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Summary

Summary
In industry, the cleaning of oily soils from hard surfaces is a common problem. 

Surfactants are often used to tackle this problem but their application is typically 

empirical. Further knowledge on the interaction of surfactants with oil films is 

required. Material published in the literature on the cleaning of oily soils has 

concentrated on removal from fabrics rather than from hard surfaces, as historically 

this has been the largest market for surfactant based products. Nonionic surfactants 

have been identified as the most effective detergents but research work has originated 

from the area of colloid science concentrating on surface chemistry and primarily the 

removal of oil droplets rather than oil films. Fouled deposits are also unrepresentative 

of industry involving manual application. The effects of surfactant composition, 

concentration, velocity and temperature have been investigated but often only 

concentrating on an individual parameter, typically temperature.

This study provides an engineering approach to oil removal. Fouling and cleaning rigs 

have been designed and constructed, crude oil films have been fouled under controlled 

dynamic conditions and the effect on removal of the above parameters has been 

determined. Detailed visual removal techniques have provided invaluable information 

on the mechanisms of removal, confirming roll up as the main surfactant removal 

mechanism. Removal was found to occur below the critical micelle concentration 

(cmc), and an optimum cleaning concentration was discovered above the cmc, the 

reduction of interfacial forces being crucial to removal. At low temperatures further 

increases above the optimum concentration were detrimental to removal. Gas 

chromatography of the oil deposit during cleaning has confirmed that there is no 

selective component removal from the crude oil deposit. The key mechanism involved 

in removal have been hypothesised, and the ‘surface modification’ step was found to 

be rate limiting, with the diffusion boundary layer offering little resistance to removal. 

Semi empirical models have been developed to describe removal by water and the 

additional effect of the surfactant.
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Chapter One

To Clean or Not to Clean?
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Chapter One-  To Clean or Not to Clean?

1.1 Introduction
Cleaning is the removal of unwanted deposits from a system. The formation of 

deposits on process equipment occurs frequently in industry presenting problems such 

as reduced heat transfer and increased pressure drop. The cleaning of oil films from 

metal surfaces represents a typical removal problem. Current practice has been 

developed on an empirical basis. Systems include high pressure steam cleaning, the 

application of solvents or aqueous based cleaners which are typically a combination of 

an alkali base and a combination of surfactants.

Cleaning can be costly both to the processor and to the environment and there is 

surprisingly little published information on the mechanisms of oil film removal. The 

literature treatment of the principles and mechanisms of oil film removal is unclear and 

incomplete, specifically with reference to modelling. The majority of the experimental 

work reported has determined an overall cleaning time rather than production of 

kinetic curves. Historically work has concentrated on fouling and its reduction rather 

than on cleaning.

Aqueous cleaning is the most common method of removal. Cleaning overcomes both 

the soil /  soil and the soil /  substrate adhesion forces of the deposit by exerting energy 

on the deposit. This energy is realised either through reaction and subsequent break 

down of the deposit and /  or through reduction of the interfacial forces among the 

substrate, soil and medium by physical or chemical methods. The substrate can be 

subjected to the cleaning medium in either flow or static conditions. There are several 

parameters which will effect the efficiency of any cleaning process; the type of medium 

and its concentration, temperature and velocity (in a dynamic system). In industry, the 

selection of these parameters is often done empirically (Romney, [1990]). The 

following diagram (Figure 1.1) summarises the main parameters that affect removal 

efficiency.

Removal o f Crude Oil Films using Aqueous Detergents  2



Chapter One- To Clean or Not to Clean?

THERMAL CHEMICAL HYDRAULIC

Acid/Alkali Surfactant Enzyme

Roll-Up Solubilisation Emulsification

Figure 1.1 The Main Oily Soil Removal Processes 

Each of the three main removal processes are important to oil removal and their 

individual effect has been investigated. If deficient in one the other two become more 

significant Kinetic energy is provided in the form of solution velocity and substrate 

shear stress. The transition from turbulent to laminar flow is generally considered to 

be crucial although investigation has shown otherwise, (Chapter 6). Thermal energy is 

important, improving hydraulic and reaction dynamics. Many authors suggest that 

increased temperatures aid removal. Results presented in this thesis define the effect 

thoroughly, (Chapter 6). Chemical additives reduce the energy required for deposit 

removal through deposit reaction and interface modification. Increasing the cleaning 

agent concentration is generally reported to aid removal, although concentration 

optima are reported in this study (Chapter 6).

1.2 Detergents

A detergent should be selected specifically for the type of soil to be removed. It has 

one or more of the following attributes: (adapted from Romney [1990] and The Soap 

and Detergent Association [1987]

1. Solubilisation- Dissolves organics such as fatty and oily soils

2. Emulsification- Maintains oils and fats dispersed within the cleaning solution

3. Wetting- Reduces of surface and interfacial tensions.

4. Dispersion and suspension- Brings insoluble oils into suspension and prevents their 

redeposition on cleaned surfaces.
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5. Sequestration /  chelatation- Combines with calcium and magnesium salts etc. found 

in hard water to form water soluble compounds.

6. Reaction- Saponifies fatty soils, enzymes digest protein based soils.

7. Neutralisation- Neutralises acid soils.

8. Rinsing- Ensures the cleaned surface is left clear of any trace of soil or detergent

1.2.1 Types of Detergent

A detergent is defined as "any substance that either alone or in a mixture reduces the 

work requirement of a cleaning process" (Bourne and Jennings, [1963]). There are 

many different types of detergent, from solvents to soaps. Aqueous detergents can be 

categorised into three parts, shown below. For oily soil removal nonionic surfactants 

are considered to be the most effective (Lange, [1994]) and receive detailed study in 

this thesis. Voss and Korpi [1972] studied the effect of various detergents and 

cleaning procedures for oily soil removal from stainless steel.

1.2.2 Acids and Alkalis,

The addition of an acid or alkali to a cleaning solution provides a surplus of H+ or OH' 

ions respectively. The surplus of ions induces reaction of the ions with the deposited 

soil. Alkalis attack organic material, saponify oily materials and neutralise acidic 

residues. Conversely acidic solutions are aggressive to base materials and dissolve 

inorganic oxides. Both processes can leave a large amount of insoluble particulate 

material (McCoy, [1984]).

1.2.3 Enzymes

Enzymes are complex proteinaceous molecules. Selected enzymes are effective at 

breaking down certain soils and stains to simpler molecules, which are then more 

readily removed by detergents. They are typically used at high concentrations or over 

long exposure times. There are two main types of enzyme used in cleaning: protease 

and lipase. Protease chemically breaks down polymeric protein soil stains such as 

blood, egg and cocoa. Lipase hydrolyses triglyceride soils and thereby aid surfactant 

efficiency (Miller and Raney [1993]). Enzymes are also expensive and unstable at high 

pHs (above 9) and are rarely used in the breakdown of oily deposits on hard surfaces.
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1.2.4 Surfactants
Surfactants (surface active agents) are amphiphilic in nature accumulating at 

interfaces, and have assets that make them very useful cleaning agents. Firstly, they 

lower the interfacial tension between the cleaning solution and the contacting phase. 

This reduces the work necessary to create new interface per unit length thus lowering 

the energy required to disperse a deposit into solution (enhancing roll up and 

emulsification, Chapter 2). Secondly, at high concentrations the amphiphiles also 

aggregate promoting solubilisation of the soil (Chapter 2). There are a very wide 

range of different classes of surfactants that are used in a variety of cleaning 

applications. Much of the research on surfactants has concentrated on their surface 

chemistry rather than determining the optimum conditions needed for effective 

removal.

1.3 Nature of Deposits

There are many different types of soil. These can be categorised into six classes, 

shown below. The types of soil are often a function of temperature and, for example, 

are dependent on the soil melting point.

1. Water soluble- Considered easy to remove with clean water but a challenge with 

dry cleaning techniques.

2. Oily- Primarily hydrocarbon based, no polar group, crude oil, vegetable, motor oil.

3. Greasy- Essentially fatty materials containing polar groups such as esters and 

carboxylates.

4. Particulate- Soils such as metal oxide alumina and silica clay

5. Bleachable- Oxidizable soils such as stains from fruit, wine, coffee and tea.

6. Protein and starch- Soils such as potato, blood, milk and grass.

Work published concerning oil film removal has only really focused on the removal of

oil drops from flat surfaces or individual fibres with the assumption that similar 

removal mechanisms can be applied to practical situations (Raney and Miller [1993]). 

This project considers the practical problem of removing oil films from the inside of 

stainless steel piping.
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1.4 Nature of Surface to be Cleaned

The finish of the substrate plays an important role in determining the ease of deposit 

removal. The rougher the surface the harder soil is to remove. Several investigators 

have considered the effect of surface roughness on cleaning efficiency. Mahe et al 

[1988] looked at the effect of the surface roughness of glass on the rinsing of droplets 

of oil. Three roughnesses were used, 0.1-0.5)im, l|im , 5-10|im. Results indicated that 

a surface roughness below 0.1pm had no effect on removal. Above which, removal 

was increasingly more difficult

Stainless steel, which is used in this study, is the most commonly used hard surface 

substrate for detergent analysis, being resilient to the majority of chemical cleaners. A 

smooth surface roughness has been chosen to minimise the mechanical forces of 

adhesion, (see Chapter 3).

1.5 Cleanliness Required

The degree of cleanliness required varies substantially from industry to industry. 

Romney [1990] neatly summarises the target level of cleanliness into three categories; 

physically clean, chemically clean and microbiologically clean. Physically clean 

concerns the visual appearance of the surface. Chemically clean is totally free of 

chemical residuals and microbiologically clean refers to an acceptable level of bacterial 

contamination. In this study removal is primarily assessed gravimetrically and 

therefore only considers a physical level of cleanliness with a detection limit of >99% 

clean which is sufficient for the majority of crude oil based applications.

1.6 Conclusions

Oil cleaning is clearly a complex process the mechanisms of which are poorly 

explained in the literature. Cleaning efficiency is dependent on the applied process 

conditions and the type of deposit. In industry, selection of chemical cleaners and 

thermo-hydraulic conditions is often empirical, applying high concentrations of 

formulated chemical cocktails which are not specific to the particular application. 

Although cleaning costs can constitute a significant portion of the overall processing 

costs, cleaning rarely receives the attention it deserves. Oily film deposits are
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tenacious and present a difficult problem to the process industry. Optimising crude oil 

cleaning and elucidating the mechanisms of removal will improve current 

understanding and provide benefits to process operations with possible applications to 

other oil fractions.

1.7 Scope and Aims of the Study

Research undertaken on oil deposit cleaning has not been representative of industry. 

Little work has concerned the development of models that describe and predict 

removal. The literature has concentrated in detail on interfacial phenomena rather than 

from a practical approach, determining optimum conditions of removal.

This thesis has identified an effective industrial nonionic surfactant (C9-11E6) and 

concentrated on its singular effect on removal of a crude oil film. Geanliness can be 

analysed down to greater than 1% of the original deposit mass, which is equivalent to 

a visual degree of cleanliness. The effect of additional surfactants and their synergy is 

beyond the scope of this study but could be tackled in future work, (see Chapter 8). 

The technique allows change in deposit thickness but this has not been investigated.

The aims of this work are (1) to develop a fouling and cleaning protocol to allow the 

investigation of the effect of detergents on crude oil films. (2) Produce removal 

kinetics which can enable determination of the relative importance and significance of 

key parameters involved in removal: temperature, velocity, concentration. This would 

facilitate determination of the effect of the surfactant properties on removal (cloud 

point, micelle shape, etc.). Kinetic and visual analysis would then allow (3) the 

development of models to describe removal.

1.8 Structure of the Thesis

This thesis is divided into seven subsequent Chapters:

Chapter Two: Aqueous Detergents. Describes the action of detergents on oil films 

and the work undertaken in the literature to enhance current understanding of the 

mechanisms of removal.
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Chapter Three: Fouling. Details the mechanisms and processes of adhesion of oily 

soils to a surface and techniques of deposition reported in the literature.

Chapter Four: M aterials and Methods. The classification of components and 

techniques used in the thesis.

Chapter Five: Development of an Experimental Cleaning System. A review of 

previous methods to determine soil removal. Explains the experimental fouling and 

cleaning protocols developed to determine crude oil film removal kinetics.

Chapter Six: Experimental Results and Discussion. Crude oil removal kinetics are 

examined as a function of velocity, temperature and detergent concentration and 

composition. The cleaning process is also investigated using visualisation techniques 

and in terms of crude oil compositional changes during cleaning.

Chapter Seven: Modelling Removal. Theoretical and empirical models are developed 

to describe removal.

Chapter Eight: Conclusions and Future Work. Conclusions are drawn from the 

experimental analysis and areas of future work are examined.
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2.1 Introduction
Cleaning has been the subject of many investigations from food deposits to oily soils. 

Oily soils have always received attention but primarily in the form of droplet removal 

(Lim et al [1991], Kao et al [1989] and Mah6 et al [1988]) rather than films and from 

textiles (Raney [1991] and Thompson, [1992]) rather than from metal surfaces. Early 

studies were carried out in static baths (Jennings et al [1966]). Subsequent studies 

investigated the effect of ultrasound (Walker [1985] and Vaccari [1993]) and recent 

work has concentrated on dynamic systems (Beaudoin et al [1995]). Cox and Matson, 

[1984] studied the effect of static and dynamic systems on the removal of fatty and 

oily soils by nonionic surfactants from aluminum and masonite. Analysis determined 

the time to clean rather than the kinetics of cleaning. Static systems are often used to 

provide key information on removal mechanisms, but whether this can be applied to 

dynamic systems using different deposits is questionable.

This Chapter reviews the literature concerning oily soil removal primarily, 

concentrating on nonionic surfactants. Nonionic surfactants have generally been seen 

as the most effective detergents for oily soil removal. This Chapter can be broken 

down into two sections. The first section considers the effect of rinsing and the second 

the effect of aqueous detergents on the removal of oily soils. Relevant background 

information on detergents and their properties is provided. Comparisons are drawn 

between surfactants and alkalis, but little attention is drawn to enzyme cleaners as they 

are of limited use for the breakdown of oily soils. Particular emphasis is paid to 

published mechanisms and models proposed in the literature for the removal of oily 

soils by surfactants.

2.2 Rinsing
Studies concerning the removal of droplets of oil by water are almost nonexistent 

(Mahe et al [1988]). The rinsing of an insoluble deposit relies solely on the shear 

forces provided by the rinse solution. However, crude oil removal is strongly oil 

viscosity dependent, therefore the required fluid shear will also be a strong function of 

applied water temperature. Adams [1990] wrote a practical paper concerning the 

removal of crude from the shorelines of the Prince William Sound. Water proved 

effective especially at higher temperatures. Nevertheless, cleaning was limited to
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65°C because of the detrimental effect on the local ecology and the kinetics of oil 

removal were not reported. Mahe et al [1988] performed a rigorous study rinsing 

droplets of decane from a glass substrate and found that removal was related to a 

critical shear stress. Nagarajan and Welker [1992] found high pressure rinsing (up to 

210 barg) to be an effective alternative to chlorinated solvents for the particulate 

removal of oily soils from machined metal alloys. Geaning efficiency was also found 

to increase significantly with particle size. These results agree with those of Sterritt 

[1992], who found that water was a viable alternative to solvent cleaning for flux 

residues from circuit boards.

Many authors have been interested in the effect of water as a cleaning agent for non­

oil applications, with the food industry receiving particular attention. Work is relevant 

to the current study if deposits are insoluble in water. Jennings et al [1966] dipped 

insoluble fatty tristearin fouled stainless steel strips into a bath containing water to 

determine the contribution of the air /  liquid interface to removal, (the Marangoni 

effect). It was determined that the amount of removal depended on the speed and 

number of immersions made and removal was therefore due to the action of the air 

liquid interface.

2.2.1 Rinsing Removal Models
Many authors have found that for particulate removal from a hard surface by water 

flow must be turbulent although the universality of this phenomenon is subject to 

debate, (Bird [1993]). Cleaver and Yates [1973] considered this event and developed 

theoretical mechanisms of removal examining the turbulent fluid hydrodynamics of 

particle removal from a hard surface. They suggested that particle removal occurred 

as a result of turbulent eruptions occurring in the viscous sublayer. The authors 

developed a model to relate the bursts to the kinetics of removal. Paulsson [1989] 

presented a fundamental study considering the removal of clay particles from steel 

piping using water at 20°C. Reynolds numbers between 8,000 and 80,000 were 

studied. Shear stress at the wall (xw) raised to the power 1.24 best characterised the

f  dl \
mechanical effect where rate of change in deposit thickness was given by

v dt j

equation 2.1:
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—y- = C1(xw)124 + C2 2.1
at

Where Ci and C2 are dimensional constants.

Mahd et al [1988] developed an elementary model describing oil droplet removal in 

terms of droplet size, contact angles, interfacial tension and the properties of the rinse 

water. Plett [1985] presented a paper considering the four phases of rinsing of 

fluorescein from a plate heat exchanger and the relevant mass transfer mechanisms. 

Two models were presented to describe removal, one for the transfer of deposit from 

the sublayer to the bulk by diffusion, and the other for transfer by penetration.

2.3 Aqueous Detergents

2.3.1 Alkalis
Alkaline materials, such as sodium hydroxide can be used alone or as a constituent for 

more complex cleaning formulations. The presence of alkali salts has the main function 

of saponifying fatty or oily soils. Alkalis can also enhance certain surfactants, disperse 

and suspend dirt, provide water softening characteristics, maintain a desired alkalinity 

and aid in the removal of microorganisms (The Soap and Detergent Association, 

[1987]). Many workers have studied removal by OH' ions but primarily on fatty 

deposits such as tristearin and milk rather than oily soils.

2.3.1.1 Conditions for Alkali Remo val
Removal using alkaline solutions is through direct reaction and deposit break down. 

The effect of temperature upon performance is unclear. It is generally accepted that 

increased temperature increases removal although some workers imply high cleaning 

temperatures induce a 'bum on' of the soil (Romney, [1990]). In contrast Barlett, Bird 

and Howell [1994] found an optimum temperature of 50#C for the cleaning of fatty 

material fouled on microfiltration membranes using 0.2 wt% sodium hydroxide. Most 

workers agree that increasing the concentration of NaOH improves removal up to 

some limit, whereupon subsequent increases have no effect (Bourne and Jennings 

1965). However, (Bird 1993) found an optimum concentration of 0.5 wt% when 

cleaning fatty deposits from stainless steel using sodium hydroxide (Bird [1993]). All 

workers agree that increasing velocity has a positive effect upon deposit removal (Bird
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and Espig 1994). An increased velocity increases the shear stress at the wall and hence 

the forces upon the deposit. Some workers suggest a minimum Reynolds number 

below which removal is negligible. This ranges from Jennings et al [1957] with a 

figure of 25,000 to the Cleaver and Yates [1973] statement that turbulent flow is 

required before removal occurs. Other workers find steady removal at very low 

velocities, and in laminar flow regions (Bird, 1993).

23.1.2 Alkali Removal Models
Bourne and Jennings, [1963] studied the kinetics of tristearin removal from stainless 

steel by sodium hydroxide, and found that two species were present. The authors 

modelled each species removed as a parallel first order reaction with respect to deposit 

mass, Md. Gallot-Lavallee and Lalande [1985] proposed an important zero order 

model for the effect of OH' concentration on removal, equation 2.2:

- ^  = A k A[OH-] M

where A = Area

OH" = Cleaning Agent Hydroxide ion concentration

kA = Apparent reaction rate

Gallott-Lavalle and Lalande [1985] developed this further suggesting the formation of 

an intermediate swollen phase. The cleaning process was divided into four separate 

stages which could be represented by four first order differential equations. Many 

authors have used this as a basis for further development; Plett [1985], Perlat [1986] 

and Bird and Fryer [1991]). However, the protein reaction front shelving models are 

unlikely to be of any use when modelling oil film removal.

2.3.2 Surfactants
Surfactants are useful across a wide range of industries. They have been widely 

studied, and a large data bank exists in the literature. Surfactant cleaners consist of 

molecules which are characterised by their individual two component structure, shown 

in Figure 2.1. Each molecule is schizophrenic; one component, the hydrophilic head, 

has a strong attraction to the bulk aqueous phase and the other component, the
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hydrophobic tail, has repulsion to the bulk phase. The relative size of each of the 

components determines the surfactant properties.

Hydrophilic 
Head

Hydrophobic Tail (lc)

Figure 2.1 Surfactant Molecule 

2.3.2.1 Surfactant Aggregation
At equilibrium, surfactant monomers will assume a state of lowest free energy. Since 

surfactant monomers are amphiphilic they tend to accumulate at interfaces within an 

aqueous solution. The polar head group having a strong preference to remain in the 

water and the hydrogen tail favouring leaving the water, see Figure 2.2 (a)-(c). A 

dynamic equilibrium will exist between monomers dispersed in solution and those 

aligned at the interface. As the concentration is increased the equilibrium relationship 

remains constant and more monomers position themselves in solution and at the 

interface. Initially the monomers will lie flat on the interface but as the interface 

becomes crowded the monomers will assume a vertical orientation as shown (Porter 

[1994]).

a) Low cone b) Approaching cmc

luuuiiittua

c) Above cmc

Figure 2.2 (a)-(c) Micelle Aggregation 

Eventually a unimolecular layer is formed and the concentration of the solution is 

known as the critical micelle concentration (cmc). At concentrations above the cmc 

the surfactant monomers can no longer position themselves at the interface or singly in 

solution they therefore aggregate forming an ordered structure known as a micelle.
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The monomer concentration dispersed will then remain constant, see Figure 2.3 

(Israelachvili [1992]).
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Figure 2.3 Monomer and Aggregate Concentration 

This phenomena is due to the hydrophobic effect where the micelle shape formed will 

be of minimum free energy. This represents a force balance. A force of aggregation, 

the hydrophobic groups attraction to one another and a force of dissociation, repulsion 

of individual polar head groups. Monomers within a micelle will be in a dynamic 

equilibrium with monomers in solution. The rate constant of a monomer surfactant 

entering a micelle is in the order of 10*6 s (Porter, [1994]). The concentration of 

surfactant monomers aligned at an interface leads to pronounced physical changes to 

the solution. For example, surface tension is reduced up to the cmc, where it reaches a 

minimum value, see Figure 2.4 (Clint [1994]). However, with some nonionic 

surfactants further increases in surfactant concentration above the cmc can lead to a 

continued reduction in surface tension (Lodhi [1994]).
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Figure 2.4 Solution Properties

2.3.22 Types o f Surf actant
Surfactants are usually classified primarily by the charge of their hydrophilic head 

group. There are four main types: anionic, cationic, nonionic and zwitteronic (or 

amphoteric).

Anionic surfactants have negatively charged head groups, such as sulphates (-OSO3 ), 

sulphonates (-SO3 ), and carboxylates (-OCOO). They are frequently found as 

ammonium or alkali metal salts (Porter [1994]). Cationic surfactants have positively 

charged head groups, such as quaternary ammonium ions (-N(CH3)3+). Cationic 

surfactants are often used as fabric softeners binding strongly to negatively charged 

surfaces. Nonionic surfactants do not have a charged head group, such as the common 

polyoxyethylene head group (R-[OCH2CH2]n-OH). Unlike the majority of 

surfactants, nonionics exhibit inverse solubility (i.e. increasing temperature reduces 

solubility). Zwitteronic surfactants have head groups with a positive and negative 

charge, such as lecithins (R-CH2(P04)'CH2CH2N+(CH3)3). Typically zwitteronic 

surfactants behave like cationics, nonionics, and anionics at low, intermediate and high 

pH’s respectively. Table 2-1 summarises the main properties of the four main types of 

surfactant.
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Table 2-1 Properties of Surfactants

Property Anionic Cationic Nonionic Zwitteronic

Charge

(hydrophillic)

negative ions positive ions no charge positive & 
negative ions

Examples —O SO 3, —SO3, 
-o c o o

-N(CH3)3+ R-[OCH2CH2]n-OH R-CH2(P0 4)'
0 ^ 0 ^ ( 013)3

Ph sensitive sensitive stable sensitive

Electrolyte sensitive sensitive slightly affected sensitive

Temperature minimal effect minimal
effect

sensitive sensitive

Hard water sensitive sensitive not affected sensitive

(Ca, Mg ions)

Wetting Good, polar 
surfaces

Good Poor Good/Poor

Solubilisation Poor Poor Good Good/Poor

2.3.2.3 Micelle Shape
The actual structure and shape of micelles depends upon the geometric packing of the 

hydrophilic and hydrophobic groups which is equal to v/ao lc and first proposed by 

Israelachvili et al [1976]. Where ao is the area of the hydrophilic group and v/lc is the 

area of the hydrophobic group, depicted in Figure 2.1. These parameters are 

‘effective’ areas. When v/ao lc < 1/3 the monomers are cone shaped and spherical 

micelles are formed, l/3<v/ao lc < 1/2 the monomers are truncated and globular and 

cylindrical micelles are formed up to when v/ao lc > 1 and inverted micelles are formed. 

Cox and Matson [1984] varied carbon chain length and ethylene oxide content to 

determine a general optimum nonionic surfactant for oily soil hard surface cleaning. 

For concentrated solutions a short carbon chain length was most effective and for 

dilute solutions a long carbon chain length was most effective. An ethylene oxide 

content of 50% was recommended.

The packing parameter defines the properties of a surfactant and is a function of many 

parameters; temperature, electrolyte concentration, pH and addition of cosurfactant. 

The effects of concentration and temperature are within the scope of this study. The 

packing parameter is an independent function of concentration for spherical micelles
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and dependent for cylindrical micelles. This has been confirmed by measurement 

(Porter, [1994]). For nonionic surfactants, increasing temperature reduces the 

hydrogen bonds between the ethylene oxide groups (E) and water (Puwada and 

Blankenstein, [1990]). This increase in hydrophobicity effectively decreases a<> and 

therefore increases the packing parameter. More usually for ionic surfactants, 

increasing temperature decreases the packing parameter due to increased steric 

repulsions. A high temperature therefore produces cylindrical and polydispersed 

micelles for nonionic surfactants, and spherical micelles for ionic surfactants.

23,2,4 Nonionic Surfactants
The majority of the experimental data reported in the literature is for nonionic 

surfactants. This is due to their capacity to remove oily soil from synthetic fabrics and 

hard surfaces. They exhibit good water solubility, are low foamers and are less 

sensitive to water hardness than anionic surfactants. They are also required in much 

lower concentrations than anionic surfactants. According to Scott [1963]) this is due 

to their particularly low cmcs. Several authors have shown that nonionic surfactants 

tend to perform best on hydrophobic substrates with non polar soils.

Polyoxyethylenes are the most common nonionic surfactants having a general 

chemical formula of CnH (2n+1)(CH2CH20 ) m0 H . The molecule is made up of a

saturated alcohol and a series of ethylene oxide groups. They are less susceptible to 

electrolytes and pH changes because they have no charge. They exhibit inverse 

temperature solubility and the temperature at which precipitation occurs is called the 

cloud point. Water solubility and cloud point are linked and both increase as the 

number of oxyethylene groups increases from 3 to 16 and shorter hydrocarbon chains. 

Interfacial tensions tend to reach a maximum value at around n=5 and decrease upon 

further increases.

2.3.2.4.1 Phase diagrams
The phase diagrams of the different classes of surfactants have the same 

characteristics but vary considerably. When a nonionic surfactant is mixed with water 

several different types of behaviour may be observed (Schick [1987]).
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1. The surfactant may be below its melting point and will be insoluble in water 

remaining crystalline without swelling appreciably.

2. The surfactant will dissolve in water. Above the cmc micelles are formed with the 

capacity to solubilise water-insoluble compounds. At higher concentrations liquid 

crystals are formed, the concentration sequence is as follows: 

Micellar (Li)—̂ Hexagonal Phase (Hi)—>Lamellar phase (L) —» Crystalline 

surfactant (S) (Figure 2.5).

3. When the aqueous surfactant solution’s temperature is increased it will split from a 

single isotropic phase into a very dilute aqueous phase and a concentrated solution 

W+Li. This temperature being called the cloud point.

This study documents the effect of removal above and below the cloud point for an 

C9-11E6 alcohol ethoxylate. Assuming C9-11E6  is equivalent to C ioE 6 the typical phase 

diagram is shown in Figure 2.5 (adapted from Schick [1987] and Lange [1994]), the 

cloud point starting at 60°C. The lamellar phase L although common with most 

nonionic surfactants is not present with C9-11E6 .

100
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60
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6 020

Figure 2.5 CI0E6 Phase Diagram 

2.3.2.4.2 Phase Inversion Temperature

Increasing temperature increases the packing parameter and hence changes the 

surfactants properties. The point where v/ao lc =1 is when the micelles become 

inverted. This occurs at the phase inversion temperature for nonionic surfactants. At 

this point the surfactant has a strong solubilising power and ultra low interfacial
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tension and is often considered the optimum for detergency. The cloud point and PIT 

parallel each other. They are both a function of the type of hydrocarbon present. For 

example an aromatic will lower the cloud point and an aliphatic will increase it.

The PIT cannot be determined within a typical cleaning system because the 

concentration of oil to surfactant is very low and inverted micelles cannot be formed. 

Therefore the PIT is calculated by mixing equal quantities of surfactant solution and 

oil and taking the PIT as the temperature at which separation into a three phase 

system occurs most rapidly. The PIT may vary with oil content so the content of oil 

should be reduced and the procedure repeated to determine the new PIT. Through 

linear regression the theoretical PIT at low oil surfactant concentrations can be 

estimated (Raney, [1991]).

2.3.2.4.3 Hydrophilic / Lipophilic Balance (HLB)
There have been several attempts to catagorise surfactants the most successful is the 

Hydrophilic /  Lipophilic Balance (HLB), first developed by Grifin [1949], although it 

is primarily effective for nonionic surfactants. The HLB characterises a surfactant as to 

its emulsifying properties and is calculated from the chemical structure of the 

surfactant:

HLB = Molar % of the hydrophilic group divided by 5

Gearly the maximum value is 20, indicating the product has no hydrophobic group 

and the minimum value is 0 representing a product which is completely water 

insoluble. Values of 1-7 indicate the formation of water in oil emulsions and 10-20 of 

oil in water emulsions (Porter [1994]).

2.32,5 Anionic and Cationic Surfactants
Anionic and cationic surfactants have ionised hydrophilic groups. Anionics are the 

largest class of detergents representing 70-75% of total industrial production (Myers,

[1988]). The hydrophobic group for an effective anionic detergent is commonly a 

linear hydrocarbon chain in the range of C12-C16 with the polar group at one end 

(Porter [1994]). Typically, cationics are based on a nitrogen atom carrying the positive 

charge. The most common types are linear alkylbenzenesulfonate and quaternary 

ammonium salts for anionic and cation surfactants respectively. Anionics and cationics
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generally do not mix. Cationics form insoluble complexes and lose their surfactant 

properties. Whereas anionic surfactants are detergents cationics act as antiseptic 

agents (Porter, [1994]).

2 3 2 ,6  Review of Cleaning Mechanisms
Most cleaning processes can be considered to consist of three primary steps; removal 

of the soil from the substrate; dispersion of the soil in the deterging medium; and 

prevention of soil re-deposition on the substrate (Jennings, [1965]). Understanding 

the mechanisms by which this process occurs is important in the formation of any 

fundamental kinetic models of cleaning. The rate of removal will depend on many 

parameters; optimisation of these parameters will reduce the overall cleaning time. 

The mechanism occurring may vary as a function of surfactant, concentration or 

thermo-hydraulic conditions (Benton et al [1986]).

2.3.2.6.1 Oily Soil Cleaning Mechanisms
Oil will remain on a substrate as long as the hydrodynamic forces exerted by the 

cleaning solution on the oil are smaller than the adhesion forces. The adhesion forces 

have molecular origins which result in the macroscopic quantities such as interfacial 

tension, contact angle etc. (Mahe et al [1988]). The mechanism by which removal 

occurs depends largely on the type of soil (section 1.3, Chapter 1) and detergent. 

There is significant literature on surfactant based removal of oily soil, and it is 

generally agreed there are four main removal mechanisms:

1. Solubilisation mechanism;

2. Roll-up mechanism;

3. Emulsification mechanism;

4. Oil removal through surface film formation.

The majority of published work only considers the first three (or a combination) of 

these mechanisms as removal of oil through surface film formation occurs only in 

exceptional circumstances (non-dynamic conditions). Despite the large amount of 

literature covering the removal of oil from a solid surface in the presence of surfactant
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solutions we still do not fully understand the mechanisms of removal (Kao et al

[1989]).

Scott [1963] studied the mechanisms of removal of fatty material mixed with 

particulate soil. Four mechanisms were observed depending on the material removed, 

the roll-up mechanism commonly occurred with liquid or molten soils.

2.3.2.6.2 Solubilisation mechanism
Consider an oily soil present on a metal substrate immersed in an aqueous surfactant 

detergent. The surfactant, above its critical micelle concentration (cmc) simply 

dissolves the water insoluble oil. The oil or insoluble deposit becomes associated with 

the surface active molecules to form a micelle as shown in the four diagrams see 

Figure 2.6(a) - (d). The result is then a thermodynamically stable isotropic solution of 

oil (solubilisate) normally insoluble or only slightly insoluble in the given solvent 

(water).

The location of a solubilised molecule within a micelle depends largely on the chemical 

structure of the solubilisate (Myers [1988]). Typically for an oil deposit or 

hydrocarbon, the deposit is located in the core of the micelle, ( Figure 2.6(a)). Slightly 

polar materials such as fatty acids, alcohols and esters are usually located in the 

palisades layer, with the hydrocarbon tail remaining in the micelle core Figure 2.6(b)). 

With polyoxyethylene nonionic surfactants the polar head can occasionally be very 

long and large, and the hydrophobic chain is arranged outward into the solution, 

Figure 2.6(c)). Finally, in non-polar surfactant solutions the configuration of the 

micelle is reversed. Polar deposits can therefore be attached to the head, Figure 

2.6(d)).
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(a) Deposit in the micellar core. (b) Deposit at the core/palisades interface

(c) Deposit in the palisades layer. (d) Deposit on the micelle surface

Figure 2.6 Solubilisation Mechanism, Location o f Deposit (Myers [1988J)

2.3.2.6.3 Conditions effecting Solubilisation

Many authors have reported solubilisation as the most important mechanism for the 

removal of oily soils from hard surfaces (Carroll, [1981], Lim et al [1991], Sayeed and 

Schott, 1986, Shaeiwitz et al [1981]). Many workers have found removal to be only 

significant above the cmc (Lange, [1994], Rosen [1978] and Shaeiwitz et al [1981]). 

Solubilisation is important for removing oil that cannot be removed through roll-up, 

(see section 2.3.2.6.4) Optimum conditions occur at several times the cmc for 

nonionics and even higher for some anionics. Carroll [1981] when cleaning oily soil 

from textile surfaces found that the rate of solubilisation was proportional to the 

nonionic surfactant concentration above the cmc. Solubilisation cannot occur in the 

absence of micelles. However, Jafvert et al [1994] found that when using commercial 

grade surfactants solubilisation below the cmc was possible. This was put down to 

monomers with long hydrophobic groups associating below cmc and the extensive 

dimer and trimer formation. In certain situations the solubilisate (soil) was also found
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to enhance micelle formation through the provision of monomers to form additional 

micelles.

The size and shape of the micelles in solution plays a major part on the rate of 

adsorption /  association of the oil into the micelle. A surfactant forming rod like 

micelles induces lower oil-liquid interfacial tensions and facilitates the transfer of oil 

from the substrate to the core of the micelles. Anionics (e.g. sodium lauryl sulphate) 

tend to produce globular like micelles and hence exhibit low take up rates. 

Accordingly solubilisation does not contribute significantly to detergency in anionic 

surfactants as opposed to nonionic surfactants (Rosen [1978]). Chiu and Huang 

[1993] were able to promote solubilisation of crude oil by increasing micellar size for 

both nonionic and anionic ethoxylated surfactants. Oetter and Hoffman [1981] were 

able to relate oil/liquid interfacial tension with decane to micelle shape: above 1 mN/m 

globular, between 1 and 0.1 mN/m rod like, or below 0.1 mN/m disc like.

Solubilisation is highly dependent upon temperature. Canoll [1981] that found 

maximum detergency of oily soils occurred suddenly at the cloud point. The authors 

found that at 15°C (below the cloud point) solubilisation was minimal. Lim and Miller 

[1991] Raney [1991] (Raney et al [1987]) Thompson [1992] contrast these findings, 

stating that maximum solubilisation of hydrocarbons from textile surfaces occurs near 

the PIT which is found well above the surfactant cloud point. Sayeed and Schott

[1986] also studied solubilisation of an oily soil, fouled on silica substrates, using a 

nonionic surfactant. The authors related surfactant temperature effects to the soil 

melting point. Below the melting point of the soils, solubilisation was found to 

gradually increase with increasing temperature. At the melting points the solubilisation 

doubled and tripled when the esters present turned to liquid crystals. Subsequent 

temperature increases did not have such a large effect. Shaewitz et al [1981] found 

solubilisation of Ch 's from stainless steel increasing with increasing flow rate up to a 

constant value at higher flow rates.

The class of substrate plays an important role in removal. Nonionics were found to out 

perform anionics for removal from non-polar substrates (polyester) cleaning but the 

opposite was true for hydrophilic surfaces (Rosen [1978]). Dillan et al [1979] agrees 

with these findings stating that nonionics are suited to hydrophobic substances and
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non-polar soils. Selective solubilisation occurred for binary hydrocarbon mixtures 

(Nagarajan and Ruckenstein [1984]). Experimental data showed that the solubilisation 

capacity of surfactants differs significantly for different oily soil solubilisates. The 

absorbence of a particular micelle decreased with increasing molecular volume of the 

solubilisate. The more polar the solubilisate the greater the capacity of the micelle for 

solubilisation. Aromatic compounds were also solubilised in larger amounts than 

corresponding saturated hydrocarbons. Chiu and Huang [1993] also propose the 

occurrence of selective solubilisation of crude oil by a nonionic surfactant. Lim and 

Miller [1991] suggest that for soils containing more than 10% polar material, 

solubilisation is likely to be the main mechanism of detergency.

2.3.2.6.4 Roll-up mechanism
Consider a thin oily film deposited on a metal surface, with a contact angle of zero. 

The film is then immersed in an aqueous surfactant solution. The oily soil will 

spontaneously form isolated islands on the substrate; this is the roll-up mechanism or 

roll-back as it is sometimes called, developed by Adam [1937], Figure 2.7. The 

removal of these islands is then achieved through convection currents within the 

solution. If a droplet is large, and the contact angle , Figure 2.8, between the oil-liquid 

interface and the substrate is <90° removal is incomplete with a small droplet 

remaining on the surface, hydrophobic surfaces. However with the angle >90° droplet 

removal is total, often with hydrophilic surfaces (Dillan et al, [1979]). Raney and 

Miller [1993] and Thompson [1992] define the roll-up mechanism as only occurring 

with complete removal of the oil droplet i.e. <90°. This is contrary to the findings of 

the majority of workers, (Lange [1994], Myers [1988], Schwartz [1972]). This 

method of soil removal often occurs when cleaning light loads of oil from metals.

Removal o f  Crude Oil Films using Aqueous Detergents 25



Chapter Two- Aqueous Detergents

In presence of aqueous surfactant solution

Thin oily film on metal substrate

C. angle >90 C. angle <90

y  \ i r \  /-------- ------; ...... ;....

Roll-back mechanism

Convection currents Complete removal Partial removal

Roll-back mechanism

0 o o 0
Roll-back mechanism

Figure 2.7 Roll-Up Mechanism 

When a liquid soil O lies on the surface of a solid substrate S, there is an interfacial 

tension yos, at the soil-substrate interface. The oil droplet forms with the substrate an 

angle 0, which results from the balance between the forces. The surface tension yso 

between the substrate and the gas phase tends to spread the oil on the surface (to 

reduce the surface of contact). The interfacial tension yos between the oil and the 

substrate tends to reduce the oil-substrate contact and to re-form the drop. Since the 

total free energy of any system tends towards a minimum equilibrium condition, 

equation 2.3 can be written:

F = ]£ y . (surface area), is a minimum 2.3

hence the Young Equation 2.4 

ysG=yos+yoGcose 2.4

The force balance is shown graphically in Figure 2.8, assuming the vertical component 

of is assumed to be negligible. The contact angle can be defined as the angle 

formed in the oil phase (Rosen [1978]) or in the fluid phase (Dillan et al [1979]). 

Throughout this study the contact angle is defined as the angle formed in the oil phase 

in common with the majority of authors.
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Figure 2.8 Contact Angle 

When the substrate and the oil are submerged, the surface tension between the 

substrate and the gas phase is replaced by the interfacial tension ySL between the 

substrate and water, and the surface tension between oil and gas is replaced by the 

interfacial tension y0L between the oil and water. The result is usually another contact 

angle 0 ’.

If an appropriate surfactant is dissolved in water, the effect is a strong reduction of the 

substrate-liquid and oil-liquid interfacial tensions, due to the adsorption of surfactant 

molecules at the liquid-oil and liquid- substrate interfaces. Of course, the oil-substrate 

interfacial tension is not affected, since water does not diffuse to that interface. The 

system evolves toward a new equilibrium state, characterised by a higher contact 

angle. Mechanical action then causes droplets of oil to be removed from the substrate 

and only a small quantity of oil is left. If the reduction of interfacial tension is so 

strong that the sum of the oil-liquid and substrate-liquid interfacial tensions reaches 

the oil-substrate interfacial tension, the contact angle is 180° (cosl80°=l) which 

means that no oil is left on the substrate (spontaneous perfect cleaning).

2.3.2.6.5 Conditions for Roll-up

Roll-up is considered to be the dominant mechanism for anionic surfactants, and has 

been reported many times (Aronson et al [1983], Dillan [1979], Dillan et al [1979]). 

Unlike solubilisation, roll-up can occur below the cmc, although this has only been 

reported for anionics (Raney et al [1987]) (Schott [1972]) and nonionics (Koretskii et 

al [1983]). Roll-up occurs only with liquid non polar soils and the higher the viscosity 

of the soil the less effective the mechanism. At low temperatures, removal may well 

occur by a different mechanism such as emulsification (Miller and Neogi, [1985]) or 

solubilisation (Benton et al [1986]). High soil substrate bond strengths will also reduce 

the prominence of the roll-up mechanism.
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The roll-up process is often linked to the contact angle the soil forms with the 

substrate. This concept was pioneered by Adam [1937] and is still widely accepted. 

Thompson [1992] presents a broad study concerning the removal of four oily soils 

from a polyester substrate by anionic and nonionic surfactants. A linear relationship 

was found to exist between the percentage of oil removed and the contact angle made 

between a drop of the oil and a flat polyester fabric.

Above the cmc, increasing concentration was found to improve the roll-up mechanism 

at a constant rate (Dillan [1980]). Roll-up was reported to be a function of the values 

of Yd and Ysi- Kao et al [1989] confirmed the presence of the roll-up and a secondary 

diffusional mechanism for the removal of crude oil droplets from a solid silica surface 

in the presence of a micellar solution. The effect of concentration was not considered. 

Below the cmc Koretskii et al [1984] found removal of oily soils by nonionic 

surfactants from stainless steel plates to be equivalent to removal by water alone. The 

addition of a second surfactant to an effective detergent can be found to enhance or 

inhibit roll up depending on the circumstances (Aronson et al [1983]). Aronson et al 

[1983] also found that ionic strength played a significant role. When adding a anionic 

surfactant to a nonionic surfactant, roll up of mineral oil increasing at high ionic 

strengths and decreasing at low ionic strengths. The findings could be related to a 

critical y0i above which roll-up did not occur. Benton et al [1986] suggested that Ysi 

was the major factor in determining the rate of roll-up. Dillan et al [1979] found the 

addition of highly alkaline electrolyte builders and hardness ions promoted 

emulsification of mineral oil. Dillan believed solubilisation to be of secondary 

importance in practical systems because of a low surfactant /  soil ratio present

In contrast to solubilisation, the micelle shape is unimportant to removal by roll-up. 

However, monomer structure effects the rate at which roll-up occurs. Dillan et al 

[1979] found lower ethoxylated nonionic surfactants performed better than higher 

ones at low temperatures but this trend was reversed as temperature was increased.

When using a nonionic surfactant there is some confusion in the literature as to true 

effect of temperature upon removal. The majority of workers agree that an optimum 

temperature exists which maximises removal, but there is some debate as to whether 

this occurs at the cloud point or at the phase inversion temperature (PIT). More
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recent work suggests it lies at the PIT. The optimum temperature for mineral oil 

removal from polyester by nonionic surfactants occurs at the cloud point (Dillan et al 

[1979]). Koretskii et al ([1984]) confirmed this for removal of oil residue from steel 

plating through vibration by nonionic surfactants. Optimum removal of hydrocarbon 

soil by nonionic surfactant occurred at the PIT, well above surfactant cloud point 

(Raney and Miller [1987]). Work by Thompson [1992] for the removal of four oily 

soils from polyester by anionic and nonionic surfactants found that removal was 

related to the PIT. Raney [1987] states that the mechanism reported by Dillan et al 

[1979] [1980] may not be roll-up but a combination of a solubilisation /  emulsification 

mechanism with the process of removal occurring through flow agitation and 

subsequent emulsification.

2.3.2.6.6 Emulsification mechanism

Emulsification is analogous to roll-up (coarse emulsification * roll-up) occurring 

below the cmc and is one of the most important mechanisms contributing to oily- 

greasy soil removal. Solubilisation is often considered to be of secondary importance 

(Dillan et al [1979]). Consider a thin film of oil on a metal substrate, there can be a 

tendency for the oil to emulsify (Figure 2.9). Mechanical action is required to break 

up the insoluble oil into small droplets and disperse it into solution to form a 

suspension. A surfactant which promotes emulsification reduces the energy required 

to form an emulsion by absorption at the oil /  liquid interface and reduces tension from 

20 mN/m to 1 mN/m forming a stable suspension with the continuous phase. An 

interfacial film will then surround each droplet preventing coalescence with 

surrounding droplets. Emulsification continues until the residual oil film has become 

as thin as the diameter of the smallest oil droplet.

Complete detachment of oil drops from flat surfaces has been studied by Mahe et al 

[1988] who found that in a laminar flow regime detachment occurred at a critical 

shear stress xc, equation 2.5.

2.5

where |ii the viscosity of the continuous phase 

the contact radius
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dr = the drop radius

0r = the receding contact angle

0a = the advancing contact angle

Although this relationship is specific to the laminar flow regime it’s general nature 

demonstrates the complex interplay of interfacial tension, contact angle and drop size 

effect as well as introducing the idea that surface roughness (through the parameter 0r) 

is important.

A thermodynamic equilibrium exists between the surfactant concentration in water and 

the surfactant adsorbed on any surface. Increasing the surfactant concentration should 

increase the rate of adsorption and hence the rate of emulsification. At the cmc, the 

monomer concentration reaches a maximum and further increases in surfactant 

concentrations should have no significant benefit.

Primary emulsion forms in 
presence of surfactant solution

Thin oily film on metal substrate Solubilisation

Figure 2.9 Emulsification Mechanism 

Cox, [1986], suggested the removal of refined lard, anhydrous lanolin and cetyl 

alcohol by various surfactants was initially through liquefaction, penetration of the 

surfactant into the soil, then through emulsification.

2.3.2.6.7 Conditions for emulsification

As with the roll-up mechanism, emulsification is frequently reported to occur below 

the cmc (Beaudoin et al [1995]) and (Cox et al [1987], Mori et al [1989], Neogi et al 

[1985], Raney et al [1987], Raney and Miller [1987], Schambil and Schwuger

[1987]). Emulsification creates new surface area and therefore requires a minimum in 

Y o l  (Rosen [1978]). This occurs when hydrophobic and hydrophillic (HLB=8-9) 

portions of the surfactant balance. For nonionics this occurs at the PIT and for 

anionics at a specific electrolyte concentration. Optimum efficiency is in the region of
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the cmc (Lange, [1994]). A combination of solubilisation and emulsification is often 

reported, emulsification prominent at low concentrations and solubilisation prominent 

with an excess of surfactant (Raney and Miller [1993]).

The polarity of the soil is important, the more polar the soil the increase likelihood of 

removal through emulsification (Aronson et al [1983]). Solid oily soils are removed 

through emulsification, the lower the temperature the more likely removal is through 

emulsification or solubilisation rather than roll-up (Otani, et al [1985]).

2.3.2.6.8 Oil removal by surface film formation
As the substrate is immersed into a water bath, the oil film starts to spread over the 

water. The process is a direct transferal from the substrate to the surface of the bath. 

The mechanism relies on a free water surface and the rate can therefore be increased 

by repeatedly dipping the substrate into fresh water. This probably explains the Dupre 

effect postulated by Bourne and Jennings [1961].

2.3.2.7 Summary
Clearly a considerable amount of data has been produced concerning oily soil removal. 

Roll up, emulsification and solubilisation have been identified as important removal 

mechanisms. However the conditions that promote each mechanism have not been 

reported. This may well be due to the similarity of the mechanisms and the ease with 

which one could be mistaken for another. Table 2-2 tackles this issue utilising the 

information available in the literature and the results in this thesis to identify the 

conditions and parameters that promote each mechanism. The information, although 

only a generalisation, proposes the most suitable class of surfactant and the optimum 

conditions of operation for a particular set of removal conditions. For example, roll up 

is likely to remove large volumes of liquid saturated hydrocarbons which are deposited 

on hydrophillic surfaces (low substrate bonding) with optimum removal occurring in 

the region of the cmc at the PIT of the oil /  water system.
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Table 2-2 Conditions that promote Roll up, Emulsification and Solubilisation

Roll up Emulsification Solubilisation
In terms o f Coarse Medium Micro

Emulsification-
Quantity o f oil to large amount large amount residue

be removed-
Soil Liquid, low Solids soils -

characteristics- viscosity
Soil charge- non polar polar polar
Substrate- low substrate high substrate high substrate

bonding bonding bonding
Surfactant class- nonionic or anionic nonionic or anionic nonionic
Optimal Cone- Region of cmc Region of cmc Several times cmc

Required micelle Spherical /  globular Spherical /  globular Rod like, large vol.
shape-

Optimal PIT, (high) PIT, (lower) Cloud point, (low)
Temperature-

Phase (inc. oil)- two two one
Velocity- increases always improve removal

NJ3. There is some debate as to the optimum temperatures.

2.3.2.8 S u r f actant Removal Models
Within the literature there are few mathematical models describing oily soil removal by 

surfactants. Workers prefer to express the removal mechanism in text. However, 

Shaeiwitz et al [1981] described the solubilisation mechanism in equation steps. At 

low temperatures five steps were proposed with micelle desorption and diffusion rate 

limiting. At higher temperatures the solubilisation was governed by the formation of a 

liquid crystalline phase at the fatty acid interface. The mechanism being described in 

terms of two steps: dissociation from the surface and diffusion into the flow in 

solution. Carroll [1981] described the mechanistic route for highly insoluble soils to be 

adsoiption-desorption of the micelles at the oil/water interface rather than the 

diffusion of the molecules of oil into the micelle. The limiting step was found to be the 

adsorption of the micelle.

The roll-up mechanism is often investigated using single droplets of oil rather than oil 

films. Mechanisms are generally described in terms of contact angle, the droplet rolling
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up when yoi cos0 + Yos - Ysg > 0. Within a flow system determination of these 

parameters is very difficult with the additional effects of surface shear.

The combination of removal mechanisms is common. Novel work undertaken by 

Thompson [1992] resolved the cleaning of a radioactive oily soil (squalane) from 

polyester into the existence of two removal mechanisms; roll-up and emulsification. 

Varying the composition of the detergent C12E3 produced two optima for the removal 

of the oily soil indicating the presence of the two mechanisms. Thompson [1992] 

distinguishes the two processes by the work of adhesion (Wa- roll-up) to the work of

cohesion (Wc- emulsification) and expresses this in a mathematical form, equations

2.6 and 2.7:

w a = 7o/l (1+cos 0) 2.6

Wc = 2 70/l 2.7

It is interesting to note Miller and Raney [1993] contrast these findings suggesting the 

removal of oily soils from polyester is by solubilisation-emulsification mechanisms. It 

seems further work is required to verify the actual removal mechanism. Cox, 1986 

proposed two mechanisms for the removal of solid organic soils; liquefaction and 

emulsification.

2.3.2.8.1 Interfacial Forces
Breaking of the interface can have an important benefit on the removal of deposits. 

Bourne and Jennings, [1961], undertook a fundamental study of the removal of 

radioactive tristearin from stainless steel plates by 0.03M sodium hydroxide subjecting 

test strips to a number of washes. Results indicated two removal mechanisms, the 

more powerful one was time-independent and arose from the air-detergent interface 

(the Dupre effect). This was later confirmed by Jennings et al [1966] who found that 

when cleaning a metal plate by continuous immersion the removal was found to be 

also an air-water interfacial effect.

23.2.9 Re-deposition
Re-deposition is soiling of the substrate during the cleaning process. Once the soil has 

been removed through cleaning it is then re-deposited onto the substrate. This
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process occurs commonly with oily soils because they contain more than one 

component and each component is removed at varying times during the cleaning 

process. Re-deposition occurs mainly with solubilised particles that have 

deflocculated and particles removed by the roll-back mechanisms. In both cases 

particles are subject to hydraulic currents, before colliding and adhering to the 

substrate.

2.3.3 Formulations
Household hard surface cleaners are usually lower in active ingredients and alkalinity 

than their industrial counterparts, relying on the additional mechanical action of 

scrubbing. When formulating a hard surface cleaner the main objective is not only to 

removal the soil, but to leave the surface intact and free from cleaning agent residue. 

Formulations need to be specific to the surface and soil. The use of fully biodegradable 

product surfactants and non-toxic solvents is preferred.

Industrial formulations can be liquid or powder, with liquid formulations becoming 

increasingly more popular. In industry the most common soils removed from metal 

surfaces are fatty greases, mineral oils and lubricants. These require highly active 

cleaning compounds, high temperatures (60-90°C) and mechanical energy. Typically 

aqueous detergent cleaning compounds are made up of anionic, nonionic surfactant 

and alkali salts and applied at temperatures between 50 and 94°C (Lange, [1994]). For 

example a highly alkaline detergent for steel surfaces would have the following active 

ingredients: octylphenol, sodium metasilicate, tetrasodium pyrophosphate, sodium 

hydroxide and sodium carbonate (Lange, [1994]). Anionic surfactants tend to 

supplement the nonionic surfactants providing a strong synergy (Porter [1994]). 

Cationic cleaners have not been studied because they are used more commonly as 

fabric softeners and as antiseptic agents than detergent additives. Alkali cleaners react 

with deposits, saponifying the fats and oils. This study considers the effect of each of 

the main compounds, with particular emphasis on the nonionic surfactant which has 

been found to provide the majority of the cleaning power.
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2.3.4 Choice of Cleaning Chemicals

2.3.4.1 Nonionic Surfactants
The two main types of non-ionic surfactants are alcohol ethoxylates and alkylphenol 

ethoxylates. The alcohol ethoxylate class was chosen for the study because it is 

considered excellent at liquid oily soil removal and a more effective detergent than the 

alkylphenol (Lange, [1994]). Both classes are similarly efficient wetting agents. 

Alcohol ethoxylates are also the most common and widely studied having a significant 

supply of published data.

There are many types of alcohol ethoxylates and deciding on the most appropriate 

compound was a difficult task. However, it has been determined that for efficient 

detergency a 60-70 wt% of ethylene oxide and a molecular weight of between 200 and 

350 is required (Scott 1963) (Lange 1994). Three surfactants were chosen within this 

range; C10E7, Q 3E6.5, and C9-11E6 (ICI Surfactants, Synperonic 10, 13 and 91 series). 

The surfactants chosen are commercially available so any results produced could be 

directly beneficial to industry. Limited laboratory tests were then performed on thin 

stainless steel plating fouled with crude oil. The tests were performed in an ultrasonic 

bath observing visually the effect of each detergent at 1 v/v%, 50°C, noting the time 

for 50% of the free surface of the film to be removed. The surfactants performed 

similarly but C9-11E6 having an average 62.6 wt% of ethylene oxide was found to be 

the most proficient and hence chosen for the subsequent cleaning analysis.

23.4.2 Anionic Surfactants
Anionics are the most common surfactants in almost every type of commercial 

formulation, but they are not compatible with cationic cleaners. Sodium lauryl 

sulphate was selected for the study and is one of the most commonly used anionic 

cleaners. It is used in heavy duty liquid cleaners in conjunction with non-ionics, often 

in shampoos. It is an excellent wetting agent with good emulsifying properties.

2.3.4.3 Alkali Cleaners
Sodium Hydroxide has been chosen as a typical the alkali cleaner for result 

production. It is used in conjunction with anionic surfactants to form detergent 

formulations for oil deposit removal where the purpose of the OH* ion is to saponify 

fats and oils. In industry it is the most commonly used alkali cleaner having many
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applications from disinfection to neutralisation of acidic deposits. It also benefits from 

being cheap and readily available in large quantities.

23.4.4 Formulations
There are thousands of different commercially available detergent formulations. In 

general they are designed to remove a wide variety of soils from food to petroleum 

greases and oils. Rarely are detergent cocktails specific to removal of a particular soil. 

Micro (International Products Corporation) has been selected to be used in the study. 

It is primarily a laboratory cleaner but has wide cleaning applications within industry. 

Primarily containing anionic surfactants and supplemented by quaternary ammonium 

salts it is an effective hard surface formulation.
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3.1 Introduction
Fouling is defined as the deposition, crystallisation or growth of unwanted material on 

surfaces. Understanding the processes of adhesion of oil films to a surface is an 

important prerequisite prior to undertaking any cleaning examination. Fouling is a 

function of many process parameters: temperature of substrate and fluid, flow rate, 

concentration, surface roughness etc.. The majority of the literature has concentrated 

reaction fouling in heat exchangers and its reduction although more recently cleaning 

has been receiving more attention. The build up of oil deposits on metal surfaces is a 

large problem presenting difficulties in equipment inspection, increasing pressure drop, 

reduce heat transfer etc.. Costs are significant but difficult to compute, but sizeable, 

for example in 1985 Garrett-Price determined the annual costs of fouling and 

corrosion in the United States to be between $3 and $10 billion.

3.2 Fouling Mechanisms
The fouling can be the result of one or a number of mechanisms, (Bott, [1990]). It is 

generally accepted that fouling processes may be classified into seven groups:

1. Crystallisation and scaling;

2. Particle deposition;

3. Accumulation of biological material;

4. Chemical reaction;

5. Corrosion of the heat transfer surface;

6. Solidification of process fluid on the surface;

7. Mixed systems and the interaction of mechanisms listed in 1-6 above.

Typically hydrocarbon deposition is slow occurring at high temperatures and pressures 

through chemical reaction. Whereas food fouling occurs in a matter of minutes 

primarily through crystallisation and also chemical reaction. The mechanics of oil 

fouling at high temperatures is well understood (Phillips [1996]). Fouling within this 

study occurs at room temperature and is through surface forces and solidification 

induced by evaporation rather than through coking, cracking and polymerisation. The 

development of a fouling layer can be split into three distinct stages, (Bott, [1990]).
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Stage 1. There is little evidence of fouling, this period representing an initiation

or conditioning period. This period lasts varying periods of time from a matter of 

minutes in the food industry to several weeks or months in the heavy oil industry.

Stage 2. Here deposit growth begins, growth is steady and constant.

Stage 3. The final stage, fouling is asymptotic, the resistance reaching an

ultimate value. The typical fouling curve, Figure 3.1, obtained is depicted below.

Stage 3

C/3Oa,<Da
T3JJ
3Ot

Stage 2

3
s

Stage 1

Time

Figure 3.1 Typical Fouling Curve 

The fundamental mechanisms by which the foulant arrives at the surface are as 

follows:

1. The substances or fluid that contribute to the fouling layer move from the bulk

fluid to the surface crossing the boundary layer.

2. At the fluid/surface interface they are subjected to interfacial forces and

conditions particular to the local surface and flow.

3. Deposition of the foulant.

4. The foulant once deposited on the surface is then vulnerable to shearing forces 

of the fluid whether they be natural or forced.

Kem and Seaton [1959] developed a fundamental model to describe hydrocarbon 

fouling hypothesising that the fouled layer thickness, 1, was a balance between removal 

as well as deposition fluxes, equation 3.1. Where C3 and C4 are proportionality
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constants, G the mass flow rate of the fluid, h the 'dirt content' and xw the surface 

shear stress.

^  = C3 G h - C 4 1 3.1

where C3G h  = deposition flux

C4 IT,, = removal flux

3.3 Crude Oil
An Arabian light crude oil has been chosen as the foulant to produce oil films within 

this study, API 26.8. Since crude oil is a complex mixture of hydrocarbons, results 

should provide fundamental information on the removal of oil films by aqueous 

detergents with the applicability to a wide variety of oils. Crude oil has not received 

much attention in the literature except concerning enhanced oil recovery. It is, 

however, a common tenacious deposit found in industry.

The main constituents of the crude oil are saturated hydrocarbons (well over 97% for 

light crudes, Speight [1980]) but variable amounts of compounds such as sulphur, 

nitrogen, and oxygen can be detected. Crude oil is classified by its specific gravity or 

API. The proportions of the elements in crude oil vary only over fairly narrow limits 

but the physical properties vary significantly from well to well. For details of the crude 

oil composition refer to Chapter 4.

3.4 Forming a reproducible deposit experimentally
There are many ways of forming soil deposits in the laboratory. Common with each 

method must be ease of reproducibility. Oily soils are often manually deposited on the 

substrate (Dillan, Goddard and McKenzie, [1979], and Cox and Matson, [1984], 

Mahe et al [1988] Yatagai et al [1992] Prieto et al [1996]). Cox and Matson, [1984], 

applied grease-carbon onto 100 mm x 400 mm sheets of 3 mm masonite using a 

brush, smoothing out the deposit with a stretched strip of mohair cloth. 

Reproducibility was verified using a colorimeter, measuring the reflectance of each 

plate before cleaning. Prieto et al [1996] heated the substrate to 65°C then pipetted 

the oil and dispersed it with a roller. Alternatively melting the soil to give a uniform
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layer is a common technique, Bourne and Jennings, [1961], melted tristearin in a hot- 

air oven forming smooth deposits on stainless steel . Cox and Matson [1984] melted 

black wax to give an even layer. Beaudoin et al [1995] used a novel technique fouling 

the substrate through disc spinning the oily soil. The industrial relevance and 

applicability of the above techniques has to be questioned. Fouled films deposited in a 

flow system are more industrially relevant but up until now this has only been 

undertaken in the food area (Bird [1993]).

Producing a uniform oil film in a flow system is a difficult task. It was found that films 

produced vertically at room temperature, under gravity, and left overnight for the light 

ends to evaporate were the most effective. The films produced were even and gave 

minimal scatter upon further cleaning analysis.

3.5 Adhesion
The forces of adhesion of the crude oil to the substrate have to be overcome during 

the cleaning process to remove the fouled layer from the substrate. The attractive 

mechanisms can be broken down into the presence of absence of solid or liquid 

material bridges, (Hauser and Sommer [1990]), Figure 3.2. Solid bridges are formed 

by the crystallisation of dissolved materials. Fluid bridges result from capillary forces 

or are due to high viscosity materials. Without material bridges, van der Waals and 

electrostatic forces prevail.

Material Bridges- Without Material Bridges-
Capillary, cystallisation forces van der W aals, electrostatic and

mechanical forces

Figure 3.2 Adhesion Mechanisms 

Adhesion of both solid and liquid soils to solid substrates is primary due to van der 

Waals forces with electrical forces being less important (Carroll [1993]). The electrical 

forces are dependent on pH, composition of the crude oil, etc. (Hirasaki [1988]). Non 

polar soils (hydrocarbons) are more difficult to remove from hydrophobic (polyester)
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surfaces than hydrophilic surfaces (cotton, glass). Conversely polar soils (clay) are 

more difficult to remove from hydrophilic surfaces than hydrophobic surfaces (Rosen, 

[1978]). Purely mechanical forces also may hold soils to substrate but these appear to 

be significant only for soils when the substrate is of a fibrous nature or a substrate of 

high surface roughness. Since the project is concerned primarily with the chemical 

effect of detergents, mechanical forces have been minimised by using a smoothed 

polished stainless steel surface.

Since the Arabian crude is a light fraction it is fair to assume that the oil is effectively 

non polar. Stainless steel is hydrophilic and lipophilic but the substrate is more 

strongly lipophilic (for the crude oil) than hydrophillic, therefore removal of the crude 

film presents a difficult cleaning problem. There are two types of van der Waals 

bonding; dipole - dipole bonding and transient dipole bonding. Since the crude does 

not contain a large proportion of electronegative substances like O, Cl and F, dipole - 

dipole adhesion will not prevail. Transient dipole will provide the strong adhesion 

force for oil - oil and oil - substrate bonding.

The attraction is due to molecular polarisation. The dipole moments are induced by 

the electric field emanating from molecules nearby. For non-polar molecules this 

occurs due to displacement of negatively charged electron clouds. The contact angle 

the oil forms on the surface of the oil will be a strong indication to the force of 

attraction to the steel. The oil’s viscosity will only define the time the oil will take to 

assume the equilibrium shape rather than being a function of the attraction.

3.6 Removal
Oil deposit removal is usually carried out by either mechanical or either chemical 

means. Chemical treatment, although more expensive, does not require costly 

equipment disassembly. The cocktails require specialist knowledge in application and 

disposal to remove the deposit rather than corrode the substrate. Mechanical cleaning 

is through high pressure water or steam jets depending on whether the deposit 

requires thermal loosening. The process uses large quantities of water and can be 

hazardous often operating at very high pressures.
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3.7 Conclusion
Fouling has been studied in great detail over the last 30 years. Cleaning, however, has 

received little attention. Of the research studying the removal of oily soils the deposits 

used have not been representative of industry, often the deposit was applied manually. 

In this study, oily films are produced through a flow system yielding more uniform and 

reproducible deposits, representative of those found in industry. The main force of 

attraction through van der Waals transient dipoles.
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4.1 Introduction
This Chapter covers the fundamental components and techniques used in this thesis 

that are outside the experimental protocol Chapter 5. The Chapter is divided into three 

sections covering the classification of detergents, crude oils, and the test piece surface. 

The properties of the selected nonionic surfactant (C^nE*) as a function of temperature 

have been determined, investigating the effect of viscosity, density and micelle size. 

Important crude oil properties of density, viscosity and composition have also been 

determined. The procedure used to analyse crude oil composition variation with 

cleaning is detailed. The stainless steel test section has been examined with respect to 

surface roughness.

4.2 Detergent Classification

4.2.1 C9-iiE6 Structure
C9-11E6 is a mixture of polyoxyethylene nonionic surfactants containing 13-23% C^s, 

36-48% Cio's and 33-43% Cn's with an average 6  moles of ethylene oxide (7C7 

Surfactants, Wilton). Its average structure, C10H2 1(CH2 CH2O)6OH (C10E6), is shown

in Figure 4.1 (adapted from Lodhi, [1994]). It is different from the typical shape of a 

surfactant molecule. Instead of the hydrophilic portion being small and compact it is in 

the shape of a long chain similar to the hydrophobic portion. The surfactant is 

nonionic and will not exhibit any electrical effect, i.e. strong adsorption on to charged 

surfaces.

hydrophobic chain

hydrophilic portion

Figure 4.1 C 1 0E 5  Structure
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4.2.2 C9.nE6 Density measurement
The density variation of C9 -11E6 with temperature has been determined using a 25 ml 

Gay-Lussac pyknometer, in accordance with BS 733 [1987], results are reported in 

Figure 4.2. Refer to Appendix A for details. Although the neat densities of C9-11E6 and 

water are very close the solutions cannot be assumed to be that of water as the 

surfactant molecules may pack differently around water molecules compared to 

themselves.

1 0 0 0

980

coE 960
D)
r  940

920

900

880
30 40 50 60 70 80

Temp (°C)

-e- Nonionic Water Crude Oil

Figure 4.2 5v/v% C9.nE6„ Water and Crude Oil Densities

4.2.3 C9-iiE6 Viscosity Determination
The viscosity of the nonionic surfactant C9.11E6 has been determined in accordance to 

BS 188 [1977]. The results are depicted in Figure 4.3, for details refer to appendix A. 

As expected viscosity is a strong function of temperature, generally decreasing with 

increasing temperature. Additional surfactant always increases viscosity. However, the 

rate of increase is much more significant below and approaching the cloud point 

(57°C) than above. At 30°C the solution viscosity increases 52% from water to 

5 v/v% C9-iiE6 compared to 142% at 50°C and 16% at 70°C. The viscosity of a 

detergent solution can gives an indication as to the structure of the micelles in solution 

(Porter, [1994]). Spherical micelles show no appreciable increase in viscosity with 

concentration, however, rodlike polydisperse micelles show a significant increase. This 

suggests the existence of spherical micelles at 30 and 40°C and rodlike micelles at 

50°C which is confirmed later in section 4.2.6.
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Figure 4.3 C9.uE6 Kinematic viscosity variation with concentration from  30-80 °C

4.2.4 Surface Tension Measurements, Cmc Determination
Surface tension is defined as the force required to create new unit surface area and can

be used to define the effectiveness of a particular surfactant at reducing interfacial 

forces. Due to the significant changes in solution properties as a function of surfactant 

concentration there are many methods to calculate the cmc, measurement of 

conductivity, turbidity, surface tension etc. (Tadros [1984]). The Whilhelmy Plate 

procedure, measuring surface tension is the most popular and has been used, see 

Appendix A. Results portraying the effect of the addition of C9-11E6 on surface tension 

are presented graphically in Figure 4.4. For ease of differentiation between each 

surface tension curve determined at a different temperature, data produced at 30°C 

has had 5 mN/m added and data produced at 40°C has had 10 mN/m added and so on.
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Figure 4.4 Variation o f Surface Tension with Concentration over 30-80°C, C9.ijE6 

As expected there is a linear relationship between surface tension, y, and log 

concentration of C9-11E6  below the cmc. Typical of nonionic surfactants this does not 

apply at very low concentrations where the surface tension begins to plateau off. This 

is especially noticeable with the curve produced at 20°C. The linear portion of the 

curve is a consequence of the surface becoming saturated with surfactant molecules. 

Any further addition of surfactant packs the molecules more tightly at the surface until 

the cmc is reached and the molecules are perpendicular to the interface (Clint [1994]). 

Occasionally with mixed surfactant systems a ‘double cmc’ is obtained corresponding 

to each of the individual surfactants cmc but with C9-11E6 a specific cmc is obtained, 

probably due to the fact that surfactant distribution is over a small range of 

hydrocarbon chain length. Table 4.1 summarises the results. As expected the cmc’s 

decrease slighdy with increasing temperature rather than increase as is the case for 

ionic surfactants.
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Table 4.1 C9.jjE6 Cmc

Temp
CC)

Ycmc
(mN/m)

cmc
(v/v%)

cmc
(mol/dm3) (mN/m)

20 29.9 0.0183 0.00043 71.5
30 29.8 0.0178 0.00042 71.0
40 29.6 0.0173 0.00041 69.2
50 29.5 0.0171 0.00040 68.2
60 29.2 0.0166 0.00039 67.4
66 28.9 0.0152 0.00036 65.1

4.2.5 Cloud Point Curve Determination
The majority of nonionic surfactants exhibit reverse solubility with temperature. The 

cloud point is the temperature at which the surfactant precipitates into a surfactant 

rich and a surfactant lean phase. This phase boundary is a function of concentration 

and is called the cloud point curve. It is identified by the clouding of the detergent 

solution and is characterised by a lower critical point which is defined as the cloud 

point.

The cloud point has been determined experimentally for C9-11E6. Detergent solutions 

of known concentrations were sealed in clear tubes and submerged in a 

thermostatically controlled water bath, (± 0.5°C). The temperature was then gradually 

increased and the temperatures at which each solution became opaque were noted. 

The temperature was then decreased and temperatures at which the solutions became 

clear were noted. The cloud point was taken as the average of the two temperatures. 

The point of clouding was not particularly well defined, this is probably due to fact 

that C9-11E6 is not a pure component. The results are depicted in Figure 4.5. The cloud 

point of C9-11E6 is clearly 57°C which is 3° lower than pure C10E6 (Schick [1987]) 

indicating a higher proportion of the C9-nE6 is made up of the longer hydrophobic 

chain (C11) since increasing hydrophobic chain length decreases the cloud point. This 

agrees with the composition breakdown of C9.11E6 detailed in section 4.2.1.
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Figure 4.5 Cloud Point Curve fo r  C9.n E6

4.2.6 Micelles in Solution
Cleaning performance has been shown to be affected by the size, shape and quantity of 

micelles in solution. It is therefore important to be able to predict micelle dimensions 

and aggregation number for a particular set of process conditions. This is especially 

crucial with nonionic surfactants since temperature has a dramatic effect upon micelle 

structure.

There are many practical techniques for micelle size determination but there is often a 

wide variation in the reported results. Clint [1994] suggests steady state fluorescence 

quenching and small angle neutron scattering are the most effective. Theoretical 

approximations have also been developed by Nagaijan and Ruckenstein [1991] and 

Puwada and Blankschtein [1992], considering the equilibrium relationship between a 

monomer in solution and monomers contained within a micelle. These have been 

utilised to predict micelle size with temperature for the C9-nE6 solution.

4.2.6.1 Prediction o f  Micelle S e lf Assembly
Within an aqueous surfactant solution an equilibrium will exist between the monomers 

within a micelle and the singly dispersed monomers in solution. This is shown in 

Figure 4.6.
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Figure 4.6 Micelle Equilibrium Relationship 

At equilibrium, the chemical potential of the individual monomer will equal the 

chemical potential of the monomer present within a micelle and the Gibbs Free Energy 

of the monomers will be at a minimum. This can be represented as:

v  = n" + k„T lnX, = + T lnX,] 4.1

V chemical potential

kb Boltzmann’s constant

g aggregation number

M- Gibbs Free Energy

X Mole fraction

X total = Xi + (g Xg)

By manipulation of Gibbs Free Energy equation 4.1 the following is obtained. 

Xg = X ; exp k. T b

4.2

The semi-empirical correlations Nagarajan and Ruckenstein, [1991] estimated the 

difference in free energy (Apg) between an individual monomer (Xi) and a monomer 

within a micelle (Xg). It is then possible to determine the value of g, the monomer 

aggregation number, where Xg is a maximum. This value of g then specifies the 

equilibrium aggregate shape for the particular conditions.
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This procedure has been applied to C9-11E6 assuming the C9-C11 distributions of 

hydrocarbons chain is equivalent of C10 and an average of 6 polyoxyethylene groups. 

Figure 4.7 shows the variation of Xg with aggregation number g for CioE6 at 1°C, the 

predicted equilibrium aggregation number being 58 monomers.
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Figure 4.7 Aggregation Monomer Cone against Aggregation Number 

The predicted shape is independent of concentration. Increases in concentration 

produce more micelles of the same shape. At high concentration the micelles in 

solution become crowded and interfere with each other making this assumption 

inappropriate.

4.2.6.1.1 Estimation of for nonionic monomers

Calculation of the difference in free energy (Apg) of CioE6 was broken down into 4 

key steps for nonionic monomers. The semi-empirical correlations used to determine 

the surfactant properties and each step can be found in Appendix A.

1) The first step is to estimate the free energy of transfer of the hydrocarbon chain 

(Afi°)^of the surfactant from water into the hydrocarbon core of the aggregate. The

relationship is linearly dependent on the number of carbon atoms in the hydrocarbon 

chain. This is the driving force for aggregation.

2) The hydrophilic end of the hydrophobic tail is compelled to remain at the polar 

water interface causing a free energy of deformation ( A •
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3) Formation of the micelle produces a hydrophobic /  water interface between the

area of the interface and macroscopic interfacial tension of the hydrophobic / water 

interface.

4) Finally, micelle aggregation produces a steric repulsion of the polar head

head groups are compact in nature acting as hard particles with a definable core. For 

polyoxyethylene head groups having a long chain head structure this is not valid. To 

account for this a correlation produced by Puwada and Blankschtein [1992] is 

utilised.

The overall difference in Free Energy of an individual monomer and a monomer within 

a micelle in then obtained by summing the individual contributions, equation 4.3:

The free energy difference is a function of the aggregate shape. The two shapes 

considered in this routine are spherical (see equations 4.4, 4.5 and 4.6) and globular 

micelles (see equations 4.7, 4.8, 4.9 and 4.10). Rodlike micelles and hence 

polydispersity has been predicted but the procedure is complex (Nagarajan and 

Ruckenstein [1991]).

Spherical Micelles

polar heads. This free energy difference is accounted for as the product of the

groups . . The work of Nagarajan and Ruckenstein [1991] assumes that the

steric
4.3

kb T kb T kb T kb T  kb T 

4.2.6.1.2 The geometry of the micelles.

©
4.4

Ag = 4?t (Rs )2 = g a 4.5

46

where R, radius of hydrophobic core of the micelle
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vs = volume of the hydrophobic tail of the surfactant molecule

Ag = aggregate surface area

a = aggregate surface area per surfactant molecule

P = packing parameter

Globular Micelles

E =
1/2

T/ 47i ( R J b
^ = - - - 3 - = g v,

Ag =2n(Rs)2
sin 1E

1 +
E ( l - E 2)05

= ga

K  vP  — —  s
A R. a R.g s s

4.7

4.8

4.9

4.10

where E 

b

Eccentricity factor (account for deviation from spherical shape) 

Length of semi-major axis

4.2.6.1.3 Micelle Shape Experimental and Predicted
The table below compares the predicted aggregation numbers against the experimental 

aggregation number which were determined using time resolved fluorescence (Alami 

et al [1993]). A good agreement is obtained as shown in Table 4.2.
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Table 4.2 Experimental and Predicted Micelle Structure

Surfactant Temp Experimental Predicted

°C Aggreg No. Shape Aggreg No. Shape

C ioE 6 1 58 globular

C ioE 6 10 63 globular

C ioE 6 15 85 globular

C ioE 6 20 68 globular

C ,oE 6 25 100 globular

C ioE 6 30 92 approaching
rodlike

C ioE 6 35 150 approaching
rodlike

F o r C iqE6 th e m axim um  aggregation fo r a spherical m icelle is ca lcu ated to  be 40.

Thus indicating the existence of globular micelles even at the low temperatures.

Figure 4.8 depicts the variation of aggregation number with temperature. The black 

squares representing the predicted data and the clear rectangles representing the 

experimentally determined data. A good correlation can be observed. The curve is an 

exponential fit to both sets of data.
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Figure 4.8 Plot o f Aggregation Number versus Temperature 

Using the curve fit, average aggregation number, micelle shape and core dimensions 

for experimental conditions are depicted in Table 4.3. Micelle sizes above 50°C are
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not presented because the results have been produced at 10°C intervals and at 57°C 

the surfactant starts to precipitate (cloud point).

Table 4.3 CjoEt Micelle size and shape

Surfactant Temp Average Core dimensions

°C Agregation No. W idth (A) Length (A)

CioE6 30 107 28 60

CioE6 40 179 28 96

CioE6 50 363 28 187

4.3 Crude Oil Classification

4.3.1 Crude Oil Density measurement
The density of the crude oil and the detergent were determined using the same 

technique, (section 4.2.2) taken from BS 733 [1987]. At 20°C the density of the neat 

crude oil was determined to be 891 kg/m3 with an API gravity of 26.8. The API of a 

crude is a common way of classifying oils and is defined by equation 4.11.

141 5
API gravity = -----------1------------- 131.5 4.12

6 J S .G .60°/60°F

It does not uniquely define the quality of the crude but provides an estimation. 

Increased amounts of aromatics result in an increase in the density of petroleum. 

Increased saturated compounds result in a decrease in density. API also indicates 

sulphur content, the higher the API the larger the sulphur content of the oil.

After fouling, the crude oil density increased to 924 kg/m3 having an API gravity of 

21.1. Samples of the fouled oil film were obtained by centrifuging the fouled test 

piece, (see section 6.3.1, Chapter 6). Calculating the density variation with respect to 

temperature up to a value of 80°C proved difficult and inaccurate using a pyknometer, 

for this reason the coefficient of thermal expansion was used and for a petroleum fuel 

of API range 15.0-34.9 this value is equal to 0.00072/°C (Perry and Green [1984]). 

The results are found in section 4.2.2, Figure 4.2.
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4.3.2 Crude Oil Viscosity measurement
The viscosity of the fouled crude oil film was determined using a plate - plate Bohlin 

rheometer (Lund, Sweden) results are portrayed in Figure 4.9 with further details 

presented in Appendix A. As expected, the viscosity decreases significandy with 

temperature but at a reducing rate.
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Figure 4.9 Change in Viscosity with Temperature o f the Crude Oil

4.3.3 Crude Oil Composition
Crude oil is a mixture of hydrocarbons ranging from light aliphatic paraffins, methane 

and ethane to very heavy asphaltenes, cokes and wax crystals. The complex nature of 

the oil makes it almost impossible to determine the composition in terms of 

component substances. It has therefore been characterised in terms of boiling range 

distribution through the standard test method ASTM D5307 [1992], see Appendix A. 

The method uses gas chromatography and will report boiling ranges up to 538°C 

(1000°F), above 538°C material is reported as a residue. This technique is used to 

determine possible composition changes in the crude occurring during cleaning time. 

Findings are reported in Chapter 6. The resulting chromatogram for the pure untreated 

crude is shown in Figure 4.10. The calculated boiling point distribution curve is 

portrayed in Figure 4.11, the straight line indicates an even spread of hydrocarbons. A 

residual mass of 17.5 % was estimated.
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Figure 4.11 Crude Oil Boiling Distribution Curve

4.4 Surface Classification
The surface roughness of a substrate can play an important role in determining its 

cleaning properties, and is therefore important to characterise. The test piece and lead 

up tubing was 0.5" (12.7 mm) O.D. 0.01" (0.25 mm) wall thickness seamless 

cryogenic 304 stainless steel ('Tube Sales Ltd, Southampton). Surface roughness 

measurements were made using a Taylor-Hobson Talysurf-50 machine. An average 

arithmetic mean roughness value (Ra) of 0.43 pm for native and 0.42 pm for cleaned 

tubing was calculated. Readings were taken over 5 runs of 15 mm using a 0.8 pm 

stylus.
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4.5 Water Classification
Unless otherwise stated, water used in the experiments was pre-softened to have a 

conductivity of 260 jiS/cm and purified using an Elga Intercept ROS reverse osmosis 

machine to 20 |iS/cm, typical of bulk industrial water purification. Hard water was 

used direct from the mains having a conductivity of 600 JiS/cm.
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5.1 Introduction

In this Chapter the design of an experimental protocol to determine oil film removal 

kinetics is presented. Measurement techniques from the literature are reported and 

critically appraised as to their applicability to oil film removal, Gravimetric analysis is 

shown to be the most suitable detection technique. Design and construction of 

experimental rigs is then detailed, reviewing the apparatus that has been utilised by 

other workers. The protocol is thoroughly assessed analysing the inherent errors and 

the reproducibility of the technique.

The protocol developed should be widely applicable and is a key development arising 

from this study. Potentially the protocol allows assessment of the effect of any 

detergent on a wide variety of oily soils. Unlike many previous studies the resulting 

removal curves are very accurate with minimal data scatter. The technique also 

allows deposit composition determination with cleaning time which has not been 

reported before. Additionally, video visualisation provides invaluable information on 

the oil removal mechanisms.

5.2 Cleaning Measurement Techniques

Obtaining a quantitative measure of cleaning efficiency is particularly important as it 

determines the validity of all results and conclusions subsequendy derived. The 

chosen measurement technique must provide accurate cleaning kinetics as opposed to 

merely overall cleaning times. In the literature, there are principally two approaches 

to evaluating a level of cleanliness; direct and indirect methods (Paulsson, [1989]). 

The direct methods measure the amount of deposit remaining on the surface, and the 

indirect methods measure the amount of deposit removed from the surface (by 

effluent analysis). In choosing a technique there are several important factors to 

consider:

1. What is the lowest detection limit of the technique?

2. How accurate and reproducible is the technique?

3. Is the length of time taken for analysis reasonable?
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4. Does the procedure present any laboratory hazards?

Oil film cleaning is particularly difficult to assess since removal is through unstable 

droplets which tend to coalesce. The high hydrocarbon content of the oil can also 

present difficulties in differentiating between the cleaner and the removed oil fraction. 

Whatever technique is chosen, it should be remembered that acceptable levels of 

cleanliness within the oil industry are often less stringent than some other 

applications, such as disinfection and biofilm removal studies.

5.2.1 Direct Methods

The following section details the main direct methods that are applicable for analysing 

the rate of oil film removal.

5.2.1.1 Visual methods

Most visual methods are simple to undertake, but do not provide a quantitative 

appraisal of the rate of removal, and therefore have no interest for kinetic removal 

studies.

5.2.1.2 Optical methods

Relating the amount of light a substrate reflects to the oily soil cleanliness of the 

sample was a common technique used by many authors (Comelles et al [1986], Cox 

and Matson [1984], and Johnson [1984]). Cox and Matson [1984] measured the 

reflectance of soiled samples of wax and grease fouled on masonite and aluminium 

before and after cleaning using a standard colorimeter. Results were expressed in 

terms of a ’relative cleaning performance1 of surfactants. The accuracy of the 

technique was improved by using a transparent substrate. Pohlman, Werden and 

Marziniak [1972] precisely determined the distribution of contaminants on a glass 

plate by passing light through the plate onto a photoelectric cell.

The use of optical methods for the assessment of oily films formed on metal surfaces 

is inappropriate. The procedure is inaccurate, as it cannot evaluate soil depth. In 

addition the detergent solution must be translucent.
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5.2.1.3 Dry weight method

This method has been used frequently and involves weighing the substrate before 

cleaning and re-weighing it subsequent to drying and removing any moisture present 

(Cox, [1986], Paciej et al [1993] and Prieto et al [1996]). The procedure is simple 

and easy to set up. It has not been widely applied, mainly because it not possible to 

follow the removal process continuously due to the drying stage and the Dupre effect 

(Chapter 2). Problems also arise in producing an oil deposit which has a weight 

significant compared to that of the substrate. This allows detection of the deposit 

when only 5% or more of the original mass is present. Hegg, Castberg and Lund 

[1985] suggest this method can be used to study fouling down to levels of 0.2-3 g/m2 

of fouled deposit.

5.2.1.4 Radiological method

This technique involves labelling the deposit with a radioactive tracer. The 

radioactivity detected gives a direct indication of the amount of deposit remaining, 

the counter measuring the reactivity of the deposit. This method relies upon the 

tracer having no effect on the rate of removal of the oil and the radioactivity lost from 

the surface representative of whole mass of deposit removed. This procedure was 

the most popular technique for many years (Voss and Korpi [1972], Scott [1963] and 

Chan et al [1976]). It popularity was due to its ease of application and sensitivity in 

detecting contaminants present in extremely small amounts or located in crevices or 

channels. However, due to its hazardous nature and the growth of environmental 

concerns its use is now minimal.

Bourne and Jennings [1965] measured the reduction in radioactivity of pure films of 

tristearin as they were removed from stainless steel by a circulation cleaning system. 

The technique was found to be accurate and reproducible. Bulat [1955] used a 

chromium oxide isotope to label a medium heavy lubricating oil. He evaluated the 

efficiency of ultrasonic equipment compared to various cleaning alternatives; vapour 

degreasing , agitation, brushing etc. Voss and Korpi [1972], measured radioactive 

labelled oil di (2-ethylhexyl) sebate films to compare different cleaning methods. 

Detection was accurate down to 4.65x1 O^g/m2 of oil contaminant. This technique is 

making a comeback and has been used recently by Thompson [1994] to analyse oily
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soil removal kinetics, although, with the problems of contamination and disposal it’s 

use is likely to remain limited.

5.2.1.5 Ultrasonic Sensors.

A new technique has been developed for the measurement of the thickness of 

deposits in pipework (Withers, [1994]). Two transducers are mounted one on either 

side of the piping, one which is used to transmit an ultrasonic beam through the 

product the other to receive it. The intensity of the received beam is proportional to 

the thickness of deposit. The prototype sensor was able to detect the presence of 

deposits down to a minimum thickness of 0.1 mm over a temperature range of 20- 

140°C. Unfortunately the use of these sensors is in its infancy, and a commercially 

available sensor to determine deposit thickness is unlikely to be available for some 

time.

5.2.2 Indirect Techniques

The main indirect techniques applicable to oil removal are detailed below. A common 

problem with all techniques is that the mass of the deposit removed forms only a very 

small proportion of the overall mass of the solution and therefore the concentration 

of the deposit in the effluent is very small. This is especially true for moderate or high 

flow rates even though the rate of deposit removed is often increased. This class of 

techniques detect the change in physical property of the effluent when it contains the 

removed soil. Indirect techniques also depend upon the removed soil being spread 

evenly throughout the solution and not in particulates (which is a particular problem 

with oily soils, since they tend to coalesce).

5.2.2.1 Absorption method

Chemicals absorb energy from at least one region of the electromagnetic spectrum. 

Spectrophotometry involves the measurement of the energies of absorption across 

the electromagnetic spectrum in a precise analytical procedure (Harris and Bashford

[1987]). The exact energy of absorption of a peak can be then related to the 

concentration of the component in solution. In the case of the oil, water and 

detergent effluent, a peak present in the absorption spectrum produced would have to 

be characteristic of the oil deposit removed. The energy content of the peak would
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then indicate the oil concentration in the effluent and hence the rate of removal from 

the surface (Koretskii et al [1983] and Southworth et al [1983]).

Two problems exist with this method. Firstly, the detergent present within the 

solution is likely to have a hydrocarbon content. This may lead to an overlap 

between the spectrum produced by the removed oil, and the spectrum produced by 

the hyarocarbon(s) present within the detergent. A wavelength that is representative 

solely of the removed oil would need to be determined. Secondly, for every detergent 

concentration used, calibration of the energies of absorption of the chosen 

wavelength would be required before deposit concentration calculation would be 

possible. Additional difficulties would also exist if the removal oil fraction changed 

composition during the cleaning process.

5.2.22 Conductivity methods

There are two methods of analysing a fluids conductivity, determining either the 

electrical or the thermal conductivity.

(a) Electrical Conductivity

An electrical conductivity probe measures the ionic strength of the solution. The 

concentration of the oil in the stream is proportional to the ionic strength of the 

solution. The problem with this technique is that water is a very good electrical 

conductor, and hence a slight increase or decrease in the presence of oil in the 

solution is unlikely to provide a large change in the conductivity of the solution. 

Belyakov and Sagdeev [1988] measured the oil content in water rich emulsions but 

only down to concentrations of 5 wt% oil.

(b) Thermal Conductivity

A thermal conductivity probe measures the heat transfer from a probe into the 

effluent solution. This physical property is a function of the concentration of oil in 

solution.

Both methods of measuring conductivity methods have the same similar 

disadvantages, the main one being that conductivity is influenced by many other 

factors; temperature, cleaning agent, pressure and presence of micelles which leads to 

lengthy probe calibration procedures.
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5.2.2.3 Capacitance

This method measures the dielectric properties of the effluent stream and relates them 

to the concentration of the oil in the solution. Problems occur when applying this 

technique to a three component system; with oil, detergent and water. For each 

detergent concentration, lengthy calibrations would be required. Chahine and Bose 

[1983] used time domain spectroscopy for the analysis of dielectric properties of 

water/oil emulsions. However, the study used much higher concentrations of oil in 

water; volume fractions of 90% to 99%.

52.2.4 Nephelometry

The intensity of a light beam passing through the effluent stream, turbidity, can in 

principle be related to the content of oil in solution. Turbidity is however commonly a 

non-linear function of the concentration. The technique is very sensitive at low 

concentrations. However, when oil drops suspended in solution large, light 

scattering occurs and readings will fluctuate. Unfortunately, turbidity measurements 

are effected by other parameters; temperature, velocity of effluent solution and 

concentration of detergent in solution. Nevertheless, this method was developed by 

Gallot-Lavellee, Lalande and Corrieu [1984] to study the removal of milk deposits in 

a plate heat exchanger. However, calibration was found to be difficult and time 

consuming.

52.2.5 Radiological methods

This method is the same as the direct radiological technique, except that the counter 

monitors the radioactivity of the effluent stream as opposed to that of the deposit 

remaining (Raney [1991]). This technique has not been as commonly used as the 

direct radiological technique but in common with that technique, high sensitivity and 

accuracy are possible. Once again, the hazardous nature of the radioactive solutions 

means that its use is now minimal.

52.2.6 Total Organic Carbon (TOC) Analysis

A TOC analyser measures the amount of organic carbon in solution, theoretically, 

down to 10 ppb. An injected sample is completely oxidised to form CO2 with the 

amount of CO2 produced being proportional to the amount of carbon in the sample.
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The technique has not been described in the literature for determining oil film 

removal kinetics. This is probably due to the high carbon content of many detergents 

which leads to a high background count. However, because of the methods high 

degree of sensitivity it has been assessed in this study in evaluating crude oil removal 

kinetics. Initially, the technique was used to assess rinsing where there is only a very 

small contamination level of carbon (0.5 ppm). Even for removal by water, the 

method was found to be ineffective. The results were unstable, even using a 

homogeniser provided an unacceptable variation.

5.2.3 Conclusion

The type of measurement technique workers have utilised varies enormously. Direct 

techniques have been used more extensively than indirect techniques. The use of 

indirect techniques is limited for oily soil removal because of the difficulties in 

differentiating between the oil and the hydrocarbon content of the detergent. They 

are also inaccurate, as they involve lengthy calibration procedures relative to the 

detergent concentration. Radioactivity is probably the most effective procedure for 

assessing oily soil removal kinetics providing very high sensitivity with low cost. 

However, its use has declined due to environmental concerns, but for workers with 

suitable experimental laboratories its use has continued. The ultrasonic detection 

technique shows a lot of potential, but unfortunately the system is only in the early 

stages of development.

The gravimetric technique provides the best solution for the assessment of removal 

kinetics. By using a thin stainless steel substrate (1 hundreth of an inch thick) and an 

accurate balance (±1 mg) a deposit of 40 g/m2 can be detected to greater than 99% 

clean.

5.3 Rig Design

5.3.1 Apparatus Review

Oily soil removal has been extensively described in the literature. However, few 

authors have produced kinetic cleaning curves. Several types of apparatus have been 

used for the analysis, these can be divided into two categories: batch and continuous 

systems. For the purpose of this study, a batch cleaning system is defined as an
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apparatus where the cleaning solution is in constant contact with the deposit, 

typically a stirred tank, conversely a continuous system is defined where the cleaning 

solution is constantly replenished, typically a spray unit. The advantages and 

disadvantages of each of the two types are now discussed.

5.3.1.1 Batch Cleaning Systems

Batch cleaning systems for oily soils are simple, easy to setup and have been used by 

the majority of authors. The apparatus structure varies significantly from static tanks 

and rotating disks to tergotometers. Cleaning analysis is generally performed using 

optical techniques or gravimetrically. Experiments in static tanks generally do not 

directly measure removal but investigate contact angles and the variation in dynamic 

interfacial and surface tension with detergent and electrolyte concentration and 

temperature, with a view to determining the conditions for minimising surface 

tensions (Nasr-El-Din and Taylor [1992], Lim and Miller [1991], Herd et al [1992] 

and Ogino and Agui [1976]). Stirred tanks have been used to investigate the removal 

of oily soils from flat plates (Yatagai et al [1992]) (Paciej et al [1993]) (Aronson et al 

[1983]). Stirred tanks have limited use because the shear force on the surface of the 

plate is difficult to calculate and reproduce. The conditions also are not typical of an 

industrial cleaning system. Rotating disks or plates overcome the problem of fluid 

dynamics (Beaudoin et al [1995]). Semi empirical correlations provide accurate 

determination of the shear force on the surface.

5.3.1.2 Continuous Cleaning Systems

Spray systems are commonly used in industry, and laboratory size units have been 

used to assess cleaning efficiency (Prieto et al [1996], Sterritt [1992] and Nagarajan 

and Welker [1992]). Oil deposit analysis is difficult, and gravimetric and radiological 

techniques provide the best options. Tubular equipment has been successfully used by 

a number of workers for. a variety of deposits (Bird [1993]) (Plett [1985]), although 

oily soil removal has received little attention. Bourne and Jennings [1965] undertook 

pioneering work investigating the kinetics of removal of radioactive tristearin in a 

circulation cleaning system. Mahe et al [1988] accurately studied the shearing of 

alcane droplets by detergent solutions. Tubular systems have the advantage that the 

thermo-hydraulic conditions can be precisely controlled allowing excellent
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reproducibility. More over, the technique can be easily operated at conditions that 

represent those occurring industrially.

5.3.2 Test Piece Design

A continuous tubular test piece was chosen as it allows control of process variables, 

and flow visualisation within a glass cell. The test piece was designed to be of 

minimal mass, 1/100 inch thick, (0.254 mm, 304 stainless steel tubing) to enhance the 

gravimetric analysis. Preliminary plate studies indicated an average fouled coverage 

of 40 g/m2 crude oil, a test piece length of 13.5 cm was therefore specified which 

gave detection greater than 99% removal (assuming a balance accuracy of ±1 mg). A 

second test piece was constructed to allow visualisation of the cleaning process 

within a glass cell. Two semi circular pieces were created by cutting a horizontal 

cross section along the length of an existing test piece.

It was important that each test piece fitted flush into the fouling and cleaning 

equipment. The connecting tubing before the test piece was the same ID and OD to 

reduce the effects of contraction or expansion of the flow due to the join. The normal 

twin ferrule type tubing union connection could not be used to couple the test piece 

to the fouling and cleaning equipment. The union damaged the internal surface and 

once applied left the twin ferrules permanently attached to the tubing. Selecting an 

alternative was difficult due to the vulnerable nature of the thin walled tubing. 

Swagelok Ultra Torr unions were selected (Figure 5-1), the fittings have rubber rings 

which upon tightening grab either side of the join to form a leak tight seal. The 

unions were bored through to allow quick release of the test piece by pushing the 

union back over the join. The experimental apparatus was then designed around the 

test piece with the intention of:

1. Producing uniform fouled oil films on the inside of the stainless steel test pieces

2. Cleaning the test pieces under controlled thermo hydraulic conditions.
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Swagelok Ultra Torr Fitting

Smooth Tube Join

Figure 5-1 Union Connection o f  Test Piece

5.3.3 Materials of construction

The harshest constituent of the majority of chemical cleaners is sodium hydroxide. 

Sodium hydroxide is corrosive and can react with many of the commonly used 

construction materials such as tin, lead, brass, aluminium and mild steel. Aluminium 

evolves dangerous amounts of hydrogen upon contact with the hydroxyl ion, 

equation 5.1.

Al + OH‘ + H20  = A K V  + y2 H 2 5 7

Care was therefore taken not to use any of these materials in the construction of the 

rigs. Stainless steel (all classes), polyethylene, copper, and glass were used as 

suitable alternatives.

5.3.4 Experimental Apparatus

Several different rig designs were investigated and it was decided that separate 

fouling and cleaning rigs were necessary. This was mainly, due to the possible 

problems of cross contamination between the oil and the cleaning solution.

5.3.4.1 Fouling Rig

Before fouling began each test piece and the lead up tubing (Figures 5-2(a)-(c)) was 

rigorously cleaned. The tubes were initially brushed with a pipe cleaner using 

Jizermizer cleaning solvent to remove any visible crude deposits. They were then 

cleaned using C9-nE6 at ~50°C for approximately 15 minutes and subsequendy rinsed 

four times using reverse osmosis (RO) water. The internal surface of the tubes were
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then subjected to the water break test to give an indication of cleanliness of the 

surface. Finally the tubes were oven dried at 50°C and weighed.

Crude

Fouled Oil FilmCrude Oil

Ultra Torr Union

Valve

(a) (b) (c)

Figures 5-2(a)-(c) Test Piece Fouling Procedure

The apparatus used to foul the test pieces is shown in Figures 5-2(a)-(c). Test pieces 

are mounted vertically in a rack. A valve is attached to the lower end of each test 

piece and a section of lead up tubing of the same O.D. and I.D. is connected to the 

upper part of each test piece Figures 5-2(a). The join is made by an Ultra Torr union. 

Crude oil, mixed on a mill and regulated to 18°C is then gravity fed into each test 

piece with the valves closed Figures 5-2(b) and left for 5 minutes. The valves are then 

opened and the oil is allowed to drain, the apparatus is then left overnight for 16-18 

hours prior to cleaning. The procedure was carried out in a fume cupboard and 

fourteen identical test pieces were typically fouled in one session. Maintaining the 

temperature of the applied crude oil at 18°C was very important as the temperature 

was a strong function of the crude oil thickness. The semi circular test pieces used for 

cleaning visualisation were fouled using the same technique, except that they were 

mounted inside an additional tube and then fouled.

5 .3 .42  The Fouled O il Film

The change in crude oil mass of the test piece over the 16-18 hour fouling period was 

investigated (Figure 5-3). The fouling apparatus was suspended on an analytical
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balance in the fume cupboard and the test piece was fouled using the same program. 

The fouling occurs in two stages, initially the crude oil reaches an equilibrium 

condition where the van der Waals forces of adhesion balance the gravitational forces 

of removal. The van der Waals forces are primarily due to transient dipole rather than 

dipole-dipole electrostatic attraction (Chapter 3). The crude oil principally contains 

molecules of hydrogen and carbon as opposed to polar molecules containing electro­

negative elements. The second stage is evaporation, where the light ends up to the 

equivalent of nCn are removed. The first stage is fast and lasts about 5 minutes, the 

second stage continues until the test piece is cleaned (Figure 5-3).

The resulting oil films on each of the test pieces are inspected before cleaning. Oil 

film masses between 33.6 g/m2 and 38.4 g/m2 with an average of 36 g/m2 were 

accepted for cleaning experimentation. Differences in deposit thickness are probably 

due to variation in the cleanliness of the test piece surface prior to fouling, rather than 

oil variations. Selecting test pieces within the deposition range reduces this 

inaccuracy and improves the results of subsequent cleaning analysis.

The crude oil has been analysed both before and after fouling using a gas 

chromatograph (GC). Figure 4.10 in Chapter 4 and Figure 5-4 depicts the 

chromatogram for the raw crude and the fouled crude oil respectively. The fouled 

deposit is of the same composition as the raw crude oil except that hydrocarbons 

below nCi4 have evaporated. Samples of the oil fouled on a test piece were obtained

26

24 " Test piece full o f crude 

_22 . .O)

Clean test piece Fouled test piece

10
0 5 10 15 20 25 30 35 40 45 50

Time (minutes)

Figure 5-3 Fouling o f Test Piece

Removal o f Crude Oil Films using Aqueous Detergents 72



Chapter Five- Development o f an Experimental Cleaning System

by spinning a fouled test piece in a centrifuge at 5,000 rpm. The collected oil could 

then be analysed using the gas chromatogram (Chapter 4).
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Figure 5-4 Gas Chromatogram o f Crude Oil after Fouling 

Crude Oil Residue = 46 wt%

5.3.4.3 Cleaning Rig

5.3.4.3.1 Design Criteria

Having decided upon a gravimetric cleaning analysis technique and the dimensions of 

the test piece, the cleaning rig was constructed to meet the following design criteria- 

accurate control of (i) the cleaning time; (ii) the detergent type; (iii) the detergent 

concentration; (iv) the detergent temperature; (v) the detergent flowrate. Each test 

piece also required subsequent rinsing and air drying.

5.3.4.3.2 Temperature Control

The cleaning rig was required to run over a wide range of detergent temperatures 

(30-80°C) with an accuracy of ±0.5°C. A water bath was constructed to control the 

process stream up to 70°C and the extra 10°C heat boost was provided by an oil 

bath. In the design of the water bath two variables were specified: a 200 litre water 

bath and a maximum of 30 minutes to heat up a full cleaning reservoir of 150 litres to 

50°C. Assuming a detergent flowrate of 10 1/min, a temperature approach of 5°C and 

an overall heat transfer coefficient of 600 W/m2 °C (Walas, [1988]) a heat duty of 

18 kW was estimated for a practicable 30 metre length of copper piping.
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Construction and Operation

A photograph of the cleaning rig is shown in Figure 5-5 and a simplified flowsheet of 

the cleaning rig is depicted in Figure 5-6 the bold line indicating the main process 

line. The apparatus has been designed specifically for this application. The cleaning 

tank has a volume of 150 litres allowing multiple cleaning runs. It is connected to a 

centrifugal pump, P-01, capable of developing 40 1/min water at 4 bara (Lowara 

Ltd.). Regulating the valve on the recycle line, V-02, allows rough adjustment of 

quantity of fluid passing to the rotameters. The needle valve, V-03, provides fine 

adjustment of the flow. Only one of the rotameters is in use at any time, this depends 

on the flow to be measured. One of the rotameters has been calibrated to 0-1 l/min 

and the other 1-101/min.

Heat is provided to the process stream through the water and oil baths. The water 

bath is a simple stirred tank heat exchanger its design has been discussed earlier 

section 5.3.4.3. It consists of two copper coils which surround six thermostatically 

controlled 3 kW immersion heaters and a stirrer. The larger of the coils, 30 m long, 

carries the process fluid and the smaller coil, 10 m long, carries cooling mains water. 

The amount of heat transferred to the process stream can be controlled through the 

speed of the stirrer and the setting of the thermostat. Cooling can be supplied 

through valve, V-06. This setup allows the process fluid to be maintained to ±0.5°C 

over 30-70° C. When temperatures higher than 70°C are required the oil bath is 

utilised and process fluid temperatures up to 80°C can be obtained. Temperature is 

monitored by PtlOO resistance probes, which provide accurate and quick response to 

0.1 °C, they are denoted by TI in Figure 5-6.

From the oil bath the main process stream divides into two separate lines. The flow 

into each line is controlled by valve, V-07. One line is used when recycling the 

process fluid back to the cleaning tank, the other when cleaning a test piece. The two 

lines then combine and a 3-way valve, V-14 directs the resultant stream to drain or 

recycles it back to the cleaning tank. To ensure fully developed flow entering the test 

piece the lead up tubing was at least 50 pipe diameters long (Kay and Nedderman,

[1988]).
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Figure 5-5 Photograph o f Cleaning Rig
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Figure 5-6 Simplified Diagram o f Oil Film Cleaning Rig
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The rinse tank is also connected to a centrifugal pump, P-02, providing rinse water to 

the test piece after cleaning. Flow is controlled in the same manner as the process 

stream, using V-09 and V-10 for rough and fine adjustment respectively. Rinse water 

is then passed to V-12 through the test piece and to drain. Air (from the laboratory 

supply) is subsequently introduced into the test piece, regulated through valve V- l l  

using the same line as the rinse water. All test pieces are rinsed with reverse osmosis 

water (<17°C) for 1 minute at 1 1/min and dried for 30 seconds using 3 1/min.

After passing through the oil bath, the process line does in fact split in four. One of 

the extra lines is dedicated to visualisation of the cleaning process using a glass cell. 

The other line allows for additional test piece cleaning analysis. These lines are 

controlled by an additional 3-way valve and have the same setup as the test piece 

shown in Figure 5-6. Figure 5-7 depicts the glass cell and semi-circular test piece 

used to visualise the cleaning process. The glass tube has been specially drawn to be 

the correct inside diameter to accommodate the test piece and minimise any effect of 

the glass tube. Rubber tubing is used to seal the glass section to the existing tubing 

within the cleaning rig.

Rubber tubing seal

Detergent solution

j
T

Semi-circular test piece

Figure 5-7 Test piece cleaning visualisation

When cleaning a test piece, the detergent effluent was passed directly to drain 

without recycle. Running on a once through basis is especially important when 

operating at very low surfactant concentrations as the cumulative effect of increased 

oil deposit concentration may have had a significant impact on the effectiveness of 

the surfactant solution, and may also lead to oil deposit redeposition.

Pump sizing details can be found in Appendix B.
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5.3.5 Experimental Protocol

The overall experimental protocol is as follows- 14 test pieces are fouled and aged 

for 16-18 hours, under controlled conditions, to generate an oil film on the inside 

surface of each test piece. Test pieces are then inspected for film deposit mass and 

uniformity. An experimental cleaning curve can then be produced from the acceptable 

test pieces using the cleaning rig. The cleaning rig was operated on recycle until the 

desired process conditions were reached. When appropriate, cleaning agent was run 

through the test piece for a set period and subsequently rinsed and air dried. Finally, 

each test piece was analysed (section 5.3.6) to determine the amount of oil removed. 

Each test piece produced only one experimental point, and a batch of 8 test pieces is 

therefore required to construct a full cleaning curve, Figure 5-9.

5.3.6 Cleaning Analysis

The extent of cleaning is determined gravimetrically using a Sartorius balance 

accurate to ±1 mg (see section 5.2.3) . Each test piece is weighed before and after 

fouling. Test pieces within an acceptable deposition mass are then separately cleaned 

in the cleaning rig for a specific time period. After the subsequent rinsing and air 

drying, each test piece is withdrawn from the rig and lightly shaken to remove any 

loose droplets of rinse water from the internal surface of the tube. After careful 

drying of the external surface using a paper towel, each test piece is re-weighed. The 

recorded mass not only includes the test piece and any remaining oil mass, but also 

any rinse water which must be separately accounted for.

Each test piece is centrifuged at 2,000 rpm for 2 minutes in a dry centrifuge tube. The 

centrifugal force removes all the remaining rinse water and a portion of the residual 

oil which collect at the bottom of the centrifuge tube, see Figure 5-8.
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Before Centrifugation After Centrifugation

Cleaned test piece Partial oil film 
remains 
(no water)Remaining oil film 

Water droplets

V Centrifuge tube
Oil
Water

Figure 5-8 Test Piece Centrifuging

The oil and water that accumulate in the bottom of the centrifuge tube require 

separation. This can be accomplished through solidification. A 100 |il aliquot of 

chloroform is syringed into the centrifuge tube. The chloroform partitions into the oil 

phase, increasing the oil mobility and the oil /  water interfacial forces. The centrifuge 

tube is then re-centrifuged at 5,000 rpm for 2 minutes and placed in a freezer at - 

30°C. The frozen water can then be extracted, and its mass determined. The oil 

removed during cleaning is then determined by a simple mass balance. Adding 

chloroform to determine the amount of oil remaining on a substrate is not a new 

technique and has been used successfully by Korestkii et al [1983]).

5.3.6.1 The Effect o f  the Solubility o f  Chloroform on the Analysis Technique

The solubility of chloroform in water was investigated to determine if it could affect 

the accuracy of the analysis technique. The inaccuracies are greatest when only a 

small amount of oil compared to water is collected in the centrifuge tube. Therefore 

the worst case scenario is when no oil is present, and we have only water. If 100 jil 

(0.15 g) of chloroform is added to 0.05 g water at 0°C only 0.0001 g of CC13H will 

dissolve in 0.05 g H20 and only 0.0005 g H20 will dissolve in 0.15 g CCI3H. This 

represents less than a 1% detection error, which is deemed acceptable. Solubility data 

was obtained from Harvath [1982].

5.3.7 Experimental E rror Estimate

Experimental errors are to be expected; data will always have a degree of scatter. 

Errors can be classified into two types: random and systematic. Random errors come
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from the inability of a measuring device or operator and can be decreased by 

repeating the result. Alternatively, systematic readings which produce an offset from 

the real value can be reduced by re-calibration of a balance for example.

An estimate of the overall error associated with the experimental protocol must be 

determined. Three separate kinetic removal runs were performed using water at 

2 1/min and 60°C (Figure 5-9). Run 1 and run 2 were performed over a range of 

cleaning times and in run 3 five data points were produced for five separate cleaning 

times; 60, 240, 360, 720 and 1500 seconds. The curve shows a degree of acceptable 

scatter and indicates good reproducibility.

35 !1

E 30 ..
O) 1

25 -.cU)
5  20 . .

§ 1 5 . .<1)
?  10 ..

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time (s)

■ Run 1 a Run 2 A Run 3

Figure 5-9 Error Assessment- Three experimental Runs, 2 l/min 60°C, Water

Utilising the experimental data determined in run 3 it is possible to determine the 

standard deviation at the five different cleaning times and represent it as error bars 

(Figure 5-10). The global error of each data point is approximately ±4.6% and is 

considered valid for all experimental data points presented in this thesis. The global 

errors can be traced to three origins- fouling experiments, cleaning experiments and 

cleaning analysis.
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Figure 5-10 Global Error Estimate ±4.6%, 2 l/min, 60°C, Water

5.3.7.1 Fouling Experimental Errors

Fouling errors could originate from change in crude oil composition, the fouling 

apparatus and the conditions before cleaning. Variations have been minimised as far 

as possible. All crude oil used in this study was taken from one barrel only and stored 

in an air tight container. Fouling conditions were kept as constant as possible, and 

test pieces which showed any significant variation in film mass or uniformity were 

discarded. Test pieces were cleaned 16-18 hours after fouling. Any test pieces 

remaining after this period were rejected.

5.3.7.2 Cleaning Experimental Errors

The main sources of cleaning experimental error are likely to be from variation in the 

detergent composition, and variation in cleaning process conditions. The surfactant 

used in the cleaning experiments was purchased as a single batch minimising any 

composition variation. Concentrations were made up the evening before and allowed 

to age overnight to ensure even distribution of surfactant before application and low 

concentrations were made up through serial dilution. Cleaning solution flowrates 

were calibrated for each rotameter. The PtlOO resistance probes readings were 

checked in ice.

5.3.7.3 Cleaning Analysis Experimental Errors

An error assessment of the cleaning analysis technique has been undertaken. 10 

fouled test pieces of known deposit mass were immersed in rinse water for 10
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seconds, carefully shaken, the external surface dried and re-weighed. Care was taken 

not to remove any oil from the substrate during the process. The cleaning analysis 

technique discussed in section 5.3.6 was then performed on each of the test pieces. 

The amount of water separated from the oil was then compared to the actual amount 

of water remaining on the test piece after being dipped in the rinse water. The results 

are depicted in Table 5.1 shown below.

Table 5.1 Cleaning Error Analysis

Tube No. Deposit
Mass

(g)

W ater
Deposited

(g)

W ater
Recovered

(g)

Result
Deviation

(g)
A 0.144 0.047 0.046 -0.001

B 0.141 0.040 0.041 0.001

C 0.129 0.041 0.037 -0.004

D 0.120 0.049 0.047 -0.002

E 0.120 0.048 0.047 -0.001

F 0.140 0.053 0.057 0.004

G 0.131 0.041 0.039 -0.002

H 0.120 0.060 0.058 -0.002

I 0.128 0.048 0.047 -0.001

J 0.133 0.064 0.069 0.005

Average 0.131 0.049 0.049 ±0.002

The average result deviation is ±0.002g with a maximum of ±0.005g. The variation is 

not skew but normal. This was also undertaken early on in the results generation and 

as the experimenter became more experienced with the technique, the accuracy 

would certainly have expected to have increased.
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Chapter 6

Experimental Results and Discussion
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6.1 Introduction
This Chapter presents and describes the core results produced in this thesis and can be 

split into two sections: quantitative and qualitative analysis. The quantitative analysis 

makes up the majority of the cleaning results. This is in the form of kinetic removal 

curves which determine the effect of individual parameters upon removal: 

temperature, shear rate, concentration and type of detergent. Qualitative analysis 

supplements the quantitative data and is in the form of direct observation, videoing 

and subsequently photographing the removal process through a glass cell and 

determinating any change in crude oil composition with cleaning time using a gas 

chromatograph. The aim of the experimental programme was to improve the 

understanding of oil film mechanisms of removal with a view to modelling the process, 

Chapter 7.

6.2 Quantitative Analysis
In this section quantitative evaluation of the cleaning of oily films from stainless steel 

test pieces is studied using a variety of aqueous solutions. Kinetic curves are produced 

portraying the change of oily soil mass with time. The influence of temperature, flow 

rate cleaning solution composition and concentration is investigated. The majority of 

the results produced use C9-11E6, a nonionic surfactant, (refer to section 2.3.4.1 

Chapter 2).

6.2.1 Typical Cleaning Curve
A typical cleaning curve is shown in Figure 6-1, the cleaning conditions were 40°C 

using 1 v/v% C9-11E6 and a volumetric flow of 2 1/min (linear velocity of 0.26 m/s). 

The y axis represents the average coverage (g/m2) of the crude oil layer on the surface 

of a test piece and the x axis portrays the cleaning time (s). The average initial oil film 

coverage is 36 g/m2 for each test piece at t=0. Initially, as time increases, the removal 

rate remains constant for 180 seconds, indicated by the linear relationship, (region A, 

seen in Figure 6-1). Further cleaning, and the mass of oil decreases sharply with 

removal becoming dependent on the amount of oil remaining, (region B). The removal 

curve finally reaches an asymptote with a residual layer remaining which is equivalent 

to 3.6 g/m2 for the conditions investigated.
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0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time (s)

Figure 6-1 lv/v%  C9.nE6,2  l/min, 40°C 

All removal curves follow this characteristic shape and typically can be split into two 

regions A and B as shown. Region A represents the removal of loose oil drops on the 

surface that are sheared off (and is therefore primarily a function of the fluid 

mechanics) and region B is dependent on the particular detergent effect. The duration 

of region A varies significantly. At 70 and 80°C the duration of region A is short, this 

increases to 300 seconds at 30°C. The transition from region A to B occurs at a 

distinct point, which can be clearly seen in Figure 6-1.

6.2.2 Assessing Cleaning Efficiency
The shape of the removal curves is described by simple zero and first order models in 

Chapter 7. Region A has been modelled as zero order and region B has been modelled 

as first order with respect to deposit mass. The resulting equations are shown in 

equations 6.1 and 6.2 respectively. Figure 6-2 portrays the fit between the model and 

the experimental data. Using the mathematical model developed, a graph of the rate of 

removal against time can be plotted, shown in Figure 6-3. This is an alternative way of 

presenting cleaning kinetics, where the area under the curve now equals the total 

amount of oil removed.
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Region A:

m,

Region B:

mb

where t

^ r e s
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trcv

m0 - a ct 0 < t < trcv

trev ^ t <; ~

= cleaning time

= residual layer mass per unit area

= region B removal rate constant

= region A removal rate constant

= duration of region A
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Figure 6-3 lv/v%  C9.uE6 , 2 Umin, 40°C, rate o f removal

Removal o f Crude Oil Films using Aqueous Detergents 86



Chapter Six -  Experimental Results and Discussion

Each removal curve is individually characterised by four key parameters which define 

the overall removal efficiency of the process conditions: Ares, k, ac and trcv. The 

parameters are determined through semi-empirical modelling of each of the curves. 

Where appropriate they are labelled in Figure 6-2 and Figure 6-3. Comparing kinetic 

curves is difficult with this many parameters, ideally one variable needs to be specified 

for each removal curve. Since region A is independent of any chemical effect 'trev' and 

V  are disregarded leaving 'Arcs' and 'k'. Unfortunately, the relationship between 'k' and 

'Ares' is complex. However, although not directly proportional they are closely related. 

As the rate of removal is increased the mass of the residual is reduced, ‘k’ is defined as 

the main parameter to evaluate removal efficiency. It value is derived from all the 

kinetic data points ( rather than the last few: Ares) and unlike Ares cannot report a zero 

value.

6.2.3 Result Analysis
Results are grouped together in terms of the parameter under investigation. This 

parameter is then varied while maintaining the others. The effect of the individual 

parameter can then be characterised. While studying a particular variable it is 

important not to have other parameters dominating i.e. very high flow rates or the 

effects of the parameter being examined will hardly be noticeable. The removal curves 

are presented as the change in mass of the crude oil layer with time. The raw data is 

represented as symbols and the models indicated by a thin line. All the Figures within 

the parameter under investigation use the same scale on both the x and y axis to 

facilitate direct comparison of individual curves. The first Figure presented in each 

section is an overlay plot, each curve representing the modelled experimental data at 

the different conditions of the parameter under investigation. The experimental data is 

not shown directly on to this plot to avoid confusion. For each condition Reynolds 

number and surface shear stress were determined. The initial deposit thickness was 

0.04 mm which gives an approximate e/d of 0.003 which will decrease on cleaning. 

Therefore the piping is assumed to be a smooth surface throughout removal allowing 

equations 6.3 and 6.4 to be applied (Coulson and Richardson [1980]).

8p(u2) 6 ,3
z w = — -—- Streamline Flow (Re < 2000)

Re
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T„ = 0.0396p(«2)Re"°'25 Turbulent Flow (2.5xl03 < Re < 105) 6  4

Since cleaning is complex the effect of rinsing (the most fundamental form of cleaning) 

is assessed first followed by the supplementary effect of chemical additives.

6.2.4 Characterising Rinsing
Rinsing has no chemical effect and is an elementary form of cleaning. It has been 

studied in detail for various deposits (Paulsson [1989] and Plett [1985]) although 

studies concerning removal of oil by water by investigators such as Nagarajan and 

Welker [1992] are almost nonexistent (Mahe et al [1988]). Removal will only be as a 

result of the shear forces exerted on the deposit that occur when passing over the 

boundary of the test piece. The effect of temperature and flow rate of rinse water on 

the removal of crude oil has been determined. The consequence upon cleaning 

efficiency of increasing the crude oil film mass and the age of the fouled deposit have 

also been investigated.

6.2.4.1 The Effect o f  Rinse Water Temperature on Removal
Crude oil rinsing with reverse osmosis (RO) water has been studied at temperatures of

30 to 80°C at 10°C intervals at a flow rate 2 1/min, a velocity of 0.29 m/s and

Reynolds numbers in the range of 4070 and 9400. The kinetic removal curves are

depicted in Figures 6.4(a) to (g). Figure 6.4(a) presents an overlay plot of the

modelled data at each of the rinse water temperatures. Figure 6.4(h) portrays the

variation of the rate of removal constant, k, with temperature and finally Figure 6.4(i)

shows the effect of temperature on the mass of the residual layer, Ares.

The consequence of rinsing with hard water (high calcium and magnesium ion 

content) has been determined at 50, 60, and 708C, Figures 6.4(c), (d) and (e). The 

experimental data is depicted by the symbols with rectangular outlines.
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Figure 6.4 (a) Overlay plot: model curves from the individual plots Figures 6.4(b)-(g)
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Figure 6.4(c) 40°C, Re= 4800, S.S.= 0.39N/m2
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Figure 6-4 The Effect o f Rinse Water Temperature on Crude Oil removal, 2 l/min, 0.29 mis (S.S.:
Shear Stress)

Removal o f Crude Oil Films using Aqueous Detergents 89



Cr
ud

e 
Oi

l 
M

as
s 

(g
/m

2)
Chapter Six- Experimental Results and Discussion

35

0 200 400 600 800 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0  0  200 400 600 800 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0
Time (s) Time (s)

-  RO Water a  Hard Water

Figure 6.4(f) 70°C, Re=8110, S.S.= 0.33N/m2 Figure 6.4(g) 80°C, Re=9400, S.S.= 0.32N/m2

0.007 

^  0.006 

0.005

?o  0.004 
3?
*5 0.003 
o
ir 0 .0 0 2  

0.001
30 40 50 60 70 80

Temp (°C)

Figure 6.4(h) The Effect of Temperature of the Removal Rate Constant, k

50 60
Temp (°C)

Figure 6.4(i) The Effect of Temperature on the Mass of the Residual Layer, A

Figure 6-4 The Effect o f Rinse Water Temperature on Crude Oil removal, 2 llmin, 0.29 m/s (S.S.:
Shear Stress)

Removal o f Crude Oil Films using Aqueous Detergents 90



Chapter Six- Experimental Results and Discussion

6.2.4.1.1 Discussion of results
Each of the individual curves follow the typical removal shape forming asymptotic 

residual layers after a maximum of 30 minutes cleaning. In Figure 6.4(a) it can be seen 

that rinse water temperatures 60°C and above are crucial for effective removal. 

Further increases in temperature provide minimal benefits to removal. The large 

majority of the oil can be removed with high temperature rinse water although water 

alone will not completely remove the residual layer, with a minimum of 7.2 wt% of the 

original deposit mass remaining.

At 30°C removal is slow, (figure 6.4(b)). Initially the shear forces remove any loose 

deposit remaining on the surface (region A) over a period of about 300 seconds. 

Prolonged cleaning at 30°C provides minimal further benefit, with 84.7 wt% of the 

original deposit mass remaining. Subsequent 10°C increases in temperature up to 50#C 

dramatically reduce the mass of the residual layer and increase the rate of removal k, 

21 wt% remaining after 2000 seconds at 50°C, (figures 6.4(h) and (i)). The strong 

dependence of k against A,** is clearly visible comparing Figures 6.4(h) and (i). The 

use of temperatures above 60°C results in little further benefit when water is used. The 

removal curves follow a similar path, the extra energy required to operate at a higher 

temperature offsetting any benefits to removal.

The effect of rinsing with hard water has not been documented in the literature. 

Rinsing of oil deposits with hard water at temperatures of 50, 60, 70°C has the same 

effect as when using reverse osmosis water. This is indicated and confirmed by Figures

6.4 (c), (d) and (e) where there is no discernible difference between the points rinsed 

with RO water or hard water.

6.2.4.2 The Effect o f  Rinse Water Velocity
The effect rinse water velocity has on the removal of the oil deposit has been 

characterised. A wide range of velocities has been studied (0.071 to 0.71 m/s) at 50°C 

primarily in the turbulent flow regime. Flow rates of 0.5, 1, 2, 3, 4, and 5 1/min with 

Reynolds nos of 1480, 2960, 5930, 8890, 11860, and 14820 respectively are 

presented. Results are depicted in the previous format, an overlay plot Figure 6.5(a) 

and individual curves Figures 6.5(b) to (g). Figures 6.5(h) and 6.5(i) plot the effect of 

Reynolds no. upon the removal rate and the mass of the residual layer respectively.
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Figure 6-5 The Effect o f  Water Velocity on Removal o f Crude Oil Cleaned at 50 °C (S.S.: Shear
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6.2.4.2.1 Discussion of results
Over the wide range of flowrates, increasing the velocity and hence the Reynolds 

number and shear stress is always beneficial to removal. The removal curves all follow 

the characteristic shape. As Reynolds number is increased from 1400 to 15000 there is 

a linear increase in the rate of removal Figure 6.5(h). Changing the flow regime from 

laminar, to transition and turbulent flow, Figures 6.5(b), (c) and (d) respectively, 

shows no fluctuation in the linear relationship. This contrasts several cleaning studies 

which have found a critical flow rate necessary for removal. High flow rates have less 

of an effect on the mass of residual layer Arcs than the rate of removal k, Figure 6.5(i).

6.2.4.3 The Effect o f  Reynolds Number and Shear Stress upon Removal 
Without any chemical effect, it would appear plausible to expect cleaning efficiency of

rinsing to be directly proportional to the applied surface shear stress or the Reynolds

number of the rinse water. Results have been produced to investigate this hypothesis.

Figures 6.6(a) to (h) depict the variation of cleaning kinetics at temperatures of 30,40,

50, 60, 70, and 80°C at constant Reynolds numbers. Rinsing kinetics produced at

60°C and 2 1/min (Re= 6850) were used as a base case.

The effect of maintaining the surface shear stress with temperature has not been 

investigated since the first set of data characterising the effect of water temperature on 

removal at 2 1/min is approximately at constant shear stress (3.6 ± 0.4 N/m^) (Figures 

6.4(a) to (h)). Further analysis is therefore unnecessary.

6.2.4.3.1 Discussion
Clearly cleaning performance cannot be characterised by either Reynolds number or 

surface shear stress alone, Figures 6.6(a) and 6.4(a) respectively. Both Reynolds 

number and shear stress have a strong dependence on temperature.
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At 30°C (figure 6.6(b)) a rinse water flow rate of 3.361/min has a Reynolds number of 

6850. If the operating temperature is increased by 10°C (figure 6.6(c)) the flow rate is 

reduced to 2 .861/min to maintain the Reynolds number at 6850. The increase in 

temperature dramatically improves cleaning efficiency out weighing the reduction in 

flow rate. Further increases in temperature Figures 6.6(d) to (g) steadily improve the 

removal rate but have minimal effect on the mass of the residual layer (figure 6.6(i)). 

This suggests that above 40°C Reynolds number is proportional to the mass of the 

residual layer although the higher the temperature the quicker the overall cleaning 

time. It is therefore critical that the rinse water temperature is above 40°C for effective 

removal.

Shear stress does not characterise uniquely removal. Increasing the temperature and 

maintaining the surface shear stress, Figure 6.5(a) to (g), improves removal efficiency, 

even above 40°C. Removal is a far more significant function of temperature than shear 

stress. At low temperatures, removal is small, and increasing the velocity provides 

litde benefit, (Figures 6.4(b) and 6.6(b)), however at high temperatures removal is 

significant and increasing velocity increases removal dramatically (Figures 6.6(g) and 

6.4(g)).

6 .2.4.4 Variation o f oil film  thickness
The depth of a deposit is an important parameter in cleaning. The effect of increasing 

the crude oil film thickness upon rinsing has been determined at 50°C, 2 1/min. Results 

have been produced for the standard surface coverage of 36 g/m2 with a thickness of 

0.04 mm and 51 g/m2 with a thickness of 0.05 mm, Figures 6.7(a) to (c). In contrast 

to the preceding sections the overlay plot (figure 6.7(a)) depicts the raw experimental 

data not the fitted models.

6.2.4.4.1 Discussion
Increasing the surface coverage of crude oil to 51g/m2 from 36 g/m2 has no significant 

effect on the kinetic curves, Figure 6.7(a). Each experimental data point follows the 

same kinetic curve irrespective of the initial deposit mass. The only discernible 

difference between the two curves, Figures 6.7(c) and (d), is the initial mass at t= 0. 

The same model is fitted to each individual set of data. The increased mass of crude 

oil is simply flushed out in the first few seconds of rinsing. The oil-oil bonding forces
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clearly being very weak compared to the oil /  substrate bonds. Confirming van der 

Waals bonding as the main adhesion mechanism.

6.2.4.5 The Age o f  the Deposit
It is accepted that the longer the period before cleaning the more tenacious the 

deposit. Several authors have considered this effect but it has not been documented 

for crude oil deposits. The majority of the cleaning results have been produced 16-18 

hours after fouling, unless otherwise stated. As the oil deposit is left in the atmosphere 

the light ends evaporate (nCi4 or less) forming a reproducible oil film. The 

composition of the crude oil deposit has been analysed, results are found in Chapter 5.

A preliminary study of the importance of the age of the deposit on rinsing has been 

undertaken (figure 6.8(a)-(c)). The crude oil deposits were left in the controlled 

environment for an extra 24 hours (28-32 hours in total) (figure 6.8(c)). The same 

average surface coverage was used. The prolonged time did not have a significant 

effect on the final deposit mass before cleaning.

6.2.4.5.1 Discussion
The crude oil deposit is slightly more difficult to rinse after leaving the deposit an 

additional 24 hours (figure 6.8(a)). Not only did the mass of the residual layer increase 

but the time to reach the final level of cleanliness was lengthened. Cleaning after 16-18 

hours is 5 wt% more effective in terms of the mass of residual layer compared to 

leaving it an extra 24 hours.

6 .2.4. 6  S u m m a r y T h e  effect o f  rinsing 
The key points are listed below:

• Water is effective at removing crude oil films but will not remove the oil 

completely, a residual layer always remains. The soil-substrate bonding being much 

stronger than the soil-soil bonds.

• For effective rinsing the temperature must be 60°C and above, however further 

increases do provide additional benefit.
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• No difference was found between the rinsing performance of hard water 

(600 }iS/cm) or reverse osmosis water (20 |iS/cm).

• The rate of removal was directly proportional to the flow rate and hence the 

Reynolds number. During the transition from laminar to turbulent flow, no 

fluctuations in the linear relationship were apparent

• Cleaning performance was not proportional to the Reynolds number or the surface 

shear rate. These parameters cannot be used to uniquely characterise the 

mechanical effect Although, above 40°C the mass of the residual oil layer remained 

constant with constant Reynolds number.

• Removal is a strong function of temperature. The effect of velocity at low 

temperatures is small and significant at high temperatures.

• Increasing the depth of the oil film by 20% (from 0.04 mm to 0.05 mm) had no 

significant effect on the removal kinetics. The additional mass was simply flushed 

out within a few seconds of rinsing. Confirming van der Waals adhesion as the 

dominant mechanism.

• Increasing the period before cleaning the oil deposit from approximately 16 hours 

to 24 hours made the deposit slightly more tenacious. The residual layer mass was 

reduced by 5 wt%.

6.2.5 The Addition of Chemical Additives
Removing a deposit is energy intensive. Energy can be supplied in either thermal, 

kinetic or chemical forms. The analysis of rinsing has only considered the first two 

components. Detergents complicate matters by the addition of chemical effects. In the 

case of oils detergents provide energy in the form of deposit reaction, reduction of 

interfacial forces or deposit break down. This increases the cleaning power and will 

therefore reduce the requirement for thermal or kinetic energy or improve the amount 

and rate of removal.

The additional chemical effect of a nonionic surfactant is complicated, Chapter 4. 

Firstly, its monomer structure which defines its properties is a function of temperature. 

Secondly, it exhibits reverse solubility with temperature and finally the applied
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concentration will also effect the packing and shape of the micelles formed. Unlike 

previous surfactant studies the results have investigated these effects over a wide 

range of temperatures and concentrations on the removal of oily films.

6.2.5.1 The effect o f  C9.11E 6 concentration and temperature upon removed
The effect of the concentration of the selected surfactant, C9-11E6, with temperature

has been studied in detail at a flow rate of 2 1/min, 0.29 m/s. Analysis has been 

performed at temperatures of 30, 40, 50, 60, 70, and 80°C over concentrations of 0 

(water), 0.001, 0.01, 0.1, 1 to 5 v/v%. Results are presented in numerical temperature 

order beginning at 30°C in the same format as before with an overlay plot of the 

modelled data followed by the raw experimental data. The cloud point temperature of 

the C9-11E6 is 57°C and the critical micelle concentration is between 0.018 to 

0.015 v/v% at 30 to 80°C respectively (Chapter 4).

6.2.5.1.1 Discussion of effect of Cg.nE6 concentration upon removal at 30*C
Figures 6.9(a)-(g) display the change in removal kinetics upon the addition C9-11E6 at

30#C. Irrespective of concentration, typical removal curves are produced, Figures 

6.9(b) to (g). Typically, they can be split up into two regions A and B as discussed 

earlier in section 6.2.1. Region A depends solely on the fluid dynamics of the cleaning 

solution and therefore is independent of concentration. Region A removes any loose 

oil deposits, lasts 300 seconds and removes 6.5 wt% of the deposit at 30°C and 

2 1/min. Region B is a function of the applied chemical effect of the solution. On the 

overlay plot, region A is described by a single line and region B is described by the 

subsequent division of the line into six separate lines. An immediate saving in 

detergent volume could be obtained by applying an initial rinse lasting 300 seconds for 

region A followed by the application of the detergent solution.

Compared to water (figure 6.9(b)) the additional chemical effect always enhances 

removal (figures 6.9(c)-(g)). Even at concentrations of 0.001 v/v% there is a 

noticeable improvement in cleaning efficiency. Further increases enhance removal up 

to 0.1 v/v% whereupon additional surfactant reduces cleaning effectiveness. This 

reduction in removal with surfactant concentration continues to 5 v/v%, where 5 v/v% 

is equivalent to a surfactant concentration of between 0.01 and 0.1 v/v%. A surfactant 

removal optimum has not been published before and for 30°C lies just above the
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surfactant cmc of 0.018 v/v% which indicates reduction of interfacial forces plays the 

key role in removal. Removal occurring below the cmc confirms roll up as the likely 

removal mechanism.

6.2.5.1.2 Discussion of effect of CmEe concentration upon removal at 40'C
Figures 6.10(a)-(g) display the change in removal kinetics upon the addition C9.11E6 at

40°C. The same phenomena found at 30°C is repeated at 40°C. A concentration 

optimum exists at 0.1 v/v% lying just above the surfactant cmc of 0.017 v/v%. The 

effect of C9-11E6 at 40°C is much more pronounced than at 30°C which corresponds to 

the effect with water alone (Figures 6.4(a)-(g)). The mass of the residual layer 

compares to 1.8 g/m2 at 0.1 v/v% and 18 g/m2 with water (0 v/v%), the dramatic 

improvement is depicted in Figure 6.10(a). Region A plays a minor part, lasting only 

180 seconds and removing 17.8 wt% of the deposit. Cleaning above 0.1 v/v% at 1 and 

5 v/v% C9-11E6 does not show such a large decrease in removal but the optimum is still 

present well defined outside the bounds of experimental error.

6.2.5.1.3 Discussion of effect of C^nEe concentration upon removal at 50’C
Figures 6.11(a)-(g) display the change in removal kinetics upon the addition C9-11E6 at

50°C. A concentration optimum also exists although, operating at the higher 

temperature, 50°C, has shifted the point of maximum removal away from 0.1 v/v% to 

1 v/v% C9-11E6 whereupon removal is total. At 50°C the chemical contribution to 

removal is beginning to become overpowered by the increasing significance of the 

thermal effect and is therefore less pronounced.

When removal is total, further increases in cleaning efficiency are indicated by a 

reduction in the overall cleaning time.

6.2.5.1.4 Discussion of effect of C^nEe concentration upon removal at 60*C
Figures 6.12(a)-(g) display the change in removal kinetics upon the addition C9-11E6 at

60°C. At concentrations above 0.1 v/v% the surfactant is above its cloud point curve 

(Chapter 4). Cleaning above the cloud point does not appear to effect the previous 

trends in removal shown at 30-50° C. The effects of concentration are very similar to 

those at 50°C, the optimum in removal is still at 1 v/v% C9-11E6 whereupon removal is 

total. The chemical effect is less significant at the higher temperature with the lines 

more closely bunched together. 5 v/v% is equivalent to 0.01 v/v% C9-11E6 following
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almost the same kinetic curve. 0.01, 0.1, and 5 v/v% kinetic curves produce the same 

mass of residual layer (0.8g/m2) however the cleaning time is much shorter at 

0.1 v/v% compared to 0.01 and 5 v/v% which are 400 and 750 seconds respectively.

6.2.5.1.5 Discussion of effect of Cg-nEe concentration upon removal at 70'C
Figures 6 .13(a)-(g) display the change in removal kinetics upon the addition C9-nE6 at

70eC. Applied solutions above a concentration of 0.01 v/v% C9-nE6 are now above 

the cloud point curve. No removal optimum is found but whether this is due to the 

increased significance of temperature shielding the effect or the cloud point curve is 

not discernible. Increasing concentration to 0.01 v/v% C9.11E6 completely removes the 

oil film after 610 seconds. Cleaning at 0.1 v/v% reduces the overall cleaning time to 

300 seconds for total removal. Further increases up to 5 v/v% have provided no 

benefit following the same kinetic curve.

6.2.5.1.6 Discussion of effect of Cb.h E6 concentration upon removal at 80*C
Figures 6.14(a)-(g) display the change in removal kinetics upon the addition C9-nE6 at

80°C. Applied solutions above a concentration of 0.01 v/v% are now above the cloud 

point curve and the surfactant and oil system is approaching the phase inversion 

temperature (PIT). A similar phenomena occurs at 80°C compared to 70°C. Total 

removal occurs after 570 seconds at 0.01 v/v% and after 300 seconds at 0.1, 1, and 

5 v/v%. No concentration optimum exists. Increasing the concentration improves 

cleaning efficiency up to 0.1 v/v% C9-nE6 where subsequent increases provide no 

further benefit

6.2.5.1.7 Variation of removal rate and residual layer with concentration (30 to 80'C)
The effect on the rate of removal, k, and the mass of the residual layer, A ^, with

concentration over temperatures of 30,40,50, 60,70 and 80°C is described in Figures 

6.15(a) and (b) respectively. In both Figures water is portrayed as a concentration of 

0.0001 v/v% to allow direct comparison with the other concentrations. Clearly k and 

A ^  are related: as k increases Ares decreases.

Operating well below the cmc provides clear improvements in removal over the 

complete temperature range (30-80°C). Even increasing the concentration from water 

(0.0001 v/v%) to 0.001 v/v% provides a minimal benefit in removal, at all 

temperatures (Figure 6.15(a)). The effect upon k on further increases in concentration
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is a function of the applied temperature. At 30°C the value of k is maintained whatever 

the concentration. At 40°C increasing the concentration increases k up to a maximum 

at 1 v/v% where at 5 v/v% k is reduced. This trend continues with increasing 

temperature up to 60°C, each maximum more prominent than the last, between 0.1 

and 1 v/v%. At 70 and 80°C the maximum in k plateaus with increasing concentration. 

Operating at 80°C provides only a small benefit in k. The optimum must be due to 

micelles at low concentrations acting as monomer reservoirs and at higher 

concentrations hindering removal.

The mass of residual layer, Arcs, (Figure 6.15(b)) is strongly temperature dependent. 

The chemical effect becoming more insignificant with each temperature rise from 

30°C. Each line becoming more horizontal with each increase in temperature. 

Dramatic increases in Ares are obtained when removing crude oil at 40°C compared to 

30°C. Further increases benefit Arcs but at a reducing rate. The chemical effect is more 

significant at the lower temperatures with concentration over 30 to 80°C. Removal is 

strongly dependent on temperature.

As with the rate of removal k, increasing the concentration of the cleaning solution 

decreases the mass of residual layer, Arcs, up to 0.1 to 1.0 v/v%. Whereupon 

subsequent increases in concentration increase Ares reduce the mass of the residual 

layer, confirming the concentration optimum.
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6.2.52 The effect o f  C9.uE6 Velocity upon removal
The importance of surfactant velocity has been investigated. A wide range of 

velocities has been studied (0.071 to 0.57 m/s) at 50°C and 1 v/v% C9-11E6. Flow 

rates of 0 .5 ,1 ,2 , 3 and 4 l/min with Reynolds numbers of 1440,2790,5590,8380 and 

11200 respectively are presented. Results are depicted as an overlay plot Figure 

6.16(a) and as individual curves Figures 6.16(a) to (f). Figure 6.16(g) shows the 

variation of the rate of removal with change in Reynolds number.

6.2.5.2.1 Discussion of results
Increasing the velocity steadily decreases the time to clean. Although increases above 

0.57 m/s have minimal effect. At 0.071 m/s the deposit is clean in 1400 seconds, 

double the flow and the time is reduced by 350 seconds to 1050 seconds.

As with rinsing, the type of flow regime is not significant, a linear relationship between 

Reynolds number and the rate of removal exists up to 0.57 m/s. Compared to rinsing 

at 50°C (Figure 6.5), Reynolds number has a more significant effect on the rate of 

removal, indicated by the steeper gradient (Figure 6.16(g)). Shear forces clearly more 

significant on the deposit when applying a surfactant solution as opposed to pure 

water.

62.5.3 Summary:- The effect o f  concentration with temperature 
The key points are listed below:

• C9-11E6 was able to completely remove the crude oil deposit giving a 100% clean 

surface.

• The addition of C9-11E6 was always beneficial to removal irrespective of 

temperature, compared to rinsing. However, the surfactants effect was much more 

pronounced at lower temperatures.

• Increasing the temperature consistently improved removal efficiency, the higher the 

temperature the faster the rate of removal.
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Figure 6.16(a) Overlay plot: model curves from the individual plots Figures 6.16 (b)-(f)
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Figure 6-16 The Effect C9.n E6 velocity on removal o f crude oil cleaned at 50°C
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• Concentration optima exist at 30, 40, 50, 60°C at 0.1, 0.1, 1.0 and 1.0 v/v% C9. 

11E6 respectively coinciding with the cmc at temperatures of 30 and 40#C Above 

50°C at 1.0 v/v % the crude oil removal was total. At the optimum concentrations 

a maximum removal rate and minimum residual layers was produced.

• At 70 and 80°C, increases in concentration improved removal efficiency up to 

0.1 v/v% C9-11E6 whereupon further increases had no beneficial effect on removal.

• For all temperatures, an initial pre-rinse is recommended to shear off the top layer 

and provide savings in cleaning chemicals.

• The cloud point curve of the surfactant had no significant effect on removal.

• At 1 v/v% C9-11E6 increasing the velocity steadily decreases the time to clean up to 

0.57 m/s and the type of flow regime is not significant.

• Reynolds number and shear forces of 1 v/v% C9.11E6 have a more influential effect 

on the rate of removal than water alone.

6.2.6 Anionic, Alkali and Commercial Formulations
Commonly available chemical additives and detergents considered effective at oil 

residual removal have been analysed. The effect of anionic surfactant, an alkali salt and 

a commercial formulation have been determined. Concentrations similar to those used 

in industry have been chosen. Sodium lauryl sulphate, the anionic surfactant, was used 

at 1, 2, and 5 wt% (figure 6.17(d)). Sodium hydroxide (alkali), was used at 3 wt% 

(figure 6.17(e)) and Micro (commercial formulation), was used at 1 and 2 v/v% 

(figure 6.17(0)- All experiments were performed at a temperature of 50°C and a flow 

rate of 2 l/min allowing direct comparison with earlier results. Results are portrayed in 

Figure 6.17(a) - (0 in the same format used previously.

6.2.6.1 The Effect o f  Chemical Additives
Increasing the concentration of sodium lauryl sulphate from 1 through to 5 wt% has 

no appreciable effect upon cleaning efficiency (figure 6.17(d)). All the experimental 

data points produced at the different concentrations lie on the same kinetic modelled 

curve. The anionic surfactant being only marginally more proficient than rinsing with 

water alone, Figure 6.16(a). A similar effect was produced using sodium hydroxide
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(figure 6.16(e)) although the alkali was even closer in performance to that of water. 

Sodium hydroxide left a residual layer of 7.5 g/m2 compared to 7.7 g/m2 for water and 

6 g/m2 for the anionic cleaner. The commercial formulation (figure 6.16(f)) was 

dramatically more effective reducing the residual layer mass to 2 g/m2 and decreasing 

the overall cleaning time by half of that when rinsing with water. Using Micro at 

1 v/v% compared to 2 v/v% had no effect on removal kinetics. The non-ionic 

surfactant (figure 16.6(c)) completely removes the oil film and is clearly the best 

performer. Although some of the detergents proved similar in performance to rinsing, 

further the removal mechanisms may prove to be quite different. Further analysis is 

required using different tube lengths and visual techniques to identify their true 

performance (Chapter 8).

6 2 .6 2  S u m m a r y T h e  effect o f  chemical additives 
The key points are listed below:

• The non-ionic surfactant C9.11H6 was the best chemical additive.

• The anionic and alkali cleaners only marginally out performed water rinsing.

• The concentration optima found when using the non-ionic surfactant were not 

repeated for the anionic or commercial cleaners. Increases in concentration 

providing no further improvement in removal in these cases.

• The commercial formulation was effective. This could primarily be due to a non 

ionic surfactant component.
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Figure 6-17 The addition o f Chemical Additives at 2 l/min, 0.29 m/s, 50°C

6.3 Qualitative Analysis
Qualitative analysis provides valuable information on the removal mechanisms 

supplementing the main kinetic quantitative data. Observations involve gas 

chromatograph (GC) analysis of the oil film deposit during cleaning to investigate the 

possibility of selective component removal and cleaning process visualisation through 

advanced video photography to determine any change in deposit structure with 

cleaning time.

6.3.1 Gas Chromatography Analysis
Since crude oil is a complex mixture of hydrocarbons, application of a cleaning 

solution is likely to induce selective component removal. The fouled deposit comprises 

of mainly hydrocarbons with a minimum boiling point equivalent to nCi4 to boiling 

points above nC4 4 . Adhesion of each component to the substrate and soil will be 

different and they will have contrasting solubilities in the applied solution. Selective 

solubilisation of crude oil has also been reported before but not in cleaning 

applications.

Using the same cleaning analysis procedure (described in Chapter 5, section 5.3.6) 

except rotating the centrifuge tube containing the test piece at 5,000 rpm for 

5 minutes, samples of oily deposit after cleaning are obtained. The oil can then be 

diluted to a 90% solution of hydrogen disulphide and injected in the GC (Chapter 4).
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The unedited chromatograms and their calculated percentage residue are depicted to 

compare for any crude oil composition change since boiling point distribution curves 

(ASTM D5307 [1992]) could hide small differences in composition. The analysis 

technique determines the overall composition of any oil remaining on the surface of a 

test piece after cleaning rather than the composition of the top surface of the oil 

(Chapter 4 and Appendix A).

Analysis has concentrated on the composition of the residual layer which remains 

when rinsing and under certain conditions of surfactant application. The composition 

of the residual layer was examined at 50, 60, 70 and 80°C at 2 l/min rinse water and 

40, 50 and 60°C 0.1 v/v% C9-11E6 at 2 l/min. Two example chromatograms are 

presented: Figure 6-18 was determined after rinsing for 45 minutes at 2 l/min 80°C 

and Figure 6-19 was produced after 20 minutes cleaning with 0.1 v/v% C9-11E6 at 

2 l/min at 50°C. A chromatogram of the crude oil before cleaning is depicted in Figure 

5.4, Chapter 5. Results show no discernible change in deposit composition with 

cleaning time. Not only do the chromatograms appear identical to the chromatogram 

produced before cleaning but the calculated percentage column residues are also of 

the same magnitude.
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Figure 6-18 Gas Chromatogram o f residual layer, rinsed fo r  45 mins at 2 l/min

Crude Oil Residue = 45%
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6.3.2 Process Visualisation
There is little published work on direct visualisation of the cleaning process. The 

experimental apparatus developed allows advanced video photography of the cleaning 

process to take place using a glass cell (figure 5.6, Chapter 5). As described in 

Chapter 5, semi-circular test pieces are fouled with crude oil and left for 16 to 18 

hours. Smooth films with a surface coverage of between 33.6 and 38.4 g/m2 are 

accepted and ready for positioning in the glass cell. Cleaning is then observed over a 

wide range of conditions. The process was examined using water, C9-nE6  and micro at 

50°C and 2 l/min. C9 .11E6  was investigated at concentrations of 0.001, 0.01, 1, and 

5 v/v% and micro at a concentration of 2 v/v%. Difficulty was found in providing 

conditions of minimal reflection especially from the glass cell and an even light 

distribution.

Removal was recorded using a betamax video recorder, enabling high quality stills to 

be photographed at specific periods of the cleaning process. Figure 6-20 shows a 

photograph of the smooth stainless steel surface of the test piece. Figure 6-21 portrays 

the surface fouled with crude oil (36 g/m2). For an idea of scale the test piece width is 

0.5 inch. The fouling is uniform but the lefthand side is lit more strongly than the right. 

The evenly spread white dots are small droplets of oil which reflect in the strong light.
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Figure 6-20 Clean Test Piece

Figure 6-21 Crude Oil Fouled Test Piece

6.3.2.1 Water Remo val

Figures 6-23(a) to (d) depict the effect of water on the crude oil film. Water is applied 

at 50°C and 21/min and points where the photographs were taken are represented as 

black squares on the removal curve in Figure 6-22. Initially a small amount of loose 

material is flushed from the film this is seen as small droplets sheared from the 

surface.

Figures 6-23(a). The deposit then begins to open up and thin longitudinal streaks 

which cover the complete length of the test piece appear along the surface of the 

deposit,

Figures 6-23(b). The oil film, although uniform, has an uneven surface and the 

streaks tend to originate from areas of plentiful crude. The areas in between the 

streaks still have a thin oil film which is indicated by a light brown colouration
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As cleaning progresses, after 400 seconds (Figure 6-23 (c)), the strands become 

thicker and it becomes clear that the oil is rolling along the surface of the test piece. 

The direction of the flow is from right to left. The strands follow channels of oil that 

remain from previous strands. The process is analogous to rain water driven along the 

side window of a car by turbulent air currents, following the previous trails of water. 

There is no droplet removal and the surfaces in between the strands remain 

discoloured. Removal is non-uniform, areas to the right having less oil deposit.

The rate of oil progression reduces at a decreasing rate. After 1000 seconds (Figure 6- 

23 (d)) movement is minimal and a thin residual layer remains. The trails can still be 

made out but only a small thickness of oil remains.
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Figure 6-22 Points along Removal Curve where Pictures were taken, 50°C, 2 l/min
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Figure 6-23(a) Crude oil removal by water after 70 seconds

Figure 6-23(b) Crude oil removal by water after 300 seconds

Figure 6-23(c) Crude oil removal by water after 500 seconds

Figure 6-23 (d) Crude oil removal by water after 1000 seconds

Figures 6-23(a) -(d) Photographs o f crude oil removal by water, 2 l/min, 50°C
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63.2.2 Surfactant Removal
The addition of a surfactant has a dramatic effect on the removal mechanisms. Figure 

6-24(a) to (d) display photographs of the oil film taken during cleaning with 1 v/v% 

C9-11E6 at 2 l/min at 50°C. The points at which the photographs were taken are 

represented as rectangular outlines on the removal curve in Figure 6-22. After 100 

seconds of surfactant cleaning an immediate difference to rinsing mechanisms is 

apparent, (Figure 6-24(a)), the oil film forms a cobweb like structure. Strands appear 

as before, but they are much shorter and follow a variety of directions instead of solely 

following the direction of flow. At the extreme, strands are even at right angles to the 

direction of flow. As with rinsing the strands originate in area of high oil coverage. 

They tend to twist and turn as opposed to being straight in nature. The oil still rolls 

along the short strands but at the comers and ends of the strands droplets are removed 

which are approximately 0.1 mm in diameter. The size of droplet removed is 

proportional to the strand thickness. The thicker the strand the larger the droplet 

diameter. Unlike rinsing, the strands do not progress along the length of the tube. The 

difference in strand structure compared to rinsing explains why when using a 

surfactant the rate of removal is more sensitive to shear forces. When using a 

surfactant the deposit structure becomes much more open and exposed to the fluid 

flow.

After 170 seconds of further cleaning (400 seconds in total, Figure 6-24(c)) a 

significant proportion of oil has been removed. Remaining strands are much thinner 

and more longitudinal in nature. Strands pointing at right angles to the direction of 

flow having are removed first. Removal is uniform, and unlike rinsing the areas 

between the strands are shiny and clean indicating the absence of oil.

After 450 seconds of cleaning, the substrate is almost free from oil. Only a further 150 

seconds is required for complete removal.
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Figure 6-24(a) Crude oil removal by lv/v% C9.uE6 after 100 seconds

Figure 6-24(b) Crude oil removal by 1 vlv% C9.jjE6 after 130 seconds

Figure 6-24(c) Crude oil removal by 1 v/v% C9.uE6 after 400 seconds

Figure 6-24(d) Crude oil removal by 1 v/v% C9.nE6 after 450 seconds

Figures 6-24(a) to (d) Photographs o f crude oil removal by 1 v/v% C9.n E6, 2 l/min, 50°C
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Increasing the surfactant concentration above 5 v/v% C9-11E6 has little additional 

visible effect upon removal. The oil film strands into cobwebs like those similar to 

those seen when cleaning at 1 v/v% C9-11E6. Removal is through droplets. Yet, after 

prolonged cleaning thin residual strands remain. Decreasing the concentration to 

0.1 v/v% C9-11E6 has the same effect as cleaning at 5 v/v%. However, cleaning at 0.01 

and 0.001 v/v% C9.11E6 has a more pronounced effect. The cleaning transitions from 

the observed removal pattern seen at 1 v/v% C9.11E6 to that seen when cleaning with 

water. The strands become longer and thicker with decreasing concentration and 

increasingly they are in the direction of the flow. The strands progress along the 

substrate surface and a decreasing portion of the oil can be seen to be removed by 

droplets. The portion of oil removed through droplets as opposed to rolling along the 

surface is very difficult to determine.

6 3 .2 3  Removal Mechanisms
Clearly solubilisation does not play an important role in the removal process, removal 

occurring below the cmc and through droplets, leaving roll-up and emulsification as 

likely alternatives. In the presence of surfactants removal is through roll-up. The 

difference between the water and surfactant is its effectiveness as a wetting agent. 

Since the surfactant prefers the wet substrate more than the oil, the oil cannot roll 

along the surface and is therefore removed. In the case of water, the oil prefers to wet 

the substrate rather than the water and the oil will progress along the substrate with no 

tendency to be removed as a droplet. Removal is sensitive to shear forces and in their 

absence removal will be zero. The optimum surfactant will be one that is the most 

effective wetter of the surface.

6.4 Experimental Discussion
Visualisation of the cleaning process is paramount. From the kinetic data, water 

appears to be fairly effective at removing the bulk of the crude oil film. However, in 

reality oil is simply pushed along the surface of the substrate by the applied shear force 

of the solution. The addition of a good wetting agent changes the mechanism and rolls 

up the oily soil enabling droplet removal in the bulk flow. Longer test pieces would 

enhance this difference in removal mechanisms and efficiency. The surfactant would 

maintain the same rate of removal and the rinsing would exhibit a much reduced
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removal rate compared to the shorter tubing. Roll up of oily soils has been shown 

many times before (Thompson [1994], Kao et al [1989], Otani et al [1985], Saito et al 

[1985], Aronson et al [1983] and Dillan et al [1979]).

Results show optimum surfactant removal in the region and above the cmc and linked 

to the reduction of interfacial forces. The presence of micelles acting as monomer 

reservoirs. Relationships between interfacial tensions, removal and droplet contact 

angle have been reported many times before. But unfortunately these cannot be 

generalised and depend on the surfactant system (Thompson [1994]). This work 

agrees with the that of Prieto et al [1996] who related the optimum spray cleaning of 

oven baked oily soils from stainless steel to a minimum in dynamic surface tension. No 

mechanisms were proposed but roll up would appear likely. The wetting of the oil to 

the substrate is the key parameter but it is dependent on the electrostatic, van de 

Waals and structural forces. The electrostatic forces are in turn a function of the oil 

composition and the type of substrate (Hirasaki [1988]).

Very few authors have considered the effect of surfactant concentration upon cleaning 

performance. The effect of temperature has generally been considered, often the 

effects are much more pronounced. There is also little information published on 

cleaning below the cmc especially with nonionic surfactants. Cleaning studies carried 

out below the cmc can give important mechanistic information as to the significance of 

solubilisation. Beaudoin et al [1995] found effective removal of flux residues from 

rotating disks using nonmicellar solutions but the concentration was very close to the 

cmc and could be due to monomer dimer and trimer formation. The authors found that 

increasing the concentration well above the cmc improved the rate of removal still 

further but reported no optimum. These findings can be contrasted with the kinetic 

data produced when using C9-11E6 in this thesis. However, Koretskii et al [1984] 

studied five nonionic surfactants over a wide range of concentrations for the removal 

of oily soils from steel plates. For four of the surfactants removal increased with 

increasing concentration above the cmc but for the remaining surfactant removal 

increased up to the cmc, with no additional benefit resulting from further 

concentration increases. Performances could be related to the greatest lowering of 

interfacial tensions and micellar shape. The remaining surfactant also exhibited the
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greatest lowering of interfacial tension at the cmc. Unfortunately no visual study of the 

mechanisms of removal was undertaken.

Explaining the low temperature optimum in surfactant concentration found at the cmc 

is difficult. First thoughts are that the removal at high concentrations could be 

diffusion limited by the presence of a large proportions of micelles. However, the rate 

limiting step has been identified (see Chapter 7) and even at conditions of high flux, 

diffusion is not the limiting step. It is also unlikely to be due to the monomer/micelle 

equilibrium relationship shown in Figure 6-25 because the concentration optimum was 

reported above the cmc and micelles contribute to removal. The optimum must be due 

to a high concentration of micelles hindering the kinetics of roll up at the interface.

Figure 6-25 Monomer!Micelle Equilibrium Relationship 

The effect of temperature upon removal is well documented. Recent authors agree 

that optimum removal occurs at the phase inversion temperature (PIT) rather than the 

cloud point. Unfortunately the PIT cannot be calculated for the crude oil C9-11E6

approximately 80°C. The results in this thesis agree with the PIT optimum but further 

evidence is required such as cleaning at 90°C. Given the current experimental setup, 

this is not possible. Preito et al [1996] undertook an interesting study finding that for 

the majority of nonionic surfactants temperature optimum occurred at the cloud point. 

However, in common with the results found in this thesis several surfactants showed 

no optimum at the cloud point suggesting that it could possibly occur at the PIT.

Miller and Raney [1993] suggest that roll up is promoted on hydrophilic surfaces like 

cotton due to the low contact angle. The authors suggest that oil is removed from

equilibrium
relationship

o
Oil Film

system but it is often found to be 20°C above the cloud point which would make it

Removal o f Crude Oil Films using Aqueous Detergents 131



Chapter Six- Experimental Results and Discussion

surfaces having high polyester (hydrophobic) by a solubilisation-emulsification 

mechanism. However, the results show that roll up is the main mechanism of removal 

of the crude oil from stainless steel which is partially hydrophilic. This suggests that 

the although the oil effectively wets the surface of the substrate the surfactant is a 

much more effective wetter of the surface and therefore roll up occurs. Ogino and 

Agui [1976] found roll up was soil specific observing roll up with all soils except oleyl 

alcohol and liquid paraffin.

Solubilisation generally occurs with nonionic surfactants and roll up with anionic 

surfactants. Since the primary mechanism of removal with C9-11E6 has been shown to 

be roll up the difference between C9-11E6 and other nonionic and anionic surfactants 

has been investigated. The micelle structure, which has been modelled in Chapter 4 

appears to be the connection. At low temperatures the micelle structure in solution is 

globular similar to that found in anionic solutions. Nonionic surfactants often have 

large polydispersed micelles which promote solubilisation. This indicates why 

solubilisation is not important to removal with C9-11E6 but does not explain why it aids 

roll up.

GC analysis found that the crude oil deposit acted as a single component showing no 

evidence of any selective removal or solubilisation. This contrasts with the 

investigation undertaken by Chui and Huang [1993], who suggest that the crude is 

selectively solubilised when surfactant solutions are applied. Saito et al [1985] found 

that longer chain foulants were more difficult to remove. Nagarajan and Ruckenstein 

[1984] found that selective solubilisation occurred for binary hydrocarbon mixtures. 

The extent of solubilisation was found to differ for different solubilisates and was also 

dependent upon the temperature, concentration and composition of the surfactant. 

The absence of any selective removal is probably due to the oil being removed 

primarily through roll up and in a dynamic rather than a static system.

Water has proved effective at loosening tar like deposits from the shorelines of 

beaches (Pasquet and Denis [1983]). This is unlikely be due to oil deposit detachment 

rather movement from one surface to another, as shown by the visual analysis reported 

in this thesis. Removal either by surfactant or water was strongly shear dependent, 

increasing shear increased removal. These findings contrast with the work of Mahe et
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al [1988] who deposited alcane droplets onto glass and found that a critical water 

shear stress was needed for removal. This is not surprising as droplets will behave 

quite differendy to oil films. The rinsing of fluorescein-Na undertaken by Plett [1985] 

is much more analogous. Four removal periods were proposed, two of which were 

comparable to the regions found in the removal of crude oil films.

In summary it is a difficult area to study with so many parameters effecting removal: 

surface composition and charge, soil-soil and soil-substrate bonding, surfactant 

concentration and composition, the applied temperature, interfacial forces, contact 

angles and micelle shape. Surfactant removal cannot be generalised, mechanisms that 

occur are specific to particular surfactant systems. The optimum removal conditions 

subsequendy rely on the type of removal mechanism. Visualisation is useful to identify 

the mechanism present. Roll-up and emulsification are closely linked requiring liquid 

soils, minimum in interfacial forces and maximum in contact angles with high 

temperatures promoting their removal. Solubilisation can only occur in micellar 

solutions and the type of micelles present play a significant role in removal. Cloud 

point optima appears with solubilisation, roll up optimum occurring at the PIT.
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7.1 Introduction
The removal of oil films from stainless steel is clearly a complex process. Results and 

observations of the cleaning process produced in Chapter 6 have identified roll up as 

the primary mechanism when cleaning with a surfactant, and rolling of the oil along 

the substrate as a primary mechanism when rinsing. Minimal information has been 

presented in the literature on modelling in this area and this has been reviewed in 

Chapter 2. The mathematical modelling described in this Chapter is novel and a series 

of equations describing removal have been developed. The key mechanistic steps in 

removal have also been identified. The models predict the effect of different 

parameters on the cleaning process and aid in the optimisation of oil film removal by 

water and C9-11E6.

In developing the models to describe cleaning it was important to maintain a balance 

between simplification and sophistication. The removal of oil films is complicated. 

Initially simple zero and first order models were used to describe removal. Theoretical 

analysis was then used to identify the rate determining step to removal and finally 

empirical models were developed to predict removal. The effect of water and 

surfactant were treated independently.

7.2 Simple Zero and First Order Models
Many workers have greatly simplified removal by expressing the kinetics in terms of 

the amount of deposit remaining. The models describe removal in terms of reaction 

kinetics of zero, first, second, etc. order.

A detailed matrix of kinetic cleaning curves has been produced for the removal of 

crude oil by nonionic surfactant, C9.11E6 (Chapter 6). Data has been produced at 30, 

40, 50, 60, 70 and 80°C over a concentration range of water, 0.001, 0.01, 0.1, 1, 5 

v/v%. Figure 7-1 depicts typical removal kinetics at 40°C using 1 v/v% C9-11E6 at 

volumetric flow of 2 l/min.
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Figure 7-11 v/v% C9.nE6y 2 l/min, 40°C

All removal curves have been found to follow this characteristic shape. In region A, 

the rate of removal is constant, this is indicated by the linear slope. The gradient of the 

slope is independent of concentration. In region B, the removal is asymptotic and the 

rate is strongly dependent on the detergent effect. In Figure 7-1, a residual layer 

remains which under more severe conditions can be removed. The transition from 

region A to B is fast and can be clearly seen. Treating each region independently, 

region A can be described by a zero order model with respect to deposit mass, 

equation 7.1:

Subsequently, region B, removal decreases asymptotically leaving a clean surface or a 

residual layer depending on process conditions and the rate of removal can be 

described by equation 7.2:

Where n is the order of removal and k is the removal rate constant (1/s). Taking 

natural logarithms of both sides the following is obtained (7.3):

dm 7.1

7.2

dt

7.3
ln \ = Ink + n Inm

I dt )
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which is in the form of y=mx+c where the slope of a plot of ln{-dm/dt) as a function of 

Inm represents the order of removal, n, with the intercept equal to Ink.

For region A, the value of constant is determined by plotting all the data produced

at constant thermo hydraulic conditions on the same graph and using linear regression

to calculate the gradient of the points. An example is shown in Figure 7-2, using the

data produced using C9-11E6  at 40°C and 2 1/min at concentrations of 0, 0.001, 0.01,

0.1, 1,3 and 5 v/v%. All the data for each concentration is represented as squares and

is not differentiated.

40 
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_25N
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0
0 20 40 60 80 100 120 140 160 180 200

t(s)

Figure 7-2 Region A o f Removal Curves 40°C, 2 l/min, 0, 0.001, 0.01, 0.1,1, 3 and 5 vlv% C9.uE6

For region B the procedure is more complicated. Firstly the data points within region 

A are removed, then the axis on each curve is set to start at t=0 and finish at m=0, by 

subtracting Ares and trcv from m and t respectively Figure 7-3. A smooth freehand 

curve is then drawn through the points. No function is ‘fitted’ to the points because it 

is important not to specify any relationship between the points before any model is 

applied. Finally, at each of the points the gradient and hence the differential (dm/dt) is 

calculated.
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Figure 7-3 Region B o f removal curve, 40 °C, 2 l/min, 1 v/v% C9.n E6

A graph of ln(-dm/di) against ln(m) is plotted in Figure 7-4(a). Through linear 

regression the line of best fit can then be determined allowing the variables k and n to 

be determined. Figure 7-4(b) portrays both the modelling of region A and B compared 

to the experimental data, a good fit is obtained.
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Figure 7-4(a) and (b) Modelled Removal Curves 

The equations that describe removal are as follows:

Region A:

ma = m0 - ac t 0 < t < tr

Region B:

mb = [m ,(1-n)- ( l - n) k ( t - t rev)J'0"’>-A ra t„v < t <

For the example (40° C 2 l/min 1 v/v% syn)

7.4

7.5

ac = 0.0368 g/sm
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k = 0.00261 1/s

n = 1 . 4 8  dimensionless

trcv = 180 s

mo = 36 g/m2

Arcs = 3.6 g/m2

This procedure was then repeated for every kinetic removal curve at each 

concentration and temperature, determining all the above parameters. Graphs of the 

determined reaction orders (n) and removal rate constants (k) against concentration 

are portrayed in Figure 7-5(a) and (b) respectively. (As before water is represented by

0.0001 v/v%.).

0.0001 0.001 0.01 0.1 
cone (v/v%)

—  80

0.025

0.02

0.015

0.01

0.005

0.0001 0.001 0.01 0.1 
cone (v/v%)

10

—  80 —  70 —  60 —  50 —  40 —  30

Figure 7-5(a) and (b) Removal rate vs Cone, (C9.n F6)

The reaction order and rate constant vary significantly with concentration and 

temperature and there is no discernible trend. From the visualisation technique 

(Chapter 6) it is likely the same mechanism of removal (rolling along the strands and 

subsequent roll up) occurs at all the different conditions of concentration and 

temperature. Therefore a single order of reaction should be applied to all the kinetic 

data. Since the reaction order lies between 0.55 and 1.7, a value of 1.0 would appear 

appropriate (there is no evidence to suggest otherwise). Using this revised reaction 

order of 1 the removal rate was recalculated. Even at the extremes where reaction 

order was 0.55 or 1.7 the linear relationship of ln(dm/dt) versus ln{m) was still 

maintained.

Therefore the revised equations that describe region B removal are as follows:
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Section B:

mb = mae'k<l'trev) - A t r e v  <  t  <  <*> 7.6

For the example (40°C 2 l/min 1 v/v% syn) a = 0.0368 g/sm  

k = 0.0674 1/s 

n = 1 . 0 0  

trev = 180 

mo = 36 

Arcs = 3.6

s

g/m2

g/m2

0.025

0.02  - -

co 0.015 •

2  0.01

0.0001 0.001 0.01 0.1 1 10 
Cone (v/v%)

80 -B - 70 60 -® - 50 40 30°C

Figure 7-6 Rate o f removal with cone C9 .nE t over 30 to 80°C

Specifying the removal as first order shows much more clearly the effect concentration 

and temperature have upon the rate of removal (Figure 7-6). Applying a first order 

model to the kinetic data is a simple technique but assumes the removal is not 

diffusion limiting, this assumption is investigated later in section 7.4.1. The simple 

models provide a good fit to the data and are represented as the smooth curves in all 

the figures presented in Chapter 6.

7.3 Arrhenius Kinetics?
As discussed in Chapter 2 the oil removal mechanisms involve a surface modification 

step. The process is purely physical, the surfactant breaking the bonds between 

molecules, rather than a chemical process where the oil molecular bonds would be 

broken and reformed to form a new compound. This has been confirmed by observing
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the removal mechanism (Chapter 6). By assuming the deposit acts as a single 

compound (Chapter 6) and drawing a similarity to reaction kinetics, the Arrhenius 

equation 7.7 can be used to determine the apparent activation energies for removal.

k = Ae-E“ /RT 7.7

where k = reaction rate constant

A = pre-exponential factor

E„ct = apparent activation energy, J/mol 

R = gas constant, (8.314 J/mol K)

T = absolute temperature, K

The apparent activation energy has been equated with a minimum energy that must be 

possessed by reacting molecules before reaction will occur (Fogler [1992]). If the 

value is small < 20 kJ/mol then the process is said to be physically (diffusion) 

controlled and >120 kJ/mol then chemically (reaction) controlled (Bird [1993]). 

Taking natural logarithms the equation yields the equation of a straight line, y = mx + 

c (7.8).

l n k = ln A _ M ^
R VT

Using the removal constants k, determined for the main proportion of the cleaning 

curves, Ink is plotted against (1/T). The apparent activation energy at each 

concentration can then be determined from the gradient which is equal to (-Eac/R), 

Figure 7-7. The heavy black lines show the extremes of apparent activation energy, 

the gentle gradient representing purely a physically controlled process (Eaa = 20 

kJ/mol) and the steep gradient representing a chemical reaction controlled process 

(Eact = 120 kJ/mol).
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Figure 7-7 Arrhenius Plot fo r  C9-uE6(

When removal is through water alone a linear relationship is produced indicating that 

rinsing follows Arrhenius kinetics. As expected the calculated apparent activation 

energy is equal to 26 kJ/mol indicating removal is purely through physical shear 

forces.

The addition of the nonionic surfactant has a pronounced effect even at low 

concentrations, sharply deviating the data from Arrhenius kinetics. If the effect of the 

surfactant was purely to speed up the same physical process of removal by rinse water 

then a series of parallel lines would be expected. The greater the removal the further 

up the y axis. However, this is clearly not the case. At high detergent concentrations a 

smooth curve is produced which appears to be physically controlled at high 

temperatures and a combination of chemically and diffusion controlled process at low 

temperatures. However the action of a surfactant can only be physical. The higher 

than average apparent activation energies at low temperatures must be due to the 

reduction of interfacial tensions which will involve the breaking of strong hydrogen 

bonds in water. The limiting physical process at high temperatures could be due to a 

number of steps, referred to in the following section.

7.4 Removal Steps
Determining the limiting step will help identify the origin of the removal optimum. 

Since removal must be physically limiting, removal could be limited through either
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diffusional processes or surface modification steps. The raw experimental data can be 

described by a first order reaction indicating the process is unlikely to be diffusion 

limited, although two diffusion processes could produce the characteristic removal 

curve shape. However, the results find cleaning efficiency proportional to log of 

surfactant concentration up to the cmc, indicating that, concentration of monomers at 

the substrate surface (and hence monomer diffusion) could play an important role in 

removal. Investigation is required to identify the limiting removal step. Five physical 

steps have been proposed to describe the removal process:

7.4.1 Proposed Steps
1. Diffusion of surfactant monomers across boundary, from bulk to oil interface

2. Adsorption of surfactant monomers at the oil surface.

3. Modification of the oil film, by roll-up /  emulsification.

4. Desorption of oil droplets and surfactant monomers from the surface to the 
interface.

5. Diffusion of oil droplets and surfactant monomers into bulk.

Bulk

Boundary

Oil

Substrate

Figure 7-8 Diagram o f the proposed removal steps

The proposed removal steps are expressed diagramatically in Figure 7-8. It is 

important to note the aggregated monomers around the oil droplets (steps 3, 4 and 5) 

are not micelles solubilising the oil droplet, but reducing the interfacial forces between 

the oil and surfactant and the surfactant and substrate.

From the Arrhenius analysis it was found that there are likely to be at least two 

physical processes limiting removal. Step 5 will be fast and can be ignored because the 

concentration of surfactant in the oil phase is high, developing a large concentration 

gradient. This is confirmed numerically at the end of this section. Steps 2-4 can be
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combined to form an overall surface modification step; this results in two plausible 

limiting physical processes remaining: one of diffusion of surfactant monomer to the 

substrate and one of surface modification. Each of these two steps becoming limiting 

under specific conditions. No published information is available on the kinetics of roll 

up (steps 2-4), however, the rate of diffusion of monomers to the surface, (step 1), 

can be estimated. Cleaning is a strong function of the concentration of monomers in 

the water phase at the interface, (Ci).

Assuming that after a short time interval the boundary layer will have formed and 

removal will have reached steady state, (the flux of monomers leaving the substrate 

(Jdout) will equal the flux arriving (Jd in), accumulation monomersinterfacc=0), equation 

7.9:

Jdin = Jdout 7*9

It is extremely difficult to determine the size of droplets removed during cleaning 

because they are unstable and tend to coalesce quickly. It is assumed that for 

particular cleaning conditions the oil droplets removed are spherical and of a constant 

diameter, dr and that once the monomers diffuse across the interface they are adsorbed 

and removed directly. It is also assumed that there is no redeposition of oil droplets 

that have been removed. Jdin can be calculated from Ficks first law and Jdout can be 

estimated from the experimental data (dm/dt), determining the overall surface area of 

oil removed. A simple surfactant monomer mass balance results in equation 7.10. The 

equation is expressed diagramatically in Figure 7-9:

P °B(° h - c i ) l - j g L  C» K 2) g  d m _ 6 c ^  (mol/dm3 s) 710
v lb  J  dt p 0(7Crf,3/6 )  d t p . d ,

where D a b°  = Diffusivity of surfactant monomer through water (m2/s)

dr = diameter of oil drop (m)

b = thickness of boundary layer (m)

Ci = conc. of monomers at the interface, water phase (mol/dm3)

Cb = conc. of monomers in the bulk (mol/dm3)

Cio = conc. of monomers at the interface in the oil phase (mol/dm3)

po = density oil droplet (g/m3)
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m

length of test piece

mass of oil remaining on the test piece

(m)

(g/m*)

b Boundary

Oil

Substrate

Figure 7-9 Surfactant monomer mass balance

Experimental measurement of the concentration of monomers in the oil phase at the 

interface of a removed oil droplet, Ck>, is very difficult. The partition coefficient cannot 

be assumed to equal 1 (CiQ=Ci) because a monomer in the oil phase will be in a much 

more thermodynamically favourable position with it's hydrophobic tail absorbed in the 

oil than the monomer in the water phase ( c io>C i). However, this equilibrium 

relationship can be estimated by determining the free energy difference, AG, between 

monomers in the oil phase and water phase and using the following equation (7.11) 

which relates AG to the equilibrium constant (Smith and Van Ness [1987]).

An estimate of AG has been determined using the same procedure as in Chapter 4 

assuming a monomer aggregated within a micelle can be approximated to a monomer 

adsorbed, in a preferential state, onto the surface of the oil interface. The same four 

semi-empirical correlations were used to calculate the overall contribution AG. The 

values of AG do not vary significantly over the temperature range studied, at 30°C 

AG/R T = -9.6 and at 50°C AG/R T = -9.9. Taking an average of AG at 40°C an 

equilibrium coefficient of 20,000 is reported verifying the initial assumption that step 5 

is fast.

AG = -R  T InK 7.11

7.12

C;
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The size of droplet removed during cleaning is a strong function of the oil viscosity 

and is difficult to estimate. Without droplet size information the model cannot be 

progressed further. However rough parameter estimates can be made to determine the 

rate limiting step. If the cleaning process is mass transfer limited then Cb will effectively 

equal cb-Ci (equation 7.10). Assuming a value of Cj = 0.0lcb, dm/dt = 0.35 g/m2 s 

(which is the highest reported value at 80°C and the most likely condition of diffusion 

limitation) the average droplet size of lxlO '3 m, (probably an under estimate since the 

size of the droplets removed are proportional to the strand thickness). The process is 

not mass transfer limited. This indicates the key process in removal is the surface 

modification step, since as m approaches zero mass transfer becomes less important. 

The correlations to estimate the parameters are found in Appendix C.

7.5 Empirical Modelling of Removal
In the previous section, simple first and second order models were used to follow 

removal. Theoretical relationships were derived to describe the roll up mechanism 

occumng when using a surfactant. Unfortunately, the theoretical model could not be 

fully developed without further details on the size of droplets removed during 

cleaning. Empirical models have therefore been constructed to simplify the process in 

terms of dimensionless groups which can be used for predictive purposes. The rate of 

removal (k) was selected to describe the removal process.

Visualisation has shown that removal occurs by two separate mechanisms: (i) rolling 

of the oil along the substrate (when water is used to clean) and (ii) roll up and 

subsequent droplet removal into the bulk solution (when surfactant is used to clean). 

Two empirical models have therefore been developed to describe each situation. In 

each case the parameters that affect removal were identified and the Buckingham II 

method was used to establish all the dimensionless groups that could be formed.

7.5.1 Modelling Rinsing
The variables that effected removal were postulated as follows:

k = / ( 7 k ,  Ti, | i o ,  Hi, ui, p0, p,, d, 1) 7-13

Since water removal is through rolling of the oil along the substrate dimensionless 

constants involving a Reynolds number of the oil were initially examined, such as
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equation 7.14 but this relationship did not satisfactorily describe removal. Since results 

have shown the oil does not change composition with cleaning, the oil properties 

determined in the laboratory have been used (Chapter 4).

Re, = /(R e(1)c‘ =
f

fp,  u
= /

f p . k d 2^
c\

\I V, I P. /

7.14

Replacing the rinse water Reynolds number with shear stress group or adding (jXo/p.|)C6 

provided no better fit. Equation 7.14 has several flaws, the relationship should have a 

tube length term, if the oil is rolling along the substrate, doubling the tube length is 

likely to half the removal and the power of diameter squared also has no basis and 

therefore the equation was revised (7.15).

- - ' Iu,
Re,c‘

/  \N
Yi

U'O O JJ

7.15

With a proportional constant of 7 .1xl0‘7 and constant ‘C6* equal to 0.75 the above 

relationship provided a significant improvement with an R squared of 0.91 

(determined from least squares regression). The model is compared to the 

experimental data in Figure 7-10, the black dots represent the experimental data and 

the straight line the model.

6x1 O'

model
5x1 O'

4x1 O'

2x1 O'

1x10'
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Re075(Vi/u/o)

Figure 7-10 Empirical Rinsing Model
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Therefore when rinsing, the rate of removal is proportional to the following 

parameters (7.16):

h. °-75 /•* °-75 A075 . .  -°-75 ..  -1 1*l \  7 1/ik ~  (m , pi , d , |ii , |io , Yi, 1 ) /uo

The correlation is limited to rinsing. It is analogous to the Chilton and Colbom mass 

transfer model with a Nusselt number proportional to Reynold’s number to the power

0.8 (Coulson and Richardson [1980]). Unexpectedly, if the surface tension (yi) is 

decreased the rate of removal is reduced. However, the effect of altering the surface 

tension will also impact upon other parameters such as the viscosity of the cleaning 

solution. Further work is required considering the dependence of diameter and length 

but the dependencies expressed in the equation are not unreasonable.

7.5.2 Modelling Surfactant Removal
During the transitional period (below the cmc) removal has been shown to occur 

through both rinse water and the surfactant removal mechanisms. Without 

supplementary data on what proportion of the oil is removed through which 

mechanism, modelling this period is not possible only results only determined above 

the cmc have therefore been used to describe the surfactant removal mechanisms.

As before dimensionless groups were identified as affecting removal (7.17), with the 

length of the test piece omitted because with the surfactant there is no progression of 

the oil along the substrate.

k =  /(Y i, Ti, Po, Pi, ui, u0, p0, pi, d, cs,) 7.17

Equation 7.18 was found to best describe removal, with proportional constant = 

7.5xl0‘8, C7 = 0.8 and Cs = 0.045 R squared = 0.89. The model is compared to the 

experimental data in Figure 7-11, as before the black squares represent the 

experimental data and the straight line the model.

—  = /  Re, -0.035
\\C»

c.

('cmc J J

7.18

Unfortunately the above equation (7.18) is only limited to concentrations above the 

cmc and below 5 v/v%. Surprisingly, although the removal mechanisms for water and 

surfactant are quite different, the parameters that effect removal are quite similar. The
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main differences are the replacement of tube length with h (the deposit depth), 

Reynolds number to the power 0.82 as opposed to 0.75 and the additional 

concentration relationship. As found previously (Chapter 6), velocity shows a stronger 

dependence upon removal when a surfactant is applied compared to rinsing (shown by 

the higher power of velocity). Above the cmc, the effect of concentration is small, 

indicated by the power of 0.045 in equation 7.18. An optimum between 0.1 and 1 

v/v% is reported, but the viscosity of the oil has the most significant effect.

6x1 O'
■ data 
 modal

4x10'

=T 3x1 O'

2x10'

0 1000 2000 3000 4000 5000 6000 7000 8000

Re0B2(yi/n lno)(cs/ccmo)exp(-0.035(cs/ccmc))0045

Figure 7-11 Empirical Surfactant Model

With data over the transitional period the models could be combined and used to 

predict removal over the complete range of concentrations. There are unfortunately 

several problems in obtaining this data. These are discussed in the future work section 

of the next Chapter.
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8.1 Conclusions

The removal of oil films from hard surfaces is complex and there has been little 

research in this area. A novel experimental protocol has been developed to produce 

qualitative and quantitative cleaning kinetics of the removal of crude oil films from 

stainless steel piping using aqueous detergent solutions. Results have found roll up to 

be the primary mechanism of removal and a concentration optimum for C9-11E6. 

Theoretical and empirical models have been developed to describe the process.

8.1.1 Experimental Protocol

Two experimental rigs have been designed and constructed:

Fouling Rig- Produces smooth uniform oil films on the inside surface of thin walled 

stainless steel tubing.

Cleaning rig- The fouled tubes can then be cleaned under controlled conditions of 

cleaning agent composition, concentration, temperature and flow rate.

Quantitative analysis is determined gravimetrically: weighing the tubing before and 

after cleaning. Any remaining detergent within the tubing is then accounted for 

through centrifugation and subsequent separation through solidification (Chapter 5). 

The technique is quick and accurate. Qualitative analysis is through direct visualisation 

of the cleaning process through a betamax video recorder. The tubing has a cut away 

cross section and is observed through a test cell. GC analysis enables examination of 

the deposit composition during cleaning.

8.1.2 Cleaning Results

1. Experiments have been performed using a wide range of detergents (alkali, 

nonionic, anionic and commercial formulations). The effect of concentration, 

temperature and flow rate has been determined over a wide range of values.

2. Of the detergents examined, the nonionic surfactant C9-11E6 proved the most 

effective and has therefore formed the bulk of the cleaning studies.

3. Visualisation techniques have proved invaluable in determining the true effect of 

the solutions applied.
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4. When contacted with rinse water, the oil film forms thick strands which follow the 

direction of flow. The applied shear simply rolling the oil along the surface of the 

substrate.

5. When contacted with a surfactant above its cmc, the oil film rolls up and thin 

strands are formed which point in a variety of directions. There is no oil 

progression along the substrate and removal is uniform through droplets into the 

bulk solution.

6. As the surfactant concentration is reduced below the cmc, the cleaning mechanism 

gradually changes to that of rinsing.

7. GC experimentation has shown that when rinsing or cleaning with the nonionic 

surfactant C9-11E6 there is no selective component removal, contrary to the 

findings of several previous authors (Chapter 6). This is probably due to the 

predominance of the roll-up mechanism.

8. Irrespective of the applied solution increasing the temperature or velocity was 

always beneficial to removal (Re=l 8,000 and 80°C).

9. Surprisingly no temperature optimum was reported for C9.11E6 at the cloud 

although evidence suggests the existence of an optimum at the PIT but further 

analysis is required at higher temperatures (>80°C).

10. For the nonionic surfactant, a concentration optimum exists in the region of the 

cmc and above depending on the temperature. At low temperatures operating 

above the optimum was even detrimental to removal.

11. The addition of the nonionic surfactant even below the cmc substantially improved 

removal in comparison to rinsing.

12. In contrast to several studies roll up was observed as the main mechanism of 

removal for the nonionic surfactant. Unexpectedly, solubilisation played no role in 

removal. It is hypothesised that this is related to the structure of the micelles in 

solution.

13. Irrespective of the cleaning agent used, no dramatic improvement in cleaning was 

produced when moving from laminar to transition to turbulent flow regimes.
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14. For both C9-11E6 and water a linear relationship of flow rate to removal efficiency 

was determined. The surfactant was more strongly shear dependent than water. 

This was due to the structure of the film becoming much more open and 

vulnerable to shear upon application of the surfactant.

8.1.3 Mathematical Modelling

1. Irrespective of the detergent used, simple first and second order models can be 

used to describe removal.

2. A theoretical model has been developed describing the flux of surfactant 

monomers to and from the oil film interface. The surface modification of the oil 

has been identified as the rate limiting step with diffusion of the surfactant 

monomer to or from the interface offering little resistance to removal.

3. Applying Arrhenius kinetics and calculating the activation energies for removal 

indicated the existence of two physical processes controlling removal. One was 

limiting at high temperature and the other at low temperatures. The physically 

limiting process at low temperatures was probably due to the reduction of 

interfacial forces which involve the breaking of strong hydrogen bonds within the 

water.

4. Dimensionless relationships have been developed to describe removal by water and 

the nonionic surfactant, C9-11E6. Similar dependencies were found for both 

mechanisms dispite their visual differences.

8.2 Future Work

An experimental apparatus and protocol has been developed for evaluating aqueous 

cleaning performance on removing oily films from stainless steel. The apparatus has 

opened up a wide range of opportunities for future work and the results have raised 

several questions which should be answered.

8.2.1 Comparative testing of detergent composition

The protocol developed could be used to explore the effect of differing cleaning agent 

compositions. Initially, similar surfactants to C9-11E6 could be used varying the chain
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length. Of more interest, could be an investigation of the synergy between individual 

components. Synergy between detergent constituents has received only minimal 

attention in the literature. Results are likely to be interesting, formulations are often 

found to be less effective than a carefully selected single component

8.2.2 Visualisation

Visualisation has proved an invaluable technique, which could be further extended. 

The visual effect of each detergent class, (anionic, cationic, nonionic, amphoteric, 

alkali etc) could be investigated. The still frame analysis provides important 

mechanistic information, although is unfortunately limited to examination below the 

surfactant cloud point.

8.2.3 The contribution of fluid dynamics and the detergent effect to removal.

Geaning test pieces with a variety of lengths would allow separation of the relative 

contributions of the chemical effect and dynamic effect to removal. This would be 

particularly useful in the transitional period (below the cmc). Results produced over a 

range of tube lengths would allow determination of the proportion of oil removed by 

rolling along the surface of the substrate to be compared to the amount removed 

through droplets into the bulk.

Increasing the test piece length would be an effective way to determine the relative 

importance of water and the surfactant mechanisms. Problems in oil film 

reproducibility and this would need to be overcome to make this a more effective 

method.

8.2.4 Fouling

The experimental technique is multi-purpose and will allow the testing of various oils 

(> 0.02 Ns/m @ 30°C). The effect of deposit age, thickness and composition could 

also be determined. Testing of major components within the crude would provide 

useful information on the adhesion properties. Stainless steel has been used 

throughout this study but the test piece surface could be varied in terms of surface 

roughness and /  or material. The technique is however, limited to light substrates, 

covering the majority of metals.
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8.2.5 Novel cleaning approaches

Since the rate of the first phase of cleaning is irrespective of the detergent 

composition, the effect of an initial pre-rinse could also be investigated. This could be 

further extended by pulsing of the detergent concentration, temperature or flow rate. 

This would however, increasingly complicate the removal mechanisms and present 

even greater difficulties in modelling removal.
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Appendix A 

Solution Property Measurement

C9-1 1E6  Density measurement
Density was measured using a 25 ml Gay-Lussac pyknometer taken from BS 733 

[1987]. The bottle's precise capacity was calculated at 30°C using a constant 

temperature water bath (± 0.5°C) and reverse osmosis water. The density of the water 

was assumed to be 996 kg/m3 (Perry [1984]) and the mass of the bottle and solution 

was determined using a Sartorius balance accurate to ±1 mg. It was necessary to leave 

the surfactant solution in the water bath for over one hour to ensure all bubbles were 

removed. Assuming the effects of buoyancy are negligible, the density of pure C9-11E6 

was calculated to be 992 kg/m3 at 20°C. This value is close to that of water (998 

kg/m3) therefore for 0.1 v/v% surfactant solutions and below the densities were 

assumed to follow that of water. Since surfactant molecules may pack differently 

around water molecules this assumption is not valid for higher concentrations. The 

densities of C9-11E6 with temperature at 5 v/v% are reported in Table A.I.

Table A .l  Surfactant and Crude Oil Densities

Temp

(°C)

W ater

(kg/m3)

C9.hE6 (5 v/v%) 

(kg/m3)

Crude Oil

(kg/m3)

30 996 997 917

40 992 994 911

50 988 991 904

60 983 986 898

70 978 982 891

80 972 976 885

C9-11E6 Viscosity Determination
The viscosity of the nonionic surfactant C9-11E6 has been determined in accordance to 

BS 188 [1977]. A glass capillary U-tube viscometer (type BS/U) for direct flow 

measurements was used (Fisons Scientific Equipment, Loughborough). The 

viscometer was submerged in a thermostatic bath and temperature control was to ± 

0.5#C. The time for a reproducible volume of liquid to flow through a glass capillary
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was determined. Since only viscosities up to 5 v/v% surfactant were required the 

detergent solution can be assumed to be Newtonian (Porter, [1994]).

Kinematic viscosity was calculated from the mean of measured flow using the 

following formula, A.l

v = C51 (mm2/s) A1

Where C5 = 0.0007982 mm2/s2 calibrated with the conditions of the National 

Measurement Accreditation Service (NAMAS). Viscosities from 30 to 80°C over a 

concentration range of 0-5 v/v% have been determined the results are displayed in 

Table A.2.

Table A.2 C9.uE 6  Kinematic viscosity variation with concentration from  30-80°C

Temps 30 40 50 60 70 80

Conc, v/v% Kinematic Viscosities (m2/s)

0 0.813 0.663 0.560 0.485 0.422 0.374

0.3 0.813 0.680 0.572 0.487 0.421 0.374

0.5 0.833 0.690 0.583 0.493 0.427 0.382

0.7 0.845 0.702 0.604 0.500 0.437 0.385

1 0.875 0.716 0.623 0.519 0.440 0.394

2 0.916 0.794 0.726 0.561 0.445 0.409

3 0.979 0.901 0.872 0.611 0.470 0.427

5 1.225 1.170 1.352 0.681 0.491 0.489

Whilhelmy Plate Procedure
The Whilhelmy Plate procedure is frequendy used to determine surface tension. A thin 

platinum ring is attached to a tensiometer (White Elect Inst Co Ltd.) and the solution 

to be tested is raised until the ring just touches the surface and is just pulled down into 

the liquid. The liquid is then slowly drawn away from the Pt ring until the ring breaks 

away from the liquid. The surface tension is given by equation A.2.
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Yi cos0=AMw/p A 2

where AMW is the change in weight (force) observed resulting from the formation of 

the liquid meniscus at the contact of the ring (perimeter p) and liquid. The ring must 

be horizontal and is roughened to give zero contact angle, 0, (cosO=l). Equilibrium 

values are obtained after approximately 5 minutes. Surface tension is dynamic as 

opposed to instantaneous in the case of the equilibrium relationship between 

monomers in solution and in micelles because, when using a platinium loop the water 

is raised requiring replenishment of the monomers and micelles by diffusion and 

convection to the surface.

Glassware was rigorously cleaned with micro, rinsed with RO water and subsequently 

dried with filter paper between readings. The Pt loop was also flamed to remove 

contamination. Temperature was controlled to ±1°C externally through a small water 

bath. A thermostatically controlled copper coil maintained the water bath’s 

temperature. To ensure accuracy, the surface tension measurements were checked 

against an internal standard, reverse osmosis water. Readings were found to be 

reproducible and triplicated averages compare well with literature values (Lide, 

[1990]), Table A.3.

Table A.3 Surface Tension o f  Water (y j

Temp Surface Tension

Literature Values Experimental Values

(°C) (mN/m) (mN/m)

20 72.75 71.6

30 71.20 71.0

40 69.60 69.2

50 67.94 68.2

60 66.24 67.4

Micelle Aggregation

1) Free Energy Transfer o f  hydrocarbon chain in to core o f  aggregate.
Estimated from experimental data produced for solubility of hydrocarbons in water as

a function of temperature.
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For CH2 group

A.3
= 5.85 InT + —  -  36.15 -  0.0056 T  

kb T T

For CH3 group

,^ < “ 1
A .4

= 3.38 InT + -  44.13 + 0.02595 T
kb T T

2) Free Energy o f  Deformation
For spherical micelles or globular

 V  _ 9 P t i 2 R,2
fc T  80 NL2

A .5

. .  f a t - i )  ^
3.6

3) Free Energy o f Formation o f micelle hydrophobic / water interface
The free energy is accounted for as the product of the area of the interface and the

macroscopic interfacial tension of the aggregate core-water interface.

A .7
<*gg (a-Oo)Vk T ,

m  a .8T r .„ = Y ,+ Y i -2 .0 x ( y ,Y , )

7 , = 35.0 -  325 M„ '2/3 -  0.098(T -  298) A-9

y , = 72.0 -  0.16(T -  298) A 1°

where % = constant with value of 0.55

Mwt = molecular weight of hydrocarbon tail

Yagg = aggregate core interfacial tension

Yd = interfacial tension between the aliphatic hydrocarbon of same

molecular weight as the hydrocarbon tail and the surrounding water.
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4) Free Energy associated with the increased steric repulsion o f  polar head 
groups.
From van de Waals: (based on steric repulsion)

K  T V a )

A.11

where ao = the effective area of the polar (hydrophilic) head group

This relationship assumes the head groups are compact in nature acting as hard 

particles with a definable core. For polyoxyethylene head groups having a long chain 

head structure this is not valid. To account for this Puwada and Blankschtein [1992] 

use the same relationship successfully but replace ao with ah where ah is a temperature 

dependent parameter estimated from the volume of its hydrophilic head divided by its 

effective length.

a„= aM[ \-H (T -2 9 V j\  A »

H reflecting the decrease in hydration on the head group with temperature. H is 

estimated to be 0.00075K*1. From reference aho= 38A for C ioE 6 (E6 part). For change 

in ah the following can be applied:

a ka j z

where j = number of ethoxylated monomeric units (CiEj)

z = dimensionless constant

(equations for calculating free energy contributions for each step were taken from 

Nagarjan and Ruckenstein [1991])

Required Properties 

Molecular Volume

v ,= v (C //3)+ (n e - l)v (C tf2) ( A 3) AU

v(C//3) = 54.6+0.12(7-298) ( A 3) Als

v(CH2) = 26.9 + 0.0146(7 -  298) ( A 3) AU
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The maximum radius of the spherical micelles will be limited by the extended length of 

the hydrocarbon tail which can be estimated:

Extended Length of Surfactant Tail (le)
lc = 1.50 + 1.265/1, ( A )  A.17

The forces holding amphiphilic molecules together in micelles and bilayers are not due 

to strong covalent or ionic bonds but arise from van der Waals, hydrophobic, 

hydrogen-bonding and electrostatic interactions. Thus if solution conditions such as 

electrolyte concentration, pH effect the intermolecular forces between each aggregate 

and hence the intermolecular forces within each aggregate they will therefore modify 

the shape and size of the aggregates.

Table A.4 Aggregation Numbers from the literature

Surfactant Temp°C Agg. No. Technique References

C12E6 25 400 Light scattering Porter 1994
C12E6 35 1400 Light scattering Porter 1994
C12E6 25 1200 Modelling Puwada, Blankenstein 1992
C12E6 35 10000 Modelling Puwada, Blankenstein 1992
C12E8 25 40 Modelling Puwada, Blankenstein 1992
C12E8 35 45 Modelling Puwada, Blankenstein 1992
CnEs 50 170 Modelling Puwada, Blankenstein 1992
C12E10 25 80 Modelling Nagarajan, Ruckenstein 

1991
C12E8 25 120 Experimental Nagarajan, Ruckenstein 

1991
C12E6 25 120 Modelling Nagarajan, Ruckenstein 

1991
C12E6 25 200 Experimental Nagarajan, Ruckenstein 

1991
C10E6 15 85 Time Resolved 

Fluorescence
Alami et al 1993

C10E6 25 100 Time Resolved 
Fluorescence

Alami et al 1993

C10E6 35 150 Time Resolved 
Fluorescence

Alami et al 1993

CioEs 25 85 Time Resolved 
Fluorescence

Alami et al 1993

CioEs 35 105 Time Resolved 
Fluorescence

Alami et al 1993
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Crude Oil Viscosity Measurement
Since crude oil is not necessarily Newtonian, the viscosity cannot be determined using 

a U-tube viscometer as was done for the nonionic surfactant. A plate - plate Bohlin 

rheometer (Lund, Sweden) was selected with a diameter of 40 mm and a gap of 

0.15 mm. This allowed viscosities to be calculated over a range of shear rates, shown 

in Figure A-l. As the shear rate increases, the viscosity is reduced indicating the crude 

oil is slightly shear thinning. Since the change in viscosity with shear rate is small, the 

crude oil is assumed to be Newtonian. The average changes in viscosity with 

temperature are reported in Chapter 4. Through careful calibration, common 

inaccuracies found with rotational viscometers due to end effects were minimised. 

Accurate temperature control was obtained through a water bath ±0.1°C.
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0.16

^ 0.14
|  0.12 
z
?  °-1 
o  0.08 
8
>  0.06 

0.04 

0.02 

0
0 200 400 600 800 1000 1200 1400

shear stress (1/s)

Figure A .l Viscosity against Shear Rate, 30°C

ASTM D5307 Test Method to Determine Molecular Mass Distribution 

Procedure
Essentially, the crude oil sample is dried, diluted with carbon disulphide and injected 

into a gas chromatographic column. The column temperature is raised at a linear rate 

while the sample is carried through the column by a constant flow of inert carrier gas 

(He). The rate of component movement through the column is mass transfer 

dependent therefore lighter fractions of petroleum will have a greater tendency to pass 

through the column than heavier ones. A flame ionisation detector detects exiting 

components (C-H bonds) from the column reporting 0-1 mV which is then logged by 

a computer and represented on a chromatogram. Boiling points of exiting components

Removal o f Crude Oil Films using Aqueous Detergents 163



Appendices

are determined by comparison to a calibration curve. The calibration curve is 

produced by running a mixture of 16 n-parafins of known boiling points through the 

column under the same chromatographic conditions. Components with boiling points 

above 545°C remain in the column. The amount of residue is determined by the 

injection but with the addition of a known volume of internal standard to the crude. 

From the subsequent increase in area of the chromatogram the residual mass is 

determined.

Apparatus
A standard gas chromatograph is used with a column temperature programmer 

capable of 30 to 350°C ramped at 15°C/min (Figure A .l). The flow controller was 

required to maintain a constant flow of carrier gas of 30 ml/min (±1%) over the full 

operating temperature range. A cryogenic oven was not required since the crude oil is 

light and an exact boiling point distribution of the very light fraction of the crude oil is 

not necessary. The detector and the injector operated continuously at 360°C. The 

column used was a SIMDIS Petrocol C, 20"xl/8" {Supelco, Dorset). 1 J im  samples 

were injected into the head of the column. The response from the detector was logged 

on a local PC and analysed through a spreadsheeting package and a BASIC program.

Sample Injection
^  ̂Waste

FIDC arrie r Gas AmplifierR ow  Meter

Controller(Helium) Oven
Computer

Packed Column

Figure A .l Schematic o f Gas Chromatograph

Materials

The following materials were used at various stages to determine the crude oil boiling 

point distribution:

Purity o f Reagents- All chemicals used were of reagent-grade purity. Particularly air 

must be hydrocarbon free since it is used in the FID to support combustion.
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Anhydrous Calcium Chloride- Used as a drying agent for the oil samples. Water 

injected into the column causes wide scatter due to its high polarity.

Calibration Mixture- A series of 16 n-parrafins that cover a boiling point range 174- 

545°C all of 6.25 wt% (Supelco, Dorset) (Table A.5).

Table A .5 Boiling Points o f Calibration M ixture

n-paraffin BP (°C) n-paraffin BP (°C)

n-Cio 174 n-Cis 316

n-Cn 196 n-C2o 344

n-Ci2 216 n-C24 391

n-Cn 235 n-C2g 431

n-Cn 254 n-C32 466

n-Cis 271 n-C36 496

n-Cie 287 n-C4o 522

n-Cn 302 n-C44 545

Internal Standard- A  mixture of equal proportions of 4 n-paraffins, n-Cn through to

n-Cn (25 wt% split).

Carbon Disulphide- CS2 99% purity. It is miscible with crude oils and has a minimal 

response to the FID but it is extremely hazardous.

Sample Preparation
In addition to the calibration mixture two samples have to be prepared for each crude 

oil. Firstly the crude sample and secondly the crude sample plus an internal standard. 

Initially the crude was dried with anhydrous calcium chloride but this was discovered 

to be unnecessary due to the low water content.

The sample was prepared by placing a few grams of crude oil into a vial and dissolving 

it in carbon disulphide using a ratio of 1:9 respectively. For the crude oil plus internal 

standard sample a more accurate measure of the sample was required. A known 

quantity of crude was placed into a vial (accurate to ±1 mg). A few drops of the 

internal standard were added, and the increased weight was determined (±1 mg). This
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mixture was then diluted with CS2 as before. All preparations undertaken with CS2 

were performed in a fume cupboard due to the hazardous nature of the mixture.

Column Operation

After column conditioning (ASTM D5307 [1992]), the gas chromatograph was 

allowed to reach pre-programmed temperatures. The injection and detection 

temperature were set to 360°C, and the initial oven temperature to 30°C. The carrier 

gas flow was verified and the FID was checked for the presence of a continuous 

signal. The oven was programmed to maintain the initial temperature for 3 minutes, to 

allow all the components with boiling points below 90°C to pass through the column. 

The oven temperature was then increased at a rate of 15°C/min up to a value of 350°C 

whereupon the temperature was maintained for 10 minutes to ensure that as many of 

the components with boiling points above 545°C did not remain in the column.

Baseline Drift
Baseline drift is a common problem with GC's operating at high temperatures and 

wide ranges. Drift can also be caused by the residual crude in the column and 

'bleeding' of the packing material. As long as the drift is reproducible, it does not 

present a problem. Drift can be accounted for by subtracting an area slice profile of a 

blank run from a sample run to obtain the corrected area slices. An example of a 

baseline drift is shown below in Figure A.2.
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Figure A.2 Blank Run, Baseline Drift
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Calibration run
As stated previously a calibration curve is required to correlate retention time against 

boiling point of the component. The calibration mixture is dissolve in carbon 

disulphide 1:9, care must be taken to ensure all the mixture has dissolved, gende 

warming of the vial in the hands is sufficient. A l|il sample is then injected into the GC 

and the same column conditions are applied. A series of well defined peaks results , 

Figure A.3, and a graph of boiling point against retention time can then be plotted, 

Figure A.4.
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Figure A.3 Calibration Sample, 16 hydrocarbons
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Figure A.4 Calibration Curve
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Internal Standard and Crude Samples
The same column operating conditions as used previously are employed for both 

samples, injection was carried out using a 1 (al syringe. The chromatographs of the 

internal standard plus crude oil and the crude oil only sample are depicted in Figure

A.5 and Figure A.6 respectively.

Residual Composition o f  Crude Sample

The calculation procedure is detailed in the standard ASTM D5307 [1992]. Briefly, by 

comparing a chromatogram of a crude oil and a chromatogram of a known mass of 

the same crude oil and a known mass of internal standard it is possible to determine 

the increase in chromatogram area represented by the addition of the internal standard. 

This then allows calculation of the theoretical total area that should be represented on 

the chromatograph and hence the residue remaining in the column.
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Figure A.5 Crude Oil plus Internal Standard Chromatogram
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Figure A.6 Crude Oil Chromatogram, neat

Boiling Point Curve

The boiling point distribution curve for the neat crude oil is depicted in Figure A.7. 

The curve represents the cumulative amount of oil recovered as a percentage of the 

amount of oil injected plotted against retention time. The IBP of the crude is defined 

as the boiling point equivalent of time when the cumulative area at the beginning of 

the chromatogram is 0.5% of the theoretical total area. However since the initial 

detectable boiling point of the column is 90°C which is above the IBP of the sample 

crude this cannot be reported. Instead the weight percent of the sample that has a 

boiling point above 90°C is depicted. An even spread of hydrocarbons nC? to nC42  is 

present in the crude with a residual content (boiling point above 538°C) of 17.5% 

which is typical of the type of crude, (Izadpanah [1996]).
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Boiling Point (°C)
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Figure A .7 Crude Oil Boiling Point Distribution Curve
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Appendix B 

Rig Design

Flowrate Control
Centrifugal pumps were chosen for use in the cleaning rig. They give a steady delivery 

and can easily be made out of alkali resistant materials. The pumps were sized by 

calculating the pressure drop at the maximum flowrate, 101/min. The pressure drop 

was estimated using a form of Bernoulli’s equation assuming incompressible, turbulent 

flow (equation A. 18).

gAz+vAP = - F r A lg

where, g = Acceleration due to gravity

z = Distance in vertical direction

v = Volume per unit mass of fluid

Fr = Energy loss per unit mass

P = Pressure

The energy lost per unit mass, Fr, was calculated from equation A. 19. The equivalent

pipe length of the process stream was estimated by adding to the actual length to

equivalent lengths of all the valves, elbows and T-pieces. The friction factor, <p, was 

estimated assuming a surface roughness, e, for smooth pipes of 1.5x1 O'6 m (Coulson 

and Richardson [1977]). The process stream pressure drop at 10 1/min was calculated 

to be 4 bara.

„  _  4 (tp)I p, u2 AJ9
F' = d 

where, cp = Friction factor

1 = Equivalent length of pipe

pi = Density of fluid

d = Internal diameter of pipe

The net positive suction head (NPSH) was verified to avoid possible cavitation of the

pump. The NPSH is given by the difference between the total head at the suction inlet

and the head corresponding to the vapour pressure of the liquid at the pump inlet It

Removal o f Crude Oil Films using Aqueous Detergents 170



Appendix

is given by the following equation A.20 (Coulson and Richardson, [1977]). The figure 

for the rig was well within the specified margins for the pump.

NPSH = — -  — + H0 - H f AJO
PS Pg

where, P0 = Pressure at pump suction tank

Pv = Vapour pressure of liquid

H 0 = Height of liquid above pump inlet 

H f = Friction head

g = Acceleration due to gravity
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Appendix C 

Estimation of Modelling Parameters

Boundary Layer Thickness
For turbulent flow the boundary layer thickness, b, can be estimated using the 

relationship below (A.21), by assuming boundary region is in laminar flow. The core is 

assumed to be perfectly mixed and all the transfer of mass, momentum etc occurs 

across the laminar region and occurs through molecular processes only. The velocity 

decreases across the boundary linearly to zero at the wall. (Kay and Nedderman,

Viscosity and Density Determination
Since the aqueous surfactant solutions are very dilute, the viscosity and density were 

assumed to be that of water at the operating temperature. From data found in Perry 

and Green [1984] the following correlations, (equations A.22 and A.23) were 

developed to describe the variation of density and viscosity with temperature.

Diffusivity of Liquids
Unlike gases, liquid diffusion coefficients vary significantly with concentration and are 

difficult to estimate. The following empirical correlation (A.24) is recommended for 

dilute solutions of nonelectrolyte, (Trebal, [1980]):

[1988]).

3

b = 25.32 dR e,“4 A.21

pl = 1000 -  0.0896 T -  0.00339 T2 A.22

p, = 1.441 x 10"3 exp(-0.0176 x [ T -  273]) A.23

A .24

where D?, diffusivity of A in very dilute solution in solvent B, m*/s 

molecular weight of solvent, kg/kmol 

temperature, K 

solution viscosity, kg/m s

T
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Appendix

Va = solute molar volume at normal boiling point, m3/kmol

co = association factor for solvent, 2.26 for water as the solvent

Using the correlation the diffusivity of a C10E6 (C22H46O7) monomer in water can be 

simplified to (A.25):

_ o  7.45x10“13T , 21 A  2 5
D ab = ------ ;-------------   r r  (m /s)

“  exp(-0.0176[T -  273])

The solute molar volume (Va) was estimated using group contribution of atomic molar 

volumes (Treybal, [1980]) as shown in equation A.26 below.

v A = 0.0148(22) + 0.0037(46) + 0.0074(7) = 0.548 m 3 /  kmol a .26
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NOMENCLATURE
S.LDimensions

A area of fouled surface m2

A pre-exponential factor (equations 7.7 and 7.8) dimensionless

Ag aggregate surface area (equations 4.5,4.6,4.9 and 4.10) m2

Ares residual layer mass per unit surface area kg m'2

a aggregate area per surfactant molecule (equations 4.5,4.6
4.9, A.7 and Al l )  kg m'2 s'1

ac cleaning region A zero order removal constant kg m'2 s’1

ah revised area of hydrophilic head for ethoxylate group
(equation A. 12) m2

ao area of hydrophilic head group m2

b boundary layer thickness (equation A.21) m

b length of semi-major axis for globular micelles
(equations 4.7 and 4.8) m

Ci proportionality constant (equation 2.1) m2'24 s1'48 kg'1'24

C2 proportionality constant (equation 2.1) m s'1

C3 proportionality constant (equation 3.1) m kg '1

C4 proportionality constant (equation 3.1) m s kg’1

C5 proportionality constant (equation A.l) m2 s’2
C6 dimensionless constant (equations 7.14 and 7.15) dimensionless

C7 dimensionless constant (equation 7.18) dimensionless

Cg dimensionless constant (equation 7.18) dimensionless

c concentration mol dm'3

Cb concentration of monomers in the bulk mol dm'3

Ci concentration of monomers at the interface mol dm'3

Ci0 concentration of monomers in the oil at the interface mol dm'3

cs concentration of applied surfactant
(equations 7.17 and 7.18) v/v%

D diffusivity m2 s'1

d diameter of tubing m

dr diameter of droplet m
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Nomenclature

E eccentricity factor dimensionless

Eact apparent activation energy J mol'1

F total free energy of a system J

Fr Energy loss per unit mass J kg'1

G mass flow rate (equation 3.1) kg s'1

g acceleration due to gravity (equations A18 and A.20) m s'2

g aggregation number dimensionless

H Dimensional constant (equation A. 12) K'1

Ho height of liquid above pump inlet (equation A.20) m

h dirt content (equation 3.1) dimensionless

J flux mol m'2 s'1

j number of ethoxylated groups per molecule (CiEj) dimensionless

K equilibrium constant dimensionless

k removal constant s'1

kA apparent reaction rate (equation 2.2) m s*1

kb Boltzmann’s constant J K'1

L linear dimension of lattice site (equation A.5) m

1 deposit thickness (equations 2.1 and 3.1) m

1 equivalent length of piping (equation A. 19) m

1 tube length m

lc length of hydrophobic chain of molecule (Figure 2.1) m

Is length of surfactant hydrophobic tail (equation A. 17) m

Md mass of fouled deposit (equation 2.2) kg

Mw force (equation A.2) N

molecular weight of hydrocarbon tail (equation A.9) dimensionless

Mwt molecular weight of solvent (equation A.24) dimensionless

m mass of deposit per square area kg m'2

mi mass of deposit per square area in cleaning region A
(equations 6.1, 6.2,7.4 and 7.5) kg m'2

mb mass of deposit per square area in cleaning region B
(equations 6.2 and 7.5) kg m*2

N segments (defined in equation A.6) dimensionless
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Nomenclature

n reaction order dimensionless

nc number of carbon atoms dimensionless

OH- Cleaning Agent Hydroxide ion concentration (equation 2.2) kg m'3

P packing parameter dimensionless

Po Pressure at pump suction (equation A.20) N m '2

Pv Vapour pressure of liquid (equation A.20) N m'2

P perimeter of ring (equation A.2) m

P Pressure (equation A. 18) N m '2

R gas constant (equations 7.7 and 7.8) J K'1 mol'1

R radius (inc. hydrophobic core of the micelle) m

R. arithmetic mean roughness m

Rei Reynolds number (piud/|ii) dimensionless

Re0 Reynolds number of oil (piud/fi0) dimensionless

RP droplet contact radius (equation 2.5) m

Rs radius of hydrophobic core of micelle m

T temperature K

t time s

trev time of cleaning region A s

U velocity m s’1

V kinematic viscosity (equation A.l) 2 „ m s

V volume of hydrophobic tail rv, 3m

w. work of adhesion (equation 2.6) N m '1

Wc work of cohesion (equation 2.7) N m '1

X mole fraction dimensionless

Xi mole fraction of monomers singly dispersed in solution dimensionless

xg mole fraction of monomers contained within a micelle dimensionless

z dimensionless constant 0.3-0.5 (equation A. 13) dimensionless

z distance in the vertical direction (equation A.20) m

Greek symbols

V chemical potential J
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Nomenclature

6 contact angle degree

9 friction factor dimensionless

P g Gibbs free energy J

(A fX g ) tr Gibbs free energy of transfer J

( A P g ) d e f r Gibbs free energy of deformation J

( A | l g ) i n t Gibbs free energy of formation J

( A  P -g ) steric Gibbs free energy of steric repulsion J

v(CH*) volume of hydrocarbon unit m

CD association factor dimensionless

p density „  -3gm

p i density of liquid _____-3gm

p o density of oil gm*3

Xw shear stress at the wall Nm*2

p viscosity N s m*2

P i viscosity of liquid N s m*2

P o viscosity of oil Nsm*2

Y surface or interfacial tension Nm*1

Yi surface tension of the liquid Nm*1

Y d interfacial tension between solid and liquid Nm*1

Y * interfacial tension between solid and gas Nm*1

Ygi interfacial tension between gas and liquid Nm*1

Y d interfacial tension between oil and liquid Nm*1

Yos interfacial tension between oil and solid Nm*1

Yog interfacial tension between oil and gas Nm*1

V volume per unit mass of fluid m3 kg*1

V A solute molar volume at normal boiling point m3 mol*1

vs volume of hydrophilic chain (equation A. 14) m3

Tc critical wall shear stress (equation 2.5) Nm*2

X dimensionless constant (equation A.8) dimensionless

X dimensionless constant (equation A.8) dimensionless
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____________________________________________________________________________________________________________________  Nomenclature

T«gg aggregate core interfacial tension (equations A.7 and A.8) N m'1

0r receding contact angle (equation 2.5) degree

0a advancing contact angle (equation 2.5) degree
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