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Abstract.

A series of experiments were carried out to investigate rooting 

behaviour in Eucalyptus globulus seedling cuttings. Particular emphasis was 

placed on the effect of ageing, anatomical studies and on the quantification of 

endogenous IAA at key stages during adventitious root formation (ARF). The 

technique of GC-MS-SIM, in electron impact and chemical ionisation modes, 

was used for quantification of IAA, employing 13C6-IAA as the internal 

standard. Anatomical studies showed that nuclear swelling, which occurred 

around thirty hours after cutting excision in seedling cuttings, was the first 

visible sign in ARF and was proceeded by early cell division and root 

primordium formation.

In the rooting zone of 'easy-to-roof E. globulus seedling cuttings there 

was a transient rise in the endogenous IAA level associated with the inductive 

stage of ARF, which subsided before the first cell divisions. IAA levels in the 

non-rooting zone of the cuttings remained fairly constant throughout the 

rooting process. The results were reproducible and a second experiment was 

carried out which identified the timing of events more precisely. In the second 

experiment similar changes in the levels of endogenous IAA were detected and 

the transient rise in IAA levels in the rooting zone subsided prior to nuclear 

swelling. Similar results were found with clonal in vitro E. globulus explants. 

The work in this thesis supports the hypothesis that IAA is associated with 

dedifferentiation and the formation of a new meristematic locus.



Chapter 1. Introduction. 

1.1 The genus Eucalyptus.

Eucalyptus species have a natural distribution predominantly confined 

to Australia, with limited occurrence of species in the islands to the north 

including Timor, New Guinea, Java and the Philippines. Large areas in South 

America, Africa, Asia, Spain, Portugal, Middle Eastern countries and the USA 

have been planted with eucalypts (FAO, 1979; Gupta and Mascarenhas, 1987). 

A major reason for the spread of eucalypts is the number of commercial uses 

they have. Eucalyptus, delegatensis, E. regnans, E. saligna, and E. grandis are 

the favoured trees for paper pulp production in Australia, whilst in Brazil and 

the Congo high quality pulpwood comes from E. grandis, E. urophylla and 

several hybrids (Me. Comb and Bennett 1986). Essential oils from eucalypts 

are used for medicinal and perfumery purposes, and are being considered as 

components of liquid fuel (Calvin 1980; Stewart et al. 1982). The major 

producers of eucalypt oils are Portugal and Spain (E. globulus), Argentina, 

Chile, Brazil and Indonesia (E. citriodora), and Swaziland and South Africa (E. 

dives) (Donald 1980, Me. Comb and Bennett 1986).

1.2 Clonal forestry.

Asexual propagation is an important commercial method available to 

the horticultural and forestry industry for producing large numbers of 

genetically uniform plants (Davies et al. 1982; Haissig et a l  1992). Cloning is 

also a critical component of many genetic improvement programmes for higher 

plants including those using conventional breeding and/or biotechnology 

techniques (Haissig et al. 1987). In addition to their long life cycle (Bonga
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1982a), trees present a major problem in that many are highly heterozygous 

(Bonga 1982a; Franclet et al. 1987). This limits the use of inbreeding and 

controlled hybridisation as a means of obtaining genetic gain, for example due 

to various undesirable consequences of inbreeding depression (Libby et al. 

1969; Winton et al. 1974). As a rule, eucalypts are considered to be out 

crossing (Goncalves et al 1979). In theory, vegetative propagation should 

enable clonal plantations of superior trees that produce greater yields than 

seedling plantations (Zobel & Ikemori 1983). Productivity increase with sexual 

propagation requires several generations, whereas with vegetative propagation 

it is immediate (Bonga 1982a; Bennett et al. 1986; Franclet et al. 1987). When 

establishing plantations of dioecious trees, cloning can be desirable, as in some 

species only the female trees have economic value (Bonga 1982 b.; Jordan et 

al. 1983; Reynolds 1982). The potential for forest tree improvement via sexual 

breeding techniques is limited (Shelboume 1987) and it is essential to develop 

vegetative propagation techniques. A major problem for many tree 

improvement programmes is that by the time trees are mature enough to 

identify elite genotypes, it is often impossible to propagate clonal material from 

them.

1.3 Maturation.

From the literature it is clear that maturation is a highly complex 

phenomenon. Much confusion arises from the different terminology which has 

been used to describe the process. Maturation can be defined as the 

developmental process inducing changes in morphological and physiological 

characteristics leading to the reproductive (mature) state (Hackett 1987). The
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old terminology for maturation such as phase change, ontogenetic ageing and 

meristematic ageing will be avoided here. However, the use of the term 

meristematic ageing emphasises that meristems play an important role in 

maturation (Pierik 1987). One of the major factors underlying the process is 

increasing shoot apex size (Romberger 1976).

Associated with the transition from, the juvenile to mature state are 

progressive changes in morphological and developmental attributes including 

leaf cuticular characteristics, bark characteristics, leaf shape, thickness, 

phyllotaxis, shoot growth vigour, rooting ability and stem pigmentation 

(Hackettl987). Changes in such characteristics during development vary from 

species to species and most changes occur gradually during the period 

preceding the mature phase (Hackett 1987). Even though the change in woody 

plants has been described frequently, systematic attempts to carefully document 

the time course of maturation events are lacking (Greenwood 1987). 

Maturation is highly significant both theoretically and practically. It is of 

importance to plant propagators in three main areas, the rooting of cuttings, the 

subsequent field performance of the cuttings, and in woody plant breeding 

(Clark 1982)

In a small number of woody plant genera, juvenile tissue is the only 

tissue which will form roots (Duranz 1988). As previously mentioned, 

maturation is a complex process which incorporates numerous aspects of 

growth and development. Research has uncovered four main areas that may 

link maturation state and rooting; stem anatomy, rooting co-factor levels, 

endogenous rooting inhibitor levels, and the presence of preformed root initials 

(Clark 1982). Structural differences have, in some species, been cited as a 

factor affecting rooting, although such evidence is varied. White and Lovell 

(1984b) concluded that in Agathus australis, cuttings from older material 

contained abundant resin canals, and shlerenchyma branch traces, and that 

these reduced the amount of parenchyma tissue to such a low level that
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potential primordial sites were no longer present preventing root formation. In 

contrast Davies et al, (1982) suggested that the anatomical dissimilarities 

between juvenile and mature stems of Ficus pumila did not account for the 

differences in adventitious root formation. Perivascular sclereids 

(macrosclereids) were thicker in mature stems, but primordia penetrated these 

with relative ease. With some species, for example Hedera helix, juvenile 

tissues appear to contain higher levels of rooting co-factors than adult tissues 

(Clark 1982). Inhibitors have also been sited as a factor, as Paton et al, (1970) 

found a direct relationship between the presence of an inhibitor and decreased 

rooting in Eucalyptus grandis. Caution is necessaiy when comparisons are 

made between plant species as there are large differences, for example 

generally the length of the juvenile phase increases in the following order, 

annual herbaceous plants, perennial herbaceous plants, shrubs, and trees 

(Hackett 1987).

Despite much work, there are still no clear answers to basic questions 

such as where in the cell or tissue, and how does maturation occur? Many 

workers have discussed whether stability is determined at the level of the 

individual cell, the entire apical meristem, or is due to correlative effects 

involving the whole plant (Bonga 1982a; Hackett 1985; Greenwood 1987; 

Pierik 1990). These three possible explanations have been termed cellular, 

structural and correlative respectively (Hackett 1985). Earlier workers proposed 

that increasing structural complexity and size of growing trees resulted in 

maturation (Borchert 1976). However this has recently been questioned (Pierik

1990). The evidence for all three is equivocal, the argument for an important 

role for meristems is fairly strong, for example when adult meristems are 

isolated and/or used in grafting experiments they are not easily altered (Bonga 

1982a; Greenwood 1984). Greenwood (1987) later suggested that evidence 

exists to support all three possibilities. Using Hedera helix, he mentioned the 

stable behaviour of even extremely small grafted mature scions, which
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nevertheless will exhibit juvenile characteristics after serial grafting or tissue 

culture. The suggestion was that maturation could result from an increase in the 

proportion of mature cells in the apical meristem. Conversely the previously 

mentioned methods of rejuvenation could promote relatively more rapid 

division of vestigial juvenile cells, which gradually increase relative to the 

mature proportion. Thus simultaneously a cellular basis (where some cells are 

irreversibly mature) plus explants being able to respond to external stimuli due 

to the remaining juvenile cells dividing could exist. There is still much work to 

be done in order to obtain a clearer understanding of this highly complex 

phenomenon.

1.4 Traditional methods of propagation used with eucalypts.

(i) Air layering.

Air layering is often used as a method of propagation where the 

formation of roots from cuttings is slow (Hartmann and Kester 1990). As the 

layer is attached to the parent plant a supply of water and nutrients is 

maintained during root formation. In addition, since eucalypts have an internal 

phloem, the shoot can be supplied with metabolites through this vascular tissue 

(Wilson and Bachelard 1975). There are several reports of young trees being 

successfully layered, but many mature trees are extremely difficult (Hartney

1980). Air layering is a labour intensive process and eucalypts are very slow to 

root when layered (Hartney 1980). Aerial roots have been recorded as naturally 

occurring from the stems of adult E. camaldulensis, E. deglupta, E. robusta, 

and several species of redgums (Hartney 1980; Cresswell et al, 1982).

(ii) Grafting.

As grafting is very labour intensive and therefore an expensive 

operation, its application to forestry is limited to high value trees such as those 

used for seed orchards and ornamental horticulture (Hartney 1980). Grafting
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has been used with eucalypts to preserve flower buds on the scions so that 

experimentally-controlled cross-pollinations can be done to establish seed 

orchards (Cresswell et al, 1982). Graft incompatibility has been sited by many 

as a major problem with eucalypts (Hartney 1980; Me Comb and Bennett 1986; 

Cresswell et al, 1982). Examples of graft incompatibility include that in seed 

orchard trees of E. grandis in Australia (Burgess 1974) and in South Africa 

(van Wyk and Hodgson 1972; Hodgson 1977). In grafts of E. deglupta there 

were no incompatibility symptoms until shortly before the death of the tree 

which occurred several years later (Davidson 1977).

(iii) Stem cuttings.

The advantages of stem cuttings are that a large number of cuttings can 

be obtained from a single tree, the problem of graft incompatibility is avoided 

and it is less time consuming than grafting or layering and therefore cheaper. 

Cuttings taken from young eucalypt seedlings readily form roots (Cresswell et 

al, 1982) and epicormic shoots have also been a good source of cuttings that 

form roots. Franclet (1956) found that with E. camaldulensis and E. 

transcontinetalis, cuttings rooted if taken from young seedlings (3 months to 1 

year old) or epicormic shoots (four to five meters high and less than two years 

old) from 30 year old trees. However, cuttings from regular shoots of four to 

five year old trees could not be rooted. Further, cuttings from most mature 

eucalypts will not root (Paton et al, 1970; Hartney 1980). However, the state of 

juvenility can be maintained by hedging, which has been utilised with E. 

grandis and various hybrids in Tunisia, the Congo and Brazil (Me Comb and 

Bennett 1982). Shoots which sprout from the stump when a tree is felled can 

also have juvenile characteristics, including the ability to form roots (Me Comb 

and Bennett 1986). To develop the desired clonal lines, trees with the required 

superior growth are felled and selection is made of those individuals that 

coppice well; rooting percentages of 80% and above have been reported for E. 

grandis (Campinhos and Ikemori 1977; Chaperon and Quillet 1977).
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1.5 In vitro propagation of Eucalypts.

Cloning via organ culture has been successfully employed to obtain 

propagules from mature trees of some species for example, Eucalyptus grandis 

(Hartney 1980), however, most mature hardwoods and conifers remain difficult 

to micropropagate. Two of the greatest problems in the micropropagation of 

eucalypts are to obtain sterile material from field grown trees and the rooting of 

shoots from mature trees (De Fossard et al, 1978 and Cresswell et al, 1982). 

Another problem encountered with eucalypts is the formation of brown exudate 

resulting in the darkening of explants, callus and medium (Creswell and Nitsch 

1975; Goncalves et a l 1979; Sita 1985). Propagation from nodal explants has 

taken one of two paths, one is direct induction of roots and shoots on an initial 

nodal explant (De Fossard 1974; De Fossard et al 1977) and the other 

approach is to produce multiple shoots in aseptic cultures and then induce 

these shoots to form roots (De Fossard etal. 1977; Burger 1987).

1.5.1 Shoot cultures

Shoot multiplication has been achieved with many different Eucalyptus 

species of varying age, and a wide range of basal media (Table 3.1) have been 

used to induce this (Me Comb et al. 1986). The multiplication rates are 

variable and are affected by factors such as the species, whether or not the 

shoots are juvenile or mature and the individual genotype (Me Comb and 

Bennett 1986). Mostly this is carried out on a semi-solid medium (Sita and 

Rani 1985), but some use has been made of liquid media to stimulate shoot 

proliferation (Gupta et al. 1981; Rao and Venkatesara 1985; Gupta and 

Mascarenhas 1987).

1.5.2 Root induction

Induction of roots in mature E. globulus explants is difficult to 

achieve. Rooting media which have been used are similar to those used for
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Table 3.1 Shoot multiplication media for Eucalyptus species. 

Species_________Basal medium organic Cvtokinin (uM)

E. citriodora

E. citriodora 

E. globulus 

E. viminalis

12 species

E. diversicolor 

E. marginata

additives

Murashige and Skoog (MS)

MS with Ca-Pantothenate 

(0.2 pM), Biotin (0.5 pM)

1/2 MS minerals (no vitamins)

MS (no casein hydrolysate or 

glycine)

BAP 2.2-8.8

BAP 1.33 and K 0.93 or 

BAP 2.2 and K 0.93 or 

BAP 4.4 and K 0.93

BAP 1.0

BAP 2.5

E. nova-anglica Modified Gresshoff and Doy BAP 0.46 

E. viminalis

Auxin______ Reference

(pM)

NAA?

NAA 1.0 

NAA 1.25

IBA 0.05

Lakshmi (1979)

Gupta et al (1981), Mascarenhas et al. (1982) 

Hartney (1982)

Modified from Bennett and Me Comb (1982) 

Mehra-Palta (1982)



Table 3.1 continued.

Species________ Basal medium Cvtokinin fpM)

E. dalrympleana 

E. delegatensis 

E. gunnii 

E. pauciflora 

E. jicifolia 

juvenile 

mature 

E.

camaldulensis

Organic additives 

MS minerals (1/3 Ca) + high 

growth factors (see De 

Fossard 1978)

modified De Fossard medium 

modified De Fossard medium 

MS+O.lmg/1 Ca panthothenate 

+ 0.1 mg/1 Biotin

BAP 0.5

BAP 2.0 

BAP 0.2 

BAP 0.5 mg/1 

Kinetin 0.2 mg/1

Abbreviations not used elsewhere : Ca = calcium; K= kinetin.

Auxin______ References_________

(fiM )
NAA 0.05 Cresswell et al. (1982)

IBA 5.0 De Fossard (1981)

IBA 5.0

------------ Gupta and Mascarenhas (1987)



other genera, i.e. lowered mineral and higher auxin levels (Me Comb and 

Wroth 1986; Sita and Rani 1985). Rooting is often achieved on media without 

vitamins (De Fossard et al, 1978, De Fossard, 1981; Me Comb and Bennett 

1982; Hartney 1982), which is in contrast to shoot culture media which almost 

always contain vitamins and other organic addenda. The carry over effect of the 

shoot multiplication medium on subsequent rooting ability is often overlooked 

(Me Comb et al, 1986). Culture media sequences devised by Cresswell et al. 

(1982) and Depommier (1981) take this into account by including activated 

charcoal as well as gibberellic acid in the shoot elongation medium used before 

the root induction medium. Generally, cultures are placed in the dark, and then 

transferred to conditions similar to that used for shoot cultures.

Juvenile eucalyptus shoots usually root well (Franclet and Boulay 1982; 

Me Comb et al. 1986). However there are exceptions, for example Eucalyptus 

globulus has given less than 30% rooting (Hartney 1982). Sankara and 

Venkateswara (1985) obtained 60% rooting with in vitro juvenile Eucalyptus 

grandis shoots, whereas only 35% of adult derived ones rooted. Various 

manipulations have been carried out to increase rooting frequency, for example 

several successive subcultures (Gupta et al. 1981), and successive grafting 

(Siniscaleo and Pavolettoni 1988) proved very effective. Examples of other 

strategies to improve rooting frequency include the use of coppice shoots (Me 

Comb and Bennett 1986; De Fossard et al. 1977), spraying cytokinins on 

trunks to induce bud break (Mazelewski and Hackett 1979), and the use of 

juvenile parts on mature trees, for example lignotubers (Mazelewski and 

Hackett 1979). With difficult-to-root species such as Eucalyptus globulus, 

reports of rooting of mature explants frequently do not give all the essential 

details. The number of genotypes tested is important as the rooting treatment 

might be related to an easy-to-root genotype rather than a better rooting 

protocol for a wider range of genotypes in a population. Sankara and 

Venkateswara (1985) working with Eucalyptus grandis stated that the explants
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Venkateswara (1985) working with Eucalyptus grandis stated that the explants 

were "mature", without further details of explant history or genotype. Gupta 

and Mascarenhas (1987) omitted reporting the number of genotypes used, 

although they did state the explant origin and that the trees were mature "elite" 

fast-growing. Two reports of micropropagation of mature E. globulus had 

rooting percentages of 40-60% (Mascarenhas et al. 1982; Gupta and 

Mascarenhas (1987), the number of genotypes used was not presented in either 

of the two reports, which makes interpretation of the data rather difficult. From 

the literature it seems that with mature E. globulus only a limited number of 

genotypes can be vegetatively propagated.

1.6 Auxin and Adventitious Root Formation.

Monceau (1758) suggested that the formation of adventitious roots on 

stems was due to the downward movement of sap, and Sachs (1880, 1882) 

proposed the existence of an active substance which formed in the leaves and 

buds and accumulated in the base of stem cuttings. Van der Lek (1925), 

working with willow, poplar and grape demonstrated that active buds produced 

a substance(s) which promoted rooting, since rooting was inhibited after an 

incision was made through the vascular system between the bud and the site of 

root initiation. Went (1929) noted that the leaves and buds on stem cuttings of 

Acalypha wilkesiana Muell. Arg. also promoted rooting and assumed that they 

were the source of the hypothetical ‘root-forming phytohormone’ (rhizocaline). 

To make his studies of rhizocaline quantitative Went, (1934) established a 

standard bioassay procedure using etiolated pea hypocotyls. Went proposed the 

‘rhizocaline unit’, each of which would produce one root above the control 

value when tested under the conditions specified. Thimann and Went (1934) 

discovered that ‘heteroauxin’, isolated from urine (Kogl et al., 1934) 

stimulated adventitious rooting in the pea test developed for rhizocaline.
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Following the chemical identity of IAA, its ability to promote adventitious root 

formation was soon established (Cooper 1935, Thimann and Koepfli 1935). 

Later work, in which the response of cuttings to applied auxins was variable, 

led to the proposal that other substances were required for root formation 

(Cooper 1938, Went 1938 Thimann and Delisle, 1939). Compiling a large list 

of the rooting responses of a wide range of species to applied auxins, Audus 

(1959) stressed the positive response of the majority of species, but suggested 

that auxin was one of the determinants whose effectiveness may be affected by 

endogenous factors such as nutrients and other plant growth substances.

Auxin applications have proved very effective in promoting ARF and it 

is for this reason that it has received considerable attention amongst plant 

physiologists working in propagation research. Auxin is generally accepted to 

play a central role in ARF in the so-called easy-to-root cuttings. Hartmann and 

Kester (1990) describe two patterns of ARF in cuttings for both herbaceous and 

woody species; direct and indirect root formation. In addition in certain species 

pre-formed root primordia exist, for example in Salix fragilis (Lovell and 

White, 1986).

1.6.1 Preformed root primordia.

Root initials develop in intact stems of S. fragilis at node 4, which is 

the transition region separating the zones of rapid growth and maturation 

(Haissig 1970). They are located in the leaf gaps where ray cells develop large 

nuclei, prominent nucleoli and dense cytoplasms. Cell number increases due to 

cell divisions occurring in all planes but with little enlargement of the daughter 

cells (Haissig 1970). Following severance, further cell divisions give rise to a 

structure of similar appearance to a young root primordium which is about to 

push out into the cortex (Carlson 1938). The structure can remain dormant, at 

a primordium initial stage, over winter or even for a number of years, in the 

absence of severance.
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1.6.2 Direct and indirect root formation.

Hartmann and Kester (1990) describe two patterns of ARF in cuttings 

for both herbaceous and woody cuttings. The direct pattern of root formation 

involves direct formation of root primordia from cells associated with or in 

close proximity to the vascular system. The indirect pattern of root formation 

involves an interim period of undifferentiated cell division. These cell 

divisions are usually initiated in parenchyma or epidermal cells. Certain cells 

within these subsequent cell divisions eventually organise to initiate an 

adventitious root primordium. (Hartmann and Kester 1990). Herbaceous 

species and easy-to-root woody species generally root through the direct 

pattern of ARF (Hartmann and Kester 1990). With many difficult-to-root 

species, root formation can occur via both the direct and indirect pattern 

(Davies et al., 1982; Gronroos and Arnold 1987; Geneve 1991). Hedera helix 

has relatively stable ontogenetic phases, in the juvenile phase the cuttings are 

easy-to-root, and in the mature phase cuttings are difficult-to-root (Hackett et 

al., 1988). It has also been shown in H. helix that the easy-to-root juvenile 

phase cuttings root mainly via the direct pattern of ARF, whilst difficult-to-root 

mature phase cuttings proceed via the indirect pattern of ARF (Girouard 

1967a,b; Geneve et al., 1988).

Most workers agree that ARF consists of a number of distinct stages, 

and much work has been carried out to define these distinct stages in ARF 

(Davies et al., 1982; Lovell and White, 1986 and Hartmann and Kester 1990), 

which essentially include:

(1) Dedifferentiation and the formation of a new meristematic locus .

(2) Early cell divisions producing a cluster of cells which are radially 

symmetrical.

(3) Later cell divisions to form an organised determined root meristem.

(4) Root formation by extension growth of cells produced by the meristem.

(Dore, 1965 and Girouard, 1967a)
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Work has shown that the different stages of ARF have different auxin 

requirements (Jarvis & Shaheed 1986; Gaspar and Coumans 1987 and 

Blakesley et al., 1991a). Evidence can be drawn from both studies on applied 

auxin and endogenous levels.

1.7 The role of applied auxin in ARF.

IAA (Figure 1.1) is synthesized in shoot apices and lateral buds 

(Sembdner et al, 1980; Nordstrom and Eliasson, 1991). Auxin movement is 

preferentially basipetal (Morris et al., 1969; Jacobs, 1979). Suttle (1991) 

working with etiolated Helianthus hypocotyls found that there was a decline in 

basipetal IAA movement with increasing age, the correlation between 

increasing plant age and decline in rooting ability is well documented (Davies 

eta l, 1982; Greenwood 1987). Decapitation, in sunflower hypocotyls, (Liu and 

Reid 1992) or the use of anti-auxins, in avocado microcuttings, (Garcia-Gomez 

et al., 1994) leads to a reduction in root primordia number.

The most successful method for induction of ARF in woody species has 

been applications of synthetic auxins, indolebutyric acid (IBA) and 1- 

napthaleneacetic acid (NAA) to in vivo stem cuttings, and shoots cultured in 

vitro (Jarvis, 1986; Alvarez et al, 1989a; Garcia-Gomez et a l , 1994). It has 

been suggested that the increased efficiency of the synthetic auxins IBA and 

NAA over IAA for root initiation may be related to differences in the rates at 

which these auxins are metabolised in plant tissues (Jarvis 1986). However,

CI-LCOOH

Figure 1.1 Structure of IAA.
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Wiesman et al., (1988) found that the rate of metabolism of IB A resembled that 

of IAA. The type of auxin has been shown to play an important role, for 

example in the morphology of the root system which subsequently emerges 

(Gorst et al. 1983). Using in vitro Eucalyptus ficifolia, Gorst et al., (1983) 

reported that all explants on a medium containing IBA produced a root system 

consisting of many short roots, with extensive lateral development. IAA 

application also resulted in a rather “stunted” root system, but lateral 

development was minimal.

•James and Thurbon (1981 a & b) showed that in Malus pumila root 

stocks which were genetically related, but differed in their rooting ability, the 

difficult-to-root rootstock (M9) had a higher auxin requirement than the easy- 

to-root rootstock (M26). The differential response led workers to suggest that 

differences in the rooting ability between M9 and M26 resulted from 

differences in endogenous auxin levels (Le 1985). The role of applied auxin 

also differs at different stages of ARF (Erikson and Mohamed 1974; 

Mohammed and Eriksen 1974; Kantharay et al. 1979; Liu and Reed 1992). 

These workers showed that it is the early stages of cell division and 

organisation of the primordium which require high auxin levels and that the 

later stages do not have a high auxin requirement. Nahlawi and Howard (1973) 

found that plum rootstock cuttings rooted better with a single application of 

IBA than with repeated applications. Indeed, Thimann (1936) showed that IAA

CH2COOH

CHoCHoChUCOOH

IBA NAA

Figure 1.2 Structure of IBA and NAA.
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can be inhibitory to root development in all but the lowest concentrations. In a 

more detailed study, Smith and Thorpe (1975a) working with ARF in Pinus 

radiata hypocotyls found that EBA was necessary over the 4 day period prior to 

the formation of a meristematic locus and in the next two days during which 

the first cell divisions occurred, but not for the subsequent stages of root 

formation. The period where a positive response in ARF to auxin occurs has 

been termed the auxin 'sensitive' phase (James 1983). Although the length of 

the auxin sensitive phase is, to a certain extent dependent on the type and 

concentration of the auxin and plant species this evidence suggests an early 

role for endogenous auxin in the initiation of root primordia (Blakesley et al., 

1991a).

1.8 The role of endogenous IAA in ARF.

Much of the early work on the role of endogenous IAA levels utilised 

bioassays for the quantification of IAA, but in recent years a number of 

workers have attempted to correlate endogenous IAA levels with ARF in 

cuttings using reliable physico-chemical techniques (Alvarez et al. 1982a; 

Noiton et al. 1992a). Quantification of endogenous auxin levels has been 

carried out with respect to the rooting of different species (Bose et al. 1973), 

cultivars of the same species (Kracke et al. 1981; Alvarez et al. 1989b), 

seasonal variations (Vieitez and Pena 1968; Blakesley et al. 1991a), and age 

differences (Hengst 1959). Largely utilising bioassays, the early work on 

endogenous auxin levels and adventitious rooting often considered the auxin 

status of the cutting at the time of excision, but such systems produced 

contradictory results. In Dahlia (Biran and Halvey 1973), Rhododendron (Wu 

and Barnes 1981), and Chrysanthemum (Stolz 1968) the capacity of cuttings to 

form adventitious roots was not correlated with endogenous levels of IAA in 

the mother plants, i.e. the difference between easy-to-root and difficult-to-root
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cultivars could not be explained by endogenous IAA level. In contrast with 

Hibiscus (Bose et al. 1973) and Vitis (Bartolini et al. 1986; Kracke et al.

1981), there was a positive correlation between the ease of rooting and 

endogenous auxin levels. Kracke et al. (1981) using two cultivars of grape 

rootstock did not, however, report the bioassay used for IAA estimation.

The more closely related the tissue being used, the less chance there is 

of genetic causes for differing auxin measurements. Hengst (1959), showed 

that the variation in rooting in Streptocarpus leaves was closely related to 

variation in auxin content of the whole plant. Recently, Bouza et al. (1994), 

using a combined HPLC-ELISA technique reported that Peony explants 

differed in their rooting capacity depending on the origin and subculture 

duration and that there was a positive correlation between rooting capacity and 

endogenous auxin level. Alvarez et al (1989a) reported a positive correlation 

between auxin levels in the rooting ability of M9 and M26 apple rootstock. In 

the bases of the easy-to-root (M26) shoots there was significantly more free 

IAA than in similar difficult-to-root (M9) shoots, whereas in apical sections of 

both lines free IAA levels were comparable. In addition to higher free IAA 

levels being associated with higher rooting ability, a greater proportion of IAA 

was present as a conjugate in the difficult-to-root shoots. However, this is in 

contrast to Welander and Snygg (1987) working with apple rootstocks M26 

and A2, and with Noiton et al. (1992b) working with 'Johnothari apple in 

which different rooting ability was generated by the number of subcultures in 

vitro.

Several workers have investigated seasonal rooting patterns and 

associated auxin levels and found a positive correlation between the two. 

Blakesley et a l (1991b) used Cotinus coggygria which rooted well in the 

spring, and very poorly in the summer and autumn. The levels of IAA in the 

rooting zone (stem base) of cuttings taken in the spring was significantly higher 

than in the summer. Like Alvarez et al, (1989a) they also found a higher ratio
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of conjugated IAA to total IAA associated with the poorer rooters. IAA has 

been associated with the onset of cambial activity (Little and Wareing 1981; 

Sundberg et al. 1991) and with increased growth rate (Bandurski et al., 1977), 

so it might be expected that in the summer cuttings the concentration of free 

IAA would be less than in the spring.

1.8.1 Endogenous IAA levels during the rooting process.

The timing of events is critical as one needs to be confident about 

which stages in ARF are actually being monitored. Nordstrom and Eliasson 

(1991) working with pea cuttings, monitored IAA and indole-3-acetylaspartic 

acid during ARF. Identification utilised GC-MS and quantification, an HPLC- 

spectrofluorophotometric detection system. They concluded that root initiation 

may occur without increased IAA levels in the rooting zone. For the timing of 

the events of ARF, they referred to Bollmark et al., (1988) who reported that 

the first mitoses take place 1-2 days after cutting excision. The organisation 

and growth of root primordia begin during the next few days and the first 

visible roots appear 5 days after cutting excision. Their first harvest occurred 1 

day after cutting excision. Hausmann (1993), using the same HPLC detection 

system as Nordstrom and Eliasson (1991), worked with in vitro-raised poplar 

shoots and concluded that a decrease in IAA in the shoots preceded rooting. 

This was considered as corresponding to the initiative stage of rooting. 

Preceding this was a peak in IAA activity and it was concluded that this might 

initiate the inductive stage of ARF. Rooting was uniform on the rooting 

medium and 100% of the shoots had rooted by the sixteenth day; however no 

histological work was reported. Recently, Garcia-Gomez et al., (1994) 

working with avocado microcuttings found endogenous IAA levels in the base 

(first cm) and apical part (rest of the cutting) remained constant when the 

cuttings were rooted in the absence of exogenous auxin. After 3 days on the
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rooting medium some nuclei appeared densely stained, coinciding with the first 

harvest for analysis of endogenous IAA.

Several independent workers have reported that after a transient rise in 

free IAA associated with the induction period of ARF, a decline in auxin levels 

coincided with early cytological events (Blakesley, 1984; Moncousin et al, 

1988; Gaspar et al, 1990). In addition there is evidence of a positive 

correlation between the site of ARF and localisation of IAA levels. Blakesley 

(1984) working with Phaseolus aureus hypocotyl cuttings found that the 

transient rise in IAA level which occurred prior to early visible events, only 

took place in the basal section of the hypocotyls where the roots form. 

Moncousin et al, (1989) working with an in vitro grapevine and using ELISA 

also detected an early transient IAA peak in the basal region of the cuttings, 

which was not found in the apical part of the shoot. That endogenous IAA may 

be of importance as a promoter of ARF only after the end of the induction 

phase has been suggested (Norcini et a l 1985). Using ELISA techniques an 

increase in IAA was detected in whole terminal cuttings of chrysanthemum 

(Weigel et a l 1984); here IAA was recorded as increasing until the first 

adventitious roots penetrated the epidermis. Label et al, (1989) working with 

in vitro rooting of Prunus avium explants, and Maldiney et al, (1986) working 

with hypocotyl cuttings of Craigella and Craigella lateral suppressor tomatoes, 

both using ELISA found similar results suggesting that there was a 

concomitant rise in IAA and the primary event of root initiation.

In cuttings of easy-to-root cultivars of Hibiscus and Bougainvillea, 

endogenous IAA levels were reported to decline during root formation (Bose et 

a l, 1973). Working with Sequoiadendron giganteum cuttings Berthon et al, 

(1989) also found root initiation occurred with a reduction in IAA levels.

From the large amount of work which has been carried out on IAA 

analysis during ARF there still seems to be some debate. To avoid confusion it 

is important to have a clear understanding of the sequence of histological
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events and to insure that IAA analysis is timed suitably so that the possibility of 

missing phases does not occur. For reliable results in IAA analysis, 

unequivocal physico-chemical techniques, (Sandberg et al, 1987a), should be 

employed.

1.9 The role of IBA.

As previously mentioned in the work from auxin applications, IBA has 

been a very successful treatment for the promotion of ARF. The role of IBA 

still has several unanswered questions. Following uptake, IBA can be 

conjugated with amino acids (Wiesman et al. 1989; Nordstrom et al. 1991). 

Comparable to IAA conjugates, the IBA conjugates form a potential source of 

free IAA and are not physiologically active themselves (Cohen and Bandurski 

1982; Wiesman et al. 1989). IBA has also been reported to be converted into 

IAA (Epstein and Lavee 1984; Alvarez et al. 1989a; Van der Krieken et al., 

1992a, b 1993). The metabolism of IBA, unlike that of IAA, has not received 

much attention. Some workers have suggested that a possible mode of action of 

IBA is via conversion into IAA (Epstein and Lavee 1984; Van der Krieken et 

al. 1993), this is contrast to IBA exerting a direct effect (Nordstrom et al.

1991).

1.10 Competence and determination.

The terms competence and determination have both been adapted from 

animal to plant studies. Competence in plants is generally defined as a state of 

reactivity of cells to respond to specific stimuli (Meins, 1986). Here 

competence for root formation will be defined as the ability of cells within a 

tissue to respond to specific root-inducing stimuli by the formation of roots.
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Once exposed to an inducer the competent cells may become determined for 

root formation. Determination can be defined as the commitment of cells to a 

specific developmental fate (Meins and Binns 1979). Therefore, once a cell(s) 

has received a signal for root formation, commitment to root formation will 

remain even after removal of the root-inducing stimuli. The state of 

determination is usually deduced by experimental manipulation of cells, tissues 

or organs (Meins and Binns 1979). Frequently the manipulation used for 

studies of determination for rhizonogenesis has involved transfer of tissue 

explants from media containing a root-inducing factor(s), the so-called root- 

inducing medium (RIM), to a medium without the factor(s), (basal medium), 

and counting the number of roots after a certain period of time. Frequently the 

root-inducing factor is an auxin, sometimes combined with a relatively low 

level of cytokinin. An auxin requirement for competence and determination of 

tissue explants to form roots has been suggested by Bonnett and Torrey, 

(1965) and Lyndon (1990), with Convolvulus. With the apparent ease of 

manipulating organogenesis in tissue culture conditions (Skoog and Miller, 

1957), surprisingly few studies have been reported on the competence and 

determination of tissues for root formation (Me Daniel, 1984).

Mohnen (1994) highlighted several systems for studying competence 

and determination for ARF, and discussed work on apple shoot cultures (James 

and Thurbon, 1979; Sriskandarajah et al., 1982; James, 1983), Hedera helix 

leaf cuttings and debladed petioles (Geneve et a l, 1988; Geneve et al, 1991), 

callus (Walker et al., 1979), leaf explants (Christianson and Wamick, 1985; 

Wamick 1992) and the use of thin cell-layer explants (Mohnen 1994). As 

mentioned earlier, an advantage of the H. helix system is that of relatively 

stable ontogenetic phases, where the juvenile phase is easy-to-root and the 

mature phase is difficult-to-root (Hackett et al, 1988). Geneve et al, (1991) 

used sterilised debladed petioles from juvenile- and mature-phase H. helix, 

incubated on a medium containing 100 jamol a-naphthalenacetic acid (plus
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ImM of the polyamine biosynthesis inhibitor, difluoromethylarginine). This 

work demonstrated that culture of juvenile petioles on NAA-containing 

medium for as little as one day permitted some root formation, whilst longer 

exposures up to eighteen days yielded larger numbers of roots. Therefore, as 

little as one day was sufficient to allow juvenile petioles to become 

determined for root formation. Since root meristems were first formed after 

approximately 12 days of culture, determination for root formation preceded 

meristem formation. Root meristems in juvenile petioles originated in cortical 

parenchyma cells adjacent to vascular bundles. In contrast, the few roots 

which formed in mature petioles developed from callus that developed from 

cortical cell division. Figure 1.3 shows the proposed scheme for adventitious 

root primordium formation through the direct or indirect pattern of organ 

formation (from Geneve 1991). The data supported the use of the terms 

“competent root-forming cells” and “induced competent root-forming cells” to 

describe the target cells for the initial events of root formation for the direct 

and indirect patterns of rooting respectively. Determination.of explants for root 

formation is a lengthy process, usually requiring days rather than hours. This is 

sufficient time to allow cell division to occur, but there is still uncertainty 

whether there is a correlation between cell division and determination 

(Mohnen, 1994). In certain cases tissues taken directly from the plant may not 

be competent to respond to root-inducing factors, and attention may need to be 

paid to the initial attainment of competence in order to maximise rooting 

potential (Christianson and Wamick, 1985).
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Figure 1.3 Proposed scheme for adventitious root primordium formation in 

Hedera helix through the direct or indirect pattern of organ formation (From 

Geneve, 1991).

Experimental approaches that can effect the competence for ARF 

include the growth of shoots in darkness (etiolation) and the exclusion of light 

from tissue that was initially light-grown (blanching) (Harrison-Murray, 1982). 

A general or localised exclusion of light from shoot tissue during the early 

stages of growth from apical or axillary buds can influence the competence for 

adventitious root formation in cuttings taken from the treated shoots (Gardner, 

1936; Herman and Hess, 1963; Harrison-Murray, 1982; Maynard and Bassuk, 

1988). Howard (1980, 1981, 1984, 1985), using apple rootstock M.9., has 

studied the effects of dark treatments on ARF. These studies indicated that 

there was, on average a seven-fold increase in the rooting percentage for auxin
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treated cuttings that were etiolated initially, but acclimated in light for two 

weeks (78%), as compared to auxin treated, light-grown control cuttings (11%) 

(Harrison-Murray, 1982). Although blanching light-grown shoots was 

significantly less effective than etiolation in changing or maintaining 

competence (Howard 1981), the initial growth of shoots under heavy shading 

has been shown to be as effective as complete darkness in influencing the 

rooting potential of M.9. cuttings (Howard, 1984, 1985). The experiments by 

Howard with apple rootstock M.9. together with work on avocado (Frolich, 

1961), indicate that the effect of etiolation is not ephemeral, but can persist for 

many months subsequent to the exposure of light. The persistent effect of 

etiolation with subsequent exposure to light on the rooting of M.9. hardwood 

cuttings nine months later (Harrison-Murray, 1982), suggests there is a 

fundamental change that is not related to the level of endogenous auxin, or 

other transient metabolic effects.

1.11 Sensitivity and evidence from transgenic plants.

Trewavas (1981) brought to the fore the theory that in many cases 

sensitivity (responsiveness) to plant growth substances is more important than 

absolute concentrations of plant growth substances. At the time more concern 

was placed on establishing the importance of sensitivity than in discussing its 

measurement or theoretical basis. The discussion by Trewavas (1981) 

stimulated a greater awareness of sensitivity which was reflected in several 

publications that followed (Cleland 1983; Salisbury and Ross 1985; Moore 

1989; Guem 1987; Davies 1987). In a later paper Trewavas (1991) discussed 

the actual measurement and theoretical basis of sensitivity. His criteria for an 

unambiguous measurement of growth substance sensitivity are: 

i To manipulate growth substance concentrations at the endogenous level in 

order to avoid artefact.
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ii Constraint on experimental manipulation with the preferable use of whole 

plants.

iii Methods which assess the plant growth substance contribution to control 

when a number of other factors also contribute.

The conditions are not easy to meet, but would allow the measurement 

of sensitivity at the plant growth substance level which Trewavas (1991) 

defined as control strength. Control strength requires knowledge of the 

fractional change in response (R) and the fractional change in endogenous 

growth substance concentration (C). The value of the control strength is 

obtained by dividing the change in R by the change in C. There are very few 

plant growth substance studies which permit control strength to be estimated. 

Two sets of data which lend themselves to possible estimates of control 

strength were published by Ingram et al. (1986) and Lenton and Hedden 

(1987). In both cases, the gibberellin control strength for leaf growth and tall 

pea stem growth can be estimated to be no greater than 0.05 (0.95 of the 

control is elsewhere). One explanation of this is that plants growing near their 

maximal rates will have their control of growth shared amongst many different 

molecules (Trewavas 1991). Under different circumstances such as shade 

conditions these control strengths could easily change (Trewavas 1986).

Hairy root disease and crown gall disease are incited by Agrobacterium 

rhizogenes and A. tumefaciens respectively. Virulent A. rhizogenes and A. 

tumefaciens bacteria harbour a Ri (root inducing) plasmid and a Ti (tumour 

inducing) plasmid respectively. These plasmids are of interest as they contain 

genes involved in the biosynthesis of plant growth substances. In addition 

transfer of certain regions of the Ri plasmid has been reported to confer 

increased sensitivity to auxin in plant tissue (Maurel et al, 1991; Shen et al., 

1988 ). An abundant proliferation of roots occurs at the site of inoculation 

when the Ri T-DNA is expressed. Ri plasmids are classified according to the 

type of opine which is synthesised in transformed tissue. Following
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incorporation of Ri plasmid T-DNA into the plant genome three opines have 

been identified; mannopine, agropine and cucumopine. Agropine type Ri 

plasmids differ in that they have two T-DNA regions, TL and TR. Strains of A. 

rhizogenes which synthesise the other two types of opine have just one T-DNA 

region which shares considerable homology with the TL region of the agropine 

strains. Hairy root disease is also characteristic of plant tissue transformed by 

the mannopine-type A. rhizogenes which does not contain the TR region. The 

Tl  region of the Ri plasmid stimulates root formation independently of the 

transfer and expression of the TR T-DNA genes. The A. rhizogenes T-DNA 

agropine-type Ri plasmid pRiA4 was characterised by White et al., (1985). 

Four genetic loci were identified (rolA, rolB, rolC and rolD) which were 

identified according to the tumour morphology observed when insertions were 

made into each genetic locus. Rol gene loci have since been studied by many 

research groups (Shen et al., 1988, Estruch et al., 1991, Maurel et al., 1991, 

Schmulling et al., 1993).

Enhanced auxin levels may be important for auxin sensitivity through 

the rolB gene coding an enzyme (P-glucosidase) capable of hydrolysing 

indole-p-glucosides (Estruch et al., 1991). However the substrate tested for the 

rolB gene enzyme by Estruch et al, (1991) was not an auxin, and if the enzyme 

is able to hydrolyse auxin conjugates in vivo it could be useful for the 

manipulation of endogenous auxin (Blakesley, 1994). P-glucosidase was not 

able to hydrolyse IAA-glucose conjugates (Spena et al, 1993). Specific 

expression of the rol-B gene increased the free IAA content in transgenic 

anthers (Spena et al, 1992), although expression of the gene appears not to 

influence the overall rate of IAA biosynthesis (Nilsson et al., 1993). Using 

Lotus comiculatus root tips Shen et a l,(1988) looked at the physiological 

properties of protoplasts from transformed (A. rhizogenes) and untransformed 

material. Hairy root transformed cells were 102 to 103 times more sensitive to 

the effects of auxin when compared to the untransformed cells. Increased
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sensitivity being an early cellular event, possibly involving the reception or 

transduction of the hormone signal was suggested by the authors. Barbier- 

Brygoo et al, (1990) found that each of the single genes rol A, rolB and rolC 

was able to confer increased sensitivity to auxin in transformed protoplasts, 

rolB being the most effective (Maurel et al, 1991). The apical region of 7 

week old transformed and rol-A tobacco plants contained about half the 

endogenous IAA concentration present in the apical region of the control 

plants (Prinsen et al, 1994).The detailed kinetic hormonal analyses (Prinsen et 

al, 1994) emphasised the relevance of varying hormone levels in the shoot 

apical region on the developmental pattern of both transgenic and normal 

plants. Maurel et al, (1991) postulated that increased sensitivity to auxin 

could be a major determinant for root differentiation.

The potential value of studies on sensitivity and the use of transgenic 

plant tissue has been suggested in several papers (Blakesley and Chaldecott 

1993; Hamill and Chandler 1994). The study of the structure of the genes 

involved in the biosynthesis and metabolism of plant growth regulators, and in 

apparent sensitivity to plant growth regulators, could provide information on 

the role of IAA in root initiation. Incorporation of auxin biosynthetic genes 

from A. rhizogenes or A. tumefaciens may also permit manipulation of 

endogenous IAA levels.

1.12 Plant hormone analysis.

The analysis of plant hormones involves the following basic processes; 

extraction, purification, qualitative and quantitative analysis. Analysis of plant 

hormones has greatly improved in recent years due to better instrumentation 

(Sandberg et al, 1987a) and improved isotopically labelled compounds (Cohen 

et al, 1986).
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1.12.1 Extraction.

Addition of a suitable isotopically labelled internal standard to the 

sample, permits the loss of IAA during extraction and purification to be 

corrected for without knowing the recovery (Cohen et al, 1986). However, in 

order to obtain an accurate IAA estimate, firstly the isotopically labelled 

compound should equilibrate with the endogenous IAA pool, otherwise an 

underestimate will occur. Secondly, IAA must not be formed during sample 

preparation, or an overestimate of IAA will occur. IAA formation during 

sample preparation has been documented, (Bandurski et al, 1977; Emstsen et 

al, 1986; Sundberg 1990), but can be reduced by minimising sample handling, 

using the shortest extraction time for equilibrating the internal standard with 

endogenous IAA, and by adding an antioxidant (Nakajima and Yamazaki 1979; 

Lino et al, 1980; Emstsen et a l 1986).

1.13 Purification.

A wide range of methods are available for the purification of indoles in 

plant extracts. Purification often includes more than one of the following 

methods, solvent partitioning, polyvinylpyrrolidone (PVP), anion-exchange 

resins, Sep-Pak cartridges and HPLC. Generally the greatest reductions in dry 

weight are obtained when the individual purification procedures display 

distinctly different separatory mechanisms (Reeve and Crozier. 1978).

1.13.1 Solvent partitioning.

The initial purification step, especially with large amounts of material 

and/or with highly pigmented plant tissue, traditionally included solvent 

partitioning (Epstein and Cohen 1981; Cohen et al, 1986; Sundberg et al, 

1991; Li et al, 1992). Tissue is partitioned between an aqueous phase and an 

immiscible organic solvent. The distribution of IAA (and other ionisable
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molecules) is influenced by its pKa and the pH of the aqueous phase, in an 

uncharged form it migrates into the organic phase (Yokota et al, 1980). 

Numerous solvent partitioning schemes have been reported in the literature. 

Figure 1.4 (from Sandberg et al., 1987a) shows a general partitioning scheme 

in which the extracts are firstly dissolved in 0.1 M phosphate buffer (pH 8) 

then partitioned against ethyl acetate. Frequently an antioxidant, such as 

butylated hydroxytoluene, is incorporated in the solvents used for extraction 

and partitioning, to help suppress the problem of break down of indole-3- 

pyruvic acid (IPyA) into IAA (Sandberg et al., 1987a). There has been a 

general move away from the use of solvent partitioning procedures for IAA ( 

Sandberg et al, 1984; Sundberg et al, 1985; Nordstrom and Eliasson 1991) as 

there are more rapid and effective methods available (Sandberg et al, 1987a), 

and the amount of plant tissue necessary for analysis has decreased (Epstein 

and Cohen 1981; Prinsen et al, 1992).

Acidic indoles, such as IAA, remain in the aqueous phase when 

partitioned against ethyl acetate in pH 8 phosphate buffer (Figure 1.4). 

However, even when IAA is the only compound of interest, the pH8 

partitioning step is frequently included as this removes significant amounts of 

impurities which would otherwise contaminate the acidic ethyl acetate fraction 

(Li et al 1992). When analysis is concerned with a specific acidic indole, its 

IQ may be such that it can be extracted into diethyl ether rather than ethyl 

acetate. Diethyl ether is less polar than ethyl acetate and therefore will yield 

cleaner samples, examples where IAA has been partitioned into diethyl ether 

include the work of Knegt and Bruinsma (1973) and Cohen et al, (1986).
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Dissolve extract in
0.1 M phosphate buffer (pH 8.0)

Partition against 
ethyl acetate

I----------------------------------  I
Ethyl acetate Aqueous phase
(NEUTRAL INDOLES) 
lEt, IM and lAld

Adjust to  pH 3.0 
partition against 
ethyl acetate

Ethyl acetate (ACIDIC INDOLES) 
IAA, 5-OH-IAA, 4-CI-IAA 
ICA, OxIAA, lAAsp, lAGIu, IPyA 
and PAA

A queous p hase  
(INDOLE CONJUGATES 
AMPHOTERIC COMPOUNDS) 
Tryptophan, lAGluc, lAlnos, 
lA lnos-arabinoside, 
iAInos-galactoside

Figure 1.4 Partitioning procedures for the separation of indoles into neutral, 

acidic and conjugate fractions (Sandberg et al., 1987a).

1.13.2 Polyvinylpyrrolidone (PVP).

PVP has been used extensively for the purification of plant hormones 

(Sandberg et al., 1981, 1987a) because it is a simple and flexible technique, in 

that column sizes can be adjusted to accommodate a wide variety of samples 

and it yields a high recovery. A key element in the effectiveness of PVP in 

purification protocols is its property of retention of phenolic compounds by 

hydrogen bonding at low pH (Yokota et al., 1980; Sandberg et al., 1987a). The 

retention of auxins by PVP is a pH-dependent process. Indoles are highly 

retained when chromatographed in an acidic buffer (Yokota et al, 1980; 

Sandberg et al., 1987a). Purification of auxins in plant extracts using PVP
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column chromatography has often been reported (Me Dougall and Hillman 

1978; Sandberg et al, 1981; Blakesley et al 1991 b).

1.13.3 Ion-exchange chromatography.

Anion-exchange resins, for example Sephadex QAE-25, retain acidic 

compounds. This property can be utilised effectively in the purification of 

indolic compounds. When purifying plant samples it is important not to 

overload the exchange capacity of the column. Reservoirs containing the ion- 

exchange resin can be coupled to Sep-Pak cartridge systems.

1.13.4 Sep-Pak cartridge systems.

Recently several types of small prepacked cartridge systems containing 

various chromatographic materials have become available. The Sep-Pak 

system from Waters Associates was one of the first and can be obtained with 

either silica gel or a Ci8-coated silica support. One use is as an off-line 

precolumn prior to HLPC (on-line HPLC precolumns often produce some 

degree of band spreading). A second use is as a combined 

purification/concentration step; in this mode the sample is applied to the 

cartridge in a weak solvent so that the compound of interest is adsorbed. Next 

the cartridge is washed to remove impurities before the solvent strength is 

increased eluting the compound of interest. The use of silica and Ci8 

cartridges can be combined in a number of ways as described by Sandberg et 

al, (1987a).

1.13.5 High performance liquid chromatography

High performance liquid chromatography (HPLC) has been used by 

scientists from many fields. As reversed-phase HPLC has been used to obtain 

data in this thesis it is only this system which will be described in any detail. In 

this form the stationary phase is organic, usually a long alkyl chain and the 

mobile phase is primarily water but with an organic modifier. Ionic samples 

may be separated on this type of column by either of two techniques:
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Ion suppression: if the sample is a weak acid or base, its ionisation can 

be suppressed by changing the pH of the mobile phase so that the solute 

becomes less polar.

An alternative is ion pairing, where the sample solute (a strong acid or 

base), can be paired with a counter ion added to the mobile phase, to form an 

effectively neutral ion pair.

Columns are eluted either isocratically or with a gradient of increasing 

amounts of organic solvent, for example methanol or acetonitrile, in water or 

an aqueous buffer. Commercial supports are produced with different types of 

silica gel, and variations exist in the procedures used in to bond the stationary 

phase, the degree of stationary phase loading and the effectiveness with which 

residual active sites are encapped. As a consequence, even different batches of 

the same material do not show identical retention characteristics. Exact 

conditions for a particular analysis have to be optimised ‘on-site’.

Wurst et al., (1980, 1984) and Jensen (1982) reported detailed studies 

of reversed-phase HPLC of indoles. The pH of the mobile phase had a marked 

effect on acids, for example IAA eluted much more rapidly at pH 7 than pH 3.5 

(Jensen 1982). At pH 7 carboxyl groups are ionised, and in the reversed-phase 

mode charged molecules are distributed preferentially into the more polar 

aqueous mobile phase. In practice, acidic indoles are usually analysed in an 

acidic mobile phase in an undissociated form, (ion-suppression reversed-phase 

HPLC (Sandberg et al., 1987a).

1.14 HPLC detection systems.

1.14.1 Absorbance detectors.

U.V. absorbance monitors operating at 280nm can be used to detect 

most indoles in HPLC eludates. The limit of detection using reverse phase 

analysis of IAA is in the low nano-gram range (Crozier et al, 1980). Scanning
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diode-array detectors are able to record whole spectra on HPLC peaks, and 

even sections of HPLC peaks, as they pass through a flow cell (Horgan 1987). 

Due to the large number of compounds that elicit a response at A28o, an 

absorbance monitor only offers a low degree of selectivity when analysing 

endogenous indoles (Sandberg et al, 1987a).

1.14.2 Fluorescence detectors.

Since IAA is naturally fluorescent, with excitation and emission 

maxima at 280nm and 350nm, respectively, it can be selectively monitored 

with a spectrophotofluorimeter (Burnett and Audus 1964; Crozier et al,

1980). Accuracy of analysis can be improved using a selective detector, as it 

responds to the compounds of interest to a much greater degree than it does to 

the majority of the contaminants (Crozier et al., 1980). Figure 1.5 shows a 

comparison of U.V absorbance and fluorometric detection selectivity. Unlike 

U.V. absorption, which is measured as a reduction in light intensity, 

fluorescence is recorded against a dark background; the resultant improved 

signal/noise ratio renders fluorescence potentially more sensitive (Sandberg et 

al., 1987a). The detection limit with a fluorescence detector is usually 

superior to that of a UV. detector (Figure 1.5). As little as 1 pg of IAA can be 

detected using reverse-phase HPLC with a fluorescence monitor (Crozier et al.

1980). Fluorescence detectors have been widely used for the quantification of 

endogenous IAA (Crozier et al, 1980; Blakesley et al, 1991b; Prinsen et 

al., 1992; Garcia-Gomez et al., 1994).

1.14.3 Electrochemical detectors.

The applicability of electrochemical detectors is almost exclusive to 

reverse-phase and ion-exchange HPLC, as the mobile phase must be 

electrically conductive (Sandberg et al., 1987a). The limit of detection for IAA 

is in the order of 50 pg (Sweetser and Swartzfager 1978)

33



1.14.4 Radioactivity monitors.

Continuous-flow monitoring is desirable if HPLC is to be used in the 

analysis of radioactive compounds, as collecting and analysing large numbers 

of small fractions is time consuming. Continuous-flow monitoring of (3- 

radiation in HPLC effluents uses a scintillation technique and, depending on 

the method of presentation of the eluate to the scintillator, can be classified as 

either a heterogeneous or a homogenous counting system (Sandberg et al, 

1987a). In the homogenous counting system the column eluate is mixed with a 

liquid scintillation cocktail before passing through a flow cell positioned 

between the photomultiplier tubes of a liquid scintillation counter. In 

heterogeneous systems the column eluate moves directly to the flow cell which 

is packed with a finely divided solid. Lack of sensitivity is one reason why this 

technique is considered unsuitable for widespread application, however 

improvements can be made and much depends on chromatographic conditions. 

Limits of detection of 14C isotope are 800 dpm and 200 dpm for heterogeneous 

and homogenous counting modes respectively (Sandberg et al., 1987a). A 

recent example where HPLC-radiocounting (HPLC-RC) was employed is with 

metabolism of IAA by tomato pericarp discs (Catala et al., 1992). They 

operated in the homogenous mode and also employed the use of HPLC-mass 

spectrometry as described by Ostin et al., (1992).
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Figure 1.5 Comparison of detector selectivity in an HPLC analysis of IAA 

from germinating seeds of Dalbergia dolichopetala. Detectors (a) absorbance 

monitor at 280nm, (b) fluorimeter, excitation 280nm, emission 350nm. 

Column: 250x5mm i.d. 5jum ODS-Hypersil. Mobile phase: 35% methanol in 

1% aqueous acetic acid, samples: equal sized aliquots (Sandberg et al., 1987a).

1.15 2-methvlindolo-a-pvrone assay.

IAA reacts with acetic anhydride to from 2-methylindolo-a-pyrone, (2- 

MIP), (Plieninger et al., 1964). Although the sensitivity of the 2-MIP assay is 

influenced by a number of factors including the purity of the reagents and type 

of spectrofluorimeter used, subnanogram limits of detection can be routinely 

achieved (Sandberg et al., 1987a). The assay is specific (Stoessl and Venis
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1970) and the only two indoles in plant tissues likely to produce fluorescence 

indistinguishable from that of IAA after derivatisation (4-chloro-IAA and 5- 

hydroxy-IAA) can be separated prior to or after derivatisation (Lino et al, 

1980; Sjut 1981; Blakesley et al, 1983). This assay has been used by several 

groups of workers (Eliasson et al, 1976; Bottger et al, 1978; Mousdale et al, 

1978; Blakesley et al, 1991b).

1.16 Immunoassays.

The appeal of immunoassays is based on their low limits of detection, 

the fact that they require little sophisticated equipment and their potential for 

processing large numbers of samples (Sandberg et al, 1987a).

1.16.1 Radioimmunoassays.

With radioimmunoassay (RIA) in addition to antiserum, an appropriate 

radiolabelled compound must be available for use as an immunotracer. H- 

labelled immunotracers are used most frequently due to their high specific 

activity, 14C (Weiler et al, 1981) and 125I (Weiler 1981) have also been used, 

but these have limitations when compared to 3H (Sandberg et al, 1987). A RIA 

for the detection of as little as 0.5-1 pmol of IAA in unpurified or partially 

purified extracts was reported (Weiler 1981), however, although cross- 

reactivity was checked, there was no reported check for validity by a suitable 

technique such as GC-MS. However, the idea of employing immunoassays for 

accurate quantification with minimal purification has been questioned 

(Sandberg et al, 1985; Cohen et al, 1987).

1.16.2 Enzyme-linked immunoabsorbent assays.

With enzyme-linked immunoabsorbent assay (ELISA) the tracer is 

labelled with an enzyme, rather than a radioisotope. The antibodies are bound 

to the walls of either plastic tubes or wells in polystyrene plates. The sample is
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added and there is competition between the tracer and hormone present for the 

available antibody binding sites. After a suitable incubation period the 

tubes/wells are washed to remove the soluble contents prior to determining the 

amount of immunotracer bound to the antibodies on the wall, by incubating 

with an suitable substrate. The amount of product formed from the substrate 

is measured colourmetrically and is proportional to the amount of bound 

enzyme labelled tracer which is inversely proportional to the amount of 

hormone in the sample (Sandberg et al, 1987a). ELISA is more sensitive than 

corresponding RIAs for IAA because with RIA, the detection of the tracer is 

based on the relatively few disintergrations of the radiolabelled immunotracer. 

With ELISA, bound enzyme-labelled tracer can catalyse the conversion of 

relatively large amounts of substrate to product, thus providing an inherent 

amplification factor which has the potential to increase the sensitivity of the 

assay. Sub-fmol sensitivity for measurement of abscisic acid (ABA) in stomatal 

guard cells using ELISA was reported by Harris and Outlaw (1990). Cohen et 

al, (1987) compared commercial ELISA kits for quantitative accuracy by GC- 

MS-SIM. Purification similar to that obtained by at least one high HPLC step 

was generally necessary prior to ELISA analysis of plant materials. In no case 

was it possible to obtain reasonable estimates of IAA from crude extracts or 

even from solvent partitioned fractions of plant tissues. Label et al. 

(1988,1989) used ELISA to quantify endogenous levels of IAA and ABA in 

Prunus avium explants, the purification system included Ci8 Sep-Pak and 

HPLC. Levels of IAA, ABA, zeatin and zeatin riboside during the course of 

ARF of in vitro Sequoiadendron giganteum were quantified by ELISA 

(Berthon et al, 1989).
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1.17 Gas chromatography.

Most indoles are not sufficiently volatile for direct GC and have to be 

derivatised to increase their vapour pressure prior to analysis.

Gas chromatography detectors:

1.17.1 Flame ionisation detectors.

Flame ionisation detection (FED) was used in the early studies to 

analyse IAA (Stowe and Schilke 1964; Davis et al, 1968; Grunwald and 

Lockard 1970). FID permits nanogram levels of IAA derivatives to be 

quantified. The system lacks sensitivity as almost all organic compounds elicit 

a response, thus necessitating extensive sample purification for accurate 

analysis (Sandberg et al, 1987a).

1.17.2 Electron-capture detectors.

An electron capture detector (ECD) offers both sensitive and selective 

monitoring of components containing highly electronegative groups (Sandberg 

et al., 1987). With the exception of chlorinated compounds, indoles do not 

possess such properties and can only be detected after conversion to 

halogenated derivatives. Bittner and Even-Chen (1975) analysed IAA as 

chlorinated analogues of LAA-Me and IAA-Et, while Epstein and Cohen (1981) 

have utilised pentafluorbenzyl esters. Although these derivatives permit 

picogram levels of detection, selectivity is low when endogenous IAA is 

analysed as all the carboxylic acid in an extract will be derivatised and aquire 

electron-capturing properties (Sandberg et al, 1987a). Epstein and Cohen 

(1991) tried a post-derivatisation Ci8-HPLC step (Figure 1.6a,b). An 

alternative method is to methylate samples and then derivatise the indole 

nitrogen with trifluoroacetic anhydride (Brook et al, 1967), heptafluorobutyric 

anhydride (Bertilsson and Palmer 1972) or pentafluoropropionic anhydride 

(Lachno et al, 1982). In premethylated samples this approach provides a more 

selective detection of indoles as only the compounds containing amide moiety
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will be derivatised (Sandberg et al, 1987a). The limit of detection is about 10 

pg for 1-trifluroacetyl-IAA-Me (TFA-IAA-Me), and 1-heptafluorobutyryl-LAA- 

Me (HFB-IAA-Me), (Seeley and Powell 1974). Using 1-pentafluoropropionyl- 

IAA trifluoroethyl ester (PFP-IAA-TFA) analysed by GC-ECD the detection 

limit is lowered to about 3 pg, however this is at the expense of selectivity 

when working with plant extracts (Lancho et al, 1982).

1.17.3 Alkali-flame and nitrogen-phosphorus detectors.

Selective detection of IAA following GC is much easier with an alkali- 

flame detector (AFID) than with an ECD (Sandberg et al., 1987a). Using GC- 

AFED Schwartz and Powell (1979) analysed IAA in semipurified methylated 

extracts of immature strawberry fruit and apple shoot tips, and reported that the 

limit of detection was about 150 pg. An AFID is basically a FID which has an 

alkali source in contact with the hydrogen flame. However two problems of 

AFID are firstly that it is very sensitive to fluctuations in the rate of flow of 

hydrogen. Secondly it has a relatively short life due to rapid evaporation of the 

metal salt from the source (Sandberg et al., 1987a).

The problems of AFID were overcome with the introduction of the 

alkali flameless or nitrogen-phosphorus detector (NPD) (Kolb and Bischoff 

1974). The background noise of a NPD is much lower and a lot more stable 

than that of a AFID, and NPD has a much better longevity than an AFID (Olah 

et al., 1979). GC-NPD has been used to quantify IAA in methylated extracts 

from Zea mays kernels (Martin et al., 1980) and seedlings (Cohen and Schulze

1981) and Salix pentandra shoots (Jensen et al, 1986). The detection limit 

using GC-NPD is around 5 pg (Martin et al., 1980).

1.17.4 Radioactivity detectors.

Like HPLC-RC, GC-radioactivity counting (GC-RC) can be used for 

metabolism studies (Simpson 1968). GC-RC has only found very limited 

application as HPLC-RC is technically less complex and offers more sensitive 

on-line detection of radioactive components (Sandberg et al., 1987a).
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Figure 1.6 a,b. (Epstein and Cohen 1981).

a) GC-ECD of a purified sample from olive leaves using a post derivatisation 

Cjg-HPLC step. Based on external standardisation, peak represents 133 pg of 

IAA injected as its pentafluorobenzyl bromide (PFB) ester.

b) GC-ECD of a purified sample, injected without post derivatisation 

purification. Peak represents 119 pg of IAA injected as its PFB ester.

1.18 Gas chromatography-mass spectrometry.

When a gas chromatography column outlet is coupled to a mass 

spectrometer it becomes a very powerful and flexible analytical tool, enabling 

mass spectra to be obtained as individual components elute from the gas 

chromatograph. Computerised data acquisition allows storage and processing of 

the mass spectra, and enormous amounts of information may be obtained about 

the chemical nature of complex plant extracts. Improved microprocessor 

technology has resulted in a new generation o f comparatively low cost, bench-
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top GC-MS instruments becoming available (Rivier 1986). One of the major 

limitations of GC-MS as a tool for plant hormone analysis has been the limited 

availibility of suitable stable isotope labelled 'heavy' internal standards such as 

l^C^-IAA (Cohen et al. 1986). All plant hormones, except ethylene must be 

first converted to volatile derivatives before GC. Generally, carboxylic acids 

are converted to methyl esters by diazomethane (Figure 1.7)

In the source, which is maintained under a vacuum of approximately 

10"6 torr, molecules are ionised and fragmented in a beam of high energy 

electrons. This procedure is known as electron impact (El) ionisation. The 

analytical power of mass spectrometry is that fragment ions can be resolved 

according to their mass to charge ratio (m/z) by means of a magnetic sector or 

quadrouple mass analyser to give positive-ion spectra which are processed by a 

computer. Since each mass spectra represents a characteristic fingerprint, 

identification can be obtained by comparison with reference spectra (Figure 

1.8). The presence of one of these spectra in the GC-MS run of a suitably 

derivatized plant extract and at the correct retention time is conclusive proof of 

existence in the extract.

CHXOCH.

Figure 1.7. IAA-methyl ester (IAA-ME)
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Figure 1.8 EI-GC-MS mass spectrum of methyl ester derivatised authentic 

IAA standard. (Blakesley, unpublished data).

With LAA-ME the most abundant ion when run under El bombardment 

is the quinolinium ion (130m/z) which produces a base peak of 100% intensity 

and the molecular ion (189 m/z), (Sandberg et al. 1987a). The 13C6-IAA 

internal standard with six 13C atoms labelling the benzene ring, results in a 

shift of six units producing corresponding quinolinium and molecular ions at 

136 and 195 m/z respectively (Cohen et al., 1986). Since mass spectrometers 

distinguish between isotopically labelled molecules, GC-MS can be used to 

measure the relative proportions of an endogenous compound and its heavy 

isotope internal standard. With quantitative analysis greater sensitivity is 

achieved when only a few selected ions associated with molecular fragments 

unique to the hormone of interest are monitored (Dunlap and Guinn 1989). 

This mode of GC-MS operation is selective ion monitoring (SIM). With IAA 

the 130 and 189m/z ions, and the 136 and 195 ions from the 13C6 internal 

standard are the most frequently monitored.
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Chemical ionisation (Cl) involves the chemical reaction of the sample 

molecules with reagent ions (positive or negative) produced from an 

appropriate reactant gas in a high pressure ion. Pentafluorobenzyl bromide is a 

frequently used derivatizing agent (Figure 1.9).

Cl is more sensitive than electron impact, five to ten fold ion responses 

can be achieved with methane positive ion or ammonia negative Cl, compared 

to the El mode of fragmentation (Rivier and Saugy 1986). Negative ion Cl is 

also a more selective process and has a lower background noise than either 

positive Cl or El. Therefore even if the intensity of the signal is not much 

greater, there is likely to be a 20- to 50-fold increase in sensitivity (Sandberg et 

al, 1987a). Best results are obtained when the compound of interest is 

naturally electron capturing, for example abscisic acid, (Netting et a/., 1988). 

Negative-ion spectra tend not to be used frequently as they generally contain 

fewer fragments and as a result are less informative for qualitative analysis. 

Another reason for the rather infrequent use is that the GC-MS equipment 

necessary for Cl is considerably more expensive, although bench-top GC-MS 

machines with Cl capability are now available. One of the only reports 

utilising negative-ion GC-MS-CI for IAA analysis is by Noiton et al., (1992b), 

who looked at the effects of serial subculture in vitro on the endogenous levels

F F

H

I A A - P F B

Figure 1.9 LAA-pentafluorobenzyl (PFB) ester.
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of IAA and ABA and the rootability in microcuttings of ‘Johnothan’ apple 

(Figure 1.10).

103. 8-1
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Figure 1.10 The ion chromatographs of m/z 174 (IAA-PFB) ester from extract 

of ‘Johnothan’ apple shoots grown in vitro. [2H3] IAA (m/z 179) was added as 

internal standard. (From Noiton et al., 1992b).
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1.19 Objectives of the work.

E. globulus was chosen for several reasons which include, its 

economical importance and the interest shown by the CASE awarding bod}) 

Advanced Technologies (Cambridge) Ltd. In addition there are dimorphic 

characteristics between ‘old’ and ‘young’ material and the reports of a sharp 

decline in rooting ability of cuttings with increasing stock plant age.

The primary focus of the work in this thesis is to develop a suitable 

system which permits accurate quantification of endogenous IAA 

concentrations in E. globulus cuttings. IAA is widely accepted as playing a 

central role in the rooting process. Quantification of IAA concentration will be 

predominantly in young ‘easy-to-roof seedling cuttings. ‘The easy-to-roof 

material will function as a model system, during which the various stages of 

ARF will be linked with endogenous IAA concentration. Timing will be crucial 

if an accurate link between the anatomical events of ARF and IAA 

concentrations is to be made. Time permitting, IAA concentrations will be 

measured in older, ‘difficult-to-roof cuttings in order to observe whether, or 

not, IAA concentration varies between the young and old cutting types.
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Chapter 2. Materials and Methods.

2.1 Plant material.

Seeds of Eucalyptus globulus (Euc 163, “South East Victoria” 

provenance) and Eucalyptus grandis (Euc 180), supplied by Advanced 

Technologies (Cambridge) Ltd., were stored at room temperature in the dark.

2.1.2 Conditions for glasshouse material.

Seed material for glasshouse propagation was sown in either Fisons 

No. 1 compost or in vermiculite, contained in seedtrays placed on a propagation 

bench at 27°C for 5 days before being transferred to glasshouse conditions. 

The glasshouse had a 16 hour photoperiod with a day and night temperature of 

25°C and 18 °C respectively. Seedlings to be grown for more than two months, 

were potted up in a 3:1:1 mixture of Fisons C.3 compost, coarse bark and 

perlite respectively, with Ficote F70 (Fisons, 14-14-14 slow-release fertiliser) 

incorporated into this medium at a rate of 0.3% w/v.

2.1.3 Root initiation.

Rooting trials were carried out on seedlings of different ages in several 

environments:

(i) Rooting in water: distilled water was contained in 97mm magentas 

(Sigma, UK) the cuttings were struck with a sharp razor blade, the bases of the 

cutting were placed through holes in polystyrene floats which suspended 

them in the water.

(ii) Rooting in a controlled environment cabinet: Cuttings were placed 

into medium grade vermiculite contained in half-size seed trays with vented 

plastic lids (Stewart, UK) to help minimise water-stress. Lighting was 

continuous and the temperature maintained at 25°C in a controlled environment 

cabinet (Saxcil, UK).
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(iii) Rooting on the mist-bench: The mist-bench (Mac Pennie, UK) 

operated with a dual contact system and was maintained with a base 

temperature of 27°C, and a 16 hour photoperiod. Auxin treated cuttings were 

dipped in a 1,000 pM IB A solution (prepared by disolving the IB A in a 

minimal amount of alcohol and then making to volume with distilled water) for 

five seconds before being placed in a 50:50 mixture of fine and course sand 

contained in seedtrays or Plant-Pak P50 units.

(iv) Rooting in the fog-bench: Two days prior to, and immediately after 

striking cuttings, Rovral (active ingredient iprodine) was sprayed at half 

strength (0.08% w/v) to help prevent fungal infection. The bases of the cuttings 

were dipped in a 1,000 pM IBA solution for five seconds and then placed in a 

50:50 mixture of fine and coarse sand. The fog-bench base temperature was 

27°C and the fogging was intermittent. The fog-bench, based at Advanced 

Technologies (Cambridge) Ltd., was purpose-built. The fogging setup 

consisted of a single fog chamber supplied by a single, computer-controlled, 

fogging nozzel unit which had a ultra violet treated water supply.

2.2 Procedures for in vitro material.

2.2.1 Media preparation.

Murashige & Skoog (1962) medium (MS) (Sigma, U.K.) was used for 

growing in vitro material. In the preparation of media, stock solutions of 

hormones were added to obtain the desired concentration. Sucrose (BDH), was 

added to the required concentration and agar (Oxoid, technical grade 0.8% w/v) 

or phytagel (Sigma, 0.15% w/v) used for solidification. The media were made 

up to volume and the pH adjusted to pH 5.7 with 0.1M or 1M NaOH or HCL. 

After dissolving on a hot plate with a magnetic stirrer the media was dispensed 

into magentas or 75 ml screw cap glass jars using an electric pump and 

sterilised by autoclaving for 15 minutes at 121°C, 15 Psi.
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2.2.2 Sterilisation o f plant material.

(i) Seeds. Seeds of E. globulus were sterilised by shaking in 20% Co-op 

bleach (active ingredient sodium hypochlorite) with 2 drops of tween 20 per 

100 ml for two 30 minute periods. Following an initial rinse in sterile distilled 

water, the seeds were washed for two 30 minute periods in sterile distilled 

water.

(ii) Nodal explants. Explants consisting of 1 or 2 nodes were cut from 

glasshouse material and sterilised as follows:

Single node explants: shaking for two 3 minute periods in 6% bleach. 

Double node explants shaking for two 7 minute periods in 7% bleach. 

After sterilisation explants were shaken in sterile distilled water for 20 minutes, 

then placed in media containing 0.35% w/v activated charcoal (AC, Sigma), 

0.03M sucrose and half strength MS. Explants were transferred after 1 week to 

shoot multiplication medium of semi-solid MS medium supplemented with 

0.06M sucrose and 0.75 pM BAP.

2.2.3 Culture procedures and conditions.

The cultures were incubated at 25°C with a 16 hour photoperiod, of 

light intensity 40 pmol m-2 s'* photosynthetically active radiation (PAR), 

provided by white fluorescent tubing, unless otherwise stated. Subculturing of 

shoot clumps was carried out at 4-weekly intervals, by separating large clumps 

into smaller clumps of a few shoots.

2.2.4 In vitro rooting

Rooting media for in vitro material was either hormone-free or 

supplemented with IBA.

(A) Hormone-free: 1/4 strength semi-solid MS (1/4 strength macro and micro

elements), supplemented with 0.03 M sucrose.
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(B) Incorporation of IBA: a two stage process was utilised.

(i) Root initiation medium: 1/4 strength semi-solid MS, supplemented with 

10 pM IBA, 0.03 M sucrose. This media was used for the first 3-7 days, the 

aim of which was to encourage the early phases, i.e. root induction and early 

initiation. After this the explants were transferred to a root elongation medium.

(ii) Root elongation media: semi-solid MS, supplemented with 0.03 w/v 

AC and 0.03 M sucrose.

2.3 Histology.

2.3.1 Fixation.

Material used in the rooting trials was severed with a sharp razor blade 

and immersed immediately in formalin acetic acid (O’ Brien and Me Cully,

1981) for a minimum of 48 hours. Glasshouse grown material was fixed in 

70% FAA, tissue culture grown material in 50% FAA.

2.3.2 Dehydration.

Following fixation tissue was dehydrated by passing through a series of 

ethanol and 2- methyl propane-2-ol (TBA) solutions (Table 2.1).

Table 2.1 Dehydration of material.

Stage_____________________ Time (hours).

1. 50% ethanol 2

2. TBA 1 * 2

3. TBA 2 2

4. TBA 3 2

5. TBA 4 2

6. TBA 5 2

7. TBA 6 12

Key: * Refer to appendix (A.7) for the TBA dilution series.
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2.3.3 Infiltration.

Dehydrated tissue was infiltrated with wax (Paramat, BDH). The wax 

beads were added a few at a time every 4 hours for the first 12 hours in an oven 

at 60°C. Over the next 12 hours approximately 10 beads every 4 hours were 

added. TBA was evaporated off by removing the tops of the glass vials and 

leaving them in the oven for 12 hours. The wax was then changed for fresh 

molten wax twice at 12 hourly intervals.

2.3.4 Embedding.

Rectangular boats, constructed from card, were filled with molten wax 

and material was transferred to the wax with two pairs of fine tweezers.

2.3.5 Sectioning.

Blocks were prepared by trimming with a sharp razor blade. Sections 7 

pm thick were cut on a Reichert microtome with a Cresson-original lung steel 

blade. The ribbons were expanded by floating on warm water (approximately 

50°C), and transferred with a fine paintbrush to microscope slides smeared with 

Haupt’s solution (Appendix A.6). Slides were left to dry on heating blocks at 

20°C.

2.3.6 Staining.

Dried slides were loaded onto carrier trays and taken through the 

rehydration/staining (safranin/fast-green)/dehydration procedure (Table 2.2), 

for material where the root primordia are likely to be organised toluidine blue 

was used (Table 2.3).
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Table 2.2 Procedure for staining sections with safranin/fast-green.

Solution Time (min.)

Four passes in 100% histology 3 each

50/50 histology/100% ethanol 3

100% ethanol 3

95% ethanol 3

80% ethanol 3

70% ethanol 3

50% ethanol 3

30% ethanol 3

Distilled water 3

1% safranin in distilled water 45

Three passes in distilled water 1 each

30% ethanol 1

50% ethanol 0.5

70% ethanol 0.5

80% ethanol 0.5

95% ethanol 0.5

0.5% fast-green in ethanol 0.5

Two passes in 95% ethanol 0.5 each

50:50 histoclear/100% ethanol 1

Five passes in 100% histoclear_________  10. or more, each.
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Table 2.3 Procedure for staining sections with toluidine blue.

Solution Time (min.)

Four passes in 100% histoclear 3 each

50:50 histoclear/100% ethanol 3

100% ethanol 3

95% ethanol 3

80% ethanol 3

70% ethanol 3

50% ethanol 3

30% ethanol 3

Distilled water 3

1% toluidine blue in distilled water 1

Two passes distilled water 1 each

30% ethanol 0.5

50% ethanol 0.5

70% ethanol 0.5

80% ethanol 0.5

95% ethanol 0.5

100% ethanol 1

50:50 histoclear/100% ethanol 1

Five passes histoclear______________________  10. or more, each

52



2.4 Analysis of endogenous IAA.

2.4.1 Extraction. (Methods from D. Blakesley, Personal Communication).

For initial work, large amounts of woody stem and / or seedling shoot 

material was used for the extraction, purification and analysis of endogenous 

IAA. Subsequently for the development of techniques with higher sensitivity 

levels, smaller quantities of plant material in the extraction stage were 

necessary.

i) For large, > lg fresh weight (fwt.), quantities of shoot material: the samples 

were frozen immediately in liquid nitrogen and then freeze-dried. The freeze- 

dried samples were stored in a freezer at -70°C until extraction. A mill (Janke 

& Kunkel) was used to grind the material in a few drops of 80% methanol 

(MeOH, Rathbum Chemicals Ltd., HPLC grade) containing 0.025% w/v 

butylated hydroxytoluene (Sigma). The samples were then placed in 30 mis of 

80% MeOH, and an internal standard, 100-250 ng of 13C6-IAA (kindly donated 

by Dr. Peter Hedden, IACR, Long Ashton, UK) was added at this stage 

together with approximately 30,000 dpm 2-14C IAA ( 2.04 GBq mmol/1 

Amersham) radiotracer, and left to stir in a cold room (4°C) overnight.

ii) For small (< lg fwt.) samples, the plant material was frozen in liquid 

nitrogen, freeze-dried and then ground in a mortar and pestle containing a few 

mis of liquid nitrogen. Ten mis of 80% MeOH was used to take up the sample, 

l-50ng of 13C6-IAA was added and the suspension was left to stir in a cold 

room overnight. The amount of 13C6-IAA added to the samples depends to a 

large extent on the mass and type of plant sample being extracted. As it is the 

ratio of 13C6-IAA to IAA that is used to calculate the amount of IAA, 

providing the characteristic ions from both 13C6-IAA and IAA can be 

measured the initial level of l3C6-IAA added is not all that important.



2.4.2 Purification for IAA analysis.

The quantity and type of plant material being used dictated which 

purification steps were incorporated in the purification procedure. The various 

steps which were used are presented in figure 2 .1.

(i) Solvent partitioning. (Methods ffomD. Blakesley et al., 1991b).

Samples were reduced to the aqueous phase by rotary evaporating at 

40°C under vacuum and taken up in 30 mis of 0.5M K2HPO4 buffer (pH 8) 

(analar grade, BDH). Following this each sample was washed 3 times in ethyl 

acetate (analar grade, BDH). The pH was then adjusted to 3.5 using HC1 and 

the sample extracted 3 times into ethyl acetate reduced to dryness by rotary 

evaporation and taken up in 3 mis of pH 8 water.

(ii) Ion exchange chromatography. (Methods from D. Blakesley, Personal 

Communication).

Sephadex QAE-25 (Sigma) in bond-elute cartridges (Waters 

Associates) was used for an ion-exchange step. Two-three mis of MeOH 

followed by pH 8 water was used to moisten the filter. One cm depth of 

Sephadex, (Appendix A.5, preparation of Sephadex), was poured into the 

cartridge and conditioned with 4 column volumes of pH 8 water. The sample, 

which was adjusted to pH 8 using KOH, was carefully loaded onto the column 

using a fine pipette, then washed with 4 column volumes of pH 8 water. After 

attaching a conditioned Sep-Pak cartridge (running through 5mls of MeOH 

followed by 10 mis of pH 3 water) to the base of the bond-elute cartridge, the 

sample was eluted onto the Sep-Pak cartridge in 10 mis of 7% formic acid 

(analar, BDH).
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Figure 2.1 Purification protocol for the purification of E. slobulus tissue 

for analysis of endogenous IAA.

Extraction (in 80 % MEOH overnight).

\
Solvent partitioning * (starting point for >lg fwt of material)

. (ethyl acetate)

?

Ion exchange * (starting point for lOOmg-lg fwt of material)

(QAE-25 Sephadex)
\

Cl 8 Sep-Pak * (starting point for <100mg fwt of material)

»
HPLC
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(iii) C-18 Sep-Pak. (Methods adapted from Sandberg et al., 1987b)

After loading the sample, the cartridge was washed with 10 mis of pH 3 

water. For samples over lOOmg fwt. a wash with 10 ml of 10% MeOH was 

incorporated after the initial wash in pH 3 water to remove more contaminating 

substances. IAA was eluted in 5 mis of 50% MeOH, dried in a speed-vac to 

complete dryness and stored dry at -70°C in a freezer until required for HPLC.

(iv) HPLC. (Methods adapted from D. Blakesley et al, 1991b).

Samples in 25 pi 40 % MeOH were injected onto an HPLC (Gilson, 

305 pumps, with a UV detector, model 116). The flow rate was 1 ml/minute, a 

C-18 reverse phase 250mm by 4.6mm 5pm column (HPLC Technology, UK) 

and a C-18, 5pm guard column (Anachem) were employed, detection was at 

280nm. Water in the reservoir was reduced to pH 3 by the addition of acetic 

acid ('HyperSolv' grade, BDH). The HPLC program was isocratic at 40% 

MeOH for 15 mins (to elute the IAA) followed by a gradient over two mins to 

100 % MeOH where it was held for 20 mins (to clean the column). Following 

HPLC, samples were dried in a speed-vac to complete dryness and stored dry at 

"70°C in a freezer until derivatization.

2.4.3 Derivatisation.

Two methods of sample derivatisation were employed prior to analysis 

by GC-MS. Diazomethane was synthesised (Schlenk and Gellerman, 1960), 

and used to methylate samples analysed by electron-impact GC-MS, and 

pentafluorobenzyl bromide (PFB, Sigma) was used for chemical-ionisation 

GC-MS.
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i) Derivatisation using diazomethane (Method from Rivier and Saugy, 1986) - 

for positive-ion electron-impact GC-MS.

100 pi of MeOH was added to the dried sample then an excess of 

diazomethane, added to methylate the sample. 15 mins later samples were dried 

under a stream of nitrogen.

ii) Derivatisation using PFB (Method from Epstein and Cohen 1981) -for 

negative-ion chemical-ionisation GC-MS.

50 pi of acetone was added to the dried sample followed by 1 pi of N- 

ethyl piperidine (Sigma). 5 pi of PFB (Sigma) was added, screw tops were 

placed on the 1 ml glass vials which were kept at 60°C for 45 mins after which 

the samples were dried under a stream of nitrogen.
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2.4.4 Gas chromatography-mass spectrometry. (Methods from P. Hedden and 

Mervin Lewis, Personal Communication).

(i) Electron impact positive-ion GC-MS (using a bench-top set-up).

The electron energy was 70 eV, and the carrier gas used was helium. 

The injection port was held at 220°C,and the transfer line at 250°C. Samples 

were injected on to a BP5 column (SGE, 0.25 pM film thickness) in the split- 

splitless mode. The GC oven was kept at 60°C for 2 minutes after sample 

injection, then heated to 200°C at 20°C/ minute, and to 300°C at 4°C where it 

remained isothermal.

(ii) Electron impact positive-ion GC-MS (using a magnetic sector GC-MS)

Samples were analysed using a Kraytos MS80 REA GC-MS. Electron 

energy was 70 eV, and the carrier gas used was helium. The source was 

maintained at 200°C and the interface at 260°C. Samples were injected on a 

SGE BP10 column (25m x 0.32mm, 0.5pm film thickness) using oncolumn 

injection.The GC oven was kept at 70°C for 1 minute after sample injection, 

then heated to 200°C at 15°C/minute, and to 270°C at 4°C/minute where it 

stayed isothermal. Selected ion monitoring (SIM) was employed at 3,000 

resolution, with a dwell time of 0.23 seconds.

(iii) Chemical ionisation negative-ion GC-MS.

When the Kraytos GC-MS was run in chemical-ionisation (Cl) mode, 

PFBta was used as a reference compound for calibration and lockmass (= 200). 

Methane was used as the carrier gas (pressure 0.5 Bar), and the source was 

maintained at 180°C. Samples were injected on an OV-1701 SAC column 

(15m x 0.32mm, 0.5pm film thickness) using the split-splitless mode. The GC 

oven was kept at 100°C for 1 minute after sample injection, heated to 200°C at

58



20°C/minute, and then to 280°C at 5°C/minute where it remained isothermal. 

SIM was carried out at 3,000 resolution, with a dwell time of 0.20 seconds.

2.4.5 Calibration of IAA on a bench-top GC-MS.

Varying amounts of IAAi^ C g IAA were added to form a calibration 

curve, (see ratios below).

Quantity of ^ C <5 IAA (ng) : IAA (ng)

100 0
100 1
100 5
100 10
100 25
100 50
100 100
100 200
100 500

The amount ratio: response ratio curve (Fig. 2.2a,b) shows that over a wide 

range of IAA levels the ^ C ^  IAA was accurately quantified. The calibration 

data was automatically integrated on the GC-MS using non-linear regression 

analysis and resulting experimental data applied to it.

2.4.6 Calibration of ^ C g  IAA on a Kraytos GC-MS.

Calibration of the Kraytos GC-MS involved variable ratios of authentic 

IAA to 13C6-IAA standards being injected on to the columns and the resulting 

data being input in to Minitab for regression analysis. Subsequent experimental 

data was calibrated by applying it to the regression analysis carried out on the 

authentic standards.
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2.5 Statistical analyses.

Where there was a wide range of cutting ages with a consistent 

decline in the rooting percentage, it was not necessary to perform statistical 

analysis. In other cases Chi-square was used to test significance levels with 

rooting percentage where necessary. For concentrations of IAA, the student's t- 

test was used to test significance levels.
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C h a p t e r  3 , R o o t in g .

Introduction.

A major problem for many tree improvement programmes is that by the 

time trees are mature enough to identify elite genotypes, it is often impossible 

to propagate clonal material. E. globulus is a notoriously difficult-to-root 

species (Hartney, 1982). There is a need with E. globulus to study the problem 

of the decline in rooting ability as stock plant material increases in age and to 

quantify the decline. The use of seedling material in this work is as a model 

system. The aim is to identify cuttings of different types and ages suitable for 

further study, in particular looking for tissue with different rooting abilities in 

order to see whether or not there is a link between ease of rooting ability and 

endogenous IAA level.

63



3.1 (a) The rooting in water of glasshouse-grown Eucalyptus

globulus seedling cuttings of different ages.

The aim of this experiment was to determine the effect of seedling age 

on the rooting ability of glasshouse-grown E. globulus cuttings. Seeds were 

sown in Fisons FI compost contained in seedtrays at intervals, to enable 

cuttings of different ages (12,19 and 26 days old) to be taken on the same day. 

At 12 days old, the 1st true leaf pair of the seedlings was expanding; at 19 days, 

the 2nd true leaf pair were expanding and at 26 days the 3rd true leaf pair were 

expanding and the fourth leaf pair were upright. Cuttings were prepared by 

severing the shoot system 1 cm below the cotyledons. The growth of 26 day old 

seedlings, enabled three cutting types to be taken: entire cuttings, prepared by 

severing the shoot system 1 cm below the cotyledons; apical cuttings consisting 

of the apical 3 nodes and basal cuttings, consisting of the basal 3 node pairs. 

The rooting chambers consisted of 97mm magentas with polystyrene floats, 

with holes through which the bases of cuttings were placed with the basal leaf 

pair suspended the cuttings above the distilled water. Six replicate magentas 

were used, each containing 5 cuttings. The magentas were incubated in a 

growth room with a 16 hour photoperiod at 25°C (Section 2.2.3).

During the first two days after striking the cuttings, the basal few

millimetres of hypocotyl curved upwards forming a u-shaped bend. Four days

after cutting excision the bases of some of the hypocotyls started swelling and

the first roots began to emerge 5 days after cutting excision. New roots

continued to be observed up to 8 and 12 days after cutting excision in the 12

and 19 day old cuttings respectively (Figure 3.1). The rooting ability

decreased sharply with increasing age of the seedling stock material (Figure

3.1). At 12 days old 77% of the cuttings rooted, whereas the rooting
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Figure 3.1 The effect of seedling age on the rooting of in vivo E. globulus

cuttings.
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Figure 3.2 The distribution o f  roots in 12 day old in vivo E. globulus seedling 
cuttings.
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percentage of 19 day old declined significantly (x <0.05) (Figure 3.1) to 40%. 

Cuttings from 26 day old seedlings did not form any roots on the basal or 

entire cuttings. The mean root number per rooted cutting was 1.32, 1.17, and 0 

for the 12, 19 and 26 day old cuttings respectively. Ninety seven percent of all 

roots emerged within 2mm of the cutting base (Figure 3.2).

(b) A second experiment was carried out with a wider age range of seedlings 

using the same experimental design in order to examine more carefully the 

decline in rooting ability. Cuttings were excised from seedlings of 

8,12,16,20,24, and 28 days, the growth stages of which are shown in Table 3.1.

Table 3.1 The growth stage of in vivo E. globulus seedlings.

Seedling age (Davsi_______ Seedling growth stage.____________________ .

8 1st true leaf pair upright.

12 1st true leaf pair expanding.

16 2nd true leaf pair expanding.

20 3rd true leaf pair expanding.

24 3rd true leaf pair expanding/expanded

28_____________________ 3 rd true leaf pair expanded.________________ .

The same upward bending in the basal few millimetres of the hypocotyl

described in experiment 3.1a was observed here. A rapid decrease in rooting

ability with increasing stock plant age was again clearly visible (Figure 3.3).

The rooting percentage was high in the 8 and 12 day old material (93% and

73% respectively), but the rooting percentage of 16 day old had declined to

40% (Figure 3.3). There was a further significant (x2<0.05) decline in the

rooting ability, from 36.7% to 6.7% between the 20 and the 24 day old

material respectively. The 28 day old material did not form roots. The sharp
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decline in the percentage of cuttings which formed roots in this experiment was 

very similar to that seen in experiment 3.1a.
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3.2a Rooting of different aged in vitro E. globulus seedling

cuttings.

The aim of this experiment was to investigate the rooting of seedlings 

germinated in vitro and to see how the rooting compared to in vivo cuttings. Six 

sterilised seeds (Section 2.2.2) were sown per magenta, on 1/2 strength MS, 

supplemented with 0.03 M sucrose and solidified with 0.15% w/v phytagel 

(Section 2.2.1). One week after germination the seedlings were selected for 

uniformity and thinned to 4 per magenta. Six replicate magentas, each 

containing 4 cuttings were used for each harvest. The seedlings were severed 

lcm beneath the cotyledons to form the cuttings. Cuttings were excised from 

seedlings of 12,16,20,24,28,32,36 and 40 days old and placed into the rooting 

medium to a depth of 1 cm. The rooting medium, contained in magentas was 

1/4 strength MS, supplemented with 0.03 M sucrose and solidified with 0.15% 

w/v phytagel. The growth stage of the in vitro seedlings (Table 3.2) was very 

similar to that of the in vivo material, except at 36 days old, where the 4th leaf 

pair was still expanding in the in vitro seedlings, but had already expanded in 

the in vivo seedlings. Cuttings were prepared by severing the seedlings lcm 

beneath the cotyledons. A sharp decline in rooting ability with increasing stock 

plant age was recorded (Table 3.3). Twelve day old seedling cuttings had a 

rooting ability of 80%, which was similar to that of the in vivo system (Figure

3.1). However, in contrast to the in vivo system, the subsequent decline in 

rooting ability with increasing seedling age of the in vitro system occurred 

more gradually. The mean root number per rooted cutting did not decrease 

significantly with increasing seedling age (Table 3.3).
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Table 3.2 The growth stage of in vitro E. globulus seedlings. 

Seedling age (Days) Seedling growth stage____________
12 1st true leaf pair expanding/expanded, 2nd leaf pair upright.
16 2nd true leaf pair expanding.
20 2nd true leaf pair expanded, 3rd leaf pair upright.
24 3rd true leaf pair expanding.
28 3rd true leaf pair expanding/expanded, 4th leaf pair upright.
32 4th true leaf pair expanding.
36 4th true leaf pair expanding.
40_______________ 4th true leaf pair expanded, fifth leaf pair upright.______

Conditions in the growth room were as described in the materials and methods 
(Section 2.2.3). The number of rooted cuttings, number of roots per cutting 
and the distance of the roots from the cutting base was recorded at daily 
intervals.

Almost without exception the roots appeared within the basal 2mm of 

hypocotyl (Figure 3.4). There was not a significant difference in the 

distribution of roots in relation to the cutting base between the 12 and 20 day 

old material. The experiment showed a very sharp decline over the four day 

period between the 16 and 20 day old material.

Table 3.3 The effect of seedling age on the rooting of in vitro E. globulus 

cuttings.

Age of seedlings

(Days)_____________Rooting percentage Mean root number/rooted cutting

12 79.2 1.5

16 70.8 1.6

20 41.6 1.5

24 25 1.7

28 37.5 1.3

32 37.5 1.3

36 29.2 1.3

40________________ 375_______________LO
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3.2b A second experiment was carried out with a wider range of in 

vitro germinated seedlings. Cuttings were excised from 4,8,12,16,17,18, 

19,20,21,28,35,42 and 49 day old in vitro seedlings. In addition, cuttings were 

placed individually into medium contained in boiling tubes to permit 24 

replicate containers in contrast to six when magentas were used (Experiment 

3.2a).

In boiling tubes the decline in the rooting ability with increasing stock 

plant age was again evident, but more gradual (Figure 3.5a-c) than that in the 

previous experiment where magentas were also used as rooting chambers 

(Table 3.3). In boiling tubes however, the rooting ability remained high for 

longer, at 21 and 28 days old the rooting ability was 95.3 and 79.17% 

respectively (Figure 3.5b) whereas in magentas, it was 41.6 and 37.5% for 

these two ages (Table 3.3); for both ages the rooting percentage was 

significantly different (x2<0.01) between the two vessel types. The conditions 

in the two types of container could possibly explain the significant difference in 

rooting percentage between experiments 3.2a and 3.2b. The stock seedlings 

were, as far as leaf-pair number and general appearance, the same in both 

experiments, as were the growth room conditions. As with experiment 3.2a, the 

mean root number per rooted cutting did not decrease significantly with 

increasing seedling age (Table 3.4).
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Table 3.4 Mean root number per rooted cutting o f in vitro E. globulus

cuttings. (Boiling tubes used as rooting chambers).

Cutting age (Days) Mean root number/ rooted cutting.

12 1.9

16 1.5

17 1.6

18 1.7

19 1.7

20 1.6

21 1.2

28 1.2

25 1.4

42 1.3

49 1.4
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Figure 3.5a The effect of seedling age on the rooting of in vitro E. globulus

cuttings (boiling tubes used as rooting chambers).
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Figure 3.5b The effect of seedling age on the rooting of in vitro E. globulus

cuttings (boiling tubes used as rooting chambers).
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Figure 3.5c The effect of seedling age on the rooting o f in vitro E. globulus

cuttings (boiling tubes used as rooting chambers).
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3.3 The effect of IBA on the rooting ability of in vitro E.

globulus seedling cuttings of different ages.

The aim of this experiment was to investigate the effect of IBA on the 

decline in the number of cuttings that root as stock plants age found in 

previous experiments. Cuttings from older material were used to see if the 

decline in rooting ability continues still further. The effect of IBA on the 

rooting ability of similar in vitro explants has been tested by Advanced 

Technologies (Cambridge) Ltd. (ATC), and a pulse of 10-20 pM for 3-7 days 

was found to be optimal.

The growing media for the seedlings was essentially as before, although 

with slightly higher sucrose (0.06 M), and was based on work carried out at 

ATC. Two weeks prior to each harvest, 20 mis of 1/2 strength liquid MS was 

applied to each magenta to elevate the nutrient level as the stock plants would 

be growing for up to 135 days in the same container. Six replicate magentas, 

each containing 4 plants were used. Magentas were employed as they permit 

the large size of the plants in this experiment. Due to high contamination levels 

in the growth room, magentas were sealed with a strip of parafilm. The in vitro 

seedlings were harvested 14, 30, 45, 75, 105 and 135 days after germination. 

After 30 days a second magenta was inverted and linked on top of the magenta 

below with a coupling ring, to accommodate the increasing size of the plants. 

The explants consisted of the vigorously growing apical three node cuttings 

with the basal leaf pair removed.

For the first 4 harvests a hormone-free rooting medium was used, this 

consisted of 1/4 strength MS, 0.03 M sucrose, solidified with 0.15% w/v 

phytagel. From 75 days old onwards the rooting protocol consisted of a two 

stage media system:
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1) Root initiation media for 5 days: 10 pM IBA, 1/4 strength MS, 0.03 M 

sucrose, solidified with 0.15% w/v phytagel. Then transfer to:

2) Root elongation media: 0.3% w/v activated charcoal, 1/4 strength MS, 0.03 

M sucrose, solidified with 0.15% w/v phytagel.

On hormone-free media the rooting ability declined rapidly, from 100% 

of 14 day old seedlings to only 12% of 45 day old seedlings, and the 75 day 

old stock material failed to root at all (Figure 3.6a). Also in this experiment the 

magentas were sealed with parafilm resulting in higher humidity which 

resulted in poorer growth, for example the occurrence of callus on leaves. The 

magentas were sealed with parafilm to overcome problems of contamination 

during this experiment, caused by fluctuating temperatures in the growth room. 

In experiment 3.2a the rooting percentage of 32-40 day old stock material was 

between 30 and 40 % (Table 3.3) The incorporation of a 5 day lOpM IBA 

pulse considerably improved the rooting ability of the material (Figures 3.6a 

and b). With the IBA pulse 100% of the cuttings from the 45 day old stock 

material rooted, whereas on the hormone-free medium only 12% of these 

cuttings formed roots (Figures 3.6a and 3.6b). The rooting ability still 

declined with age when the cuttings were treated with an IBA pulse, although 

at a much slower rate. Fifty percent of the 135 day old cuttings formed roots 

(Figure 3.6b). The time of root emergence also varied with age, after being 

transferred to root elongation media 100 % of the 45 day old material had 

rooted within 10 days, whereas 135 day old material took 14 days for all the 

cuttings that were going to root to do so (Figure 3.6b). The rooting zone was 

also larger with the IBA pulse, roots emerged within the basal 10mm of the 

hypocotyl. It would be interesting to increase the age of material being rooted
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Figure 3.6a The effect o f age on the rooting of explants.
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Figure 3.6b The effect o f age on the rooting of in explants

incorporating a 10 p.M pulse.
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to see whether the rooting percentage declined further over subsequent months 

or stabilised.
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3.4 Rooting of in vitro E. globulus seedling cuttings.

The aim of this experiment is to record the in vitro rooting of cuttings 

of different ages and to see if the rooting ability varies in different cutting types 

with increasing stock plant age. Sterilised seeds (Section 2.2.2) were sown in 

1/2 strength MS, supplemented with 0.06 M sucrose and solidified with 0.15% 

w/v phytagel (Section 2.2.1). Parafilm again was used to seal the magentas, 

which were incubated in a growth room at 25°C with a 16 hour photoperiod 

(Section 2.2.3). The previous experiment only used 1 type of cutting, which 

consisted of the vigorously growing apical three leaf pairs with the basal leaf 

pair removed, in this experiment 3 types of cuttings will be used, entire cuttings 

consisting of seedlings severed lcm beneath the cotyledons, stem cuttings 

seedlings which were severed just above the cotyledons, and hypocotyl cuttings 

in which seedlings are severed lcm beneath the cotyledons and just above the 

cotyledons. (Table 3.2). Six replicate magentas each containing 4 cuttings, were 

set up for each harvest date. Six replicate magentas each containing 4 cuttings, 

were set up for each harvest date. Harvesting occurred at the following ages, 

14,16,20,24,31, 35 and 49 days after germination. The hormone-free rooting 

media was 1/4 strength MS supplemented with 0.03 M sucrose and solidified 

with 0.15% w/v phytagel. In addition, the 49 day old cuttings were given a 10 

pM pulse of IBA in the rooting medium. After the 3 day IBA pulse cuttings 

were transferred to a root-elongation medium which consisted of 1/4 strength 

MS supplemented with 0.03 M sucrose and solidified with 0.15% w/v 

phytagel; 0.3% w/v activated charcoal was incorporated to adsorb the residual 

IBA in order to encourage elongation of root-primordia.

The stem cuttings had a lower rooting ability than either the entire or 

hypocotyl cuttings (Figure 3.7), except with the 49 day old material where a



lOpmol pulse was incorporated (Table 3.5). The decline in rooting ability with 

increasing stock plant age up to 35 days old was a gradual process in entire 

and hypocotyl cuttings. With stem cuttings the pattern was quite different; the 

rooting percentage of 16 days old cuttings was only 12.5% and this increased to 

41.6% for the 31 days old cuttings (Figure 3.7). The 49 days old material was 

also quite different, the stem and entire cuttings did not root at all, and only 

16.67% of the hypocotyl cuttings rooted (Figure 3.7). The 10 pM IBA pulse 

increased the percentage of cuttings which formed roots. The most responsive 

material were the entire cuttings where the percentage rose from zero on 

hormone-free media to 75% after the IBA pulse. In this experiment only 18% 

of the 49 day old hypocotyl cuttings on hormone-free media rooted and the 

rooting percentage of the entire and stem cuttings was 0% (Figure 3.7). The 

rooting percentage of 40 day old entire cuttings in experiment 3.2a was almost 

40% (Table 3.3), possible explanations for the difference between the two 

experiments include the use of a different seed batch (but still the same 

provenance) and that the magentas had to be sealed with parafilm in experiment 

3.4 due to high levels of contamination in the growth room. Over 50% of 49 

day old cuttings rooted in experiment 3.2b (Figure 3.5c), however boiling tubes 

were used to contain the cuttings in this experiment and conditions in the 

rooting environment could be quite different.
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seedling cuttings. (Rooting chambers = magentas).
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Table 3.5 The rooting percentage o f three cutting types from 49 day old in

vitro seedlings in the presence/absence of IBA in the rooting medium.

Media type
Cutting type Hormone-free medium IBA pulse

Entire 0 75

Stem 0 33.3

Hypocotyl 16.67________________ 29.2________

Key: Hormone-free medium =1 /4  strength MS supplemented with 0.03 M 

sucrose and solidified with 0.15% w/v phytagel. The IBA pulse was a 10 pM 

IBA pulse for 3 days after which cuttings were transferred to a root-elongation 

medium which consisted of 1/4 strength MS supplemented with 0.03 M 

sucrose and solidified with 0.15% w/v phytagel; 0.3% w/v activated charcoal 

was incorporated to adsorb the residual IBA in order to encourage elongation 

of root-primordia.
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3.5 Rooting ability of glasshouse-grown E. globulus and E.

srandis of different ages.

This experiment was designed to record the rooting percentage of 

cuttings from different positions on E. globulus and E. grandis trees grown 

under glasshouse conditions. It was carried out at ATC early on in this project, 

to identify suitable cuttings from this type of material which might be 

incorporated into the study of endogenous IAA levels in cuttings if time 

permitted. Three ages of stock plants; 16 weeks, 20 weeks and 25 weeks were 

used for the two species and all plant material was of seed origin (Section 2.1). 

Twenty plants of both species were used for each age of cutting, which 

originated from either mainstem or branch material. Each cutting consisted of 2 

nodes with the basal leaf pair removed. The numbering of the cuttings started 

from the basal end of the plant, for example mainstem 1 (MSI) was the most 

basal cutting on the mainstem and consisted of nodes 1 and 2 with the basal 

leaf pair removed. Two days before, and straight after striking the cuttings, 

rovral (0.05%) was sprayed to help reduce fungal attack. Preparation of 

cuttings was carried out within a fog bench environment. After being dipped in 

a 1,000 pM IBA solution (50:50 ethanol and water) for 5 seconds (this 

'optimum* treatment was developed by Advanced Technologies (Cambridge) 

Ltd.), the cuttings were placed in a fog bench (base temperature 26-27°C) and 

harvesting took place 6 weeks later.

In E. globulus there was a very sharp decline in the ability of cuttings to

root with increasing stock plant age. When the stock plants were 16 weeks old

over half the mainstem cuttings formed roots, whereas with the 20 and 25

week old material there was virtually no rooting (Table 3.6). From the limited

data it appeared that material originating from the branches did not root well
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(Table 3.6). The branch cuttings of E. grandis rooted much more readily with 

increasing stock plant age compared to the equivalent cuttings of E. globulus. 

The rooting percentage of branch origin E. grandis cuttings from 20 and 25 

week old plants were of very similar rooting ability to each other (Table 3.6). 

Cuttings from E. globulus and E. grandis stock plants differed greatly with 

regard to their rooting percentage with increasing stock plant age, this was 

particularly apparent in branch-origin cuttings (Table 3.6).

Table 3.6 The rooting percentage of mainstem (MS) and branch (B) cuttings 

from E. zlobulus and E. zrandis stock plants of different ages.

E. slobulus. Rooting percentage.

Cutting type.

A ge (weeks) MSI MS2 MS3 MS4 B1 B2 B3 B4

16 55 — — — — — - - —

20 5 10 — — 0 10 — —

25 0 0 5 10 0 5 0 0

E. srandis.

A ge (weeks) MSI MS2 MS3 MS4 B1 B2 B3 B4

16 50 10 — — — — — —

20 15 40 — - - 60 50 — —

25 5 15 10 10 65 60 50 30

Key:
The numbering system begins at the basal end of the plant, for example MSI is the 

most basal pair of nodes on the main stem. Figures given are as a percentage of the cuttings 

struck that formed roots, there were 20 cuttings per cutting type each from a different plant.

— cutting not available due to the plant size being too small (the protocol is for semi-hardwood 

cuttings and is not suitable for soft, fleshy cuttings).
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3.6 The rooting of cuttings from upper or lower positions of

glasshouse-grown E. globulus stock plants.

In experiment 3.5 considerable variability was noted between cuttings 

of different ages, for example the cuttings from the basal end of the younger 

stock plants were subjected to a lower light intensity than those taken from the 

more apical regions of the older stock plants. This experiment aimed to 

investigate further the percentage of cuttings that form roots from different 

positions on the stock plants and to see if there was a correlation between 

position and rooting ability. Cuttings were taken from branch material of 

epicormic origin, in order to obtain a more uniform physical characteristic 

between cuttings from the upper/lower positions. The cuttings should originate 

from material of the same absolute age as the epicormic branch material should 

ensure an even flush of growth; this is in contrast to the previous experiment 

where branch and mainstem developed as the plants grew.

Six weeks after sowing the seeds, 60 uniform plants were selected and

potted on. Eight weeks later all plants were pruned to lm, all branches were

removed except the apical pair which were pruned back to 2 nodes,. After a

further 3 weeks the plants were pruned back according to whether shoots were

to be encouraged at the base or apex of the plant (Figure 3.8). Two weeks later

the plants were repotted and epicormic buds pinched out twice a week to ensure

an even flush of growth. The cuttings were taken after a further 12 weeks (31

weeks from sowing). The selection of the 20 stock plants to be used for the

cuttings was carried out by picking the plants with the most branches suitable

for striking cuttings. Two days prior to striking cuttings the supplementary

lighting was turned off. Two days before and immediately after striking the

cuttings, rovral (0.05% w/v) was sprayed to help prevent fungal attack. In the
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Figure 3 8 The pruning of in vivo E. globulus stock plants to encourage shoots at the apex or 

base of plants
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Key: three weeks after de-branching (i), plants were pruned to encourage shoots either at the 

apex (a) or, base (b).
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fog bench, (base temperature 26-27°C), 4 randomised blocks, each containing 

the cuttings of ten plants (5 tall, 5 short) were set up. Five replicates of each 

plant type were used to record the class of branching of the cuttings (primary, 

secondary, or tertiary). Cuttings, which came from the basal ends of branches, 

were prepared within the fog bench to minimise water loss. Each cutting 

consisted of three node pairs, with the basal leaf pair removed. A 50:50 

mixture of fine sand and course sand was contained in Plantpak P50 units, each 

measuring 3 x 4 x 5 cm deep, every other cell was left empty to aid air flow. 

Seedtrays were used to contain the Plantpak units, and each seedtray was 

placed 3 cm deep into the fog bench sand to ensure a more even temperature at 

the base of the cuttings. For each cutting, fresh weight, measured on a balance 

enclosed in a sealed plastic bag in the fog bench, overall length, and shape of 

the base, (round, square, or intermediate), was recorded. Cuttings were 

harvested 6 weeks after striking them.

Of the apical cuttings only 6.5% rooted, whereas 28% of the basal 

cuttings rooted (jc2<0.02). There are numerous factors which could affect the 

rooting process, for example the cuttings from the apex were larger than those 

from the basal region. Also all the cuttings from the basal regions had round 

bases, whereas of the cuttings from the apical regions, 60%, 34%, and 6% were 

round, intermediate, and square respectively. In following up this experiment 

the block design could be changed to allow the rooting ability of individual 

genotypes to be evaluated. In this experiment there appeared a large amount of 

variation in the rooting ability between different genotypes, however as the 

block design did not permit analysis on this level it cannot be determined 

whether the difference rooting ability was due to position in the fog bench or 

the stock plant genotype.
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3.7 The effect of position in the stock plant and genotype on

the subsequent rooting of glasshouse-grown E. globulus 

cuttings.

This was a follow on experiment from experiment 3.6 designed to 

permit the genotypes rooting ability to be analysed. The same 20 stock plants 

used in experiment 3.7 were again used. After allowing the plants to grow and 

recover there branches were pruned back as before in experiment 3.6. The 

stock plants were 45 weeks old by the time suitable cuttings could be obtained 

and it was autumn. The same procedure as used in experiment 4.6 was used. 

The block design was completely randomised.

Only 3% of the cuttings rooted. There are several reasons why the 

rooting ability may have been so low. Firstly the fogging unit had not been 

functioning all that well and many cuttings ended up rotting. Secondly as the 

stock plants were several months older, it is possible that they had matured too 

far. Also the time of year was not veiy good, by the time these cuttings could 

be excised it was autumn, although there was supplementary lighting 

conditions were still not that conducive to rapid growth of the stock material. 

Although the plants appeared healthy and nutrients had been supplied every 

three weeks, a lack of nutrients could have been a part of the reason for the low 

rooting frequency. Due to a lack of time and lack of space in the fog bench this 

experiment could not be repeated.
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Rooting discussion.

From the present rooting studies with E. globulus it is clear that the 

rooting ability can decline very rapidly with age, this is consistent with other 

work (Hartney 1982 and Duranz 1988). In experiments 3.1a and 3.1b, which 

used magentas with water as the rooting medium, none of the four week old 

cuttings rooted (Figure 3.1, 3.3). Seedlings germinated in vitro and placed in a 

tissue culture medium (Experiment 3.2a,b and 3.3) had a less pronounced 

decline in rooting ability compared to the ones rooted in water (Experiments 

3.1a,b).

The difference between experiments 3.2a and 3.2b was the type of 

container used. Boiling tubes were used in experiment 3.2b in order to permit 

24 replicates compared to six with the magenta system (Experiment 3.2a). In 

boiling tubes the rooting percentage declined at a much slower rate than in 

magentas. In boiling tubes the rooting percentage of 21 and 28 day old explants 

was 95.3% and 97.17% respectively (Figure 3.5b), whereas in magentas it was 

41.6% and 37.5% respectively for these two ages (Table 3.3). Conditions in the 

two types of container could possibly explain the difference in rooting ability. 

A similar difference in the rooting percentage between the two types of 

container was also evident in experiments 3.2b and 3.3.

Application of IBA also enhanced the rooting ability of cuttings 

(Experiment 3.4), but this only has a limited use as with more mature explants 

the rooting ability can still decline significantly with age (Experiment 3.3, 3.5).

From the present work with E. globulus it is apparent that the phase 

change is very rapid, the rooting percentage can decline significantly in a
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matter of only a few weeks, and this makes E. globulus a good model for this 

type of work. If etiolation does effect the subsequent rooting of cuttings, it is 

not that likely to be for histological reason as the decline in rooting ability can 

be so rapid that there is little time for large changes in histology. There does not 

appear to be any reference to the effect of shoot etiolation on the subsequent 

rooting of E. globulus. It could prove useful to try this approach with E. 

globulus, in particular with old material that does not root, or where the rooting 

percentage is very low with auxin application, as etiolation in conjunction with 

auxin application has resulted significantly higher rooting rates than in the 

light-grown controls with M.9. apple rootstock (Harrison-Murray, 1982). 

Another potentially useful approach would to etiolate epicormic shoots from 

the base of adult trees, as epicormic shoot have shown the ability to form roots 

in many eucalypts (Hartney, 1980).

The majority of the rooting data obtained in this thesis involved stem 

cuttings. The advantages of stem cuttings are that a large number of cuttings 

can be obtained from a single tree, the problem of graft incompatibility is 

avoided and that it is far less time consuming than grafting or layering and 

therefore cheaper. Cuttings taken from young eucalypt seedlings usually root 

well (Cresswell et al., 1982; Me Comb et ol., 1986). However there are 

exceptions, for example young seedling E. globulus cuttings gave less than 

30% rooting (Hartney, 1982). The decline in the rooting ability of E. globulus 

cuttings with increasing stock plant age was very apparent from the rooting 

data in this thesis. As the stock plants aged the rooting ability of cuttings 

declined sharply, especially without applied auxin treatments. The application 

of IBA improved the rooting ability of cuttings, but it only delayed the age-
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related decline in rooting ability i.e. when IBA was applied to cuttings of 

increasing age, their rooting ability still declined, but over a longer period of 

time compared to those rooting without applied auxin treatments.

Maturation is a highly complex developmental process which includes 

changes in morphological and physiological processes leading to the 

reproductive (mature) state (Hackett 1987). Associated with the transition from 

the juvenile to mature state are progressive changes in morphological and 

developmental characteristics including the leaf cuticle, bark, leaf shape, leaf 

thickness, phyllotaxis, vigour of shoot growth and stem pigmentation. Changes 

in such characteristics during development vary from species to species and 

most changes occur gradually during the period preceding maturity. With the 

present work using E. globulus, certain characteristics associated with the onset 

of maturation, for example leaf shape changing from round to strap-like and 

stem shape changing from round to square, occurred between 20 and 25 weeks 

after germination. The rooting ability of glasshouse-grown E. globulus and E. 

grandis cuttings varied considerably with age. The decline in the rooting 

percentage was more pronounced in E. globulus than E. grandis (Table 3.2). 

With 16 week-old E. globulus stock plants over half the mainstem cuttings 

formed roots, whereas with 20 and 25 week old material there was virtually no 

rooting (Table 3.2). These results are in agreement with the general view that 

E. globulus is a more difficult to root species than E. grandis (Hartney, 1981; 

Me. Comb and Bennett 1986). Conflicting results on the rooting ability of 

different species of Eucalyptus do however exist, for example Gupta and 

Mascarenhas (1987) working with mature elite trees of Eucalyptus species, 

reported that Eucalyptus camaldulensis explants did not root as readily as E.
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globulus explants; most work describes E. camaldulensis as an easy to root 

Eucalyptus species (Giordano, 1961; Hartney and Barker, 1980; Heth et al., 

1985). The present work using E. globulus and E. grandis helps to reinforce 

the description of maturation as a complex developmental pathway with 

associated changes in morphological and developmental characteristics. Due 

to the large amount of variation noted between cuttings of different ages in 

experiment 3.5, plants were pruned to encourage shoots either at the apex or 

base in order to obtain a more uniform cutting type. Basal cuttings had a 

significantly higher (p<0.02) rooting ability than the apical cuttings. The 

position of cuttings on the mother plant has been known to have an effect on 

the rooting ability for sometime. Cuttings from lower branches of conifers, 

especially in positions near the trunk, are more juvenile than branches in other 

parts of the tree (Bonga 1987). Similar positional effects have also been noted 

in Eucalyptus (Cresswell et al, 1982).

Despite much work there are still no clear answers to basic questions such as 

where in the cell or tissue, and how, does maturation occur? Part of the 

problem is the complexity of the developmental process leading to the mature 

state. Structural differences have, in some species, been cited as a factor 

affecting rooting. However, such evidence is certainly very varied. White and 

Lovell (1984b) concluded that Agathis australis cuttings from old material 

contain abundant resin canals, schlerenchyma and branch traces, and that these 

may have reduced the amount of parenchyma tissue to such a low 

concentration that there were no longer potential sites for root initiation and 

root formation was prevented. Davies et al, (1982) suggested that the 

anatomical dissimilarities between juvenile and mature stems of Ficus pumila
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did not account for differences in ARF. Perivascular sclereids (macrosclereids) 

were thicker in mature stems, but primordia penetrated these with relative ease. 

The work on E. globulus in this thesis showed how rapidly the loss in rooting 

ability took place. Of the seedling material that did not root, no root primordia 

were seen to be physically prevented from penetrating across the cortex when 

hand sectioned. The glasshouse-grown E. globulus and E. grandis stock 

material had much more thickening than the very young seedling material 

used. With the 1,000 pMol IB A dip, 55% of the 16-week old E. globulus 

cuttings rooted (Table 3.6), it appeared that roots were able to emerge with 

ease as no semi-developed root primordia were seen when the base of the 

cuttings were hand sectioned. Another indication that root primordia were not 

physically prevented from extending across the cortex was with the young 

seedling material, rooted without auxin application. Here the decline in rooting 

with increasing stock plant age was rapid, no discernible physical barriers to 

root growth were apparent and when the non-rooting material was sectioned no 

partially developed root primordia were detected. In addition it was possible to 

recover high rooting percentages by application of auxin to the rooting 

medium.

Numerous workers (Bonga 1982a; Hackett 1985,1987; Greenwood 

1987; Pierik 1990) have discussed whether the stability of the mature state is 

determined at the concentration of the individual cell, the entire apical 

meristem, or is due to correlative effects involving the whole plant. These three 

possible explanations have been termed cellular, structural and correlative 

respectively (Hackett 1985, 1987; Pierik 1990). Earlier workers, for example 

Borchert (1976), proposed that increasing structural complexity and size of
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growing trees resulted in maturation. However, this has been questioned 

(Pierik 1990). The evidence for all three possibilities is equivocal, arguments 

for an important role for meristems is fairly strong, for example when adult 

meristems are isolated and/or used in grafting experiments they are not easily 

altered (Greenwood 1984; Bonga 1987). Using Hedra, Greenwood (1987) 

described the stable behaviour of even extremely small grafted mature scions, 

which nevertheless will exhibit juvenile characteristics after serial grafting or 

tissue culture. In this case maturation could result from an increase in the 

proportion of mature cells in the apical meristem. Conversely the previously 

mentioned methods of rejuvenation could promote relatively more rapid 

division of vestigial juvenile cells, which gradually increase relative to the 

mature proportion. Thus simultaneously a cellular basis (where some cells are 

irreversibly mature) plus explants being able to respond to external stimuli due 

to remaining juvenile cells dividing more rapidly could exist. E. globulus is an 

ideal candidate for the study of maturation in woody species for several reasons 

including the rapid reduction in ability to root with increasing stock plant age, 

the distinct dimorphic characteristics which include leaf and stem shape as the 

plants age, and the large economic importance of the species which is reflected 

in the amount of interest in clonal eucalypt forestry programmes.

Strategies to improve the rooting ability of material include hedging, 

which has been utilised successfully with E. grandis and various hybrids in 

Tunisia, the Congo and Brazil (Me Comb and Bennett 1986). Shoots which 

sprout from the stump may also exhibit juvenile characteristics, including the 

ability to form roots (Me Comb and Wroth 1986). To develop the desired 

clonal lines, trees with the required superior characteristics are felled and
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selection is made of those individuals that coppice well. Rooting percentages of 

80% and above have been reported for E. grandis (Campinhos and Ikemori 

1977; Chaperon and Quillet 1977). Major problems with the technique of 

felling trees and using the shoots which sprout from the stump are that the 

rooting ability of the sprouts may be very variable between different trees, the 

tree has to be destroyed in order to obtain the shoots, and the amount of shoots 

that emerge can be variable. Mazalewski and Hackett (1979) used cytokinins 

to induce buds to break in the lignotuber as well as the upper trunk region of 

Eucalyptus ficifolia. Stem cuttings from the cytokinin-induced shoots exhibited 

a greater propensity to root when taken from the area of the lignotuber than 

when taken from higher on the trunk. Furthermore, cuttings from the basal 

parts of shoots, originating from the lignotuber, rooted better than cuttings 

taken from the apical portions of these shoots. Several successive subcultures 

(Gupta et al., 1981) and successive grafting (Siniscaleo and Pavolettoni 1988) 

have also been used to improve rooting ability; both of these techniques have 

the problem of being labour intensive. Tissue culture has been used by many 

workers to try and obtain clonal lines of woody species. The main problems in 

the micropropagation of eucalypts (Cresswell et al, 1982; De Fossard et al, 

1978) are obtaining sterile material from field grown trees and the rooting of 

shoots from mature trees. Procedures to help overcome the problem of 

contamination include spraying the shoots on the mother plant with 

insecticides, etiolating the tissue in order to obtain rapid growth which is 

relatively clean compared to slower-growing material and the use of small 

explants such as single nodes (Bonga 1987). The etiolation and use of small 

explants has been also shown to improve the rooting ability in certain cases
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(Howard et al, 1988). The use of small explants has also been cited as a 

method of reducing correlative controls that exist between different parts of 

the tree (Bonga 1987).

The above mentioned strategies to improve the rooting ability have only 

had a limited amount of success. Frequently it is only a few genotypes that 

respond well to the various rooting treatments. One approach is to select the 

most juvenile material from the trees of interest and combine some of the 

strategies mentioned above in order to try and improve the rooting percentage, 

for example inducing etiolated shoots by dark treatment in the most juvenile 

region, serial sub-culture and application of auxin. Another approach, which in 

the long term may be more useful is to investigate the fundamental aspects of 

ARF and to try and better understand the mechanisms involved. Future 

directions in the study of ARF have been covered by many workers (Davis and 

Haissig 1994).
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Chapter 4. Analysis of IAA.

Suitable rooting systems for use in the analysis of endogenous IAA were 

developed in the work described in chapter 3. For IAA analysis, work will initially 

focus on developing suitable extraction and purification protocols. Analysis will be 

carried out using gas chromatography-mass spectrometry (GC-MS), initially 

employing electron impact-GC-MS which is a well documented technique for the 

analysis of indoles. The primary focus of the work will be to quantify endogenous 

IAA concentrations during the main events of ARF. In order to identify the actual 

times at which to assay, it will be necessary to get information, using histological 

studies, on the timing of anatomical events, with particular emphasis on the primary 

events. Time permitting, studies will also be made on material of differing rooting 

ability to see whether or not there is a relationship between rooting ability and 

endogenous IAA concentrations in cuttings.
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4.1 Purification of Eucalyptus globulus tissue for the analysis of

endogenous IAA.

The aim of this work was to develop a purification procedure for the analysis 

of endogenous IAA in E. globulus shoot tissue. Various plant samples were harvested 

(Table 4.1) and immediately immersed in liquid nitrogen, freeze dried until no further 

decrease in dry weight occurred and stored a t ' 70°C. Samples were ground in a mill 

(Materials and methods 2.4.1) 13C6-IAA added, and 30,000 dpm of 2-I4C-IAA 

(specific activity 2.04 GBq mmol/1), was added to each sample (Table 4.1). The 2- 

14C-IAA was used as a radiotracer in the early experiments to aid detection of where 

the IAA was going. The high specific activity results in extremely small amounts of 

authentic IAA being added to the samples. For rooting data, when we have a reliable 

system developed, addition of 2-14C-IAA will not be necessary. Purification followed 

the scheme described in the materials and methods 2.4.2 and included solvent 

partitioning, ion exchange (Sephadex QAE-25), Cis Sep-Pak and reverse phase 

HPLC. The fraction with the same retention time as authentic IAA standard was 

derivatised using diazomethane prior to GC-MS, which was carried out on a bench- 

top machine run under electron-impact positive-ion mode.

Monitoring the amount of 214C-IAA indicated that losses occurred during 

solvent partitioning (40-50%) and ion-exchange chromatography (20-30%). When the 

GC-MS was running in full-scan mode, the characteristic quinolinium (130 m/z) and 

molecular (189 m/z) ions from IAA plus the corresponding 136 and 195 (m/z) ions 

from the 13C6-IAA internal standard were present (Figure 4.1). In addition other 

characteristic ions from IAA were present, m/z 77 and 103 (phenyl and steryl ions 

respectively ) and the elution time was identical to authentic IAA. The calibration 

(Figure 2.2 a,b) showed that the 13C6-IAA did not contain any authentic IAA. A 

purified seedling hypocotyl extract (0.5g dwt.), separated by the GC-MS operating in 

selected-ion monitoring (SIM) mode (Figure 4.2) and the mass spectrum data (Figure

4.1) indicated that the samples were sufficiently pure to give reliable results. There 

were however other ions present even with SIM (Figure 4.2). Sizeable contaminant
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Figure 4.1 EI-GC-MS mass spectrum of the putative methyl ester of IAA from 20 day old 

Eucalyptus globulus seedling material (0.5g dry mass). Internal standards of 100 ng 13C6-IAA 

and 30,000 dpm 2-uC-IAA were added.
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195 ions were detected, but these were sufficiently separated from IAA to avoid 

interference (Figure 4.2). No conclusions on quantification between different 

samples were drawn from the data (Table 4.1) as there was no replication, the purpose 

of the work was to obtain clean samples with a suitable level of internal standard for 

IAA analysis. This experiment indicated that 150ng-250ng of 13C6-IAA and 30,000 

dpm of 2-14C-IAA was a suitable level of internal standard for this type and quantity 

of material.

Table 4.1 Amount and type of material, old (3 month primary branch origin), seedling 

(20 day old), used for extraction and the quantity of 13C6-IAA added as internal 

standard.

Tissue type Mass Endogenous IAA (ng/g dry mass)

And dry mass 13C6-intemal m/z

(g) standard (ng} 130/136 189/195

1. Old stem (3) 250 209 283

2. Seedling (0.5) 100 664 780

3. Seedling (0.5) 100 420 *

4.Seedling hypocotyl (0.05) 100 * *

5. Seedling hvpocotvl (0.5} 250 835 875

Key:

* Denotes where the ion ratio is too low.

With the inclusion of solvent partitioning, ion-exchange, Cis Sep-Pak and 

HPLC, purification was a lengthy process and losses were high. In order to purify a 

large number of samples, a simpler procedure would be desirable. The intensities 

obtained from the hypocotyl extract (Figure 4.2) gave an indication that much smaller 

quantities of plant tissue could be analysed.
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Figure 4.2 Typical EI-GC-M S-SIM  trace o f  the putative methyl ester o f IAA from 20 day old 

Eucalyptus globulus seedling material (0 .5g dry mass). Internal standards o f  100 ng C&-IAA 

and 30,000 dpm 2 -14C-IAA were added.
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4.2 The importance of solvent partitioning in the purification of

Eucalyptus globulus seedling cuttings for IAA analysis.

The aim of this experiment was to find a simpler purification system than that 

used in experiment 4.1, not only to reduce the amount of time necessary for sample 

purification but also to allow smaller amounts of tissue to be used. As solvent 

partitioning resulted in high losses (40-50%) of 214C-IAA (Experiment 4.1) it was 

decided to determine the necessity of solvent partitioning in the purification of 

seedling material for IAA analysis.

Twelve-day old seedlings were severed just above the soil surface, immersed 

immediately in liquid nitrogen and then freeze-dried. Four replicate samples, each 

weighing approximately 0.42 g dry mass, were extracted in 80% MeOH with lOOng of 

13C6-IAA and 30,000 dpm of 2-14C-IAA added to each sample. Following extraction, 

the purification procedure included sephadex, Sep-Pak and reverse phase HPLC 

(Materials and methods 2.4.2)

The purification procedure, which omitted solvent partitioning, yielded 

quantifiable results with three of the four replicate samples (Figure 4.3i). Here, the 

characteristic ions from the methyl ester of IAA can clearly be seen and although there 

are ions from other sources present, they are much less abundant and separated by 

elution time. The omission of solvent partitioning can however lead to problems, as 

seen in one of the four replicate samples (Figure 4.3ii). The number of contaminant 

ions from the methylation of other compounds is large, the time separation is poor 

and in addition the peak shapes are poor (Figure 4.3ii). Although there is considerable 

variability in the y axis between figures 4.3i and ii, it is the ratio of 130/136 and 

189/195 ions which is used to calculate the mass of IAA, and therefore losses are 

automatically accounted for. There was reasonable agreement for the 3 replicates, but 

the more reliable estimate should come from the 130/136 ion ratio, as the peak 

intensity is much greater. The results indicate concentrations of IAA ranging from 489 

to 530 ng/g dry mass in the 3 replicate samples (Table 4.2). The difference in the
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Figure 4.3 Typical EI-GC-MS-SIM traces of non-solvent partitioned £  globulus seedling 

material (0.42g dry mass). Internal standards of lOOng ,3C6-IAA and 30,000 dpm of 2-uC- 

IAA were added.
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retention time between results for example, figures 4.2 and 4.4, is not unexpected as 

factors such as the column length (which varies when parts are cut off the leading end 

for cleaning purposes) and the carrier gas flow effect retention time.

Table 4.2 Endogenous IAA concentrations (ng/g dry mass) from E. globulus

seedling cuttings using EI-GC-MS-SIM, omitting solvent partitioning in the

purification procedure.

Mass IAA fne/g drv mass')

Replicate 130/136 189/195

1. 530 500

2 . 489 415

3. 508 610

Mean 509 +/- 20 508 +/- 98

Key:

+/- standard deviation.

From this data it seems best to include the solvent partitioning stage when 

using this type and amount of tissue. Although quantifiable data can be obtained using 

the shorter purification procedure, especially using the quinolinium ions (130 and 

136), it nevertheless can yield data which is not always that clean. If the elution time 

of the non-IAA ions (Figure 4.3ii) varied even slightly it could easily interfere with 

the analysis.
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4.3 IAA concentrations in E. globulus seedling cuttings at three time

periods during the rooting process.

The purification procedure described in the previous experiment (4.2) was 

used again, with solvent partitioning still omitted due to the smaller sample size used 

here. Endogenous IAA was analysed in 0.27g dry mass of young seedlings by GC- 

MS at three time periods during the rooting process. Twelve day old seedlings were 

severed just above the soil surface, struck in vermiculite and kept in a Saxcil cabinet 

running at 25°C with continuous lighting. Three replicate batches of twenty five

seedlings (0.27g dry mass) were used, harvesting took place at three times 0, 24 and
1148 hours after cutting excision. After grinding in 80% MeOH, 50ng C6-IAA 

(reduced from the lOOng level in experiment 4.2 due to the smaller amount of plant 

material being used here) and 30,000 dpm of 2-14C-IAA was added.

Losses estimated using 2-14C-IAA during purification were high, 

approximately 70%, (50% during Sephadex ion-exchange and 20% during HPLC). 

This resulted in small peaks; the original level of internal standard was low because 

it had been assumed that with Sephadex, Cis Sep-Pak and HPLC, losses would be 

significantly lower than when the solvent partitioning was incorporated (Experiment

4.1). In most samples the intensity of the 189/195 m/z ions was insufficient to give an 

accurate estimation of IAA concentrations (Table 4.3). High levels of background 

noise were present in many samples, this combined with rather low levels of internal 

standard resulted in a low signal to noise ratio. With material such as seedling 

hypocotyl, rather than seedling material which has the pigmented shoot system, this 

purification method might be more suitable. With the seedling material used in this 

experiment, solvent partitioning might be necessary.
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Table 4.3 Endogenous IAA concentrations using EI-GC-MS-SIM from 12 day old in 

vivo E. globulus seedling cuttings at three times after cutting excision.

Mean mass IAA (ng/g dry mass.)

Time after cutting excision_________ 130/136_______________ 189/195

0 hours 602.5 (+/-37.5) 600*

24 hours 541 (+/-431.3) —

48 hours 652 (+/-73.5) 815*

Key:

number = 3 replicates.

+/- number denotes the standard deviation.

* n = 2
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4.4 (a) Analysis of endogenous IAA in E. slob ulus seedling hypocotyl

material and the importance of ion-exchange Sephadex and HPLC.

Following the results of experiment 4.3 it was decided to use hypocotyl tissue 

instead of hypocotyl cuttings which included the shoot system, as adventitious roots 

originate in the hypocotyl. As the material used in this experiment appeared much less 

pigmented, solvent partitioning was again omitted and the importance of Sephadex 

QAE-25 and HPLC was tested.

Ten 1cm hypocotyls in each of 5 replicates were harvested and immediately
13immersed in liquid nitrogen, then freeze-dried. During extraction, 25ng of C6-IAA 

and 30,000 dpm of 2-14C-IAA internal standard was added to each sample. 

Purification ( Materials and methods 2.4.2) methods were:

1.2. Sephadex. Sep-Pak. with/without HPLC 3. Sep-Pak and HPLC 

Sephadex Sep-Pak Ci8

Sep-Pak Cig HPLC

+/- HPLC (GC was used before and after, 

on the same extract).

Five replicates were used for each purification protocol.

Due to the presence of a contaminating 195 ion in samples without HPLC 

purification (Figure 4.5), all samples had to go through this step before reliable GC- 

MS data could be obtained. In the absence of HPLC there was an additional problem 

of poor peak shape . Incorporation of the HPLC purification step eliminated the 

contaminating 195 m/z ion and resulted in SIM traces which were clean with a good 

peak shape (Figure 4.6). With the hypocotyl material purified here, the use of 

Sephadex was not necessary as the SIM traces were clean with a good peak shape. 

Not only did this save time, it also resulted in a large decrease in the loss of 214C-IAA. 

The losses during the Sephadex purification step were typically around 35-40%, 

consequently, omitting this step would allow considerably smaller quantities of tissue 

to be used. The ‘rooting zone’ in 12-day old seedling material consisted of the basal 

2.5mm of hypocotyl (Experiment 3.2a). The ten 1cm hypocotyls used in this
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Figure 4 5 Typical El-GC-M S-SIM  trace o f  E. globulus seedling hypocotyl origin material without HPLC purification. Sample from seedling

hypocotyl material with 25 ng nC6-IAA added as internal standard
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experiment therefore represent the equivalent mass of 40 rooting zones. The time 

saved in purification, plus the lower losses resulting in less material at extraction 

being necessary, could allow measurement of endogenous IAA concentrations in the 

rooting zone over many time periods to be practical.

4.4 (b) Quantitative analysis of endogenous IAA concentrations in 12 

day and 30 day old E. globulus hypocotvl material.

Glasshouse grown seedling hypocotyls were harvested into liquid nitrogen and 

then freeze-dried. The 12 day old material readily forms roots whereas the 30 day old 

material does not when rooted in water (Experiment 3.1a,b). Forty six young 

hypocotyls (0.03g dry mass) and 27 old hypocotyls (0.12g dry mass) were used for 

each of the two ages, and 3 replicates were analysed. lOng of 13CVIAA was used as 

an internal standard, purification included Ci8 Sep-Pak and reverse phase HPLC 

following the results of the previous experiment.

Variability in the data (Table 4.4) was very small, this is true not only between 

replicates but also within replicates when the ratios of the quinolinium (130/136) and 

molecular ions (189/195) are compared. Whilst this data is for relatively large 

amounts of plant material, whole hypocotyls rather than 2.5mm hypocotyl rooting 

zones, it nevertheless gives an indication of the endogenous IAA concentrations in the 

plant material. The 12 day old material, which does form roots, had significantly 

(P<0.01) more IAA per gram dry mass of hypocotyl than the 30 day old non-rooting 

material. The results are in good agreement with those from earlier experiments with 

the exception of experiment 3.1, which had twice the amount of IAA, but in that 

experiment there was only one replicate.
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Table 4.4 IAA concentrations (ng IAA/gram dry mass of hypocotyl) in 12 and 30 

day old E. globulus seedling hypocotyl material using El GC-MS-SIM.

Mean mass IAA (n a/e drv mass')

Sample 130/136 189/195

12 day old 400.0 (+/- 57.7) 500.0 *

30 day old 248.3 (+/- 18.7) 244.2 (+/- 23.2)

Key:

(+/- number) denotes the standard deviation).

* denotes missing values due to low 189 m/z ion peak.
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4.5 Qualitative analysis of endogenous IAA in the rooting zone of 14

day old E. globulus seedling cuttings.

The rooting zone in young seedling hypocotyl cuttings consisted of the basal 

2.5mm of the hypocotyl (Experiment 3.2a). The simple, rapid purification system 

developed for small amounts of hypocotyl, as described previously in section 3.4a 

was used here for analysis of IAA in the rooting zone.

One cm of hypocotyl was used to obtain 2.5mm sections, each 2.5mm section 

being the equivalent mass of a ‘rooting zone’. Three replicate samples containing 10, 

50 and 100 ‘rooting zones’ were harvested into liquid nitrogen and freeze dried. Each 

‘rooting zone’ weighed approximately 0.2mg dry mass. The purification procedure 

incorporated simply Ci8 Sep-Pak with or without HPLC ( Materials and methods 

2.4.2iii,iv).
13Q-IAA internal standard was not used here so that background 136 and 195 

ions could be checked. Radiotracer was not used as the purification procedure was 

simple, and also to give an opportunity to confirm unequivocally the presence of 

endogenous IAA. With all samples HPLC was necessary for adequate purification to 

enable GC-MS-SIM monitoring. Without the HPLC step, contaminating 195 ion was 

detected which co-eluted with the 130 and 189 ions from the IAA (Figure 4.7). Also 

omitting the HPLC step resulted in poor peak shape, as seen in the tailing. After 

HPLC the SIM traces were very much different. The contaminating 195 ion was not 

present, the other background signals were minimal and the peak shape was good 

(Figure 4.8). The samples were checked for authenticity by firstly checking the elution 

time against authentic IAA and secondly running the GC-MS in high resolution mode. 

The samples originating from 10 rooting zones contained insufficient IAA for 

quantification (lpl from lOpl was injected). Both 100 and 50 ‘rooting zone’ samples 

contained adequate concentrations of IAA for quantification. A potential problem is 

insufficient IAA during the later stages of ARF, during which times workers have 

found low auxin concentrations (Blakesley et al, 1991a). If veiy low concentrations 

are the case it is possible to double the injection size and/ or use more rooting zones
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Figure 4.7 Typical EI-GC-MS-SIM trace of E. globulus seedling hypocotyl origin material without HPLC purification (samples had no

13C6-IAA internal standard).
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Figure 4 8 EI-GC-M S-SIM  trace showing removal o f  contaminating 195 m/z ion following purification by HPLC. 
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for this period. The next step is to attempt to quantify IAA concentrations in the 

rooting zone of 12 day old seedling cuttings using Cis-Sep-Pak and reverse phase 

HPLC as the purification protocol.
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4.6 Endogenous IAA concentrations during the rooting of Eucalyptus

slobulus seedling cuttings.

The aim of this experiment was to identify the histological sequence of events 

during ARF and to monitor endogenous IAA concentrations associated with the 

various stages in the rooting process. Cuttings used in this experiment were not 

exposed to exogenous auxin.

Anatomy.

Fourteen-day old seedlings were transferred from the glasshouse to Saxcil 

cabinets where the cuttings were kept for 3 days prior to cutting excision to allow 

them to adjust to the conditions. Cuttings, prepared by severing the hypocotyl 1cm 

below the cotyledons with a sharp razor blade, were struck in vermiculite. The 

cuttings were kept at 25°C, with continuous lighting. Cuttings were subsequently 

harvested 0,10,20,36,48,60,72,84 and 96 hours after cutting excision. The 10 

replicate hypocotyls were cut with a sharp razor blade and immersed immediately into 

FAA, at each harvest. After dehydration and embedding, sections were stained in 

either safranin-fast green or toluidine blue.

Hormone Analysis.

The basal 2.5mm and upper 2.5mm of the severed hypocotyl were harvested 

for hormone analysis; these represented the rooting zone and a non-rooting zone 

respectively. Three replicate batches of 30 cuttings were harvested. Material was 

harvested with a sharp razor blade and immersed immediately into liquid nitrogen, 

after which it was freeze-dried. The internal standard, 2ng of ^C^-IAA, was added at 

the start of the extraction. Following purification, derivatisation was carried out using 

diazomethane. El GC-MS in full scan mode was used for identification and in SIM 

mode for quantification.
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Anatomy.

In the rooting zone the first visible sign of ARF occurred after 35 hours when 

the nuclei of a few cells in the pericycle associated with the four vascular bundles 

were noticeably swollen and prominent (Plate 4.1b), in contrast to 0 and 20 hours 

(Plate 4.1a). By 45 hours the number of cells, in close association with the vascular 

bundles, that had swollen prominent nuclei had increased, and early cell division was 

underway (Plate 4.1c). At this stage no organised structure could be recognised. Sixty 

hours into the rooting process a root primordium was visible, under transverse section 

of the hypocotyl the primordium was circular and approximately 150-200 cells could 

be seen in the largest cross section (Plate 4.Id). The root primordium then elongated 

(Plate 4.1e), with the first visible roots emerging approximately 100 hours after 

striking the cuttings. There was a correlation between position in the longitudinal 

section and root primordia formation. The root primordia all formed from cells in 

close proximity to the 4 vascular bundles. Even at an early stage, for example when 

the nuclei were pronounced, the location of the future root primordia was clear (Plate

4.2). The events described above only occurred in the rooting zone, no cell division 

was observed in hypocotyl sections away from the rooting zone. The rooting 

percentage of the cuttings was ninety three percent.

Hormone Analysis.

IAA concentrations in the non-rooting zone (apical 2.5mm of hypocotyl) 

remained relatively constant throughout the rooting process (Figure 4.9), although 

there was a small rise in IAA after 10 hours. A much greater increase (P<0.02) in IAA 

concentration occurred in the rooting zone 10 hours after cutting excision, although 

after 20 hours IAA concentrations were much lower (Figure 4.9). This transient 

increase in free IAA coincided with the inductive stage of ARF. The peak of IAA 

occurred before the first visible signs of ARF, i.e. nuclear swelling, (Plate 4.1b). At 

the time of the first cell divisions (Plate 4.1c), there was no significant difference in 

IAA concentrations between the rooting and non-rooting zone (Figure 4.9). A further
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Plate 1 The anatomical sequence o f events during ARF in 14-day old E. globulus

seedling hypocotyl cuttings.

A. Pre-visible events (20 hours after cutting excision). [ x 280 Mag] 

No visible cell activity.

X= xylem, P= parenchyma.

B Nuclear swelling (35 hours after cutting excision) in a few cells in the pericycle
v

associated with the four vascular bundles. [ x 280 Mag]

N= prominent nuclei, X= xylem, P= parenchyma.
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Plate 1 The anatomical sequence o f events during ARF in 14-day old E.globulus

seedling hypocotyl cuttings.

C. Early cell divisions (45 hours after cutting excision) in some cells in the pericycle in 

close proximity to vascular material. [ x 280 Mag]

N= prominent nuclei, C= early cell division, X= xylem

D. An organised root primordium (60 hours after cutting excision). [ x 140 Mag] 

V= vascular bundle, RP= root primordium.
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Plate 1. The anatomical sequence o f events during ARF in 14-day old E. globulus

seedling hypocotyl cuttings.

E. Extension growth of the root primordium across the cortex (80 hours after cutting 

excision. [ x 280 Mag]

E= extension growth.
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Plate 2. Localisation of the early anatomical events in cells closely associated with the 

vascular bundles during ARF in 14-day old E. globulus seedling hypocotyl cuttings.

E= early anatomical events (swollen prominent nuclei and early cell division), 

V= vascular bundle, P= parenchyma
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Figure 4.9 Endogenous IAA levels during ARF in 14 day old in vivo E. globulus seedling cuttings using EI-GC-MS-SIM. Two nano-grams 

of ,3C6-IAA was added to each sample as internal standard. Samples from the basal 2..5mm of hypocotyl (rooting zone) and the apical 2.5mm 

of hypocotyl (non-rooting zone) were purified using C 18-Sep-Pak and reverse phase HPLC.
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rise in IAA concentration was detected in the rooting zone 72 hours after excision 

(Figure 4.9), which was associated with early extension growth of the root 

primordium (Plate 4.1e) and over the next 24 hours, during continued extension 

growth. The first visible roots began emerging at around 100 hours after striking the 

cuttings, by which time IAA concentrations were low again. The main conclusion of 

this experiment was that an early, transient rise in IAA concentrations occurred in the 

rooting zone, but not in the non-rooting zone. However, this transient rise was 

indicated by just a single replicated point. Consequently, it was decided necessary to 

repeat this experiment, incorporating more harvests over the first 24 hours.
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4.7 Endogenous IAA concentrations during the rooting of E. globulus

seedling cuttings.

This experiment was designed to provide a more comprehensive study of 

early changes in IAA concentration in particular during the first 24 hours after cutting 

excision and to confirm the transient increase in IAA in the rooting zone observed in 

experiment 4.6. Comparison of IAA concentrations in the rooting zone (basal 2.5mm 

of hypocotyl), with the adjacent 2.5mm (lower non-rooting zone) were made to help 

indicate how localised the transient increase in IAA concentration is.

The same procedure used in experiment 4.6 was followed with two 

modifications. Firstly more harvests were incorporated during the critical induction 

time. Material was harvested at 0,6,12,20,25,30,35,40,45,50,55,60 and 70 hours after 

cutting excision. Secondly in addition to the top 2.5mm (apical non-rooting zone) and 

basal 2.5mm (rooting zone), the adjacent 2.5mm above the rooting zone was used 

(basal non-rooting zone).

Anatomy.

As with the previous experiment, a histological study was carried out in 

parallel to the analysis of endogenous IAA. This demonstrated that the timing of the 

various stages in root initiation were very similar between the two experiments. Thirty 

hours after cutting excision, nuclei of cells in the pericycle associated with the 

vascular bundles became swollen; this was the first visible sign of root initiation. 

During the next 5 hours these nuclei became more prominent. The first cell divisions 

took place in the cells with prominent swollen nuclei approximately 45 hours into the 

rooting process. A few nuclei in the cells close to the ones near the vascular bundles 

became prominent but did not develop any further. An organised root primordium 

consisting of approximately 100 cells in cross section could be seen after 60 hours. 

The root primordium extended across the cortex through the next 40 or so hours, the 

first visible roots emerging at around 100 hours after cutting excision. Outside the 

rooting zone (basal 2.5mm of hypocotyl) events were quite different, approximately 

20 hours after cutting excision there were a few cells in the pericycle associated with
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the vascular bundles whose nuclei were more prominent than the nuclei of 

surrounding cells, but this was a rare event and increased prominence and cell 

division did not follow on. Thus the histological sequence of events resulting in root 

primordia were localised to the basal 2.5mm of hypocotyl, from which the roots 

emerged, in these seedling cuttings.

IAA analysis.

IAA concentrations in the lower and upper non-rooting zones remained fairly 

constant throughout the rooting process, although there was a slight decrease during 

the first 12 hours in these two zones (Figure 4.10). In contrast, in the rooting zone 

itself a significant increase (P<0.02-0.01) in IAA concentrations occurred during the 

first 24 hours after cutting excision (Figure 4.10); during this period no visible signs 

of ARF were observed . Thirty hours after excision IAA concentrations in the rooting 

zone declined (Figure 4.10), as nuclei in some cells of the pericycle in close proximity 

to the vascular bundles became prominent. By 35 hours into ARF these prominent 

nuclei were even more so (Plate 4.1b), this stage was associated with low IAA 

concentrations. Early cell division was underway 45 hours after cutting excision 

accompanied by an insignificant rise in IAA concentrations (Figure 4.10). During the 

continued cell division which resulted in a visibly organised root primordium, and its 

subsequent early extension growth, there was no significant difference in IAA 

concentrations between the rooting and non-rooting zones (Figure 4.10). The results 

from this experiment confirm those from experiment 4.6(A) that early events in ARF 

are associated with a transient rise in endogenous IAA concentrations, and that IAA 

concentrations started to decrease by the time the first cell divisions were underway. 

There was a large difference in the pattern of IAA concentrations associated with the 

rooting zone (basal 2.5mm) and the adjacent 2.5mm (basal non-rooting zone), 

indicating that events are localised and that there is a correlation between location of 

histological events and the transient rise in endogenous IAA concentrations. The 

rooting percentage of the cuttings was ninety seven percent.

130



na
no

—
gr

am
s 

IA
A/

g 
dw

t.

Figure 4.10 Endogenous IAA concentrations during ARF in 14 day old E. globulus seedling cuttings using EI-GC-MS-SIM. Two nano-grams of 

13C6-IAA was added to each sample as internal standard. Samples from the basal 2.5mm of hypocotyl (rooting zone), adjacent 2.5mm of 

hypocotyl (basal non-rooting zone), and apical 2.5mm of hypocotyl (apical rooting zone), were purified using Cig Sep-Pak and reverse phase HPLC.
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4.8 a C hem ical ionisation G C -M S -S IM  analysis o f IAA.

In order to obtain lower levels of detection it was decided to employ chemical 

ionisation (Cl) GC-MS instead of EI-GC-MS (Experiments 4.1-4.7). Negative-ion Cl 

was used as it is a more selective process and has a lower background noise than either 

positive ion Cl or El, resulting in greater sensitivity. Higher sensitivity would permit 

smaller amounts of plant material to be used which is essential when there is a very 

limited amount of material available.

IAA solutions in acetone were derivatised using PFB (Materials and methods 

2.4.3b) and run under negative-ion CI-GC-MS (Materials and methods 2.4.4ii). When 

in full scan mode, (Figure 4 11), the characteristic base peak (174 m/z) and the 

molecular peak (335 m/z) for IAA could be seen

Figure 4.11 Mass spectrum of authentic IAA standard derivatised with PFB run under 

negative-ion CI-GC-MS. Sample from lOng of authentic IAA derivatised with PFB, 

lgl from lOfil injected
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Quantitative work was carried out using negative-ion CI-GC-MS in SIM 

mode. Under SIM mode only the base peak (174 m/z for the IAA and 180 m/z for the 

13C6-IAA internal standard) was monitored, this was done under high resolution 

(Figure 4.12).
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4.8 b Endogenous IAA concentrations in non-rooting Eucalyptus

globulus seedling cuttings.

The switch to the negative-ion CI-GC-MS technique was made to obtain 

greater levels of sensitivity so that less material in the initial extraction was necessary. 

The aim of this experiment was to record endogenous IAA concentrations in 35-day 

old cuttings that did not root, over a similar time period to 14-day old cuttings 

(Experiments 4.7 & 4.8) that do, and to make a comparison between the two systems. 

It was decided that with non-rooting material the number of cuttings per replicate 

could be reduced (from 30 cuttings per replicate to 10) as the need to get a 

synchronised rooting event would not be a factor.

Three days prior to cutting excision the 35 day old seedlings were transferred 

from glasshouse conditions (Materials and methods 2.1.2) to a Saxcil cabinet running 

at 25 °C with continuous lighting. Cuttings, prepared by severing the hypocotyl 1cm 

beneath the cotyledons with a sharp razor blade, were struck in vermiculite. 

Harvesting occurred at 0,6,12,18,24,30,35,40,50,72, and 96 hours after cutting 

excision.

Anatomy.

The 10 replicate hypocotyls were cut with a sharp razor blade and immersed 

immediately in FAA, at each harvest. After dehydration and embedding, sections were 

stained in either Safranin-fast green or toluidine blue.

Hormone analysis.

The basal 2.5mm and adjacent 2.5mm of the hypocotyl were harvested for 

hormone analysis, these represented the potential 'rooting' zone and the basal non

rooting zone respectively. Three replicate batches of 10 cuttings were harvested. 

Material, harvested with a sharp razor blade, was immersed immediately in liquid 

nitrogen then freeze-dried. One ng of ^C^-IAA per sample was added at the start of 

extraction. Purification utilised Cis Sep-Pak and reverse phase HPLC using a Cis 

column. Derivatization was carried out with pentafluorobenzyl bromide. Negative-ion
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Cl GC-MS in full scan mode was used for identification, and in SIM mode for

quantification (Materials and methods 2.4.4).

No sign of root initiation, such as nuclear swelling or early cell division, was 

detected by hand sectioning and no roots emerged from the cuttings . Identification of 

IAA was confirmed by the presence of the characteristic ions, 174 m/z for IAA and 

180 m/z for I3C6-IAA (Figure 4.12). Six hours after striking the non-rooting cuttings, 

there was a large transient rise in IAA concentration (P< 0.01) associated with the 

cutting base (Figure 4.13) which was very similar to that in 14 day old cuttings that do 

initiate roots (Figures 4.9 and 4.10). Endogenous IAA concentrations in the non

rooting zone had not risen significantly 6 hours after cutting excision. IAA 

concentrations then remained low, with no significant difference between IAA 

concentration in the two zones. Some of the data at 12 and 18 hours after cutting 

excision was unfortunately lost during HPLC, which prevented adequate replication at 

the period where IAA concentrations are high in material that does initiate roots 

(Experiments 4.7 and 4.8) and therefore hindered interpretation.
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4.9 Endogenous IAA concentrations during ARF in clonal In Vitro

Eucalyptus globulus explants.

Advanced Technologies (Cambridge) Ltd. supplied 2 clonal in vitro lines of E. 

globulus. An ‘easy-to-root’ clone, was reported to root well with a 10-20 jimol IBA 

pulse whereas a ‘difficult-to-root’ clone does not root. The shoot clumps had been 

subcultured on a BAP-containing medium for several years.

In order to obtain explants suitable for rooting, initially the clumps were 

transferred for 10 days to a hormone-free medium containing 1/2-strength MS, 0.3% 

w/v activated charcoal (A.C.), 0.7% w/v agar and 0.06M sucrose. Magentas were used 

to contain the medium, and these were transferred from growth room conditions to a
*7 1Gallenkamp cabinet operating at 25 °C with continuous lighting (45pmol m' s ). The 

clumps were then divided, producing single shoots which were selected for uniformity 

having 1cm of stem and healthy shoot growth. Shoots were placed onto root initiation 

medium which consisted of 1/4-strength MS, 10 pM IBA, 0.7% w/v agar and 0.03M 

sucrose. After 3 days on the root-initiation medium the remaining shoots were 

transferred to a hormone-free medium, consisting of 0.3% w/v AC, 1/4-strength MS,

0.7% w/v agar, and 0.03M sucrose, to encourage outgrowth of root primordia. 

Harvesting occurred at the following times 0,10,20,30,50,72,84,96,110,120,130, and 

144 hours after transferring to the root-initiation medium.

Anatomical studies.

The ten replicate explants were severed with a sharp razor blade, producing 

lcm. of stem, sectioned by hand and stained with toluidine blue.

Hormone analysis.

Three replicate batches of 15 explants were harvested. The basal 5 mm of 

stem, the approximate area over which roots emerge, was severed with a sharp razor

blade and immersed immediately into liquid nitrogen then freeze-dried. The internal
11standard, lng C6-IAA, was added at the start of extraction. Purification was by Cis- 

Sep-Pak and reverse phase HPLC using a Cig column (Materials and methods 

2.4.2iii,iv). Following purification, derivatisation was carried out using 

pentafluorobenzyl bromide (Materials and methods, 2.4.3). Negative-ion Cl GC-MS
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in full scan mode was used for identification and SIM mode used for quantification

(Materials and methods, 2.4.4ii).

Results.

The rooting percentage of the ‘easy’, and, ‘difficult’-to-root lines was 73.3% 

and 0% respectively. Hand sectioning showed that small round root primordia were 

present 80 hours after the start of the rooting protocol and that they extended across 

the cortex to start emerging 145 hours after the initial transfer onto the root induction 

medium. During the early phase (root induction), there was a large rise in free IAA 

concentrations in the ‘easy-to-root’ clone (Figure 4.14). In the ‘difficult-to-root’ clone 

during this period IAA concentrations rose, but only to about half the concentration of 

the ‘easy-to-root’ clone. The free IAA concentration in the ‘easy-to-root clone’ rose 

significantly higher (P< 0.05) than in the ‘difficult-to-root’ clone during the first 10 

hours after cutting excision when the transient rise in IAA concentrations took place 

(Figure 4.14). In addition the peak tailed more quickly in the ‘difficult-to-root’ clone. 

Twenty hours after excising cuttings of the ‘difficult-to-root’ clone, IAA 

concentrations had fallen and continued to decline (Figure 4.14). By 30 hours IAA 

concentrations in the ‘easy-to-root’ clone had also declined considerably from the 

early peak (Figure 4.14). At 50 and 72 hours after cutting excision, IAA 

concentrations were fairly constant (Figure 4.14). Immediately after the 72 hour 

harvest the remaining explants were placed onto the hormone-free media containing 

activated charcoal. IAA concentrations remained low 96 hours onwards (Figure 4.14), 

corresponding with the extension growth of the root primordia across the cortex. 

Unfortunately due to the shortage of clonal material and lack of time to multiply it 

plus the absence of a suitable IBA internal standard it is impossible to deduce what is 

happening to the exogenous IBA i.e. if it is being converted into IAA and if so at what 

rate (see IAA analysis discussion).
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Figure 4.14 IAA concentrations during ARF in clonal in vitro E. globulus explants using negative-ion chemical-ionization GC-MS-SIM 

Two nano-grams of 13C6-IAA were added to each sample as internal standard, purification was by Cis-Sep-Pak and reverse phase HPLC.
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IAA analysis discussion.

It is well established that auxin is involved in the rooting process, 

although much of the data to support this is circumstantial. Quantification of 

endogenous IAA concentrations in the rooting zone of cuttings using reliable 

physico-chemical techniques (Sandberg et al., 1987b), should be employed in 

order to obtain a clearer idea of the relationship between auxin and the phases 

of root initiation. The distinct phases of ARF are well documented (Dore 1965 

and Girouard 1967a). Blakesley, (1984, Phaseolus aureus), Maldiney et al, 

(1986, tomato), Moncousin (1989, grapevine) and Bouza et al, (1994, Peony) 

all reported a peak in the concentration of IAA in the rooting zone associated 

with dedifferentiation, which is the first stage of root initiation. In each case, 

the rise in concentration of IAA was transient, and subsequently declined to a 

similar concentration to that at the time of cutting excision. Others, Berthon et 

al, (1989, Seqoiadendron giganteum) and Hausmann (1993, poplar), have 

reported that no such transient rise occurs. Nordstrom and Eliasson (1991) 

concluded that root initiation may occur without increased IAA concentrations 

in the root regenerating zone in pea cuttings. With the lack of histological work 

and only harvesting once every 24 hours Nordstrom and Eliasson (1991) could 

easily have missed important early changes in the concentration of endogenous 

auxin. The timing of harvests is crucial if events are not to be missed, even in 

recent reports, the timing of harvests is such that early events are likely to have 

been overlooked (Hausmann 1993; Gomez et al, 1994). Gomez et al, (1994) 

using avocado microcuttings from 4-6-week old seedlings, reported that after 3 

days on a rooting medium some nuclei appeared densely stained, this coincided
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with the first harvest for analysis of endogenous IAA. With this timing, the pre- 

visible events (induction phase) which occur before the first harvest would 

have been missed. In addition the rooting process was only monitored every 3 

days so there were very few data points; excluding time zero only 4 harvests 

occurred. When a cutting is excised, auxin might be expected to 

accumulate at the base as auxin is transported basipetally (Gorter, 1968). 

Severance of a shoot from its root system will inevitably have considerable 

effects on movement and localised accumulation of assimilates and plant 

growth regulators. It has been reported that this accumulation is aided by 

reduced activity of IAA oxidase/peroxidase (Chibbar et al, 1979; Moncousin 

et al, 1989; Hausman 1993). Peroxidase activity, measured in crude extracts of 

cuttings, generally follows a pattern which is the reverse of that of auxin 

concentration (Gasper et al, 1993). Pythoud and Buchala (1989) could not 

identify the typical peroxidase variation during the rooting of poplar cuttings, 

although this could be due to the purification of the extracts. Hausman (1993) 

working with in vitro poplar shoots concluded that peroxidase activity may 

participate in the regulation of free IAA. Following excision of vine cuttings, a 

decrease in peroxidase has been noted and this has been shown to coincide with 

an increase in IAA concentration (Moncousin et al, 1988). The transient rise 

in IAA concentration subsequently declined accompanied by a reduction in 

peroxidase activity. Gasper (1981) however, proposed that the primary event of 

root initiation is characterised by a decrease in the concentration of IAA, 

although this was proposed before unequivocal evidence of the early 

accumulation of IAA had been obtained. In a more recent model, Jarvis (1986) 

proposed that auxin accumulation is associated with both the formation of the
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meristematic locus and early cell divisions of the secondary phase. The third 

phase, continued cell divisions to form an organised meristem, is associated 

with low concentrations of endogenous IAA. From the available data there still 

is not a clear answer to whether dedifferentiation and the formation of a new 

meristematic locus and the early cell divisions both require an elevated 

concentration of IAA. Moncousin et al, (1989) speculated that the enhanced 

IAA concentration was responsible for cell reactivation in the interfasicular 

cambium. In the present study, the transient rise in endogenous IAA 

concentrations in E. globulus seedling cuttings declined before the first cell 

divisions occurred (Experiments 4.6 and 4.7). The exact stage of the IAA 

concentrations decline is not clear as IAA concentrations declined before any 

sign of increased nuclear prominence in hypocotyl cuttings from 12 day old 

seedlings (Experiment 4.6). However, as there was a 15 hour time interval 

between the third and fourth harvest, the pattern of events is not precise enough 

to pin-point the exact timings. With the hypocotyl cuttings from 12 day old 

seedlings used in experiment 4.7 the timing of harvests was more regular, IAA 

concentrations were still fairly high when nuclei in some cells of the pericycle 

in close proximity to the vascular bundles become prominent (30 hours after 

cutting excision), but had decreased before the first cell divisions which 

occurred approximately 45 hours after cutting excision (Figure 4.10). Many 

workers have studied the cytological and biochemical changes associated with 

the early cell divisions in root formation, primarily with herbaceous cuttings. 

The change in pattern of IAA concentration in the rooting zone of E. globulus 

hypocotyl cuttings is similar to that reported with Phaseolus aureus hypocotyl 

cuttings where a transient rise in IAA concentration occurred prior to early
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visible events only in the basal section of the hypocotyls where the roots form 

(Blakesley et al, 1985). The first visible signs of root initiation in P. aureus 

hypocotyl cuttings are the cytoplasm and nucleus becoming dense. This occurs 

within the first 24 hours, with cell division following within the next 48 hours 

(Chang and Chan 1976). A subsequent increase in RNA synthesis which would 

correspond to the first cell divisions has also been demonstrated (Lee et al, 

1978). Both of these studies suggested that the increased synthesis of RNA 

could be caused by an increased auxin concentration. It is evident from the 

literature that a wide array of factors can influence the rooting process, 

although auxin has long been regarded as a central factor in this process. 

Improvements in techniques, including the availability of suitable internal 

standards, has meant that quantification of more than one substance is now 

easier. For example, IAA and ABA have been in the same sample (Li et al., 

1992; Noiton et al., 1992a,b). The reports by Noiton et al (1992a,b) only 

considered growth regulator concentrations after each subculture, i.e. there was 

no indication as to the importance of the substances at different stages of the 

rooting process. The initial nodal explants were referred to as culture 0 and 

shoots resulting from the growth of these buds were called subculture 1. The 

new shoots from subculture 1 were designated subculture 2 and so forth. 

Subcultures 1,2,3,4,9 and 26 were used as microcuttings, the rooting ability 

was poor in the early subcultures and had increased to 100% by the 9th 

subculture. After establishment in vitro there was no variation in the IAA 

content throughout the subcultures but a decrease in ABA content was 

observed after the fourth harvest, where the rooting ability increased 

significantly. However there was no report of a significant decrease in ABA



concentration at subculture 2, where the rooting percentage rose from 0 to 32%. 

The results are difficult to interpret as the growth regulator concentrations are 

only given for one time period rather than throughout the rooting process.

The work reported in this thesis on endogenous IAA concentrations 

during ARF in E. globulus cuttings, supports the earlier work that a transient 

peak in IAA concentration is associated with the dedifferentiation and 

formation of a new meristematic locus. An exception was in the non-rooting 

seedling cuttings (Experiment 4.8b), where there was a significant (P<0.01) 

transient rise in free IAA concentration in the cutting base 6 hours after cutting 

excision; this peak however was only represented by one point. With the loss of 

samples preventing adequate replication, particularly at 10 and 18 hours after 

cutting excision, conclusions are difficult to draw from this experiment. The 

actual severance could cause movement and localised accumulation of 

assimilates and plant growth regulators towards the base of the cutting. The 

difficult-to-root clone used in this study failed to root on hormone-free 

medium (1/4 strength MS, 0.03 M sucrose, solidified with 0.7% w/v agar) and 

less than 10% of the easy-to-root clone rooted on this medium. When placed on 

the 10 pM IBA root induction medium 73.3% of the easy-to-root clone formed 

roots, whereas none of the difficult-to-root clone rooted. During ARF in 

clonal in vitro E. globulus explants (Experiment 4.9), there was a transient rise 

in free IAA concentration during the early stages of the rooting process. 

Although 10 hours after transfer to the root induction medium IAA 

concentrations also rose in the ‘difficult-to-root’ clone, the concentrations were 

significantly higher (P< 0.05) in the ‘easy-to-root’ clone. The increased IAA

145



concentrations are unlikely to be due to the basipetal transport and 

accumulation as the micropropagule was not severed in anyway, rooting was 

induced by transferral from the hormone-free medium to the root induction 

medium (Experiment 4.9). The results are not easy to interpret with respect to 

the origin of the elevated free IAA concentrations. Two sources of the IAA are 

endogenous, from within the shoot and via conversion from IBA may be 

responsible for the elevated concentrations of IAA. It would have been useful 

to have included a control medium without IBA, but with a small amount of 

available material and no time left to multiply it the present system was used. In 

the absence of exogenous auxin it would have been possible to see whether the 

increase in IAA concentration is predominantly exogenous or endogenous in 

origin. If a suitable IBA internal standard, such as [4-3 H] IBA had been 

available it would have been possible to have deduced whether or not IBA was 

converted into IAA in E. globulus tissue, and if so the percentage and rate at 

which it was converted. Conversion of IBA into IAA has been reported by 

several workers (Epstein and Lavee 1984; Alvarez et al., 1989a; Van der 

Krieken et al, 1992a,b; 1993). Van der Krieken et al, (1993), working on the 

conversion of IBA into IAA on root regeneration in apple, reported that due to 

conversion of absorbed IBA into IAA a fraction of 0.4% was recovered as free 

IAA. They found that at equimolar concentrations, the uptake of IBA is four 

times higher than that of IAA so that the application of IBA led to a four-fold 

higher internal IAA content than application of IAA. Conversion of IBA into 

IAA in the test system for root regeneration in apple (Van der Krieken et al,

1993) could be detected after a few hours (Van der Krieken, Personal 

communication). Nordstrom et al, (1991) however, have reported that IBA
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exerted its own effect. Experiment 4.9 nevertheless did show a positive 

correlation between the ease of rooting and auxin concentration, although 

further work is necessary to confirm this. Studies with Hibiscus (Bose et al, 

1973) and Vitis (Kracke et al, 1981; Bartolini et al, 1986) also reported a 

positive correlation between the ease of rooting and auxin concentration. Bouza 

et al, (1994), reported that Peony explants differed in their rooting capacity 

depending on the origin and subculture duration and that there was a positive 

correlation between rooting capacity and endogenous auxin concentration. A 

positive correlation between auxin concentrations in the rooting ability of M9 

and M26 apple rootstocks has also been found (Alvarez et al, 1989a). 

Significantly higher IAA concentrations in the ‘easy-to-root’ clone (M26) were 

only found in the bases of the cuttings, in the apical sections of both lines free 

IAA concentrations were comparable. However, this is in contrast to work with 

apple rootstocks M26 and A2 (Welander and Snygg 1987), and with work with 

“ Johnothan” apple (Noiton et al, 1992b) in which different rooting ability was 

generated by the number of subcultures in vitro. In the latter study, IAA 

concentrations were only monitored at each subculture, no quantification of 

IAA concentrations was made during the rooting process. The work in 

experiment 4.9 shows that there is a significant difference (P<0.05) in free 

IAA concentrations between the two clones at time zero, and IAA 

concentrations were significantly higher (P<0.05) in the ‘easy-to-root’ clone 

10 hours after transferring to the root induction medium.

For the purpose of this work competence is defined as the ability of 

cells within tissues to respond to specific root-inducing stimuli by the
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formation of roots. Once competent cells/tissues have been exposed to an 

inducer the tissues may become determined for root formation. Determination 

is defined as the commitment of cells to a specific developmental fate (Meins 

and Binns, 1979). Thus, once a cell, or group of cells, has received a signal for 

root formation, they will remain committed to root formation even upon the 

removal of the signal (Mohnen 1994). The state of determination can be 

ascertained by experimental manipulation of cells, tissues or organs (Meins and 

Binns, 1979). Frequently the experimental manipulation used for studies of 

determination for root formation has involved transfer of tissue explants from 

media containing a root-inducing factor, so-called root inducing medium (RIM) 

to a medium without the factor (basal medium) and studying root formation 

after a fixed period of time (Mohnen 1994). Tissues are determined for root 

formation at the point in time when, following removal from the root-inducing 

factor, they continue with root formation. The root-inducing factor used in 

experiment 4.9 was 10 pM IBA, and the explants were exposed to this for 3 

days before being transferred to hormone-free medium. Of the two clones used, 

73.3% of explants from the easy-to-root clone formed roots whereas no 

explants from the difficult-to-root clone rooted. With more time and more 

clonal material it would have been useful to include a control medium without 

IBA and also to vary the exposure time of the easy-to-root clone to find out the 

time it takes for the explants to become determined. Earlier experiments with 

difficult-to-root clones of E. globulus have identified material that failed to 

root in response to a wide range of applied auxin concentrations (A. Brackpool, 

Personal Communication). It is not clear whether the difficult-to-root clone 

fails to reach a state of competence or of determination.
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In addition to higher free IAA concentrations being associated with 

higher rooting ability, Alvarez et al., (1989a) also found a greater proportion of 

IAA was present as a conjugate in the difficult-to-root shoots. IAA conjugates 

have no auxin activity per se, and their activity is directly related to the amount 

of free auxin released by hydrolysis (Bialek et al, 1983). IAA conjugation is 

usually regarded as a reversible process and the conjugate as a potential source 

of free IAA (Bialek and Cohen 1989). The experiments in this thesis did not 

involve work on conjugates so their importance in the rooting process is not 

known for the E. globulus material used , also the source of the transient rise in 

free IAA concentrations is not known, i.e. the involvement of auxin synthesis 

and hydrolysis of auxin conjugates was not studied. A number of workers have 

implicated auxin conjugates in the control of ARF. Blakesley et al, (1991b) 

examined the concentrations of IAA and IAA conjugates in cuttings of Cotinus 

coggyria taken at different times of the year. Cuttings taken at the time of bud 

break rooted well, but cuttings taken much later in the growing season rooted 

very poorly. At the time of harvest, free IAA concentrations in young shoots 

were significantly higher than those of IAA conjugates. Later in the season, 

when rooting was poor, the reverse was found. Although the “pool” of IAA 

was similar on both occasions, the ratio of free IAA to total IAA in the rooting 

zone was 0.94 in young shoots which rooted, and 0.02 in older shoots which 

failed to root.

The work carried out in this thesis has specifically concentrated on 

absolute concentrations of IAA during ARF. Trewavas (1981) brought to the 

fore the theory that in many cases sensitivity (responsiveness) to plant growth 

substances is more important than absolute concentrations of plant growth
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substances, and has discussed the actual measurement and theoretical basis of 

sensitivity (Trewavas 1991). His criteria for an unambiguous measurement of 

growth substance sensitivity are not easy to meet due to the experimental 

constraints, but would permit the measurement of sensitivity at the plant growth 

substance concentration which Trewavas (1991) defined as control strength. 

Control strength is difficult to apply to the plant tissue that either roots or does 

not root, but could prove useful when considering increased root numbers with 

increased auxin concentrations. Sensitivity to plant growth substances is 

difficult to measure, partly because of the problems in meeting the criteria for 

an unambiguous measurement as defined by Trewavas (1991). Virulent A. 

rhizogenes and A. tumefaciens bacteria harbour a Ri (root inducing) plasmid 

and a Ti (tumour inducing) plasmid respectively. These plasmids are of interest 

as they contain genes involved in the biosynthesis of plant growth substances. 

In addition transfer of certain regions of the Ri plasmid has been reported to 

confer increased sensitivity to auxin in plant tissue (Maurel et a l , 1991; Shen et 

al, 1988). The apical region of 7 week old pRi transformed and rol-A tobacco 

plants contained about half the endogenous IAA concentration present in the 

apical region of control plants, along with an attenuated basipetal auxin 

gradient (Prinsen et al., 1994). Concomitant with the reduced IAA 

concentrations, no transient ABA accumulation was observed in transgenic 

shoot apices. In addition to the elevated IAA concentrations found in 6-12 

week old normal shoot tips, an elevated cytokinin content was reported at the 

beginning of this period which corresponded to a mature developmental stage 

where competence for flowering is acquired (Prinsen et a l 1994). The detailed 

kinetic hormone analyses (Prinsen et al., 1994) emphasised the relevance of
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varying hormone concentrations in the shoot apical region in the 

developmental pattern of both transgenic and normal plants. Rol gene loci have 

been studied by many groups, Shen et al, (1988), Maurel et al., (1991), 

Schmulling et al, (1993). Work on rol genes could prove a very useful tool in 

enhancing our knowledge of the role of plant growth substances in the process 

of root initiation. They may permit the manipulation of endogenous IAA 

concentrations in the rooting zone through auxin biosynthesis (Blakesley, 

1994). Maurel et al, (1991) postulated that increased sensitivity to auxin could 

be a major determinant for root differentiation and indeed that the increased 

sensitivity to auxin conferred by the rolB gene might direct the transformed cell 

into root organogenesis. The importance of sensitivity to auxin in relation to 

ARF is not understood and there is little work on it in the literature. There is 

considerable evidence documenting a peak in the concentration of IAA in the 

rooting zone associated with dedifferentiation and the formation of a new 

meristematic locus (Blakesley 1984; Maldiney et al., 1986; Moncousin et al., 

1988; Gaspar et a l , 1990).

The techniques for analysis of absolute concentrations of plant growth 

regulators have improved considerably in recent years. The availability of 

suitable stable isotope labelled ‘heavy’ internal standards such as 13C6-IAA 

(Cohen et a l , 1986) and a new generation of comparatively low cost bench-top 

GC-MS instruments becoming available (Rivier 1986), has given researchers 

access to reliable, accurate methods of quantification. Another technique which 

is available for increased sensitivity is the use of CI-GC-MS, which can result 

in 5 to 10 fold ion responses compared with the El mode of fragmentation 

(Rivier and Saugy 1986). As negative-ion CI-GC-MS is also a more selective
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process and has a lower background noise than either positive Cl or El, even if 

the intensity of the signal is not greater, there is likely to be a 20- to 50-fold 

increase in sensitivity (Rivier and Crozier 1987). Negative-ion CI-GC-MS was 

used for quantification of endogenous IAA concentrations in non-rooting 

cuttings (Experiment 4.9b) as the more sensitive technique permitted a smaller 

number of cuttings to be used, thereby saving time in the preparation and 

harvesting of cuttings. When endogenous IAA concentrations were quantified 

in clonal in vitro E. globulus explants (Experiment 4.9), the negative-ion CI- 

GC-MS technique was used for two reasons, firstly there was a very limited 

amount of clonal material available so the enhanced detection limits permitted 

less material to be used. The in vitro conditions resulted in more time being 

spent in preparing and harvesting cuttings, so the technique saved a lot of time 

as fewer explants were necessary using the more sensitive technique. 

Negative-ion spectra tend not to be used that frequently as they generally 

contain fewer fragments and as a result are less informative for qualitative 

analysis (Sandberg et al, 1987a). In the present work the negative-ion 

technique was used for quantitative analysis, there was little background noise 

due at least in part because negative-ion Cl is a more selective process than 

either positive Cl or El. There is still very little work employing the use of 

negative ion GC-MS. The improved concentrations of detection permit much 

smaller pieces of plant material to be analysed, so a clearer picture of the IAA 

concentrations in the region that initiates the rooting process should be easier to 

achieve. Epstein and Cohen (1981), using negative-ion chemical ionisation GC- 

MS-SIM with ammonia as the reagent gas obtained detection of 5 pg of IAA as 

its PFB ester.
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With young seedling cuttings (Experiments 4.6 and 4.7) and the in 

vitro explants (Experiment 4.9) I believe we have virtually reached the practical 

limits of detection for endogenous IAA. Taking the young seedling cuttings 

(Experiments 4.6 and 4.7) for example, harvesting the basal 2mm of hypocotyl 

could not be reduced by much without the risk of missing the events as root 

initiation occurs along this 2mm length. In addition, in order to obtain a 

synchronised series of events it is not possible to vastly reduce the number of 

cuttings. Although the primary events with these cuttings were found to occur 

in a few cells of the pericycle associated with the four vascular bundles, it is 

not practical to measure IAA concentrations in this area.

Immunocytochemical localisation and photoaffinity labelling are two 

techniques that could be developed to aid our understanding of the role of IAA 

in ARF, possible application of the two techniques are described in the general 

discussion under future work.
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Chapter 5. General discussion.

In chapter 4 the central role of IAA in the rooting process was discussed. Whilst 

auxin is generally accepted as playing a central role in the rooting process, which is 

supported by a wide array of direct and indirect evidence, many other factors have also 

been reported to have an effect on the rooting process (Haissig, 1986; Jarvis, 1986). 

Other factors which can effect the rooting process include other plant growth regulators, 

such as, cytokinins (Maldiney et al, 1986; Anderson and Camper, 1987; Bollmark et 

al., 1988; Label et al, 1988; van Standen and Hartney, 1988; Bouza et al, 1994), 

abscisic acid (Label et al, 1988, 1989; Berthon et al, Blakesley et al, 1991b; Noiton, et 

al, 1992), ethylene (Robbins et al, 1983; Mudge, 1988; Moncousin et al, 1989; Riov 

and Yang, 1989; Liu and Reid, 1992) and gibberellins (Fabijan et al, 1981). 

Carbohydrates have been shown to be able to affect the rooting process (Jarvis and 

Booth, 1981; Tran et al, 1985; Veieskov, 1988) as have genetic effects (Locy, 1983; 

Haissig et al, 1992) and a wide array of environmental factors (Haissig, 1986; Loach, 

1988).

The histological work on the rooting of young E. globulus seedling cuttings 

presented here fits in with the general view that ARF consists of four distinct phases. 

These essentially include:

1. Pre-cell division, where differentiation and the formation of a new meristematic locus 

occurs.

2. Early cell divisions producing a cluster of cells which are radially symmetrical.

3. Later cell divisions to form a discernible root meristem.

4. Root formation by extension growth of cells produced by the meristem.

(Dore, 1965; Girouard, 1967a).

The present work is in agreement with that of several others who worked with 

easy-to-root cuttings and reported that there was a transient rise in free IAA
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concentrations associated with the induction period of ARF, followed by a subsequent 

decline in auxin concentrations which coincided with early cytological events 

(Blakesley, 1984; Moncousin et al, 1989; Gaspar et al., 1990). In the young easy-to- 

root seedling material there was a positive correlation between the site of ARF and the 

localisation of elevated IAA concentrations. IAA concentrations in the non-rooting 

zones remained fairly constant throughout the rooting process. In contrast, in the rooting 

zone itself, a significant increase in IAA concentrations occurred during the first 24 

hours after cutting excision. This early transient rise in IAA concentration which only 

occurs in the basal region of the cuttings was also reported by Blakesley et al, (1984) 

working with Phaseolus aureus hypocotyl cuttings and by Moncousin et al, (1989) 

working with an in vitro grapevine. There are some conflicting reports, especially with 

the earlier work for example Bose et al, (1973) and Weigel et al, (1984); however 

frequently such work either is reliant on procedures that do not employ sound physico

chemical techniques, or, the IAA analyses are timed such that crucial early stages could 

very easily have been missed.

In the present work with clonal explants, IAA concentrations in the easy-to-root 

clone (73% of explants rooted) were significantly (p< 0.05) higher than in the difficult- 

to-root clone (0% of explants rooted) at time zero. IAA concentrations in the difficult- 

to-root clone during the first 10 hours after cutting excision rose, but only to about half 

the concentration that occurred in the easy-to-root clone. The free IAA concentration in 

the easy-to-root clone rose significantly higher (P<0.05) than in the difficult-to-root 

clone during the first 10 hours following cutting excision when the transient rise in IAA 

concentration took place. In addition the peak tailed more quickly in the difficult-to-root 

clone. As the root-induction medium contained 10 pM IBA and there was no suitable 

internal standard available, the source of the elevated IAA concentration is not known. 

The elevated IAA concentration could be due to conversion of IBA into IAA (Epstein
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and Lavee, 1984; van der Krieken et al, 1993), or endogenous, or a combination of the 

two. It would be useful to repeat the experiment, with particular regard to the first 24 

hours following cutting excision, incorporating the use of a suitable IBA internal 

standard, such as [4-3 H] IBA, and a hormone-free control medium. This could give a 

clearer answer to questions such as what is the source of the increased IAA 

concentration and if conversion of IBA into IAA does occur, at what rate does this take 

place. It may also provide a clearer idea of differences between the rooting ability of 

the two clones in relation to auxin, for example is there a difference in the ability to 

convert IBA into IAA between the difficult-to-root clone and the easy-to-root clone.

IAA plays an important role in ARF, especially during the early events in the 

rooting process (experiments 3.6 and 3.7). Such information can be of practical 

importance when one is developing a rooting system for young material, for example the 

need for a suitable auxin pulse after cutting excision. The work in this thesis also shows 

that the rooting ability can be restored in material that does not root, experiment 3.4. 

However, the ability of auxin to restore rooting ability as the stock plants age is limited 

as it only delayed the age-related decline (experiment 3.5).

Maturation is clearly a complex process and while the sharp decline in rooting 

ability is taking place many changes are occurring for example, leaf shape changed 

from being ovate to lanceolate , and the stem morphology changed from square in 

cross section into circular. There is very little work in the literature on the relationship 

between the onset of maturation and endogenous IAA concentrations. It is clear that 

endogenous IAA concentrations do not entirely explain the decline in rooting ability 

during maturation, but particularly in the early stages of maturation, IAA concentration 

could be important, as suggested by the indirect evidence involving application of IBA 

and the subsequent increase in rooting percentage. An attempt was made in this study to 

quantify endogenous IAA concentrations in non-rooting cuttings (experiment 4.8b), to
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see if IAA concentrations changed in older material that is unable to root without auxin 

application. Although there was a significant (PcO.Ol) transient rise in IAA 

concentration in the cutting base 6 hours after cutting excision, the loss of samples, 

particularly at 12 and 18 hours after cutting excision, resulted in this being a single 

replicated data point and therefore impossible to draw conclusions from. The experiment 

should be repeated to see if there is a peak in IAA concentration, with particular regard 

to the first 24 hours following cutting excision. If there is a peak in IAA concentrations 

following cutting excision in non-rooting cuttings, careful interpretation will be 

required. One consideration would be the responsiveness of the material to the IAA and 

the distribution within the tissue. Using in vitro material, where the explants were 

transferred to root induction medium (containing 10 pM IBA) and utilising a suitable 

IBA standard to monitor whether IBA is converted into IAA, and if so at what rate, 

should help answer the question of whether the actual severance to produce the cutting 

contributes to the elevated IAA concentrations in the cutting base, as this too could be a 

factor in the non-rooting material.

There is also a need for a detailed study on IAA concentrations during the 

decline in rooting ability with increasing age of woody species, E. globulus with its 

rapid decline in rooting ability is a good candidate for such work.

Future Work.

Future directions in the study of ARF have been covered by many workers 

(Davis and Haissig 1994). Areas that are gaining interest include the search to find 

markers for juvenility concentration that will allow successful propagation (Franclet et 

al., 1987). At present there is no direct evidence linking a biochemical or molecular 

event for competence to root, the accumulated evidence is largely correlative (Hand,

1994). Progress has been made on identification of at least some members of the 

consortium of genes whose transcription imparts the necessary and sufficient conditions
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for rooting (Blakesley and Chaldecott 1993). Studies of pre- and post-transcriptional 

factors that regulate expression of identified genes can now be followed by using 

structural and promoter gene sequences as molecular probes. Most of the plant cell lines 

that have been developed are cell suspension or callus lines, and are quite heterogeneous 

in cell composition, as determined by monitoring cellular metabolism and response of 

the cells to exogenously supplied factors (King et a l, 1973). The requirements for 

establishing homogenous plant cell lines are complex to meet (Ernst 1994). However, 

the homogenous system could prove useful in studying the effects of specific factors on 

cellular differentiation, including cell-types that make a de novo meristem at various 

stages of development. It is generally accepted that lateral root formation occurs in the 

pericycle adjacent to the vascular poles (Charlton 1991). Ernst (1994), suggested the 

possibility of developing a homogenous culture of pericycle cells that retain enough in 

vivo character so that some of the causal factors associated with competence changes in 

lateral root induction could be studied in isolation. The production of homologous plant 

cell lines could also prove useful in a better understanding of factors effecting the 

early stages of ARF.

Immunocytolocalization techniques could be employed to aid our 

understanding of the role of LAA in ARF. The technique enables the localisation of plant 

growth regulators in tissues and cells using antiplant growth regulator antibodies, which 

are subsequently detected using anti-serum to the primary antibody linked to the antigen. 

These can be visualised using light or electron microscopy. Immunocytolocalisation has 

been used in studies on IAA by a variety of workers including Ohmiya et al, (1990), 

who localised IAA and found that subcellular localisation is tissue specific in peach 

seedlings. In the same study they also demonstrated that IAA accumulated in the 

nucleoli of meristematic cells of the root tip. Ohmiya and Hayashi (1992) looked at 

subcellular localisation of IAA in leaf cells of Prunus persica at different stages of
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development. The study showed that IAA was distributed throughout the cytoplasm, 

nuclei and cell wall, and that the distribution pattern changed as cells matured. One 

important application of immunocytolocalisation in the present work on ARF would be 

to provide information on the distribution of IAA particularly in the first 24 hours 

following cutting excision. In experiments 4.6 and 4.7 a few cells in the pericycle 

associated with the four vascular bundles became noticeably swollen and prominent, this 

was the primary visible event in ARF. By investigating localisation and accumulation of 

IAA in this system, a clearer picture should arise about why these cells respond with 

regard to auxin. One such example is that it could be that as these cells are located in 

close proximity to the vascular bundles they are the first to receive the auxin stimulus 

and therefor the first to respond. Another possibility is that IAA accumulates in the cells 

of the pericycle in close proximity to the vascular bundles, this accumulation of IAA 

triggering the activity in these cells. In this situation other cells in the pericycle could be 

unable to respond as the necessary IAA is used by the cells in closer proximity to the 

vascular bundles. To utilise immunocytolocalisation for studying IAA in E. globulus 

material, careful checks would be necessary as several problems could arise. Firstly 

there must be no or negligible redistribution of IAA. As IAA is soluble in organic 

solvents and water, redistribution of IAA during tissue preparation for microscopy is 

important to overcome. Another important potential problem to overcome is cross- 

reactivity, monoclonal antibodies with a high specificity are important where structurally 

similar indoles and IAA conjugates are present. This technique was used by Shi et al, 

(1993) in the primary roots of Zea mays, and was the first study to localise IAA in 

dicotysomes and dicotysome-derived vesicles, and indicated that dicotysomes and 

vesicles constitute a pathway for IAA movement in and secretion from root cap cells. 

The use of this new technique should enhance our understanding of the role of plant 

growth regulators in plant growth and development.
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Photoaffinity labelling is another microtechnique that could improve our 

understanding of the role of IAA in root initiation. It is possible, in a hypocotyl, to 

locate the cell type(s) in which polar auxin transport occurs in the intact plant using 

microautoradiography. It should also be possible to identify lateral migration of IAA 

away from the cells involved in polar IAA transport in an intact stem/hypocotyl. 

Following cutting excision, any changes in the lateral diffusion and redistribution of 

IAA between different cell types could also be monitored, and the actual location of the 

cells determined. By monitoring lateral diffusion and redistribution of IAA between 

different cell types and in cells of different position within the pericycle, a clearer 

understanding of why only certain cells respond should emerge. Jones (1990) has 

examined the problem of polar auxin transport in 3.5 day old Z  mays seedling shoots 

using a newly developed technique involving photoaffinity labelling. The data is 

relevant to auxin and root initiation, because in Z  mays it shows that auxin is available 

to all cells, although at different concentrations, and that internal pathways for auxin 

movement are also possible and significant. However, the study by Jones (1990) was 

carried out in excised mesocotyl segments over 4 hours, and it is not clear whether the 

same distribution of [3 H], 5-N3-IAA would have been found in an intact seedling.

By developing immunocytochemical and photoaffinity labelling techniques it 

could be possible to get a much clearer idea of the role of IAA in the rooting process 

and in particular, to get more detail about the events within the rooting zone especially 

within the pericycle and surrounding cells.
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Appendix.



A .l The effect of media on in vitro seedling growth.

Aim: an initial experiment to select media in which in vitro Eucalyptus globulus 

seedlings grow. Media were selected based on data from Advanced Technologies 

(Cambridge) Ltd.

Materials and methods.

A combination of three MS concentrations (full, 1/2, and 1/4 strength), 2 sucrose 

concentrations (0.03 M and 0.09 M), presence or absence of 0.5% w/v activated 

charcoal, plus liquid or solid media were tested. Media were made from stock 

chemicals to avoid the possibility of variation between packets in the commercially 

prepared MS powder. There were 24 treatments, 8 replicate magentas per treatment 

and 4 seedlings per magenta. The length of the main root was measured, plus the 

degree of branching and hairiness was given a mark of one to 5. For the shoot growth 

leaf number and a mark of 1 to 5 was given for the vigour of the material. The degree 

of callusing was also estimated.

Results.

Due to contamination only complete 3 replicate magentas were left before any results 

were taken. Results were taken after 1,2, and 5 months.

The following observations were made:

(i) Root length, as measured by length of the main root, was better with low salts 

(Table A.l).

(ii) Shoot growth was better with solid media

(iii) Root growth, (length, degree of branching and hairiness), was vastly superior 

when grown in liquid media verses solid media. However, shoot callusing and poor 

shoot growth, which may have been due in part to wetting of the young shoot growth 

was very apparent when the seedlings were grown in liquid media. It would be
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interesting to record the shoot growth with liquid media if there was a simple way of 

suspending the shoot system above the media.

(iv) The overall optimum, (for shoot and root growth), was 1/2 strength MS, 0.03 M 

sucrose solidified with 0.7% w/v agar. The benefits of AC was more apparent as the 

plants aged, this may be due to AC mopping up substances which build up in the 

media as the plants age, media without AC increased in browning as the plants aged. 

After about 1 month signs of nutrient deficiency could be seen, plants on media with 

0.09 M sucrose were not as affected as those with 0.03 M sucrose.

Table A.l Length of the main root (cm) after one month.

Strength of MS media

Media tvDe.
Quater 

X (S.E1
Half 

X (S.E)
Full 

X (S.E^

0.03MS A - 4.67+/- 0.17 3.33 +/- 0.29 3.67+/-0.11

0.09MS A - 2.25+/- 0.31 2.50+/- 0.37 3.00 +/- 0.22

0.03MS L - 3.67+/- 0.60 2.42+/- 0.15 2.42+/- 0.18

0.09MS L - 3.58+/- 0.43 1.67+/- 0.17 3.25 +/- 0.07

0.03MS A + 4.00+/- 0.26 3.50+/- 0.14 2.75+/- 0.07

0.09M S A + 4.42+/- 0.11 3.97+/- 0.04 3.83 +/- 0.05

0.03MS L + 3.83 +/- 0.29 4.75 +/- 0.07 2.92+/- 0.21

0.09MS L + 5.00+/- 0.06 4.33+/-0.18 3.42+/- 0.33

Overall X 3.93 +/- 0.28 3.31+/-0.18 3.16+/- 0.15

Key: S= sucrose; A= solidified with agar (0.7% w/v); L= liquid media (no agar); +/- = 

with, or, without activated charcoal respectively.
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A.2 In vivo rooting of E. elobulus seedling cuttings.

Aim: To select a medium which produces a high rooting percentage without the 

curvature of the hypocotyl base (Experiment 4.1a,b).

Materials and methods.

Three media were tested, vermiculite, sand, and a 50:50 mixture of vermiculite and 

sand. The sand was a 50:50 mixture of fine and course grade, the vermiculite was 

medium grade. Seedlings with 4 node pairs, ( the second true leaf pair expanding and 

the third true leaf pair upright), were severed either 1cm below the cotyledons 

(hypocotyl cuttings), or, 1cm below the first true leaf pair (stem cuttings). There were 

3 replicate randomised blocks, with 20 cuttings per cutting type in each block.

Results.

There was no significant difference between the three rooting media tested, but there 

was a significant difference in the rooting ability of the two cutting types (Table A2). 

The rooting ability of the hypocotyl cuttings was significantly higher than that of the 

stem cuttings.

Table A.2 The effect of the rooting media and cutting type on the rooting of in 

vivo E. globulus seedling cuttings.

Cutting type

Media_______________ Hypocotyl_________Stem

Vermiculite 83% 60%

Sand 87% 57%

Vermiculite and sand 87%______________53%
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A.3 The effect of activated charcoal in the rooting medium.

Aim: to determine whether the use of activated charcoal (AC), as used by Advanced 

Technologies (Cambridge) Ltd., in the second phase of the rooting medium is 

necessary for a high, synchronous rooting ability. The inclusion of AC in root 

elongation media is to mop up IBA. High auxin in the later stages of adventitious root 

formation has been reported as being inhibitory (Thiman, 1936; Liu and Reed, 1992). 

One problem in having AC evenly distributed throughout the media when ARF is 

being studied is that obscures the view, so the time of root emergence and determining 

the position from the cutting base as the roots emerge is impossible. If AC was 

effective when located on the base of the magenta it would overcome the problem of 

AC blocking the visibility of root emergence.

Materials and methods.

. There were 6 replicate magentas each containing 4 explants, the stock material was 

3.5 months old and explants consisted of the apical 3 node pairs with the basal leaves 

removed. For five days all explants were placed on a 10 pM IBA pulse, root initiation 

medium All three treatments, (zero AC, 0.3% w/v AC evenly distributed, and 0.3% 

w/v AC allowed to settle near on the bottom of the magentas), had 1/4 strength MS, 

0.03 M sucrose, and were solidified with 0.15% w/v phytagel.

Results.

The distribution of activated charcoal did not make a significant difference on the 

rooting ability of the explants (Figure A.l). However, when AC was omitted the 

rooting ability dropped from around 70% to just over 40%. In addition the general 

vigour of the roots appeared poorer without AC. Being able to let the AC settle on the 

base of the magentas will allow the time of root emergence to be monitored without 

the need of removing the explants.
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Figure A .l The effect of distribution of activated charcoal (A.C.) on the in vitro rooting of E. globulus explants.
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A.4 The effect of feeding glasshouse-grown E. globulus seedlings on the

subsequent rooting of hypocotyl cuttings from the material.

Aim:

To see whether nutrients could be limiting the rooting ability of glasshouse-grown E. 

globulus seedling cuttings.

Materials and methods.

Seedlings were grown in Fisons FI compost and fed at 10 days after germination. 

Peters M-77 general purpose, water soluble compost (N-P-K, 20-20-20), at either 0, 

0.05% w/v, or 0.1% w/v was used. Cuttings, severed 1cm beneath the cotyledons, were 

struck in vermiculite at the following ages, 12, 16, 20, and 24 days old and kept at 

25°C, 60% relative humidity, with continuous lighting. There were 3 replicates per 

treatment, with 16 cuttings per replicate.

Results.

There was no significant effect of application of the three fertiliser concentrations 

used on the subsequent rooting ability of the hypocotyls tested (Figure A.2). Plants are 

routinely fed every couple of weeks and when the plants are grown for more than 3 

weeks, 0.3% w/v general purpose fertiliser granules are incorporated in the compost, 

so a lack of nutrients should not be a limiting factor in the rooting trials.

A.5 Preparation of Sephadex OAE-25.

Sephadex QAE-25 was placed in a conical flask, covered in a 1M solution of sodium 

formate, shaken and then left to settle. After approximately 4 hours, when the 

suspension had settled, the fine particles which float near the surface of the liquid were 

carefully poured-off, the 1M. sodium formate topped-up and then the flask was again 

shaken and left to settle; this occurred about 4 times to eliminate the fine particles.
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Figure A.2 The effect of feeding E. globulus seedlings with a general purpose fertilizer on the subsequent rooting 
ability of cuttings.
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When the fine particles had been removed the Sephadex was washed twice in distilled 

water before being stored in 1% formic acid.

A. 6 Preparation of Haupt’s solution.

Gelatin lg.

Phenol crystals 2g.

Glycerol 15 ml.

Procedure: Disolve the gelatin in 100ml of distilled water at 60°C, add the 

phenol and glycerol, stir and filter.

A.7 TBA dilution series.

Water______ Ethanol (95%)______TBA_______ Ethanol (100%!

50 40 10

30 50 20

15 50 35

50 50

-___________:_________________75__________25___________

Key: figures = percentages.
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