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Abstract

This study is concerned with the properties of elastic waves in periodic systems and 
their interaction with light.

An overview of the fundamental characteristics of elastic waves in solid systems is 
given and the wavevector diagram is introduced in treating interfaces. A transfer 
matrix technique is employed for laminar media and ultimately forms the basis of the 
analysis of elastic waves in singly periodic systems. The dispersion of longitudinal and 
shear waves is modelled revealing that anti-plane polarised waves are very similar to 
light, while in-plane coupled waves behave quite differently due to the presence of the 
longitudinal strain components. The coupling between the longitudinal and shear waves 
creates additional stop-bands within the Brillouin zones and not just at the Brillouin 
zone edges. Analytical expressions are derived, which take account of the coupling 
between the longitudinal and shear disturbances, to model the positions at which the 
stop-bands close. The results are presented graphically using wavevector diagrams, 
dispersion curves and band edge diagrams.

The interaction of elastic waves with light in periodic systems is investigated in the dou­
bly periodic photonic crystal fibre waveguide. Measurements of the Brillouin frequency 
shift and threshold power are used to characterise the acoustooptic interaction. The 
experimental results are modelled by approximating the core of the photonic crystal 
fibre as a silica rod in a vacuum. Several varieties of photonic crystal fibre are studied 
and multiple Brillouin peaks are shown in the Stokes spectrum.



K ey R esults

In my attempt to present to you this engaging field of acoustooptics, I have arranged 
the thesis into two parts. The first part is concerned with the fundamental concepts 
of elastic wave propagation in layered systems, while the second part is more exper­
imentally orientated and concerned with elastic wave propagation in photonic crystal 
fibre.

I have endeavoured to convey my research and thoughts in as clear a fashion as possible 
and in initiating that endeavour, I summarise here the main results of my research:

1. Calculated the band structure of elastic waves in singly periodic systems 
and formulated anti-resonance conditions for in-plane polarised elastic waves which 
cause the associated stop-bands to close (pp64-67).

2. Modelled the Brillouin frequency shift in photonic crystal fibre by analysing 
the dispersion of the optical and elastic modes of a free silica rod (ppl07-118).

3. Demonstrated the presence of multiple Brillouin peaks in the Brillouin 
spectrum of a photonic crystal fibre, which is suggestive of the possible guidance of 
elastic waves by a phononic band gap (ppll4-118).

4. Measured threshold powers for stimulated Brillouin scattering in PCF 
approximately xlO greater than that predicted by conventional theory (pp 119-123).

In recognising these results I would like to thank Paulo Dainese of the Optics and 
Photonics Research Center, State University at Campinas, Brazil, for his contribution 
to the measurements of the threshold powers in photonic crystal fibre, and in particular 
the results shown in figure 11.13 of chapter 11.
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N otes

•  A ef f  — effective area (m2)

• a  — attenuation constant (d B /km )

• a — rod radius (m)

• (3 — wavevector component parallel to interface (m-1)

• Ci — acoustooptic overlap of fundamental optical mode with the ith elastic mode

• cl — phase velocity of L elastic waves (ms-1)

• cs — phase velocity of S elastic waves (ms-1)

• di — thickness of layer i of unit cell (m)

• $ij — Kronecker delta function (1 for i =  j, 0 for i ^  j )

•  d — mirror spacing (m)

• er — relative dielectric constant

• tQ — electric permittivity of a vacuum (Fm -1)

• E  — Young’s Modulus (N m ~2)

• E — electric field (V/m)

• f  — frequency (Hz)

• A / b  — Brillouin linewidth (Hz)

• A /p  — pump linewidth (Hz)

• gs  — Brillouin gain (m /W )

• T — phonon decay rate (s-1 )

• G — single pass Brillouin gain

viii



• Gl — reciprocal lattice wavevector (m-1)

• H  — magnetic field (Am-1)

• Is  — Stokes intensity (W m ~2)

• Ip  — pump intensity (W m~2)

• ky — Bloch wavevector (m-1)

•  ke  — elastic wavevector (m-1)

• kp — pump wavevector (m *) -

• ks — Stokes wavevector (m-1)

• L  — fibre length (m)

• Lef  f  — effective fibre length (m)

• A — Pitch of multilayer stack (m)

• A — Lame longitudinal elastic constant (N m ~2)

• Ap — pump wavelength (m)

• m  — integer

• fi — Lame shear elastic constant (N m ~ 2)

• (j,o — vacuum magnetic permeability (H m -1)

• pr — relative magnetic permeability

• n — refractive index

• a; — angular frequency (rads-1)

•  p — component of wavevector normal to the interface (■

• ’J' — shear wave potential (m2)

• 4> — longitudinal wave potential (m2)

• P  — power (kK)

• P12 — longitudinal elasto-optic coefficient

• r  — position vector

• p — density (kgm~3)

• Sij — strain tensor



S(u)  — Brillouin lineshape profile 

a — Poisson’s ratio 

Tij and Tij — stress tensor (N m ~ 2) 

t — time (s)

U — displacement (m)

ve — elastic wave phase velocity (ms

x ,y , z  — position coordinates
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Chapter 1

Introduction and Literature 
R eview

Chapter 1 introduces the subject of elastic waves in periodic systems. Topical issues, 
recent achievements and proposals in the field are outlined.

The periodic patterning of materials on a length scale comparable to the wavelength 
can radically affect wave propagation. This is evident for example in semi-conductor 
materials where the electron wave function is naturally modulated by the periodicity 
of the electric potential of the crystal lattice. This periodicity creates regions in energy 
where the electron is forbidden to exist, namely the energy gaps and energy bands 
where propagation of the electron is allowed.

This property of blocking wave propagation in certain frequency ranges is also apparent 
with electromagnetic (EM) waves in structures that possess a periodic variation in 
refractive index. Such photonic band gap (PBG) materials forbid the presence of 
photons in the frequency range of a PBG, so that an atom cannot spontaneously emit 
or absorb light in this region. The advent of PBG materials, as demonstrated by 
Yablonovitch [1] and John [2], [3], coupled with the fact that only waves and a periodic 
scatterer are required to produce these band phenomena, has lead to the development 
of so-called phononic band gap materials (the phonon being the quantum of elastic 
waves or lattice vibration). This analogue of photons in PBG materials and electrons 
in semi-conductors refers to a range of vibrational frequencies in which the associated 
vibrations of a structure are suppressed and the material becomes silent.

Periodic structures are well known in modern art, in particular the branch of art classi­
fied as a form of “minimalism”. The sculpture by Eusebio Sempere, which is exhibited
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at the Juan March Foundation in Madrid, consists of a periodic array of vertically 
arranged hollow stainless steel cylinders. The transmission of sound waves through the 
structure has been measured and found to vary with frequency and direction [4], [5], 
[6]. In fact, at certain frequencies and for given directions no sound at all propagates 
through the structure, clearly demonstrating the presence of a phononic band gap.

In contrast to photonic crystals, phononic crystals exhibit a periodic modulation in 
density. Kushwaha and Djafari-Rouhani [7] have calculated the band structure for a 
periodic hexagonal array of metallic rods in air and the experimental measurement of 
similar systems has been performed by Robertson [8]. The analysis of 3D systems has 
been demonstrated by Kafesaki et al. [9], who, using fee, bcc and sc arrangements of 
high density scatterers such as Steel, Nickel, Lead, and Copper embedded in a polymer 
matrix, demonstrated the formation of full phononic band gaps. Until recently, the 
density modulation was required to be of the same order as the wavelength in the band 
gap and so it has not been practical to shield environmental noise as the structures 
would need to be the size of outdoor sculptures. Liu [10] and co-workers however, have 
demonstrated full band gaps in 3D phononic crystals composed of silicon coated lead 
spheres embedded in an epoxy matrix. It has been reported that spectral gaps open up 
with a lattice constant two orders of magnitude smaller than the relevant wavelength.

The first ideas regarding the influence of a medium interrupted by a periodic array of 
inclusions on the waves propagating therein, was presented by Rayleigh [11] in 1892. 
Rayleigh utilised a multi-pole expansion method in analysing the flow of heat and 
electricity through a doubly periodic system composed of an array of parallel rods of 
circular cross-section embedded in a uniform background. Zalipaev [12], Poulton [13] 
and Platts [14], [15] have used this approach extensively in describing elastic wave 
propagation in such structures, however, this method is limited by the shape of the in­
clusion that can be incorporated into the analysis. The multi-pole expansion technique 
represents all waves in terms of Bessel functions and so it is difficult to accommo­
date non-circular inclusions. Other widely used methods of studying wave propagation 
include the plane wave expansion of fields [16], [17] and the Fourier series representa­
tion of spatially varying material properties; this approach holds no restriction on the 
shape of the inclusions, but is limited when the contrast in spatial properties between 
the medium and the inclusions become large.

The approach adopted in this study employs a technique developed in seismology for 
the study of earth tremors, namely the. transfer matrix method (see section 3.2), and is 
ideally suited to systems involving discontinuous changes in material properties. This 
technique, as the name suggests, uses matrix methods to relate the field components 
at one particular interface in a stratified composite to any other interface or “horizon”. 
The method has since been applied to multilayer dielectric structures supporting EM
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waves [18], [19] and also for analysing elastic waves in periodic systems [20], [21], [22], 
[23], [24], [25], [26].

The first experimental demonstration of the confinement of elastic waves by a phononic 
band gap was performed by Marin et al [27] in dual core photonic crystal fibre preform. 
Such acoustic confinement could lead to highly efficient acoustooptic devices including 
tunable filters, frequency shifters [28], [29], [30] and even the development of the SASER 
(Sound Amplification by the Stimulated Emission of Radiation) [31].

The generation of phonons in materials possessing a phononic band gap, using laser 
radiation, has been performed by several groups [32], [33], [34]. Trigo [35] and Worlock 
[36] in particular have demonstrated the excitation of phonons within a ID phononic 
cavity by EM radiation, due to the photoelastic effect, with the EM radiation itself 
being confined within a ID photonic cavity that encloses the phononic cavity.

The band structure of elastic waves in periodic composites is significantly more com­
plicated than the EM case, since elastic waves have a third polarisation state which is 
coupled to the transverse disturbance. It is the intention of this study to investigate 
the dispersive properties of elastic waves in materials that are periodic in only ID as a 
first step towards treating acoustooptic interactions which form the discussion of Part
II.
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Chapter 2

Elastic Waves - Properties and 
Concepts

Chapter 2 discusses the properties of elastic waves and the concepts underlying their 
propagation in solid media.

All materials are composed of atoms that may be put into various states of vibrational 
motion. However, for the purposes described here, only the macroscopic effects of the 
synchronised motion of clusters of atoms are studied in analysing the elastic properties 
of materials. This allows one to formulate elastic wave theory based on matter as a 
continuum. In this study, an elastic solid is defined as one in which no energy loss occurs 
when it returns to its undeformed or equilibrium state. This assumption suppresses the 
effect of creep associated with viscoelastic materials which have a damping effect on 
the wave. All solids will therefore be considered as being linear, elastic and ultimately 
lossless, such that waves propagating in such media do not decay through dissipative 
mechanisms. Also, to avoid any apparent frequency limitation by referring to a wave 
as being “acoustic”, the term “elastic” will be used throughout when referring to the 
deformation of a solid.

2.1 Stress, Strain and H ooke’s Law

Solids can support various types of wave motion. These disturbances are categorised by 
the local deformation of the solid relative to the propagation direction. Disturbances 
that reside in the direction of the wavevector are characteristic of longitudinal (L) 
or dilatational waves, while a motion perpendicular to the propagation direction (a
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disturbance unique to solids) is a characteristic of a shear (S) or transverse wave. (It 
is also possible to excite other wave types in rods, but these are not considered here in 
the study of plates and layered media [37]).

When the particles of a medium are displaced from equilibrium, internal forces will 
develop to restore the system to its original state. It is these forces combined with the 
associated inertia of particles that cause the oscillatory motion. This oscillation of par­
ticles is described by the displacement vector U (r, t), which specifies the displacement 
of a particle from its initial position r, at a time t.

The displacement field is a continuous variable, but is not a complete description of 
material deformation. In rigid body translations and rotations the particles of the 
body retain their relative positions and there is no deformation even though a non-zero 
displacement field is produced. A more satisfactory measure of material deformation 
is provided by the gradient of the displacement field,

which is zero for rigid translations.

However, this measure of material deformation does not account for rigid body rotations 
which leaves the internal state of a solid unchanged. Rigid rotations present themselves 
through the non-zero, anti-symmetric part of the matrix of displacement gradients. 
Consequently, only the symmetric part which is zero for an overall translation and 
rotation, successfully describes the deformation [37]. The linearised strain relation (i.e. 
small strains to avoid permanent deformation or fracture) is given by the symmetric 
part of the gradient of displacements and is shown below,

s (I?+S9 (2-2)
where z, j  =  1,2,3 such that r\ = x, r2 =  y and r$ =  z.

Terms in Sij with i = j  correspond to the trace of the strain matrix and the sum of 
these trace elements is termed the dilatation. The dilatation is a measure of the relative 
change in volume due to a compression or extension of the medium, which itself is due 
to the passage of an L wave and is given by V.U. In addition to a relative elongation 
or contraction of the material element in the direction of wave propagation, there is
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L wave

S wave

Figure 2.1: Plot showing the displacement associated with (a) longitudinal (L) waves 
and (b) shear (S) waves

also a small change in the cross-section of the element. This perpendicular strain is 
characterised by Poisson’s ratio (a), which is defined as the ratio of lateral contraction 
to longitudinal extension. Terms with i ^  j  cause displacements perpendicular to the 
material element and correspond to a shearing motion which is present as a rotation. 
Shear waves simply distort the lattice without causing a density gradient along its 
passage [38]. L and S wave motions are presented pictorially in figure 2.1.

Forces produced during the act of deformation are described by the stress tensor, 
Tij, where T{j refers to the force acting in the j-direction upon a unit area whose 
perpendicular resides in the i-direction. Such forces can arise from mechanical contact 
at the free surface of the solid or within the solid (body forces) from an externally 
applied field, such as the gravitational field or an electric field in a polar crystal. For 
small stresses and strains, i.e. in the linear theory of elasticity, Hooke’s Law in tensor 
form [39] describes this deformation as,

where A and fi are the Lame elastic constants and Sij is the Kronecker delta function. 
(Einsteins suffix notation is implied here whereby summation is applied over terms with 
repeated indices).

Newtons 2nd Law for a particle in a solid describes the acceleration in terms of the 
forces to which it is subjected (body forces being neglected). Thus, using equation 2.3 
the wave equation for particles in a solid can be written as,

d2Uj _  drij
dt2 dxi

(2.4)
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where p is the density of the medium at equilibrium (i.e. with no elastic disturbance) 
and i , j  =  1,2,3 such that 1 corresponds to the ^-component, 2 corresponds to the 
^/-component and 3 corresponds to the ^-component.

2.2 Elastic Wave Propagation in Unbounded M edia

The general expression dictating the passage of an elastic wave through a solid is 
obtained on substituting equation 2.3 into equation 2.4. This produces,

d2Uj _  _d_ 
dt2 dx-i

rxdc/fci d (dUi , dus \
. dxk . +  dxi \dx j +  d x j

(2.5)

where k =  1,2,3, such that 1 corresponds to the ^-component, 2 corresponds to the 
^/-component, etc. The vector form of 2.5 is quoted in many texts and papers without 
any reference to the derivation. For this reason, it is included here and proceeds by 
analysing each component of U  independently. For the x-component, equation 2.5 
yields,

d2U, d
dt2 dx

\ 9 U . , x d U y , x9U1 
ox dy dz

1 4- ^ \dUi dUx 1 d \dUi dUxl
dxi . dx 4- ,

1 + / i a ^ . dx d x i .

Now expanding a it is found,

(2.6)

d \d U x OX dU„ dX dU,
a = + +dx dx dx dy dx dz 4- A

d2ux d2Uy d2Uz
+ +dx2 dxdy dxdz

(2.7)

and similarly,

_  d/i dUx dp, dUy dp dUz dp dUx dp dUx dp dUx 
dx dx ^  dy dx dz dx ^  dx dx dy dy dz dz

c — p-d2Ux d2Uy d2Uz d2Ux
dx2 + p

.y , .  , ~~X , d2UX , d2UX
+  4-dxdy dxdz dx2 dy2

(2 .8)

(2.9)
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Therefore, combining 2.6, 2.7, 2.8 and 2.9, the expression for the re-component of the 
wave can be written as,

=  i ( v . u ) + A | ( v . u ) + V M . g + (VM.v)%+MA ( v . u ) +MV*o;. (2.10)

In a similar fashion, the y  and ^-components can be represented as,

=  ^ ( v 'u ) + A| ; ( v -U ) +  + A *^(v -U )+M v 2 l 'i  (2.11)

P^  =  ^ ( V U ) +  A^ ( V U ) +  +  (Vm-V)C^+ / i ^ ( V .U )  +  MV2C^. (2.12)

The vector form of the wave equation for elastic waves in solids is therefore obtained 
by combining equations 2.10, 2.11 and 2.12, and takes the form,

d2U
P±—  =  (V.U)VA +  AV(V.U) +  E  +  (V/j.V)U +  #«V(V.U) +  n V 2V  (2.13)

where,

^  ^  <9U. ^  d U .  „  dU ,
s  =  v ^ 1+ v ^ V + v ^  { ]

and i, j  and k  are Cartesian unit vectors along the x, y and 2 directions respectively. 
Upon expanding equation 2.14 it is found that,

_  / d y  dUx dy dUy dy  dUz \  . /dy, dUx dy  dUy dy  dUz \  .
\ d x  dx ^  dy dx ^  dz dx j 1^  \ d x  dy dy dy dz dy )

( d y d U x dydU y d y d U z\ , 01C,

and comparing 2.15 with 2.16 below,

9



V/i x (V x U) = dy  / dUy _  dUx\ _  dy  fdUx _  dUz 
. dy \  dx dy )  dz  \  dz dx )]

+

+

dji /  dUz 
dz  \  dy

dy, (dU x

dUy
dz

duz

dy ( dUy dUx

d£z
dx \ d z  dx J dy V dy

dx \  dx dy ) .

_ d U y Y  
dz )  _ (2.16)

the vector form of 2.5 can be written as,

p W  = (V-U )VA +  (A +  m)V(V.U) +  2(Vp.V)U +  V n  X (V X U) +  ,V 2U. (2.17)

In ideal, homogeneous, isotropic solids the elastic constants A and y  do not have any 
spatial dependence. Therefore, VA =  V// =  0 and equation 2.17 reduces to,

=  (A+  2/*) _  (fv  x (V x U). (2.18)
dt1 p p

Equation 2.18 is representative of three waves which have different polarisations, namely 
the L wave in which the disturbance takes place in the same direction as the wavevector 
and the two S waves (which are mutually orthogonal) in which the displacement resides 
in a plane perpendicular to the propagation direction.

In unbounded isotropic media, L and S waves propagate independently of each other. 
However, at defects within the main body of media, interfaces and free surfaces for 
example, the L and S waves become coupled. The analysis of each type of wave is 
facilitated through the use of the longitudinal and shear potentials (<j) and respec­
tively) which decouple equation 2.18 [37], [38], [39]. However, this approach is only 
valid when the system under consideration is homogeneous and isotropic. For more 
general systems involving inhomogeneous media the reader is referred to the paper by 
Hook [40].

The L and S potentials describing their respective displacements are defined as,

U L =  V0 (2.19)

U s =  V x $  (2.20)
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such that there is no local rotation of the medium associated with the passage of an 
L wave (V x U l =  0) and no volume change associated with the passage of a S wave 
(V.Us =  0) [41]. Substituting U =  V</> +  V x ^  in 2.18, gives,

(A +  2/j)VV.[V4> +  V x * ] -  p.V x V x [V</> +  V x ¥ ] -  p& I  * ^  =  0 (2-21)

which reduces to,

,2 , P A  , „V I (A +  2p)V <j> -  p - ^  I +  V x I p V ‘ 9  -  p - ^ -  I =  0. (2.22)

Each term in brackets must be independently zero, and so we have the scalar wave 
equation for the L waves,

v2* - ( a T W  =  ° (2 '23)

and the vector wave equation for the S waves,

V2* - - ^ = 0 .  (2.24)fj, at1

From equations 2.23 and 2.24, the phase velocity of the L and S waves, (cl and c$ 
respectively) are given by,

cL = ( ^ f  (2.25)

1/2

CS = c r
and since A is always greater than zero, cl > csy/2. The plane wave solutions to 2.23 
and 2.24 can be written as,

(f) = ^ e x p ^ k L - r  — cut) (2.27)
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& =  VP a  exp i (kg.r — Lot) (2.28)

where 4>a  and \&a are constants, lo is the angular frequency, and |kL| = lo/ cl and 
Iks I =  lo/ cs are the magnitudes of the L and S wavevectors, respectively.

2.3 Elastic Waves at an Interface

relevant wavelength), homogeneous, isotropic, elastic half-spaces with a welded contact

2.2). In this respect, it is also evident that the L and SV waves (i.e. in-plane polarised 
waves) are coupled and both present a displacement perpendicular to the 2-direction.

The displacement associated with the anti-plane waves (Uap) is derived from 2.20 with 
the components of the vector potential, \Ef =  (\I/X, \ky, 0) being independent of the 
^-coordinate. Accordingly,

The L and SV waves are coupled to each other at the interface such that an L (SV) 
wave incident on the interface will produce a reflected and transmitted L (SV) wave

coupled in-plane waves (Uip) is revealed through 2.19 and 2.20 with » (0,0, ^ z) 
and is given by,

Elastic wave propagation in bounded solids is complicated by the coupling of the L 
and S waves at boundaries and interfaces. For two infinite (much larger than the

so that no slip takes place, it is possible to define a coordinate system such that the 
SH disturbance (or shear wave with horizontal polarisation) which takes place in a 
direction parallel to the interface, is uncoupled to the SV (or shear wave with vertical 
polarisation) and L wave. This is only viable if the system is invariant to any rotation 
about the normal to the interface. Thus, in defining an interface with the normal 
pointing in the ^-direction and the x-y plane as the plane of incidence (also known 
as the sagittal plane), an SH wave would produce a displacement in the 2-direction 
only (this wave is also referred to as anti-plane shear and is similar to the TE mode 
in photonics [42]) and so the dimensionality of the problem can be reduced (see figure

(2.29)

as well as exciting an SV (L) wave in the adjoining media. The displacement of the

(2.30)
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pure anti-plane 
S waves

coupled L & S 
waves

(b)

Figure 2.2: Diagram illustrating the polarisation of L and S waves at an interface, (a) 
Uncoupled anti-plane waves (b) coupled in-plane waves.
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At any interface between two media it is required that the wavevector component along 
the interface be conserved in an analogous manner to EM waves. This result leads to 
Snells Law [42], which states,

sin(Qi) _  sin(0r) _  sin(&t)
V\  V \  V2

where v\ and V2 are the phase velocities of the elastic waves in materials 1 and 2, and 
6i, Qr and 6t are the angles made by the incident, reflected and transmitted waves to 
the normal to the interface respectively.

In addition to L and S waves, for certain material combinations it is found that guided 
waves can exist at the interface between different media. These waves were studied by 
Stoneley [43] and are accordingly named after him. Stoneley waves rapidly decay with 
increasing distance from the interface into the surrounding media and are polarised 
in a plane containing the propagation direction and the normal to the interface. The 
Stoneley wave is a generalised form of the so-called Rayleigh wave, which is trapped 
at the free surface of a solid (see section 2.3.1) and is found to exist when the elastic 
wavelength is small compared to the thickness of the solid in question. The formation of 
the Rayleigh wave is not restricted by the properties of the media forming the interface 
as with the Stoneley wave, but is polarised in the same sense. The two displacement 
components of the Rayleigh wave however, have a phase difference of 7r/2 and their 
amplitudes decay with depth at different rates.

2.3 .1  B ound ary  C ond itions

Solutions to the wave equations 2.23 and 2.24, which govern the propagation of L and 
S waves, will depend on the boundary to the system in which the waves propagate. For 
elastic waves in a solid that is rigidly bonded to a second solid such that no slip can 
take plane (welded interface), the boundary conditions simply require the conservation 
of displacement and the normal components of stress across the boundary. Solid- 
liquid interfaces however, only require the conservation of the normal component of 
displacement and stress. This is because liquids do not possess any resistance to a 
shearing motion and consequently cannot support a shear wave.

An elastic wave is inherently a disturbance of a particular medium. It is no surprise 
therefore that a vacuum cannot support an elastic wave. As a result, elastic waves 
incident on a free surface (i.e. an interface with a vacuum) must satisfy the condition 
of zero stress at the boundary and be totally reflected. In this manner, there is no

14
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restriction to the displacement at the free surface, provided the resultant stress at the 
boundary is zero [37], [38], [39].

An interesting theoretical boundary condition is that proposed by Mindlin [44]. The 
so-called lubricated boundary is an idealised condition which serves to prevent L and 
S waves from coupling at an interface between two homogeneous, isotropic solids. An 
L (S) wave incident on a lubricated surface will thus only reflect and transmit into 
an L (S) wave thereby preserving the state of polarisation (no mode conversion). This 
allows the L (S) wave to be studied independently of the S (L) wave, and is implemented 
by setting either the normal component of displacement and tangential component of 
stress to zero, or equivalently, the tangential component of displacement and the normal 
component of stress to zero.

2 .3 .2  T h e W avevector D iagram  for W aves a t an Interface

Waves incident on and departing from an interface are concisely represented through the 
use of a wavevector diagram [45]. This is a plot in wavevector space of the magnitude 
and direction of all the allowed real valued wavevectors at constant frequency, u. In 
essence it is a plot of the spatial dispersion at a fixed frequency.

The shape of the wavevector diagram reflects the directional dependence of the material 
properties, i.e. the anisotropy. For isotropic materials however, the magnitude of the 
wavevector is constant for all directions and so the the diagram is simply circular with 
a radius of

Anti-Plane Polarised Waves

The wavevector diagram representing the interaction of anti-plane shear waves at an 
interface between two homogeneous, isotropic media, labelled 1 and 2, is shown in 
figure 2.3.

The conservation of wavevector component along the interface is evident through the 
use of the construction line. It is seen that the wavevector in each media can be de­
composed into two orthogonal components, namely the wavevector component parallel 
to the interface /?, and the component normal to the interface, ps, which is given by,
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\ construction
line

incident reflected

refracted

Figure 2.3: Reflection and refraction of anti-plane S waves at an interface between two 
isotropic media 1 and 2 .

Values of \/31 < —  (where cs2 is the phase velocity of anti-plane waves in medium 2) 
correspond to the regime where anti-plane waves can freely propagate and in which 
reflection and refraction can occur.

When \(3\ equals ~r~, the anti-plane waves will be cut-off from medium 2. This value of 
/3 defines the critical angle, equivalent to the critical angle in optics required for total 
internal reflection. From equation 2.32, it is evident that for |/3| >  ps2 will beI'S 2
imaginary and so the anti-plane waves will be evanescent in medium 2, decaying in a 
direction normal to the interface. Equally, for \/3\ > the waves will be evanescent 
in both media and so the system will be unable to support anti-plane waves at that 
frequency [18],

In-P lane Polarised Waves

The typical wavevector diagram showing in-plane polarised waves at an interface be­
tween two isotropic media is shown in figure 2.4. The four circles are representative of 
the two types of elastic waves that can propagate in both media, namely the L and S 
waves. Since A > 0, the velocity of the L wave in a given solid is always greater than 
the S wave. Thus, the L wavevector is always smaller than the S wave at a given fre-

(2.32)
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construction
line

incident S wave reflected S wave

reflected L wave

p
refracted L wave

refracted S wave

y

Figure 2.4: Wavevector diagram showing the coupling of L and S waves at an interface 
between two media which have different densities. Labels 1l, 2l , 1 s  and 25 indicate 
the L and S waves in media 1 and 2 , respectively.

Type of Interface R elative Phase Velocity
I c l 2 > c l i  > cs2 > c s i
II c l 2 > cs2 > c l i  > c s i
III CL2 >  C L I >  C s i >  CS2

Table 2.1: A summary of the possible relative phase velocities of the L and S waves at 
an interface between two solid media.

quency and in a given solid. Despite this restriction, it is possible to define three types 
of interface based on the density of the adjoining media, which I shall call respectively 
type I, II and III. These labels are necessitated as it is believed that no distinction 
has previously been made; it is important to realise which type of system the coupled 
waves relate to as it governs the wave propagation.

The interface labelled type I refers to the case whereby both L waves travel faster than 
the S waves, i.e. c l 2 > c l \  > c s 2 > c s i -  A type II interface refers to the situation 
whereby c l2 > CS2 > c li > cS i? and the type III interface refers to the system in which 
CL2 > c li > csi > cs2 namely, the phase velocity of the L and S waves in medium 1 
are intermediate to the L and S wave phase velocity in medium 2. These interfaces are 
summarised in table 2.1.

Figure 2.4 is representative of a type I interface and highlights five propagation regimes 
(compared to three for anti-plane polarised waves) which are distinguished by the value 
of j3. However, only three of these are of particular interest.
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For values of /? defined by |/?| < ^ ,  all waves are real and can propagate to participate 
in reflection and refraction.

The range of wavevector values defined as ^  < \(3\ < ^  relate to the situation in 
which the y-component of the L wavevector in medium 2 is imaginary; this results in 
the exponential decay in of L waves in medium 2. Consequently all L waves incident on 
the interface from medium 1 will be reflected and furthermore, S waves incident upon 
the interface from medium 1 will not be partially refracted into an L wave in medium
2. (Equally, S waves incident upon the interface from medium 2 will not be reflected 
into an L wave).

The third regime is defined as ■—  < \(3\ < corresponds to the situation in which the 
L waves will be evanescent in the both half-spaces. In this situation only S wavevectors 
are real valued can thus propagate freely.

The fourth regime is given by ^  < \(3\ < ^  and is such that only an S wave can 
propagate in medium 1. All other waves will be evanescent and so an S wave incident 
on the interface from medium 1 will be totally reflected. As the (3 value continues to 
increase beyond the S wave in medium 1 will become evanescent with the result 
that the system can no longer support in-plane polarised waves at that frequency.

2.3 .3  B rew ster’s C on d ition  and A n gles o f  P o larisa tion  E xchange

In photonics, Brewster’s condition refers to the well known angle for which a TM 
polarised EM wave incident on an interface between two media produces no reflection. 
The magnitude of the reflection is zero when the reflected and refracted angles are 
orthogonal. Under such circumstances, the electric dipoles of the reflected and refracted 
waves are at right angles, resulting in zero reflected power [18], [42].

For elastic waves, the analogous polarisation state refers to the in-plane polarised L and 
S waves. At an interface between two solids, the L and S waves become coupled and 
are capable of generating their coupled partner in reflection and transmission. Since L 
and S waves have different speeds they will leave the interface at different angles (since 
f3 must be conserved), and so at most it is only possible to suppress the reflection of 
one of the coupled waves.

An analytic expression for the (3 value at which mode conversion takes place is a com­
plicated function of the material properties of both media and wavevector components 
(see section 3.4). However, the (3 value at which an L (S) wave is reflected at an inter­
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face solely into an S (L) wave is obtained by setting the reflection coefficient of an L 
(S) wave into an L (S) wave to zero, i.e. Vs s  =  0.

Figure 2.5 shows the magnitude of the reflection and transmission coefficients of the 
L and S potentials for L and S waves incident upon an interface between two solid 
half-spaces having different mechanical properties. It is evident that at a (3 value of 
«  0.68, the reflection of an L (S) wave into an L (S) wave becomes zero, indicating 
the total reflection of one polarisation state into the other. This (3 value will of course 
vary according to the property of the materials forming the interface and indeed for 
some material combinations no mode conversion takes place. The complete analysis 
of in-plane waves at a free surface and their dependency on the material properties, is 
given by Malischewsky [46].

The reflection of anti-plane waves at an interface between two solid media (labelled 1 
and 2) is given by

r = PiPi~P2P2 (2.33)
Pi Pi +P2P2

The reflection can be seen to go to zero when p ip i = P2 P2 - This Brewster like condition 
is found to be dependent on the material properties and is considered in detail by 
Manzanares-Martinez [47]. Through setting the numerator of equation 2.33 to zero, 
this Brewster condition can be shown to occur at frequencies given by,

u 2 = 0* (cic2)2(pl -  pi) 
(PlC2)2 -  (P2C\)2

(2.34)

Angles of Polarisation Exchange and Conservation at a Free Boundary

In-plane polarised waves incident upon a boundary to a vacuum from an elastic half­
space demonstrate further interesting polarisation effects upon reflection. It can be 
shown that the reflection of an L wave or an S wave (at an interface to a vacuum) into 
an L wave or an S wave respectively, is given by,

n  =  4 P2plPs -((3 2 ~ P 2s )2 ( .
4(32plPs  +  (P2 ~  Ps)2
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Figure 2.5: Plots showing the magnitude of the reflection (V) and transmission(T) 
coefficients of potentials for (a) an L wave and (b) an S wave, incident from a first 
elastic half-space (density - pi) upon a welded interface to second solid half-space 
(density p2 =  p i /2). In both plots the reflection of an L (S) wave into an L (S) wave 
(i.e. V ll  = 0(V̂ 5 =  0)) is seen to go to zero at /? «  0.68. Note, for the incident 
medium, |k£,| =  1, |ks| =  1.5.
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From equation 2.35 it is readily seen that when 4(32p l P s  =  (P2~P s)2 the reflection does 
not generate a wave with the same polarisation as that which was incident (r\ = 0). 
Thus, an L wave incident upon the interface and satisfying the aforementioned condition 
will be converted to an S wave. Similarly, an S wave incident upon the interface will 
generate an L wave only under reflection; the elastic wave is said to undergo an exchange 
of polarisation.

Conversely, the reflection of an L wave into an S wave at an interface to a vacuum can 
be shown to be of the form,

r  _  4P p l ( P 2 - P 2s )  (9
2 4 (32p L p s  +  i (32 ~  P s )

and so when (3 = p s , r^ will become 0. Under such circumstances, an L (S) wave will be 
totally reflected into an L (S) wave — the state of polarisation is said to be conserved
[39].

Values of (3 which satisfy equations 2.35 and 2.36 will also be dependent on Poisson’s 
ratio, cr, which can be expressed in the form,

=  (1 ~  2<r)
kg (2 — 2<t) ’

The values of (3 which satisfy equations 2.35 and 2.36 are shown as a function of a in 
figure 2.6 for an L wave incident upon the interface. (Values of a < 0 correspond to the 
unusual case whereby a material bulges when stretched, or constricts when squashed). 
It is evident that at a given frequency, the condition for polarisation exchange (blue 
line) is only permitted up to a maximum value of a. There will however, always exist 
an elastic solid for which the polarisation of a wave incident upon an interface to a 
vacuum from the solid will be conserved under reflection (red line).

2.4 Energy and the Poynting Vector

The energy associated with an elastic wave can be written as,

E  = —U * . T (2.38)
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Figure 2.6: Plot showing values of Poisson’s ratio cr, which satisfy the condition for 
polarisation exchange (blue line) and polarisation conservation (red line), as a function 
of (3.

where * indicates the complex conjugate. Thus, the power flow (energy per unit time) 
associated with an elastic wave becomes,

P = dE  —V *.r
dt

(2.39)

which can be expanded to reveal,

P  = [v l TU  +  VJT12 +  wins] i -  \  [*4 r21 +  V*y T22 +  < r 23] j 

- \  [̂ XT31 +  2 +  u*r33] k (2.40)

where V is the phase velocity vector of the elastic wave and P  is a vector representing 
the power flow in each of the cartesian coordinates [48].
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Chapter 3

The M ultilayer Stack

Chapter 3 is concerned with the multilayer stack. The chapter focusses on the use of 
the transfer matrix in describing wave propagation in ID systems and further considers 
the relationship between the transfer matrix and the scattering matrix.

The system under consideration in this work consists of a stratified composite of homo­
geneous, isotropic, parallel, welded plates with their respective normals pointing in the 
y-direction. The composite is periodic over a distance A that encompasses the unit cell 
which itself comprises two layers of differing elastic properties which are distinguished 
by the labels 1 and 2. The so-called multilayer stack (as shown in figure 3.1) is assumed 
infinite in each of the three Cartesian directions such that reflections from the outer 
boundary of the stack can be neglected.

3.1 The Analogy w ith the Diatom ic Chain

Waves normally incident upon a multilayer stack that is periodic over two layers are 
completely analogous to waves propagating in the linear ID diatomic chain, as shown in 
figure 3.2 [49], [50]. A diatomic chain consists of two masses M  and m (M > m), which 
are assumed to be connected by identical, massless springs which have spring constants 
C. Assuming that each plane of atoms only interacts with its nearest neighbour plane 
of atoms, the equations of motion governing the respective masses become,

j2tt
M - ^ f  = C(us  + u s - i - 2 U s )  (3.1)
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Figure 3.1: Cross-sectional view through the multilayer stack.
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Figure 3.2: Diatomic chain with masses M  and m  connected by force constants C.
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m - ^ = C ( U s+1 + Us - 2 u s ). (3.2)

The dispersion of elastic waves propagating through such a system is strongly influ­
enced by the wavevector k. The number of branches (i.e. curves) associated with the 
dispersion diagram of a given system is directly related to the number of degrees of 
freedom available to the system. Thus, for elastic waves propagating in a system which 
incorporates two masses (or layers, as compared with the multilayer stack) per unit cell 
and having N unit cells, there will be 6N  degrees of freedom with 3N  of these including 
the one L acoustic branch a two S acoustic branches, and the remainder taken up in 
the optical branches (“acoustic” and “optical” being terms used to describe the low 
and high frequency curves respectively).

For wavelengths that are long compared with the lattice constant a, i.e. the long 
wavelength limit, the relation between u> and k has been approximated by Kittel [50] 
as,

u 2 =S 2 c ( T  +  I )
\ M  m j

2 /*NJCJ = 2^2
2 (M  +  m)

k a

(3.3)

(3.4)

which relate to the optical and acoustical branches respectively.

Similarly, for wavelengths which satisfy the condition A =  2a, the dispersion is shown 
to be approximated by,

2w  =

2u  =

2C 
m  
2C 
M

(3.5)

(3.6)

which again relate to the optical and acoustical branches, respectively.

The range of independent k vectors defined within these limits, i.e. the first Brillouin 
zone, < k < J , completely describe the propagation of elastic waves in the system. 
The extrema values, a —► 0 and \k\ =  J , correspond to the elastic continuum and Bril­
louin zone boundary respectively and present significant differences to the propagation 
characteristics. For values of \k\ > J , it is found that the elastic wave produces lattice 
motions that can be described with k vectors which reside within the first Brillouin
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zone. This is a consequence of the lattice periodicity and is described in the next 
section.

3.2 B loch’s Theorem  and the Transfer M atrix

The linearity of equation 2.18 ensures that any multiple of any solution to equation 2.18 
is exactly the same solution, the multiplying factor simply determining the amount of 
a particular mode in the solution. In addition, the translational invariance of the mul­
tilayer stack in the y-direction implies that any field pattern (i.e. solution to equation 
2.18) at position (x,y,z) within the stack, is nothing more than the same field pattern 
at position (x,y+mA,z) where m  is any integer, multiplied by some constant which 
may be complex (only positive propagation is considered here). This is a consequence 
of Bloch’s Theorem [51] which in ID systems is conveniently expressed in the form,

U  (x, y, z) =  A(z, y, z) exp i(kyy) (3.7)

where A is a periodic function in y such that A(x, y, z) =  A(rr, y ±  mA, z) and ky is 
the Bloch wavevector.

The so-called Bloch wave U(x, y, z )} is a complex, periodic, amplitude distribution with 
a period equal to the spacing of the stratification, and is simply the normal mode of the 
periodic system. The field of the Bloch wave can be represented as a set of interfering 
spatial harmonics (an), as shown in equation 3.8, provided the resulting field pattern in 
the y-direction has a period that is consistent with the period of the system, A in this 
case [45]. To ensure this requirement, Bloch’s theorem demands that the y-component 
of the wavevectors of the participating spatial harmonics are separated by integral 
amounts of the reciprocal lattice vector Gl = X ’ suc^ that,

U (z, y, z) = k f c  V’z ) exp(imGLy)\ exp i{kQyy) = A {x , y, z) exp i(kQyy). (3.8)
m

Here, ky is the y-component of the reduced wavevector that lies within the first Brillouin 
zone (|fcy| < J )  of the reciprocal lattice and is the fundamental wavevector of the Bloch 
wave. Higher order zones are accessed through the addition of integer multiples m  of 
the reciprocal lattice vector Gl , which correspond to higher order spatial harmonics
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[52], as shown in equation 3.9.

ky = ky + tuGl • (3.9)

However, it is evident from equations 3.8 and 3.9 that any elastic wave propagating 
with a wavevector which lies outside the first Brillouin zone can be described with an 
equivalent wavevector which lies within the first Brillouin zone, since exp«(mGxA) =  1.

Bloch’s result is evident on the wavevector diagram of a periodic system. In this case the 
wavevector diagram is a periodic array of the loci of real valued wavevectors separated 
by the reciprocal lattice vector Gl - As the frequency of the elastic waves is increased, 
the fundamental circle of radius |k°| representing the spatial dispersion of elastic waves 
originating in the first Brillouin zone becomes penetrated by those circles representing 
the spatial dispersion of elastic waves originating in higher order zones. For sufficient 
contrast of the elastic properties of the layers of the unit cell, stop-bands are found to 
open up, which are separated by the reciprocal lattice vector [45], [52]. At exactly the 
Bragg condition (for the unit cell see'equation 3.10), the elastic waves will be Bragg 
reflected from the unit cell and thus, will not propagate through the multilayer stack,

pidi -\-p2 d2 = m r. (3.10)

Here pi represents the component of the wavevector normal to the interfaces of the 
multilayer stack, in medium 1, and d\ corresponds to the thickness of medium 1 of the 
unit cell etc.

For waves incident upon the stack with a (3 value in the range |k i| > (3 > |k2| for 
example, the elastic wave will decay in layer 2 and if layer 2 is thin enough, the elastic 
wave will tunnel through to layer 1 in which the wave is real and propagating. Thus, 
if such a stack is allowed to reach equilibrium the elastic waves will become localised 
in alternate layers of the stack and will propagate along them harmonically.

For waves incident upon an interface within the stack with a (3 value which corresponds 
to a position within a stop-band, the elastic waves will be evanescent. The stop-bands 
are separated in fc-space by the reciprocal lattice vector Gl , and so even for extremely 
strong density modulation across the layers of the stack, a frequency corresponding to 
a wavevector of at least ^  is required in the associated media to grow a stop-band 
(see figure 3.3) [18], [52].
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Figure 3.3: Wavevector diagram of anti-plane waves in a multilayer stack which is 
periodic over two layers that have similar elastic properties. For sufficiently strong 
contrast in elastic properties, stop-bands will develop at the Bragg condition separated 
by the reciprocal lattice vector Gl • The periodic nature of the system is evident 
along the y-axis, while the mirror symmetry in the y-axis demonstrates equivalent ±/3 
propagation.
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Formulating the Transfer M atrix

The transfer matrix is a useful tool in relating the field at any particular interface 
within a stratified composite to the field at any other interface or horizon within the 
structure. This is achieved through satisfying the boundary conditions at each interface. 
The technique has been applied to systems incorporating EM [18], [19], [20] and elastic 
waves [21], [22], [23], [24] in generating wavevector diagrams, dispersion diagrams and 
band edge plots (see chapters 4, 5, 6) and is further applied here in developing the 
understanding of elastic wave propagation in layered systems.

For a stack composed of elastic layers which are welded, the boundary conditions simply 
require the conservation of particle displacement (kinematic boundary condition) and 
stress tensor components normal to the interface (dynamic boundary condition). In this 
way the displacement of the wave can be mapped through the stack by analysing the 
displacement and stress components at each interface. Thus, the so-called displacement- 
stress vector at the beginning of the stack can be related to the displacement-stress 
vector at any interface.

The transfer matrix method is a special case of the eigenvalue problem where for some 
matrix A, eigenmode u  and eigenvalue I, the equation,

A u =  lu  (3-11)

can be written. Now in considering the propagation of an elastic wave through the 
periodic stack, one must consider an eigenmode or simply a mode. Thus, following the 
application of the transfer matrix to a mode at some position within a particular unit 
cell of the stack, equation 3.11 requires the modulus of the eigenvalue to be unity if 
the same mode is to exist at an equivalent position in a neighbouring unit cell. With 
reference to 3.7 and without loss of generality, the eigenvalues can be expressed as 
exp(±ikyA) [18].

Since the stack is periodic in the y-direction, a translation in either the positive or 
negative y-directions is equivalent to two Bloch waves, which differ only in the sign of 
the wavevector. Therefore, the transfer matrix as applied to a given mode will produce 
two eigenvalues corresponding to the forward and backward propagating waves and so 
will be the reciprocal of each other. It can be shown that if the product of eigenvalues 
of a given matrix is 1 then the determinant of the matrix must be one also. In short, 
for the propagation of a mode the transfer matrix must be unimodular. (In fact, the 
transfer matrix is a particular type of matrix - the Symplectic matrix - for which the
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eigenvalues occur in pairs that are the reciprocal of one another).

3.2 .1  A n ti-P la n e  P olarised  W aves

As previously stated in section 2.3, the displacement of an anti-plane wave is given by

uap = ( ^ - ^ ) fc <3-12> 

and the only stress tensor component which requires conserving at the interface is,

dUz , ^
T23 =  A*-s—• (3.13)oy

The anti-plane wave in layer j  (7=1,2) of period N  is described by the shear potential, 
which is composed of the incident component and the component reflected from the 
interface [39]. Thus, in satisfying the boundary conditions, solutions to equation 2.24 
in layer j  of period N  are found to have the form,

*l>f = (V>Aj cos\pSj(y  -  y f )] +  i ’Bj sin\psj(y -  y f ) ] )  exp -i(/3x  -  u>t) (3.14)

where y f  represents the value of y  at the beginning of the j th layer of period N , ipAj 
and ipBj are arbitrary complex coefficients and psj  the shear wavevector component 
normal to the interface in layer j .  The use of trigonometric functions as opposed to 
exponential solutions is preferred since the former allow for an easier identification of 
the symmetric and antisymmetric modes (see section 6.1.2).

From equation 3.12, the anti-plane wave displacement in layer j  of period N  is given 
by,

U?j =  ipAj ( - i f i COS\pSj(y  -  y f )] +  PSJ  sin\ p S j ( y  -  y f ) f j  exp -i{(3x -  u t)+  

i>Bj (-* /?sin\pSj(y  -  y?)} -  psj  cos\pSj(y  -  y f ) ])  exp -i{(3x -  wt) (3.15)

and T23 in layer j  of period N  is given by,
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r23 ,j = ^AjPj [ifipsj sm\pSj(y -  y f )] +  p2Sj cos \pSj(y  -  y f )]] exp -i{(3x -  ut)+

'4’BjPj [-ifipsj cos\pS j(y -  y f )] +  p2Sj sin\pSj(y -  y f )]] exp -i((3x -  ut)  (3.16)

where pj is the shear modulus in layer j .

The matrix propagator for the entire period, i.e. the relation between the displacement- 
stress vector at the beginning of layer j  in period N  to the displacement-stress vector 
at the equivalent position in layer N  +  1 [18], [19], is determined by the product of 
matrices M j+i.M j =  MpP, where Mj represents the matrix propagator across layer j  
of the period etc. The elements of M jp are given below in matrix 3.17.

C O s f d i O o i  ^ C O s f d o B e o ' l  -  a i n ( d i P s i ) s i n ( d 2 p S 2 ) e i n ( d l P S i )  c o s ( d 2 p S 2 )  , c o s ( d i p S i )  s i n ^ P s a j  \
V i r & l j  \  i f b Z )  P S 2 H 2  P S l P l  . P S  2M 3 j

-cos{dipsi)cos(d2ps2)psiPi cos(dips l) cos(d2pS2) -  8in(dlPsp0^ 8(d2PS?l J '
(3.17)

Thus,

, v N + l  ,  . N

( Uz ) = M p P ( ] . (3.18)
V t 23 J  j  V r23 J  j

The unimodular property of the matrix propagator is exploited in analysing the prop­
agation characteristics of the waves in question, in this case the anti-plane waves. 
Referring to equation 3.8 and 3.18, it follows that for the propagation of a mode, i.e. 
a Bloch wave,

[ c  =exp(ifcU)( S ) ,  (3'19)

where A, B, C  and D  represent those elements of MpP (equation 3.17) and kgy is 
the Bloch wavevector of the S waves. The phase factor, exp(ikgyA), is nothing more 
than an eigenvalue of the matrix propagator MpP and so the dispersion relation for 
anti-plane waves is obtained when the following condition is satisfied,
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det ^MpP — I exp(ikgyA) ) =  0, (3.20)

where I is a 2x2 identity matrix.

The unimodular property of the matrix propagator ensures that the product of eigen­
values is 1. Therefore, the eigenvalues of MpP will be the reciprocal of each other and 
can be written in general terms as,

exp(±ifcgyA) =  ^ (A  +  D) ±  ^ ^ (A  +  D)

In solving equation 3.20, the relation between u, (3 and kgy is found to be,

k%y = i  arccos Q (A  +  D)^j . (3.22)

Regimes where | ̂  (A  +  D) \ < 1 correspond to real kgy and thus to propagating Bloch 
waves. However, when \^(A  +  D)\ > 1, the Bloch wavevector kgy =  J  +  ^Sy>  
have an imaginary component kisy, and so the Bloch wave will be evanescent. This 
condition relates to the so-called forbidden bands of the periodic medium, the edges 
of which are located at positions determined when \^{A +  D)\ = 1 [18]. Given this 
relationship (equation 3.22) between w, (3 and kgy, wavevector diagrams, dispersion 
curves and band edge diagrams can be explored.

3.2 .2  In -P lan e  P olarised  W aves

As before, the L and S potentials must satisfy the respective wave equation in each
layer of the stack. In satisfying the wave equations 2.23 and 2.24, the L potential in
layer j  is found to have the form,

$  = [<f>Aj cos(pLj(y -  $ ) )  +  (f)Bj sin(pLj(y -  t / f ))] exp -i{(3x -  ut)  (3.23)

and the S potential,

(3.21)
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^Zj =  bpAj COS(pSj(y -  y f ) )  + i)Bj sin{pSj(y -  yf))]  exp -i((3x -  ut)  (3.24)

where pLj represents the L wavevector component normal to the interface in layer j , 
and (f>Aj and (f>Bj are arbitrary complex coefficients of the L waves within layer j .  This 
situation is complicated by the coupling of the two polarisation states at the interfaces 
between the layers 1 and 2. The total displacement of the medium in layer j  is given 
by,

“ip- ( f < 3!5>

and the stress components which require conserving at the interface in layer j  are,

fdUyj  dUxj \
T = «  U r + - w )

(3.26)

and

T22J =  + (A, +  2 ( 3 . 2 7 )

Thus, it is obvious for this system four boundary conditions need satisfying which 
indicates that the matrix propagator will involve sixteen terms as compared to the 
previous case of four [39]. It is also evident that neither the L nor the SV wave excites 
a tensor component in the ^-direction and so no SH component will be produced.

Upon splitting 3.25 into its constituent x  and ^-components, the ^-displacement in 
layer j  of period N  of the stack can be written as,

uxj = COS {pLj(y -  y f ) )  -  i p f o j  sin {pLj(y -  y f ) )

-P Sj^A j sin (pSj(y ~  y f ) )  +  PSji’Bj COS (pSj(y -  yf))]  exp -i((3x -  u>t). (3.28)

Similarly, for the y-component and the two stress components, it is found that
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Uyj  =  [~PLj<f>Aj s i n (p L j ( y  -  y f ) )  +  p Lj<t>Bj c o s (p L j ( y  -  y f ) )

+ i ( 3 il>Aj c o s  (pSj(y ~  y f ) )  +  ifiipBj s i n  (pSj(y ~  yf))]  e x p  - i ( ( 3x  -  u>t), ( 3 .2 9 )

r 2i ,j = [ZiPpLjVj^Aj sin (pLj(y -  y f ) )  -  2 iPpLjPj<}>Bj cos (pLj(y -  y f ) )

H P 2-P sfiP j^A j  cos (pSj (y -  y f ) )  +  (/32 -Ps f ^ j i pBj  sm(pSj(y -  yf ))]  exp -i((3x -  u t)
(3.30)

and

r22,j = KP2 -  Ps f Pj ^Aj  cos (pLj{y -  y f ) )  + (p2 -  p2Sj)tij<f>Bj S in  (pLj(y -  y f ) )

-2 ip p Sjnj '4)Aj  sin (pSj (y -  y f ) )  +  +2 iPpSj^ B j  cos (pSj(y ~  yf ))]  exp - i(P x  -  u t).
(3.31)

In formulating the matrix propagator for the coupled system, it is found that the matrix 
is most useful if the displacement-stress vector is conserved across each layer of the stack 
in the format, (UxUyT2 iT2 2 )J , where T  indicates the transpose operation. Whilst the 
symmetry of the elements in the off diagonal is evident in the matrix propagator for 
each individual layer, the symmetry in the matrix propagator for the whole period is 
only obtained at normal incidence, P = 0. However, the determinant of the matrix 
across the period is unity and so the analysis of the coupled waves proceeds in a similar 
manner to anti-plane waves.

Since the determinant of the matrix propagator for coupled waves is 1, the product of 
eigenvalues for the matrix propagator will be 1 also. However, for coupled waves the ma­
trix propagator will produce four eigenvalues which can be expressed as exp± (ik^yA) 
and exp ±(ikgy), where k°Ly and k$y can be considered to be the Bloch wavevector of 
the L and S waves, respectively. Thus, proceeding in a similar manner to that described 
in the previous section, the dispersion relation for coupled waves is determined when,

det |M p  — Ie x p ± ( i^ L = 0, (3.32)

where I is a 4x4 identity matrix, and M p is the matrix propagator for coupled waves, 
the elements of which are given in appendix A. Therefore, wavevector diagrams, dis-
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persion curves and band edge plots for coupled L and S waves can be generated using 
equation 3.32.

3.3 Norm alised Param eters

In modelling elastic waves in a multilayer stack, it is convenient to use a set of nor­
malised parameters. In specifying A, cli and p\ as characteristic of the length, speed (in 
medium 1) and mass (density per unit volume of medium 1) respectively, any physical 
property of the stack can expressed through various combinations of these parameters.

The normalised parameters include a normalised frequency v, a set of normalised 
wavevectors, k, b and q, a relative layer thickness t\, a density ratio pr, and a set 
of elastic indexes, riL2,nsi and ns 2 as defined below.

vcri K b q 
U, = — ’k = A ’P = A ’P = A

,  di d2 p2
h  =  — , { i  - h )  =  — , p r  =  —  

A A pi
(3.33)

CL2 C s \  CS2
riL2 =  — = — ,ns2 =  —

c l i  c l i  c l i

3.4 The Scattering M atrix

The scattering matrix relates the waves incident from infinity on a scattering system 
to the waves going away to infinity. The elements of the scattering matrix have a 
particular meaning depending on the type of wave incident upon and departing from 
the interface and include the reflection and transmission coefficients [39]. In calculating 
these coefficients for a multilayer stack (or any other scattering system), it is sufficient 
to consider the system as a “black box”, which is only characterised by its matrix 
propagator M, since the latter is easily related to the scattering matrix.

If one considers the situation depicted in figure 3.4, with the waves incident from 
infinity upon the stack as represented through subscript a, and those propagating 
toward infinity through subscript 6, then the anti-plane wave field components across
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4 -r

Figure 3.4: Schematic illustration of the notation used in formulating the scattering 
matrix. Here the multilayer stack is considered as a black box.

the stack from period 1 to period N , can be written as,

i ( r f ) - Mi(S)  (3M )

where matrix L relates the potentials to the physical displacements and stresses.

Now, the scattering matrix, S has the relation [21]

=  s  ™ (3.35)

and so expanding and re-grouping the terms in equation 3.34 in such a way as to 
construct equation 3.35, it is found that,

Nr( 2 ) - " r ( 5
(3.36)

Here,

-h \2  1N*p =
—hoo 0

;N ?P =  ( . ) (3.37)

where hij is element (i , j ) of the matrix H = L 1.M.L. Similarly, for the in-plane 
polarised waves, it is found that

36



N ?

4>l  ̂

\ 1?  )

n ? (3.38)

where,

N jf

- h u 1 —h i 4 0 ^ < h u 0 h \3 0 >

—h  22 0 - / l 24 0 ;Nj.p = h  21 -1 h>23 0
—^32 0 “ ^34 1 ' a

h*3 i 0 h*33 0
—h ±2 0 - /1 4 4 \  /&41 0 h 43 - 1 /

(3.39)

For both the anti-plane and in-plane polarised waves, the scattering matrix is given by 
[39],

S =  (Nb)-1 .N (3.40)

where N  relates to the anti-plane or in-plane polarised waves.

3 .4.1 A m p litu d e  S c a tte r in g  C oeffic ien ts

The scattering matrix obtained in the previous section provides a collective account 
of all the reflection and transmission coefficients of the physical displacements of the 
elastic waves. The coefficients take the same form as that for the potentials but scale 
differently. The magnitude of the L wave in layer j  is given by \ULj\ =  kLj<t>j? and 
similarly, that for the S wave is \Usj\ =  ksjipj (see equations 2.19 and 2.20). The 
scattering matrix for the amplitudes of in-plane waves (S^) can be written explicitly 
in terms of the scattering matrix for the potentials and this is shown here to illustrate 
the scaling factors involved in this transformation.

S 'l

Vll

l&N

I fc  J .  J  I rp
T W l r LL

V LL
¥ & VsL

J5 3 L  'Wsu+i)\TsS
V ss

(3.41)
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V  and T  are the reflection and transmission coefficients of the potentials respectively, 
such that Vls  corresponds to the reflection of an L wave into an S wave in layer j  and 
T sl  corresponds to the excitation of an L wave in medium j  from an S wave incident 
in layer (j +  1); the tilde denotes incidence from layer (j +  1) [39],

3 .4 .2  S ca tter in g  C oefficients o f  E nergy

The energy flow associated with an elastic wave was shown in section 2.4 to be depen­
dant on the velocity vector of the elastic wave and the stress tensor. In considering the 
re-distribution of energy associated with an elastic wave that impinges upon a scatter­
ing system, the detail of the interaction is obtained through the consideration of the 
energy flow normal to the interfaces.

Now, if we are to make use of the matrix propagator, the scattering matrix for the 
power flow must relate to linear potentials. This distinction is made since the power 
associated with a given elastic wave is, of course, related to the square modulus of the 
respective potential [39], [48]. However, the matrix propagator does not operate on 
squared potentials. Initially therefore, the analysis proceeds with the consideration of 
the square root of power.

The “root power” for L and S waves incident upon a scattering system (subscript a) is 
given below in terms of the respective potentials,

( ^ \  

v w
V W  /
•/K

0 
0 
0

0

(w/X2PL2fc|2)“
0
0

0*>/xiPSifc|i)2
(wp2PS2fc|2)2 J

R .
(3.42)

Similarly, for waves departing the scattering system, the relevant relationship between 
“root power” and potential is obtained by replacing a for b in equation 3.42. Thus, 
for in-plane polarised waves incident upon a scattering system, characterised only by 
its scattering matrix S (which is itself derived from the matrix propagator), the “root 
power” distribution through the system can be written as,

(V P^) =  (Rb)~1 .S.R a.V P l.

Vs*

(3.43)
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r p

The actual power departing the system Pb, is obtained by multiplying >/Pb by \/P b  5 
and so the actual reflectance and transmittance coefficients are revealed through the 
matrix Sp which is given below.

Pb =  ( V P l ) T . ( V s r f . V s r . y P l  (3.44)
s p

The above equation is, of course, nothing more than a statement of the conservation 
of energy and so we can write,

(SP)T.SP =  I. (3.45)
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Chapter 4

The W avevector Diagram

Chapter 4 introduces the concept of the wavevector diagram, which is used to illustrate 
the spatial dispersion of elastic waves in ID systems.

The wavevector diagrams showing the propagation characteristics of anti-plane and 
in-plane polarised elastic waves in a periodic multilayer stack having a unit cell incor­
porating a type I interface (i.e. c n  > cl2 > CS1 > C52) are shown in figures 4.1-4.4. 
The circular construction lines (described in section 2.3.2) of the figures are included for 
guidance and to contrast elastic wave propagation in the multilayer stack with elastic 
wave propagation in bulk media.

The analysis of this type of interface has been arbitrarily chosen. It is to be understood 
that the generation of wavevector diagrams for multilayer stacks incorporating a type 
II or type III interface can be obtained in an identical manner to the following.

4.1 A nti-Plane Polarised Waves

Anti-plane polarised wave propagation in a multilayer stack is shown in figure 4.1 as 
a function of increasing wave frequency. Each plot is constructed from equation 3.20, 
which expresses the eigenvalues of the transfer matrix for anti-plane waves in terms of 
an exponential function of the Bloch wavevector.

The eigenvalues of the transfer matrix are functions of frequency (a;) and wavevector 
for the S (ks) waves in each layer of the unit cell. By choosing an operating frequency, 
and fixing the phase velocity for the waves in each layer of the unit cell so that they
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relate to the desired materials, the plot can be constructed by varying the variable 
/3 and solving the resulting equation for real valued Bloch wavevectors. As with any 
computer generated result, the term “real valued” will be a relative value; the Bloch 
wavevector will typically always have an imaginary component. Therefore, for the 
purposes of defining a real valued wavevector, the solutions of equation 3.20 which had 
an imaginary component of magnitude < 10-10 were taken as being real.

For the system shown in figure 4.1, the density contrast between the layers was ar­
bitrarily chosen to be pR = 0.898 and the relative layer thickness was chosen to be 
t\ = 0.59. It has been shown by Boumaiza [53] that porous silicon films can be grown 
having a periodic density modulation. In the circumstances, multilayer stacks formed 
of porous silicon having a periodic variation in porosity seem an attractive material 
in which to test the underlying theory of elastic waves in periodic composites since a 
large, tailored variation in density contrast is possible.

The speed of the S waves in each layer of the unit cell was expressed using elastic 
indexes (7251 =  1.75, ns 2 =  2.0) in accordance with the relations shown in equation 
3.33. The reference speed was taken to be the speed of L waves in bulk silica (5960m/s) 
since photonic crystal fibre is manufactured using silica, and it is photonic crystal fibre 
which forms the basis of part II of this thesis. Accordingly, layer 1 of the unit cell was 
assumed to be silica and the density and acoustic phase velocities of the waves in layer 
2 were varied in an attempt to understand the effect of unit cell make-up on elastic 
wave propagation.

Referring to figure 4.1, for frequencies which create wavevectors of magnitude less 
than ^  (as seen in figure 4.1a), no stop-bands develop and the propagation is similar 
to propagation in bulk media. In this regime the wavelengths of the elastic waves are 
much longer than the thickness of either layer of the unit cell and accordingly, the waves 
see an effective medium with mechanical properties intermediate to the properties of 
the separate layers of the unit cell. However, as seen in figure 4.1a, the propagation 
demonstrates a small amount of anisotropy, as revealed through the slightly elongate 
central region [54].

As the frequency is increased, the waves propagating in the first Brillouin zone develop 
into adjacent zones and vice versa, with stop-bands developing at the Brillouin zone 
boundary \ky\ = J ,  due to the Bragg condition [45], [52]. As the frequency is further 
increased, stop-bands also begin to develop at the zone centre as shown in figure 4.1e. 
In all cases the stop-bands are separated along the ^/-direction by the reciprocal lattice 
vector.

The group velocity of the waves is given by Vfcu;(k) and points in the direction of

41



increasing wave frequency. At the stop-band edge the group velocity points in the 
direction of (3 and so the energy flow is along the layers of the unit cell.

The width of the stop-band is largely dependent on the density contrast between the 
two media of the unit cell, although the relative thickness of the layers of the unit cell 
also has an influence (see [18] for the optical analogue). As t\ —> 0 the waves begin 
to take on characteristics indicative of medium 2 and similarly as t\  —► 1 the stack 
essentially becomes a homogeneous, isotropic body of medium 1. These extreme cases 
correspond the propagation of elastic waves in effectively a single medium in which 
the periodicity of the system becomes lost. Conversely, values of t\ intermediate these 
extremes will produce a periodic system and so will influence the propagation of elastic 
waves.

The effect of density contrast on stop-band width is shown in figure 4.2 for decreasing 
values of pR = &. As the density contrast increases, the stop-band width is seen 
to increase whereupon at a given contrast ratio {pR < 0.5) and for a given set of 
operating conditions, the energy flow associated with the elastic waves is essentially 
along the layers of the system with little or no energy passing through the system.

4.2 In-Plane Polarised Waves

The wavevector diagram illustrating the spatial dispersion of in-plane polarised coupled 
waves in a multilayer stack having an identical composition to that analysed in the 
previous section, is illustrated in figure 4.3 as a function of increasing wave frequency. 
This diagram was constructed in an analogous manner to that for anti-plane polarised 
waves except in this case the eigenvalues of the transfer matrix for in-plane polarised 
waves were used, namely equation 3.32. In addition, the elastic indexes for the L waves 
were chosen to be n^i =  1.0 and t i l2 = 1-25.

Referring to figure 4.3, stop-bands for in-plane polarised waves can be seen to develop 
at the Brillouin zone boundary in a similar fashion to anti-plane polarised waves. The 
coupled waves differ from the anti-plane waves though in that stop-bands also develop 
in regions where the L and S circles intersect - figure 4.3c. These stop-bands are 
analogous to those at the Brillouin zone boundary and are also separated along the 
y-axis by the reciprocal lattice vector Gl - However, these “coupled wave” stop-bands 
appear to differ from those at the Brillouin zone boundary in that as the wave frequency 
increases, their width decreases to zero, as shown in figures 4.3c-e.

The effect of density contrast on the stop-band width is also shown for coupled waves
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(e)

Figure 4.1: Wavevector diagram for anti-plane polarised waves propagating in a mul­
tilayer stack defined by pr  = 0.898, t\ =  0.59. The spatial dispersion (bold line) and 
stop-band development are shown for increasing frequency (normalised); (a) v =  1, (b) 
v = 1.7, (c) v = 2.4, (d) v — 3.4, (e) v = 4.2.
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Figure 4.2: Wavevector diagram for anti-plane polarised waves propagating in a multi­
layer stack, defined by t \  = 0.59, with a normalised frequency of v  = 2.4. The spatial 
dispersion (bold line) and stop-band development are shown for decreasing density ratio 
PR\ (a) p r  = 0.8, (b) p R  = 0.6, (c) p R  = 0.5, (d) p R  =  0.4, ( e ) p R  = 0.2.
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in figure 4.4. As the density contrast is increased, the stop-band width is also found to 
increase, similar to the anti-plane waves. Moreover, the coupled L and S waves begin to 
propagate in regions beyond the scope of conventional L and S waves. See figures 4.4c 
- 4.4e for example; the S waves of figure 4.4e propagate in regions of k-space outside 
the boundary of the S circles. For sufficiently large density contrast, the S waves that 
are localised in alternate layers of the multilayer stack propagate along the layers in 
a manner similar to flexural waves on a free plate (analogous to waves on a skipping 
rope - see section 11.1) with a phase velocity that is less than the phase velocity of S 
waves in bulk media and thus have a larger wavevector.
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Figure 4.3: Wavevector diagram for in-plane polarised waves propagating in a multi­
layer stack defined by pr  =  0.898 and t\ = 0.59. The spatial dispersion (bold line) and 
stop-band development are shown for increasing frequency (normalised); (a) v = 1.5, 
(b) v = 1.8, (c) v  =  2.3, (d) v  =  2.8, (e) v =  3.1. The first Brillouin zone is shown 
bounded by dashed lines.
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Figure 4.4: Wavevector diagram for in-plane polarised waves propagating in a multi­
layer stack, defined by t\ = 0.59, with a normalised frequency of v =  2.3. The spatial 
dispersion (bold line) and stop-band development are shown for decreasing density ra­
tio pR; (a) pR =  0.8, (b) pR = 0.6, (c) pR = 0.4, (d) pR = 0.35, (e)pR = 0.2. The first 
Brillouin zone is shown bounded by dashed lines.
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Chapter 5

Brillouin Diagrams for Norm al 
and Oblique Incidence

Chapter 5 presents the dispersion of elastic waves in various multilayer stacks and 
highlights the coupled longitudinal and shear stop-bands.

5.1 A nti-Plane Polarised Waves

Brillouin diagrams, or dispersion curves, are a plot of frequency against allowed real 
wavevectors. The slope (<duj/dk) of the plot at any point along the dispersion curve 
gives the group velocity of the wave for that particular frequency and wavevector.

The typical dispersion of anti-plane polarised elastic waves propagating in a direction 
normal to the interfaces (/?=0) in a multilayer stack, is shown in figure 5.1 [25]. The 
composition of the multilayer stack is the same as that studied in the previous chapter, 
however, it is re-stated here for clarification: pn = 0.898, t\  =  0.59, n n  =  1, nsi =  
1.75, nL2 =  1.25 and ns2 =  2.0.

The dispersion diagrams were again constructed using equation 3.20, however this time, 
the ft value was fixed and real valued solutions for the Bloch wavevector were calculated 
as the frequency tu, was varied.

As can be seen in figure 5.1, the group velocity of the anti-plane waves approaches 
zero at the band edges and the band centre, which is consistent with the implication 
that phonons cannot travel and therefore transport energy in the frequency range of
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Figure 5.1: Typical dispersion curve of anti-plane polarised waves in a multilayer stack 
propagating at normal incidence (b =  0) to the interfaces. The first Brillouin zone is 
shown bounded by the dashed lines.

a phononic stop-band. At the band edge, the anti-plane polarised waves do not travel 
through the multilayer stack as the wavevector becomes imaginary. In this case the 
waves are totally reflected.

More generally, the dispersion of anti-plane polarised waves propagating in the mul­
tilayer stack at some angle to the interface (i.e. finite (3 value) is shown in figure 5.2 
and it is seen that stop-bands open up at the band edge and band centre from zero 
frequency.

The dispersion curves shown in figures 5.1 and 5.2 are characteristic of the folded variety 
[50], whereby wavevector values greater than | | =  1 are shown in the first Brillouin
zone. This illustration is possible due the periodic nature of the multilayer stack and 
is of course a consequence of Bloch’s theorem as discussed in section 3.2.

The number of modes per unit frequency range supported by the system is found to 
have a reciprocal relation with the group velocity. Since the group velocity varies across 
the Brillouin zone, the density of states, or modes will vary also and at the Brillouin 
zone boundary where the group velocity becomes zero, the density of states become 
re-distributed into regions where the density of states is very large. These regions are 
separated by a frequency interval, namely the stop-band, in which the density of states 
is zero and thus relate to a range of frequencies for elastic waves (propagating at a 
given (3 value) which are not supported by the system.
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Figure 5.2: Dispersion curve of anti-plane polarised waves in a multilayer stack prop­
agating at a finite (3 value, b = 1.3. The first Brillouin zone is shown bounded by the 
dashed lines.

Anti-plane polarised elastic waves present similar dispersion properties to TE and TM 
modes in a multilayer stack [18]. Significant differences are seen however with in-plane 
polarised elastic waves, which are coupled for finite (3 values and therefore complicate 
the dispersion, as shown in the next section.

5.2 In-Plane Polarised Waves

Figure 5.3a shows the dispersion of in-plane polarised elastic waves propagating at 
normal incidence to the interfaces of a multilayer stack [25] [26], the composition of 
which is that defined in the previous section. The dispersion diagrams were constructed 
using equation 3.32 by fixing (3 and solving for the Bloch wavevector as the frequency 
is varied, as discussed above. The linear red and blue lines of figure 5.3 correspond to 
the propagation of L and S waves respectively, in an effective medium that has elastic 
properties intermediate to that of layers 1 and 2 of the unit cell. The intersection 
of these construction lines determine the centre position of the stop-bands and it can 
be seen that where the L line intersects the S line coupled stop-bands develop. The 
coupled nature of the L and S waves however, is not evident on this plot as all elastic 
waves are uncoupled at normal incidence and since the system is isotropic, the SH 
and SV modes are degenerate at normal incidence. Moreover, the stop-bands at the
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Brillouin zone boundaries of figure 5.3a are exclusive to the L and S waves, separately.

Figure 5.3b on the other hand, illustrates the coupling of L and SV waves which takes 
place at a finite (3 value (b=0.5). It can be seen that the group velocity goes to zero 
in places other than integer values of ky = J .  The high and low frequency sides 
of these coupled stop-bands do not occur at the same value of wavevector, despite 
Bragg’s condition being satisfied. At these points, shown magnified in figure 5.4, the 
net transport of energy associated with the L (SV) wave of the coupled pair at the low 
frequency side of the stop-band is zero, however, the SV (L) wave at the high frequency 
side of the stop-band, has a finite group velocity and can therefore transport energy.
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Figure 5.3: Typical dispersion curve of in-plane polarised waves in a multilayer stack 
propagating at (a) normal incidence (b = 0) to the interfaces and (b) at finite (3 value, 
b = 0.5. The first Brillouin zone is shown bounded by the dashed lines. The red and 
blue lines correspond to the dispersion of L and S waves respectively, propagating in 
an effective solid that has elastic properties intermediate to that of the properties of 
layers 1 and 2 of the period.
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Figure 5.4: Magnification of the dispersion of in-plane polarised waves at a coupling 
point. The dispersion is shown for waves propagating at finite (3 value, b = 0.5, in the 
multilayer stack. The red and blue lines correspond to the L and S waves respectively, 
propagating in an effective solid that has elastic properties intermediate to that of the 
properties of layers 1 and 2 of the period.
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Chapter 6

Band Edge Diagrams

Chapter 6 is concerned with the properties of stop-bands and the factors affecting them. 
The dispersion of coupled elastic waves is also presented for the interesting case of a 
plate in a vacuum.

Band edge diagrams map the position of the stop-band edges in frequency as the 
incident angle (i.e. the (3 value) is varied (see Russell et. al [18] for the band edge 
diagram for the optical modes of a periodic multilayer stack). This is useful since it 
allows one to map the propagation characteristics of the elastic waves in regions outside 
of the stop-bands. The diagram is a plot of frequency (a;) against (3 and the stop-bands 
are located at points where the moduli of the eigenvalues of the appropriate transfer 
matrix deviate simultaneously from unity, i.e. where the determinant of the transfer 
matrix is no longer 1.

The wavevector diagrams shown in chapter 4 illustrate the dispersion of elastic waves 
in a multilayer stack at a particular frequency (a;), as the incident angle (/?) is varied. 
Conversely, the dispersion diagrams shown in chapter 5 present the dispersion of elastic 
waves in the multilayer stack at a fixed incident angle {(3) as the frequency (a;) is varied. 
The band edge diagram however, combines these two dispersion presentations into a 
single diagram to describe the complete dispersion for elastic waves in the multilayer 
stack.
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Figure 6.1: Band edge diagram for anti-plane polarised waves in a multilayer stack 
(type I) defined by pR —0.898 and t \  = 0.59. The linear grey lines are representative of 
the phase velocity of S waves in medium 1 and 2 and the linear red line corresponds to 
the first order anti-reflection condition. Here t ia v  is the effective elastic index of the 
unit cell for anti-plane waves, defined as tiav = n s ih  +  ^ 52(1 — <i).

6 .1  A n t i-P la n e  P o la r is e d  W a v es

The band edge diagram mapping the position of the stop-bands for anti-plane polarised 
waves in a multilayer stack having a unit cell incorporating a type I interface, is shown 
in figure 6.1. The composition of the stack is the same as that analysed in chapters 4 
and 5 for comparison. The stop-bands are indicated by the shaded regions, in contrast 
to the unshaded regions in which the elastic waves can propagate. The slope of each 
linear grey line is proportional to the reciprocal of the relevant elastic index and is 
characteristic of the phase velocity of the elastic wave. For the stack in question, the 
steepest slope is representative of the phase velocity of anti-plane polarised waves in 
medium 1.

These so-called soundlines separate the band edge diagram into essentially three
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regimes of propagation, the first being one in which free propagation is hampered 
by the appearance of stop-bands and is defined by /3 < ^ - .  As the value of (3 increases 
beyond the anti-plane waves will become evanescent in medium 1 and medium 2 
will begin to support a micro-resonance. This regime is defined as ^  < (3 < ^  and 
is termed the band window region. Values of (3 > ^  define the third regime, coined 
“cut-ofi” and relates to the region in which the elastic waves are evanescent in both 
layers of the unit cell.

6.1.1 Anti-Reflect ion Conditions

When the round trip phase difference across the unit cell becomes equal to an integral 
number of 2n the Bragg condition is satisfied and it is this condition which seeds the 
development of a stop band. This round trip must take into account the phase change 
upon reflection at an interface as well as the total path difference. In opposition to this, 
when the total round trip phase difference across each layer of the unit cell is separately 
and concurrently an odd multiple of 7r, each layer will be anti-reflecting. Thus, when 
the Bragg condition for the unit cell coincides with an anti-reflection condition from 
each layer, the width of the stop band will be reduced to zero [47].

For anti-plane polarised waves the phase change upon reflection is either 0 or n de­
pending on whether the elastic wave is reflected from a medium which has a lower or 
greater density, respectively. However, since anti-plane waves reflected from the front 
and rear surface of any given layer within the multilayer stack always separately involve 
one soft and one hard reflection, the condition for anti-reflection and thus the positions 
of zero stop-band width are given by,

where mi +  m2 — m  with mi and m2 being integers satisfying the anti-reflection

PS\d\ PS2d>2 
mi m2

=  7r (6.1)

condition in layers 1 and 2 respectively, and m is the m th order Bragg condition.

Solving equation 6.1 with normalised units yields,

(6 .2)

and corresponds to an anti-reflection from each layer of the unit cell, with
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q = t\rri2
(6.3)

This reduction in stop-band width is shown in figure 6.1 with the linear red line. In 
places where the anti-reflection condition (mi =  m2 =  1) coincides with the stop­
band position, the width of the stop band is seen to be reduced to zero. The similar 
situation occurs when the stop-band position coincides with the Brewster like condition, 
as discussed in section 2.3.3. Thus for anti-plane waves, the opening of a stop-band 
can be destroyed by two mechanisms.

6.1.2 Guided M odes of a Low Density Layer

The band window region, as bounded by the linear grey lines of figure 6.1, allows 
the guidance of S waves in only one of the layers of the unit cell of the multilayer 
stack. In such circumstances, if the system is allowed to reach a steady state of elastic 
deformation, the S waves which are evanescent in alternate layers of the stack will 
tunnel to adjacent layers [55] in which the waves are real and will thus be guided.

The dispersion of anti-plane waves in a layer bonded onto a substrate has been be ob­
tained analytically by Love, whilst Lamb [56] has studied the characteristics of coupled 
L and S waves in a free plate (i.e. a plate in a vacuum). Brekhovskikh [57] derived 
the dispersion relation for elastic waves in laminar media through the consideration of 
the reflection coefficients at each interface within the laminate. This is a useful ap­
proach since neither the form of the field in adjacent layers nor the consideration of the 
boundary conditions are required. However, in formulating the dispersion of anti-plane 
waves here, it is thought more instructive to describe the form of the field in each layer 
of the laminate (in this case the multilayer stack) as this allows the modes to become 
separated according to their symmetry.

A good approximation to the dispersion of bound anti-plane waves in alternate layers 
of the multilayer stack, can be achieved through the consideration of bound anti-plane 
waves propagating in a low density layer of thickness d that is rigidly bonded between 
two semi-infinite media of higher density, as shown in figure 6.2. The form of the 
potentials describing the waves must cause the waves to decay outside of the layer 
and so for bound anti-plane waves the shear potential in the surrounding half-spaces 
(identified through subscript 2) can be written as,
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Figure 6 .2: Schematic illustration showing the orientation of the low density layer 
rigidly bonded between two media of greater density.

*2  =  [C  exp -(p 'S2y) +  £>exp (ps2y)J exp -i(/3x  (6.4)

v > 5  v < = r

which is seen to approach zero as y —► ± 00.

In writing the form of the evanescent waves as shown in equation 6.4, it should be noted 
that the wavevector component normal to the interface in the surrounding half-spaces 
has been made real in order to achieve the desired evanescence. The component normal 
to the interface has been re-defined as,

The form of the potential describing the propagation within the layer (identified through 
subscript 1) can be written in terms of trigonometric functions so that the symmetric 
and antisymmetric modes can be readily identified. Thus, for the region defined by 
\y\ < the shear potential becomes,

=  [Acos(psi?/) +  -Bsin(psi2/)] exp -i((3x -  u t). (6.6)

Now, in analysing the symmetric and antisymmetric modes of the layer, it is necessary 
to consider the symmetry of the displacement (i.e symmetry about the rr-axis, see figure 
6.3, which shows the surface displacement of a plate in a vacuum created by the passage
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Figure 6.3: Plot showing the surface displacement of a plate in a vacuum during the 
passage of (a) an anti-symmetric and (b) a symmetric mode of coupled L and S waves. 
The undisturbed plate is shown bounded by the solid grey lines.

of coupled L and S waves) and not the symmetry of the potentials. The displacement 
of anti-plane waves is derived from equation 2.29 and in considering the displacement 
associated with such waves within the layer, equation 2.29 reveals,

Uz = (-i/3A  -  p s iB )  cos (psiy) +  (psiA  -  i(3B) sin (p s iy ) . (6.7)
V V-------------------------------------'  ' ------------------------------------v-----------------------------------'

sym m etric component antisym m etric component

Similarly, for anti-plane waves decaying into the surrounding half-spaces, the displace­
ment is derived from equation 2.29 and can be shown to be of the form,

Uz = ( - i P - p 'S2)Cexp(p'S2y) + ( - iP  + p'S2)D exp -(p 'S2y ).  (6 .8)

The dispersion relation for bound anti-plane waves is governed by the boundary con­
ditions at the interface between the layer and surrounding half-spaces. As previously 
stated (section 2.3.1), the boundary conditions for two solid media which are bonded 
require the conservation of the normal component of stress tensor and the conservation 
of displacement. The stress profile T23 across the layer and in each half-space is given
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below.

t-23 =  PsiPi(ipA  +  p s iB ) sm(pSiy) +  psiP iipsiA  -  i(3B) cos{pS\y) (6.9)
’X...........■—................   I v

M<f

T23 = p's2 ^ { - i 0  ~  PS2 )C exp(p's2y) +p's2P2( -P s2 +  iP)Dexp -(p'S2y) ■ (6.10)Si. ^  S S ^ ✓
y<=Y y > i

The analysis is simplified if the symmetric and anti-symmetric modes are considered 
separately. This is achieved by imposing the conditions,

pS\A  =  i(3B

( - 0  ~ Ps2)C = (~iP +  p'S2)D  (6-11)

which removes the anti-symmetric component from the analysis, and

iP A  =  -p s iB

0iP + p's2)C={p'S2-iP)D (6.12)

which removes the symmetric component.

Upon satisfying the boundary conditions at y = and solving the relevant secular 
equation, the dispersion relation for the symmetric and anti-symmetric modes become, 
respectively,

ta a ( p s ^ )  = ! ^ k  (6.13)
V. 2 )  P1PS1 K '

t a n ( « = _ W * i .  ( 6 . 1 4 )

\  2 /  p2Ps2

The dispersion of these modes are shown in figure 6.4a for a layer/half-space density 
contrast identical to the density contrast of the layers of the multilayer stack analysed in
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figure 6.1, i.e pr = 0.898. The superposition of the band edge diagram of figure 6.1 with 
figure 6.4a is shown in figure 6.4b. The evolution of the first symmetric mode into the 
narrow white region is testament to the fact that as (3 increases the mode adopts more 
characteristics of wave propagation in a bulk medium which is that of the layer medium, 
and becomes more tightly bound within the layer. Although somewhat unclear from 
figure 6.4, it should be noted that the modal line representing the dispersion of the first 
symmetric mode, actually extends to u  = (3 =  0 - there is not cut-off frequency for the 
first symmetric mode [38].

6.2 In-Plane Polarised Waves

The band edge diagram for coupled L and S waves in a multilayer stack having the 
same characteristics as the multilayer stack used to construct figure 6.1, is shown in 
figure 6.5. In contrast with figure 6.1, figure 6.5 can be divided into essentially five 
propagation regimes, again by the series of soundlines. As the (3 value increases at a 
given operating frequency, the waves become localised according to their phase velocity 
with the slowest wave becoming localised last; all waves will be evanescent for (3 >

In considering the localisation and guidance of L and S waves in alternate layers of 
the multilayer stack it is useful to consider their simplified propagation in an infinite 
plate situated in a vacuum. Such a system provides a useful insight into their typical 
dispersion characteristics in the various propagation regions of figure 6.5, as discussed 
above.

The dispersion of coupled L and S waves in a plate has been previously calculated by 
Lamb [56]. For a plate orientated as shown in figure 6.6, the dispersion of the symmetric 
and antisymmetric modes can be obtained by satisfying the boundary conditions at the 
interface, which require the stress components to vanish at y =  ±?|. In this manner 
the dispersion associated with the symmetric modes can be shown to be,

ta n  ( Ef^ )  _  - i P 2VLPS (g  15j

and the dispersion of the anti-symmetric modes can be shown to be,
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Figure 6.4: (a) Plot showing the dispersion of bound symmetric (green line) and bound 
anti-symmetric (pink line) anti-plane polarised waves propagating in the low density 
layer of figure 6.2. (b) Band edge diagram of figure 6.1 superposed with the dispersion 
of the first symmetric mode.
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Figure 6.5: Band edge diagram for coupled waves. The soundlines are represented 
by the linear grey lines whilst the red line highlights the stop-bands which influence 
coupled L and S wave propagation at b — 0.8, as the frequency is varied.

t a n ( e ^ )  ^  

tan ( ^ )

The dispersion of these modes are shown in figure 6.7. It is noted that the dispersion 
curves for modes of the same family do not cross each other, though a curve for a 
symmetric (anti-symmetric) mode may cross a curve for an anti-symmetric (symmetric) 
mode. For the second symmetric mode it is seen (highlighted in figure 6 .8) that as (3 
increases from zero, the value of u  initially decreases; the group velocity (Vg = |^ )  is 
negative whilst the phase velocity is positive. Thus, the energy of the elastic waves is

d__

Figure 6 .6: Cross-sectional view of the infinite plate in a vacuum. The coupling of the 
L and S waves at the interface is seen to become complicated after only a few reflections 
from the upper and lower surface.
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Figure 6.7: Dispersion of symmetric (green lines) and anti-symmetric (pink lines) cou­
pled L and S modes of a plate in a vacuum. The grey lines are representative of the 
phase velocity of the L and S waves in a bulk medium of the plate material.

transported in a direction opposite to the direction in which the wave travels. This 
idea of “negative group velocity” has been previously studied by Mindlin [44], Meitzler 
[58] and Tolstoy et al. [59] to name but a notable few and experimentally confirmed 
by Holland [60], and is found to occur for both symmetric and anti-symmetric modes.

6.2.1 Anti-Reflect ion Conditions

The anti-reflection conditions discussed in section 6.1.1 are not representative of the 
complete set of anti-resonance conditions that can take place with coupled L and S 
waves. It has been determined during this study that in addition to the typical anti­
reflection process whereby a forward propagating and backward propagating wave can 
interfere destructively to produce little or no reflected wave, coupled in-plane waves
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Figure 6.8: Magnification of the second symmetric mode which demonstrates the so- 
called negative group velocity. The grey sound lines correspond to the L and S phase 
velocity in a bulk medium of the plate material.

also facilitate further anti-reflection processes which involve multiple passes within a 
given layer and which can involve both polarisation states of the coupled waves.

Equations 6.17-6.20 represent the four types of anti-reflections that can take place with 
in-plane polarised, coupled waves (normalised units are considered here):

PLl(Sl)tl _  PL2(S2)(1 ~  *i) _  ^  ^
7711 7712

PL1(S1)*1 _  PS2(L2)(1 -  *l) _  ^  /g  1 8 ^

771i 7712

PL1(S1)*1 _  (PL2 +PS2)(1 ~ * l) _  (PLl T PSl)t\ _  PL2(S2)(1 ~ * l) _
771i 27712 W ’ 27711 m2

[(27? +  1 ) p s i  +  (2£ +  1)p l i ]*i _  [(2a  +  1)P52 +  (2C + 1)PL2](1 ~ *i) _  ^ 2Qx
27711 27712

7711 +  7712 =  771 ; (»?, £, <*, C)e^ +

The first condition (equation 6.17) corresponds to the situation in which only L or S 
waves are anti-resonant in both layers separately, similar to anti-plane waves, whilst 
the second condition (equation 6.18) relates to anti-resonant L and S waves in alternate 
layers of the multilayer system.

The anti-reflection condition shown in equation 6.19 is an extension of those conditions 
expressed in equations 6.17 and 6.18. Equation 6.19 describes the situation in which 
one particular layer of the unit cell can support an anti-resonance involving a change of
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unit cell

Figure 6.9: Illustration of the anti-resonant path with 77 =  £ =  1 and £ =  a  = 0 for the 
coupled waves in the layers of the unit cell

polarisation in completing a round trip of that layer, with the adjacent layer supporting
an L or S wave anti-resonance only (as in equations 6.17 and 6.18).

The anti-resonant condition involving a change of polarisation in both layers of the
unit cell is given in equation 6.20. In addition however, equation 6.20 also makes the 
provision for L and S waves that make multiple passes within each layer of the unit cell 
in satisfying the anti-resonant condition.

For example, taking 77 =  £ =  1 and £ =  a  =  0 corresponds to the situation shown 
in figure 6.9, whereby the anti-reflection criterion in each layer is satisfied through 
performing two round trips of each layer, each involving a single change of polarisation.

These predictions are confirmed in figure 6.10, in which the frequency position of the 
stop band is mapped using t \  as the independent parameter. The diagram is con­
structed for in-plane waves incident with a normalised (3 value of 0.8 (which corre­
sponds to the red line in figure 6.5). The plot reveals a distinct beating pattern in the 
stop-bands as t\ is varied, with the nodal positions being predicted by the anti-resonant 
conditions of equations 6.17-6.20.
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Figure 6.10: Band edge diagram for coupled L and S waves at a fixed (3 value (6 =  0.8) 
in a stack defined as pr  =  0.698. The stop-bands are plotted as a function of the 
position of the interface in the unit cell.

The coupling between the L and S waves in figure 6.10 is weak since the waves are 
incident at near normal incidence (ft «  0). Consequently, the wider stop-bands are 
largely due to pure S and L waves. In fact, the majority of the stop-bands shown in 
figure 6.10 are due to S waves; the S waves have the largest wavevector and so become 
resonant first. The nodes identified through labels a , b and c correspond to a conversion 
resonance (r) = £ = £ = a  = 0 from equation 6.20) and since (3 «  0 the stop-band 
width is noticeably thinner than for the pure S anti-resonances.

6 .3  E la s t ic  W a v e  P r o p a g a t io n  - S u m m a ry

L and S wave stop-bands have been shown in chapters 4 and 5 to develop once a 
threshold frequency has been reached. Thereafter, the width of the stop-band will be 
determined largely by the density contrast between the layers and the relative layer 
thickness. In this chapter, anti-reflection conditions have been derived for coupled 
waves and these have been shown to cause the width of the stop-band to reduce. It is 
believed that the derivation of these conditions for coupled waves, wherein the waves 
can undergo multiple passes within each layer to generate an anti-resonance, is a new 
result.

Chapters 1-3 of Part I were provided to serve a general understanding of elastic wave
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propagation in singly periodic systems while chapters 4-6 illustrated their complex 
propagation. The experimental analysis of elastic wave propagation in doubly periodic 
systems is undertaken in Part II, whereby their propagation characteristics are inferred 
from light scattering measurements. More particularly, it is the intention of Part II 
of this thesis to develop the understanding of the influence of elastic wave guidance in 
photonic crystal fibre, on the optical modes propagating therein.
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Part II

Brillouin Scattering in Photonic
Crystal Fibre
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Chapter 7

Introduction and Literature 
R eview

Chapter 7 provides a general introduction to the interaction of elastic waves with light 
in 2D structures, in particular the photonic crystal fibre.

Brillouin scattering is the scattering of light by phonons. In optical media, light is scat­
tered by fluctuations in the dielectric constant. These can arise from static inclusions or 
impurities that scatter the light elastically with no frequency change (Rayleigh scatter­
ing), or dynamic fluctuations such as molecular vibrations and density variations. The 
thermally activated density variations [61] in fibres act as centres for the generation of 
light at different frequencies and can corrupt signals which rely on narrow bandwidth 
laser light [62]. In bulk media the magnitude of the scattered signal is found to be a 
function of the scattering angle, being zero in the forward direction and a maximum in 
the backward direction [63]. Optical fibres however, present a 2D confinement to the 
guided modes and so the scattered light or Stokes signal is restricted (at least in single 
mode optical fibres [64],[65]) to the backward propagating direction only.

Brillouin scattering is a non-linear effect and occurs at the lowest threshold power 
of all the non-linearities. Stimulated Brillouin scattering, or SBS, was first observed 
in conventional optical fibre by Ippen and Stolen [66] in 1972 and since then has re­
ceived much attention. Yeniay et al. [67] have experimentally studied the behaviour 
of Brillouin scattering in single mode fibres with different waveguide characteristics, 
in terms of the elastic modes. Yeniay used GeC>2 doped core fibres which facilitated 
total internal reflection of the elastic modes, whilst Shibata et al. [68] have studied the 
gain spectra for single mode fibres which had pure silica, Ge02 and P 2O5 doped cores, 
and thus different index profiles. The spectral shape of the gain spectra was found to
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be dependent on the waveguide structure, in particular the index profile, whilst the 
bandwidth was found to be dependent on the doping materials of the core.

Brillouin scattering can become stimulated in optical fibres at optical powers apparently 
lower than the predictions of conventional theory due to external feedback. This has 
been reported by Ddmmig [69] and Gaeta [70], and can lead to fibre based Brillouin 
lasers [72]. The external feedback can be provided in the form of a mirror system 
which encloses the optical fibre, or simply by the perpendicularly cleaved end facets of 
the fibre. In such cases the pump and Brillouin shifted light undergo multiple passes 
through the optical fibre which enhances the acoustooptic interaction and thus lowers 
the threshold power, and results in a Brillouin signal emanating from both ends of the 
fibre.

Since Brillouin scattering is inherently concerned with the interaction of light with 
elastic waves, it is no surprise that Brillouin scattering can also reveal information 
about the elastic modes of the structure. However, conventional single mode fibre does 
not provide the necessary waveguide characteristics to guide elastic waves and so it 
is inappropriate to speak of modes. In order to guide elastic waves in conventional 
fibre, the index contrast must be reversed as compared with the optical case. Shibata 
et al. [73] have studied the Brillouin gain spectra in specially prepared fibre that is 
capable of guiding elastic waves. The gain measurements were performed at 1286nm 
and 1550nm in GeC>2 doped core fibre with a pure silica cladding; several L modes 
were identified through analysing the phase velocity of the elastic waves. However, 
the optical modes involved in the scattering event were not guided in the core of the 
fibre by total internal reflection, but by reflection at the boundary between the fibre 
cladding and surrounding environment.

In this part of the thesis, the optical fibre in question is manufactured from pure silica 
with an index contrast between core and cladding that is suited for the guidance of 
optical modes by total internal reflection. However, the photonic crystal fibre also 
permits a further guidance mechanism which allows for the simultaneous guidance of 
elastic waves in the same core region. In such a waveguide, the acoustooptic overlap is 
expected to be significant and as such, it is expected that this will lead to departures 
from the conventional understanding of SBS theory which will hopefully reveal new 
information as to the guidance of the elastic waves.
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Chapter 8

A n Overview of Photonic Crystal 
Fibre

Chapter 8 provides an account, albeit succinct, of the photonic crystal fibre and alludes 
to alternative guidance mechanisms and properties thereof.

Today, optical fibres play a role in almost everyone’s life. At first sight these structures 
seem nothing more than hair-thin strands of glass, yet are capable of conveying data 
signals on a global scale at speeds comparable to the speed of light.

The science behind the success of conventional fibres has remained unchanged since 
the early 1980’s and is based on the concept of total internal reflection. Conventional 
fibres are formed from two types of glass, which between them constitute the central 
core region and the cladding region which surrounds the core as shown in figure 8.1. 
The core and cladding have different refractive indicies with the core having a higher 
index than the cladding. This mismatch in index is achieved by doping the core with 
typically germanium oxide and permits the incidence of rays of light at shallow enough 
angles upon the core-cladding interface to be totally reflected and therefore confined 
within the core region [74].

In contrast to conventional optical fibres, photonic crystal fibres (PCF) use just one 
material, typically fused silica, and comprises an array of microscopic air holes running 
along its length. The structure is such that when the cleaved end is viewed under a 
microscope the arrangement of air holes is reminiscent of a crystal lattice. The light 
is guided in the core of the fibre, which either comprises a missing capillary (hollow 
core) [75], [76] or a silica rod (solid core) [77], [78], by the honeycomb cladding, which 
strongly scatters the light, blocking its escape from the core.
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Figure 8.1: A cross-sectional view through the (a) short and (b) long axis of conven­
tional optical fibre. The the refractive index profile along the short axis is shown in
(c).

The air holes running along the length of the fibre alter the propagation properties of 
light in remarkable ways, owing as much to the average index of the cladding as to the 
arrangement of air holes. Figure 8.2 shows the far field pattern of red light exiting a 
solid core PCF. The central core is clearly visible along with the surrounding array of 
air holes. The fibre, which is shown at the top of the figure, is lossy at this wavelength 
and thus the red light is seen to spread out from the core into the surrounding cladding.

The properties of PCF are governed primarily by the size and shape of the pattern of 
air holes and so is limited at first instance to the researcher’s imagination. However, 
the original idea for this type of fibre dates back to 1991 and it was not until 1995 that 
the fabrication problems were resolved and the first “working” PCF was realised.

8 .1  T h e  In flu e n c e  o f  P h o to n ic  C r y s ta l F ib r e  o n  L igh t

Unlike conventional fibres, PCF supports two mechanisms by which light can be trapped 
within the core and therefore guided along it. The first mechanism relates to a hybrid 
of conventional total internal reflection, while the second refers to the new effect of a 
photonic band gap (PBG).

For hollow core PCF, i.e. an air core, the refractive index contrast does not permit 
guidance by total internal reflection. However, the structure of the cladding creates
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Figure 8.2: Far field pattern of red light exiting a solid core PCF which is shown at 
the top of the figure.

coherent backscattering of fight into the core for certain wavelengths of fight incident at 
certain angles upon the core-cladding interface. This is evident if white fight is passed 
into a hollow core PCF - the exit facet is usually coloured indicating the guidance of 
several wavelengths.

Solid core PCF on the other hand does have a cladding region which has an area- 
averaged refractive index which is lower than the core and so in addition to band 
gap guidance, it also permits fight to be guided in the core by a modified form of total 
internal reflection - the air holes surrounding the solid core act as barriers to the various 
modes which can exist in the core.

The most significant parameters in designing PCF are the hole diameter and hole 
spacing. As the ratio of hole diameter to hole spacing increases, successive higher order 
modes become trapped because the silica bridges holding the core within the cladding 
get thinner and thinner. This has the effect of restricting the leakage of the modes 
from the core. For small enough holes, the fibre becomes single mode and remains 
single mode at all wavelengths where the glass remains transparent - a property termed 
endlessly single-mode [79].

Interestingly, the unique structure of PCF is predicted to have a novel effect on elastic 
wave propagation. The effects are expected to lead to new ways of enhancing/supressing 
phonons by altering the density of states within the core region. It is thought that 
altering the density of states could affect the power limitation imposed by stimulated 
Brillouin scattering and the associated frequency shift (see chapter 9). Accordingly, it
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is these concepts which are considered here.
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Chapter 9

Brillouin Scattering in 
Conventional Optical Fibre

Chapter 9 summarises the essential concepts and parameters of Brillouin scattering in 
conventional optical fibres.

In optical fibres, Brillouin scattering manifests through the generation of a backward 
propagating Stokes wave that carries most of the input energy. The scattering effects 
are generally undesirable in, for example, systems incorporating parametric amplifi­
cation, however, SBS can also be used advantageously, for example, as strain sensors 
or temperature sensors in hostile environments where electrical instruments would fail 
[80],[81],

Brillouin scattering can become stimulated in optical fibres due to the high optical 
intensity in the core and long interaction lengths afforded by these waveguides. The 
stimulated process is seeded from the random distribution of phonon energies available 
to the pump signal in the fibre at room temperature. The pump wave selects from this 
phonon distribution those phonons that phase match it to the Stokes wave (alterna­
tively, the seeding process can be considered to be due to a virtual Stokes photon which 
propagates in the opposite direction to the pump, within the core of the fibre). The 
interference of the counter-propagating pump and Stokes waves excites an elastic wave 
through the process of electrostriction and leads to a coupling between the pump and 
Stokes waves. The incident pump wave thus stimulates a periodic modulation of the 
core density and therefore the refractive index that moves at the phase velocity of the 
elastic wave. This travelling index grating scatters the pump light to the downshifted 
(Brillouin shifted) Stokes wave because of the Doppler effect.
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ks kp

Figure 9.1: An illustration of the conservation of energy (w) and momentum (k) during 
Brillouin scattering.

Since both energy and momentum must be conserved during the scattering events, the 
angular frequency (cj) and wavevectors (k) of the participating waves can be written 
using the four-vector equation as,

[kP ,up] -  [ks ,u s ] = [kE,wE] (9-1)

where the subscripts refer to the pump (P), Stokes (S) and elastic (E) waves respec­
tively. The scattering event is shown exaggerated in figure 9.1.

In single mode optical fibres, the phase matching condition is satisfied only for the 
backward direction. However, for elastic waves that are guided in the core, spontaneous 
scattered light is also evident in the forward direction due to thermally excited elastic 
waves propagating transversally to the fibre axis. This is known as Guided Acoustic 
Wave Brillouin Scattering (GAWBS) [82]. In conventional optical fibres however, the 
density contrast between core and cladding does not permit total internal reflection for 
elastic waves and so GAWBS is typically a weak effect.

SBS can severely limit the optical power that can be transmitted through an optical 
fibre and so inevitably, it has been the subject of extensive research in optical systems. 
The characteristic frequency shift, threshold power and Brillouin gain spectra associ­
ated with Brillouin scattering are found to be strongly dependent on fibre geometry 
and core composition and accordingly, are outlined in detail in the following sections.
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9.1 The Governing Equations for Conventional Optical 
Fibres

9.1 .1  S B S  T h re s h o ld  P o w er a n d  G a in

The mutual interaction between the pump and Stokes waves is governed by a set of 
coupled equations. Since the frequency difference between the pump and Stokes waves is 
approximately five orders of magnitude smaller than the pump and Stokes frequencies, 
it is assumed that up  ~  us- For the same reason it is assumed that the fibre loss (a) 
is the same for the pump and Stokes waves. Therefore, under steady state conditions, 
the coupled intensity equations for the pump and Stokes waves can be written as,

=  ~9b Is Ip  ~  otlp (9.2)

^  = - g Blp Is  + a IS (9.3)

where gp is the peak value of the Brillouin gain coefficient and occurs at the frequency 
value, /  =  fp  (where fp  is the Brillouin frequency shift).

Ignoring the effects of pump depletion, the Stokes intensity is found to grow exponen­
tially in the backward direction according to the relation,

Is (0) =  Is(L) exp(gpPoLef f / A ef f  -  aL) (9.4)

where Pq = Ip(0)Aef f  and Aef f  is the effective core area. Lef f  is the effective interac­
tion length given by,

Leff = -  (1 -  exp(-aL )) (9.5)
a

and defines the fibre length over which the Stokes field grows appreciably, and is less 
than the actual fibre length due to the attenuation. (Here the attenuation is measured 
in units of m -1).

The Brillouin threshold is found to occur at a critical pump power Pth approximated 
by the relationship,
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_ 21Aef f  /n
P t h  ~  ----j r 1 1 - .  (9.6)

The numeric factor (21 in this case) is dependent on the relative polarisation between 
the pump and Stokes waves and the Brillouin gain linewidth. For the condition whereby 
the pump and Stokes waves are completely scrambled along the fibre, this factor can 
increase by a factor of 2, however, this factor will typically vary between 1 and 2 
[83],[84],

The spectral linewidth of the Brillouin gain is dependent on the damping time of 
elastic waves, or phonon lifetime (Tp, which for conventional fibres is in the nanosecond 
range). If the elastic waves are assumed to decay as exp —t/T B, the Brillouin gain has 
a Lorentzian spectral profile given by,

where A /p  is the full width at half maximum of the Brillouin line, and is related to the 
phonon lifetime by A /p  =  {^TB)~l . The peak value of the Brillouin-gain coefficient 
occurring at /  =  /p  is given by,

2'KTi7p\r
c \2PpVEAfB9b Ub ) =  ™  a ,  (9-8)

where p u  is the longitudinal elasto-optic coefficient, p is the material density, vB is the 
elastic wave phase velocity and Xp is the pump wavelength [63].

For continuous wave (or quasi continuous) pump sources, the Brillouin gain can be 
reduced if the pump spectral width exceeds the Brillouin spectral width. For a pump 
having a Lorentzian spectral profile of width (FWHM) A /p , the Brillouin gain spec­
trum as given by 9.7 becomes,

~9B = A f s  + A f P9BifB)- (9'9)
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9 .1 .2  B rillou in  Frequency Shift

The frequency shift associated with the pump wave can be derived from the simple 
consideration of the interference of a forward propagating wave at a frequency f \  and 
a backward propagating wave at a frequency f 2 - The phase velocity of the resulting 
interference pattern can be shown to be,

(M °)h  +  k2

which must be phase matched to the phonon. Alternatively, equation 9.10 can be 
written as,

uji -  u 2 _  . . _  f i  -  h  / Q i n

&1 +  &2 E  7 l i / A  +  7 l 2 / A

and since n\ ~  712,

h - f 2  = f B ~  (9-12)

Alternatively, the approximation to f s  can proceed from the conservation of momentum 
and energy (equation 9.1) as shown by Agrawal [63]. As seen above, the Brillouin shift 
is directly proportional to the phase velocity of the elastic wave and so any waveguide 
which facilitates the simultaneous guidance of both elastic and EM waves could be 
expected to produce several Brillouin shifted lines due to the discrete nature of the 
elastic modes.

9.2 Elastic Waves in Photonic Crystal Fibre

The effects of elastic wave guidance on the Brillouin spectrum become significant when 
the wavelength of the elastic wave becomes comparable to the core diameter of the 
PCF. For large core diameters, it is expected the elastic wave will demonstrate bulk-like 
propagation characteristics, producing a Brillouin shifted frequency which is indicative 
of the phase velocity of elastic waves in a bulk media and moreover, predictable by 
conventional theory.
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For core sizes which are comparable to the elastic wavelength of the elastic wave, it is 
expected that the continuum of elastic states available in bulk solids will separate into 
discrete modes of a defined frequency. It is anticipated that this small core regime will 
produce the most dramatic changes to the Brillouin spectrum.

As stated previously, the guidance mechanism associated with conventional fibres is the 
well-known total internal reflection, and since the condition for total internal reflection 
is only suited to elastic waves or EM waves separately, the effects of elastic wave 
guidance on EM waves in conventional fibres is very weak. For solid core PCF, the 
elastic waves can be guided by a phononic band gap whilst the EM waves can be guided 
by a modified form of total internal reflection (and/or a photonic band gap). It is this 
double handed guidance of PCF which makes them such an attractive waveguide in 
understanding the effects elastic wave guidance on SBS and thus from which we can 
harvest information about the elastic modes. Ultimately however, SBS should allow us 
to experimentally demonstrate the guidance of elastic waves by a phononic band gap 
[85].

The effects of a phononic band gap on the Brillouin spectrum is expected to be one in 
which several Brillouin shifted lines are produced. The strength, i.e. the intensity of a 
particular Stokes line will be dependent on the overlap between the EM mode and the 
elastic mode participating in the scattering event.

Arguments pertaining to the effects of elastic wave guidance on threshold power are 
less conclusive. On the one hand, it is speculated that their guidance will produce a 
very low threshold power for SBS since the elastic waves can propagate with low loss. 
However, it is also arguable that a structure which permits guidance also shields, and 
so it may be the case that the cladding of the PCF reduces the density of states within 
the core by shielding the core from the noisy environment, thus creating a very high 
threshold power.

Whatever the findings, PCF and SBS are well partnered to study the effects of elastic 
wave guidance by a phononic band gap.

81



Chapter 10

M easuring the Brillouin  
Frequency Shift

Chapter 10 is concerned with the experimental determination of the threshold power 
and frequency shift associated with Brillouin scattering, in photonic crystal fibre, using 
a heterodyne technique and also the technique which utilises the Fabry-Perot interfer­
ometer.

10.1 The H eterodyne M ethod

If the Stokes wave generated through the Brillouin scattering process can be hetero­
dyned (i.e. mixed) with the pump wave then electrical spectral analysis can be per­
formed on the signal rather than optical analysis. Heterodyning has the advantage 
of a higher spectral resolution for the measurement of the Brillouin shift and spectral 
linewidths. The experimental arrangement for the heterodyne analysis of the Stokes 
signal is shown in figure 10.1.

The signal from a Photonetics ECL was amplified by an Er-doped fibre amplifier. 
Approximately 1% of the pre-amplified signal was used as a local oscillator for the self­
heterodyne detection. The amplified signal was passed to the test fibre via a circulator 
which chanelled the backscattered Brillouin signal into the detection system. The PCF 
used in this experiment had a larger NA than conventional SMF and so a high NA fibre 
was used to couple the signal into the PCF. The high NA fibre and PCF were mounted 
on a high precision Melles-Griot translation stage and the signal was butt-coupled into 
the PCF under the view of an optical microscope. The initial butt couple alignment
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Figure 10.1: Experimental system for measuring the Brillouin shift in optical fibre 
using a heterodyning method

was performed using an optical power of 3dBm and the coupling loss was estimated by 
measuring the output power with an optical power meter. Careful alignment resulted 
in a coupling loss of 0.5dB. The spectrum of the backscattered light was recorded using 
an electrical spectrum analyser and the integrated power was measured with an optical 
power meter.

The experiment was performed at three wavelengths, 1530nm, 1550nm and 1570nm. At 
each wavelength the Brillouin spectrum was recorded with the launch power increasing 
from below the threshold power, to above the threshold value, and in order to maintain 
consistency, the measurements at each wavelength were made with the same initial 
coupling alignment.

10.1.1 R esu lts

An SEM of the PCF studied is shown in figure 10.2. The all-silica fibre had a core 
diameter of 5.2/im, a pitch of 3.4/mi and a loss of 3dB/km @ 1550nm. The effective 
length (equation 9.5) of the fibre was calculated to be 408m with a fibre length of 480m.
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Figure 10.2: An SEM of the PCF under investigation.

The Stokes S pectra

The Brillouin spectra for each pump wavelength is shown in figure 10.3. The fre­
quency shift at 1550nm was measured to be 11.07GHz which was intermediate to the 
frequency shift at 1530nm (10.93GHz) and 1570nm (11.22GHz), and was greater than 
the theoretical frequency shift (equation 9.12) of 10.85GHz.

It was shown by Boyd [61] that the lineshape S(cj), of the Stokes signal initiated by 
thermal noise in conventional fibres (see equation 10.1) evolves from a Lorentzian profile 
below threshold, G <C 1, to a Gaussian above threshold, G 1:

5(o,) =
8Trfius(n -1-1) 

ncAef f T
exp

G (r /2 )2 
u2 +  ( r /2 )2

-  i ( 10 .1)

Here T is the phonon decay rate, n  is the mean number of phonons per mode of the 
elastic field, A ef f  is the effective cross sectional area of the gain medium and the single 
pass gain G is defined as,

G = gBlL(0 (10.2)

This evolution in lineshape was also found to be true for PCF. In the undepleted pump 
high gain regime (G 1), the Gaussian form of equation 10.1 reveals as,

87171^(71+1) (  4 Guj2\
5(a;) =  ncAT--------eXp(G) 6XP [ ---p2 )  (i a 3 )
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which has a 3dB linewidth given by,

The 3dB linewidth of the spectra shown in figure 10.3 was calculated by fitting a 
Lorentzian or Gaussian to the appropriate spectrum. The results are shown in figure 
10.4 for increasing values of launch power.

As the launch power is increased the FWHM is seen to decrease and becomes more 
rapid as the threshold power is approached. Beyond threshold, the FWHM appears 
to fluctuate. The plot shows near coincidence of the threshold power at 1530nm and 
1570nm (~37mW), whereas the curve at 1550nm suggests a lower threshold power 
(~22mW). The launch power (i.e the power entering the PCF) was estimated by noting 
the power output from the amplifier and the power transmitted through the PCF. 
By considering the combined loss in the system (i.e. fibre losses, splice losses etc) 
the coupling loss could be estimated and therefore the power launched into the PCF. 
However, this estimate assumed the coupling between the high NA fibre and PCF 
remained constant. The fact that the measured threshold power was lower at 1550nm 
than at 1530nm and 1570nm suggests that there was some discrepancy in the estimation 
of the coupling loss. Despite this, it is possible to calculate the lifetime of the phonons in
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the PCF using 10.4. Assuming an effective area of 7r(2.6 x  10-6)2 and an effective 
length of 408m, the lifetime of the phonons created with optical pump wavelength of 
1550nm launched with a power of 17dBm and a linewidth of 4MHz, is calculated to be 
2.9ns. This is similar to the previously recorded value by Wait [86] et al. of 1.5ns. The 
comparable lifetime of the phonons in this PCF as compared with conventional fibres 
suggest that these phonons are not guided by a phononic band gap, since guidance 
would imply a longer phonon lifetime.

SBS Threshold and Lasing

The threshold power is best determined by analysing the variation in transmitted and 
reflected power with launch power. There are a number of definitions of the threshold 
power for SBS in optical fibres. These include (i) the input optical power at which the 
reflected power equals the input power, (ii) the input power at which the reflected and 
transmitted powers are equal and (iii) the input power at which the reflected power 
begins to increase rapidly and the transmitted power begins to plateau. The first of 
these seems impractical since it implies that the reflected power is about to exceed the 
power input. The definition used here is the latter of the three. The power reflected 
from and transmitted through the PCF were recorded as the input power was increased. 
The results are shown in figure 10.5 for 1530nm, 1550nm and 1570nm.

Figure 10.5a shows a rapid increase in the reflected power at ~42mW and is accom­
panied by a more shallow slope to the transmitted power. At 1550nm, the reflected 
power is seen to rise sharply at ~37mW whilst the knee in the transmitted power oc­
curs at a lower launch power of ~22mW. The result at 1570nm is consistent with that 
at 1530nm; the threshold for SBS appears to be at 37mW.

The apparent lack of trend in the measured transmitted and reflected powers and 
their lack of agreement of the threshold, was the cause of some concern. This was 
particularly the case for the results shown in figure 10.5a (note the larger axis scale as 
compared with 10.5b and c); the transmitted and reflected powers showed no definite 
correspondence or trend typical of the Brillouin process, particularly for high launch 
powers.

This was initially thought to be due to variations in the coupling alignment (as evident 
in figure 10.5b), however, the threshold power for this fibre was also influenced by the 
Fresnel reflection of the forward and backward going beams at the end facets of the 
fibre. The fibre ends were cleaved perpendicularly to the fibre axis and so provided 
~  4% reflection. This reflection was found to be sufficient to cause the fibre to lase
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(even though the fibre loss was ~  10 times that of conventional SMF) and thus, was 
thought to be the cause of the instability in the transmitted powers of figures 10.5a-c 
and the variation in FWHM measurements shown in figure 10.4.

Dammig [69] has studied the influence of feedback on SBS by controlling the amount of 
feedback within a fibre. This v/as achieved by placing the fibre end opposite to the power 
coupling end, in oils of varying refractive index, to control the level of index matching. 
In addition, the fibre end was glued to a mirror to significantly increase the feedback. 
The Stokes spectra output from the fibre was shown to include oscillations which had 
a period determined by the round trip time. Over longer timescales, the amplitude 
of the periodic oscillation was found to fluctuate. This is because the amplification 
of one lasing mode gives rise to an increased pump depletion which diminishes the 
amplification of a subsequent mode.

Gaeta [70] has also studied the effect of feedback on SBS and has found that the 
threshold for SBS in the presence of feedback can be lower than the threshold for SBS 
involving only a single pass of the Stokes signal through the fibre.

Figure 10.6a gives an expanded view (in a window of 20MHz) of the peak of the Stokes 
signal generated with a launch power of 13.8dBm and a wavelength of 1550nm.

Figure 10.6b shows the cavity modes at the peak of the Stokes signal in a narrower 
window of 1.2MHz. These cavity modes are characteristic of a laser and axe separated 
by the free spectral range (FSR) of the PCF. The FSR is given by,

F S R = ™  (ia5 )

where c is the speed of light in a vacuum, n the refractive index of the medium (i.e. 
silica) and d is the separation of the end facets (i.e. the length of the fibre). The 
theoretical FSR of the fibre was calculated to be 214kHz using equation 10.5, and is 
found to be in excellent agreement with the experimental result; the separation of the 
lasing modes as measured using the electrical spectrum analyser was 217kHz.

The theoretical threshold power for stimulated scattering can be calculated using equa­
tion 9.6 and is found to be 35mW, which is in close agreement with the experimentally 
derived value. However, the inset to figure 10.6b reveals how index matching the end 
of the PCF causes a 10 fold decrease in the gain of the Brillouin signal. (Since PCF is 
a holey fibre, when the fibre is index matched in oil, the oil quickly moves through the 
holes in the fibre destroying its waveguiding ability. In order to reduce the feedback in
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PCF it is better to angle cleave the end of the fibre.)

The spectra shown in figure 10.3 are asymmetric with respect to the centre frequency. 
This raised pedestal on the high frequency side is more noticeable at the shorter wave­
length and is thought to be due to higher order elastic modes, which will of course have 
a faster phase velocity. This is possible with the PCF structure despite the reverse 
condition on density contrast between the core and effective cladding density for total 
internal reflection; the periodic structure provides an alternative guidance mechanism 
through the phononic band gap, which is insensitive to the sign of the density variation 
(the optical analogue being the hollow core PCF).

Given the frequency shift it is possible to calculate the phase velocity of the elastic 
mode that participates in Brillouin scattering using equation 9.12. Figure 10.7 gives a 
plot of the Brillouin shift as a function of inverse wavelength. The elastic wave phase 
velocity is calculated from the slope of the expected straight line and can be compared 
with the theoretical frequency shift expected in bulk silica (ve =  5968m/s) and in a 
silica rod with the same diameter as the PCF core (ve =  5764m/s). The figure shows 
the phase velocity of the elastic mode to be intermediate to that of bulk silica and rod 
waves.

Assuming the elastic wave is guided by a phononic band gap then the phase velocity of 
the mode would be expected to be similar to that for rod waves. Equation 10.6 gives 
the relationship between the phase velocity of the elastic waves in a rod and the rod
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radius:

Here E  is Youngs Modulus and r is the radius of the rod. The measured phase velocity 
is lower than that of bulk silica but greater than rod waves. This suggests that the 
elastic wave sees a silica/air effective medium, with the holey region of the PCF lowering 
the effective density of the silica structure and thus the phase velocity of the elastic 
waves (see section 11.2), as compared with the phase velocity in bulk silica.

Thus, from the foregoing measurements of the Stokes spectra, phonon lifetime and 
elastic wave phase velocity, it suggests that the elastic waves are not guided within this 
PCF.

10.2 The Fabry-Perot M ethod

The results shown in section 10.1 were obtained whilst working at Lehigh Univer­
sity, Pennsylvania, USA. This section describes Brillouin scattering using a set-up con­
structed at Bath University, UK. Unfortunately, the 1550nm diode laser used at Lehigh 
was unavailable for the experimental set-up at Bath and so the Brillouin measurements 
obtained and discussed here refer to the use of a Kr-Ion laser operating at a wavelength 
of 647nm.

The Fabry-Perot (F-P) interferometer was the first instrument used to analyse Brillouin 
scattering in optical fibres. It has the advantage that the system is relatively easy to 
set up, but has the disadvantage that frequency resolutions better than a few MHz 
are difficult to achieve. There are many varieties of F-P interferometers, each designed 
for specific applications. The most studied arrangement consists of two plane, parallel, 
highly reflecting surfaces separated by some distance d. When both mirrors are fixed, 
the F-P is known as an etalon, but if one of the mirrors can move with respect to the 
other it is said to be an interferometer. The system used here to measure the Brillouin 
shift consisted of the latter arrangement with the reflecting surfaces defining an air 
cavity. The reflecting surfaces were dielectric mirrors each having a reflectivity of ~  
99.5% at 647nm, and provided a theoretical resolving power of 80MHz and a finesse 
of 625. Unfortunately, neither of these specifications could be realised due to mirror 
surface contamination by dust and other airborne particles and so in practice a finesse 
of only 100 was attainable, corresponding to a minimum resolvable bandwidth of ~

92



beam stop

test fibre

beam  splitter

m icroscope 
objective lens

m icroscope  
objective lens

Fabry-Perot interferometer
SMF

focussing
unit

Tektronix
oscilloscope

Fabry-Perot 
ramp generator

Figure 10.8: Experimental system for measuring the Brillouin shift in optical fibre 
using a Fabry-Perot Interferometer

350MHz.

The experimental set-up is shown in figure 10.8. The Kr-gas laser was operated at 
647nm in single frequency operation.

A single laser line will consist of a number of closely spaced frequency components, 
but in single frequency operation all but one of these components can be suppressed 
with the use of an intra-cavity etalon. The etalon was used to filter out unwanted 
longitudinal modes from lasing and so reduced the linewidth of the laser to ~  30MHz 
thereby providing sufficient gain to the Brillouin signal (see equation 9.9). Higher 
order transverse modes were removed by carefully selecting the size of the intra-cavity 
aperture which exploited the smaller diameter of the TEMoo mode.

The laser beam was split at a 50:50 beam splitter (BS) with the forward going beam 
being coupled into the test fibre via an iris (which blocked any stray beams) and a 
microscope objective lens. The beam reflected from the BS was diffused in the closed 
unit of a beam stop. The Stokes signal together with the elastically scattered light 
which were reflected back out of the front facet of the test fibre were captured by the 
same objective lens and coupled into a short piece of single mode fibre (SMF) via the 
BS and second objective lens. The SMF stripped the laser beam of any higher order 
spatial modes, effectively cleaning the beam. This beam was then passed through the 
centre of the F-P cavity and focussed onto a Si-detector with the focussing unit.
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The mirrors were scanned using the FPI-25 Ramp Generator, which also allowed for 
any fine adjustments to be made to the alignment of the two mirrors with the incident 
beam. The Brillouin signal was recorded for increasing values of laser power to track 
the progression from the spontaneous to the stimulated regime.

The output from the Si-detector was analysed with a Tektronix oscilloscope. This pro­
vided a means of measuring the Brillouin shift relative to the FSR using the timescale 
of the instrument. Given these values it is possible to calculate the Brillouin frequency 
shift (ub) using equation 10.7, once the absolute frequency is known for the FSR of the 
F-P cavity (F S R f):

- 5 2 -  =  — . (10.7)
F S R f F S R t V '

Here, t s  and F SR t represent the Brillouin shift and cavity FSR as measured using the 
timescale of the oscilloscope. The error associated with the Brillouin frequency shift 
(Ai/b ) has contributions from the error associated with each of the three independent 
variables in equation 10.7, and is given by,

Ai*=f§k'AFŜ '+f S |Atfil+d w l A F S R t l (10-8)
where A F S R f  signifies the error associated with the frequency measurement of the 
cavity FSR etc.

10.2.1 Calibration of the Fabry-Perot Cavity

In order to deduce the Brillouin frequency shift it is necessary to determine the FSR 
of the F-P cavity. Once the FSR is known, the frequency shift measurement can be 
calculated from equation 10.7. The FSR of the F-P is inversely proportional to the 
refractive index (n) of the medium between the mirrors, and to the mirror separation 
(d), as shown in equation 10.5. The calibration therefore reduces to that of finding 
the mirror separation since the cavity medium was air, which has a refractive index of 
approximately 1.

The mirror separation was measured with the instrument set up as an etalon i.e with 
the mirrors fixed. When used as an interferometer, the separation will of course vary as 
the mirrors are scanned. Each scan was found to produce approximately 5 transmission
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Figure 10.9: Experimental system for calibrating the F-P interferometer

orders which corresponds to 2 wavelengths and therefore a scan range of approximately 
1.3/mi. This variation from the measured fixed spacing manifests as an error in the 
overall measurement of the frequency shift, but can be minimised if the frequency shift 
is measured with respect to the first transmission order of the scan.

The fixed mirror spacing was measured by placing the F-P into one arm of a Michelson 
interferometer as shown in figure 10.9. The probing signal was derived from a white light 
source (S) which was passed through a filter to provide lOnm of necessary bandwidth 
in order to produce the interference fringes. This signal was split by a BS with 50% 
of the light passing through towards the F-P etalon and the remaining 50% toward a 
mirror M l which could move to adjust the optical path length in that arm.

The inclusion of the periscope in the etalon arm was necessary as the F-P working height 
was above the plane of the BS and mirror Ml. The mirrors comprising the periscope 
were metallic; this ensured there was no phase change on reflection and therefore no 
requirement for a similar periscope in the arm with mirror M l. The signals returning 
from mirror M l and the mirrors of the F-P etalon (M2 and M3) were then recombined 
at the BS and coupled into a short piece of SMF, which passed the signal to a New 
Focus detector. This measurement was controlled by a chopper (placed in one arm 
of the interferometer) and a lock-in-amplifier which synchronously sampled the signal 
with the chopper, thereby reducing background levels of light in the measured signal.
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Mirror M l was mounted on a calibrated threaded bar such that a given rotation of 
the bar generated a specified translational movement of the mirror along it. The bar 
rotation was controlled by the computer which periodically stepped mirror Ml along 
the bar thereby allowing the interference signal to be recorded at each step in the 
translational range of Ml.

It is well known that the interference of the recombining signals will depend on the 
optical path length difference in each arm. When this difference is zero, the signal in 
each arm will recombine and interfere constructively giving a large resultant signal. 
Conversely, when the optical path lengths are unequal the signals from each arm will 
interfere giving a very small signal. The interference of the recombining signal will 
also depend on the phase change dispersion occurring when radiations of different 
wavelengths (lOnm bandwidth) are reflected at the surface of the dielectric mirrors of 
the Fabry-Perot [71]. The signal reflected from the surface of each mirror, M2 and 
M3, will undergo a phase change, which is equivalent to an apparent displacement of 
the mirror with respect to its true position. It is assumed that the phase change upon 
reflection from each mirror of the Fabry-Perot will be the same. Therefore, while it is 
difficult to ascertain their exact position from the BS, their relative separation can be 
accurately deduced.

The mirrors of the etalon were initially separated by approximately 5mm, as estimated 
by eye. This mirror separation was chosen prior to the calibration process to ensure 
the Brillouin shifted signal could be easily related to the correct transmission order of 
the F-P interferometer, and not overlap higher orders which would create confusion in 
the frequency shift measurement. The translational range of the mirror Ml was 25mm 
and so was sufficient to capture the condition of zero path length difference from each 
mirror of the F-P etalon in a single sweep.

The calibration was performed using wavelength filters of 850nm, lOOOnm and without 
a wavelength filter, i.e. the white light source. It was necessary to choose a probing 
wavelength away from the high reflectivity bandwidth of the mirrors to allow sufficient 
signal to reach the rear mirror and participate in the interference of the recombined 
signal. The results are shown in figure 10.10. There are two sets of strong interference 
fringes and a third weaker set of fringes evident in each of the measurements. The first 
set of fringes correspond to the zero path length condition from the front mirror (M2) 
of the F-P etalon and the second set of fringes to the rear mirror (M3). The third set 
corresponds to a reflection from the rear mirror followed by a single round trip across 
the cavity before returning to the BS.

The mirror separation is derived from figure 10.10 by calculating the distance between 
the central peak of each set of fringes, and was found to be 4.044±0.009mm when an
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F ibre L ength (m ) C ore d iam eter(izm ) Loss @ 6 4 7 n m (d B /k m ) B rillou in  Shift (G H z)

Pirelli 3000 9 5 25.73±0.12
1 80 2.23 38 26.55±0.27
2 75 2.25 56 26.71±0.28
3 80 2.11 50 26.54±0.28
4 80 2.04 84 26.44±0.26
5 80 1.89 81 2S.47±0.27
6 75 2.32 40 26.49±0.12
7 80 2.34 59 26.55±0.13
8 80 2.2 70 26.33±0.12
9 90 3.7 40 26.45±0.28
10 1130 2.5 51 26.57±0.28
11 130 1.2 130 26.04±0.38
12 110 1.1 130 25.86±0.38
13 120 1.1 140 25.8±0.38
14 115 1.1 150 25.82±0.38

Table 10.1: Table characterising the fibres analysed.

average is taken of each set of results. The variation in mirror separation obtained with 
the different probe signals was the major source of uncertainty in this calibration. The 
positioning of the mirror Ml along the threaded bar was accurate to within 0.1/im and 
the centre of the fringe pattern could be determined to an accuracy better than 1/im.
The uncertainty in d is related to an uncertainty in the FSR as shown below.

]AFSR] = 2 ^ |Ad|- (10'9) 

Thus, using equations 10.5 and 10.9, the FSR of the F-P was calculated to be 37.09±0.08GHz.

10.2 .2  R esu lts

The minimum resolvable bandwidth of ~350MHz of the F-P was too large to measure 
the Stokes linewidths which is of the order of 10’s of MHz, so instead, the experiment 
concentrated on the frequency shift. This shift was measured for fourteen different 
PCF’s which differed in core diameter and air-filling fraction, and also for a conventional 
single mode fibre which had a small concentration of Ge in the core (Pirelli SMF). The 
PCF’s analysed had a length of 75-1130m, a loss of typically 70d B /km  and a core 
size in the range from ~  1.1/im to ~3.7/im. The results are shown in figure 10.11 and 
summarised in table 10.1.
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Figure 10.11: Plot showing the measured frequency shifts from 14 test PCF’s and a 
conventional SMF (shown with the red point).

Fibres 1-14 of table 10.1 are made solely of fused silica whilst the Pirelli fibre had a 
fused silica core doped with a small concentration of Ge to provide the necessary index 
contrast for total internal reflection. Furthermore, fibres 11-14 which had a small core 
were so-called ’’cobweb” fibres because the silica bridges supporting the core at the 
centre of the cladding are very thin, reminiscent of a spiders web. Accordingly, these 
fibres had a very large air-filling fraction as compared with fibres 1-10.

The development of stop-bands (and thus the means for elastic wave guidance) is known 
to depend on the density contrast between the materials as well as the relative thickness 
of the materials which form the stop-band, as shown in Part I of this thesis. As a result, 
it would seem instructive to use the ratio ^  as the control parameter in characterising 
SBS in PCF, where d is the diameter of the holes of the cladding of the PCF and A 
is the hole spacing. However, the core diameter was chosen as the control parameter 
to allow for the direct comparison of the experimental results with a theoretical model 
for the Brillouin frequency shift in PCF as described in chapter 11.

The frequency shift associated with the fibres having a core diameter ~2/im was mea­
sured to be ~750MHz greater than the SMF. The theoretical frequency shift at this 
wavelength (647nm) for a silica fibre is 25.99GHz (assuming a refractive index for sil­
ica of 1.46), which is still ~500MHz lower than the frequency shifts measured for the 
above-mentioned PCF’s. For fibres which had a small core (< 1.5/im), the frequency 
shift was comparable to the SMF of 25.7GHz.

The oscilloscope traces obtained by scanning the F-P, were also found to contain a 
second smaller peak occurring at a frequency of approximately 9.7GHz, as shown in 
figure 10.12. This frequency shift corresponds to an elastic wave phase velocity of
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Figure 10.12: The oscilloscope trace as the mirrors of the F-P move through a distance 
of half a wavelength. The Stokes line and second smaller peak are seen between the 
peaks produced by the elastically backscattered light (shown clipped).

approximately 2150m/s, using equation 9.12, which is not typical of S waves or L 
waves in silica. This peak increased and decreased in accordance to the main Stokes 
line and was evident in the Pirelli fibre as well as the PC F’s. The fibres analysed in 
this experiment were not single mode at 647nm and so it is thought that this smaller 
peak may be due to Brillouin scattering from a higher order optical mode in the fibres.
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Chapter 11

Estim ating the Brillouin Shift in 
Photonic Crystal Fibre

Chapter 11 describes a model used to estimate the Brillouin frequency shift in photonic 
crystal fibre and is based on the dispersion of compressional modes and the fundamental 
optical H E u  mode of a free silica rod.

It was shown in the previous chapter that the Brillouin frequency shift in those PCF’s 
characterised in table 10.1 is greater than in conventional optical fibre and thus greater 
than what conventional theory predicts.

To speak of an elastic mode implies that the elastic field is quantised by the finite 
transverse dimensions of a waveguide and therefore, becomes guided by it. However, 
the previous chapter did not present any conclusive evidence of a phononic band gap 
which could have guided the elastic wave in the core of the PCF and since the density 
contrast is reversed for total internal reflection within the core, it is unlikely the elastic 
wave was guided within the fibre.

It is thought that a useful approximation to the interaction of elastic waves in the core 
of a PCF with the optical modes can be achieved by considering the simplified system 
of a silica rod in a vacuum. Brillouin scattering is dominated by the fundamental 
optical mode (HEu) and so in modelling the frequency shift it is sufficient to consider 
the dispersion of the HEu mode only. Given this dependence between u  and (3 it 
is possible to calculate the phase matching (3 value of the elastic mode (for a given 
operating optical pump frequency) responsible for coupling the forward propagating 
optical pump wave into the backward propagating Stokes wave and thus from the 
dispersion relation for the elastic waves, the expected frequency shift.
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Figure 11.1: Schematic illustration of the orientation of the silica rod.
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Figure 11.2: Dispersion of the fundamental H E u  mode of a silica rod of diameter
1.1 nm  (black line) at low frequency. The dispersion of EM waves in a vacuum and 
bulk silica is shown with the red and blue lines, respectively.

The orientation of the silica rod in question is shown in figure 11.1 and is described using 
cylindrical polar coordinates, (r, 0, z). Since this step-profiled waveguide (assumed 
infinite in length) is modelled as being in a vacuum, the dispersion relations for the EM 
and elastic waves will involve satisfying Neumann and Dirichlet boundary conditions 
respectively.

The dispersion relation for the optical modes of a free silica rod is derived in appendix 
B and the dispersion of the fundamental H E u  mode is shown in figure 11.2 in the long 
wavelength limit. The mode can be traced to u  = 0 since there is no cut-off for the 
fundamental mode. The red line corresponds the dispersion of EM waves in a vacuum 
(i.e. uj/(3 — c) and the blue line corresponds to the dispersion of EM waves in bulk 
silica {<jj/(3 = c/nsi{u>))-
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Figure 11.2 only includes positive (3 values and therefore represents waves propagating 
towards infinity. The Stokes wave will of course be propagating in the opposite sense 
and so the magnitude of the (3 value of the elastic wave which couples the forward 
going pump to the backward going Stokes signal can be approximated as being twice 
the (3 value of the pump wave at the operating frequency of the pump. This is a good 
approximation since the frequency of the elastic wave is ~5 orders of magnitude smaller 
than the frequency of the pump and Stokes waves.

11.1 Dispersion of Elastic Waves in a Free Silica Rod

The calculation of the dispersion of elastic waves in a cylindrical waveguide [87], [88] 
proceeds in a manner similar to that employed in section 6.1.2 for a low density layer. 
In contrast to EM waves, the elastic waves will be totally confined to the waveguide 
since no physical disturbance can be supported in a vacuum. Thus, the discretisation 
of modes is produced by the boundary conditions which require the normal components 
of the stress tensor to be zero at the boundary to the vacuum.

The displacement vector U, is derived from the scalar potential <j> and vector potential 
as shown in section 2.2. For propagation along the rod axis (z), it is convenient to 

use cylindrical polar coordinates. In this case, equations 2.23 and 2.24 become,

V2<£-
1 d2<p 

c2r dt2
1 d 1

H 7T̂  +
d2 d2 \ ,

7^9 +77-0 U “r dr r2 802 dz2
1 d2<f> 
c? dt2

= 0 (11.1)

2 _ 1 d2^  1 d2^  n
V4> — =  V(V.T') - V x ( V x ^ )  — o^-rr- =  0

Cg dt2 d t2
(11.2)

The general solution to equation 11.1 can be written in the form,

0(r, 9, z) = R(r)Q(6) exp\—i((3z — ut)] (H-3)

and when substituted in 11.1, the equation for <j) splits in two parts,

d2R  1 dR , .
n ? + r n ; + R {r) W  ) - R ( r ) ^  = 0 (11.4)
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ffio
-jjp  +  m 0(9) =  0. (11.5)

The Laplacian of the vector field (11.2), in cylindrical coordinates is shown below

^2 ipr 2 d'ipe , u 2
v * ' - * - - p - a e + - a * r  = 0 (u -6)

« £  + £ *  = „ (ii.7)H .. rl at/ Co

V2V>* + = o. (11.8)
S

It is evident from the foregoing that xpr and ipe are coupled and that solutions to 11.5 
and 11.8 will take a similar form. The solutions of 11.5 are sin(m0) and cos(rat?) where 
m is an integer to ensure continuity of 0(0) circumferentially around the rod. Solutions 
to 11.4 are the well known Bessel functions and since the solutions must be finite at 
the coordinate origin the solutions will involve Bessel functions of the first kind only. 
Thus, equation 11.3 takes the form,

<p = AJn(pLr) cos(mO) exp —i(/3z — ut) (11-9)

and similarly, solutions to 11.8 are of the form,

ipz = B Jn(psr) sin(rat?) exp —i(/3z — ut) (11.10)

where A and B  are constants to be determined from the boundary conditions.

The expressions for tpr and 'ipo are, a priori, of the form

=  'ipr(f') sin(rat?) exp —i(/3z — ut) (H-H)

and
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ipo =  'W 7’) cos (mO) exp —i(/3z — ut). (11.12)

The expression for contains the term sin(m$) and the expression for ipQ contains 
the term cos(m0) because the coupling terms in equations 11.6 and 11.7 have differen­
tials with respect to 8 with different signs. Substituting equations 11.11 and 11.12 in 
equations 11.6 and 11.7 respectively, gives,

d^jjr +  l(h j^  +  2771̂ 0 _  ipr) +p%'ipr = 0 (11.13)
drz r dr rz

d f a  +  1 +  +  2m^  _  ^  + p 2il)e = 0. (11-14)
dr* r dr r*

Adding and subtracting equations 11.13 and 11.14 gives two new equations whose 
solutions are,

Vv +  =  2DJn-i{ps r) (11.15)

and

A ~ ^ e  = 2CJn+i(psr). (11.16)

Imposing the condition ipr =  —ipQ gives D  =  0 and so solutions to equations 11.13 and
11.14, together with the solutions for (j> and 'tpz become,

<p =  AJn(pLr) cos(m8) exp — ut)  (11-17)

ipz = B Jn(psr) sin(m8) exp —i{(3z — ut)  (11.18)

ipr =  CJn+i(psr) sin (mO) exp —i((dz — ut)  (11.19)

'ipe = — CJn+i(psr) cos(md) exp —i{/3z — ut)  (11.20)

where A, B  and C  are unknown constants.
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The components of the displacement (Ur along r, Ug along 9 and Uz along z) follow 
from 11.17-11.20 (see section 2.3) and are given below.

j I f y z
r dr r 09

Oipg
Oz

(11.21)

O'ipz
Or

(11.22)

1 Oif)r 
r 09 ’

(11.23)

10(f) O'lpr 
Ue = r d d +

50 1 0(ripo)
z Oz r Or

The boundary conditions require the stress components normal to the surface of the 
rod (Trr,Trg and Trz) be zero at the surface (r = a). The stresses are given in respect 
of the aforementioned displacement components and the Lame constants A and /1, as 
shown below,

r\ -r j
Trr = XS + 2fi — ^  (11.24)

or

TrQ — ft
0Ur TT \  0U9ri (0ur TT\

r V W  ~  US)  + Or
(11.25)

where S  is the local dilatation given by,

s . v . u .
r Or r 09 Oz

Setting the three stress components to zero at the free surface of the rod (r =  a), 
yields three linear homogeneous equations in the three unknowns A, B  and C. Non­
zero solutions exist only if the determinant of the coefficients is zero. The resulting 
expression relating u  to (3 and the circumferential order m  gives the dispersion relation 
of the elastic waves in a rod.

For any m  and real /3 there are an infinite number of roots i.e. modes, propagating 
along the ^-coordinate. By virtue of the displacement components, these modes can 
be classified into three families: (i) compressional modes - these modes are axially 
symmetric with displacement components Ur and Uz that are independent of 9, (ii) 
torsional modes - waves which only possess a circumferential displacement Ug that 
is independent of 9 and r, and (iii) flexural modes - this family has displacement
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components J7r , U$ and Uz which are all dependent on r, 9 and z.

The dispersion of elastic modes is determined by forming the matrix of coefficients 
A, B  and C  of equations 11.24, 11.25 and 11.26, and calculating the determinant of 
this matrix. The resulting equation will be a function of u, /? and the integer m. 
The essential features of compressional and torsional modes are conveniently presented 
with m  =  0 and for flexural waves with m  = 1. Therefore, by setting the necessary 
displacements to zero, the dispersion of each family of modes can be analysed separately, 
as shown in figure 11.3. Figure 11.3 presents the dispersion of the compressional, 
torsional and flexural waves in a free silica rod of diameter 1.1/xm; the red and blue 
linear lines correspond to the dispersion of the L and S waves in bulk silica, respectively.

11.2 The Frequency Shift

Given the dispersion characteristics of the elastic modes, it is possible to determine 
the frequency of those modes which phase match the pump to the Stokes wave. Each 
phase matched mode can theoretically scatter the pump wave into the Stokes however, 
the strength of the scattering will depend on the overlap between the displacement 
profile of the elastic wave and the displacement created by the energy profile from the 
interference of the pump and Stokes waves through the process of electrostriction. It 
is this overlap which is important since the density variation within the rod created 
through electrostriction provides the gain to the elastic wave.

Assuming the interference of the pump and Stokes waves to have a Gaussian energy 
profile, as shown in equation 11.28,

E  = E0 exP ~ ( Q  (11.28)

the electrostrictive force on the medium of the rod is given by,

F = - v £ = ( I )  E° exp-  G )2= ^ rexp-  G )2 (n-29)

and is directly proportional to the displacement that it produces. Thus, the modal 
overlap (Ci) as discussed above is given by,

107



co a 
27TCl

2 0

5

2 4 6 8

20

15

10

5

0

0

(a)

I---'---*---'--T---■---*---■—

*"*

----- — ..m

««••••••••••<

1

-- ----,__._1

.........  1

—  . I.

(b)

10

_______

r.r.iXZZ*
, .

(c)

Figure 11.3: Dispersion of (a) compressional waves, (b) torsional waves and (c) flexural 
waves, in a rod with a diameter of 1.1/im. The red and blue lines correspond to the 
dispersion of the L and S waves in bulk silica.
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Ci = lo Elastic'U^ticalrdr (11.30)

where i is the modal number and U™lastic and Û ptical are the normalised displacements 
as calculated using,

Un = --------   r .  (11.31)
[ftU -U 'rdr]*

The pump wave is scattered from the refractive index grating induced in the rod by 
the passage of the elastic wave. Only those modes which produce a volume change are 
capable of creating the grating and so the problem reduces essentially to the consider­
ation of compressional modes. The torsional modes produce a shearing displacement 
(Uq) without creating a local volume change and thus a change in the refractive index. 
Flexural modes (Ur,Ue,Uz) will produce a slight volume change although this will be 
less than than that created the by the passage of the compressional modes.

At a pump operating wavelength of 647nm the phase matching (3 value as determined 
from the optical dispersion of the H E u  mode has a normalised value of 28.29 and this 
was found to remain approximately constant for rod diameters from O.l/xm to 5/im.

Taking this phase matching (3 value, it is possible to determine the frequency of the 
elastic modes in a given diameter silica rod which are capable of participating in Bril­
louin scattering. For example, the dispersion of the first few compressional modes at 
this phase matching (3 value is shown in figure 11.4 for a 1.1/im diameter silica rod. 
The intersection of each modal dispersion curve with the dashed red line gives the 
theoretical Brillouin frequency shift for that particular mode. However, the dominant 
mode responsible for Brillouin scattering will depend on the overlap between the dis­
placement profile of the compressional mode and the interference pattern of the forward 
propagating pump and backward propagating Stokes waves.

Figure 11.5 shows the normalised displacement profile and intensity profile of the phase 
matched compressional modes shown in figure 11.4.

For a l.l^ m  diameter rod the dominant mode responsible for Brillouin scattering is 
predicted to occur at a frequency of 26.88GHz, as determined from the overlap integral 
(equation 11.30), and is shown in figure 11.6. This is to be compared with an exper­
imentally measured frequency shift of 25.86±0.38GHz in a PCF with a core diameter 
of 1.1/xm.
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Figure 11.4: Dispersion of compressional waves that phase match the pump to the 
Stokes wave in a rod with a diameter of 1.1/xm (the normalised phase matching (3 value 
is indicated by the dashed red line). The solid red and blue lines correspond to the 
dispersion of the L and S waves, respectively, in bulk silica.

Figure 11.7 shows how the phase matching compressional modes develop in frequency 
as the diameter of the silica rod is varied. This plot was constructed by forming the 
matrix of coefficients A , B  and C  of equations 11.24, 11.25 and 11.26, and calculating 
the determinant of this matrix with m  = 0, Uo = 0 and (3 — 28.29, as lj and rod 
diameter were varied. The propagating modes are revealed when the determinant of 
the matrix is 0. The red and blue lines of figure 11.7 correspond to the frequency of 
the L and S waves in bulk silica, as determined using the phase matching (3 value.

The acoustooptic overlap for rod diameters corresponding to each experimentally stud­
ied core diameter is shown in figure 11.8 and the results are summarised in figure 11.9. 
The graph shows the experimentally measured frequency values to be generally less 
than the modelled results. In addition, figure 11.9 reveals a subtle trend in the mea­
sured results in that as the core diameter decreases, so does the Brillouin frequency 
shift. This is markedly different from the predictions of the model which suggests the 
frequency shift should increase as the core diameter falls.

For core diameters less than 1/im, figure 11.7 suggests that any elastic mode that 
becomes guided within the core of a PCF will be separated by large frequency intervals 
and so it is expected that the frequency shifts will deviate most significantly from the 
predictions of conventional theory for PC F’s with core diameters <l/im .
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Figure 11.5: Plot showing the modal displacement profiles of the phase matched com­
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corresponding intensity profiles of the compressional modes are shown in the density 
plots opposite with the outer perimeter of the rod shown in red. Regions of high in­
tensity are shown in white, whilst regions of the rod which experience a low intensity 
are shown in black. The corresponding frequency of the compressional mode is shown 
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Figure 11.7: Plot showing how the phase matching compressional modes develop in 
frequency as the rod diameter is varied (for a pump wavelength of 647nm). The red and 
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as determined using the phase matching fi value.
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Figure 11.8: Plot showing the theoretical acoustooptic overlap in rods with diameters 
corresponding to the diameters of each experimentally studied PCF. (a) 1.1/im, (b)
1.2/im, (c) 1.89/zm, (d) 2.04/un, (e) 2.11/zm, (f) 2.2/mi, (g) 2.23/zm, (h) 2.25/im, (i) 
2.32/im, (j) 2.34/im, (k) 2.5/xm, (1) 3.7/im.
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Figure 11.9: Plot showing the experimentally determined frequency shift measurements 
in PCF (black points), together with the modelled theoretical frequency shifts (red 
points) in rods with diameters corresponding to the PCF core diameters. In addition, 
the predicted frequency shift in PC F’s with core diameters of 0.25/zm, 0.35/xm and 
0.5fim  are shown.

The influence of the PCF core diameter on the Brillouin shift will become more notice­
able when the wavelength of the optical waves involved in SBS become comparable to 
the core diameter, in addition to the elastic waves. In such favourable circumstances, 
the overlap between the optical energy profile and the elastic wave is better matched. 
Thus, using a pump wavelength of 647nm, it is necessary to launch light into a PCF 
with a core diameter of ~0.7//m to observe any significant frequency shift. However, 
with the experimental systems described in chapter 10, it is difficult to achieve a stable 
launch of the pump into small core PCF i.e. <l/xm diameter, and therefore obtain a fre­
quency shift measurement. In the circumstances it is better to use a pump wavelength 
of 1550nm and launch this pump into a PCF with a core diameter of ~1.5/xm.

Figure 11.10 shows the theoretical dispersion of compressional modes in a 1.22/Lun 
diameter silica rod. The phase matching /3 value is shown with the dashed line; the 
solid red and blue lines correspond to the dispersion of the L and S waves in bulk silica 
at the phase matching (3 value.

The development of these phase matching modes in frequency, as the rod diameter is 
varied, is shown in figure 11.11 and the acoustooptic overlap of these modes with the 
fundamental optical mode is shown in figure 11.12.

Figure 11.12 suggests that several modes are almost equally capable of scattering the 
pump wave into the Stokes. This possibility of multiple scattering events is more
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respectively at this phase matching (3 value.
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Figure 11.12: Plot showing the acoustooptic overlap for those phase matched elastic 
modes shown in figure 11.10, as a function of the elastic modal frequency.

pronounced than for a pump wavelength of 647nm as seen in figure 11.6. (In figure 
11.12, four compressional modes exist which phase match the 1550nm pump to the 
Stokes with an acoustooptic overlap integral greater than 0.8 as compared with only 
two modes in an equivalent diameter rod (figure 11.6b) using a 647nm pump). The 
dominant compressional mode of figure 11.12 is modelled as occurring at a frequency of
11.27GHz, whilst successively dominant phase matched modes scatter the pump with 
a frequency shift of 10.78GHz and 12.48GHz with a scattering strength of 97% and 
93%, of the dominant mode, respectively.

These predictions were compared with the frequency shift obtained experimentally with 
a 1550nm pump wave in a PCF with a core diameter of 1.22/im and 9.27/im. The PCF 
had a length of ~110m and a loss of ~33db/km  @ 1550nm. The results were obtained 
using the heterodyne technique of section 10.1 and are shown in figure 11.13.

Figure 11.13a presents three peaks in the Brillouin spectrum, whilst figure 11.13b shows 
a single peak that is characteristic of Brillouin scattering in conventional fibre. The 
series of peaks in the small core PCF were measured at frequencies of 9.78GHz, 9.95GHz 
and 10.23GHz with respective strengths of ~26% and ~7% of the dominant scattering 
mode, while the large core fibre produced a single peak at 11.13GHz. The separation 
of these modes (~200MHz) shown in figure 11.13a, is such that it would have been 
difficult to resolve them using the Fabry-Perot interferometer of chapter 10.

It has been reported by Agrawal [63] that Brillouin spectra produced in fibres having a

7 8  9  10 11 12 13
frequency (GHz)
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Figure 11.13: Spontaneous Brillouin spectrum obtained from a PCF with a core diam­
eter of (a)1.22/im and (b)9.27/mi, using a pump wavelength of 1550nm.

doped core can have multiple Brillouin peaks. The Brillouin spectra produced in fibres 
having an inhomogeneous distribution of germania within the core has been shown 
to produce two peaks separated by approximately 100MHz [89]. Thus, it could be 
speculated that the additional peaks in PCF are the result of an inhomogeneous stress 
distribution within the core or maybe the result of core contamination during manufac­
ture. The possibility of multiple Brillouin scattering events, wherein the Brillouin signal 
is itself Brillouin shifted, could also be speculated, although in such circumstances the 
separation of the peaks would be expected to be approximately 9.8GHz.

The fibre which produced the Brillouin spectrum shown in figure 11.13a, was not single 
mode at 1550nm and so it is more probable that the presence of the two additional 
Brillouin peaks is due to Brillouin scattering from additional optical modes. In fact, the 
fibre was found to support a second family of higher order optical modes which were 
lossy at 1550nm - a feature which may account for the decrease in scattering strength 
with an increase in frequency.

Alternatively, the series of peaks may be considered to be due to the scattering of the 
pump wave by three elastic modes that are guided within the fibre by a phononic band 
gap. The silica rod model predicts the presence of three scattering events by three 
compressional modes, although it fails to accurately predict the measured frequency 
shifts.
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The experimental results presented in this chapter and in chapter 10 do not allow for 
a reliable conclusion to be reached as to whether there is elastic wave guidance in 
this PCF. In considering the theoretical model, it could be concluded that the elastic 
waves are not guided within the core of the fibre, since there is no association of the 
modelled frequency shifts with the experimental results. However, the silica rod model 
is only an approximate representation of the core within PCF. In reality, the core of 
PCF is not circular in cross-section and is supported at the centre of the cladding by 
silica bridges, which will affect the motion of the core. Furthermore, the model only 
considers Brillouin scattering associated with compressional waves; flexural waves will 
also create a refractive index change within the PCF core (although to a lesser extent 
than compressional waves) and so will provide an additional scattering to the optical 
modes.

It is difficult to assess the influence of the variations of the model from actual PCF in 
order to conclude whether the series of Brillouin peaks are infact due to elastic wave 
guidance. The most likely reason for the series of Brillouin peaks seems to be the 
scattering of higher order optical modes within the fibre core. It would therefore be 
instructive to perform the same experiment in PCF which is single mode at 1550nm, 
in order to remove the uncertainty of higher order optical mode scattering, and run the 
silica rod model for that fibre and compare results.
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Chapter 12

Consequence of Elastic Wave 
Guidance on the Threshold  
Power for Brillouin Scattering

Chapter 12 is directed to the understanding of how elastic wave guidance affects the 
threshold power for Brillouin scattering in photonic crystal fibre.

The threshold power for Brillouin scattering is an important quantity in fibre optic 
systems incorporating narrow bandwidth laser light, since it presents an upper limit to 
the maximum signal power that can be transmitted through the fibre, as demonstrated 
in the previous sections. The experimental arrangement used to determine this value 
is outlined in figure 12.1 and involved measuring the output power as a function of the 
launched power.

The laser source as illustrated in figure 12.1, was a New Focus tunable diode laser and 
was operated at 1550nm. Approximately lmW  of the signal from the diode laser was 
passed into a Keopsys (EDFA) fibre amplifier which could provide 30dB of gain. The 
output of the EDFA entered the circulator via port 1, which then passed the signal to 
port 2. The amplified signal was coupled into the test PCF via two microscope objective 
lenses that were mounted on precision translation stages back-to-back and the power 
output from the fibre was measured with a Wandel Goltermann power meter. Port 3 
was used to channel the back reflected signal (combination of elastically scattered and 
Brillouin shifted signals) into an optical spectrum analyser to monitor the progress of 
the Stokes line as the launch power was increased.
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Figure 12.1: Experimental arrangement for measuring the threshold power for Brillouin 
scattering.

12.1 The R esults

The typical variation of transmitted power with launch power is shown in figure 12.2a. 
As the launch power is increased the power transmitted through the fibre is also seen to 
increase, linearly at first, and then plateau for a given launch power, thereby indicating 
the threshold power for stimulated Brillouin scattering. Figure 12.2b shows the gain 
experienced by the Stokes line for a launch power, below, at, and above threshold. As 
the launch power is increased, the Stokes line can be seen to grow in intensity from a 
level below that of the elastically scattered light (no frequency change) to above the 
intensity levels of the elastically scattered light. It should be noted however, that the 
linewidth of the laser is significantly less than that shown in figure 12.2b. The linewidth 
shown in figure 12.2b is characteristic of the bandwidth of the optical spectrum analyser.

For each fibre studied, the power launched into the PCF was calculated by performing 
a cut-back and measuring the power output from approximately lm  of PCF. Knowing 
the losses that were accumulated before the coupling stage and the power output from 
the cut-back, the coupling loss could be estimated and thus the launched power. The 
core diameters of the PCF’s studied ranged from 1.1-4.8/mi and in addition to these, 
a conventional Pirelli SMF fibre with a core diameter of 9/xm was used as a control.
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Figure 12.3: Plot showing the variation in threshold powers for PC F’s with different 
core diameters. The red point corresponds to the Pirelli SMF.

The results are shown in figure 12.3. The points have been normalised to remove the 
dependence associated with the different lengths and effective areas so that the fibres 
can be compared on an equal footing. Rearranging equation 9.6, it is found that

=  11 . (12.1) 
A ef f  9b

If conventional theory is to predict the threshold power for stimulated Brillouin scat­
tering in PCF, the plot should be nothing more than a linear array of points located 
at a y-vahie determined by the RHS of equation 12.1. For conventional SMF the gain 
parameter gs  has the value 5 x 10-11ra/W  as given by Agrawal [63] and it is this 
value that is used to generate the horizontal red line in figure 12.3. There is a clear 
departure of points from this value for PC F’s which confine the signal within a small 
core (< 2.5/mi2). The Pirelli SMF (as shown with the red point) on the other hand, 
(as well as PC F’s which had a large effective area (> 25/zm2)) showed better agreement 
with conventional theory (as expected) having a measured value of 4.8mW as compared 
with a theoretical value of 2.4mW,

In considering a free silica rod, it was shown in the previous section that the elastic 
modes become separated within the rod and axe capable of producing several Brillouin 
peaks in the Brillouin spectrum. The series of peaks shown in figure 11.13a have an 
effective bandwidth which is approximately 10 times greater than the spectrum shown 
in figure 11.13b.
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Equation 9.6 reveals the inverse relationship of threshold power with Brillouin gain, 
gB’ Thus, from equation 9.8 it is evident that as A/#  increases, so will the threshold 
power. In constructing an envelope to enclose the three Brillouin peaks of figure 11.13a, 
and in applying the FWHM of that envelope to equation 9.8, the threshold power 
as determined from equation 9.6 is calculated to be ~70mW. The threshold power 
for stimulated Brillouin scattering in this fibre was measured experimentally to be 
80mW, which is significantly greater than that measured for conventional SMF of 
~5mW. Accordingly, this wide effective Brillouin linewidth may be the cause of the 
high threshold power in small core PGF.

Equally however, it should also be noted that the threshold power for SBS is dependent 
on the overlap of the interference profile of the pump and Stokes waves, with the dis­
placement profile of the elastic wave (see section 11.2). For small core PC F’s the elastic 
modes become separated by large frequency intervals as shown in figure 11.11. The 
number of modes per unit frequency available to participate in Brillouin scattering in 
small core PCF is less than the number in large core PCF. Thus, as core diameter falls, 
it becomes more likely that the displacement profile of the compressional mode which 
participates in Brillouin scattering will become less well-matched to the pump/Stokes 
interference pattern. This overlap mismatch may thus also contribute to the measured 
increase in the threshold power for stimulated Brillouin scattering.
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Chapter 13

Thesis Conclusion

The propagation characteristics of elastic waves in the singly periodic multilayer stack 
has been presented through the calculation of the associated phononic band structure. 
The analysis considered the two shear (S) disturbances in addition to the longitudi­
nal (L) disturbance in formulating the dispersion of elastic waves within the periodic 
system.

The propagation of plane-polarised coupled elastic waves is significantly different from 
the uncoupled anti-plane waves which possess very similar characteristics to EM wave 
propagation. Elastic waves however, generally present a more complicated dispersion 
than EM waves since the L polarisation state couples to the two S polarisation states 
at interfaces. The L wave produces additional stop-bands within the Brillouin zones, in 
addition to those at the boundary, which has implications regarding the transmission 
and reflection characteristics of the system.

The coupling between L and S waves creates regions in frequency and wavevector in 
which one particular polarisation state of the coupled pair can be extinguished. This 
clearly provides a basis for a phononic polariser. Equally, similar regions can also allow 
the particular polarisation state to be conserved during a scattering event, thereby 
eliminating the re-partition of energy into its coupled partner.

The interaction of the L and S waves at interfaces within the periodic system was found 
to create an infinite number of possible antiresonance conditions which can take place 
to close a particular stop-band. The antiresonance conditions were stated in chapter 
6, however, it is impossible to calculate which antiresonance condition will take place 
to close a particular stop-band without first consulting the band edge diagram (or 
equivalent) for that particular multilayer stack. As a result, coupled L and S waves
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could provide the basis for encryption systems since their interaction in closing the stop 
bands is chaotic without the prior knowledge of the stack composition and geometry.

Acoustooptic interactions within 2D solid core photonic crystal fibres (PCF) has also 
been presented through measurements of the frequency shift and threshold power asso­
ciated with Brillouin scattering. Both optical and electrical analysis of the scattering 
process has been demonstrated with a variety of PCF’s.

Using a laser pump of 1550nm, several Brillouin peaks were found to be generated 
in a 1.22/im diameter core photonic crystal fibre. The discrete nature of these peaks 
produced an effective Brillouin linewidth approximately 10 times that of the Brillouin 
linewidth in conventional SMF, and is thought to be the cause of a measured thresh­
old power for stimulated Brillouin scattering approximately 10 times greater than in 
conventional SMF.

The frequency shift in PCF was modelled by considering the interaction of the funda­
mental H E \\ optical mode, with the phase matched compressional modes in a free silica 
rod. The experimental results showed a decrease in the measured frequency shift with 
falling core diameter, whereas the rod model indicated that the measured frequency 
shift should increase as the core diameter is reduced.

The presence of three peaks in the Brillouin spectrum is suggestive of the scattering of 
the pump wave by three elastic waves within the core. However, it is uncertain whether 
these elastic waves are guided by a phononic band gap. It could be the case that three 
optical modes participated in the scattering event to produce the three Brillouin peaks, 
since the fibre was not single mode at the pump wavelength. In view of this uncertainty, 
and the variance between the modelled frequency shifts and the experimental results, 
it is difficult to ascertain whether the elastic waves were guided by a phononic band 
gap.
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Chapter 14

A ppendix A: Elem ents of the  
M atrix Propagator for In-Plane  
Polarised Waves

In relating the components of the elastic wave in layer j  of period iV+1 to the equivalent 
layer of the previous period, the matrix propagator is obtained by taking the product of 
matrix propagators for the individual layers of period N . Thus, for in-plane polarised 
waves, the matrix propagator M jf, is given by,

(14.1)

The elements of the propagator matrix for layer j  (Mj) of the period are given below. 
Similarly, the elements of the propagator matrix for layer j  +  1 (M j+i) are obtained 
by interchanging subscripts j  for j  +  1 in equation 14.2.

m n  =  m u  = cos (djpsj) +
2/32(cos(djpLj) -  cos (djpsj))

tP + P h )

i(3(2pLjPsj sin (djpsj)  + (P2 -  p 2Sj) sin (djpLj)) 

77112 "  ^  "  P L j lP + f i j )

_  _  iP(cos(djPLj) -  cos (djpsj))
m u  = m24 = ------------ 7~o2 i— ----------

H  (P2 +Psj)

_  P 2 sin(djpLj ) +  PLjPSj  sin(djpS j )

'3‘77114 VjPLj(P2 + p 2Sj)
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*0(2PLjPSj  s in  {djPLj)  +  (P2 -  p 2S j) Sin (d jp s j ) )  
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fJ , 2(32(cos(djpSj) -c o s{d jpLj)) 
m 22 = m33 =  COS (djPLj) + ------------— —̂:L-

/?2 sin(rfjpgj) +  PLjPSj sin(^pLj)
77123 /^PSj(/?2 + p |j )

2if3(cos(djpLj) -  cos(djpSj))pj(P2 - p 2Sj)
77131 =  77142 = --------------------- W T r t j

(4P 2PLjPSj s in (d j-p sj) +  Pj{P2 -  p 2S j) s m (d jp Lj))

77132 “  PLj(P2 +P2Sj)
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77141 _  p s j(^2 + p L )
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Chapter 15

A ppendix B: D ispersion o f the  
Fundamental H E n M ode in a 
Free Silica Rod

The derivation of the dispersion relation for the fundamental HEn mode begins with 
Maxwell’s equations for a linear, isotropic, lossless dielectric material with no free 
charges or current sources.

(15.1)

(15.2)

(15.3)

(15.4)

E and H  are the electric and magnetic fields respectively, hq the vacuum magnetic 
permeability (/zo =  47r x 10~7H m ~l ) and eo the vacuum electric permittivity (eo =  
8.854 x 10- 12F m _1). Here er is the relative dielectric constant (er =  n(u>)2 ) and f ir 

the relative magnetic permeability, assumed ~ 1.

The response of a given material to the passage of an EM wave will depend on the 
optical frequency uj. This is known as chromatic dispersion and gives rise to a frequency 
dependent refractive index. The origin of this effect lies at a fundamental level and is 
related to the resonant frequencies at which the material absorbs the EM radiation.

_  _  dHV X E =  -fir/IQ —

V x H  =  ereo 

V.E =  0 

V.H =  0.

dE
dt
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The frequency dependence of the refractive index (far from the medium resonances) 
is approximated by the Sellmier equation, as shown in equation 15.5 and must be 
included in the dispersion analysis,

n‘!M  =  i  +  E
i - i  *4 — u 4

(15.5)

Here, ujj is the j th resonant frequency and B j  is the strength of the j th resonance. 
For optical fibres these parameters are obtained by fitting a curve to experimental 
dispersion data and truncating the series to three terms (m =  3). For bulk fused 
silica, these parameters are B\ =  0.6961663, £2 =  0.4079426, B3 =  0.8974794, Ai = 
0.0684043/xm, A2 =  0.1162414/im and A3 =  9.896161pm  where Aj  = 2-Kc/ujj [63].

Assuming the electric and magnetic field to be of the form A =  A (r, 9) exp
where A  represents the E  or the H-field, equations 15.1 and 15.2 can be manipulated
in cylindrical polar coordinates such that the transverse E  and H-field components can
be expressed in terms of the longitudinal 2-component of the E  and H-fields as shown
below,

E,
- i  ( Up dHz a

09 Pp 2 (
dEz
dr

(15.6)

Ed 0 * r  09
- i / / 3  0Ez 
P2 V

— up-
dr )

(15.7)

Hr = ~~ \0
P2

,0HZ u ed E z 
dr r 09

(15.8)

„  —i f f }  9Hz dEz \
He = f \ - r ^ e -  + ^ )  (15-9)

where p is the transverse wavevector component (p2 = (kri)2 — (32). Thus, the problem 
reduces to finding the 2-component of the E and H-field since once these are known, 
Er, Eg, Hr and Hq can be determined from equations 15.6-15.9.

Substituting Er and Eq in the expression for the 2-component of the H-field in the 
expansion of 15.1 gives,
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d2Hz , 1 dHz , 1 d2Hz , 2rr „
W r  + r ~ f r + ^ ~ d # r + p H z - ° -  (15'10)

Similarly, substituting for Hr and H$ in the expression for the z-component of the 
E-field in the expansion of 15.2 gives,

d2Ez 1 dEz 1 d2E z o
dr2 +  r~dr~ +  r2 dQ2 +P Ez ~  ° ‘ (15.11)

A suitable trial solution to equation 15.10 can be written in the form,

Hz =  QR(r) exp(im0) (15.12)

where Q is a constant, and m  is an integer to ensure that the fields are periodic in 
6 with a period of 27t (the factor exp[—i((3z — ut)\ has been omitted). Substitution 
of equation 15.12 into equation 15.10 leads to the well-known differential equation for 
R(r),

d2R  I d R  /  ,  m 2\  , . „
w + -r f r + p - ^ r w = 0 - (15-13)

The Bessel solutions to equation 15.13 will depend on the region of space to which 
they apply. The fields must remain finite at all points within the rod, while solutions 
outside of the rod must decay for r —> oo if guided solutions are to exist.

Several choices exist for the two independent solutions to equation 15.13. These include 
Bessel functions of the first (Jm(pr')) and second kind (Ym(pr)), as well Hankel functions 
of the first ( H $  (pr)) and second kind (Hm (pr)). The Bessel function Jm remains finite 
at pr = 0, whereas the Bessel function Ym, and Hankel functions of the first and second 
kind are singular at the coordinate origin. For decaying waves the transverse wavevector 
component p, becomes imaginary. In this case, for large values of r, Hm} (ipfr) becomes 
proportional to the exponentially decaying function exp(—pfr), and Hrn{iptr) becomes 
proportional to the exponentially growing function exp (pfr), where pi = ((32 — (kn)2)1/2. 
Thus, the solution to equation 15.13 within the rod (r < a) can be written as,

Hz = QJm(pr)exp(im9), (15.14)
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and in a similar fashion, the solution for the E-field for (r < a) becomes,

E z = P Jm(pr) exp(im6) (15.15)

where P  is a constant.

The field outside of the rod is represented using the Hankel function of the first kind. 
Since the problem is in search of the guided modes, the coordinate argument will involve 
imaginary values and so will provide the necessary decay to the fields as r —*■ oo. For 
r  > a,

Hz =  S H $ (p r ) exp(im0), (15.16)

and,

Ez = R H $  (pr) exp(imO), (15.17)

where R  and S  are constants.

The four unknown constants P, Q, R  and S  will be determined by the boundary
condition, which requires conservation of the tangential field components, Eg, E z, Hq

and Hz. The resulting system of four homogeneous equations can then be set up 
as an eigenvalue equation for j3 with the modes of the rod being revealed when the 
determinant of the eigenmatrix is zero [90].

Evaluation of the determinant results in the dispersion relation,

( j'm(U) (  J'm(U) n% H $ '(W )  \  f m f i 2)  /  V  N4

\U J m  W H $  ) \U J m (U )  n l, W h £ \ w )J  /  \U W )

where ' indicates differentiation with respect to the argument, and C7, V  and W  are 
dimensionless parameters given by,
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U = a((knco)2 — (32)1/2 

V  = kain l, -  n2d )1/2 

W  = a{fi2 -  (iknd)2)1/2

(15.19)

(15.20)

(15.21)

where rico and nd correspond to the refractive index of the core and cladding respec­
tively. In general for a cylindrical waveguide all field components are coupled, and 
for each propagation constant /?, two sets of degenerate modes exist. Because of the 
circular symmetry, modes which trace out a helical path, but progress with opposite 
helicity can have the same (3 value. These waves are called hybrid E H  or H E  modes 
depending on whether the 2-component of the E-field or H-field is the larger, respec­
tively. The polarisation associated with these waves is circular, rotating clockwise or 
anticlockwise. Other types of modes also exist which are linearly polarised, having 
no angular or azimuthal dependence. These are the TE or TM modes depending on 
whether the E or the H-field is perpendicular to the plane of propagation, respectively.
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