysis, was used as the 

annealing temperature.
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PCR Optimisation scheme
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600ng genomic DNA in 172pl milli-Q water 
30fil lOx Taq buffer

60|il

+10pl lOmM MgCl2 15mM MgCl2 20mM MgCl2

3 1 .5 p l \^  31.5pl'

+4.5pl 0.2mM dNTP 2mM dNTP 0.2mM dNTP 2mM dNTP 0.2mM dNTP 2mM dNTP

16pl 16pl 16pl 16pl 16pf 16pl

+1.8pl 2pM lOpM 2pM lOpM 
each primer each primer

2pM lOpM 2p.M 10pM 2pM lOpM 2pM lOpM 
each primer each primer each primer each primer

reaction 111 112 121 122 511 512 521 522 711 712 721 722

+0.4pl Taq polymerase

12 x  2 0 |i l  r ea ctio n s



Figure 2.1: This PCR optimisation scheme (designed by Stone Elworthy, University of Bath) varies 3 concentrations of magnesium chloride 

combination with 2 concentrations each of dNTPs and primers. The molarities noted in this scheme represent the concentrations of stock 

solutions of MgCl2, dNTP and primers. The resulting final test conditions used in each of the 12 reactions were as follows:

111 112 211 212 511 512 521 522 711 712 721 722
MgCl2 ImM ImM ImM ImM 1.5mM 1.5mM 1.5mM 1.5mM 2mM 2mM 2mM 2mM
dNTPs 20jiM 20gM 200gM 200|iM 20jiM 20gM 200(iM 200gM 20^M 20\iM 200|iM 200(iM
primers 0.2nM l(xM 0.2(iM ljiM 0.2nM l|iM 0.2nM l̂ iM 0.2|iM lpM 0.2|iM lpM



RT-PCR Protocols

Isolation o f  total RNA using Tri Reagent

Approximately 200-300 embryos of the desired stage were dechorionated using 

watchmaker forceps, killed by an overdose of the anaesthetic Tricaine and homogenised 

thoroughly in 1ml Tri Reagent (Sigma). Homogenates were spun at 13000rpm for 10 

minutes at 4°C, the supernatant was removed to a fresh tube and the sample allowed to 

stand for 5 minutes at room temperature. 0.2ml chloroform was added, the tube shaken 

vigorously and left to stand for 2-15 minutes at room temperature. After centrifugation 

at 13000rpm for 15 minutes at 4°C the aqueous phase containing RNA was transferred 

to a fresh tube, 1/10 volume of isopropanol was added, the tube was inverted a few 

times and allowed to stand at room temperature for 5 minutes. The sample was spun 

again at 13000rpm for 10 minutes at 4°C and an equal volume of isopropanol added to 

the transferred supernatant. After the tube was inverted again and left to stand for 5-10 

minutes at room temperature the precipitated total RNA was pelleted at 13000rpm for 

10 minutes at 4°C. The supernatant was removed, the pellet washed with 1ml 75% 

ethanol by vortexing and the sample respun at 13000rpm for 5 minutes at 4°C. After 

removal of all the ethanol, the pellet was dried at room temperature for approximately 5 

minutes and redissolved in a suitable volume (approximately 50pl) of fresh milliQ 

water. The quality of the total RNA preparation was assessed by analysing 1 pi of the 

sample on a standard 1%TBE gel.

Reverse transcription using random hexamers or an oligo dTprimer

3-6pg of total RNA was combined with lOOng random hexamers or 500ng oligo dT and 

the volume made up to 12pl with fresh milliQ water. The sample was heated to 70°C 

for 10 minutes, chilled on ice, then 4pl 5x reaction buffer (Gibco BRL), 2pl 0.1M DTT 

and lp l lOmM dNTPs were added. After mixing the reaction, samples were incubated 

at 25 °C (or 42°C for oligo dT reactions) for 2 minutes and 1 pi (200u) Superscript II 

(Gibco BRL) was added. When using random hexamers, tubes were incubated for 

another 10 minutes at 25°C. All reactions were transferred to 42°C for 50 minutes 

followed by 15 minutes at 70°C to inactivate the reverse transcriptase. Then 2u RNAse 

H (Promega) was added and reactions incubated at 37°C for 20 minutes. The reactions
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were diluted to a 1:50 final concentration directly into PCR reactions (i.e. lp l cDNA 

used in a 50pl PCR reaction).

PCR protocols for primer combinations used to clone soxlO

Degenerate primers 5 ’SoxlO and 3 ’SoxlO to clone the HMG box

These primers and the PCR protocol were first published by Yuan et al. (1995). A 50pi 

PCR reaction included 4pl 25mM (2mM final) MgCL, 5pl 2.5mM (250pM final) 

dNTP, 5 pi lOpM (lpM  final) of each primer, lp l (5u) Taq DNA polymerase 

(Promega), 5pl lOx reaction buffer and 2pl cDNA. Reactions were subjected to 1 

minute at 94°C, 25 cycles of 1 minute at 94°C, 1 minute at 45°C and 1 minute of 72°C 

followed by a final extension step of 10 minutes at 72°C.

RACE-PCR protocol

RACE-PCR (Rapid Amplification of cDNA Ends-Polymerase Chain Reaction) was 

carried out using the Clontech SMART (Switching Mechanism At 5’ end of RNA 

Transcript) RACE cDNA Amplification Kit. First, 5’RACE cDNA and 3’RACE cDNA 

were synthesised by combining lpg of total RNA from 19hpf embryos with lp l 5’-CDS 

primer or 3’-CDS primer respectively and lpl SMART II (5’RACE cDNA reaction 

only). Supplied sterile water was added to the final volume of 5pl, the reactions 

incubated at 70°C for 2 minutes and cooled on ice for 2 minutes. After spinning the 

tubes briefly to collect the contents, 2pl 5x First-Strand buffer, lp l 20mM DTT, lp l 

lOmM dNTP mix and lp l (200u) Superscript II (Gibco BRL) reverse transcriptase were 

added. Reactions were incubated at 42°C for 90 minutes, diluted with lOOpl Tricine- 

EDTA buffer supplied with the kit and heat treated at 72°C for 7 minutes.

RACE PCR reactions were set up by combining 2.5pl 5’RACE or 3’RACE cDNA with 

5pl lOx UPM (universal primer mix), lp l lOpM 5GSP (5’gene specific primer, for 

sequence see primer design and sequence section of Materials and Methods) or 3GSP 

(3’ gene specific primer), 5pl lOx Reaction Buffer, lp l lOmM dNTP mix, lp l 50x 

Advantage 2 Polymerase Mix (Clontech) and 34.5pi PCR-grade water. In a MJ 

Research PTC-DNA Engine PCR reactions were subjected to 5 cycles of 94°C for 10 

seconds, 72°C for 3 minutes, then 5 cycles of 94°C for 10 seconds, 70°C for 10 seconds,
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72°C for 3 minutes, then 30 cycles of 94°C for 10 seconds, 68°C for 10 seconds, 72°C 

for 3 minutes followed by a final extension step at 72°C for 10 minutes. 5pl of each 

reaction were run out on a 1% agarose/ethidium bromide gel and examined using an 

ultraviolet light source.

To test for product specificity nested PCR reactions were carried out by diluting 5 pi of 

the primary PCR products into 245pl of Tricine-EDTA buffer. PCR reactions were set 

up as before, but replacing the 2.5pi cDNA with 5pi of the diluted primary PCR product 

and lp l lOpM 5GSP or 3GSP with either lpl 10pMN5GSP orN3GSP, respectively. 

For primer sequences see primer design and sequence section of Materials and Methods. 

The nested PCR reactions were subjected to 25 cycles of 94°C for 10 seconds, 68°C for 

10 seconds and 72°C for 3 minutes followed by a final extension of 72°C for 10 

minutes. As before, 5pl of each reaction were run out on a 1% agarose/ethidium 

bromide gel (TBE) and examined on an ultraviolet light source.

PCR protocol fo r amplification between primers 5*SoxlO, 3GSP or N3GSP and 

S13 (clone 15 and 20)

Since the 3’RACE product did not span the entire region 3’ to the HMG box, an 

overlapping fragment was amplified between primers 5’Sox 10 and SI3. A 20pl PCR 

reaction included 2pl cDNA, 2pl lOpM (lpM  final) of each primer, 0.3pl (1.5u) 

Thermoprime Taq DNA polymerase (Advanced Biotechnologies), 1.8pl 1 lx  reaction 

buffer [167pl 2M TrisHCl pH8.8, 83pl 1M Ammonium sulphate, 33.5pl 1M 

Magnesium chloride, 3.4pl lOmM EDTA pH8, 3.6pl P-mercaptoethanol, 75pl of each 

lOOmM dNTP stock and 85pl lOmg/ml BSA (DNAse free, Pharmacia), recipe kindly 

provided by Dr. Diane Hird, University of Bath] and 11.9pl milli-Q water to make up to 

20pl. Reactions were subjected to 1 minute at 94°C, 35 cycles of 30 seconds at 94°C, 1 

minute at 60°C and 3 minutes 30 seconds of 72°C followed by a final extension step of 

10 minutes at 72°C.

Subsequent nested PCRs involved amplification between primers 3GSP or N3GSP and 

S I3. The PCR reaction were set up like described in the previous section for the 

5’Soxl 0/S 13 amplification replacing the 2pl cDNA with equal volume of 1:10 diluted 

first round PCR template. Reactions were subjected to 1 minute at 94°C, 25 cycles of 30 

seconds at 94°C, 1 minute at 66°C and 3 minutes 30 seconds of 72°C followed by a
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final extension step of 10 minutes at 72°C. Products obtained from this amplification 

were cloned into pGEM-T Easy vector and sequenced.

PCR protocols involved in mapping soxlO on the radiation hybrid 

panel LN54

The LN54 collection of radiation hybrids (zebrafish in a mouse background) was kindly 

provided by Marc Ekker from the Loeb Research Institute in Ottawa, Canada (Hukriede 

et al., 1999). It contains 93 radiation hybrid DNA samples (100ng/pl each), DNA from 

the two parental cell lines (zebrafish AB9 and mouse B78) and a 1:10 mixture of the 

latter two.

For mapping soxlO on the panel, a PCR reaction with primers SI 1 and S13 was used. 

For primer sequences see primer design and sequence section of Materials and Methods, 

lp l of each of the 96 DNA samples was combined with 2pl lOpM SI 1 primer, 2pl 

lOpM S13 primer, 1.8pl 1 lx  PCR buffer (recipe see previous section), 0.3pl 

Thermoprime Taq DNA polymerase (Advanced Biotechnologies) and 12.9pl milliQ 

water.

PCR reactions were denatured at 94°C for 1 minute, then cycled at 94°C for 30 seconds, 

66°C for 1 minute, 72°C for 3 minutes for 30 cycles, followed by a final extension of 

72°C for 10 minutes. To increase the intensity and specificity of the obtained products, 

those first PCR products were diluted 1:10 and lpl was then included in a nested PCR 

reaction. The reaction set up and PCR program was identical to the one outlined above 

with the exception that 2pl lOpM primer SI 1 were replaced by 2pl lOpM of the nested 

primer SI 2. All 20pl of nested PCR reactions were loaded on a 1% agarose/ethidium 

bromide gel and location of the products of the expected 850bp size was recorded. This 

assay was carried out in duplicate and the resulting data submitted to the mapping 

program at http://mgchdl.nichd.nih.gov:8000/zfrh/beta.cgi.

PCR protocols for primer pairs used to screen for mutant lesions

The sequence of mutant els alleles was compared to wild-type soxl 0 by sequencing 4 

overlapping PCR fragments spanning the entire coding region. Those fragments were 

amplified between primer pairs S19-S20, S21-S22, S24-S25 and S26-S27. The optimum
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conditions were determined by setting up a PCR optimisation scheme (Figure 2.1) for 

each primer pair. S19-S20 and S21-22 gave cleanest products with condition “122”, the 

other primer pairs worked optimally in condition “121” (see Figure legend 2.1).

A 50pl “122” reaction contained 5pi mutant or wild-type cDNA, 5pi lOx reaction 

buffer, lp l 50mM (ImM final) MgCl2, lp l lOmM (200pM final) dNTP, 5pl lOpM 

(lpM  final) of each primer, lp l (5u) Taq DNA polymerase (GibcoBRL) and milli-Q 

water to make up to 50pl.

A 50pl “121” reaction contained 5pl mutant or wild-type cDNA, 5pl lOx reaction 

buffer, lp l 50mM (ImM final) MgCl2, lpl lOmM (200pM final) dNTP, lp l lOpM 

(0.2pM final) of each primer, lp l (5u) Taq DNA polymerase (GibcoBRL) and milli-Q 

water to make up to 50pl.

The PCR program identical for all primer pairs apart from the annealing temperature 

involved 1 minute at 94°C, 35 cycles of 30 seconds at 94°C, 1 minute at 68°C for SI 9- 

S20, 58°C for S21-S22, 56°C for S24-S25 or 55°C for S26-S27 and 1 minute at 72°C 

followed by a final extension step of 10 minutes at 72°C.

PCR protocol for primers used to make the soxlO heatshock 

construct

soxlO coding regions were amplified from wild-type and els mutant cDNAs using 

primers Cla I-S21 and S21-Xba I.

In a 20pl reaction, 0.4pl undiluted wild-type cDNA from 38hpf total RNA was 

combined with 0.4pl (2u) Taq DNA polymerase (TaqPlus Precision PCR System, 

Stratagene), 2pl lOx reaction buffer, 2pl 2mM (200pM final) dNTPs, 2pl of each 2pM 

(0.2pM final) primer and 11.2pl milli-Q water.

Mutant coding regions of alleles clsm618 and clstw2 were amplified in lOpl reactions 

containing lp l 1:5 diluted mutant cDNA, 0.2pl lOmM (200pM final) dNTPs, lp l 2pM 

(0.2pM final) of each primer, 0.2pl (lu) Herculase (Herculase enhanced DNA 

Polymerase, Stratagene), lpl lOx reaction buffer and 5.6pl milli-Q water.

All PCR reactions were denatured at 92°C for 1 minute, then subjected to 10 cycles of 

92°C for 10 seconds, 67°C to 57°C (l°C/cycle) for 45 seconds, 72°C for 2 minutes
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followed by 30 cycles of 92°C for 10 seconds, 57°C for 45 seconds and 72°C for 2 

minutes followed by a final extension of 72°C for 10 minutes.

PCR protocol for primers used to make the sox9a and sox9b 

heatshock constructs

sox9a and sox9b coding regions were amplified using primers S9A-1 and S9A-2 or 

S9B-1 and S9B-2, respectively.

lOpl reactions were set up with 200pg of each plasmid miniprep containing the full 

length sox9a and sox9b clones, 0.2pl lOmM (200pM final) dNTPs, lp l lOpM (lpM  

final) of each primer, 0.2pl (lu) Herculase (Herculase enhanced DNA Polymerase, 

Stratagene), lp l lOx reaction buffer and 5.6pl milli-Q water.

PCR reactions amplifying the sox9a coding region were denatured at 92°C for 1 minute, 

then subjected to 10 cycles of 92°C for 10 seconds, 68°C to 58°C (l°C/cycle) for 45 

seconds, 72°C for 2 minutes followed by 25 cycles of 92°C for 10 seconds, 58°C for 45 

seconds and 72°C for 2 minutes followed by a final extension of 72°C for 10 minutes. 

PCR reactions amplifying the sox9b coding region were denatured at 92°C for 1 minute, 

then subjected to 10 cycles of 92°C for 10 seconds, 60°C to 48°C (1.2°C/cycle) for 45 

seconds, 72°C for 2 minutes 30 seconds followed by 25 cycles of 92°C for 10 seconds, 

48°C for 45 seconds and 72°C for 2 minutes and 30 seconds followed by a final 

extension of 72°C for 10 minutes.

Protocol for primers used for site-directed mutagenesis

To create a wild-type soxlO heatshock construct from the clsm618 mutant heatshock 

construct, primers m618->-WTl (forward primer) and m618->WT2 (reverse primer) 

were used. The clstw2 mutant heatshock construct was then created from the wild-type 

construct using primers WT1—»tw2 (forward primer) and WT2->tw2 (reverse primer). 

Four 50pl reactions were set up, each containing either 5ng, lOng, 20ng or 50ng of 

template (clsm618 mutant heatshock construct to make the wild-type construct and wild- 

type to make the clstw2 mutant heatshock construct), lp l 125ng/pl of each primer, 

m618-»WTl and m618->WT2 or WTl->tw2 and WT2->tw2, lp l 20mM (400pM 

final) dNTPs, lpl (2.5u) Pfu Turbo DNA Polymerase (Stratagene), 5pl lOx reaction
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buffer and milli-Q water to make the reaction volume up to 50pl. A “no primer” control 

reaction was included containing 20ng of template, but no primers.

Reactions were subjected to 95°C for 30 seconds and 12 cycles of 95°C for 30 seconds, 

55°C for 1 minute and 68°C for 12 minutes and 30 seconds. 

lOpl of each reaction were analysed on a standard agarose gel for successful 

amplification. To the remaining 40pl reaction, lp l Dpn I restriction enzyme (NEB) was 

added directly into the PCR tubes and samples incubated at 37°C for 60 minutes to 

digest the parental methylated strands. 1.5pl of those double-stranded nicked open 

circular plasmids containing the mutated site were transformed into Epicurian Gold 

Supercompetent cells (Stratagene) and colonies tested for successful mutagenesis by 

either restriction digest with TspRI or by sequencing across the mutated region. If the 

wild-type construct was created successfully, a TspRl restriction was gained compared 

to the clsm618 mutant allele. To test this, a 20pl restriction digest with 2.5pi putative 

wild-type construct miniprep, 0.2pl BSA, lp l 7spRI (NEB), 2pl lOx NEB4 reaction 

buffer and 14.3pl milli-Q water was set up and incubated at 65°C for 3 hours. Positive 

clones were sequenced to ensure successful mutagenesis.

Since there was no similar test based on a change of restriction digest pattern available 

for the clstw2 heatshock construct, 350ng of several minipreps were directly sequenced 

across the mutagenesis site.

Molecular Cloning Techniques 

Agarose gel electrophoresis

To prepare a 1% agarose gel, 0.5g agarose was weighed into 50ml lxTBE buffer [per 

litre 10.8g Tris base, 5.5g boric acid, 4ml 0.5M EDTA pH8.0] and heated in a 

microwave at full power for 2 minutes to dissolve the agarose. The evaporated liquid 

was replenished with RO water, the gel solution briefly cooled under tap water, 3 pi 

(lOmg/ml) ethidium bromide added and the gel poured. Gels were run at 80-100V for 

approximately 1 hour in lx  TBE buffer with additional 5pi ethidium bromide added to 

the cationic compartment of the gel tank, examined using an ultraviolet light source and 

documented using a black and white video camera (UVP) and a video graphic thermal 

printer (Sony).
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Restriction digests

Approximately lp.g of plasmid DNA or 200-300ng of a PCR product were digested in a 

total reaction volume of usually lOpl containing lp l 1 Ox restriction enzyme buffer and 

10 units of restriction enzyme. Incubation was carried out at the enzyme’s specific 

reaction temperature (usually 37°C) for at least 2 hours and up to overnight. The 

majority of enzymes were purchased from Promega or New England Biolabs (NEB).

Ligation of PCR products

50-100ng of PCR product was directly ligated into 25ng of pGEM-T Easy vector 

(Promega) in a total reaction volume of 20pl containing 3units T4 DNA ligase 

(Promega) and supplied ligation buffer. The reaction was carried out at 16°C at least 

overnight or preferably for the duration of 2 days.

Preparation of CaCI2 competent cells

DH5a cells from a glycerol stock were plated on a fresh LB agar plate [LB medium 

contains lOg bacto-tryptone, 5g bacto-yeast extract, lOg NaCl per litre with pH adjusted 

to 7.0 with 5N NaOH; for LB-agar plates 15g bacto-agar is added] and incubated at 

37°C overnight. 50ml LB medium was then inoculated with one colony and again 

incubated at 37°C in a shaking incubator overnight. 2ml of overnight culture were 

diluted into 50ml fresh LB medium and incubated at 37°C in a shaking incubator until 

A6oo = 0.4-0.6. The culture was pelleted at 4000rpm for 10 minutes at 4°C and the 

supernatant discarded. The well drained cell pellet was resuspended in 20ml ice cold 

50mM CaCl2 and left on ice for at least 20 minutes. The cells were centrifuged again at 

4000rpm for 10 minutes at 4°C, the supernatant discarded and the cells resuspended in a 

solution of 4.25ml ice cold 50mM CaCb and 0.75ml sterile glycerol. Aliquots of 200pl 

were snap-frozen in a dry ice/acetone bath and stored at -80°C.
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Transformation of competent E.coli by heatshock

Transformation o f  competent D H 5a cells prepared with the CaCl2 method

A 2 0 0 jli1 aliquot of competent DH5a cells was thawed on ice, 20pl ligation reaction 

was added and gently mixed with a pipette tip. The tube was kept on ice for 30 minutes 

followed by heatshock in a waterbath at 42°C for exactly 90 seconds and returned to ice 

for another 2 minutes. 800pl LB medium was added and the cells left to recover at 37°C 

for an hour. The cells were pelleted at 5000rpm for 3 minutes, resuspended in 

approximately 50pl LB medium and spread onto an LB agar plate containing 50pg/ml 

ampicillin (Sigma), 20pg/ml X-gal and 20pg/ml IPTG.

Transformation o f  Gold Super-competent Epicurian Coli cells

Constructs created by site-directed mutagenesis were transformed into Gold Super- 

competent Epicurian Coli cells (Stratagene) according to the manufacturers instructions. 

Cells were slowly thawed on ice, gently swirled to mix cells and lp l XL 10-Gold p- 

mercaptoethanol was added. During the following 10 minute incubation on ice the cells 

were gently swirled every 2 minutes and then 1.5-2.0pl ligation reaction was added. 

After incubating the cells on ice for 30 minutes, they were heatshocked at 54°C for 60 

seconds, returned to ice for 2 minutes and 150pl LB medium was added. The cells were 

allowed to recover at 37°C for an hour and were then spread onto an LB agar plate 

containing 50pg/ml ampicillin (Sigma).

Plasmid preparations

Plasmid minipreps using alkaline lysis

The protocol for Lysis by Alkali described in Sambrook et al. (1989) was followed with 

a few alterations. Single colonies were picked from transformation plates and grown 

overnight in a 37°C shaking incubator in 2.5ml LB medium containing 50pg/ml 

ampicillin (Sigma). The culture was centrifuged at 13000rpm for 3 minutes, the pellet 

drained well, resuspended in lOOpl resuspension buffer [5mM glucose, lOmM EDTA 

pH 8.0 and lOOmM Tris/HCl pH 8.0] by vortexing and left to stand at room temperature 

for 10 minutes. Then 200pl of freshly prepared lysis mix [0.2M NaOH, 1% SDS] was
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added and the tubes sharply inverted until the solution was clear and viscous. After 5 

minutes incubation on ice, 150pl neutralisation solution [3M NaOAc pH 4.8] was 

added, the tubes inverted as before and stored on ice again for 5 minutes. Samples were 

centrifuged at 13000rpm for 10 minutes, the clear supernatant was transferred to a fresh 

Eppendorf tube, the plasmid DNA was precipitated with 1ml 100% ethanol for at least 

20 minutes at -20°C and collected by centrifuging at 13000rpm for 10 minutes. The 

pellet was resuspended in lOOpl 0.1M NaOAc pH 4.8 and reprecipitated for at least 20 

minutes at -20°C by adding 200pl 100% ethanol. The DNA was pelleted again by 

spinning at 13000rpm for 10 minutes, the ethanol removed and finally, the dried DNA 

pellet was taken up in a solution of 36pl milliQ water and RNAse (4pl lmg/ml). The 

sample was incubated at 37°C for 30 minutes and then stored at -20°C until needed.

Plasmid minipreps using the Wizard Plus SVMiniprep DNA Purification 

System (Promega)

Single colonies were picked from transformation plates and grown overnight in a 37°C 

shaking incubator in 5ml LB medium containing 50pg/ml ampicillin (Sigma). The 

culture was centrifuged at 13000rpm for 5 minutes, the pellet drained well and 

completely resuspended in 250pl Wizard Plus Cell Resuspension Solution by vortexing 

thoroughly. 250pl Wizard Plus Cell Lysis Solution was added and mixed by inverting 

the tube until lysis was complete. lOpl Alkaline Protease Solution was added, the tube 

mixed by inverting it 4 times and incubated at room temperature for 5 minutes. Then 

350pl Wizard Plus Neutralisation Solution was added, the tube inverted 4 times and 

spun at 13000rpm for 10 minutes at room temperature. The cleared lysate was 

transferred into a Wizard Spin Column and centrifuged at 13000rpm for 1 minute at 

room temperature. The flow through was discarded, 750pl Wizard Plus Column Wash 

Solution was added to the column and respun at 13000rpm for 1 minute at room 

temperature. The last step was repeated with 250pl Wash Solution and the column spun 

at 13000rpm for 2 minutes at room temperature. The column was then transferred to a 

fresh Eppendorf tube, the plasmid eluted with 100pl Nuclease-Free Water and collected 

by centrifuging at 13000rpm for 1 minute at room temperature.
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Plasmid midipreparations using the Wizard Plus Midipreps DNA Purification 

System (Promega)

Single colonies were picked from transformation plates and grown overnight in a 37°C 

shaking incubator in 100ml LB medium containing 50pg/ml ampicillin (Sigma). The 

culture was centrifuged at 6000rpm for 15 minutes in a Sanyo Harrier 18/80 benchtop 

centrifuge, the pellet drained well and completely resuspended in 3ml Cell 

Resuspension Solution by vortexing thoroughly. 3ml Cell Lysis Solution was added and 

mixed by inverting the tube until lysis was complete. Then 3ml Neutralisation Solution 

was added, the tube inverted 4 times, the sample split into 6 Eppendorf tubes and spun 

at 13000rpm for 15 minutes at 4°C. The cleared lysate was mixed with 10ml of 

resuspended Wizard Midipreps DNA Purification Resin, transferred to a Midicolumn 

and the resin/DNA mix bound to the column by applying a vacuum. To wash the DNA 

2x15ml of Column Wash Solution was applied and drawn through by a vacuum. The 

resin was dried briefly by continuing the vacuum for 30 seconds after the solution had 

been pulled through. The column tip was spun at 13000rpm for 2 minutes at room 

temperature to remove any residual Wash Solution, 300pl preheated 65°C milliQ water 

was added, the column left to stand for 1 minute and the eluted DNA was collected by 

centrifuging at 13000rpm for 20 seconds at room temperature. To remove any residual 

resin fines the sample was spun at 13000rpm for 5 minutes, the supernatant transferred 

to a fresh tube and stored at -20°C.

Gel extraction using QIAquick Gel Extraction Kit (Qiagen)

DNA fragments of 70bp-10kb were purified using the QIAquick Gel Extraction Kit 

(Qiagen).

The DNA band was excised from a 1% agarose gel with a razor blade, weighed and 3 

volumes of Buffer QG per 1 volume of gel was added (100mg~100pl). The gel was 

dissolved by heating in a 50°C waterbath, 1 gel volume isopropanol added (unnecessary 

if DNA band was between 500bp and 4kb) and the sample transferred to a QIAquick 

spin column. After spinning the column at 13000rpm for 1 minute at room temperature, 

the flow through was discarded and the DNA washed with 750pl Buffer PE. After 

centrifugation at 13000rpm for 1 minute at room temperature, the flow through was 

discarded, the column respun for 1 minute and transferred to a fresh Eppendorf tube. To
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elute the DNA 30jal of Nuclease-Free Water was added to the centre of the column, left 

to stand for 1 minute and the DNA finally collected by centrifugation at 13000rpm for 1 

minute at room temperature.

PCR purification using QIAquick PCR Purification Kit (Qiagen)

Single or double stranded DNA of lOObp-lOkb from PCR and other enzymatic reactions 

were purified using the QIAquick PCR Purification Kit (Qiagen).

To 1 volume of PCR reaction 5 volumes of Buffer PB were added, the sample mixed, 

applied to a QIAquick spin column and spun at 13000rpm for 1 minute at room 

temperature. After the flow through was discarded, the DNA was washed with 750pl 

Buffer PE, the column centrifuged at 13000rpm for 1 minute at room temperature, the 

flow through discarded again and the column respun for 1 minute. Then the latter was 

transferred to a fresh Eppendorf tube, 30pl Nuclease-Free Water was applied to the 

centre of the column, left to stand for 1 minute and the eluted DNA collected by 

centrifuging at 13000rpm for 1 minute at room temperature.

DNA sequencing

Sequencing by the Sanger Dideoxy-mediated chain termination method

To sequence cloned HMG boxes the T7 Sequenase version 2.0 DNA sequencing kit 

(Amersham) was used according to the manufacturer’s instructions.

Approximately 5pg of template DNA in 20pl milliQ water was denatured for 10 

minutes at room temperature with 5 pi freshly prepared 2M NaOH and purified with a 

minispin column (Pharmacia). 7pi of the denatured template was annealed to lpM of 

either -40 M l3 forward primer (supplied by the kit) or M l3 reverse primer (Gibco 

BRL) and labelled with 5pCi 35S following the manufacturer’s instructions.

A 5% polyacrylamide gel (7.5M urea) was poured with the use of the Sequagel “Ultra 

Pure” Sequencing System (National Diagnostics), the entire lOpl sequencing reaction 

was loaded and run on a Sequi-Gen GT Nucleic Acid Electrophoresis Cell (BioRad) 

sequencing rig at 95-130W until the Xylene Cyanol dye front (light blue) reached about 

10cm above the bottom of the plates. The gel was fixed for 15 minutes in a solution of 

10%methanol, 10% glacial acetic acid, transferred to Whatman filter paper and dried on
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a flatbed dryer using a BioRad Hydro Tech Vacuum Pump. An X-ray film was placed 

above the dried gel and exposed for several days at room temperature.

Automated sequencing using BigDye terminator chemistry

The sequencing of plasmid constructs and PCR products to find mutant lesions in soxlO 

were carried out by Dr. Paul Jones (Sequencing Core Facility, University of Bath) on an 

ABI DNA sequencer using BigDye terminator chemistry. For sequencing, typically 

300-500ng plasmids were combined with lOpmoles of primer or alternatively, 3-1 Ong 

PCR product (approximately 500bp) with 5pmoles of primer in 6pi total volume. The 

resulting sequence files were viewed with the Chromas viewing programme.

Plasmids

Cloning the full length sox 10 and parts thereof was accomplished using the pGEM-T 

vector (Promega) or pGEM-T Easy vector (Promega). Both T-vectors are based on the 

pGEM -5Zf(+) plasmid (Promega). pGEM-T was created by digesting the pGEM -  

5Zf(+) plasmid with EcoRV and adding a 3’-terminal thymidine to both ends, whereas 

for pGEM-T Easy, the MCS (multiple cloning site) was modified by adding additional 

Not I and EcoRl restriction sites flanking the T-overhangs on each end.

Heatshock constructs were created in the pCSHSP vector (Halloran et al., 2000). It was 

created from the pCS2+ plasmid by replacing the sCMV promoter region with the 

heatshock promoter HSP70/4 (for a plasmid map see chapter 7, Figure 7.1).

Site-directed mutagenesis

Site-directed mutagenesis was carried out following the instructions published in the 

online manual to the QuikChange Site-Directed Mutagenesis Kit (Stratagene, 

http://www.stratagene.com/manuals/200518.PDF).

Mutagenesis primers each complementary to opposite strands of the vector were 

designed according to the recommended guidelines to be 25-45 bases long with a Tm 

greater or equal to 78°C. The desired mutation site was located in the middle of the 

primers with 10-15 basepairs of correct flanking sequence to each side. The primers 

have a GC content of at least 40%, terminate with one or more GC clamps and were
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PAGE purified. (For primer sequences see Primer design and sequence section in 

Materials and Methods).

Four 50pl reactions were set up, each containing either 5ng, lOng, 20ng or 50ng of 

template (clsm618 mutant heatshock construct to make the wild-type construct, wild-type 

to make the clstw2, clsY83x and c l^ 189x mutant heatshock constructs), lp l 125ng/pl of 

each primer (m618-*WTl and m618-»WT2 or W Tl-»tw2 and WT2—»tw2,

WT1—>Y83X and WT2->Y83X, WT1->E189X and WT2->E189X), lp l 20mM (400pM 

final) dNTPs, lp l (2.5u) Pfu Turbo DNA Polymerase (Stratagene), 5pi lOx reaction 

buffer and milli-Q water to make the reaction volume up to 50pl. A “no primer” control 

reaction was included containing 20ng of template, but no primers.

In an MJ Research PTC-DNA Engine reactions were subjected to 95°C for 30 seconds 

followed by 12 cycles 95°C for 30 seconds, 55°C for 1 minute and 68°C for 12 minutes 

30 seconds (2 minutes/kb of plasmid length) if a point mutation was to be introduced 

{clsm6I8->WT, WT—»c//w2, WT-^clsY83X). Alternatively, 16 cycles were employed when 

changing a single amino acid residue to create the c l f 189X allele. lOpl of each reaction 

were analysed on a standard agarose gel for successful amplification. To the remaining 

40pl reaction including the “no primer” control, lp l (lOu) Dpn I restriction enzyme 

(NEB) was added directly into the PCR tubes and samples incubated at 37°C for 60 

minutes to digest the parental methylated strands. 1.5pl of those double-stranded nicked 

open circular plasmids containing the mutated site which gave the most and cleanest 

product and 1.5 pi of the “no primer” control were transformed into Epicurian Gold 

Super-Competent cells (Stratagene) as described in the appropriate Material and Method 

section. Colonies were tested for successful mutagenesis by either restriction digest with 

T^R I or by sequencing across the mutated region. If the wild-type construct was 

created successfully, a TspRl restriction was gained compared to the clsm618 mutant 

allele. To test this, a 20pl restriction digest with 2.5pl putative wild-type construct 

miniprep, 0.2pl BSA, lp l 7j/?RI (NEB), 2pl lOx NEB4 reaction buffer and 14.3pl milli- 

Q water was set up and incubated at 65°C for 3 hours. Positive clones were sequenced 

to ensure successful mutagenesis.

Since there was no similar test based on a change of restriction digest pattern available 

for the clstw2 heatshock construct, 350ng of several minipreps were directly sequenced 

across the mutagenesis site.
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In situ protocols

Preparation of Dig and Flu labelled RNA in situ probes

Approximately 10pg of plasmid containing the gene of interest was linearised with 70- 

lOOu of restriction enzyme cutting 5’ to the probe fragment in a large volume, typically 

1 OOjlxL An aliquot of the reaction was loaded on a 1% agarose gel to check for complete 

digestion. The remaining sample was purified using the QIAquick PCR Purification Kit 

(Qiagen) and the concentration of the purified linearised plasmid estimated by 

comparison to a quantitative ladder (lkb ladder, NEB) on a 1% agarose gel. Probes 

were synthesised using the Dig RNA Labelling Kit (Boehringer/Roche). In a 20pl 

reaction l-2pg of linearised plasmid was combined with lp l 20x Dig-NTP or 2pl lOx 

Flu-NTP labelling mixture, 2pl lOx transcription buffer, lp l RNAse inhibitor and 2pl 

RNA polymerase. Depending on the orientation of the cloned fragments T7 or SP6 

RNA polymerase was used to create an antisense RNA probe. After incubation at 37°C 

for 2 hours, a lp l aliquot was kept at -20°C. To the remaining reaction lp l RNAse-free 

DNAse was added, the sample incubated at 37°C for 15 minutes, then 15pl 5M 

Ammonium acetate, 75pi absolute ethanol and 1.5pi seeDNA (Amersham) were added. 

The RNA was precipitated on ice briefly, spun at 13000rpm for 15 minutes at 4°C, the 

pellet washed with 500pl 70% ethanol, air dried for 1 minute after carefully removing 

all traces of ethanol and redissolved in 20pl fresh milliQ water. Again, a lp l aliquot was 

removed and compared to the one kept earlier before DNAse treatment on a 1% agarose 

gel. Before storing the RNA probe at -80°C 80pl formamide (Sigma) were added. 

Typically, the in situ probes were used at a 1:200 working dilution made up in 

hybridisation mix.

In situ hybridisation on whole mount zebrafish embryos

Digoxigenin or Fluorescein labelled RNA was detected with alkaline phosphatase 

conjugated anti-Dig or anti-Flu antibodies, respectively. To visualise labelled transcripts 

NBT/BCIP (Boehringer/Roche) or Fast Red (Boehringer/Roche) were used as colour 

substrates in the alkaline phosphatase reaction.

Embryos were staged according to Kimmel et al. (1995), dechorionated if  they were 

older than 24hpf, anaesthetised and fixed in 4% paraformaldehyde/PBS [0.8% NaCl,
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0.02% KC1, 0.02M P0 4 pH7 .3] for at least 24 hours at 4°C. Embryos up to 24hpf were 

dechorionated after fixation. All further procedures were carried out at room 

temperature and using 1ml of solution at any time unless stated otherwise.

Embryos were dehydrated by washing 3x5 minutes in methanol, 1x10 minutes in 

methanol and then stored at -20°C for a minimum of 2 hours or until needed. Embryos 

were rehydrated by washing 5 minutes in 75% methanol/25% PBS, 5 minutes in 50% 

methanol/50% PBS, 5 minutes in 25% methanol/75% PBS and finally 4x5 minutes in 

PBT [0.1% Tween20 in PBS].

To improve the penetration of the probe, embryos between 18-somite and 22-somite 

stages were digested in a solution containing 10pg/ml proteinase K in PBT for 5 

minutes, 24hpf embryos were treated for 15 minutes, 30hpf-48hpf embryos for 30 

minutes and embryos up to 72hpf for 1 hour. Embryos were then refixed in 4% 

paraformaldehyde/ PBS for 20 minutes, washed 5x5 minutes in PBT and prehybridised 

at 65°C for 2-5 hours in hybridisation mix [50ml hyb mix contains 25ml formamide, 

12.5ml 20xSSC, 0.5ml 5mg/ml heparin, 0.5ml 50mg/ml tRNA, 0.25ml 20% Tween20, 

0.46ml 1M citric acid and 10.7ml milliQ water].

Embryos were hybridised in 200pl of a 1:200 dilution of the probe and incubated at 

65°C overnight. The probe was saved and stored at -20°C for re-usage. To wash away 

non-specifically bound probe, embryos were first rinsed in hybridisation mix (HM), 

followed by 10 minute washes at 65°C with each of 75% HM/25% 2xSSC, 50% 

HM/50% 2xSSC, 25% HM/75% 2xSSC and 2xSSC in turn. Two high stringency 

washes at 65°C in 0.2xSSC for 30 minutes each were performed, followed by 10 minute 

washes at room temperature in each of 75% 0.2xSSC/ 25% PBT, 50% 0.2xSSC/50% 

PBT, 25% 0.2xSSC/75% PBT and PBT.

Embryos were blocked at room temperature in PBT/2% sheep serum/2mg/ml BSA for 

2-5 hours and incubated with the appropriate antibody (anti-Dig or anti-Flu diluted 

1:5000 in block solution) overnight at 4°C. The antiserum was discarded and the 

embryos rinsed once in PBT, then washed 6x15 minutes in PBT and 3x5 minutes in 

NBT/BCIP buffer [lOOmM TrisHCl pH 9.5, 50mM MgC12, lOOmM NaCl, 0.1% 

Tween20 in milliQ water] or Fast Red buffer [0.1M Tris pH8.0] depending on the 

colour substrate to be used in the detection step. NBT/BCIP stain solution was freshly 

prepared by dissolving one NBT/BCIP tablet (Boehringer/Roche) in 10ml milliQ water, 

whereas one Fast Red tablet (Boehringer/Roche) was crushed and dissolved in 2ml Fast
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Red buffer. Embryos were stained in the dark up to 48 hours and the reaction then 

stopped by washing the embryos in PBT several times. To improve the optical clarity of 

stained embryos they were transferred to 50% glycerol/50% PBS a few hours prior to 

inspection under an MZ12 dissecting microscope (Leica). For a more detailed analysis 

and for documentation an Eclipse E800 microscope (Nikon) and DIC or fluorescence 

optics were used.

Double in situ protocol

To detect expression of sox 10 and another gene of interest simultaneously a sox 10 

antisense RNA probe was labelled with fluorescein and detected with an anti-Flu 

antibody coupled to alkaline phosphatase using Fast Red (Boehringer/Roche) as a 

colour substrate. Antisense RNA probes against sox9a and sox9b (kind gift of Bon-chu 

Chung, Institute of Molecular Biology, Taipei, Taiwan), crestin (kind gift of Paul 

Henion, Department of Neuroscience, Ohio State University, USA),forkhead 6 (Jkd6) 

and dlx2 (kind gift of Craig Miller, Institute of Neuroscience, University of Oregon, 

USA) were labelled with digoxygenin, detected with an anti-Dig antibody also coupled 

to alkaline phosphatase, but using NBT/BCIP (Boehringer/Roche) as a purple colour 

substrate.

Preabsorption o f  anti-Flu antibody

The anti-Flu antibody was found to give much less background when preabsorbed prior 

to usage. To preabsorb the antibody approximately 300 3-5dpf embryos were fixed in 

4% paraformaldehyde in PBS at least overnight at 4°C, dehydrated in methanol as 

described in the single in situ protocol and kept at -20°C until needed. At the start of the 

double in situ protocol those embryos for preabsorption were treated alongside the 

experimental ones with the following modifications. Proteinase K treatment was carried 

out for 1 hour and instead of prehybridisation solution they were incubated in 1ml 

blocking solution containing 2pl anti-Flu antibody (1:500) at 

least overnight at 4°C.
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Double in situ hybridisation on whole mount zebrafish embryos

The protocol described previously for single in situ hybridisations was employed with 

the following modifications: The prehybridisation and hybridisation step was carried 

out at 66°C. The hybridisation mix contained both probes at a 1:200 dilution.

The blocking solution was modified to contain 5% sheep serum, 2mg/ml BSA and 1% 

DMSO in PBT. soxlO was detected first with a 1:5000 dilution of preabsorbed anti-Flu 

antibody in blocking solution overnight at 4°C. The Fast Red colour reaction was 

stopped by 2 fast washes in PBT followed by 4x3 minute washes at room temperature in 

PBT. After developing the first colour reaction, bound anti-Flu antibody was removed 

by washing embryos 6x15 minutes in lOOmM glycine, pH 2.2, 0.1% Tween20 at room 

temperature, rinsing 5x5 minutes in PBT, refixing in 4% paraformaldehyde/PBS for 30 

minutes at room temperature and washing again 3x5 minutes in PBT before repeating 

the blocking step with the anti-Dig antibody. After the second colour reaction was 

stopped as described before for the first colour reaction, embryos were stored in 4% 

paraformaldehyde/PBS at 4°C.

Antibody staining protocols 

Antibody staining with DAB as a substrate

Embryos up to 60hpf were stained using this protocol. Embryos to be antibody stained 

were dechorionated and fixed in 4% paraformaldehyde/PBS overnight at 4°C and then 

kept in PBSX at 4°C until needed. They were washed 2x5 minutes with PBSX [0.5% 

Triton-X (Sigma) in PBS], 4x30 minutes (2x30 minutes after in situs) in milliQ water, 

incubated in acetone for 7 minutes at -20°C and blocked for at least one hour in 

PBSDX [50ml 2xPBS pH7.3, lg BSA (Sigma), 1ml DMSO (Sigma), 0.5ml 10% Triton 

X-100 and milliQ water up to 100ml] containing 15pl/ml horse serum (Sigma) block. 

Primary antibody, anti-Hu (Monoclonal antibody facility, University of Oregon) was 

diluted 1:5000 in PBSDX containing 15pl/ml horse serum and the embryos incubated 

overnight at 4°C. On the following day embryos were washed 4x30 minutes in PBSDX, 

the biotinylated secondary horse anti-mouse/rabbit antibody diluted 1:5000 in PBSDX 

with 15pl/ml horse serum and the embryos incubated overnight at 4°C.
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The antibody was discarded, the embryos washed 4x30 minutes in PBSDX, incubated 

45 minutes in the diluted ABC reagent (Vectastain ABC Elite kit), washed 3x30 

minutes in PBSDX and 30 minutes in PBSX. The DAB substrate diluted in PBSX 

(14pl/ml) and the embryos incubated for 15 minutes. After transferring the embryos to a 

glass well plate 7pl hydrogen peroxide (Sigma) were added per 1ml diluted DAB 

solution. The stain was developed in the dark for 5 minutes up to a few hours. For long 

incubations it was necessary to add more hydrogen peroxide approximately every 10 to 

15 minutes. The development was finally stopped by rinsing the embryos several times 

in PBSX and embryos were kept at 4°C.

Antibody staining with a fluorescently labelled secondary antibody

This protocol was used for embryos older than 60hpf since the sensitivity of detection 

of structures deep within the tissue is greater with the fluorescent signal than with the 

DAB substrate.

Embryos were washed 3x5 minutes at room temperature in PBSX, 3x1 hour in milliQ 

water, preincubated in 0.75ml block [0.5% Triton X-100, 1% DMSO, 5% horse serum 

in PBSX] and incubated at room temperature overnight with the primary anti-Hu mouse 

antibody diluted 1:1100 in 0.75ml block.

The antibody was discarded, embryos rinsed in PBSX as described in the previous 

protocol, washed for 3x1 hour in PBSX and incubated at room temperature overnight 

with the secondary antibody, Alexa Fluor 546 rabbit anti mouse IgG (Molecular probes, 

Oregon), diluted 1:800 in 0.75ml block.

The antibody was discarded, embryos rinsed in PBSX, washed for 3x30 minutes in 

PBSX, transferred into 50% glycerol/PBS and incubated for 15 minutes. Embryos were 

analysed with an Eclipse E800 microscope (Nikon) using fluorescence microscopy 

(TRITC filter).

Antibody staining as a secondary stain after a standard in situ 

hybridisation

If an antibody stain was to be carried out as a secondary stain after an in situ 

hybridisation, the following procedures of the in situ protocol described above were 

modified. Dechorionated embryos were fixed in 4% paraformaldehyde/PBS at 4°C for a
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maximum of 24 hours. The duration of the proteinase K treatment on those embryos in 

the course of the in situ hybridisation was decreased to 15 minutes for 24hpf embryos,

25 minutes for up to 48hpf and 45 minutes for older stages). The in situ colour reaction 

product was slightly underdeveloped, so as not to mask any areas of weak antibody 

stain. At the end of the in situ protocol embryos were stored in PBT at 4°C ready for the 

antibody stain using either one of the two protocols described above.

Heatshock cDNA injection and rescue protocol

Plasmid DNA to be injected was isolated in a midiprep using the Wizard Plus 

Midipreps DNA Purification System (Promega) and further cleaned by adding an equal 

volume of phenol:chloroform (1:1) and then, to the supernatant an equal volume of 

chloroform. A third of the volume 7.5M Ammonium acetate and 2.5 volumes absolute 

ethanol were added to precipitate the plasmid DNA followed by 1.5pl seeDNA 

(Amersham) to facilitate the pellet’s visibility and tubes spun immediately at 13000 rpm 

at 4°C for 30 minutes. The pellet was washed with 1ml 70% ethanol, resuspended in 

50pl milli-Q water and the concentration estimated by comparing several dilutions of 

the plasmid construct to a quantitative DNA ladder (NEB). Embryos from crosses of 

heterozygous clsm618 were injected with 2-5nl 13ng/pl of the appropriate heatshock 

construct dissolved in milli-Q water at the 1-4 cell stage using a Nanojet II injector 

(Drummond Scientific Co.), incubated at 28.5°C at low density to recover and dead 

embryos removed after 6-8 hours. The injected volume was estimated by comparing the 

diameter of the bead of injected liquid with the diameter of a 1-cell stage embryo 

(approximately 700pm; Kimmel et al., 1995). Embryos were then heatshocked at 15-16 

hpf by incubating embryos at 37°C for 1 hour. They were scored for rescue at 48 hpf 

using a MZ12 dissecting microscope (Leica). Melanophore rescue was defined as the 

presence of at least one melanophore of wild-type morphology.

Data analysis

Interpretation of sequencing data

The most likely identity of isolated HMG box sequences and RACE PCR clones was 

determined by a BLAST search on http://www.ncbi.nlm.nih.gov/BLAST/. Direct
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comparison of the nucleotide or peptide sequence of two fragments was carried out with 

the use of the Pairwise BLAST analysis on

http://www.ncbi.nlm.nih.gov/blast/bl2seq/bl2.html. Multiple sequence alignments were 

performed using the multiple sequence alignment program of the GCG package 

(Genetics Computer Group, Wisconsin package, Version 8.0-Unix, September 1994). 

Overlapping sequence fragments were put together in contigs using the following 

programs of the GCG package: gelstart, gelenter, gelmerge, gelassemble and 

geldisassemble. A consensus sequence was created using gelview.

Statistical analysis of rescue experiments

The injection of heatshock cDNAs seemed to cause malformations in embryos of 

varying degree depending on the concentration of DNA injected and the time of 

heatshock. To determine the optimum amount of cDNA (13ng/pl) that could rescue the 

els phenotype to the highest degree possible whilst giving the least malformations a 

range of different concentrations (6ng/|_il, 13ng/pl, 25ng/pl and 60ng/pl each in 0.1% 

phenol red) of hs>c/^WTcDNA were injected, each heatshocked at 2 different time

points (early at 15-16hpf and late at 18-18.5hpf). The number of malformed wild-type
* • *and els embryos was recorded at 48hpf and statistically analysed. First, a % test (using

the Yates’ correction formula and one degree of freedom) was carried out on individual 

clsfWT pair datasets to determine whether the genotype influenced the degree of 

malformations. Since no significant difference was found at either 5%, 1% nor 0.1% 

level malformations did not vary with the genotype and hence for all subsequent 

analyses no distinction between els and WT malformations were made.

A single factor anovar analysis with two levels was used to determine whether there 

was a difference in malformation when the hs>cA^T or the equivalent amount of control 

plasmid pCS (without soxlO cDNA) was injected, whether malformation varied 

depending on the amount of cDNA injected, whether a heatshock increased 

malformations in general and whether the time of the heatshock was important. Finally, 

to test whether the presence of malformations had any effect on the probability of els 

embryos being rescued, a % test (using the Yates’ correction formula and one degree of 

freedom) was employed.
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Chapter 3 -  Cloning of a zebrafish sox10 homologue

Introduction

There are principally two approaches to identify the gene encoded by a mutant locus. 

Firstly by positional cloning which involves mapping the mutation to a critical interval 

on a chromosome followed by screening of Yeast artificial chromosome (YAC), 

Bacterial artificial chromosome (BAC) or PI-derived artificial chromosome (PAC) 

clones for open reading frames. The gene encoding the mutant locus can then be 

identified, for example by rescue experiments.

Alternatively, a candidate gene approach represents a more direct and potentially much 

faster method if a likely candidate gene is available. Here, this gene is cloned and tested 

by means of rescue experiments or presence of causative mutant lesions.

Since, as described in the Introduction chapter, a sox 10 homologue was considered a 

strong candidate for the els gene, the candidate gene approach was chosen.

Methods for cloning candidate genes

There are two approaches to clone such a candidate gene, by screening a cDNA library 

or by RT-PCR. Originally, both methods seemed equally suitable and hence were 

attempted in parallel.

At the time, there were only a few libraries available for zebrafish, but they 

included a XLAP cDNA library prepared from 19hpf zebrafish embryos (Appel and 

Eisen, 1998). This library has successfully been used to clone genes from zebrafish such 

as nacre (Lister et al., 1999). At 19hpf during zebrafish development, neural crest cells 

in the head and anterior trunk have entered the medial migration pathway, whereas crest 

cells in more caudal regions are still residing in a premigratory position. Both 

populations of cells in mouse embryos of equivalent stage would express Sox 10 

(Herbarth et al., 1998; Southard-Smith et al., 1998). Furthermore, expression would also 

be expected at this stage in the developing otic vesicle in concordance with mouse and 

chick data (Southard-Smith et al., 1998; Cheng et al., 2000; Watanabe et al., 2000). 

Thus, we attempted to identify a sox 10 homologue from the 19hpf cDNA library using a
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1.45kb fragment of mouse Sox 10 as a probe, kindly provided by Michelle Southard- 

Smith. This fragment has previously been used for a low stringency hybridisation 

demonstrating conservation of Sox 10 amongst multiple vertebrate species (Zooblot; 

Southard-Smith et a l, 1999). The protocol is based on a hybridisation in Church buffer 

at 50-55°C overnight and 3x5 minutes washes in 2xSSC, 1%SDS at 55°C (Southard- 

Smith, M., personal communication).

Initially, this approach was attempted using the published Zooblot protocol. Since 

technical problems persisted even after thorough optimisation of conditions this method 

proved unsatisfactory in our hands and will not be considered further here.

The RT-PCR approach carried out in parallel by then appeared to be a more 

promising method and hence efforts were focused on this second approach. We took 

advantage of the high degree of conservation of Sox genes to attempt to clone at least a 

fragment of a zebrafish sox 10 by RT-PCR. Success with this approach required 

consideration of three major factors, the primer sequences, the PCR protocol and the 

stage of embryonic tissue as a source of mRNA.

A fragment of Sox 10 was first cloned from mouse using degenerate primers against 

conserved regions located just within the 5’ and 3’ boundaries of the HMG box (Wright 

et al., 1993). Michael Wegner’s group then cloned a rat SoxlO homologue using primers 

designed against almost identical sites first published by Yuan et al. (1995). 69% of 

HMG box fragments isolated from a primary rat Schwann cell culture showed high 

identity to SoxlO (Kuhlbrodt et al., 1998a). Hence, we decided to attempt to isolate a 

zebrafish sox 10 homologue by RT-PCR using those degenerate primers and PCR 

protocol previously employed by Kuhlbrodt.

To prepare total RNA, we chose several stages during zebrafish development including 

19hpf, 24hpf, 5dpf and adult head and skin. The rationale behind choosing those stages 

was based on the mouse SoxlO expression pattern. In mouse, both premigratory and 

migrating neural crest cells express SoxlO (Herbarth et al., 1998; Southard-Smith et al., 

1998). In zebrafish embryos, cranial crest cells just caudal to the developing eye start to 

migrate subectodermally at 15-16hpf (Schilling and Kimmel, 1994). At 18hpf, some 

crest cells above somites 1-7 and anterior trunk crest cells have entered the medial 

migration pathway, whereas caudal to somite 9, the neural crest is in a premigratory 

stage. More posteriorly still, crest cells are still segregating from the neural keel (Raible 

et al., 1992). Thus, since neural crest cells of all premigratory and migratory phases are 

present, the 19hpf stage seemed an appropriate stage to use.
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At 24hpf, neural crest cells are still entering the medial pathway along almost the entire 

length of the axis, whereas some crest cells in the region above somites 1-5 have started 

migrating on the lateral pathway (Raible et al., 1992). This stage appeared suitable since 

premigratory neural crest and crest cells migrating on both pathways were present. Cells 

on the lateral pathway give exclusively rise to pigment cells (Raible and Eisen, 1994), a 

cell-type severely affected in els mutant embryos. Furthermore, counts of neural crest 

cells on the lateral pathway in els mutant embryos show a 95% reduction in number 

compared to wild-type siblings indicative that els is functioning by this stage (Kelsh et 

al., 1996).

Finally, since in mouse SoxlO is maintained in certain crest derivatives and the 

developing ear during later stages, we chose two later stages as sources for RNA.

The 5dpf larval stage was chosen, because it represents the latest ethically acceptable 

larval stage to use, since larvae now start to actively feed and thus are protected under 

UK law.

In adult mice and humans, SoxlO/SOXlO is known to be expressed in Schwann cells in 

the peripheral nervous system (PNS) and in oligodendrocytes in the brain (Kuhlbrodt et 

al., 1998a; Kuhlbrodt et al., 1998b; Pusch et al., 1998). Hence, total RNA from adult 

brains was prepared. Finally, it was reported that melanocytes in mice express SoxlO 

(Southard-Smith et al., 1998) and hence, adult zebrafish skin containing pigment cells 

was included.

The chosen strategy aimed to isolate the HMG box of zebrafish soxlO, since this 

region is the most highly conserved. However, this general conservation across all Sox 

genes might make it very difficult to reliably identify a particular homologue across 

species. The sequence differences between two members of the same subgroup are very 

limited and hence, it would be unreliable to distinguish a sox 10 homologue from other 

subgroup E members based on the HMG sequence alone.

Thus, to confirm the identity of a suspected sox 10 fragment, we anticipated having to 

obtain a larger fragment outside the HMG box region employing the RACE-PCR 

(Rapid Amplification of cDNA Ends-Polymerase Chain Reaction) technique. Even with 

the full length clone in hand one would have to be careful in assigning an identity. Since 

fewer Sox gene sequences were available for comparison, a fair number of homologues 

published in Genbank were misclassified and only recently reassigned correctly. For 

example, the mouse gene originally published as a Sox21 homologue (Tani et al., 1997) 

has now been confirmed to be a misnamed SoxlO (Pusch et al., 1998). Likewise, trout
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SoxPl reliably clusters with other known Sox8 homologues. Thus, extensive 

phylogenetic analysis would be necessary to assign confidently an identity to any 

cloned Sox gene homologue.

Results

Cloning of a sox10-\\ke HMG box from zebrafish by RT-PCR

Two RT-PCR strategies were considered to clone a soxl0-like HMG box. Firstly, soxlO 

specific primers could be designed. At the time, only mammalian SoxlO homologues 

from human, mouse and rat were published in Genbank (Herbarth et al., 1998; 

Kuhlbrodt et al., 1998a; Pingault et al., 1998a; Southard-Smith et al., 1998). Conserved 

regions identified between the above mammalian genes might not necessarily show the 

same degree of conservation in fish. Hence, choosing suitable sites for primers with 

acceptable degeneracy was expected to be very unreliable and difficult.

The second strategy would involve amplification with primers in regions conserved 

across all Sox genes and subsequently identify a sox 10 homologue from the mixture. 

The use of such generic Sox gene primers had proven successful before in isolating 

SoxlO homologues from mouse and rat. Thus, this strategy seemed more promising and 

hence was chosen to clone a soxl 0-like HMG box from zebrafish by RT-PCR.

These primers, 5’ SoxlO and 3’Sox 10, (for sequences see Materials and Methods; Yuan 

et al., 1995) amplify a mixture of HMG box sequences from cDNA corresponding to 

Sox genes expressed at any particular stage during development (Figure 3.1). Fragments 

were then cloned, sequenced and aligned with previously characterised members of this 

gene family to identify a likely soxlO homologue.

Isolation o f  HMG box sequences cloned by RT-PCR from  cDNA o f  4 different 

developmental stages

Total RNA was prepared from 19hpf, 24hpf, 5dpf and adult brain and skin of AB wild- 

type zebrafish. The rationale behind choosing these stages has been described in detail 

in the Introduction to this chapter. RNA samples of each stage were quantified 

spectrophotometrically by measuring the absorption of a diluted aliquot of RNA at 

260nm wavelength (Table 3.1). A second spectrophotometric reading at 280nm
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5’SoxlO
ATG TGA

HMG box #   AAA A 3’

V 3’SoxlO
V

5’UTR 3’UTR

Figure 3.1: The general structure o f a SoxlO homologue.

Start (ATG) and Stop (TGA) codons mark the beginning and the end of the coding 

region. The latter is preceeded by a 5’ untranslated region (5’UTR) and followed by a 3’ 

untranslated region (3’UTR). The degenerate primers, 5’Sox 10 and 3’Sox 10, are located 

just within the HMG box and were used to amplify HMG box sequences from various 

stages by RT-PCR.
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Stage 19hpf 24hpf 5dpf Adult tissues

■̂260nm 0.062 0.156 0.258 0.019
A-280nm 0.042 0.076 0.111 0.011
î 260nm/î 280nm 1.48 2.05 2.32 1.73
RNA conc. 740ng/pl 1.87pg/pl 3.10pg/pl 760ng/pl
Hg RNA used 
per RT reaction

Ipg Ipg 2pg Ipg

pi cDNA used 
in PCR

2 pi 2 pi 2pl 2pl

ng PCR product 
cloned

~200ng ~100ng ~100ng ~350ng

Total white 
colonies

64 -150 -100 83

Colonies grown 
up

19 (29.7%) 18 (-10%) 20 (-20%) 29 (34.9%)

Positive clones 18(94.7%) 15(83.3%) 13 (65.0%) 29 (100%)
Clones
sequenced

10 (55.6%) 12 (80%) 12 (92.3%) 13 (44.8%)

Sox genes 9 (90%) 10 (83.3%) 6 (50%) 11 (84.6%)
No homol. to 
Sox genes

1 (10%) 2(16.7%) 6 (50%) 2(15.4%)

Table 3.1: Summary of results from cloning of HMG boxes by RT-PCR using generic 

Sox gene primers

For each developmental stage, this table lists spectrophotometric measurements of 

absorption of 260nm and 280nm wavelength light by total RNA samples. The 

concentration of each sample was calculated using the A260nm reading. The ratio 

Â omr/Â sonm* ideally close to 2.0, provides an estimate for purity of the RNA sample. 

The amounts of pg total RNA included in each reverse transcription (RT) reaction, the 

numbers of pi cDNA reaction out of a total of 200pl used per PCR reaction and the 

amount of PCR product in ng, estimated by agarose gel electrophoresis, which was 

ligated into 25ng pGEM-T vector, are listed. In each case, the entire ligation reaction 

was transformed. The table summarises the number of white colonies obtained from 

each cloning experiment and how many of those were chosen for plasmid 

minipreparations. It also lists the number of constructs which contained inserts of the 

expected size (positive clones), how many of those were sequenced and the proportion 

of HMG box sequences identified from each stage, conc., concentration; homol., 

homology.
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wavelength gave an estimation of protein contamination. When comparing the two 

readings A260/A280 the ratio was usually close to 2.0, typical for RNA of high purity. 

(Table 3.1). Gel electrophoresis further showed that the RNA was of good quality. This 

was judged by two criteria, presence of three strong bands corresponding to the 3 

ribosomal rRNA types (23 S, 16S and 5S) and a slight smear indicative of mRNA 

transcripts (Figure 3.2A, 3.4A and B). Total RNA isolated from adult tissues contained 

a lot more genomic DNA compared to the other stages (Figure 3.4A). Nevertheless, this 

RNA was used, because the short extension time during the amplification reaction 

would likely bias against a longer genomic product, if an intron disrupted the HMG 

box. Even if such a product was obtained it could be distinguished by its larger size due 

to the intronic insertion. To control for amplification from genomic DNA, a reverse 

transcription reaction without the reverse transcriptase was set up alongside (“-RT”). 

Indeed, no product was obtained in the subsequent RT-PCR reaction even with 2pl of 

the “-RT” control reaction (Figure 3.4C).

From each stage, l-2pg of total RNA (Table 3.1) were reverse transcribed as described 

in the Materials and Methods. Six equivalent RT-PCR reactions were set up with a 

suitable amount of cDNA, usually 2pl, previously determined by a pilot RT-PCR. 

Increasing the amount of cDNA also increased the amount of RT-PCR product (Figure 

3.3 A and 3.4C). The rationale behind setting up 6 reactions was to allow pooling of the 

PCR product so as to have sufficient purified product for cloning. All experimental 

reactions amplified the expected single product of 204bp, which was never observed in 

the "no cDNA" control (-ve lane) for 24hpf and 5dpf stages (Figure 3.2B, 3.3A). A 

barely visible band was observed in the “no cDNA” control for the 19hpf stage and 

adult tissues (Figure 3.4C). Most likely this indicates a DNA contamination whilst 

setting up this control reaction or a very slight DNA contamination of one or both 

primers. However, bands derived from experimental reactions were much stronger in 

comparison. Control reactions containing only one of the primers (“5s SoxlO only” and 

“3’Sox 10 only”) or none of the primers (“no primers”) were included in RT-PCRs from 

adult tissues and 19hpf stage. As expected, no product was amplified in these control 

reactions (Figure 3.4C).

The remainder of all PCR reactions were pooled, purified using the QIAquick PCR 

Purification Kit (Qiagen) and directly ligated into the pGEM-T vector. Constructs were 

transformed into CaCb competent cells by a standard heatshock protocol and cells
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Figure 3.2: RT-PCR from 5dpf zebrafish embryos using generic Sox primers 

(A) The quality o f total RNA from 5dpf larvae and 24hpf zebrafish embryos was good 

as judged by the presence o f the 3 ribosomal RNA bands, 23S, 16S and 5S (asterisk), in 

combination with a slight background smear corresponding to mRNA transcripts. lOObp 

M, lOObp marker (Promega). (B) Samples o f the RT-PCR reactions are shown. A single 

specific product (arrowhead) o f the expected size (204bp) was obtained in all 

experimental reactions (lanes 1-6), but not in the “no cDNA” control (-ve lane). These 

204bp products corresponded to HMG box sequences. Sizes were judged by 

comparison to a lOObp marker (lOObp M, Promega). Concentration and purity was 

estimated by spectrophotometric determination of absorption at 260nm and 280nm. (C) 

Samples o f plasmid DNA minipreparations were digested with BamHl to test the size of  

the insert. Here, 9 such digests are shown (lane 1-9), together with a lOObp marker 

(lOObp M, Promega). The vector band (asterisk) and inserts o f the correct size 

(arrowhead) are marked.
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Figure 3.3: RT-PCR from 24hpf zebrafish embryos using generic Sox primers 

(A) The amounts o f cDNA were tested in RT-PCR reactions with 2pl cDNA (lane 2) 

producing a stronger band of the correct size (arrowhead) than with lp l cDNA (lane 1). 

No such band was observed in the “no cDNA” control (-ve lane). To judge band sizes, a 

lOObp marker (lOObp M, Promega) was run alongside experimental samples. Lanes 

marked with a dash, /, are irrelevant to this experiment. (B) Plasmid minipreparations 

were digested with BamHl to test for presence and size o f inserts. All, but clone 7 and 

13 contain inserts o f the expected 204bp size (arrowhead). The size o f the vector 

(asterisk) and insert bands were judged by comparison to a lOObp marker (lOObp M, 

Promega).
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Figure 3.4: RT-PCR from 19hpf zebrafish embryo and adult tissues using generic Sox 

primers

(A, B) The quality of total RNA from heads and skins of 9 adults (A) and 19hpf stage 

embryos (B) was good as judged by the presence of the 3 ribosomal RNA bands, 23 S, 

16S and 5S (asterisk), in combination with a slight background smear corresponding to 

mRNA transcripts. A large amount of genomic DNA (arrowhead) was present in the 

RNA preparation from adult tissues (A). The lane marked with a dash, /, is irrelevant to 

this experiment (A). A rough size estimate was provided by a lOObp marker (lOObp M, 

Promega). (C) Samples of RT-PCR reactions and controls are shown alongside a lOObp 

marker (lOObp M, Promega). RT reactions were set up with RNA from 19hpf embryos 

and adult tissues. RT-PCR reactions (+RT lanes) using 2pl cDNA (lanes “2”) instead of 

lp l cDNA (lanes “1”) produced stronger bands of the expected 204bp size (arrowhead). 

Control reactions for the reverse transcription step are labelled “-RT”, because no RT 

enzyme had been included. As expected, no band was observed in the “-RT” control 

reaction from adult tissues (adult, -RT). However, a strong product was obtained in the 

equivalent control reaction from the 19hpf stage (19hpf, -RT), which is most likely 

derived from an amplification off genomic DNA. Control reactions for the RT-PCR 

amplification included reactions with only one of the primers (lanes “5’SoxlO only” and 

“3’Sox 10 only”), none of the primers (lane “no primers”) and no cDNA (lane “no 

cDNA”). As expected, no products were observed in single primer only and no primer 

controls. However, a faint band was seen in the “no cDNA” control, which might be 

due to slight contamination of a primer solution or any other PCR reagent. (D) Samples 

of plasmid DNA minipreparations were digested with Pvull to test the size of the 

inserts. Here, 4 such digests from the 19hpf stage and 7 from the adult tissue cloning are 

shown. All but clone 11 contain an insert of the expected 650bp size (arrowhead) 

compared to a 1 kb marker (lkb M, Promega). Clone 4, renamed SoxS4, was later shown 

to exhibit high percentage nucleotide identity to soxlO homologues.
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plated on LB plates containing ampicillin, isopropylthiogalactoside (IPTG) and 5- 

Bromo-4-chloro-3-indolyl p-D-galactopyranoside (X-gal) for blue/white selection. The’ 

pGEM-T vector contains a gene conferring ampicillin resistance to cells harbouring the 

plasmid and thus enabling them to grow on ampicillin plates. Usually, 60-150 white 

colonies likely to contain plasmids with inserts were obtained per transformation and a 

convenient number (10-20 colonies) picked for plasmid minipreparations using the 

alkaline lysis method (Materials and Methods, Table 3.1). Preference was given to those 

colonies growing amongst blue ones indicating that the blue/white selection was 

working in that area of the plate. Furthermore, very small white colonies grown at high 

densities were avoided since they might represent satellite colonies. These false 

positives do not contain the plasmid and can only grow in ampicillin depleted zones 

found in close proximity to ampicillin resistant clones.

Plasmid constructs derived from 24hpf and 5dpf stage RNA were analysed by 

restriction digestion with BamRl (Promega). There are BamHl recognition sequences 

engineered into each primer, 5’Sox 10 and 3’Sox 10. Digestion of a positive clone with 

this enzyme releases the ligated HMG box fragment, which is recognised as a band of 

204bp on an agarose gel together with a 3018bp band, corresponding to the remaining 

vector (Figure 3.2C and 3.3B). Of 18 white colonies grown up from the 24hpf stage, 15 

(83.3%) contained an insert of the correct size. This was also true for 13 out of 20 

(65%) white colonies derived from the 5dpf stage.

Analysis of clones from the 19hpf and adult stage was performed in a similar way, 

except that, for trivial reasons, an alternative restriction enzyme, PvuII (Promega), was 

used to excise the insert. PvwII recognition sites are located more distantly from the 

integration site and thus release an insert 436bp bigger than the cloned fragment. Thus, 

positive clones are recognised by a 640bp band in combination with a 2560bp band 

corresponding to the remaining vector (Figure 3.4D). All of 29 (100%) constructs 

derived from adult tissues and 18 out of 19 (94.7%) from the 19hpf stage contained an 

insert of the correct size.

12 positive clones from each of the 24hpf and 5dpf stages, plus 10 from 19hpf and 13 

from adult stages were manually sequenced. Preference was given to clones digested to 

completion, which might indicate a cleaner plasmid minipreparation. Furthermore, 

constructs releasing additional bands were avoided. Preliminary assignment of sequence 

homologies of positive clones to published Sox genes were determined by a BLASTN 

search of the Genbank database (Table 3.2). Vector and primer sequences were removed
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prior to the alignment. The quality of sequence of one insert cloned from the 5dpf stage 

was insufficient for analysis and 5 additional clones did not show any homology to Sox 

genes outside the primer sites. Two clones from adult tissues and the 24hpf stage and 

one clone from the 19hpf stage were also discarded for the same reason. One clone 

including its primer sites isolated from the 19hpf stage showed a high percentage 

nucleotide identity (119 out of 146bp, 81.5%) to rat SoxlO. This clone, SoxS4, was thus 

resequenced 3 times to improve sequence quality. The consensus sequence was then 

used for further investigations.

Sequence analysis o f  the putative soxlO-like HMG box clone SoxS4

Although very similar to SoxlO, we wanted to examine whether SoxS4 might be a sox9 

or sox8 homologue. This concern is justified, since all 3 genes show high similarities 

throughout the HMG box. To address this question we made sequence comparisons 

based on the nucleotide sequence using BLASTN and based on the predicted protein 

sequence using BLASTX (Figure 3.5). Both results were suggestive of a soxlO identity, 

since SoxS4 matched SoxlO homologues slightly better than Sox9 homologues, Soxl O's 

closest relative. In sequence alignments with HMG domains of known members of the 

subgroup E, SoxS4 was 94.1% identical to SoxlO, but only 92.6% identical to Sox9 and 

91.2% identical to Sox8 homologues (Figure 3.6). The HMG domain has been defined 

by convention as the stretch of 80 amino acids starting with the highly conserved 

residues PHVKRP and ending with residues RRRKNG in SoxlO homologues and 

RRRKSV in Sox8 and Sox9 homologues (Kuhlbrodt et al., 1998a; Pusch et al., 1998; 

Bowles et al., 2000). The amino acid identities in the alignments with clone SoxS4 and 

other known Sox proteins were calculated in the overlapping region. Primer sequences 

(MNAFMVW and PDYKYQP) used to identify SoxS4 were included in the alignment 

since the amino acid sequence they encode is fully conserved across SoxlO proteins and 

very highly conserved in all known Sox proteins (Bowles et al., 2000). This assumption 

was later confirmed to be true for SoxS4 when the full cDNA had been cloned and 

sequenced (Figure 3.17). Hence, amino acid identities were calculated between residue 

7 (M, methionine) and 74 (P, proline) (Figure 3.6).

To further test the identity of clone SoxS4, its sequence was aligned with the HMG 

domains of the two zebrafish paralogues sox9a and sox9b, which were available to us 

prior to publication (Chiang et al., 2001; Figure 3.6). This analysis clearly showed 

that SoxS4 was equally similar to both zebrafish Sox9 sequences, and less related to
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Table 3.2: Composition of Sox HMG box sequences derived from different stages by 

RT-PCR reactions using generic Sox primers.

The table summarises tentative identities of isolated Sox-like sequences. RT-PCR 

reactions were set up from total RNA derived from 19hpf and 24hpf whole zebrafish 

embryos, whole 5dpf larvae and adult tissues (brain and skin). The first two columns 

describe the number of sequenced clones showing homologies to Sox genes and their 

proportion of total Sox-like clones. Column 3 and 4 describe the best matching sequence 

to the isolated HMG box fragment obtained from a BLAST search and the extent of 

sequence identity. Numbers in brackets represent the length of the isolated fragment 

after vector and primer sequences were removed. The ratio corresponds to the number 

of nucleotides of the isolated clone which are identical to the best matching sequence. 

For example, one 178bp clone isolated from adult tissue exhibited 155 nucleotides 

identical to zebrafish soxllb  over a region of 161bp of the soxllb  sequence. The E 

value in column 5 decreases exponentially with the significance of a match. Hence, with 

an E value of 1 assigned to a BLAST result, one might expect to see one sequence 

match with a similar score just by chance. It thus represents a probability that the 

tentative identity assigned in column 3 is a true match. Finally, the last column assigns 

the most likely identity of the isolated clone to a zebrafish homologue.

LG27, an Eublepharis macularius (leopard gecko) derived Sry-related sequence, and the 

SoxB2 from Strongylocentrotus purpuratus (sea urchin) have not been renamed 

according to the Sox gene nomenclature. However, LG27 shows similarities to 

mammalian Sox4 homologues and SoxB2 to Xenopus Sox2.

One clone derived from the 19hpf stage showed high similarity to Sox 10 homologues. It 

was renamed SoxS4 and investigated further.

Chelydra serpentina (Chelydra), Snapping turtle; Danio rerio (D. rerio), zebrafish; Ovis 

aries (O. aries), sheep; Strongylocentrotus purpuratus (S. purpuratus), sea urchin; 

Xenopus laevis {Xenopus), African clawed frog, nucl., nucleotide; id., identity
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stage number

of

clones

% Sox- 

like 

clones

best matching 

sequence

Nucl. id. to most 

similar sequence 

(total length)

Expect 

value (E)

likely

identity

Adult

tissue

5 55.6% mouse Sox 19 97/116(174) 

84/101 (142) 

65/77 (149) 

61/74(191) 

41/47 (169)

5e'13

7e‘09

4e-04

0.53

0.007

Soxl 9

1 11.1% D. rerio sox llb 155/161 (178) 3c-64 S ox llb

1 11.1% mouse Soxl3 75/84(190) l e 17 Soxl3

1 11.1% human SOX4 25/27(135) 1.4 Sox4

1 11.1% LG27 45/54(141) 0.37 Sox4?

5dpf 3 50% D. rerio sox llb 113/116(137) 

72/74(108) 

65/73 (142)

2C46

6e'27

2e-°5

S ox ll

1 16.7% human SOX4 99/115(115) 2e*°8 Sox4

1 16.7% human SOX6 43/44 (202) 6e-lj Sox6

1 16.7% D. rerio sox31 18/18(188) 9.1 Sox 31

24hpf 6 60% D. rerio sox 19 

mouse Soxl9

131/139(142) 

36/36(109) 

125/147(197) 

121/146(196) 

70/83 (136) 

35/38 (131)

2c*49

8e'u

7e'22

2e-16

0.001

9e'05

Soxl 9

2 20% D. rerio soxl la  

Xenopus Soxl 1

175/177 (201) 

57/62 (135)

le '90

6e 12

S o x ll

1 10% O. aries Sox2* 123/148 (219) 4e*>* . Sox2

1 10% D. rerio sox31 132/136(181) 6e'56 Sox 31

19hpf 2 22 .2% D. rerio sox21 128/131 (189) 

108/114(118)

3e'55

5e*34

Sox21

2 22 .2% mouse Soxl3 112/134(192)

92/110(197)

2e'16 Sox/3

1 11.1% rat Sox 10 119/146(198) l e 27 SoxlO

1 11.1% D. rerio soxl lb 146/152(151) 4e-63 S ox llb

1 11.1% Chelydra Sox5 32/35 (125) 1.3 Sox5

1 11.1% Human SOX6 32/33 (148) 2c-06 Sox6

1 11.1% S. purpuratus SoxB2* 22/23 (126) 1.3 SoxB2
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Sequences producing significant alignments: Score

sp|009141|SX21 MOUSE TRANSCRIPTION FACTOR Sox-21 (TRANSCRIPTION... 120
embICAA04 4 85| (AJ001029) SoxlO protein [Rattus norvegicus] 120
gi13264586 (AF047043) Sox-10 protein [Mus musculus] 120
emb|CAA04576 1 (AJ001183) SOX10 protein [Homo sapiens] 120
qi|3264588 (AF047389) Dominant megacolon mutant Sox-10 protein ... 120
gi|2826523 (AF017182) putative transcription factor; SoxlO [Mus... 120
sp|P48434|SOX9 CHICK TRANSCRIPTION FACTOR Sox-9 gi11589736 (Ul... 118
dbj1BAA252961 (AB012236) Sox9 [Gallus gallus] 118
sp|018896[SOX9 PIG TRANSCRIPTION FACTOR Sox-9 gi|2554931 (AF02... 118
sp|P48436ISOX9 HUMAN TRANSCRIPTION FACTOR SOX-9 gi|1082721|pir... 118
gb[AAD17974I (AF106572) Sox9 [Alligator mississippiensis] 118
pir| |S52469 Sox9 protein - mouse 118
dbjIBAA24 365| (AB006448) Sox9 [Oncorhynchus mykiss] 116
gi13126870 (AF061784) Sox9 homolog [Calotes versicolor] 116
pir| |S68425 SoxPl protein - rainbow trout gi11199770|dbj|BAAll... 115
sp|Q04888|SX10 MOUSE Sox-10 PROTEIN gi|423573|pir||S30242 soxl... 99
gi11575717 (U70441) SoxlO [Mus musculus] 99
sp|Q04887|SOX9 MOUSE TRANSCRIPTION FACTOR Sox-9 gi|423577|pir|... 96
sp|Q04 886|SOX8 MOUSE Sox-8 PROTEIN gi|423576|pir||S30246 sox8 ... 94

sp|009141|SX21 MOUSE TRANSCRIPTION FACTOR Sox-21, TRANSCRIPTION FACTOR Sox-M
gi11872475 (U66141) transcription factor Sox-M [Mus 
musculus] Length = 533 

Score = 120 bits (298), Expect = le-27
Identities = 59/66 (89%), Positives = 62/66 (93%), Gaps = 2/66 (3%)
Frame = +1

SoxS4: 1 MNAFM-FGQAGR-KLRDQYPHLHNAELSKTLGKLWRLLNETDKRPFIEEAERLRKQHKKD 174 
MNAFM + QA R KL DQYPHLHNAELSKTLGKLWRLLNE+DKRPFIEEAERLR QHKKD 

Sox21: 202 MNAFMVWAQAARRKLADQYPHLHNAELSKTLGKLWRLLNESDKRPFIEEAERLRMQHKKD 261

SoxS4: 175 YPDYKYQP 198 
+PDYKYQP 

Sox21: 262 HPDYKYQP 269

Figure 3.5: The preliminary SoxS4 sequence aligns with subgroup E Sox proteins in a 

BLASTX search.

BLASTX compares the given nucleotide sequence in all six reading frames to peptide 

sequences in the database. Even the preliminary SoxS4 sequence obtained from the first 

read shows higher amino acid identities to known SoxlO than Sox9 or Sox8 

homologues. The mouse Sox21 sequence is homologous to and now recognised as a 

mislabelled SoxlO (Pusch et al., 1998). Subsequently, the SoxS4 fragment was 

resequenced several times on both strands, which resolved all mismatches to mouse 

Sox21 in the 16 N-terminal residues o f the fragment.
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s o x 9 b
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c s o x 8  : 
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h s o x 8  : 
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PHVKRPMNAFMVWAQAARRKLADQYPHLHNAELSKTLGKLWRL 
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KRPFVEEAERLRlQHKK
KRPFIEEAERLRHQHKK
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phvkrpMNAFMVWAQAARRKLADQYPHLHNAELSKTLGKLWRLLsE eKRPF6EEAERLRvQHKKDhPdYKYQPrrrks

c s o x 9  : PHVKR
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t s o x 9  : PHVKRP 
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KRPFVEEAERL
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DYKYQi
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RRRKSV
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80
5 3
65
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m so x lO
r s o x lO
h s o x lO
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P H V K R
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HRRKNG
3RR KN G
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AQAARRK
AQAARRK
AQAARRK
AQAARRK
AQAARRK

MNAFMVWAQAARRKLADQYPHLHNAELSKTLGKLWRLLNEsDKRPFIEEAERLRmQHKKDhPdYKYQP

Figure 3.6: Alignments o f the 
confirmed SoxS4 sequence with 
published members o f subgroup E

Multiple sequence alignments were 
produced with Pileup (gcg Package, 
see Materials and Methods) and 
regions o f identity shaded in black 
(Genedoc). Amino acid identities 
were calculated between residues 7- 
74.(A) Pileup o f SoxlO homologues 
reveals slightly higher identity o f  
SoxS4 to this group (94.1%) than 
other closely related Sox genes. (B) 
Pileup o f SoxS4 with Sox9 
homologues (92.6% identity). (C) 
Pileup o f SoxS4 with Sox8 
homologues (91.2% identity). (D) 
Pileup o f SoxS4 with zebrafish 
sox9a and sox9b (92.6% identity) 
showing that SoxS4 is indeed not a 
zebrafish sox9, the closest relative 
to soxlO. It is noteworthy that the 
tentative identity o f clone SoxS4 as 
a soxlO homologue rests on the 
conserved residue D at position 48. 
c, chicken; h, human; m, mouse; r, 
rat; t, trout.
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either of them than they were to each other. Thus, this result argued against the 

possibility that SoxS4 was a sox9 homologue and further supported the identity of SoxS4 

as a soxlO clone.

Cloning of a full length soxlO homologue by RACE PCR

SoxS4 showed great promise as a true soxlO homologue, but it was necessary to extend 

the analysis to a full length cDNA. It was important to demonstrate a high degree of 

conservation outside the DNA binding domain. Furthermore, this larger fragment could 

also be used as an in situ hybridisation probe. If the cloned gene represented a sox 10 

homologue, its expression pattern would be expected to be reminiscent of mouse SoxlO 

(Chapter 4).

RACE-PCR cloning strategy

The common approaches to cloning a full length cDNA are either screening a cDNA 

library or extending a previously cloned fragment of the gene of interest by RACE PCR 

(Rapid Amplification of cDNA Ends-Polymerase Chain Reaction). The RACE PCR 

approach was chosen, since difficulties were experienced previously with library 

screens.

We chose the widely used SMART RACE PCR Kit (Clontech), which uses the 

following strategy to clone a 5’RACE product (Figure 3.7). First strand synthesis is 

primed using an oligo(dT) based primer (5’cDNA Synthesis Primer, 5’CDS). After 

extending this primer, the Superscript II reverse transcriptase adds a short sequence of 

cytosines (dC) to the 3’ end of the first cDNA strand. The SMART oligo supplied in the 

kit anneals to this region and thus serves as an extended template for the reverse 

transcriptase during its subsequent synthesis of the antisense cDNA strand. This is 

important, because DNA polymerases in PCR reactions require a primer presenting a 3’ 

hydroxyl group for DNA synthesis. Without the SMART oligo extension, the far 5’end 

of the gene would be lost in subsequent cycles of PCR amplification.

During the first round of 5’ RACE PCR, the RNA/DNA hybrid is denatured and the 3’ 

end of the Long Universal Primer (Long UP) anneals to the SMART oligo sequence 

incorporated into the first cDNA strand. This results in a double stranded cDNA 

template. Subsequent gene specific rounds of 5’RACE PCR amplify the region between 

a Short Universal Primer (Short UP), which binds to the 5’ end of the Long UP and a 5’
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Poly A+ RNA 5’- ................................................................ NNAAAAA -3’
n n t t t t t 21

SMART first-strand synthesis

SMART oligo 
5’- h m  GGG............ .

c c c  —

RNA/DNA hybrid 
5’- — m  GGQ...........
3’- — CCC -

5’-RACE PCR

5’-«™GGG- 
Long UP

iCCC.

First round of gene specific PCR

5’-

3’

Second round of gene specific PCR

Short UP

Remaining rounds of gene specific amplification

5GSP

- 5 ’

- 3 ’
- 5 ’

5’-CDS

NNAAAAA -3’ 
NNTTTTT21 -5’

NNAAAAA- 3’ 
NNTTTTT2J-5’

NNAAAAA -3’

N N X T T T j 2 i _5 ’

;NNAAAAA2i -3’

NNXXXXX2i _5’

: NNAAAAA30- 3’

Double-stranded 5’-RACE fragment

Figure 3.7: Flow Chart o f the 5’RACE PCR reaction, modified from the Clontech 

SMART RACE cDNA Amplification Kit User Manual.

The strategy behind the 5’RACE PCR reaction is explained in the text. 5GSP, 5’gene 

specific primer; Long UP, Long universal primer; Short UP, Short universal primer
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Gene Specific Primer (5GSP).

The strategy to clone a 3’ RACE product is based on a similar principle (Figure 

3.8). The 3’RACE cDNA population is synthesised by reverse transcribing mRNA 

using the 3’ cDNA Synthesis primer (3’CDS). It represents an oligo(dT) primer with the 

SMART oligo sequence linked to its 5’end. During the first round of gene specific 

3’RACE PCR, a fragment is amplified between the 3’ Gene Specific Primer (3GSP) and 

a Long UP, which recognises the SMART oligo sequence. Again, this enables the 

isolation of a full length 3’RACE clone by extending the mRNA sequence past the 

polyA-tail. During subsequent rounds of gene specific synthesis, amplification occurs 

between the 3GSP and a Short UP, which anneals to the 5’ end of the Long UP.

The SMART RACE PCR Kit contains all primers apart from the 5’ and 3’ Gene 

Specific Primers (5GSP and 3GSP). Thus, two gene specific and two nested gene 

specific primers located within the SoxS4 HMG box (Figure 3.9) were designed with the 

help of the primer design program Netprimer. Parameters in the program were adjusted 

according to guidelines in the Clontech RACE PCR manual, which included length of 

primer, melting temperature Tm, %GC content and number of GC clamps at the 3’end. 

%GC content is the percentage of guanines (dG) and cytosines (dC) in the primer 

sequence. Adenine forms 2 hydrogen bonds with thymine, whereas guanine forms 3 . 

hydrogen bonds with cytosine. Hence, a high %GC content increases the stability of the 

primer bound to the template and thus raises the Tm of the primer. The rationale for 

designing primers with at least 1 GC pair at the 3’end is based on the same principle. A 

GC clamp increases the strength of bonding of the primer to the DNA template at its 

3’end. This is important since the DNA polymerase can only synthesise the 

complementary strand once the primer’s 3’end has annealed.

The sequence of the primers can be found in the Materials and Methods and location of 

the primers is shown in Figure 3.9.

Control reactions supplied in the kit were set up to optimise the PCR program for our 

samples and PCR machine. They involved synthesis of control 5’ and 3’RACE cDNA 

populations and amplification of control products using supplied gene specific primers. 

Bands of the expected size were amplified from the control cDNAs (data not shown), 

but products were faint. As a result, the cycle number in the PCR program (Materials 

and Methods) was increased by 5 cycles as suggested in the kit’s guidelines.
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PolyA+RNA 5 - .......................................

Standard first-strand synthesis 

5’-
3’-RACE-Ready cDNA

3’RACE PCR

5’-*
3GSP

3’-=

First round of gene specific synthesis , r

3’-.

Second round of gene specific PCR 

5’- _____________

.NNAAAAA 3’
n n t t t t t 26

3’-CDS

NNAAAAA-3’
sNNTTTTT26s -5’

NNAAAAA 3’

:NNTTTTT26= -5’

NNAAAAA, -3’

Long UP
N T M T T T T T ., . 5 ’

.n n a a a a a 26. -3’

3’ -.

5’-

3’-*

Remaining rounds of gene specific amplification

5’-.
3’-«

NNTTTTT26 i

:NNAAAAA26:

NNTTTTT

Double-stranded 3’-RACE fragment

- 3 ’

Short UP 
- 5 ’

Figure 3.8: Flow Chart o f the 3’RACE PCR reaction, modified from the Clontech 

SMART RACE cDNA Amplification Kit User Manual.

The strategy behind the 3’RACE PCR reaction is explained in the text. 3’ GSP, 3’ gene 

specific primer; Long UP, Long universal primer; Short UP, Short universal primer
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3GSP N3GSP
Start Stop

HMG domain5

5GSP 5GSP
5’UTR 3’UTR

5 ' S o x lO

1 ATGGAACGCG TTCATGGTGT GGGCGCAGGC CGCGCGCAGG AAACTGGCGG

N5GSP

51 ATCAATATCC GCACCTGCAC AACGCCGAGC TCAGCAAAAC ACTGGGGAAG

________ 3GSP__________ 5GSP_________ I

1 0 1  CTGTGGAGAC TGCTGAACGA GACGGATAAG CGGCCGTTTA TCGAGGAGGC 

N3GSP 3 ' S o x lO

1 5 1  CGAGCGCTTG AGGAAGCAGC ATAAGAAAGA TTATCCCGAG TACAAGTACC

2 0 1  AGCC

Figure 3.9: Location of gene specific primers used in the RACE PCR.

The figure shows the general structure of a SoxlO homologue including the DNA 

binding domain (HMG domain). Start and Stop mark the ends of the coding region, 

which is preceeded by a 5’untranslated region (5’UTR) and followed by a 3’untranslated 

region (3’UTR). The degenerate primers 5’Sox 10 and 3’Sox 10 in black were used to 

amplify the HMG box clone SoxS4 by RT-PCR. The 5’ gene specific primer (5GSP) and 

the nested 5’ gene specific primer (N5GSP) in red located towards the N-terminal of the 

HMG box clone SoxS4 were used to amplify a 5’RACE fragment. Similarly, the 3’ gene 

specific primer (3GSP) and nested 3’ gene specific primer (N3GSP) in blue towards the 

C-terminal end of SoxS4 were used to amplify a 3’RACE product.
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Cloning o f  the region 3 ’ to the HMG box by 3 ’RACE PCR

A schematic of the 3’RACE PCR Flow Chart is depicted in Figure 3.8.

The same total RNA sample as for the RT-PCR of the HMG box fragment was used to 

synthesise the 3’ RACE cDNA population. The integrity of the 19hpf stage total RNA 

was confirmed by gel electrophoresis beforehand (data not shown).

PCR and single primer control reactions were set up and examined by gel 

electrophoresis. Two very faint bands of approximately 1.2kb and 500bp length were 

observed, but none in the single primer control reactions (data not shown).

To test, whether these bands were specific products or just PCR artefacts, a nested PCR 

was set up with 1:25 diluted 3’RACE fragment. The nested PCR protocol amplified a 

product of approximately 1.8kb as expected (Figure 3.10) between the nested gene 

specific primer (N3GSP, Figure 3.9) and the universal primer mix (UPM) containing 

the Short and the Long UP. Bands of 1.2kb and 500bp were also observed again, but 

were thought to be too short to be full length products based on comparisons of human 

and mouse SOX10/Sox 10 sequences (Pingault et al., 1998a; Pusch et al., 1998).

This nested 3’PCR product was directly cloned into the pGEM-T vector and plasmids 

prepared from white colonies. Pvull digests were used to screen for clones with the 

expected insert of 2.25kb. Of 24 clones tested, 2 (clone B2 and C2) showed the correct 

sized insert (Figure 3.10). A full sequence was obtained using the automated sequencing 

facility provided in the Department of Biology and Biochemistry. The sequence of 

clones B2 and C2 were identical. A BLASTN search revealed homologies of the 

3’RACE clones to SoxlO genes. However, surprisingly, they aligned to a different 

region within the mouse SoxlO sequence than expected. Thus, the forward primer 

(N3GSP) had bound to a similar, but not identical, site approximately lOOObp further 

downstream in the corresponding mouse sequence (Figure 3.11). This finding also 

indicated that the 3’UTR (3’ untranslated region) in zebrafish was approximately 

lOOObp larger than in mice or humans. As expected, no significant sequence homology 

was observed in 3’UTRs between mammalian and zebrafish soxlO.

New gene specific reverse primers were designed within the 3’UTR (S9 and 

SI3, Figure 3.11) to clone the missing fragment linking the HMG box to the 3’RACE 

clone (B2 or C2). Fresh RT reactions were set up using 19hpf total RNA and either 

random hexamer primers or oligo(dT). PCR reactions with different combinations of 

primers and both cDNA populations were investigated including 5’SoxlO-S9, 5’SoxlO- 

S10, 5’Soxl0-S13, 3GSP-S9 andN3GSP-S9 (Materials and Methods). Generally, RT-
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I kb 3* RACE
A M  / I I I  / NI N2 U N U N3

Nested 3'RACE constructs

Figure 3.10: Cloning of the 3’ RACE product

(A) Agarose gel electrophoresis of nested 3’RACE PCR products. Nested PCR 

amplification was carried out between primers N3GSP (nested 3’ gene specific primer) 

and UPM (universal primer mix) (lane N l) and between primers N3GSP and NUPM 

(nested universal primer mix) (lane N2). In lane N l, a product of the expected 1.8kb 

size (arrow) was observed additionally to two non-specific products. The size was 

judged by comparison to a lkb marker (lkb M, Promega). No such band was observed 

in lane N2. Single primer control reactions were set up with UPM only (lane U), 

NUPM only (lane NU) and N3GSP only (lane N3). As expected, no products were 

obtained in these control reactions. (B) Samples of plasmid DNA minipreparation were 

digested with Pvull to test for inserts. A positive clone was expected to show bands of 

2.25kb (insert, arrowhead) and 3kb (linearised vector, asterisk). Two positives (lane B 

and C) out of a total of 24 digests were identified. Sizes were estimated by comparison 

to lkb markers (lkb M, Promega).
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5’SoxlO 3GSP N3GSP
5’UTR

n
ATG

HMG

S9

TTTTTTTT

S13

Stop 
1565nt 1748nt

3’UTR

B2
mSoxlO

276 lnt

B

alignment

B2 : 80

mSoxlO : 1 5 6 5

B2 : 1 4 0

mSoxlO: 1 6 2 5

B2 : 1 9 7

mSoxlO: 1 6 8 5

B2 : 2 5 7

mSoxlO: 1 7 4 5

c a g g c c t c g g g a t c c t a c t a c g c c c a c t c c a g c c a g a c c t c a g g c c t c t a c t c c g c c t t c  
III I I I I III I I I I II I III I I I I I I I I I I I I I I I I I I II I I I I I 
c a g c c c t c a g g a c c c t a t t a t g g c c a t g c a g g c c a g g c c t c t g g c c t c t a t t c a g c c t t t

1 3 9

1 6 2 4
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Figure 3.11: BLAST alignment of clone B2 and mouse SoxlO

(A) The schematic shows mouse SoxlO and the region of high homology to the 3’RACE 

PCR clone B2 (dashed box) corresponding to the C-terminus of the coding region. The 

B2 3’RACE clone did not overlap with the HMG box clone SoxS4. To clone the 

missing fragment, PCR amplifications were set up between primers 5’Sox 10, 3GSP (3’ 

gene specific primer) and N3GSP (nested 3’ gene specific primer) located within the 

HMG box and newly designed gene specific reverse primers S9 and SI3. Numbers refer 

to nucleotide positions in the mouse SoxlO gene. 5’UTR, 5’ untranslated region;

3’UTR, 3’ untranslated region. (B) Alignment of the homologous region ((TTT]) between 

3’RACE clone B2 and mouse SoxlO created with BLAST (Alignment of two 

Sequences, Materials and Methods). The region extends between nucleotide positions in 

mouse SoxlO 1565 and 1746, close to the stop codon at position 1748. This corresponds 

to the C-terminal coding region and, as anticipated, no significant identity was observed 

in the 3’UTR. Note that although the 3’RACE reaction was meant to amplify between 

3GSP and the 3’CDS (an oligo (dT) supplied in the SMART RACE Kit, Figure 3.8), the 

3GSP must have bound further downstream and produced an approximately lOOObp 

shorter product.
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PCR reactions from oligo(dT) cDNA populations produced fewer non-specific products 

and curiously the bands derived were consistently slightly larger than equivalent 

products amplified from random hexamer derived cDNA (Figure 3.12A). Reactions 

with 3GSP and N3GSP primers in combination with S9 produced a strong band of 

approximately 800bp. This was consistent with the size expected for this fragment from 

the equivalent SoxlO region in mouse or human (Pingault et al., 1998a; Pusch et al., 

1998). Furthermore, as expected, the 5’SoxlO-S9 product was approximately lOObp 

longer. This corresponds to the distance between the 5’GSP and the N3GSP primer 

within the HMG box. However, in all those reactions non-specific products were 

abundant. A second round of amplification was used to bias the reaction towards 

amplifying a specific product. Thus, nested PCR reactions were set up using the first 

round PCR reaction that contained the least number of non-specific products,

5’Soxl OS 13 (oligodT), and either 3GSP or N3GSP and SI 3 as nested primers. The 

same PCR program was used, but the annealing temperature was raised to 66°C. The 

size of the expected product was estimated to be approximately 1.5-2kb. When PCR 

reaction were analysed by gel electrophoresis, 3-4 products ranging between 1.5 and 

2.0kb were observed (Figure 3.12B). Since all 4 were equally strong products it was 

hypothesised that they might all represent specific products, maybe even different 

splicing variants. The entire reactions N3GSP-S9, 3GSP-S9, N3GSP-S13 and 3GSP- 

S13 were shotgun cloned into pGEM-T Easy vector. Five white colonies from each of 

the 4 transformations were chosen using criteria described in section 3.1. Plasmids were 

prepared using the Wizard Plus SV Miniprep DNA Purification System (Promega). 

After digestion with £coRI, 3 constructs, 15,19 and 20, contained inserts of 

approximately the correct size. Only clones 15 and 20 were sent off for automated 

sequencing (Figure 3.12C). Apart from a 109bp insertion in the 3’UTR of clone 15, 

which is not present in clone 20, they were identical to each other. Both clones showed 

high homology within the coding region to other SoxlO genes (for example, 88 out of 

104 nucleotides identical to chicken SoxlO). Only 51 out of 60 nucleotides were 

identical to the best matching Sox9 homologue from chicken. No homologies were 

observed to Sox8 homologues in a BLAST search.

With the help of the gelassemble program, clones SoxS4, 20 and B2 were assembled 

into a single contig (Figure 3.13).
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Figure 3.12: Cloning of a fragment linking the HMG box region to the 3’RACE clone

(A) RT-PCRs with various primer combinations were tested by agarose gel 

electrophoresis for amplification of expected-sized fragments. Generally, reactions from 

oligo(dT) derived cDNA (“dT” lanes) gave cleaner products with less non-specific 

smear with all primer combinations than reactions from random hexamer derived cDNA 

(“Hex” lanes). Bands of approximately 800bp (arrowhead) in reactions containing 

primer S9 (lanes 3G-S9 and N3-S9) correspond to the estimated size of an expected 

product compared to a lkb marker (lkb M, Promega). Hex, Random Hexamers; dT, 

oligo(dT); 5’S, 5’SoxlO; 3G, 3GSP; N3, N3GSP. (B) Second round PCR amplification 

from the diluted 5’SoxlO-S13 first round PCR reaction (lane 5’S-S13) with nested 

primers 3GSP/N3GSP and S13 produced 4 equally strong bands (arrowheads), which 

all might represent specific products. (C) Samples of plasmid DNA minipreparations 

were digested with iscoRI to test for inserts. Here, 9 such digests are shown (lanes 12-15 

derived from the N3GSP-S13 PCR, lanes 16-20 derived from the 3GSP-S13 PCR), 

together with a lkb marker (lkb M, Promega). A positive clone was expected to show 

bands of 1.5-2.0kb (insert, arrowhead) and 3kb (linearised vector, asterisk). Clones 15, 

19 and 20 containing inserts of the expected size, but only clones 15 and 20 were 

sequenced.
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Cloning o f  the region 5 ’ to the HMG box by 5 fRACE PCR

A separate 5’RACE cDNA population was synthesised according to the manufacturer’s 

instructions (see Materials and Methods). This was necessary since the SMART oligo 

sequence was not incorporated into the 3’CDS primer (Figure 3.8), but used as a 

separate primer in the 5’RACE PCR extending the 5’end of the cDNA (Figure 3.7). 

RACE PCR reactions were set up amplifying the region between the SMART oligo 

supplied in the kit and the 5’gene specific primer (5GSP). Initial attempts failed to 

produce any bands. There are several possible reasons that could explain such a result. 

For example, the 5GSP primer might be poorly designed. The latter might cause 

mispriming to several locations on the template, to the SMART oligo primer or to the 

Long Universal Primer. However, it seemed more likely that the quality of the 5’RACE 

cDNA was insufficient. This could be due to difficulties of the reverse transcriptase to 

synthesise full length transcripts in the presence of high secondary RNA structures such 

as hairpins or GC rich regions.

Thus, it was decided to resynthesise the 5’RACE cDNA (“new”) with standard random 

hexamer primers instead of the 5’CDS (“old”). Both cDNA populations were then 

tested in RT-PCR reactions, whether RNAseH treatment and/or addition of 

dimethylsulphoxide (DMSO) to the PCR reaction would improve the amplification. 

RNAseH digests RNA in RNA/DNA hybrids and thus might improve primer binding 

conditions. Addition of DMSO might lead to a decrease in cDNA secondary structures 

and hence facilitate primer access to binding sites.

A product of the expected size was obtained from both “old” and “new” cDNAs when 

treated with RNAseH alone (see Figure 3.14A). Surprisingly, a similar product was 

obtained from the “old” cDNA population that had not been treated with either 

RNAseH or DMSO. To avoid non-specific by-products, nested PCR reactions were set 

up with 1:25 diluted first round PCR products and primers N5GSP and UPM. Agarose 

gel electrophoresis of samples showed clean products of approximately 850bp and 

800bp (Figure 3.14B). PCR products derived from one of each cDNA reaction, “-R-D, 

o” and “+R-D, n” were cloned into pGEM-T Easy vector. 5 out of 10 plasmid 

minipreparations tested contained an EccRl fragment of the correct size (Figure 3.14C). 

Two constructs (32 and 62) were sequenced and their sequences matched perfectly, 

although clone 32 had a 26bp 5’extension compared with clone 62. When assessed in a 

BLAST search, clones 32 and 62 showed high identity to regions of human SOXIO 

(161/183bp identical) and human SOX9 (160/183bp identical) corresponding to the
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Figure 3.13: Schematic diagram showing the overlap of soxlO-like fragments of clones 

32, SoxS4, 20 and B2

(A) Schematic diagram of overlapping fragments. Numbering refers to nucleotide 

positions in individual clones. Clone 15 and 20 were identical apart from a 109bp insert 

in clone 15. The site of insertion in clone 20 is indicated. (B) The three regions of 

overlap are shown. Clone 32 overlaps with clone SoxS4 over a region of 73bp in the N- 

terminal region of the HMG box ( m ), whereas clone SoxS4 overlaps with clone 20 in 

the 108bp C-terminal region of the HMG box (£2). Clones 20 and B2 align completely 

over a 1141bp region (5 3 , A), but only the first 120bp and the last 121bp are shown in

(B).
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Figure 3.14: Cloning of the 5’RACE PCR fragment

(A) Multiple RT-PCR reaction conditions were evaluated for amplification of expected 

5’ sox 10 fragments. RT-PCR were set up with 5’RACE cDNA (old, o) and cDNA made 

with Random Hexamer primers (new, n), with or without RNAseH (+R, -R) and with or 

without DMSO (+D, -D) treatment. A band of approximately the expected size (900bp) 

was observed in reaction lanes “-R-D, o” and “+R-D, o” (arrowhead), whereas in lane 

“+R-D, n” the product appeared to be slightly smaller (asterisk) compared to a lkb 

marker (lkb M, Promega). Two non-specific products were also observed in reaction 

“+R-D, o”. (B) Second round PCR amplification from “-R-D, o” and “+R-D, n” with 

nested primers N5GSP (5’ nested gene specific primer) and UPM (universal primer 

mix) obtained single products of the correct size. The nested product of reaction “-R-D, 

o” (arrowhead) was approximately 850bp, the band from “+R-D, n” approximately 

800bp (asterisk). As expected, no product was obtained in the control reaction without a 

DNA template (lane “-ve Ctrl”). A lOObp marker (lOObp, Promega) was used to judge 

sizes. A nested reaction from reaction “+R-D, o” was omitted due to presence of strong 

non-specific products. (C) Samples of plasmid DNA minipreparations were digested 

with EcoRl to test for inserts. Here, 10 such digests are shown (lanes 31-35 derived 

from “-R-D, o” PCR and lanes 61-65 derived from “+R-D, n” PCR), together with a 

lOObp marker (lOObp, Promega). Positive clones were expected to show bands of 

approximately 850bp (inserts, arrowhead) and 3kb (linearised vector, asterisk). Clones 

32, 33, 34, 35 and 62 were identified as likely positives and clones 32 and 62 were 

sequenced.
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HMG box region and the sequence just upstream. In comparison, only 79/91 bp were 

identical to human SOX8.

The sequence of the slightly longer 32 clone was used to assemble a consensus 

sequence of the full length cDNA (Figure 3.13 A).

Assembly o f  a fu ll length soxlO-//Atf cDNA

All sequences were assembled into a single 3231bp contig (Figure 3.13A) and the 

consensus sequence, called sox/0-like, deduced using the GCG package. The sequence 

of the 109bp insertion of clone 15 in the 3’UTR was included in the consensus sequence 

since its presence had been confirmed in the genomic sequence (T. Carney, pers. 

comm.). All sequence ambiguities were solved by sequencing both strands of all clones, 

32, 62, S4, 15, 20, B2 and C2 several times and where necessary, using internal primers 

to resolve persistently ambiguous bases. As will be described in chapter 6, the wild-type 

coding region, 1455bp (485 residues) in length, was additionally confirmed by 

sequencing 4 overlapping PCR fragments multiple times in the search for mutant 

lesions. The consensus sequence submitted to Genbank (accession number AF402677) 

is shown in Figure 3.15. A 5’UTR of 375bp preceeds the predicted open reading frame 

which is followed by a 3’UTR of 1398bp.

Sequence alignment with other soxlO homologues and phylogenetic 

analysis

To assign a definite identity to the soxl 0-like gene we used BLAST searches, multiple 

sequence alignments with closest homologues of the same subgroup and phylogenetic 

analysis.

Firstly, a BLASTX search with the complete predicted protein sequence reveals high 

amino acid identities to mouse SoxlO protein (266/435 residues) and less to mouse 

Sox9 (217/466 residues) and mouse Sox8 (192/437 residues).

ClustalW alignment of the full length predicted proteins and calculation of a sequence 

identity matrix (BioEdit program) shows that the isolated Soxl0-like clone shows 61% 

and 60% amino acid identity to mammalian and chicken SoxlO, respectively, but only 

about 40% identity to zebrafish Sox9 paralogues, mammalian Sox9 and trout and 

mammalian Sox8 homologues (Table 3.3).

Secondly, the Soxl 0-like predicted open reading frame appears to have all domains
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Figure 3.15: The cDNA sequence of a zebrafish soxlO-like homologue as published in 

Genbank, accession number AF402677 

The predicted 485 residue coding region extends between nucleotides 376 and 1833. The 

highly conserved DNA binding domain (HMG box) is found between nucleotides 691 and 

930. These 80 residues are marked in red. A 375bp 5’ untranslated region (5’UTR) is 

located N-terminal to the start of translation between nucleotides 1 and 375, whereas a 

1398bp 3’ untranslated region (3’UTR) at the C-terminus is found between 1834-3231. 

Although no attempt was made to investigate whether the cDNA was full length at the N- 

terminal end, the C-terminal end appears complete with a 28bp polyA-tail.
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1 GTTTTTTCTC GCTCTTCACA CAACGGGGCT CTTTAAGCCT CGACGCGCGA CACAGAGCAG GCATTCAGAG
7 1 CGCGAGCGAG GGGGCTGAAC CGACGGACTC TCGCGCTGGG CGGGCGACCT GCTGCACTGT AAAGTTTCCA

1 4 1 TCAGATCTAT ATTCTGAGGA AGACGGCGGA AGGATTCCTT CTGACAGAGT CGAGTCGTTT GAAAAGAACT
2 1 1 GTTAAAGTTT CACTGGATGA TCTTAAATAA TAAACAAAAG CACAATTATT TTACAAGAAA AAAACATTTG
2 8 1 AGAAGTATAA ATTAATACAT TTATATTTAA AATAAAATTT AAGTGAGGAA ATTAAACCTA CCGAAGTCAC
3 5 1 CTGTGGCCGC AGAACTAGTG GACCGATGTC GGCGGAGGAG CACAGCATGT CGGAGGTGGA AATGAGTCCC

1 M S A E E H S M S E V E M S P
4 2 1 GGGGTGTCGG ACGATGGGCA CTCCATGTCC CCTGGTCACT CGTCGGGCGC TCCCGGTGGC GCGGACTCCC

16 G V S D D G H S M S P G H S S G A P G G A D S
4 9 1 CTCTGCCCGG TCAGCAGTCT CAGATGTCCG GGATCGGGGA TGATGGAGCC GGTGTCTCCG GCGGGGTCTC

39 P L P G Q Q S Q M S G I G D D G A G V S G G V
5 6 1 GGTGAAGTCC GACGAGGAAG ATGACCGGTT CCCCATCGGC ATCCGCGAGG CGGTCAGTCA GGTGCTGAAC

62 S V K S D E E D D R F P I  G I R E A V S Q V L N
6 3 1 GGGTACGACT GGACGCTCGT GCCCATGCCC GTGCGCGTGA ACTCGGGCAG CAAGAGCAAA CCGCACGTCA

86 G Y D W T L V P M P V R V N S G S K S K P H V
7 0 1 AGCGGCCGAT GAACGCGTTC ATGGTGTGGG CGCAGGCCGC GCGCAGGAAA CTGGCGGATC AATATCCGCA

1 0 9 K R P M N A  F M V W A Q A A R R K L A D Q Y P
7 7 1 CCTGCACAAC GCCGAGCTCA GCAAAACACT GGGGAAGCTG TGGAGACTGC TGAACGAGAC GGATAAGCGG

1 3 2 H L H N A E L S K T L G K L W R L L N E T D K R
8 4 1 CCGTTTATCG AGGAGGCCGA GCGCTTGAGG AAGCAGCATA AGAAAGATTA TCCCGAGTAC AAGTACCAGC

1 5 6 P F I E E A E R L R K Q H K K D Y P E Y K Y Q
9 1 1 CACGTCGACG CAAGAACGGC AAACCGGGTT CCAGCTCAGA GGCCGACGCC CACTCTGAGG GTGAGGTCAG

1 7 9 P R R R K N G K P G S S S E A D A H S E G E V
9 8 1 CCACAGCCAA TCGCATTACA AGAGCCTGCA CCTGGAGGTG GCGCACGGCG GGGCTGCAGG GTCACCATTG

2 0 2 S H S Q S H Y K S L H L E V A H G G A A G S P L
1 0 5 1 GGTGATGGAC ACCACCCTCA CGCTACAGGT CAGAGTCACA GCCCTCCAAC GCCCCCTACC ACCCCCAAGA

2 2 6 G D G H H P H A T G Q S H S P P T P P T T P K
1 1 2 1 CGGAACTGCA GGGAGGAAAA TCAGGCGAGG GCAAGCGTGA GGGCGGAGCC TCTCGGAGTG GACTGGGGGT

2 4 9 T E L Q G G K S G E G K R E G G A S R S G L G
1 1 9 1 GGGAGCAGAT GGAAGCTCCG CCTCATCGTC TGCCAGCGGG AAACCGCACA TCGACTTCGG TAACGTGGAC

2 7 2 V G A D G S S A S S S A S G K P H I D F G N V D
1 2 6 1 ATTGGCGAAA TCAGCCATGA CGTGATGGCC AACATGGAGC CGTTCGACGT GAACGAGTTC GACCAGTATC

2 9 6 I  G E I  S H D V M A N M E P F D V N E F D Q Y
1 3 3 1 TCCCACCCAA TGGCCACCCG CAGGCGTCCG CCACTGCCAG CGCAGGATCT GCAGCGCCAT CGTATACATA

3 1 9 L P P N G H P Q A S A T A S A G S A A P S Y T
1 4 0 1 CGGCATCTCC AGCGCGCTAG CGGCCGCTAG TGGCCACTCC ACCGCATGGC TGTCCAAGCA GCAACTGCCG

3 4 2 Y G I  S S A L A A A S G H S T A W L S K Q Q L P
1 4 7 1 TCCCAGCAGC ATTTGGGCGC AGATGGCGGG AAAACGCAGA TAAAGAGTGA AACACACTTC CCTGGGGATA

3 6 6 S Q Q H L G A D G G K T Q I K S E T H F P G D
1 5 4 1 CAGCGGCGAG CGGTTCACAC GTCACATACA CGCCGCTAAC ACTGCCGCAC TACAGCTCCG CCTTCCCCTC

3 8 9 T A A S G S H V T Y T P L T L P H Y S S A F P
1 6 1 1 GCTGGCGTCC CGCGCACAAT TCGCCGAATA CGCCGAGCAC CAGGCCTCGG GATCCTACTA CGCCCACTCC

4 1 2 S L A S R A Q F A E Y A E H Q A S G S Y Y A H S
1 6 8 1 AGCCAGACCT CAGGCCTCTA CTCCGCCTTC TCCTACATGG GCCCCTCACA GCGGCCCCTG TACACCGCCA

4 3 6 S Q T S G L Y S A F S Y M G P S Q R P L Y T A
1 7 5 1 TTCCGGATCC GGGATCCGTG CCGCAGTCAC ACAGCCCTAC GCATTGGGAG CAGCCCGTAT ACACCACACT

4 5 9 I  P D P G S V P Q S H S P T H W E Q P V Y T T
1 8 2 1 GTCTCGACCG TGACACACTC TACCAAGATG ACCAGTCACT AAAGGTCCAA CCGTAAGGTG TGTGTGTGTG

4 8 2 L S R P *
1 8 9 1 TGCTAAAAAT CATCGAAACA CTCGCCTGCA CCACAATCGA CACAAACTGA GATCTGAGAA ACGAGTGTGT
1 9 6 1 GTGTGTGTGT GAGATCTGCA GGGAAATATT CTCACGTGCC TCAGACGACC ACCGTCCAGA CCTGCTCCCT
2 0 3 1 CAACGCCAAT TTGACACCAG TAGTATTTTC GAAAAAGACG TAGTACCAAA GTACCGAGAC CAAAACATTA
2 1 0 1 CAGAAATACG AGAGTGCATC CATCCTTCCT GAACTCCGGA TATCAGATCA CACACAGACT TCAACACATG
2 1 7 1 ATGCTAGTAC CAGTGCATCC GCATTTTTTA TCTGTATTTG TATGAATGAA TAATCTTTTT ATTAACCAAA
2 2 4 1 ATAAGGCCAT ATTGTTTTTA AAAAAATAAT GAGGTGTTTT TCGTTGTTGT AATCTCTTGT GTTGTCGTTA
2 3 1 1 CTGTTGTTAT TTGTGTTGCC ATAACTACAC TGAAAAGTCT TCACCACTGT CTAGTGTTTG TTAATGACAT
2 3 8 1 TTGTGTTTTA TGACTTTCAG CGTGTGTAAA TATCAGTGCC AGGACGCCAT ACACACATGT CTCCACCCAA
2 4 5 1 TTAAGGTGCG CTCACAGTGA CGTTAATTAA ATTGAGGAAT TCCCAACCAT GCAAATTCCT CTAGAAATGG
2 5 2 1 CTATATTTCG TGAAAGCAGT AAATGTGAGC GCACCTTTAT TTCACACAAG CAGTACTGTA AAGGTAATAT
2 5 9 1 ATTTTTGCCA GATTGGAAAT GGTGGACGTA ATTACGAATT TTTAATAATA AATGACTATT TTTAGAGAAT
2 6 6 1 ACCGCTAGTG CCTCAAGTCC ATCACAAACG AATTGTCGTT TCTGATAAAT TCAATTTTGA TGATGTAAAA
2 7 3 1 TCCTTTTCAG GGTGCAAATT TTATCATGCG TTAACCGATG TGATTATACA TCGAATATGC ATATGCAAAT
2 8 0 1 TAATAAGTGC CATTTTTATA ATTAAAAATA CATCAACTAT CTGAAGACCT TCCTAACATT GGGTAAGTAA
2 8 7 1 ATAAATACAT TTATTTCATT GTATTATTTT TGGTAAATAC AATATTTAGC TATTCTATGT TTTGTCTCCC
2 9 4 1 TTTGGTACTT TATAGTTTTG TTTTTGCCCT CTTTATTATT TAGTATTATT CAGAAACAAA CAAACTCTTT
3 0 1 1 TTATATATTA CAGAATATTA TTTATATTTG TTGTTGTTTT TTTTTATCAG TAGCGTTTTA TTCTGTTTGT
3 0 8 1 CGTAAACCTC TGTCGTGTGC TGTTGTGGTG GGTTAAAGTG CTGTTGTTTT TCTCTGTCGG TGTAAATAGA
3 1 5 1 ACTGAGAGCA GTGACTAACT TTCCTCACTC TAAATAAAGC TGCAGTCTTT ACTAAAAAAA AAAAAAAAAA
3 2 2 1 AAAAAAAAAA 

K K K
A
K
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characteristic for SoxlO homologues. An amino acid alignment with known SoxlO 

proteins and the percentage identities within distinct domains between homologues is 

depicted in Figure 3.16. Preliminary studies of a zebrafish SoxlO genomic clone show 

conservation of intron sites (T. Carney, unpubl. data).

Finally, Professor Laurence D Hurst, University of Bath, calculated a 

phylogenetic tree containing Sox gene members of subgroup E. Nucleotide sequences 

were translated and the coding regions aligned using ClustalX (Thompson et al., 1997) 

to improve the reliability of the pileup. The actual nucleotide alignment was 

subsequently reconstructed from the protein alignment using MRTRANS (Materials and 

Methods). From this sequence alignment an unrooted phylogenetic tree was constructed 

using PUZZLE (v 4.0.2) (Strimmer, 1996; Figure 3.17). This program calculates the 

probability of relatedness for each included Sox gene homologue by maximum 

likelihood. The number for each branch represents a bootstrap value, which is the 

percentage of times this branch is placed on the tree in this specific location (Figure 

3.17). The soxl 0-like homologue clearly clustered with other Soxl Os. The bootstrap 

values for each branch of SoxlO homologues were close to the maximum of 100 

indicating high support for each branch and thus a very reliable cluster.

Discussion

We have described the successful cloning of a zebrafish soxlO homologue.

Each of two possible strategies to clone soxlO were begun, but screening a cDNA 

library was not successful in our hands. The problem was high background, despite 

attempting to closely mimic the conditions used by Southard-Smith and colleagues 

(Southard-Smith et al., 1999). There are at least two possibilities that could explain the 

differences in results. Although the fish species included in their zooblot was not 

specified in their publication, it was different to zebrafish (M. Southard-Smith, person, 

comm.). Secondly, the genomic blots used by SouthardSmith were commercially 

obtained and thus, it was impossible to mimic the exact procedures used to prepare the 

genomic blot. Thus, we could not confirm the band observed in fish.

Meanwhile, the second approach involving RT-PCR with generic Sox gene 

primers was successful. These degenerate primers 5'SoxlO and 3’SoxlO were located in 

regions very conserved in Sox genes. They had originally been used to amplify a Sox2
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G e n e csoxlO csox8 csox9 hsoxlO hsox8 hsox9 msoxlO ms ox 8 ms ox 9 rsoxlO tsox9 tsoxpl zsoxlO zsox9a zsox9b
csoxlO 100 42.9 48.2 81.9 42.8 48.0 82.1 41.4 47.6 81.4 48. 9 43.5 5 9 . 8 47.2 43.3
csox8 --- 100 47.5 43.8 68. 4 46.0 44.0 73.5 45.4 44.0 47. 9 71. 6 4 1 . 5 47.6 45.1
csox9 --- --- 100 46.8 43.3 81.3 47.1 45.7 81.0 47.1 70. 4 46.0 4 2 . 8 68.2 55.0
hsoxlO ---- --- ---- 100 43.8 46.9 98.4 42.2 46.6 97.4 48.3 42.7 6 0 . 9 46.8 43.0
hsox8 --- ---- --- --- 100 42.4 43.8 80.3 41.8 43. 6 43.7 62.5 4 1 . 1 44 . 6 43.1
hsox9 ---- ---- --- --- ---- 100 47.3 43. 6 95.8 47.5 70.2 44.8 4 2 . 7 68.6 53.9
msoxlO ---- ---- ---- --- ---- --- 100 42.4 46.9 98.9 48.9 43.1 6 0 . 9 47.2 43.2
msox8 --- ---- ---- ---- ---- ---- ---- 100 43.2 42.2 46.7 66.3 4 0 . 6 45.3 42.7
ms ox 9 ---- ---- --- --- ---- ---- --- --- 100 47.1 69.5 44.0 4 2 . 7 67.9 52.8
rsoxlO ---- ---- — --- ---- --- — --- --- 100 48.7 42.9 6 0 . 7 47.2 43.0
tsox9 --- --- ---- ---- ---- --- --- --- --- ---- 100 47.2 4 4 . 7 76.2 57.5
tsoxpl ---- ---- --- ---- ---- ---- --- --- --- --- ---- 100 4 1 . 8 46.1 45.0
zsoxlO ---- --- ---- ---- ---- ---- ---- --- --- ---- --- ---- 100 4 2 . 6 4 0 . 0
zsox9a ---- ---- ---- --- ---- ---- ---- --- --- ---- --- ---- ---- 100 59.6
zsox9b ---- --- ---- ---- ---- ---- ---- --- --- --- --- ---- ---- ---- 100

Table 3.3: Sequence Identity Matrix of members of subgroup E

Numbers represent % amino acid identity between two Sox genes, c, chicken; h, human; m, mouse; r, rat; t, trout; z, zebrafish.

Although homologues of different species usually show 70-80% identity, zebrafish SoxlO only shows approximately 60% overall sequence 

identity to other Soxl Os, but even less, around 40%, to Sox8s and Sox9s including both zebrafish Sox9 paralogues.
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Figure 3.16: Amino acid identities within distinct domains between SoxlO homologues 

(A) The multiple sequence alignment of published SoxlO proteins was created with 

Pileup (gcg package, Materials and Methods). Regions of identity are shaded in black 

(Genedoc). The highly conserved HMG domain is underlined red (residues 106-185 in 

zebrafish SoxlO). The synergy domain (blue) and the transactivation (TA) domain 

(green) are poorly defined. However, the regions underlined in blue and green show 

high sequence homologies particularly between mammalian SoxlO proteins and 

exhibited synergistic and transactivational properties in in vitro studies (Kuhlbrodt et 

al., 1998b; Pusch et al., 1998). (B) Amino acid identities within functional regions are 

shown. Zebrafish SoxlO (zSoxlO) was compared to mammalian (hSOXlO, human 

SOXIO; mSoxlO, mouse SoxlO) and chicken (cSoxlO, chicken SoxlO) SoxlO proteins. 

The HMG domain (red) is the most conserved region with up to 95% identity. The 

transactivation domain (green) and the region just upstream of the HMG box with 

unknown function both show approximately 75% identity. However surprisingly, the 

synergy domain does not appear to be as highly conserved as the other domains in this 

zebrafish SoxlO homologue. Accession numbers of sequences are as follows: human 

SOXIO (hSOXlO) (NM_006941); mouse SoxlO (mSoxlO) (AF047389); chicken SoxlO 

(cSoxlO) (AF152356); zebrafish SoxlO (zSoxlO) (AF402677).

124



A

hSO X lO : -  
m S o x lO : -  
c S o x lO : -[ 
z S o x lO  :M;

 NSSHLHi

100 120

is p l p | q q sq m sg i| ddga§ v sg g v sv k sd e i 

* 1 40

79
79
73
83

1 60
hSOXlO  
m SoxlO  
c S o x lO  
z S o x lO

180 200 220

2 6 0 2 8 0 3 0 0
hSOXlO
m SoxlO
c S o x lO
z S o x lO

hSO X lO : 
m S o x lO :
C S o x lO : 
z S o x lO : TASAGS

*- 2 4 0
S

S & S  M

B O B h h p w a m S W s

* 3 2 0 *

pPQ A SA

2 44
2 44
2 37
246

ASRSGLGVGADGSSABSSA 

3 60

2SAT||SgV  
QLPSQQHW3ADM--

hSOXlO PQSHSPTHVVEQ PVYTTLSR 
PQSHS PTHWEQP’/YTTLSR 
PQSHS PTHWEQPVYTTLSR 
PQSHSPTHWEQP’.TTTLSR

m S o x lO

B

zSoxlO Synergy HMG domain TA domain

1 93 106 185 395 4i

h/mSoxlO 42.5% 83.3% 95.0% 48.8% /49.7% 75.0%/73.9%

cSoxlO 43% 75% 93.7% 47.5% 75.0%



frogSox9
chicken 
human >

zebrafish sox9b *"9

alligator
zebrafish sox9a

trout

Sox8
100

chicken
100

rat trout

100
human 96mouse mouse

human
chicken

SoxlO
01

zebrafish sax 10

Figure 3.17: Maximum likelihood phylogenetic tree of subgroup E Sox genes 

generated by Prof. Laurence D Hurst, University of Bath.

Nucleotide sequences were translated and then aligned using ClustalX. The nucleotide 

alignments were reconstructed from the protein alignments using MRTRANS. By 

Maximum Likelihood an unrooted neighbour joining tree was calculated. As expected 

zebrafish soxlO clearly clusters within the SoxlO clade of vertebrate Sox genes. 

Bootstrap values close to 100 on each of the SoxlO branches present high support for 

this cluster. The accession numbers for the sequences are as follows: chicken Sox8 

(AF228664); trout SoxPl (D83256); mouse Sox8 (AF191325); human Sox8 

(AF226675); rana frog Sox9a (AB035887); alligator Sox9 (AF106572); trout Sox9 

(AB006448); zebrafish sox9a (AF277096); zebrafish sox9b (AF277097); chicken Sox9 

(ABO 12236); pig Sox9 (AF029696); human Sox9 (Z46629); zebrafish soxlO 

(AF402677); chicken SoxlO (AF152356); mouse SoxlO (AF047389); rat SoxlO 

(AJ001029); human SoxlO (NM_006941).
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gene (Yuan et al., 1995), but also led to successful cloning of rat SoxlO (Kuhlbrodt et 

al., 1998a). In the latter study, Kuhlbrodt and her colleagues used cDNA derived from a 

primary rat Schwann cell culture to clone Sox proteins involved in the development of 

Schwann cells. This cDNA might have been enriched with SoxlO transcripts, since 69% 

of isolated clones showed high identity to SoxlO homologues. Unfortunately, an 

equivalent source of cultured zebrafish cells was not available. Thus, to identify a soxlO 

homologue, we anticipated having to screen a large number of clones. Perhaps cloning 

chances could have been improved by dissecting whole zebrafish embryos to obtain 

tissues expected to express high levels of sox 10 such as premigratory neural crest or the 

gut. Due to the small size of zebrafish embryos this was not attempted in this study. 

However, we hoped to enrich for sox 10 transcripts by including adult tissues (brain and 

skin). If the cloning of HMG boxes from 19hpf stage carried out in parallel had not been 

successful, more HMG box clones derived from adult tissues would have been screened 

and might have also led to success.

A total of 61 HMG box clones were manually sequenced. As expected, HMG 

boxes with homology to various Sox genes were cloned from all stages. Their identities 

were tentatively assigned to the closest match in a BLASTN search. This was necessary, 

because clones were only sequenced once and thus are prone to PCR and sequencing 

errors. These are the likely explanation for mismatches between the sequences obtained 

here and published sequences of zebrafish genes (Table 3.2).

Although the sample number was small and the cloned Sox gene homologues might not 

be representative, it was interesting that at least some could correspond to 

developmental processes during the stages used. Thus, 5 out of 9 HMG boxes (55.6%) 

cloned from adult tissue and 6 out of 10 (60%) cloned from 24hpf stage appeared to be 

zebrafish soxl9. Zebrafish sox 19 was first isolated from a cDNA library prepared from 

late gastrulation embryos and is classified as a member of subfamily B1 (Vriz and 

LovellBadge, 1995). Expression studies are still unavailable, but the abundance of 

soxl 9-like HMG boxes observed here in adult brain might indicate a role in the CNS. It 

could be speculated that the high representation of soxl 9-like clones at 24hpf is also 

derived from expression in the developing CNS.

Two soxl 1-like homologues (subfamily C) were cloned from the 24hpf stage, one of 

which clearly matched the soxl la  paralogue. This is consistent with expression of 

soxl la  in the fore-, mid- and hindbrain at 24hpf (Rimini et al., 1999). One of 9 clones 

isolated from the 19hpf stage, 3 out of 6 clones from the 5dpf and 1 clone out of 9 from
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the adult stage showed high homologies to zebrafish soxl lb. The latter result is 

surprising, since Rimini reported that expression levels of soxl lb  at 36hpf were already 

fainter and from 48hpf no expression could be detected. This does not exclude that 

soxl lb  might be required again later and thus, our result might point to an unknown late 

function of soxl lb.

Another two Sox genes, similar to sox31 and sox2, also involved in the development of 

the CNS, were isolated. Zebrafish sox31 was identified from the 24hpf stage. Consistent 

with our observations, it is expressed in the developing CNS (forebrain, midbrain, 

hindbrain and dorsal spinal cord) up to at least 36hpf (Girard et al., 2001). One clone 

isolated from the 5dpf stage showed very low sequence similarity (18bp outside the 

primer sequences) to sox31. With an Expect value (E) of 9.1 it is most likely a cloning 

artefact. It means that by chance, one might expect to see 9.1 sequences from the 

database to show a similar extent of identity.

From the 24hpf stage, a sox2-like homologue was isolated, which has not been 

described yet in zebrafish. It belongs to subgroup B l, like soxl, sox3 and soxl9. In 

chicken, Sox2 is expressed primarily in the CNS, but also in spinal, sympathetic and 

cephalic ganglia, Schwann cells, putative parasympathetic nerves, branchial arches, 

nasal epithelium and both neural retina and lens (Uwanogho et al., 1995; Uchikawa et 

al., 1999).

An HMG box with high nucleotide identity to Sox4 homologues (subgroup C) was 

cloned once from the 5dpf stage and twice from the adult stage. Again, a zebrafish sox4 

has not been published yet and the time and place of function is unknown. Three likely 

members of subfamily D were identified, which showed similarities to sox5 (19hpf 

stage), sox6 (19hpf embryos and 5dpf larvae) and soxl3 (19hpf and adult tissues). All 

three genes represent novel zebrafish homologues. In mice, Sox5 and Sox6 are involved 

in spermatogenesis and chondrogenesis (Lefebvre et al., 1998). Soxl3 is expressed in 

mouse embryos in developing arterial walls, inner ear and thymus and also in the 

thymus of adult mice (Roose et al., 1998). Consistent with this, we isolated a soxl3-Yiks 

homologue from 19hpf stage zebrafish embryos and adult tissue.

An HMG box with similarities only to a sea urchin SoxB2 (Genbank accession number 

AF157388) was isolated from the 19hpf stage. The region of identity was small (23bp 

outside primer sequences) and no similarities to other Sox genes were found. SoxB2 

clusters with members of subgroup B2 and thus might represent either a Sox 14 or Sox21
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orthologue (Bowles et al., 2000). However, with an Expect value E of 1.3, this fragment 

might only represent a cloning artefact.

Finally, we identified the soxl 0-like HMG box only once, from cDNA prepared from 

19hpf zebrafish embryos. As described earlier, at the equivalent stage in mouse, SoxlO 

is expressed widely in premigratory and migrating neural crest cells and the otic vesicle 

(Herbarth et al., 1998; Southard-Smith et al., 1998). Thus, it was not surprising to 

isolate it from tissue of this stage.

In conclusion, the HMG box clones obtained by RT-PCR generally fitted the available 

expression data of those Sox genes in the stages investigated.

Although unnecessary for the progress of this study at the time, it would indeed 

be interesting to continue this experiment with the aim of looking for a second soxlO 

homologue, derived from the fairly recent genome duplication in ray-finned fish 

(Amores et al., 1998; Postlethwait et al., 1998). Any duplicated gene would have had to 

diverge in order to be maintained in the genome. Under the classical model for the 

evolution of duplicated genes, a duplicate is only preserved if a mutation creates a new 

function. Since this event is likely to be much rarer than any deleterious mutation, this 

model could not explain the high number of duplicates observed. An alternative model, 

called the Duplication-Degeneration-Complementation model (DDC), may explain the 

frequent maintenance of both duplicates (Force et al., 1999). It hypothesises that a 

member of the duplicated pair may undergo Nonfunctionalisation, in which it acquires a 

null mutation; Neofunctionalisation, in which a mutation gives rise to a new gene 

function; or Subfunctionalisation, in which the duplicates accumulate degenerative 

mutations in different regulatory elements. By complementing each others function, 

both duplicates are maintained. This in turn might even increase the chances of 

acquiring a novel gene function in either of them. Indeed, what is often observed is that 

the original role of the ancestral gene is temporally or spatially shared by the two 

paralogues. The zebrafish duplicates engrailedl (engl) and engrailedlb (englb) are 

presented as one of the examples illustrating this subfunctionalisation. Engrailedl 

(EN1) in mouse and chicken is expressed in the pectoral appendage bud and in certain 

neurons of the hindbrain and spinal cord (Joyner and Martin, 1987 cited in Force et al., 

1999). In zebrafish these two regions of expression are split between engl and englb , 

with engl expressed in the pectoral appendage bud and englb in neurons of the 

hindbrain (Force et al., 1999). Mammalian Sox9 is expressed in testes and is involved in 

sex determination (Foster et al., 1994; Wagner et al., 1994; Kent, 1996). In zebrafish,
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sox9a is expressed in testes, whereas sox9b is found in ovaries (Chiang et al., 2001). 

This change of expression pattern could indicate a new role adopted by the second 

paralogue.

It is impossible to predict, which subfunction a second soxlO paralogue might have 

developed during evolution.

It remains untested whether the alternative cloning strategy involving the design 

of soxl  ̂ -specific primers might have been a better method to use. Potentially, this 

specificity for sox 10 could have lead to the successful cloning of a soxl 0-like HMG box 

in even shorter time. However, the design of such primers might have been difficult 

since only sequences of mammalian SoxlO homologues were available at the time. With 

the addition of a recently published chicken SoxlO and a likely fish soxlO homologue, 

the design of such degenerate sox 10 specific primers in highly conserved regions would 

be the cloning strategy of choice, if the procedure were to be performed now.

Isolation of a full length soxlO homologue

Once the HMG box had been cloned, extension of the sequence with the SMART 

RACE PCR Amplification Kit (Clontech) proved straightforward.

A 3’RACE product, clone B2 or C2, was obtained at the first attempt, although primer 

N3GSP had misprimed within the sox 10 sequence approximately lOOObp further 

downstream. It might be that the PCR conditions were not appropriate to amplify a 

product spanning the entire region 3’ to the HMG box (about 2.8kb). In any case, 

shorter products are usually favoured. Alternatively, the cDNA population might have 

contained a lot of truncated reverse transcripts. With the specific annealing site missing, 

the primer might have been forced to bind to a location with lower sequence homology 

further downstream. Thus, an additional round of gene specific amplification was 

required to complete the 3’ sequence. This overlapping fragment, represented by clones 

15 and 20, linked the HMG box clone SoxS4 to the 3’RACE product, clone B2.

Clone 15 differed from clone 20 only by an insertion of 109bp within the 3’UTR. This 

insertion might represent a splicing variant or less likely a PCR artefact. A PAC clone 

containing the equivalent genomic region was sequenced and confirmed the presence of 

this 109bp insert in the soxl 0 gene (T. Carney, unpubl. data). Thus, the insertion was 

included in the soxlO-like cDNA.
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Some perseverance was necessary to establish conditions to clone the 5’RACE 

fragment. Two clones, 32 and 62, were isolated, which were identical to each other 

apart from the N-terminal 26bp extension in clone 32. This might have been caused by 

mispriming of the SMART oligo on a series of cytosines further downstream in the 

soxl 0 sequence.

Both the results from the BLASTX search and an unrooted maximum-likelihood 

tree consistently suggested that the soxlO-\ikQ cDNA represented a true sox 10 

homologue. As was demonstrated in Figure 3.17, the newly isolated member of the Sox 

gene family clearly clustered with other Soxl Os instead of Sox9 or Sox8s. In fact, an 

alignment with the two zebrafish sox9 paralogues, both closely related to soxlO, only 

exhibit an overall amino acid identity of 40 and 42.6%, respectively, whereas they show 

59.6% identity to each other (Table 3.3)

The zebrafish Soxl0-like predicted protein sequence also shows consistently higher 

identity to all published Soxl Os (approximately 60%) than to Sox9s (approximately 

43%) and even less homology to Sox8s (approximately 41%). Together these results 

strongly support the hypothesis that the cDNA indeed represents a true soxlO 

homologue. In accordance with the zebrafish gene nomenclature it will be referred to as 

soxlO (protein as SoxlO) in subsequent chapters of this thesis.

We made no attempt to test whether the cloned soxlO cDNA represented a full length 

clone. The SMART RACE PCR kit is designed to isolate full length 5’ and 3’RACE 

fragments. Indeed, the presence of a 28 nucleotide poly-A tail strongly indicates a 

complete 3’end. However, to investigate the true 5’ end of the mRNA transcript, a 

primer extension experiment is necessary, whereby the beginning of the 5’UTR is 

reverse transcribed with a labelled, gene specific primer. Once the genomic sequence 

(PAC clone) of that region and the length of the labelled product is known, the first 

nucleotide of the transcript can be determined. However, for the purposes of this study, 

a full length coding region was most important and thus, such primer extension studies 

were omitted.

The start of translation was determined by sequence alignment with other SoxlO 

proteins. The first 30 residues show significant conservation in all known SoxlO 

proteins and thus the corresponding initiator methionine in zebrafish was easily 

identified (Figure 3.16). Also, no alternative in frame methionine codon is present 

further upstream. Southard-Smith investigated an alternative methionine in mouse 

further upstream as a potential start of translation by aligning the mouse, human and rat

131



sequences (Southard-Smith et al., 1999). The region exhibited 90% nucleotide identity 

between mouse and human 5’UTR indicative of structural relevance. However, a 

frameshift present in the human sequence introduced a stop codon between the two 

possible initiator sites, thus eliminating the possibility of usage of alternative 

methionine further upstream.

The 485 residues representing the coding region of the soxl 0 cDNA extend from 

nucleotides 376 to 1833 (Figure 3.15). The only significant difference from other SoxlO 

homologues C-terminal to the HMG domain is the insertion of 15 amino acids rich in 

Glycine, G (5 out of 15) and Serine, S (4 out of 15) (see Figure 3.16). The function of 

this region is unknown. The HMG domain (residues 106-185) is the most conserved 

region showing 95% amino acid identity to mammalian SoxlO homologues (Figure 

3.16). It is preceeded by 38 residues that are highly conserved within members of the 

subgroup E. Zebrafish SoxlO, for example, shows 83.8% amino acid identity to all 

known SoxlO homologues in this region. Their function still requires investigation.

An N-terminal domain, called the synergy domain, is poorly defined. Kuhlbrodt and 

colleagues (1998a) tested rat SoxlO deletion constructs in in vitro luciferase reporter 

assays and concluded that both the HMG domain and the first 89 residues were required 

for synergistic interaction of SoxlO with other partner transcription factors such as Tst- 

l/Oct6/SCIP. The N-terminal domain of SoxlO shows a low degree of conservation 

compared to mammalian SoxlO proteins. Thus, residues 1-89 exhibit 42.5% amino acid 

identity between zebrafish and mouse, but 100% identity between human and mouse 

synergy domains (Figure 3.16).

The transactivation domain (TA domain) is also not well defined. Deletion constructs 

fusing various parts of the SOXIO 3’ end to the GAL4 DNA binding domain were tested 

for in vitro ability to transactivate a GAL4-dependent CAT-reporter plasmid (Pusch et 

al., 1998). Only the region between residues 377-466 produced a 29-fold CAT induction 

and thus exhibited transactivational abilities. This region is highly conserved in 

mammals (Figure 3.16) and also corresponded approximately to the transactivation 

domain previously identified in SOX9 (Suedbeck et al., 1996). The same region in 

zebrafish SoxlO, residues 395-485, is not as highly conserved between zebrafish and 

human or chicken SoxlO (75% amino acid identity to either of them, Figure 3.16B). 

However, the high identity of 87.2% within the last 47 residues in all SoxlO 

homologues might point to a functionally important part of this domain.

132



A region rich in prolines (P, 5/13 residues) and threonines (T, 4/13 residues) and 

completely conserved across all subgroup E homologues is located between residues 

240-252. Bondurand et al. (2000) have also mentioned such a domain in approximately 

the correct location and it would be interesting to investigate its function.

In conclusion, we were able to show the cloning of a true soxlO homologue from 

zebrafish by RT-PCR and RACE-PCR and confirm its identity by phylogenetic analysis 

and sequence alignments. In the following chapter we will ask whether soxlO is 

expressed in the neural crest, and whether expression in els mutant embryos is 

disrupted, as might be expected if els encodes soxlO.
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Chapter 4 -  Expression of soxlO in wild-type and els 
mutant embryos

Introduction

In the previous chapter we have described the cloning of a soxl 0-like homologue. We 

could further show by sequence alignment and phylogenetic analysis that this Sox gene 

was a true soxlO homologue in zebrafish.

We next asked whether this soxlO homologue was expressed in the correct places to be 

a strong candidate for the els gene. Cell autonomy studies of the els phenotype indicated 

that els would be expressed in the premigratory neural crest (Kelsh and Eisen, 2000b). 

Likewise, the strong ear phenotype in els mutants would be consistent with expression 

in the otic vesicle. These aspects are observed in mammalian SoxlO expression patterns. 

Furthermore, the expression pattern of soxl 0 was expected to be disrupted in 

homozygous els mutant embryos.

SoxlO expression during mouse, human and chicken development

The SoxlO HMG box was first isolated from a mouse embryo cDNA library by 

degenerate PCR amplification (Wright et al., 1993). In the course of identifying the 

product of the Dom locus by a positional cloning approach, the full cDNA sequence in 

mouse was isolated by two independent research groups (Herbarth et al., 1998; 

Southard-Smith et al., 1998). Based on amino acid similarities within the conserved 

HMG domain and characteristics outside such as the presence of specific functional 

domains and conservation of intronic sites, SoxlO was classified as a member of 

subgroup E together with Sox9 and Sox8 (Bowles et al., 2000). At the same time, rat 

SoxlO was partially cloned by RT-PCR and this HMG box fragment used to isolate the 

full length clone from a Schwann cell cDNA library (Kuhlbrodt et al., 1998a). 

Phenotypic similarities between the SoxlO00"11+ mouse and patients with Waardenburg 

Shah Syndrome (WS4) led to the proposal that WS4 might result from SOXIO 

mutations. Consequently, SOXIO was isolated from a human brain cDNA library using 

the rat SoxlO cDNA as a probe (Pingault et al., 1998a). Only a year later, the cloning of 

a chicken SoxlO homologue was reported (Schneider et al., 1999; Cheng et al., 2000).
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SoxlO expression in the neural crest and its derivatives

Although there are small species-specific differences in SoxlO expression, the overall 

pattern appears largely conserved. Thus, in mammals and chicken, SoxlO is strongly 

expressed in premigratory neural crest cells soon after emergence from the neural tube. 

In mouse and humans, the onset of SoxlO (SOXIO) expression has not been studied in 

detail. SoxlO transcripts were first detected in E8.5 mice (5-12 somites) in a region 

corresponding to the edges of the neural plate, adjacent to areas which have just closed 

to form a neural tube. These cells most likely represent neural crest cells emerging from 

the neural tube (Kuhlbrodt et al., 1998a). In expression studies in chicken, SoxlO 

transcripts were first detected just after Slug at HH (Hamburger & Hamilton) stage 7/8 

(3 somites) in the folding neural plate, but not in the lateral region from which the 

neural crest delaminates. However, consistent with the mouse data, strong expression 

was observed in cranial and trunk neural crest slightly later, from HH stage 9 (-6-7 

somites; Cheng, Cheung et al. 2000). The earliest stage investigated in human embryos 

was 4 weeks, the equivalent to mouse E10. SOXIO expression was seen in the 

premigratory crest area (Bondurand et al., 1998a).

Furthermore, SoxlO appears to be expressed in at least some migrating neural 

crest cells on either pathway and is maintained predominantly in glial-type cells of the 

PNS and CNS, whereas SoxlO is down regulated in differentiating neuronal derivatives. 

In mouse, SoxlO expressing neural crest cells were seen to migrate on both the medial 

pathway at E9.5 (Pusch et al., 1998) and on the lateral pathway until at least E l2.5. The 

latter cells correspond to pigment cell precursors (Southard-Smith et al., 1998). Some 

migrating SOX10-positive neural crest cells were observed in 4 week human embryos 

(mouse E10) in the region of forming glosso-pharyngeal ganglia.

In contrast to mouse and chicken, SOXIO was also detected in some derivatives 

of the cephalic neural crest in 6 week human embryos (mouse El 4), which later form 

cartilaginous rudiments of several nasal bones (Bondurand et al., 1998a). Maintenance 

of SoxlO expression in such ectomesenchymal fates was not observed in mouse 

(Kuhlbrodt et al., 1998a).

SoxlO expression in the mouse peripheral nervous system was seen at E9.5 in DRG, 

trigeminal and the cochlear-vestibular ganglion (Kuhlbrodt et al., 1998a). By E10.5, 

SoxlO staining was associated with all cranial ganglia, cranial and spinal nerves (motor 

and sensory nerves) and sympathetic ganglia (Pusch et al., 1998; Southard-Smith et al.,
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1998). Furthermore, from E l2.5 enteric ganglia in the trunk exhibited hybridisation 

signals (Kuhlbrodt et al., 1998a; Southard-Smith et al., 1998). All these crest derivatives 

were also strongly labelled by SOXIO in human embryos (Bondurand et al., 1998a).

In chicken, it was shown that SoxlO expression was not maintained in neural crest cells 

undergoing neuronal differentiation as judged by expression of the Hu epitope, for 

example in the centre of peripheral ganglia in head and trunk (Cheng et al., 2000). This 

is consistent with findings of non-overlapping SoxlO signals and the neuronal marker 

SorLA in the developing trigeminal ganglion in mouse (Kuhlbrodt et al., 1998a). Since 

high expression levels of SoxlO were found in cultured Schwann cells, these SoxlO- 

positive cells surrounding peripheral ganglia and along cranial and peripheral nerves 

most likely corresponded to satellite glia cells and Schwann cells, respectively 

(Kuhlbrodt et al., 1998a). It was suggested that some of these Sox/0-positive cells in 

DRG might also represent undifferentiated neural crest cells since they did not express 

glial markers and as differentiated neurons would have turned off SoxlO (Britsch et al., 

2001).

SoxlO expression outside the neural crest

Aside from the neural crest, it was suggested that SoxlO in chicken was expressed in 

neuronal and glial precursors during early CNS development. Thus, the entire 

ventricular zone was labelled at HH26 (~5 days), which contains mostly neuronal 

precursors. At later stages expression was absent in Hu-expressing neuronal cells and 

became restricted to oligodendrocytes (Cheng et al., 2000). In mice, labelling intensities 

in the CNS increased from E12.5toE18.5 drastically. Expression was observed 

throughout the brain corresponding to forming oligodendrocytes, but never in brain 

nuclei (Kuhlbrodt et al., 1998a). This was interesting since in contrast to mice, SOXIO 

was also observed in major brain nuclei and in the cerebral cortex in both fetal and adult 

human CNS (Bondurand et al., 1998a).

High levels of SoxlO are noted in the otic vesicle from E9.5 in mouse (Pusch et 

al., 1998; Southard-Smith et al., 1998) and between the 5th (corresponding to ~E11 in
thmouse) and 6 week (~E14) during human development (Bondurand et al., 1998a). The 

otic placode in chicken is labelled very early from HH stage 9 (~6-7 somites) and 

expression there is maintained strongly at least up to HH stage 27 (~5.5 days) in non­

neuronal cells as shown in double labelling with anti-Hu antibody.

136



SoxlO transcripts were also observed in the developing pineal gland of chicken 

at HH stage 26 (~5 days; Cheng et al., 2000).

SoxlO mutant mice have altered SoxlO expression patterns

The Dom mouse was the first SoxlO mutant to be identified. An insertion of a single 

guanine residue at nucleotide 929 causes a frameshift, which leads to the generation of 

99 novel amino acids before premature truncation of the protein (Southard-Smith et al., 

1998). Its phenotype has been described in the Introduction chapter.

SoxlO expression patterns in Dom mutants in the neural crest

In situ hybridisation with SoxlO in SoxlODom/Dom mice revealed that expression was 

present in premigratory neural crest cells at E9.5 in a wild-type pattern. Expression 

persisted in migrating neural crest cells in caudal regions until E l0.5 although these 

neural crest cells were delayed in their migration. By E l0.5, cranial ganglia and cells 

associated with their projections showed strongly reduced SoxlO levels. Soxl  ̂ -positive 

cells in the gut were absent and were reduced in the sympathetic primordium (Britsch et 

al., 2001). Melanoblasts, normally expressing SoxlO and Dct, an early melanoblast 

marker, were absent. At El 1.5, SoxlO transcripts were only detectable in the caudal- 

most neural crest cells, which, in developmental terms, are the youngest. At the same 

time, cells in DRG and in a location consistent with migrating neural crest were 

undergoing significant apoptosis as seen by TUNEL staining (Terminal 

deoxynucleotidyl transferase-mediated dUTP nick end-labelling) (Southard-Smith et al., 

1998). In contrast to wild-type embryos, in situ hybridisation on sections of E14.5 

SoxlODom/Dom mutant embryos demonstrated a lack of enteric precursors in their 

intestines and a reduction in SoxlODoml+ siblings (Herbarth et al., 1998).

These results demonstrate disrupted SoxlO expression in SoxlODom/Dom mutants and are 

consistent with the defects in neural crest cell lineages observed in the SoxlODoml+ 

mouse. Apoptosis of neural crest cells in hetero- and homozygous SoxlO00"1 mutants 

appears to cause a reduction of pigment cells and enteric ganglia (Southard-Smith et al., 

1998).
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SoxlO expression patterns in Soxl(Pom mutants outside the neural crest

In contrast to that in neural crest derivatives, expression in the otic vesicle, the CNS and 

cells associated with developing cartilage persisted in SoxlODomlDom mutants (Britsch et 

al., 2001).

Results 

The soxlO expression pattern in wild-type zebrafish

We asked whether the expression pattern of zebrafish soxlO was equivalent to the one 

reported for mammalian and chicken SoxlO. To study the cloned gene's expression 

pattern in wild-type zebrafish, we performed mRNA in situ hybridisations on whole 

mount embryos of various developmental stages.

Thus, we synthesised an antisense mRNA in situ probe against the sox 10 

sequence C-terminal to the HMG box (Materials and Methods). The 1913bp 3’RACE 

clone 20 was used as a template. It contained 988bp of coding sequence beginning with 

the 85bp 3’end of the HMG box domain and including 925bp of the 3’ untranslated 

region (3’UTR). Prior to RNA synthesis with RNA polymerase T7, the plasmid 

containing clone 20 was linearised with Sal I, which also removed the 3’end of the 

HMG box sequence. This was considered important in order to prevent possible cross­

hybridisation due to the high degree of sequence conservation within this domain 

between different Sox genes (Figure 4.1).

Zebrafish embryos were collected from heterozygous clsm618 crosses, staged 

according to (Kimmel et al., 1995) and fixed at appropriate stages for a timecourse. In 

situ hybridisations on batches of 20-30 embryos per staining reaction were carried out 

with 1:200 dilutions of the sox 10 in situ probe (Materials and Methods).

soxlO expression in the neural crest and its derivatives

We asked whether soxlO expression was maternally transmitted. However, no 

expression was detected at the 4 cell stage, sphere stage (4hpf), shield stage (6hpf) and 

at 90% epiboly (9.5hpf).

First expression of soxlO was observed in 2 somite stage embryos (approximately 10.5 

hpf) at the lateral edges of the neural plate (Figure 4.2A). This region corresponded to 

the emerging neural crest. At 5 somites (12hpf) this expression domain had broadened
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Figure 4.1: Preparation of the sox 10 in situ hybridisation probe 

Clone 20 was used as a template for antisense RNA transcription. The clone contains 

the soxlO cDNA fragment 3’ to the HMG box ( Hill), including 85bp of HMG box 

sequence and 925bp of 3’UTR. Prior to probe synthesis, the plasmid was linearised with 

Sal I at the 5’ end of the cDNA, which also removed the HMG box sequence. This was 

thought to be necessary to prevent possible cross hybridisation to other HMG box 

containing genes. RNA polymerase T7 was then used to synthesise 1825bp antisense 

mRNA transcripts.



Figure 4.2: soxlO expression in wild-type and els embryos up to the 18 somite stage 

Expression patterns in els mutant embryos were indistinguishable from wild-type 

siblings up to the 18 somite stage. (A) soxlO expression was first observed in emerging 

neural crest cells in the lateral neural plate from the 1-2 somite stage. By the 5 somite 

stage, cranial crest cells had formed two broad stripes of cells (B). In the example of a 

transverse (C) and longitudinal (D) section shown (plane of section indicated in (B), all 

neural crest cells seemed to express soxlO. However, very occasionally, a single soxlO 

negative cell amongst labelled cells was observed (black arrow, E). Premigratory trunk 

neural crest cells expressed soxl 0 in 14 somite stage embryos (F) and in 18 somite stage 

embryos (black arrow, G). Furthermore, strong expression was maintained in cranial 

neural crest cells (black arrow head, G) and migratory trunk neural crest cells (asterisk, 

G). The otic placode (o) was stained strongly from the 11 somite stage (data not shown), 

in 14 and 18 somite embryos (F, G). In transverse sections (A, C, E) dorsal is up and in 

the longitudinal section (D) dorsal is up and anterior to the left. Wholemount (B) is 

shown in a dorsal view with anterior to the left, whereas wholemounts (F, G) are lateral 

views with anterior to the left (F) and anterior up (G). e, eye; nc, neural crest; o, otic 

placode. Scale bar: 145pm in A-B, D; 60pm in C; 50pm in E; 95pm in F; 75pm in G.
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and neural crest cells appeared to have started to converge dorsally (Figure 4.2B, C).

We asked whether all neural crest cells were sox/0-positive and thus prepared sections 

of 2 somite and 5 somite embryos. Transverse and longitudinal sections through the 

neural keel showed that most, if not all, neural crest cells were labelled with soxlO 

(Figure 4.2C, D).

The strong expression o f soxl 0 in premigratory neural crest cells was maintained and 

extended caudally during later stages of somitogenesis. At approximately 12-14 somite 

stage (15-16hpf), cranial neural crest cells just caudal to the eye start to migrate away 

from their premigratory positions (Schilling and Kimmel, 1994). Trunk neural crest 

cells start to enter the medial pathway at approximately the 14-16 somite stage (16- 

17hpf) and the lateral pathway approximately 4 hours after the first cells started to 

migrate medially at this axial level (Raible et al., 1992). Consistent with the literature, 

trunk neural crest cells remained in the migration staging area above the somites until at 

least the 14 somite stage (16hpf, Figure 4.2F). By the 18 somite stage (18hpf) more 

caudally located neural crest cells still remained premigratory, but at least some soxlO- 

positive neural crest cells were seen to migrate on the medial pathway in the anterior 

trunk region (Figure 4.2G). At 24hpf, anterior trunk neural crest cells labelled with 

sox 10 were seen on the medial and lateral pathway (Figure 4.30).

Melanophores were the first neural crest derivatives of the pigment cell lineage 

to differentiate. We asked whether soxlO expression was maintained in differentiated 

melanophores. By 30hpf, migrating melanophores were visible on the medial and lateral 

pathway, but sox 10 expression in these cells was not readily detectable. Occasionally, a 

melanophore dorsal to the neural tube was seen to weakly express sox 10 (Figure 4.3G). 

Since only pigment cell precursors are known to migrate on the lateral pathway (Raible 

and Eisen, 1994), this finding indicated that sox 10 was turned off rapidly in 

differentiating pigment cells. Consistent with this, expression in pigmented 

xanthophores was never observed.

Derivatives of the peripheral nervous system were first seen around 24hpf. Cells 

expressing high levels of soxlO accumulated in the region of forming cranial ganglia 

and extended caudally from the posterior lateral line ganglion by 24hpf (Figure 4.3A). 

By 36hpf, soxl0-positive cells were observed to be clustered around the trigeminal, 

anterior and posterior lateral line ganglia (Figure 4.3 J). We asked whether these soxlO- 

positive cells were glial and/or neuronal derivatives. The expression patterns observed 

were reminiscent of in situ hybridisation labelling studies with fkd6 , a glial marker
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Figure 4.3: soxlO expression in wild-type and els mutant embryos at 24-36hpf stages 

From 24hpf, some differences between the wild-type (WT) and els expression patterns are 

observed.

(A) In 24hpf WT strong sox 10 expression is seen in cranial ganglia (white arrowheads) and 

along the posterior lateral line nerve (PLLn, A, black arrowhead, enlarged in inset; in transverse 

section in O), in premigratory (A, black arrow) and migrating crest cells (A, black asterisk) on 

both medial (O, black arrowhead) and lateral pathways (O, black arrow). Cells marked by an 

asterisk in O might also migrate laterally or be Schwann cells on the PLLn. Strong expression is 

seen in the otic vesicle (o) in the epithelial layer (I). Note the forming acoustic ganglion (black 

arrowhead, I). (B) In contrast, 24hpf els embryos show much reduced labelling in the cranial 

ganglia (white arrowheads) and on the PLLn (black arrowhead, enlarged in inset). Crest cells in 

the head are clustered (white asterisk). The expression in the ear is comparable to WT. soxlO- 
positive cells migrate normally in the rostral trunk (black asterisk), but some cells tend to cluster 

in premigratory positions (black arrows). (C, D) Double labelling with soxlO (purple) and the 

pan-neuronal anti-Hu antibody (orange) shows strong expression associated with cranial ganglia 

(g) in WT, which is reduced in els (D). Sections through the posterior lateral line ganglion 

(approximate position indicated by white line in C, D) in WT (E) and els mutants (F) shows that 
soxlO expression is restricted to satellite glia (purple) surrounding the neuronal (orange) centre 
of the ganglion. (G) soxlO is down regulated rapidly in differentiating melanophores. At 31hpf 

some still show weak expression in the dorsal stripe (black arrowheads). (H) Weak soxl 0 

staining is seen in the ventricular layer of the hindbrain (black arrowhead) at 24hpf. (J, M, N) In 

36hpf (J) and 40hpf (M, N) WT embryos, expression is maintained in satellite glia of all cranial 

ganglia (trigeminal, black arrowhead; anterior lateral line ganglion, black arrow), the otic 

vesicle (o) and in the ventricular layer in the brain (J, asterisk; M and N, black arrowheads). (K, 

L) Double in situ hybridisation with dlx2 (K, purple) and sox 10 (L, green) in 29hpf stage 

embryos shows absence of soxlO expression in developing branchial arches (1-5). (P, Q) In 

35hpf WT and els embryos, segmentally arranged clumps of 3-4 sox 10 positive cells (black 

arrows) are observed along the entire trunk and tail, adjacent to the dorsal notochord, 

presumably glia of dorsal root ganglia or Schwann cells on segmental nerves. The soxlO 

expression pattern in this region of els embryos is very similar to wild-types (Q).

Anterior is to the left in all lateral views (A-D, K, L, P, Q) and in dorsal views (G, J). In the 

dorsal view (M), anterior is up and in all transverse sections (E, F, H, I, N, O), dorsal is up. e, 

eye; g, posterior lateral line ganglion; no, notochord; o, otic vesicle. Scale bar: 165pm in A-B, 

P-Q; 50pm in C-D; 80pm in E-F, M-N; 90pm in G; 60pm in H-I, O; 110pm in J; 70pm in K-L.
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(Kelsh et al., 2000a). Thus, soxl0 expressing cells were thought to be developing 

satellite glial cells surrounding all cranial ganglia and Schwann cells associated with the 

posterior lateral line nerve. In accordance with this, soxl 0-positive cells in ganglia were 

not double-labelled with the pan-neuronal marker anti-Hu antibody, thus confirming 

their glial, not neuronal, identity (Figure 4.3C, E, H, J). However, without further tests 

we cannot exclude the possibility that some of these soxl 0-positive cells might also 

represent undifferentiated neural crest cells as suggested in mouse (Britsch et al., 2001). 

Furthermore, we could show in a double in situ hybridisation that soxl 0-positive cells 

on the lateral line nerve also expressed Jkd6 at 24hpf confirming their glial nature (data 

not shown). The expression in Schwann cells was maintained up to 60hpf (Figure 

4.4G).

At 35hpf soxlO expression was seen in segmentally arranged cells adjacent to the 

notochord (Figure 4.3P). These could represent undifferentiated neural crest cells 

migrating on the medial pathway or differentiated neurons or glia associated with DRG 

and segmental nerves. Since they were all found at the exact same dorsal ventral 

position, unusual for migrating cells, and appeared as cell clumps of usually 3-4 

individuals, the latter was considered more likely. Double labelling with anti-Hu 

antibody or a glia marker such as fkd6  will be required to investigate the specification 

status of these cells. soxlO expression was absent from cells at this location shortly 

thereafter (approximately 36-40hpf; data not shown).

Enteric nervous system precursors expressed soxlO as early as 24hpf (R. Kelsh, unpubl. 

observation). By 60hpf, they were strongly labelled and surrounded the gut epithelium 

(Figure 4.4J).

We asked whether any ectomesenchymal neural crest derivatives (medial fin 

mesenchyme and craniofacial cartilage) expressed soxlO, even though els embryos do 

not show any overt defects in these structures. We failed to detect any soxlO expression 

in fin mesenchyme and craniofacial cartilage precursors. We used double in situ 

hybridisation to label craniofacial cartilage precursors with dlx2, but the regions of 

soxlO expression did not overlap with dlx2 at 29hpf (Figure 4.3K). However, at 48hpf 

and 60hpf, strong sox 10 staining was observed in the differentiating jaw cartilage 

(Figure 4.4A, D, G).
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Figure 4.4: soxlO expression in 48-60hpf wild-type and els embryos

soxlO expression in els embryos in differentiating craniofacial cartilage, pectoral fins

and CNS is indistinguishable from wild-types (WT).

(A-C) At 48hpf, els embryos show expression in the forming jaw cartilage (A, black 

arrowheads), the otic epithelium (A, o) and in the ventricular layer (A,B, black arrow). 

(C) Strong expression is also seen in oligodendrocytes in a transverse section of the 

spinal cord of a els embryo (black arrowheads). Staining persists until 60hpf in els 

embryos in the jaw cartilage (D, E, black arrowheads), in oligodendrocytes (F, black 

arrowheads) and in cartilage precursors in the pectoral fins (pf, D, E, H). (I) A 

transverse section through a 60hpf els pectoral fin demonstrates the typical “stack of 

coins” structure of cartilage precursor cells (black arrow). (F, G) Expression in the otic 

vesicle (o) at 60hpf is strong in wild-types (G). In contrast, soxlO expression in the otic 

vesicle (o) in els mutants is reduced by 60hpf (F). (G) Schwann cells on the posterior 

lateral line nerve (PLLn, black arrow) extending from the posterior lateral line ganglion 

(g) have maintained sox 10 in 60hpf WT embryos and expression is seen in branchial 

arches (1-5). (J-L) Melanophores (brown) have formed the dorsal (ds), ventral (vs) 

stripe and Schwann cells are located along the PLLn in WT (J), whereas both crest 

derivatives are absent in els siblings (K, L). Likewise, numerous enteric precursors 

surrounding the wild-type gut lumen (J, black arrowheads) are usually completely 

absent in els (K), but occasionally a single soxlO positive cells is observed in this region 

(L, black arrowhead). (K, M) In contrast, oligodendrocytes (black arrows) in 60hpf WT 

(M) is unaffected in els (K).

In longitudinal sections (A-B, D-F) and lateral views (G-H) anterior is to the left. In 

transverse sections (C, I-M) dorsal is up. ds, dorsal stripe; e, eye; g, posterior lateral line 

ganglion; Is, lateral stripe; m, muscle; no, notochord; o, otic vesicle; pf, pectoral fin; vs, 

ventral stripe. Scale bar: 165pm in A-B, D-F; 80pm in C; 95pm in G; 60pm in H-I;

65 pm in J-M.

146



147



soxlO expression outside the neural crest

Aside from the neural crest, strong expression was observed in the otic placode and 

developing otic vesicle from the 11 somite stage onwards (Figure 4.2F,G, Figure 4.3A, 

C, I-K, Figure 4.4A, G). The cells of the otic epithelium were strongly labelled at all 

stages investigated (Figure 4.31, J, Figure 4.4A).

Faint staining could be detected in the ventricular layer in the hindbrain from 

24hpf (Figure 4.3H) and was seen additionally in the fore-and midbrain and the spinal 

cord at 36hpf (Figure 4.3J, M, N, Figure 4.4C). At 48hpf, soxl0-positive cells were 

found in what appeared to be the subventricular layer in the forebrain (Figure 4.4B) and 

also started to disperse throughout the brain (Figure 4.4F). Consistent with SoxlO 

expression in rodents (Kuhlbrodt et al., 1998a), this is likely to correspond to expression 

in developing oligodendrocytes. The staining in the floorplate was maintained at least 

up to 60hpf (Figure 4.4C, K, M).

At 24hpf weak soxlO expression was observed in the developing pineal organ in 

a double in situ hybridisation with fkd6  (Figure 4.6J, K). Interestingly, some cells 

appeared to express only Jkd6, but their identity is unknown.

Finally, sox 10 expression was detected in the pectoral fins at 48hpf and 60hpf 

(Figure 4.4D, H, I). The staining was restricted to cells in the central part of the fin in a 

“stack of coins” arrangement (Figure 4.41) typical for cartilage cells.

Does soxlO label all neural crest cells?

Analysis of the colourless phenotype showed that in contrast to non-ectomesenchymal 

derivatives, ectomesenchymal neural crest fates such as craniofacial cartilage and fin 

mesenchyme were unaffected (Kelsh and Eisen, 2000b; Dutton et al., 2001b). This 

prompted us to ask whether soxlO was expressed in all premigratory neural crest cells 

or just in a subset, which might be specified to give rise to non-ectomesenchymal fates.

In an attempt to answer this question, we compared the expression pattern of 

soxl 0 with crestin in a double RNA in situ hybridisation, crestin has been published as 

a pan-neural crest marker that labels all premigratory neural crest from approximately 

the 3 somite stage. It is then maintained in migrating neural crest cells until overt 

differentiation (Luo et al., 2001).

For this experiment, 6 and 12 somite stage embryos were chosen. By the 6 somite stage, 

premigratory cranial neural crest cells are known to be arranged in 6 tiers. The medial-
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lateral position predicts the type of derivative which a neural crest cell will likely form 

(Schilling and Kimmel, 1994). In addition, it was demonstrated that 88% of all labelled 

neural crest cells were fate-restricted and gave rise to only a single cell-type (Schilling 

and Kimmel, 1994). We predicted differential gene expression depending on the fate- 

restriction of each crest precursor. Two research groups have investigated fate maps of 

cranial neural crest cell precursors, with slightly differing results. Schilling and 

colleagues found that ectomesenchymal derivatives arose from more medial tiers (3-6) 

together with some non-ectomesenchymal derivatives, but cells from tier (6) were of an 

exclusively cartilage and connective tissue nature (Schilling and Kimmel, 1994). In 

contrast, Dorsky and colleagues reported to have observed cartilage precursors from all 

tiers, even in the most lateral tier (1), which never gave rise to this cell-type according 

to Schilling (Dorsky et al., 1998). Thus, if sox 10 was not expressed in cartilage 

precursors, such sox 10-negative cells are predicted to be seen mostly medially, but 

perhaps scattered across the entire neural crest region.

Embryos from a heterozygous clsm618 cross were used in these double in situ 

hybridisations. The rationale behind this decision was to test whether the transcription 

of crestin was dependent on Sox 10. If this was the case, one would expect to see 

differences in crestin expression in some embryos, presumably els mutants. 

Unfortunately, we were unable to reproduce the published expression pattern of crestin. 

In our hands, crestin appeared to label all trunk neural crest cells in 6 and 12 somite 

stage embryos as published. However, expression of crestin in cranial crest cells 

appeared to be absent. Only by the 16 somite stage were a few scattered cres/m-positive 

cells observed anterior to the otic vesicle and around the eye (Figure 4.5F, G). In 

comparison, a much greater number of sox/0-positive cells were observed in the cranial 

region at this stage (data not shown). Intriguingly, a small cluster of cells in the centre 

of the otic vesicle was labelled with crestin (Figure 4.5G).

Thus, in 12 somite stage embryos, sox 10 and crestin staining broadly overlapped in the 

trunk posterior to the otic vesicle, but premigratory and migratory cranial neural crest 

cells almost exclusively expressed soxlO (Figure 4.5A, B, E). We asked whether all 

neural crest cells in the trunk were labelled with both markers. We could not readily 

detect any crestin I soxlO' cells in the premigratory position of the anterior trunk. This 

assessment was more difficult caudally, since premigratory cells in this region only 

weakly expressed either marker. Embryos were sectioned to try to confirm this result. 

Unfortunately, these sections were uninformative due to persistent technical problems in
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Figure 4.5: Does sox 10 label all crest cells?

(A-E) Double RNA in situ hybridisation with sox 10 (brightfield, red, A, C, E; 

fluorescence, green, B, D, G) and crestin (purple) reveals incomplete overlap of 

expression patterns.

(A, B, E) In a 12 somite stage embryo the two markers show complete overlap in trunk 

neural crest cells (arrowhead) posterior to the otic placode (o), whereas anteriorly, 

cranial crest cells and the otic placode only express soxlO (A, B, E, red). (C, D) Crestin 

and soxlO transcription is initiated at approximately the same time. Even cells in further 

caudal regions (black arrowheads) in the enlarged region indicated by a black box in (A) 

express both genes. (F, G) crestin in situ hybridisation on 16 somite stage embryos 

shows some scattered crestin positive cells (black arrowheads in F and region enlarged 

in G) anterior to the otic placode (o) and around the eye (e), presumably cranial crest 

cells. A distinct patch of cells in the centre of the otic placode is labelled (G, black 

arrow).

In dorsal (A-D) and lateral views (F-G) anterior is to the left. In the lateral view (E) 

anterior is up. Scale bar: 260pm in A-B, E; 100pm in C-D; 75pm in F; 50pm in G.
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the sectioning process. Using the standard sectioning method, the fluorescent soxlO 

signal was lost.

Crestin and sox 10 expression in the neural crest is switched on at approximately the 

same time, at the 3 somite and 2 somite stage respectively (Dutton et al., 2001b; Luo et 

al., 2001). Consistent with the published data, even the developmentally youngest 

neural crest cells in the caudal-most region were labelled with both markers (Figure 

4.5C, D). No obvious difference in crestin expression could be detected in any embryos. 

Thus, transcription of crestin did not seem to require regulation by SoxlO.

The question whether sox 10 labelled all neural crest cells could not be answered 

with crestin for the reasons described above. Hence, we decided to compare the sox 10 

expression pattern with that offorkhead 6 (fkd6), which is widely expressed in 

premigratory neural crest from about 90% epiboly (Odenthal and Nuesslein-Volhard, 

1998). Double in situ hybridisation was carried out on 6 and 14 somite stage embryos 

from a heterozygous clsm618 cross. The 6 somite stage and use of els mutant embryos 

was chosen for the same reasons outlined above. 14 somite stage embryos were 

available and thus used instead of the 12 somite stage for trivial reasons.

Labelling with soxlO and fkd6  revealed an extensive, but incomplete overlap of signals. 

Occasionally, a few fkd6fI sox 10' cells at the anteriormost edge of neural crest 

expression were observed (Figure 4.6A, B). Whether such cells were found elsewhere 

was impossible to assess in our in situ hybridisation studies. When several layers of 

neural crest cells were present, the coloured NBT precipitate (fkd6 label) quenched the 

fluorescent signal (soxlO label). Thus, the staining of each individual cell could not be 

determined. Sections of these embryos were also uninformative since the fluorescent 

signal was lost during the sectioning process.

At the 14 somite stage, a larger number of neural crest cells were observed that either 

expressed sox 10 or jkd6. The majority of these cells were found within the cranial 

neural crest cells (Figure 4.6D-G).fkd6 expression is extinguished in migratory neural 

crest cells and by the 14 somite stage staining is also observed in somites and the 

tailbud (Figure 4.6C-D; Odenthal and Nuesslein-Volhard, 1998; Kelsh et al., 2000a). At 

this stage, most cranial neural crest cells have started their migration and thus it could 

be argued that soxl0+/fkd6’ cells were migratory and had switched offfkd6. However, 

there was also a number offkd6fIsoxlO' neural crest cells arranged in rows above the 

brain especially posterior to the developing eye (Figure 4.6F, G). The degree of fate 

restriction of these sox 10-negative cells is unknown, but they could represent
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Figure 4.6: Does fkd6  and sox 10 expression overlap completely in premigratory neural 

crest?

(A, B) Double in situ labelling of 6 somite stage embryos with fkd6  (brightfield, purple, 

A) and soxlO (fluorescent, green, B) shows incomplete overlap. A few cells (black 

arrows) on the anterior edge are exclusively labelled with fkd6. (C-I) 14 somite stage 

embryos double in situ labelled with jkd6  (brightfield, purple, C-D, F, H) and sox 10 

(fluorescent, green, E, G, I) are shown. (C) fkd6  is never expressed in the otic placode 

(o) and is switched off in most cranial crest cells (red) as they start migration, whereas 

premigratory trunk crest cells posterior to the otic placode still express both markers. 

(C-E) jkd6  also labels somites (s) and the tailbud (black arrowhead). The caudalmost 

neural crest cells (arrows) are soxlQfljkd6+ due to earlier onset offkd6 compared to 

soxlO. (D, E) Scattered cells in the head, mostly posterior to the eyes (e), show 

differential expression offkd6 and soxlO. The cranial region outlined (D, black box; 

enlarged in F, G) shows jkdfrlsoxlOf cells (arrowheads) and soxl0+ljkd6' cells (arrows). 

Similarly, soxlOfljkdff cells (arrowheads) are seen in the posterior trunk region (D, 

black box above somites; enlarged in H, I). (J, K) Incomplete overlap between soxlO 

and Jkd6 is also seen in the developing pineal organ (arrowhead) at 24hpf.

In dorsal views anterior is to the left (A-B, D-I) or anterior is up (J-K). In the lateral 

view (C) anterior is up. e, eye; nc, neural crest; o, otic placode; s, somite. Scale bar: 

50pm in A-B, F-G; 135pm in C-E; 55pm in H-I; 30pm in J-K.
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premigratory cartilage precursors that will contribute to craniofacial structures not 

affected in els mutants. The most newly formed neural crest cells were only labelled 

with fkd6  as shown by the caudalmost regions of these embryos. This was consistent 

with the onset offkd6  transcription at 90% epiboly preceeding sox 10 at the 2 somite 

stage in the neural crest (Odenthal and Nuesslein-Volhard, 1998; Dutton et al., 2001b; 

Figure 4.6D, E). Occasionally, a fk d t f  /soxlO' neural crest cell was observed in the trunk 

(Figure 4.6H, I). As in the head, it was difficult to distinguish between a true soxlO' cell 

and such cells that had not yet turned on soxlO. The majority of neural crest cells 

however appeared to be double-labelled.

Finally, fkd6  expression in premigratory crest cells was not disrupted in els mutants and 

thus fkd6  did not appear to be regulated by els. In els mutants, fewer fkd6  labelled 

Schwann cells were observed. However, this is likely to be due to a reduction in number 

of Schwann cells, rather than a reduction in fkd6  expression levels.

soxlO expression is disrupted in c/s mutant embryos

Pigment cells and enteric neurons and glia are almost absent in els mutant embryos.

Less severe defects are noted in other peripheral nervous system derivatives and the ear 

(Kelsh and Eisen, 2000b). Furthermore, els was shown to act cell-autonomously at least 

in the pigment cell lineage (Kelsh and Eisen, 2000b). Thus, if els encoded a soxlO 

homologue, we expected to see a disrupted sox 10 expression pattern in tissues of els 

mutants consistent with the els mutant phenotype.
m /i 1We performed RNA in situ hybridisation on embryos of a heterozygous els cross on 

stages suitable for a timecourse. Siblings were carefully examined for consistent 

differences in expression patterns in a quarter of embryos corresponding to homozygous 

els mutants.

soxlO expression patterns in els mutants in the neural crest

The pattern of sox 10 expressing premigratory neural crest cells in mutant embryos was 

indistinguishable from wild-type siblings up to approximately 18hpf (Figure 4.2G). In 

contrast to wild-types, 24hpf els mutants exhibited a distinctly clustered pattern of 

neural crest cells in the head (Figure 4.3B). The number of soxl0-positive cells around 

cranial ganglia and along cranial nerves was reduced (Figure 4.3B, D, F).
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Furthermore, in els mutants, neural crest cells appeared to accumulate in the 

premigratory area. We asked whether there were any differences in numbers of 

premigratory and migratory neural crest cells between els mutants and wild-types. Thus, 

sox/0-positive cells in the premigratory area, on the lateral and medial pathway were 

counted in the region of somites 1-5, 6-10,11-15 and 16-20 of wild-type and clsm618 

mutant embryos at the 24, 30 and 35hpf stages (Figure 4.7). Generally, the number of 

soxl 0-positive cells on the medial and lateral pathway was reduced in more posterior 

regions at all stages, whereas numbers of premigratory neural crest cells increased. This 

is readily explained by caudal neural crest cells being a developmentally younger cell 

population and thus entering the migration pathways after more anteriorly located 

neural crest cells.

The mean number of soxl 0-positive premigratory neural crest cells per somite segment 

at 24hpf (9.4 ±3.13) was broadly comparable to previous neural crest cell counts (11.3 

±3.5; Raible, Wood et al. 1992). Thus, soxlO might label all neural crest cells in the 

trunk at this stage.

As anticipated, the number of premigratory neural crest cells in wild-types decreased 

rapidly between the 24hpf and 30hpf stage as cells started migration and then remained 

fairly constant between the 30hpf and 35hpf stage (Figure 4.7). In contrast, the decrease 

in number of premigratory neural crest cells in mutant siblings was not as dramatic as in 

wild-types. This was observed as an accumulation of neural crest dorsal to the neural 

tube as a result of inhibited migration (Figure 4.3B, Q).

The number of soxl 0-positive cells on the medial pathway remained fairly constant at 

all stages investigated and no significant difference was observed between wild-type 

and els mutants at any stage and in all regions (Figure 4.7).

As described in section 4.1, pigment precursors rapidly down-regulated soxlO and thus 

did not appear in counts of the 30 and 35hpf stage. Occasional soxl 0-positive cells were 

seen in migration on the lateral pathway, but this was only true in els mutants and 

within somites 1-15 even in late stages (Appendix 4.1). Presumably, these represented 

neural crest precursors delayed in their differentiation, since equivalent pigment 

precursors in wild-types were differentiating by 30hpf and no longer expressed soxlO 

(Figure 4.7).

In summary, in els mutants neural crest cells appeared to be inhibited in their migration 

on the lateral pathway. In contrast, soxl 0-positive cells on the medial pathway did not 

seem to be significantly affected (Figure 4.3B). By 36-40hpf, labelled cells were absent
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Figure 4.7: Location of soxlO positive cells in wild-type and homozygous clsm618 mutants

Cells expressing soxlO were counted in 24hpf, 30hpf and 35hpf stage embryos from a heterozygous clsm618 cross, with cells counted 

independently in the premigratory area (pre), on the medial (MP) and on the lateral migration pathways (LP) in each of regions corresponding to 

crest adjacent to somites 1-5, 6-10, 11-15 and 16-20 in wild-type (WT; blue speckled) and els mutant (els; yellow) embryos. Graphs present the 

mean number (error bars indicate standard deviation) of soxl 0-positive cells for each region and stage (n=5 for each genotype; A-C) or the mean 

total number of soxl 0-positive cells within somites 1-20 (D-F). In els mutant embryos, soxl 0-positive neural crest cells tended to remain in the 

premigratory area at later stages, whereas they decreased rapidly in wild-types. Counts of cells on the medial pathway were broadly comparable 

between mutants and wild-type. Pigment cell precursors on the lateral pathway in wild-types rapidly turned off soxlO expression as they started to 

differentiate and thus these cells no longer appear in counts of the 30hpf and 35hpf stages. By contrast, in els mutants up to two soxl 0-positive 

cells were occasionally observed on the lateral pathway in more rostral somite segments at later stages.
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from this latter location and only detectable on the dorsal neural tube and weakly around 

cranial ganglia in els mutants (data not shown). By 60hpf, scattered cells, presumably 

satellite glia or undifferentiated neural crest cells (Britsch et al., 2001) associated with 

the posterior lateral line ganglion, showed weak expression (data not shown).

Enteric nervous system precursors expressing soxlO were essentially absent in mutants 

by 60hpf (Figure 4.4K). Very rarely, one or two soxl 0-positive cells were observed in 

more proximal parts of the intestine (Figure 4.4L).

soxlO expression patterns in els mutants outside the neural crest

Outside the neural crest, the developing otic placode and vesicle in els embryos strongly 

expressed soxlO as described for wild-type siblings (Figure 4.2F, G, Figure 4.3B, D), 

although from approximately 40hpf onwards, the staining in mutant embryos decreased 

(data not shown).

No differences from wild-type siblings could be detected in the level, location and 

timing of expression in hindbrain (Figure 4.4K), spinal cord, jaw cartilage (Figure 4.4A, 

E) and pectoral fins (Figure 4.4E, I).

Could Sox9a or Sox9b function redundantly with SoxlO in the neural 

crest?

Sox9 homologues are the most closely related members of the Sox gene family to SoxlO. 

Furthermore, just like mouse Sox9 at E8.5, the zebrafish sox9b paralogue is expressed in 

the neural crest (Ng et al., 1997), whereas sox9a is only found in the lateral neural plate 

during early somitogenesis stages (E. Cheng, pers. commun.). Both paralogues were 

seen to be expressed in forming cartilage during later development (Cheng et al., 2000). 

Since ectomesenchymal derivatives such as craniofacial cartilage are unaffected in els 

mutants, this could indicate some functional redundancy between Sox9 and SoxlO in 

the neural crest. We therefore asked, whether sox9a or sox9b expression co-localised 

with soxl 0-positive cells in the neural crest. To address this question, we performed 

double RNA in situ labelling with antisense probes against sox 10 and sox9a or sox9b on 

5 somite and 14 somite stage embryos derived from a heterozygous clsm618 cross. The 5 

somite stage was chosen because a high percentage of cranial neural crest cells are fate- 

restricted and give rise to single cell-types (Schilling and Kimmel, 1994; Dorsky et al.,
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1998). 14 somite stage embryos on the other hand are suitable since they allow 

comparisons between premigratory and migratory neural crest cell populations.

Double in situ hybridisation with sox9a and sox 10 revealed largely non­

overlapping expression patterns at the 5 somite stage (Figure 4.8A-F). Although sox9a 

also labelled cells bordering the neural plate, they were found laterally to and at the 

posterior end of soxlO expressing cells, possibly the region from which the otic placode 

arises. In fact, expressing regions appeared complementary. By 14 somites, both genes 

were expressed in the otic placode, but in only partially overlapping regions. Sox9a 

strongly labelled the centre of the placode (Figure 4.8 G, H) and in distinct patches on 

the dorsal rim (Figure 4.81, J), whereas soxl0 was uniformly expressed in the entire otic 

epithelium. In contrast to soxlO, sox9a was also seen in somitic mesoderm. Both genes 

were expressed in a patch just anterior to the otic placode, but the nature of these cells is 

unknown. They might be precursors contributing to the pharyngeal arches later during 

development. It was hard to eliminate the possibility that cranial neural crest cells 

expressed both markers. If sox9a transcripts were present, the signal was obscured by 

very strong sox 10 labelling. To investigate any possible crest expression of sox9a, this 

experiment has to be repeated with the blue sox9a signal developed more strongly than 

the red soxlO. Alternatively, sox9a could be detected with the more sensitive fluorescent 

signal in a double or with the blue colour precipitate in a single in situ hybridisation on 

its own.

In contrast to sox9a, sox9b expression largely overlapped with sox 10 in the 

neural crest at all stages tested (Figure 4.9). However, in 5 somite stage embryos we 

observed neural crest regions that appeared to express predominantly either sox9b or 

soxlO. Most sox9b+/sox 10' cells were found laterally at the rostralmost and caudalmost 

end of the neural crest region, whereas sox9b'/soxl0+ cells seemed concentrated 

medially between areas of sox9b+/sox 10' expression (Figure 4.9B, D, F). Like soxlO, 

sox9b expression was maintained in premigratory crest until the 14 somite stage and 

was also noted in the otic vesicle (Figure 4.9G, H, I). Caudalmost neural crest cells 

stained with sox9b alone (Figure 4.9A, B, H, I). This expression pattern could easily be 

explained by the earlier onset of sox9b transcription and thus sox9b expression reached 

more posteriorly than soxlO. Differentially labelled cells were observed in the head 

reminiscent of sox 10 and fkd6  double in situ hybridisations (Figure 4.9J, K, 4.7F). Like 

fkd6 f/soxl O' cells, single sox9b+/soxl0~ cells accumulated on the dorsal head just above 

the brain, posterior to the eyes, and few were seen dorsally between the otic placodes
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Figure 4.8: Do sox9a and soxlO expression domains overlap?

Double RNA in situ hybridisation with sox9a (brightfield, purple) and soxl 0 

(fluorescent, green) on 5 somite stage embryos indicates complementary expression 

domains.

(A-D) soxlO (brightfield, red, A, C; fluorescent, green, B, D) is expressed in most neural 

crest cells (ncc), whereas sox9a (purple, A-D) appears to label a more lateral region 

from which the otic placode will arise. The region indicated by a black box in (C) 

enlarged in (E, F) again strongly indicates that patterns are largely complementary, 

although a possible overlap is seen in a narrow region (arrowhead). (G, H) In 14 somite 

stage embryos, sox9a (purple) is expressed in somites (s), in a patch in the centre of the 

otic placode (o, G, H and in dorsal view I, J) and a double labelled region just anterior to 

the otic placode (arrowhead in G-J). Any possible faint expression of sox9a in the neural 

crest was obscured by the strong soxlO signal.

In lateral (A-B, E-H) and dorsal (C-D, I-J) views anterior is to the left, e, eye; ncc, 

neural crest cells; o, otic placode; s, somite. Scale bar: 155pm in A-D; 80pm in E-F;

115pm in G-H; 55pm in I-J.
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Figure 4.9: Do sox9b and soxl0 expression domains overlap?

Double RNA in situ hybridisation with sox9b (brightfield, purple) and soxlO 

(brightfield, red; fluorescent, green) on 5 somite stage embryos shows a large overlap of 

expression in the neural crest. Areas of incomplete overlap are seen at the anterior 

border and lateral edges of the neural crest (white arrowheads, B, D, F) and in the 

posterior lateral neural plate (black arrow, A, B). The latter region is due to earlier onset 

of sox9b expression compared to soxlO. (C, D) The largely double labelled neural crest 

region is shown in an enlarged lateral view (white arrowheads). The region in between 

appears to contain crest cells with strong soxlO, but fairly weak sox9b expression (white 

arrow). The region outlined by a black box in (C) is shown in more detail in (E, F) to 

demonstrate clearly single sox9b+/soxlO' cells (white arrowheads). (G-I) A broad 

overlap of both markers in the neural crest and in the otic placode (o) is seen in 14 

somite stage embryos. Again, the caudalmost neural crest only expresses sox9b (black 

arrowhead in G and white arrow in I). Particularly strong sox9b expression is seen 

around the eye (e). The region outlined by a black box (H, enlarged in J, K) shows 

single crest cells which express either sox9b (arrows) or sox 10 (arrowheads), located 

mostly above the brain, just posterior to the eye (e).

In dorsal (A-B, H-K) and lateral (C-F) views anterior is to the left, in the lateral view 

(G) anterior is up. e, eye; o, otic placode. Scale bar: 155pm in A-B; 85pm in C-D;

55pm in E-F, J-K; 130pm in G-I.
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(Figure 4.9J, K). The staining of cells around the eye had a distinct dark purple hue, 

which suggests that both sox9b and sox 10 transcripts were present (Figure 4.9J, K). 

Whether each of these cells expressed one or the other or both markers could not be 

determined without sections. In contrast, areas of particularly strong soxl 0 staining 

were seen laterally, between the eyes and the otic placode (Figure 4.9H, I). Scattered 

sox9b'/soxl0+ cells were located in the same region on top of the neural tube (Figure 

4.9J, K).

The expression of neither sox9 paralogue showed any overt difference between els and 

wild-type embryos at the 14 somite stage.

Discussion

We have demonstrated that the expression pattern for the isolated zebrafish sox 10 was 

reminiscent of mammalian SoxlO and is thus consistent with conservation of SoxlO 

gene function. In wild-types, sox 10 expression was observed in premigratory and in 

some migratory neural crest cells. Once differentiated, soxlO was only maintained in the 

enteric nervous system and glial cells of the peripheral nervous system (PNS) and in 

addition, it was expressed later in jaw cartilage. Furthermore, presumed 

oligodendrocytes in the central nervous system (CNS), the otic vesicle and cartilage 

cells in the pectoral fins expressed soxlO.

soxlO in the premigratory neural crest

Premigratory neural crest cells expressed soxlO from approximately the 1-2 somite 

stage, soon after transcriptional initiation offkd6 , a neural crest marker (Odenthal and 

Nuesslein-Volhard, 1998). The neural crest appeared to form normally in soxKT618 

(clsm618) mutants and the soxl 0 expression pattern was indistinguishable from wild- 

types until approximately 24hpf.

Very similar observations have been made in mouse, where SoxlO is expressed in the 

premigratory crest of wild-types and homozygous Soxl(f>ornlDom mouse mutants from 

E8.5. Only from El 0.5, mutant expression patterns start to differ from wild-type 

siblings (Southard-Smith et al., 1998).

In addition, we were able to resolve the soxlO expression pattern in premigratory crest 

in more detail than has previously been reported from studies in mouse. We asked
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whether soxlO was expressed in all neural crest cells and found that occasionally, single 

cranial neural crest cells appeared to lack soxlO expression; this was confirmed by 

double in situ hybridisations with soxl 0 and fkd6  in 6 somite stage embryos. This result 

was intriguing, since premigratory cranial neural crest cells in zebrafish at this stage 

were shown to give rise to single cell fates only (Schilling and Kimmel, 1994). els 

mutants lack overt defects in ectomesenchymal crest derivatives, and thus, these 

derivatives might not require SoxlO function. Unfortunately, there is no early marker 

for those derivatives available to determine the specification status of these soxlO- 

negative cells.

Furthermore, we also demonstrated incomplete overlap of expression of soxlO and 

sox9b in double in situ hybridisations. Since Sox9 genes in mammals have roles in 

chondrogenesis, it would be interesting to perform a triple in situ hybridisation to 

determine whether these soxlO'tfkcK? were also sox9b+.

However, it appeared that sox 10 labelled all premigratory trunk neural crest cells at 

24hpf. Counts of soxl 0-positive cells in this region were comparable, but slightly lower 

than previous counts of premigratory neural crest cells (Raible et al., 1992). One 

explanation why the cell number of previous cell counts was slightly higher may be due 

to different observers and perhaps small differences in the stage at which counts were 

carried out. As demonstrated in counts of premigratory neural crest cells at later stages, 

the number of soxl 0-positive cells in this location decreases over time and thus, the 

stage at which cell counts are carried out is important, especially after 24hpf.

Thus, in agreement with mammalian data, soxlO is expressed and maintained in 

premigratory neural crest. However, soxlO was found to be transcribed in only a large 

subset of precursors of unknown specification, at least in the cranial neural crest. Thus, 

use of SoxlO expression as a marker for multipotent neural crest may be misleading 

(e.g. Pattyn et al., 1999).

soxlO in migratory neural crest cells and differentiating pigment 

cells

Neural crest cells on both migratory pathways in wild-types maintained soxl 0 

expression. Although neural crest cells have entered the lateral pathway by 24hpf 

(Raible et al., 1992), the number of soxl 0-positive cells on this pathway, which 

exclusively gives rise to pigment cell-types (Raible and Eisen, 1994), decreased rapidly
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after 30hpf. This was explained by a downregulation of soxlO as melanoblasts started to 

differentiate. At the same time, melanised cells, most of which appeared to lack soxlO 

expression, were migrating on the medial pathway.

This was in agreement with reports in mouse, in which extensive SoxlO expression was 

noted on the medial pathway and in presumptive melanoblasts in a region consistent 

with the dorsolateral pathway (Southard-Smith et al., 1998). However, it is unclear 

whether SoxlO was also rapidly turned off in differentiated melanocytes.

In els mutants, the initial migration on the medial pathway appeared normal at 

24hpf. Presumably, these cells contributed to DRG neurons, cranial and DRG glial 

cells, which are less affected in els embryos. Anterior DRG in els mutants are of 

approximately normal size, whereas they are missing in far posterior segments (Kelsh 

and Eisen, 2000b). However, from 24hpf, neural crest cells seemed to accumulate in 

their premigratory position. Consistent with these observations, we could demonstrate 

in comparative counts that els mutants had more soxl (9-positive cells in the 

premigratory area than wild-type siblings of the same stage. In wild-types, the number 

of premigratory neural crest cells rapidly decreased in older stages as expected, whereas 

in mutants the decrease was minimal up to 35hpf. In addition, hardly any soxl 0-positive 

cells or differentiated pigment cells were seen on the lateral pathway in mutants. Thus, 

our observations were consistent with previous proposals that the migration of neural 

crest cells in els mutants was inhibited, especially on the lateral pathway (Kelsh et al., 

1996; Kelsh and Eisen, 2000b). The clustering of neural crest cells observed in the head 

of 24hpf els mutant embryos might represent yet another example of this migrational 

defect. These cells are scattered in wild-type heads presumably due to active migration. 

Similar results to our observations were reported in mice. Initial neural crest migration 

also appeared to be normal in mice homozygous for a targeted SoxlO deletion until 

E10.5 (Britsch et al., 2001). However, in homo- and heterozygous Soxl0Pom mutants, 

migrating neural crest cells labelled with Ednrb were developmentally delayed in their 

pathway from E l0.5 and melanoblasts were absent in homozygotes (Southard-Smith et 

al., 1998). Detailed cell counts analysing the number of premigratory and migratory 

soxl 0-positive cells in wild-types and mutants of various stages have not been reported 

in mouse.
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soxlO in peripheral and cranial ganglia neurons

Strong soxlO expression was associated with forming cranial ganglia at 24hpf in wild- 

types. In contrast to cranial ganglia neurons, satellite glial cells surrounding cranial 

ganglia maintained high soxlO expression levels in wild-types.

From 24hpf, els mutants were distinguishable from wild-types by a reduction of soxl 0 

expression in satellite glia and Schwann cells along cranial neurons.

Comparable results were obtained in mouse and chicken. SoxlO staining was associated 

with cranial ganglia, but hybridisation signals for SoxlO and the neuronal marker SorLA 

in mouse were non-overlapping in the developing trigeminal ganglion (Kuhlbrodt et al., 

1998a). This was also demonstrated for neural crest derived ganglia in the head and 

trunk of chicken (Cheng et al., 2000). Although indistinguishable from wild-type up to 

E9.5, by El 0.5 SoxlODom,Dom miCe showed strongly reduced levels of SoxlO expression 

associated with cranial ganglia (Southard-Smith et al., 1998).

Expression of soxlO associated with DRG was difficult to distinguish from other 

soxl 0-positive cells on the medial pathway at the stages examined. Even at later stages, 

double labelling with soxlO and anti-Hu antibody will be necessary to determine 

whether soxlO is expressed in DRG neurons or glia.

In rodents and chicken, SoxlO expression was observed in DRG, but the exact neural 

cell-type was not determined (Kuhlbrodt et al., 1998a; Southard-Smith et al., 1998; 

Cheng et al., 2000).

soxlO in peripheral glial cells

Strong sox 10 expression was maintained in cranial ganglia glia and Schwann cells 

associated with the posterior lateral line nerve and other cranial and sensory nerves at 

least up to 60hpf in wild-types. Thus, the soxl 0 expression pattern in those locations 

was reminiscent of the glial marker jkd6  at the stages examined (Kelsh et al., 2000a) 

and did not overlap with the neuronal marker anti-Hu antibody. In els mutants, soxlO 

expression associated with all peripheral ganglia, presumably glial cells, was reduced 

from 24hpf.

Studies in rodents also reported extensive SoxlO expression in cells associated with 

nerve fibres, consistent with them representing Schwann cells. In particular, the 

trigeminal nerve, the sympathetic trunk and even on motor nerves, which originate from 

the CNS, not ganglia are described (Kuhlbrodt et al., 1998a). In chicken, sections
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through DRG double labelled with SoxlO and anti-Hu antibody also showed a non­

overlap of Soxl 0-positive cells with neuronal derivatives (Cheng et al., 2000). As an 

alternative explanation for these Soxl 0-positive cells, undifferentiated neural crest cells 

have been suggested in mice, since they did not express neuronal or glial markers 

(Britsch et al., 2001). In Soxl(Pom/Dom mutants, expression of SoxlO in cranial ganglia 

was drastically reduced by E l0.5 and absent from El 1.5 (SouthardSmith et al., 1998). 

Thus, soxlO expression in peripheral glial cells seemed to be conserved between 

vertebrates and fish. Since mice lack the posterior lateral line nerve, zebrafish show this 

additional region of sox 10 expression. The suggested presence of undifferentiated 

neural crest cells around cranial ganglia has not been investigated in zebrafish.

However, segmentally arranged soxl 0-positive cells at 35hpf in the trunk were thought 

to be glial cells associated with the DRG or Schwann cells associated with 

motomeurons. Since they only expressed soxlO up to 36-40hpf, in contrast to other glial 

derivatives, they too might be undifferentiated neural crest cells instead.

soxlO in the enteric nervous system

Enteric ganglia precursors were labelled by soxlO from 24hpf (R Kelsh, unpubl. 

observ.). Numerous 50x7 0-positive cells were seen in sections of wild-type guts 

surrounding the intestinal lumen at 60hpf, but these cells were missing in els mutant 

embryos. However occasionally, a few soxl0 labelled enteric precursors were also 

observed in mutants.

The results obtained in zebrafish paralleled those in mouse. SoxlO transcripts detectable 

at E l0.5 in wild-types, were absent in homozygous Soxl0lacZ/Soxl0lacZ knock-in mice 

(Southard-Smith et al., 1998; Britsch et al., 2001). Furthermore, the degree of intestinal 

innervation also showed a range from severe hypoganglionosis to aganglionosis (Puliti 

et al., 1996). These differences were explained by the presence of genetic modifier loci 

(Kapur et al., 1996).

sox10 in skeletal neural crest derivatives

A very interesting result represented the staining seen in the developing jaw cartilage. 

This was the first demonstration of soxl 0 expression in this tissue. Although 

craniofacial cartilage precursors are labelled by dlx2 at 29hpf, they did not express
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soxlO until 48hpf. By this time, soxlO expressing chondrocytes are arranged in a “stack- 

of-coins” structure. Consistent with our observations and onset of soxl 0 expression, 

facial cartilage condenses and starts to differentiate between 2 and 3 days of 

development (Kimmel et al., 1995). This might indicate a role for SoxlO in these 

cartilages. Although els mutants lack overt defects in the craniofacial skeleton, late 

mutants showed a slight retardation of arch development (Kelsh and Eisen, 2000b).

The median fin mesenchyme, another ectomesenchymal neural crest derivative, showed 

no expression of soxlO at any stage tested.

SoxlO in mouse or chicken has never been observed in craniofacial cartilage precursors. 

However, this might be another example of the cell-biological advantages of zebrafish 

due to its transparent embryos allowing higher sensitivity in in situ hybridisations. A 

second example of previously undetected SoxlO expression in mesenchymal 

condensations in mouse will be discussed below. Our result might be comparable to 

staining reported in the cephalic crest, which also gives rise to nasal bones in 6 week old 

human embryos (Bondurand et al., 1998a).

soxlO in the pectoral fin buds and pineal gland

sox 10 expression in the developing pectoral fins seemed to be the first report of soxlO in 

this tissue. No staining was reported in functionally equivalent expression domains in 

chicken (Cheng et al., 2000). Only very recently, weak P-galactosidase staining was 

discovered in mesenchymal condensations of the digits, radius and ulna in Soxl0lacZ 

knock-in mice (Britsch et al., 2001). Presumably, due to low levels of expression, these 

structures had been overlooked in less sensitive in situ hybridisations.

The nature of these soxl 0-positive cells in zebrafish has not been further investigated, 

but consistent with their location and “stack-of coins” arrangement, they too are likely 

to be differentiating non-neural crest derived cartilage. Labelled cells were not observed 

in the apical ectodermal fin folds, similar to a pattern seen in sox9a and sox9b labelled 

pectoral fins at 60hpf (data not shown; Chiang et al., 2001). Furthermore, the pectoral 

fin expression of sox 10 in els mutants was indistinguishable from wild-types, just as no 

overt differences in labelling intensities were noted between homo- and heterozygous 

Soxl0lacZ mice (Britsch et al., 2001).

At 24hpf, the developing pineal organ expressed soxlO. Apart from zebrafish, 

sox 10 expression in this tissue has only previously been observed in chicken (Cheng et
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al., 2000). This gland arises through delamination of cells from the neuroepithelium 

similarly to neural crest cells and thus Cheng and coworkers proposed a role for SoxlO 

in enabling this process by altering the expression of adhesion molecules. This area of 

soxlO expression intriguingly coincides with sox9a, sox9b (Chiang et al., 2001) and 

jkd6  expression. The roles and possible interactions of the above transcriptions factors 

in pineal development are still unknown.

soxlO in the central nervous system (CNS)

In zebrafish, expression in the developing CNS was noted from at least 24hpf up to 

approximately 48hpf in the ventricular zone. In chicken, this region gives rise to 

neuronal and glial precursors (Cheng et al., 2000). Consistent with this, we observed 

soxlO expression in putative oligodendrocytes from approximately 48hpf up to at least 

60hpf.

Thus far, it has not been demonstrated whether SoxlO in mice is maintained 

continuously in glial cells until adulthood, where it is found mostly in oligodendrocytes 

in the adult CNS (Kuhlbrodt et al., 1998a). In the PNS, SoxlO expression associated 

with peripheral ganglia and nerves was maintained up to P21 and along the sciatic nerve 

in adults (Kuhlbrodt et al., 1998a). Alternatively, transcription could be regulated 

independently in embryos and adults. An interesting future line of research to address 

this question would extend these expression studies to later stage zebrafish.

As an example to demonstrate the importance of SOX10 during postnatal human 

development, a SOX10 mutation in an 11 year old patient has been associated with 

deficiencies in myelin, produced by oligodendrocytes and Schwann cells in the CNS 

and PNS, respectively. The patient suffered from seizures, sensory dullness and reduced 

nerve conduction velocities in addition to the classical symptoms of WS4 (Inoue et al.,

1999).

soxlO in the developing ear

The onset of soxlO expression in the lateral head correlated approximately with the first 

appearance of the otic placode at around the 10 somite stage (14hpf; Whitfield et al., 

1996) and strong labelling of the otic epithelium was maintained at all stages examined, 

at least up to 60hpf. This is similar to expression data in chicken, where the first
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expression of SoxlO is seen in the otic placode at HH stage 9 (~6-7 somites; Cheng et 

al., 2000). Expression in the developing ear was maintained at least until HH stage 26 in 

chicken (Cheng et al., 2000) and E l6.5 and adults in mouse (Watanabe et al., 2000). 

els embryos show defects in ear morphology and thus suggest a role for SoxlO in otic 

development. The first visible defect in the otic vesicle of els mutant embryos has been 

noted at approximately 36hpf (Malicki et al., 1996) and by 48hpf, only 2 instead of 3 

cristae, labelled with mshC, were observed (Whitfield et al., 1996). Consistent with 

these observations, the labelling intensity of soxlO in the els otic epithelium started to 

decrease at around the same time, 40hpf. By 5 dpf, els mutant ears tended to be smaller 

than wild-types, with two small otoliths and a single sensory patch (Whitfield et al.,

1996). Thus, these sensory and morphogenetic defects strongly suggest a dysfunctional 

inner ear. This is consistent with human SOX10 mutations, even though the latter is 

usually attributed to a loss of melanocytes in the stria vascularis of the cochlea (Steel, 

1989; Pingault et al., 1998a) not present in fish.

Sox9a and sox9b were also expressed in the otic placode to various extents. It will 

certainly be an interesting line of future research to investigate the roles and possible 

interactions of these 3 transcription factors in this organ.

In summary, we provided evidence that the cloned sox 10 orthologue shows 

conservation of its expression patterns with mammalian Soxl 0s. We showed that soxl 0 

was strongly expressed in neural crest derivatives, consistent with our proposal of soxl 0 

as a candidate gene for the els mutation. Furthermore, we demonstrated that sox 10 

expression was disrupted in els mutant embryos. In the next chapter we will investigate 

whether sox 10 and els are tightly linked, as predicted if els encodes soxlO.
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Chapter 5 -  Mapping of soxlO on the radiation hybrid 
panel LN54

Introduction

In chapters 3 and 4 we have described the isolation and expression pattern of a sox 10- 

like homologue. The results were consistent with this soxlO-like gene being a true 

soxlO homologue and a strong candidate for the gene encoded by the els locus. To 

further test this hypothesis, we asked whether the els mutant locus maps to the same 

region on one of the linkage groups as soxlO.

The 1.7xl09 base pair zebrafish genome, approximately half the size of the mammalian 

genome, is contained within 25 linkage groups (LG) each corresponding to a 

chromosome. Each linkage group has been characterised by polymorphic markers such 

as RAPDs (Random Amplified Polymorphic DNAs), SSLPs (Simple Sequence-Length 

Polymorphisms) and RFLPs (Restriction Fragment Length Polymorphisms) that provide 

a framework into which genes and mutations of interest can be placed.

The els mutation is located on the distal end of LG 3

To test whether els and soxlO map to the same region, the mutation had to be placed on 

the linkage map. During a short collaborational visit to the Max Planck Institute fur 

Entwicklungsbiologie in Tubingen, Germany, Susana Lopes mapped els to the distal 

end of LG 3 (Dutton et al., 2001b).

To do so, Susana generated a mapping cross between clstwl, bred onto a Tuebingen 

wild-type background, and WIK wild-type zebrafish. These two different wild-type 

backgrounds are polymorphic for many microsatellite markers necessary to establish 

linkage of the els locus.

First she asked on which of the 25 linkage groups els was located. To test this, 

microsatellite markers on each linkage group polymorphic in those two backgrounds 

were assessed for linkage to the els mutant locus by PCR. If a marker was located on a 

different linkage group to els, recombination between those loci would be observed very 

frequently. On the other hand, the tighter the linkage and thus the closer marker and 

mutant locus are positioned to each other, the lower the probability of recombination in 

the sequence between them. Hence, the distance between markers is measured in
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centiMorgans (cM), where lcM represents 1% recombinants. Based on the relation of 

the physical (~1.7xl09 bp) and genetic size (~2720cM) of the zebrafish genome, lcM  is 

estimated to be equivalent to approximately 600kb (Postlethwait et al., 1994). 

Recombination between els and markers on LG 3 were less frequent than with markers 

for any other linkage group. Thus, els was tentatively placed on LG 3.

Next, she asked which region of LG 3 contained the els mutant locus. This was 

achieved by testing recombination rates between different markers on LG 3 and els. 

Again, the marker showing the least recombination was expected to be located nearest 

to the mutant locus. Thus, fine mapping of 274 meioses finally positioned els within a 

3.9 cM (2.3Mb) interval between markers z872 and zl3387 on the distal end of LG 3 

(Figure 5.1).

If els encoded sox 10, the gene would be expected to map to the same region on 

LG 3. There are several methods to map a cloned gene. The location of a gene can be 

determined by fluorescent in situ hybridisation (FISH), by linkage mapping or by 

radiation hybrid mapping. Syntenic regions can also provide a putative location, if 

homologues of the cloned gene have been identified and mapped in other species.

The FISH technique has been established in zebrafish, but is technically challenging 

(Amores and Postlethwait, 1999). There are syntenic regions found on the chromosome 

containing SoxlO/SOXl0 between mouse chromosome 15, human chromosome 22q and 

zebrafish LG 3 and LG 12. However, these regions don’t include the locus itself. Thus, 

they only provide an indication that soxlO might be located on the same LG as els. 

Classical linkage mapping requires the identification of a polymorphism in the cloned 

gene between different strains such as a restriction fragment length polymorphism 

(RFLP). However, this is not required for radiation hybrid mapping making it a 

straightforward method to use. Furthermore, there was the LN54 radiation hybrid panel 

(Hukriede et al., 1999) available to our lab, which had been used successfully to map 

genes. Thus, mapping soxlO on this panel appeared to be the most suitable approach.

The radiation hybrid panel LN54

Radiation hybrid panels represent a very convenient method of mapping a gene to a 

chromosomal region, since there is no requirement to identify polymorphisms. The 

radiation hybrid panel LN54 (Loeb, NIH, 5000 rad, 4000rad) was generated by Mark 

Ekker and his colleagues in the Loeb Research Institute, Ottawa, Canada in 1999
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LG 3

__ z8492

Figure 5.1: The els mutation is located on the distal end of Linkage group 3 (LG 3) 

Linkage mapping of 274 meioses (carried out by Susana Lopes) placed els in a 3.9cM 

interval between microsatellite markers zl3387 and z872 (Dutton et al., 2001). lcM 

(centiMorgan) represents 1% recombinants or approximately 600kb. The proximal 

centromeric end is indicated by the Q  .
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(Hukriede et al., 1999).

The panel represents a collection of genomic DNA isolated from 93 mouse cell lines 

each of which have incorporated various amounts of fragmented zebrafish genomic 

DNA. Each of the hybrid cell lines has been frame-work mapped with microsatellite 

markers specific for each zebrafish linkage group. The cell lines which contain the gene 

to be mapped (positive hybrids) are identified by PCR amplification of a gene specific 

product. The chromosomal region(s) common to all positive hybrids contains the gene 

in question with a certain probability (lod score). The lod score is defined as the log 10 

of the ratio of the probability that two markers are linked with a given recombination 

value and the probability that they are not linked. (Hukriede et al., 1999).

To generate the radiation hybrid panel, zebrafish fin AB9 donor cells were 

irradiated to introduce random chromosomal breaks. These irradiated cells were then 

fused to mouse B78 melanoma recipient cells. The resulting radiation hybrid cell lines 

retained various amounts of zebrafish chromosomal fragments. The percentage of the 

zebrafish to mouse chromosomal DNA ratio is called the retention rate. For selection, 

zebrafish chromosomes had been tagged with the aminoglycoside phosphotransferase 

(neo) gene, which rendered successfully fused hybrids resistant to gentamicin (G418). 

Out of several radiation doses tested, 5000rad and 4000rad, hence the name of the 

panel, produced hybrids with suitable retention rates of 18-21%. In total, 93 lines, 81 

from the 5000rad and 12 from the 4000rad irradiation dose, were expanded with an 

overall retention rate of 22%. Thus, a hybrid collection was created, large enough to be 

used for over 75000 assays in duplicate. The panel was analysed for completeness by 

characterising it with a total of 1053 markers, including SSLPs, ESTs, and sequence- 

tagged sites (STS) of cloned genes. The probability of mapping a marker or a gene on 

this panel was found to be 88%, which serves as an estimation for genome coverage. 

The distance between markers is measured in centiRays (cR). lcR represents 1% 

frequency of a breakage occurring between two markers after exposure to a specific 

radiation dose. With the radiation used to generate the LN54 panel, the average 

breakage frequency was estimated to be 148kb per cR. The resolution of the map 

corresponds to the average interval size between markers used to create the framework. 

With lcR=148kb the resolution is estimated to be approximately 500kb. After 

characterisation of the 93 hybrid lines, 4 possible gaps were identified, which might just 

represent regions where the marker density was too low to be mapped adequately.
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However, over time and with the addition of newly isolated genes placed on the panel, 

the coverage is expected to increase.

Results 

Mapping soxlO on the radiation hybrid panel LN54

Mapping of a gene on the radiation hybrid panel involves a PCR based screen. Gene 

specific primers are used to amplify a gene specific fragment from DNA isolated from 

each hybrid cell line. Those that contain the sox 10 genomic region will show 

amplification of this gene specific product. Thus, depending on the combination of 

hybrid cell lines positive in this PCR assay, a likely position of this gene can be 

deduced.

Thus, to map sox 10 on the radiation hybrid panel, two gene specific primers SI 1 

and S13 were designed (Materials and Methods). They are located within the 3'UTR of 

soxlO and amplify a 931bp fragment (Figure 5.2). This fragment is highly specific to 

sox 10 since there is very little sequence conservation outside the coding region.

The PCR conditions for this primer pair were optimised prior to the mapping assay. 

Conditions had to be obtained that reliably amplified a specific product from lOOng 

zebrafish genomic DNA and from a 1:10 mixture prepared from zebrafish and mouse 

genomic DNA, but not from lOOng of mouse genomic DNA alone. This was important 

to ensure no false positives or negatives were scored. The PCR conditions and the PCR 

program are described in Materials and Methods.

PCR reactions were set up with lOOng of genomic DNA from each of the 93 radiation 

hybrid cell lines and with 3 control DNAs; the donor zebrafish cell line AB9, the 

recipient B78 mouse cells and a 1:10 mixture of both (Figure 5.3). After amplification 

the reactions were then scored on a standard 1% agarose gel for specific products. To 

ensure the reliability of the mapping data obtained the PCR assay must be performed at 

least in duplicate, and in triplicate if more than 5% differences between the first two 

assays are experienced.

The first two screens that were undertaken only produced very faint products which 

were difficult to score reliably. This might be explained by differences in the genomic 

DNA samples. The genomic DNA that was used to optimise the PCR conditions had 

been prepared in our laboratory, whereas hybrid DNAs had been kindly provided by
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Location of primers for mapping on the LN54 
radiation hybrid panel

-------------------------------------AAAA 3’

3’UTR A 
S13

H
lOObp

Figure 5.2: The location o f primers SI 1, S12 and S13 within the sox 10 3’ UTR 

The schematic shows the sox 10 cDNA including coding and untranslated regions.

Mapping assays were performed by amplification o f a sox 10 specific 931 bp product between primers SI 1 and S13. Primers were designed to the 

3’ untranslated region (3’UTR) to ensure specificity to sox 10 (non-coding regions show very low sequence conservation). Radiation hybrids 

scoring positive in the screen retained a fragment o f the linkage group containing soxlO. To increase the amount o f specific product, nested PCRs 

were set up with primers S12 and SI 3. The scale bar indicates the length o f a lOObp fragment.

HMG
domain sn 1̂2

5’
5’UTR

coding region
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1 2 4 5 6 8 9 11
13 16 18 19 23 25 27 29
30 33 36 39 40 41 47 48
49 50 52 54 57 59 63 65
66 70 73 74 79 80 83 84
85 86 87 88 89 991 92 96
97 98 101 104 105 106 108 109
114 117 119 121 123 125 132 135
136 137 138 150 151 152 153 167
169 174 175 176 178 182 183 184
190 300 301 302 303 304 305 306
308 309 310 311 312 mix AB9 B78

Figure 5.3: The LN54 radiation hybrid panel

A total of 93 hybrid cell lines labelled 1-312, 81 from the 5000rad and 12 from the 

4000rad irradiation dose, had been chosen and DNA included in the panel (Hukriede et 

al., 1999). The sample labelled “mix” represents 1710th zebrafish and 9/10th mouse 

genomic DNA, whereas “AB9” contains genomic DNA from the zebrafish donor cell 

line and “B78” genomic DNA from the mouse recipient cell line. All three represent 

control DNA pools which are included in each mapping assay.
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Ekker. It was decided to increase the amount of product by either subjecting the PCR 

reactions to more cycles of amplification or by nested PCR. In a pilot study with a 

mixture of 1:10 zebrafish to mouse genomic DNA mix, increasing the number of cycles 

did not improve the screen result, whereas setting up a nested PCR reaction with nested 

primers S12 and S13 (Figure 5.2) proved to be very successful. Thus, after the first 

round of PCR with primers SI 1 and SI 3, the product was diluted 1:10 in milli-Q water 

and subjected to an equivalent reaction setup and PCR program as before, but including 

primers S12 and S13. The entire PCR reaction was loaded onto a standard agarose gel 

and scored for presence or absence of the specific product with the size of 863bp. 

Radiation hybrids 8,49, 59, 70, 73, 74, 80, 84, 87,109,135, 190, 304, 306, 308 and 311 

proved positive. Usually, two bright bands were observed. One of the expected size and 

one approximately 150bp smaller (Figure 5.4). As anticipated, no bands were observed 

in the control reaction containing mouse genomic DNA, but high levels of product were 

derived from zebrafish genomic DNA and also from the 1:10 mix of zebrafish and 

mouse genomic DNA. Individual radiation hybrids that proved positive in this first 

assay were recorded and the whole assay repeated a second time. This duplicate assay 

did not work as well as the first attempt and gave slightly weaker products, most likely 

because a fifth of the Taq DNA polymerase from Advanced Biotechnologies was 

replaced by Taq DNA polymerase from Promega. In this duplicate assay products were 

observed in 15 out of 16 (93.8%) hybrid cell lines previously positive in the first assay. 

Hybrid number 70, which produced the faintest band in the first assay, did not give a 

detectable product in the second assay. All previously negative hybrid cell lines were 

consistently negative in the duplicate screen. Since only one hybrid cell line gave an 

ambiguous result, the data was considered robust enough for submission.

Mapping results are returned as two lod scores indicating the probability of linkage to 

the two most likely markers on the 25 linkage groups. The lod score is defined as the 

logarithm of the likelihood ratio for linkage (Hukriede et al., 1999). The best lod score 

must be greater than a lod of five in order to be considered significantly linked. Also, if 

the difference between the best lod score and the lod score on the second best LG is less 

than three, this could be indicative of multiple linkage.

The mapping data for soxlO returned a best lod score of 17.6 for the marker z8492, 

which is located on LG 3, OcR from soxlO (Figure 5.5). The best marker in the second 

best linkage group, LG 1, is linked to sox 10 with a lod score of 5.4. In Figure 5.5, 

markers used in linkage mapping of the els locus and framework markers derived from
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Figure 5.4: Mapping soxlO on the radiation hybrid panel LN54.

The first round PCR between primers SI 1 and S13 only produced a few very faint 

products (data not shown). The control reaction of this PCR are shown in (E). In the 

PCR reaction labelled “SI 1-SI3 mix” containing zebrafish and mouse genomic DNA in 

a 1:10 ratio, no product was detectable after amplification with SI 1 and SI3. However, 

a strong product of the correct size (863bp, arrowhead) was observed after nested PCR 

with S12 and S13 (lane S12-S13 mix). As expected, soxlO specific bands were 

amplified from zebrafish genomic DNA (lanes AB9) in both rounds of PCR and no 

product was ever detectable using mouse genomic DNA as a template (lanes B78). No 

sample was loaded in the lane marked with a dash, /. Thus, nested PCR reactions in 

duplicate were used to map soxlO on the LN54 panel. Panels (A-E) show examples of 

the nested amplification between primers S12 and S13 from 93 radiation hybrids 

(numbers 1-312), controls (lanes mix, AB9 and B78) and lkb markers (lkb, Promega). 

A positive radiation hybrid was expected to show a nested PCR product of 863bp 

(arrowhead). Additionally, a second product, approximately 150bp shorter, was 

observed consistently. Radiation hybrids 8, 49, 59, 70, 73, 74, 80, 84, 87, 109,135, 190, 

304, 306, 308 and 311 proved positive. The very faint band amplified from hybrid 70 

was not reproducible in the duplicate screen. All other positives were confirmed in the 

second assay (data not shown). Submitting this data to the radiation hybrid mapping 

webpage placed soxlO OcR from z8492 with a high lod score of 17.6.
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Figure 5.5: Map of the distal end of LG 3 containing the soxlO locus 

On the left, three markers mapped on the radiation hybrid panel LN54 are shown and 

their distance to soxlO in cR. On the right, microsatellite markers from a linkage map of 

the equivalent region are shown. The marker Z872 has been placed on both maps and is 

2.4cM (~ 1.4Mb) or 6.8cR (~lMb) from the els mutant locus or soxlO, respectively. 

SoxlO was shown to be linked to LG 3 with a high lod score of 17.6, OcR away from 

Z8492 on the radiation hybrid panel LN54, whereas els was mapped to a 3.9cM region 

between markers Z13387 and Z872 by linkage mapping of 274 meioses (Dutton et al., 

2001).
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the radiation hybrid panel are combined in one map. The presence of some markers in 

both maps close to cls/soxlO shows that the els mutation is located in the same region as 

sox 10, consistent with the proposal that els encodes soxlO.

Discussion

We have demonstrated close linkage between the els mutant locus and soxlO. This 

result was unambiguous and strongly in support of the hypothesis that els encodes 

sox 10.

This method of mapping is based on a PCR screen, which, although very quick, is very 

sensitive to slight changes in conditions and DNA contamination of the template or 

solutions involved. For this reason, the screen was carried out in duplicate. Furthermore, 

variability of the intensity of PCR products between individual radiation hybrid cell 

lines can be explained by different amounts of radiated zebrafish genomic DNA 

retained by the recipient mouse cell line.

To ensure specificity and detection of fainter products, a nested PCR was carried out, 

which consistently amplified two bands. There are two possibilities for the origin of this 

second band. Although the primer pair SI 1-S13 had amplified a single PCR product, the 

nested primer S12 could have misprimed and amplified a slightly shorter product 

alongside of the one with the expected size in the nested PCR reaction. Alternatively, 

the reverse primer S13 in the first PCR reaction might have misprimed resulting in two 

first round PCR products. Both products were again amplified in the nested PCR 

reaction since they both contained the S13 primer sequence at their 3’ ends and S13 was 

also used as a nested primer. The latter explanation seemed more likely, since there 

were also two faint products observed in the AB9 control reaction of the first round of 

PCR amplification (Figure 5.4E). As expected they were both slightly larger than each 

of the two nested products and were only visible in the reaction with 100% zebrafish 

genomic DNA, but not in the mix containing 10% zebrafish and 90% mouse genomic 

DNA. Even though these two bands were obtained for each positive radiation hybrid, 

they were observed consistently and improved scorability immensely. To prevent the 

amplification of such a second product in the future, one should set up a fully nested 

second round PCR reaction. The latter uses two nested primers instead of one nested 

and one first round primer.
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Radiation hybrid 70 amplified a very faint soxlO specific product in the first nested 

assay, which was not reproducible in the duplicate screen. However, all positive hybrids 

consistently produced fainter bands in the second nested assay, most likely due to 

suboptimal conditions caused by a mixture of Taq DNA polymerases used. Thus, 

amplification from hybrid 70 might have failed or the amount of product obtained was 

below the detection sensitivity limit of a standard agarose electrophoresis. A 

discrepancy of 1 hybrid producing varying results is considered acceptable according to 

the radiation hybrid webpage (http://zfin.org/ZFIN/, LN54 mapping panel) in which is 

stated that a marker should be reconsidered, if 5 or more hybrid cell lines produce 

varying results.

The lod score of 17.6, with which soxlO was placed OcR from Z8492, was highly 

significant. It placed soxlO with great probability in close proximity to the els mutant 

locus on LG 3.

Very recently, Tom Carney showed that injection of a 30kb PAC clone containing 

sox 10 into 1-16 cell embryos was able to rescue the els mutant phenotype (T. Carney, 

unpubl. data). Thus, the distance between els and soxlO could in fact be decreased to 

30kb.

Although these results do not prove that els encodes sox 10, it is strongly consistent with 

the latter and encouraged us to look directly for lesions in sox 10 in different els mutant 

alleles.
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Chapter 6 -  Identification of mutant lesions in c/s 
alleles

Introduction

In the previous chapter, we showed tight linkage between sox 10 and the els mutant 

locus. This was consistent with our hypothesis that els encoded soxlO. However, it was 

necessary to further test this hypothesis by trying to identify a mutant lesion in at least 

one of our els alleles.

As described in the Introduction, the clstS mutant first arose spontaneously within the 

rose stock kept in Tuebingen. Four additional els alleles, elsty22̂ , clste275, clstw2 and 

els*™11, were identified in the Tuebingen mutagenesis screen and two clsm241 and clsm618, 

in a similar screen in the Driever lab in the USA (Driever et al., 1996; Kelsh et al.,

1996; Malicki et al., 1996). Apart from els"1241, which might have been lost, all 6 other 

alleles are currently available in Bath.

Methods for identifying mutant lesions

There are at least three approaches to search for a mutant lesion. If a mutant phenotype 

is caused by a large deletion within the transcribed region, a difference in size of mutant 

and wild-type mRNA transcripts might be detectable in a Northern Blot.

Similarly, where point mutations or deletions are expected, a sequence difference may 

be detected in PCR amplified exon sequences of candidate genes by single-strand 

conformational polymorphism (SSCP) analysis.

Alternatively, point mutations or small deletions can be detected by direct sequencing of 

mutant and wild-type alleles and subsequent sequence comparison.

Which method is chosen depends on the type of mutation expected. All colourless 

alleles, apart from elstS, were isolated from large-scale mutagenesis screens and contain 

ENU-induced mutations. The ENU mutagen is known to mostly introduce point 

mutations rather than large deletions and thus a direct sequencing approach was chosen. 

This method is technically much easier compared to SSCP and methodology and 

equipment were readily available in our laboratory.

The 1455bp coding region was too long to be sequenced with one primer from either 

end. Hence, 4 primer pairs were designed spanning the entire coding region (Figure
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6.1). RT-PCR would amplify 4 overlapping fragments between each primer pair from 

wild-type and mutant alleles. Sequence comparison of corresponding wild-type and 

mutant allele fragments might then reveal the site of mutation.

This approach bears 3 caveats. Firstly, it is important to avoid contaminating wild-type 

embryos when collecting homozygous mutant embryos as a source for mRNA. Even 

one missorted wild-type embryo within mutants would result in amplification of a 

genotypically mixed sample and might return ambiguous sequence data. Wild-type 

embryos start to pigment at approximately 25hpf (Kelsh et al., 1996), but at that early 

stage it is very difficult to sort mutant embryos reliably. On the other hand, mutant 

embryos should be collected as early as possible, since the sox 10 expression level in els 

mutants decreases noticeably after 24hpf. Thus, total RNA from different els alleles was 

isolated from homozygous mutant embryos between 25hpf and 37hpf (prim6-prim25). 

Secondly, great care had to be taken to avoid cross contamination when setting up PCR 

reactions from wild-type and various mutant alleles. Thus, solutions including primers, 

buffers, magnesium chloride and milliQ-water used in RT-PCR from mutant alleles 

were prepared freshly and kept separately. Furthermore, all PCR reactions were set up 

using filter tips to avoid contamination originating from pipettes.

Finally, PCR errors introduced by the Taq polymerase had to be distinguished from 

actual sites of mutations. One of the two possible approaches is to clone PCR fragments 

and sequence several clones. In contrast to a true point mutation, it is unlikely that a 

PCR error would be found in all sequenced clones in the same location. For the same 

reason, the alternative approach is to directly sequence the entire pool of PCR 

fragments. Only the aberrant base of the point mutation would be found in all templates 

and thus, be detected as a strong band on a sequencing gel.

Results

The method chosen for the search of mutant lesions involved RT-PCR of 4 overlapping 

fragments from wild-type and various mutant alleles and sequence comparison of 

equivalent wild-type and mutant regions.

Thus, total RNA was prepared from 25-37hpf els mutant embryos using TRI 

reagent. Numbers of mutant embryos varied between alleles depending on the size and 

quality of the batch of eggs. RNA pellets were resuspended in a suitable volume of
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Primers to search for mutant lesions

S21 S19 HMG S24 S26
► ► ► ►

5’ It | | (( AAAA 3’

5’UTR + < < *  3’UTR
S22 S20 S25 S27

lOObp

Figure 6.1: Location of primers used to sequence wild-type soxlO and els mutant alleles in search for mutant lesions.

The coding (open box) and untranslated regions (5’ UTR, 5’ untranslated region; 3’ UTR, 3’ untranslated region) o f sox 10 are shown together 

with the HMG box (black). Four overlapping primer pairs were designed, which span the entire length o f the coding region, S21-S22, S19-S20, 

S24-S25 and S26-S27. RT-PCR with total RNA from wild-type and homozygous els mutant embryos was performed with each primer pair. 

Sequences o f equivalent wild-type and mutant fragments were compared to identify mutant lesions. The scale bar represents the length o f a 

1 OObp fragment.
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DEPC-treated water (Appendix 6.1). Agarose gel electrophoresis of samples of total 

RNAs confirmed the good quality of the RNA preparations (Figure 6.2). In each 

sample, the 3 ribosomal RNA bands, 23S, 16S and 5S, were observed. A slight 

background smear indicated the presence of mRNA transcripts. For each allele, 

approximately 3pg total RNA were reverse transcribed using an oligo(dT) primer. The 

RT-PCR conditions and amplification program for each of the 4 primer pairs were 

determined in advance by using the PCR optimisation scheme (Materials and Methods). 

This scheme tested different combinations of magnesium, dNTP and primer 

concentrations on cDNA derived from 19hpf wild-type total RNA. The conditions, 

which produced the strongest band with the least non-specific by-products were chosen 

for mutant RT-PCRs (Figure 6.3). For each primer pair, RT-PCR reactions were set up 

with the optimised conditions and cDNA from each of the mutant alleles, e l s c l s tw2/1, 

clst3/ 1, clstwl\  els®22* and clsm618/ 1, and a “no cDNA” negative control (Materials and 

Methods). Expected products ranged from 432bp to 547bp depending on the primer pair 

(Figure 6.4). No such bands were observed in the “no cDNA” controls. Equivalent 

fragments derived from different mutant alleles were always the same size and thus, 

were unlikely to contain larger insertions or deletions. All 4 primer pairs amplified 

products from clstw2, clstS, clstw!1 and clsm618. Very faint products were observed from 

cA ^^w ith  primer pair S19/S20 and S21/S22, but no products were detectable with 

primer pair S24/S25 and S26/S27. The opposite was true for clstwl; no bands were 

obtained with primers S19/S20 and S21/S22 and faint bands with S24/S25 and S26/S27 

(Figure 6.4).

Mutant PCR products and the equivalent wild-type fragments from the PCR 

optimisation were purified using the QIAquick PCR Purification Kit (Qiagen). After the 

DNA was bound to the column, an additional wash with 35% guanidine hydrochloride 

was included. This wash was not part of the standard protocol, but was suggested in the 

instruction manual to completely remove primer dimers longer than 20bp. This step was 

important, since these purified PCR products were subsequently included in a 

sequencing reaction, in which either forward or reverse PCR primers were used as a 

sequencing primer. Presence of primer dimers might cause failure of the sequencing 

reaction by binding the sequencing primer. The concentration of purified samples was 

estimated by agarose gel electrophoresis and comparison to a quantitative DNA marker 

(data not shown). Suitable amounts of each product were sent off for automated 

sequencing with the appropriate forward and reverse PCR primer.
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lOObp
M tw l tw 2 /l tw2/2 t3/l t3/2 tw ll  ty22f m 618/1 m 618/2

1.5 kb

0.5 kl>

Figure 6.2: Agarose gel electrophoresis of total RNA preparations from els mutant 

alleles

The quality of total RNA from 25-37hpf homozygous els mutant embryos was judged to 

be good by the presence of 3 distinct ribosomal RNA bands, 23S, 16S and 5S 

(asterisks), in combination with a slight background smear corresponding to mRNA 

transcripts. RNA from the following mutant alleles was analysed: clstwl (twl), 2 

separate batches of clstw2 (tw2/l and tw2/2), 2 separate batches of els'3 (t3/l and t3/2), 

clstw11 (twl 1), cls^22̂ {ty22f), 2 separate batches of clsm618 (m6182/1 and m618/2). A 

lOObp marker (lOObp M, Promega) was used to estimate the size of the bands.
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Figure 6.3: PCR optimisations for primer pairs S19-S20, S21-S22, S24-S25 

and S26-S27

(A-D) Agarose gel electrophoresis of PCR reactions with wild-type RNA and primer 

pairs S19-S20 (A), S21-S22 (B), S24-S25 (C) and S26-S27 (D) are shown to test 

optimum PCR conditions. Expected PCR products are shown (arrowheads in A-D) for 

each primer pair together with lOObp markers (lOObp M, Promega; lOObp M l, 

Promega; lOObp M2, Generuler). Lanes 1-12 (A-D) correspond to 12 different 

combinations of magnesium, dNTP and primer concentrations (reactions “111 ”-“722” 

in PCR optimisation scheme, Materials and Methods). For each primer pair, the 

conditions which produced the strongest product with the least non-specific by-products 

were used to set up RT-PCR reactions with RNA from homozygous els embryos. For 

primer pairs S19-S20 (A) and S21-S22 (B) reaction condition 4 (white asterisk) was 

chosen (reaction “ 122” in the PCR optimisation chart), whereas for primer pairs S24- 

S25 (C) and S26-S27 (D) reaction condition 3 (white asterisk, reaction “121”).
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Figure 6.4: RT-PCR from cls mutant alleles

(A-D) Samples of RT-PCR reactions with els mutant alleles (lane 1, clstw lane 2, 

c/5/w2; 1^0  3  ̂cjst3  ̂iane 11} clstw ll\ lane 22f, clsty22f; lane 618, clsmH&) and 4 

primer pairs are shown together with lOObp markers (lOObp M, Generuler, A; Promega, 

B and C) and lkb markers (lkb M, NEB). (A) Amplification between primers S19 and 

S20 obtained a band of the expected size of 435bp (arrowhead) from mutant alleles 

clstM>2, cls*3, els*™H and clsm61$. Only a faint product was observed from clsty22f,  

and no band was detectable from clstw 1 or the “noDNA” negative control (not shown).

(B) Primer pair S21 and S22 amplified a 432bp product (arrowhead) from mutant alleles 

cls*™2, clst2, cls*™ 11 cism618? but again, only a barely visible band from clsty22f  

and no band was detectable in the negative control (lane “-ve”) or from clstw 1 (Q  

shows 547bp PCR products (arrowhead) derived from the primer pair S24 and S25 in an 

RT-PCR reaction from clstw2 ̂ d st3  ̂t fstw ll  and clsm Here, clstw 1 produced a very 

faint band, while no band was generated from clsty22f.  No band was seen in the 

negative control (lane “-ve”) as expected. (D) RT-PCR reactions with primer pair S26 

and S27 obtained a 546bp product from the same alleles as primer pairs S24 and S25

(C).
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Sequences of equivalent fragments of wild-type and each mutant allele were 

aligned using Pileup (gcg package). The sequence from the faint products obtained 

with S24/S25 and S26/S27, and the cls®22* sequence from primer pair S19/S20 and 

S21/S22 matched the wild-type sequences completely. The same was found to be true 

for all 4 overlapping clstS fragments. Thus, we did not identify any mutant lesion in 

these regions of the clstM>\  cls13 and cls®22* alleles.

In contrast, putative point mutations were identified for clsm618i clstw2 and clstw11. Thus, 

the clsm618 sequence showed one non-silent single base pair mismatch from WT, which 

was identified in the HMG box fragment (primer pair S19-S20). Even after sequencing 

both strands multiple times, a thymine (T) at position 800 was consistently replaced by 

an adenine (A) resulting in a leucine to glutamine (L142Q) change (Figure 6.5). To 

confirm this result, the second batch of clsm618 total RNA (m618/2, Figure 6.2) was 

reverse transcribed and the RT-PCR product between primers S19 and S20 sequenced. 

Again, the same mutant lesion was identified.

Similarly, a point mutation was detected in the overlap between fragments S24-S25 and 

S26-S27 in clstw2 and clstw11. In both alleles, an A-to-T transversion at position 1501 

resulted in an in-frame stop codon (TAA) instead of a lysine (K376X, Figure 6.5). This 

prematurely truncates the protein just upstream of the putative transactivation domain. 

Again, the lesion was confirmed by multiple sequencing runs of the S24-S25 and S26- 

S27 PCR products of both alleles and also by sequencing the equivalent RT-PCR 

product from the second clsw2 batch (tw2/2, Figure 6.2).

Discussion

We have described the successful identification of mutant lesions in 3 cls alleles. As 

expected, all 3 mutations induced by the chemical mutagen ENU were point mutations.

clsm618 was found to be caused by a point mutation within the HMG domain. 

This replaced a leucine with a glutamine at residue 142, located in the second of 3 a- 

helices that give the HMG domain its L-shaped structure. The exact function of this 

residue has not been elucidated. However, it is fully conserved across all members of 

the Sox gene family and even in the outgroups LEF1 and TCF1 from mouse and C. 

elegans (Bowles et al., 2000), which might indicate an important structural or functional 

role. Furthermore, the same residue in human SRY (Leu-39) was shown to be important
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Figure 6.5: The mutant lesions in clsm618, cls*™21 cls*”11 and cls*3

(A) The schematic compares wild-type (wt, residues 1-485) to mutant (m618, tw2, tw ll, 

t3) SoxlO proteins. In m618, a T425A transversion within the HMG domain (red) 

replaced a leucine (L142) with a glutamine (Q). In tw2 and tw ll, an Al 126T 

transversion introduced a Stop codon truncating the protein just N-terminal to the 

transactivation domain (blue). t3 was found to be disrupted by a 1.4kb transposon (T. 

Carney; Dutton, Pauliny et al. 2001). After introducing a C-terminal extension of 8 

novel amino acids (yellow), the protein is truncated just N-terminal to the HMG 

domain. (B) Chromatogram traces show the nucleotide changes (arrows) causing the 

m618 and tw2/twll mutant alleles.
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in the maintenance of orientation of the long and short arms of the L-shaped HMG 

domain structure (Werner et al., 1995). The mutation is thus likely to disrupt the three- 

dimensional structure of the DNA binding domain reducing the ability of SoxlO to bind 

to its DNA target sites.

In collaboration with Bill Pavan, National Institute of Health, Bethesda, MD, the 

transcriptional abilities of wild-type and mutant zebrafish SoxlO proteins were tested in 

luciferase reporter assays (M. Brady, unpubl. data). In transiently transfected HeLa 

cells, the ability of SoxlO to induce the nacre promoter was measured by the activation 

of a luciferase reporter gene regulated by the nacre promoter as previously described in 

Potterf et al. (2000). The transcriptional activation ability of SoxlO is measured as the 

fold increase relative to a promoterless basic reporter plasmid. Wild-type SoxlO 

produced a 46.14 fold induction of luciferase activity, whereas L142Q only a 0.83 fold 

induction. The loss of function demonstrated in this in vitro system confirms this 

residue’s importance for SoxlO as a transcription factor observed in the mutant 

phenotype. If the mutation renders SoxlO unable to bind to its consensus sites in the 

promoter regions of downstream targets, this might also abolish its synergistic abilities. 

It has been demonstrated that both the synergy and the HMG domain are necessary for 

SoxlO to act cooperatively with partner transcription factors like Pax3 or Tst- 

l/Oct6/SCIP (Kuhlbrodt et al., 1998a; Bondurand et al., 2000).

Alleles clstw2 and clstw11 contained the same mutant lesion in the exact same 

location. At first, this seemed a surprising result, but it could be explained by the fact 

that they were derived from the same mutagenised family founder male, W. Thus, very 

likely they represented two independent isolations of the same mutation. The point 

mutation introduced a stop codon, 18 residues upstream of the putative transactivation 

domain, which resulted in a protein truncated by 109 residues. Due to the loss of the 

transactivation domain, the protein’s function is expected to be severely affected. The in 

vitro analysis of the K376X mutation (W. Pavan, unpubl. data) showed only a 0.87 fold 

induction of the luciferase reporter construct in comparison to 46.14 fold induction by 

the wild-type protein. This drastic decrease in transcriptional activity was comparable to 

the L142Q mutation (0.83 fold induction).

Thus far, we were unable to identify a mutant lesion in the cls®22*coding region. 

Faint PCR products could only be obtained from the first two overlapping fragments. 

This observation might be explained in several ways. Firstly, only a small number of 

embryos were available from which total RNA was isolated (Table 6.1). Although it
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was attempted to compensate for this by resuspending the RNA pellet in a smaller 

volume and using a larger volume of cDNA to set up PCR reactions, it might have 

caused fainter products. Secondly, one of the primer sites might be changed by the 

mutant lesion causing the amplification between primer pair S24-S25 or S26-S27 to fail. 

Even so, this could not explain why PCR reactions with both primer pairs failed to 

produce products. Alternatively and most likely, it is possible that the products observed 

were derived from a small contamination of wild-type RNA. This might have been 

caused by a missorted wild-type embryo within the els siblings or whilst setting up the 

PCR reaction. Consistent with this possibility, the sequence of the faint products 

matched wild-type sox 10 completely. Furthermore, sox 10 in situ hybridisation on elsty22̂  

revealed overall reduced expression levels in a quarter of the embryos, presumably 

corresponding to homozygous siblings (Figure 6.6). Taken together, these observations 

indicate that els**22*is caused by a further mutant lesion different to L142Q and K376X. 

It might be located outside the coding region in one of the regulatory elements, in which 

case one approach to find the mutant lesion is to compare the promoter regions of wild- 

type and els®22*mutants by sequencing. Alternatively, the transcript might be 

destabilised due to the lesion affecting intron/exon boundaries and thus correct splicing 

of the transcript. To identify such a lesion, one could sequence across intron/exon 

boundaries in genomic DNA of cls^22̂ mutants.

The search for a mutant lesion by sequencing the 2 faint products obtained from 

clstwl was unsuccessful. There are a two explanations why only the two C-terminal 

fragments, which matched wild-type sox 10 completely, were amplified. Either, mutant 

transcripts were produced, but the PCR reactions with the N-terminal primer pairs SI 9- 

S20 and S21-S22 failed altogether and hence, no products were obtained or PCR 

products might have been present, but too faint to be detectable by agarose gel 

electrophoresis. Alternatively, the mutant lesion could be located in a regulatory 

element and hence no transcripts are synthesised or only at a drastically reduced level. 

Thus, the PCR products obtained might have resulted from wild-type contaminations. 

Consistent with this hypothesis, sox 10 in situ hybridisation on clstwl embryos showed 

that in a quarter of embryos at any stage, expression was barely visible apart from the 

expression in the otic vesicle (Figure 6.6). This is different to most other alleles, in 

which els mutants are indistinguishable from wild-type siblings up to 24hpf.

Only recently, we discovered that clstwl and clstS were identical. For reasons unknown, 

clstS had been renamed clstwl in the Tuebingen stock centre. Furthermore, T. Carney
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c ls ^ V l  r/t (%) clsiy22fl l  r/t (%) c tT 1/1 r/t (%) CUT1!! r/t (%)
2 somites 9/36 (25%) nd 10/27 (37%) 8/32 (25%)

18 somites 10/38 (26%) 7/25 (28%) 8/30 (27%) 7/26 (27%)
24 hpf 3/12 (25%) 3/21 (14%) 3/20 (15%) 6/25 (24%)

Figure 6.6: The els®22* and clstwl (els'3) mutant alleles

(A-C) In situ hybridisation with sox 10 on 18 somite stage embryos derived from a 

heterozygous els**22*cross shows a reduction (B, black arrows) of sox 10 transcripts in 

approximately a quarter of embryos, presumably homozygous mutants, whereas 

equivalent clstwl (clst3) embryos reveal an even more severe reduction (C, black arrows) 

of soxlO staining. In comparison, els mutants of other alleles at this stage are still 

indistinguishable from wild-types (A). The expression in the otic vesicle (o) in elsty22f

(B) is comparable to wild-types (A) and significantly reduced in els*™1 (C). (D) The 

number of embryos with reduced sox 10 expression (r) from 2 independent hybridisation 

reactions (clsP22*/!, elsty22̂ !2 and clstwI/\, clstwI/2) was compared to the total number (t) 

of embryos included in each staining reaction and the percentage (%) calculated for 

different stages (2 somite, 18 somite and 24hpf stage). If the siblings with reduced 

sox 10 staining corresponded to homozygous els mutants, a percentage value of 

approximately 25% of the total number of embryos is expected in all cases, e, eye; hpf, 

hours post fertilisation; nd, not determined; o, otic vesicle; r, reduced; t, total.
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recently showed by sequencing genomic DNA from clst3 embryos, that clst3 was caused 

by a 1.4kb insertion of a transposable element at nucleotide 255 of the transcript, a 

position 20 amino acids upstream of the HMG domain (Genbank accession number 

AF404490; Dutton et al., 2001b). The clst3 lesion results in premature truncation of the 

N-terminal domain with an extension of 8 novel amino acids. The protein thus only 

consists of what has been defined as the synergy domain (residues 1-89; Kuhlbrodt et 

al., 1998a). Since products of expected sizes were amplified between all 4 primer pairs
/ 3from els cDNA, at least the band between primer S21 and S22 must have been 

contamination from either wild-type or other mutant cDNAs. With the knowledge of 

clstwl and clstS being identical, it is more likely that all bands amplified resulted from 

wild-type DNA contamination, which helps to explain our confusing and inconsistent 

results obtained from these two mutant PCR reactions. It will be interesting to 

characterise this allele in greater detail in vivo (rescue experiments) and in vitro 

(luciferase reporter assays). However, it is likely to be a null, since the DNA binding 

domain, which also contains two nuclear localisation signals (Suedbeck and Scherer, 

1997), and the transactivation domain are missing.

Preliminary phenotypic comparisons by project students did not reveal greatly 

significant differences between these alleles. The effect of els on the pigment phenotype 

was assessed by counting melanoblasts in 22-24hpf wild-type and els mutants labelled 

by dopachrome tautomerase (dct) in situ hybridisations (Sanders, 2000). This marker is 

expressed in melanoblasts approximately 5 hours prior to melanisation (Kelsh et al., 

2000c). In a similar project, the effect of els on the peripheral nervous system was 

investigated. The reduction of DRG and enteric neurons in 3dpf and 5dpf els mutants 

was assessed by counting neurons labelled with the pan-neuronal anti-Hu antibody 

(Ford, 2000). Some allelic differences that students observed in various cell-types and 

stages might have been artefacts due to small sample numbers. This suggestion is based 

primarily on the discrepancies in allelic strengths reported for the elswl and clst3 alleles, 

which are now known to contain identical mutant lesions. However, overall the severity 

of phenotypes in alleles investigated was largely comparable and approximately 

equivalent.

In conclusion, we demonstrated mutant lesions in 3 of the colourless alleles and 

a fourth was identified by T. Carney. Together with the expression studies and the 

mapping result, this presents a very strong indication that els is soxlO. Preliminary data 

from two undergraduate project students showed that all alleles were phenotypically
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very similar. The clstS allele seems highly likely to be a null due to the location of the t3 

lesion. However, the severity of effects caused by the clsm6]8 and clstw2 lesions is not 

quite so clear cut. In the next chapter we attempt to test whether these mutant proteins 

have any residual function in vivo.
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Chapter 7 -  Rescue of the c/s phenotype by heatshock 

construct injections

Introduction

Can sox 10 rescue the colourless phenotype? This is the last of a series of tests to 

investigate whether els encodes soxlO. In previous chapters, we have demonstrated that 

sox 10 and the els mutant locus are very tightly linked, that sox 10 is expressed in a 

pattern consistent with the mutant phenotype and identified genetic lesions expected to 

disrupt the SoxlO protein. If els encodes sox 10, we would also expect to rescue at least 

partially the els phenotype by expressing wild-type soxlO in els mutant embryos.

There are generally two methods to ectopically express a gene, either by directly 

injecting mRNA or a construct containing the cDNA of interest under the regulation of 

a suitable promoter. If mRNA is injected, the timing of expression of the protein cannot 

be regulated. It has been previously suggested that RNA injections lead to sufficient 

RNA and thus protein levels up to midsegmentation stages, while DNA injections 

become necessary to affect processes that occur after the 20hpf stage (Hammerschmidt 

et al., 1999). Judged by the first visible defect in els embryos at 24hpf, SoxlO function 

is likely to be required at a time when ectopic SoxlO protein is unlikely still to be 

present. Consistent with this, injection of sox 10 mRNA into 1 cell stage embryos of a 

heterozygous clstw11 cross failed to rescue els mutants (S. Elworthy, unpubl. data).

In contrast, driving ectopic expression of the gene of interest by a known 

promoter allows controlled expression of the protein at a particular time and duration 

during development. A heatshock promoter was chosen, since initiation of expression is 

easily achieved by incubating embryos containing the heatshock construct at the 

permissive temperature. The heatshock construct is made by cloning the sox 10 coding 

region into a suitable expression vector, downstream of a heatshock promoter. This 

construct is then injected into the yolk of early cleavage stage embryos (1-4-cell stage) 

where it becomes distributed by yolk streaming. Upon raising the incubation 

temperature of injected fish embryos from 28.5°C to 37°C, transcription of sox 10 from 

the heatshock promoter is initiated in those cells that have received the construct.

To achieve rescue, it is important that SoxlO is expressed at the correct concentration 

and time required. To maximise the degree of rescue, we thus anticipated having to
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optimise the amount of injected construct per embryo, and the time and number of 

heatshock treatments. We chose to score rescue based on the rescue of melanophores. 

This neural crest derivative is severely affected in els embryos of all strong alleles, in 

which pigmented melanophores with stellate wild-type morphology are never observed. 

In wild-type embryos, melanophores are easily detected under the dissecting 

microscope from approximately 30hpf. Thus, rescue was defined as presence of at least 

one fully differentiated melanophore with wild-type morphology.

We wanted to establish the severity of a mutant allele in relation to the location 

of the mutant lesion and asked the question whether the resulting mutant protein 

retained any function in vivo. Results from corresponding in vitro studies, discussed in 

the previous chapter, indicated that clsm618 and elstw2/tyvI1 had no transcriptional activity. 

We used rescue experiments to characterise these mutant alleles and specifically we 

tested the prediction that they would fail to rescue the els mutant phenotype.

Finally, we wanted to investigate the possibility of functional redundancy 

between sox9 and soxlO. Although there is no previous evidence for redundancy of Sox 

proteins, it is not unreasonable to assume that highly conserved proteins might function 

redundantly when co-localised in the same tissues.

sox9 and sox 10 are the most closely related members of the Sox gene family. Zebrafish 

sox9b and maybe also sox9a, were shown to be expressed in the neural crest (E. Chiang, 

pers. commun.; this study) consistent with reports of mouse Sox9, which labels cephalic 

crest (Ng et al., 1997). To test whether either sox9a or sox9b could rescue aspects of the 

els phenotype, we replaced the soxlO coding region in the expression vector with that of 

sox9a or sox9b. The same method and scoring criteria were to be applied as had 

previously been established for soxlO.

Results 

Preparation of sox9 and soxlO heatshock constructs

To generate heatshock constructs, we chose a strategy of PCR amplification of the Sox 

protein coding regions and cloning them into a heatshock expression plasmid. Clones 

were sequenced to select against PCR errors which might have been introduced.

This approach required the design of PCR primers outside the coding region and a 

suitable vector containing a heatshock promoter. The plasmid pCSHSP was chosen as
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the expression vector, since it had been successfully used in rescue experiments with the 

zebrafish mzT/'homologue, nacre (nac\ Lister et al., 1999). It is based on the pCS2+ 

plasmid, in which the CMV (cytomegalovirus) promoter had been replaced by a 

heatshock promoter (HSP; Halloran et al., 2000). This modified vector was kindly 

provided by D. Raible (Figure 7.1). Cla I and Xba I restriction sites within the multiple 

cloning site of the vector were selected for subcloning the sox 10, sox9a and sox9b 

coding regions, since neither enzyme was predicted to cut within these fragments.

Thus, primers S21 and S27, 9A-1 and 9A-2 and 9B-1 and 9B-2, located just outside the 

sox 10, sox9a and sox9b coding regions, respectively, were redesigned to include Cla I 

and Xba I sites at their 5’ ends (Figure 7.2).

RT-PCR amplifications were performed on total RNA derived from 38hpf wild- 

types and clsm618 and clstw2 mutants and primers Cla I-S21 and S27-Xba I (Materials and 

Methods; Figure 7.3). The sox9a and sox9b coding regions were amplified from 

plasmid minipreparations containing the appropriate full-length cDNAs using primers 

9A-1 and 9A-2 or 9B-1 and 9B-2, respectively (Materials and Methods; Figure 7.3). For 

all PCR reactions, either Herculase or TaqPlus Precision PCR system (Stratagene), both 

high fidelity DNA polymerases, were used to reduce the frequency of PCR errors. PCR 

reactions usually produced a single product of the expected size, which was directly 

subjected to a restriction digestion with Cla I and Xba I (Promega) in multicore buffer 

(Promega). However, with the clsm618 cDNA, primers Cla I-S21 and S27-Xba I 

amplified a non-specific product of approximately 400bp alongside the specific 1614bp 

band. Thus, the specific product was excised and gel purified using the QIAquick Gel 

Extraction Kit (Qiagen) before restriction digestion with Cla I and Xba I (data not 

shown). Digested coding regions were purified using the QIAquick PCR Purification 

Kit (Qiagen) and the concentration of eluted samples was estimated by agarose gel 

electrophoresis and comparison to a quantitative DNA marker (NEB; data not shown). 

In parallel, the pCSHSP plasmid had also been restriction digested with Cla I and Xba I 

and purified by standard phenol/chloroform extraction and ethanol precipitation. 

Heatshock constructs were created by ligating each coding region into linearised 

pCSHSP plasmids and transforming the constructs into Gold Super-competent 

Epicurian Coli cells (Stratagene). A suitable number of white colonies were picked and 

analysed by restriction digestion for inserts of the expected size (Figure 7.4). Only 4/18 

(22%) white colonies from the cloning of wild-type sox 10 contained inserts of the 

correct size. All 4 clones contained a non-conservative PCR error altering the protein
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Figure 7.1: Plasmid map of pCSHSP

This map was adapted from http://faculty.washington.edu/rtmoon/

This expression vector is based on the pCS2+ plasmid, in which the cytomegalovirus 

(CMV) promoter had been replaced by a heatshock promoter, HSP70/4 (Halloran et al., 

2000). To create the heatshock constructs, the sox 10 coding region was cloned into the 

Cla I (87) and Xba 1(115) sites within the multiple cloning site, downstream of the 

HSP. The ampicillin resistance gene (amp) is used as the selectable marker. For RNA 

injections, the plasmid is linearised with Asp 718 (373) and transcribed with SP6 RNA 

polymerase.
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Figure 7.2: Primers used to create the soxlO, sox9a and sox9b heatshock constructs

(A-C) The coding (open box) and untranslated regions (5’ UTR, 5’ untranslated region; 3’ UTR, 3’ untranslated region) of sox 10 (A), sox9a (B) 

and sox9b (C) are shown together with their HMG box (HMG, black box). (A) Primer pair Cla I-S21 and S27-Xba I are located just outside the 

stop and start codons and thus amplify the entire sox 10 coding region or els mutant allele coding regions if mutant cDNAs were used as 

templates. After cloning these fragments into pCSHSP vector, the constructs were analysed for possible PCR errors by sequencing with a 

combination of primers as indicated. (B, C) The sox9a (B) and sox9b (C) coding regions were amplified from plasmid DNA minipreparations 

containing the appropriate full length cDNA between primers 9A-1 and 9A-2 or 9B-1 and 9B-2, respectively. These primers had been designed to 

include Cla I (9A-1 and 9B-1) and Xba I (9A-2 and 9B-2) restriction enzyme recognition sites at their 5’ ends facilitating subsequent cloning into 

the heatshock plasmid pCSHSP. The sequence of the cloned sox9a and sox9b heatshock constructs were checked for PCR errors using the 

sequencing primers as indicated. The scale represents the length of a lOObp fragment.
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Figure 7.3: PCR of wild-type and mutant sox 10, and wild-type sox9a and sox9b 

(A, B) To amplify the sox 10 coding region, RT-PCR was performed on total RNA from 

38hpf wild-types (A) or 25-37hpf clsm618 (B, lane 1 and 2) and els*™2 mutants (B, lane 3 

and 4) between primers C/aI-S21 and §21-Xbal. (A) Reactions were set up with lpM  

(lane 1), 0.5pM (lane 2) and 0.2pM primers (lane 3). (A, B) All reactions produced 

bands of the expected size (1614bp, arrowhead). (A) Additionally two smaller non­

specific bands were obtained with approximate sizes of 250bp and 400bp in lanes 1 and 

2, and thus, the product of lane 3 was digested with Clal and Xbal and cloned into 

pCSHSP. (B) An additional non-specific by-product was observed in the reaction in 

lane 1 (cDNA prepared with random hexamers, white arrowhead). cDNA in lane 3 was 

also prepared with random hexamer primers. Reactions in lanes 2 and 4 (both cDNA 

prepared with oligo dT primer) were digested with Clal and Xbal and cloned into 

pCSHSP. (C, D) PCR between primers 9A-1 and 9A-2, or 9B-1 and 9B-2 amplified the 

1476bp sox9a or the 1390bp sox9b coding region (arrowhead), respectively, from 

plasmid minipreparation containing the entire sox9a or sox9b cDNA. Samples of 

reactions with 0.2pM primers (C, D lane 1), 0.5pM primers (C, D lane 2) and ljuM 

primers (C, D lane 3) are shown. (C) Reaction in lane 3 was digested with Clal and 

Xbal and cloned into pCSHSP. (D) Products of lanes 1-3 were gel purified, digested 

with Clal and Xbal and cloned into pCSHSP. In all panels, product sizes can be 

estimated using the quantitative lkb DNA ladder (lkb M, NEB).
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Figure 7.4: Restriction digestion of putative heatshock constructs 

(A, B) Samples of plasmid DNA minipreparations of putative hs>cAffT (A, lanes 1-8), 

hs>clsm618 (B, lane m618) and hs>clstw2 (B, lane tw2) constructs were digested with 

Pvull to test the size of the insert and are shown together with a quantitative lkb DNA 

marker (lkb M, NEB), sox 10 coding regions contain a Pvu II restriction recognition site 

and thus, positive clones were expected to release a 967bp band and a 1871 bp band 

(black arrowheads) in addition to a 3243bp band corresponding to the linearised vector
rjrrnn £  i  o

(asterisk). Positive hs>c/.s clones (A, lanes 1-3) and one hs>clsm clone (B, lane 

m618) could be identified, but the hs>clstw2 clone (lane tw2) was not correct, since the 

size of the insert (open arrowhead) was too small. The lane marked with a dash, /, is 

irrelevant to this experiment. (C) Samples of 3 putative hs>sox9a clones (lane 1-3) were 

digested with EcoRV and Xba I and positive clones were expected to show a 600bp and 

a 927bp band (arrowhead) compared to a lOObp marker (lOObp M, Promega) together 

with a 3243bp band corresponding to the linearised vector (asterisk). (D) 6 samples of 

putative hs>sox9b (lane 1-6) were digested with Pvu II to test the size of the insert and 

shown here together with a quantitative lkb marker (lkb M, NEB). Positive sox9b 

clones were expected to produce a restriction pattern consisting of a 1066bp, 809bp, 

570bp and 213bp band (arrowheads) and a 3243bp band corresponding to the linearised 

vector (asterisk). (C, D) One positive clone each (C and D, lane 1) was confirmed by 

automated sequencing.
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sequence when sequenced. None of 6 plasmid minipreparations derived from the tw2 

cloning released inserts of the correct size corresponding to the full length coding 

regions. However, sequencing a positive clone derived from the m618 cloning revealed 

no aberrations to the wild-type protein sequence apart from the m618 mutant lesion 

within the HMG domain. This construct will be referred to as hs>clsm618 from this point 

onwards. Likewise, clones sox9A-l and sox9B-l proved to contain error free sox9a and 

sox9b coding regions respectively and will be referred to as hs>sox9a and hs>sox9b 

hereafter.

Since an error-free hs>clsm618 construct was available and creating a wild-type 

(hs>c/5ffT) and tw2 (hs>cA/w2) heatshock construct using RT-PCR had presented 

difficulties, a new strategy of site-directed mutagenesis of the hs>clsm618 construct was 

chosen. We followed the guidelines from the QuikChange Site-Directed Mutagenesis
1X7rp

Kit (Stratagene; Figure 7.5; see also Materials and Methods) to generate hs>cA . 

Subsequently, the tw2 mutant lesion was to be introduced into this wild-type construct 

by the same method to create the hs>clstw2 construct.

In the site-directed mutagenesis method, one or more nucleotide changes are introduced 

during in vitro replication of parental plasmid strands. The replication is primed from 

long reverse complementary mutagenesis primers, which contain the nucleotide 

mismatch to be introduced. To specifically remove the original parental strands after 

twelve rounds of strand replications, their bacterial origin and thus methylation status is 

utilized. In contrast to strands newly synthesised in vitro, parental strands derived from 

bacteria are methylated and are thus digested with the methylation sensitive restriction 

enzyme Dpn I. The remaining unmethylated, mutagenised linear DNA fragments align 

and form nicked open circular plasmids. After transformation into competent cells, 

these nicked plasmids are repaired and propagated normally.

Two pairs of mutagenesis primers were designed (Figure 7.6). The forward and reverse 

mutagenesis primers clsm618-+ WT1 and clsm618-+ WT2 encoded 35bp of wild-type 

sequence surrounding the m618 nucleotide change. Thus, the nucleotide sequence of the
urr /CIO _

resulting hs>c/s would be identical to hs>clsm apart from the T—>A mutant lesion. 

Mutagenesis primers WT\^>clsiw2 and WT2-±clstw2 were designed to introduce the tw2
jx/rp . W/T1

mutant lesion transforming hs>cls into hs>cls . The two constructs hs>cls and 

hs>clstw2 would be identical apart from the single change of nucleotide causing the 

K376X mutation.
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Figure 7.5: Schematic of site-directed mutagenesis

The schematic was adapted and redrawn from the QuikChange Site-Directed 

Mutagenesis Kit Instruction Manual (Stratagene). The methylated parental strands 

(black) contain the site to be changed, indicated by an “X”. Mutagenesis primers (red) 

contain the site to be introduced (asterisk) in the centre of the primer sequences. When 

parental strands are replicated, the mutation (asterisk) is incorporated. The parental 

strands (methylated, black) are selectively digested with a methylation sensitive 

restriction enzyme, whereas the new daughter strands (red) align and form open nicked 

circular plasmids, which are transformed into competent cells.
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Location of primers for site-directed mutagenesis

clsm6I8-> WT1 
►

WT1—
►

5’

c/s'”67®—»WT2

lOObp

Figure 7.6: Mutagenesis primers to create the h s> c /s^ a n d  hs>clstw^ constructs

The soxlO coding region is shown including the HMG domain (black box). The reverse complementary mutagenesis primers clsm^ ^ - > WT1 and 

clsm618^>WT2 were designed to transform clsm61$ into a wild-type coding region. Subsequently, the clstw^ mutation was introduced into the 

wild-type sequence using primers WT1—> c ls ^ ^  and WT2—» elstw^. The scale bar represents the length o f a lOObp fragment.
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Depending on which nucleotide change was to be introduced, reactions were set up with
/CIO TTTT1

a range of amounts of either hs>clsm or hs>cls template and a “no primer” control. 

After 12 cycles of replication, an aliquot of each reaction was analysed by agarose gel 

electrophoresis (Figure 7.7A, B). As expected, the amount of the 6103bp product 

generally increased with the amount of template. A very faint band was observed in the 

“no primer” control corresponding to the amount of template included in the reaction. 

However, a significant increase in product was observed in the equivalent reaction 

including the primers demonstrating successful replication. The reaction that produced 

the strongest product and the “no primer” control were separately digested with the 

methylation sensitive enzyme Dpn I to digest the parental methylated strands. A small 

aliquot was transformed into Gold Super-competent Epicurian Coli cells (Stratagene). 

As expected, no colonies were obtained from the control reaction due to complete 

digestion of parental methylated strands. In contrast, approximately 400 transformed 

colonies were counted from experimental reactions. 16 colonies from each of the two 

mutagenesis experiments were streaked out on fresh LB agar plates containing 

ampicillin to avoid genotypically mixed clones in a colony. A suitable number of these 

were picked and plasmid DNA isolated from them by plasmid minipreparations using 

the Wizard Plus SV Miniprep DNA Purification System (Promega). The potential
TITT* . . . /  tO

hs>cls clones could be distinguished from parental hs>cls clones by a diagnostic

restriction enzyme digest. In the wild-type sequence, an additional 7s/?RI restriction site 

is created digesting an approximately 2000bp band, present in elsm618, into a 1200bp and 

a 800bp band. Of 8 clones analysed all appeared to have lost the m618 mutant lesion 

(Figure 7.7C). An equivalent diagnostic restriction digest was unavailable to test for 

successful synthesis of hs>clstw2 constructs. Thus, 6 clones were digested with Pvull to 

test for inserts of the correct size. All 6 produced a pattern of 3 bands as expected for a 

sox 10 insert; a 3243bp vector band and 967bp and 1871 bp bands, since the soxlO 

coding region contains a Pvull site (Figure 7.7D). One clone of each experiment, later 

renamed hs> cls^  and hs>clstw2 respectively, was sequenced to confirm successful 

mutagenesis.
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Figure 7.7: Site-directed mutagenesis to create hs>c/5ffTand hs>clstw2 

(A, B) Samples of the site-directed mutagenesis reaction converting hs>clsm618 into 

hs>cAffT (A) and hs>cAWT into hs>clstM>2 (B) are shown together with quantitative lkb 

markers (lkb M, NEB). Experimental reactions were set up with 5ng (lane 5), lOng 

(lane 10), 20ng (lane 20), and 50ng (lane 50) template. A negative “no primer” control 

(-ve) was included with 20ng template. As expected, the amount of the 6103bp product 

(arrowhead) generally increased with the amount of template. A very faint band was 

observed in the “no primer” control corresponding to the amount of template included 

in the reaction. (C, D) An aliquot of the reaction from lane 50 (A) and from lane 20 (B) 

was transformed into Gold Super-competent Epicurian Coli cells (Stratagene). (C) 8 

clones (lanes 1-8) were restriction digested with T-spRI to distinguish between parental
/ i n  TMm

hs>clsm (lane m618) and successfully created hs>c/s clones. In the latter wild-type

clones, a 7j/?RI site was expected to be gained resulting in an approximately 1.2kb and 

a 800bp band (arrowheads) instead of a 2.0kb band seen in m618 (asterisk). All 8 clones 

tested had successfully lost the m618 mutant lesion. A quantitative lOObp marker 

(lOObp M, NEB) was loaded for size comparison. (D) 6 clones (lanes 1-6, D) were 

restriction digested with Pvull to test for inserts of the correct size corresponding to 

wild-type or mutant soxlO coding regions, since no diagnostic restriction digestion for 

successfully introduced tw2 mutant lesions was available. All 6 clones produced the 

expected bands, 1871 bp and 967bp (arrowheads) and a 3243bp band (asterisk) 

corresponding to the linearised vector. A quantitative lkb marker (lkb M, NEB) was 

loaded for size comparison. (C, D) One positive clone each (C, lane 1 and D, lane 4) 

was confirmed by sequencing and renamed hs>clsWT and hs>clstw2, respectively.
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Injection of the hs>clsWT construct shows partial rescue of the c/s 

phenotype

The following experiments were performed to test whether ectopic sox 10 driven by a 

heatshock promoter could rescue the els mutant phenotype.
ir r r

Firstly, we injected a suitable concentration of the hs>cls construct into the

yolk of early cleavage stage embryos from a els heterozygous cross (Materials and 

Methods). At this early stage, the construct is distributed to all blastomeres by yolk 

streaming, since there are no physical boundaries between blastomeres and yolk up to 

the 8 cell stage (Kimmel et al., 1995). The embryos were then raised at 28.5°C. In initial 

experiments, based on descriptions of rescue with a nacre heatshock construct (Lister et 

al., 1999), two one hour heatshocks were carried out at 37°C, the first between 10-13hpf 

and the second heatshock between 22-24hpf. The rationale for choosing these time 

points was that sox 10 expression is first observed at the 2 somite stage corresponding to 

10 Vi hpf. Secondly, the first phenotype in els embryos is apparent at approximately 

24hpf, when pigment cell precursors on the lateral pathway fail to migrate (Kelsh et al., 

1996). Thus, SoxlO function commences before or at approximately this time. Embryos 

from a e l f 1618 cross were chosen, because preliminary phenotypic studies (previous 

chapter) indicated that it might be one of the strongest alleles and for reasons of 

consistency since all in situ hybridisations had been carried out on clsm618 embryos.

Of a total of 92 injected els mutant embryos that survived, 44 (48%) were 

rescued. On average, they developed 15 melanophores per embryo with stellate wild- 

type morphology and dark pigmentation (Figure 7.8, Appendix 7.1 A).

Investigation o f  deformities

Although hs>c/^^ clearly rescued the melanophore phenotype in els mutants, 63.8% of 

injected embryos also showed various degrees of malformations. Defects ranged from 

slightly smaller eyes and mildly deformed axes to grossly amorphic tissue with pigment 

cells surrounding the yolk sac.

We were concerned about malformations since they might have an influence on the 

rescue experiments. For example, to identify a rescued embryo, its eyes have to be 

present and fully pigmented in order to distinguish it from a malformed wild-type 

sibling. A developmentally delayed wild-type sibling might easily be mistaken for a
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WTFigure 7.8: Rescue of the pigment phenotype in homozygous els mutants by ectopic expression of hs>c/j

(A-C) In 48 hpf wild-type embryos, numerous neural crest precursors have differentiated into stellate, pigmented melanophores (A). Such cells 

are never observed in uninjected homozygous clsm618 mutants (data not shown) or when injected with hs>clsm618 (B). Occasionally, faintly
UPT #

pigmented, rounded cells are seen in the premigratory neural crest area (B, arrowheads). After ectopic expression of hs>cls , a variable number 

of melanophores are rescued to a wild-type morphology and are able to migrate to ventral locations (C). In this embryo, one melanophore was 

noted in the premigratory neural crest area (C, asterisk), one on the yolk sac (F) and two in the anal region (C, arrows). Rescued melanophores 

adopt a morphology characteristic for their final location as can be seen by comparing the melanophores in the anal region (arrows in C, enlarged 

in E) with the equivalent region in wild-type siblings (D). Scale bar: 125pm (A-C), 70pm (D-F).
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rescued els embryos, but this can be overcome by comparing the extent of pigmentation 

in its eye to other wild-type siblings. An undoubtedly rescued els embryo would show 

the same extent of pigmentation in the eye as its wild-type siblings, but less along its 

body.

Furthermore, heavily malformed embryos might not show any rescue or rescue to a 

lesser degree regardless of SoxlO’s functional abilities.

A low level of these deformities were likely to be caused by a proportion of bad eggs 

and/or by injection trauma. To control for bad batches of eggs, we also raised 10-30 

uninjected siblings from each batch and scored the proportion of surviving embryos 

(Appendix 7.1) and the percentage of malformed within the surviving embryos 

(Appendix 7.3). The difference between the proportion of deformed embryos in 

uninjected and injected siblings was a measure for malformation due to the injection 

process, overexpression of SoxlO protein or toxicity of the heatshock plasmid itself. 

Trauma caused by the injection process likely varied slightly on a daily basis due to 

personal skilfulness and differences in injection needles. However, by comparing the 

mean results of several batches, we hoped to control for this variability.

To investigate the origin of these deformities and optimise the injection protocol 

accordingly, we carried out a series of experiments testing the effect of parameters 

likely to influence the occurrence of malformation such as the amount of construct 

injected and the time of heatshock.

First, we carried out a x -test (using the Yates’ correction formula) on els/WT pairs of 

individual datasets to test whether these malformations were linked to a certain 

genotype. It was asked whether the ratio of malformed:total wild-type (WT) embryos 

was different to the equivalent ratio in els embryos. Appendix 7.3 lists all malformation 

data collected. Under all conditions, no significant difference was found in 

malformation frequency between els mutant and wild-type embryos (Appendix 7.4A). 

We then employed a single factor ANOVAR analysis with 2 levels to investigate the 

effect of various parameters, such as heatshock (hs) treatments, on the frequency of 

malformed embryos.

First, we asked, whether the heatshock treatment itself increased the amount of 

malformations. To do so, we compared the number of malformed embryos depending 

on early (15-16hpf) or late hs (18-19.5hpf) versus no hs at both 50pg (high) and 25pg 

(low) DNA injected per embryo. The “no hs” control was included to assess the 

leakiness of the heatshock promoter. All experiments were scored for percentage of
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malformed embryos (Appendix 7.3). At high concentration, a very significant difference 

at the 0.1% level was found regardless of whether it was an early or late heatshock, 

whereas at low concentration, no significant difference was observed even at the 5% 

level (Appendix 7.4B). Thus, an early or late heatshock does increase malformations, 

but only when high concentrations of DNA are injected.

Next, we asked whether the toxic effect observed was due to the sox 10 cDNA or 

the plasmid vector itself. We injected embryos with 50pg (high) and 25pg (low) pCS 

plasmid only (without the soxlO cDNA) and heatshocked early and late. We found no 

significant difference at the 0.1%, 1% or 5% level between pCS or hs>c/^ffT injections 

when constructs were injected at the low concentration, irrespective of the time of 

heatshock and at the high concentration when heatshocked late. When high 

concentrations were injected and embryos heatshocked early, there seemed to be a
wrsignificant difference between pCS and hs>cls at the 5% level. This could point to a 

slight toxicity of soxlO when overexpressed during early development. For all the other 

conditions, the malformations appeared to be attributable to toxic effects of the 

heatshock plasmid alone (Appendix 7.4C).

When we compared the effect of high and low amounts of hs>cls1̂  construct on 

malformation, no significant difference was found when heatshocked early, but a very 

significant difference (at the 0.1% level) when heatshocked late. The equivalent 

comparisons with pCS injections resulted in a significant difference at the 1% level 

between high and low concentration regardless of the time of heatshock (Appendix 

7.4D).

Next, we investigated whether the time of heatshock had an effect on the 

percentage of deformed embryos. Consistent with the heatshock versus no heatshock 

results, a significant difference between early and late hs was observed when high 

concentrations of either hs>cAWTor pCS was injected, but no significant difference at 

low concentration. Furthermore, the effect was more pronounced in the presence of 

sox 10 cDNA (Appendix 7.4E).

Finally, we asked whether malformations had any effect on the rescue 

experiment. For example, are rescued embryos more or less likely to be malformed than 

others with normal morphology. We tested this with a % -test and investigated whether 

the ratio normal:malformed within the rescued els embryo population was significantly 

different from 1:1. Individual tests were carried out within the different types of 

treatments and also for all of the 22 datasets together (Appendix 7.4F). In any case,

224



within the population of rescued embryos, the number of malformed embryos was not 

significantly higher than rescued embryos with normal morphology. Thus, the presence 

of malformation did not appear to affect the proportion of els embryos rescued.

The results of these previous experiments generally indicated that malformations 

tended to be lower if less DNA was injected and the hs was carried out earlier, at 15- 

16hpf. Thus, to optimise the assay further, we tested an even lower (12pg) and higher 

(120pg) concentration of hs>clsWTm  combination with an early hs. For each of the 4 

construct concentrations, embryos were scored for the percentage of rescued els 

mutants, the degree of rescue (mean number of melanophores per rescued embryo) and 

the percentage of malformation. For comparison, all results were combined and plotted 

in a graph (Figure 7.9, Appendix 7.1 A). As expected, the percentage of rescued els 

embryos and malformations generally increased with the amount of DNA injected. 

However, the number of rescues seemed to plateau or slightly decrease between 50pg 

and 120pg of hs>clsWT, whereas the deformities steadily increased. The mean number of 

melanophores remained fairly constant throughout, apart from a significant peak of 3 

times increase at 50pg.

Taken together, in our hands 50pg construct in combination with an early hs at 15-16hpf 

produced the highest degree of rescue (on average 18.7 melanophores) in the highest 

proportion (61%) of els mutant embryos with relatively low levels of malformation 

(35.7%).

Can mutant soxlO alleles rescue the melanophore aspect of the c/s 

phenotype?

In the previous section we could show that hs>clsWT was able to partially rescue the 

melanophore phenotype in els mutant embryos. We decided to use the same assay to 

characterise some of the els mutant alleles in an in vivo system. We wanted to ask 

whether the mutant proteins had retained any residual function by testing the ability of 

them to rescue pigment cells. Furthermore, we were interested to see whether alleles 

exhibited any dominant negative effects as had been hypothesised for some of the 

human SoxlO alleles (1400dell2, Inoue et al., 1999; E189X and 1076delGA, Pingault et 

al., 1998a) and so far only been shown conclusively in vitro for the mouse allele C190X 

(SoxlOdel, Potterf et al., 2000). In accordance with the mammalian SoxlO pigmentation 

phenotype, we predicted that such a dominant
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Figure 7.9: Summary of rescue and malformation data

(A, B) The graphs show the percentage of homozygous els mutant embryos rescued 

after injection of various amounts of either hs>clsm  (sox 10), hs>c/.sm6;s (m618), 

hs>c/5nv2 (tw2), hs>sox9a (sox9a) or hs>sox9b (sox9b) (A) and the mean number of 

melanophores per rescued els embryo (B). hs>clsm618 and hs>c/5^2 were only assessed 

at 50pg and 120pg, whereas hs>sox9a and hs>sox9b only at 50pg. Only hs^ls™7 was 

able to rescue the pigment phenotype in els embryos. The highest percentage rescue and 

rescued melanophores per els embryo were observed with 50pg. (C) The graph depicts 

the percentage of all malformed embryos (wild-type and els mutants) observed for each 

amount of construct injected. The same abbreviations were used as described in (A) 

with the addition of the heatshock vector without the soxlO coding region (pCS). 

Regardless of the construct, malformations increased with the amount of construct 

injected. hs>sox9a and hs>sox9b were only assessed at 50pg, pCS only at 25pg and 

50pg and hs>clsm618 and hs>c/srw2 were tested at 50pg and 120pg.
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negative effect in zebrafish would be reflected in a reduction in number, aberrant 

distribution or perhaps changed morphology of melanophores due to cell death. No 

phenotype was noticed in uninjected heterozygous siblings of a heterozygous clsm618 or 

clstw2 cross. However, the dominant effect might only become apparent when mutant 

sox 10 is overexpressed in wild-types or in heterozygous mutants, in which the amount 

of SoxlO is halved already.

Consistent with the injection protocol for hs>clsWT, in most cases an early 

heatshock at 15-16hpf was performed. As a control for the initial experiment with
J A /T  A  1 Q

hs>cls , most hs>c/57” injected embryos were also subjected to two heatshocks at the 

time points used before. There was the possibility that a mutant protein with only little 

residual function would be required at higher concentrations for rescue than the wild- 

type protein. Thus, 50pg and 120pg of hs>clsm618 and hs>clstw2 was injected as 

described before. Even though we expected to see a high percentage of malformations 

as a result, the chances of rescue might be increased as well.

Of a total of 125 clsm618 mutant embryos injected with either 50pg or 120pg 

hs>clsm618 that survived to be scored for rescue, none showed any melanophores with 

wild-type morphology (Figure 7.9, Appendix 7.IB). Uninjected siblings usually showed 

only very low levels of deformities. Although the proportion of malformations in the 

uninjected siblings were comparable to the equivalent 50pg hs>cls injections, 

indicating a batch of eggs with similar quality, the percentage of malformed embryos
✓ - in  lATT1

injected with hs>clsm was approximately half of that of the hs>c/s injections 

(Figure 7.9, Appendix 7.3). When 120pg hs>cA^Tor hs>clsm618 was injected, the 

proportion of malformed embryos was comparable.

Similarly, none of 249 clstw2 embryos could be scored as rescued (Figure 7.9, 

Appendix 7.1C). In these injections, 3 embryos injected with 120pg hs>clstw2 and 3 

injected with 50pg exhibited 1-12 melanophores in the dorsal and ventral stripe of trunk 

and tail. Unfortunately, all 6 were very severely malformed and lacked eyes or even 

head structures, which made it impossible to identify them as els mutant embryos. We 

could not exclude the possibility of them being severely delayed wild-type siblings and 

thus, they could not be counted as rescues. Although comparable proportions of 

deformed embryos were recorded in uninjected siblings, twice as many embryos 

injected with 50pg of hs>clstw2 were malformed than with hs>clsWT, whereas with 

120pg the percentages were not significantly different (Figure 7.9, Appendix 7.3).
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We noticed melanophores with abnormal morphology in 20-90% of 

phenotypically wild-type embryos obtained from a heterozygous cross that had been 

injected with hs>clstw2 (Figure 7.10A, B). In the majority of cases, the percentage was 

between 55-85% (Figure 7.10C). As described in the beginning of this section an 

abnormal melanophore morphology might be expected for a dominant negatively acting 

SoxlO protein. Furthermore, the proportion of embryos exhibiting this phenotype was 

also broadly consistent with wild-type and heterozygous mutant siblings, in which a 

possible dominant negative mutant protein had been overexpressed. Thus, a possible 

dominant negative function of clstw2 was further investigated. A simple genetic test 

eliminated this hypothesis very quickly. If the clstw2 allele encoded a dominant negative 

protein, a similar pigmentation phenotype would be expected to be seen in all 

heterozygotes of an uninjected clstw2 cross. No abnormal melanophores were observed 

in heterozygous els mutants, thus ruling out any dominant negative effect of this allele 

at least on the pigment cell lineage.

Can sox9a or sox9b rescue the melanophore aspect of the c/s 

phenotype?

For reasons explained in the introduction to this chapter, we were interested to 

investigate a possible functional redundancy between soxlO and its closest relative, 

sox9. The same rescue protocol and scoring criteria were applied as had been
Vf/Testablished for the rescue experiments with hs>cls .

Of 325 surviving embryos after injection with 50pg hs>sox9a and heatshocked at 15- 

16hpf (early), 76 els embryos were identified. None exhibited any rescued 

melanophores (Figure 7.9, Appendix 7.2A). Although the level of malformation in 

uninjected siblings was comparable, injection with 50pg of hs>sox9a instead of 

hs>c/5^ appeared to result in an increased proportion of deformed embryos (Figure

7.9, Appendix 7.3).

A similar result was obtained with hs>sox9b. Of 263 surviving embryos injected with 

50pg hs>sox9b and heatshocked early, none of the 58 els embryos were rescued (Figure

7.9, Appendix 7.2B). Again, embryos injected with hs>sox9b showed a higher 

proportion of malformed embryos than a comparable batch injected with hs>clsWT 

(Figure 7.9, Appendix 7.3).
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T-4 4/16 25%
T-5 16/82 19.5%
T-6 74/130 56.9%
T-7 37/67 55.2%
T-8 16/39 41%
T-9 19/28 67.9%
T-10 16/19 84.2%

Figure 7.10: Investigation of a possible dominant negative effect in elsm'2 

(A, B) The two panels show examples of the aberrant melanophore phenotype (black 

arrowheads) in 48hpf embryos of a heterozygous els'71618 cross injected with the 

hs>c/ls,nv2 construct, which could indicate a possible dominant negative (DN) function of 

the els'”2 allele. These melanophores appeared rounded, often bipolar or elongated and 

were dispersed between melanophores with wild-type morphology (black arrows), o, 

otic vesicle; y, yolk sac. (C) The table summarises counts of embryos in which such a 

phenotype was observed. The first column indicates the injected batch analysed, column 

2 contains the number of embryos exhibiting the abnormal melanophores (Abn. M) in 

relation to the total number of embryos injected in this batch (total embryos). In column 

3, the percentage of embryos that show these abnormal melanophores is given (% Abn. 

M). Genetically, 3A (75%) of embryos corresponding to wild-type and heterozygous 

els™618 siblings, might exhibit the aberrant phenotype, but at least all heterozygotes 

(50%), in which the amount of SoxlO is halved already.
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Discussion

We have described the successful rescue of the pigment phenotype in clsm618 mutants by 

ectopic expression of soxlO. This was achieved by driving the expression of sox 10 with 

a heatshock inducible promoter. In addition, we demonstrated that neither Sox9a nor 

Sox9b can replace SoxlO function in this assay.

Generation of the hs>clsWT construct by RT-PCR and cloning into the heatshock 

vector was unsuccessful. Even though a high-fidelity Taq polymerase was used in this 

PCR reaction, it seemed difficult to identify such a hs>clsWT construct without any non­

conservative nucleotide changes, which altered the amino acid sequence. The reason for 

this increased error rate might have been the high number of PCR cycles required to 

amplify the coding region from cDNA. However, an error-free hs>clsm618 was identified 

and thus, using site-directed mutagenesis to create the missing heatshock constructs had 

several advantages. In this method, all mutagenised strands are created by a single 

replication of only parental strands (Figure 7.5) and thus, any mistake introduced is not 

amplified in subsequent rounds of replication. Hence, this approach proved to be an 

easy and very reliable method, which was employed repeatedly to create 2 heatshock 

constructs. The sample of constructs analysed all proved to have incorporated the 

desired nucleotide change and were tested in in vivo rescue assays.

Injection of 50pg hs>c/5WT construct followed by a heatshock treatment resulted 

in rescue of a mean number of 15 melanophores in 48% of surviving els mutant 

embryos. In the control experiment, in which embryos were also injected with 50pg of 

hs>c/5WTbut not heatshocked, resulted in only a slightly lower percentage of rescued 

embryos, 35% instead of 48%. This indicated a fairly high degree of leakiness of the 

heatshock promoter, sox 10 transcripts were thus produced even without the requirement 

of a heatshock. This finding did not invalidate the rescue results. Firstly, although the 

number of rescued embryos was similar with or without heatshock, the proportion of 

rescue was significantly higher in heatshocked embryos (mean number of rescued 

melanophores per embryo 15.0 instead of 4.3). Secondly, embryos injected with the 

control construct hs>pCS, failed to rescue melanophores, whether or not heatshocked. 

Thirdly, a similarly high degree of leakiness for the same heatshock plasmid was 

reported for nacre rescue experiments (Lister et al., 1999).

The leakiness of the heatshock promoter might also be partially responsible for the high 

percentage of malformation observed in injected embryos. However, our control
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injections revealed that a large proportion of the deformations observed were not likely 

to be caused by SoxlO, but by either the plasmid itself or the heatshock promoter. The
Tl/rp

proportion of malformed embryos obtained with hs>c/s was usually not significantly

different to those obtained with an equivalent amount of control plasmid hs>pCS, which 

only lacked the sox 10 sequence. Additionally, the optimisation procedure revealed that 

not only the proportion of embryos with malformations, but also the percentage and 

degree of melanophore rescue, generally increased with increasing amounts of sox 10 

DNA injected. The former result was consistent with the construct showing slightly 

toxic effects. Furthermore, one instead of two heatshock treatments lowered the 

proportion of deformed embryos, although a heatshock treatment in general did not 

increase malformations as long as low amounts of construct were injected. This could 

be interpreted as a slight toxicity of the SoxlO protein itself. Lastly, if the heatshock was 

carried out early (15-16hpf) instead of late (18-19.5hpf), slightly less malformed 

embryos were observed. The reason for this might be greater sensitivity to high levels of 

SoxlO at earlier stages during development. Misregulation of gene transcription at this 

earlier stage is likely to result in more deleterious defects.

In summary, the best results overall in our assay were achieved with 50pg hs>clsWT and 

a heatshock at 15-16hpf. The amount of construct injected per embryo is similar to that 

reported for rescue of homozygous nac embryos with hs>nac (Lister et al., 1999). 

However, more nacre embryos were rescued if the heatshock treatment was carried out 

later, between 18-20hpf.

For future experiments, it might be worthwhile to assess whether the toxic effects 

observed above resided in the plasmid or the heatshock promoter itself. This could be 

tested by comparing deformities after injection of the expression plasmid with and 

without the heatshock promoter. In the case of promoter toxicity, rescue experiments 

might be much improved if SoxlO expression was regulated by another promoter, e.g. 

its own promoter, especially if experiments require injection of large amounts of 

construct as in the case for testing mutant alleles. The sox 10 promoter would also direct 

SoxlO expression to more specific locations and time.

Rescued melanophores were observed mosaicly as was expected for DNA injections 

into early embryos (Oliver et al., 1996; Hammerschmidt et al., 1999). During 

development, hs> c/5^is distributed unevenly between dividing daughter cells and 

thus, not every cell will have received the construct.
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SoxlO not only enabled pigment precursors to differentiate and adopt the typical 

morphology for wild-type melanophores, but also rescued their migration to ventral 

positions. Thus, rescued melanophores were often observed in the ventral stripe or on 

the yolk sac. The role of SoxlO could therefore be primarily in enabling the migration 

of crest cells, which then encounter the appropriate signals for differentiation. Judging 

by the sox 10 expression pattern in els embryos at approximately 24-3 Ohpf, a greater 

number of soxl 0-positive neural crest cells failed to migrate and appeared to remain in 

the crest staging area compared to wild-type. They still did not differentiate in that 

location as would be expected from a primarily migrational defect. Furthermore, the 

premigratory area is also the final location for some melanophores residing in the dorsal 

stripe and hence all necessary factors for differentiation have to be present. However, 

melanophores still did not differentiate properly in els mutants in this area. In summary, 

the most likely explanation for the observations above is that neural crest cells that 

receive sox 10 are able to become specified as pigment cell precursors and so are 

enabled to migrate to their final locations.

The rescue of els mutants by heatshock after injection of a hs>c/5^Tconstruct 

raised the question of whether mRNA injection might also be an appropriate strategy for 

achieving rescue. However, melanophores failed to be rescued by soxl 0 mRNA 

injection (S. Elworthy, unpubl. data). This result was not surprising since SoxlO may 

not be required until approximately 24hpf of development, whilst it is unlikely that 

injected RNA is still present in sufficient amounts this late (Hammerschmidt et al., 

1999). However, the injected soxlO mRNA was functional, since transcripts of a 

downstream target, nacre, were detectable by in situ hybridisation in 6hpf stage 

embryos, some 12 hours prior to endogenous gene expression (Lister et al., 1999).

It will be very interesting to test for other rescued neural crest derivatives in 

future experiments. This has been attempted for the enteric lineage (S. Elworthy and R. 

Kelsh, unpubl. data), but to date has been unsuccessful, perhaps because the number of 

enteric precursors maybe very small compared to pigment precursors. Due to the mosaic 

characteristics of the injection technique, this small group might be very difficult to 

target and thus, rescue would be much harder to observe.

In clsm61\  the L142Q lesion is expected to significantly decrease the binding 

ability of SoxlO to its recognition sequences in the promoter of downstream targets.
m/il J?Reduced DNA binding ability might also prevent SoxlO from interacting with its 

partner transcription factors, since both the HMG and the synergy domain are required
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for synergistic activity (Kuhlbrodt et al., 1998a). Furthermore, failure to interact 

synergistically with other transcription factors was observed for similar human 

mutations containing disrupted HMG domains (Kuhlbrodt et al., 1998b). Diminished 

DNA binding might also affect the efficiency of the transactivation domain as was 

demonstrated for the human 482ins6 mutant (Bondurand et al., 2000). Although the 

clstw2 allele has likely retained its binding ability, it has lost the transactivation domain 

due to a premature truncation of the protein caused by the K376X lesion. Consistent 

with this, these two els alleles failed to show any significant transcriptional activation 

abilities in the in vitro study described in the previous chapter, indicative of them being 

null alleles. However, there is a possibility that they might show some residual function
1Rthrough their putative synergy domains. This is less likely to be true for els , since a 

functional DNA binding domain is required for synergistic activity, at least for rat 

SoxlO (Kuhlbrodt et al., 1998a). Thus, taken together, it seemed unlikely that either of 

the two alleles, but in particular els™618, would rescue any aspect of the els phenotype. 

As predicted, both mutant SoxlO proteins encoded by clsm618 and clstw2 failed to rescue 

the pigment aspect of the els phenotype. It would be interesting to investigate whether 

other neural crest derivatives affected in els embryos, for example the peripheral 

nervous system (PNS), could be rescued.

All human and mouse alleles exhibit a dominant phenotype. Some of those 

dominant effects are thought to be due to dominant negativity and manifest themselves 

in patients with white forelocks and occasionally depigmented skin patches, blue eyes 

or heterochromic irides (Pingault et al., 1998a; Bondurand et al., 1999; Southard-Smith 

et al., 1999) and white belly spots and feet in mice (Lane and Liu, 1984; Herbarth et al., 

1998; Southard-Smith et al., 1998). In batches of embryos injected with els*™2, 

melanophores with abnormal morphology were observed, which in principle could have 

been due to a dominant negative effect. However, these abnormal melanophores were 

not seen in heterozygous offspring of an uninjected clstw2 cross. Furthermore, petri- 

dishes and embryo medium had irrationally been re-used once for these batches of 

injected embryos. Thus, possible changes of the medium concentration due to 

evaporation, perhaps exacerbated by injection trauma, are more likely to have caused 

this aberrant pigment morphology.

We have created two further heatshock constructs, hs>clsY83X and hs>clsE189X, by
w r  jriRoy

site-directed mutagenesis from hs>cls . The rationale behind creating the hs>cls 

allele was that the mouse SoxlOdel and SoxlODom mutations are almost in exactly the
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some nucleotide position, but the mutant human protein lacks the additional novel 

amino acids created by the frameshift mutation in the mouse alleles. Furthermore, 

SoxlOdel was shown to encode a dominant negative protein in in vitro transcription 

assays (Potterf et al., 2000), whereas the SoxlO00"11  phenotype can be fully explained 

by haploinsufficiency as was shown by comparison to a SoxlOIacZ/+ mouse (Britsch et 

al., 2001). To test whether any of these dominant phenotypes could be reproduced in 

zebrafish, in which lesions in soxlO normally only cause a recessive phenotype, would 

represent an interesting future extension of this work.

The location of the lesion in the human Y83X allele is similar to our clst3 allele and 

truncates the protein upstream of the HMG domain. However, at the time this construct 

was made, the clstS lesion had not been identified. The Y83X allele, together with 

El 89X and K376X represented a convenient set of truncated proteins to investigate the 

functional abilities of SoxlO lacking each domain. Y83X and E189X truncate SoxlO 

approximately after the synergy domain and after the HMG domain respectively, 

whereas K376X only lacks the transactivation domain (Figure 7.11).

These constructs are prepared and ready to be assessed in overexpression studies and in 

a luciferase reporter construct assay as previously described for other heatshock 

constructs. Unfortunately, none of these experiments have been started to date.

Ectopic expression of either sox9a or sox9b was unable to rescue melanophores 

in els mutants. It would be interesting to investigate rescue of other neural crest 

derivatives. The partial expressivity of the defect in sensory neurons of DRG compared 

to an essentially full expressivity of the pigment phenotype might indicate a functional 

redundancy with a similar protein in DRG. Very recently, K. Dutton has shown that 

injection of either sox9a or sox9b morpholino, which knocks-down sox9a and sox9b
t ?transcription, respectively, exacerbates the DRG defect in els embryos (K. Dutton, 

unpubl. data). Thus, Sox9a and Sox9b might act redundantly with SoxlO within the 

DRG lineage.

Overexpression of Sox9a, Sox9b and mutant SoxlO proteins resulted in a higher 

proportion of deformed embryos. However, this result is likely to be artefactual, since 

the concentration of the various heatshock constructs was only estimated by gel 

electrophoresis and comparison to a quantitative DNA marker. Thus, some variation in 

the amount of construct injected could easily explain the differences in malformation 

observed.
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Figure 7.11: Location of mutagenesis primer pairs used to introduce mutant lesions identified in human alleles Y83X and E189X.

(A) The coding and untranslated regions (5’ UTR, 5’ untranslated region; 3’ UTR, 3’ untranslated region) of soxl 0 are shown together with the 

HMG domain (black), the synergy domain (dotted) and the transactivation domain (checked). Long reverse complementary primers 

WT1->Y83X and WT2—»Y83X were designed to introduce a premature stop codon truncating the protein at the C-terminal end of the synergy 

domain. Another primer pair WT1—>E189X and WT2-»E189X introduces a stop codon just downstream of the HMG domain and hence, the 

protein truncates after the synergy and HMG domain. The zebrafish mutant lesion found in e l s ^  (K376X) is indicated. The scale bar represents 

the length of a lOObp fragment. (B) The diagram shows the 3 mutant heatshock constructs and their remaining functional domains, hs>cls&376X 

(hs>c/5^^) only lacks the transactivation domain (checked), h s > c l s ^ ^ ^  contains the entire N-terminal domain including the synergy (dotted) 

and the HMG domain (black), whereas hs>clsY$3X 0nly contains the synergy domain (dotted). It is noted that these domains of zebrafish SoxlO 

are only putative and based on those defined in mouse SoxlO.
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In summary, we could demonstrate rescue of the melanophore lineage in els 

mutants by ectopic expression of soxlO, but not with mutant els alleles, clsm618 and 

clstw2, sox9a or sox9b. These results, together with the disrupted expression of sox 10 in 

els mutants, the identification of 3 distinct soxlO mutant lesions in els alleles and tight 

linkage between the els locus and soxlO show beyond any reasonable doubt that els 

encodes soxlO. Hereafter, mutant alleles, for example els'”618 and elstw2, will be renamed 

as soxl (T618 and soxlOtw2, respectively.
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Final discussion and conclusions

The aim of this project was to identify the gene encoded at the colourless locus; 

specifically, to test the candidate gene sox 10, an HMG domain transcription factor.

To address this objective we had to clone sox 10 and then test whether els encoded 

soxlO.

To clone els we chose the candidate gene approach. Although there are several 

loci in mice and humans causing neurocristopathies with a similar combination of 

defects as observed in els, detailed analysis of their phenotypes revealed SoxlO as the 

most promising candidate gene. We chose RT-PCR and RACE PCR as the method to 

clone soxlO using the then available mammalian SoxlO sequences to design primers.

The reliability of the primer design might have been improved, if the only recently 

published chicken SoxlO could have been included. In the not too distant future, the 

entire zebrafish genome will have been sequenced and thus, cloning of zebrafish genes 

will be trivial.

Once a soxl 0-like cDNA was isolated, we were very cautious in assigning its 

true identity. Sox genes of the same subgroup show high similarities to each other and 

some Sox genes in the database were originally misidentified. Sequence alignments with 

other SoxlO, Sox9 and Sox8 proteins, all members of subgroup E, and phylogenetic 

analysis both indicated that our clone represented a true SoxlO homologue.

Furthermore, in situ hybridisation with a large fragment of this soxl 0-like gene also 

showed expression patterns highly reminiscent of other SoxlO homologues in mouse, 

human and chicken. Lastly, our clone was placed next to the polymerase POLRF gene 

on LG3. SOXIO on human chromosome 22ql3.1 was very tightly linked to human 

POLRF consistent with our isolated cDNA being a soxl 0 orthologue and with these 

genes defining a synteny between fish and human. Together, these data were in strong 

agreement with the proposition that the cloned cDNA represented a soxl 0 homologue.

Next we presented very strong support in favour of the hypothesis that 

homozygous lesions in soxlO caused the els phenotype. First, we showed that soxlO 

expression was disrupted in els mutant embryos. Interestingly, sox 10 expression in all 

mutant alleles apart from soxlOP22̂  and soxl 01 Of3 was indistinguishable from wild-types 

up to approximately 24hpf. From 24hpf, sox 10 expression levels associated with cranial 

ganglia and in Schwann cells on the posterior lateral line nerve were reduced and soxlO-
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positive neural crest cells in the head and trunk showed a migrational defect. Thus, 

mutant soxl 0 was first transcribed at normal levels, but the resulting mutant protein 

might have been unable to maintain its expression. Secondly, we demonstrated tight 

linkage between sox 10 and the els mutant locus. Thirdly, we identified non-conservative 

point mutations in 3 of the els alleles, which correlate with the mutant phenotype.

Molecular characterisation revealed that all three lesions were found in the 

coding region of soxlO. L142Q in soxl (F618 affects a fully conserved residue in the 

HMG domain and is likely to diminish the ability of the mutant protein to bind to its 

DNA target sequences. K376X in soxlOtw2 and soxlOtw11 truncates the protein 

prematurely upstream of the transactivation domain. A fourth lesion was identified in 

soxtS by T. Carney, which caused truncation of the protein N-terminal to the HMG 

domain due to an insertion of a transposable element. No lesion has yet been found in 

soxlOty22̂  but it seems likely to be different to other previously identified alleles, soxty22̂  

transcripts were produced at lower levels at a stage when other alleles showed normal 

soxlO expression. This indicates that the mutation might be in one of the regulatory 

elements or might destabilise the transcript.

The functional abilities of these 3 alleles were analysed in in vitro and in vivo 

studies. Consistent with our molecular characterisation of these mutant alleles, L142Q 

(soxl(F618) and K376X (soxlOtw2 and soxlOtw11) did not show any significant 

transcriptional activation ability in in vitro studies (W. Pavan, unpubl. data). 

Furthermore, unlike wild-type SoxlO, mutant SoxlO proteins were unable to rescue the 

pigment phenotype in vivo, soxl 013 was not included in such in vivo or in vitro 

experiments, since the lesion had not been identified at that time. Due to the very 

premature truncation of the protein, soxlO13 is likely to be a functional null allele. Like 

soxlO13, the human Y83X allele lacks the conserved DNA binding domain, both nuclear 

localisation signals and the transactivation domain, which leads to complete functional 

inactivation of the protein (Kuhlbrodt et al., 1998b).

Preliminary studies carried out by project students compared the severity of the 

els mutant phenotype in various alleles and did not reveal any striking differences 

between any of the alleles. The phenotype of these alleles was also very similar to the 

maximal morphant phenocopy obtained with the highest doses of sox 10 morpholino 

(Dutton et al., 2001a). In strong soxlO mutant phenotypes produced by the soxl OF618 or 

soxlOtw2/tw11 allele for example, melanophores with wild-type morphology are never 

present. However, even with the highest doses of soxl 0 morpholino, an average of 11
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normal melanophores were observed. Thus, taken together, these data suggest that 

soxlCT618, soxlOtw2 and soxlOtw11 are likely to be nulls (Dutton et al., 2001a).

Consistent with being a null, mutant alleles failed to rescue pigment cells when 

ectopically expressed in soxlO mutants despite the fact that under such circumstances, 

mutant proteins might be expected to be expressed at levels above endogenous 

expression levels. However, it remains to be tested whether mutant SoxlO protein can 

rescue other crest derivatives affected in els mutants such as enteric ganglia or DRG. In 

accordance with the results from the in vitro studies testing transcriptional activation 

ability of mutant SoxlO proteins, failure to rescue pigment cells was most likely due to 

the inability to transactivate downstream targets such as nacre. In a similar experiment, 

the SoxlO00” mouse mutation and human SoxlO059 failed to induce endogenous protein 

zero (.Po) expression in an in vitro cell line, a protein involved in regulating Schwann 

cell specific expression (Lemke et al., 1988; Peirano et al., 2000a).

The mammalian SoxlO mutants showed a dominant phenotype, whilst only fully 

recessive phenotypes have been detected in sox 10 mutant alleles in zebrafish.

Phenotypes in WS4 patients have been suggested to be generated via haploinsufficiency 

(Pingault et al., 1998a), but this has only been tested for the SoxlODom mouse mutant. 

Heterozygous mutants in which the SoxlO coding region was replaced with lacZ 

exhibited an identical phenotype to heterozygous Soxl0Dom,+ mice (Britsch et al., 2001). 

It is likely that the effects in these mice is due to the halving of the amount of SoxlO 

protein, thus suggesting the proposal that the Soxl0Pom/+ heterozygous phenotype is 

explained by the same mechanism. Heterozygous els mutants however do not appear to 

have any defects. It will certainly be very interesting to investigate the cause of this 

discrepancy.

Dominant negativity has been suggested for several human alleles, but only 

conclusively shown in vitro for the artificially created SoxlOdel mouse allele (Potterf et 

al., 2000). None of the els alleles appeared to be dominant negative when mutant 

protein was expressed ectopically. Likewise, uninjected heterozygous els embryos also 

did not exhibit a lower number of pigment cells or show any kind of aberrant pigment 

cell morphology or distribution, which might be the result of dominant negatively acting 

SoxlO protein. However, the effect might be subtle and thus to assess dominant 

negativity conclusively, a concentration dependent effect of mutant SoxlO on the 

functional ability of co-transfected wild-type SoxlO would have to be demonstrated. For 

example, one could show wild-type SoxlO activating the nacre promoter in a luciferase
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reporter construct. If any of the els alleles were dominant negative, this activation by 

wild-type protein would be progressively inhibited by increasing amounts of co­

transfected mutant protein. Alternatively, cultured undifferentiated neural crest cells 

might fail to survive or differentiate when transfected with mutant soxl 0.

The difference in dominance in mouse and fish might also be due to other factors such 

as genetic background. Thus, it will be interesting to investigate whether the artificially 

created mouse SoxlOdel allele exhibits any dominant negative function when 

overexpressed in zebrafish. SoxlOdel and the haploinsufficient SoxlODom allele (Britsch 

et al., 2001), are caused by frameshift mutations which introduce 8 and 99 novel amino 

acids respectively, before premature truncation of the protein (Herbarth et al., 1998; 

Southard-Smith et al., 1998; Potterf et al., 2000). However, these extraneous residues 

are difficult to replicate and thus we have recreated the human E189X allele instead, 

which is truncated at almost exactly the same location as the two mouse alleles 

SoxlOdel (C190X) and SoxlODom (E193insG; Pingault et al., 1998a; Southard-Smith et 

al., 1998; Potterf et al., 2000). No experiments with this artificial zebrafish soxlO 

mutant allele have been carried out to date. However, this allele will hopefully be tested 

in our rescue assays for residual function and possible dominant negative effects by 

ectopic expression in wild-type embryos.

Finally, having identified soxlO, we can now exploit the cell biological 

advantages of zebrafish to investigate the role of this transcription factor during neural 

crest development in detail. In neural crest cell transplant studies, it was shown that 

soxlO acted cell autonomously in pigment cells (Kelsh and Eisen, 2000b), consistent 

with it being a transcription factor. Iontophoretic labelling of single neural crest cells 

revealed that ectomesenchymal fates differentiated normally, but non-ectomesenchymal 

crest derivatives died in els embryos before differentiation. Furthermore, these cells 

were dying by an apoptotic mechanism within a discrete time window (Dutton et al., 

2001b). Most neural crest cells in els embryos showed restricted migration consistent 

with the counts of soxl  ̂ -positive cells in soxlO in situ hybridisations described here.

Potentially, SoxlO could be involved in survival, migration, proliferation, 

differentiation or specification of neural crest cells. However, results from our sox 10 in 

situ hybridisation studies suggest that the timing and distribution of soxl 0 expression is 

consistent with a primary role for SoxlO in specification of neural crest derivatives.

A primary role for SoxlO in survival of neural crest cells seems unlikely since 

this would predict a very short time between the earliest defect and the onset of neural
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crest cell death. At approximately 20hpf els mutants are first distinguishable from wild- 

types by a lack of nacre expression, whereas apoptosis of neural crest cells in els 

embryos is only observed approximately 15 hours later (Dutton et al., 2001b). In 

contrast, previous reports suggest that the delay between induction of apoptosis and 

detectable changes in cellular morphology is approximately 3-4 hours (Ikegami et al., 

1999). SoxlO was shown to support survival of murine undifferentiated postmigratory 

neural cells in vitro. It was suggested that this function of SoxlO was mediated by 

regulating neuregulin (NRG1) signalling (Paratore et al., 2001). However, they failed to 

show that cell death due to lack of NRG 1 signalling was the primary defect. Thus, this 

in vitro study is consistent with our observations and conclusions in vivo that survival is 

not SoxlO’s primary function.

A primary role of SoxlO in migration of neural crest cells is equally unlikely. 

Cranial neural crest cells are scattered across wild-type heads, whereas they tend to 

form clusters in els mutants indicative of inhibited migration. Trunk neural crest cells 

fail to enter the lateral migration pathway and accumulate in the premigratory position.

It could be argued that a migrational defect in crest derivatives lacking SoxlO might 

prevent them from encountering the appropriate environments for their trophic support 

and hence they die before differentiation. However, this does not hold true for the 3 

pigment cell derivatives. The premigratory area is also a final location for those pigment 

cells which will form the dorsal stripe and thus, all the necessary factors have to be 

present. Despite this, fully differentiated pigment cells are not observed in the dorsal 

stripe of els embryos.

Instead, we have proposed that SoxlO’s primary function is in specification of non- 

ectomesenchymal fates. In els mutants the failure to become specified properly then 

leads to all other secondary defects observed such as inhibited migration, slightly 

reduced proliferation (K. Dutton and R. Kelsh, unpubl. data) and apoptosis prior to 

differentiation (Dutton et al., 2001b). This proposal fits well with observations of 

melanophore lineage markers in els embryos (Dutton et al., 2001b; Figure 8.1). Nacre, 

like mammalian MzY/’homologues, was shown to play an important role in specifying 

the melanophore fate and its expression was absent in els embryos (Tachibana et al., 

1996; Opdecamp et al., 1997; Lister et al., 1999). In fact, ectopic expression of nacre in 

els embryos was sufficient to rescue melanophores (S. Elworthy, unpubl. data) 

consistent with the direct activation of the human MITF promoter by SOX 10
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Figure 8.1: Schematic of possible upstream and downstream targets of SoxlO

Information on included interactions were taken from :1 Lister et al., 1999,2 Bondurand et al., 2000,3 Potterf et al., 2000,4 Parichy et al., 1999,5 

Kelsh et al., 2000c, 6 Kelsh et al., 1996,7 Britsch et al., 2001,8 Peirano et al., 2000a,9 Peirano et al., 2000b,10 Sommer et al., 1996,11 Lang et al., 

2000,12 Pattyn et al., 1999, 13 Stolt et al., 2002,14 K. Dutton, unpubl. observ.,15 Bell et al., 1997.

Solid arrows indicate a direct regulation, dashed arrows an unknown interaction, d, differentiation; m, migration; p, proliferation; s, survival; glia 

spec, expr., glia specific expression; redund., functionally redundant; BMP, Bone morphogenetic protein; dct, dopachrome tautomerase; FGF, 

fibroblast growth factor; GDNF, glial derived neurotrophic factor; MBP, myelin basic protein; Mitf, microphthalmia; ngnl/2, neurogenin 1/2; 

PLP, proteolipid protein; Po, myelin protein zero; trp2, tyrosinase related protein-2; tyr, tyrosinase.
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(Bondurand et al., 2000; Potterf et al., 2000). Sparse, a c-kit homologue, was shown to 

have a role in migration of melanoblasts and survival of both melanoblasts and 

melanophores and its expression was lost in els and nacre embryos (Parichy et al.,

1999; Kelsh et al., 2000c; Dutton et al., 2001b). The enzyme Dopachrome tautomerase 

(.Dct; Kelsh et al., 2000c), an early melanoblast marker, is involved in synthesis of the 

melanin precursor and its expression is absent in nacre mutants (Lister et al., 1999). 

Furthermore, in mice, SoxlO was shown to activate the Dct promoter in vitro and was 

suggested to transiently regulate early Dct transcription directly (Potterf et al., 2001). 

Thus, the proposed model for SoxlO in melanophore specification included direct 

activation of nacre, likely in synergy with Pax3, which in turn directly or indirectly 

induced the expression of genes involved in migration, survival and differentiation of 

melanoblasts, such as sparse and dct (Dutton et al., 2001b).

Further tests of this model of SoxlO function will require the demonstration of similar 

scenarios to explain other neural crest defects, for example those in the enteric and 

sensory ganglia lineages. A schematic of suggested downstream targets of SoxlO in 

various neural crest derivatives is shown in Figure 8.1.

els mutant embryos exhibit defects in only a subset of neural crest derivatives, 

the non-ectomesenchymal lineages, whereas ectomesenchymal derivatives appear 

unaffected (Kelsh and Eisen, 2000b; Dutton et al., 2001b). Our model suggests a role 

for SoxlO in specifying only the non-ectomesenchymal lineages. Thus, we asked 

whether soxlO was expressed in all neural crest cells at a stage in which most cells are 

fate-restricted, or perhaps only in a subset of cells, which might represent non- 

ectomesenchymal precursors.

We first compared sox 10 expression to crestin, published as a pan-neural crest 

marker. However, at early stages we found that crestin was not expressed in cranial 

crest, which was subsequently confirmed by the original authors (P. Henion, pers. 

commun.). At the 16hpf stage, we observed a few scattered neural crest cells in the head 

starting to express crestin, but their fate restriction or specification is unknown. 

Nevertheless, crestin represents a useful marker for all trunk neural crest cells for future 

experiments.

Although SoxlO has been used as a pan-neural crest marker in mouse (e.g.

Pattyn et al., 1999), we showed in our double in situ labelling studies with fkd6  and 

soxl0 that this was not true, at least in zebrafish. We observed some premigratory 

neural crest cells at the 6 somite and at the 14 somite stage, which were only labelled
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with fkd6, but not soxlO, demonstrating an incomplete overlap between these two crest 

markers.

One possible explanation for these soxlO'Ijkdtf cells would be that they represent 

ectomesenchymal precursors. This hypothesis would be consistent with these fates 

being unaffected in els mutant embryos (Kelsh and Eisen, 2000b). Craniofacial 

cartilage, an ectomesenchymal neural crest lineage, is only derived from the cranial 

neural crest, a region in which we had observed these soxl 0-negative cells. They appear 

to become distinct from non-ectomesenchymal lineages early during neural crest 

development (Schilling and Kimmel, 1994; Dutton et al., 2001b). Unfortunately, there 

is no marker for early ectomesenchymal precursors available to date. The hypothesis 

could then be confirmed by showing a non-overlapping signal with soxlO.

In absence of a marker, one could hypothesise about the likely identity of these soxl O' 

!fkd6f cells depending on their location. At least 88% of cranial neural crest cells were 

shown to be fate-restricted and give rise to single cell-type fates (Schilling and Kimmel, 

1994). Two research groups have investigated fate maps of cranial crest cell precursors, 

with slightly differing results. Schilling and colleagues found that the most lateral tier 

(1) of neural crest cells in a 6 somite stage embryo gave rise exclusively to neural cells, 

whereas Schwann cells, neural and pigment cells were derived from tier (2). More 

medial tiers (3-5) gave rise predominantly to pigment cells, glia and cartilage cells and 

clones from tier (6) were of an exclusively cartilage and connective tissue nature 

(Schilling and Kimmel, 1994). Although lateral cells never produced cartilage according 

to Schilling, Dorsky reported cartilage derived from both lateral and medial cells. 

Dorsky found that neurons were mostly derived from lateral cells, pigment from medial 

cells and glia from all positions (Dorsky et al., 1998). One possible explanation for this 

discrepancy is that Schilling only labelled the most superficial 20% of neural crest cells 

and thus, cartilage precursors observed by Dorsky could have been lateral cells in a 

deeper layer.

In our study in 6 somite stage embryos, soxl0'lfkd6f cranial neural crest cells could only 

be identified on the very surface due to visibility problems in deeper layers.

Furthermore, the two cells documented in Figure 4.6A and B were located medially in 

tier (5) or (6) and thus could represent cartilage precursors according to (Schilling and 

Kimmel, 1994; Dorsky et al., 1998). This would support the hypothesis that soxlO 

might not be expressed in ectomesenchymal derivatives and thus, they are unaffected in 

soxlO mutant embryos.
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Alternatively, the lack of defects in the cartilage lineage in els mutants might be 

explained by functional redundancy of SoxlO with another protein in this cell-type. 

Functional redundancy might not only affect ectomesenchymal derivatives to prevent 

overt defects in els mutants. It might also help to explain differences in severity of the 

DRG defect along the rostrocaudal axis or even the recessive phenotype observed in 

zebrafish sox 10 mutants in contrast to mammalian SoxlO mutants. Such redundant 

action could be achieved between sox 10 and a second paralogue or sox 10 and a closely 

related Sox gene.

It is possible that a second paralogue of soxlO exists in zebrafish that arose during the

additional genome duplication event in ray-finned fish (Amores et al., 1998;

Postlethwait et al., 1998). So far, for zebrafish sox9 and soxl 1, such duplicated

paralogues have been identified, but functional redundancy between those paralogues

has not been investigated (Rimini et al., 1999; Chiang et al., 2001). However, functional

redundancy between duplicated genes has been suggested for the two zebrafish m itf

paralogues. It was shown that mitjb misexpression could rescue the formation of

melanophores in nacre (mitfa) mutant embryos although at lower efficiency. Thus,

Mitfb protein could functionally substitute for Mitfa (Lister et al., 2001).

There are several suitable approaches to investigate the existence of a second soxlO

paralogue. The degree of conservation between the pairs of Sox9 and Soxl 1 paralogues

is high with 60% and 70% overall amino acid identity respectively (Rimini et al., 1999;

Chiang et al., 2001). Thus, if they exist, the sequences of the two soxl 0 paralogues

would be expected to be very conserved at least within important functional domains.

PCR-based methods could be designed that attempt to bias against the previously

cloned soxl 0 and thus, favour amplification of a second paralogue. Firstly, one could

perform a PCR amplification on soxl0tS cDNA with degenerate primers designed

against sequences conserved in soxlO, but not sox9 regions, sox 10 expression in the 
/ ?soxlO allele is drastically reduced (chapter 6) and thus contains less sox 10a transcript 

that could serve as a template. Secondly, a PCR amplification could be performed on 

soxlOt3 cDNA with degenerate soxl 0-specific primers designed to flank the t3 insertion 

site. PCR products derived from the previously cloned soxlOa would be distinguished 

from soxl 0b derived products by an 1.4kb increase in size, corresponding to the 

insertion of the transposable element. Alternatively, a soxl 0b fragment could be 

amplified using degenerate soxl0-specific primers and genomic DNA from the c l033
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line. The latter is a deletion mutant, which lacks markers surrounding soxlOa and thus is 

likely also to lack soxlOa itself.

Another consideration when trying to identify a putative sox 10b is the time of its 

expression. To successfully isolate soxlOb, one has to guess when it might be expressed 

during development. To use one of the first two approaches, cDNA from sox ltf3 

embryos would have to be isolated from various timepoints. However, cDNA from els 

mutant adults cannot be obtained, since els alleles are embryonic lethal. The third 

approach, PCR from genomic DNA, avoids this problem and might thus be the most 

promising method.

Once cloned, one would have to test whether this putative soxlOb was expressed at the 

correct stage to be able to act redundantly with SoxlOa. Next, a functional redundancy 

between SoxlOa and SoxlOb could be investigated by ectopic soxlOb expression in els 

embryos. If they acted redundantly, one might expect to see partial rescue of the els 

phenotype. The demonstration of the enhancement of the els phenotype by injection of a 

soxlOb morpholino into els embryos would also suggest functional redundancy between 

the SoxlO paralogues.

Even in the absence of a soxlOb, a closely related Sox gene might act 

functionally redundantly with soxlO. Such an action in the ectomesenchymal lineage 

might explain the lack of defects in these cell-types in els mutants. In addition or 

alternatively, this close relative might substitute for lack of sox 10 in DRG development. 

In els embryos, DRGs in anterior segments are much less severely affected than in 

posterior segments (Kelsh and Eisen, 2000b) which might suggest a possible 

redundancy.

Sox genes of subgroup E (sox8, sox9 and sox 10 and likely any possible duplicated 

paralogues) are all closely related on the basis of their sequence and gene structure 

(Bowles et al., 2000). The regions of their expression are overlapping in the neural crest 

(sox8, sox9 and sox 10), in the otic vesicle (sox9, sox 10), in the eye (sox8, sox9), in 

DRGs (sox8, sox 10), limbs or pectoral fin buds (sox8, sox9, sox 10), somites (sox8, 

sox9), CNS (sox8, sox9, soxlO), gut (sox8, sox9, sox 10), testis (sox8, sox9) and the heart 

(sox8, sox9, soxlO) (Wright et al., 1995; Ng et al., 1997; Bondurand et al., 1998b; 

Herbarth et al., 1998; Kuhlbrodt et al., 1998a; Southard-Smith et al., 1998; Bell et al., 

2000; Cheng et al., 2000; Schepers et al., 2000; Chiang et al., 2001; Dutton et al., 

2001b). Together, these facts could suggest some functional redundancy between these 

proteins, although this has not been demonstrated between Sox genes in any organism.
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In chicken, closely related Soxl, Sox2 and Sox3 proteins, which are involved in lens 

development, were all shown to bind to and activate the DC5 minimal enhancer of the 

chicken 51 -crystallin gene (Kamachi et al., 1995). This makes functional redundancy 

between them likely, although no such studies have yet been carried out to test this.

If SoxlO functioned partially redundantly with either Sox9a or Sox9b we would predict 

overlapping expression domains.

To begin to test this, we performed double in situ hybridisations with sox 10 and 

sox9b which revealed a pattern of incomplete overlap of expression. sox9b+/sox 10' cells 

tended to be found in lateral cranial neural crest regions in 6 somite stage embryos, a 

region thought to give rise to mostly neural derivatives (Schilling and Kimmel, 1994). 

At the 14 somite stage, the majority of migratory cranial and premigratory trunk neural 

crest cells were double labelled, although some cells above the brain and anterior to the 

otic placode clearly expressed only soxlO or sox9b, similarly to double labelling with 

fkd6  and soxlO. It is unclear, how this differential labelling could correspond to a 

distinct specification status of each cell.

In chapter 7 we have described the failure to rescue the melanophore phenotype in els 

mutants by ectopic sox9b expression, which represents evidence against functional 

redundancy at least in pigment precursors. However, from our in situ hybridisation 

results, a redundancy in neuronal derivatives for example in DRGs or in non- 

ectomesenchymal derivatives in general, seems possible.

Alternatively, SoxlO could exhibit a repressive function on Sox9b in specifying 

ectomesenchymal fates. Thus, double-labelled cells would contribute to non- 

ectomesenchymal fates, and the few sox9b+/soxl0' cells represented cartilage 

precursors. In els mutants, these latter fates indeed form normally, whereas non- 

ectomesenchymal derivatives fail to be specified properly. If this hypothesis held true, 

one would expect to be able to demonstrate rescue of non-ectomesenchymal crest 

precursors with ectopic sox 10 alone and when co-injected with sox9b. If sox9b alone 

was overexpressed in els mutants, an increase of ectomesenchymal derivatives might be 

expected to be seen. However, this has not yet been investigated to date.

In double in situ hybridisations with soxlO and sox9a, expression domains did 

not seem to broadly overlap, but rather appeared complementary. It was difficult to 

determine whether signals were complementary or overlapping in adjacent regions, 

because the expression signals for both probes were very strong. To confirm non­

overlap or complementarity of expression domains, future experiments should include
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sectioning of these embryos. We did not investigate the developmental potential of 

these sojcPa-positive cells, but they were found in a position approximately where the 

otic placode will be formed 3 hours later. In 14 somite stage embryos, it was impossible 

to determine whether sox9a was expressed weakly in any neural crest cells. However, if 

sox9a was expressed at reasonable levels, it should have been possible to observe some 

purple staining as was seen in the equivalent sox9b/soxl0 double in situ hybridisations 

(compare Figure 4.8G to Figure 4.9G). Likewise, the precise expression domains for 

sox9a in the otic placode were difficult to establish without sectioning the specimen. 

Overall, it appeared that sox9a and sox 10 expression domains, in contrast to sox9b and 

sox 10, did not overlap broadly although further tests are required to confirm this 

tentative result.

Only recently, K. Dutton was able to demonstrate a redundant action of SoxlO 

and Sox9a and Sox9b in DRG. sox9a and sox9b morpholino injections into els mutants 

each exacerbated the DRG phenotype of els mutants indicating functional redundancy 

between Sox9a, Sox9b and SoxlO in this cell lineage (K. Dutton, unpubl. data). On the 

other hand, neither sox9a nor sox9b was able to rescue melanophores. Thus, this 

functional redundancy appears to be specific to the DRG cell lineage and does not 

extend to the pigment derivatives. Elucidating the exact role and interplay of SoxlO 

with each of the Sox9 paralogues in different cell lineages will be an interesting and 

rewarding line of future research.

Overall, the identification of colourless as a zebrafish sox 10 homologue 

reinforces the value of this fish model for human Waardenburg Shah Syndrome, since 

neural crest development in zebrafish and other vertebrates shares many characteristics 

(Raible et al., 1992). The work described herein opened up the possibility of utilizing 

the cell biological advantages of this model organism to elucidate the role of SoxlO 

during neural crest development in vivo at a level of resolution difficult to achieve in 

other model species and to look at evolutionary conservation of SoxlO function.
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24hpf-WT LP MP pre LP MP pre LP MP pre
som 1-5 3 22 27 3 13 15 5 13 36
som 6-10 1 34 48 / 17 22 2 21 50
som 11-15 / 21 53 / 22 44 / 25 75
som 16-20 / 8 66 / 15 41 / 22 60

24hpf-WT LP MP pre LP MP pre
som 1-5 6 13 38 6 17 45
som 6-10 2 24 40 4 19 59
som 11-15 / 14 46 1 20 72
som 16-20 / 16 43 / 16 60

24hpf-cls LP MP pre LP MP pre LP MP pre
som 1-5 2 16 29 2 17 32 / 22 52
som 6-10 / 22 37 / 21 43 / 23 71
som 11-15 / 15 45 / 16 61 / 11 64
som 16-20 / 13 65 / 14 45 / 8 56

24hpf-cls LP MP pre LP MP pre
som 1-5 2 17 48 1 17 51
som 6-10 / 22 81 / 28 81
som 11-15 / 19 84 / 19 79
som 16-20 / 6 74 / 14 69

Appendix 4.1: Counts of soxl 0-positive premigratory and migratory cells. 

soxl 0-positive cells (sox 10+) and differentiated melanophores (M+) were counted in the 

premigratory area (pre), on the lateral pathway (LP) and the medial pathway (MP) 

within muscle segments (som) 1-5, 6-10, 11-15 and 16-20 of wild-type (WT) and els 

mutant embryos (els). Counts were performed on 5 WT and els embryos of each of 

24hpf, 30hpf and 35hpf stages.
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30hpf-WT
LP MP LP MP

M+ soxl0+ M+ soxl0+ pre M+ soxl0+ M+. soxl0+ pre
som 1-5 3 / 2 25 4 4 / 2 25 4
som 6-10 2 / 6 26 7 1 / 9 18 6
som 11-15 3 / 7 24 12 2 / 10 26 7
som 16-20 / / 4 23 8 3 / 10 14 10

30hpf-WT
LP MP LP MP

M+ soxl0+ M+ soxl0+ pre M+ soxl0+ M+ soxl0+ pre
som 1-5 3 / 6 29 2 2 / 3 25 3
som 6-10 6 / 10 35 7 3 / 7 20 5
som 11-15 2 / 15 32 12 3 / 9 26 11
som 16-20 1 / 5 27 11 1 / 5 14 7

30hpf-WT
LP MP

M+ soxl0+ M+ soxl0+ pre
som 1-5 1 / 2 27 5
som 6-10 1 / 12 18 8
som 11-15 2 / 12 27 5
som 16-20 1 / 10 22 6

30hpf-cls
LP MP LP MP

M+ soxl0+ M+ soxl0+ pre M+ soxl0+ M+ soxl0+ pre
som 1-5 / 1 / 25 10 / 1 / 30 18
som 6-10 / 1 / 26 24 / / / 33 27
som 11-15 / / / 22 32 / / / 30 50
som 16-20 / / / 20 33 / / / 16 62

30hpf-cls
LP MP LP MP

M+ soxl0+ M+ soxl0+ pre M+ soxl0+ M+ soxl0+ pre
som 1-5 / / / 31 14 / / / 31 22
som 6-10 / / / 30 18 / / / 35 23
som 11-15 / / / 24 63 / / / 29 56
som 16-20 / / / 15 65 / / / 24 64

30hpf-cls
LP MP

M+ soxl0+ M+ soxl0+ pre
som 1-5 / / / 28 9
som 6-10 / / / 29 18
som 11-15 / / / 21 39
som 16-20 / / / 11 42
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35hpf-WT
LP MP LP MP

M+ soxl0+ M+ soxl0+ pre M+ soxl0+ M+ soxl Oh- pre
som 1-5 3 / 3 16 7 5 / 2 17 5
som 6-10 1 / 3 11 7 3 / 7 17 8
som 11-15 / / 7 7 13 6 / 5 20 10
som 16-20 1 / 5 13 9 / / 8 20 13

35hpf-WT
LP MP LP MP

M+ soxl0+ M+ soxl0+ pre M+ soxl0+ M+ SOX10+ pre
som 1-5 1 / 2 19 8 6 / 1 26 8
som 6-10 2 / 6 18 9 3 / 7 20 11
som 11-15 2 / 6 15 12 3 / 2 23 8
som 16-20 2 / 8 23 11 3 / 7 20 8

35hpf-WT
LP MP

M+ soxl0+ M+ soxl0+ pre
som 1-5 3 / 3 17 8
som 6-10 4 / 4 23 8
som 11-15 4 / 8 20 10
som 16-20 1 / 8 26 11

35hpf-cls
LP MP LP MP

M+ soxl0+ M+ soxl0+ pre M+ soxl0+ M+ soxl0+ pre
som 1-5 / / / 21 29 / / / 26 23
som 6-10 / / / 26 32 / / / 21 26
som 11-15 / 1 / 20 46 / / / 22 39
som 16-20 / / / 19 36 / / / 20 30

35hpf-cls
LP MP LP MP

M+ soxl0+ M+ soxl0+ pre M+ soxl0+ M+ soxl0+ pre
som 1-5 / 1 / 14 29 / / / 20 21
som 6-10 / / / 16 39 / 1 / 23 36
som 11-15 / / / 12 46 / / / 14 37
som 16-20 / / / 12 38 / / / 13 28

35hpf-cls
LP MP

M+ soxl0+ M+ soxl0+ pre
som 1-5 / 2 / 16 20
som 6-10 / 1 / 21 29
som 11-15 / / / 14 35
som 16-20 / / / 18 32
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Allele/batch No. o f  
embryos

Vol. resuspended
m

No. em bryos/pl

twl 38 20 1.9
tw2/\ 123 40 3.1
tw2/2 117 40 2.9
t3/l 113 40 2.8
t3/2 63 40 1.6
tw ll 49 30 1.6
ty22f 15 20 0.8

m618/\ 83 40 2.1
m618/2 46 30 1.5

Appendix 6.1: Preparation of total RNA from els mutant alleles 

The table summarises the number of homozygous els mutant embryos that were 

collected from each allele and the volume DEPC-treated water used to resuspend the 

RNA pellet. For alleles tw2, t3 and m618 enough mutant embryos were available to split 

them into two batches. The last column (No. embryos/pl) attempts to give a rough 

estimation of relative differences in resulting RNA concentrations of each sample by 

listing the number of embryos RNA was isolated from per pi final volume of resulting 

RNA sample. No., number; Vol., volume.
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Appendix 7.1: Comparison of rescue of homozygous els mutant embryos by ectopic 

expression of wild-type and mutant SoxlO proteins under varied heatshock and 

microinjection regimes

(A) Various batches of embryos (WT-A to WT-G and WT-1 to WT-37) from a 

heterozygous clsm618 cross were injected with either 12pg, 25pg, 50pg or 120pg of 

hs>elsWT. (B, C) Similarly, 50pg or 120pg of hs>clsm618 (B) or hs>clstw2 (C) were 

injected into various batches of embryos (M-l to M-l 1 for hs>clsm618 and T-l to T-18 

for hs>c/yw2) from a heterozygous clsm618 cross. Batches grouped by a bracket were 

injected on the same day. (A-C) All batches were heatshocked as indicated in column 

labelled “heatshock”. The column “uninjected/ % survived” in all tables list the total 

number of uninjected embryos and the percentage of uninjected embryos that had 

survived after 48hours. In the columns “injected/ % survived”, the total number of 

injected siblings and the percentage of injected embryos that had survived after 48hours 

are listed. The number of els embryos within these alive and injected embryos is shown 

together with the percentage of rescued els embryos within the surviving els siblings in 

the columns “els/ % rescued”. The last columns list the mean number of melanophores 

(M) with wild-type morphology observed per rescued els embryo, nd, not determined; 

“-“, no rescued melanophores.
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A
TI/rp

hs>cls injections (50pg) with two heatshocks:
( > 1 dark spidery melanophore counts as rescued)

hs>cls l 5,/2nd
heatshock

uninjected/ 
% survived

injected /
% survived

els /
%  rescued

mean number 
of M

WT-A 11.7hpf/18hpf nd 260/31.5% 20/50% 6.6
WT-B J 10hpf/16hpf nd 80/50% 4/0% -
WT-C 18hpf/24hpf nd 35/17% 0/0% -
WT-D V 18hpf/24hpf nd 28/25% 1/0% -
WT-E J 18hpf/24hpf nd 33/30.3% 2/100% nd
WT-F 1 13hptf24hpf 30/97% 157/90% 20/35% 12.3
WT-G 11.3hpf/22hpf 29/86% 213/85% 28/61% 7.4
WT-3 llhpf/23hpf 14/64% 91/56% 12/42% 12.2
WT-4 ► 10.5hpf722.5hpf nd 19/79% 3/100% 17.6
WT-5 J 10hpf/22hpf 15/93% 218/69% 27/37% 14.7

r i^ r
hs>c/s injections (50pg) without heatshock:

hs>cls heatshock uninjected/ 
% survived

injected /
% survived

c/s / % rescued mean number 
of M

WT-6 / 10/100% 64/57.8% 10/0% -

WT-7 / 22/45% 126/25.4% 7/28.6% 2.0
WT-8 / 11/0% 120/11.7% 1/0% -

WT-9 / 20/70% 119/24.4% 4/75% 3.3
WT-10 / 38/76.3% 178/43.8% 14/57% 4.0
WT-llJ / 17/47% 155/28.4% 12/33.3% 7.0

TJ/T
hs>c/s injections (25pg) without heatshock:

hs>c/s heatshock uninjected/ 
% survived

injected /
% survived

c/s / % rescued mean number 
of M

WT-25̂ 1 / 12/83.3% 123/70.7% 28/10.7% 3.0
WT-26 / 11/63.6% 81/40.7% 8/12.5% 1.0
WT-27 > / 16/100% 188/86.7% 43/14% 5.2
WT-28 / 106/90.6% 224/77.2% 36/5.5% 1.5
WT-29-J / nd 33/84.8% 7/14.3% 2.0

\xrp
hs>cls injections (25pg) and only one heatshock:

hs>c/s heatshock uninjected/ 
% survived

injected /
% survived

c/s / % rescued mean number 
of M

WT-12I 15.5hpf 4/50% 13/23.1% 0/0% -
WT-13 J 16hpf 9/100% 104/75% 21/23.8% 6.2
WT-14 18.5hpf 18/100% 238/91.2% 51/31.4% 6.3
WT-15 >■ 15.5hpf 20/100% 111/87.4% 19/21.1% 1.3
WT-16 J 15.5hpf 13/100% 44/88.6% 8/12.5% 2.0
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w r
hs>c/s injections (50pg) and only one heatshock:

hs>c/s heatshock uninjected/ 
% survived

injected /
% survived

els / % rescued mean number 
of M

WT-17 15.5hpf 15/100% 175/70.9% 9/77.8% 31.9
WT-18 15.5hpf 16/100% 246/77.7% 24/54.2% 11.6
WT-19^ 18hpf nd 22/0% 0/0% -
WT-20 18.5hpf 20/80% 134/41% 13/61.5% 2.4
WT-21 18.5hpf 16/50% 94/37.2% 6/50% 3.6
WT-22 ...  ' 18npf 32/31.3% 234/26.5% 16/25% 9.0
WT-23 18hpf 17/29.4% 66/22.7% 1/0% -
WT-24 J 18.5hpf 9/100% 72/40.3% 7/85.7% 9.0

WThs>c/s injections (12pg) with one early heatshock:

hs>c/s"r heatshock uninjected/ 
% survived

injected/
%  survived

c& / % rescued mean number 
of M

WT-30 ] 15-16hpf 15/66.7% 199/14.1% 5/0% -
WT-31 15-16hpf 13/0% 69/39.1% 9/11.1% 1.0
WT-32 > 15-16hpf 10/50% 162/22.8% 14/14.3% 1.0
WT-33 15-16hpf / 76/5.3% 1/0% -
WT-34^ 15-16hpf 10/20% 93/4.3% 0/0% -
WT-381 15-16hpf nd 133/71.4% 20/5% 2.0
WT-39-J 15-16hpf 15/93.3% 276/44.6% 33/12.1% 11.8

WThs>c/s injections (120pg) with one early heatshock:

hs>c/s heatshock uninjected/ 
% survived

injected /
% survived

/ % rescued mean number 
of M

WT-35 ' 15-16hpf 15/53.3% 191/39.3% 13/76.9% 14.1
WT-36 f 15-16hpf 15/80% 243/44.4% 33/60.6% 8.6
WT-37 J 15-16hpf 15/93.3% 310/66.1% 47/29.8% 3.1

B

hs>clsm6U injections (50pg) with 2 heatshocks:

hs>c/5/W0/a l*l/2nd
heatshock

uninjected/ 
%  survived

injected /
% survived

els !
%  rescued

mean number 
of M

M-l 9hpf/20hpf 3/0% 80/1% 0/0% -
M-2* 13hpf/24hpf 42/95% 240/94% 41/0% -
M-3~l H.Shp^.Shpf 17/53% 148/33% 9/0% -
M-4J 12hpf/24hpf 20/80% 193/77% 32/0% -
M-5] 12hpf/24hpf 19/15.8% 208/9.1% 6/0% -
M-6 >- 1 lhpf/23hpf 24/20.8% 151/4.6% 2/0% -
M-7J 10.5hpf/24hpf 29/93% 246/43.5% 32/0% -
* The only batch that was injected into ~8 cell stage embryos. All the other hs>clsmoJ* injections were 
carried out in 1-4 cell stage
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hs>clsm618 injections (120pg) and one early heatshock:

hs >clsmo18 heatshock un injected/ 
% survived

injected /
% survived

els / % rescued mean number 
of M

M-8 -j 15-16hpf 15/80% 121/1.6% 0/0% nd
M-9 L 15-16hpf 15/60% 99/4% 0/0% nd
M-10 J 15-16hpf 10/60% 142/7% 3/0% -

hs>clsm618 injections (50pg) and one early heatshock:

hs >clsmo18 heatshock uninjected/ 
% survived

injected /
%  survived

els / % rescued mean number 
of M

M-l 1 15-16hpf 15/100% 218/3.2% 0/0% nd

hs> cl^ 2 injections (120pg) with one early heatshock:

hs>c/s heatshock uninjected/ 
% survived

injected /
% survived

c/s / % rescued mean number 
of M

T-l 3 15-16hpf 15/100% 226/40.3% 18/11.1% 3.0
T-2 > 15-16hpf 11/63.6% 114/26.3% 7/14.3% 12.0
T-3 15-16hpf 10/20% 209/28.2% 2/0% -

hs>c/s^2 injections (50pg) with one early heatshock:

hs>c/swi heatshock uninjected/ 
%  survived

injected /
%  survived

c/s / % rescued mean number 
of M

T-4 -n 15-16hpf 15/86.7% 165/13.9% 7/0% -
T-5 15-16hpf 15/86.7% 174/61.5% 25/0% -
T-6 r ’ 15-16hpf 15/86.7% 277/65.3% 51/0% -

H 1 -J 15-16hpf 15/93.3% 191/49.7% 23/0% -
T-8 ^ 15-16hpf 16/68.8% 170/37.6% 19/5.3% 1.0
T-9 y 15-16hpf 15/53.3% 151/25.8% 7/14.3% 2.0
T-IOJ 15-16hpf 12/75% 112/26.8% 8/12.5% 9.0
T-15 1 15-16hpf 11/73.3% 80/41.9% 19/0% -
T-16 15-16hpf 11/73.3% 53/27.7% 10/0% -
T-17 15-16hpf 13/86.7% 172/60.1% 36/0% -
T-l8 ^ 15-16hpf 13/86.7% 69/38.8% 15/0% -

hs>c/sfl*’2 injections (35pg) with one early heatshock:

hs>c/s heatshock uninjected/ 
% survived

injected /
% survived

c/s / % rescued mean number 
of M

T-l 1 "I 15-16hpf 7/87.5% 22/32.4% 1/0% -
T-12 L 15-16hpf 11/73.3% 56/25.6% 0/0% -
T-13 [ 15-16hpf 8/53.3% 79/45.7% 1/0% -
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sox9a Uninjected:
survived/total
(%survived)

Injected:
survived/total
(%survived)

els survived 
Icls rescued 
(% rescued)

Mean number 
of M

9A-1 4/15 (26.7%) 36/357(10.1%) 1/0 (0%) -

9A-2 23/31 (74.2%) 111/240(46.3%) 31/0 (0%) -

9A-3 16/16(100%) 178/239 (74.5%) 44/0 (0%) -

Total 43/62 (69.4%) 325/836 (38.9%) 76/0 (0%) -

B

sox9b Uninjected:
survived/total
(%survived)

Injected:
survived/total
(%survived)

els survived 
/els rescued 
(% rescued)

Mean number 
of M

9B-1 6/12 (50%) 30/278 (10.8%) 6/0 (0%) -

9B-2 8/8 (100%) 69/256 (27%) 14/0 (0%) -
9B-3 8/15 (53.3%) 164/341 (48.1%) 38/0 (0%) -

Total 22/35 (62.9%) 263/875 (30.1%) 58/0 (0%) -

Appendix 7.2: hs>sox9a and hs>sox9b injections fail to rescue melanophores in
✓ t o

homozygous els mutant embryos.
W)/ip

(A, B) Three independent batches of embryos from a heterozygous els cross each 

were injected with 50pg of either hs>sox9a (A, 9A-1 to 9A-3) or hs>sox9b (B, 9B-1 to 

9B-3) and heatshocked at 15-16hpf for an hour at 37°C. The two tables list the total 

number of uninjected (control) and injected siblings and give the number and 

percentage (in brackets) of embryos that had survived after 48hours. In the fourth 

columns, the number of els embryos that survived is put in relation to the number that 

were rescued. The percentage of rescued embryos is noted in brackets. The last columns 

list the mean number of melanophores (M) with wild-type morphology observed per 

embryo, whereby indicates no rescued melanophores. The last row (Total) allows a 

comparison between survival rates of injected and uninjected control embryos. The 

difference corresponds to embryos dying most likely due to injection trauma. 

Furthermore, the total number of screened els embryos (els survived), rescued els 

embryos (els rescued) and the total mean of melanophore number is depicted.
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hs>sox9a phenotype U ninjected: 
m alf/total 
(% m alf)

Total: 
m alf/total 
(% malf)

Injected: 
m alf/total 
(% m alf)

T otal: m alf/total 
(% m alf)

9 A -fj WT 0/3 (0%) 0/33 (0%) 29/35 (82.9% ) 195/249 (78.3% )
els 0/1 (0%) 0/10 (0%) 0/1 (0%) 60/76 (78.9% )

9A -2 L 50pg WT 0/17(0% ) 56/80 (70%)
early hs els 0/6 (0%) 24/31 (77.4% )

9A-3 WT 0/13 (0%) 110/134 (82.1% )

J els 0/3 (0%) 36/44 (81.8% )

hs>sox9b phenotype U ninjected: 
m alf/total 
(%  m alf)

Total: 
m alf/total 
(%  malf)

Injected: 
m alf/total 
(% m alf)

Total: 
m alf/total 
(% m alf)

9 B -n WT 0/6 (0%) 0/20 (0%) 23/24 (95.8% ) 153/205 (74.6% )
els 0/0 (0%) 0/2 (0%) 6/6(100% ) 42/58 (72.4% )

9B-2 1 5 0 p g WT 0/7 (0%) 43/55 (78.2% )
early hs els 0/1 (0%) 13/14 (92.9% )

9B-3 WT 0/7 (0%) 87/126 (69%)

J els 0/1 (0%) 23/38 (60.5% )

Appendix 7.3: Summary of malformation data

In the first column the Table lists the names of batches of embryos and constructs 

injected (WT 3-37, hs>clsWT\ pCS 1-11, control plasmid pCS2+; M 3-11, hs>clsm^ ^ \  

T 1-18, h s 9 A  1-3, hs>sox9a\ 9B 1-3, hs>sox9b) and indicates which were 

injected on the same day (brackets), the approximate amount of construct stock solution 

injected per embryo and the number and time of heatshock treatment(s) (early, 15- 

16hpf; late, 18-19.5hpf; hs, heatshock). The column labelled “phenotype” indicates 

whether subsequent columns refer to WT or els embryos. Column 3 and 5 list the 

number of malformed embryos within the total number of embryos (malf/total) and the 

percentage of malformed embryos (% malf) in phenotypically wild-type or homozygous 

els mutant siblings in uninjected (column 3) and injected batches (column 5). Column 4 

and 6 contain the number of total malformed/total embryos (% malf) for all injected 

(column 6) and uninjected batches (column 4) for each injection day (brackets in 

column 1). nd, not determined.
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h s > c / s ^ phenotype Un injected: 
m alf/total 
(% m alf)

Total: 
m alf/total 
(% m alf)

Injected: 
m alf/total 
(% m alf)

Total: m alf/total 
(%  m alf)

WT-3 WT 0/6 (0%) 1/12 (8%) 23/38 (60.5% ) 82/132  (62.1% )
els 0/2 (0%) 0/16 (0%) 9/12 (75%) 29/42  (69%)

W T-4 50pg W T nd 5/7 (71.4% )
r 2 h s els nd 3/3 (100% )

WT-5 W T 0/4 (0%) 54/87 (62%)
els 1/10(10% ) 17/27 (63%)

W T-6 W T 0/10 (0%) 1/54 (1.9%) 7/27 (25.9% ) 104/186 (55.9% )
els 0/0 (0%) 1/15 (6.7%) 4/10 (40%) 25/48 (52.1% )

W T-7 WT 1/6 (16.6%) 17/25 (68%)
els 1/2 (50%) 6/7 (85.7% )

W T-8 WT 0/0 (0%) 9/13 (69.2% )
>50pg els 0/0 (0%) 0/1 (0%)

W T-9 no hs WT 0/11 (0%) 16/25 (64%)
els 0/3 (0%) 3/4 (75%)

W T-10 WT 0/22 (0%) 47/64 (73.4% )
els 0/7 (0%) 8/14(57.1% )

WT-11 WT 0/5 (0%) 8/32 (25%)
y els 0/3 (0%) 4/12(33% )

W T-12 WT 0/0 (0%) 1/52 (1.9%) 3/3 (100% ) 30 /169(17 .8% )
>-25pg els 1/2 (50%) 1/23 (4.3%) 0/0 (0%) 12/48 (25%)

W T-13 early hs WT 0/7 (0%) 17/57 (29.8% )
els 0/2 (0%) 6/21 (28.6% )

W T-14 >-25pg WT 0/12(0% ) 0/12 (0%) 37/165 (22.4% ) 37/165 (22.4% )
J  late hs els 0/6 (0%) 0/6 (0%) 8/51 (15.7% ) 8/51 (15.7% )

WT-15 WT 0/15(0% ) see W T-12 9/78(11 .5% ) see W T-12
^25pg els 0/5 (0%) 5/19 (26.3% )

W T-16 early hs WT 1/10(10% ) 1/31 (3.2% )
els 0/3 (0%) 1/8 (12.5% )

W T-17 WT 0/10(0% ) 0/20 (0%) 11/30 (36.7% ) 37/100  (37%)
L s o p g els 0/5 (0%) 0/11 (0%) 5/19 (55.5% ) 14/43 (32.6% )

W T-18 early hs WT 0/10(0% ) 26/70 (37.1% )
els 0/6 (0%) 9/24 (37.5% )

W T-19 WT nd 0/33 (0%) 0/0 (0%) 141/152 (92.8% )
els nd 0/15 (0%) 0/0 (0%) 36/43 (83.7% )

W T-20 WT 0/11 (0%) 39/41 (95.1% )
els 0/5 (0%) 13/13 (100% )

WT-21 WT 0/5 (0%) 29/29 (100% )
>50pg els 0/3 (0%) 6/6(100% )

WT-22 late hs WT 0/8 (0%) 39/46 (84.8% )
els 0/2 (0%) 9/16 (56.3% )

WT-23 WT 0/3 (0%) 14/14 (100% )
els 0/2 (0%) 1/1 (100% )

W T-24 WT 0/6 (0%) 20/22 (90.9% )

*\ els 0/3 (0%) 7/7 (100%)

WT-25 WT 0/9 (0%) 1/124 (0.8%) 10/59 (16.9% ) 51 /360(14 .2% )
els 0/1 (0%) 0/20 (0%) 5/28 (17.8% ) 21/122(17 .2% )

W T-26 WT 0/6 (0%) 9/25 (36%)
els 0/1 (0%) 2/8 (25%)

W T-27 >25p g WT 0/13 (0%) 23/120 (19.2% )
no hs els 0/3 (0%) 12/43 (27.9% )

WT-28 WT 1/96 (1%) 8/137 (5.8%)
els 0/15 (0%) 1/36 (2.8%)

W T-29 WT nd 1/19(5.3% )
J els nd 1/7 (14.3% )
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W T-30 \ WT 3/8 (37.5%) 4/26 (15.4% ) 11/23 (47.8% ) 94/236  (39.8% )
els 1/2 (50%) 1/5 (20.0% ) 4/5 (80%) 33/82 (40.2% )

W T-31 WT 0/0 (0%) 9/18(50% )
els 0/0 (0%) 6/9 (66.6% )

W T-32 WT 0/4 (0%) 13/23 (56.5% )
els 0/1 (0%) 7/14 (50%)

WT-33 \  12pg WT nd 2/3 (75%)
early hs els nd 0/1 (0%)

W T-34 WT 1/2 (50%) 4/4 (100% )
els 0/0 (0%) 0/0 (0%)

W T-38 WT nd 14/75 (18.7% )
els nd 5/20 (25%)

W T-39 WT 0/12(0% ) 41/90 (45.6% )
J els 0/2 (0%) 11/33 (33.3% )

W T-35 WT 0/5 (0%) 0/22 (0%) 42/62 (67.7% ) 216/294  (73.5% )
els 0/3 (0%) 0/12 (0%) 12/13 (92.3% ) 70/93 (75.3% )

W T-36 L 1 20p g WT 0/8 (0%) 56/74 (75.7% )
early hs els 0/4 (0%) 26/33 (78.8% )

W T-37 WT 0/9 (0%) 118/158(74.7% )
els 0/5 (0%) 32/47 (68.1% )

pC S only phenotype Uninjected: 
m alf/total 
(% m ail)

Total: 
m alf/total 
(% m alf)

Injected: 
m alf/total 
(%  m alf)

Total: m alf/total 
(% m alf)

pCS-1 WT 0/12 (0%) 0/12 (0%) 25/41 (61%) 87/146 (59.6% )
els 0/2 (0%) 0/2 (0%) 11/20 (55%) 23/46 (50% )

pCS-3 ^ .5 0 p g WT nd 11/18(61.1% )
early hs els nd 1/3 (33.3% )

pCS-4 WT nd 51/87 (58.6% )
J els nd 11/23 (47.8% )

pCS-2 WT 0/4 (0%) 0/13 (0%) 35/41 (85.4% ) 102/137 (74.5% )
L s O p g els 0/5 (0%) 0/7 (0%) 14/15 (93.3% ) 27/37 (73% )

pCS-5 late hs WT 0/9 (0%) 67/96 (69.8% )
els 0/2 (0%) 13/22 (59.1% )

pCS-6 WT 0/2 (0%) 0/28 (0%) 1/2 (50%) 57/146 (39% )
els 0/0 (0%) 0/8 (0%) 0/0 (0%) 18/51 (35.3% )

pCS-7 WT 0/6 (0%) 12/25 (48%)
f2 5 p g els 0/2 (0%) 6/11 (54.5% )

pCS-8 late hs WT 0/10(0% ) 35/75 (46.7% )
els 0/3 (0%) 10/28 (35.7% )

pCS-9 WT 0/10(0% ) 9/44 (20.5% )
J"V els 0/3 (0%) 2/12(16.7% )

pCS-10 WT 0/7 (0%) 0/7 (0%) 15/43 (34.9% ) 3 8 /118(32 .2% )
^■25pg els 0/7 (0%) 0/7 (0%) 2/9 (22.2% ) 6/27 (22.2% )

pC S-11 early hs WT nd 23/75 (30.7% )

J els nd 4/18 (22.2% )
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hs>clsm6Iff phenotype Uninjected: 
m alf/total 
(% m alf)

Total: 
m alf/total 
(% m alf)

Injected: 
m alf/total 
(%  m alf)

Total: 
m alf/total 
(% m alf)

M -3 ^ WT 0/4 (0%) 2/39 (5.1%) 7/35 (20%) 72/231 (31.2% )
els 0/4 (0%) 0/20 (0%) 1/9(11% ) 23/81 (28.4% )

M -4 WT 0/12(0% ) 21/103 (20%)
els 0/4 (0%) 6/32 (18.8% )

M -5 50pg WT 0/3 (0%) 6/13 (46%)
> 2hs els 0/0 (0%) 2/6 (33%)

M -6 WT 0/3 (0%) 3/5 (60%)
els 0/2 (0%) 1/2 (50%)

M -7 WT 2/17(11.8% ) 35/75 (46.6% )
els 0/10 (0%) 13/32 (40.6% )

M -8 WT 0/7 (0%) 0/20 (0%) 2/2(100% ) 13/13 (100% )
els 0/5 (0%) 0/7 (0%) 0/0 (/) 3/3 (100%)

M -9 >120pg WT 0/7 (0%) 4/4(100% )
early hs els 0/2 (0%) 0/0 (/)

M -10 WT 0/6 (0%) 7/7 (100%)
> els 0/0 (0%) 3/3 (100%)

M - ll  i_50pg WT 0/11 (0%) 0/11(0% ) 7/7 (100%) 7/7 (100%)
early hs els 1/4 (25%) 1/4 (25%) nd nd

hs>clsth>̂ phenotype Uninjected: 
m alf/total 
(% m alf)

Total: 
m alf/total 
(% m alf)

Injected: 
m alf/total 
(%  m alf)

Total: m alf/total 
(% m alf)

T -l ^ WT 0/9 (0%) 0/17 (0%) 66/73 (90.4% ) 138/153 (90.2% )
els 0/6 (0%) 0/7 (0%) 17/18 (94.4% ) 24/27 (88.9% )

T-2 120pg WT 0/6 (0%) 21/23 (91.3% )
early hs els 0/1 (0%) 6/7 (85.7% )

T-3 WT 0/2 (0%) 51/57(89.5% )

J els 0/0 (0%) 1/2 (50%)

T-4 WT 0/7 (0%) 0/35 (0%) 7/16 (43.8% ) 170/300 (56.7% )
els 0/6 (0%) 0/18 (0%) 3/7 (42.9% ) 47/106 (44.3% )

T-5 WT 0/10 (0%) 45/82 (54.9% )
►50pg els 0/3 (0%) 14/25 (56%)

T-6 early hs WT 0/9 (0%) 72/130 (55.4% )
els 0/4 (0%) 21/51 (41.2% )

T-7 WT 0/9 (0%) 46/72 (63.9% )
els 0/5 (0%) 9/23 (39.1% )

T-8 WT 1/6 (16.7% ) 2/20(10% ) 43/45 (95.6% ) 97/99 (98%)
els 1/4 (25%) 1/7 (14.3% ) 16/19 (84.2% ) 31/34 (91.2% )

T-9 >-50pg WT 0/8 (0%) 32/32 (100% )
early hs els nd 7/7(100% )

T-10 WT 1/6(16.7% ) 22/22 (100% )

> els 0/3 (0%) 8/8 (100% )

T -l 1 WT 0/7 (0%) 0/21 (0%) 11/11 (100% ) 17/18 (94.4% )
els 0/0 (0%) 0/5 (0%) 1/1 (100%) 2/2(100% )

T-12 ►35pg WT 0/8 (0%) 3/4 (75%)
early hs els 0/3 (0%) 0/0 (/%)

T-13 WT 0/6 (0%) 3/3 (100% )
J els 0/2 (0%) 1/1 (100% )

T -l 5 WT 0/7 (0%) 1/58 (1.7%) 43/61 (70.5% ) 194/294 (66%)
els 0/4 (0%) 0/17(0% ) 12/19(63.2% ) 50/80 (62.5% )

T-16 WT 0/19(0% ) 29/43 (67.4% )

V  Opg els 0/2 (0%) 8/10 (80%)
T -l 7 early hs WT 1/9(11.1% ) 91/136 (66.9% )

els 0/4 (0%) 23/36 (63.9% )
T-18 WT 0/6 (0%) 31/54 (57.4% )

els 0/7 (0%) 7/15 (46.7% )
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Appendix 7.4: Statistical test results assessing various influences on malformation 

(A) With this x test it was asked whether els mutant embryos were affected more 

severely by malformations and thus, whether the genotype had any influence on the 

occurrence of malformations. Batches of embryos injected with hs>clsWT (WT3-29), 

control plasmid (pCSl-11) or hs>clsm618 (M3-7) were assessed in groups corresponding 

to groups with different treatments (heatshock times, construct concentrations etc, 

Appendix 7.1). The column “WT ratio” lists the ratio of malformed:normal embryos 

with a wild-type phenotype (WT). “els observed” contains the number of malformed 

homozygous els mutants, whereas “els expected” is the number of malformed els 

embryos that would be expected to be deformed, if the same ratio applied to els as did 

for WT. The % -test assesses whether there is a significant difference between the
9 9number of “els observed” and “els expected”. If the calculated x value in column “% ”

• * 9is larger than the tabulated one at a particular confidence level ( x  df, 5-0.1%) there is a 

significant difference (5% level) or even highly significant difference (0.1% level) 

between the expected and observed numbers of malformed els embryos. (B-E) 

Influences on malformation frequency was tested with a single factor ANOVAR 

analysis, which tests whether the variation between different treatments is any different 

to the variation observed within injection batches of the same treatment. Columns 

labelled hs (heatshock) indicate whether an early (15-16hpf), late (18-19.5hpf) or no 

heatshock (no hs) had been carried out. The column “DNA amount” shows whether a 

high (50pg) or low (25pg) amount of a construct (hs>cls or pCS) had been injected. If 

the calculated F value (F) is higher than the tabulated F value (Fdn, df2, %) at a particular 

confidence level (0.1%, 1% or 5%), there is a significant difference (5% level) or even a 

highly significant difference (0.1% level) between variation within and between groups 

of treatments, df, degree of freedom. (F) A x2-test was used to test whether the ratio of 

the number of rescued embryos with normal morphology and malformed rescued 

embryos was different to a ratio of 1:1. It was asked whether malformed embryos were 

less likely rescued and thus, whether the presence of malformations had any influence 

on the rescue. The column “treatment” describes the DNA concentration, number and 

time of heatshock as outlined in (B-E). The column “malf.inormal” lists the ratio of 

malformed (malf.) to normal rescued els embryos taken from Appendix 7.1. If the 

calculated x2-value is smaller than the tabulated one ( x  df, 5%) for the 5% confidence 

level, there is no significant difference from the ratio 1:1.
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A) Do m alform ations vary with the genotype (W T vs. els'1')?

X2-test on els/WT pairs o f individual datasets using the Yates’ correction formula. 
Degree o f freedom =1 in all datasets: x2 1, 5«/o = 3.841, x2 1, i%= 6.635, x2 i, o.i%= 7.879

WT ratio c/5 observed c/5 expected I 2 Result
WT-3 23/38 9 7.3 1 0.2788 no sign diff on any level
WT-4 5/7 3 2,1  r
WT-5 54/87 17 16.8 J
WT-6 7/27 4 2.6 0.8725 no sign diff on any level
WT-7 17/25 6 4.8
WT-8 9/13 0 0.7
WT-9 16/25 3 2.6
WT-10 47/64 8 10.3
WT-11 8/32 4 3.0
WT-13 17/57 6 6.3 2.544 no sign diff on any level
WT-15 9/78 5 2.2 f
WT-16 1/31 1 0.3 J
WT-14 37/165 8 11.4 0.7377 no sign diff on any level
WT-17 11/30 5 7.0 0.3394 no sign diff on any level
WT-18 26/70 9 8.9 f
WT-20 39/41 13 12.4 1.5301 no sign diff on any level
WT-21 29/29 6 6.0
WT-22 39/46 9 13.6 /
WT-23 14/14 1 1.0
WT-24 20/22 7 6.4
WT-25 10/59 5 4.7 1.6203 no sign diff on any level
WT-26 9/25 2 2.9
WT-27 23/120 12 8.2
WT-28 8/137 1 2.1
WT-29 1/19 1 0.7
pCS-1 25/41 11 12.2 0.3865 no sign diff on any level
pCS-3 11/18 1 1.8 I
pCS-4 51/87 11 13.5 J
pCS-2 35/41 14 12.8 0.2727 no sign diff on any level
pCS-5 67/96 13 15.4
pCS-7 12/25 6 5.3 0.5236 no sign diff on any level
pCS-8 35/75 10 13.1
pCS-9 9/44 2 2.5 J
pCS-10 15/43 2 3,1 1 0.2979 no sign diff on any level
pCS-11 23/75 4 5.5 J
M-3 7/35 1 1.8 0.2887 no sign diff on any level
M-4 21/103 6 6.5
M-5 6/13 2 2.8
M-6 3/5 1 1.2
M-7 35/75 13 14.9 J
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B) Does a heatshock increase malformations?

Single factor anovar analysis with 2 levels

hs DNA amount construct F Fdfl,df2, % Result
no hs high hs>c/^lf/ 92.88 0.1%- 17.82 sign. diff. even on 0.1% level
early high hs >clsni
no hs high te>cls*T 21.24 0.1%- 15.08 sign. diff. even on 0.1% level
late high hs>clsm

no hs 
early

low
low

hs >clswl 3.24 5% -4.75 no sign. diff. even on 5% level

no hs low hs > Cls 0.057 5% - 4.96 no sign. diff. even on 5% level
late low hs>clsWT

C) Is there a difference in malformation between hs>clsW T and pCS?

Single factor anovar analysis with 2 levels

construct DNA amount hs F Fdfi, d n, % Result
h s^ /s* ' high early 9.81 5% -5.32 sign. diff. only on 5% level

pCS high early
hs>c/j^r high late 3.52 5% - 4.75 no sign. diff. even on 5% level

pCS high late
h s^ /s1*' low early 0.027 5% -5.12 no sign. diff. even on 5% level

pCS low early
hs>c/s 1 low late 3.10 5% - 5.59 no sign. diff. even on 5% level

pCS low late

D) Is there a difference in malformation between high and low  
DNA concentration?

Single factor anovar analysis with 2 levels

DNA amount construct hs F Fdfi.dn, % Result
high h s > c / /J early 0.059 5% -5.12 no sign. diff. even on 5% level
low hs >clsm early
high hs >clswl late 51.84 0.1% -21.04 sign. diff. even on 0.1% level
low hs >clsm late
high pCS early 17.70 1% - 11.26 sign. diff. on 1% level
low pCS early
high pCS late 16.04 1% - 10.56 sign. diff. on 1% level
low pCS late
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E) Do malformations change depending on when the heatshock was 
carried out?

Single factor anovar analysis with 2 levels

hs time DNA amount construct F Fdfl,df2, % Result
early high h s > c / / ; 64.36 0.1%- 18.64 sign. diff. even on 0.1% level
late high h s > c //J

early high pCS 8.67 5% - 5.32 sign. diff. only on 5% level
late high pCS

early low hs >clsni 0.217 5% - 5.59 no sign. diff. even on 5% level
late low hs >clsiyl

early low pCS 2.0 5% -5.12 no sign. diff. even on 5% level
late low pCS

F) Are malformed embryos more likely to be rescued? Hence, 
does malformation have any effect on the rescue experiment?

X 2 - t e s t  t o  c o m p a r e  w h e t h e r  t h e r e  is a significant d i f f e r e n c e  b e t w e e n  t h e  ratio 
n o r m a l : m a l f o r m e d  a n d  1 : 1  w i t h i n  t h e  p o p u l a t i o n  o f  r e s c u e d  e m b r y o s .  
H 0: norm al/m alf =1 : 1  
X2-tests carried out on all 22 datasets and also within groups o f  different treatments.

treatment normal/malf iX df, 5% Result
WT-G high, 2 hs 8:9 2.778 7.815 no sign diff
WT-3 0:5
WT-4 0:3
WT-5 1:8
WT-7 high, no hs 0:2 2.111 7.815 no sign diff
WT-9 0:3
WT-10 4:3 f
WT-11 2:2
WT-13 low, early 4:1 1.5625 5.991 no sign diff
WT-15 3:2
WT-16 1:0
WT-14 low, late 11:5 na na na
WT-17 high, early 4:3 0.1389 3.841 no sign diff
WT-18 7:6 /
WT-20 high, late 1:7 3.179 7.815 no sign diff
WT-21 0:3
WT-22 1:3
WT-24 0:6
WT-25 2:1 2.25 7.815 no sign diff
WT-26 1:0
WT-27 4:2
WT-28 2:0 J
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SUMMARY

W aardenburg-Shah syndrome com bines the reduced 
enteric nervous system  characteristic o f  H irschsprung’s 
disease with reduced pigment cell number, although the cell 
biological basis o f the disease is unclear. We have analysed  
a zebrafish W aardenburg-Shah syndrom e model. We show  
that the colourless gene encodes a soxlO  hom ologue, 
identify soxlO  lesions in mutant alleles and rescue the 
m utant phenotype by ectopic soxlO  expression. Using 
iontophoretic labelling of neural crest cells, we dem onstrate  
that colourless m utant neural crest cells form  
ectom esenchym al fates. By contrast, neural crest cells 
which in wild types form non-ectom esenchym al fates 
generally fail to m igrate and do not overtly differentiate.

These cells die by apoptosis between 35 and 45 hours post 
fertilisation. We provide evidence that m elanophore defects 
in colourless m utants can be largely explained by 
disruption o f nacre/milf expression. We propose that all 
defects o f  affected crest derivatives are consistent with a 
primary role for colourless/sox 10 in specification o f  non- 
ectom esenchym al crest derivatives. This suggests a novel 
mechanism  for the aetiology o f W aardenburg-Shah  
syndrom e in which affected neural crest derivatives fail to 
be generated from the neural crest.

K e y  w ords: Danio rerio, W aard en b urg-Sh ah  sy n d ro m e ,  
H irsch sp ru n g ’s d is e a s e , P ig m en t c e l ls ,  M e la n o p h o re , A p o p to s is

INTRODUCTION

T h e  n e u r a l c r e s t  is  a  v e r te b r a te  t i s s u e  o f  d e v e lo p m e n t a l  a n d  
m e d ic a l  im p o r ta n c e . D e v e lo p m e n ta l ly ,  n eu ra l c r e s t  is  
in tr ig u in g  b e c a u s e  th e  c e l l s  are  in i t i a l ly  m u lt ip o t e n t  a n d  
s u b s e q u e n t ly  fo r m  a  g r e a t  d iv e r s i ty  o f  d e r iv a t iv e  c e l l  t y p e s ,  
in c lu d in g  e c to m e s e n c h y m a l  fa te s , s u c h  a s  c r a n io fa c ia l s k e le to n  
a n d  f in  m e s e n c h y m e ,  a n d  n o n - e c t o m e s e n c h y m a l  fa te s , s u c h  a s  
n e u r o n e s ,  g l i a  a n d  p ig m e n t  c e l l s  ( L e  D o u a r in , 1 9 8 2 ;  S m ith  
e t  a l . ,  1 9 9 4 ) .  M e d ic a l ly ,  n eu r a l c r e s t  i s  im p o r ta n t b e c a u s e  
s o m e  d is e a s e s ,  k n o w n  as  n e u r o c r is to p a th ie s  a n d  in c lu d in g  
d iv e r s e  c o n d it io n s  s u c h  a s  a lb in is m , n e u r o f ib r o m a to s is  a n d  
H ir s c h s p r u n g ’s  d is e a s e  ( a g a n g l io n ic  m e g a c o lo n ) ,  a f f e c t  c e l l  
t y p e s  d e r iv e d  fr o m  th is  t i s s u e  ( B o la n d e ,  1 9 7 4 ) .

U n d e r s ta n d in g  th e  g e n e t ic  a n d  e m b r y o lo g ic a l  b a s i s  o f  
n e u r o c r is to p a th ie s  h a s  d e p e n d e d  o n  a n im a l m o d e ls .  T h u s ,  
m o d e ls  fo r  H ir s c h s p r u n g ’s  d is e a s e ,  in  w h ic h  in d iv id u a ls  h a v e  
f e w  o r  n o  e n te r ic  g a n g lia  in  th e  c o lo n ,  o r  th e  r e la te d  
W a a r d e n b u r g -S h a h  s y n d r o m e , in  w h ic h  in d iv id u a ls  c o m b in e  
H ir s c h s p r u n g ’s  d is e a s e  w it h  p ig m e n ta r y  a n o m a lie s  o f  th e  s k in ,  
h a ir  a n d  ir is e s ,  h a v e  b e e n  d e s c r ib e d  in  s e v e r a l s p e c ie s ,  
in c lu d in g  m o u s e  a n d  z e b r a fis h  ( H o s o d a  e t  a l., 1 9 9 4 ;  K e ls h  a n d  
E is e n ,  2 0 0 0 ) .  A n a ly s i s  o f  s u c h  m o d e ls  in  m ic e  h a s  id e n t if ie d  
th r e e  lo c i  th a t  are c r u c ia l fo r  W a a r d e n b u r g -S h a h  s y n d r o m e

(A tt ie  e t  a l . ,  1 9 9 5 ;  E d e r y  e t  a l . ,  1 9 9 6 ;  H o f s t r a  e t  a l . ,  1 9 9 6 ;  
P in g a u lt  e t  a l. ,  1 9 9 8 ;  P u f fe n b e r g e r  e t  a l . ,  1 9 9 4 ;  S o u th a r d -S m ith  
e t  a l., 1 9 9 9 ) .  T h u s ,  m u ta t io n s  in  l o c i  e n c o d in g  t h e  G -p r o te in -  
c o u p le d  tr a n s m e m b r a n e  r e c e p to r  p r o te in  e n d o th e l in  r e c e p to r  B  
(E d n r b )  o r  it s  n a tu ra l l ig a n d  e n d o th e l in  3  ( E d n 3 )  r e s u lt  in  
a g a n g l io n o s is  o f  te r m in a l g u t  in  h o m o z y g o u s  m u ta n ts  
(B a y n a s h  e t  a l . ,  1 9 9 4 ;  H o s o d a  e t  a l . ,  1 9 9 4 ) ,  a s  d o  h e t e r o z y g o u s  
m u ta t io n s  in  th e  S V y -re la ted  tr a n s c r ip t io n  fa c to r  g e n e  SoxlO 
(H e rb a rth  e t  a l . ,  1 9 9 8 ;  S o u th a r d -S m ith  e t  a l . ,  1 9 9 8 ) .  
H o m o z y g o u s  SoxlO m u ta n t  a n im a ls  s h o w  a  m o r e  s e v e r e  
p h e n o ty p e  w ith  a g a n g l io n o s i s  o f  th e  w h o l e  g u t  (H e r b a r th  e t  a l. ,  
1 9 9 8 ;  S o u th a r d -S m ith  e t  a l . ,  1 9 9 8 ) .  A d d it io n a l ly ,  m u ta t io n s  in  
a ll th e s e  g e n e s  a f f e c t  b o d y  p ig m e n ta t io n  (L a n e  a n d  L iu , 1 9 8 4 ;  
M a y e r , 1 9 6 5 ;  M a y e r  a n d  M a ltb y , 1 9 6 4 ) ,  b u t  o n ly  SoxlO 
m u ta t io n s  r e s u lt  in  w id e s p r e a d  p e r ip h e r a l n e r v o u s  s y s t e m  
d e f e c t s  (H e rb a r th  e t  a l . ,  1 9 9 8 ;  K a p u r , 1 9 9 9 ;  S o u th a r d -S m ith  e t  
a l.,  1 9 9 8 ) .

T h e  S o x  g e n e  f a m ily  e n c o d e s  a  la r g e  f a m ily  o f  t r a n s c r ip t io n  
fa c to r s , w ith  v e r te b r a te s  l ik e ly  to  h a v e  m o r e  th a n  2 0  S o x  g e n e s  
e a c h  (W e g n e r , 1 9 9 9 ) .  T h e ir  p r e c is e  r o l e s  a re  n o t  w e l l  
u n d e r s to o d , a lth o u g h  m a n y  a re  p r e s u m e d  to  fu n c t io n  in  c e l l  
fa te  s p e c if ic a t io n  ( P e v n y  a n d  L o v e l l - B a d g e ,  1 9 9 7 ) .  F o r  
e x a m p le ,  th e  fo u n d in g  f a m ily  m e m b e r , Sry, i s  l ik e ly  to  b e  
r e s p o n s ib le  fo r  S e r to l i  c e l l  s p e c i f i c a t io n ,  a n d  th u s  m a le  s e x
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d e te r m in a t io n , in  m a m m a ls .  W h ile  SoxlO i s  c le a r ly  an  
im p o r ta n t  t r a n s c r ip t io n a l r e g u la to r  in  n e u r a l c r e s t  c e l l  ( N C C )  
d e v e lo p m e n t ,  th e  c e l lu la r  b a s i s  o f  th e  SoxlO m u ta n t  p h e n o ty p e  
r e m a in s  u n c le a r . It h a s  b e e n  s u g g e s t e d  th a t p e r ip h e r a l n e r v o u s  
s y s t e m  a n d  p ig m e n t a t io n  d e f e c t s  r e s u lt  f r o m  lo s s  o f  N C C s  
(S o u t h a r d -S m it h  e t  a l . ,  1 9 9 8 ;  K a p u r  1 9 9 9 ) ,  a lth o u g h  th e  
d e v e lo p m e n t a l  s ta tu s  o f  t h e s e  c e l l s  a t th e  t im e  o f  l o s s  is  
u n k n o w n . F u r th e r m o r e , r o le s  in  d e f in in g  r e g io n a l  id e n t ity  in  
th e  cr a n ia l n e u r a l c r e s t  a n d  in  g l ia l  c e l l  d if fe r e n t ia t io n  h a v e  a ls o  
b e e n  p r o p o s e d  (B o n d u r a n d  e t  a l . ,  1 9 9 8 ;  H e rb a r th  e t  a l . ,  1 9 9 8 ;  
K u h lb r o d t  e t  a l . ,  1 9 9 8 a ;  P u s c h  e t  a l . ,  1 9 9 8 ;  S o u th a r d -S m ith  e t  
a l . ,  1 9 9 8 ;  B r it s c h  e t  a l . ,  2 0 0 1 ) .

M u ta t io n s  a t th e  colourless (els) lo c u s  h a v e  b e e n  id e n t if ie d  
in  z e b r a fis h  m u t a g e n e s is  s c r e e n s  (K e ls h  e t  a l . ,  1 9 9 6 ;  M a l ic k i  
e t  a l. ,  1 9 9 6 ) .  W e  h a v e  p r e v io u s ly  c h a r a c te r is e d  th e  c r e s t  
d e r iv a t iv e  d e f e c t  d is p la y e d  b y  els m u ta n ts  (K e ls h  e t  a l . ,  2 0 0 0 a ;  
K e ls h  a n d  E is e n ,  2 0 0 0 ) ,  n o t in g  e x t e n s iv e  l o s s  o f  p ig m e n t  c e l l s  
a n d  e n te r ic  n e r v o u s  s y s t e m , to g e th e r  w ith  la r g e  r e d u c t io n s  in  
s e n s o r y  a n d  s y m p a t h e t ic  n e u r o n e s  a n d  p u ta t iv e  s a t e l l i t e  g l ia  
a n d  S c h w a n n  c e l l s .  B y  c o n tr a s t , w e  fo u n d  l i t t le  e f f e c t  o n  
e c to m e s e n c h y m a l  d e r iv a t iv e s ,  c r a n io fa c ia l  s k e le to n  a n d  fin  
m e s e n c h y m e .  B a s e d  o n  th e  s e v e r i t y  a n d  d e ta i ls  o f  th e  
p h e n o ty p e ,  w e  p r o p o s e d  th a t els fu n c t io n s  in  s p e c if ic a t io n ,  
p r o li f e r a t io n  o r  s u r v iv a l o f  a p r o g e n ito r ( s )  fo r  a ll  n o n -  
e c to m e s e n c h y m a l  c r e s t  d e r iv a t iv e s .

T h e  els p h e n o ty p e , a n d  th e  c e l l -a u to n o m y  o f  els g e n e  a c tio n  
in  p ig m e n t  c e l l  ty p e s  (K e ls h  an d  E is e n , 2 0 0 0 ) ,  s u g g e s te d  sox 10 
a s  a  c a n d id a te  g e n e .  W e  p r o v id e  an  ex p e r im e n ta l te s t  o f  th is  
h y p o th e s is . W e  rep or t th e  m a p p in g  o f  th e  els lo c u s  a n d  c lo n in g  
o f  a  ze b r a fish  sox 10 h o m o lo g u e . W e  s h o w  l in k a g e  b e tw e e n  els 
an d  soxlO, id e n t ify  soxlO  le s io n s  in  fo u r  m u ta n t a l le le s  an d  s h o w  
r e sc u e  o f  th e  els p h e n o ty p e  b y  sox 10 e x p r e ss io n . In  a d d it io n , w e  
d e s c r ib e  io n to p h o r e t ic  la b e l lin g  e x p e r im e n ts  to  e x a m in e  th e  
p r e c is e  c e l l -b io lo g ic a l  r o le  o f  cls/soxlO g e n e  fu n c t io n  in  n eu ra l 
c r e st  d e v e lo p m e n t . W e  s h o w  in  l iv e  e m b r y o s  th at N C C  c lo n e s  in  
els an d  w ild - t y p e  e m b r y o s  d iffe r e n tia te d  in to  e c to m e s e n c h y m a l  
fa te s  a fter  m ig r a t io n  to  a p p r o p r ia te  s ite s . R e m a in in g  N C C  c lo n e s  
a d o p te d  n o n -e c to m e s e n c h y m a l fa te s  in  w ild - ty p e  e m b r y o s . B y  
co n tra st, in  els e m b r y o s  d iffe r e n tia t io n  to  n o n -e c to m e s e n c h y m a l  
fa te s  w a s  ra r e ly  o b se r v e d . In stea d , m o s t  c lo n e s  fa ile d  to  m ig r a te  
a n d  u n d e r w e n t  la te  c e ll  d ea th  b y  an  a p o p to t ic  m e c h a n is m .  
F in a lly , fo r  th e  m e la n o p h o r e  fa te , w e  s h o w  d isru p te d  e x p r e ss io n  
in  els m u ta n ts  o f  g e n e s  v ita l fo r  m e la n o p h o r e  s p e c if ic a t io n  an d  
m ig r a tio n . T o g e th er , th e s e  d a ta  d e m o n str a te  a  c o m p le x  p h e n o ty p e  
in  els e m b r y o s  th at ca n  b e  e x p la in e d  b y  p r o p o s in g  th at cls/soxlO 
h a s  a  p r im a r y  r o le  in  s p e c if ic a t io n  o f  n o n -e c to m e s e n c h y m a l fa tes . 
D e f e c t s  in  c e l l  m ig r a tio n , su r v iv a l an d  d iffe r e n tia t io n  are  
th e r e fo r e  l ik e ly  to  b e  s e c o n d a r y  c o n s e q u e n c e s  o f  an  in a b ili ty  o f  
th e s e  c e l ls  to  a d o p t s p e c if ic  fa te s .

MATERIALS AND METHODS 

Fish husbandry
E m b ryos w ere  ob ta in ed  th rou gh  natural c r o sse s  and s ta g ed  acco rd in g  
to  K im m el e t  al. (K im m el e t a l., 1 9 9 5 ). W e u se d  4els a lle le s  (m618, 
t3, tw2 an d  tw ll).

M apping of c /s
els'wU h e te r o z y g o u s  fish  (T u b in g en  b ack grou n d ), w ere  cr o ssed  to  
w ild -ty p e  strain  W IK 11 to  p ro d u ce  a re feren ce  m a p p in g  cro ss .

H e tero zy g o u s  Fi w ere  in cr o ssed  an d  sep arate p o o ls  o f  E h o m o z y g o u s  
els fish  and th eir w ild -ty p e  s ib lin g s  w ere  u se d  for s im p le  se q u e n c e  
len g th  p o ly m o rp h ism  a n a ly s is  (K n ap ik  et a l., 1 9 9 6 ). L in k a g es  from  
the p o o ls  w ere  con firm ed  an d  re fin ed  b y  g e n o ty p in g  in d iv id u a l 
em b ry o s , as d escr ib ed  b y  R au ch  e t  al. (R au ch  et a l., 1 9 9 7 ).

Isolation, sequencing, phylogenetic analysis and radiation 
hybrid mapping of zebrafish soxlO
R T -PC R  w a s  p erform ed  u s in g  tota l R N A  o f  19  h p f  s ta g e  w ild -ty p e  
em b ry o s  u sin g  p u b lish e d  c o n d itio n s  an d  d eg en era te  p rim ers (Y uan  e t  
a l., 1 9 9 5 ). S e q u e n c in g  o f  re su ltin g  c lo n e s  id en tified  a r a t )  0 -like  
seq u e n c e . T h e s o x /O  c lo n e  w as e x ten d ed  b y  R A C E  P C R  u s in g  g e n e -  
sp e c ific  p rim ers (C lo n tech , S M A R T  R A C E  k it) an d  se q u e n c e d  o n  an  
A B I D N A  seq u en cer . A ll prim er s e q u e n c e s  a va ilab le  o n  req u est. T h e  
fu ll soxlO c D N A  seq u e n c e  is  ava ila b le  in  G en b an k  (A c c e s s io n  
N u m b er  A F 4 0 2 6 7 7 . T h e zeb r a fish so jc /0  h o m o lo g u e  w a s  m a p p ed  on  
th e  rad iation  h ybrid  p an e l L N 5 4  (H u k ried e  e t  a l., 1 9 9 9 ) b y  P C R  w ith  
p rim ers 5 '-A C C G T G A C A C A C T C T A C C A A G A T G A C C -3  and 5'- 
C A T G A T A A A A T T T G C A C C C T G A A A A G G -3 , w h ic h  gen era te  a 
931  bp  3' U T R  fragm ent.

For p h y lo g e n e tic  a n a ly s is  s e q u e n c e s  w ere  ex tracted  from  G en b an k  
and co d in g  s e q u e n c e s  a u to m a tica lly  ex trac ted  u s in g  G en etran s (w ith in  
G C G 9 ). T h e se  w ere  translated  and then  a lig n e d  u s in g  C lu sta lX  
(T h o m p so n  e t  a l., 19 9 7 ). T h e  n u c leo t id e  a lig n m e n ts  w ere  
recon stru cted  from  the p rotein  a lig n m e n ts  u s in g  M R T R A N S  
(w w w .h g m p .m rc .a c .u k /R eg istered /O p tio n /m rtra n s.h tm l). T re e -P u zz le  
(v  4 .0 .2 )  w a s  u se d  to con stru ct an  u n roo ted  tree b y  m a x im u m  
lik e lih o o d  (S tr im m er an d  vo n  H a e se ler , 1 9 9 6 ). It a u to m a tica lly  
a ssig n s  e s tim a tio n s  o f  sup p ort to  ea ch  internal b ran ch , figu res  for  
w h ich  are p resen ted  in the figu re . To m o d e l the su b stitu tion  p ro ce ss  
the Tam ura and N e i  (Tam ura and N e i ,  1 9 9 3 )  m o d e l w a s  e m p lo y e d  and  
all s ite s  w ere  u se d . G am m a d istrib u ted  variation  in rates o f  ev o lu tio n  
w as p erm itted  w ith  e ig h t variab le s ite s  an d  o n e  in variable. P aram eters  
w ere es tim a ted  u s in g  quartet sa m p lin g  an d  th e  n e ig h b o u r-jo in in g  tree.

Characterisation of mutant sox/0  alleles
T otal R N A  from  2 7  h p f  h o m o z y g o u s  em b ry o s o f  m u tant a ile le s  
els’"618, clstw2 and els'wl1 w a s  prepared  u s in g  T R I reagen t (S ig m a ). 
First strand c D N A  w a s  g en era ted  u s in g  random  h ex a m ers  and  
S u p erscr ip tll RT (G ib c o B R L ). F or ea c h  a lle le  fou r o v er la p p in g  RT- 
P C R  fragm en ts w ere  se q u e n c ed  to  id en tify  m u tant le s io n s . F o r ti, 
g e n o m ic  D N A  w a s  extracted  from  in d iv id u a lc /s^  m u tant e m b ry o s , a 
g e n o m ic  fragm en t en c o d in g  th e  N -term in a l o f  th e S o x lO  p rotein  w a s  
a m p lified  b y  P C R  and se q u e n c e d  c o m m e r c ia lly  (O s w e ll , 
S ou th am p ton ). T h e  t3 in sertion  seq u e n c e  is  av a ila b le  in  G en b an k  
(A c c e s s io n  N u m b er , A F 4 0 4 4 9 0 ) .

Ectopic expression in zebrafish embryos
T h e fu ll co d in g  reg ion  ofclsm6,s w a s  a m p lified  b y  R T -P C R  u sin g  
prim ers C /aI-S 21  (5 '-C C A T C G A T A C C T A C C G A A G T C A C C T G T -  
G G -3 ') and S21-Xba\ (5 '-G C T C T A G A G T T T G T G T C G A T T G T G G -  
T G C -3 '). T h e  1 6 1 5b p  fragm en t w a s  s u b c lo n ed  in to  \hd3la\IXba\ s ite  
o f  the h ea tsh o c k  v ec to r  p C S H S P  (H a lloran  e t  a l., 2 0 0 0 )  to  g en era te  
h s>soxlO(L142Q). T h e w ild  typ e sox 10 con stru ct, h s>soxl0, w a s  
gen era ted  b y  s ite -d irected  m u ta g en es is  o f  h s^soxlO(L142Q) u s in g  
Q u ik C h an ge S ite  D irected  M u ta g en es is  K it (S tra tagen e). S eq u e n c in g  
con firm ed  th e su c c e s s fu l gen era tion  o f  b oth  c lo n e s . D N A  p u rified  for  
in jec tion  u s in g  M icro co n  F ilter D e v ic e s  (M illip o r e )  w a s  d ilu ted  to a 
con cen tra tion  o f  2 5  ngp.1, w ith  0 .1%  P h en o l R ed . elsm618 o r  th eir  
w ild -ty p e  s ib lin g s  w ere  in jected  w ith  2  n l o f  e ith er  h s ^ o x /0  or  
h s>soxlO(L142Q) at the o n e -  to  tw o -c e ll  s ta g e  and in cu b a ted  at 
2 8 .5 °C . A s  appropriate, em b ry o s w ere  h e a tsh o c k e d  tw ic e  (a t 1 0 -1 3  
h p f  and 2 2 -2 4  h pf), b y  in cu b ation  at 3 7 C  for 1 hour, els em b ry o s  
w ere  sco red  for re scu e  at 4 8  h p f  u sin g  a M Z 1 2  d is se c t in g  m ic r o sc o p e  
(L e ica ). R e sc u e  w a s  d efin ed  as the p r e se n c e  o f  at le a st  o n e  
m elan op h ore o f  w ild -ty p e  m o rp h o lo g y ; th ese  are n ever  se e n  in  
u n in jected  m utant em b ry o s.

http://www.hgmp.mrc.ac.uk/Registered/Option/mrtrans.html
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lontophoretic labelling and clonal analysis of single neural 
crest cells
lo n to p h o r e tic  la b e llin g  o f  in d iv id u a l neural crest c e lls  w a s  p erform ed  
u sin g  e s s e n t ia lly  the m eth o d  o f  R a ib le  et a l. (R a ib le  et a l., 1 9 9 2 ), 
ex c e p t  th at m ic ro p ip ette  tip s w ere  filled  w ith  3%  ly sin a ted  rh od am in e  
d extran  an d  3%  b io tin y la te d  d extran  (b o th  lQclO3 Afr; M o lecu la r  
P r o b e s) m ix tu re  d is s o lv e d  in 0 .2  M  KC1 and the n eed le s  b a ck filled  
w ith  0 .2  M  KC1. E m b ry o s from  h e te r o z y g o te s  forc/s  a lle le s  t3, tw2 
and tw ll  w ere  u sed ; n o  p h e n o ty p ic  d iffer en ces  b etw een  th ese  a lle le s  
w ere  s e e n , s o  w e  d o  n o t  d is tin g u ish  th em  here . Ind iv id ual N C C s  w ere  
la b e lle d  b y  in tracellu lar  in jec tio n  w ith  d y e . P rem igratory cran ia l crest  
c e l ls ,  b e tw e e n  th e  p o ster io r  e y e  an d  the anterior b oun d ary  o f  so m ite  
1, w ere  la b e lle d  in  4 - 1 4  s o m ite  (1 1 -1 6  h ou rs p o st  fertilisa tion , h pf) 
e m b ry o s , w h ile  p rem igra tory  trunk N C C s  at th e  le v e l o f  so m ite  7 w ere  
la b e lle d  in  1 6 -2 2  so m ite  (1 8 -2 0  h p f) em b ry o s . P rem igratory trunk  
N C C s  at th e le v e l o f  s o m ite  14 w ere  la b e lled  in 2 2 -2 5  so m ite  (2 0 -2 2  
h p f) e m b r y o s . E m b ry o s  w ere  reco v ered  an d  ra ised  for severa l hours  
at 2 8 .5 ° C  in em b ry o  m ed iu m  w ith  1% v /v  p en ic illin /str ep to m y c in  
so lu tio n  (G ib c o ) . E m b ry o s  w ere  rem ou n ted  and ex a m in ed  to id en tify  
th o se  w ith  o n ly  a s in g le  la b e lled  N C C ; o n ly  th ese  em b ry o s  w ere  
a n a ly sed .

L a b e lle d  c e lls  w ere  m o n ito red  u s in g  N o m a rsk i and f lu o re sc en ce  
o p tic s  o n  a B X 5 0 W I  m ic r o sc o p e  (O ly m p u s) , and d o cu m en ted  o n  a 
E c lip se  E 8 0 0  m ic r o sc o p e  (N ik o n ) u s in g  lo w  ligh t le v e l, v id e o ­
en h a n c e d  flu o r e sc e n c e  m ic ro sco p y . L a b e lled  c e lls  w ere  m on itored  
tw ic e  d a ily  for up  to  3 d a y s  u n til p ro g en y  co u ld  b e  id en tified  u sin g  
p u b lish e d  m o r p h o lo g ic a l criteria (R a ib le  and E ise n , 1994 ; R a ib le  
et a l., 1 9 9 2 ; S c h ill in g  an d  K im m el, 1 9 9 4 ). T h u s, m ela n o p h o res  
co n ta in ed  m e la n in  gran u les; x a n th o p h o res  w e r e  v is ib ly  y e l lo w  and  
a u to flu o resced  at a w a v e le n g th  n ear that o f  f lu orescein ; ir id op h ores  
c o n ta in ed  ir id escen t gran u les; d orsal root g a n g lia l n eu ro n es  w ere  
id en tified  b y  p o sit io n  ven tro la tera l to  the neural tu be co m b in ed  w ith  
a v is ib le  n eu rite; sy m p a th e tic  n eu ro n es  w ere  p o sit io n ed  ventral and  
lateral to  th e  n o toch ord  an d  sh o w e d  n eu rites; S ch w a n n  c e lls  w ere  
e lo n g a te d  and p o s it io n e d  a lo n g  ax o n a l p r o c e sse s , e .g . tr igem in al 
n erve; sa te llite  g lia  w ere  a s so c ia te d  w ith  the g a n g lio n ic  sh ea th  or 
ap p eared  to  b e w rap p ed  around n eu ron al stom ata; cran io fa c ia l 
ca r tila g e  form ed  ch arac ter istic  s ta ck s o f  v a cu o la ted  c e lls  in th e ja w  or  
g ill a rch es; fin  m e s e n c h y m e  o c c u p ie d  a p o sit io n  w ith in  th e  dorsa l fin  
fo ld  an d  s h o w e d  ch arac ter istic  a sy m m etr ic  organ isa tion  o f  p ro jectio n s  
(S m ith  e t  a l., 1 9 9 4 ). C e lls  w h ich  c o u ld  n ot b e a s s ig n e d  to an y  o f  the  
d escr ib e d  g ro u p s, o w in g  to  th eir p o sit io n  in reg io n s o f  lim ited  o p tica l 
re so lu tio n  or  la c k  o f  d is t in c tiv e  m o rp h o lo g ie s , w ere  c la ss if ie d  as  
‘u n id en tif ied ’ . In cran ia l r e g io n s, th ese  c e lls  u n d o u b ted ly  in clu d ed  
c e l ls  o f  c o n n e c t iv e  tis su e  fa tes  (S c h ill in g  and K im m el, 1 9 9 4 ).

TUNEL
T U N E L  (term in al d e o x y n u c le o t id y l tran sferase (T d T )-m ed ia ted  
d eo x y u rid in etr ip h o sp h a te  (d U T P ) n ick  en d -la b e llin g )  o f  d o u b le ­
strand D N A  fragm en ta tion  w a s  u se d  to con firm  a p o p to s is  in c e lls  w ith  
a p o p to tic  m o rp h o lo g y , els° an d  th eir w ild -ty p e  s ib lin g s  w ere  fixed  
ov ern ig h t at 4 ° C  in 4%  p ara form ald eh yd e and T U N E L  p erform ed  
u sin g  flu o re sc e in  d U T P  an d  d e v e lo p e d  u sin g  4 -N itro b lu e  tetrazo liu m  
ch lo r id e  an d  5 -B r o m o -4 -c h lo r o -3 -in d o ly l-p h o sp h a te  (B o eh r in g e r  
M a n n h e im ; R e y e s , 1 9 9 9 ).

Morpholino injections
A B  w ild -ty p e  em b ry o s  at 2 5 , 3 0  and 3 5  h p f  w ere  in jec ted  w ith  eith er  
a h igh  (1 6 .5  n g ) or lo w  (9  n g ) d o se  o f  a m orp h o lin o  d e s ig n e d  to k n o c k ­
d o w n  soxlO, as  d escr ib e d  p r e v io u s ly  (D u tton  e t  a l., 2 0 0 1 ) . E ffec ts  on  
nac/mitf e x p r e ss io n  in m e la n o b la sts  at 25  h p f  w ere  eva lu a ted  b y  
co u n tin g  n a c /m it^ e x p r e ss in g  c e l ls  in  o n e  h a lf  o f  th e  trunk in ea c h  o f  
2 0  e m b ry o s  at ea c h  d o se .

Whole-mount in situ hybridisation and antibody staining
R N A  in  situ  h yb r id isa tion  w a s  p erform ed  as d escr ib ed  b y  K e lsh  and  
E isen  (K e lsh  an d  E is e n , 2 0 0 0 ) ,  onels"1618, els'wU and els'3, th eir w ild -

typ e s ib lin g s  an d  m orp h ants. P rob es for the fo llo w in g  g e n e s  w ere  
u sed: nac/mitf (L ister  e t a l., 1 9 9 9 ) , spa/kit (P ar ich y  e t a l., 19 9 9 );  
dopachrome tautomerase(dct) (K e lsh  e t a l., 2 0 0 0 b ) ;dlx2 (A k im en k o  
et a l., 1994 ); forkhead 6 (Jkd6) (O d en th a l an d  N u e ss le in -V o lh a r d ,
19 9 8 ).

A n tib od y  sta in in g w ith  anti-H u, m A b  1 6 A 1 1 (M aru sich  et a l., 19 9 4 ), 
w as perform ed  u sin g  p erox id ase-an tip erox id ase  (V E C T A S T A D f)  
E lite  A B C  k it) and D A B  substrate.

RESULTS 

els and  a zebrafish  soxlO hom ologue  m ap to  th e  
sam e region of L inkage G roup 3
T h e  s tr o n g  p h e n o t y p ic  s im ila r ity  b e t w e e n  soxl0D°m m ic e  a n d  
els m u ta n ts  s u g g e s t e d  a  z e b r a fis h  sox 10 h o m o lo g u e  a s  a  
ca n d id a te  g e n e  fo r  els. W e  u s e d  R T -P C R  to  c lo n e  a  p a r tia l  
soxlO-l ik e  H M G  b o x  a n d  R A C E  R T -P C R  to  c lo n e  5 '  a n d  3 '  
r e g io n s .  S e q u e n c in g  th e s e  c lo n e s  r e v e a le d  an  o p e n  r e a d in g  
fr a m e  e n c o d in g  a  soxl 0 h o m o lo g u e ,  w h ic h  w e  r e fe r  to  a s  sox 10 
(F ig .  1 A ,B ) .

G e n e t ic  m a p p in g  o f  2 7 4  m e i o s e s  p la c e d  els o n  L G  3 w it h in  
a 3 .9  c M  in te r v a l b e tw e e n  m a rk ers  z 8 7 2  a n d  z l 3 3 8 7  ( F ig .  1 C ). 
T w o  o l ig o n u c le o t id e  p r im e r s  a m p lif ie d  a  9 3 1  b p  fr a g m e n t  
fr o m  z e b r a fis h , b u t n o t  fr o m  c o n tr o l  m o u s e  g e n o m ic  D N A .  
A m p l if ic a t io n  fr o m  th e  D N A s  in  th e  L N 5 4  r a d ia tio n  h y b r id  
m a p p in g  p a n e l  (H u k r ie d e  e t  a l . ,  1 9 9 9 )  w it h  t h e s e  p r im e r s  
m a p p e d  soxlO  to  L G  3 ,  O cR  fr o m  th e  m a rk er  z 8 4 9 2  ( L O D  
s c o r e = 1 7 .6 ;  F ig .  1 C ). T h e  s tr ik in g  l in k a g e  o f  els a n d  soxlO, 
to g e th e r  w ith  in  s itu  h y b r id is a t io n  e x p e r im e n t s  s h o w in g  soxl 0 
e x p r e s s io n  in  n eu r a l c r e s t  ( s e e  b e lo w ) ,  s t r o n g ly  s u p p o r te d  o u r  
h y p o th e s is  th a t els m ig h t  e n c o d e  soxlO.

soxlO is d isru p ted  in els m u tan ts
W e  u s e d  R T -P C R  t o  a m p li f y  th e  so x l0 - c o d in g  r e g io n  f r o m  2 7  
h p f  h o m o z y g o u s  m u ta n ts  o f  3 els a l l e le s .  S e q u e n c in g  th e s e  
P C R  p r o d u c ts  id e n t if ie d  s e q u e n c e  d if f e r e n c e s  fr o m  w i ld - t y p e  
c o n s is t e n t  w ith  th e m  c a u s in g  th e  m u ta n t  p h e n o t y p e  ( F ig .  
1 D ,E ) .  T w o  a l l e le s  s h o w  an  A - » T  t r a n s v e r s io n , r e s u lt in g  in  
a  p r e m a tu r e  S to p  c o d o n ;  th e  th ir d  i s  a  n o n - c o n s e r v a t iv e  
s u b s t itu t io n  ( L 1 4 2 Q )  o f  a  f u l ly - c o n s e r v e d  r e s id u e  in  th e  H M G  
d o m a in . A  fo u r th  a l l e le ,  t3, s h o w e d  h ig h ly  r e d u c e d  R N A  
e x p r e s s io n  u s in g  a  3 '  p r o b e  fo r  w h o le - m o u n t  R N A  in  s itu  
h y b r id is a t io n . P C R  fr o m  g e n o m ic  D N A  id e n t i f ie d  a  1 .5  k b  
in s e r t io n  in  a l l  t3 m u ta n ts  th a t w a s  n o t  p r e s e n t  in  w i ld  ty p e s .  
S e q u e n c in g  g e n o m ic  D N A  fr o m  t3 h o m o z y g o t e s  id e n t if i e d  a  
1 3 9 7  b p  in s e r t io n  w ith  s e q u e n c e  h o m o lo g y  to  a  t r a n s p o s o n  
f ir s t  id e n t if i e d  in  a  m u ta n t  no tail a l l e le  (d a ta  n o t  s h o w n ;  
S c h u l t e -M e r k e r  e t  a l . ,  1 9 9 4 ) .  T h e  in s e r t io n  in te r r u p ts  th e  
soxl 0 - c o d in g  s e q u e n c e  u p s tr e a m  o f  th e  H M G  d o m a in  a n d  
a d d s  e ig h t  n o v e l  a m in o  a c id s  b e f o r e  p r e m a tu r e ly  tr u n c a t in g  
th e  p r o te in  ( F ig .  I D ) .

T o  te s t  fu r th er  w h e th e r  els e n c o d e s  soxlO, w e  a t te m p te d  to  
r e s c u e  th e  els p h e n o ty p e  w ith  e c to p ic  sox 10 e x p r e s s io n  u n d e r  
h e a t  s h o c k  c o n tr o l .  W e  t o o k  a d v a n ta g e  o f  th e  c o n s is t e n t  
a b s e n c e  o f  la r g e , s t e l la t e  m e la n o p h o r e s  in  e v e r y  els e m b r y o .  
E c t o p ic  e x p r e s s io n  o f  w i ld - t y p e  soxlO  r e s c u e d  1 -4 0  
m e la n o p h o r e s  to  a  w i ld - t y p e  m o r p h o lo g y  in  4 8 %  o f  clsm618 
m u ta n ts , w h i le  e c to p ic  m u ta n t soxlO(L142Q) f a i le d  to  d o  s o  
(T a b le  1; F ig .  2 ) .  F u r th e r m o r e , w h i le  els m e la n o p h o r e s  a lw a y s  
r e m a in  d o r s a l to  th e  n eu r a l tu b e , r e s c u e d  m e la n o p h o r e s  
f r e q u e n t ly  m ig r a te d , e v e n  to  v e r y  d is ta l p o s i t io n s  (F ig .  2 ) .
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F ig . 1 . A  zeb ra fish  sox 10 h o m o lo g u e  m a p s to  the reg ion  o f  th ec/s  
lo c u s . (A ) S e q u e n c e  c o m p a r iso n  o f  p red ic ted  zeb ra fish  S o x lO  
h o m o lo g u e  (4 4 , 4 5  an d  60%  id en tity  to  m o u se  S o x 8 , S o x 9  and  
S o x lO , re sp e c tiv e ly ) . B lo c k s  o f  id en tity  co rresp o n d in g  to all 
p r o p o se d  fim c tio n a l d o m a in s  can  b e  se e n , in c lu d in g  the H M G  
d o m a in  (red  u n d er lin e; 95%  a m in o  acid  id en tity ), N -term in a l 
sy n e r g y  d o m a in  (1 -1 0 5 ;  4 8 %  id en tity ), d im er isa tio n  d om ain  (6 6 -1 0 5 ;  
78%  id en tity ), C -term in a l tran scrip tiona l activa tion  d om ain  (3 9 5 -  
4 8 5 ;  76%  id en tity ) an d  a  d o m a in  C -term in al to  th e  H M G  d om ain  
co rresp o n d in g  to  a p u ta tive  p ro te in -p ro te in  in teraction  d o m a in  (2 3 4 -  
3 2 5 ;  64%  id en tity ; B on d u ran d  e t  a l., 2 0 0 0 ;  K u h lb rod t et a l., 1998a;  
K u h lb rod t e t a l., 1998b ; L iu  e t  a l., 1999 ; P e iran o  and W egner, 2 0 0 0 ) .
(B )  M a x im u m  lik e lih o o d  p h y lo g e n e t ic  tree o f  sub grou p  E  S o x  g en es .  
Z eb rafish  soxlO c lu ster s  w ith in  th e S o jc /O c la d e  o f  vertebrate S o x  
g e n e s . T h e  A c c e s s io n  N u m b er s  for  th e s e q u e n c e s  are as fo llo w s:  
c h ic k e n  Sox8 (A F 2 2 8 6 6 4 );  trout SoxPl (D 8 3 2 5 6 );  m o u se  S o x #
(A F 1 9 1 3 2 5 ); h u m a n S O r #  (A F 2 2 6 6 7 5 );  fr o g S o x 9 o (A B 0 3 5 8 8 7 ) ;  
a llig a to r  Sox9 (A F 1 0 6 5 7 2 );  trout S o x  9  (A B 0 0 6 4 4 8 );  ze b r a fish so x 9 a  
(A F 2 7 7 0 9 6 );  ze b r a fis h s o x 9 6  (A F 2 7 7 0 9 7 );  c h ic k e n S o x 9  
(A B 0 1 2 2 3 6 ) ;  p ig S o x 9 ( A F 0 2 9 6 9 6 ) ;  h u m a n S O T 9  (Z 4 6 6 2 9 );  
z e b r a f is h s o x /0 (A F 4 O 2 6 7 7 ) ;  c h ic k e n S o x 7 0 (A F 1 5 2 3 5 6 ) ;  m o u se  
SoxlO (A F 0 4 7 3 8 9 );  rat SoxlO 1029 ); h u m an S O W O
(N M _ 0 0 6 9 4 1 ) . (C ) M a p p in g  u s in g  the L N 5 4  p a n e l p la c e d o x /0 o n  
L G  3 in the reg ion  o f  th e c /s  lo c u s  id en tified  u sin g  m icro sa te llite  
m arkers (w e  fo u n d  fou r reco m b in a n ts  b etw een els and z l 3 3 8 7  in  2 7 4  
m e io se s ) . N o te  that z 8 4 9 2  w a s  n ot p o ly m o rp h ic  and co u ld  n o t b e  
a n a ly sed  in th e  m a p p in g  cr o ss . (D )  S ch em a tic  to  illustrate ch a n g es  in  
S o x lO  m utant p ro te in s . In els"618 a T 4 2 5 A  su b stitu tion  resu lts  in a 
n o n -c o n ser v a tiv e  ch a n g e  (L e u l4 2 G ln )  w ith in  th e H M G  d om ain  
(red ). In e l s and els'”11, a A l  1 2 6 T  su b stitu tion  in trod u ced  a S top  
co d o n  tru n catin g  the p rotein  ju s t  N -term in a l to  the tran sactivation  
d o m a in  (b lu e). In sertion  o f  a 1 .4  kb tran sp oson  at th e  s ite  in d ica ted  
b y  th e  arrow  in A  d is r u p ts j o x /0  in els'3 and in trod u ces  a C -term in al 
e x te n s io n  o f  e ig h t  n o v e l a m in o  a c id s  b efo re  prem ature tru n cation  N -  
term in al to  the H M G  d o m a in  (y e l lo w ) . (E ) C hrom atogram  traces to  
s h o w  n u c le o t id e  ch a n g e s  a ffec tin g y o x f 0 -co d in g  reg ion s in clsm6,s 
and els'™2.

sox10 ex p re ss io n  is d isru p ted  in els m u tan ts
W e u s e d  in  s itu  h y b r id is a t io n  to  e x a m in e  soxlO  e x p r e s s io n  in  
w ild - t y p e  a n d  els e m b r y o s .  In  w i ld  t y p e s ,  e x p r e s s io n  w a s  fir st  
d e te c te d  a t th e  o n e - s o m it e  s ta g e  in  c e l l s  in  th e  la te ra l n eu ra l 
p la te  (d a ta  n o t  s h o w n ) .  T h r o u g h o u t  s o m it o g e n e s i s  s ta g e s ,  
s tr o n g  soxlO  e x p r e s s io n  w a s  s e e n  in  p r e m ig r a to r y  N C C s  a n d  
e x te n d e d  p r o g r e s s iv e ly  m o r e  c a u d a lly  in  o ld e r  s ta g e s  (F ig .  3 A -  
C ,F ) . D o u b le  R N A  in  s itu  h y b r id is a t io n  s t u d ie s  s h o w  th a t  th ere  
i s  e x t e n s iv e ,  b u t  in c o m p le t e ,  o v e r la p  o f  sox JO a n d  fkd6, a  
m a rk er  e x p r e s s e d  w id e ly  in  p r e m ig r a to r y  N C C s  ( F ig .  3 0 , P )  
(O d e n th a l a n d  N u e s s le in - V o lh a r d ,  19 9 8 ) .  sox 10 e x p r e s s io n  
w a s  m a in ta in e d  in  s o m e  m ig r a t in g  N C C s  o n  th e  m e d ia l  
m ig r a t io n  p a th w a y  ( F ig .  3 C ,F ) .  B y  3 0 - 4 0  h p f  soxlO  e x p r e s s io n

Table 1. Rescue o f els phenotype using ectopic soxlO  
expression

Mean number o f
Heat Injected cls~ Rescued cls~ melanophores per 

Construct shock that survived (% rescued) rescued embryo
hs>soxl0 +  92 4 4 (4 8 ) 15
hs>soxl0 -  48 17(35)* 4.3
hs>soxlO(L142Q) +  122 0 (0 )  0

*A similar degree o f  leakiness with this promoter has been reported by 
Lister et al. (Lister et al., 1999); note that the degree o f  rescue is much less in 
the absence o f  heat shock.

o n  th e  m e d ia l  p a th w a y  i s  o r g a n is e d  in  s e g m e n t a l ly  a r r a n g e d  
c lu s te r s  a d ja c e n t  to  th e  n o to c h o r d , p r e s u m a b ly  d e v e lo p in g  
S c h w a n n  c e l l s  a s s o c ia t e d  w ith  th e  s e g m e n t a l  n e r v e s  ( F ig .  3 Q );  
soxlO  e x p r e s s io n  is  lo s t  f r o m  t h is  s i t e  b y  4 8  h p f . A lt h o u g h  
N C C s  are fo u n d  e x t e n s iv e ly  o n  th e  la te ra l p a th w a y  fr o m  2 4  h p f  
( R a ib le  e t  a l . ,  1 9 9 2 ) ,  c o u n t s  o f  soxl  ̂ - e x p r e s s in g  c e l l s  s h o w  
th a t e x p r e s s io n  w a s  e s s e n t ia l ly  a b s e n t  f r o m  c e l l s  o n  th is  
p a th w a y  ( F ig .  3 M ,N ) .  T h is  d e m o n s tr a te s  th e  ra p id  
d o w n r e g u la t io n  o f  sox 10 f r o m  p ig m e n t  c e l l  p r e c u r so r s , a s  
N C C s  o n  th is  p a th w a y  fo r m  o n ly  p ig m e n t  c e l l s  (R a ib le  a n d  
E is e n ,  1 9 9 4 ) .  C o n s is t e n t  w ith  th is ,  x a n th o p h o r e s  a n d  m o s t  
p ig m e n te d  m e la n o p h o r e s  s h o w  n o  d e te c ta b le  soxlO  e x p r e s s io n  
(F ig .  3 L ) ,  a lth o u g h  s o m e  w e a k ly  e x p r e s s in g  m e la n o p h o r e s  
w e r e  n o te d  a t e a r lie r  s t a g e s  ( F ig .  3 K ) .  E x p r e s s io n  w a s  n o t  s e e n  
in  f in  m e s e n c h y m e  n o r  in  J /x 2 - e x p r e s s in g  c r a n io fa c ia l  c a r t i la g e  
p r e c u r so r s  ( F ig .  3 D ,E ) ,  a lth o u g h  d if fe r e n t ia t in g  j a w  c a r ti la g e  
s h o w s  w e a k  e x p r e s s io n  b y  6 0  h p f  (d a ta  n o t  s h o w n ) .  C e l l s  
e x p r e s s in g  soxlO  a c c u m u la te d  in  c lu s t e r s  c o r r e s p o n d in g  t o  th e  
fo r m in g  c r a n ia l g a n g l ia  a n d  e x te n d in g  a lo n g  th e  p o s te r io r  
la te ra l l in e  n e r v e  b y  2 4  h p f  ( F ig .  3 F ,H ) , in  a  p a ttern  r e m in is c e n t  
o f  Jkd6 e x p r e s s io n  (K e ls h  e t  a l . ,  2 0 0 0 a ) ,  s u g g e s t in g  th a t  soxlO 
i s  e x p r e s s e d  in  s a t e l l i t e  g l ia l  a n d  S c h w a n n  c e l l s .  C o n s is t e n t  
w ith  th is  in te r p r e ta tio n , d o u b le  la b e l l in g  w ith  a n t i-H u  a n t ib o d y  
c o n f ir m e d  th e  n o n -o v e r la p p in g  e x p r e s s io n  o f  sox 10 a n d  th is  
n e u r o n a l m a rk er  ( F ig .  3 J ) . sox 10 is  m a in ta in e d  in  d e v e lo p in g  
S c h w a n n  c e l l s  o n  th e  p o s te r io r  la te ra l l in e  n e r v e  u p  to  6 0  h p f  
(d a ta  n o t  s h o w n ) .  soxlO  e x p r e s s io n  w a s  p r o m in e n t  in  e n te r ic  
n e r v o u s  s y s t e m  p r e c u r so r s  a t 6 0  h p f  ( F ig .  3 S ) .

A t  e a r ly  s t a g e s ,  p r e m ig r a to r y  c r e s t  s h o w e d  e q u iv a le n t  
p a tte r n s  o f  soxl 0 - p o s i t iv e  c e l l s  in  w i ld - t y p e  a n d  elstwI1 a n d  
clsm6i8 m u ta n t e m b r y o s .  C o u n ts  a t 2 4 ,  3 0  a n d  3 5  h p f  r e v e a le d  
th a t a lth o u g h  in  w i ld  t y p e  soxl  ̂ - e x p r e s s in g  c e l l s  w e r e  r a p id ly  
lo s t  fr o m  th e  p r e m ig r a to r y  p o s i t io n ,  t h e y  r e m a in e d  h e r e  in  
c[sm6i8 m u ta n ts ;  b y  c o n tr a s t , sox 10 e x p r e s s io n  in  m ig r a t in g  
tru n k  N C C  w a s  b r o a d ly  c o m p a r a b le  b e tw e e n  w i ld  t y p e  a n d  
c[sm6i8 m u ta n ts  (F ig .  3 M ,N ) .  A d d it io n a l ly ,  els m u ta n ts  w e r e

F ig . 2 . els p h e n o ty p e  is  r e scu ed  b y  ec to p ic  
sox 10 e x p re ss io n . W ild -ty p e  e m b ry o s  sh o w  
m an y large, s tro n g ly  p ig m en ted  
m ela n o p h o res  at 4 8  h p f  (A ; c lo se -u p  o f  anal 
reg ion  in D ) , w h ile  hs>soxlO(L142Q)- 
in jec ted  elsm6,s m u tan ts (B )  s h o w  o n ly  tiny  
m ela n ise d  sp o ts  in p o s it io n  o f  p rem igratory  
N C C s (arrow h ead s). (C ,E ,F ) B y  contrast, 
els"618 em b ry o s  in jec ted  w ith  h s ^ o x /O a n d  
h ea t-sh o c k e d , s h o w  m o s a ic  re scu e  o f  m ela n o p h o res . T h is  e m b ry o  sh o w ed  o n e  rescu ed  m ela n o p h o re  in the d orsa l stripe (*  in C ), tviw the  
ventral stripe (arrow s in C; c lo se -u p  in E ) and o n e  on  th e y o lk  sac  (F ). S c a le  bar: 12$tm  in A -C ; 7 0  p m  in  D -F .
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F ig . 3 .  E m b ry o n ic  soxlO e x p r e ss io n  in  
w ild -ty p e  an d  c / s  em b ry o s .
(A,B) soxl 0 is e x p r e ss e d  in  m o st  
cran ia l (A ; f iv e -so m ite  s ta g e )  and trunk  
(B ; 14 -s o m ite  s ta g e )  p rem igra tory  
N C C s; d o u b le  m R N A  in  s itu  
h y b r id isa tio n  w ith  fkd6 (O , p u rp le) and  
soxlO(P, g reen ) in  a  s ix - s o m ite  sta g e  
em b ry o  revea ls  e x te n s iv e  over la p , 
a lth o u g h  so m e  in d iv id u a l N C C s  lack  
soxlO (a rro w h ea d s). (C ) 1 8 -so m ite  
s ta g e  em b ry o  s h o w s  stro n g  e x p re ss io n  
in  p rem igra tory  (b la ck  arrow ) and  
m ig ra tin g  (a s ter isk ) N C C s  an d  o tic  
v e s ic le  (o ). (D ,E )  D o u b le  m R N A  in  
s itu  h y b r id isa tio n  w ith dlx2 (D , p urp le)  
an d  soxlO (E , g r e e n )  in  2 9  h p f  stage  
em b ry o s  sh o w s  a b se n c e  o (sox 10 
e x p r e ss io n  in d e v e lo p in g  b ran ch ia l 
arch es  (1 -5 ) . (F )  B y  2 4  h p f  in w ild  
ty p e s , stron g  e x p r e ss io n  is  a s so c ia ted  
w ith  cran ia l g a n g lia  (w h ite  
arrow h ead s) an d  p o ste r io r  lateral lin e  
n erv e  (b la ck  arrow h ead ; en la rg ed  in  
in se t) , o tic  v e s ic le  (o ) ,  m ig ra tin g  N C C s  
th ro u g h o u t trunk (a s te r isk s )  and in  
prem igra tory  cr e st  (arrow ). (G ) A t 2 4  
h p f  in  els m u tan ts , e x p r e ss io n  in  the  
h ead  is  c lu ster ed  (w h ite  a s ter isk s) and  
cran ia l g a n g lia  h a v e  re d u ce d  la b e llin g  
(w h ite  arrow h ead s). C e lls  e x p r e ss in g  
soxl 0 ex ten d  a lo n g  th e  p o ste r io r  lateral 
lin e  n erv e  (arrow h ead  an d  in set).
R ostra l trunk s h o w s  s o m e  m igra tin g  
c e l ls  (b la ck  a ster isk ), b utsoxlO- 
p o s it iv e  c e lls  are c lu s te r e d  dorsa l to  th e  
n eu ra l tu be (a rro w s) in  trunk and tail.
(H ,I )  C o m b in e d  soxlO in  s itu  
h yb r id isa tio n  (p u rp le ) an d  an ti-H u  
a n tib o d y  la b e llin g  (o r a n g e )  sh o w s  
stro n g  soxlO e x p r e ss io n  a s so c ia te d  
w ith  w ild -ty p e  (H ) p o ste r io r  lateral lin e  
g a n g lio n  (g ) , m u ch  re d u ce d  in els 
m u tant (I). (J) In tra n sv erse  se c t io n  o f  
w ild -ty p e  g a n g lio n  (ap p ro x im a te  
p o s it io n  in d ica ted  b y  w h ite  lin e  in  H ), 
soxlO ex p r e ss io n  is  s tron g  p erip h era lly  (n on -n eu ron a l c e l ls ) ,  but a b sen t cen tra lly  (n eu ro n es). (K ,L ) 3 6  h p f  w ild -ty p e  em b ry o s  s h o w  » le  
e x p r e ss io n  in s o m e  m e la n o p h o r e s , but n o t a ll. T h u s, w ea k  ex p r e ss io n  (arrow h ead ) is  s e e n  in  s o m e  c e lls  o f  the d orsa l stripe (K ^ it n ot in  c e lls  
on  th e  y o lk  sa c  (L ). (M ,N )  N u m b er  ofsoxlO -expressing N C C s  in  d ifferen t lo c a tio n s  (p rem igratory, pre; m igra tin g  o n  m ed ia l p a th w ay , M P; 
m igra tin g  on  lateral p a th w a y , L P ) o f  trunk and anterior ta il ( so m ite s  1 -2 0 ) at 2 4  (M ) and 3 0  h p f  (N )  in W T  and/s m utants. (Q ,R ) S eg m en ta lly  
arranged  lin e s  o f s o x /O -p o s it iv e  c e l ls  ly in g  ad jacen t to  the n o to ch o rd  (n o ), p resu m ab ly  g lia , are abundant in w ild  ty p e  (Q ) an d  o n ly  w e a k ly  
a ffec te d  in  els m u tan ts (R ) at 4 0  hpf. (S ,T )  T ran sverse  se c t io n  o f  trunk o f  6 0  h p f  w ild -ty p e  em b ry o  (S )  sh o w s  en teric  n ervou s s y ste m  e x p r e ss io n  
(a rrow h ead s) lateral to  th e  gu t (g ) , a b sen t ir c /s  m utant (T ). e ,  ey e ; m , m u sc le ; s , som ite; v s , ventral stripe m e la n o p h o res . A ll im a g e s  are lateral 
v ie w s , rostral tow ard s th e  le ft, d orsa l u p w ard s, e x c e p t  d orsa l v ie w s  o f  A ,K ,0 ,P . S ca le  bar: 20p .m  in  A ; 5 0  p m  in  B ,H -I ,K -L ; 1 2 0 p m  in C ;
7 5  p m  in D ,E ; 1 5 0  p m  in F,G ; 3 5  p m  in J; 65  p m  in 0 ,P ;  5 5  p m  in  Q ,R ; 4 5  p m  in  S,T.

d is t in g u is h a b le  f r o m  2 4  h p f  b y  th e  c lu s te r e d , n o t  s c a t te r e d ,  
d is tr ib u t io n  o f  soxl 0 - p o s i t iv e  c e l l s  in  th e  h e a d  (F ig .  3 F ,G )  a n d  
a v a r ia b le  r e d u c t io n  in  th e  n u m b e r  o f  sox l0 - p o s i t iv e  c e l l s  in  
c r a n ia l g a n g l ia  a n d  o n  c r a n ia l n e r v e s  ( F ig .  3 H ,I ) .  B y  3 5  h p f ,  
els m u ta n ts  w e r e  r e a d i ly  d is t in g u is h e d  fr o m  w i ld  t y p e s  b y  th e ir  
r e d u c e d  n u m b e r  o f  so x l0 - p o s i t iv e  c e l l s ,  c o n c e n tr a te d  in  a  
p r e m ig r a to r y  p o s i t i o n  d o r s a l to  th e  n eu r a l tu b e  o r  c lu s te r e d  
n e a r  th e  p o s t e r io r  la te r a l l in e  g a n g lia ;  p u ta t iv e  S c h w a n n  c e l l s  
w e r e  m is s in g  fr o m  th e  p o s t e r io r  la te ra l l in e  n e r v e , els m u ta n ts

s h o w e d  r e d u c e d  e x p r e s s io n  in  th e  p u ta t iv e  S c h w a n n  c e l l s  
f o u n d  a s  s e g m e n ta l  c lu s t e r s  o f  so x l0 - p o s i t iv e  c e l l s  ( F ig .  3 Q ,R ) .  
E n te r ic  n e r v o u s  s y s t e m  p r e c u r so r s  w e r e  a b se n t  at 6 0  h p f  ( F ig .  
3 T )  in  els m u ta n ts .

In  c o n tr a s t  to  th e  o th e r  m u ta n t  a l l e le s  e x a m in e d , clst3 
m u ta n ts  c o n s is t e n t ly  s h o w  h ig h ly  r e d u c e d  sox 10 tr a n s c r ip ts  
w h e n  e x a m in e d  u s in g  th e  3 '  soxlO  p r o b e  a t a ll s ta g e s .  W h e n  
e x a m in e d  u s in g  a  p r o b e  ly in g  5 '  to  th e  in s e r t io n  s it e ,  soxlO 
e x p r e s s io n  le v e l s  w e r e  c o m p a r a b le  w ith  t h o s e  in  o th e r  m u ta n t



Zebrafish soxlO mutant 4119

Table 2. Fates o f  single neural crest cells injected with lineage tracer

Fate*

Trunk (somite 14) Cranial*
Wild type co lou rless Wild type co lo u rless

Number Percentage Number Percentage Number Percentage Number Percentage
Ectomesenchymal
Cartilage - - - - 6 7 2 6
Fin mesenchyme 5 7 2 8 - - - -

Non-ectomesenchymal
P igm en t
Melanophore 26 34 - - 12 14 - -
Xanthophore 9 12 4§ 16 12 14 7§ 21
Iridophore 3 4 - - 2 2 - -
Mixed pigment 10 13 - - - - - -

N eu ra l
Cranial ganglia - - - - 9 11 - -
Dorsal root ganglia 6 8 - - - - - -
Sympathetic neuron 3 4 - - - - - -
Schwann cell 1 1 — — - - — -
Mixed neural ̂ 5 7 - - - - - -

M ix e d  p ig m en t/n eu ra l  
Melanophore
+ Dorsal root ganglia 1 1 - - - - - -

Other
Died 1 1 19* 76 11 13 15* 45
Unidentified 5 7 - - 33 39 9 27
Total 75 100 25 100 85 100 33 100

♦All progeny within a single clone adopted the same fate in every case, as shown previously (Schilling and Kimmel, 1994).
*Only single injected cells that survived and were identified as NCCs in the afternoon on the day of labelling are included. The numbers represent the number

of clones whose cells adopted the indicated fates, using the criteria outlined in the Materials and Methods.
5All xanthophores identified in e ls embryos subsequently died; hence in total, 23 (92%) and 22 (66%) cells died in the somite 14 and cranial samples.
^Mixed neural fates include clones with both neuronal and glial derivatives.

a l l e le s ,  s u g g e s t i n g  th a t in s e r t io n  o f  th e  tr a n s p o s o n  d o e s  n o t  
d is r u p t  t r a n s c r ip t io n  o f  5 '  s e q u e n c e s  (d a ta  n o t  s h o w n ) .

O u ts id e  n e u r a l c r e s t ,  sox 10 e x p r e s s io n  w a s  p a r t ic u la r ly  
s tr o n g  in  o t ic  p la c o d e  a n d  o t ic  v e s i c l e ,  a n d  fr o m  11 - s o m it e  
s ta g e  o n w a r d s  (F ig .  3 C ,F ,H ) ,  w a s  d e te c te d  in  p e c to r a l f in  an d  
in  s o m e  s p in a l  c o r d  c e l l s  f r o m  3 6  h p f . E x p r e s s io n  in  th e  ear  
w a s  s ig n if ic a n t ly  w e a k e r  in  els m u ta n ts  b y  4 0  h p f  (d a ta  n o t  
s h o w n ) .

els no n -ec to m esen ch y m al neural c re s t cells die 
p rior to  differentiation
P r e v io u s  c h a r a c te r is a t io n  o f  els e m b r y o s  c a ta lo g u e d  a s tr o n g  
r e d u c t io n  in  n o n - e c t o m e s e n c h y m a l  n eu r a l c r e s t  d e r iv a t iv e s  
(K e ls h  a n d  E is e n ,  2 0 0 0 ) .  T o  a n a ly s e  th e  c e l l  b io lo g ic a l  b a s is  
f o r  lo s s  o f  t h e s e  n e u r a l c r e s t  d e r iv a t iv e s ,  w e  u s e d  io n to p h o r e t ic  
la b e l l in g  o f  s in g le  N C C s .  W e  la b e l le d  p r e m ig r a to r y  N C C s  in  
els m u ta n ts  a n d  th e ir  w i ld - t y p e  s ib l in g s  in  tw o  r e g io n s  th a t  
g e n e r a te  e c to m e s e n c h y m a l  fa te s , a n d  s c o r e d  th e m  fo r  th e  
fa t e ( s )  a d o p te d  b y  th e ir  p r o g e n y  (T a b le  2 ) .  In  w i ld - t y p e  
e m b r y o s ,  a lm o s t  a ll ( 1 4 8 /1 6 0 ;  9 3 % ) la b e l le d  c e l l s  s u r v iv e d  
th r o u g h o u t  th e  e x p e r im e n t ,  a n d  a ll m a jo r  d e r iv a t iv e s ,  b o th  
e c to m e s e n c h y m a l  a n d  n o n - e c t o m e s e n c h y m a l ,  w e r e  id e n t if ie d  
a m o n g  th e  c lo n e s .  C o n s is t e n t  w ith  o u r  p r e v io u s  a n a ly s e s ,  
la b e l le d  c e l l s  g e n e r a te d  a  s im ila r  p r o p o r t io n  o f  
e c to m e s e n c h y m a l  fa te s  in  els m u ta n ts  ( 4 /5 8 ;  7 % ) a n d  w i ld - t y p e  
s ib l in g s  ( 1 1 /1 6 0 ;  7 % ). F u r th e r m o r e , e v e n  in  els m u ta n ts , c e l l s  
in  th e s e  c l o n e s  m ig r a te d  a n d  d if fe r e n tia te d  n o r m a lly . In  w i ld -  
ty p e  e m b r y o s ,  m o s t  c e l l s  w h e r e  fa te s  w e r e  id e n t if ia b le  
( 1 1 1 /1 2 2 ;  9 1 % ) d if fe r e n t ia te d  in to  r e c o g n is a b le  n o n -
e c to m e s e n c h y m a l  d e r iv a t iv e s . B y  c o n tr a s t , m o s t  id e n t if ia b le

c lo n e s  in  els e m b r y o s  ( 4 5 /4 9 ;  9 2 % ) d ie d  la te  o n  th e  s e c o n d  d a y  
( ~ 3 5 - 4 5  h p f ) .  M o s t  s h o w e d  n o  s ig n  o f  m o r p h o lo g ic a l  
d if fe r e n tia t io n  o r  p ig m e n ta t io n  ( 3 4 /4 9 ;  6 9 % ). T h e  o n ly  
e x c e p t io n , c lo n e s  th a t d e v e lo p e d  s o m e  x a n th o p h o r e  
p ig m e n ta t io n  ( 1 1 /4 9 ;  2 2 % ), a lw a y s  h a d  a b n o r m a l m o r p h o lo g y ,  
b e in g  ra th er  r o u n d e d  a n d  b le b b e d , a n d  d ie d  s o o n  a fter  
d if fe r e n tia t io n  ( F ig .  4 N ) .  A  s e r ie s  o f  s in g le  c e l l  in j e c t io n s  in  
N C C s  at th e  a x ia l le v e l  o f  s o m it e  7  g a v e  s im ila r  r e s u lt s ,  w ith  
9 2 %  o f  els c e l l s  d y in g  b y  a r o u n d  4 8  h p f ,  in  c o n tr a s t  t o  o n ly  
2 %  in  w i ld - t y p e  s ib l in g s  (d a ta  n o t  s h o w n );  n o te  th a t a t th is  
a x ia l p o s i t io n  n o  e c to m e s e n c h y m a l  fa te s  h a v e  b e e n  r e p o r te d  
(R a ib le  a n d  E is e n ,  1 9 9 4 ) .  O u r  r e s u lt s  a re  c o n s is t e n t  w it h  th e  
s e v e r e  r e d u c t io n  in  d if fe r e n tia te d  n o n - e c t o m e s e n c h y m a l  fa te s  
in  els e m b r y o s  a n d  s u g g e s t  th a t e x t e n s iv e  N C C  d e a th  i s  
a s s o c ia t e d  w ith  th e  els p h e n o ty p e .

N on-ectom esenchym al c re s t deriva tives die by 
ap o p to s is  during a d isc re te  tim e-w indow
T h e  m o r p h o lo g ic a l  a p p e a r a n c e  o f  d y in g  c e l l s  in  o u r  c lo n a l  
a n a ly s e s  s u g g e s t e d  an  a p o p to t ic  m e c h a n is m  o f  d e a th . W e  
c o m b in e d  T U N E L  w ith  b io t in -d e te c t io n  o f  th e  la b e l le d  c l o n e  
in  e a c h  o f  f iv e  els e m b r y o s  a n d  s h o w e d  th a t th e  d y in g  c e l l s  h a d  
f r a g m e n te d  D N A  ( F ig .  4 A - C ) .  W e  c o n c lu d e  th a t m a n y  n o n -  
e c to m e s e n c h y m a l  c lo n e s  in  els e m b r y o s  d ie  b y  an  a p o p to t ic  
m e c h a n is m .

A n a ly s i s  o f  c e l l  s u r v iv a l in  o u r  c r a n ia l N C C  d a ta  s e t  s h o w s  
th a t d ea th  o f  la b e l le d  N C C s  o c c u r s  w ith in  a  r e la t iv e ly  d is c r e te  
t im e - w in d o w  (F ig .  4 L ) .  In  b o th  els a n d  w i ld - t y p e  e m b r y o s ,  
a r o u n d  10%  o f  la b e l le d  c lo n e s  h a d  d ie d  b y  th e  m o r n in g  a fte r  
in j e c t io n . In  w i ld - t y p e  e m b r y o s ,  th e  n u m b e r  o f  s u r v iv in g
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F ig . 4 . N C C  death inc/5 embryos.
(A -C )  N C C  c lo n e s  d ie  b y  an ap optotic  
m e c h a n ism  in  els em b ry o s . L ateral 
v ie w s  o f  4 0  h p f  els em b ry o  in w h ic h  
tw o  d au gh ters o f  a s in g le  la b e lled  
N C C  con trib u ted  to  the p oster ior  
lateral lin e  g a n g lio n , ly in g  ju st  
p o ste r io r  to  the o t ic  v e s ic le  (o ) . In the  
liv e  em b ry o , b oth  c e l ls  s h o w  b leb b ed  
m o r p h o lo g y  ty p ica l o f  ap o p to tic  c e lls  
w h e n  v ie w e d  w ith  N o m a rsk i o p tics  
(A ). A fter  fixa tion  and p r o c e ss in g  for  
T U N E L  (B ) an d  d e te c t io n  o f  the  
b io tin y la ted -d ex tra n  lin ea g e-tra cer
(C ), v is ib le  T U N E L  s ig n a l o f  th ese  
c lo n a l c e l ls  in d ica te s  D N A  
fragm en ta tion  ch aracteristic  o f  
a p o p to tic  c e lls .  (D -K )  W h o le -m o u n t  
T U N E L  sh o w s  N C C  a p o p to s is  inels 
em b ry o s . L ateral v ie w s  o f  d orsa l 
sp in a l cord  (s c )  in  ta il o f  3 0  (D ,H ) , 35  
(E ,I ) , 4 0  (F,J) an d  4 5  (G ,K ) h p f  
e m b ry o s  s h o w  ap o p to tic  N C C s  
im m e d ia te ly  d orsa l to  th e sp in a l cord  
from  35  h p f  i n c /5 (arrow h ead s, D -G ),  
but n o t w ild -ty p e  (H -K ), em b ry o s .
S ca ttered  T U N E L -p o s it iv e  c e l ls  are 
p ro m in en t in d orsa l sp in a l cord  (* )  o f  
els e m b ry o s  (E -G ); th ese  are 
o c c a s io n a lly  se e n  in w ild -ty p e  
s ib lin g s  at th ese  s ta g e s  (d ata  n ot 
sh o w n ), d f, d orsa l fin . (L ) T im e-
co u r se  o f  la b e lled  s in g le  cran ia l N C C  c lo n e  su rv iva l irc/s m u tants and th eir w ild -ty p e  s ib lin g s . P e rcen tage o f  su r v iv in g  c lo n e s  is  g iv e n  at ea c h  
o f  th e  five  standard  tim e  p o in ts  w h e n  em b ry o s  w ere  ex a m in e d . T h e tim e  p o in ts  corresp on d  to ap p ro x im a te ly  16 , 3 2 ,4 0 ,  5 6  and 6$>fi 
resp ec tiv e ly . T h e  first tim e  p o in t in c lu d es  o n ly  s in g le  la b e lled  N C C s b a sed  on  ex a m in a tio n  w ith in  a few  h ours a fter  la b e l lin g e 6 te x t  for  
further d eta ils . (M ,N )  W ild -ty p e  xan th o p h o res  (arrow s) at 4 8  h p f  h ave a very  fla tten ed , th in  m o rp h o lo g y  and are o n ly  w e a k ly  coined  (M ), 
w h ile  a d y in g  els x an th op h ore (arrow ) sh o w s  ch aracteristic  ap o p to tic  m o rp h o lo g y  and con cen tra ted  y e l lo w  co lo ra tio n , w h ic h  w a s  u su a lly  
v is ib le  b y  35  h p f  (N ). S c a le  bar: 1 0 0 p m  in A -C ; 5 0  p m  in D -K ; 75  p m  in  M ,N .

c lo n e s  w a s  e s s e n t ia l ly  u n c h a n g e d  at la te r  t im e s .  H o w e v e r ,  
in  els m u ta n ts , th e  n u m b e r  o f  s u r v iv in g  c lo n e s  d r o p p e d  
p r e c ip it o u s ly  to  o n ly  4 0 %  w it h in  th e  p e r io d  o f  a ro u n d  5 - 1 0  
h o u r s  b e tw e e n  th e  tw o  o b s e r v a t io n a l  t im e -p o in t s  o n  th e  s e c o n d  
d a y  a fte r  la b e l l in g  ( e q u iv a le n t  to  ~ 4 0  h p f ) ,  b u t  th e n  r e m a in e d  
c o n s ta n t . W e  in ter p r e t  th e  e a r ly  (o v e r n ig h t  a fter  in j e c t io n )  lo s s  
o f  w i ld - t y p e  a n d  els c l o n e s  a s  r e p r e s e n t in g  d e a th  d u e  to  
d a m a g e  d u r in g  la b e l l in g .  T h e  s u b s e q u e n t  la te  l o s s  o f  c l o n e s  in  
els e m b r y o s  c o r r e s p o n d s  to  th e  t im e  o f  a p p e a r a n c e  o f  a p o p to t ic  
c e l l s  a n d  w e  a ttr ib u te  th is  to  th e  els p h e n o ty p e .

T o  e x a m in e  th e  e x te n t  t o  w h ic h  a p o p t o s is  c o n tr ib u te s  to  th e  
els p h e n o ty p e ,  w e  u s e d  w h o le - m o u n t  T U N E L  to  e x a m in e  
a p o p to s is  o f  N C C s  ( F ig .  4 D - K ) .  W e  s a w  a  n o t a b le  
c o n c e n tr a t io n  o f  a p o p to t ic  c e l l s  d o r s a l o r  d o r s o la te r a l to  th e  
n e u r a l tu b e  in  els e m b r y o s ,  b u t  n o t  in  w i ld - t y p e  c o n tr o l  
e m b r y o s .  A  t im e c o u r s e  o f  T U N E L  b e tw e e n  2 0  a n d  6 0  h p f  
in d ic a te d  th a t c e l l  d e a th  in  N C C s  b e c o m e s  a p p a r en t b y  3 5  h p f  
a n d  c o n t in u e s  to  a p p r o x im a t e ly  4 5  h p f.

els neural c re s t ce lls  fail to  m igrate before 
undergo ing  a p o p to s is
O u r  in  v iv o  c lo n a l  s tu d ie s  r e v e a le d  th a t, w h i le  w i ld - t y p e  N C C s  
m ig r a te d  e x t e n s iv e ly  o n  b o th  m e d ia l  a n d  la te ra l p a th w a y s ,  
m o s t  els N C C s  fa i le d  to  le a v e  th e  p r e m ig r a to r y  c r e s t  area . 
T h u s , e x c lu d in g  e c to m e s e n c h y m a l  d e r iv a t iv e s  ( w h ic h  a lw a y s

m ig r a te d  n o r m a lly ) ,  o n ly  2 /3 1  (6 % ) o f  c r a n ia l N C C s  a p p e a r e d  
to  m ig r a te  a w a y  fr o m  th e ir  in it ia l  p o s i t io n s .  A t  th e  le v e l  o f  
s o m ite  1 4 , a ll w i ld - t y p e  la b e l le d  c e l l s  le f t  th e  p r e m ig r a to r y  
a rea , an d  m o r e  th a n  7 5 %  m ig r a te d  a t le a s t  5 0  | i m  fr o m  th e ir  
o r ig in a l p o s i t io n . O n ly  f in  m e s e n c h y m e  c lo n e s  m ig r a te d  
n o r m a lly  in  els m u ta n ts . O f  th e  r e m a in in g  c l o n e s ,  o n ly  4 /2 3  
(1 7 % ) m ig r a te d  a w a y  fr o m  th e  p r e m ig r a to r y  cr e st;  a n o th e r  c e l l  
e x te n d e d  to w a r d s  th e  h o r iz o n ta l m y o s e p t u m , b u t m a in ta in e d  
c o n ta c t  w ith  th e  p r e m ig r a to r y  area . O f  t h e s e  f iv e  c e l l s ,  t w o  
m ig r a te d  o n  th e  la te ra l p a th w a y , b u t  u n d e r w e n t  a p o p to s is  a fte r  
m o v in g  a b o u t  h a l f  w a y  to  th e  h o r iz o n ta l  m y o s e p t u m . T h e  o th e r  
th ree  c e l l s  m ig r a te d  o n  th e  m e d ia l  p a th . In  o n e  c a s e ,  th e  c e l l  
d id  n o t  d iv id e ,  m ig r a te d  to  a  p o s i t io n  a p p r o p r ia te  fo r  a d o r s a l  
r o o t  g a n g l io n ,  th e n  d ie d  b e f o r e  o v e r t  d if fe r e n t ia t io n . T h e  o th e r  
tw o  c e l l s  d iv id e d  o n c e ;  in  e a c h  c lo n e ,  o n e  s is t e r  c e l l  r e m a in e d  
d o r s a l to  th e  n e u r a l tu b e , a n d  m a y  h a v e  b e e n  an  e x tr a m e d u l la r y  
c e l l  (K e ls h  a n d  E is e n , 2 0 0 0 ) ,  w h i l e  th e  o th e r  m ig r a te d  to  
a d o r s a l r o o t  g a n g lia l  p o s i t io n ,  b u t f a i l e d  to  u n d e r g o  
a x o n o g e n e s is ,  c o n s is t e n t  w ith  th e  im p a ir e d  to u c h  r e s p o n s e  o f  
5 d p f  la r v a e . W e  o b ta in e d  s im ila r  r e s u lt s  fo r  la b e l le d  N C C s  
fr o m  th e  r e g io n  o f  s o m it e  7  (d a ta  n o t  s h o w n ) .  T h is  d ir e c t  
o b s e r v a t io n  o f  f a i l e d  N C C  m ig r a t io n  in  els e m b r y o s  is  
c o n s is t e n t  w ith  o u r  o b s e r v a t io n  o f  d c / - e x p r e s s in g  m e la n o b la s t s  
a n d  soxl 0 - e x p r e s s in g  N C C s  c o n c e n tr a te d  d o r s a l to  th e  n e u r a l  
tu b e  in  m u ta n t  e m b r y o s  (K e ls h  e t  a l . ,  2 0 0 0 b )  ( t h is  w o r k ) .
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els m u tan ts  and  soxlO  m o rp h an ts  fail to  ex p re ss  
g e n e s  critical for m e lanophore  specification  and 
m igration
els m u ta n ts  c o m b in e  a n  e x t e n s iv e  fa ilu r e  o f  N C C  m ig r a t io n  
w it h  la te  a p o p t o t ic  d e a th  o f  n o n - e c t o m e s e n c h y m a l  d e r iv a t iv e s .  
T h r e e  r e c e n t  s tu d ie s  s u g g e s t e d  a  p o s s ib l e  m o le c u la r  g e n e t ic  
m e c h a n is m  fo r  th e s e  a s p e c t s  o f  th e  p h e n o ty p e ,  sparse (spa), a  
kit h o m o lo g u e ,  i s  c r u c ia l f o r  s u r v iv a l a n d  m ig r a t io n  o f  
m e la n o p h o r e s  a n d  m e la n o b la s t s  (P a r ic h y  e t  a l. ,  1 9 9 9 ;  K e ls h  e t  
a l . ,  2 0 0 0 b )  a n d  nacre (nac) ,  a  microphthalmia transcription 
factor  (mitf) h o m o lo g u e ,  i s  c r u c ia l fo r  m e la n o p h o r e  
s p e c i f ic a t io n  a n d  r e q u ir e d  fo r  spa  e x p r e s s io n  (L is te r  e t  a l., 
1 9 9 9 ) .  W e  u s e d  in  s itu  h y b r id is a t io n  a t 2 0 - 3 5  h p f  to  a s k  
w h e th e r  spa  o r  nac e x p r e s s io n  w a s  d is r u p te d  in  els e m b r y o s  
( F ig .  5 ) . W e  fo u n d  th a t  b o th  spa  a n d  nac e x p r e s s io n  w e r e  
a b s e n t  f r o m  N C C s ,  e v e n  a t a  t im e  w h e n  m a n y  d c r -p o s it iv e  c e l l s  
are p r e s e n t , s u g g e s t in g  th a t  th e  els m e la n o p h o r e  p h e n o ty p e  
m ig h t  r e s u lt  f r o m  l o s s  o f  nac e x p r e s s io n . B y  c o n tr a s t , spa 
e x p r e s s io n  in  in te r m e d ia te  c e l l  m a s s  a n d  nac e x p r e s s io n  in  th e  
p ig m e n te d  r e t in a l e p it h e l iu m  are  u n a f fe c te d  in  els m u ta n ts .

W e  h a v e  r e c e n t ly  s h o w n  th a t in j e c t io n  o f  soxlO  m o r p h o lin o  
o l i g o n u c l e o t id e s  p h e n o c o p ie s  th e  els m u ta n t p h e n o t y p e  
(D u t to n  e t  a l . ,  2 0 0 1 ) .  T h e  m o r p h a n t  p h e n o t y p e  v a r ie s  
d e p e n d in g  u p o n  th e  a m o u n t  o f  m o r p h o lin o  in je c te d , w ith  h ig h  
d o s e s  p h e n o c o p y in g  a l l  a s p e c t s  o f  th e  p h e n o ty p e  o f  th e  s tr o n g  
els a l l e le s .  I n je c t io n  o f  lo w e r  d o s e s  r e s u lt s  in  a  p h e n o c o p y  o f  
th e  w e a k  els a l l e le  p h e n o t y p e ,  w ith  e m b r y o s  s h o w in g  s o m e  
m e la n o p h o r e s ,  c o n c e n tr a te d  in  d o r s a l p o s i t io n s  (D u t to n  e t  a l.,  
2 0 0 1 ;  M a l ic k i  e t  a l . ,  1 9 9 6 ) .  T h e  n u m b e r  o f  nac/mitf - e x p r e s s in g  
c e l l s  in  e m b r y o s  in je c te d  w ith  a  lo w  d o s e  o f  soxlO  m o r p h o lin o  
(m e d ia n  n u m b e r = 7 8 ;  n = 2 0 )  is  s ig n if ic a n t ly  h ig h e r  th a n  in  
e m b r y o s  in je c te d  w it h  a  h ig h  d o s e  (m e d ia n  n u m b e r = 2 0 ;  n=2 0 ;  
M a n n -W h itn e y  U - t e s t ,  P < 0 .0 5 ;  F ig .  5 C ,D ) ,  c o n s is t e n t  w it h  th e  
d i f f e r e n c e s  in  m e la n o p h o r e  p h e n o t y p e .

DISCUSSION

S tu d ie s  in  m ic e  h a v e  le d  to  id e n t if ic a t io n  o f  SoxlO a s  a  k e y  
g e n e  in  h u m a n  W a a r d e n b u r g -S h a h  s y n d r o m e . W e  h a v e  s h o w n  
th a t th e  z e b r a fis h  els lo c u s  i s  a  sox 10 h o m o lo g u e  p r e d ic te d  to  
e n c o d e  a p r o te in  w ith  a ll th e  m a jo r  d o m a in s  id e n t if ie d  in  
m a m m a ls  ( F ig .  1 ). W e  h a v e  id e n t if ie d  th e  m o le c u la r  le s io n  
l ik e ly  to  c a u s e  th e  m u ta n t  p h e n o ty p e  in  4  els a l l e le s .  In  tw o  
c a s e s ,  tw2 a n d  tw l l ,  b o th  o r ig in a t in g  fr o m  th e  s a m e  
m u ta g e n is e d  m a le  (H a f f te r  e t  a l . ,  1 9 9 6 ;  K e ls h  e t  a l . ,  1 9 9 6 ) ,  th e  
l e s i o n s  are id e n t ic a l  a n d  are p r e s u m a b ly  in d e p e n d e n t  is o la t io n s  
o f  th e  s a m e  a l le le .  T h e  z e b r a fis h  L y s 3 7 6 S t o p  le s io n s  r e s e m b le  
th e  h u m a n  059 a l l e le  ( d e lG A )  in  la c k in g  th e  tr a n s a c t iv a t io n  
d o m a in , a lth o u g h  t h e y  la c k  th e  C -te r m in a l e x t e n s io n  p r e s e n t  in  
th e  h u m a n  a l le le .  In  tr a n s ie n t  tr a n s fe c t io n  a s s a y s  h u m a n  0 5 9  
m u ta n t  p r o te in  h a s  b e e n  s h o w n  to  h a v e  n o  tr a n s c r ip t io n a l  
a c t iv a t io n  (B o n d u r a n d  e t  a l . ,  2 0 0 0 ;  K u h lb r o d t  e t  a l . ,  1 9 9 8 b ;  L iu  
e t  a l . ,  1 9 9 9 ) .  T h e  m618 a l l e le  s u b s t itu te s  L e u  1 4 2  in  th e  s e c o n d  
a lp h a  h e l ix  o f  th e  H M G  d o m a in  a n d  th e r e  is  n o  s im ila r  
m a m m a lia n  m u ta t io n . T h e  t3 a l l e le  r e s u lt s  in  a  s e v e r e ly  
tr u n c a te d  p r o te in  th a t la c k s  b o th  th e  D N A - b in d in g  a n d  
tr a n s c r ip t io n a l a c t iv a t io n  d o m a in s .  It is  th u s  r e m in is c e n t  o f  th e  
h u m a n  Y 8 3 X  a l l e le  w h ic h  h a s  b e e n  p r o p o s e d  to  b e  a fu n c t io n a l  
n u l l (K u h lb r o d t  e t  a l . ,  1 9 9 8 b ;  P o t t e r f  e t  a l . ,  2 0 0 0 ) .  A l l  fo u r  
m u ta n t  a l le le s  d e s c r ib e d  h e r e  s h o w  s im ila r , s tr o n g  p h e n o t y p e s

F ig . 5 . els m u tants lack  nac and spa e x p re ss io n . L ateral v ie w s  o f  
cau d al trunk o f  25  h p f  w ild -ty p e  andels e m b ry o s  a fter in  situ  
h yb rid isa tion  w ith  nac (A ,B ) , spa (E ,F ) an d  dct (G ,H ) p rob es. 
(C ,D ) nac/mitfe x p re ss io n  is  d ecr ea se d  w e a k ly  (C ) or s tro n g ly  (D )  
after in jec tion  w ith  e ith er  a lo w  or h ig h  d o se , r e sp ec tiv e ly , oioxlO  
m orp h o lin o . n , neural tube; y, y o lk  sa c . S ca le  bar: 7 fjim .

(K e ls h  e t  a l . ,  1 9 9 6 ;  M a lic k i  e t  a l . ,  1 9 9 6 )  (d a ta  n o t  s h o w n ) .  
T h e s e  c o n s id e r a t io n s ,  c o m b in e d  w ith  th e  s im ila r ity  o f  th e s e  
p h e n o t y p e s  w it h  th e  m a x im a l m o r p h a n t  p h e n o c o p y  g e n e r a te d  
w ith  a  soxlO  m o r p h o lin o ,  le a d  u s  to  s u g g e s t  th a t t h e s e  a l l e le s  
a re a ll l ik e ly  n u l l  a l l e le s .  A n a ly s i s  o f  th e  a c t iv i t ie s  o f  th e s e  
m u ta n t p r o te in s  w i l l  b e  in te r e s t in g  to  te s t  th is  p r o p o s a l .

Z e b r a f ish  sox 10 e x p r e s s io n  i s  c o n s is t e n t  w ith  c e l l  t y p e s  
a f fe c te d  in  els m u ta n ts  a n d  s t r o n g ly  r e m in is c e n t  o f  th a t  in  
m a m m a ls . W e  h a v e  ta k en  a d v a n ta g e  o f  th e  h ig h e r  r e s o lu t io n  o f  
su c h  s tu d ie s  in  z e b r a fis h , to  d e f in e  m o r e  p r e c i s e ly  th e  e x te n t  o f  
sox 10 e x p r e s s io n  th r o u g h o u t  th e  n e u r a l c r e s t  a t d if fe r e n t  s ta g e s .  
In  w i ld  ty p e ,  e x p r e s s io n  is  e x t e n s iv e  in  p r e m ig r a to r y  n e u r a l  
cr e s t , b u t c o m p a r is o n  w ith  fkd6  e x p r e s s io n  s h o w s  th a t  a  
m in o r ity  o f  p r e m ig r a to r y  N C C s  la c k  soxlO  e x p r e s s io n .  
E x p r e s s io n  p e r s is t s  in  s o m e  m ig r a t in g  c e l l s  o n  th e  m e d ia l  
m ig r a t io n  p a th w a y , b u t i s  r a p id ly  d o w n r e g u la te d  in  
d if fe r e n t ia t in g  p ig m e n t  c e l l s .  G l ia  o f  th e  d e v e lo p in g  p e r ip h e r a l  
n e r v o u s  s y s t e m  s h o w  s tr o n g  e x p r e s s io n ,  a s  h a s  a ls o  b e e n  
d e s c r ib e d  in  m ic e  (K u h lb r o d t  e t  a l . ,  1 9 9 8 a ;  B r it s c h  e t  a l. ,  
2 0 0 1 ) .  C r e s t  c e l l s  in  fo r m in g  b r a n c h ia l a r c h e s  a n d  f in  
m e s e n c h y m e  d o  n o t  s h o w  e x p r e s s io n ,  in  a g r e e m e n t  w ith  
m o u s e ,  b u t n o t  h u m a n , e x p r e s s io n  s tu d ie s  (B o n d u r a n d  e t  a l . ,  
1 9 9 8 ;  K u h lb r o d t  e t  a l . ,  1 9 9 8 a ;  S o u th a r d -S m ith  e t  a l . ,  1 9 9 8 ) .  
L a te  e x p r e s s io n  in  cr a n ia l c a r t i la g e s  i s  in t r ig u in g , b u t  w i l l  
re q u ir e  fu r th er  s tu d y  to  e v a lu a te  i t s  r o le . In  els m u ta n ts , soxlO- 
e x p r e s s io n  in  p r e m ig r a to r y  N C C s  i s  in i t i a l ly  u n a f f e c t e d  b u t,  
u n l ik e  in  w i ld - t y p e  s ib l in g s ,  soxl  ̂ - e x p r e s s in g  c e l l s  s o o n  
a c c u m u la te  in  th is  p o s i t io n .  In  th e  tru n k  soxl  ̂ - e x p r e s s in g  c e l l s  
m ig r a t in g  o n  th e  m e d ia l  p a th w a y  a re  s e e n  a n d  p r e s u m a b ly  
c o n tr ib u te  to  th e  n e u r o n e s  a n d  g l ia  o f  th e  d o r s a l r o o t  g a n g l ia ,  
w h ic h  are d e te c t a b le  in  m u ta n ts  ( K e ls h  a n d  E is e n ,  2 0 0 0 )  ( th is
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s t u d y ) .  N C C s  te n d  to  b e c o m e  c lu s te r e d  in  p r e m ig r a to r y  
p o s i t io n s  in  els m u ta n ts , c o n s is t e n t  w ith  th e  o b s e r v e d  d e f e c t  in  
N C C  m ig r a t io n  r e v e a le d  b y  o u r  s in g le - c e l l  la b e l l in g  s t u d ie s .

O u t s id e  th e  n e u r a l c r e s t , soxlO  e x p r e s s io n  i s  a l s o  la r g e ly  
c o n s e r v e d .  T h u s , e x p r e s s io n  in  th e  d e v e lo p in g  in n e r  ear  
e p it h e l iu m  i s  s e e n  in  z e b r a f is h  a s  w e l l  a s  in  m a m m a ls  
(B o n d u r a n d  e t  a l . ,  1 9 9 8 ;  S o u th a r d -S m ith  e t  a l. ,  1 9 9 8 ) .  In  
z e b r a f is h ,  th is  e x p r e s s io n  is  r e m a r k a b ly  s tr o n g  a n d  p e r s is te n t  
in  w i ld  t y p e ,  b u t  i s  d o w n r e g u la t e d  in  els m u ta n ts  b y  4 0  h p f . A s  
p r o n o u n c e d  o t ic  d e f e c t s  a re  m o r p h o lo g ic a l ly  d e te c ta b le  in  els 
m u ta n ts  b y  4 8  h p f  (R . N .  K . ,  u n p u b lis h e d ) ,  w e  s u g g e s t  th a t  
soxl 0 i s  c r u c ia l fo r  d e v e lo p m e n t  o f  o t ic  e p ith e l iu m . L im ite d  
e x p r e s s io n  in  e m b r y o n ic  c e n tr a l n e r v o u s  s y s t e m  is  s e e n  in  
z e b r a f is h  a n d  m ic e  (K u h lb r o d t  e t  a l . ,  1 9 9 8 a ) ,  a lth o u g h  d e ta ile d  
s t u d ie s  w i l l  b e  r e q u ir e d  to  e s ta b lis h  th e  c e l l  t y p e s  in v o lv e d  in  
e a c h  c a s e .

O u r  s in g le  c e l l  la b e l l in g  s tu d ie s  a t th r e e  r o s tr o c a u d a l  
p o s i t io n s  m a k e  c le a r  th a t d e f e c t s  in  els m u ta n ts  a re  n o t  l im ite d  
to  o n e  a x ia l  p o s i t io n ,  b u t  in s te a d  a f f e c t  n o n - e c to m e s e n c h y m a l  
ra th er  th a n  e c to m e s e n c h y m a l  c r e s t  d e r iv a t iv e s . M o s t  N C C s  
in  els m u ta n ts  s h o w  r e s tr ic te d  m ig r a t io n  a n d  p o o r  o r  n o  
d if f e r e n t ia t io n  b e fo r e  d y in g  b y  an  a p o p t o t ic  m e c h a n is m  w ith in  
a d is c r e t e  t im e -w in d o w . W e  in te r p r e t  th e  d y in g  c e l l s  a s  
b e in g  t h o s e  th a t w o u ld  in  w i ld - t y p e  s ib l in g s  fo r m  n o n -  
e c to m e s e n c h y m a l  fa te s . T h u s ,  in  els e m b r y o s ,  N C C s  th a t  
w o u ld  n o r m a lly  y ie ld  th e s e  m is s in g  n eu ra l c r e s t  d e r iv a t iv e s  are  
p r e s e n t  in  p r e m ig r a to r y  n e u r a l c r e s t  in  n o r m a l n u m b e r s , b u t  
th e n  d ie  b e fo r e  d if f e r e n t ia t in g ,  u s u a l ly  w ith o u t  m ig r a t in g . T h is  
c o n f ir m s  a n d  e x te n d s  r e p o r ts  th a t p u ta t iv e  N C C s  a p o p to s e  
d u r in g  m ig r a t io n  in  m o u s e  soxlO  m u ta n ts  (K a p u r , 1 9 9 9 ;  
S o u th a r d -S m ith  e t  a l . ,  1 9 9 8 ) .

T h e  soxlO  e x p r e s s io n  p a ttern  in  els m u ta n ts  m a y  a p p e a r  
c o n tr a d ic to r y  to  o u r  s in g le  c e l l  la b e l  r e s u lt s , a s  th e  e x p r e s s io n  
s tu d ie s  s h o w  n o r m a l n u m b e r s  o f  soxl 0 - p o s i t iv e  N C C s  
m ig r a t in g  o n  th e  m e d ia l  p a th w a y , w h i le  th e  s in g le  c e l l  la b e l l in g  
s tu d ie s  s h o w  a  s tr o n g  m ig r a t io n  d e f e c t  in  th e  n eu r a l c r e st .  
H o w e v e r ,  o u r  d a ta  s u g g e s t  th a t soxlO  i s  e x p r e s s e d  in  a lm o s t  a ll 
p r e m ig r a to r y  c e l l s ,  b u t  is  r a p id ly  d o w n r e g u la te d  in  
e c to m e s e n c h y m a l  an d  p ig m e n t  c e l l  p r e c u r so r s  a s  th e y  start to  
m ig r a te . T h u s ,  soxlO  e x p r e s s io n  in  m ig r a t in g  c e l l s  r e f le c t s  ju s t  
th e  n e u r a l p r e c u r so r s . O u r  s tu d ie s  s h o w  th a t t h e s e  c e l l s  are  
m u c h  le s s  d e f e c t iv e  in  m ig r a t io n  in  els m u ta n ts . C o n s is t e n t  
w ith  th is ,  th e  la b e l le d  c e l l s  in  els m u ta n ts  th a t d id  m ig r a te  
n o r m a lly  a ll t o o k  th e  m e d ia l  m ig r a t io n  p a th w a y  a n d , i f  th e y  
s u r v iv e d , a d o p te d  a  p o s i t io n  c o n s is t e n t  w ith  a  d o r s a l r o o t  
g a n g l ia l  fa te . B y  c o n tr a s t , m o s t  la b e l le d  N C C  c lo n e s  g e n e r a te d  
p ig m e n t  c e l l s ,  c o n s is t e n t  w it h  fo r m e r  s tu d ie s  in  z e b r a fis h .  
T h e s e  p ig m e n t  c e l l s  a re  s e v e r e ly  d e f e c t iv e  in  m ig r a t io n , a s  
s h o w n  b y  m o le c u la r  m a r k e r s  fo r  x a n th o p h o r e  (gdh; P a r ic h y  e t  
a l., 2 0 0 0 )  a n d  m e la n o p h o r e  ( dct; F ig .  5 )  c e l l  fa te s  (M . H a w k in s  
a n d  R . N .  K .,  u n p u b l is h e d )  (K e ls h  a n d  E is e n , 2 0 0 0 ) .  F u r th er  
w o r k  w i l l  b e  r e q u ir e d  to  in v e s t ig a te  th e  s p e c i f i c a t io n  s ta tu s  o f  
th e  m ig r a t in g  n e u r a l p r e c u r so r s  in  w i ld - t y p e  a n d  m u ta n t  
e m b r y o s .

W e  h a v e  d e m o n s tr a te d  th e  c o m p le x it y  o f  N C C  d e f e c t s  in  els 
e m b r y o s ,  w it h  s u r v iv a l, m ig r a t io n  a n d  d if fe r e n tia t io n  o f  n o n -  
e c to m e s e n c h y m a l  c e l l  t y p e s  a ll a f fe c te d . F u rth er , a  s m a ll  
d e c r e a s e  in  c l o n e  s iz e  s u g g e s t s  th a t p r o li f e r a t io n  m a y  a ls o  b e  
s o m e w h a t  a f fe c te d  (K . A . D .  a n d  R . N .  K ., u n p u b lis h e d ) .  T h is  
s p e c tr u m  o f  d e f e c t s  is  n o t  r e a d i ly  c o n s is t e n t  w ith  a  p r im a r y  
fu n c t io n  fo r  w i ld - t y p e  cls/soxlO  in  N C C  s u r v iv a l, p r o li f e r a t io n

o r  d if fe r e n t ia t io n . A lt h o u g h  a  d y in g  c e l l  m ig h t  s h o w  a b n o r m a l  
m ig r a t io n  a n d  p r o li f e r a t io n , th e  t im in g  o f  a p p e a r a n c e  o f  d e f e c t s  
in  els m u ta n ts  c o n f l i c t s  w ith  c e l l  s u r v iv a l b e in g  th e  p r im a r y  
d e fe c t .  W e  c a n  fir st  d is t in g u is h  els m u ta n ts  a t 2 0  h p f  ( b y  la c k  
o f  nac/mitf e x p r e s s io n ) ,  b u t  d o  n o t  s e e  N C C  a p o p t o s i s  b y  
T U N E L  u n t i l  a r o u n d  3 5  h p f;  p r e v io u s  w o r k  in  z e b r a f is h  h a s  
s u g g e s t e d  th a t  th e  d e la y  b e t w e e n  in d u c t io n  o f  a p o p t o s is  a n d  
d e te c ta b le  m o r p h o lo g ic a l  c h a n g e s  a n d  D N A  fr a g m e n ta t io n  is  
at m o s t  3 - 4  h o u r s  ( I k e g a m i e t  a l . ,  1 9 9 9 ) .  L ik e w is e  th e  els 
m u ta n t p h e n o ty p e  c a n n o t  b e  e x p la in e d  a s  p r im a r ily  a  fa i lu r e  o f  
m ig r a t io n , w it h  s u b s e q u e n t  fa ilu r e  o f  e x p o s u r e  to  r e q u ir e d  
tr o p h ic  fa c to r s , b e c a u s e  fo r  th r e e  s u b s e t s  o f  a f f e c t e d  c e l l s  ( th r e e  
p ig m e n t  c e l l  t y p e s  in  th e  s tr ip e  d o r s a l to  th e  n e u r a l t u b e ) ,  th e  
p r e m ig r a to r y  p o s i t io n  i s  a ls o  a  f in a l lo c a t io n  a n d  h e n c e  th e  
n e c e s s a r y  tr o p h ic  fa c to r s  m u s t  b e  a v a ila b le . D e s p i t e  th is ,  in  els 
m u ta n ts  a l l  p ig m e n t  c e l l s ,  in c lu d in g  t h o s e  o f  th e  d o r s a l s tr ip e , 
fa il  to  d e v e lo p  p r o p e r ly . I n s te a d , w e  p r o p o s e  th a t th e  p r im a r y  
r o le  o f  els g e n e  fu n c t io n  is  in  s p e c i f i c a t io n  o f  n o n -  
e c to m e s e n c h y m a l  c e l l  fa te s ;  a ll o th e r  d e f e c t s  in  els m u ta n ts  
w o u ld  th e n  b e  s e c o n d a r y  e f f e c t s  o f  a  fa ilu r e  to  b e c o m e  p r o p e r ly  
s p e c if ie d .  T h u s ,  in  els m u ta n ts  N C C s  a re  u n a b le  t o  a d o p t  n o n -  
e c to m e s e n c h y m a l fa te s  a n d  s o  fa i l  to  d if fe r e n t ia te .  T h is  
d if fe r e n tia t io n  p r o c e s s  w o u ld  in c lu d e  e x p r e s s io n  o f  g r o w th  an d  
tr o p h ic  fa c to r  r e c e p to r s , a n d  h e n c e  s e c o n d a r y  d e f e c t s  m ig h t  
in c lu d e  im p a ir e d  p r o li f e r a t io n  a n d  la te r  a p o p t o s is .  O u r  
id e n t if ic a t io n  o f  th e  els g e n e  a s  a  soxlO  t r a n s c r ip t io n  fa c to r  
g e n e  is  c o n s is t e n t  w ith  th is  in te r p r e ta tio n .

I n d e e d , f o r  th e  s p e c i f i c  c a s e  o f  m e la n o p h o r e  fa te ,  d a ta  
p r e s e n te d  h e r e  a n d  e l s e w h e r e  p e r m it  u s  to  p r o p o s e  a  m o le c u la r  
m o d e l c o n s is t e n t  w it h  th is  in te r p r e ta t io n  (F ig .  6 ) .  In  b o th  
ze b r a fis h  a n d  m a m m a ls ,  N a c /M i t f  h o m o lo g u e s  h a v e  b e e n  
s h o w n  to  b e  im p o r ta n t  tr a n s c r ip t io n  fa c to r s  fo r  s p e c i f y i n g  
m e la n o p h o r e  fa te  (L is t e r  e t  a l . ,  1 9 9 9 ;  O p d e c a m p  e t  a l . ,  1 9 9 7 ;  
T a c h ib a n a  e t  a l . ,  1 9 9 6 ) .  W e  s h o w  h e r e  th a t els m u ta n ts  la c k  
e x p r e s s io n  o f  nac ( in d e e d  it  i s  th e  e a r l ie s t  d e f e c t  w e  h a v e  
id e n t if ie d ) .  T h u s ,  soxlO  is  r e q u ir e d  fo r  nac e x p r e s s io n  a n d  th u s  
fo r  m e la n o p h o r e  l in e a g e  s p e c i f i c a t io n . In  a d d it io n , in  nac 
m u ta n ts , w o e - p o s i t iv e  c e l l s  s h o w  a  fa ilu r e  to  m ig r a te  h ig h ly  
r e m in is c e n t  o f  th e  els m e la n o b la s t  p h e n o t y p e  ( L is t e r  e t  a l.,
1 9 9 9 ) .  L ik e w is e ,  in  b o th  els a n d  nac m u ta n ts , spa/kit 
e x p r e s s io n  is  lo s t  in  m e la n o b la s t s .  spa f u n c t io n  is  n e c e s s a r y  fo r  
b o th  m e la n o b la s t  m ig r a t io n  a n d  m e la n o b la s t  a n d  m e la n o p h o r e  
s u r v iv a l (K e ls h  e t  a l., 2 0 0 0 b ;  P a r ic h y  e t  a l . ,  1 9 9 9 ) .  
F u r th e r m o r e , th e  t im in g  o f  l o s s  o f  m e la n o b la s t s  in  spa m u ta n ts ,  
b e g in n in g  b e tw e e n  3 0  a n d  3 6  h p f ,  i s  c o n s is t e n t  w ith  th e  t im in g  
o f  d e c r e a s e  in  m e la n o b la s t  n u m b e r s  a n d  w ith  th e  t im in g  o f  
N C C  a p o p t o s is  in  els m u ta n ts  (K e ls h  e t  a l . ,  2 0 0 0 b ;  th is  s tu d y ) .  
H e n c e , a  s im p le  m o d e l  ca n  la r g e ly  e x p la in  th e  els m e la n o p h o r e  
p h e n o ty p e .  cls/soxlO  h a s  a k e y  r o le ,  b y  d ir e c t  o r  in d ir e c t  
a c t iv a t io n  o f  nac/mitf, in  m e la n o p h o r e  s p e c i f ic a t io n  a n d  
c o n s e q u e n t ly  els m u ta n ts  la c k  e x p r e s s io n  o f  g e n e s  a c t iv a te d  b y  
n a c , in c lu d in g  spa/kit, m e d ia t in g  s u r v iv a l a n d  m ig r a t io n , a n d  
m e la n o g e n ic  e n z y m e s ,  m e d ia t in g  p ig m e n ta t io n . In  s u p p o r t  o f  
th is  m o d e l ,  in j e c t io n  o f  soxlO  m R N A  in to  e a r ly  e m b r y o s  
r e su lts  in  e c to p ic  nac/mitf e x p r e s s io n  a n d  e x p r e s s io n  o f  nac in  
els e m b r y o s  is  s u f f ic ie n t  to  r e s c u e  m e la n o p h o r e s  ( S .  E . a n d  R . 
N . K ., u n p u b lis h e d ) .  It w i l l  b e  o f  in te r e s t  to  e x p a n d  t h is  m o d e l  
to  in c lu d e  o th e r  ta r g e ts  o f  soxlO  a n d  nac, a s  w e l l  a s  t o  e x te n d  
th is  m o d e l  to  o th e r  n o n - e c t o m e s e n c h y m a l  n e u r a l c r e s t  
d e r iv a t iv e s  a f fe c te d  in  els m u ta n ts . O u r  m o d e l  p r e d ic t s  th a t  th e  
im m e d ia te  ta r g e ts  o f  soxlO  w i l l  b e  e i th e r  m a s te r  r e g u la to r s  o f
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cls/sox10

I
nac/mitf

Migration Survival Differentiation
Genes G enes Genes

e.g. spa/c-kii e.g. spa/c-kit e.g. dct

F ig . 6 . M o d e l o f  ro le  o f  cls/sox 10 in  m ela n o p h o re  sp e c ifica tio n . 
F orm al g e n e t ic  in teraction s b e tw e e n  s e le c te d  g e n e s  k n ow n  to  
fu n c tio n  in  zeb ra fish  m e la n o p h o re  d ev e lo p m e n t are sch em a tised . In 
els m u tan ts, fa ilu re to  a c t iv a te /ia c  ex p r e ss io n  (an d  th us to  s p e c ify  
m ela n o p h o re  fa te) re su lts  in  a b se n c e  o f  g e n e  p rod u cts cr itica l for 
m e la n o p h o re  su rv iva l, m igra tion  an d  d ifferen tia tion . For d eta ils , s e e  
m ain  text.

n e u r a l c r e s t  fa te  ( e .g .  nac)  o r  a  m u lt itu d e  o f  d iv e r s e  g e n e  
p r o d u c ts  r e q u ir e d  w ith in  s p e c i f i c  c r e s t  d e r iv a t iv e s  fo r  th e  
c e l lu la r  f u n c t io n s  o f  t r o p h ic  su p p o r t , m ig r a t io n  an d  
d if fe r e n t ia t io n . T h u s ,  it  w i l l  b e  im p o r ta n t to  id e n t ify  th e  d ir e c t  
ta r g e ts  o f  S o x lO  tr a n s c r ip t io n a l r e g u la t io n .

T h is  s p e c i f i c  m o d e l  is  l ik e ly  to  b e  a p p l ic a b le  to  m a m m a lia n  
n eu ra l c r e s t  t o o .  T h u s ,  S o x lO  d ir e c t ly  r e g u la te s  M itf e x p r e s s io n  
in  m o u s e  (B o n d u r a n d  e t  a l . ,  2 0 0 0 ;  L e e  e t  a l . ,  2 0 0 0 ;  P o t t e r f  et  
a l.,  2 0 0 0 ;  V e r a s te g u i e t  a l . ,  2 0 0 0 ) .  A lth o u g h  D c / - p o s i t iv e  
m e la n o b la s t s  a re  n o t  d e te c ta b le  in  SoxlODom m ic e ,  s o m e  
e v id e n c e  o f  im p a ir e d  o r  d e la y e d  m ig r a t io n  o f  s o m e  N C C s  h a s  
b e e n  p r e s e n te d  (S o u th a r d -S m ith  e t  a l . ,  1 9 9 8 ) .  S im ila r ly , Kit 
f u n c t io n  i s  c r i t ic a l ly  in v o lv e d  in  p r o m o t in g  m e la n o b la s t  
m ig r a t io n  a n d  s u r v iv a l ,  is  r a p id ly  lo s t  f r o m  m e la n o b la s t s  in  
M itf m u ta n ts  a n d  i s  k n o w n  to  b e  a  d ir e c t  ta rg e t  o f  M it f ,  a t  le a s t  
in  c u ltu r e d  m a s t  c e l l s  ( O p d e c a m p  e t  a l . ,  1 9 9 7 ;  W e h r le -H a lle r  
a n d  W e s to n , 1 9 9 5 ;  W e h r le -H a l le r  a n d  W e s to n , 1 9 9 7 ) .  In  SoxlO 
m u ta n t m ic e ,  Kit e x p r e s s io n  in  m e la n o b la s t s  m a y  b e  a b se n t ,  
a lth o u g h  th e  p r e s e n c e  o f  u n a f f e c t e d  c e l l s  in  th e  s k in , s u g g e s t e d  
to  b e  m a s t  c e l l s ,  m e a n s  th a t th is  r e s u lt  n e e d s  to  b e  c o n f ir m e d  
(B o n d u r a n d  e t  a l . ,  2 0 0 0 ) .

so x l0 a lo n e  c a n n o t  b e  s u f f i c ie n t  to  s p e c i f y  e a c h  o f  th e  n o n -  
e c to m e s e n c h y m a l  fa te s . W e  b e l i e v e  th a t soxlO, w h i le  c r u c ia l  
fo r  e a c h  o f  th e m , is  n o t  s u f f ic ie n t ;  in s te a d , w e  p r o p o s e  th a t  
soxlO  is  o n e  o f  a  c o m b in a t io n  o f  g e n e s  th a t to g e th e r  s p e c i f y  
n o n - e c t o m e s e n c h y m a l  fa te s  fr o m  n eu ra l c r e s t . T h is  m o d e l  
h e lp s  e x p la in  w h y  c e l l s  th a t e x p r e s s  m o le c u la r  m a r k e r s  fo r  
a f fe c te d  c e l l  t y p e s  c a n  b e  id e n t if ie d  in  els m u ta n ts  (K e ls h  a n d  
E is e n ,  2 0 0 0 ) .  F o r  e x a m p le ,  a lth o u g h  m e la n o p h o r e s  b a r e ly  
e x p r e s s  m e la n in ,  x a n t h o p h o r e s  s h o w  m u c h  p ig m e n t  in  els 
m u ta n ts . I f  a  c o m b in a t io n  o f  tr a n s c r ip t io n  fa c to r s  to g e th e r  
s p e c i f y  a  c e l l  ty p e ,  e a c h  fa c to r  m ig h t  r e g u la te  o n ly  p a r t ia l ly  
o v e r la p p in g  s u b s e t s  o f  th e  c h a r a c te r is t ic s  o f  in d iv id u a l  fa te s . In  
th e  a b s e n c e  o f  soxlO  g e n e  fu n c t io n , t h o s e  a s p e c t s  o f  
m e la n o p h o r e  a n d  x a n th o p h o r e  fa te  r e q u ir in g  soxlO  fu n c t io n  
w o u ld  b e  a f f e c t e d  ( e .g .  s y n t h e s is  o f  m e la n in  a n d  tr o p h ic  
m a c h in e r y , r e s p e c t iv e ly ) ,  w h i le  o th e r s  w o u ld  r e m a in  at le a s t  
p a r tly  u n a f f e c t e d  ( e .g .  dct e x p r e s s io n  a n d  p te r id in e  p ig m e n t  
s y n t h e s is ,  r e s p e c t iv e ly ) .  A  d ir e c t ly  a n a lo g o u s  m e c h a n is m  h a s  
b e e n  p r o p o s e d  fo r  a u t o n o m ic  n e u r o n e  s p e c if i c a t io n  fr o m  th e  
n eu r a l c r e s t ,  w ith  d if fe r e n t  g e n e s  r e g u la t in g  p a n -n e u r o n a l a n d  
s u b ty p e  s p e c i f i c  c e l l  p r o p e r t ie s  (A n d e r s o n  e t  a l . ,  1 9 9 7 ) .  F a c to r s  
th a t in te r a c t  w ith  S o x lO  to  r e g u la te  ta rg e t  g e n e s  h a v e  b e e n

d e s c r ib e d , in c lu d in g  th e  p a ir e d  b o x  tr a n s c r ip t io n  fa c to r  P a x 3  
a n d  th e  P O U -d o m a in  p r o te in  T s t - l /O c t 6 /S C I P  (B o n d u r a n d  e t  
a l . ,  2 0 0 0 ;  K u h lb r o d t  e t  a l . ,  1 9 9 8 a ) .  H o w e v e r ,  it r e m a in s  to  b e  
s e e n  w h e th e r  th e s e  c o - fa c to r s  h a v e  a n y  r o le  in  d is t in g u is h in g  
n o n - e c t o m e s e n c h y m a l  fa te s . I d e n t i f ic a t io n  o f  c o m b in a t io n s  o f  
tr a n s c r ip t io n  fa c to r s  r e q u ir e d  to  s p e c i f y  e a c h  fa te  w i l l  b e  a  
p r o m is in g  l in e  o f  fu tu r e  r e se a r c h .

O u r  s p e c if i c a t io n  m o d e l  p r e d ic t s  th a t sox 10 f u n c t io n  i s  
r e q u ir e d  o n ly  in  N C C s  fa te d  to  n o n - e c t o m e s e n c h y m a l  
d e r iv a t iv e s . Jkd6 is  e x p r e s s e d  v e r y  b r o a d ly  in  p r e m ig r a to r y  
N C C s  (O d e n th a l a n d  N u e s s le in -V o lh a r d , 1 9 9 8 )  a n d  s h o w s  
e x te n s iv e ,  b u t  in c o m p le t e ,  o v e r la p  w ith  soxlO. F u r th e r  s tu d ie s  
w il l  b e  r e q u ir e d  to  t e s t  w h e th e r  soxlO-; Jkd6+  N C C s  r e p r e s e n t  
e c to m e s e n c h y m a l  p r e c u r so r s . H o w e v e r ,  o u r  r e s u lt s  d o  s h o w  
th a t, c o n s is t e n t  w ith  o u r  m o d e l ,  e x p r e s s io n  is ,  a t le a s t ,  r a p id ly  
d o w n r e g u la te d  in  c e l l s  th a t a d o p t  e c to m e s e n c h y m a l  fa te s . In  
m a m m a ls , S oxl0 h a s  s o m e t im e s  b e e n  a s s u m e d  to  b e  a g e n e r ic  
N C C  m a rk er  (P a tty n  e t  a l . ,  1 9 9 9 ) ,  b u t o u r  r e s u lt s  s h o w  th a t, in  
f is h , o v e r la p  w ith  o th e r  N C  m a r k e r s  is  in c o m p le t e ,  e v e n  at 
p r e m ig r a to r y  s ta g e s .

In m a n y  r e s p e c ts ,  z e b r a fis h  n eu r a l c r e s t  d e v e lo p m e n t  is  
ty p ic a l  o f  n e u r a l c r e s t  d e v e lo p m e n t  in  a ll v e r te b r a te s  (R a ib le  e t  
a l.,  1 9 9 2 ) .  In  c o n tr a s t  to  m o u s e  a n d  h u m a n  SoxlO m u ta t io n s ,  
n o n e  o f  th e  f is h  sox 10 m u ta t io n s  s h o w  d o m in a n t  e f f e c t s  o n  
m e la n o p h o r e  n u m b e r  o r  p a ttern  (R . N .  K .,  u n p u b lis h e d ) .  In  
m ic e ,  e x p r e s s iv i ty  o f  th e  soxlO  h a p lo in s u f f i c ie n c y  p h e n o ty p e  
i s  d e p e n d e n t  o n  th e  g e n e t i c  b a c k g r o u n d  (L a n e  a n d  L iu , 1 9 8 4 ) .  
P r e s u m a b ly , in  th e  A B  b a c k g r o u n d  in  z e b r a fis h  h e t e r o z y g o t e s  
h a v e  s u f f ic ie n t  S o x lO  fo r  n o r m a l m e la n o p h o r e  d e v e lo p m e n t .  
N e v e r t h e le s s ,  th e  c o n s e r v e d  e x p r e s s io n  p a ttern  a n d  
h o m o z y g o u s  p h e n o ty p e s  in  th e  t w o  s p e c ie s  s u g g e s t  th a t  th e  
d e ta i le d  c e l l - b io l o g ic a l  b a s i s  fo r  th e  els p h e n o t y p e  p r o p o s e d  
h e r e  i l lu m in a t e s  a  p o s s ib l e  m e c h a n is m  b e h in d  W a a r d e n b u r g -  
S h a h  s y n d r o m e  a n d  H ir s c h s p r u n g ’s  d is e a s e ,  in  w h ic h  r e d u c e d  
S O X  1 0  fu n c t io n  m a y  r e d u c e  th e  n u m b e r  o f  m e la n o b la s t s  a n d  
e n te r ic  p r e c u r so r s  s p e c if i e d .
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o f  F ig . IB , D . R a ib le  for p C S H S P , an d  C . M iller , D . P ar ich y  an d  D . 
R aib le  for c D N A  c lo n e s . W e a lso  gra te fu lly  a c k n o w le d g e  J. E is e n , D . 
R a ib le , J. M . W . S la ck , R . A d a m s, W. B en n ett, A . W ard and J. R. 
D u tton  for h elp fu l cr itic ism  and d is c u ss io n  o f  th e m an u scr ip t. R . G . 
th ank s S. R u d o lp h -G e ig er  for tech n ic a l a ss is ta n c e . T h is  w ork  w as  
sup p orted  b y  a P rax is X X I P h D  S tu d en tsh ip  (S . S . L .) , a  U n iv ers ity  
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We have utilized the modified antisense RNA morpho­
lino technology to effectively phenocopy zebrafish 
colourless/sox 10 icls) mutations. The els locus was 
identified in mutagenesis screens (Kelsh et a l ,  1996; 
Malicki e t al., 1996). Homozygous mutants are char­
acterized by extensive defects in nonectomesenchy- 
mal fates (neurons, glia, and pigment cells) derived 
from the neural crest (Kelsh and Eisen 2000; Kelsh et 
al., 2000a, 2000b). Additionally, els mutants have 
small otic vesicles (Whitfield et al., 1996). Zebrafish 
els mutants are models for two human neurocristopa­
thies, Hirschsprung’s disease, characterized by few or 
no enteric ganglia, and Waardenburg-Shah syndrome, 
which combines Hirschsprung’s disease with pigment 
defects. We have recently shown that the els mutant 
phenotype results from disruptions in the zebrafish 
sox lO  homologue and that soxlO  expression is first 
seen at approximately 11 h postfertilization (hpf) in 
premigratory neural crest cells (A. Pauliny and R. N. 
Kelsh, unpublished). The els mutant phenotype can 
first be detected at 21 hpf in dopachrome tautomerase 
(dct) in situ or scored visibly at 27 hpf (Kelsh e t al., 
2000a). Thus, we demonstrate that morpholino oligos 
can effectively phenocopy late embryonic phenotypes 
in zebrafish. We have characterized morphants gener­
ated using morpholino oligos designed to target the 
zebrafish sox 10  homologue. The phenotypes resulting 
from injection of these morpholinos are consistent 
with the els mutant phenotype affecting both neural 
crest derivatives and otic vesicles with an optimal 
response achieved with a dose of 16.5 ng (Fig 1 and 
Table 1). In strong mutant phenotypes, no normal 
melanophores are seen. However, even with high 
doses of morpholino, some normal melanophores are 
present, implying that the characterized strong mu­
tant alleles are likely nulls. At lower doses, all mor­
phant embryos are reminiscent of the single reported 
weak els allele, which is not presently available (Mal­
icki e t al., 1996). As most known els alleles display 
strong phenotypes, the ability to produce a graded 
series of els hypomorphs with morpholinos will be 
invaluable in examining the role of sox 10 in neural 
crest development.

T able 1
Dose-Response Curve

Weak Strong
Dose___________phenocopy3________ phenocopyb__________ n_

3 ng 10% — 19
4.5 ng 12% — 105
6 ng 21% — 105
7 ng 26% — 98
9 ng 18% 11% 104
14 ng 14% 30% 59
16.5 ng 44% 24% 218
37 ng 49% 29% 43
aWeak phenocopies had at least 25 melanophores with a mean of

67 (SD ± 25).
bStrong phenocopies had a mean of 11 (SD ± 8) but less than 25

total melanophores. One to eight cell AB wild-type embryos were 
injected with 4.6 nl of morpholino oligo diluted as recommended by 
Gene Tools, LLC and incubated at 28.5°C. Embryos with more than 
50% of wild-type pigment at 48 hpf were scored as wild type due to 
variations in embryonic development. At doses over 16.5 ng, non­
specific deformities became apparent.
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FIG. 1. soxlO knockdown embryos pheno­
copy c/s mutant phenotypes, (a, d, g, j, m) 
Uninjected wild-type embryos shown in 
comparison with embryos injected with 16.5 
ng of a morpholino oligo (5'-GCCACAGGT- 
GACTTCGGTAGGTTTA-3') designed to tar­
get the -43 to -19  region of the (b, e, h, k, 
n) soxlO sequence and (c, f, i, I, o) c/s mu­
tant embryos. A morpholino oligo (5'-AT- 
GCTGTGCTCCTCCGCCGACATCG-3') de­
signed to target the -23 to +2 region of the 
soxlO sequence gave similar phenocopies 
(data not shown). Panels show lateral views 
of (a-f) live whole-mounts, (g-i) fixed em­
bryos processed for dct (Kelsh et al., 2000b) 
in situ hybridization, or (j—o) anti-Hu mAb 
16A11 (Marusich et al., 1994) antibody 
staining, (d-f) Lateral views of the otic vesi­
cle of a (d) 72 hpf wild-type embryo with the 
reduced otic vesicle, (e) small otoliths of an 
injected sibling, and (f) c/s mutant. The dct in 
situ hybridization reveals melanoblasts in 
the anterior trunk of a (g) 22 hpf wild-type 
embryo; these are absent in an (h) injected 
sibling, and (i) c/s mutant. Anti-Hu staining 
demonstrates a significant decrease in the 
number of enteric neurons (arrows) in the 
hindgut of an (k) injected 5-day postfertiliza­
tion (dpf) embryo compared with a (j) wild- 
type sibling and similar to a (I) c/s mutant. 
Hu-positive dorsal root ganglia (arrow) in the 
tail of a (m) 5 dpf wild-type embryo are lack­
ing in an (n) injected sibling, and (o) c/s mu­
tant (e, eye; ov, otic vesicle; s, somite).


