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Abstract

The ability to construct low-dimensional nanostructures of magnetic materials 
opens up a wide variety of interesting physical effects and applications. Until 
recently few studies have considered systems with one-dimensional periodicity. 
Recent progress in fabricating monatomic chains of atoms on surfaces provides 
the motivation for theoretical calculations on such systems.

In this thesis the layer multiple scattering method for performing electronic struc­
ture calculations on surfaces and interfaces is extended to allow for the treatment 
of systems with one-dimensional periodicity. A solution of the Poisson equation 
for a system with one-dimensional periodicity is developed. This involves one­
dimensional lattice sums, the evaluation of which has necessitated the derivation 
of a Ewald sum technique for one-dimensional lattices. Comparison of the one­
dimensional solution for arrays of chains to existing two-dimensional solutions 
confirms its accuracy.

Self-consistent electronic structure calculations for 3d chains on the Cu(OOl) sur­
face have been performed for a variety of chain configurations, including single 
and multiple chains on the surface, embedded chains and step-edge type chains. 
Quantities calculated include local densities of states, total charges and magnetic 
moments. Results obtained are consistent with monolayer calculations using the 
layer multiple scattering method, and also with monolayer and adatom calcula­
tions in the literature.

The behaviour of the magnetic moments for the chain systems have been inter­
preted within a simple Stoner-like itinerant magnetism model. Trends in the 
moments across the 3d series, and between the various systems, are understood 
in terms of the interaction between states, with hybridisation between the d- 
orbitals of the 3d chain atoms themselves, and between the d-orbitals of the 3d 
chain atoms and the sp-orbitals of the Cu substrate, the principal mechanisms.



“The most merciful thing in the world, I think, is the inability of the human 
mind to correlate all its contents. We live on a placid island of ignorance in 
the midst of black seas of infinity, and it was not meant that we should voyage 
far. The sciences, each straining in its own direction, have hitherto harmed us 
little; but some day the piecing together of dissociated knowledge will open up 
such terrifying vistas of reality, and of our frightful position therein, that we shall 
either go mad from the revelation or flee from the deadly light into the peace and 
safety of a new dark age.”

H. P. Lovecraft, The Call of Cthulhu
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Chapter 1

Introduction

The electronic structure and magnetic behaviour of a material depend signifi­
cantly on its structure and dimensionality. Only relatively recently have we seen 
the ability to tailor materials on the atomic scale, allowing construction of layer, 
row and adatom systems with monatomic precision. Construction of magnetic 
materials on the atomic scale, coupled with the high dependence of magnetic be­
haviour on structure and dimensionality, suggests many possible applications, 
e.g., in compact magnetic storage. Theoretical calculations of the electronic 
structure and magnetic properties of such systems are increasingly important 
in understanding the behaviour of magnetism in low-dimensional systems.

The transition metals, being on the borderline of magnetism, have attracted much 
interest in this regard. Transition metal structures on noble metal substrates 
can be considered as quasi-free systems, and thus represent close realisations of 
low-dimensional systems. In the past most experimental and theoretical studies 
have been concerned with two-dimensional systems, e.g., thin films and multilay­
ers. While there has been some interest in adatom and cluster structures, very 
few studies have examined one-dimensional systems at surfaces, i.e., monatomic 
wires. Recent work has demonstrated that arrays of parallel monatomic chains 
can be deposited on vicinal surfaces [40]. Measurements of Co chains on the 
vicinal Pt(997) surface suggest the presence of local magnetic moments [24]. The 
experimental realisation of monatomic chains on surfaces provides the motivation 
for electronic structure calculations on such systems.
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It is the aim of this thesis to develop an extension to the layer multiple scat­
tering theory for electronic structure to enable the study of systems with one­
dimensional periodicity, and to perform calculations of the electronic and mag­
netic structure of such systems. The structures that are examined are 3d transi­
tion metal wires on the Cu(OOl) surface. The results for these one-dimensional 
structures complement the existing calculations for 3d monolayers [5] and 3d 
adatoms [75] on the Cu(OOl) surface, giving a picture of the magnetic properties 
over the full range of dimensionality.

The remainder of this chapter discusses magnetism in low-dimensional systems, 
and examines previous experimental and theoretical work on one-dimensional 
systems.

Chapter 2 provides an overview of the methods used in electronic structure calcu­
lations, and gives a brief description of density functional theory, the framework 
within which the calculations are performed.

Chapter 3 details multiple scattering theory, the layer Korringa-Kohn-Rostoker 
(LKKR) Green function method for electronic structure calculations, and the 
extension of this method to the treatment of extended line defects.

Chapter 4 examines the solution of the Poisson equation, a vital step in the self- 
consistency cycle. In evaluating the Poisson contribution from a line defect there 
arise one-dimensional lattice sums; in order to evaluate these sums an extension 
of the Ewald sum technique to one-dimensional lattices is derived and tested.

Chapter 5 covers some of the steps required in the calculation of the electronic 
structure of a system, including the Brillouin zone integral, the energy contour 
integral, and the determination of the charge density. The convergence of one­
dimensional defect calculations is examined with respect to the various parame­
ters, including cluster size, k-point set and angular momentum basis.

Chapter 6 presents results from electronic structure calculations on chains of 
3d atoms on a Cu(OOl) surface. Densities of states and magnetic moments are 
compared between various chain systems, to clean surfaces, and to results from 
3d monolayers on Cu.

2



Chapter 7 summarises the entire work, draws conclusions and suggests avenues 
for future work in this area.

The units used throughout this thesis, unless otherwise stated, will be atomic 
units, where

h2 = m e =  e2 =  1 (1.1)

with the Hartree (Ha) and the atomic unit (au) as the units of energy and length
respectively,

lH a =  27.2116 eV, lau =  0.529177A. (1.2)

All graphs use electron volts (eV) as the units of energy and are scaled such that
the energy zero is at the Fermi level.

1.1 Low-dimensional m agnetism

The electronic and magnetic properties of a metallic system depend significantly 
on the dimensionality of the system. As the dimensionality is reduced quantum- 
size effects can give rise to exotic properties that have no equivalent in bulk 
systems. Surprising electronic phenomena are observed in a two-dimensional 
electron gas, e.g., fractional charge and the quantum Hall effect [122, 77]. The 
behaviour predicted for electrons confined to one-dimension is still more exotic. 
Electrons in one-dimension are predicted to behave as a Luttinger liquid, in which 
the electron loses its identity and separates into two quasiparticles, a spinon that 
carries spin but no charge, and a holon that carries the positive charge of a 
hole without spin [82]. While the Luttinger liquid state is a prediction for a 
true one-dimensional metal, the Peierls theorem [96] casts doubt on the existence 
of a metallic state in one-dimension. The Peierls theorem argues that a one­
dimensional chain of atoms is unstable with respect to small displacements of the 
atoms, which creates an energy gap in the band structure near the Fermi energy, 
destroying the metallic character. One possible way round this restriction is to 
consider an atomic chain anchored to a surface, hence increasing the energy cost 
of displacing the atoms.
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Figure 1.1: Densities of states for bulk Cu, showing the total and the s, p and d 
contributions.

Luttinger liquid behaviour is predicted for true one-dimensional systems. In the 
case of a monatomic metal chain on a metal surface, there will generally be some 
hybridisation between states in the chain and the surface. While this makes 
Luttinger liquid type behaviour unlikely in such systems, the low-dimensionality 
can still produce interesting electronic and magnetic effects.

The ability to tailor the structure and hence the magnetic properties of mate­
rials suggests interesting applications, especially in magnetic storage. Magnetic 
multilayers exhibiting giant magnetoresistance are one area in which considerable 
progress has been made, with applications including magneto-optical recording 
media, spin valve sensors, and magnetoresistive random access memory (MRAM) 
[5, 57]. Magnetic nanostructures offer the possibility of developing extremely 
compact devices with novel magnetic properties. Atomic wires suggest the even­
tual possibility of true nanoscale circuitry. Investigation of the properties of these 
structures is thus worthwhile, including the magnetic order and coupling between 
wires, average moment, interaction with the substrate, and magnetic anisotropy.

In the case of low-dimensional metallic systems, while these systems do not fea­
ture true confinement of electrons, the electronic and magnetic properties are 
still significantly affected [55]. Materials that are traditionally ferromagnetic can 
exhibit considerable enhancement in the size of the magnetic moment, and mate­

Total
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rials that are non-magnetic in the bulk can exhibit significant magnetic moments. 
Transition metal structures on noble metal surfaces are of particular interest in 
this respect, principally for two reasons. Firstly the interaction between transi­
tion metals and noble metals is relatively weak. This is because the main d-band 
component of the density of states (DOS) is located significantly below the Fermi 
level in noble metals, as opposed to straddling the Fermi level in transition met­
als. Figure (1.1) shows the DOS resolved into s-p-d contributions for bulk Cu. 
Clearly the d contribution is by far the most significant. The Cu d-band upper 
edge is about 1.5eV below the Fermi level, thus having little overlap with the 
d-band in transition metals. For Au and Ag the d-band edge is even lower in 
energy, about 2 and 3 eV below E f  respectively. This weak hybridisation means 
that transition metal structures on noble metal substrates can be considered as 
quasi-free systems.

Secondly, while Fe, Co and Ni are ferromagnetic as bulk crystals, many of the 
other transition metals are on the border of magnetism, making them good can­
didates to exhibit interesting changes in their magnetic behaviour. Numerous 
first-principles calculations have been performed for transition metal monolay­
ers on noble metal substrates with the prediction that many of the monolay­
ers should exhibit enhancements in their moments over their bulk values. An 
early full-potential linearised augmented plane-wave (FLAPW) study [38] pre­
dicted significant moments for Cr on Au(OOl), V and Fe on Ag(OOl), and Fe on 
Cu(OOl). Since then calculations have predicted large moments for 3d transition 
metal monolayers on Cu(OOl) [5] and on Ag(OOl) [13], and significant moments for 
some 4d and 5d transition metal monolayers on Ag(OOl) and Au(OOl) [9]. Figure 
(1.2) shows the calculated moments for 3d, 4d and 5d transition metal monolayers 
on an Ag(OOl) surface [9]. Recent work has examined more complex structures 
and spin configurations, including calculations for several spin configurations of 
transition metal monolayers on C u (lll)  and A g (lll)  surfaces [72], calculations 
of multiple adlayers [11], and of sandwich type structures, e.g., multilayers of Fe 
on Au(OOl) with an overlayer of Au [20], and calculations of surface alloys, for 
example Mn alloys on Cu(001) [12] and C u ( lll)  [6] surfaces.

W ith the large moments seen for many transition metal adlayers on noble metal 
surfaces, it is natural to suppose that other low-dimensional structures will also 
be of interest. Isolated adatoms at surfaces represent the zero-dimensional limit 
for nanostructures on surfaces, and as such it is reasonable to expect that the

5
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Figure 1.2: Local moments for 3d, 4d and 5d monolayers on the Ag(OOl) surface 
[9],

further reduced dimensionality would lead to greater enhancement of the mag­
netic moments. Calculations for transition metal adatoms on noble metal surfaces 
support this view. 3d adatoms on the Cu(OOl) surface show considerable enhance­
ment of their moments, while 4d and 5d adatoms on Ag(OOl) exhibit surprisingly 
large moments when compared to monolayer calculations [75]. Calculations have 
since been performed for numerous other adatom systems, including 3d, 4d and 
5d adatoms on Pd(OOl) and Pt(OOl) [119], 3d adatoms on Ni(OOl) and Fe(OOl)
[90], and 4d adatoms on the same surfaces [91]. Figure (1.3) shows the calculated
moments for 4d adatoms on the Cu(001), Ag(001) and Pd(001) surfaces [119].

Also of interest as low-dimensional systems are finite sized clusters on surfaces, 
including islands and finite length chains. These systems can be thought of as

5
— Ag( OOI )  

•  C u (0 0 1 )
■■■*■■ P d (0 0 1 )

CD 4

• (a)C 3
<De
§ 2 <0

1

♦0
Y Zr Nb Mo Tc Ru Rh Pd

Figure 1.3: Local moments for 4d adatoms on the Cu(OOl), Ag(OOl), and Pd(OOl) 
surfaces [119].
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Figure L4: Local moments per adatom for 4d dimers(C2) and adatoms on the 
Ag(OOl) surface, and for 4d dimers in free space [128].

being intermediaries between monolayers and adatoms, thus for transition metal 
clusters on noble metal surfaces we would expect in many cases to see moments 
falling between the adatom and monolayer values. The magnetic moments for 
several finite chain and island clusters of 4d atoms on the Ag(OOl) surface have 
been calculated [128], with somewhat complex results. Broadly however, the 
moments for the chains and islands fall between the adatom and monolayer values, 
as expected. Figure (1.4) shows the moments for 4d dimers (2 atom chains) 
and adatoms on the Ag(OOl) surface, as well as 4d dimers in free space. As 
expected, the dimers on the Ag surface have smaller moments than the adatoms, 
but larger moments than the monolayer results shown in figure (1.2). Numerous 
calculations have since been performed for clusters on surfaces, including 3d, id  
and 5d dimers on Ag(OOl) [118]. Rh clusters have been found to exhibit some 
surprising properties, with the local moments of Rh clusters strongly dependent 
on the number of atoms and the symmetry of the cluster [27, 125]. The moments 
for Rh dimers on Ag decrease sharply with increasing interatomic distance, in 
contrast to other transition metal dimers [117].

While two-dimensional (monolayer) and to a lesser extent zero-dimensional (adatom) 
and finite-sized low-dimensional (cluster) structures have received considerable 
attention very few studies have so far been presented for one-dimensional sys­
tems, i.e., monatomic chains.

Experimentally this is due to difficulties in realisation of these systems and in 
obtaining data from them. Theoretically the reduction in the symmetry of the 
system increases the computational costs. However, recent developments in ex­
perimental techniques have made progress in preparing and characterising one-
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dimensional structures, and advances in computing power make ab initio studies 
of such systems feasible. The next section will give an overview of previous ex­
perimental and theoretical work on one-dimensional systems.

1.2 One-dimensional system s

There are a wide variety of one-dimensional systems that possess interesting 
physical properties. An interesting class of these is nanowires, freestanding wires 
between contacts ranging from the monatomic limit up to 10’s of nanometres in 
width. There axe a number of methods for production of freestanding nanowires, 
including manipulation of mechanically controllable break junctions [130], and 
combined scanning tunnelling/atomic force microscopies [107]. Numerous stud­
ies have been made of the mechanical, electrical and chemical properties of these 
structures, both experimentally and theoretically. The low-dimensionality of 
these structures leads to many interesting physical effects. Three-dimensional 
nanowires of Na axe predicted to undergo a transition to a spin-polarised mag­
netic state at critical chain radii [131]. Calculations have been performed for the 
conductance of monatomic carbon atom wires (known as cumulenes) between 
metal electrodes, finding an oscillatory behaviour, with the resistance of chains 
comprising an odd number of carbon atoms being lower than that of a chain with 
an even number of atoms [73]. This effect is attributed to resonance states due 
to the interaction of the metal electrodes with the carbon wire. Calculations of 
the coupling between two such wires in parallel have also been carried out [74]. 
A similar result is obtained from first-principles calculations of monatomic Na 
wires - as is the case for the carbon nanowires above the conductance is found to 
be higher for chains comprising odd numbers of atoms [112]. In this homogenous 
system the oscillatory conductance is attributed to resonance states due to the 
sharp tip structure and local charge neutrality of the system. These conditions 
axe believed to be common in other monovalent atomic wires, thus it is suggested 
that other monovalent atomic wires may exhibit this behaviour.

However, the focus of this thesis is on one-dimensional structures on surfaces, 
specifically chains of transition metal atoms on noble metal surfaces. The fol­
lowing two sections discuss previous experimental and theoretical progress in 
fabricating and understanding one-dimensional structures on surfaces.



Figure 1.5: STM image of various stages in the construction of a 48 Fe atom 
corral on a C u (lll)  surface [22].

1.2.1 E xperim ent

There are many methods for the generation of one-dimensional nanoscale struc­
tures at surfaces. The manipulation and positioning of single atoms on surfaces 
has been demonstrated by scanning tunnelling microscopy (STM) [22]. Figure 
(1.5) shows various stages in the construction of corral of 48 Fe atoms on a 
C u (lll)  surface using STM to position the atoms individually. This technique 
allows the construction of arbitrary structures, however it does not permit the 
preparation of nanostructured large-area samples, which are required by standard 
experimental methods for band structure determination, such as photoemission 
and inverse photoemission. For these experimental probes an array of equally 
spaced one-dimensional structures is required. The spacing between the struc­
tures should be large enough to allow mostly intrachain interaction (e.g., weak 
interchain interaction), but small enough to ensure that the contribution from 
the one-dimensional structures to the photoemission spectra is significant.

Large-area samples with one-dimensional structures of nanometre scale can be

9
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Figure 1.6: Band dispersion of the metallic surface state on Si(557)-Au near 
the Fermi level Ep. High photoemission intensity is shown dark. Two nearly 
degenerate bands are observed with a splitting that increases towards Ep. The 
momentum distributions at Ep  (top panels) clearly show a splitting, while spinon 
and holon bands in a Luttinger liquid would have to converge at Ep  [81].

synthesised by molecular beam epitaxy (MBE) exploiting the self-organisation of 
adatoms on anisotropic surfaces [106]. Examples of systems with one-dimensional 
structures grown by self-organisation include Cu, Pd and Fe chains on Pd(110)
[106, 78], Gd on W(110) [95], Ir and Pd on W(110) [68] and Au on Ni(110), where
a dimer-trimer chain structure is observed [103, 94]. In addition, some adsorbates 
on such surfaces have been found to self-organise into stripes, as in the case of O 
on Cu(110) [67].

Metallic chain structures can also be formed on semiconductor surfaces, an ex­
ample being gold adsorbed on a stepped S i(lll)  surface. In this case two distinct 
one-dimensional structures are known, Si(557)-Au [110, 81, 80, 2] and Si(l 11)5x2- 
Au [80, 2], both of which exhibit chains of atoms along the [110] direction. Pho­
toemission spectra from the Si(557)-Au surface found a one-dimensional metallic 
state at the surface, with a band splitting near Ep [110]. This splitting of the 
surface state was interpreted as an indication of spin-charge separation in a Lut­
tinger liquid. Further photoemission studies of the same surface system suggest 
that this is not the case. Figure (1.6) displays photoemission data for the band

10



Figure 1.7: Diagram of a vicinal FCC(IOO) surface, in this case the (410) surface.

dispersion of the surface state, and clearly shows two nearly degenerate bands 
with a splitting at the Fermi level, ruling out the spinon-holon splitting predicted 
for a Luttinger liquid as spinon-holon bands have to converge at Ep [81]. An 
alternative interpretation is that of two metallic bands, corresponding to two 
chains in the unit cell [81]. This interpretation is in agreement with a recent 
theoretical calculation of the S i(lll)5  x 2-Au surface [108].

Regular step arrays can be obtained on vicinal metal and semiconductor surfaces, 
effectively acting as an array of one-dimensional structures. It is possible to attain 
highly regular arrays of such steps, e.g., a stepped Si surface with only 1 kink per 
20000 lattice sites [124]. Step decoration can then be used to grow nanowires, 
with the periodic arrays of steps acting as templates for step flow growth. In step 
decoration metal adatoms are deposited via MBE onto the stepped surface, where 
the step ledges act as preferential nucleation sites. There are numerous examples 
of the application of this technique for different surfaces and adatoms, including 
rare gases and metals on a vicinal Pt(997) surface [84], Cu on Mo(110) [101, 61, 
62], Cu on W(110) [62] and Co on C u (lll)  [25]. Figure (1.7) shows an example 
of a stepped FCC surface. The surface comprises (100) terraces separated by 
(110) steps, the terraces between the steps are 4 atoms wide, corresponding to 
a (410) vicinal surface. For more information on the classification of high Miller 
index surfaces, see [123]. Figure (1.8) shows the same surface with a single row 
of adatoms decorating the step-edges.

Low-dimensional analogues to all the classic thin-film growth modes are seen 
when decorating steps. Cu grows on a stepped Mo(110) surface in parallel stripes, 
a row-by-row growth mode that is equivalent to thin-film layer-by-layer growth 
[62]. For Cu on W(110) only the first row of Cu atoms decorate the step-edge,

11



Figure 1.8: Diagram of an FCC(410) surface, with a single chain of adatoms 
decorating each step.

with additional Cu atoms forming monolayer height islands attached to the step- 
edges, the equivalent of Stranski-Krastanov growth [62]. The equivalent of island 
growth has been observed for Co on stepped C u (lll) , Co islands nucleate at the 
step-edges, and eventually coalesce to form stripes at higher coverage [25].

Recent work has demonstrated that it is possible to grow high density arrays of 
parallel monatomic nanowires of Ag and Cu [40] and Co [39] on a vicinal Pt(997) 
surface. Figure (1.9) shows an STM image of a Pt(997) surface with monatomic 
Ag wires decorating the step-edges [24].

Epitaxial growth of Fe on W(110) results in one-dimensional stripes of Fe atoms

Figure 1.9: STM image of single monatomic Ag wires decorating the step-edges 
of a vicinal Pt(997) surface [24].
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at step-edges, which were found by spin polarised low energy electron diffraction 
(SPLEED) to be ferromagnetic down to an Fe coverage of 0.005 ML [31]. Nar­
rowly spaced monolayer stripes of Fe on W(110) still exhibited ferromagnetism 
at a coverage of 0.5 ML, with an average stripe width of 20 atomic rows [54]. 
Fe stripes with a width of 5-15 atoms and a height of 1-2 atoms on a vicinal 
C u ( ll l)  surface, with a coverage of 0.3 ML, were found to be ferromagnetic from 
magneto-optical Kerr effect (MOKE) measurements [111].

W ith regards to the electronic structure of one-dimensional systems, a notable 
inverse photoemission experiment has been performed for Cu on W(331) [56], in 
which an electronic state has been interpreted as a single-row state, attributed 
to monatomic chains of Cu atoms deposited on the steps of the W(331) surface.

The electronic structure of monatomic Co and Cu wires on vicinal Pt(997) has 
been probed in an angle resolved photoemission experiment [24]. A single pho- 
toemission feature was associated with the 3d emission of the monatomic Cu 
wires, while a 3d double-peak feature is observed for the Co wires, as shown in 
figure (1.10). This is interpreted as indicating the presence of a one-dimensional 
exchange-split band and of local magnetic moments. We can estimate the size 
of the moment on the Co chain using the rough guide that an exchange-split of 
leV corresponds to a moment of 1 //#. From the exchange-split of 2.1eV, we have 
an approximate moment of 2.1 hb for the Co chains. This is a considerable en­
hancement over the bulk moment, and is consistent with theoretical calculations 
for Co chains on Pt(997) [7]. No in-plane spin polarisation was found for tem­
peratures down to 100K. While theoretical predictions based on Ising chains of 
spins prohibit long range ferromagnetic order for T  > 0 K [30], there are several 
other possible explanations for this lack. These include the possibility that the 
Curie temperature for the chains is less than 100K, and also that the spins could 
be oriented in the out-of-plane direction.

The magnetism of monatomic Co wires on Pt(997) has been investigated by 
X-ray magnetic circular dichroism (XMCD) [41]. The local orbital magnetic 
moment for a monatomic Co chain was found to be enhanced by a factor of 
about 5 over bulk Co, and by a factor of nearly 2 over a biatomic Co wire, 
demonstrating the high dependence of the local orbital magnetic moment on the 
dimensionality. While the spin magnetic moment is expected to be less dependent 
on the atomic coordination than the orbital magnetic moment, unpublished local
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Figure 1.10: (a) Photoemission spectra taken at a photon energy of 122 eV 
displaying the development of Cu states on Pt(997) with increasing coverage, 
(b) Photoemission spectra taken at a photon energy of 122 eV displaying the 
development of Co states on Pt(997) with increasing coverage up to 0.40 ML. 
From [24].
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spin density approximation (LSDA) calculations [7] indicate a small increase in 
the spin magnetic moment for a monatomic chain as compared to a monolayer. 
The magnetic anisotropy energy (MAE) was shown to be strongly affected by the 
dimensionality of the system, being considerably enhanced for monatomic chains 
as compared to monolayer results. The monatomic Co chains were also found to 
sustain both short- and long-range ferromagnetic order. At temperatures of less 
than 15 K there is a transition to a long-range ferromagnetically ordered state, 
contrary to the theoretical predictions for a one-dimensional Ising chain [30]. 
However, the model chain calculations do not take into account kinetic barriers 
preventing the system from reaching equilibrium, or interactions between the 
chain and the substrate.

Other methods for the fabrication of one-dimensional nanostructures include elec­
trodeposition of metals onto a graphite substrate [98], laser focused atomic deposi­
tion [18], and filling pores in a polymer film with electroplated metals [8, 102, 79]. 
One-dimensional metallic edge states have also been observed for 2D slabs on 
semiconductors. The ID edge states on M0 S2 islands can be viewed as examples 
of ID conducting wires, and are the ID equivalent to localised metallic surface 
states at semiconductor surfaces [14].

1.2.2 Theory

Theoretically, the treatment of one-dimensional structures on surfaces is difficult 
due to the loss of symmetry in going from three- to one-dimensional periodicity. 
For systems with two-dimensional periodicity, i.e., surfaces and interfaces, we 
have a unit cell which in principle is infinite in the direction normal to the surface. 
In practice calculations on such systems are often performed using a supercell (or 
slab) geometry. A surface system is modelled by a supercell comprising a slab 
of material surrounded by vacuum layers, which is then repeated periodically to 
restore periodicity. Figure (1.11) shows a cross-section view of the structure used 
in a typical supercell calculation of a surface. This method has two principal 
disadvantages. Firstly the size of the required unit cell is increased. Secondly it 
is an ersatz geometry, clearly not describing a true surface, with the possibility 
of interactions between the slabs.

For a system with one-dimensional periodicity there is even less symmetry. A
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Figure 1.11: Cross-section of a 5 layer slab supercell geometry used to describe 
a surface. The dashed circles represent vacuum sites. This supercell is then 
repeated periodically to construct an infinite three-dimensional system.

single one-dimensional chain structure on a surface will in principle require an 
infinite unit cell in the directions normal to the surface and parallel to the surface 
but perpendicular to the chain axis. Again a similar type of supercell structure 
can be used, treating the chain as being part of an array of chains on the surface. 
However this will further increase the size of the required unit cell, and raise the 
prospect of interactions between the chains.

The high demands in computing power, combined with the paucity of experi­
mental data on the electronic and magnetic structure of one-dimensional sys­
tems, have meant that until recently electronic structure calculations for one­
dimensional systems were scarce.

Previous theoretical investigations of the electronic structure of one-dimensional 
surface systems include a first principles pseudopotential calculation of the Si(557)- 
Au surface [108]. As is mentioned in the previous section one-dimensional features 
are found on the surface of this system. Initial experimental work suggested that 
spin-charge separation of a Luttinger liquid was observed [110], however more 
recent data suggests the presence of two metallic bands [81]. The theoretical 
calculation predicts that the Au chains lead to two half filled metallic bands, 
supporting the latter interpretation.

First principles pseudopotential DFT calculations have also been performed for 
adsorbate atomic wires on an H-terminated Si(100) surface. These include calcu­
lations of the electronic structure of Ga [126] and As [129] atomic wires, and an 
LSDA calculation for Ga atomic wires which finds a ferromagnetic solution [93]. 
These pseudopotential calculations utilise a supercell geometry, with the first two 
using a slab with 5 layers of Si atoms, and the third using a slab with 8 layers 
of Si atoms. While pseudopotentials can be effective in describing these sorts 
of systems, they are much less efficient when describing materials with narrow
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d-bands, e.g., the transition metals.

The magnetocrystalline anisotropy energy for free standing chains and rings of 
Fe adatoms has been calculated using a semi-empirical tight binding method 
[29], with the MAE showing a considerable enhancement over the freestanding 
monolayer value for both chains and rings.

The spin and orbital magnetic moments, and the MAE, have been calculated for 
free standing monolayers of Fe and Co with chain defects, using a self-consistent 
tight binding method [43]. Calculations were also performed for stepped mono­
layers, e.g., free standing vicinal layers. The orientation of the moments and the 
size of the MAE was found to depend on the orientation of the chain defects.

There have been few calculations performed for one-dimensional transition metal 
structures on surfaces. The MAE of freestanding Fe and Co chains, and of 
a Co chain deposited on a Pd(llO) surface, has been calculated using a semi- 
empirical tight binding method [28], with the prediction of a perpendicular mag­
netic anisotropy in the deposited Co chain. Another semi-empirical tight binding 
calculation for Co chains on a Pd(llO) surface has calculated the local magnetic 
moments and spin polarised local densities of states for various chain configura­
tions, including isolated chains and adjacent chains with parallel and antiparallel 
magnetic coupling [105]. An 8% enhancement in the magnetic moment was found 
for a single Co chain compared with a Co monolayer.

The electronic and magnetic properties of Rh chains on Ag(001) surfaces have 
been investigated [3], again using a semi-empirical tight binding method, although 
the method used in this case takes explicit advantage of the one-dimensional 
symmetry of the chain systems. Several differing chain geometries were treated, 
with results for chains oriented along the (110) and (010) directions, for both 
adsorbed and embedded chains, and for arrays of up to 4 chains in width. The 
calculated magnetic moments were found to have some agreement with those 
found from ab initio KKR-GF calculations for finite sized Rh clusters on Ag(001) 

[128].

A recent paper presents ab initio calculations for 4d monatomic chains on vici­
nal Ag surfaces, using the screened-KKR GF method [4]. The results for these 
chains are complementary with previous calculations for adatoms, finite-length
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Figure 1.12: Local moments for adatoms [75], infinite close packed rows [4] and 
monolayers [10] of the 4d elements on the Ag(001) surface. From [4].

chains and monolayers, allowing the magnetism of these systems to be studied 
over the full range of dimensionality. Figure (1.12) shows the moments calcu­
lated for 4d monatomic rows on the Ag(001) surface, compared with results for 
adatoms [75], and monolayers [10]. As might be expected, the moments for the 
chains generally fall between the moments for the adatoms and the monolayers. 
With the increasing dimensionality the 4d-4d hybridisation increases, reducing 
the moments for the elements at the beginning and middle of the series, and 
the maximum moment is shifted towards higher valences. For three-dimensional 
systems, e.g., bulk crystals, this reduction is sufficient to quench the moments of 
all the elements, thus no Ad elements are ferromagnetic as bulk crystals.
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Chapter 2

Electronic structure calculations

2.1 Introduction

The fundamental task in an electronic structure calculation is the solution of 
the time-independent Schrodinger equation, which for a fully-interacting many- 
electron system is given by

{T + V ) V  = EV,  (2 .1 )

where T  is the kinetic energy operator and is the many-electron wave function. 
Due to the large number of electrons involved in bulk systems, the exact solution 
of this equation is impractical for all but the simplest of cases. Therefore it is 
necessary to use simplified Hamiltonians that capture as much of the physics as 
possible without becoming insolubly complicated.

The most common approximation used is the one-electron approximation, in 
which each electron is considered an independent particle moving in the mean 
field of the other electrons and the nuclei. This reduces the problem to solving 
the one-electron Schrodinger equation

( -  \V2 + v;on +  vc + vxc) = Ei4>i, (2.2)

for the one-electron energies, Ei, and wave functions, -ipi, where the total mean
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field consists of contributions from the electrostatic field due to the nuclei, Vion, 
and all the other electrons, Vc, plus corrections for exchange and correlation, Vxc.

In practice the Coulomb contribution is usually solved self-consistently. The 
Schrodinger equation is solved for some initial potential, I / in, from which the 
electronic charge density can be determined

P =  2  l^il2' (2'3)
i

This charge density is then used in a solution of Poisson’s equation

- v v c = 47T/9, (2.4)

which gives a new Coulomb potential. This is added to the potential from the 
nuclear charges, and from the exchange-correlation contributions to give a new 
total potential. It is not possible to use the new potential as the direct input to 
the next iteration of the cycle, the strong Coulomb forces tend to over-correct for 
charge imbalances and thus lead to unstable oscillations of charge in the system. 
Instead a weighted average of the initial and new potentials is used as the input 
for the next iteration of the cycle

v = a V old + ( 1  -  a )V aew, (2.5)

where V M  and V"ew are the original and calculated potentials respectively. Val- 
ues of the mixing parameter a  vary from of the order of 0 . 1  for bulk calculations 
down to as low as 0 . 0 0 1  for surface calculations, where charge neutrality is not 
guaranteed. For the chain defect calculations described in this thesis 0.01 was 
the typical value used. In order to accelerate the convergence cycle a Broyden 
mixing scheme [16] was employed. This involves the storage of previous sets of 
the potentials, but enables much faster convergence than simple linear mixing.

Once the new input potential has been generated, the cycle is then iterated until 
the two potentials are consistent. Figure (2.1) shows the steps involved in the 
self-consistency cycle. In determining the point at which the potentials can be 
said to be converged the difference parameter is defined as the new potential 
squared divided by the old potential squared, summed over all the grid points 
and sites. The potentials for the chain defect systems in this thesis are converged 
to a difference of less than 1 0 -20.
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Initial potential V m

Calculate charge density p

Mix potentials 
V  =  a V M  +  (1 -  a)V'n e w

Calculate Vxc, V[on and 
assemble new potential 

=  Vc +  Vxc +  Vionn e w

Solve Schrodinger equation 
( -± V 2 + v)i>i = Eii>i

Solve Poisson equation for 
new Coulomb potential 

-  V2VC =  4trp

Figure 2.1: Illustration of a self-consistency cycle used in density functional elec­
tronic structure calculations.

There are various approaches to the form of the exchange-correlation term. In 
the Hartree approximation [53] the wave function is simply a product of non­
interacting single-particle wave functions, hence no exchange or correlation ef­
fects between the electrons are considered, and thus no Vxc term appears. The 
Hartree-Fock approximation [37] extends the Hartree approximation to include 
the exchange interaction between the electrons by use of a Slater determinant 
wave function. Exchange is due to the Pauli exclusion principle, preventing elec­
trons with identical spins occupying the same state. This leads to a non-local 
exchange term in the Schrodinger equation, making Hartree-Fock calculations 
computationally expensive, especially in the case of extended systems like bulk 
solids. While the inclusion of exchange effects gives a considerable improvement 
over the Hartree approximation, the Hartree-Fock approximation does not in­
clude correlation effects. Configuration interaction (Cl) represents an attem pt to
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improve the Hartree-Fock approximation by inclusion of correlation effects. In 
principle Cl leads to an exact wave function, however in practice the computa­
tional effort increases rapidly with the number of electrons in the system, thus 
only systems with relatively few electrons can be calculated accurately. In addi­
tion, the complexity of the resulting solutions makes interpretation of the results 
difficult.

For the treatment of bulk systems, it is desirable to have a method which scales 
well with the number of electrons in the system, includes both exchange and 
correlation effects, thus giving an accurate description of the electronic structure, 
while at the same time retaining the simplicity of the one-electron Schrodinger 
equation. Fortunately such a method exists, namely density functional theory.

2.2 Density functional theory

The basic theorems of DFT were derived by Hohenberg and Kohn [58]. Consider 
a system of N  electrons moving in an external potential Vion(r) due to the ion
cores. The Hamiltonian is given by

H = T  +  U +  V, (2 .6 )

where V  =  Mon(r*), T  and U are the kinetic energy and electron-electron
interaction operators respectively. For all densities n(r) which can be obtained 
from some antisymmetric wave function ip(ri, r 2 , . . .  , t n ) the functional F[n] is 
defined as

F[n] = mm{il>\T + U\il>), (2.7)■0 —m

where the minimum is taken over all ip that give the density n. F[n] is inde­
pendent of specific system or external potential details. Denoting Ega , ipga and 
ngs(r) to be the ground state energy, wave function and density respectively, the 
two fundamental theorems of density functional theory are

E[n] = J  Vion(r)n(r) dr +  F[n] > Egs, (2 .8 )
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and

J  Vion(r)rcgs(r) dr +  F[ngs] =  Ega. (2.9)

To prove (2.8) we define ^min(r ) 88 a wave function that minimises (2.7), i.e.,

F[n] = ( 4 > ^ \ T + U \ ^ ) .  (2 .1 0 )

Recalling V = E , Kon(r,), we have

/ I W r)n ( r )  *  +  F[n] =  « ln\V + T  + f / | « in> >  Fgs,' (2.11)

due to the minimum property of the ground state. To prove (2.9) we once more 
use the minimum property

Fgs =  (V’gslV" + T  + Utyss) <  <VCr„l^ + T  + C/|Cr„>- (2 .1 2 )

Subtracting the external potential terms gives

(Ik .|T  + u \i ,gs) <  (V-"rJT  + u\1>£). (2.13)

However the definition of VCln gives the reverse inequality between the two sides 
of (2.13), which is only possible in the case where the two sides are equal, i.e.,

(As\T  +  U\As) =  <C?„|F +  U\4>X). (2.14)

Hence, completing the proof of (2.9)

Ega =  J  Vion(r)nga(r) dr +  (^gs|T +  C/|^gs)

= /Mon(r)ngs( r )d r + ( ^ |r  + W > >

=  J  Vion(r)ngs(r) dr +  F [n gs]. (2.15)

These two equations show that E[ngs] = Ega, the correct ground state energy. If 
we treat the ground state energy of a particular external potential as a functional 
of the density, E[n\ is a minimum at the true ground state density. That this is 
a useful property can be seen from the fact that n(r) is a function of 3 variables 
whereas ^ (ri)  is a function of SN  variables. Since the ground state density 
determines the ground state wave function(s), from which all other ground state

23



properties can be found, these properties are therefore also functionals of the 
density. Thus (2.8) and (2.9) provide formal justification for basing calculations 
on the density.

These theorems provide a method for calculating ground state properties - as­
suming an approximation can be found for F[n\, we can then simply minimise 
E[n\ in (2.8) for the potential Vion of interest. The ground-state electron density
is the density which minimises the energy functional E[n], which must satisfy the
variational principle

6 |  E[n] — /i J  n( r) dr j =  0 , (2.16)

which yields the Euler equation

_  5E[n] <5F[n]
«5n(r) _Mon(r) +  5 n (r) ' }

Here fi is the Lagrange multiplier associated with the constraint

J  n( r) dr =  N, (2.18)

where N  is the total number of electrons in the system.

2.3 Derivation of single-particle equations

To use the theorems of the preceding section to calculate ground state properties, 
it is necessary to find an expression for E[n] in (2.8). This requires obtaining an 
approximation for the functional F[n]. In a method introduced by Kohn and 
Sham [70] we write the functional F[n] as

F [ n ] = i  / /  " r  - y d r d r ' + c [ n ]’ ( 2 - i 9 )

where the double integral term is simply the classical Coulomb energy, and G[n]
is a universal functional of n. We then define G[n] as

G [n]= Ts[n] + Exc[n], (2.20)
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where Ts[n] is the kinetic energy for a system of non-interacting electrons with 
density n moving in some external potential V^(r), and Exc[n] is a term containing 
all the exchange and correlation effects. The exchange-correlation term, Exc[n], 
which is not known exactly, contains all the electron-electron interactions beyond 
the Hartree approximation and the difference in kinetic energy between inter­
acting and non-interacting electron systems. Prom (2.8) therefore, the energy 
functional is given by

E[n\ =  Ts[n] +  J  Vjon(r)n(r) dr + \ j j  dr dr1 + Exc[n\.
(2 .21)

All the terms in this expression can be evaluated exactly, with the exception of 
Exc[n], for which some approximation is required.

The Euler equation (2.17) is thus given by

_  &E[n) _  8TS 00.
^  ~  8n(r) ~  8n(r) + cff( ( }

where we have introduced the effective potential 1 4 ff(r), defined as

leff(r) =  Vjo„(r) +  j  dr' +  Vxc(r), (2.23)

with the exchange-correlation potential

v,”w -  (224>
The Euler equation (2.22) with the constraint (2.18) is exactly the same equation 
that would be obtained from density functional theory when applied to a system 
of non-interacting electrons moving in the external potential K (r) =  Kff(r). 
Therefore, for a given Kff(r), the electron density n(r) that satisfies (2.22) can 
be found simply by solving the N  one-electron equations

- V 2 '0i(r) +  ^eff(r )^ i(r ) =  ^ ( r ) ,  (2.25)

where the density is related to the wave function by,

=  S l l / ' i W I 2- (2-26)
i=l
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Since 14ff(r) depends on n(r), these equations must be solved self-consistently. 
The Kohn-Sham (KS) equations (2.23)-(2.26) reduce the problem of solving for 
a system of many interacting electrons to solving single-particle equations of 
Hartree form. In contrast to the Hartree-Fock approximation the effective po­
tential is local, thus the computational effort is not significantly greater than 
that required within the Hartree approximation. In addition, the KS equations 
are exact, fully incorporating electron exchange and correlation effects. While 
in principle the KS-DFT method is exact, the exact form of Exc is not known. 
Therefore the accuracy of any KS electronic structure calculation will be depen­
dent on finding a satisfactory approximation for Exc, a concern we will examine 
in the next section.

2.4 Local spin density approximation

The major limitation of DFT is that the functional Exc is not known exactly, 
except in the case of a few simple model systems. Therefore some approximate 
functional is needed. The most successful and widely used approach is the local 
spin density approximation (LSDA), in which the exchange-correlation energy 
functional is written

îfDAN = J  n(r)£xc[«t(r)>ni(r)]̂ r> (2-27)
where £xc[n^ rq] is the exchange-correlation energy per particle of a homogenous, 
spin-polarised electron gas with spin-up and spin-down densities ri| and rij re­
spectively. The LSDA is formally valid in the limiting case of a slowly varying 
potential, however the LSDA has no formal justification in highly inhomoge- 
nous systems, such as atoms and bulk solids. Use of the LSDA in treatments 
of inhomogenous systems is principally justified by the remarkable accuracy of 
the numerical results obtained. In the calculations performed in this work, the 
Perdew-Wang form of the exchange-correlation functional is used [99].
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Chapter 3

Scattering Theory

3.1 Introduction

This chapter details multiple scattering theory for a system of multiple scatter­
ing centres characterised by non-overlapping spatially bounded potentials. It is 
convenient to describe the scattering system as a collection of individual scat­
tering potentials, and to describe the total system scattering matrix in terms of 
the scattering matrices of these individual potentials, these being the t-matrices 
detailed in the next section. Indeed in many cases it is necessary to treat the 
system in this way, e.g. periodic infinite solids. The Green function of a system 
contains all the physically relevant information about single site properties, and 
can be used directly to calculate such quantities, for example the charge density 
can be found from the imaginary part of the Green function. Calculating the 
total scattering matrix of the system allows us to solve for the Green function, 
and thus to calculate experimentally verifiable properties. In the next section we 
will examine single site scattering and the t-matrices. In the following sections we 
will examine multiple scattering theory in formal operator notation, then apply 
this to a system of muffin-tin (MT) potentials, these being spherically symmetric 
potentials bounded by non-overlapping spheres.
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3.2 Single site scattering

Before we examine multiple scattering in extended systems, we need to con­
sider the scattering from a single site. To determine this we need to solve the 
Schrodinger equation for the single site potential u(r)

( “ V 2 +  u (r)) ^ (r)  =  Eip(r). (3.1)

We restrict our discussion here to muffin-tin potentials, where the potential is 
spherically symmetric and u(r) =  0 for r > R, the muffin-tin radius. Expanding 
the wave function in partial waves

^ (r)  =  CLipL(r)YL(r), (3.2)
L

we then need to find solutions of the radial Schrodinger equation

i>L (r) +  v(r)ijjL(r) = EipL(r). (3.3)
2 r2 dr \  dr J r2

The regular solution of equation (3.3) can be found by direct numerical inte­
gration, matching to the free space solution at the MT sphere radius, with the 
irregular solution found by inwards integration from the sphere boundary. The
solutions axe required to match smoothly up to the first derivative at the muffin-
tin radius to the free space solutions

Zt(r) -> meje(Kr) +  h ^ \n r )  (3.4)

Se(r) ->je(Kr), (3.5)

where me = t j 1 is the inverse of the single site t-matrix, je(Kr) is a spherical Bessel 
function, and h ^ fa r )  is a spherical Hankel function of the first kind. From the 
logarithmic derivative of the regular solution at the sphere boundary R

L ( m  =  z e(R) =  mejeinR) +  h^'juR) .
z i(R) meje(itR) +  h?i\KR) 

we can then determine the inverse ^-matrix

h f { K R )  -  Le(R)h^(KR) 
e Le(R)je(KR) -  j'M R) '  ̂ ’
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The single site t-matrix describes the complete scattering from the site in ques­
tion. These single site terms are then assembled within multiple scattering theory 
to describe scattering in extended systems. For more details on single site scat­
tering, including scattering from general non-spherical potentials, see [46, 45].

3.3 Formal scattering

For an unperturbed system, with Hamiltonian Ho and eigenstates |xa), the 
Schrddinger equation is

Ho\Xa) = Ea |Xa). (3.8)

The scattered-wave solutions, |^ Q), of a perturbed system, with Hamiltonian 
H  = Ho +  V,

H\tl>a) = Ea\lpa) (3.9)

satisfy the Lippman-Schwinger equations [109]

\lpa) = \ X«)+GoV\ll)a) (3-10)

=  |Xa>+G 0 T|Xa), (3.11)

where Go is the free particle Green function operator and T  is the total scattering 
matrix operator of the system. T  is related directly to V  via a Dyson equation

T = V  + VG 0T. (3.12)

We can also introduce Dyson equations for the full Green function operator

G =  G0 +  GoVG (3.13)

G =  Go +  G0 TG 0. (3.14)

For a given system in which V  is specified, T  can in principle be solved directly 
from equation (3.12). However this method is impractical for many systems, 
especially those with an infinite number of scattering centres. A method which 
uses the individual t-matrix operators related to the scattering centres is more
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useful in calculating T. Iterating equation (3.12) gives the series

T  =  V  +  V G 0V  +  V G o V G o V  +  . . .  . (3.15)

If we consider the potential as a sum of the individual non-overlapping cell po­
tentials, V  = then equation (3.15) can be written as

r  =  £ V ' i +  X > iG o £ V ^  +  . . .  . (3.16)
i i j

The single site t-matrix operator can be expressed in the form of (3.15), where the 
potential is that associated with a single site, as tf = V 1+ V * G o V x+ V lG o V lG o V l + 
. . .  . It then follows that the total T -matrix operator can be expressed in terms 
of these single site t-matrix operators as

T  = E +  E E VGo tj + E E E  fGoVG ot* . . . .  (3.17)
i i j ^ i  i j ^ i  kj^iJ

W ith the interpretation of Go as a propagator, and of t l as describing the inter­
action at site z, it is clear from equation (3.17) that no two consecutive scattering 
events occur at the same site, which is a necessary condition given that the t- 
matrix operator for a given potential characterises the complete scattering from 
that potential. Equation (3.17) shows that the T-matrix operator of an ensemble 
of scatterers may be viewed as being made up of sequences of scattering events, 
each sequence consisting of scattering at individual sites, coupled with free parti­
cle propagation between sites. Figure (3.1) shows some of the possible scattering 
paths that would contribute to T  in a system with two scattering sites.

It follows from (3.17) that we can write T  in the form

T  = '*TTij, (3.18)

where the site matrix elements are the sum of all scattering sequences which 
connect site z and site j .  For non-overlapping potentials we can introduce the 
site off-diagonal elements, Gq , of the free particle Green function, whereby the 
elements T tj are then given by

T ij = tSij + 1  ^  G $ T ki , (3.19)
k^ i
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Figure 3.1: Some of the simplest scattering paths in a system with two scattering 
sites.

which can be easily verified by iteration. Equation (3.19) is known as the equation 
of motion in the literature [36].

3.4 Muffin-tin potentials

The equations of multiple scattering theory defined previously have been in ab­
stract operator space. In this section we will derive equations suitable for compu­
tational purposes, within the muffin-tin approximation, that is spherically sym­
metric potentials bounded by non-overlapping spheres. The condition of spherical 
symmetry of the potential is helpful primarily in computation, but the geometric 
condition that the potentials be bounded by non-overlapping spheres considerably 
simplifies the expansion of the free particle Green function in angular momentum 
states. Most early work deriving and developing multiple scattering methods for 
electronic structure studies assumed this geometry. Only relatively recently has 
the validity of the resulting equations for more general potentials been demon­
strated [47] [48] [133] [134] [8 8 ] [89] [44] [8 6 ].

In the coordinate representation we can write the Lippman-Schwinger equation
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as [46]

V’(r) =  x(r) +  J  G0(r,r')V(r')ip(r')dr' (3.20)

= X(r) +  / /  G0(r, r')T(r', r")x(r") dr' dr", (3.21)

and the T -matrix elements as

T*(r, r') =  <‘(r, r')<Sy +  £  f  j  t ‘(r, (n , r2)T**(r2, r') <*n dr2
* * '“* k (3.22)

where G ^ r i , ^ )  is the cell ofF-diagonal element of the free particle Green func­
tion, with the vectors ri and r 2 confined to cells i and k, respectively. A similar 
interpretation applies to the elements T ,J'(r, r'). These equations correspond to 
equations (3.10), (3.11) and (3.19) respectively. The philosophy of multiple scat­
tering theory is evident on iteration of equation (3.22), showing the total scatter­
ing matrix to be made up by the scattering from individual cells, characterised 
by the cell ^-matrices, with free propagation between the scattering cells via the 
free space Green function, Gofc( r i , r 2 ).

While intuitively useful, the coordinate representation is not ideal for computa­
tional purposes, due to the numerous integral equations. However, these recalci­
trant integral equations can be transformed into matrix equations in the angular 
momentum representation. The matrices then have elements indexed via the 
L  =  ( ,̂ m) of angular momentum eigenstates. The resulting matrix equations 
lend themselves more readily to computation. In this representation the on-the- 
energy-shell part of the T-matrix, that is the part connecting scattering events 
with the same energy, takes the form [127]

Tw  = (-2*k) J f  j e(Kr)YL(r)T(r, r')je(Kr')Y£(r') dr dr'. (3.23)

We will now derive expansions of T  and the Green function in the angular mo­
mentum representation. For muffin-tin potentials, the cell potentials are bounded 
by non-overlapping spheres. Therefore the vectors iq and 1*2 , measured from the 
centre of and confined to the cells 1 and 2 , and the inter-cell vector R4 2  connecting 
the cell centres, as shown in figure (3.2), satisfy the following inequalities

IR1 2I > |fi|, IR1 2I > |r2|, and |R i2| > |ri -  r 2|, (3.24)

32



Figure 3.2: Diagram of two muffin-tin potential cells, showing intra-cell vectors 
ri and r 2 , and the inter-cell vector R 1 2 .

|R i2 r 2| > |r 1 ] and |R i2 +  r i | > |r2|. (3.25)

In this treatment we will use the familiar expansion of the free space Green
function [46]

G0 ( r ,r ')  =  G0(r -  r') =  -2 i« ] T  HL(r) J£(r'), r  > r', (3.26)
L

where Jl (r) and H l (y) are defined as

Jl (y) = je(Kr)YL( r), (3.27)

Hl (i ) =  h{p(K r)YL( r), (3.28)

with complex conjugation of these functions taken to apply only to the spherical 
harmonic term, e.g., J£(r) =  je{Kr)Y£(r).

In the muffin-tin case r  — r ' =  ri — R 12 — r 2 , and we can write the free particle 
propagator connecting different sites as

Gj2 = Go(ri -  R12 -  r2) = - 2 « ^  JL(r1)Gw (R 12)Ji.(.r2),
w  (3.29)

where we have used the expansion

Hl (r  -  R) =  £  JL'(r)GL'L(R), R  > r, (3.30)
L>

with Glu (It) given by

Gll>{R) =  4 t C LL,L„Hl„{R). (3.31)
L"

33



For R  a direct lattice vector, the G lu (R) are the real space equivalents of the 
KKR structure constants introduced by Korringa [71] and by Kohn and Rostoker 
[69]. The expansion of the free particle Green function in (3.29) is dependent on 
the MT geometry, and is not necessarily valid for more general geometries, where 
the restrictions on ri, Y2 and R 12 are violated.

We now consider the expression for the full Green function of the system, the 
series equivalent of the operator equation (3.14)

G = Go +  Go tfGo +  Go tfGo t^Go +  . . .  . (3.32)
i i j^i

We will first examine the single scatterer term of equation (3.32), which we can 
write in the form [17],

G0tlG0 = J J  G0(r -  y)t '(y -  R i? z -  R*)G0(z - r ') d3y d3z

=  J J  G0(r -  Ri -  y ' ) t \ y \  z')G0{z' +  R* -  r ') d3y' d3z', ^  3 3 )

where Ri labels the vector to the centre of the cell (sphere) at site z, and

y' =  y — Ri and z' =  z — Ri. (3.34)

If we consider the case where both of the arguments of the Green function fall 
outside of the bounding spheres, then |r — Ri| > y' and |r ' — Ri| > z \  and hence 
we can write

GofGo = U (—2 i«) £  Hl {t -  R i)7£(y')*<(y', O

x (-2 m ) ^  JL'(z ')HI'{y' -  R i)d3y 'd 3z' (3 .3 5 )
L'

=  -  2 m £  Hl (v -  R i)fLL,i/2 ,(r' -  Ri)
LL>

where t lLU is the single scatterer equivalent of equation (3.23). The two scatterer
term in equation (3.32) can be treated in a similar manner, and can thus be
written as

GofGoVGo =  -  2in £  £  Hl ( r  -  ^ ) t iLLlGIn^ j ) A 2L'Hu{r' -  R*).
LL\ L 2L'

(3.36)
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Continuing with this process we can write an expression for the full Green function

G( r, r ') =G 0(r -  r') - 2  E E ~  Ri ~  Rj)>i,j LU (3 37)

where r  is in the interstitial region near cell i and r ' in the interstitial region near
cell j , and i ^  j .  We have introduced here the scattering path operator (SPO)
[49], which is a function of the energy E  and is defined as

T&  = AuSij + E E (3.38)
k^i L\Li2

and clearly satisfies the equation of motion, (3.19). Another useful form for the 
SPO, which can be obtained by repeated iteration and resummation and will be 
used later, is

TLL> = t lLL'fiij + E E (3.39)
k^iL1L2

3.5 Full Green function

The one-electron Green function is a highly useful quantity, since it allows the 
calculation of most properties of interest for a given system, e.g., the charge 
density. Therefore we require an expression from which it can conveniently be 
calculated within the angular momentum representation. Taking the arguments
of G(r, r') to lie outside the bounding spheres but within the cell at the origin,
we can write equation (3.37) in the form [17]

G(r, r ') =G 0 (r, r') -  2m  ^  (r')
LL'

- 2 m c E  £  HL(T)r0Li,GL,L„(^)Jl„(v')
j^O  LL'L"

- 2 « £  E  M r ) G LL,(Ri)TgL„Hl„(r')
i / 0 LL'L"  (0 .4U J

— 2ik E E E JL(r)GLL.(R i)Tij L„GL,,L̂ K j )Jt„,(r'y
*960 J # 0 LL'L"L'"
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Using an undertilde to denote matrices in angular momentum space, we use the 
expressions

T00 = t° + t0Y l Gm Zi0 (3-41)

and

t 00 =  t° +  Y l  T0iGj0t°, (3.42)
J #  0

which together imply that

Y  G(R i)r‘° =  m °r00 -  1, (3.43)

Y  T0iG(Rj) = r 0 0m° -  1, (3.44)

and

^  y :  G (R i)rlJG?(Rj) =  m °r00m° — m°, (3.45)

which allow us to write equation (3.40) as

G(r, r') = -2 iK ,J2  [4 (r )m J  +  #z,(r)] r™, [m j/J£/(r') +  #£/(r')]
LL>

+ 2xk £  [Ur)™°L + Hl(r)] J'L(r') (3 4g)

where we have chosen r' > r and used the expansion of the free space Green 
function in equation (3.26). Since the Green function is continuous with respect 
to both of its arguments, and solves the Schrodinger equation as a function of r 
and r' for r r', we can extend this expression, valid in the region of the cell at 
the origin beyond the MT sphere where v = 0, into the MT sphere itself as

G(r, r') =  — 2  in Y  ^ o o s s v ) + £  z ° ( r )T°°,z° V )
L L LL' (3.47)

where the functions Z®(r) and S®(r) are the regular and irregular solutions of the 
Schrodinger equation for the MT potential at the origin, that at the MT sphere
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radius match smoothly onto the functions

Z t ( r )  - *  m°ej t (Kr) +  h {el ) (^r)  

St(r) - » je (Kr) .

(3.48)

(3.49)

Note that these functions are the regular and irregular solutions to the single 
potential Schrodinger equation detailed in section 3.2.

Hence for r ' > r  and both vectors inside cell a , we have

The first term in (3.50) is the single scattering centre expression (since r  =  0 for a 
single scatterer). Once G(r, r') has been calculated all the single site properties of 
the system, such as the charge density, can readily be found. The determination of 
the Green function is now reduced to the evaluation of the site diagonal elements 
of the r-matrix, although, as will be shown later, in order to determine the r- 
matrix of a defect system it is necessary to also calculate the site off-diagonal 
elements of the r-matrix.

3.6 General potentials

For many systems the MT approximation gives adequate results, specifically those 
with a close packed crystal structure such as FCC, HCP and BCC bulk crystals 
[87]. However when we consider more open systems, or systems with reduced 
symmetry such as surfaces, interfaces and other defects, it is desirable to go 
beyond the MT approximation, and treat the system as non-overlapping space­
filling potential cells.

Restricting the potentials to the MT form allows us to derive the MST equa­
tions in the relatively simple and intuitive manner of the previous section. The 
MT approximation places two restrictions on the form of the potentials, first 
that the potentials are bounded by non-overlapping spheres, and second that the 
potentials are spherically symmetric. The second restriction, that of spherical
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Figure 3.3: Adjacent space-filling cells, with the bounding sphere of one cell 
shown overlapping the other cell.

symmetry, has little effect on the preceding derivations. The cell t-matrices will 
no longer be diagonal with respect to angular momentum and the single cell scat­
tering problem becomes more computationally demanding to solve, but the logic 
of the derivation and the form of the r-matrix are essentially unchanged.

The second restriction, that of the confinement of the cell potentials to non­
overlapping bounding spheres, is more significant. This geometric restriction 
allows use of the expansion (3.29) for the free particle Green function, in a system 
of space-filling cells this expansion is no longer possible and thus it is not evident 
that the MT form for r  is valid. In addition to this mathematical difficulty, 
physical arguments have also been made that question the validity of the MT 
form for r  in the case of space-filling cells.

If we consider the two adjacent space-filling potential cells shown in figure (3.3), 
it is clear that the bounding sphere for one potential overlaps with that of the 
adjacent potentials. This suggests that the spherical wave emanating from the 
centre of one cell would begin scattering from an adjacent cell before the scattering 
inside the original cell was completed. It was claimed [33] that this implied 
that the scattering from adjacent cells was coupled in some complicated fashion, 
which prevented the scattering from being described simply in terms of the cell 
^-matrices. In order to take this coupling into account it was thought necessary 
to include the so-called ’near-field corrections’ (NFCs) in applications of MST to 
space-filling cell potentials.

There was considerable interest in determining whether NFCs exist, and if so 
in calculating them [33]. Fortunately it was found that NFCs do not exist 
[44] [47] [48], and this has since been confirmed by computational studies [34] [35].
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From a physical perspective, this is an encouraging result, since one would like 
the solution of a problem to be independent of the manner in which space is 
partitioned.

Therefore while the MT form of the potentials constitutes a sufficient condition 
for the validity of MST, it turns out that it is not a necessary condition. The MT 
form of the r-m atrix is therefore valid in the case of non-overlapping space-filling 
cell potentials.

3.7 Calculation of the r-matrix

From equation (3.38), using an undertilde to denote matrices in angular momen­
tum space, the r-m atrix is given by

r nm =  t y nm +  f  £  G (Rnp)r'"". (3.51)
p #n

We can introduce a supermatrix notation, whereby the matrix elements corre­
spond to site indices with each element a matrix in angular momentum,

[t ]nm =  Snmt n (3.52)

[r]„m =  r nm (3.53)

[G]nm — (1 — <5nm)G?(ITnm) (3.54)

In this notation (3.51) becomes

t  =  t  +  tG r ,  (3.55)

using m  =  t -1 , we have a formal solution for the r-m atrix

rnm =  [ ( m - G ) _1l . (3.56)
~  L J nm

Both m  and G are functions of the energy E, but m  depends solely on the 
potential of a cell, while G is dependent only on the structure of the lattice.
Thus (3.56) reflects the separation of the potential and structural aspects of the
system.
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Equation (3.56) represents the solution in real space for the scattering path opera­
tor. However the matrix which requires inversion has dimensions of N(£max +  l ) 2 

by N {imax +  l ) 2, where N  is the number of sites in the system. Clearly this 
becomes impractical for systems other than small clusters of atoms. Indeed for 
infinite systems (3.56) is a formal statement as the matrix to be inverted has 
infinite dimensions.

3.8 Periodicity

For periodic systems we can use lattice Fourier transforms to shift the problem 
into reciprocal space. The site dimensions of the matrix to be inverted are then 
restricted to the number of sites within the unit cell. This allows us to solve 
for the K  resolved r-matrix, which is related to the real space r-m atrix by an 
integral over the Brillouin zone of the unit cell.

If we have a system with periodicity in one, two or three dimensions, we can derive 
a K  resolved r-m atrix for the periodic system. Omitting the angular momentum 
indices for clarity, we first multiply (3.51) by e*K'(Rn”Rm)} where K  is used to 
represent the appropriate reciprocal space variable for one (k ), two (ky) or three 
(K) dimensions,

r nme*K’(R„-~Rm) =  tn8nmeiK,(R-n_R'Tn) -f. ^  QnpTpmeiK-{nn-'Rm) 5 7 ^
Plfin

__ ^ g i K ^ R n - R m )  ^  Q n p e iK - ( K n -K p ) Tpme iK-(Rp-Km)

p*n ~ ~ (3.58)

If we sum the terms in this expression over n  and m, where the sums over sites 
are restricted to the dimensions in which the system is periodic, and N  is the
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total number of sites, we have terms which exhibit only K  dependence

=  N t
nm 

nm

n,p^n

II (3.59)

=  £ > nV K-R"' =  N t {  K)
n' 0

(3.60)

= E G " V KR»'(1 - < U )
ri

(3.61)

=  NG (  K) (3.62)

=  E ( l - 5„'o)Gn'0e iK-R» 'r0mV - iK R „ ,

n'm1 (3.63)

=  G ( K )r(K ) (3.64)

nm,pj^n

Hence we have the K  resolved EOM, analogous to (3.38)

r(K ) =  f +  *G(K)t (K), (3.65)

in terms of the K  resolved quantities

r (K ) =  j f  £  eiK (R" -Rm)r" m, (3.66)
n.m

G(K) =  i  E  eiK'(R"_Rm)G (R nm)(l -  8nm). (3.67)
 ̂ n,m

The form of t (K) is that of a complex Fourier series, and hence we can write

T„ m =  1 [ d K e - * . ( B « - i u ) T (K ) ) ( 3 . 6 8 )
~ \ I b z  Jb z

where the integral is over the dimensions of the Brillouin zone (BZ) consis­
tent with the periodicity, with Qbz its volume/area/length in 3/2/1 dimensions. 
These expressions are valid for those systems with one site per unit cell. For 
complex lattices we can introduce a new notation whereby the sites are labelled 
by Nn, with N  labelling the unit cell and n the site within it, in which case

gtK-(Rjv-Rjv/ )^NnMm  ^  gg^

N  N,M

r WnMm =  - —  /  dK e_iK(RN_R« )T"m(K), (3.70)
“ BZ JBZ
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and

G"m(K ) =  ^  E  e iK <RN- RM)G (R NnMm )(l -  SNMS„m ). (3.71)
^  N,M

We can then obtain from (3.65), in the same manner as for (3.56), the solution

Tnm( K )  =  [ ( m - G ( K ) ) _1l . (3.72)
L J  nm

The G(K) were introduced by Korringa [71] and by Kohn and Rostoker [69] 
and are commonly known as the KKR structure constants. Equation (3.72) also 
exhibits the separation of potential and structure seen in (3.65), with G(K) only 
depending on the structure of the lattice. This separation was seen as of great
benefit in early calculations, since the G(K) could be calculated once for any
given lattice and stored, with only the relatively inexpensive calculation of the 
t-matrix needed for each iteration (for example, see [50]). As computing power 
has increased, this is no longer as significant, however the separation is made use 
of in the defect calculations detailed in later sections. In these defect calculations 
the T-matrices for a substrate system are calculated and stored, then used in each 
iteration to find the r-matrices for the defect system, a procedure analogous to 
the erstwhile practice of storing the structure constants.

Equation (3.72) represents the complete solution for the r-m atrix in a system 
with three-dimensional periodicity. The site indices in the matrix inversion are 
now restricted to sites within a single unit cell, thus we are able to solve for the 
r-matrix.

For extended systems with one or two-dimensional periodicity however, we still 
have a unit cell which is infinite in extent. Since each site in the unit cell is 
unique, the unit cell index in equation (3.72) is infinite, and we again have the 
obstacle of an infinite matrix to invert.

The Layer-KKR method, used in this thesis for calculation of the substrate r- 
matrices, allows for calculation of systems with two-dimensional periodicity, such 
as surfaces and interfaces. The LKKR method involves partitioning the sys­
tem into layers with two-dimensional symmetry, for which the scattering can 
be solved, and treating the scattering between layers within a plane wave basis 
set. The layers of interest are then considered as being embedded between two 
semi-infinite half-spaces. This method will be covered in more detail in the next
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section. The r-matrices calculated using the LKKR method are stored, and used 
as the substrate r-matrices for the one-dimensional defect calculations, which are 
detailed in section 3.13.

The LKKR method is by no means the only KKR method by which extended 
systems that lack full three-dimensional periodicity can be treated. As mentioned 
in chapter 1 , supercells are one technique for treating surfaces. In a supercell cal­
culation the surface/interface is contained within a large unit ceil (the supercell) 
which is repeated periodically.

One recent development is the screened KKR method [135]. In this method a ref­
erence system is used such that the KKR structure constants decay exponentially. 
A constant repulsive potential within the muffin-tin spheres is one possibility for 
such a reference system -  since there are no eigensolutions of the Schrodinger 
equation for negative energies, the structure constants decay exponentially for 
energies sufficiently below the top of the repulsive wells. This allows the KKR 
method to be transformed into a tight binding form with only short range inter­
actions between atoms, without loss of accuracy.

3.9 Embedded layer r

As described in the previous section, special treatment is required in extended 
systems with two-dimensional translational periodicity, in order to calculate the 
matrix elements of the r-matrix. For such systems, we can consider them to be 
made up of parallel atomic planes, with the plane passing through the centre 
of the atoms assigned to it. A layer is made up of one or more atomic planes, 
assembled as is convenient. The scattering properties of a single layer may be 
determined from a 2D Fourier transform of the equation of motion (3.72), analo­
gous to calculating the bulk scattering matrix in standard 3D KKR theory. The 
scattering due to a single layer i is thus given by

Ti(k||) =  (3.73)

where ky is the 2D wave vector parallel to the layer, is the matrix of inverse t- 
matrices of the atoms within the unit cell of layer z, and (j»(ky) is given by (3.71).
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Figure 3.4: Diagram of the embedded layer problem. The shaded central layers 
are those treated self-consistently, while the unshaded layers represent the semi­
infinite left and right half-spaces.

The matrix elements (?*(k||) are known as the 2D KKR structure constants, 
details of whose calculation can be found in [63], [64], [65], [66] and [97].

The embedded layer problem concerns the scattering from a layer sandwiched 
between two semi-infinite half-spaces, as shown in figure (3.4). The scattering 
properties of the half-spaces are referred to as reflectivities, as they determine 
the reflected wave due to the scattering from an incident wave. The calculation 
of the half-space reflectivities will be detailed in the next section, for the moment 
we will assume that they can be found. The operators in the expressions that 
follow have an implicit ky dependence which we omit for clarity. We can write 
the full transition matrix for a scattering series in which the first scattering event 
is in layer i as

T  =  TL +  Ti +  TR  (3.74)

where r* sums those paths which end with a scattering event within layer i and 
t l { t r )  sums those paths which end with a scattering event in the left (right) half­
space. This expression is clearly valid as it accounts for all possible scattering 
paths. We can write the EOM for the new scattering path operators as

tl =  [ I T  T{g  +  rRg] T lL~l

Ti = [rLg + 1 +  rRg\ (3.75)

tR = [rLg + ^ g  + 1] TR+1

where all propagators are denoted by g for clarity, their precise forms being
determined by the quantities on either side of them. The quantities T£_1 and
T ]t1 are the half-space reflectivities, mentioned above. The first equation in
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(3.75) is a mathematical formulation of the statement that the paths which end
with a scattering event in the left half-space comprise those that are solely within
the left half-space, as well as those which scatter there from layer z or the right 
half-space. These expressions can be manipulated to give

rL = (1 + TLg ) T $ \ l  -  gTLgT'R+1)~ \

TR = (i + rIi3)TL-1(i-grRgrL-1)-\

where the scattering operators T lL and T lR represent the combined scattering of 
the isolated layer z and the respective half-space, and axe given by

T i  = Ti + (1 +  T a y i f K l  -  g T w T t 1) - 1^  +  sT t),
T'r =  Ti + (1 +  Ti9)rR+i(l -  gTigT'R+1) - l (l + gTJ.

Combining equations (3.75) and (3.76), we can write an expression for Ti

Ti = Ti + Tig H fg T u (3.78)

where i ^ ff, the effective reflectivity of the solid excluding layer i is given by

P f  = [l + (1 -  T^gTigY'Tg'gil +  Tifl)] 

x T t \  1 -  g T ' t f T t 1) - 1

i+(i - Trvrisr'rrvi+Ti9)\+
(3.79)

x T ^ i l - g T i g T ^ 1)- l

Since the scattering series was required to start in layer z, Ti connects sites that 
are both within the embedded layer z. Therefore the site diagonal elements of 
the SPO, appearing in the expression for the full Green function (3.50) where a  
denotes a scattering centre in layer z, axe given by

Ti + TigK?gT]°‘a . (3.80)
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3.10 Half-space reflectivities

We will now turn to the calculation of the half-space reflectivities, leading to the 
evaluation of the effective reflectivity. As shown above, the scattering for a single 
layer in isolation is given by equation (3.73). In principle we can determine the 
scattering for a system comprising a number of layers via the subspace equation 
of motion [19], this being a modification of equation (3.51) where the single site 
^-matrices axe replaced by single layer SPO’s and the propagators become inter­
layer terms. For an increasingly large slab of identical layers one would expect 
the reflection scattering properties to converge due to attenuation present when 
the energy has a finite imaginary damping component.

The principal drawback of this method is that the dimension of the full scattering 
matrix is related to the number of layers included in the slab. Thus attempting to 
construct the scattering for a half-space entirely within the angular momentum 
basis is impractical, since the matrices involved will become unfeasibly large. 
This difficulty is circumvented by coupling the scattering between layers within 
a plane wave basis set [97], using the plane wave basis vectors

exp(zKg • r), (3.81)

where

K i  = <
k|| +  g ±  s j l E -  |k|| + g | 2 z,  I E  >  |k|| +  g | 2 

k|| +  g  ±  î |k|| +  g | 2 -  2 E z ,  2 E  < |k|| +  g | 2,
(3.82)

with the ±  indicating the direction of propagation in the 2 -axis. As more basis 
vectors axe included, |g| increases, thus K gz acquires an increasing imaginary 
component, which means that the amplitude of the basis vector at the next layer 
becomes less significant. This allows truncation of the plane wave basis set after a 
relatively low number of vectors, typically 10 — 30, depending on the separation of 
the layers. Within the plane wave basis one can define four scattering operators 
representing reflection from or transmission through either side of layer i, as

T,r+ = , t ?+ =  i  +  r ^ u r k ,

T?  — ^gL^i^Lg > =  1 +  ^gL^i^Lg’

Here TfL converts from the plane wave to the partial wave basis, and converts
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back into plane waves,

[r * ^ L  =  4 ^ e iK‘±R^ (K ^

- K j R,yi (K ±).
(3.84)

In terms of these matrices, we can write the scattering for a composite system of 
layers 1 +  2  as

T t t  = 7\++(i -  F1+r2+-Pfr1-+)-1p1+r2++, 
t y j  = r r (  i -  prTi+p+Tt-y'pcTr,
T t y  =  T t~  +  T t +P+ T}-(1  ~  P f T r + P + T D - 'P r r f - ,  

r i j  = p2"+ + r2“  P f P f+(i -  p1+r2+-p 1-r r +)-1p^r2++,

where the propagators which shift the origin of the expansion from c* to Ci+i

so that the reflection matrices T ±:f have a single origin, while the transmission 
matrices T'±± have two origins, as can be seen in figure (3.5) which shows the 
reflection and transmission matrices for the single layer and composite systems.

The plane wave propagator is diagonal, which has important consequences. If this 
procedure were to be implemented entirely within the angular momentum basis, 
the propagators introduced to shift the origins of the expansions would no longer 
be diagonal. Repeated use of (3.85) would introduce products of these propa­
gators, leading to inconvenient internal summations. The convergence problems 
associated with these summations are avoided by using the plane wave basis set.

Repeated use of (3.85) allows the full solid to be assembled by adding a single 
layer at a time. In calculating the scattering from a semi-infinite half-space, this 
stacking can be accelerated using layer doubling. Since the layers to be stacked 
are all identical, then the scattering from 2  layers can be coupled with itself, 
to give the scattering from 4 layers, which is then coupled with itself to give 
the scattering for eight layers. Recursive application of this algorithm stacks 2n 
layers, as opposed to n  layers obtained by stacking individually. At real energies

and vice versa, denoted by P^,  are simply the plane wave matrix elements of the 
Bloch Green function

(3.86)
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1 2  1 2  12  1 2

Figure 3.5: Illustration of the layer transmission and reflection matrices of equa­
tion (3.83) for a single layer, and equation (3.85) for the composite scattering 
system of layers 1+2. In all cases the origins of the expansions of the incident 
and scattered plane wave are indicated by the shaded circle.

this process is not guaranteed to converge, therefore it is necessary to include a 
small imaginary component into the energy, ensuring that all states decay within 
a finite length, and thus that the half-space reflection matrices converge after 
stacking a finite number of layers.

Recalling the problem of calculating the reflectivity, if represents the scat­
tering matrix for the stack of layers i to j ,  the the reflectivities of the left and 
right half-spaces, appearing in (3.79), are given by

n  = T -+ , =  7 ( 3 . 8 7 )

where ±oo is in practice the number of layers needed to converge the quantities 
to machine accuracy on the computer. This completes the derivation of the half­
space reflectivities, for more details of the LKKR method see [19] [83].
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LHS I J RHS

Figure 3.6: System comprising 2 layers I  and J  such that I  = J  — 1

3.11 Site off-diagonal r-m atrix elem ents

As we shall see in the next section, calculating the scattering of a system with 
a defect involves matrix multiplication between r-matrices connecting sites at 
which the potential is perturbed. This requires the determination of the site off- 
diagonal r-m atrix elements, and hence we need an expression for the r-m atrix 
that connects sites in different layers. If we consider a system comprising adjacent 
layers I  and J  such that I  =  J  — 1, as shown in figure (3.6), then to find t j j  we 
need to determine all the scattering paths starting from layer I  that are finally 
incident on layer J.

In this section we will use T  for the transmission and reflection matrices of the 
layers, R  for the reflection matrices of the half-spaces, P  as the plane-wave prop­
agators, T to denote conversion from partial waves to plane waves and T for 
conversion from plane waves to partial waves. Subscripts indicate the layer ori­
gin, and superscripts indicate the direction of travel of the wave. In this notation 
the off-diagonal r-m atrix is given by [2 1 ]

X [ 1 7  [1 -  P F - ^ P ^ r r  + rj-] p?

x [l -  PJ PJ_, _ 1

(3.88)
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LHS I K=I+1..J-1 J RHS

Figure 3.7: System with layers I  and J  separated by intermediate layers K  = 
J + l . . .  J - l .

where

Aj = [v-jPJ^R-j^ P U  + rj] [l -  P}RfciPj
x [fj + Ptm^Pjt-j] -  rjrj. (3 .8 9 )

The first term in equation (3.88) represents paths which scatter solely within 
layer I. The second term sums paths which leave layer I  and then travel right, 
i.e., towards layer J , for the first time, including multiple scattering with the left 
half-space. The third term represents multiple scattering between the left and 
right half-spaces, done in the absence of layer J . The fourth term is then waves 
that are incident on layer J , at this point the expression sums all the paths that 
originate in layer I  and arrive at layer J, including all multiple scattering with 
the rest of the system except layer J. The final term includes scattering within 
layer J , and multiple scattering between layer J  and the rest of the system. 
The quantity A j  which appears in the final term of equation (3.88) is defined 
in equation (3.89), where the three square bracketed terms represent scattering 
from layer J , multiple scattering between the half-spaces, and scattering back 
into layer J  respectively. For scattering in the opposite direction, e.g., I  = J  -1-1, 
similar expressions apply, with transmission directions and layer origins altered .

In the case where layers I  and J  axe separated by a number of additional layers 
an extra term is needed. Figure (3.7) shows a diagram of such a system. For the
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system shown we need to insert an additional term

j - 1n
K = I +1

n  [ l - T t P K - i R K U P L i ] T Z +P£, (3.90)

into equation (3.88), immediately before the third term which is the multiple 
scattering between the two half-spaces. Each factor in (3.90) advances the solu­
tion through an additional layer K , adding the scattering paths involving layer 
K  and all those to the left.

These expressions for the site off-diagonal r-m atrix can be checked by partitioning 
the sites between layers in different ways. The r-m atrix connecting two sites in 
different planes can be determined by assigning the planes to different layers and 
using the above procedure, or by assigning both planes to a single layer. These 
two situations give two very different partitionings of the scattering events, yet 
result in an identical site off-diagonal r-matrix, to within numerical error.

3.12 Defect r-matrices

In this section we will derive expressions for the r-m atrix of a defect system, 
being a system in which the potential differs at a finite number of sites from 
some original system. The defect r-matrices will be found to depend on the r- 
matrices of the original system and the ^-matrices of both the original and the 
defect system.

This property allows rapid calculation of the defect r-matrices, if the r-matrices 
for the original system are calculated and stored. Defect systems can be then be 
converged to self-consistency relatively quickly, without the need to laboriously 
calculate the substrate r-matrices for each iteration.

In the following discussion the site indices and angular momentum indices are 
suppressed for clarity. We start from the definition of the r-m atrix (3.38),

r  =  t +  tgr , (3.91)

relating the r-m atrix with the ^-matrix and the matrix elements of the free space

51



Green function. Multiplying through by t 1 from the left and r  1 from the right 
gives

t~l =  t _ 1  +  g. (3.92)

Since the free space Green function is purely structural we can equate it for two
systems which are structurally identical but have different potentials, such as a
perfect crystal and one containing a defect potential. Hence

g  =  r 1 -  r _1 =  t j 1 -  T j l , (3.93)

where the d subscript distinguishes quantities relating to the defect system. Re­
arranging for the defect r-m atrix gives

Td =  [t*1 ~ t~l +  r -1]-1 . (3.94)

Replacing the difference between the inverse ^-matrices t~l — t ^ 1 with A, and 
pulling out a factor of r  gives

rd = t [ 1 -  A r ] '1. (3.95)

We can formally expand the inverted bracket as a series and rearrange,

Td = t[1 +  A t +  . . .  ]

=  t[  1 +  A r[l — A t ] - 1  

=  t  +  rA r[ l  — A t ] - 1  

=  t  +  t A [1 — tA ]-1t

hence

rd = t  +  t A [1 — tA ]_1t .  (3.97)

Equation (3.97) represents an expression for calculating the r-m atrix correspond­
ing to a system in which the potential has changed at a finite number of sites, in
terms of quantities corresponding to the original system, in particular the original
t and r-matrices, and the new t-matrices of the modified sites. The change in
r-matrices due to the presence of the defect, denoted S t , is thus

St = rA [l — rA ]_1r. (3.98)

(3.96)
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As A is non-zero only for those sites where the t-matrix, and hence the potentials, 
have changed, the internal sums in equation (3.98) need only be performed across 
those sites. In principle the perturbation due to a defect will extend beyond 
those sites. In practice it is usual to set St  to zero for those sites with unchanged 
potentials. The accuracy of this approximation depends on the number of defect 
sites used, and on how effectively the perturbation is screened. Introducing

g  = A [1 -  rA ]- 1 , (3.99)

gives the following expression for St ,

S t  =  t @ t , (3.100)

and the task is then reduced to calculating Q. Restricting the site summations 
to those sites with altered potentials allows the expression for Q to be rearranged 
as follows,

0  =  A [ l - r A ] _1, (3.101)

g~ l = A - 1  — r, (3.102)

A = Q — A tQ, (3.103)

g =  A + Arg.  (3.104)

Equation (3.104) is particularly useful and will be used in the following section 
which details the calculation of defect r-matrices for extended line defects.

Using the definition of St  in equation (3.100), the full expression for the defect 
r-matrices in terms of Q is

Td = t + t Qt , (3.105)

where the implicit site summations in the second term are restricted to those sites 
at which the potential is altered. Equation (3.105) can be viewed as analogous to 
equation (3.14), relating the full Green function to the free space Green function 
and the total scattering matrix, G — Go +  GqT G q. In equation (3.105) therefore, 
r  is analogous to a free space Green function, and Q is analogous to the scattering 
matrix. Thus, just as we can use T  to construct a Green function, G, including 
the effects of scattering potentials from the free space Green function Go, we can 
use Q to construct a r-matrix, r^, for a system which includes defect potentials
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from the scattering properties of a periodic substrate system, r.

We are thus able to calculate the electronic structure of an infinite periodic sys­
tem with a finite number of defect potentials, by first calculating the r-m atrix for 
the infinite periodic system using the fc-space method detailed previously, then 
subsequently using these r-matrices with equation (3.105) to determine the scat­
tering at the defect sites. It should be noted that the site off-diagonal elements 
of the r-m atrix are required, due to the site summations in equation (3.105)

3.13 Chain defects

In this section we will examine the calculation of r-matrices for systems compris­
ing extended one-dimensional defects, for example a chain of atoms on a surface. 
In the previous section we derived an expression for the r-m atrix of a system 
with a finite number of sites having potentials differing from those in some orig­
inal system. This requires sums over those sites with differing potentials. For 
extended one-dimensional defects the number of sites with differing potentials 
is infinite however, so the expressions for the defect r-matrices derived in the 
previous section are only valid if a lattice Fourier transform has been performed.

In this derivation, and throughout the rest of this thesis, we take the line defects 
to run parallel to the y-axis, hence the system is periodic in the ^/-direction. This 
periodicity allows us to solve for the k y resolved r-m atrix, hence site summations 
are performed in the r-unit cell index and in the site within the unit cell index, 
while the troublesome infinite summation over the y-unit cell index is avoided. 
This necessitates an expansion of the unit cell indices to differentiate between x  
and y, as shown in figure (3.8).

In terms of the new site indices, the r-matrices are given by

=  j  (3.1 0 6)

= J  T I a J p ( k y ) e  iky{Xi Yj\  (3.107)
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Figure 3.8: Diagram showing the unit cell indices introduced to allow the treat­
ment of systems with one-dimensional periodicity.

where the T IaJ(3( k y ) are the fcy-resolved r-matrices, given by

d k x
(3.108)

In order to use the fcy-resolved r-matrices with equation (3.105) to calculate the 
defect r-matrices, we will need an expression for the quantity Q which is also ky 
resolved.

In the re-labelled index scheme, where for clarity we have replaced l a  with //, Q 
is given by

Q&#'i =  + £  A t (3 . !09)
fj,"k

where the site summation over /la" is restricted to defect sites (as is the summation 
over k , but in that case the defect extends over an infinite site index). We can 
perform a lattice Fourier transform to obtain an expression for Q(ky)

g w '(ky) = — Y ^ Q ^ ' j eiky{Yi~Yj)

_l_ T^i;i*"keiky(Yi~Yk^QtJ'"k,fJ'':'eiky(Yk~Yj\  (3-110)
ijkfj,"
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Shifting y-unit cell indices and setting i' = i — k and k' = k — j  allows us to write

G ^'(ky) =A  ̂ HH'
j  L - A ^  rr^ '^ '^ p ik yY i, nn"k'\\i'§  p iky Yk,

Ny k "  (3.111)

=£*&„, +  A ^ r ^ " ( k y) g ^ ( k y),

where we have made use of the following relation,

T ^ (k y )  =  —  i eiky(Yi~Yj^
Ny ij

=  _L r ^ o j k y ^  (3 .1 1 2 )
Xy a

_ _j_ ^i'w'OgikyYj/
Ny {/

Thus we have an expression for G{ky),

G^'(ky) = r ^ \ k y ) G ^ ^ { k y), (3.113)
m"

which can be rearranged into a form analogous to equation (3.99), hence

 . \ nn'
V ' - r t e ) ] - } • (3.114)

Returning to the expression for the change in the r-matrices due to the presence 
of defect potentials, we have

Srij =  £  r ^gnmTmĵ  (3 115)
nm

which, in the re-labelled index scheme becomes

fiTVW'3 _  THWnk g n " k \ n " ' k ' ' (3.116)

Note that the site summations appearing in these expressions axe restricted to 
those sites at which the potential is changed. From the lattice Fourier transform 
equations, we have expressions relating the ky resolved r-matrices and G to their
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real space equivalents,

^ikyiYi-Yj)

ie-iky(Yi-Yj)

(3.117)

(3.118)

Substituting these expressions into (3.116), we then have an expression for St in 
terms of the ky resolved quantities,

and is therefore ideal to treat, for example, a monatomic wire on a surface.

In conclusion then, we have a scheme for calculation the tau matrices for a system 
of one or more line defects, which requires only the ^-matrices of the substrate 
and defect systems, and the ky resolved tau matrices of the substrate system. The 
ky resolved tau matrices for a given substrate system can readily be calculated 
using the LKKR method, and stored for future use. The stored r(ky) can then 
be read in on each iteration of a defect calculation, greatly reducing the required 
computing time.

-ikyiYi-Yj)

(3.119)

where

(3.120)

Therefore the change induced in the tau matrix by one or more line defects can be 
expressed in terms of the ky resolved original tau matrices, and the original and 
defect ^-matrices. This need only be solved within one unit cell in the ^-direction
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Chapter 4

Poisson Solution

4.1 Introduction

To obtain self-consistent potentials within the framework of density functional 
theory [58, 70] it is necessary to solve an iterated cycle of Schrodinger and Poisson 
equations. In this process, an initial potential is used to generate a charge density, 
which then yields a new potential as an input for the next iteration. Clearly the 
solution of Poisson’s equation is as important a step in the self-consistency cycle 
as the solution of the Schrodinger equation.

As was discussed in chapter 2 , in the self-consistency process the new potential 
is given by

V’(r) =  Vc(r) +  uxc(r) (4.1)

where Vc(r) is the Coulomb potential, including the contributions from the elec­
tronic and nuclear charge, and vxc(r) is the exchange-correlation potential. The 
Coulomb potential is found by solving Poisson’s equation for the charge density 
of the system, which will be detailed in the following sections. The exchange- 
correlation potential approximates the many-body interactions between electrons 
for which the Perdew-Wang form has been used [99]. The potential thus ob­
tained is mixed with the original potential and used as the new input to the 
self-consistency cycle, as outlined in chapter 2 .
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4.2 Electrostatic contribution

This section is concerned with evaluation of the electrostatic contribution to the 
potential, which involves the solution of Poisson’s equation

W c ( r )  =  - 4 7rp(r), (4.2)

where p(r) is the charge density of the system. In order to perform self-consistent 
calculations on chain defect systems, we will need solutions of Poisson’s equation 
for systems with one-dimensional periodicity.

The derivations in this section assume a system where space is partitioned into 
Wigner-Seitz (WS) cells - space-filling regions that are normally centred on atomic 
sites. For a general system of such cells the solution for the electrostatic potential 
has an expansion [45] within cell R  of V c{r) =  Vc, ,R(r  — R) where

Vt«i(r) =  ~ + /  ^ t '  + W r ) + a W r ) .  (4.3)r Jtk  |r — r'|

The first two terms arise from the nuclear charge ZR and electronic charge density 
P r  within cell R. These terms are relatively simple to calculate, the electronic 
charge density being found by direct numerical integration of the local density 
of states - see chapter 5. The third term Vm,r(i*) is the Madelung potential that 
arises from the charge density in all other WS cells, which can be characterised 
by the multipoles

Qrl = f  reYl(r)pR{r)d3r -  -7 = ^ , 0 . (4.4)
Jtr v  47r

For more details on the calculation of the multipoles, see section 5.2.

The Madelung potential is given by [59]

t/  /r\ _  v ' 7 (r + R  — R ) R/ , .
E E 2  ̂+  1 |r  +  R  — R '|<+1 L ’

where L  is the usual composite angular momentum index and the prime
in (4.5) denotes the omission of the term R ' =  R. The final term in (4.3) is a 
correction to the Madelung term that arises from those cells R ' which have a 
bounding sphere, the smallest sphere centred on R ' that fully contains the WS
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cell tr/ , that overlaps with the bounding sphere of cell R. It is not specific to one- 
dimensional systems and its evaluation is discussed elsewhere [45]. In the atomic 
sphere approximation, used elsewhere in this thesis for the defect calculations, 
this term is omitted.

The lattice sum which appears in equation (4.5) can be evaluated directly for large 
values of £, but for small I  it is conditionally or poorly convergent. For three- 
dimensional lattices the Ewald technique [32] is an effective method for evaluating 
these sums. In the case of the chain defect calculations described in this work, 
we have the more complex problem of a system of one-dimensional defects to a 
substrate system that is periodic in two-dimensions. As the Poisson equation is 
linear we are able to partition the charge in the system in whichever manner is 
convenient, and solve the Poisson equation for each contribution separately. We 
therefore separate the Madelung potential into a contribution from the substrate 
system and a contribution from the defect system,

Vm , r ( f ) =  Fs,R(r ) +  Vb,R(r). (4.6)

Vd,R(r) is then the Madelung potential arising from the difference in electronic 
density between the system with and without the defect. Since the substrate 
system is fixed, the contribution Vk,R(r) can be read in along with the r-matrices, 
and thus need not be recalculated for each iteration. Interest in the properties 
of thin-films and interfaces have previously led to the extension of the Ewald 
method to two-dimensional charge distributions [83, 114], and for more details 
concerning the evaluation of the Madelung potential for two-dimensional systems 
we refer the reader to these references. We concentrate our presentation on the 
new aspects particular to the chain-defect geometry.

We represent the defect as a cluster of chains whose potentials are permitted 
to vary, embedded in the infinite substrate system. The defect contribution to 
the Madelung potential can then be found from the multipoles of the difference 
charge density. In principle this contribution will not be limited to sites within 
the defect cluster calculation; the perturbation to the potentials due to the pres­
ence of the defect might not be wholly confined to the defect cluster of chains. 
However in the defect calculations we fix the potentials of the sites outside of the 
cluster to the substrate values, so that any contribution from the defect system to 
these potentials is ignored. For this assumption to be justified the perturbation 
extending beyond the defect should ideally be small, and for many, especially
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metallic systems, the screening effect of the other sites included in the cluster 
will indeed tend to reduce the effects of the defect outside of the cluster. This 
is analogous to 2D LKKR surface calculations, in which the perturbation to the

4-5 layers is sufficient to recover bulk potentials. This screening, along with the 
tendency towards charge neutrality as the system is converged self-consistently, 
generally ensures that the errors from limiting the perturbation to the cluster axe 
small. These errors can be quantified and reduced by systematically increasing 
the size of the cluster. This has the effect of including more chains to screen the 
charge on the defect, reducing the magnitude of the perturbation outside of the 
defect. Studies of the convergence of chain defect calculations with respect to 
cluster size are given in section 5.9.

The chains, and therefore the cluster, have one-dimensional periodicity, hence 
the Ewald method needs to be extended to deal with one-dimensional charge 
distributions. Previous work has touched upon one-dimensional Ewald methods 
[26], although not in relation to the calculation of Madelung potentials for elec­
tronic structure calculations. The following section describes the extension of the 
Ewald method to one-dimensional systems in detail and derives the necessary 
expressions for evaluating the one-dimensional lattice sums which arise [76].

4.3 One-dimensional Madelung potential

In a system with one-dimensional periodicity, the WS cells can be labelled by a 
chain label R, the vector pointing to the origin of one cell of the chain, and a one­
dimensional lattice vector uy indexing the position along the chain. Because of the 
periodicity quantities such as the electronic charge density and the electrostatic 
potential Vc satisfy e.g., Vc(r) =  Vc{r — uy), and so need only be determined 
within the origin cell of each chain.

The Madelung contribution for a system with one-dimensional periodicity is given

potentials due to the surface is screened by the material such that the inclusion of

by

VM,R(r) = ^2 ^2
R /,U || L
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where the prime in (4.7) denotes the omission of the term R ' =  R , uy =  0. 
Equation (4.7) is conveniently written as [113]

V W r )  =  £  YL(r)reM™?Q?: (4.8)
LL'R'

with the Madelung matrix

= 16tt2( - 1 /
(2 f ' - l ) ! !

R - R ' )  (4.9)
(2 ^  +  l)!!(2 * + l ) H

with £!’ — £ + £!, m" =  m  — m', Cf/L// =  f4nYZ(Q)YL'(Q)YL"(Q) dQ, a Gaunt

the prime denoting the omission of any singular term uy =  R . For sufficiently 
large £ this sum may be evaluated practically by direct summation, but for small 
£ it is conditionally or poorly convergent, and it is here that an Ewald-type 
treatment is required. This Ewald treatment will be derived in the next section.

The expressions given above are valid for the general case of non-spherical po­
tentials. In the atomic sphere approximation, used for the defect calculations in 
this thesis, the potential is spherically symmetric. The sum over L  in equation 
(4.8) is therefore restricted to just the £, m  = 0 term,

This term no longer has any r  dependence, so the Madelung potential due to

is clear that allowing r —> 0 results in the same expression. In the chain defect 
calculations described in chapter 5 of this thesis, only the multipoles up to £ =  1 
are considered, thus curtailing the sum over L' in (4.11).

coefficient and

(4.10)

(4.11)

the defect system for each chain is a constant term. From inspection of (4.8) it
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4.4 Ewald transformation

In order to evaluate (4.10) we consider the evaluation of

=  E V V p  (4 1 2 )| r - u , |

from which the required sums may be obtained by differentiation, as discussed 
in the following section. Initially assuming r± ^  0, we write 5 (r) as two sums, 
using the integral representation of the Gamma function [1 ]

—  =  = 7 -r / —:— dt (4.13)
r2z r ( 2:) Jo t l~z

for 2  =  1 / 2  and dividing the range of integration into [0 , /x] and [/x, oo], with
/x > 0 an arbitrary split parameter that is chosen for optimum performance. The
contribution from the upper range decreases rapidly with increasing r, leading to 
a convergent real space sum

_ 7  _L f°° g-|r-U||l2»̂ l _ _L 7  r(1/2’̂ lr ~ Ull!2)
Vi  A t r  | r - u , |  (414)

where r ( n ,  z) is the incomplete Gamma function [1]. For the second sum arising 
from the lower range of the integral

S<2>(r) = V-L /Vlr-u,|*<= _L -e
irf \pn Jo J i  V n  Jo ~ !

2+  »2 + dt
uii V *  J° V I V k J° uii V t  ^  ^

we exploit the periodicity of the sum of Gaussians within the integrand, substi­
tuting the Fourier series representation

Y  e_|r« _u»|2( = -  Y  e_9"/4< cos(9ll rll) • (4-16)
uii 0  »ll

Separating out the g\\ =  0  term gives 5^2^(r) =  S^2' \ t) +  S (<3\ r) with

5 (2/)(r) =  -  Y ,  cos(#||r||) ô(<7||/2, (4.17)
% > °
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where we introduce the integral

/ n(a, b,fi) = [  e~a2̂ te~l̂ ttn~ldt (n = 0 , 1 ,2 , . . . ;  a > 0) (4.18)Jo
whose evaluation is considered in section 4.6 below, and

S<3)(r) = i  / V ri = i  lim [^(sri) -  E^rl)
CL J o  I  CL s —►0"*"

=  _ I  U +  ln r 2 +  )] — -  lim Ins, (4-19)
a 1 J a s-»o+

where En(t) is the exponential integral function [1 ]. We have used lim^o+ Ei(t)  =  
— 7  — limt_̂ 0+ ln  ̂with 7 Euler’s constant.

The final singular contribution to (4.19) has no physical relevance, and may be 
omitted on account of charge neutrality. In terms of the lattice sums required for 
the Madelung matrices (4.9) it only enters for L = L' = (00), vanishing under 
the differentiation (4.22) that generates other terms. Furthermore, in evaluating 
the potential the L = L' = (00) terms are summed over all chains, scaled by the 
corresponding charges. Thus the prefactor of the singular terms includes a factor 
which is the sum of charges within the system, zero in a charge neutral system. 
We drop this term in the subsequent analysis.

Combining, we obtain the following expression for S(r):

S ( T) =  -7E £  -r ^ ^ r  |U"̂   ̂ +  ^  £  COstelimWffll/2- r -L> /*)V ^ u ,  | r - U | | |  a S | |> 0

-  ^  [ 7  +  \n r \  + Ei((j,r2±)} r x ^  0 (4.20)

= ■| r V r ~ ~ + 1 £  « * ( f l n ) W 2 . o , / * )
v 7* U|| lr  u ||l % > 0

+  r -L =  °- (4-21)
a  Uy V n

For r± =  0 the last two terms originate from taking the limit r± -h► 0 in the 
previous expressions for r) and S ^ ( r )  respectively.
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4.5 One-dimensional lattice sums

In terms of S'(r), the lattice sums required for the Madelung potential Sl (R) 
may be obtained as [85]

5 i(R )  =  ( 2 1  -  1 )!! ^ ( - V )5 (r )t=R (422)

where

yL{ r) =  reYL( r). (4.23)

is a polynomial in x, y, 2  and the differential operator in (4.22) understood to be 
the result of substituting x —> —dx, etc. Due to the cylindrical symmetry of the
system taking the z-axis to coincide with ej| results in more elegant expressions
for the S l(R ) terms, hence these axe the expressions given in this section. In 
order to remain compatible with the 2 D LKKR method, described in chapter 
3, a practical implementation of this ID Ewald technique has been realised in 
which the chains are parallel to the y-axis, with the z-axis normal to the 2D 
layers. Thus the S l(R ) expressions used in this code take the y-axis to coincide 
with e||, and the corresponding expressions can be found in Appendix A.
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Applying (4.22) to (4.20,4.21) and taking the 2 -axis to coincide with ey, we obtain 

S »(R ) =  (4.24)

S io (R ) =  - |E '— | R |Ru T ' l|2 )y io (R  "  U||)V^ui, lR' - U||l
/o

+  — 7=  s  011 sin(^ll^ll)/ o(P||/2, R±, ii) (4.25)
a v 7r5||>o

5 U(R) =  ^ E >r ( 3 y R - u n P ) r i i ( R _
V7TU,| | R - U | | ^

-  - ^ j L f i x e ^ E cos(9 ||-R||)A(sh/2 , fix , fi) (4.26) 
ay/ZTT

o m \  _  ^ w T (5 /2 , ^/|R -  U|||2) . .
52o(R) -  ------ j R ------ Ym{R ~  U||)

_ T̂ 7= E cos(5||R||) fff|Jo(ff||/2, fix,/i) - 2/i(ff||/2, fix, ft) + 2fî /2(3 ||/2, fix,/i)l
6 a V 7rg\\>0

+  (4.27)
3av7r

o /d \ _  ^ „ 'r ( 5 /2 , /x |R  -  iijil2) /p  v
52l(R) -  3 A § ----- [R --u j|P -------y2l(R ~  U||)

2\/5
-  n^=R±e E  01 sin(S|| fi„ )/i (si,/2, f i x ,  fi) (4.28)

°  V 07T 5 | |> 0

o ^ v ^ 'r (5 /2 ,/ / |R  — U|||2)
522(R) -  3 0 ^ ------------------  K22(R "  U|l)

+  —̂ = f i x e 2*̂ R E cos(3 ||R||)^2 (3 | |/2, fix, m) (4-29)
av07T ^ ||

For I  > 2 direct summation is sufficiently rapid, and terms for m  < 0 may be 
found from ^ ^ ( R )  =  (—l)mS£_m(R). The incomplete Gamma functions are 
readily obtained through recursion, using T(n -I-1 , z) = n r(n , z) +  2 ne-z starting 
with T( l / 2 , z) = y/K erfc(y/z).
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4.6 Evaluation of In(a, b, ji)

The integrals (4.18) that appear in the expressions for S l(R ) appear to be a time 
consuming element of the calculation, but numerically they are readily evaluated. 
Initially considering n — 0 and changing variables to y = fi/t

Io{a,b,n)= f°° e~a2ŷ e ~ b2̂ y—  (a > 0}
J i  y

(-&V= E i j - E m+i{a2h i) (4.30)~rn mim=U

where the series expansion of the second exponential factor has been made, and 
the exponential integral function recognised. Since Em+i(x)  <  exp(—x) / ( x  + m), 
the series is convergent. The corresponding series for In(a, b, y) may be found by 
differentiation:

dn
In{a, b, ii) = ^ _ -b2jn/o(a, 6, y). (4.31)

The exponential integral function satisfies Em+\(z) =  [exp(—z) — zE m{z)\ /m ,  
enabling the integrals to be evaluated in the series form

1 00
In(a, b, fi) = / , 2\n Cn,Tn (4.32)

v 0  )  771=0

with the coefficients determined by one step recursion relations in either index

co.o =  Ex(a2/n)  (4.33)
a2b2 { -b 2n)2 _a2 / ( .

Co,m =  — ^-Co,m_ i H j— e ' (4.34)m 2 mm\
Cn,m = (jm, Tl \)cn—\̂ rn (4.35)

Algorithms and code for evaluating E\(x)  are widely available [1 , 104]. There are 
two special cases. If b =  0, then

/ n(a, 0, y) =  finEn+i {a2/fi) (4.36)

=  (a, 0, //) +  (4.37)
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with /o(a, 0, fi) =  Ei{a2/fi;), and if a = 0 (and n > 0)

I _  e-*V
/ 1 (0,6,Ai) =  — ----- (4.38)

/ n+1 (0,6 , ,/) =  £/„«>, 6 , /i) -  (4-39)

Numerical investigations indicate fi «  0.1 gives most efficient evaluation of the 
lattice sums, although a smaller value becomes necessary for large r±. Examining 
equation (4.30) it is clear that while the series is convergent, the rate of conver­
gence will be controlled by the size of b2fi. In evaluating the Sz,(R) terms b is
replaced by r±, therefore for large values of r± the factor r \ f i  becomes large and 
the rate of convergence suffers. As fi is an arbitrary split parameter this problem 
can be avoided by simply reducing fi in proportion to 1 j r \ .

It is worth noting that the integrals In(a,b,fi) (4.18) can be expressed as

In{a, b, / j l )  = finWn(fi~la2, fib2), (4.40)

where

/ O O  e - x ^ e - y / t i

-  ~n+i—  dV- (4 -4 1 )

The function Wn defined in equation (4.41) is known (for n = 0) as the leaky 
aquifer function [51]. More sophisticated methods to evaluate this function have 
been developed than those above, in order to ensure a convergent expression for 
all ranges of the parameters. As mentioned above however, due to the arbitrary 
nature of the split parameter fi the simple recursion method can be guaranteed 
to converge.

In terms of computational costs, calculation of the Madelung matrix for a system 
with R, R ' =  1,2,3, . . .  37 unique sites and all angular momenta L , LI up to i  — 8  

takes of the order of 1 second on a modest desktop workstation. Furthermore, 
the Madelung matrix need only be evaluated once for a given system, stored, and 
then read in during the iterations to self-consistency. In comparison with other 
parts of the calculation these costs are negligible.
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Figure 4.1: Examples of the breakdown of the lattice sums S l(R ) into contri­
butions from the real space sum (long dash), reciprocal space sum (short dash), 
and g\\ =  0 term (dots), as a function of the Ewald split parameter fi. The results 
illustrate behaviour for various L and R, (a) tm  = 20, R  =  (1, 0, 0) (b) £m =  22, 
R  =  (5,5,0) (c) im  = 11, R  =  (5,0,0). In each case the sum is shown as the 
solid line.

4.7 R esults and discussion

There are a number of methods by which the validity of the expressions derived 
in the previous sections can be checked. Firstly the value of the lattice sum 
components Sl (R) should be independent of the choice of split parameter fi. 
Figure (4.1) shows calculations of the lattice sums for a chain with spacing a = 5. 
As can be seen from the figures the total sum of the three terms is independent 
of fi.

Table (4.1) shows calculated values of S(R) and the real, reciprocal and correction 
terms for differing chain geometries and values of the split parameter fi. Again the 
value of the lattice sum 5(R) is independent of the split parameter fi. The higher 
£ terms can also be checked by direct comparison to brute force summations of 
the corresponding Y/,(r)/r*+1. This confirms that the Sl (R) expressions give the 
correct results.
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r a A* SW(r) S<2')( r) S<3>(r) S(r)
(0,0,0) 5 0.05 -2.06461372E-01 1.69228244E-05 -5.99146455E-01 -8.05590904E-01
(0,0,0) 5 0.15 -4.34551404E-01 8.38449663E-03 -3.79423997E-01 -8.05590904E-01
(0,0,5) 10 0.05 4.55387994E-02 -1.01315880E-02 -2.99573227E-01 -2.64166016E-01
(0,0,5) 10 0.15 2.46795973E-03 -7.69219772E-02 -1.89711998E-01 -2.64166016E-01
(1,0,0) 5 0.05 7.94040364E-01 1.61739544E-05 -6.09022831E-01 1.85033707E-01
(1,0,0) 5 0.15 5.85931694E-01 7.43748029E-03 -4.08335467E-01 1.85033707E-01

Table 4.1: Values for the real space sum ( S ^ ) ,  reciprocal space sum (S and 
g\\ =  0 term ( S ^ )  arising in the Ewald treatment of the lattice sum S( r) for a 
periodic one-dimensional lattice uy =  (0 , 0 , na), n =  . . .  , —2 , —1 , 0 , 1 , 2 , . . . ,  for 
different vectors r  and values of the Ewald split parameter /i.

Secondly for certain systems we are able to compare the Madelung potential di­
rectly to one calculated using alternative methods. In figure (4.2) we show a direct 
comparison between the electrostatic potential above a layer of charges calculated 
using the expressions here, treating the layer as a number of parallel chains of 
atoms, and with previous expressions [114] explicitly derived for two-dimensional 
charge distributions. The two methods give comparable results except near the 
edges of the array of chains, where the potential found from summing chain con­
tributions fails to reproduce that of an infinite layer. The agreement within the 
body of the chains demonstrates that both methods give the correct potential 
where expected.

Figure (4.3) shows a similar calculation, in this case a direct comparison between 
the electrostatic potential above a layer of dipoles. Again the potential is cal­
culated using the expressions here, treating the layer as a number of parallel 
chains of atoms, and with expressions [114] derived for two-dimensional charge 
distributions. As is the case with the point charge comparison, the two methods 
give comparable results within the array of chains. Indeed the similarity between 
the point charge and the dipole plots is striking. This similarity is not especially 
surprising, since with constant 2  the contributions for point charges and dipoles 
behave as 1 / r  and 1 / r 3 respectively, thus the dipole contribution drops off faster 
outside the region of the chains.

The agreement between the surface and chain arrays for both the point charge 
and dipole terms confirms that the expressions for one-dimensional charge distri­
butions derived in this chapter give the correct electrostatic potential.
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Figure 4.2: The electrostatic potential evaluated along a line r  =  5(x, 0,1), above 
a layer consisting of alternating charges arranged on a square lattice, with lattice 
sites Rnm =  5(n +  0.5, ra, 0). Positive charges occupy sites with n + m  even. 
Dotted line: The potential is calculated using independent expressions [114] for 
two-dimensional charge distributions. Solid line: The potential is calculated for 
an array of 10 parallel monatomic chains (oriented along y) modelling the same 
system, using the expressions derived in this chapter. The two methods agree 
except towards the edges of the array of chains, where the number of chains used 
to represent the layer becomes insufficient.
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Figure 4.3: The electrostatic potential evaluated along a line r  =  5(x, 0,1), above 
a layer consisting of alternating dipoles arranged on a square lattice, with lattice 
sites R nm =  5(n +  0.5, m, 0). Positive dipoles occupy sites with n +  m  even. 
Dotted line: The potential is calculated using independent expressions [114] for 
two-dimensional charge distributions. Solid line: The potential is calculated for 
an array of 10 parallel monatomic chains (oriented along y) modelling the same 
system, using the expressions derived in this chapter. The two methods agree 
except towards the edges of the array of chains, where the number of chains used 
to represent the layer becomes insufficient.

72



4.8 Laplace charge rebalancing scheme

In principle the Madelung potential derived in the preceding sections is valid only 
in charge neutral systems. That this is true can be seen by considering a sum 
of an infinite chain of atoms with non-zero net charge, which will clearly result 
in an infinite potential. As in the calculations described in the rest of this thesis 
the Fermi level is pinned to the value of the infinite substrate system, the defect 
system is not guaranteed to be charge neutral. Instead charge flows into and 
out of the defect region during the self-consistency iterations, with the eventual 
self-consistent system typically exhibiting charge neutrality to a good degree.

A similar situation exists in the 2D substrate calculations, where for surface calcu­
lations the Fermi level is pinned to the bulk value, resulting in charge neutrality 
not being guaranteed but emerging naturally. In the surface case the bound­
ary condition used for the 2 D Poisson solution is that the potential should be 
constant in vacuum and should match in amplitude on a surface between the 
interface region and the bulk half-space. Using this boundary condition, the so­
lution of Poisson’s equation has proved to be stable for small excesses/deficits of 
charge, and as the system is converged the potentials tend to minimise the charge 
imbalance. The discontinuity in derivative on the matching surface corresponds 
to a delta function sheet of charge, whose magnitude gives some measure of the 
adequacy of the surface region treated self-consistently. For the ID defect calcu­
lations it is not necessarily the case that the system should be so well behaved 
with respect to charge imbalance. With this in mind several methods were de­
veloped to take into account any charge imbalance and improve the stability of 
the solution.

The method implemented was to match the amplitude of the potentials for the 
defect and substrate systems around some boundary enclosing the defect system. 
This is a similar boundary condition to that imposed in the 2D solution. The 
boundary is periodic in y with the same repeat unit as the chains, and is chosen 
to intersect with the next shell of atoms outside of the defect system, as shown 
in figure (4.4) for a 7 chain defect system.

For this boundary condition to be satisfied the potential due to the defect system 
(i.e., the potential due to the difference charge density between the system with 
and without the defect) must be equal to zero around the boundary. To determine
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Figure 4.4: Diagram of 7 chain defect system showing the next shell of sites and 
the boundary used in the Laplace correction method. The cross-section is in the 
x — z axes, with the chains parallel to the y-axis. The ^-displacement of the 
boundary is chosen to coincide with the central layer of chains.

the necessary corrections to the potentials, we apply the following procedure:

1. Calculate the Madelung potential Vm,r  due to the defect chains, for R  
spanning a set of points around the periodic boundary

2. Solve the Laplace equation subject to the same periodic boundary condition 
as the chains. Fit the coefficients of the Laplace solution to the Madelung 
potential around the boundary due to the defect system. Thus the solution 
of the Laplace equation corresponds to a potential around the boundary 
that matches the Madelung potential around the boundary due to the defect 
chains.

3. Calculate the potential from the Laplace solution at the centre of each 
defect site. Since the ASA Madelung contribution is equivalent to allowing 
the displacement within the defect sphere to go to zero (e.g., r —> 0 ), we 
calculate the potential from the Laplace solution at the centre of each defect 
site.

4. For each defect site, subtract the potential from the Laplace solution at the 
centre of the site from the total electrostatic potential at that site, e.g.,

Vm,r =  Vs, r  +  Vd,r  -  Vl,r, (4.42)

where Vs,r ,  Vd, r  and V l , r  are the substrate, defect and Laplace contribu­
tions to the potential at site R.

74



For the second stage above we need to solve the Laplace equation

V V (r)  =  0  (4.43)

subject to a boundary condition which is periodic in the y direction, so that
F (r)  =  K(r|| +  ay). Expanding the potential as

0/1r
V(r) = E VM ) e i9y, 9 = —  (4.44)

9  a

we then have for all r

( v |  -  g2) V,(r„) =  0. (4.45)

Converting to cylindrical polar coordinates we can expand the coefficients of the
Fourier series as

Vi(r ||) =  E  (4.46)
m

in which case the radial functions satisfy

p2Vgm(p) + PV^n(p) ~  ( A *  + ™?) Vgm(p) = 0 , (4.47)

where the primes indicate differentiation with respect to p. W ith the condition 
that we require the potential to be regular at the origin we have the general 
solution

V{t) = ^ 0 0  +  E' 1 mPmeim* + E '^ m /m (s r ) e im<'e™} ,
m 1 9  ’ (4.48)

where the / m(^r) are incomplete Bessel functions [1].

The coefficients A gm are determined by a least-squares fit to the potential on the 
boundary due to the defect chains. In calculations to date the contribution from 
the g 7  ̂ 0  terms has been found to be negligible, with the potential varying little 
with y along the boundary, so that only the g =  0  terms are significant.

Once the coefficients have been determined the value of the potential at the 
defect sites can be calculated. The Laplace potential at each defect site is then 
subtracted from the electrostatic potential at that site, as per step 4 above.
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(a) (b)

Figure 4.5: Plot of the potential correction term due to the Laplace boundary 
condition, Vl, over an x — z cross-section up to the boundary for (a): a 7 chain Fe 
in bulk Cu defect calculation, and (b): a 7 chain Cu chain on Cu surface defect 
calculation. Positive z is pointing out of the surface in these plots.

Subtracting the Laplace term ensures that the substrate and defect potentials 
match on the boundary.

Figure (4.5) shows the Laplace potential over an x  — z cross-section up to the 
boundary for two 7 chain systems; Fe in bulk Cu and a Cu chain on a Cu surface 
respectively. These are calculated for fully converged potentials, and as expected 
exhibit the symmetry of the system.

We can examine the effect that this correction scheme has by comparing the con­
vergence properties of defect chain calculations with and without the correction. 
This test considers a 7 chain defect calculation using 256 k-points and ^max =  3. 
The system is a Cu chain on a Cu surface, with the initial potentials being iden­
tical to the clean surface case, excepting the central potential where the vacuum 
site is replaced by another Cu surface potential to give the chain on the surface. 
A mixing factor of 0.01 was used to generate the new potentials, and the Broyden 
scheme was employed, using up to 10 previous sets of potentials to accelerate the 
process. See chapter 2 for more details on the mixing parameters used in the 
self-consistency cycle.

Figure (4.6) shows the rate of convergence of the calculations, the difference
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Figure 4.6: Plot of difference versus number of iterations for a Cu chain on Cu 
surface defect calculation. The solid line is from a calculation with the Laplace 
boundary condition implemented, the dashed line from one without.

being a measure of the change between the old and new potentials as defined in 
section 2.1. This clearly shows that the calculation with the Laplacian boundary 
condition converges at a faster rate, and experience has shown that in general the 
speed and stability of convergence is improved when using the Laplace boundary 
condition (LBC).

It should be noted that while the LBC speeds convergence, the converged poten­
tials which are obtained will differ from those which would result if the condition 
is not used. It would therefore be desirable to examine the difference between 
the potentials obtained with and without the LBC, hopefully demonstrating that 
use of the LBC leads to more realistic converged potentials.

In order to do this we will compare the total charges on the defect sites for 7 and 
19 chain systems converged with and without the LBC. As above, the system 
used is a Cu chain on a Cu surface, with 256 k-points and £max =  3. The 7 chain 
system is illustrated schematically in figure (4.7), with the site indexing for the 
19 chain system taken as referring to equivalent sites.
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Figure 4.7: Diagram of a 7 chain Cu chain on Cu surface system, the Cu sites 
are shaded while the vacuum sites are indicated by broken lines. The numerical 
tags are used to refer to the sites in the charge comparison.

Table (4.2) compares the charge difference from the clean surface of the unique 
defect sites for the system converged with and without the LBC, for 7 and 19 
chain clusters. Looking at the total charge error for the 7 chain systems, we 
see that the system converged without the LBC has a smaller charge error, the 
LBC system having lost charge as compared to the non-LBC system. Indeed, 
comparing the charge differences it is apparent that the system converged with 
the LBC has less charge on all sites than the system converged without the LBC. 
These results are to be expected, since if we were to increase the cluster size 
we would expect the charge around the outer shell of sites to give a positive 
contribution. The LBC system is effectively taking into account that some of 
the charge would escape from the defect cluster, while the non-LBC case simply 
minimises the charge error within the defect cluster.

If we examine the charge differences for the same sites in the 19 chain systems, we

7 chain LBC
Charge difference from substrate 

7 chain no LBC 19 chain LBC 19 chain no LBC
Site 1 0.11525 0.12026 0.11742 0.11921
Site 3 0.08662 0.08972 0.08549 0.08658
Site 4 -0.68434 -0.68052 -0.68366 -0.68248
Site 6 0.13080 0.13431 0.12740 0.12718
Total -0.01901 0.00806 -0.01682 0.00415

Table 4.2: Comparison of the charge difference from the substrate for a Cu chain 
on Cu surface system, both with and without the LBC. Due to symmetry there 
are only four unique sites.



see broadly the same general behaviour. However in these systems the difference 
between the LBC and non-LBC systems is much reduced. This should not be 
surprising since with a larger chain cluster the perturbation due to the defect will 
be contained within the chain cluster to a greater extent. The potential due to 
the defect around the boundary would thus be smaller, resulting in a smaller LBC 
correction to the potentials on the defect sites. If we were to continue increasing 
the cluster size, we would expect the LBC and non-LBC potentials to converge.

Comparing between the 7 and 19 chain systems, we can see that in general the 7 
chain LBC system gives charge differences that axe closer to the 19 chain systems 
(both LBC and non-LBC). As we expect the larger chain system to give a more 
accurate treatment of the defect, this similarity suggests that use of the LBC 
not only improves convergence, but leads to converged potentials that represent 
a more realistic description of the defect system.
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Chapter 5

Calculation and Convergence

5.1 Introduction

This chapter examines the details of applying the methods developed previously 
to perform calculations on one-dimensionally periodic defect systems, with the 
aim of demonstrating the viability of the method described in chapter 3 for elec­
tronic structure calculations.

We first consider calculation of the charge density from the Green function. This 
is important both as a necessary step in the self-consistency iteration and as a cal­
culation of the electronic structure of converged potentials. We then examine the 
Brillouin zone integration, which involves integrating the ky-resolved r-matrices 
over the 2D Brillouin zone (BZ) to determine the real space r-matrices.

The convergence of the substrate system with respect to the number of energy 
points used in the contour integral, ti e , is considered. Finally the convergence of 
chain calculations with respect to the choice of values for the various parameters 
is examined. Calculations are performed for Fe chains in bulk Cu, and Fe chains 
on a Cu surface, while the parameters examined are

• rik, the number of k-points used in the BZ integral.

• 4 axi the maximum size of the partial wave basis set.
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• rich, the number of chains included in the defect calculation.

5.2 Calculation of the charge density

The charge density is a closely related quantity to the Green function, and its 
evaluation is a necessary step in the self-consistency cycle. In order to obtain an 
expression for the charge density we use the standard relation [52]

p(r; E) = ——ImG (r, r; E)  (5.1)
7T

where p(r; E)  is the local density of states at r  for energy E.  From this quantity 
we can calculate the density of states at energy E  via an integral over r,

n(E) = J  p{r; E)  dr, (5.2)

and the charge density via an integral over the energy

p(r) = J  f p(r; E) dE, (5.3)

where E f  is the Fermi level. The above expressions are valid irrespective of the 
form of the potential and geometry of the system. Equation (5.2) allows us to 
define spatially partitioned densities of states -  e.g., atom resolved, chain resolved, 
etc.- by varying the volume of integration. We will now consider in more detail 
the calculation of the charge density for ASA potentials, being those used in the 
calculations in this thesis.

From the expression for the Green function in (3.50) and the relation for the local 
density of states (5.1), and using pn(r; E) — p{rn; E)  where r n =  r  — R„, we have



We can expand the charge density in spherical harmonics,

pn( i;E)  =  ^ p l ( r ) Y L(r-,E), = J  Yl(r)p"(r-,E)dQ,
(5.5)

which leads to an expression for the angular momentum components of the charge 
density [19]

Pl(r;  £ ) = - £  C t 'L,Re [*2?(r)S?(r)]
* v

-\ ^ 2  { p L L 1 + ^l l ") [K ^ e , ( r ) Tu L , , ^ e , , ( r ) \ (5.6)
n  L'L"

+  “  {pL L 1 ~  C lL " ) Im [ ^ ^ ( r )rL/L"^?/(r )]
L'L"

where the C ^  = J YlYl>Y£„ dQ, are the Gaunt coefficients [97]. Note that equa­
tion (5.6) assumes a spin polarised system; for a spin degenerate system multi­
plication by a factor of 2 is necessary. The spherically symmetric contribution to 
the charge density is given by

fik(r;E) = -jLfi5a(r;E), (5.7)

from which the total charge associated with site n at energy E,  the density of 
states for site n, is found by integrating over the volume of the ASA sphere

«"(£ ) =  4tt ] *  r 2p" h(r; E) dr. (5.8)

The total charge density is found from the energy resolved charge density by 
integrating over occupied energies

^ ( r ) =  f Ef Pn(r-,E)dE,  (5.9)
J — OO

where E f  if the Fermi level. The Fermi level is determined in bulk calculations 
by charge neutrality, which requires that,

( z n -  nn(E) d E j  = 0. (5.10)

The Fermi level is found by repeated evaluation of the integral in equation (5.10) 
until charge neutrality is obtained to the required degree of accuracy.
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Emin Ef

Core States Valence Band

Figure 5.1: Diagram showing schematically the contributions to the energy inte­
gral from the core states and the valence band.

For practical reasons, the integral over occupied states is split into core and va­
lence contributions, as shown in figure (5.1). The core levels are states with 
negligible dispersion, and can be treated as an atomic calculation. The contribu­
tions from these states can thus be calculated rapidly and the integral over the 
energy need only be calculated across the valence band. The valence contribution 
is found from an integral from the bottom of the valence band up to the Fermi 
level. For some materials the higher energy core states also exhibit significant 
dispersion. In these cases the valence band can be extended to include these 
states, or alternatively they can be treated by separate integrals over appropriate 
energy ranges.

As was discussed in section 3.10 describing the calculation of the half-space re­
flectivities, the layer doubling algorithm is not guaranteed to converge for real 
energies, necessitating a small imaginary component to the energy. This is not 
in practice a significant restriction, since the imaginary component can be arbi­
trarily small. There are, however, numerical advantages in including a significant 
imaginary component in the energy, as we will see below.

For the valence band integral the energy contour is deformed into the upper half 
of the complex energy plane, where the Green function is analytic. Cauchy’s 
theorem shows the contribution from this contour is the same as that calculated 
along the real energy axis, providing the initial and final points are the same. 
Since the Green function is smoother as a function of energy for higher imaginary 
components of the energy, this allows accurate calculation of the integral with far 
fewer energy points required. This smoothing effect is illustrated in figure (5.2),
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0.05

Figure 5.2: Density of states of bulk Cu as a function of complex energy, evaluated 
over an imaginary energy range between 0.001 Ha and 0.05 Ha, and a real energy 
range between 0.0 Ha and 0.4 Ha

showing the density of states as a continuous function of the imaginary energy 
component. As the density of states is directly related to the imaginary part of 
the Green function (from equation (5.1)), this demonstrates the smoothing of the 
Green function.
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Figure 5.3: Diagram of the semi-circular energy contour used to evaluate the 
integral over the energy, with eight energy sampling points shown.

The contour is sampled with a Gaussian integration scheme, which avoids sam­
pling the end points of the contour (where Im(E) =  0 ). A schematic diagram of 
the semi-circular contour used in the energy integration is shown in figure (5.3). 
This technique gives a fast and accurate integration scheme, with 16 energy sam­
pling points used for the calculations in this work. Table (5.1) demonstrates the 
convergence of the energy integral, with Fermi levels for bulk Cu calculated using 
4ax  =  3 and 256 k-points. Since the Fermi level is determined by iteration of 
the energy integral until charge neutrality is obtained, this gives an indication of 
the accuracy of the energy integral. As can be seen from the table, 16 energy 
points samples the energy integral to a good degree of accuracy.

For surface/interface calculations, and defect calculations, the Fermi level is fixed 
to the bulk value. This is in contrast to supercell/slab methods, where the Fermi 
level is a floating variable. The same set of energy points is used in both the 
convergence of the substrate potentials as well as in the iterations of the defect 
system. This avoids any unwanted numerical effects by ensuring that the reference 
potentials are fully converged with respect to the parameters used in the defect 
calculation.

Ne Bulk Cu Ef
8 0.314743
16 0.314987
32 0.314938
64 0.314939

Table 5.1: Fermi level calculated for bulk Cu, for varying numbers of energy points 
used to sample the integral. In each case the other parameters were £max =  3, 
256 k-points and 25 g-vectors.
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The multipole moments of the charge for site n, used in the Poisson solution, are 
defined as [59]

Q l =  i / Y i { v ) p n{T)dv, (5.11)
./Cell

where the integral is over the volume associated with site n. Hence for an ASA 
calculation, the multipoles are related to the angular momentum components of 
the charge density (5.6) by

Q l =  f R rm pnL(r)dr, (5.12)
JO

where R  is the sphere radius. The £ =  1 multipoles, used in the Poisson solution,
axe obtained from (5.6), the first term of which is zero for I  =  1, due to the
vanishing Gaunt coefficient.

5.3 Brillouin zone integral

From (3.73), the ky-resolved r-m atrix for an isolated layer can be written

r(k||) =  [m -  G(k||)] 1 . (5.13)

This is related to the real space r-m atrix via equation (3.68), hence for the r-
matrix connecting sites n and m we have (omitting the undertilde for clarity)

r nm=  1 / ' r (k ||)e- ikir(R" - R~)dk||, (5.14)
M2D J

where the integral is over the 2D Brillouin zone. This integral is numerically 
approximated by a weighted sum over a set of nk ky-points that span the first 
BZ,

njt
r nm s s ^ a ir(k ||i), (5.15)

i= l

hence we need only calculate the r-m atrix at this set of points over the 2D 
Brillouin zone. Increasing rik results in a more accurate approximation. The 
same ky-point set is used in both the substrate and defect calculations to avoid 
numerical effects (see later), as with the energy integral.
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Figure 5.4: Examples of k-point sampling sets that could be used for hexagonal 
and square 2D Brillouin zones. The sampling set used for the square BZ has kx 
independent of ky, while the sampling set for the hexagonal BZ clearly has kx 
dependent on ky.

For one-dimensional defect calculations it is necessary to calculate and store the 
r-matrices resolved in the direction of the defects, so for line defects parallel to 
the y-axis we need to calculate the A;y-resolved r-matrices of the substrate system, 
which, for a general set of kii-points, axe given by

'(ky) [Jk
k max( f cy)  dkx

,(fcy) QX(ky) T{kx,ky)e~ik̂ Xl- Xj) . (5.16)

Note that for a general set of points, the range of the integral over x  and the 
x-dimension of the 2D BZ will depend upon the value of ky. Hence each r(ky) 
will be given by a sum of the contributions over the kx points associated with 
that ky. This is illustrated in figure (5.4), where possible sampling sets for a 
hexagonal and a square 2D Brillouin zone are shown. The hexagonal set clearly 
has kx dependent on ky, while the square set does not.

In order to reduce the number of points at which r(ky) need be calculated, and 
thus reduce computing time, symmetry is used to relate the r-matrix contribution 
from one part of the 2D BZ to the rest. In the case of a square lattice, the r- 
matrix need only be calculated for 1 / 8th of the 2D BZ, known as the irreducible 
wedge, which is related via mirror plane symmetries to the full r-matrix.

For the standard LKKR calculations in this thesis, e.g., convergence of the sub­
strate potentials, Cunningham’s algorithm [23] is used to determine the set of 
k-points. Figures (5.5) and (5.6) show the first few of these sets for the square 
lattice (e.g., FCC(IOO) and BCC(IOO)) and the hexagonal lattice (e.g., FC C (lll)) 
respectively.
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64 256 1024

Figure 5.5: k-point sampling sets used for the irreducible 1 / 8th. wedge of the 
square 2D Brillouin zone. The sets shown are for 64, 256 and 1024 k-points 
sampling the full Brillouin zone.

As mentioned above, for the defect calculations we need to calculate the ky- 
resolved r-matrix. Since the xy  mirror plane relates different ky points by sym­
metry, it is not possible to simply step through the ky index accumulating r(ky) 
when using the 1 /8th wedge k-point set. It is necessary to store in memory the 
contributions to the r-matrix for each ky value. This requirement increases the 
memory usage of the code by a factor of ikym/2, where ikym is the number of 
unique ky values used.

With this in mind, for the square lattice two versions of the code were imple­
mented, one using the 1 /8th wedge k-point set and one that uses a 1 /4th wedge 
k-point set, the first few of which are shown in figure (5.7). The l/8 th  wedge code 
samples less points in the 2D BZ, and hence runs faster, however for large cluster 
sizes and high values of ^max the memory requirements become prohibitive, and 
necessitate using the slower 1 /4th code. Both sets used match the points given 
by Cunningham’s algorithm [23].

The substrate potentials are converged self-consistently with a given set of k- 
points. The same set of k-points are then used to calculate and store the r- 
matrices, hence the defect calculation uses the same k-point set. This ensures

18 45 135

Figure 5.6: k-point sampling sets used for the irreducible 1 /  12th wedge of the 
hexagonal 2D Brillouin zone. The sets shown are for 18, 45 and 135 k-points 
within the 1 /  12th wedge.
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64 256 1024

Figure 5.7: k-point sampling sets used for the 1 /4 th  wedge of the square 2 D 
Brillouin zone. The sets shown are for 64, 256 and 1024 k-points sampling the 
full Brillouin zone.

that the reference potentials used in the defect calculation are converged with 
respect to the k-point set, thus for a null defect test (e.g., inserting a Cu chain 
in bulk Cu) the potentials will converge to match the substrate potentials.

The integral over kx is performed in the substrate calculation, hence the r- 
matrices that are calculated and stored are fcy-resolved. This means that for 
each iteration of the defect system, it is only necessary to integrate over ky, 
hence the computing time scales linearly with the number of ky points included.

As mentioned in the previous section, as the magnitude of the imaginary compo­
nent of the energy increases the charge density becomes smoother as a function 
of energy, and thus requires less energy points to sample effectively. This effect 
is also significant in the Brillouin zone integration, as the charge density, and 
therefore the T-matrix, is smoothed across the 2D BZ (note that the only con­
tribution to the charge density which varies with ky is the r-matrix). Hence less 
k-points are required to accurately sample the 2D BZ for higher values of the 
imaginary component of the energy. For systems where very large k-point sets 
are needed near the real energy axis it becomes convenient to vary the k-point 
set with energy (see e.g., [4]).
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5.3.1 r-m atrix sym m etry

Due to the mirror plane symmetries present in the 2D lattice we can relate the 
r-m atrix contributions from one segment of the 2D BZ to the others. For a square 
2D lattice we have x, y and xy  mirror planes. From the definition of the angular 
momentum matrix elements of the r-m atrix [46],

we can determine the symmetry relations for the real space r-m atrix elements 
due to the x , y and xy  mirror planes respectively:

The reciprocal space contributions to the r-m atrix axe related to the real space r-  
matrix by equation (5.14), hence the symmetry relations connecting contributions 
in the 2D BZ will include phase factors due to the exponential term. Thus we 
have the following symmetry relations for the r-m atrix contributions from points 
in the 2D BZ of a square lattice:

T w  = / /  M'tr)YL(r)T"m(T,r')je(itr')Y£(r')drdx', (5.17)

m+m1.nm
LL'

m+m! -m' —m.nm
t —m t'—m'

nm    Tnm
tLL' ~  t —m t'—m' ’ (5.18)

(5.19)

(5.20)

.nm
LL'

.nm
l- m  t'—m'

nm

m+m.nm
LL'

•y 1 nm

m+m' •m'—m —i\.nm ( u 
L L '\Ky

.nm
t- m  t'-m '

m + m ' jm '—m  e ~i {kx—ky) (X nm ~Ynm )

(5.21)

(5.22)

(5.23)

These relations allow the contribution from the full 2 D BZ to be assembled from 
that of the l / 8 th  wedge.
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Figure 5.8: Bulk Cu DOS calculated using (a) Im(E) =  0.01 Ha, (b) Im(E) =  
0.005 Ha, and (c) Im(E) =  0.0025 Ha. The same bulk potential was used in each 
case, converged with £max =  3 and 256 k points. 1024 k-points and 200 energy 
points were used in the DOS calculation.

5.4 D ensity o f states calculations

In calculating the density of states we need to evaluate equation (5.8) over the 
desired energy range. The value of the imaginary component of the energy used 
will determine the level of smoothing in the density of states. For energy E  +  iT 
the density of states is given by the convolution of the real energy density of states 
and a Lorentzian of half width T. Thus structure in the density of states smaller 
than T is lost. However decreasing T requires more energy points to sample the 
integral accurately, and a larger k-point set for the integral over the 2D BZ. Note 
that the k-point set used in DOS calculations need not be the same as that used 
in converging the potentials, since the size of k-point set required is dependent 
on the magnitude of the imaginary energy.

Figure (5.8) demonstrates the effect of the choice of Im(E) upon the calculated 
DOS of bulk Cu. In the first plot, with Im(E) =  0.01 Ha, the DOS is nearly 
featureless. Increasing amounts of structure can be observed in the DOS as 
Im(E) is reduced to 0.005 Ha in the second plot, and then to 0.0025 Ha in the 
third, which is clearly recognisable as a Cu density of states.

For defect DOS calculations the substrate r-matrices are not stored, since the 
resulting files become unmanageably large due to the number of energy points 
and the generally higher k-point set used. The r-matrices are instead calculated 
for each energy point and used to calculate the DOS of the defect system at 
that energy. Since DOS calculations are not iterated in the same manner as the 
self-consistency calculations, storage of the r-matrices is less significant.
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Figure 5.9: Diagram of the FCC(IOO) structure. The shaded atoms are displaced 
by aO/2 into the 2-plane. As the arrows illustrate, this structure can be viewed 
as stacks of square lattices mapped out by the vectors ai =  — 1/ y/2x + 1 / y/2y 
and a 2 =  1 /v ^ x  + l/> /2 y.

5.5 Substrate calculations

The substrate system used in these demonstration calculations is Cu. The struc­
ture of Cu is FCC, and within the LKKR calculations is viewed as made up 
of stacked layers of square 2D lattices, as shown in figure (5.9). Figure (5.10) 
shows a three-dimensional view of a FCC(IOO) slab, with the central of the three 
2-layers shaded for clarity.

Figure 5.10: FCC(IOO) structure, the central layer is shaded to emphasise 
partitioning of the system into a stack of square 2D lattices.

the
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Figure 5.11: Density of states for bulk Cu. Converged with ^max =  3, = 256.
In the DOS calculation 500 energy points and 4096 k-points were used, with 
Im(E) =  0.001 Ha.

The x / y  and 2 axes correspond to the (110) and (001) directions respectively. For 
the surface calculations the Cu(001) surface was used, with the 2-axis normal to 
the surface and positive 2 pointing out of the surface. The substrate surface 
systems were converged with 3 vacuum layers and 4 Cu layers in which the 
potentials were permitted to relax. The potentials for both bulk and surface 
systems were converged self-consistently using the LKKR method, with 16 energy 
points in the contour integral, and 25 vectors in the plane wave basis set. 
Potentials were converged with values of nk and £max corresponding to those used 
in the defect calculations. Figure (5.11) shows a calculation of the density of 
states for bulk Cu, showing good agreement with the literature [87]. For further 
details of LKKR calculations see [19].
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Figure 5.12: Projected band structure of bulk Cu. Converged with ^max =  2, 
rik =  64.

5.5.1 P ro jected  band structure

For systems with 2D symmetry, e.g., surfaces, we can view the system as having 
a unit cell which is infinitely large in the direction normal to the surface. This 
results in a surface Brillouin zone (SBZ), characterised by 2D wave vectors ky. 

For every value of ky we have a rod of k±_ extending through the infinite 3D 

Brillouin zone, the band structure along this rod can then be projected onto the 
SBZ. This allows the identification of those values of E  and ky for which extended 
states are permitted. States which occur outside of these regions will be unable 
to couple to solutions in the bulk, and therefore represent localised states [132].

The projected band structure for bulk Cu is shown in figure (5.12). This was cal­
culated by evaluating the DOS along the high symmetry lines in the 2D Brillouin 
zone. The values of E  and ky for which the DOS was equal to zero correspond to 
regions where there are no extended states. Figure (5.12) shows good agreement 
with the projected band structure of bulk Cu calculated elsewhere [100, 15].
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5.6 Chain system s

In a chain defect calculation the potentials are permitted to vary over a finite 
number of ID unit cells, or chains. Physically, one expects the important pertur­
bations due to a chain defect to be localised in the vicinity of the defect. Hence 
we expect that the chains closest to the defect will experience the greatest pertur­
bation, and that as we add more distant chains to the cluster, these will exhibit 
smaller changes in their potentials. This localisation of the perturbation due to 
a defect chain justifies the use of a finite cluster of varying chains in the defect 
calculation. In bulk calculations one would expect the effects of the defect to de­
cay uniformly irrespective of the direction through the solid, hence a cylindrical 
cluster of chains would be best to model the system. In the case of a chain on a 
surface however, perturbations are likely to be more significant parallel and into 
the surface, rather than extending into vacuum, where there are relatively few 
electrons.

The system can thus be thought of as being constructed from a cluster of such 
chains embedded in a substrate system, as shown in figure (5.13). The chains 
are taken to be parallel to the y-axis, thus run along the (110) direction. Chains 
on the (0 0 1 ) surface are taken to occupy the ideal adatom sites along the (1 1 0 ) 
direction, i.e., there is no lattice distortion considered. Cluster geometries are 
chosen to include various shells of nearest and next nearest neighbour chains; 
clusters of 7, 19 and 37 chains are compared later in this chapter. For systems 
with even numbers of central chains, e.g., 2  chains on a surface, clusters of 1 0  

and 24 chains were used to preserve ± x  symmetry. Figure (5.14) shows a cross- 
section view of the geometries used. Note that alternate layers in the ^-direction 
are offset by ao/\/2 in the x  and y  directions, in order to model the FCC structure.
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Figure 5.13: FCC(IOO) structure, viewed as being made up of clusters of chains 
in the (110) direction. The shaded central cluster represents those chains whose 
potentials are permitted to vary in a 7 chain defect calculation.

Figure 5.14: Cross-sectional schematic of the cluster geometries used, with chains 
taken to be running parallel to the y-axis. Clusters of 7, 19, 37, 10 and 24 chains 
are shown. The shaded sites are offset ao/y/2 into the y-plane.
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Figure 5.15: 7 chain Fe in bulk Cu system. The lighter spheres indicate Cu 
potentials, while the darker central chain is Fe.

5.7 k-point set convergence

This section deals with the convergence of the calculations with respect to the 
number of k-points used in the Brillouin zone integral. Note that this refers to 
the BZ integral performed for each iteration in order to obtain converged self- 
consistent potentials. For the DOS calculations in this section 1024 k-points 
were found to give sufficiently accurate results, with Im(E) =  0.0025 Ha and 200 
energy points. For smaller values of Im(E) the resolution of structure in the DOS 
would improve, at the cost of requiring more k-points and energy points. In order 
to examine the convergence with respect to the k-point set, we will examine DOS 
calculations of ID defect systems converged using 64, 256 and 1024 k-points. The 
other parameters in the convergence calculations are kept constant, with £max = 3 
and 16 energy points in the contour.

The first system we will examine is a 7 chain bulk Cu cluster, where the central 
chain has been replaced with Fe. This system is illustrated in figure (5.15). In this 
figure only those potentials which are permitted to vary are shown, the cluster 
of chains is embedded in an infinite substrate of bulk Cu chains which are not 
shown.

Figure (5.16) shows the LDOS of the central chain in a 7 chain bulk Cu cluster, 
where the central chain has been replaced with Fe. Both majority and minority 
spins are shown, with the upper panel showing the majority spin DOS. As can be
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Figure 5.16: Spin polarised DOS for an Fe chain embedded in bulk Cu, comparing 
calculations with 64, 256 and 1024 k-points. The upper panel shows the majority 
spin DOS and the lower panel the minority spin DOS.

seen in figure (5.16), there are noticeable differences in the DOS in going from 64 
to 256 k-points. In the comparison between 256 and 1024 k-points however, there 
is little change. This is taken to indicate that the 256 k-point set is sufficiently 
converged to produce accurate results in the density of states.

In order to verify this we will also consider a surface chain calculation. In this case 
the background system is a Cu surface, while the central chain, originally vacuum, 
has been replaced with Fe to give an Fe adchain on a Cu surface, this system is 
illustrated in figure (5.17). Again only those potentials which are permitted to 
vary are shown, the cluster of chains is embedded in a surface which extends to 
infinity in the x — y plane. Figure (5.18) shows the LDOS of the central chain of 
this 7 chain system, the central chain being the Fe adchain on the surface. From 
figure (5.18), the same general behaviour as before can be seen with respect 
to variation of the k-point set, supporting the conclusion that 256 k-points are 
sufficient to converge the DOS. The density of states provides a good measure 
of k-point convergence, being more sensitive than integrated quantities like total 
charges and magnetic moments.
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Figure 5.17: 7 chain Fe adchain on Cu surface system. White spheres indicate 
vacuum sites, with the light grey sites as Cu and the dark grey central chain as 
the Fe adchain.
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Figure 5.18: DOS for an Fe adchain on a Cu surface, comparing calculations with 
64, 256 and 1024 k-points. The upper panel shows the majority spin DOS and 
the lower panel the minority spin DOS.
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5*8 m̂ax convergence

We now consider convergence of the calculations with respect to the partial wave 
basis set. In principle, the angular momentum expansions are infinite, however 
in practice the terms become less significant with increasing £, hence the expan­
sions can be curtailed at some cut-off value, allowing the practical use of the 
expressions.

That the contributions from higher £ terms become less significant can be under­
stood from considering the radial Schrodinger equation (3.3). For a given r the 
£ ( £ +I ) / r2 term becomes increasingly repulsive with increasing I. This acts as a 
centrifugal barrier with the result that the single site ^-matrices become less sig­
nificant for higher I. As the multiple scattering terms are constructed using the 
t-matrices, this leads to the convergence of the angular momentum expansions.

The convergence with respect to the angular momentum cut-off is examined in 
this section, with calculations using values of £max =  2 ,3 ,4  being compared. The 
other parameters are kept constant, with all potentials converged using 256 k- 
points and 16 energy points in the contour. The DOS calculations were performed 
using 1024 k-points, 200 energy points and Im(E) =  0.0025 Ha.

We will first examine the 7 chain Fe in bulk Cu system referred to above and 
illustrated in figure (5.15). This is a 7 chain bulk Cu cluster, with the central 
chain replaced by Fe. Figure (5.19) shows the LDOS of the Fe central chain for 
differing values of £m&x. It is clear from figure (5.19) that the DOS calculations 
are converging with respect to the value of £max, the difference between the cal­
culations for ^max =  2 and £mSLX =  3 is considerably more pronounced than that 
between the £m&x = 3 and £m&x =  4 calculations. As expected, the higher £max 
components become increasingly less significant.

We will also consider £max convergence in a surface chain calculation. For this 
calculation the background system is a Cu surface, while the central chain, orig­
inally vacuum, has been replaced with Fe to give an Fe chain on a Cu surface, as 
illustrated previously in figure (5.17).

Figure (5.20) shows the LDOS of the Fe adchain in this surfaoe system for differing 
values of £ma,x. The behaviour with respect to £max for the Fe surface chain in figure
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p'-max

Magnetic moment (//#)
Fe in bulk Cu Fe on Cu surface

2 2.492 2.922
3 2.604 2.989
4 2.645 3.013

Table 5.2: Magnetic moments for an Fe chain in bulk Cu and an Fe chain on Cu 
surface systems, for varying values of £max-

(5.20) is similar to that for the Fe chain in bulk in figure (5.19); demonstrating 
that the calculations are converging with increasing £max.

As further evidence of this behaviour, table (5.2) shows the magnetic moment of 
the central chain in the two systems described above, for differing values of £max. 
The behaviour of the moment with £max is consistent with that described above 
for the DOS, showing a tendency to converge with increasing t max.

In light of these results we take £max =  3 as sufficiently converged, and used as the 
standard throughout the rest of this thesis. The relatively minor improvements in 
going to 4 ax =  4 need to be offset against the considerable increase in computing 
resources required, in particular with the size of the stored r-matrices scaling as

(£max +  l ) 4-
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Figure 5.19: Spin polarised DOS for an Fe chain embedded in bulk Cu, comparing 
calculations with £max =  2,3 and 4. The upper panel shows the majority spin 
DOS and the lower panel the minority spin DOS.
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Figure 5.20: Spin polarised DOS for an Fe chain on a Cu surface, comparing 
calculations with £max =  2, 3 and 4. The upper panel shows the majority spin 
DOS and the lower panel the minority spin DOS.
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5.9 Cluster size convergence

The number of chains whose potentials are allowed to vary in the defect calcula­
tion, nch, is the final parameter we consider. The chain systems are made up of a 
cluster of chains whose potentials can vary, embedded in an unvarying substrate 
system. Ideally we would include sufficient chains in the cluster such that the 
outermost chain potentials match to the substrate potentials. The perturbation 
to the potentials caused by the defect would then be wholly contained in the 
cluster. However, for many systems this would require an unfeasibly large cluster 
of chains, given that calculation time and memory usage scale as nch2.

This section will examine the convergence of the defect potentials for systems 
of 7, 19 and 37 chain clusters. To determine convergence we will examine DOS 
calculations, total charges and magnetic moments. The other parameters in the 
calculations are fixed, with potentials converged using 256 k-points, £max = 3 
and 16 energy points in the contour. In the density of states calculations 1024 
k-points were used, with 200 energy points and Im(E) =  0.0025 Ha.

Whilst convergence with respect to cluster size is in principle system dependent, 
the results in this section give an indication of convergence for similar metal sys­
tems. For calculations on significantly different systems the convergence proper­
ties would need reverifying.

5.9.1 Fe chain in bulk Cu

In this section we will examine the convergence with respect to cluster size in 
a bulk defect calculation. As above, the system used is a bulk Cu cluster with 
the central chain replaced with Fe. In order to establish the convergence be­
haviour with respect to cluster size, we will compare the charge difference from 
the substrate system and the magnetic moment for clusters of 7, 19 and 37 chains.

Across these three systems we can make two types of comparison. If we compare 
the same sites across the systems, e.g., the central chain, then for convergence we 
expect these sites not to vary significantly between systems. We can also compare 
similar sites on the borders of the clusters, in this case we are examining how close
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Figure 5.21: Cross-sectional schematic of the cluster geometry used for up to a 
37 chain bulk cluster with a central defect chain. The labels used to denote the 
required unique sites are shown.

the system is to the substrate, i.e., how effective the cluster is at screening the 
perturbation. Figure (5.21) shows the labels we will use to index the necessary 
unique sites for the Fe chain in bulk Cu clusters.

First we will examine the charge difference and magnetic moment of the three 
unique sites that are present in all the clusters. Tables (5.3) and (5.4) show 
the charge difference from the substrate and magnetic moment for these sites.

Examining these results, we can see that the central site is consistent across 
all three clusters, with the charge difference from the substrate varying by only 
0.0003 electrons between the 7 and 19 chain clusters. Likewise the magnetic 
moment varies by 0.0003//# between the 7 and 19 chain clusters. The other 
two sites show larger differences between the 7 and 19 chain clusters, which is 
unsurprising as these are perimeter sites in the 7 chain cluster. Even so, the 
charge difference is converged to within 0 . 0 0 1  electrons, and the moments to 
within 0.0002//#. The differences between the 19 and 37 chain clusters are small 
for all three sites, less than 0 . 0 0 0 1  electrons for the charge difference and 0 .0 0 0 1 //# 
for the moments.

Charge difference
77ch D 7a 7b
7 -0.1900 0.0148 0.0397
19 -0.1896 0.0139 0.0392
37 -0.1896 0.0139 0.0391

Table 5.3: Charge difference from the substrate for the unique sites present in 7, 
19 and 37 chain cluster calculations for an Fe defect chain in bulk Cu.
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Magnetic moment (fib )
Tic h D 7a 7b
7 2.6043 0 . 0 0 1 0 0.0247
19 2.6046 0 . 0 1 0 1 0.0249
37 2.6046 0 . 0 1 0 1 0.0249

Table 5.4: Magnetic moment on the unique sites present in 7, 19 and 37 chain 
cluster calculations for an Fe defect chain in bulk Cu.

Table (5.5) shows the charge difference from the substrate at the similar outer 
sites for the three clusters. Therefore we are comparing sites 7a, 19a and 37a, 
and also sites 7b, 19b and 37b. We would expect these sites to tend towards the 
substrate values as the cluster size increases, due to the increased screening of 
the defect. As can be seen, the charge difference from the substrate decreases 
steadily across the three systems, reflecting the increasing screening of the defect 
from the more distant sites. Even for the 7 chain defect the charge difference is 
only of the order of 0 . 0 1  electrons.

These results suggest that for a single defect chain in bulk Cu, a 7 chain cluster 
is sufficient to do a good job of screening the perturbation. This suggests that a 
single ’shell’ of chains round any bulk defect system is sufficient, e.g., a 19 chain 
cluster to describe a 3 chain defect. This conclusion is based upon inspection of 
total charges and moments. Other quantities, e.g., local densities of states, could 
require use of larger clusters.

Charge difference
^ch outer site a outer site b
7 0.0397 0.0148
19 0.0023 0.0013
37 0.0003 0.0003

Table 5.5: Charge difference from the substrate for the comparable outer sites 
present in 7, 19 and 37 chain cluster calculations for an Fe defect chain in bulk 
Cu.
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Figure 5.22: Cross-sectional schematic of the geometry for up to a 19 chain cluster 
surface with defect chain calculation. The labels used to denote the required 
unique sites Eire shown.

5.9 .2  Fe chain on Cu surface

We now examine the convergence with respect to cluster size in a surface defect 
calculation, with a single Fe chain on the Cu surface. For this comparison, we 
will only be comparing 7 and 19 chain clusters, with the structure as determined 
in the previous sections, the central chain being Fe. Again we will compare the 
charge difference from the substrate and the magnetic moments on the sites, and 
also the LDOS on the defect and nearby Cu sites.

As before we can make two types of comparison. If we compare the same sites 
across the systems, e.g., the central chain, then for convergence we expect these 
sites not to vary significantly between systems. We can also compare similar sites 
on the borders of the clusters, in this case we are examining how close the system 
is to the substrate, i.e., how effective the cluster is at screening the perturbation. 
Figure (5.22) shows the labels we will use to index the necessary unique sites for 
the Fe chain in bulk Cu clusters.

We will initially examine the charge difference and magnetic moment of the 
unique defect and substrate sites that are present in both the clusters. Tables 
(5.6) and (5.7) show the charge difference from the substrate and magnetic mo­
ment for these sites. Examining these results, we can see that for both sites the 
change in charge difference and magnetic moment between the cluster sizes is 
small, of the order of 0 . 0 0 2  electrons and 0 .0 0 2 hb respectively.
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To assess how the properties of the external sites approach those of the substrate 
values, table (5.8) shows the charge difference and moments for the 3 unique 
external sites of the 7 chain cluster, and the 7 unique external sites of the 19 
chain cluster. As expected, the external sites of the 19 chain cluster are signifi­
cantly closer to the substrate values of the charge and moment, showing a similar 
magnitude of decrease as in the bulk chain calculation.

Figures (5.23-5.24) show the DOS for the central Fe chain and the closest Cu 
surface chain in both 7 and 19 chain cluster calculations. As suggested by the 
charge difference and moment results, there is very little change in the DOS 
between the two systems.

These results for the surface chain calculation suggest that the conclusions from 
the bulk chain calculations are still valid, i.e., that one ’shell’ of chains sur­
rounding the defect are sufficient to give accurate values for the charge, magnetic 
moment and DOS on the defect sites.
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Charge difference
D 7c

7 -0.8961 0.1776
19 -0.8942 0.1736

Table 5.6: Charge difference from the substrate for the unique non-vacuum sites 
present in 7 and 19 chain cluster calculations for an Fe adchain on a Cu surface.

Magnetic moment (fis)
rich D 7c
7 2.9886 0.0187
19 2.9866 0.0193

Table 5.7: Magnetic moments on the unique non-vacuum sites present in 7 and 
19 chain cluster calculations for an Fe adchain on a Cu surface.

site Charge difference Magnetic moment (//#)
7a 0.12719 0.03687
7b 0.11409 0.00050
7c 0.17760 0.01873

19a 0.00561 0.00243
19b 0.00105 0.00033
19c 0.00271 0.00023
19d 0.00115 -0.00005
19e -0.01157 -0.00070
19f 0.01263 -0.00487
19g -0.00395 -0.00976

Table 5.8: Charge difference and magnetic moment on the outer sites of a 7 and 
a 19 chain cluster calculation for an Fe adchain on a Cu surface.
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Figure 5.23: Comparison of the densities of states calculated using 7 and 19 chain 
clusters for an Fe adchain on Cu surface calculation, for the Fe adchain site.
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c/3
O
Q

7 cjhain 
19 chain

2

0

2

6 2 0 24
Energy (eV)

Figure 5.24: Comparison of the densities of states calculated using 7 and 19 chain 
clusters for an Fe adchain on Cu surface calculation, for the closest Cu surface 
site.
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Chapter 6

M onatom ic chains of 3d m etals

6.1 Introduction

In this chapter we will use the chain defect method introduced and described in 
previous chapters in self-consistent electronic structure calculations of 3d chains 
on the Cu(OOl) surface. The initial calculations will be for the clean Cu surface, 
and for Cu chains on the Cu surface, we will then move on to various systems 
of 3d chains, including embedded chains and multiple chains. Calculations of 3d 
monolayers on the Cu surface will be used for comparison.

For magnetic systems, only ferromagnetic chains and monolayers are considered 
in this work. While some of the 3d elements may favour antiferromagnetic spin 
configurations, without accurate total energy calculations, which are not included 
here, it is not possible to determine the ground state magnetic configuration. In 
addition, antiferromagnetic chain calculations require considerably greater com­
putational resources, necessitating twice as many sites in the chain cluster.

On the basis of the convergence tests reported in chapter 5, unless otherwise 
indicated, the potentials within this chapter are all converged using 256 k-points, 
^max =  3 and 16 energy points in the contour. Densities of states calculations are 
performed using 4096 k-points, 500 energy points and Im(E) =  0.001 Ha.

on Cu(OOl) 
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6.2 Clean Cu(OOl) surface

The substrate system to be used in the chain defect calculations is the clean 
Cu(OOl) surface. It is therefore important to demonstrate that the results for 
this substrate system axe consistent with previous work, before attempting to 
calculate chain defects on the surface. There are numerous theoretical studies 
of the electronic structure of the Cu(OOl) surface in the literature [116, 42, 115, 
100, 15]. As was the case for the convergence results, for the calculations of 
the Cu(0 0 1 ) surface the 2 -axis was taken normal to the surface with positive 2  

pointing out of the surface. The substrate surface system was converged with 3 
vacuum layers and 4 Cu layers in which the potentials were permitted to relax. 
The potentials were converged self-consistently using the LKKR method, with 
16 energy points in the contour integral, 25 p-vectors in the plane wave basis set, 
256 k-points and £max = 3.

Figure (6.1) shows the DOS for the surface (S) and three subsurface (S-l, S-2 , 
S-3) layers of the Cu(0 0 1 ) surface, in comparison to the bulk Cu DOS converged 
with the same parameter set. The general form and features of the densities of 
states agree with prior calculations [116, 42, 115].

The upper edge of the Cu d-band is 1.5 ±  0.1 eV below the Fermi level for the 
surface sites as well as in the bulk. This explains the non-magnetic nature of 
Cu, and is the reason for the relatively weak hybridisation between Cu and the 
transition metals, whose d-bands tend to be higher in energy, straddling the 
Fermi level. This provides some justification for considering transition metal 
structures on Cu surfaces as quasifree systems. From figure (6.1) we see that 
significant alterations in the shape and structure of the DOS are limited to the 
surface layer, due to the screening effects. The surface layer DOS is narrower 
than the bulk DOS, due to the reduction in the number of nearest neighbours: 
8  as opposed to 12 in the bulk. The subsurface layers become increasingly bulk 
like as they get further from the surface, with the S-3 layer showing very little 
deviation from the bulk.

The results for the Cu(001) surface are sensible, and consistent with previous 
calculations in the literature. Therefore we can use the potentials from the Cu 
surface as the substrate for calculations of chain defects on the surface.
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Figure 6.2: Cross-sectional schematic of the cluster geometry for a 19 chain sur­
face with a single defect chain on the surface. The labels used to denote the 
unique sites are shown.

6.3 Cu chains on the Cu surface

We now consider defect calculations for systems of Cu chains on the Cu surface. 
As was the case in the convergence results chapter, the chains are taken to occupy 
the ideal adatom sites along the (110) direction. Figure (6.2) demonstrates the 
unique site labels used for a 19 chain cluster describing a single Cu chain on a 
Cu surface. This labelling scheme will be used throughout this results chapter.

The densities of states for the Cu chain site (Dl), and the unique surface and 
subsurface sites (Cl, C2, CC1 and CC2), are shown in figure (6.3), compared 
with clean surface and subsurface densities of states as calculated above. The 
chain site has fewer nearest neighbour Cu atoms than the surface sites, 6 as 
opposed to 8, hence as expected the DOS is narrower than the clean surface 
DOS. This reflects the reduction in hybridisation of the adchain d-states with 
substrate orbitals compared to surface atoms. The surface site nearest the chain 
(Cl) actually has more nearest neighbours than a clean surface site, 9 as opposed 
to 8, hence we see that the DOS for this site is broader than a clean surface 
site, in effect becoming more bulk-like. Beyond these sites the other surface site 
(C2) and the subsurface sites (CC1 and CC2) show little significant deviation in 
their DOS from the surface and subsurface sites respectively in a clean surface 
calculation. From these results we can see that the DOS tends to reflect the 
local environment, being largely determined by the configuration and species of 
nearest neighbour atoms.
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6.4 Single chains

In this section we will examine the electronic structure of various 3 d defect chains 
on the Cu(OOl) surface. Results shown include calculations of the magnetic mo­
ments of the chain sites, and the induced moments in the Cu substrate, and both 
paramagnetic and spin-resolved DOS plots for the chain systems. Results are 
also shown for 3d monolayers on the Cu surface, allowing comparison between 
the chain and monolayer behaviour.

The trends seen in the magnetic moments for the chains can be explained in 
terms of a relatively simple itinerant magnetism model, with the Stoner criterion 
able to predict which systems will exhibit ferromagnetic solutions. The behaviour 
of the moments can be understood in terms of the hybridisation between the 3 d 
atoms themselves, and between the 3d atoms and the Cu substrate.

As demonstrated in the previous sections, reduction of the coordination number 
results in a narrowing of the DOS. Hence the DOS of a surface site will be 
narrower than the corresponding bulk DOS, and the DOS of an isolated chain on 
a surface will be narrower still.

We can use a simple Stoner type argument to account for the increased ten­
dency towards ferromagnetism that is often seen in low-dimensional systems. 
The Stoner criteria for ferromagnetism [120, 121] is

I (E, ) n(Ef ) > 1, (6.1)

where n(Ef )  is the density of states at the Fermi level, and I (Ef )  is the Stoner 
parameter. For most transition metals a narrowing of the density of states will 
generally result in an increase of the density of states at the Fermi level, and 
hence an increased tendency towards ferromagnetism. In addition to predicting 
a ferromagnetic solution, an increase in the magnitude of the product I (Ef )n(Ef )  
for a given system indicates an increase in the magnetic moment. Thus we observe 
the general trend in transition metals that reducing the dimensionality results in 
increased magnetic moments.

We can demonstrate this effect by considering 3d monolayers and chains. In their 
normal bulk phases Fe, Co and Ni exhibit ferromagnetism. Mn monolayers on
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Cu(OOl) are also predicted to have ferromagnetic order [5], while as adatoms on 
Cu all the elements V through Ni are predicted to  exhibit significant moments 
[75]. We can perform paramagnetic DOS calculations for monolayer and single 
chain defect systems, and combine the results with calculated values for the Stoner 
parameter [92, 60] to predict which systems will have a ferromagnetic solution.

Figure (6.4) shows the self-consistent paramagnetic DOS for the 3d elements V 
through Ni as both monolayers and isolated chains on the Cu(001) surface. The 
chain calculations were performed with 19 chain clusters, with the central chain in 
the cluster being the adchain. The monolayer calculations were standard LKKR 
calculations, with 3 vacuum and 4 surface layer potentials allowed to vary, and 
the same parameter set as the chain calculations.

Examining the DOS plots, for Cr, Mn, Fe, Co and Ni the chain DOS exhibits a 
significant narrowing effect compared to the monolayer, with a large central peak 
to the DOS, although the triple peak structure is still visible. For the V chain the 
narrowing of the DOS is less clear, and no significant peak is seen. In the case of 
Cr, Mn and Fe the central peak is sufficiently close to the Fermi level that n ( E f ) 
for the chain system is larger than for the monolayer system. For the Co chain 
DOS, the Fermi level falls between the central peak and one of the lesser peaks. 
This results in no enhancement of n(Ef)  for the chain system, indeed n ( E f ) is 
actually higher in the monolayer system. For the Ni chain DOS the central peak 
is located below the Fermi level, although in this case the structure of the chain 
and monolayer densities of states leads to a small increase in n(Ef )  for the chain 
system. The V chain and monolayer DOS are broadly similar, with the DOS at 
the Fermi level slightly lower for the chain as compared with the monolayer.

We can combine the values of n ( E f ) from the paramagnetic densities of states 
with calculated values for the Stoner parameter [60] to determine in which systems 
the Stoner criteria is satisfied. Table (6 .1 ) displays this data for the 3 d monolayers 
and chains. From these results we see that the Stoner criteria is satisfied for Cr 
chains, and for Mn, Fe, Co and Ni monolayers and chains. Therefore we would 
expect to find ferromagnetic solutions for these systems. As can be seen from 
the paramagnetic DOS plots and in the table, n(Ef )  is higher for the Fe and Mn 
chain than the monolayer, hence in these systems we would expect the moments 
to be larger for the chain than the monolayer. For Co we have the opposite 
situation, and would thus expect the chain moment to be reduced compared to
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V, Cr, Mn, Fe, Co and Ni on the Cu(OOl) surface.
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Metal m ) n(Ef )
Monolayer 

I ( E f ) x n(Ef) n ( Ef )
Chain
I ( E f ) x n(Ef )

V 0.35 2.3 0.81 1 . 8 0.63
Cr 0.38 1 . 8 0 . 6 8 6 . 2 2.36
Mn 0.41 2.9 1.19 6.5 2.67
Fe 0.46 4.2 1.93 5.5 2.53
Co 0.49 6 . 0 2.94 4.2 1.93
Ni 0.50 2.5 1.25 3.6 1.80

Table 6.1: Comparison of the Stoner criteria for V, Cr, Mn, Fe and Co monolayers 
and chains on Cu(OOl). Values for the Stoner parameter were taken from [60].

the monolayer. For Ni n(Ef )  is slightly higher for the chain than the monolayer, 
thus we would expect a slight increase in the moment for the chain system.

Previous calculations for 3 d monolayers on Cu(001) predicted Mn to have a fer­
romagnetic solution, and V and Cr to be paramagnetic [5], in agreement with the 
above predictions. As noted in the introduction antiferromagnetic solutions are 
not considered here, although calculations for 3d monolayers on Ag(001) indicate 
that V, Cr and Mn monolayers tend to favour this spin configuration [9, 5].

We now consider spin-polarised calculations, and begin by examining the calcu­
lated moments for the 3d chain and monolayer systems. Figure (6.5) compares 
the moments on a single defect chain with the moments for a monolayer, as a 
function of the adchain element. These moments are also displayed in table (6.2). 
As in the paramagnetic calculations above, the chain calculations were performed 
with 19 chain clusters, with the central chain in the cluster being the adchain. 
The monolayer calculations were standard LKKR calculations, with 3 vacuum 
and 4 surface layer potentials allowed to vary, and the same parameter set as the 
chain calculation.

The calculated chain moments behave broadly as expected, while the monolayer 
moments are consistent with previous calculations for these systems [5]. As was 
predicted using the Stoner criteria, V is paramagnetic as both a monolayer and a

V Cr Mn Fe Co
Monolayer 0 . 0 0 0 . 0 0 3.47 2.80 1.82
Single chain 0 . 0 2 2.56 3.85 2.99 1.69

Table 6.2: Magnetic moments in i±b for 3d monolayers and single chains on the 
Cu(0 0 1 ) surface.
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Figure 6.5: Magnetic moments for 3d single chains and monolayers on the Cu(OOl) 
surface.

chain. Cr chains are ferromagnetic, while the Cr monolayer is paramagnetic. For 
Mn and Fe both the chain and monolayer systems are ferromagnetic, with the 
chain exhibiting an enhanced moment over the monolayer. Co is ferromagnetic 
both as a chain and a monolayer, with the chain moment slightly lower than the 
monolayer moment.

No results are given for spin-polarised Ni chain or monolayer calculations. This 
was due to difficulties in converging the Ni systems as magnetic solutions. The 
analysis of the Stoner criteria suggests that magnetic solutions should be present, 
and that the chain should exhibit a slight increase in the moment as compared 
to the monolayer. Previous calculations for a Ni monolayer on Cu(OOl) found a 
moment of 0.32(is [5].

The differences between the monolayer and chain results are due to the d-d in­
teractions between the adsorbate atoms, as the monolayer atoms have 4 nearest 
neighbours of the same species, while the chain atoms have only 2. This in­
teraction tends to broaden the DOS. The 3d-orbitals are more extended at the 
beginning of the 3d series. This leads to increased hybridisation between these 
elements, making them more sensitive to environmental changes. For example, 
V has a moment of about 3/z# as an adatom [75], which is entirely quenched 
as a chain or a monolayer, while the moment for Fe varies from just over 3^b
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for an adatom to just under 3fiB for a monolayer. At the end of the 3d series 
the d-d interaction tends to enhance the moment, e.g., Ni where the adatom is 
nonmagnetic [75] while the monolayer on Cu has a moment of 0.32/z# [5]. This 
is due to the position of the main DOS peak relative to the Fermi level. For the 
later elements the peak in the DOS falls below the Fermi level, thus broadening 
of the DOS can result in an increase of n(Ef).  This effect is seen in the Co chain 
having a slightly lower moment than the Co monolayer.

To understand the behaviour of the magnetic moments, we can analyse the spin- 
polarised densities of states for the single chain systems, shown in figure (6 .6 ), 
and for the monolayer systems, shown in figure (6.7). As is the case for the bulk 
elemental ferromagnets we see an exchange splitting between the majority and 
minority spin DOS, except in the case of the V chain which is paramagnetic. The 
exchange-splitting between spins is larger than one sees in the bulk, reflecting the 
increased moments. For the Mn, Fe and Co chains the majority spin d-band is 
completely filled. Hence these chains can be considered as strong ferromagnets, 
with the moments from Mn to Co decreasing in steps of approximately l/i£, 
following Hund’s first rule. The monolayers of Mn, Fe and Co display similar 
behaviour, having nearly full majority d-bands, although the moments of the 
Mn and Fe monolayers axe lower than for the chains due to the increased d-d 
hybridisation.

One notable feature of the spin-resolved chain DOS is the difference in structure 
of the majority and minority spin DOS. This is due to the large exchange splitting 
allowing the majority d-band to hybridise with the d-band of the Cu substrate. 
Figure (6 .8 ) illustrates this effect, showing the DOS for a spin-polaxised and a 
paramagnetic Mn chain, as well as the C l Cu surface site immediately below 
the chain. In the paramagnetic calculation there is minimal overlap between 
the d-band DOS contributions. However in the spin-polaxised calculation, the 
exchange-splitting shifts the majority spin d-band down in energy so as to overlap 
with the Cu d-band, allowing hybridisation.

The hybridisation with the Cu d-band has little effect on the moments, as the 
Cu d-band edge is approximately 1.5eV below the Fermi level. Hybridisation 
between the chain 3d and the Cu sp states will have some broadening effect on 
the DOS, leading to some reduction in the moments. This is likely to be more 
significant for the early elements in the series, e.g., V and Cr, due to the larger
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Figure 6.8: Densities of states for spin-resolved and paramagnetic Mn chains on a 
Cu surface. The large exchange-split in the magnetic system allows hybridisation 
between the majority d-bands of the Mn chain (Dl) and the Cu surface (Cl). 
As above the upper panel shows the majority spin DOS and the lower panel the 
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Cr Mn Fe Co
Single chain Cl site 0.06 0.04 0 . 0 2  0 . 0 0 2  

Monolayer C l site - 0.08 0.03 0.01

Table 6.3: Magnetic moments in hb on the nearest Cu site for 3d single chains 
and monolayers on the Cu(0 0 1 ) surface.

extent of the 3d-orbitals and absence of strong ferromagnetism. It is likely that 
an unsupported V chain would exhibit ferromagnetism, given that calculations 
predict ferromagnetism for unsupported V monolayers [13]. Calculations of 3d 
monolayers on the Ag(0 0 1 ) surface exhibit this behaviour, with the moments of 
Ti, V and Cr monolayers on Ag being significantly reduced when compared to 
unsupported monolayers [13]. With the lattice reduction in going to a Cu(001) 
substrate, this quenching effect is likely to be increased.

The hybridisation between the chain 3d-orbitals and the Cu substrate can lead 
to small induced moments in the Cu substrate. This effect is seen in monolayer 
calculations, e.g., a monolayer of Fe on Cu(0 0 1 ) is predicted to induce a 0.04hb 
moment in the nearest Cu site [38]. Table (6.3) shows the nearest Cu moments 
(i.e., the C l site in a 19 chain cluster, and the subsurface site in a monolayer sys­
tem) for Cr, Mn, Fe and Co single chain and monolayer systems. These moments 
are all ferromagnetic, i.e., aligned with the spin of the 3d defect. We can see that 
the monolayer moments are generally higher, with the exception of Cr where there 
is no ferromagnetic monolayer solution. This is to be expected, as although the 
chain sites generally have a slightly enhanced moment over the monolayer, the 
C l chain site has only 2  3d nearest neighbours, while the monolayer Cu site has 
4. Also noticeable is the trend towards lower induced moments with increasing 
atomic number of the defect species. As was mentioned above the d-orbitals are 
larger for the elements earlier in the series. This leads to greater hybridisation 
with the Cu substrate, hence larger induced moments. Calculations for Co chains 
on a Pd(110) surface predict considerably larger induced moments of 0.23/i# for 
the nearest Cu site [105]. As Pd is not a noble metal we would expect greater 
hybridisation between Co chains and a Pd substrate than with a Cu substrate, 
hence the higher induced moments.

We can now compare the moments for 3d adatoms [75], chains and monolayers on 
Cu(0 0 1 ), shown in figure (6.9), with 4d adatoms [75], chains [4] and monolayers 
[10] on the Ag(0 0 1 ) surface, shown in figure (6 .1 0 ). Although dealing with dif­
ferent elements on different substrates, the general behaviour of chains compared

123



2D -  MonolayersAdatom
Chain

Monolayer

# - 0 OD -  Adatoms
♦  - - - ♦ I D -  Rows

Figure 6.9: Local moments for 
adatoms [75], infinite chains and 
monolayers of the 3d elements on 
the Cu(OOl) surface.

Figure 6.10: Local moments
for adatoms [75], infinite close 
packed rows [4] and monolayers 
[10] of the 4 d elements on the 
Ag(001) surface. From [4].

with adatoms and monolayers can be seen in both cases. In general the chain 
moments fall between the adatom and the monolayer moments, as expected.

To summarise then, the magnetic moments of the 3d chains on the Cu(001) sur­
face are principally determined by two interactions, the d-d interaction within the 
chains, and the d-sp hybridisation between the chain atoms and the Cu substrate 
atoms. The first mechanism tends to decrease the moments at the start of the 
series, and to enhance the moments at the end of the series, e.g., Co and to a 
greater extent Ni. The second mechanism consistently tends to decrease the mo­
ments, with the moments of the elements earlier in the series experiencing greater 
reduction due to the lack of strong ferromagnetism and the more extended nature 
of the 3d orbitals.

With these two mechanisms in mind, we can move onto examining other systems 
of 3d chains on the Cu(001) surface. The first we will consider is the chain 
embedded in the surface.
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Figure 6.11: Cross-sectional schematic of the 19-chain cluster geometry for a 
surface with a single embedded defect chain. The labels used to denote the 
unique sites are shown.

6.5 Em bedded chains

We now consider the moments of an embedded chain, that is a chain that has 
replaced one of the Cu sites in the surface. The site geometry and labelling used 
in this calculation is shown in figure (6.11) for a 19 chain cluster, as used in these 
calculations. The moments for the embedded chains of the 3d elements in the 
Cu(OOl) surface are shown in figure (6.12), compared with the moments for the 
chains on the surface. These moments are also shown in table (6.4).

The moments show a general slight reduction for the embedded chains, with a 
significant reduction in the Cr chain moment, from 2.56/ib  to 1.52fis- These 
results are consistent with the analysis of the moments of the chains on the 
surface. The embedded chain has more nearest neighbour Cu atoms than the 
chain on the surface, 6 as opposed to 4. This means that the 3d-sp hybridisation 
between the chain and the substrate will be increased. For Mn through to Co 
this has only a minor effect, due to the filled majority d-bands in these chains. 
The effect on the Cr chain moment is more dramatic due both to the lack of 
strong ferromagnetism, and the greater spatial extent of the 3d-orbitals for the

V Cr Mn Fe Co
Surface chain 0.018 2.56 3.85 2.99 1.69
Embedded chain 0.012 1.52 3.71 2.91 1.62
Bulk chain 2.60
Bulk impurity 2.51

Table 6.4: Magnetic moments in hb for 3d single chains on and embedded in the 
Cu(OOl) surface. Also shown are the moments for an Fe chain in bulk Cu, and 
for an Fe impurity atom in bulk Cu [13].
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Figure 6.12: Magnetic moments for 3d single chains and embedded chains on the 
Cu(OOl) surface.

lower valence elements. To illustrate this effect still further, table (6.4) also shows 
the moments for an Fe chain in bulk Cu, and for a single Fe atom in bulk Cu. 
The increase in Cu nearest neighbours (10 and 12 respectively) leads to further 
reduction in the moment.

6.6 M ultiple chains

We now consider systems of multiple chains on the surfaoe. As more chains are 
added, one would expect the moments to approach the monolayer values. We will 
consider systems with 2, 3 and 4 chains on the surface, with clusters of 10, 19 and 
24 chains used in the respective calculations. Figure (6.13) shows the geometries 
of the clusters used, along with the unique site labels. The justification for the 
cluster sizes used was demonstrated in chapter 5. It was found that a single 
shell of chains around the defect was sufficient to obtain converged values for 
the moments on the defect chain. Additional calculations were performed using 
24 chain clusters to describe 2 chain defects, for comparison with results from 
10 chain clusters. The moments were found to be consistent to within O.OOI^b 
between the two cluster sizes, justifying the above choice of clusters for use in
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Figure 6.13: Cross-sectional schematic of the geometry for the 10, 19 and 24 
chain clusters used for the 2, 3 and 4 chain on surface calculations. The labels 
used to denote the unique sites are shown.

multiple chain calculations.

We now examine the calculated moments for the multi-chain 3d defects on the 
Cu(001) surface. Figures (6.14-6.16) show the moments for the 2, 3 and 4 chain 
defect systems compared with single chains and monolayers, for the 3 d elements. 
The moments for the unique defect sites of the various chain systems and the 
monolayers are also shown in table (6.5).

As expected, the moments for the multiple chain systems generally fall between 
the single chain and monolayer values. Thus the moments for the Cr, Mn and 
Fe chains are reduced for the multiple chain systems in comparison to the single 
chain, while the Co moment generally shows a slight increase. The magnitude 
of the changes is greatest for the Cr chains, as is expected from the arguments 
in section 6.4 relating to the increased sensitivity of the elements earlier in the 
3d series to their local environment. For the 3 and 4 chain systems, the central 
chains are closer to the monolayer values than the edge chains. This reflects the 
increased similarity of their local environment to a monolayer, having 4 nearest 
neighbours of the same species as opposed to 2 for the edge sites.

V Cr Mn Fe Co
1 0.02 2.56 3.85 2.99 1.69
2 0.01 1.13 3.70 2.85 1.73
3a 0.00 0.70 3.54 2.79 1.76
3b 0.01 1.41 3.70 2.88 1.68
4a 0.01 0.55 3.46 2.78 1.74
4b 0.01 0.94 3.66 2.87 1.70
ML 0.00 0.00 3.47 2.80 1.82

Table 6.5: Magnetic moments in //b for multiple 3d chains on the Cu(001) surface. 
Included for comparison are the moments for the monolayer on the Cu(001) 
surface.

O O O
O O O O

Cl C2o o o
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Figure 6.14: Magnetic moments for 3d single chains, double chains and monolay­
ers on the Cu(OOl) surface.
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Figure 6.15: Magnetic moments for 3d single chains, triple chains and monolayers 
on the Cu(OOl) surface.
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Figure 6.16: Magnetic moments for 3d single chains, quadruple chains and mono­
layers on the Cu(OOl) surface.
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Figure 6.17: Magnetic moments for arrays of 1-4 3d chains, and 3d monolayers, 
on the Cu(OOl) surface.
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Figure (6.17) shows on one plot the moments for the defect sites of the 1, 2, 3 and 
4 chain defect systems, and the monolayer moments. From this we can observe 
the same basic trends over the full range of systems. As we might expect, the 
D4a moment is closest to the monolayer value, followed by the D3a moment. The 
edge sites, that is 2, 3b and 4b, all fall between the single chain and the central 
chain (3a and 4a) moments. The edge sites have 3 nearest neighbours of the same 
species, compared to 2 for the single chain and 4 for the central sites, so this is 
to be expected. In addition, the edge site values tend to be quite close together, 
reflecting the similarity of their environments.

Some deviations from this general behaviour are the 4a moment for Mm and Fe 
being lower than the ML moment, and the 3b and 4b moments for Fe being 
higher than the 2 moment. These are all small effects, less than 0.03/zb and may 
be oscillatory in nature. The Co moments are also slightly inconsistent, with the 
3b moment lower than 1 and 2, the 4b lower than 2 and the 3a higher than 4a. 
Again these are minor effects and it is difficult to determine if they are physical 
or numerical in nature.

The Cr chains are of particular interest since the chains couple antiferromag- 
netically. That is to say that the moments are aligned ferromagnetically along 
the chains, with adjacent chain moments alternating in sign. Thus for the 2 Cr 
chains on the Cu surface, one chain has a moment of +1.13(is and the other has 
— 1.13^5. This antiferromagnetic coupling is also seen in the 3 and 4 Cr chain 
defect systems. Attempts to converge defect systems with the chains coupled fer­
romagnetically were unsuccessful. Monolayer calculations find no ferromagnetic 
moment for Cr on the Cu(OOl) surface, but there is a significant moment found 
for the antiferromagnetic c(2 x 2) monolayer of Cr on Ag(OOl) [9, 5], suggesting 
that Cr monolayers favour this spin configuration. This appears to be reflected in 
the chain calculations favouring the antiferromagnetic coupling between chains. 
Calculations of antiferromagnetic chains (e.g., chains in which the spins alternate 
along the chain) and an antiferromagnetic c( 2  x 2 ) monolayer of Cr on Cu(OOl) 
may shed more light on this matter, although without accurate total energy cal­
culations it is not possible to determine the ground state spin configuration. The 
Cr 3b moment is significantly higher than the 2  site moment. This behaviour 
is also seen for the Fe chain, although less dramatically, and the Mn 3b and 2 
moments are equal.
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If calculations were performed for larger arrays of chains, the moments for the 
central chains should become steadily closer to the monolayer moment as the local 
environment becomes more similar to that for a monolayer site. Calculations of 
larger chain arrays would also allow study of possible oscillatory effects, e.g., the 
3b site moment. It is possible that odd numbers of chains will tend to exhibit an 
increased moment for the edge chains than comparable arrays of even chains.

We can also examine some densities of states plots for multiple chain systems. 
Figure (6.18) shows the DOS for the various chain sites for Fe chains on Cu, 
compared with an Fe monolayer on Cu. The DOS plots behave largely as one 
would expect based on the number of nearest neighbour Fe atoms of the chain 
sites. The single chain site (Dl) displays the narrowest DOS and largest exchange- 
split, corresponding to the largest enhancement of the moment. The edge sites 
(2, 3b and 4b) look broadly similar, with a slight enhancement of the exchange- 
split over the monolayer. The central sites (3a and 4a) differ little from the 
monolayer DOS. Examining the minority spin DOS, for the D l site the three 
peaked structure is clearly present. For the edge sites this structure is still present, 
although less clear than in the Dl case, while for the central sites the DOS 
resembles that of the monolayer.
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Figure 6.18: Spin-resolved densities of states for the unique chain sites of 1, 2, 3 
and 4 Fe chains on the Cu(OOl) surface, compared to the DOS for an Fe monolayer 
on the Cu surface. In each case the upper panel shows the majority spin DOS 
and the lower panel the minority spin DOS.
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Figure 6.19: Cross-sectional schematic of the cluster geometry for a step-edge 
mimic structure. The darker chain is the adchain decorating the step, which is 
made up of the 3 Cu chains on the surface.

6.7 Step-edge calculations

One further system of interest is that of a stepped surface with decorated steps. 
Systems of this type are one method by which one-dimensional structures can 
be experimentally realised, as was discussed in the introduction. A decorated 
step-edge can be approximated in the method presented in this thesis by placing 
several substrate chains on the surface, adjacent to the adchain that would be 
present in a single chain defect calculation. This type of structure is shown in 
figure (6.19) for a 19 chain cluster. If we take this as the structure for an Fe chain 
on a Cu surface calculation, then across the central layer we have 3 Cu chains, 
an Fe chain and a vacuum chain.

This system can effectively be viewed as falling between the chain on the surface 
and the embedded chain cases. With respect to the number of Cu nearest neigh­
bours for the adchain, the chain on the surface has 4, the embedded chain has 6, 
while the step-edge chain has 5. Using the familiar argument that hybridisation 
with the Cu substrate tends to reduce the moment, we expect the step-edge chain 
moment to fall between the values for the single and embedded chains.

The moments for Cr, Mn, Fe and Co step-edge adchains on the Cu(OOl) surface, 
calculated with the 19 chain structure shown in figure (6.19), are shown in figure 
(6.20) and listed in table (6.6). As expected the step-edge chain moments fall 
between the single chain and embedded chain moments. This is in agreement 
with the mechanism whereby increasing the number of Cu nearest neighbours 
increases the hybridisation between the Cu sp states and the 3d chain orbitals,
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Figure 6.20: Magnetic moments for 3d single chains, step-edge chains and em­
bedded chains on the Cu(0 0 1 ) surface.

thus broadening the DOS and reducing the magnetic moment.

In order to test the convergence properties of the approximate step-edge geometry 
a 24 chain Fe defect calculation was also performed. Across the central layer in 
the 24 chain case we have 4 Cu chains, an Fe chain and a vacuum chain. The 
moments for the Fe chain and the immediately adjacent Cu chains were consistent 
to within 0.002/x# to those from the 19 chain calculation, suggesting that the 19 
chain geometry is sufficient to converge the magnetic moments for these types of 
approximate step-edge calculations.

Table 6 .6 : Magnetic moments in /xb for 3d single chains, step-edge chains and 
embedded chains on the Cu(0 0 1 ) surface.

Cr Mn Fe Co
Single chain 2.56 3.85 2.99 1.69
Step-edge chain 2.17 3.77 2.94 1.64
Embedded chain 1.52 3.71 2.91 1.62
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Chapter 7

Conclusions

7.1 Summary

An extension to layer multiple scattering theory, for performing electronic struc­
ture calculations within the single particle approximation to density functional 
theory, has been developed to allow for the treatment of systems with one­
dimensional periodicity as defects embedded within systems with two-dimensional 
periodicity. This method is ideal for the study of monatomic wires on surfaces, 
for example, and avoids the use of ersatz supercell geometries.

An integral part of this development has been the derivation of a practical solution 
of the Poisson equation for a system with one-dimensional periodicity. This 
involves one-dimensional lattice sums, for which an Ewald sum technique for 
one-dimensional lattices has been derived and implemented. Comparison of the 
one-dimensional solution for arrays of chains to existing two-dimensional solutions 
has validated the method and confirmed its accuracy.

Expressions have been derived for the r-m atrix of a system with a defect which 
is periodic in one-dimension. This allows calculation of the r-m atrix for such a 
system from just the single site ^-matrices, and the r-matrices of the unperturbed 
reference system.

Systematic calculations of both bulk and surface defect chain systems have been
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performed. The results demonstrate the convergence of the calculations with re­
spect to k-point set, angular momentum cutoff, and cluster size. The convergence 
tests indicate that including a single shell of chains around the defect is sufficient 
to obtain converged densities of states and magnetic moments for the defect site.

This new theoretical tool has been used to study the electronic structure of 3d 
chains on the Cu(OOl) surface. Self-consistent calculations have been performed 
for a variety of chain configurations, including single and multiple chains on the 
surface, embedded chains and step-edge type chains. The systems have been 
investigated by studying the local densities of states, total charges and magnetic 
moments. Reference calculations have also been performed for 3d monolayers on 
the Cu(OOl) surface, using the standard LKKR method. These monolayer results 
were consistent with previous calculations for such systems [5].

The magnetic moments obtained for the chain calculations were consistent with 
the monolayer results, and also with previous calculations for 3d monolayers [5] 
and adatoms [75] on the Cu(OOl) surface using different methods. The chain 
systems can be thought of as falling between the monolayer (2D) and adatom 
(OD) regimes, and the values for the moments reflect this.

The behaviour of the magnetic moments for the chain systems has been success­
fully interpreted within a simple Stoner-like itinerant magnetism model. Trends 
in the moments across the 3d series, and between the various systems, can be 
understood in terms of the interaction between orbitals. Hybridisation between 
the d-orbitals of the 3d chain atoms and the sp-orbitals of the Cu substrate leads 
to broadening of the DOS, and a reduction in the magnetic moment. Hybridisa­
tion between the d-orbitals of the 3d chain atoms tends to reduce the moments 
for elements earlier in the series, while for the later elements this interaction can 
increase the moment.

The results for the different chain systems confirm these mechanisms. The mo­
ments for the single, embedded and step-edge chains behave as expected from 
considering the number of Cu nearest neighbour atoms. The moments for the 
multiple chain arrays are seen to approach the monolayer moments as more chains 
are added. Multiple arrays of Cr chains couple antiferromagnetically, which is 
consistent with theoretical predictions that a Cr monolayer on Cu(OOl) has a 
significant moment only in the antiferromagnetic spin configuration.
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7.2 Future work

W ith regard to future work in this area, building upon that reported in this 
thesis, there are several avenues which would be of interest:

1. Larger multiple chain arrays.

One possibility is the calculation of larger multiple chain arrays, with a 
view to examining the possible oscillatory effects seen in these systems. The 
edge chain moments for the 3 chain array are higher than the corresponding 
moments in the 2  and 4 chain arrays for some of the elements. Calculations 
for 5 chain arrays may indicate whether this is a feature of odd-chain arrays, 
or an exception for the 3 chain case.

2. Alternative systems.

Extending these calculations to other systems is another possibility. Pre­
vious chain calculations include 4d chains on a vicinal Ag surface [4], Rh 
chains on the Ag(OOl) surface [3] and Co chains on the Pd(llO) surface 
[105]. Calculations predict significant moments for some 3d, 4d and 5d 
elements as monolayers on Ag(001) and Au(001) [9]. Further chain calcula­
tions could be performed for the 3d, 4d and 5d transition metals as chains 
on the Ag(001) and Au(001) surfaces. Comparison to previous monolayer, 
chain and adatom calculations would then be possible.

3. Full potential calculations.

The extension of the theory beyond the ASA to use the full non-spherical 
potential would represent a significant improvement. The site potentials 
in a chain on a surface are likely to be far from spherically symmetric. 
While useful results have been obtained in these chain calculations, a full 
potential scheme would serve to increase the accuracy of the calculations 
considerably. Use of the full non-spherical potentials opens up the pos­
sibility of accurate calculations of the energetics of chain systems. Total 
energy calculations would be feasible to determine which spin configuration 
represents the ground state in magnetic systems.

4. Antiferromagnetic spin configurations.

Calculations for antiferromagnetic chains would also be of interest. The 
early 3d elements (e.g., V, Cr and Mn) are predicted to favour antiferro-
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magnetic spin configurations as monolayers on Ag(OOl). The multi-chain 
Cr arrays were found to couple antiferromagnetically. Use of full poten­
tial total energy calculations would enable predictions to be made for the 
ground state spin configuration of these systems. Calculations of antifer­
romagnetic chains result in double the number of defect sites, due to the 
increased size of the unit cell along the chain axis.

5. Experimental properties.

The method used in this thesis is concerned with the calculation of the 
Green function, from which many other properties of interest can then be 
obtained, e.g., the charge density. However the Green function can also 
be used as the basis for calculations of properties that are obtained in ex­
perimental studies, e.g., photoemission and inverse photoemission spectra, 
and modelling of STM data. This would be useful as these methods are 
key surface science probes used to experimentally study monatomic chain 
systems.
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A ppendix A  

S i ( H )  equations

A .l One-dimensional lattice sums for y  =  rii

In terms of S (r), the lattice sums required for the Madelung potential Sl (R) 
may be obtained as [85]

Sl (R ) =  p i T I ) ! !  [ ^ ( - V ) 5 ( r ) ] r=R (A .l )

where

J i ( r )  =  reYL( r). (A.2)

is a polynomial in x, y, z and the differential operator in (A.l) understood to be 
the result of substituting x  —> — dx, etc. Due to the cylindrical symmetry of the 
system taking the 2 -axis to coincide with ey results in more elegant expressions 
for the S l (R) terms, hence these are the expressions given in chapter 4. In order 
to remain compatible with the 2D LKKR method, described in chapter 3, a 
practical implementation of this ID Ewald technique has been realised in which 
the chains are parallel to the y-axis, with the 2 -axis normal to the 2D layers.
Thus the Sx(R) expressions used in this code take the y-axis to coincide with ey,
and the corresponding expressions are given here .

Applying (A.l) to (4.20,4.21) and taking the 2 -axis to coincide with ey, we obtain
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