UNIVERSITY OF

BATH

University of Bath

PHD

An analysis of high power stripline structures

Burchett, M. H.

Award date:
1994

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
« You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019



AN ANALYSIS OF
HicH POWER STRIPLINE STRUCTURES

Submitted by M.H. Burchett
for the Degree of PhD.
of the University of Bath
1994

Copyright

Attention is drawn to the fact that copyright of this thesis rests with its author.

This copy of the thesis has been supplied on condition that anyone who consults it is
understood to recognise that its copyright rests with its author and that no quotation
from the thesis and no information derived from it may be published without the prior
written consent of the author.

This thesis may be made available for consultation within the University Library and

may be photocopied or lent to other libraries for the purpose of consultation.

PGkl

M.H.Burchett



UMI Number: U061804

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Dissertation Publishing

UMI U061804
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346



I URVEr STy OF BATH ’

LIBRARY.

33

-2 FEB fags

oo

50&8m3



Summary

This thesis presents a rigorous and efficient analysis of high power stripline structures
of arbitrary dimensions. The analysis has been developed to improve the design of
medium power beamforming networks that are commonly found in air surveillance radar

antennas.

The thesis provides a review of electromagnetic analysis techniques and existing
stripline analyses. The Transverse Resonance Diffraction (TRD) technique is introduced
and developed in terms of a y-parameter network representation for coupled striplines,
with the uniform line derived as a limiting case. The analysis yields a matrix equation
in terms of a set of unknown fields in the structure. The equation is solved using
Galerkin’s method with the unknown fields discretised using basis functions that model

the singularities present on the edge of the striplines.

Results have been computed for the cut-off frequency, impedance and attenuation
factor for uniform and coupled stripline structures, and are compared to existing CAD
packages, conformal mapping techniques and finite element analyses. The results illus-
trate improved accuracy over conformal mapping analyses, and comparable accuracy
with numerical techniques, but achieved with a much reduced computation time and

memory requirement.

Measured results are also presented for the cut-off frequency of uniform and coupled
striplines and show excellent agreement with results computed using the TRD method

and Hewlett Packard’s High Frequency Structure Simulator (HFSS).

A generalised analysis of stripline discontinuities has also been developed. The analy-
sis uses propagation constants and mode impedances calculated using the TRD method
to compute the scattering parameters of discontinuities using a field matching method.

The expressions for the uniform to coupled lines transition are evaluated as an example.
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Hkn 2 Directed Magnetic Field Amplitude, Field Expansion Mode n, Mode k
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K Total Number of Modes
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1 Mode Number
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m Summation Variable
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t Unit Normal Vector
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N Total Number of Field Expansion Modes -1
P Basis Function Number
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Constant, Mode k
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Field Shape Function, Mode k
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Forward Travelling Voltage Amplitude
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a Attenuation Factor
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ay Dielectric Attenuation Factor

an, Normalised Attenuation Factor

i Propagation Constant, Mode k
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] Material Loss
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€ Relative Permittivity

A Eigenvalue

o Free Space Permeability
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Chapter 1

Introduction

1.1 Outline

This chapter provides background information on the stripline structure and its appli-
cation to beamforming networks, and the motivation behind the research work. The

chapter concludes with an outline of the work contained in the thesis.

1.2 Stripline and Related Structures

Historically, the term “stripline” has referred to structures where the signal conductor
is separated from the ground plane by a dielectric. This encompasses the structures
shown in Figure 1.1, which were referred to as micro-stripline (Figure 1.1(a)) and tri-
plate stripline (Figure 1.1(b)), but have been abbreviated to microstrip and stripline
respectively. Boxed stripline or rectangular co-axial line is shown in Figure 1.1(c) and
is an important class of stripline structure. A simplifying assumption in many analyses
is to increase the aspect ratio of the outer co-axial conductor, such that the side walls
do not significantly interact with the stripline fields. The co-axial line structure can
therefore be used to approximate the open tri-plate stripline structure. The rectangu-

lar co-axial line was one of the first structures to be analysed using Finite Difference



techniques.

metal dielectric

(a) (b) ©

Figure 1.1: Microstrip (a), Stripline (b) and Rectangular Co-axial Line (c) Structures

The analysis of stripline structures has generated particular interest since it finds
many applications. The interconnections in high speed printed circuit systems and
MMIC’s are essentially based on stripline structures where the conductor widths are
a small fraction of the wavelength of operation (1 X 10 _5Ato 1 X 10 3A). Another
application of stripline structures is in antenna beamforming networks at medium power

levels (< 4.5kW peak).

Beamforming networks connect a central antenna feed point to a number of radiating
elements. Power splitting networks and line lengths are used to achieve a particular am-
plitude and phase variation across the set of radiating elements. The stripline structures
used in these networks use central conductor widths of between 0.1 Ato 0.4A, and are
typically air filled with the central conductor supported along its length by a number
of dielectric blocks. The central conductor is not embedded in a dielectric for reasons
of cost, weight and power dissipation. The central conductor and ground planes are
normally manufactured from brass, although in some cases aluminium ground planes
are used with a copper central conductor to reduce weight, but without increasing the
overall power dissipation. The stripline used in these beamforming networks has a cen-
tral conductor thickness which is an appreciable proportion of the ground plane spacing.
The thickness of the central conductor is a compromise between weight, and cooling and
ease of manufacture. In practice, most production systems use a standard thickness of

brass plate (60 thousandths of an inch). This compares to stripline in MMIC structures,



and microstrip where the central conductor typically has a negligible thickness.

The power handling capability of these networks is specified as a peak power rating
and a mean power rating. The peak power rating is set by the dielectric breakdown
voltage, and the mean power rating is set by the allowable temperature rise of the central
conductor. The mean power rating normally dictates the limit on the system operating
power since high conductor temperatures cause problems with dielectric components in

the network.

These limitations constrain the stripline to medium power operation, with high power
networks being realised using waveguide. Low power networks are normally fabricated
using printed circuit techniques (microstrip or stripline) for reasons of cost. Rectangular
co-axial line is also used in medium power beamforming networks where the priority is
for a compact network. The stripline network relies on the parallel arms of the network
being spaced a sufficient distance apart such that no coupling, or crosstalk occurs. The
rectangular co-axial structure enables parallel arms of the network to be more closely
spaced, with the penalty of increased weight and power dissipation in the side walls

between striplines.

1.3 Design of Beamforming Networks

The beampattern from an array of antenna elements consists of a summation of re-
sponses from each of the individual elements. The amplitude variation across the array
weights this summation, and the phase variation controls the angle of the main lobe.
Figure 1.2 shows the beampattern produced by a uniformly weighted linear array at

broadside, i.e. perpendicular to the axis of the array.

The weighting of the array elements determines the 3dB beamwidth of the main lobe
ani the sidelobe level, and can be altered to optimise either of these parameters. The
calculations assume that there are no gain and phase errors across the elements, or their
feed network. In practice, phase errors produce a noise floor in the response and the gain
errors degrade the main lobe gain. The design of the beamforming network is therefore

critical to the performance of a sensor system. The optimum system performance is



achieved when the allowable gain and phase errors produce a noise floor equal to the
sidelobe level. This often produces a very stringent specification on the phase and gain
variations across a beamforming network, typically of the order of £5° and + 0.5dB
for networks with lengths approaching 15)A. This requirement dictates a very accurate

analysis of the elements in the beamforming network.

0 ———— ——
5 F i
m - ]
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£ [
m 3
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| /\ /\ |
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-50 0 50
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Figure 1.2: Beampattern of an Eight Element Array with Uniform Weighting for a
Beam at 90° to the Plane of the Array (Broadside)

The design of beamforming networks has traditionally been carried out using ap-
proximate design rules programmed into a CAD system, which produces a metallisation
pattern that is machined, assembled and tested, with the results being used in the next
iteration of the design. This process frequently can take up to nine iterations to produce
a network with a correct response and is extremely inefficient in terms of development
time and cost. Advances in manufacturing techniques and the use of common interfaces

between CAD packages and computer controlled cutting machines has reduced the time



required to manufacture the networks. However, the greatest scope for improvement is
in the development of accurate and efficient circuit models for inclusion into the CAD
system. This would allow the network to be optimised and manufactured with the

desired response met after very few iterations.

The current design of these networks has concentrated on a standard thickness of
stripline supported symmetrically between ground planes. The principle design variable
has been the width, and hence impedance of the stripline elements. The advent of an
accurate and efficient means of analysing stripline enables the effects of manufacturing
tolerances in the stripline dimensions to be ascertained. The design parameters of
striplines with novel dimensional ratios can also be computed. Both of these calculations

provide useful background information for the stripline designer.

The design parameters of greatest interest are the impedance and attenuation factor
of the stripline. The networks are designed to operate as a monomode structure. An
accurate calculation of the monomode bandwidth is therefore also required to check that
higher order modes do not propagate on wide sections of stripline, such as the input of

a power splitting network.

The principle elements that require modelling in a beamforming network are: uniform
and coupled lines; uniform to coupled line transitions; uniform line step in widths; power
splitters and mitred bends. The work described in this thesis considers the analysis of
the first three elements with the notation used to describe the stripline dimensions

shown in Figure 1.3.

1.4 Outline of the Thesis

This chapter has provided background information into the various types of stripline
structure. The stripline used in medium power beamforming networks has also been
described with a discussion of the design process and the motivation behind an accurate

analysis of the structure.

The second chapter provides an overview of electromagnetic analysis techniques that

have been used to analyse stripline structures, and their limitations and assumptions.



Figure 1.3: Definition of Stripline Dimensions

A review of the research work that has previously been undertaken to characterise
the uniform and coupled stripline structures and stripline discontinuities is also given.
The Transverse Resonance Diffraction (TRD) method is introduced and the choice of
this method is discussed against the requirements of an accurate and efficient analysis

technique.

The third chapter provides a detailed derivation of the TRD method applied to
both uniform and coupled stripline structures, and illustrates the methods employed
to produce a computationally efficient analysis. The extension of the technique to
analyse any number of coupled striplines of arbitrary dimensions is also described. The
practical aspects of solving the resulting equations are discussed in addition to means
of expressing the determinant as a closed form expression. The parameters that are
used to characterise the stripline structure are also defined and derived in terms of the

computed fields.

Chapters four and five verify the TRD theory by comparison to a number of purely
analytical and purely numerical techniques such as conformal mapping and finite ele-
ment techniques. The comparison is primarily concerned with the relative accuracies
of the methods. Typical computational times and memory requirements are also given
to enable an assessment of the relative efficiencies of the methods. Measured results
are also presented to verify the results computed by the TRD method. The results

presented in these chapters are related, wherever possible, to the dimensions that are



used in practical circuits, and therefore provide an immediate source of information for

stripline designers.

The sixth chapter utilises the TRD results computed for uniform and coupled lines as
a basis for computing the scattering parameters of a number of stripline discontinuities.
The technique again illustrates how a-priori information concerning the field singularity
behaviour can provide a compact analysis. The limitations of the method in terms of

its stability are also briefly discussed.

The thesis is concluded by a summary of the research work and an overview of results
of particular interest. Future areas of research are also identified and discussed with

respect to the TRD analysis and other methods of analysis.

An appendix is provided as a source of background information on the Hewlett
Packard HP85180A High Frequency Structure Simulator (HFSS). The HFSS package
has been used extensively as a means of verifying the TRD results and also as an example
of a current commercial electromagnetic simulator. A number of appendices are also
provided for the derivation mathematical expressions required in the evaluation of the

uniform and coupled lines analysis and the stripline discontinuity analysis.



Chapter 2

Analyses of Stripline Structures

2.1 Outline

In this chapter various methods that have been used to analyse stripline and other
passive microwave devices are briefly described. A review of published work on the
analysis of uniform and coupled striplines, and stripline discontinuities is also presented.
The chapter concludes with a description of the Transverse Resonance Diffraction (TRD)

technique as an introduction to the theory derived in Chapter 3.

2.2 Review of Analysis Techniques

There are a large number of techniques available for the analysis of passive microwave
components and a number of authors have provided reviews of the various meth-
ods [1, 2, 3, 4]. Many of the methods share common features, and are specific cases
of a more general method e.g Boundary Element Method (BEM), or an extension of
another method e.g. Spectral Domain Method (SDM). The majority of techniques use
a combination of methods in order to analyse a structure e.g. Transverse Resonance

Diffraction (TRD) technique.

The choice of an appropriate method depends on the accuracy required, the computer



power available, the amount of analytical pre-processing needed, and the generality of
the analysis. For the purposes of this review, the methods are broadly classified as those
techniques requiring little or no analytical pre-processing; those requiring analytical pre-

processing; and techniques that require virtually no numeric processing.

2.2.1 Predominantly Numerical Techniques

Finite Difference (FD) methods and Finite Element (FE) methods can be categorised as
predominantly numerical techniques, along with the Boundary Element Method (BEM).
The small amount of pre-processing makes these methods ideal candidates for commer-
cial electromagnetic analysis packages. Hewlett Packard’s HP85180A High Frequency
Structure Simulator (HFSS) is based on Finite Elements and is described further in Ap-
pendix A. Sonnet Software’s EM Package is based on the Boundary Element Method.
The disadvantages of these techniques are the computational requirement to run these
packages, and the time taken to compute the results. This will be discussed in greater
depth for HF'SS in Chapters 4 and 5, where comparisons will be made with other meth-
ods. The generality of these methods is excellent with the HFSS FE software able to
compute the field solution for arbitrary 3D structures. The BEM is currently applied
commercially to structures that comprise of an arbitrary conductor pattern in the di-
rection of propagation but the cross section consisting of layered media and conductor

metallisations (planar 3D).

Finite Difference (FD) Method

The Finite Difference (FD) method requires no analytical pre-processing and is the
oldest of the numerical methods. The structure is sub-divided into a regular mesh or
grid (Figure 2.1(a)) and the derivative terms in Maxwell’s equations are replaced by
a Taylor Series expansion in terms of the potentials which are stored on the sides or
vertices of the grid. This effectively transforms the problem into a set of linear equations
in the unknown potential. The method is relatively inefficient due to the large number
of grid points and hence the large order of the matrices, which contain mainly zeroes

apart from a set of elements around the leading diagonal. The solutions are therefore



found using iterative techniques as opposed to matrix inversion techniques. A further
limitation of the technique is that the mesh points must lie on the boundaries of the
problem hence curved or irregular shaped structures require a large number of grid
points. In addition, structures with field singularities also require a finely spaced grid
to accurately model the rapid rate of change of the field. In order to decrease the
matrix size, hence storage requirement, the graded mesh technique is used where the
grid spacing is decreased only around the singularities. The efficiency of the FD method

is also often improved by formulating the problem using variational expressions.

The finite difference technique has also been used to discretise the time derivative
form of Maxwell’s equations, termed Finite Difference Time Domain (FD-TD). This
technique requires greater storage since a set of time steps are stored for the structure,
hence the technique becomes feasible only with the increase in available computer stor-
age and processing power. The overall time response of the structure can be converted
into a frequency response by taking the Fourier transform, the cell dimensions limiting

the range of the frequency data.

Finite Element (FE) Method

The finite element method [4, 5] differs from the finite difference technique in that the
problem is cast in terms of a functional that has variational properties, i.e. for the correct
solution a first order displacement produces a second order error. The structure is sub-
divided into polygons, normally triangular or rectangular elements for 2D problems and
tetrahedra for 3D problems (Figure 2.1(b)) which are able to accurately model irregular

shaped boundaries.

The functional is evaluated assuming an approximate solution, u. for each element

as a weighted sum of functions, g;:
p=P

Ue = E X; 9, (2.1)

p=0

In the methods of moments, the problem is then solved for the unknown parameters,

X, for the structure, hence .. In the case of finite elements, a variable transformation is
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Figure 2.1: Meshes Generated by the Finite Difference (FD) Method (a); the Finite
Element (FE) Method (b); and the Boundary Element Method (BEM) (c) for a Rect-
angular Stripline Structure
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used to express the unknown function at the N nodes of the element, e. This essentially
produces a set of N equations {u.n} in P unknowns. This requires that P < N,
hence the number of nodes determines the order of the function, g;. In this manner,
convergence of the solution is achieved by increasing the number of elements used to

discretise the structure, as opposed to increasing the order of the basis functions, P.

The finite element technique is readily suited to arbitrary structures with defined
boundaries i.e. rectangular co-ax. Structures that are open in one dimension i.e.
stripline have to be modelled in the cross section either by placing an electric wall
at a sufficient distance, or using a system of “infinite elements”. The former approach
is the simplest but least efficient since the computation time is proportional to the cross
sectional area which may be unnecessarily large. The infinite element approach sub-
divides the cross section into a near field region and a far field region. The near field
region is discretised as before, whereas the far field region is modelled by infinite ele-
ments parallel to the ground planes and with nodes defined on the boundary of near and
far fields. These elements model the far field behaviour as a dipole field with dependence

|r |7t

The existence of field singularities in the structure will also require many first order
elements to model the rapid field change accurately. This problem has been circum-
vented by the introduction of singular elements. These elements introduce a scaling
factor such that there is no longer a linear variation in potential between the singular

node and the remaining two nodes of the triangle.

A further problem of finite elements are spurious modes, or numerical solutions that
do not correspond to physical modes. These spurious modes are normally suppressed
by incorporating Maxwell’s divergence relations into the governing expressions derived

from the curl relations.

Boundary Element Method (BEM)

The Boundary Element Method (BEM) can be shown to be a general case of the finite
element method. Both techniques can be described as weighted residual techniques [4, 6]

which are a general means of solving equations involving linear operators.
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Stating the weighted residual expression [6] for Laplace’s equation (V2u) in domain
2; with essential boundary conditions, v = % on contour C4; and ¢ = g—z = ¢ on contour

Cy; with weighting function, w:

_ ow _
/Q (V24) wdQ = /C (-0 i+ /C (a- aw d, (2.2)

The solution process for a number of methods can be described using the expression
above. In the case of finite elements, the essential boundary conditions are satisfied
i.e. u = @ leaving a residual due to the approximation of « and a natural boundary
condition term, thus the problem is cast in terms of the domain  and the contour Cs.
However, it can be shown [6] that if a weighting function is used such that V2w = 0,
the problem is cast in terms of the essential and natural boundary conditions along
the contour C = C; + C, which encloses domain 2. Thus the substitution reduces
the dimension of the problem by one. The resulting problem is therefore solved by
sub-dividing the boundary of structure into discrete elem.ents (Figure 2.1(c)) and solved

using techniques similar to those described for finite elements.

A third possibility also arises from Equation 2.2, that both the essential and natural
boundary conditions are satisfied, in this case setting the weighting function, w equal

to the Dirac function specifying a point, ¢ in domain 2, Equation 2.2 becomes:
/ (VZu)A; dQ2 =0 (2.3)
Q

The above expression is the general form of the Finite Difference method.

The main advantage of the BEM is that it requires less storage and processing due
to the reduction in the number of dimensions of the problem. The method is therefore

popular as a basis for commercial software e.g. Sonnet Software’s EM package.

2.2.2 Analytical / Numerical Techniques

Techniques that require a degree of analytical pre-processing and numerical evaluation
fall into this category. They are not widely used in commercial analysis packages since

they do not have the generality of the predominantly numerical techniques.
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Method of Moments (MOM)

The techniques of finite elements, finite differences and boundary elements are all linked
by the weighted residual expression (Equation 2.2) by satisfying a combination of re-
quirements. The method of moments is formulated from the weighted residual expres-
sion with the essential boundary conditions met. Stating the approximation for the
unknown function as a summation of basis functions, f, and amplitudes, X,:

p=P
U= Z Xpfp (2:4)

r=1
In the general case if f, and the weighting function, w are different, the method is
termed the Rayleigh-Ritz method; if f, and w are identical the method is referred to as
Galerkin’s method. A further set of methods can then be defined by appropriate choice
of the basis and weighting functions. The method of moments is widely used in con-
junction with integral equation formulations. Hewlett Packard has recently introduced

the Momentum Package based on MOM techniques [7].

Integral Equation (IE) and Spectral Domain (SD) Methods

The Integral Equation Method is a means of casting a problem such that a known field
quantity i.e. the field at a boundary is linked to the unknown parameter by means of
an integral operator. These techniques require the use of Green’s Functions. A Green’s
Function is a function that expresses a relationship between a quantity at an observation
point and a unity source. The derivation of an appropriate Green’s Function can require
a large amount of analytical pre-processing, after which the integral equation can be
solved directly. An alternative method is to incorporate the integral equation into a

variational expression.

A related technique to the Integral Equation method is the Spectral Domain Method
(SDM) where the integral equation is transformed from the spatial to the spectral do-
main using a Fourier transform. The problem is frequently cast using a Green’s function
linking the electric field to the current density on the strip. The Green’s function for

the problem is derived by transforming the scalar potentials used to describe the fields,
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using basis functions exp —j3,2 in the direction of propagation, and exp —j8,z in the
transverse direction. This yields a Fourier transformed vector Helmholtz equation as a
partial differential equation in the y direction which can be solved by inspection to give

expressions for the transformed fields.

The analysis is restricted to structures with infinitely thin central conductors such
as microstrip embedded in a layered dielectric. The benefit of this approach is that the

reduction of the problem by one dimension reduces the computation time.

Mode Matching Method (MMM)

The Mode Matching Method is a well established method applied to problems where
an interface exists between two regions which contain different field shapes such as a
waveguide, or stripline discontinuity. The fields are expressed on both sides of the inter-
face as a summation of mode shapes with unknown amplitudes. A matrix expression for
the amplitude terms can be found by utilising mode orthogonality and enforcing field
continuity. These techniques can also be used in conjunction with generalised scattering

matrix methods to analyse cascaded discontinuities.

Transverse Resonance Technique (TRT)

This technique is effectively the mode matching method applied in a direction transverse
to the direction of propagation. The technique is therefore well suited to analysing
structures like waveguides with transverse discontinuities. The mode matching method
requires that the structure has a closed cross section, therefore electric walls are placed
at set positions in the 2 direction. The technique does however require a knowledge of
the propagation in the longitudinal direction of analysis i.e. transverse to the direction

of propagation in the structure.

2.2.3 Predominantly Analytical Techniques

The previous sections have concentrated on methods that require an amount of nu-

merical processing, with the benefit of being applicable to a wide range of structures.
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An equally important set of techniques enable a closed form expression for the param-
eters of a structure to be derived using purely analytical techniques. These methods
provide a closed form expression for the parameters that can be programmed into a
CAD system and used for circuit optimisation. At the crudest level, this involves curve
fitting to measured results to provide a database of known results which can then be
interpolated. A more analytical technique is conformal mapping and will be described,
since this technique is most commonly used to provide closed form expressions for CAD

systems such as EEsof’s Linecalc and Academy, and SuperCompact.

Conformal Mapping

The conformal mapping analysis essentially transforms the structure in one plane to a
structure in another by means of a single, or a series of mathematical transforms. The
parameters of the transformed structure are known as an exact expression in terms of

the functions used in the mapping.

Figure 2.2 illustrates the conformal mapping transformations used by Bates [8] to
calculate the impedance of finite thickness stripline which transforms the upper half of

the stripline structure to a pair of co-axial cylinders.

Ideally, the expression for the impedance in the @ plane could be formulated as a
function of the dimensions in the Z plane (Z — Q). This assumes that the transforms
Z - P, P — S and S — @ are defined. For the case shown only the transforms
P> Z P« §and @ — S are defined. Analytical inversion is therefore required to
define the transforms Z — P and S — @, or alternatively, the inverse problem can be
solved (@ — Z). The inverse problem expresses the dimensions of the Z plane in terms
of the impedance in the @) plane, yielding a synthesis expression for lines of a given

impedance. This was the route chosen by Bates.

The transform P — Z is a Schwartz-Christoffel transformation [9] and transforms

the points of the real axis of the P plane to a polygon in the Z plane, and yields an
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Figure 2.2: Conformal Mapping used in Analysis of Uniform Symmetrical Stripline
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expression of the form [8]:

dz _ (1-p?)}
dp (1 ¢&2p?)2 (1 €3p?)

(2.5)

where £&; and & are constants which depend on the geometry of the structure. The
function on the right hand side requires integration which presents a further problem,
since the integral must have an analytic form to provide a closed form expression for the
impedance. In order to provide a practical expression the analytical form must be easily
and accurately evaluated. This often leads to the analytical form being approximated
and the closed form expressions limited to a restricted range of dimensions. These

approximations can then be extended using curve fitting techniques.

Recently, numerical inversion of the Schwartz-Christoffel transform has been pre-
sented for arbitrary structures [10]. This enables the inverse transform Z — P and the
standard transform P — Z’ to be performed. This maps a polygon in the Z plane to
another in the Z’ plane whose parameters are known, via an arbitrary structure in the

P plane.

Expressions from conformal mapping techniques can also be used in other analyti-
cal techniques such as the equivalent waveguide model technique [4] which is used for
analysing discontinuities in terms of waveguides of equivalent cross section. This tech-
nique was first introduced as a means of calculating the cut-off frequencies of the higher

order modes in stripline [11].

2.3 Analysis of Uniform Stripline

The first application of stripline, or flat strip transmission line was in antenna beam-
formers produced in the early 1940’s [12]. The basic design information was not made
widely available at the time. It was a number of years until further interest in flat
strip transmission line, and the related microstrip structures, prompted research to be
carried out into accurately evaluating the design parameters such as impedance and

attenuation factor.
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A number of researchers studied the problem of evaluating the impedance of stripline
in the early fifties, and a special issue of the IEEE Transactions on Microwave Theory
and Techniques in March 1955 presents a selection of their work. One of the most widely
cited papers from this issue was written by Cohn [13]. This paper introduced a previ-
ously derived exact formula for the impedance of an infinitely thin stripline, and closed
form expressions for the finite thickness stripline were developed from earlier work [14].
The finite thickness stripline expressions were developed for both wide %5 > 0.35)
and narrow (ﬁb—g < 0.35) striplines. The narrow strip expression was derived by ap-
proximating the rectangular conductor as a circular conductor of equivalent diameter
and utilising a known expression for the impedance of a wire above a ground plane. The
wide strip case was analysed using conformal mapping to provide a value of the fringing
capacitance of a strip between infinite ground planes. Both expressions are limited to a
strip thickness of less than a quarter of the ground plane spacing. Cohn also calculated
the attenuation factor of stripline based on Wheeler’s incremental inductance rule [15]
which states the attenuation factor of a line is proportional to the ratio of the increase
in line inductance to the decrease in dimension. The expression for the attenuation
factors are again limited to a specific range of dimensions, and provide an overestimate

of nominally ten percent since the edge singularities are not modelled accurately [13].

Finite thickness stripline was later analysed [8] to provide a set of equations for
the synthesis of stripline i.e. expressions for the width and thickness of stripline in
terms of the impedance. The analysis was based on conformal mapping using the
Schwartz-Christoffel transformation [9] and the resulting integral evaluated in terms
of elliptic functions. The expressions derived are exact but rely on tabulated values
of the elliptic functions, or the relationships later given by Hilberg [16], however they
cannot be analytically inverted to produce closed form formulae. The expressions were

numerically inverted [17] to yield analysis data.

A very similar approach to the mapping used by Bates has also been used to calculate
the attenuation factor of stripline [18] using a quasi-static formula for the attenuation
factor. The approach evaluates the attenuation factor for a given impedance, hence
provides synthesis information and analytically extracts the singularity of | rz | at

the corners of the stripline. This approach however is likely to result in errors as the
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thickness of the strip becomes appreciable and the singularity behaviour approaches
| rs | [19]. The majority of the power flow in the structure occurs around the edges
of the stripline, hence the evaluation around the singularities will strongly affect the

results.

The benefit of having a closed form expression for the impedance and attenuation
factor resulted in a number of authors providing expressions eliminating the need to use
tabulated values of elliptic integrals [16], or providing further approximations tc Cohn’s
analysis for a range of dimensions [20]. Research was also carried out into rectangular
co-axial structures using conformal mapping [21, 22] resulting in similar equations to

Cohn’s.

An alternative approach was taken by Wheeler [23] to calculate the impedance and
attenuation factor of finite thickness stripline. The structure was approximated as an
infinitely thin stripline with an effective width correction to take account of the fringing
fields. The previous application of this technique was for the calculation of the higher
order mode cut-off frequencies [11]. Oliner’s width correction only took into account
the effect of the fringing fields as a function of the width of the stripline. Wheeler’s
formula further corrected the width of the stripline to take into account the thickness
of the stripline, and resulted in a closed form expression for impedance that is quoted
as having an accuracy of +0.5 percent [24], across a wide range of dimensional ratios.
The incremental inductance rule can also be applied to obtain relationships for the
attenuation factor of stripline. A number of expressions derived from Wheeler’s work

have also been presented [25].

The conformal mapping representations that have been described assume that the
stripline is symmetrically placed between the ground planes. The impedance of asym-
metrically placed striplines have also been studied with infinitely thin central conduc-
tors [26], and finite thickness conductors [27, 28]. Robrish’s work provides a wider range
of applicable dimensions than [27] and is an extension of Cohn’s original conformal map-
ping representation [13]. In addition to modifying the conformal mapping the range of

validity is improved by using curve fitting techniques.

Alternatively, the impedance of asymmetrically placed striplines can be calculated by
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considering the impedance as the parallel addition of impedances due to a symmetrical
stripline of ground plane spacing t+2b and one of ground plane spacing t+2d [29]. More
recently the technique of the Numerical Inversion of the Schwartz Christoffel transform

has been presented and applied to asymmetrical stripline [30].

The conformal mapping techniques were first developed due to a lack of adequate
computing power available for more numerical, or rigorous approaches, and are governed
by the assumption of monomode operation of the stripline. The conformal mapping
techniques developed later are intended to provide accurate closed form expressions for
the modelling of MIC interconnects using CAD systems [24, 31]. A further applica-
tion of the infinitely thin symmetrical stripline is in the verification of electromagnetic

simulators since the expressions stated are exact [32].

The first numerical technique to analyse stripline was the Finite Difference Method,
approximately a decade after the first conformal mapping expressions were produced.
The rectangular co-axial structure was one of the first structures to be analysed using
this technique [33, 34, 35] since it is a closed structure supporting TEM propagation
and can be easily discretised using a grid. A variational form of Finite Differences was
also formulated to provide upper and lower bounds on the characteristic impedance [36]

and therefore place error bounds on the earlier analyses.

Finite Element analysis has only comparatively recently been applied to stripline
structures. Pantic and Mittra [37] analysed a set of Quasi-TEM structures using finite
elements with infinite elements to model the propagation in the transverse direction of
stripline, and also employed singular elements to model the fields at the corners of the
stripline. The Finite Element approach has also been used to model stripline structures
where the skin depth is a significant proportion of the strip thickness [38]. This problem
has also been studied using an Integral Equation Technique [39] in order to characterise

the attenuation factor in VLSI circuits.

The analyses presented have all assumed that the stripline is operating within its
monomode range. The higher order mode cut-off frequencies were first investigated
using an equivalent waveguide model with an effective width taking into account the

fringing capacitance [11]. Finite element analysis has been applied to characterise the
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monomode bandwidth of stripline using a rectangular co-axial structure approximation
computed by Hewlett Packard’s HFSS package [40]. More recently, algorithms which

model the transverse wave propagation as an exponential decay have been used [41].

2.4 Analysis of Coupled Stripline

The analysis of coupled striplines has followed approximately the same path as that
for uniform stripline. The first structures to be analysed were stripline that were sym-
metrically positioned between ground planes and had symmetrical strip widths. The
physical symmetry of the problem enables half the structure to be analysed with an
electric wall in the symmetry plane for odd mode excitation and a magnetic wall in the
symmetry plane for even mode excitation. Cohn modified his paper [13] and provided
exact expression for infinitely thin lines and approximate expressions for finite thick-
ness lines [42]. The expressions however were only valid for strips with l"f—tbb > 0.35.
The expressions for infinitely thin lines were later simplified by the use of closed form
approximations for the elliptic integrals [16]. Getsinger [43] later provided synthesis
equations for finite thickness stripline and modified the formulae to take into account

fringing field interaction.

The assumption of physical symmetry provided severe limitations on the range of
structures that could be analysed. Conformal mapping was therefore applied to infinitely
thin stripline with equal widths, but positioned asymmetrically between ground planes
(Figure 2.3) [44]. Shelton’s analysis was formulated for tight coupling (w, < w) and
loose coupling (w, > w). The analysis is limited to a range of dimensional ratios and
provides synthesis information, although the expressions were later inverted to provide

analysis equations [45].

Shelton’s analysis provided results for offset striplines, however the characteristic
impedances of the strips were still equal due to rotational symmetry about the centre
of the structure. This enabled conventional even and odd mode analysis to be ap-
plied. The general case of couplers with unequal line impedances was investigated by

Cristal [46], and later Tripathi [47]. Tripathi formalised the general case of lateral (C
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Figure 2.3: Asymmetrical Coupled Stripline Structure Analysed by Shelton

mode) excitation and diagonal (I mode) excitation, which degenerate to even and odd

mode excitations respectively for couplers with equal impedance striplines.

Multi-conductor lines of arbitrary width, but zero thickness and symmetrically placed
between ground planes has been studied using conformal mapping techniques [48], pro-
viding results in terms of an impedance matrix relating the capacitance between strips.

Synthesis information can then be derived using optimisation techniques.

Linner’s analysis [48] provides a generalised, hence complex analysis of striplines, a
more amenable approach was provided by Bedair [49] who sub-divided the capacitance
of a general pair of coupled striplines of zero thickness into components modelling the
fringing and parallel plate capacitances and a further component to take account of the
capacitance due to the excitation (C or II). These capacitances are then related to the

known expressions for the capacitances of a symmetrical stripline.

A similar technique was used to calculate the coupling and impedances for finite
thickness striplines [50]. The method differed in that the capacitances were evaluated
directly from modified forms of expressions given in [42, 43]. This method however
is again limited to symmetrical placement between the ground planes. In addition,

expressions for the attenuation factor were also derived using the incremental inductance
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rule [15].

The author is unaware of a general analysis to compute the coupling of any number of
entirely arbitrarily dimensioned and positioned striplines. A number of analyses do exist
however for infinitely thin striplines of arbitrary width and position in layered dielectric
media, since these conductor configurations are commonly found in MMIC’s. These
analyses are formulated using an integral equation variational expression for the capac-
itance [51, 52, 53]. In addition the problem has also been approached using Spectral
Domain analysis [54] and also a technique where the structure is conformally mapped
and a variational technique employed on the transformed structure [55]. These tech-
niques all rely on an estimate of the behaviour of the charge on the strip and assume a
singularity of the order | r% |. A finite thickness integral equation technique has been

presented [39] however this is limited to solving for the complex propagation constant.

Coupled striplines have also been analysed using purely numerical techniques. A
finite difference approach was used by Gupta [56] which investigated means of improving
the computational time of the method by the use of extrapolation and the use of graded

meshes.

The generality of finite elements has meant that the coupled stripline structure can
be readily analysed by algorithms used for uniform lines [37, 38, 40, 41] to provide
coupling values and also higher order mode cut-off frequency information which has not

been derived using predominantly analytical techniques.

2.5 Analysis of Stripline Discontinuities

The number of papers characterising stripline discontinuities is extremely limited. In
part this is due to the complexity of modelling such structures and also the limited
application of stripline elements. The majority of the discontinuity work has been
concentrated on the microstrip structure [57]. The analysis of MMIC structures has
mainly been restricted to computing the impedance of lines accurately and to quantify
the coupling between lines to minimise crosstalk, as opposed to providing accurate

circuit models for elements.
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The first paper to characterise stripline discontinuities was presented by Oliner [11]
with a second paper by Altschuler providing measured results [58]. Oliner’s paper
provided equivalent circuits for a number of symmetrical discontinuities in striplines of
zero thickness conductors, and form the basis of the majority of models used in CAD

systems [24, 31].

D TW lw. I D'

Figure 2.4: Symmetrical Step in Width Discontinuity and Equivalent Circuit

The discontinuities of interest in this work are the uniform and coupled line step
in widths and the uniform to coupled line transition. The uniform line step in width
analysis [11] calculated the effective widths of the stripline structure (D and D’) and
used Babinet’s Principle to model the discontinuity as a parallel plate waveguide with
a step in height of the ground planes (Figure 2.4). The waveguide structure has the
property of a capacitive iris, hence the equivalent circuit of the stripline presents a series
inductance, in addition to the impedance transformation. There is also a shift in the
plane of the discontinuity by an amount equivalent to the increase in effective width of
the stripline due to the fringing ﬁelds(%). Altschuler’s paper provided inconclusive
experimental data to verify the equations derived for the inductance and line extension,

and concluded since they were small they could be neglected, and the discontinuity
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modelled by a single impedance transformation.

Altschuler extended the analysis to a single to coupled lines discontinuity by assum-
ing that it could also be modelled simply by an impedance transformation. Babinet’s
Principle could also be applied to this discontinuity, and transformed into a finite thick-
ness waveguide bifurcation, however no publications were found on the analysis of this

discontinuity.

A more detailed study into the step in width discontinuity has been carried out [59]
with some additional measurements and investigation into means of reducing the series

reactance.

To the authors knowledge, no analyses exist for the unbalanced discontinuities, or

discontinuities in finite thickness stripline.

2.6 Transverse Resonance Diffraction (TRD) Technique

The Transverse Resonance Diffraction (TRD) Technique is an Integral Equation tech-
nique formulated transverse to the direction of propagation in the structure. Equivalent
circuits for the propagation in the transverse direction are found and solved using tech-
niques which utilise knowledge about the singularities present in the cross section. The
technique has been applied to a number of structures such as Inset Dielectric Guide
(IDG) [60, 61]; the GTEM cell [62] and slotline [63] all of which have well defined

interfaces with fields which exhibit singularity behaviour.

Stripline structures also fall into the above category and the TRD method was chosen
since the technique yields accurate and compact expressions for the structure parame-
ters, enabling the algorithms to be programmed on a desktop computer. The main ben-
efit over the majority of existing stripline analyses is that the method is not restricted
to TEM propagation. This enables higher order mode behaviour to be investigated
and subsequently extended to provide an efficient and accurate analysis of stripline dis-
continuities. The method is also valid for striplines of arbitrary dimensions hence the

sensitivity of the design parameters to dimensional variations can also be investigated.
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The following sections provide a brief outline of the TRD method as an introduction

to the theory described in Chapters 3 and 6.

2.6.1 TRD Technique Applied to Uniform and Coupled Lines

The uniform and coupled lines problem is solved by sub-dividing the structure into
stripline and parallel plate regions (Figure 2.5). The fields on either side of the in-
terfaces are derived using scalar potential functions. These consist of a summation of
parallel plate modes in the x direction and a transverse variation in the y direction. The
transverse variation is defined assuming an exponential decay in fields away from the
striplines, at the sides of the structure; and assuming a variation of the form of a parallel
plate transmission line terminating in an open or short circuit, for the remainder of the

regions.

Interface
Plane

Region 1 Region I

Figure 2.5: Sub-Division of Stripline Structure into Stripline (I) and Parallel Plate (II)
Regions
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In the case of the TE mode formulation, the magnetic field in the direction of propa-
gation is linked to the x directed electric field by an admittance function at each of the
interfaces. The aim is to enforce field continuity at the interfaces. This corresponds to
the admittances at each side of the interface being equal, such that their sum is zero,
i.e. the resonance condition. The transverse resonance condition is satisfied when the
fields are matched across all the interfaces simultaneously. The admittance terms are
written as a y-parameter matrices and cascaded. The resonance condition is then given

when the determinant of the overall admittance matrix is equal to zero.

The problem cannot be solved directly and Galerkin’s method is employed. The
unknown field is expanded using basis functions that accurately model the singularity
present at the interface. This yields a small admittance matrix, since a low number
of basis terms are required to describe the field. The set of transverse propagation
constants for which the determinant is zero yield the propagation constants for the
modes of the structure. The fields and hence the parameters of the stripline can then

be determined.

2.6.2 The Analysis of Stripline Discontinuities

The analysis of uniform and coupled lines computes the modes that can propagate in the
structure, and their corresponding mode impedances. The analysis of the step in width
and uniform to coupled lines transitions is carried out using a variational form of the
field matching method [64] to determine the Scattering parameters of the discontinuity

directly.

The discontinuity is characterised as the S parameters of an N port device, where
N is the total number of modes present in the structure and is a sum of the modes
propagating in the regions either side of the discontinuity plane. The field matching
method is then applied, however the fields in the cross section of the discontinuity are
expanded in terms of basis functions that model the singularities present in the cross
sectional field. This differs from previous approaches when the fields at the discontinuity

plane are expanded using the fields present on one side of the plane only.
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2.7 Conclusions

The chapter has briefly introduced a number of techniques for analysing passive mi-
crowave structures, and considered in greater details some of the techniques that have

been used to analyse stripline structures.

The choice of an appropriate analysis technique is a compromise between the amount
of analytical pre-processing; the computing resources available and the accuracy re-
quired. The number of publications on uniform and coupled line analysis illustrate the
range of techniques that have been used to meet particular compromises. The previous
analyses of stripline have mainly concentrated on either a low computation time, closed
form expressions at the expense of accuracy; or analyses with a higher degree of accu-
racy, but with a large computation time. The Transverse Resonance Diffraction (TRD)
analysis offers a high degree of accuracy with a comparatively low computation time.
The TRD method therefore meets the requirements of a tool for beamforming network
design. The accuracy and low computation time are achieved by taking advantage of
a-priori information concerning the edge singularities in the structure, at the expense

of an amount of analytical pre-processing.

The ability to accurately and efficiently characterise the uniform and coupled stripline
networks enables a compact theory to be developed to analyse stripline discontinuities,

with a high degree of accuracy and again a relatively low computation time.
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Chapter 3

Transverse Resonance
Diffraction Analysis of Stripline

Structures

3.1 Outline

This chapter describes the formulation of the Transverse Resonance Diffraction (TRD)
method for striplines of arbitrary dimensions. A y-parameter model is developed for
both uniform and coupled striplines, and solved using variational methods. The chapter
concludes with an investigation of a reduced form of the analysis and definitions of the

design parameters investigated in the later chapters.

3.2 Formulation of the Transverse Resonance Diffraction

Problem

The Transverse Resonance Diffraction technique has been introduced in the previous
chapter. The analysis will be carried out for a pair of coupled striplines and the cor-

responding expressions for a uniform stripline derived as a limiting case of the coupled
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lines case.

The analysis assumes a uniform, isotropic and lossless dielectric filling and lossless
conductors. The problem is formulated using potential functions with the propagating
modes represented by a three field TE or TM mode description as opposed to a full
five field description [60]. This is due to the structure containing a uniform dielectric as

opposed to a structure with an air-dielectric, or dielectric-dielectric interface.

3.2.1 Description of Fields

The field solutions in the structure are governed by Maxwell’s curl equations, assuming
a time dependence of the form Exp(—jwt) and writing the fields for mode, k, in terms

of transverse and longitudinal (2 directed) components:

VAew = —jwho(hik + hot) TE Modes (3.1)

VA(htk+hat) = jweoerewk
VA(etk + €zk) = —jwpohsk

TM Modes (3.2)
V Ahy

jwfoer(% + %c_)

Where, using the general vector notation, ax = £A4,; + §Ay + 24, = (Asz, Ay, A;), the

vector components a;; and a,; are given by:

Qi = (Aa:kaAyk’O)

ak = (0,0,A)

Considering the TE modes in the structure, the above equations can be rewritten in

terms of the transverse and longitudinal field components:

Vi e = —jwpohak (3.3)
VA e = —jwpohu (34)
VA hy =0 (3.5)
(Ve A hag) = (V2 A hig) = jwotress (3.6)
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If the curl of a vector is equal to zero it can be represented as the gradient of a potential
function (VAV¢ = 0), the transverse magnetic field is expressed in terms of a magnetic

scalar potential function, ¢pi(z,y, 2):

_}M = Vt¢hk($,y,2)
= Vidn(z,y) Exp(—jbkz) (3.7)

Substituting the above expression into Equation 3.4:

Shew = (";’j) Vibni(, 9) (3.8)
snGhe) = (22 A Vidue(ow) (39)

Hence,
€tk = Zok [2 A Vt‘ﬁhk(xay)] (310)

where the wave impedance, Z, is given by:

ity

Dok = Bk

(3.11)

Substituting the expressions for kst and e into Equation 3.6:

ViNhay = jwee (%:—a) [2 A Vidni(z,y)] — 3Bk [2 A Vidre(z,9)] (3.12)

K2\ ..
= - (5%) EAVibuatz ) (3.13)
3Bk
where k} = ¢k2- 2 (3.14)
= K242 (3.15)

It can be shown that the above equation can be satisfied when:

ho = —ﬁ—qshk(:l: ) (3.16)
7Bk ’

Expressions for the TM fields can be found using an electric scalar potential func-

tion in a similar manner to the TE fields. Renormalising the expressions for the TE
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modes, the fields in the structure are related to the potential functions by the following

expressions:
k2
hak(2,y) = 5-dne(z,y)
hir(z,y) = —ZVign(z,y) | TE Modes
ew(®,y) = Vidre(z,y) A2
kZ

eZk(z, y) = m(ﬁek(w, y)

etk(z, y) = ;:%:Vtgbek(a:, y) ’ TM Modes

htk(x, y) = Vt(bek(m’ y) ¥ )

Considering the TE modes, the fields can be derived from Equation 3.17:

k?
hzk(zay) = jwﬂo¢hk(w, y)
exk(x,y) = ay¢hk(xay)

eyk(z,y) = — Ozone(z,y)

hzk(xay) = ;'ﬂ:_oazd)hk(mv y)

hyk(m, y) __Iﬁ—ko y¢hk($ay)

wp

3.2.2 Derivation of Scalar Potential Functions

(3.17)

(3.18)

(3.19)
(3.20)
(3.21)

(3.22)

(3.23)

The scalar potential functions used in the analysis are separable and consist of a sum-

mation of an infinite number of field shape terms for the &, § and Z directions, modified

by an amplitude term in the form of a voltage for TE modes and a current for TM

modes.

¢hk(xa Y, Z) = _Z Vk'n ¢h:r(n, z)¢hy(n7 y)Exp j(Wt - ﬂkz)

n=0
n=00

¢ek(x, Y, z) = Z Itn ¢ew(n7 m)¢ey(n’ y)EXP j(“’t — Br2)

n=1

(3.24)

(3.25)

The contribution from the n=0 term of the electric scalar potential function has been

omitted from the summation. The n=0 term in the TE analysis corresponds to the

uniform field component, i.e. a constant electric field amplitude between the strip and
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ground planes. An n=0 term in the TM analysis would therefore correspond to a
constant magnetic field amplitude, or constant current flowing between the strip and
ground plane, which is a non physical solution of the structure. The constant voltage
term, V,, represents the voltage of the central condﬁctor with respect to the ground

planes and is defined as a boundary condition of the problem.

The TEM mode of propagation is a limiting case of the TE analysis. Substitution
of the transverse wavenumber, k;, equal to zero into the field expressions derived from
the scalar potentials yields zero values of the fields except the & directed electric field,

and hence § directed magnetic field.

The stripline structure shown in Figure 3.1 is subdivided into five distinct Regions
I to V. The overall field solution is found by enforcing field continuity across the four
boundaries. Expressions for the fields, and hence scalar potentials have to be found
on both sides of the boundaries. This requires further dividing the structure in to the

sixteen sub-regions, R; to Rie.

The scalar potentials and fields for the sixteen sub-regions are derived fully in Ap-
pendix B for the TE and TM modes.

The analysis only considers the bound modes present in the structure, with the
assumption that the continuum (radiating) modes do not radiate a significant amount
of energy. The fields in Regions I and V are therefore represented as an exponential

decay in the transverse (§) direction.

The general form of the analysis means that the scalar potentials are similar, but
distinct in the sixteen sub-regions. The formulation can be simplified, if required, by
assuming a physical plane of symmetry at x=0, and an even or odd plane of symmetry

at y=0 [61].

3.2.3 Y-Parameter Network Representation for TE Modes

The problem is analysed by enforcing field continuity in the Z directed magnetic field,

h.k, and solving the resultant equations for the transverse # directed electric field, e;.
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REGION 1 REGION II REGION REGION 1V REGION V

m
By : R s Ri5
ija  ~ » ® >
*2 R4 | LY Yo Ro! - Rig
e r12 b14
cb)

Figure 3.1: Definition of Dimensions (a) and Regions and Sub-Regions (b) of the Cou-
pled Stripline Structure Analysed



The number of boundaries, across which field continuity has to be enforced, dictates
that a network representation of the problem is used. This maintains a compact ana-
lytical form for the TRD formulation and enables the method to be easily extended for

any number of arbitrarily dimensioned striplines.

REGION I REGION II REGION REGION IV REGION V
exkl exkl exk2 exk2 exk3 exk3 exk4 exk4
hzkl hzkl hzk2 hzk2 hzk3 hzk3 hzk4 hzk4

Figure 3.2: Equivalent y Parameter Circuit for TE Modes

The y-parameter equivalent circuit for the TE modes is shown in Figure 3.2. The

elements, Y4 to YDcan be expressed in terms the y-parameters ofthestructure:

Ya = YB

yn + 212

Ye = -yi2 = ~22i YD =222 + 2121

Considering the interface between Regions I and II, and linking the magnetic field,
hzk(z,y), on the Region I side of the interface, to the electric field, exk(x,y) on the
Region II side of the interface; noting that the amplitude, Hzkn can be represented as

Hzkn = Exkn, the hzk(x,y) and exk(x,y) fields are given by:
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hzk (w,— (% + wl) —) = jwlp nio Y(n) Ezkn $ha (n,x,— (g + w1)_)
° n=0

(3.26)
€xkl (l'l, - (% + wl)+) j:#o 1;) Evkn Oha (n, zl, - (g’ + w1)+) (327)

The E_k, amplitude can be expressed as a Fourier expansion of Equation 3.27:

Epkn = /+oo ezk1 (fc’, - (g + w1)+) Phs (n,z’, - (g + w1)+) dz’ (3.28)

-—0C0

Substituting the above equation in to the expression for h,x(z,y):

b (a: _ (% + wl)_> = yeem (z’, - (g + w1)+> (3.29)

where o denotes convolution and y is of the form of a Greens Admittance Operator [19]:

n=00

y= Z V(n) bhe (n,x,— (% + wl)—) Dz (n,z’, - (% + w1)+) (3.30)

n=0

The mode admittance terms Y(n) are derived for the sixteen sub-regions in Appendix B,
using the notation of Figure 3.2 for the fields at the interface and rewriting Equa-
tion 3.29:

iy = 41 ® e (3.31)

zZ

In a similar manner, the Z directed magnetic field can be related to the & directed

electric field for the remaining four regions.

R1I Il gl el
11 Y12 k
;l;l - o oot 31811 (3.32)
Poka ] | Y12 Y22 €rk2
[ 101 ] [ 11 0T II1
hixa Y11= Y2 €rk2
I = mar o | 0| L (3.33)
k3 ] | Y127 Y22 €rk3
RV gV ylv eIV
3 11 Yi2
;I:, = v oo | jxkxa (3.34)
hika | | Y12 Y22 €zka
v _ V..V
haea = Yl o€z (3-35)

37



Enforcing field continuity between the regions, the overall y-parameter representation

is found:
0 S“ B vil 0 0 Exkd
0 + vi ~ 0 €xk2
vil Vi vil vili ] . (3.36)
0 0 inZII vIiF + yvg E &xk3
0 0 0 Wiz y% + | kA
REGION I REGION REGION II REGION IV REGION V
ezkl ezkl ezk2 ezk2 ezk3 ezk3 ezk4 ezkd4
hxkl hxkl hxk2 hxk2 hxk3 hxk3 hxk4 hxk4

Figure 3.3: Equivalent Y-Parameter Circuit for TM Modes

3.2.4 Y-Parameter Network Representation for TM Modes

The total x and z directed fields in the interface plane between Regions I and II can be

written as a general Green’s Function Admittance Operator:

7z A
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The 11 term equates to the TE admittance operator of Equation 3.31; and the ys2
term to the corresponding TM admittance operator. The y;2 and y;2 terms represent

the cross coupling between TE and TM modes and are therefore identically zero.

In order to simplify the TRD analysis it is beneficial to solve the TM problem for

a field with the same shape as that used to solve the TE problem, since only one

field shape has to be discretised. The matrix expression in Equation 3.37 is therefore

modified to solve the TM modes in terms of the partial differential of the e,; field with

respect to the & direction, since this has the same singularity behaviour as the e field,

rewriting Equation 3.37, noting that the % term is introduced to maintain the correct
field scaling.

1 I I

hzk1 |y O ekl
J Fharrdz’ 0

(3.38)
%axezkl

where the corresponding transformed admittance operators are given by:

/

Y11 = Y

“//’!/22 dz dz’
CrossSection

Enforcing field continuity, the overall y parameter representation for the TM modes is

o
Y22 =

found:
[ b B ' / ' ] [ ]
0 v + il yiz 0 0 A0ek1
0 i oyl T+l ff” 0 A9 ek2 (339)
0 0 a7 L T L 7 A4 A9 €.13
[ 0j | 0 0 ' Wl || Aoseaa

where ’ denotes operator [ [ dzdz’ and noting that the field scaling factor, %, will differ

for the sub-regions.

3.3 Derivation of the Transverse Resonance Equation

The transverse resonance equations shown in Equations 3.36 and 3.39 cannot be directly

solved since the exact form of the ey fields is unknown. Numerical techniques are
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therefore used to indirectly solve for the unknown field. The method of solution will be

described for the TE modes and a corresponding solution for TM modes will be derived.

Recalling Equation 3.36 and substituting the expressions for the Green’s Admittance

operators and rewriting in terms of matrices:

0 €xkl
0 n=0o0 -
= Z [y(n)] [¢hk(n7wa y)] [¢hk(n,$,7 y,)] b Cak? (3.40)
0 n=0 €xk3
L 0 J | C€zk4 |
where the mode admittance and scalar potential matrices are defined as:
[ Vi(n)+ Y (n) YH(n) 0 0 '
Y(m)] = Vi) Yi{'(n)+Yii(n)  Yi3'(n) 0
0 Yii(n) Vi () + VY (n) VY (n)
! 0 0 Yy (n) Vi (n)+ Y (n) |
(3.41)
r¢hy(—(§+w1)‘) 0 0 0 ]
0 —(2)” 0 0
[¢hk(n’ T, y)] = ¢hz(na :L') d)hy( (2) )
0 0 bry(+(3)7) 0
| 0 0 0 Gny(+(5+w2)7) |
(3.42)
[ b (—(3+w1)") 0 0 0 '
0 —()* 0 0
[¢hk(n’ x,’ y,)] = ¢hz(n1 z/) ¢hy( (2) )
0 0 bhy(+(3)F) 0
I 0 0 0 ny(+(5+w2)?t) |

(3.43)

Galerkin’s method, a general form of the method of moments [65] was chosen as the

numerical method to solve Equation 3.40 for the unknown fields. The method is based

on approximating the unknown function using a weighted summation of basis functions.

When the substitution is made in to the governing equation, there will be a small but

finite error due to the approximation. This error is integrated with a second basis
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function and the result assumed to vanish. The case when the first and second basis

functions are identical is referred to as Galerkin’s method.

The unknown e, field is approximated by the summation of basis functions. In the
case of the stripline structure the § dependence of the e, fields is identical at all the

interfaces and equal to unity, such that:

eak(@,00) = 3 Kok fy(a) (3.44)

p=0

Therefore rewriting Equation 3.40 and evaluating the convolution as an inner product:

= .
0 n=o00 p=00 X
=3 @) [bre(nasy)] 3 / (2, 9)] fo@)dz | 72 | (3.45)
0 n=0 p=0 x%kS
B 0 d _-X}k4_

The integral [[¢nk(z,y)] fp(z) dz is defined as an inner product, and is denoted by
< ¢ne(z,y) ; fp(z) >. In addition, recalling that the § directed scalar potentials are

normalised to unity at each of the interfaces (Appendix B), rewriting:

n=o0o0 p=00

0= 3" @) [rn, 1)) 3 < halm2) 5 fol2) > [ X (3.46)

n=0 p=0

A further inner product is then taken with the same basis functions:

n=00 p=00

= 3 3 @) < dra(m2) 5 () > < dral(m,2); fyle) > [Xpe|  (3.47)

n=0 p=0

In order to practically solve the above equations, the infinite number of terms in the
summations are replaced with a finite number of field expansion terms N, and a fi-
nite number of basis functions, P, and the above equation rewritten as a set of linear

equations in matrix form such that:
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o] [Mm+v] [ o] [0] Xia
0 5] WP+ [ [0] Xia
0 [0] i [+ MY Xks
o] | [0 [0] [ Y2 + Y] | | Xia

T (3.48)
The elements of the overall admittance matrix [Y;;] are themselves matrices, of order

PxP, the elements of which are evaluated as:

n=0oo

Yiloa = D V()]s < dhe(n,2) 5 fo(2) > < Bhs(n,2) 5 fy(z) >

n=0

(3.49)

The corresponding elements of the admittance matrix for the TM modes can be written:

Yo = 3 ([ [Dlideda’) < durnz)5 (o) > < beelm2) ; 3(2) >
" (3.50)

3.4 Evaluation of the Transverse Resonance Equation

3.4.1 Choice of Basis Functions

The efficiency of the TRD technique relies on expanding the unknown field using basis
functions that can model the field using a small number of terms, since the computa-

tional time is proportional to the cube of the admittance matrix order [66)].

The field singularities on the edges of the central conductor dominate the cross
sectional fields. An efficient approach would therefore be to expand the fields using

basis functions that model the order of the singularities on the edges of the conductors.

The term “singularity” suggests that the field strength is infinite at the edges of the
strip. In practice, the energy stored must be a finite quantity, Collin [19] analysed a
metallic wedge of arbitrary angle and produced an expression for the minimum order

of the field singularity at the edge. For an angle of 90°, found at the corners of a finite
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thickness stripline, the singularity is of the order | r |‘% For an infinitely thin stripline

the order of the singularity is | r |"%.

The basis functions take the form of a product of an orthonormalisation constant,
A,, a weight function to model the singularity, W(z,v) and the orthogonal function,
F(z,v):

fo(z) = A, W(z,v) F(z,v) (3.51)

Gegenbauer Polynomials (Figure 3.4) are used as basis functions to model the finite
thickness stripline since the Gegenbauer Polynomial weight function is of the same form
as the | r |_% field variation. Chebyshev Polynomials (Figure 3.5) are used as basis
functions for infinitely thin stripline since their weight functions model the | r |_% field

variation accurately.

3.4.2 Calculation of Inner Products

The inner products are derived in Appendix C between the scalar potentials and Gegen-

bauer polynomials for both the TE and TM modes.

Introducing the notation of an inner product as:

PR =< ¢fi  (n,2); fo(z) > (3.52)

hz,ex

The general form of the inner products for the TE modes is given by:

1
112 , g, \-1 .
2p + 6] (kBip;) e Top+d (kEi b))

T > (g - (b,- + %’)) (3.53)

1
1]2 R 1 .
oo+ 5| () a0 (5 0)

z < (g - (b,- + %’)) (3.54)

1
1 I'(2p+31)]|?
PR = ARip (—1)”\/?4” (p+3)} [

(2p)!

W=

o1 T
At df (17T 4

I'(2p+3)
(2p)!
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Figure 3.4: Second [o], Third [O], Fourth [V], Fifth [*] and Sixth [A] Order Gegenbauer
Polynomials of Singularity Order a = |

Figure 3.5: Second [o], Third [g], Fourth [V], Fifth [¢] and Sixth [A] Order Chebyshev
Polynomials
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The corresponding expressions for the TM modes are given as:

- T
a8t (17 [T

R;
Ppn

3 1
r(2p+ 3|2 (A EIP ,-
A DN oo+ 7] 6200 g ()

3 1
r2p+3)|°? 215 . 1 |
W ?tE (kg™ di) ¢ Jppyz (kg™ di)

1
A af (17 [3 A

3.4.3 Transverse Resonance Admittance Matrix for TE Modes

Substituting the expressions for the inner products, Pp, and P,,; and the expressions for
the mode admittance terms, J(n) from Appendix B into Equation 3.49 the transverse

admittance matrix (Equation 3.48) can be evaluated.

Rewriting and factorising in terms of frequency independent functions, J(p,q, )

and Cpq; and frequency dependent functions, F;, the matrix terms are found:

n=N
[},lllpq = Cpq Z P (kfs’k;}&’wl) J(p, q,nﬂ')+
n=0
Fs (k) 7(p, q, kE1b1) + F3 (k[2) T (p, ¢, kF2dy) (3.57)
n=N
[1/12]” = Cpq Z FZ (k53>k54’w1) j(]’? q, nﬂ-) (358)
n=0
n=N

[Y21]pq = Cpq Z F, (kfs’ kfe’wl) j(P, q, n7r) (359)

n=0
n=N
[Yn]pq = Cpy Z [Fl (kfs,kfs,wl) + F (kf7,kf8,s)] J(p,q,nm) (3.60)
n=0
n=N
[Y23]pq = Cpq Z F2 (kfs, kfs’s) j(p,q,mr) (3'61)

n=0

[Yaal,, = Cpg Y Fa (Kl k[, ) 7(p,q,n7) (3.62)
n=N

[Y33]pq = Cpq E [F1 (kf", kf“’,s) + A (kf“,kf“,wg)] J(p,q,nm) (3.63)

n=0
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n=N

Va1, = Cog ) Fo (k' kg2, w2) T(p, g, nm) (3.64)
n=0

n=N

Y&, = Ce ) Fo(ky k4, w2) T(p, g, nr) (3.65)
=0
n=N

[Y4{1V] Pq = CPQ E Fl (kfla’ k{fn, wZ) j(p, q, n7r) +
n=0

F3 (k15) T (p, g, kF5bs) + Fs (k[e) T (p, ¢, kFedy)  (3.66)

Where the functions, Fy, F; and F3, and the constant, C)p, are defined as:

] (o) )] oo

2
kim

= (—=1)Pt9
Con = (—17H 75

Cot (k2 Cot (kfm2
Fl(kgRl),kng),w) = (Ry 2) ° (Ry 2) (3.68)
kyl ky m
Cosec (kf*2)  Cosec (kfm2)
FZ(kleakgI/%m,‘p) = ( ley 2 kRmy 2 (369)
y y
1
(k) = ——x (3.70)
! iy
T(,m%) = o 1 ($) Sy s (9) (3.71)
The wavenumbers for the different regions are defined from the equation:
2 )2
© = (BR) + (k%) (372)

and are shown in Appendix B.

3.4.4 Transverse Resonance Admittance Matrix for TM Modes

The admittance matrix for TM modes is of an identical form to the expressions for the
TE modes, however the lower limit of the summations in Equations 3.57 to 3.66 is n=1,

as opposed to n=0.
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The frequency dependent and independent functions are defined:

N (CHICI e

2
kim

= (=1)Pte
Cpq ( ) 2w€o €

jkFiCot (kF12)  jkRmCot (kfim £)

R, Rm _ JkytCot (k"3 IRy y 2
Fl(kyl7ky 790) - ( n2k§Rl) nzkff"‘ (374)

jkIiCosec (kf*2)  jkRmCosec (kf'm2)
Fy(kf kBm ) = ( e (3.75)

: kI

Fy(ky") = ——- (3.76)
J(n,m,y) = J2n+%(¢)J2m+%(¢) (3.77)

The & directed wavenumbers are again shown in Appendix B. The expressions for Fi,
F, and F3 for the TM modes are of the same form as the expressions for the TE modes.
The denominators contain an additional n? term which also aids convergence of the

method.

3.5 Solution of the Transverse Resonance Admittance

Matrix

3.5.1 Solution for the Propagation Constant

The Transverse Resonance admittance equation (Equation 3.48) is of the form of a

general eigenvalue problem:

[Y][X] = A[X] (3.78)

The solutions for the eigenvalue of zero (A = 0) correspond to the resonance condition
when the fields are matched across all interfaces. The corresponding eigenvectors give
the basis amplitude terms for the mode. This eigenvalue solution, A = 0 also corresponds
to the determinant of the matrix [Y] being equal to zero. This latter property was used

to solve the TRD problem for the transverse wavenumber, ;.
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In order to determine the cut-off frequencies of a particular stripline geometry, the
transverse wavenumber is replaced by the free space wavenumber, k, (8r = 0) in the
expressions for the admittance matrix terms (Equations 3.57 to 3.66) . The wavenumber
is then incremented and the sign of the determinant noted, when a change of sign
is detected an interval halving technique [65] is used to determine the exact cut-off
wavenumber. This is complicated by a number of poles satisfying the condition of a
determinant change of sign, in addition to the determinant zeroes. The poles are due to
the admittance matrix terms becoming undefined for values of kff"(,o = m. These terms
however can be easily identified by considering the relative values of the determinant
during the interval halving search. The problem can also be cast to search for a set of

unknown values of the propagation constant, O, at a fixed frequency.

The assumption of a lossless dielectric filling enables a straightforward interval halv-
ing technique to be used. An analysis for a dielectric permittivity with a complex com-

ponent to model loss would require a two dimensional search technique to be used [60].

3.5.2 Solution for the Field Amplitudes

The propagation constant information can be computed in a straightforward manner.
In order to calculate the circuit parameters such as impedance and power flow, the field
amplitude terms have to be determined. Recalling the form of Equation 3.28 for TE

modes:

400
Exlm = / exk(‘”a y) d’hk(n, T, y) dz (379)

— 00

Substituting the expression for the unknown e,y field,

p=P

400
Exn = Y Xpk | fp(2) $re(n,z,y) da (3.80)
p=0 e
p=P
Eokn = Zka Ppn (381)
p=0

The solution of the field amplitude terms for the fundamental TEM mode of propagation,
is complicated since the TEM case is a limiting case of the TE modes with k; = 0. This

substitution causes the admittance matrix to be equal to the null matrix, hence no field
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information can be derived. However the field is assumed to be uniform and the field
amplitudes are given by:

x)=| ! (3.82)
0

The corresponding field amplitudes for the remaining h,x and ey fields are given by

the following expressions:

ki
szn = (jw,uoky) E:ckn (383)
ky
Eykn = (_) Eckn (384)
ky

The field plots for the stripline structure can therefore be calculated from the expressions

in Appendix B.

3.6 Extension to an Arbitrary Number of Striplines

The analysis has been presented for a pair of coupled striplines of arbitrary dimen-
sions. The use of a y parameter network representation enables any number of coupled
striplines to be analysed by cascading the two port networks of stripline elements to-
gether. The order of the overall admittance matrix is given by 9M P x 2M P where M
is the number of striplines and P is the number of basis terms. The efficiency of the
analysis will demonstrate that this should not place a large requirement on the memory
of a computer, however the computational time will be proportional to the cube of the

matrix order.

3.7 Simplification for a Uniform Stripline

In addition to extending the analysis, the analysis can be simplified by inspection to

produce the formulation for a uniform stripline.

The corresponding equation for a uniform line can be obtained by considering the

three Regions in Figure 3.6.
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REGION 1 REGION I REGION I

Figure 3.6: Uniform Stripline Structure Analysed

Recalling the expression for the transverse resonance equation given in Equation 3.48,

the expressions for a uniform line can be written down by inspection:

0 Xkl
W+ YAI] (3.85)
0 [Yu Yg X k2
The elements of the matrix are written as:
n=N
[U1 pq cpq Y FI (ky3'ky* +
n=0
ft (k*>) J(p,q,k2'b)f ¢ (**») J(p,q3k864)
n=N
12 py Cpg J2 F2iky3»kydrw) $ (P>9>n7r) (3.87)
n—0
n=N
v2ilpg = Cpq Y F2{kyb,kK6,w)j(p,q,mr) (3.88)
71=0
n=N
71=0
F3 (k*)J(p, g, k*b)+ ft {k(3.89)

50



F3 (kKJ7) I(p, ¢, k) + Fs (k) T (p, ¢, k5d)  (3.89)

The frequency dependent and independent functions are defined in Equations 3.67

to 3.71 for TE modes and Equations 3.73 to 3.77 for TM modes.

An alternative derivation is possible by considering the TRD equation for coupled
lines and substituting the limiting value for two identical striplines as the separation,
s, tends to infinity, or the reflection coefficient in Region III tends to zero, i.e. a field
match. The resulting matrix equation will have a symmetry plane along the non-leading
diagonal due to the physical symmetry. Considering the top left hand quadrant, or the
bottom right quadrant a similar equation to Equation 3.85 is found. The elements

however will have a dimensional offset of § in the § direction.

This alternative derivation is important as it gives an intuitive verification of the
single line formulation and provides an insight into the behaviour of the structure as

the dimensions are varied.

3.8 Reduced Form of the Determinant Expression

The existing expressions used to calculate the parameters of both uniform and coupled
striplines are presented as closed form equations. The method defined in Section 3.5 is
an iterative method, however computational savings could be made if the determinant

was written as an explicit expression which could then be evaluated directly.

Computational savings can be gained by identifying the frequency dependent and
independent components. This has been done to a certain extent through the sepa-
ration of the orthonormalisation coefficients and the inner products from the Green’s

Admittance Operators.

The determinant of the admittance matrix can also be rewritten as an explicit expres-
sion containing the matrix terms and then simplified as a polynomial in the admittance
operator. The formulation used for stripline relies on each admittance matrix term being
a summation over the number of field expansion terms, N. The corresponding determi-

nant expression is therefore complicated for a relatively small matrix order and value
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of N, requiring an algebraic routine such as REDUCE [67] to factorise the expression.

The reduction of the determinant to a closed form expression can also be considered
intuitively. The analysis yields a determinant value characterised by a number of poles,
P and zeroes, Z, hence the minimum order of the polynomial to characterise this must
be P+Z. The number of poles and zeroes will clearly be set by the maximum frequency
of interest for a search at given propagation constant, or the maximum propagation
constant for a search at a given frequency. The coefficients of the polynomial will

depend on all the admittance matrix terms.

Reducing the determinant to a closed form is also equivalent to representing the
problem using ABCD network representation, where the resonance condition is given

by element C being equal to zero [9].

The lack of a compact form of the determinant expression suggests that an efficiently
written algorithm using a small number of basis terms and field expansion terms will

provide a sufficiently fast means of computing the propagation constant for a structure.

3.9 Stripline Parameters

The calculation of the field amplitude terms enables the impedance and attenuation

factor of the stripline structures to be determined.

3.9.1 Definition of Impedance Measures

The impedances of the stripline structures can be calculated using three measures:
the power-voltage impedance, Z,,; the power-current impedance, Z,; and the voltage-

current impedance, Z,;.
The expressions are defined below:

— V02
Zp = P (3.90)
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Plow
Zy = ’}2 (3.91)

Zyi = va Zpi (392)
The power flow in the 2 direction, Pfi,y, is given by the Poynting vector:

Pflo'u) = / etk N &E_ @ (3.93)
C

rossSection

The voltage, V, represents the voltage between the stripline and ground planes, noting
the total voltage is given by:
V= / en dl (3.94)

The field, ey consists of a summation of N field amplitude and shape terms, however it
can be shown that contributions to the integral are zero for all modes, except the n = 0
term. The corresponding expression for the current flowing in the conductors for the
kth mode is given by:

I= f hee dl (3.95)

The power flow, voltage and currents integrals are evaluated for the stripline structure

in Appendix D.

Theoretically, the three different measures of the impedances should give identical
results, this however assumes that all the integrals are calculated to an equal accuracy

by the analysis method.

3.9.2 Definition of Coupled Stripline Modes

The expressions for the impedances (Equations 3.90 to 3.92) can be evaluated for all
the modes present in the structure. The modes for the coupled striplines are denoted
as C and II, for lines excited with balanced and unbalanced voltages respectively [47].
For structures where there is a physical plane of symmetry at y = 0 the characteristic
impedances are equal and the C and II modes degenerate to the conventional even and

odd modes respectively.
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The expressions for the coupling, Ss;; isolation, S3;; and transmission, S4; can be
derived by considering the ABCD matrices of the modes separately [57]. The expression

for the maximum coupling is noted here:

Z A
M) Units : dB (3.96)

C = 20 loglo (ZO(C) + ZO(H)

3.9.3 Definition of Attenuation Factor

The attenuation factor for the structure consists of contributions from the conductor

attenuation factor, o, and the dielectric attenuation factor, agy.

a=oa.+a4 (3.97)

The conductor attenuation factor is calculated assuming a small perturbation method.
In this approach the structure is analysed assuming a lossless propagation constant. The
fields around the structure and hence the power flow (Equation 3.93) and power dissipa-
tion are calculated. The method has the advantage that only a one dimensional search
is required to determine the propagation constant . The approach is only constrained by
the requirement that the thickness of the conductors in the structure is approximately
2 - 3 times the skin depth. For a brass stripline network operating at C band (2.7-3.1

GHz) the analysis is limited to striplines with thicknesses greater than 10um.

The power dissipation assumes a current density on the surface of the material and

an effective surface resistance, R, [9], such that:

1
Pyis = 3R, (A Ahy)® da (3.98)

CrossSection

The material surface resistance is given by the expression:

_ [wp
R, =4/ (3.99)
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The attenuation factor in nepers per metre is then given as the ratio:
(3.100)

The attenuation factor is normalised to remove the effect of frequency and surface resis-
tance, since this enables the effects due to the structure dimensions to be characterised

more readily:

a, = 20logge (kfl_) a, Units : dBQ~1m? (3.101)

8

The dielectric attenuation factor is derived from an alternative form of Equation 3.100 [68]:

a= 2’“—@ (kﬁ) B (3.102)

Recalling that for a material with a loss given by Tan §, the attenuation factor in dBm™!

can be written:

aq = [201og g €] T/Ho€on/€r f [Tan ] (kﬁ) i (3.103)

o
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Chapter 4

Numerical and Measured

Results for Uniform Striplines

4.1 Outline

This chapter presents numerical results for the convergence of the Transverse Resonance
Diffraction (TRD) method for both TE and TM modes for uniform stripline. Results
are also presented for the higher order mode cut-off frequencies, impedance and atten-
uation factor for uniform lines over a wide range of dimensional ratios. The values are
compared to both purely numerical and purely analytical results, and differences high-
lighted between the TRD results and values computed by existing CAD systems. The
sensitivity of the design parameters to variations in the dimensional ratios is also in-
vestigated. Higher order mode cut-off frequencies and attenuation factor measurements

are also presented to verify the simulated results.

4.2 Convergence of the Method

The TRD method derived in Chapter 3 is formulated in terms of an admittance matrix

of variable dimension, with the elements consisting of a summation of a finite number of
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terms (Equations 3.49 and 3.50). The convergence of the formulation with the number
of basis functions, P, and the number of field expansion terms, N, has to be determined

in order to verify that the analysis is numerically stable.

4.2.1 Convergence of the TE Mode Formulation

The convergence of the first higher order mode is shown in Table 4.1 for a nominal
5092 stripline. The results are calculated to four decimal places to illustrate the relative

degree of convergence and do not imply accuracy to the same degree.

The values clearly indicate that two basis function terms and five field expansion
terms are sufficient to calculate the cut-off frequencies to within one percent, and two
basis function terms and twenty five field expansion terms to calculate the results to

within 0.1 percent.

Cut-off Frequency (GHz)

N No. of Basis Functions, P

1 2 3 4 5 6

5 | 7.0294 | 7.0402 | 7.0574 | 7.0802 | 7.0919 | 7.2380
10 | 6.9958 | 7.0001 | 7.0056 | 7.0130 | 7.0219 | 7.0276
15 | 6.9869 [ 6.9900 | 6.9930 | 6.9966 | 7.0009 | 7.0053
25 | 6.9800 | 6.9823 | 6.9839 | 6.9853 | 6.9868 | 6.9885
50 | 6.9753 | 6.9771 | 6.9780 | 6.9786 | 6.9790 | 6.9795
75 | 6.9740 | 6.9756 | 6.9764 | 6.9768 | 6.9770 | 6.9773
100 | 6.9734 | 6.9750 | 6.9757 | 6.9760 | 6.9762 | 6.9764
200 | 6.9727 | 6.9742 | 6.9748 | 6.9751 | 6.9752 | 6.9753

Table 4.1: Convergence of the First Higher Order TE Mode Cut-off Frequency with
the Number of Field Expansion Terms, N, and the Number of Basis Functions, P for a
Nominal 5082 Stripline (t=1.60mm, b=d=5.55mm, h=14.00mm and w=12.70mm)

4.2.2 Convergence of the TM Mode Formulation

The convergence for the first higher order TM mode is shown in Table 4.2, again for a

nominal 5082 stripline.

The results for the TM mode indicate that for the first higher order mode, two

basis function terms and five field expansion terms are required to calculate the cut-
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off frequencies to within one percent, and three basis function terms and fifteen field

expansion terms are required to compute the frequency to within 0.1 percent.

The results illustrate the difference in convergence between the TE and TM mode
formulations. Compared with the TE formulation, the TM analysis shows a strong con-
vergence with the number of field expansion terms, as would be expected from the form
of the mode admittance functions (Appendix B). The convergence with the number of
basis functions is poorer than the TE formulation, with significant errors of between ten
and fifteen percent for low numbers of basis functions. However, the rate of convergence
of the TM analysis with the number of basis functions is better than the TE mode

formulation.

The results for the convergence of the two formulations demonstrate that the TE
and TM fields surrounding the stripline can be expressed accurately using a relatively
low number of basis terms. The results indicate that the first higher order TM mode
has a more complicated field shape than the TE mode, requiring a larger number of

basis terms to calculate the fields to the desired accuracy.

4.3 Higher Order Mode Cut-Off Frequencies of Uniform

Stripline

Results have been calculated for the variation in cut-off frequency with strip width (w:h);
strip thickness (t:h); and strip position asymmetry (b:b+d). The results are compared
to Oliner’s conformal mapping analysis [11] which models the finite thickness stripline
as a waveguide with an effective width. In addition, results for the variation in the strip
width are compared to recently published data computed using finite elements [41] with

an assumed exponential field decay in the transverse direction.

4.3.1 Variation in Cut-Off Frequency with Strip Width

Figure 4.1 shows the variation in the first higher order mode cut-off frequency with

strip width for a range of strip thicknesses. The TRD results illustrate convergence to
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Cut-off Frequency (GHz)

N No. of Basis Functions, P
1 2 3 4 5 6
5 18.0853 18.0160 18.0069 17.9983 17.9973

10 20.2955 18.1139 18.0218 18.0200 18.0142 18.0078
15 20.4066 18.1188 18.0234 18.0226 18.0199 18.0161
25 204852 18.1217 18.0244 18.0245 18.0229 18.0214
50 20.5330 18.1234 18.0249 18.0248 18.0242 18.0236
75  20.5463 18.1239 18.0251 18.0250 18.0245 18.0241
100 20.5523 18.1241 18.0251 18.0251 18.0246 18.0243
200 20.5601 18.1243 18.0252 18.0252 18.0248 18.0245

Table 4.2: Convergence of the First Higher Order TM Mode Cut-off Frequency with
the Number of Field Expansion Terms, N, and the Number of Basis Functions, P for a
Nominal 50D Stripline (t=1.60mm, b=d=5.55mm, h= 14.00mm and w=12.70mm)

10

0 5 1.0 1.5 2.0
Ratio w:h

Figure 4.1: First Higher Order Mode Cut-Off Frequency versus Strip Width (w:h)
computed by TRD (——- ) and Oliner’s Finite Thickness Approximation (------ ) and
Infinitely Thin Approximation (.......... ) for Various Strip Thicknesses (t:h=0.001[d];
t:h=0.126[*] and t:h=0.250[A]), b=d and h=12.70mm
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the cut-off frequency of the parallel plate waveguide (11.803 GHz) as the strip becomes
infinitely thin, as opposed to Oliner’s analysis which increases rapidly. The agreement
improves as the strip becomes wider, however Oliner’s finite thickness analysis computes
very similar results for thick strips (t:h=0.250) or very narrow strip (t:h=0.001). This
is due to the finite thickness correction being unable to compensate for the overall trend
in the cut-off frequency with strip thickness, the thickness (t:h=0.250) marking the
upper bound of Oliner’s analysis [11]. The correction does however reverse the trend
of the cut-off frequencies for moderate values of strip thickness, agreeing with the TRD

analysis and illustrating a decrease in cut-off frequency for an increase in strip thickness.

The variation with strip width is also compared to results computed using the finite
element method [41], and plotted in Figure 4.2 as a percentage difference with respect

to the TRD method to highlight the differences between the methods.

20
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Figure 4.2: Percentage Difference between the First Higher Order Mode Cut-Off Fre-
quency versus Strip Width (w:h) computed by the TRD Method and Oliner’s Analysis
[0];TRD and a Conformal Mapping Effective Width Correction [A]; and TRD and a
Finite Element Analysis [o] for b=d=5.55mm, t=1.60mm and h= 12.70mm
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The results illustrate that Oliner’s conformal mapping analysis produces significant
differences of between one and sixteen percent, with agreement improving as the strip
becomes wider. The errors for narrow strips are due to errors in the evaluation of the
conformal mapping by approximate functions, and interaction of the fringing fields at
the ends of the strip. Oliner suggests a minimum strip width of w:h=0.5, however the
finite element and TRD analyses which typically agree to within one percent, indicate
that this is over optimistic. The effective width correction [41] applied to the conformal
mapping appears to give a lower bound on the solution with improved agreement for

narrow strips compared with Oliner’s analysis.

4.3.2 Variation in Cut-Off Frequency with Strip Thickness

Figure 4.3 illustrates the variation in first higher order mode cut-off frequency with strip
thickness (t:h) for a range of strip widths. The TRD results show a comparatively small
variation with strip thickness, suggesting the cut-off frequency is dominated by the width
of the strip. This contrasts with Oliner’s finite thickness approximation which shows a
stronger variation with thickness. The agreement between the methods improves with
strip width, indicating that the effective width correction should be a function of strip

width as well as strip thickness [23].

4.3.3 Variation in Cut-Off Frequency with Strip Position Asymmetry

Figure 4.4 shows the variation in first higher order mode cut-off frequency with strip po-
sition asymmetry (b:b+d) for various strip thicknesses (t:h). The results show improved
agreement between the methods for moderate strip thicknesses by using a finite thick-
ness correction, which again corrects the trend in cut-off frequency with thickness for
symmetrical stripline (b:b4+d=0.5). The TRD analysis illustrates a smoother variation
of cut-off frequency around the symmetric strip position than the conformal mapping
analysis. This suggests that manufacturing tolerances in strip position will not alter the

monomode bandwidth significantly.

Figure 4.5 illustrates the variation in the cut-off frequency with strip position asym-
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Figure 4.3: First Higher Order Mode Cut-Off Frequency versus Strip Thickness (t:h)

computed by TRD (------ ) and Oliner’s Finite Thickness Approximation (-— ) for Var-
ious Strip Widths (w:h=0.50[n]; w:h=1.10[*] and w:h=2.00[A]), b=d and h=12.70mm
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Ratio b:b+d

Figure 4.4: First Higher Order Mode Cut-Off Frequency versus Strip Position Asym-
metry (b:b+d) computed by TRD (------ ) and Oliner’s Finite Thickness Approxima-
tion (- - -) and Infinitely Thin Approximation (.......... ) for Various Strip Thicknesses
(t:h=0.001[n]; t:h=0.126[*] and t:h=0.250[A]), w=14.00mm and h=12.70mm
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metry for various strip widths and emphasises the points above and showing that for

strip widths in excess of w:h=2.0 the agreement in comparatively good.
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Figure 4.5: First Higher Order Mode Cut-Off Frequency versus Strip Position Asym-
metry (b:b+d) computed by TRD (------ ) and Oliner’s Approximation (-----) for Various
Strip Widths (w:h=0.50[D]; w:h=1.10[*] and w:h=2.00[A]), t=1.60mm and h=12.70mm

4.3.4 Calculation of Monomode Bandwidth in Practical Systems

The results illustrate that traditional conformal mapping techniques provide a significant
overestimate of the first higher order mode of striplines with commonly used dimensions.
Historically this has not been significant since the monomode bandwidth of a system is
set by the widest strip, which corresponds to a width of w:h=2.80 for a typical system.
The error between the conformal mapping and TRD values (Figure 4.2) is therefore low.
The conformal mapping result will be an overestimate, which may become important
for networks designed with a small or non-existent safety factor between the operating

frequency and the monomode bandwidth.
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4.4 Impedance of Uniform Stripline

TEM impedances are calculated using the TRD method and compared to values com-
puted using conformal mapping techniques [13, 23, 28] for a range of dimensions. Results
are also compared to EEsof’s Linecalc package and Hewlett Packard’s HP85180A High
Frequency Structure Simulator (HFSS) Finite Elements package for a limited set of

striplines.

4.4.1 Convergence of Impedance Measures

The three impedance measures that can be calculated for the stripline structure: the
power-voltage impedance, Z,,; the power-current impedance Z,;; and the voltage-
current impedance, Z,; are defined in Chapter 3. Ideally the three measures should give
consistent results. However, for a given number of field expansion terms the accuracy
with which the voltage, current and power flow can be calculated will differ. Figure 4.6
shows the percentage difference between the impedance measures and Cohn’s conformal

mapping results [13] for nominal 3082, 5092 and 75 striplines.

The power-voltage formulation converges fastest since the problem is formulated in
terms of the magnetic scalar potentials with the & directed electric field as the discre-
tised field that is solved for. Provided a sufficient number of terms are chosen, the
power-current and hence the voltage-current measures converge to the power-voltage
calculation. Figure 4.6 also shows that the rate of convergence differs depending on the
stripline dimensions. The convergence behaviour is due to the current components from
the edges of the stripline. The TRD analysis assumes a singularity behaviour based
on a finite thickness stripline. Collin [19] derives the minimum order of the singularity
required to model a metallic wedge of given internal angle. The actual order of the
singularity present will differ if there is significant interaction between the edge singu-
larities, as is the case for very thin or narrow conductors. The current calculation is
very sensitive to the exact order of the edge singularity and if the order is incorrect
more field expansion terms are required for convergence. It can be shown for very thin

strips that a singularity behaviour of | r |"% gives a significantly improved convergence.
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The impedance comparisons in the following sections use the power-voltage impedance

measure computed with twenty five field expansion terms.
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Figure 4.6: Percentage Difference between Cohn’s Impedance Calculation and Zpv []
and Zvi [o] Impedances for a Nominal 750 Stripline (------ ), 500 Stripline (----- ) and

300 Stripline (.......... )

4.4.2 Variation in Impedance with Strip Width

Figure 4.7 shows the variation in impedance with strip width calculated by the TRD
analysis and Wheeler’s analysis [23]. The percentage difference with respect to Wheeler’s
analysis is also shown. The results show a decrease in percentage difference as the width
increases as the impedance is dominated by the parallel plate capacitance, with the error

for wide strips within the 0.5% bound on Wheeler’s results.
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Figure 4.7: Impedance and Percentage Difference in Impedance [A] between TRD

Power-Voltage Impedance, (Zpv), (--—---- ); and Wheeler’s Analysis (.......... ) for a Vari-
ation in Strip Width for b=d, t=1.60mm and h=12.70mm
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4.4.3 Variation in Impedance with Strip Thickness

Figure 4.8 shows the variation in impedance and percentage difference between Wheeler’s
results and the TRD results for a range of strip thicknesses. The agreement is reasonable
across for a range of strip thicknesses up to t:h=0.8, beyond this value the percentage
difference rapidly rises as small absolute differences in the impedance produce very large

percentage differences between the methods.
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Figure 4.8: Impedance and Percentage Difference in Impedance [A] between TRD
Power-Voltage Impedance, (Zpv), (--—--—-- ); and Cohn’s Analysis (.......... ) for a Variation
in Strip Thickness for b=d, w=14.00mm and h=12.70mm

4.4.4 Variation in Impedance with Strip Position Asymmetry

Figure 4.9 shows the variation in impedance and percentage difference between Robrish’s
results [28] for a wide strip and the TRD results for a range of strip position asymmetries
(b:b+d). Robrish’s analysis is accurate to £2% for 0.2 < b :b+ d < 0.8 and t:h< 0.2.

The TRD results are within these limits for the range of values stated, however the
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differences increase relatively rapidly outside these bounds.
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Figure 4.9: Impedance and Percentage Difference in Impedance [A] between TRD
Power-Voltage Impedance, (Zpv), (—-- ); and Robrish’s Analysis (.......... ) for a Vari-
ation in Strip Position Asymmetry for t=1.60min, w=14.00mm and h=12.70mm

4.4.5 Comparison of the TRD Impedance Results with Commercial

Software

The TRD results are compared to values computed by Hewlett Packard’s HFSS (Version
A1.29) and EEsof Linecalc (Version 3.0) packages in Table 4.3. The values are quoted to
four significant figures in order to compare the relative accuracies of the three methods.
The agreement is excellent between the different techniques, with a maximum difference
0f 0.8%. The HFSS results are computed as a “ports only” 2D solution, and are shown

for both of the ports.
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Dimension (mm) Impedance (H
t b d h TRD HF'SS EEsof
Zpy Port 1 Port 2 Linecalc
1.600 5.550 5.550 14.08 50.18 50.19  50.26 50.15
1.600 5.520 5.580 14.08 50.18 49.77  49.83 50.15
1.600 5.000 6.100 14.08 50.05 49.74 49.73 49.77
1.600 5.550 5.550 28.00 30.08 30.07 30.11 30.07
1.600 5.550 5.550 42.00 21.44 2145 2146 21.44
0.800 5.950 5950 14.08 54.84 5473 5436 54.79
1.602 5.549 5549 14.08 50.17 50.06  50.16 50.14
2400 5.150 5.150 14.08 45.77 46.15 46.15 46.03

Table 4.3: Comparison of Impedances Calculated by the TRD Method and Commercial
Software Packages for a Range of Dimensions
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Figure 4.10: Normalised Attenuation Factor versus Strip Width (w:h) computed by
TRD( ) and Cohn’s Analysis (----- ) for Various Strip Thicknesses t:h=0.001, [O];
t:h=0.126, [*]; and t:h=0.250, [A]; b=d and h=12.70mm
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4.5 Attenuation Factor of Uniform Stripline

The normalised attenuation factors of uniform stripline have been computed using the
TRD method and compared with Cohn’s conformal mapping analysis for variations in
strip width, strip thickness and strip position asymmetry. In addition, the TRD results
are compared with Hewlett Packard’s HFSS software for a given structure, and also an

integral equation formulation [39].

4.5.1 Variation in Attenuation Factor with Strip Width

Figure 4.10 shows the variation in normalised attenuation factor with strip width for a
range of strip thicknesses. The graph shows that the difference between Cohn’s analysis
for the wide strips case (w:h> 0.40) and the TRD analysis decreases as the strips
become progressively thicker and the effects of the edge singularities decrease. The TRD
results also show a consistent trend of increasing attenuation factor with increasing strip
thickness, contrary to Cohn’s analysis for very narrow strips, but in agreement for very

wide strips.

4.5.2 Variation in Attenuation Factor with Strip Thickness

Figure 4.11 shows the variation in normalised attenuation factor with strip thickness
for various strip widths. The upper limit of Cohn’s analysis is t:h=0.25, with the
agreement between the two methods improving up to this point. The results also show
decreasing attenuation with increasing strip width. Cohn’s results also show an increase
in attenuation as the strips become narrow suggesting the power flow is decreasing
faster than the dissipation, as opposed to the TRD method which gives a monatonic
decrease. This is attributable to the TRD analysis accurately modelling the singularities
at the edge of the strip, around which the majority of the power flows. This suggests
that the power flow will not be as sensitive to a variation in strip dimensions as the
conformal mapping analysis which models the stripline as a co-axial cylinder of effective
diameter [18]. The TRD and conformal mapping results increase rapidly as the strip

becomes thicker, due to the increase in power dissipation in the ground planes.
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Figure 4.11: Normalised Attenuation Factor versus Strip Thickness (t:h) computed
by TRD( ) and Cohn’s Analysis (- - -) for Various Strip Widths w:h=0.50, [O];
w:h=1.102, [*]; and w:h=2.00, [A]; b=d, h=12.70mm.

4.5.3 Variation in Attenuation Factor with Strip Position Asymmetry

Figure 4.12 shows the variation in normalised attenuation factor with strip position
asymmetry for a range of strip thicknesses between t:h=0.001 and t:h=0.250. Cohn’s
values are only valid for the symmetrical position and again emphasise the comments
made in the previous sections. The TRD results showing a decrease in attenuation
factor as the asymmetry increases with a rapid rise for very large asymmetries as the

dissipation in the ground planes becomes significant.
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Figure 4.12: Normalised Attenuation Factor versus Strip Position Asymmetry (b:b+d)
computed by TRD( ) and Cohn’s Analysis (- - -) for Various Strip Thicknesses

t:h=0.001, [o];t:h=0.126, [*]; and t:h=0.250, [A]; w:h=1.102, h=12.70mm.

Method an (dBCl Irn2)
Cohn 0.065
TRD 0.059
HFSS (Port 1) 0.065
(Port 2) 0.068
EEsof Linecalc 0.064

a (dBm 1)

0.17
0.15
0.17
0.18
0.17

Table 4.4: Table of Normalised and Un-Normalised Attenuation Factor Computed by
the TRD analysis; Cohn’s Conformal Mapping analysis; EEsof’s Linecalc and Hewlett
Packard’s HFSS analysis for a Stripline of Resistivity p =

b=d=5.55mm, t=1.60mm at 3.00GHz
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4.5.4 Comparison of TRD Attenuation Factor Results with Commer-
cial Packages

The TRD results are compared in Table 4.4 with results obtained by conformal map-
ping [13], EEsof’s Linecalc Package (Version 3.0) and Hewlett Packard’s HFSS (Version
A1.29). The Linecalc value has a significant uncertainty since it is only quoted as an at-
tenuation factor to two decimal places. The results quoted for HFSS are the imaginary
component of the propagation constant computed at each of the ports for a full 3D so-
lution. The attenuation factors are in agreement to within +£0.02dB which corresponds

to an attenuation of between 3.5% and 4.2% of signal power.

4.5.5 Comparison of Attenuation Factor Calculation with An Integral

Equation Method

The TRD and conformal mapping results presented in the earlier sections use a small
perturbation method i.e. the loss is calculated from the field computed for a lossless
structure. Integral equation methods can be used to compute the complex propagation
constant of a stripline [39]. Results are presented for structures with materials and
dimensions that are normally found in printed circuit interconnections, and hence the

skin depth is of a comparable order to the stripline dimensions at lower frequencies.

Figure 4.13 shows the attenuation factor versus frequency for symmetrically posi-
tioned copper and molybdenum striplines. Figure 4.14 shows the attenuation factor for
an asymmetrical case. The TRD results are calculated assuming a frequency dependence
of \/f, and show excellent agreement with Kiang’s results for frequencies approaching
1GHz, where the ratio of the skin depth, s, to the strip thickness, t, is 85:t=0.083
for copper and §,:t=0.145 for molybdenum. This compares to ratios of 65:t=0.83 and
0s:t=1.45 respectively at 10MHz, with significant differences between the results. The
small perturbation methods (TRD and Cohn’s analysis [13]) will give a d.c value of

zero, whereas Kiang’s results converge to a finite attenuation.
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Figure 4.13: Attenuation Factor versus Frequency computed by TRD Analysis (—
), Kiang’s Integral Equation Method (-—-—-) and Cohn’s Conformal Mapping Method
[N ) for a Copper Stripline, (p = 17.2nfira), [*]; and a Molybdenum Stripline,
(/? —52.Infim), [o] for w= 100/im, b=d=287.5/im and t=25//m
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Figure 4.14: Attenuation Factor versus Frequency computed by TRD Analysis (------ )
and Kiang’s Integral Equation Method (-----) for a Copper Stripline, (p = 17.2nOm),
[]; and a Molybdenum Stripline, (p w= 52.1nflra), [o] for w=100/rm, b=387.5/xm,
d=187.5/rm and t=25/im
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4.6 Comparison of TRD Results with Measured Data

4.6.1 Method of Measurement

The cut-off frequencies and attenuation factor have been measured using a lightly cou-
pled probe resonator technique. This has been described for the Inset Dielectric Guide
structure [69]. The method involves exciting the test fixture shown in Figure 4.15 with
the rotatable probes either parallel or perpendicular to the strip to excite the even or
odd symmetric modes respectively (Figure 4.16(a) and (b)). The transmission through
the structure (.S*i) was measured using an HP8510B Network Analyser. A typical plot

is shown in Figure 4.17 for a nominal 5012 stripline.

a PROBE PROBE
SMA SMA
CONNECTOR E CONNECTOR

E
in
0o}

SEMI-RIGID SEMI-RIGID

CO-AX 220 mm CO-AX

Figure 4.15: Side View of Uniform Line Test Fixture used to take Measurements

4.6.2 Measured Data for the Higher Order Mode Cut-off Frequencies

The local maxima in Figure 4.17 correspond to an integral number of half guide wave-

lengths. The position of the localised maxima, fn are given by:



@ b) ©

Figure 4.16: Magnetic Field Excitation for Probes Placed Above the Strip; Perpendic-
ular to the Strip (a) and Parallel to the Strip (b); and Beside the Strip (c)
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Figure 4.17: Plot of Transmission through Test Fixture versus Frequency for Probe
Orientation (a) (-----) and Probe Orientation (b) (—-----) for a Nominal 50fi Stripline,
b=4.965mm, d=5.265mm t=1.64mm, w=14.00mm and L=220mm taken using an
HP8510B (801 Points and Averagings 100)
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The maxima for the fundamental mode of propagation are therefore spaced at 681

MHz intervals, and clearly identifiable in Figure 4.17(- - -). The second set of maxima

present in Figure 4.17 ( ) are due to the first higher order mode, and propagate ini-
tially with a low amplitude and high Q, with the amplitude increasing and Q decreasing

with frequency.

The determination of the cut-off frequency relies on the value of n in Equation 4.1
being determined for each of the maxima. The values are found by trial and error since
some of the maxima may be missing due to the overall frequency response of the test

fixture, or maxima coinciding with the maxima of the dominant mode.

The measured cut-off frequencies, the standard deviation of the measured values and
number of maxima measured, N, are shown in Table 4.5 for a range of striplines with

varying width.

Ratio w:h | Frequency | Std. Dev. | Std. Dev. | No. of Maxima

(GHz) (GHz) (%) N
0.604 10.149 0.014 0.14 21
1.179 7.165 0.007 0.08 11
1.769 5.374 0.041 0.75 16
2.358 4.239 0.041 0.94 12
2.948 3.581 0.052 1.45 7
3.538 3.051 0.029 0.92 7

Table 4.5: Measured Results for the First Higher Order Mode Cut-off Frequency for a
stripline with t=1.64mm, b=4.965mm, d=5.265mm, h=11.87mm

The measured data is compared to the TRD method; a finite thickness central con-
ductor conformal mapping analysis [11] and Hewlett Packard’s HP85180A High Fre-

quency Structure Simulator (HFSS) finite elements package.

Figures 4.18 and 4.19 illustrate that the TRD results are in excellent agreement with
the measured data for the first higher order mode cut-off frequency, agreeing to within
two percent and typically within one percent. The maximum errors coincide with the
largest percentage standard deviations suggesting that the error is due to measurement
inaccuracy as opposed to the TRD method. Oliner’s finite thickness central conductor
conformal mapping analysis gives an error of between three and eighteen percent, with a
decreasing error as the strip becomes wider. This is expected as the conformal mapping

approximation improves as the overall effect of the singularities decreases. Results are
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computed for two versions of the HFSS software for a 2D “ports only” solution with a
0.1% convergence. The HFSS Version A1.29 results have previously been published [70]
and illustrate differences of up to nine percent. The results were recalculated using
Version A2.06 which gives significantly improved results with differences comparable to
that of the TRD method. The HFSS results however do include one result that has a

four percent difference from the measured values.
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Figure 4.18: First Higher Order Mode Cut-Off Frequency versus Strip Width (w:h) for
Measured Data [V]; TRD Analysis, [*]; Oliner’s Finite Thickness Analysis, [0]; HFSS
Ver. A1.29, [go] and HFSS Ver. A2.06, [A] for b=4.965mm, d=5.265mm, t=1.64mm
and h=11.87mm

The repeatability of the method was also studied. The greatest variation was in the
transmission level between successive experiments since the probes have to be carefully
aligned to achieve a given level. The repeatability ofthe cut-off frequency measurements
however, is very good since they rely on the determination of well defined resonant fre-

quencies which are largely unaffected by the absolute level of the transmission provided

it is sufficiently low (< —25dB [69]).
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Figure 4.19: Percentage Variation between Measured Cut-Off Frequencies and Com-
puted Cut-Off Frequencies for the First Higher Order Mode Calculated by TRD Anal-
ysis, [¢]; Oliner’s Finite Thickness Analysis, [o]; HFSS Ver. A1.29, [O] and HFSS Ver.
A2.06, [A] for b=4.965mm, d=5.265mm, t=1.64mm and h=11.87mm

Method Details CPU Time Storage Platform
(Secs)
HFSS Ports Only Computation 660 23.6 MBytes | HP 715/50
Ver. A2.06 | 0.1 % Convergence
TRD 3 Basis Terms 37 64kBytes HP 710
25 Field Expansion Terms

Table 4.6: Comparison of Computational Requirements for the Calculation of the First
Two Higher Order Mode Cut-Off Frequencies for a Nominal 5082 Stripline



Table 4.6 compares the computational requirement to calculate the first two higher
order mode cut-off frequencies for the HFFSS Version A2.06 and TRD methods. Oliner’s
conformal mapping analysis can be evaluated as a closed form expression, hence is
excluded from the comparison. The timing results show that the TRD method calculates
the frequencies a factor of 25 times faster than the HFSS analysis after taking into
account the computing performance. In addition the storage requirement is a factor of

350 times less.

4.6.3 Measured Data for the Attenuation Factor

The attenuation factor for the stripline structure is calculated from the measured Q

factor, assuming the measured value is the unloaded Q of the structure.

A transmission line excited by one mode of propagation has a Q factor and attenu-

ation factor given by:

Q0 = cI.’Time Averaged Total Energy Stored in Structure (4.2)

Time Averaged Power Dissipation in Structure

1 Power Dissipated in Structure (4.3)
a = = .
2  Power Flow in Structure

Substituting Equation 4.3 into Equation 4.2:

1 Time Averaged Total Energy in Structure

@ = 2" Power Flow (4.4)
w
= Zav (4.5)

The group velocity is defined as the ratio of the power flow to the time averaged total

energy in the structure [68], hence it can be shown that:

1, (B\"!
= —k, | — 4.
Q 20 ° (ko> (4.6)
Recalling that the attenuation factors are expressed as normalised values in units of

dB’s per metre and rearranging in terms of the measured Q factor, Q,,:

ko (h !
a, = [20 logype] 50, (R—s> (kﬁo) (4.7)
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A further correction is introduced for the surface roughness of the material, A, [57]:
[20 logloe] ko h

2Qm [1 + 2Tan™! (1.4?-5)2] (k%)~ (4.8)

h /T\/e5 [20 logoe] f ( p >_1 (4.9)

Qm [1 + 2Tan™! <1.4?—s)2] p \ko

The average measured Q factors and the calculated normalised attenuation factors are
shown in Table 4.7 for the fundamental TEM mode of propagation with the standard
deviation of the measured and calculated values and the number of maxima measured.
The attenuation factors are normalised assuming a resistivity of brass of p = 90nQ m.
The results are compared with values computed by the TRD method and also a finite
thickness central conductor conformal mapping analysis [13] in Figure 4.20. The error

bars mark one standard deviation either side of the average measured Q factor.

Figure 4.20 illustrates that the TRD method is between four and fourteen percent
lower than Cohn’s results. This supports Cohn’s prediction of an overestimate of up to
ten percent from the conformal mapping analysis due to approximations in the evalua-

tion of the elliptic integrals.

The measurements were taken first with the probes placed above the stripline. The re-
sults for very thin strips shows reasonable agreement with the calculated values, however
the results for wider strips show a considerable error and the measurements appeared
to be sensitive to absorber placed at the edges of the test fixture. This is due to the
probes exciting the TM transverse propagating mode of the parallel plate, in addition
to the magnetic field surrounding the strip. The propagation of energy in the transverse
direction appears as an additional loss of the structure, hence the measured attenua-
tion factor is increased. The measurements were repeated using the coupled lines test
fixture which excites the fields from the side of the strip, as shown in Figure 4.16(c), as
opposed to exciting the fields from above the strip as shown in Figures 4.16(a) and (b).
The position of the probe at the side of the strip reduces the coupling to the transverse

propagating mode with the results in Figure 4.20 showing improved agreement.

The measurements exhibit a relatively large standard deviation which limits the
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Probe Above Strip Probe Beside Strip
Ratio

w:h Omeas  &meas dn Ja N Qmeas &meas Ja N

0.604 7142 2262 0.078 0.029 10 563.4 1438 0.123 0.062 12
1.179  769.1 2309 0.085 0.030 15 408.8 1132 0.146 0.066
1.769 4203 1393 0.114 0.031 7 650.7 123.6 0.076 0.030
2358 2550 491 0.160 0.043 5 4931 96.9 0.089 0.022
3
3

wn N O

2948 1794 432 0.183 0.018
3.538 131.6 325 0268 0.108

Table 4.7: Measured Results for the Q Factor and Normalised Attenuation Factor
for a probe placed above the strip and beside the strip for t=1.64mm, b=4.965mm,
d=5.265mm, h=11.87mm

4
3
0
LL
C
o
"o
t% 2
<
'l%
To
E 1
8:
0
1 2 3
Ratio w:h

Figure 4.20: Measured Values (------ )[p = 90nfira] for a probe above the strip [A] and
beside the strip [o], and Computed Values (- - -) of Normalised Attenuation Factor
Calculated by Cohn’s Analysis [o] and TRD Analysis [*] for h=11.87mm, t=1.64mm,
b=4.965mm and d=5.265mm

84



conclusions that can be drawn from the results. The variation in the measured values
and the agreement with theoretical results suggests that the assumptions of monomode

propagation and the measurement of unloaded Q factor may be flawed.

The analysis assumes that the only mode of propagation is the fundamental, and
that no other modes are excited. This has shown to be incorrect, for the probe placed
above the strip where power is radiated from the sides of the structure. The assumption
of monomode operation places another constraint on the standard deviation since the
monomode bandwidth of the stripline decreases with increasing width, therefore the

number of averaged Q factors will fall with increasing strip width (Table 4.7).

The analysis also assumes that the unloaded Q factor of the stripline is being mea-
sured, whereas in practice, the loaded Q is measured. This is less significant for struc-
tures with larger losses [60], but does present problems for air-filled stripline. The
loading on the cavity varies with frequency and hence gives rise to significant variations
in Q Factor. The additional loading can be attributed to losses in the probe mechanism
(connectors, semi-rigid coax and poor grounding) in addition to grounding of the other
fixture components. The frequency variation is due to variation in the coupling between

the probes and cavity modes as well as stray probe capacitance.

The repeatability of the attenuation factor measurements is poor compared to the
cut-off frequency measurements since the Q factor is altered by the repeatability of the
contact between the stripline and test cavity; and the contact between the probe and

the test fixture end pieces.

The standard deviation of the measured results could be improved by repeating the
measurements with a longer test fixture, hence reducing the frequency spacing of the
maxima and the increasing the number of points available for averaging. The proportion
of the loss due to the stripline should also be larger hence reducing the effect of the probe

connections.
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4.7 Conclusions

The Transverse Resonance Diffraction (TRD) results have been compared to purely
analytical and purely numerical techniques, and have demonstrated improved accuracy

with significantly lower computation times over the latter.

The conformal mapping analyses have traditionally been used to design stripline
networks. The results for the first higher order mode cut-off frequency illustrate that
the results computed using this technique are in significant error when compared to the

TRD method, measured results and numerical techniques.

The results for the impedance illustrate the wide range of dimensions that can be
analysed using the TRD technique, whereas the conformal mapping representations
are restricted to a limited range of dimensions. Within the range of dimensions the
TRD results are in agreement with the conformal mapping results to within one to two

percent, with comparable agreement with the HFSS results.

The attenuation factor results most clearly demonstrate the differences in the tech-
niques that include an accurate representation of the edge singularities and those that
do not. A comparison between the TRD and conformal mapping results illustrate im-
proved agreement as the striplines become thicker and the effect of the edge singularities
decreases. The use of measured data for the attenuation factor has demonstrated the
difficulties in measuring low values of attenuation factor where other circuit effects pro-

vide a significant contribution to the loss of the structure.
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Chapter 5

Numerical and Measured

Results for Coupled Striplines

5.1 Outline

The previous chapter has reported numerical and measured results for uniform striplines.
This section presents results for the convergence, higher order mode cut-off frequency,
mode impedance, coupling and attenuation factor of coupled stripline structures for typ-
ical dimensional ratios. The Transverse Resonance Diffraction (TRD) results are com-
pared with values computed using a number of methods, including existing CAD pack-
ages and Hewlett Packard’s HP85180A High Frequency Structure Simulator (HFSS).
The sensitivity of the design parameters to variations in the dimensional ratios is also
studied and the results for the higher order mode cut-off frequencies are verified by

measurement.

The ability of the coupled lines analysis to model striplines of arbitrary dimensions
enables the parameter behaviour to be studied for a large number of dimensional varia-
tions. The results however have only been computed for the four main dimensional ratios
of the structure: strip separation, (s:h); strip thickness, (t:h); strip position asymmetry,

(b1:b+d); and strip width asymmetry, (wl:wl4+w2).
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Figure 5.1: Stripline Dimensional Ratios varied in the Analysis of Coupled Striplines

The variations in the stripline dimensional ratios is shown in Figure 5.1 with the
arrows denoting increasing ratios. The strip separation is varied with striplines of equal
width and thickness placed symmetrically between the ground planes. The strip thick-
ness is varied assuming an entirely symmetrical structure i.e. striplines of equal width
and thickness placed symmetrically between the ground planes. The strip position asym-
metry measure varies the strip position asymmetry of two strips, identical in width and
thickness, simultaneously such that bl:b+d=d2:b+d i.e. the structure maintains ro-
tational symmetry about the (x,y) origin. The strip width asymmetry is varied with
the total width of the two, symmetrically placed, equal thickness striplines remaining
constant. These measures have been chosen since they reflect the dimensions that are
of interest to the stripline designer in terms of component design and sensitivity to
manufacturing tolerances. The measures also enable the TRD theory to be compared

with existing analyses.

5.2 Convergence of the Method

The convergence of the first and second higher order TE mode cut-off frequencies with
the number of field expansion terms, N, and the number of basis functions, P, are shown

in Tables 5.1 and 5.2 for a nominal 502 coupler.
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The results indicate that five field expansion terms and two basis function terms are
sufficient to compute the cut-off frequencies to within 1%. Twenty five field expansion
terms and two basis functions terms are needed to compute the cut-off frequencies to

within 0.1%. The results also verify that the coupled lines analysis is numerically stable.

The remainder of the results in this chapter are computed using three basis functions

and twenty five field expansion terms.

5.3 Higher Order Mode Cut-Off Frequencies of Coupled

Striplines

Results have been calculated for the variation in the first and second higher order
mode cut-off frequencies with strip separation, (s:h); strip thickness, (t:h); strip position

asymmetry, (bl:b+d); and strip width asymmetry, (wl:wl+w2).

The TRD results for strip separation are compared with results computed using
a finite element program which assumes an exponential field decay in the transverse
direction [41]. The TRD results for strip position asymmetry and strip width asymmetry
are compared to HFSS which models the stripline as a rectangular co-axial structure

(Appendix A).

The conformal mapping analyses of stripline structures assume TEM propagation,

hence information on the higher order mode cut-off frequencies cannot be computed.

5.3.1 Variation in Cut-Off Frequency with Strip Separation

Figure 5.2 shows the variation in computed cut-off frequencies with strip separation for
strips of equal width, and Figure 5.3 shows the same variation for striplines of unequal

widths.

It is instructive to consider the two limiting cases of zero separation of strips and
infinite separation, in order to intuitively verify the behaviour. In the case of zero

separation the first two higher order modes of the coupled striplines should correspond
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Cut-off Frequency (GHz)

N No. of Basis Functions, P

1 2 3 4 5 6
2 |6.8507 { 7.1293 | 7.1635
5 |6.7352 | 6.8546 | 6.8800 | 6.9134 | 6.9305 | 7.1327
10 | 6.7106 | 6.8114 | 6.8205 | 6.8298 | 6.8413 | 6.8489
25 | 6.6990 | 6.7917 | 6.7954 | 6.7971 | 6.7990 | 6.8010
50 | 6.6955 | 6.7850 | 6.7885 | 6.7892 | 6.7898 | 6.7904
75 | 6.6945 | 6.7844 | 6.7867 | 6.7872 | 6.7876 | 6.7879
100 | 6.6941 | 6.7837 | 6.7859 | 6.7863 | 6.7866 | 6.7868

200 | 6.6936 | 6.7828 | 6.7848 | 6.7852 | 6.7854 | 6.7855

Table 5.1: Convergence of the First Higher Order TE Mode Cut-off Frequency with
the Number of Field Expansion Terms, N, and the Number of Basis Functions, P, for a
Nominal 50Q Stripline (t=1.60mm, b=d=5.55mm, wl=w2=12.00mm, s=4.00mm and
h=12.70mm)

Cut-off Frequency (GHz)

N No. of Basis Functions, P

1 2 3 4 5 6
2 | 8.7136 | 8.8046 | 8.8168
5 | 8.4963 | 8.5395 | 8.5570 | 8.5792 | 8.5906 | 8.7369
10 | 8.4470 | 8.4941 | 8.4996 | 8.5074 | 8.5166 | 8.5223
25 | 8.4238 | 8.4742 | 8.4758 | 8.4773 | 8.4789 | 8.4806
50 | 8.4169 | 8.4684 | 8.4693 | 8.4699 | 8.4704 | 8.4708
75 | 8.4149 | 8.4669 | 8.4676 | 8.4680 | 8.4683 | 8.4685
100 | 8.4141 | 8.4662 | 8.4668 | 8.4672 | 8.4674 | 8.4675

200 | 8.4130 | 8.4652 | 8.4658 | 8.4661 | 8.4662 | 8.4663

Table 5.2: Convergence of the Second Higher Order TE Mode Cut-off Frequency with
the Number of Field Expansion Terms, N, and the Number of Basis Functions, P, for a
Nominal 509 Stripline (t=1.60mm, b=d=5.55mm, wl=w2=12.00mm, s=4.00mm and
h=12.70mm)
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to the first two higher order modes of a uniform stripline, of width wl+w2. When the
separation is increased towards infinity, i.e. zero coupling, the first two higher order
modes of the coupled stripline structure correspond to the first two higher order modes

of a structure comprising of two uniform striplines of widths wl and w2.
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Figure 5.2: Calculated Cut-Off Frequencies for the First [0] and Second [¢] Higher
Order Modes Computed by the TRD Method (------ ) and the Finite Element Method
(- ) versus Strip Separation (s:h) for b=d=5.55mm, t=1.60mm, w=12.70mm and
h=12.70mm

The TRD results are compared to results computed using the finite element method [41].
These results have been plotted directly from the paper, and are therefore subject to
a = 0.1 GHz inaccuracy. The results illustrate the behaviour described intuitively, and
are plotted on a log scale to highlight the convergence to the asymptotic limits that
have been calculated using the TRD uniform lines analysis. The results show good
agreement with differences of the order of 2 to 4 percent for Figure 5.2, after taking
into account the error bounds of the finite element results. The first higher order mode

results in Figure 5.3 show agreement of between -1 to 2 percent, and the second higher
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order mode results show a difference of between 2 and 4 percent.

The behaviour of the first and second higher order mode cut-off frequencies has been
shown to be governed by the coupling between the striplines, and will exhibit odd field
symmetry in the case of the first higher order mode, and even symmetry in the case of
the second higher order mode. The behaviour between the asymptotic limits can also be
described in terms of stripline structures with effective widths, which further suggests
that the first and second higher order modes represent the first odd and even higher

order modes, in a similar manner to the concept of even and odd mode impedances.
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Figure 5.3: Calculated Cut-Off Frequencies for the First [o] and Second [¢] Higher Order
Modes Computed by the TRD Method (------ ) and the Finite Element Method (------- )
versus Strip Separation (s:h) for b=d=5.55mm, t=1.60mm, w1=7.25mm, w2=23.50mm
and h=12.70mm

The finite element paper [41] does not state any timing information, hence the com-

promise between the computational time and accuracy cannot be investigated further.
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5.3.2 Variation in Cut-Off Frequency with Strip Thickness

The variation in the cut-off frequencies of the first two higher order modes with strip
thickness is shown in Figure 5.4. This variation has not been studied using other

techniques, therefore the behaviour is only verified intuitively.

Frequency / GHz

Ratio t:h

Figure 5.4: Calculated Cut-Off Frequencies for the First [o] and Second [e] Higher
Order Modes Computed by the TRD Method ( ) versus Strip Thickness (t:h) for
b=d=5.55mm, s=4.00mm, w=12.70mm and h=12.70mm

The behaviour of the first two higher order mode cut-off frequencies illustrate the
same trends as the first higher order mode cut-off frequency of a uniform line. The cut-
off frequencies appear relatively insensitive to moderate variations in strip thickness,
with a rapid rise in cut-off frequency when the striplines are in close proximity to
the ground planes, suggesting the dominant mode switches from a variation in the §
direction to a variation in the & direction. The identical trends for the first two higher
order modes, and the similarity to the plot for a uniform line, further supports the

intuitive approach of considering the modes as the modes of uniform striplines with
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effective widths, governed by the coupling between the striplines.

5.3.3 Variation in Cut-Off Frequency with Strip Position Asymmetry

The variation in the cut-off frequency of the first two higher order modes with strip
position asymmetry, (bl:b+d), is shown in Figure 5.5. The TRD results are compared
with results computed using Hewlett Packard’s HFSS package (Ver. A2.06), which
models the coupled stripline structure as a rectangular co-axial structure (Appendix A).

The HFSS results are computed using a two percent convergence criteria.

Ratio b1 :b1+d1

Figure 5.5: Calculated Cut-Off Frequencies for the First [o] and Second [¢] Higher Order
Modes Computed by the TRD Method (-———- ) and Mode Solutions Computed by HFSS
Ver. A2.06 (-—-—-- ) versus Strip Position Asymmetry (bl:b+d) for s=4.00mm, t=1.60m m,
w=12.00mm, and h= 12.70mm

The HFSS package calculates the modes of the defined port, hence a number of box
modes are present in the structure, these will appear at a regular frequency spacing and

in general will be independent of stripline position. The TRD results illustrate that the
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cut-off frequency decreases with increasing strip position asymmetry, suggesting that
as the striplines approach the ground planes the fields concentrate on one face, which
is equivalent to a stripline of a larger equivalent width placed symmetrically between

ground planes.

The HFSS mode solutions that do not correspond to the box modes appear to increase
with increasing strip position asymmetry, contrary to the TRD analysis, although the
cut-off frequencies for symmetrical strip placement agree. The behaviour of the HFSS
package is also intuitively correct, since if the asymmetry is increased until the strips
touch the ground planes, only the box modes of the structure will remain. For strips of
negligible thickness this is equivalent to computing the cut-off frequencies of a waveguide.
The trends are therefore a direct consequence of the excitation of the structure as a

waveguide type structure for HFSS and a stripline structure for the TRD method.

The number of modes computed by HFSS, in order to calculate the cut-off frequencies
of the striplines, is considerably greater than the TRD method. The total computational
time for the HFSS package is 1560 CPU seconds on an HP 715/50, as opposed to 37
CPU seconds on an HP 710 for the TRD method. This equates to a speed difference of

a factor of 64 after the performance of the machines are taken into account.

5.3.4 Variation in Cut-Off Frequency with Strip Width Asymmetry

The variation in the cut-off frequency of the first two higher order modes with strip

width asymmetry, (wl:wl4w2), is shown in Figure 5.6.

The TRD results are again compared with results computed using Hewlett Packard’s
HEFSS package. The HFSS package analysed the structure with a magnetic symmetry
plane placed along the y axis, hence the box mode solutions start at a considerably

higher frequency.

The TRD results are in excellent agreement with the HFSS results for the first higher
order mode, and the second higher order mode for moderate strip width asymmetry. The
remainder of the results show a similar trend, but with a significant error. The behaviour

of the first higher order mode of the coupled structure represents the first higher order
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mode of the widest stripline, hence decreases as the strip width asymmetry deviates
from the symmetrical position. The second higher order mode behaviour, for variations
around the symmetrical position, represents the first higher order mode of the narrower
ofthe two striplines hence increases as the asymmetry increases. The asymmetry reaches
a point where the second higher order mode of the widest strip propagates at a lower
frequency than the first higher order mode of the narrower stripline, hence the second
higher order mode cut-off frequency decreases with increasing asymmetry. The HFSS
results appear to model this trend, but maintain the first higher order mode of the
narrower stripline as the second preferential mode of propagation as opposed to the

second higher order mode of the widest stripline.

13

11

Ratio w1:w1+w2

Figure 5.6: Calculated Cut-Off Frequencies for the First [o] and Second [¢] Higher Order
Modes Computed by the TRD Method (------ ); Mode Solutions Computed by HFSS Ver.
A2.06 (-—--- ) versus Strip Width Asymmetry (wl:wl+w2) for s=4.00mm, t=1.60mm,
wl+w2=24.00mm, and h=12.70mm
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5.4 Impedance and Coupling of Coupled Striplines

The even and odd TEM mode impedances and coupling factors have been calculated
for variations in the strip separation, (s:h); strip thickness, (t:h); strip position asym-
metry (bl:b+d) and strip width asymmetry, (wl:wl4+w2). The analysis has again been
restricted to these cases since they correspond to the dimensions most commonly varied
in stripline design. The TRD results are compared to both conformal mapping and vari-
ational approaches [50, 52], in addition to results computed by EEsof’s Linecalc pack-
age [45]. A selected number of cases have also been analysed using Hewlett Packard’s
HFSS package (Appendix A), as a “ports only” 2D solution and also as a full 3D anal-

ysis.

5.4.1 Variation in Impedance and Coupling with Strip Separation

Figure 5.7 shows the computed even and odd mode impedances for two identical strips
for a variation in strip separation. The TRD results are compared with results com-
puted by Perlow’s modified conformal mapping analysis [50]; the EEsof Linecalc package
Ver.3.0, which is also based on a modified conformal mapping approach, and Hewlett
Packard’s HFSS package Ver. A2.06. The HFSS results are computed as a “ports only”

solution with a 0.1 percent convergence limit.

The even mode impedances show good agreement between the TRD, Linecalc and
HFSS methods for a wide range of separations, whereas the odd mode impedances show
significant variations. The odd mode impedances are very dependent on the interaction,
of the fields along the inside edges of the stripline, hence this effect has to be modelled
accurately. The HFSS and TRD methods show consistently lower values indicating a
stronger interaction between the striplines than predicted using the closed form expres-
sions, and is the result of the more accurate modelling of the edge singularities. The
impedances converge to the limiting case of uncoupled i.e uniform striplines, however
Perlow’s analysis appears to converge to a different value from that of the remaining

analyses.

The coupling factors are computed from the mode impedances using Equation 3.96,
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Figure 5.7: Even (Zoe [*]) and Odd (Zoo [0]) Mode Impedances versus Strip Separation
(s:h) Computed by TRD (------ ); HFSS Ver. A2.06 (-----); EEsof’s Linecalc Ver. 3.0

) and Perlow’s Analysis (- ¢-) for t=1.60mm, h=12.70mm, w= 14.00mm and b=d
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and are shown in Figure 5.8. The graph indicates that the TRD, HFSS and Perlow’s
analysis all show excellent agreement for weak coupling, however the difference increases
as the separation decreases. Perlow’s and the HFSS results also illustrate good agree-
ment, despite a significant difference in mode impedances. The EEsof Linecalc values
show a consistent underestimate of the coupling values when compared to the other

analyses for the entire range of coupling values.
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Figure 5.8: Coupling versus Strip Separation (s:h) Computed by TRD (------ ); HFSS
Ver. A2.06 (---- ); EEsof’s Linecalc Ver. 3.0 (.......... ) and Perlow’s Analysis (- ¢ -) for
t=1.60mm, h=12.70mm, w=14.00mm and b=d

The HFSS values were further verified by computing the full 3D field solution for a
number of small strip separations and computing the coupling from the S parameters
of the structure. These results are shown in Figure 5.9, where they are compared with
the other analyses. The 3D results for the 5th and 6th adaptive passes are shown to
demonstrate the convergence of the solution. The 3D HFSS results illustrate a more
linear variation in coupling than the other results, however with a smaller variation

in coupling with strip separation. A greater number of points would also have to be
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computed to enable further conclusions to be drawn.

The range of couplings achievable by altering the separation, and the sensitivity of

the coupling to the separation, suggests that this dimension has to be closely controlled

in a practical network.
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Figure 5.9: Coupling versus Strip Separation (s:h) Computed by TRD (—-- ); HESS Ver.
A2.06 (- ), 2D [O], 3D (5th Adaptive Pass [0]), 3D (6th Adaptive Pass [*]); EEsof’s
Linecalc Ver. 3.0 (......... ) and Perlow’s Analysis (- *-) for t=1.60mm, h=12.70mm,
w= 14.00mm and b=d

5.4.2 Variation in Impedance and Coupling with Strip Thickness

Figure 5.10 shows the computed even and odd mode impedances for two identical strips
with a variation in strip thickness, (t:h). The TRD results are compared with EEsof’s
Linecalc package Ver.3.0 [45] and Perlow’s modified conformal mapping analysis [50].
The mode impedance results show good agreement for the even order mode impedance

for moderate strip thicknesses, with again a larger variation in the odd order mode
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impedance between the methods.
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Figure 5.10: Even (Zoe [*]) and Odd (Zoo [0]) Mode Impedances versus Strip Thickness
(t:h) computed by TRD (------ ); Perlow’s Analysis (.......... ) and EEsof’s Linecalc Ver.
30 (- - 9 for b=d, h=12.70mm, s=4.00mm and w=12.00mm

Figure 5.11 shows the coupling computed from the mode impedances for the TRD
analysis, Perlow’s analysis and EEsof’s Linecalc. The results illustrate that the agree-
ment between Perlow’s analysis and the TRD analysis improves as the thickness of the
strip increases and the coupling capacitance is dominated by the inside faces of the
striplines, as opposed to the inside edge singularities. Both sets of results show a rapid
decrease in coupling as the thickness increases and the interaction between the top faces
of the striplines and the ground planes becomes stronger than the interaction between
the striplines. The EEsof Linecalc results show a consistently lower value of coupling,
and suggests a more linear variation in coupling than the other methods. The overesti-
mate of the coupling values computed by the TRD method for thin striplines may be
attributable to the singularity behaviour being modelled as a finite thickness stripline

i.e. with two |r |~3 singularities as opposed a single | r |« 2 singularity of an infinitely
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thin strip. This is an important effect since the coupling for very thin striplines will be

dominated by this edge effect.
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Figure 5.11: Coupling versus Strip Thickness (t:h) computed by TRD (------ ); Per-
low’s Analysis (.......... ) and EEsof’s Linecalc Ver. 3.0 (— — — for b=d, h=12.70mm,
$=4.00mm and w= 12.00mm

5.4.3 Variation in Impedance and Coupling with Strip Position Asym-

metry

The computed even and odd mode impedances for a variation in strip position asymme-
try, (bl:b-fd) are shown in Figure 5.12. The TRD results are compared to Das’ Green’s
function analysis [52], which finds a variational form for the quasi-static capacitances
of a system of infinitely thin conductors. The results are also compared to EEsof’s
Linecalc package which is based on a modified form of Shelton’s conformal mapping
approach [44]. The impedance results show the same overall trend, however the TRD

values are in closest agreement with EEsof’s values at the symmetric strip position and
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in closest agreement with Das’ analysis for large degrees of asymmetry. The even and
odd mode impedances computed by the TRD method also show the least sensitivity to

small changes in the strip position asymmetry than the other two methods.
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Figure 5.12: Even (Zoe [*]) and Odd (Zoo [o]) Mode Impedances versus Strip Position
Asymmetry (bl:b+d) computed by TRD (-—-- -); Das’ Analysis (......... ) and EEsof’s
Linecalc Ver. 3.0 (— — — for t=1.60mm, h=12.70mm, s=4.00mm, w=12.70mm and
bl=d2

The results for the coupling values computed from the mode impedances are shown
in Figure 5.13, and demonstrate the differences between the methods more clearly. The
graph illustrates the low sensitivity of the coupling computed by the TRD method to
variations in strip position asymmetry, which would be expected for finite thickness
striplines. The EEsof Linecalc results show significantly lower values of coupling com-
puted by the SOCLIN element [45] for asymmetrical strip position, and the SCLIN ele-
ment for symmetrical strip position. Das’analysis shows reasonable agreement with the
TRD method for large stripline position asymmetries, but significant errors for symmet-

rical strip placement. This is due to the analysis accurately modelling the capacitances
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between the top and bottom faces of the stripline, but inadequately modelling the edge
to edge coupling, resulting in a minimum coupling value for the symmetric strip posi-
tion. Coupling values were also computed using a full 3D HFSS analysis and are shown
for the fifth and sixth adaptive passes. The HFSS results indicate reasonable agreement
with the TRD results and again verify the underestimate of the EEsof results. The
sensitivity of the HFSS results to a change in the strip position asymmetry cannot be
quantified due to the relative difference between the fifth and six adaptive passes and

the low number of structures analysed.
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Figure 5.13: Coupling versus Strip Position Asymmetry (bl:b+d) computed by TRD
(----—-- ); Das’ Analysis (.......... ), EEsof Linecalc Ver. 3.0 (— — —) and HFSS (5th
Adaptive Pass [0]) and (6th Adaptive Pass [*]) for t=1.60mm, h=12.70mm, s=4.00mm,
w=12.70mm and bl=d2
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5.4.4 Variation in the Impedance and Coupling with Strip Width
Asymmetry

The computed II and C' mode impedances, which correspond to the even and odd mode
impedances for lines of unbalanced impedance, are shown in Table 5.3, and the coupling
values are plotted in Figure 5.14, for the TRD method and Perlow’s analysis [50]. Results
are also shown for a number of cases computed using a full 3D HFSS solution, with again
the fifth and six adaptive passes shown. The mode impedances illustrate a very small
variation across the range of strip width asymmetries, and again the even mode (II)
impedances are in closer agreement than the odd order (C') mode impedances. The
coupling values are therefore approximately constant across the range of asymmetries
with the TRD results showing only a very small variation. This demonstrates that the
coupling is dominated by the edge to edge interaction, and is largely independent of the
width of the strip, a result that is intuitively correct. The HFSS results appear to be
converging to a constant value across the range, although a larger number of iterations

would be required to verify this.

Method II Mode Impedance | C Mode Impedance
@) (@)
TRD 53.63 £ 0.07 47.17 £ 0.05
Perlow’s Analysis 54.77 48.94

Table 5.3: II and C Mode Impedances for a Variation in Strip Width Asymmetry be-
tween 0.05 < wl : wl + w2 < 0.95 for t=1.60mm, b=d, h=12.70mm, wl+w2=24.00mm
and s=4.00mm

5.4.5 Comparison of Computation Times between the TRD Method
and HFSS

The TRD results have been compared to conformal mapping closed form expressions [45,
50] and closed form expressions computed using other analytical techniques [52] and
HFSS. The closed form expressions can be easily programmed on personal computers,
and calculated virtually instantaneously. The comparison of timings for the TRD and

HFSS methods is shown in Table 5.4 for a typical point computed in Figure 5.9. The
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timings clearly illustrate the efficiency of the TRD method when compared to a 2D

“ports only” solution and a full 3D HFSS solution.
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Figure 5.14: Coupling versus Strip Width Asymmetry (wl:wl-|-w2) computed by TRD
(------ ); Perlow’s Analysis (.......... ), and HFSS (5th Adaptive Pass [0]) and (6th Adaptive
Pass [*]) for t=1.60mm, h=12.70mm, s=4.00mm, wl+w2=12.00mm and b=d

Method Details CPU Time Storage Platform
(Secs)
HFSS Ports Only Computation 330 343 MBytes HP 715/50
Ver. A2.06 0.1 % Convergence
3D Field Computation 2100 202 MBytes
TRD 3 Basis Terms 1.6 33kBytes HP 710

25 Field Expansion Terms

Table 5.4: Comparison of Computational Requirements for the Calculation of the Mode
Impedances and Coupling for a Typical Point in Figure 5.9
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5.5 Attenuation Factor of Coupled Striplines

The normalised attenuation factor of the even and odd modes have been calculated
for variations in strip separation, (s:h); strip thickness, (t:h); strip position asymmetry,
(b1:b+d); and strip width asymmetry, (wl:wl+4+w2). The results are compared with
Perlow’s modified conformal mapping approach [50] for all the variations except the strip
asymmetry case. EEsof’s Linecalc calculates the attenuation for particular elements,

however the values cannot be normalised to a suitable precision for comparison.

5.5.1 Variation in Normalised Attenuation Factor with Strip Separa-

tion

The computed normalised attenuation factors are shown in Figure 5.15 for a variation
in strip separation, (s:h), for TRD and Perlow’s analysis. Both sets of results show
similar trends, although Perlow’s results illustrate the problems of taking a piece-wise
approximation and curve fitting the capacitances. The non-monatonic behaviour is due
to the loss being calculated using an incremental inductance rule approach [15], where
the attenuation factor is proportional to the difference in inductance between the lossless
case, with the charge on the surface of the conductors, and a structure with the charge
at a distance of half the skin depth inside the conductors. The low attenuation factors
for the stripline structures ensure that any error in the piece-wise approximation of the

capacitance will significantly alter the calculated attenuation.

Perlow’s analysis also suggests a significantly higher attenuation factor for the odd
mode, and a greater rate of change of the even order mode attenuation factor for low
separations. This behaviour is a result of the attenuation factor being modelled as a
function of the change in overall inductance (capacitance) which changes rapidly with
separation. The TRD analysis however, calculates the dissipation and storage terms
from the fields and directly models the singularities on the edges of striplines, around
which the majority of the power flows. The change in strip interaction is therefore
smaller, for a given change in stripline separation, and only becomes significant for

small strip separations. The TRD results also converge to a constant value, whereas
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Perlow’s analysis converges to a steady decrease in attenuation factor with separation,

which is intuitively incorrect. At a separation ratio, s:h=2, the two methods differ by

twelve percent in normalised attenuation factor.
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Figure 5.15: Normalised Attenuation Factor of Even [*] and Odd [o] Modes versus Strip
Separation (s:h) computed by TRD (------ ) and Perlow’s Analysis (----- ); for t=1.60mm,
h=12.70mm, w=12.00mm and b=d

5.5.2 Variation in Normalised Attenuation Factor with Strip Thick-

ness

Figure 5.16 shows the normalised attenuation factor for a variation in strip thickness,
(t:h) computed using the TRD analysis and Perlow’s analysis [50]. Perlow’s results
again suffer from a discontinuity due to the curve fitting approach at a strip thickness,
(t:h?s0.55). The discontinuity also corresponds to the even order mode attenuation
becoming greater than the odd order mode attenuation. This “crossover” point appears

at significantly lower values of thickness for the TRD method. The “crossover” is due
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to the changing interaction between the striplines (odd order mode) and the interaction
between the striplines and the ground planes (even order mode). This can be again
attributed to the accurate modelling of the singularities. The difference between even
and odd mode attenuation factors is also greater for Perlow’s analysis below ‘“crossover”
than the TRD method, with the opposite occurring above “crossover”. Perlow’s analysis
also suggests a very high attenuation factor for narrow strips, contrary to the TRD
results. Perlow’s results suggest that the power flow decreases more sharply than the
dissipation, whereas, with the TRD method the decrease in thickness of the strip, brings

the edge singularities closer together, but the power flow is not significantly reduced.
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Figure 5.16: Normalised Attenuation Factor of Even [*] and Odd [o] Modes versus Strip
Thickness (t:h) computed by TRD (------ ) and Perlow’s Analysis (-----); for t=1.60mm,
h=12.70mm, w= 12.00mm and b=d
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5.5.3 Variation in Normalised Attenuation Factor with Strip Position

Asymmetry

The normalised attenuation factor calculated by the TRD method for a variation in
strip position asymmetry, (bl:b+d) is shown in Figure 5.17. The graph shows a clear
minimum at the symmetric position, with a rapid rise as the asymmetry increases and
the contribution from dissipation in the ground planes increases with a small increase
in power flow. The results again exhibit a crossover point between the even and odd

attenuation factors for the same reasons explained in the previous sections.
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Figure 5.17: Normalised Attenuation Factor of Even [*] and Odd [o] Modes versus Strip
Position Asymmetry (bl:b+d) computed by the TRD method (------ ) for t=1.60mm,
h=12.70mm, w=12.00mm and b=d
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5.5.4 Variation in Normalised Attenuation Factor with Strip Width
Asymmetry

The normalised attenuation factor results are tabulated in Table 5.5 for the range of strip
width asymmetries 0.1 < wl: wl 4+ w2 < 0.9. The results further verify the comments
made in the previous sections. Perlow’s results however do indicate a sharp increase in

attenuation for structures with extreme asymmetry.

Method Even Mode Normalised | Odd Mode Normalised
Attenuation Factor Attenuation Factor
TRD 0.06002 + 0.00005 0.05850 £+ 0.00005
Perlow’s Analysis 0.07135 0.06387

Table 5.5: Even and Odd Mode Normalised Attenuation Factors Mode for a Variation in
Strip Width Asymmetry, (wl:wl4+w2)between 0.1 < wl: wl + w2 < 0.9 for t=1.60mm,
b=d, h=12.70mm, wl+w2=24.00mm and s=4.00mm

5.6 Comparison of TRD Results with Measured Data

The cut-off frequencies for a number of pairs of coupled lines have been measured using
the same method employed for measuring the cut-off frequencies of the uniform lines.
The plan view of the coupled lines test fixture is shown in Figure 5.18. The variation in
the separation of the striplines was achieved by inserting different “T” pieces of variable
width into the structure. The possible modes of excitation of the strips is shown in
Figure 5.19(a) for a probe placed perpendicular to the striplines; and Figure 5.19(b) for
a probe placed parallel to the striplines.

A typical plot of the transmission through the structure for both probe orientations
is shown in Figure 5.20 for a separation ratio, sthx1. The plot illustrates some clear
differences from the uniform lines measurement (Figure 4.17). The overall transmission
level is higher, with a small difference between the probe orientations. This can be
attributed to the position of the probes in close proximity to the edges of the stripline,
which enables energy to be reflected between the strips, in addition to between the

ground planes. The different mode of excitation also gives rise to shift in frequency of
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Figure 5.18: Plan View of the Coupled Lines Test Fixture

(b)

Figure 5.19: Magnetic Field Excitation for the Coupled Lines Test Fixture with probe
placed perpendicular to the striplines (a), and parallel to the striplines (b)
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the fundamental mode of propagation. Probe orientation (b) was used for all of the
measurements, and the secondary set of maxima shown correspond to both the first
and second higher order mode resonances. This illustrates the increased complexity in
identifying the resonance number, n, (Equation 4.1) although the coupled lines structure

does allow modes to be distinguished despite their similar propagation constant.

-100
8 9 10 11 12 13

Frequency / GHz

Figure 5.20: Plot of Transmission through the Test Fixture versus Frequency for Probe
Orientation (a) (- - -) and Probe Orientation (b) (------ ) for Coupled Striplines with
w=7.00mm, b=5.10mm, d=5.10mm, t=1.64mm and s=11.15mm, L=220mm, using an
HP8510B Network Analyser (Averagings 100, 801 Points)

The measured and TRD results are directly compared to results computed by a
2D “ports only” solution computed using HFSS Ver A2.06 in Figure 5.21, the TRD
and HFSS results are also compared as percentage differences of the measured data in

Figure 5.22.

The graphs illustrate the excellent agreement between the TRD, HFSS and measured
results with the difference between the three values typically of the order of one percent.

The comparatively large error between the measured and computed results for a separa-



tion of s:h=0.738 suggests that the measured value is in error. The measured values are
also tabulated in Tables 5.6 and 5.7 with the standard deviation of the measurements.
The repeatability of the measurements is also good since the position of the resonant

peaks of'the first two higher order modes is largely independent of exact probe position.

13
N 11
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cr
®
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Ratio s:h

Figure 5.21: First [o] and Second [*] Higher Order Mode Cut-Off Frequencies versus
Strip Separation (s:h) for Measured Data (.......... ); TRD Analysis, (--—--—- ); HFSS Ver.
A2.06, (---—-- ) for b=5.10mm, d=5.10mm, t=1.64mm and h=11.84mm

5.7 Conclusions

The results presented in this Chapter have illustrated the ability of the TRD analysis
to compute the parameters of coupled stripline structures of entirely arbitrary dimen-
sions. Existing analytical techniques are restricted to variations in certain dimensions

over a limited range, and numerical analyses provide results at the expense of a large
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Ratio sth  Frequency Std. Dev. Std. Dev. No. of Maxima

(GHz) (GHz) (%) N
0.348 9.281 0.035 0.38 12
0.574 9.527 0.033 0.35 11
0.738 9.665 0.044 0.46 12
1.160 9.923 0.023 0.23 11
1.172 10.075 0.043 0.43 13
2.238 10.096 0.021 0.21 9
8.000 10.104 0.032 0.31 11

Table 5.6: Measured Results for the First Higher Order Mode Cut-off Frequency for
t=1.64mm, b=5.10mm, d=5.10mm, h=11.84mm

Ratio s:h

Figure 5.22: Percentage Variation between Measured Cut-Off Frequencies and Com-
puted Cut-Off Frequencies for the First [o] and Second [¢] Higher Order Modes Calcu-
lated by TRD Analysis, (------ ) and HFSS Ver. A2.06 (----), for b=5.10mm, d=5.10mm,
t=1.64mm and h= 11.84mm
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computation time.

The complexity of the coupled lines structure compared with the uniform structure
has meant that the monomode bandwidth of the structure has had to be computed using
purely numerical methods. The TRD method provides a significantly faster means of

calculation, without compromising the accuracy of the results.

The results for the coupling between the striplines has indicated that the TRD
method predicts stronger coupling than the conformal mapping technique and HFSS
2D “ports only” solution due to the strong effect of the edge singularities. The results
also illustrate that the comparatively small differences between the mode impedances
can lead to large differences in the coupling values. The results also highlight the prob-
lems of using piece-wise approximations for accurate conformal mapping results, since

this leads to non monatonic variations in the attenuation factor.

Ratio s:h | Frequency | Std. Dev. | Std. Dev. | No. of Maxima

(GHz) (GHz) (%) N

0.348

0.574 10.360 0.033 0.32 7

0.738 10.856 0.030 0.28 6

1.160 10.406 0.018 0.18 6

1.172 10.281 0.036 0.35 11

2.238 10.204 0.031 0.30 10

8.000 10.104 0.032 0.31 11

Table 5.7: Measured Results for the Second Higher Order Mode Cut-off Frequency for
t=1.64mm, b=5.10mm, d=5.10mm, h=11.84mm
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Chapter 6

Analysis of Stripline

Discontinuities

6.1 Outline

The analysis of uniform and coupled stripline structures has been described in Chapter 3,
and the theory verified in Chapters 4 and 5 by measurement and comparison with other
analysis techniques. This section presents an extension to the TRD analysis to analyse
stripline discontinuities of the type shown in Figure 6.1. The analysis is applicable to a
number of types of discontinuity, but the case of a uniform to coupled lines transition
is specifically treated. The analysis is carried out for stripline discontinuities with an
infinitely thin central conductor, as is commonly found in MMIC’s. Expressions for
finite thickness discontinuities can be evaluated provided singularity orders for three

dimensional corners in space can be found.

6.2 Formulation of the Discontinuity Problem

The stripline discontinuities are modelled using a technique introduced by Rozzi [64] for

a dielectric waveguide. The methodology is identical, but the analysis is complicated by
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Region A Region B

REGION | REGION I REGION REGION IV REGION V

+a - b)

(b) I

Figure 6.1: Plan View (a) and Cross Section View (b) of the General Form of the
Stripline Discontinuity Analysed
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the form of the cross-sectional fields in the stripline structure, and the expansion of the
discontinuity fields to take into account the singularities on the strip. The analysis will
be shown for the TE modes present in the structure with corresponding expressions for

the TM modes derived later.

Recalling the expressions for the fields in terms of the vector potentials (Equa-
tions 3.24 and 3.25), and denoting the partial derivative by a primed quantity, the
# directed electric and § directed magnetic TE fields in the cross section of the discon-

tinuity can be written for mode, k:

e.tk(xaya Z) = Aﬁ’B Z A Vokn (ﬁh(n’x) ¢;1(n7y) (]5(2) (6'1)
n=0
hyk(za Y, Z) = —JYoi ezk(fﬂ,y,z) (62)

Rewriting the & directed electric field as a summation of amplitude terms, Uk, , and field

shape functions, ug(n,z,y), and omitting the 2 directed dependency for simplification:

n=oo

esk(z,y) = Af’B Z Ukn uk(n,2,y) (6.3)
n=0
The orthonormalisation coefficient for the kth mode discontinuity field, Af’B, is found

from the expression:

2 n=00 2
[A;j:B] /G Sects [Z Ukn Uk(n, z, Z/)} dQ =1 (64)
rossSection

n=0

The evaluation of this integral results in an orthonormalisation coefficient which is a
function of the mode propagation constant, in addition to the stripline dimensions. In
practice, the above integral is evaluated using a piece-wise description of the fields in
the sixteen sub-regions shown in Figure 3.1. The derivation of the orthonormalisation

coefficient is shown in Appendix E.
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6.2.1 Network Representation

The discontinuity is analysed as a K port device shown in Figure 6.2, where the number

of ports is given by the total number of modes propagating in Regions A and B:
K=Ks+ Kp (6.5)

The scattering parameters of the device are calculated using a modified form of the
mode matching method, where the fields at the discontinuity plane (z=0) are described
in terms of K incident waves with amplitudes Ax; and K reflected waves with amplitudes,

By.

Mode . : Mode
ZLKA+1 KA"‘1

ZLKA+2 KA+2

ZL Kat+3 KA+3

2. K

Region A Region B

Figure 6.2: Equivalent Network Representation of the Stripline Discontinuity

The reflection and incident amplitude terms are related through the elements of the

scattering matrix of the discontinuity.

[B] = [S][4] (6-6)
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The matrices are all of order K X K, and if the discontinuity is excited with the Ith

mode of the structure, the incident amplitudes, Ak, are given by the Ith row of [A],

1 k=1
Ap =6 = (6.7)
0 k#1

which is defined as:

The Ith column of the scattering parameter matrix, [S] is then given by the resulting

reflected amplitudes, By.

6.2.2 Derivation of Incident and Reflected Waves at the Discontinuity

The fields at the discontinuity plane can be written satisfying the field continuity con-

ditions:
k=K 4 n=o00
e:c(z,y) = Z (Ak + Bk) Z Ukn ’U,k(’n,.’B, y):l (68)
k 1 n=0
= Z (Ak + Bk) Z Ukn uk(n, x,y)] (6.9)
k=K 4+1 n=0
k=K 4
hy(:l:,y) = Z Yok Ak — Bk) Z Ukn uk(n T y):l (6.10)
n=0
k_K n=00
= Z - ok('—Ak + Bk) Z Ukn Uk(n,il?, y):| (6‘11)
k=K s+1 n=0

Rewriting the expression for the § directed magnetic field, h, (Equation 6.10):

k=K 4 n=oco k=K,
hy(zay)+ Z YokAk l:z Ukn uk(nw’ﬂ,y)} Z YokBk

k=1 n=0

Z Ukn, ux(n, z y)]

(6.12)

Integrating to form an inner product with the field shape function, normalised by the

mode impedance, Y,:

+o00 400 =00
/ / hy(z,y) [Z Ukn ui(n, w,y)] dzdy
k= KA too  ptoo oo .
/ / Ag Z Ukn ulg(n,x,y):' dzdy [Z Ukn uk(n,x,y)]

n=0 n=0

ok
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k=K 4 +o0 +0o0 n=00 =00
= Z / / k Z Ukn ’U,k(n, Jl?',y) dl'dy Z Ukn Uk(n, z, y)
k=1 -0 —o° n=0 n=0

(6.13)

Simplifying the above expression in terms of the incident and reflected amplitudes for

each mode, k:

By = A +

1 400 400 n=00
Yok /_oo /_oo hy(2,9) [Z Ukn ”k("s%y)] dzdy  (6.14)

n=0

A similar approach can be employed to simplify Equation 6.11, and both the resulting

equations can be summarised as:

+oo  ptoo n=0
By = Ay— & / hy(2,9) | 3 Un uk(n,2,9)| dody  (6.15)
n=0
where:
-1 1<k< Ky
Sk = (6.16)
+1 Kis<k<K

6.2.3 Derivation of the Green’s Function Impedance Operator

Equating the two expressions for the & directed electric field , e;, given in Equations 6.8

and 6.9:
k=K n=00
> —sk(Ak+Bi) | ) Uk uk(n, @, y’)] =0 (6.17)
k=1 n=0

Substituting the expression for By (Equation 6.15) into Equation 6.17 and simplifying:

k=K
ZQSkAk

=K

Z Ukn uk(n z ay):l
: /+oo /+°° hy(z,y) [n—io Ukn uk(n, ’w“,y)} dzdy [n_z Ukn uk(n, ' y’)}

n=0

(6.18)
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Hence rewriting the right hand side as a Green’s Function Impedance Operator linking

the & directed electric field to the § directed magnetic field:

k=K n=o00 400 400
Z Sk Ak Z Ukn ug(n, 2, y')] = / / Z(z,2',y,y') hy(z,y) dady  (6.19)
k=1 n=0 - -
where:
1 k=K 1 n=00 n=00
! AN b4 T PO !
Z(z,2',y,y) = 3 ; ﬁ 2 Ukn, uk(n,x,y)} [; Ukn uk(n, 2’y )] (6.20)

The § directed magnetic field can be written as a linear sum of the contributions from
each of the modes excited independently, which correspond to the excitation matrix,

[A] (Equation 6.6):

=K
hy(l‘, y) = Z Al hyl(z, 3/) (6.21)
=1

Hence, rewriting Equation 6.19 using Equation 6.21, for an incident excitation of

mode, I, noting that A; = 1:

n=00 +oo  p+o0
s {E Uin ul(n,z',y')} = / / Z(z,2',y,y") hy(z,y) dzdy (6.22)
n=0 —0Q —00

6.2.4 Discretisation of Fields

Substituting the incident excitation conditions into Equation 6.15 and recalling the

relationship between the reflected amplitudes and the S parameters:

+oo  ptoo n=%
Sk’[ = 5k,1 - ;kk / / h'yl(x,y) [Z Ukn 'U,k(n,dﬁ,y):' dxdy (623)

n=0

The above equation therefore expresses the S parameters of the discontinuity in terms
of an inner product between the field shapes of the Regions A and B and the unknown

magnetic field distribution for mode [.

The fields at the interface can be expressed in terms of the field shapes in Regions A or
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B, however a more efficient method is to expand the unknown fields at the discontinuity
plane in terms of functions that take into account the singularity behaviour of the

structure. Writing the field shape as a weighted summation of amplitude terms, Xp,

and basis functions, f(z,y):

pP=0o0

Z Ukn uk(n,z, y) = Xpk fp(xa y) (6'24)
n=0 0

p=

The amplitude terms can be expressed in a standard manner as:
n=00 +o00  ptoo
Xpk = D Ukn / / fo(z,9) ui(n, z,y) dzdy (6.25)
n=0 —oo —00

The unknown § directed magnetic field can be similarly written as a weighted summation

of basis functions:

p=00
hyl(x’y) = Zle fp(way) (626)
=0
+oo +o00
B = [ [ b hate,w) dady (6.27)

Substituting the expression for the field shape function into Equation 6.23

p=0o0 +oo  ptoo
S
Sk = Sk~ Ykk > Xk / / fo(@,y) hy(z,y) dedy (6.28)
o p=0 o0 —oo

Hence the S parameters can be expressed as:

p=00
— Sk
Sk = bk — Y, Z Xk Hy (6.29)

p=0

The Green’s Function Impedance Operator (Equation 6.20) can also be written using
the basis function expressions for the discontinuity fields:
P=00 g=00

Z(z, 2", 9,9) = D Y Zpg fo(@,9) fola's¥) (6.30)

p=0 ¢=0
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where the impedance amplitude terms, Z,, are defined by the inner product:

too too ! ! / ! /
qu = / / Z((E,(IJ 7y7y) fp(z,y) fq(“" 5y) diL‘dy (631)
—00 —00
1 k=K
=3 > Zok Xpk Xk (6.32)
k=1

Substituting the above results into Equation 6.22:

p=00 +oo 400 P=00 =00
0 X h@w) = [ [N S Ty hala) fy(esy) S’y dedy

p=0 % p=0 ¢=0

(6.33)

p=00 g=00

p=00
St Z Xt fp(z,y) = E Z Zpg Hy fo(',y') (6.34)

p=0 p=0 ¢=0

6.2.5 Matrix Representation of the S Parameter Expressions

The infinite limits of the summations in the previous expressions are truncated to finite
values to enable the equations to be represented using matrices. Equation 6.29 can be
rewritten and simplified assuming that the maximum values of p and q are equal to P,

yielding a square matrix:

(S = [8] = skl Zot][ X&) [H)] (6.35)
=[] — sk[Zot)[ X" (2) [ 2][H]] (6.36)

Expressing Equation 6.34 in a similar manner, and evaluating the set of S parameters

for the Ith column of the overall S matrix,
si[Xi] = [Z][H]] (6.37)
Hence substituting Equation 6.37 into the S parameter expression:
[51] = [61) — sksil Zor)[Xa]T[2) 71 [ X)] (6.38)

where the matrices are defined:
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[Si] is a matrix order K x 1, element S

[6]  is a matrix order K X 1, element dy;

[Z.k] 1is a diagonal matrix, order K x K, element Z;;
such that the diagonal elements Z;; = Z,;

[Xk] is a matrix order PxK, element X,

[Z]  is a matrix order PXP, element Z,,

[X;] is a matrix order Px1, element X;

The normalised scattering matrix is defined for unity resistance terminations, whereas
the problem is defined by assuming each mode is terminated by its mode impedance.

The S parameters have to be related to the mode impedances in the structure, [Z.]-

Mode | Mode k

Zg Zo| Su Zok Zok

Figure 6.3: Equivalent Circuit of Impedance Transformers Connected at each of the
outputs of the network

These conditions are met by inserting an ideal transformer at the ports of the network
representation such that the wave impedance terminations are transformed to mode
impedances. There is also the additional condition of reciprocity that has to be main-
tained between the modes, hence, defining the normalised S parameter matrix, with
unity terminations, m, the S parameter matrix of the discontinuity for TE modes is

given as:

51 = (277 S [Za]? (6.39)
[S] = [Zek)? [Zok] ™2 S [Zol)? [Za)

N

(6.40)
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Summarising the overall equation for the S parameters of the discontinuity:

[S1) = (8] = skst [Zea)? [Zok] ™2 [Zal)? [2a)77 (X7 (270 (X)) (6.41)

6.2.6 Formulation of the Discontinuity Problem for TM Modes

A similar expression for the S parameter terms for the TM modes can also be derived.
The theory for these modes is formulated in terms of the § directed electric field and

the & directed magnetic field.

In the case of the uniform and coupled lines the behaviour of the edge singularities
was identical for both the £ and § directed electric fields, with the fields related through
the vector potential expressions. The singularity expressions for the discontinuity fields
differ between the # and ¢ directed electric fields, hence different functions are used
to discretise the fields. Identical matrix expressions for the S parameters are therefore

derived with the evaluation of those terms differing between the TE and TM modes.

6.3 Evaluation of the S Parameter Expressions

The previous section has derived a compact expression for the S parameters in terms of

matrices for an arbitrary stripline discontinuity of the form shown in Figure 6.1.

This section outlines the general calculation methodology for computing the S pa-
rameters of a discontinuity. The choice of basis functions is discussed for a number of
types of discontinuity, and the inner product terms that are required to compute the
amplitude matrices, [X] are derived for the TE modes, however TM mode expressions

can be found in a similar manner.
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6.3.1 General Calculation Methodology

The steps in the calculation of the S parameters expression are shown in Figure 6.4.
The operations marked e represent calculations carried out to characterise uniform and
coupled stripline structures, whereas operations marked O represent calculations carried

out specifically to compute the S parameters of the discontinuity.

Figure 6.4 illustrates that a prerequisite for this type of analysis is an accurate and
efficient means of calculating the propagation constants, mode impedances and field

amplitude terms of the stripline structures.

The computational efficiency of the discontinuity analysis is governed by the number
of modes, K, required to obtain convergence of the S parameters in addition to the
number of field expansion terms, N, and the number of basis functions, P, required to
discretise the fields in the cross-section of the discontinuity. In general, the number of
modes and field expansion terms required is set by the structure being analysed. An
improvement in computational efficiency can therefore be achieved by a suitable choice

of the basis functions for the discontinuity fields.

6.3.2 Choice of Basis Functions

The appropriate choice of two-dimensional basis functions is important to ensure an
efficient discretisation of the unknown fields. This minimises the order of the impedance
matrix to be inverted, and hence the time required to carry out this operation which is

proportional to the cube of the matrix order [66].

The singularity behaviour of the uniform line step in width, and the uniform to
coupled lines transition (Figure 6.5) are shown in Figures 6.6 and 6.7 respectively, with
the basis functions used to discretise the unknown fields tabulated in Tables 6.1 and 6.2

respectively.

The values quoted to one decimal place are minimum orders for the singularity,
derived by Collin [19], whereas the values quoted to six decimal places were computed

by Marchetti [71] for 2D planar metallisations. The weight functions, range and validity
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Figure 6.4: Calculation Methodology for the Computation of the S Parameters of a
Stripline Discontinuity
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Table 6.1: Basis Functions used to Model the Z Directed Electric Field Singularities at
the Plane of the Uniform Lines Step in Width Discontinuity Calculated by Marchetti

Range Singularity Order

z y
—00 <y < —wpy | v=-0.703416 | v = —0.703416
—wpy <y < —wyy | v=-0.703416 | v = —0.203416
v = —0.185345 | n = +0.314655
—wpy <Y< wyy | v=-0.185345 | v = —0.185345
wp2 < Y < WB2 v =-0.185345 | v = +0.314655
v =-0.703416 | n = —0.203416
w2 < Y < 400 v=-0.703416 | v = —0.703416

v = —0.185345(1)

Range Singularity Order
& y
—00 < Y < —W4t v = —0.5(%) v = —0.5(%)
—wa1 <y < —(wa1 —wp1) v = —0.5(%) v = —0.5(x%)

n = —0.185345(1)

—(wa1 —wp1) <y < (w42 — wBy)

v = —0.185345(1)

v = +0.314655(})

(waz — wp2) < Y < Wwa2

v = —0.185345(1)
v = —0.5(x)

v = —0.185345(1)
n = —0.5(x)

Wwhe < Y < +00

v =—0.5(x)

v =—0.5(%)

Table 6.2: Basis Functions used to Model the Z Directed Electric Field Singularities at
the Plane of the Uniform Line to Coupled Line Transition Calculated by Marchetti ({)

and Collin (*)

Polynomial Weight Range Validity
Function

Chebyshev | To(z) | (1-22)"2 —-l<z<+1

Gegenbauer | C¥(z) | (1— x2)”‘% -l<z<+l|v>-3

Jacobi PoMz) | Q1-2)(1+2)" | -1<z<+1|v>-1,p>-1

Laguerre Lv(z) | e ®z” 0<z<+00 |v>-1

Table 6.3: Basis Functions used to Model the Singularities Present in the Fields in the

Discontinuity Plane of Various Stripline Structures
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Figure 6.5: Uniform Line Step in Width Discontinuity (a) and Uniform to Coupled
Lines Discontinuity (b)
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Figure 6.6: x Directed Singularity Behaviour (a) and the y Directed Singularity Be-
haviour (b) of the x Directed Electric Field at the Discontinuity Plane of a Uniform
Lines Step in Width Discontinuity
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WA -(WAI-WBIl) +(WA-WB2) +W*

(@)

WA -(WAI-WBIl) +(WA-WB) +wA

(b)

Figure 6.7: £ Directed Singularity Behaviour (a) and the y Directed Singularity Be-
haviour (b) of the x Directed Electric Field at the Discontinuity Plane of a Uniform to
Coupled Lines Transition
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of the functions that are used to model the singularities are summarised in Table 6.3 [72].

Recalling the form of the basis functions used to discretise the unknown field (Equa-

tion 6.24):
n=00 p=0o0
z Ukn ’QL]C(’IZ,CL', y) = z ka fp(za y) (642)
n=0 p=0

The basis function, f,(z,y) is assumed separable in the & and § directions, such that:

fo(z,y) = fp(z) fo(y) (6.43)

and where in general:

fp(z) =4 W(z,v, 77) F(z,v, 77) (6'44)
with a similar expression for the ¢ directed variation.

It should be noted that the orders of the singularities strictly only apply at the
singularity points. The results for the convergence of the uniform line impedances
demonstrated that as the dimensions of the striplines were changed the singularity orders
also changed. This is consistent with the minimum order of the singularity changing
from —3% to —3 [19]. The singularity orders quoted in Tables 6.1 and 6.2 [71] to six
significant figures assume isolated singularities. The effective order of the singularities
will change if any interaction occurs between the edge singularities. In general, two

significant figures is a more practical precision for this analysis.

6.3.3 Calculation of Amplitude Matrices

Recalling the expressions for the terms of the amplitude matrix, [X]:

n=% +oc  ptoo
ka = Z U/cn / fp(x’y) Uk(n,.'ll, y) d$dy (645)

n=0

The above expression can be rewritten in terms of an inner product, P,,, defined between

the basis functions, f,(z,y) and the field shape functions, ux(z,y):

Xpk =Y UknPpn (6.46)

n=0
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The % and § variations of the basis and field shape functions are separated, resulting in

% and § directed inner product contributions:

Ppn

[ )50 do [ watn,1)5) d (6.47)
(6.48)

Pon(z) Pony)

The expressions for the field shape functions uk(n,z,y) of the stripline structure are
defined as a piece-wise approximation across a number of sub-regions which are defined
in Figure 3.1 for a pair of coupled striplines. The uniform line is also represented as
a pair of coupled lines with zero separation, hence this structure is also divided into
sixteen sub-regions, with Region III having zero width. This assumption can be verified
by the consistent behaviour of the cut-off frequencies with strip separation as shown
in Chapter 5, Figure 5.2. The figure illustrates that as the coupled lines separation
is reduced the cut-off frequencies tend towards those of a uniform line. The inner
product integrals are therefore given by a summation of contributions over the sixteen

sub-regions.

A number of inner product terms have been derived in Appendix E between general

field shape functions and Laguerre, Chebyshev, Gegenbauer and Jacobi polynomials.

The calculation of the amplitude matrix terms is best illustrated using an example
of a specific stripline discontinuity. The uniform to coupled lines transition is shown in
Figure 6.5. The amplitude matrix terms for this structure can be written using notation

introduced in the uniform and coupled lines analysis for TE modes:

1=16 n=00 AR V]Z R R

i=1 n=0 Jw'u

The inner product terms can then be derived for the five regions and sixteen sub-regions

as shown in the following sections.

Regions I and V

The field components are identical in Regions A and B for Regions I and V since the

outer dimensions for the uniform and coupled striplines are equal.
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The & directed inner product for > (£ —b;) is given by the integral of the & directed
field and Chebyshev polynomials and can be written as

P
Ppn(Z) = E_b‘Ap 4
2 Tt

B\ 2 A
(-3 -3 rRf. h
1 ( b ) ] T, ( b ) Cos k;, (m 2) dz (6.50)

The above integral can then be evaluated (Appendix E) and a similar result derived for
Tz < (% - bi):

[

pn(e)

Agp (1) [g] Jop(bikE)

Agp (-1)P [g] Jop(dik2) T < (% - b,-)

The orthonormalisation coefficient is derived in Appendix E

The § directed component is given by the inner product of the fields with Laguerre
polynomials with the integral for sub-region, R;, written as

0 Syt war)” Y+ waz
Bny = /wAP< v ) Exp [_< v >}
—WA2
+ w .
Ly (y 7 “) Exp [—jky(y + waz)]

(6.53)
The above integral is evaluated in general in Appendix E as
T(v+2p+1) (‘I’kg}fi)zp
= —1)? .
Ppn(y) AZP\I’( ) (213)! (1 + jkf;)u+2p+1 (6 54)

The value of the singularity term, v, is defined in Table 6.2 as v = —0.5.

The orthonormalisation coefficient is shown in Appendix E, and the Laguerre Poly-

nomial convergence constant, ¥, is found by minimising the error function, fe,, [73]
k=K n=N

=P .
” dﬂu+2 +DP (k)2
ferr = kz:l nz——:l 4[le]2 E p ((

2

(6.55)
This constant is calculated using an interval halving technique similar to the one used to

determine the propagation constant of uniform and coupled line structures (Chapter 3)
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Regions II to IV

In Regions I and V, the outer dimensions for Regions A and B are equal hence the
boundaries of the sub-regions coincide across the discontinuity plane, however in Regions
IT to IV the boundaries of the sub-regions do not coincide. This leads to a more complex

form for the expressions for the inner products.

The & directed inner product is given by the integral for the regions z > (% —b;):

& h 'l"—lE h
2 Loy r—2 ,[T— 3 h i
Pon(z) = - Apbir [1 - ( b 2>J C; ( b 2) Cos kft (x - 5) dx (6.56)

The above integral can be solved using results derived in Appendix E:

) m217*T'(2v + p) L N—v :
Ponzy = 3% 4p [ PIL(v) ](kf'bi) Jp+z/(k§'bi)

Cos kz*[(§ — bi) — 3]
Cos kf‘%

J (6.57)

Recalling that the field shapes should exhibit even symmetry, the variable p is replaced
with 2p, with a corresponding expression for z < (% — b;) found by substituting d; for
b;:

m217T(2v + 2p) ] R .
(2p)(!I‘(1/) ) (kalv%'bi) Jap o (kFib;) [

Cos kf‘b;

Cos kﬁ'%]
(6.58)

Cos kFid;

Cos kf‘ %—]
(6.59)

Pz = AZP("I)p[

727" T(2v + 2p)] [, R, , \-v Ri ;.
@) | 4 Sanlid) [

Aap(-17 |

The value of the singularity order, v, is given in Table 6.2 for the sub-regions as:

v =—0.185345 Rs to Rj2

v=-0.5 otherwise

The § directed inner products are defined by the following integrals for Regions II,
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IIT and IV respectively:

_(wAl—’wBl) Ww v+n + (w + EE_;L) v
II _ B1 Y Al p)
Ponw) = /_ Ap (T) [1 - ( wp )]

WAL 2
[1 + (y-|- (war + 2231))]” pvin (y+ (war + ﬂ125“-))

lExp [—5kF:(y = ¥)] +p Exp [k (y — ¥)]
cH
P

WA2—WE2 2u-1 / v=3 y
O e Cl (96 RS0
P (y) _(wAl—wBI) P (2) i P 5

} dz (6.60)

Exp [—jkBi(y - E kI (y —
[ xp [—ik(y — )] 4;2:0 xp [7kF(y ¢)]] dz (6.:61)
Cy
wB2 wp2\ Y+ y— (wag — 282)\ 1"
PV = / A (— [1—( e
= s (7) 5
[1 + (y_ ('wz;:' _gz)>]np;;m (y+(w£;_+ _2Ez)>
2 2
Exp [—jkBi(y — Exp [jkFi(y —
[ xp [~ik(y w)]f%f xp [jk(y ¢0]} ds (6.62)
Cy
where the constant, Cﬁ‘ is given by:
Cl =Exp [—jkipi] +p Exp [jkIi] (6.63)

The form of the inner products are derived in Appendix E, and the overall inner product

found as:
pIL  — g guirtmirtl L(n+ 1)T(1)T(v +1)
pn(y) P F(l — p)I‘(y +n+p+ 2)
2F [1+7I 15 1—=p,v+n+p+2; 2jkf‘22?—1]
Exp [jkfi[(wAl + %’L) - ¢']] +p Exp [—jkfi[(wm + w—lf‘) _ Ib]]]
R;
C’J/
(6.64)
ar. _ L [T21 T (20 + p)] /R 8\ B S
Ppn(y) - Apjp [ p!l"(y) (ky 5) Jp+u (ky 5)
Exp [—jk55¢] + p Exp [jkf‘l,b] (6 65)
Cy )
I'(n+ DI (v 4+ 1)
v . v+l
Py = 4277

[(1-pT(v+n+p+2)
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2 Fy [1+77, l;1-p,v+n+p+2; ijf‘%ﬂ]

Exp [jkF[(was — 222) — ¥]] + p Exp [—jkFi[(wa2 — 222) — 9]
o

(6.66)

The singularity orders are tabulated in Table 6.2, and summarised as:

—-0.5
—0.185345

S
(l

} Region 11

=
Il

v = +0.314655 Region III

v = —0.185345

Region IV
n = -0.5

The orthonormalisation coeflicients, A, are derived in Appendix E for the various basis

functions:

_ (wp)" (v p+ DT(g+p+1) 72

_ Region II 6.67
PT opv+n+1+20) (v +n+p+1) wwon (667

1

| 1 1y2] 72

_ () -(1+2v) plp+v+3)I(v+ 5)] ;

A, = (s) Tt 2 D) Region III (6.68)

1

14v4n K
_ (wga) I'v+p+ 1 )I(n+p+1) Region IV (6.69)

Poplv+n+1+42p)T(v+n+p+1)

6.3.4 Calculation of Impedance Matrices

The impedance matrix, [Z] and hence its inverse, [Z]~! is calculated from the amplitude
matrix terms and the wave impedances of the modes in the structure. An element of

the impedance matrix, Z,q is given by:

k=K
Zpg = Zok kaqu (6.70)
k=1
k=K 1
= Wl E Ekaqu (6.71)
k=1
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6.3.5 Calculation of Wave and Mode Impedance Matrices

The wave and mode impedance matrices are found directly from the uniform and coupled

lines computations with the matrices defined as:

[Zok] = Wi

[ 7 0
0 Bt
0 0

-1
Px

) [ch] =

ch
0

(6.72)

where Z.; represents the mode impedance for mode, k. The corresponding matrices,
[Z,1] and [Z,] are found by replacing the diagonal elements with the wave and mode

impedances for the [th mode respectively.

6.4 Notes on the Implementation of the S Parameter

Calculation

The implementation of the S parameter expression is relatively straightforward, and

follows the calculation methodology outlined in Figure 6.4.

In order to check the implementation, the convergence of the Laguerre polynomial
constant, ¥; the amplitude matrix terms, X,; and the scattering parameter matrix, [S]
have to be determined. The convergence is studied with respect to the number of field
expansion terms, N; the number of basis function terms, P; and the number of modes,

K.

The calculation of the S parameters requires the inversion of the impedance matrix,
[Z], hence it relies on the matrix being non-singular. The conditions required to make
[Z] singular are briefly discussed to determine whether this will place a limitation on the

type of discontinuity, or the range of dimensions of the structures that can be analysed.
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6.4.1 Singular Behaviour of the Impedance Matrix

The discontinuity theory can be verified by analysing the limiting case of a stripline
“discontinuity” of two uniform striplines of equal width, which should exhibit zero
reflection (511) and unit transmission (S ,41)1) With zero scattering into the remaining

modes.

Recalling the expression for the terms of the impedance matrix:

x>

K
Zpy =Y Zok XpiXyk (6.73)
k=1

The identical nature of the Regions A and B determines that:

Xpk = Xp(k+K 1) (6.74)

It is assumed that the analysis is carried out at a frequency, much smaller than the cut-
off frequency of the first higher order mode, such that the elements of the impedance
matrix are given by:

K4
Zpg =2 |120m Xp1 X1+ 5 D | Zok | XpkXqn (6.75)
2

Assuming a simplified case of K=4, i.e. two modes on either side of the interface
are required for convergence of the S parameters, and that the interface fields can be
adequately described by two basis functions; the determinant of the impedance matrix
is then found as:

XX 43525 X1: X1 X1 Xo1 + 32} X12X 09

|Z| = 240r (6.76)
XnX11+ 352, X202 X12 XaaXo1 + 72 X22 X022

240m ([X121X221 - X1 X3 - [chn]z (X7, X3, — X1, X3,
+5Z51 [X11X22 — X12X21]2) (6.77)

where the normalised impedance is denoted by the primed quantity.

Two observations can be made from the expression for the determinant. Firstly,
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if the minimum number of modes is used, which is by definition, two, the impedance
matrix is singular. Secondly the imaginary part of the determinant is non zero provided

the expression, X171 X22 — X12X321 is also non-zero.

The second condition can be interpreted as the requirement that the field shape
functions must be linearly independent with mode number, i.e. X3; # A Xj5. This
condition appears to be satisfied since the modes will clearly have different field shapes

in the Z and ¢ directions.

The inner products, however consist of a summation over the sixteen sub-regions,
therefore a more general condition for numerical stability is that the inner product terms

are not dominated by a contribution that is invariant with mode number.

In the case where the contributions are largely invariant with mode number, the de-
terminant becomes small which in turn leads to an increased susceptibility to numerical

errors in the computation.

The example illustrates that the limiting case of a uniform line “discontinuity” may

be subject to potential inaccuracies at the limit.

6.4.2 Comparison of Timings between the TRD Based Method and
HFSS

The algorithms required to compute the S parameters of uniform to coupled line dis-
continuities have been programmed, however at the time of writing the software is still
under development. An approximate comparison of the timing to compute the S param-
eters can be made between the TRD based method and Hewlett Packard’s HP85180A
High Frequency Structure Simulator (HFSS) Ver. A2.06. Table 6.4 shows a compari-
son of the timings required to compute the S parameters of a discontinuity at a single

frequency point.

The benefit of the TRD based analysis is that the inner products are independent of
frequency, hence the variation in S parameters with frequency can be rapidly calculated,
as opposed to the HFSS package that has to recalculate the full 3D field solution at each

of the frequency points.
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Method Operation Time Notes
(CPU Secs.)

TRD Computation of Propagation Constantst 327 20 Modes
Based Computation of Mode Impedances } 161 20 Freq. Pts.
Method Computation of Inner Products 2.7

Computation of S Parameters { 7.2

Total 498

HFSS Full 3D Computation of Fields 3600 Typ. | 180 MBytes
Ver. A2.06 | and S Parameters Storage

Table 6.4: Comparison of Approximate Timings Required to Compute the S Parameters
of a Uniform to Coupled Lines Discontinuity using the TRD Based Method and HFSS
Ver. A2.06 (13 Basis Function Terms and 25 Field Expansion terms) (14 Basis Function
Terms and 25 Field Expansion Terms)
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Chapter 7

Conclusions and Further Work

7.1 Outline

This chapter reviews the work undertaken to characterise the uniform and coupled
stripline structures, and various types of stripline discontinuity. The review highlights
novel aspects of the research and results of particular interest, and also aims to comment

on its significance compared to other published work.

7.2 Review of Research Undertaken

The introductory chapter of the thesis outlined the application of stripline structures
to medium power beamforming networks. The motivation behind the requirement for
an extremely accurate, but computationally efficient means of designing these networks
was also explained, with the aim of developing CAD models for the network elements.
The beamforming networks consist of uniform and coupled line sections, quarter wave
impedance transformers, power splitting networks, mitred bends and curves. The re-
search that has been undertaken has concentrated on the analysis of the uniform and
coupled lines. The calculated parameters have been used as a basis for analysing the

stripline discontinuities present in the network elements. In addition to improving the
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design of stripline structures, an efficient analysis enables stripline with novel cross-

sectional dimensions to be studied and to provide a verification of practical knowledge.

The range of analysis techniques available for electromagnetic analysis were reviewed
in the second chapter. The methods were broadly characterised into three areas: tech-
niques which are predominantly numerically based; those which are predominantly an-
alytically based; and those which combine a degree of both analytical and numerical
processing. The previously published research on stripline structures was also reviewed.
The research illustrates that the existing analyses of stripline have mainly been based
on conformal mapping expressions (CAD packages) that can be evaluated quickly, but
at the expense of accuracy; or purely numerical techniques (full wave electromagnetic
simulators) that provide accurate results for structures of arbitrary shape, but at the

expense of a large hardware requirement and long computation time.

The Transverse Resonance Diffraction (TRD) technique was developed to combine
the accuracy of a numerical technique with a compact analysis which can be evaluated
efficiently. The technique uses a-priori information concerning the field singularities of
the stripline to describe the fields using a small number of terms. The TRD method is
limited to structures with well defined interfaces across which the analysis is undertaken,
however, the dimensions of the structure can have arbitrary values. The variation in
the stripline parameters for a number of dimensional ratios can therefore be computed,
a feature which many of the previous applications of the TRD method have not fully
exploited. The TRD technique is in contrast with conformal mapping analyses which
are restricted to a limited range of dimensions. This constrains their use in computing
stripline parameters although the range of validity can be extended by the use of curve
fitting techniques. In the case of coupled stripline structures the symmetry requirements
for conformal mapping techniques mean that analyses are not normally available for
asymmetrical structures. The computation time for purely numerical techniques also

makes a study of this nature infeasible.

The TRD theory for arbitrary uniform and coupled stripline structures was devel-
oped in Chapter Three in terms of an admittance matrix representation in the plane
transverse to the direction of propagation. This approach enables an analysis for any

number of coupled striplines to be formulated by cascading a series of y parameter net-
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works, with the sole assumption that only adjacent striplines are coupled. This has been
demonstrated by the derivation of the uniform stripline formulation as a limiting case of
the analysis of a pair of coupled striplines. The calculation of the propagation constant
as a closed form polynomial expression was also studied. The study concluded that the
operation can be interpreted as a conversion of the y parameter network representation
to an ABCD network representation. The solutions for the propagation constant are
given by the zero Eigenvalue solutions of the y parameter matrix, which correspond
to the solution of the polynomial expression C=0. This conversion however yields no

improvement in calculation time.

The definition of impedance parameters as power-voltage, power-current and voltage-
current measures was shown in Chapter Three. The derivation of the power dissipation

and attenuation factor using a small perturbation method has also been carried out.

The theory that has been derived is generally applicable to any stripline structure
with a dielectric filling, hence it can be scaled to analyse structures found in Monolithic
Microwave Integrated Circuits (MMICs). The results that have been presented were
calculated for air filled stripline with dimensions that are typically found in medium

power beamforming networks.

The discussion of the TRD results has primarily concentrated on the accuracy com-
pared with other analysis techniques. The relative performance of the methods can
only be judged when the computation speed and hardware requirements are also taken
into account. This information has also been given to enable a fairer comparison of the

results to be made.

The convergence of the uniform and coupled line formulations has been calculated
and has shown that the analysis is stable. The results illustrate that a small number
of field expansion terms and basis function terms are required to obtain convergence to

within one percent of the cut-off frequencies.

The results for monomode bandwidth, impedance and attenuation factor for uniform
stripline structures were presented in Chapter Four. The results for the first higher order
mode cut-off frequencies for uniform stripline illustrate the accuracy of the TRD method

with agreement to within two percent of the measured values. Hewlett Packard’s High
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Frequency Structure Simulator (HFSS) finite elements software provides comparable
accuracy, but at the expense of a computation time that is approximately twenty-five
times longer. These tesults also illustrate the inaccuracies of the conformal mapping

analysis where errors of between four and eighteen percent are present.

The results for the impedance of uniform stripline show an agreement of within two
percent between the TRD results and those computed using conformal mapping, across
the range of specified dimensions for the conformal mapping analysis. Significantly bet-

ter agreement of within half a percent is achieved for typically used stripline dimensions.

The results for the attenuation factor clearly indicate the strong effect that the edge
singularities have on the computation of the stripline parameters. This is shown by the
agreement between TRD and conformal mapping results improving significantly as the
thickness of the stripline is increased and the effect of the singularities decreases. The
attenuation factor was also measured experimentally, however due to its small magni-
tude the measurements were very susceptible to probe position and the excitation of
the cavity. The repeatability and the variation in the measurements was also compar-
atively poor. The measurements however indicate that the order of magnitude of the

attenuation factor calculated by the analysis is correct.

The results for all the parameters indicate that the stripline structure is not partic-
ularly sensitive to variations in the strip position asymmetry around the symmetrical
position, and the strip thickness around commonly used thicknesses. There is a large
sensitivity to strip thickness when the strip occupies the majority of the space between
the ground planes. The sensitivity to variations in strip width increases for very narrow

strips where any variation is a significant proportion of the overall width.

The results for the first two higher order mode cut-off frequencies, coupling, and

attenuation factor for coupled stripline structures were presented in Chapter Five.

The TRD results for the first two higher order mode cut-off frequencies versus strip
separation show agreement to within two percent of measured values and values com-
puted using HFSS. The conformal mapping results only provide information concerning
the asymptotes of the variations where the structure can be approximated to a uniform

stripline structure with an effective width. Values for the cut-off frequencies computed
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by HFSS, for certain dimensional ratios, produced significant differences when compared
to the TRD results. This can be attributed to HFSS modelling the stripline as a boxed

structure therefore a number of box modes appear in the set of solutions.

The results for the coupling of striplines highlights the differences between the various
analysis techniques. The EEsof Linecalc package produced a significant underestimate
of coupling in all cases. The TRD method showed a stronger coupling than conformal
mapping and HFSS values in the majority of cases. This is due to the TRD analysis
predicting a stronger coupling effect of the edge singularities. A comparison of the
timings between the TRD method and HFSS has also been presented with the TRD
method a minimum of three hundred times faster with typically one thousand times less

memory required.

The results for the attenuation factor illustrate the limitations of the conformal map-
ping approaches with curve fitting used to extend the range of validity. The attenuation
factor variation clearly exhibits discontinuous behaviour at the boundary between two

approximations.

The results for the coupled stripline parameters indicate that they are particularly
sensitive to variations in the strip separation and are relatively insensitive to the strip
width asymmetry, or “slot” position, which appears to be intuitively correct. The
parameters are also relatively insensitive to strip thickness provided the strip does not
account for a very large proportion of the ground plane spacing. The comparison of
parameters for strip position asymmetry illustrate that existing analyses can provide
significant errors. The TRD and HFSS results, however, suggest that the parameters

are relatively insensitive to variations around the symmetric position.

The previously published characterisations of stripline discontinuities were reviewed
in Chapter Two. The analyses are derived using conformal mapping techniques, and
the only structure analysed which is of interest to beamforming network design is the

symmetrical uniform line step in width.

The derivation of the analysis of a generalised stripline discontinuity has been de-
scribed in Chapter Six, with the formulation evaluated to characterise a uniform to

coupled lines transition. Uniform and coupled line step in widths, however, can also
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be analysed. The method is based on a field matching technique applied at the plane
of the discontinuity. The discontinuity is expressed as an N port network, where N is
the total number of modes accessible at the plane of the discontinuity. This approach
is made possible by the accurate and efficient calculation of the modes in the struc-
ture using the TRD method. The analysis of the stripline discontinuities differs from
previously published work in that the form of the cross-sectional fields is significantly
more complex than other structures analysed using this technique. The stability of the
method has also been studied with the conditions for stability identified as the modes
of the structure being significantly distinct (linearly independent). The initial stages of

development have been completed with the algorithms implemented.

7.3 Further Work

The main aspect of the further work covers the development of the discontinuity the-
ory. The algorithms based on the theory described in Chapter Six show errors in the
calculated S parameters, hence further work is required to verify the implementation of

the algorithms.

The development of the algorithms will be carried out in a similar way to the uniform
and coupled line analysis, with a check on the convergence of the method as the first
goal. The further verification of the method does present problems. Limiting cases of
the discontinuity can result in an instability (singular matrix) in the formulation, for
example when the slot width in the uniform to coupled line transition approaches zero.
Results have been computed for a number of transitions using HFSS which will provide

additional information.

The convergence check for the analysis is of particular interest due to the complexity
of the cross-section discontinuity fields and singularities. Theoretical results for uniform
stripline indicate that the minimum order of singularity at the edge of a finite thickness
strip is | |*§T, whereas on the edge of an infinitely thin strip it is | 7 |_%. Clearly
as the thickness of a strip is decreased, a gradual transition of the singularity order

takes place due to the localised interaction of the singularities. This manifests itself as
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a degradation in convergence of the finite thickness formulation as the strip thickness
becomes small. The close proximity of singularities in the discontinuity plane suggests

that singularity interaction may also take place in the discontinuity analysis.

The calculation of the S parameters is an intermediate step in the analysis with
the eventual aim to calculate the equivalent circuit of a number of discontinuities for
inclusion in a CAD package, hence further work is also required for this conversion

process.

The current analysis is undertaken for an infinitely thin stripline hence the extension
to finite thickness structures is of interest. The author, however, has not been able to

identify any publications on the singularity orders for finite thickness 90° corners.

The long term aim is to provide CAD models for the entire range of elements used in
stripline beamforming networks. The analysis of power splitting networks is of particular
interest to network designers, as are mitred bends and stripline curves, although this

work is a significant extension of the stripline analysis.

7.4 Concluding Remarks

The initial brief of this work was to provide an efficient and accurate analysis of stripline
structures. This has undoubtably been achieved for uniform and coupled lines where
significant analytical pre-processing has produced a computational gain over numerical

techniques.

The degree of analytical pre-processing required to analyse more complicated struc-
tures, and the numerical efficiency of the calculations should again be compared to
the benefits of using a purely numerical technique, such as finite differences or finite
elements. The advance of purely numerical techniques has been illustrated by the de-
velopment of commercial packages such as HFSS and the increase in computing power
available within the period of the research. In the case of the stripline discontinuities
purely numerical methods offer an extremely attractive alternative since the aim is
to calculate equivalent circuits for the elements, and there is no requirement for the

evaluation of the algorithms in real time.
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Appendix A

Hewlett Packard’s HP85180A
High Frequency Structure

Simulator

A.1 Outline

The results computed by the Transverse Resonance Diffraction (TRD) method have
been compared in a number of cases to values computed by Hewlett Packard’s HP85180A
High Frequency Structure Simulator (HFSS) finite element package [74, 75]. The fol-
lowing sections outline the capabilities and the limitations of the package and describe

how it is used to compute various stripline parameters.

A.2 General Description

The HFSS package is a 3D field simulator for arbitrary structures based around finite
element software developed by Ansoft. The user can specify whether HFSS computes
the 2D “ports only” solution which determines the allowable modes at the ports of the

structure, and their propagation constants and impedances; or to extend the analysis
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to solve for the complete 3D fields present in the structure, and hence generate the S
parameters. The package consists of a number of modules including a schematic capture
module; a mesh generation module; a field excitation module; a field solving module

and a post-processing module.

The schematic capture module provides tools for drawing the structure and also
defining the ports of the structure and the boundary conditions. The HFSS package
is limited to computing the field solutions of enclosed structures, hence the stripline
structures are modelled as a rectangular co-axial structure. The side walls are placed at
a sufficient distance (approximately three strip widths from the edge of the strip) so that
they do not interact with the fields surrounding the strip. This enables a common type
of element to be used for the mesh generation at the expense of computational efficiency.
In addition, electric and magnetic walls can also be defined in the structure. Symmetry
planes can therefore be used to reduce the cross sectional area of the structure, hence

the overall computation time.

The finite element mesh is automatically computed by the mesh generation mod-
ule. HFSS discretises the structure using tetrahedra with the port surfaces therefore
discretised by triangular elements. The user is able to specify a seeding of the mesh to
produce a uniformly spaced mesh on a given surface. This is of little practical use for

stripline since the mesh has to be non-uniformly spaced near singularities to model the

fields.

The field excitation module computes the modes that can propagate in the port cross
sections. The initial mesh is solved for the 2D electric field, and then the 2D magnetic
field for each of the first N modes specified by the user. Maxwell’s curl equations are
then used to compute the corresponding magnetic and electric fields. The results are
then compared and if the values agree to within a user defined convergence limit the

2D problem is solved, if not the mesh is refined and the procedure repeated.

The field solver module is similar to the field excitation module, however, it computes
the full 3D field solution for the structure for each of the combinations of modes and ports
to generate the scattering parameters for the structure. The module uses the “ports

only” solution as a further set of boundary conditions on the problem in conjunction
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with the boundary conditions set by the user in the schematic capture. The convergence
criteria for this module is based on the S parameter convergence required, with the
number of adaptive passes also specified by the user. This process can be carried out

for a frequency sweep based on the single frequency solution.

The post-processing module enables the fields to be displayed, and animated by
incrementing the phase reference of the excitation. Related parameters such as power
flow are also computed and the data reformatted for use with other packages. The
module also computes the impedance of the structure using the impedance measures

defined in Chapter 3.

A.3 Accuracy and Timing Considerations

The accuracy of the results obtained from the package will depend on size and number
of elements used to discretise the structure, and the amount of processing time and

memory storage available.

The convergence limit specified by the user for the 2D “ports only” solution is a
relatively arbitrary value since it does not directly relate to the convergence criteria
for the propagation constants, or mode impedances that are the practical outputs from
the “ports only” solution. The convergence behaviour of these parameters therefore
has to be determined to provide an appropriate choice of convergence criteria for a
given application. The convergence criteria for the S parameters of the 3D solution,
equally, will not apply to the fields from which the parameters are calculated, since the
S parameters are variational on the field solutions. Chapter 3 will also differ since the
3D magnetic field solution is less accurate than the corresponding electric field. This is

due to the magnetic field being computed from the electric field solution.

The effect on the solution time due to a change in the convergence limit or number
of modes is difficult to predict. This is due to the differing field shapes of the higher
order modes where convergence of all modes to a couple of percent may be possible in
a small number of iterations but convergence to half a percent may take significantly

longer. Equally, the situation may arise that one mode achieves convergence to two
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percent after a significant number of iterations, whereas the remainder of the modes
have achieved convergence to fractions of a percent after a few iterations. The effect
on computation time for successive iterations of the 3D field solution is also difficult
to predict. The solution time will rapidly increase with the number of iterations as
the number of equations to be solved, hence matrix size increases. This will normally
result in additional accessing of data from disc drives which further slows the solution
process. The seeding of the initial mesh only has a limited effect on the overall solution
timings as it reduces the computation time of the first iteration, which is the fastest

and is typically computed in one fifth of the time of the later iterations.

A.4 Hardware and Software Configuration

The hardware used to compute the HFSS results is shown in Table A.1 and compared to
the hardware used to compute the TRD results. The table enables the timings quoted

in Chapters 3 and 4 to be compared on the same basis.

HP 9000/710 HP 715/50

RAM 16MByte 128 MByte
Disc (Internal) 420 MByte —

Disc (External) 1.4 GByte 1.4GByte

300MByte Magneto-Optic

Display 1280x 1024 12801024
MIPS 57 57
MFLOPS 12 17
SPECmarks 50 55.5

Operating System | HP-UX 8.07 HP-UX 9.01

Table A.1: Comparison of the Computer Platforms used to Compute the TRD and
HFSS Results

The results computed in Chapters 3 and 4 were all computed with HFSS Version
A2.06 unless otherwise stated. This is an important consideration since particular prob-
lems have been reported with the previous versions A1.00 and A1.29 in calculating the
propagation constant of the stripline structure, and the calculation of mode impedances

with the use of symmetry planes [76].
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Appendix B

Derivation of Scalar Potentials,
Fields and Mode Admittance

Functions

B.1 Outline

The scalar potential functions on which the Transverse Resonance Diffraction (TRD)
analysis is based, are derived for the general coupled stripline structure shown in Fig-

ure 3.1

The fields present in the structure are then derived from the scalar potentials and
the expressions given in Chapter 3. Finally the Mode Admittance Functions () are

derived for each of the Regions shown in Figure 3.1.

155



B.2 Derivation of Scalar Potentials

B.2.1 Derivation of x Directed Scalar Potential Functions

The Z directed scalar potential functions for the sixteen regions shown in Figure 3.1 can
be written down by inspection. The derivative of the scalar potentials for the TE modes
is zero on the strip and ground planes; and for the TM modes, the scalar potential is

zero on the strip and ground planes.

Magnetic Scalar Potential Function

dfé(n,z) = AP Cos kF [x - 5] z > (g (
AR Cos ki [a: + h] z < (% - (bi + %)) (B.2)

Fha(n,) 3

Electric Scalar Potential Function

The corresponding expressions for the electric scalar potential can also be written down:

. , N h] h t;
(B.4)
Hina) = AFSmkS ot z< (% } (”,- + %)) (B.5)
The & directed wavenumbers are defined for the sixteen sub-regions as:
T L — Regions I, IIT and V B.6
20+ ) ’ (50
nw .
= o Regions II and IV (B.7)
The constant, 1; is defined as:
bi T > a_ i + 4
i = { (z f)) (B.8)
di z<(3-(bit%))
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The orthonormalisation coefficient, A% is determined by the requirement for Region,
R; that:
‘ _ 2
/ AR [oFs (n,2)] do =1 (B.9)
T

Which is evaluated for sub-region, Ry, as:

o=

Al = !/ﬁg—b [ ﬁ;,ez(n’a’)]z dw:| (B.10)

2

The orthonormalisation coefficients for the sub-regions can therefore be summarised as:

26y,

AR = W/ Region II and IV (B.11)
i +d;
26
AR = 2 Region I, III and V (B.12)

Y T A

Where the constant, é,, is defined as:

6, = % n=0 (B.13)
- % n#0 (B.14)

B.2.2 Derivation of § Directed Scalar Potential Functions
Regions II to IV

The § directed scalar potentials are derived by representing Regions II to IV by a
transmission line as shown in Figure B.1. An analogy is drawn between the conven-
tional current and voltage quantities, and the electric and magnetic fields present in the
stripline structure. The odd and even modes present in each of the regions are modelled

by a short circuit or open circuit at y = % respectively.

The voltage and current at a point along the line can be represented as a summation
of forward and backward travelling waves. Expressions for an excitation at port 1 are

given by:
. . L N . L
Vy = VTExp iBy(y—5 )| +PVTEx |—jBy|y—3 (B.15)
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Figure B.l: General Transmission Line and y Parameter Representation

pV+

= "Exp jPy[V~2 n Exp  ~joy (# - ¢ B.16)

Noting the standard expression for the reflection coefficient:

ZL ~ 70
P= 7.+ Zo
The expressions for the voltages and currents are normalised to unity at the excitation
port:
Exp [jpy(y-%)]+p Exp [5(3y(y - D]

_ (B.17)
"y Exp [-jPy%]+p Exp [j0y%

Exp [iPy(y - | )]l - p Exp [~ (3y(y - \)I

B.18
Exp [-jpyji]-p Exp [i/3y% ( )

Iy =

The voltages and currents in the above expressions represent the voltages and cur-
rents in the transverse x direction. In order to extract the voltages and currents in the
z direction and hence the scalar potential, the expressions have to be integrated with

respect to the y direction.

The y directed propagation constant is replaced using the notation used in Chapter 3,

with the propagation constant in Regions II to IV represented as a purely real quantity
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and the propagation constant in Regions I and V represented as a purely imaginary

quantity. The ¢ directed magnetic scalar potentials for the TE modes are derived from

Equation B.17 and given by:

oy = L [P UK+ G+ E] +oBxp [k + (54 3))
h ’ = R ) N » - : "
' WU Exp [kaa(a*r—%)} + pExp [—kas(§+—2l) ]
(B.19)
1 -Ex [ Ry¢ +(£+ﬂ))]+ Ex [_ 'kR4(,+(g+H.L))]-
SFi(ny) = p ik y+(5+% pExp |—jk(y+ (5 + %
hy \To = - :
y B B [RGB [RRG )]
(B.20)
[ 1 w : s w i
Rs 1 | Exp [fhP(y+ (5 + %) +eExp [—ikBE(y+ (3 + )]
By (nyy) = oFs TP T
L B [REG o )] +eBe [iRR(s + )]
(B.21)
Fonyy = L B2 R (G )] + o0 [+ (5 + %)
h ’ - R, - -
! k* | Exp [—ka6(§+%1)] + pExp []k{fs(%-}-%l)]
(B.22)
R, 1 Exp [jkf"y] + pExp [—jkFry]
Prg (n,y) = P R SN (B.23)
v [ Exp |~jky (5)] + pExp [Jky’(%)__
1 P Exp [jkley] + pExp [—jkly ]
¢f;(n,y) = R r [ ; s] [ ; ] g (B.24)
v [Exp _—J’%*‘(a)] + pExp [Jky“(%)d_
R o [ Exp [ikfey] + pExp [—jkfoy]
Sy (my) = m R — (B.25)
y _ExP _Jky (5)] + pExp [—]kyg(-g-)__

:
1 Exp [jkFoy] + pExp [—jkFioy]
k% | Exp [J’kf”(%)] +pExp [—jk5o(3)]

[ . .
1| Exp [k (y = (5 + %) + pExp [—jkf(y — (5 + %))
B Bxp SR+ )] 4 oBxe [k (5 + )

$pio(n,y) = (B.26)

S (n,y) =

(B.27)
1 |Exp [E2(y— (5 + %)) + pExp [—jkFa2(y — (£ + 22))]
R . .

kv | Exp [—kaf”(% + “’—22)] + pExp [kaf”(% + %2)]

$r2(n,y) =

(B.28)
1 [Bxp [KS(y = (3 + 0] + pBxp [k (y - (3 + %))
R . .

ky** | Exp [kaf”(g + “’—22)] + pExp [-;k{,’“‘w(g + '%z)}

$rd(n,y) =
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(B.29)

1 | Exp [kfe(y— (5 +%2)] +pExp [—5k(y - (5 + %))

R
¢hyl4(n7y) = kRM -1 Riars wo. ] .y Riars wy
y Exp [Jky (3+% )_ + pExp [_Jky (3+% )]
(B.30)
The § directed propagation constants are given by:
KRYE = k2 - (kR)? B.31
(k)" = ki = (k) (B.31)
2

= k-s- () (B.32)

where either the wavenumber, k,, or the propagation constant, f, is fixed during the

search for the set of solutions of the remaining variable.

The corresponding expressions for the electric scalar potentials for the TM modes

are derived from the current expression, and are of the general form:

1| Exp [k (y+ )] — pExp [-5kiH(y + )]
YL Exp [RR(0)] - pBxp [k (0]

¢Lli(n,y) = (B.33)

Regions I and V

The remaining regions are characterised assuming that the § directed dependency is
an exponential decay away from the striplines. This gives rise to an Z directed scalar

potential of the form for the sub-regions:

Exp [k (y + (5 + w))]

P ey (M,9) = e (B.34)
o (ny) = 2 Wﬁ;(%”lm (B.35)
PR (nyy) = i kfl;%;(%w?))] (B.36)
o5 (n,y) = Exp [jkflsj%l;(%-l-m))] (B.37)

The overall scalar potentials are formed using the Equations 3.24 and 3.25.
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B.3 Derivation of Fields

The three fields present in the coupled stripline structure for both the TE and TM modes
can be derived from the relationships stated in Chapter 3, Equations 3.17 and 3.18.

B.3.1 Derivation of Fields for TE Modes

The fields are again derived as a piece-wise formulation for each of the sixteen regions

leading to a total of forty eight field components.

z Directed Magnetic Field, h,)

e - TSR ()] B
e = 2L E 2 [, (4)] BB g
e - A F 2 - (3] 2
K (z,y) = ]ji ?:;: 257:/‘%%2 A (Rs,— (—g)] E‘—U;Z,;—(—%)] (B.45)
W (z,y) = jjt:;g%’j’fii F :Rg, (%)] Fi%—g(in (B.46)
KRz, y) = j:jio :izj 2571}/%1213 F [RIO,— (g)] FL[;Z;:—O(%)]— (B.47)
hf(e,y) = ]fi ::o %Fl [Ru, (g)] s [R”]’,Z;EJF 7)) (B.48)
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26,V [ h\] Fa[Ri2, +(5 + F)]
R12 — gkn B | Ryg,— | = L2 2 B.49
(@) = o Z g = (5)] P 49)

2 TM=%© Ris i F: (R s 4 w2
ths(w y) = .kt 260 Vit Fi | Rys, (E)jl > [ 13’,+}£2 2 )] (B.50)
JwWho £ Vbatdy | 2 Jky™®

k2 "X 26, VR“ [ B\ Fa [Rias+(5 + 22)]
R14 t zkn | = ? 2 2 B.51
Rt (z,y) = Jorpe & bt 4 _R14, (2)] 5T ( )

2”°°26VR15 h\] F2 [Ris,+(5 +
i (z,y) = Jf'li Z xk" 31 [Rls, <—>] 2 [fas, 45 + wa)] (B.52)

2 jklljils
k2 ’“’°26VR16 R\ F2 [Rie,+(2+w
Wit(e,y) = oY ZUE R [Rw,—(g)] 2| lsjkéfe )] (g 53
° =0 Y

where the functions, Fy, Fy, F3 and Fy are denoted by the following expressions:

Fi(Ri,¥) = CoskFi(z~ 1) (B.54)

Fy(Ri,9) = Exp [jk(y— )] (B.55)

ARy = |P [jkf‘(y. —R¢)]+pExp [—j.ki*v(y—W] (B.56)
Exp [—Jky‘(lﬁ)} + pExp [Jky‘(¢)]

FRov) — | B [jkgiFny ¥)] + pExp [—j.k‘IZ':(y—i/’)] (B.57)
Exp [k (0)] +oBxp [—3k(0)] |

% Directed Electric Field, ey

The e, fields are given by the partial derivative of the h,x field with respect to the ¢

direction, such that:

: JWio
eli(z,y) = hlY kf kg (B.58)

¥ Directed Electric Field, ey

Similarly, the e, fields are given by the partial derivative with respect to the & direction:

,- JWhto
efk(:v,y) hﬁc kL B2 (B.59)
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The definition of the function, F; is modified to:
Fy(Ri, ) = ki Sin kBi(z — o) (B.60)

The remainder of the functions, F3, F3 and Fj remain unchanged and given by the

expressions in Equations B.55 to B.57.

B.3.2 Derivation of Fields for TM Modes

The fields for the TM modes are again derived in an analogous manner to those for the

TE modes, using the electric scalar potentials as a base:

z Directed Electric Field, e,

The e, field components are similar to those of the k,j fields for the TE modes in the

sixteen sub-regions. For example, the expression for the sub-region, R3 is given by:

26,10 h\1 F3[R3, —(%+%)]
R3 zkn 3 39 2 2
o= i & e A (3)] S (561

where the voltage amplitude is replaced by an equivalent current amplitude. The func-

tions Fy, Fy, F3 and Fy are given by the equations:

Sin kR (z — )

Fi(Ri,¢) = _En_z—— (B.62)
Fy(Ri,$) = Exp [jk5(y—¢)] (B.63)
ARy = | P2 IR -9 - pBe [2ik) (- )] (B.64)

| Exp [ik(¥)] - pExp [8(w)]

Rroy) = |22 ROt ik oDl g

Exp [k5(9)] - pExp [~k ()]
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% Directed Magnetic Field, hyy

The hyy field is given by the partial derivative of the e,; with respect to y:

R,‘ . R;’ R,‘ ]wuo
hi(z,y) = e, k, W2 (B.66)

¥ Directed Magnetic Field, hyj

Similarly, the A,y fields are given by the partial derivative with respect to the Z direction:
(e, ) = ol ki T (B.67)

The definition of the function, F; is modified to:

Fi(Ri,¥) = kB Cos ki (z — o) (B.68)

The remainder of the functions, Fy, F3 and Fy remain unchanged and given by the

expressions in Equations B.63 to B.65.

B.4 Derivation of Mode Admittance Functions

The Green’s Function Admittance Operators are derived from the mode admittance
functions, Y(n) (Equation 3.30). These functions are based on the general y parameter

representation of a two port network.

B.4.1 General Form of Y Parameters

The y parameters of a general two port network (Figure B.1) are given by the following

relationships:
y = 2 yiz = 2
11 = 12 = —
Vi Vo=0 Va V1=0
y I y I,
21 = T 22 = T
‘/1 V2=0 V2 V1=0
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Representing the voltages and currents by the e;x(y) and h,x(y) fields respectively,

and considering their general forms § directed forms for a transmission line of length, 9

oy B [ D]+ B ik - $)]
b = gk [ Exp [—jkf‘%} + pExp [jkf‘%] (269
€ (v) Bxp [jh(y - $)] - pBp [_jkfi(y,_ 9] (B.70)

Exp [—jkfi%] + pExp [J'k{l?d%]

Using the above expressions for the y parameters, the 317 and y;2 parameters for the

TE modes are found:

h.x(0)
g1 = (B.71)
1 ezk(0) exk(£)=0
bk (0
Y12 = —L,p) (B.72)
ez‘k(f) exk(0)=0
Substituting the expressions for the electric and magnetic fields:
) Exp [—jk{}i%] + pExp [jk{}e%]
Y11 o 5 R4 e R U (B.73)
v’ | Exp [J y (—2)] — pExp [—J y —3)] .
Cot k¥
- Y 2
= R (B.74)
IRy (z)
1 | Exp [—jkf‘%] + pExp [jkf‘%]
Y2 = g 1 (B.75)
ky —f _Brpskpi(—¥)
T Bxpiky (%)
_ Coseckf% (B.76)

. Ri
Jky (%)
The corresponding expressions for the yz; and y,, parameters can be derived in a
similar manner.

The expressions for the “terminating” admittances in the networks at the boundary

of Regions I and II; and Regions IV and V are given as a ratio of the h,; and e,y fields.

The expressions for the TM modes can be derived in a similar manner, leading to
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the y parameters:

R; R,"l/)

yin = Jjk,* Cot k, 5 (B.77)
LR Riw

yi2 = Jjk,* Cosec k, 5 (B.78)

B.4.2 Mode Admittance Functions

The mode admittances for the sixteen sub-regions shown in Figure 3.1 can be derived
from the above equations. The admittances are defined across the entire interface,
hence each of the y parameters has contributions from each sub-region adjacent to the

boundary.

The mode admittance functions for the TE modes are derived as:

1 1
Vi) = —m+—p B.79
1( ) jk?l jk‘52 ( )
Cotkfe™  Cotkfews
Vi) = f,lg 2 4 % 2 (B.80)
Jky? Tky*
Cosec kFs¥L  (Cosec ka1
Yir(n) = — — B.81
12(n) kR I ( )
Cosec k¥ Cosec kfle s
Vi(n) = A T (B.82)
Jky® Jky®
Cot kBsvr  Cot kFewr
Yi(n) = —%2++ EA (B.83)
Jky* Jky®
Cot kB72 (ot kFss
111 _ v 2 3
Yiit‘(n) = e + jkfi (B.84)
Cosec kB72  Cosec kFss
Yiil(n) = =2 4 2 (B.85)
Jky’ Gy
Cosec ko2 Cosec kFwos
Yo' (n) = 2+ v 2 B.86
Cot kfe2  Cot kfios
Yy = 'z, DR (B57)
Jky® Jky°
Cot kPuwz (ot kfr22
() = 2 L2 (B.88)
jkyll jkylZ
Cosec kfl1¥2 Cosec kFr2 %2
14% _ y D) " B)
Viz (n) = e + e (B.89)
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Ry3 w2 Ry w2
Cosec ky 5 Cosec ky 5

yiV(n) = + B.90
21 ( ) jk{f” jk;}f“ ( )
Cot kB2 (ot kR
1A% _ 2 Y 2
Yy (n) = jkf,g” T (B.91)
1 1
Wn) = (B.92)

jkleS + jkleG

The mode admittance functions for the TM modes are derived in a similar manner

for the expressions for y;; and y;2 in Equations B.77 and B.78.
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Appendix C

Derivation of the Inner Products

for the TRD Formulation

C.1 Form of Basis Functions

The basis functions are defined as a product of an orthonormalisation coefficient, a

weight function, and an orthogonal polynomial.

The choice of the orthogonal polynomial will be dependent on the order of the field
singularity, v, present on the edge of the central conductor. This has been investigated
by Collin [19], and analytical results have shown that the minimum order of the singu-
larity is given as v = —1, for a finite thickness stripline and v = —1, for an infinitely

thin stripline.

The theory will assume that the stripline is of finite thickness, i.e v = —%, although

substituting the value of v = —% does provide a useful limiting case to verify results.
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Weight Function

The weight function is used to give the basis function the correct order of singularity,
and is derived by considering the singularities on the edge of the central conductor.
The analysis assumes a pair of image singularities with a symmetrical weight function

as shown in Figure C.1.

y=o

Figure C.l: Formulation of Weight Functions for the Problem

The weight functions are required in the form:

wi{x,v) =0 -x2y rc.i)

The weight function is of the form, W(x,v) =| r| |" | r2 \u, where r is the distance from

the singularities, for the singularities at y = —(|) and 7= —1 + uq)
(h o
W, v) =  f4M % U _6V)*X (C.2)

Rearranging and considering the remainder of the singularities, the weight functions
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for the strips can be written down by inspection as:

vew e [ ()] G
= @ [p(%)z]y z<<ﬁ_(. :

Orthonormalisation Coefficient

In order to maintain the correct field scaling the basis functions are orthonormalised
such that:

+o0
Ag/ W(z,v) [C4(2)]? do =1 (C.5)
Stating a standard result from [77]:

vt (ov(aP de = T2 TI(p+2v)
A= EGEN e = TP

(C.6)

1

R > -
e(v) > -
Using a variable substitution, Equation C.6 can be rewritten:

—(5-di) B x-}-% 21V~ 3% § :B-I-% 2d_;1;_7r21_2ur(P+2V)
e [l ( : ” [C< 4 )] &~ Heroree (7

Substituting an expression for W(z,v) into Equation C.5 and evaluating for a sub-

region, i, z < (& — (b; + &)):

Hence,

27 L [ogh 2
[C;'+5( d.z)] do =1 (C.8)

T2 % T(p+2v+1) _
P2 plptr+ DI+

2v+1
2 dz

(C.9)
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Rearranging in terms of the orthonormalisation coefficient, A, for the sub-regions z <

(% — (b + %)) 1
v +v + I'(v+ Ol
Al =d; (1+2) [I; ;p (1+2v) I‘() [+(21/ -}-2)1]) ] (C.10)

Similarly for the sub-regions z > (% —(bi+ %‘))

1

2

(C.11)

AR = b (142) PP+ v+ 1) [T(v+ )P
2= (1+2) D(p 4+ 2v 4 1)

C.2 Derivation of Inner Products

Recalling the definition of the inner products required to evaluate the TRD Admittance

Matrix Equation, and rewriting for sub-region, i:

Ppr < Phe(n,z); folz) > (C.12)

400
[ fne(n,2) (o) (C.13)

+o00
A, AR / W(z,v)Cy(z) Cos ERi(z — ;) da TE Modes (C.14)

+o00 .
= A AN [ W(z,v)Cl(x) ) gy TM Modes (C.15)

—00

Sin kf(z — ¢
n2

Stating two standard results from [77]:

ik — z? I/—;— Vi osordr = (_l)pr(2p+2’/)7r
f, 0 Conende = SREEST o
(C.16)
i 2y—1 (-DPIr2p+2v+ 1)
| 0= (o) Singw o o T g0
(C.17)

1
Q>0,Reu>—§
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Considering the expression for the TE modes first, and substituting for the weight

function, and undertaking a variable substitution in Equation C.16:
21v"3
- ___ h h h
/ K 1- Tt Csp it} Cosp rty)de
—() d; d; d; d;

7 (~1)7,1(2p + 2v)
Substituting Equation C.18 into the expression for the inner product,

= et e el O

R R [TG) z+2\?] +Lfz+ % R, h
S i 2v _ 2 vtz i i
B,y = AypA, /_(%) d;¥ |1 ( 7 ) Cyp < 4 ) Cos k; ( 2) dz
(C.19)
1)PI'(2 2 1 .
— AszTIL? d‘l1+2u 77( ) ( D+ 1/R+ ) . (kf‘di) (C.QO)
(2p)!T(v + 3) (2ks"d;)”
The inner product for the sub-regions, z > (% — (bi + 4)) are given by:
. 1)PT(2p +2v + 1)
Py = Ag, AR g2 T kEib; C.21
P 2pAn Yy (2p)'F(u+ 2)(2kR'b ),, 2p+u+1( ) ( )
The corresponding expressions for TM modes are:
. 1)PT(2p + 2v + 2)
Py = AgyqARipi+z T kFip, C.22
P 2p+1 5 (2p+ 1)! F(V n 2) (2kR'b Y 2p+u+3( ) ( )
T > h_ b; + b
2 )
. —1)»TI'(2 2 2 .
= Mgy AT grrev_TELPT(p+ 20 4 2) s (kFd)) (C.23)

p (2p+ DIT(v + %) (Qkf‘di)V 2p+v+3
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Appendix D

Derivation of Voltage, Current,
Power Flow and Dissipation

Terms

D.1 Derivation of Voltage Terms

The voltage between two conductors is determined from the equation:

V= [ewd (D.1)

In the case of the stripline structures, the voltage exists between the stripline and ground

plane. The chosen path of integration is in the & direction thus:

V= /exk(a:,y) dzx (D.2)

The form of the esx(z,y) field, set by the boundary conditions (Appendix B) gives the

voltage:

n=N
V = |Ewti+ Y Eun Sin(mr)] Oy bhe(n,y) (D.3)
n=1
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D.2

V = Exoi for TEM Mode (D.4)

Derivation of Current Terms

The current flowing around a conductor is determined from Ampere’s Law:

I"Njhkdl (D.5)

Figure D.l shows the contributions for a single strip, and the path of integration used.

For the coupled stripline structure the current contributions are evaluated as:

y=o

Figure D.l: Integration Contributions for the Current Integral

hxk(%i Vo)

Pk ws AR yRt o (1-p) - (Exp [jk’"Wj] - p Exp [-jk"'Wi])
Yto Z3 ~hkn j kRt Exp [~jky'wi\ + p Exp [jky'Wi]
D.s)
/ hyk(xo,y) dy
n=N
CE’; . Anl v “fn .7K7yR~ [Cos - Cos rarf (D.7)
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where the constant 1; is defined:

i = { bi' z > (i bi) (D.8)

D.3 Derivation of Power Flow Terms

The power flow is a structure is given by the Poynting Vector, hence the Z directed

power flow is given by:

S.= [ew A R} da (D.9)

CrossSection

Noting the relationships for the fields defined in Chapter 3 and Appendix B:

5, = Lo / | eot(z,9) 2 + | ez, 9) |* da (D.10)
C"

Who rossSection

Evaluating the above integral for the subregions, the expressions for the power flow are

derived as:
n:N . t; R;
. 1 Vi + % kv
Sk = —( ) 12 vi 21— D.11
- 4 Wlto 1 xkn k?: kR ( )
Regions I, III and V
n=N N\ 2
_ 1/ Bk 12 R ¥ 1 kR
SR = -( ) aRPyEs - (51 ]«
1 — p? Exp[j2k5‘wi] — p? Exp[—j?kf"w,-]
(Expliki*wi] + p Exp[—jky*wi])?  (Explikyiw] + p Exp[—jkiiwi))?
(D.12)

Regions II and IV

D.4 Derivation of Power Dissipation Terms

The power dissipation in the structure is derived from the equation:

1
Piis = 3Ry | (2 A hu)” da (D.13)

CrossSection
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- X=

.

y=o

Figure D.2: Integration Contributions for the Power Dissipation Integral

There will be contributions to the integral from the strip and the two ground planes
(Figure D.2). Substituting the expressions for the fields derived in Appendix B into
Equation D.13:

Pdis = P— (D.14)

J CrossSection

Evaluating the integrals for the sub-regions the terms defined in Figure D.2 are given

bv:
2 n=N
%
az= 8 EJ X
Uﬂ” n=0
1 - p2 Exp[j2k*iwi] - p2 Exp/[-j2kf*iwil
(Exp [jky'Wi] + p Exp[-jkyIWip) 2 (Exp[jky'W{]+ p Exp[-jkylWi)2)
(D.15)
- (£)v £ > ,r wiii (D.16)
71=0
2 n=N .
k?' U Sin k™'ti
U = A (D. 17)
Upo n=0 2 b3
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Appendix E

Derivation of
Orthonormalisation Coeflicients
and Inner Products for the

Discontinuity Analysis

E.1 Evaluation of Orthonormalisation Coefficients

The expressions for the orthonormalisation coefficients are derived in general, and can

be modified according to the discontinuity analysed.

The expression between the orthonormalisation coefficients and the cross section

fields was stated in Equation 6.4:
2
A,B
27 |
C

In practice, the integral is sub-divided into the sixteen sub-regions shown in Fig-

rossSection

=00 2
Z Ukn uk(n,x,y)] da=1 (E.1)
n=0

ure 3.1. The field shape that is denoted by ) Uk, uk(n, z,y) corresponds to the ezx(z, y)
fields derived in Chapter 3, and Appendix B.
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Recalling the general form of the fields as:
n=0o
efi(ey)= Y A% Vo Fi(Ri, %) Fn(Ri,¥) (E.2)
n=0

rewriting the integral in terms of a summation of contributions from the sub-regions,

R;, as:

. A,B 2i:16 n=o00 Aﬁ' V;z'n 2 . ) 2 d §2 R. 2 d —1
gy [Ezj (——jwo [ do [ Frs(R ) a
(E3)

Evaluating the integrals for the functions, F; to Fy (Equations B.54 to B.57)

in [2kBi(z —
/[FI(RZ-,@ZJ)]2 dz = / [Cos kfi(z — 1/))]2 dz = % [a: + 5 [2%]6}(2'_ ¢)]] (E.4)

Exp [2jk(y — ¥)]
25 kk

/ [Exp kR (y — )] dy =

Y

/ [Fa(Ri, )] dy ] (E.5)

Exp [7kFi(y — )] + p Exp [~k (y - «p)]‘ ’
(R, V) dy = Y _ y_ d
-/y[ (R 9)I dy /y[ Exp [~jky 9] + p Exp [k 9] !
[ (1—p?) Exp[2jkf‘¢] + p2EXP[—2jkfi¢] 2p¢ }
Y

= _ijfi [C’gi]z ijfi [Cfilz [Cf:'P
(E.6)
- p Exp[2jkfip] + p?Exp[—2jk[H
[ ap = |Gog) - DO LGN
y | 27ky" [C—;Il] 25kl [C—;/;] C'_;/J] y
(E.7)
where the constant, C’f‘, is given by:
Cy' =Exp [~jky“s] +p Exp k9] (E.8)

The orthonormalisation coefficient is found by evaluating Equation E.3 using the results
of the above integrals for the appropriate sub-regions. The orthonormalisation coeffi-
cient cannot be expressed analytically due to its complexity hence the value is found

numerically.
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E.2 Evaluation of Inner Product Terms

The evaluation of the amplitude terms X, (Equation 6.45) require that a set of inner

product terms are calculated, which are of the form:
n=
Xpk =Y UknPpn (E.9)
n=0

Separating the Z and § variations of the field shape function, the inner product, P,,,

that is required is given by:

P = /uk(nax)fp(m) dx/uk(n7 y)fo(y) dy (E.10)
E4 Yy
= Pon(a) Pon(y) (E-11)

The inner products are evaluated using Chebyshev polynomials for the & directed de-
pendence, and generalised Laguerre polynomials, Jacobi polynomials and Gegenbauer
Polynomials for the § dependence. The Z directed inner products with Gegenbauer

polynomials can be derived from the corresponding  directed inner products.

E.2.1 2z Directed Inner Product with Chebyshev Polynomials

The inner product with Chebyshev polynomials is only encountered in the & direction

of the problem, hence the derivation is carried out for the Fy(R;, ) field shape function.

Substituting the general form of the basis function into Equation E.10 and recalling
the form of the Z directed field from Equations E.2 and E.4:

Prie) = L A, W(z,v) f,(z) Fi(Rs, $)de (E.12)

Using the & dependence of the field shape, the singularity behaviour of the field and the

weight functions derived in Appendix C for z > (% — b;), the inner product is given by:

2 T, (x _ 1/)) Cos kFi(z — o) de (E.13)

-4
_ z—17
S BC G
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Stating a standard result from [77]:
1 1 -
/ (1 -2%)7? Tu(z) Cos gz dz = (-1)" [5] Jan(0) (E.14)
0

Undertaking a variable substitution into the equation above:

[ PR n (55 oo (52) o] o

b; ;
(E.15)
Rearranging Equations E.13 and E.15, the inner product is found for z > (% —b;) and

T

the corresponding expression for z < (% — b;) written down by inspection:

Bag) = An CUP[3] Jekf) o> (5-6) (@10
= Ay, (—1) [g] Jp(dikB) oz < (%—bi) (E.17)

The orthonormalisation coefficient of the basis function, A,, is found from the relation:

i [T [ CR)T BEE e e

Again quoting a result from [77]:

+1 T om0
(1-2%)"7 [Ty(z))2de =4 ? 7 (E.19)
-1 T N =
Hence by variable substitution and rearranging:
2 3 p=0
A, =24/=6 6, = (E.20)
P 0P P 1
7P #0

E.2.2 ¢ Directed Inner Product with Laguerre Polynomials

The g directed inner product is evaluated for the generalised Laguerre polynomials, for

Regions I and V, and Jacobi and Gegenbauer polynomials for Regions II, III, and IV.

Substituting the form of the Laguerre polynomial with the expression for the inner
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products (Equation E.10):
Bty = [ Ap W(us0) 50) Fa(Riy) dy (E.21)
v

Using the appropriate field shape and weight function for the region the inner product

is given by:

o= (5 0 [ (5] 5(52) b Lo o
(E.22)

where the constant, ¥ is introduced to aid convergence of the approximation. The

calculation of this parameter will be discussed later in this section.

The inner product is evaluated in terms of trigonometrical functions, with standard

results quoted from [77]:

/ X2 1Exp [—(pz)] L;‘;ZP—I(cpx) Cos dz dz
0

= (—1)T(x)e (e F jﬂ)‘;‘(gpgf —39)7¥] (E.23)

| o B (o)) 257 ox) Sin 9 da
0

— (_l)pj F(X)192p [((10 — ]19)_;(2_1)5;10 +]19)—X] (E24)
Rep>0,9 >0, Re x >2p

The results in the equations above can be combined to evaluate the integral:

o ope . —~2p— I'(x)v? gy —
/0 X2~ Exp [—(¢ — j0)z] Ly, Y og) dz = (—1)p%[(¢ = J9)7X]
Re ¢ >0, 9 >0, Re x >2p (E.25)

Taking Equation E.25 and performing a variable substitution, the left hand side of the

equation is transformed to:

/: (%Y‘”_l Exp [[90—3'0] (%)] Ly [w (%)] 5'\11,—3’ (E.26)
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Equating coefficients in the above equation with those in Equation E.22:

p =1
_ R;
= -Vk,

X = V+2p+1

The inner product is therefore given by Equation E.27:

P

@)t [(1+ Ry

The orthonormalisation coefficient for the Laguerre polynomials is given by the rela-

tionship:

of () [ [ 5)] mr om

Again from a result in [77]:

_ F'v+p+1)

. (E.29)

o0
2 v v 2
Ap/o Exp(—z) 2" [L,(z)]* dz
Hence the orthonormalisation coefficient is obtained by variable substitution and found

as: .
(v+p+ 1)]_5

A = [q’ p!

(E.30)

The constant, ¥, improves the convergence of the approximation used to discretise the

field, and is determined by minimising the error function [73]:
k=K p=P
forr = Y | 1< Fa(Riy 9); Fa(Riy %) >11 = D |I< Fa(Riy¥); fo(y) >I* | (E.31)
k=1 p=1

In effect the minimisation of the above function is equivalent to minimising the mean

square error between the field shape and the approximation.

Evaluating the inner product, < F3(R;,); Fo(Ri %) > and using the previously

derived expression for the § directed inner product, the error function can be expressed
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as:

= — \1,2 »
for k=1 n=1 4[kR 1 ¥ E [(2p)1]? (14 jkgyv+eett

SRSy S [r<v+2p+1)lz< Sl )]

(E.32)
The minimisation is carried out numerically using an interval halving technique as

described in Chapter 3.

€= 82' 81
& € = 82';81 &

Figure E.1: Definition of the Constants used in the Derivation of the § Directed Inner
Product with Jacobi Polynomials

E.2.3 g Directed Inner Product with Jacobi Polynomials

The field in Regions II to IV are expressed in terms of Jacobi polynomials which model
the field behaviour with different field singularities at the ends of the basis functions.
Recalling the form of the § directed inner products in terms of the basis functions and

field shapes.

Ppn(y) = /yAP W(yaV’ 7’) fp(y) F3(R‘ia'¢) dy (E33)

Substituting the form of the field shape function (Equation E.6), and the general func-
tion (Figure E.1) into Equation E.33:
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Pon(y) = /yAp g & [1— (y;g)]u [1_ (ygf)]" P (y;E)
[Exp [ik5(y = ¥)] + pExp [—jkfi(y_d))]jl N
cp

(E.34)

The inner product is evaluated by first considering a binomial expansion of the expo-

nential function in terms of [1 + y]:

Exp joy = Exp (—jp) Exp(jw[l +9) (E.35)
~ Bxp (~i¢) [i 0ol yr] (:36)
=0 :

Using a previously derived result from [77]:

+1 , 41 TGE+n+ DI(v+ DIGE+1)
_ v n+: pv,m — v+n+i+1
/1(1 2)"(1+ )" P (2) de = 2 Ti+1-n)G+v+n+nt2)

Rev > -1, Ren+i>—-1 (E.37)

The inner product in Equation E.34 can be evaluated by first considering the following

integral:

+1
I= / (1= ) (1+ ) B"() Bxp Liga] do (E.38)

Substituting the expression for the exponential into Equation E.38, and evaluating using

Equation E.37:

~
I

1=00 . N pl .
B (-j9) Y T [ (1= oy 2y R0) do

X TG4+ DI+ DTG +1)  (259)
— ovtntl | —
XP( J@);F(t+1_n)[‘(z+y+n+n+2) (Z)'
T(n+ Dl(v + DI'(1)
I(1-n)(v+n+n+2)
2Bo[1 4,15 1—n,v+0+2; 25¢] (E.39)

= 2771 Exp (—jp)
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where , Fy, (an ; by ; z) denotes a hyper-geometrical function, and is defined as follows:

nF [an—l,an—%"' ap ; bm l,bm 25777 bO; Z]:
T(by-1)T(brm—2) bo)Ei? P(i + @1l + an-2) .- -T(i+ a0) 7
I‘(an 1I‘(an 2) F(ag) F(?,+bm 1)F(Z+bm 2) F(’l+b0) l‘
(E.40)

Using a variable substitution the inner product in Equation E.34 can be evaluated by

rewriting the integral, I:

LD [ (2 e )2

(E.41)

Recalling the form of Equation E.34 for the inner product, Ppn(y), and rearranging in

terms of the integral, I:

Exp [—jkE j0E] + pExp [— (—jkE: =
Ppn(y):Ap [I] 61+u+7) [ Xp[ J Yy 1/)+J90£]+P Xp [ ( J Yy 'l/)'*'](Pe)]}

R;
C"/’ <p=lc5"s
(E.42)
Therefore, evaluating the above expression using Equation E.39, the inner product is
found as:

ply) = T(1-p)T(v+n+p+2)
2Bl +m,15 1= pv+n+p+2; 25kl
Exp [jkf(z ~ )] + p Exp [—jkli(z - o)
chi
"

} (5.43)

The orthonormalisation coefficient for the Jacobi polynomials, A4, is determined from

the condition:

o e =R e ()] o () =1 o

Using a result quoted from [77]:

2 T4+ n+ 1) T(n+n+1)
nt(v+n+1+20)T(v+n+n+1)
Rev > -1, Ren> -1 (E.45)

+1
(=) (1+ o) [Py da =
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Again performing a variable substitution, the orthonormalisation coefficient can be

found as: .
)

_[@)* T +p+ DI(n+p+1)
Pt (v n+142p) T(v+n+p+1)

(E.46)

E.2.4 § Directed Inner Product with Gegenbauer Polynomials
The ¢ directed inner products for Gegenbauer polynomials is given by the expression:

1
=\ 2]V 2 ~
v y-¢ v (Y=F
Pt = /Ape i [1¢< e_>} CP( £ )
Yy

Exp [jkf(y — )] + p Exp [—jkFi(y — v)] p
c !

(EAT)

which can be evaluated from the standard result given in [77]:

+1 1 Tol-v v4n
[ a-atyteie) Bxp lipn) o = | L] o )

1
Rev > —5 (E48)

Hence the inner product is given by:

o [T217Y T'(2v + p) L\ —v .
PP”(ZI) = AP Jp l: p| F(l/) ] (k"f'f) JP+V (kf'é‘)

Exp [k (€— )] + p Exp [—jkI (2 — 9)]
i

(E.49)

The orthonormalisation coefficient, A, is derived in Appendix C.
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