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Abstract

The introduction of micro-electro-mechanical systems (MEMS) in recent years has 

shown the potential to revolutionise everything from cell biology to car airbags. The 

second largest sales volume among MEMS devices is the accelerometer. These 

accelerometers are typically small, light, inexpensive, and provide measures of tilt, 

motion, vibration and shock of an object to which it is attached. An inertial sensor 

system (INS) is typically comprised of accelerometers and gyroscopes, and measures 

accelerations and orientations. This type of motion analysis system may be a viable 

alternative to mainstream motion capture systems. An investigation was conducted 

into the design and development of an MEMS inertial sensor system with regard to 

gaining an understanding of the potential to measure human movements.

A MEMS inertial sensor system was designed and built which met a number of the 

required specifications. It measured accelerations and angular rates in three 

dimensions with adequate measurement ranges, at a bandwidth of 50 Hz. A rigorous 

procedure for calibrating all of the sensors was developed and the resultant calibration 

parameters were verified through a series of experiments.

The performance and potential of the MEMS inertial sensor system was demonstrated 

through a number of experiments. The response of the accelerometer and gyroscope 

sensors were characterised and the performance of the gyroscope with respect to time 

and temperature was investigated. More importantly, an understanding of the 

potential of the system to measure a number of kinematic parameters that describe 

human movement was demonstrated. The parameters investigated were the points of 

contact and take off, contact frequency, horizontal velocity and distance travelled. 

Although the movements investigated in this study were basic locomotive 

movements, it was suggested that with further work, the system would have the 

potential to measure the technical aspects of athletic events such as the short sprints.
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Chapter 1 Introduction
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1.1 Introduction

This chapter introduces the research study. Firstly, a brief description of the evolution 

of the micro-electro-mechanical systems (MEMS) devices, the various types 

available, and some examples of their uses are presented. The virtues of the MEMS 

accelerometer sensor are characterised, and following this, the motive for carrying out 

the research study is outlined. It is clear that MEMS inertial sensors have the potential 

for capturing human movements and in particular are proposed to be used to analyse 

sprinting technique. The second section reviews the current motion analysis 

techniques that are used to capture human movements. The limitations of these 

techniques are highlighted against the merits of an inertial sensor system. The 

contribution of this research in the form of the main aim of the thesis is defined along 

with the objectives required to achieve this aim. Lastly, a brief description of the 

thesis layout is presented.

1.2 Background

Interest in the development of MEMS devices has increased rapidly since the early 

1990s. In the most general sense, MEMS attempts to exploit and extend the 

fabrication techniques developed for the integrated circuit (IC) industry. This typically 

involves sensors or actuators containing mechanical elements such as beams, gears, 

diaphragms, and/or springs being added to the electrical, optical, fluidic and/or 

chemical elements [1]. The result is an integrated microsystem for the perception and 

control of the physical world. The resulting products can respond to numerous types 

of input such as chemical, light, pressure, vibration and acceleration. These devices 

are smaller, faster, cheaper and consume less power than conventional machines used, 

making their applications virtually unlimited. The first commercialised MEMS device 

appeared in the automotive industry as a sensor to activate the deployment of an 

airbag under crash conditions [2, 3]. These devices are now driving revolutionary 

changes in other industries such as communications, aerospace, defence, electronic, 

medical, consumer and exploited further in the automobile industry. For example, 

every time an ink jet printer is used, an MEMS device containing microscopic 

chambers connected to ink filled chambers pumps the ink to create a high-definition
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print [1, 4]. If you visit someone in hospital, their blood pressure might be monitored 

by a disposable MEMS pressure transducer or their drugs delivered by an MEMS 

based system [5]. Today’s high definition television and compact computer display 

projectors are outfitted with millions of microscopic MEMS mirrors that provide 

higher resolution pictures [6]. Fiber optic MEMS components have been utilised as 

optic switches offering the advantages of being five times smaller and up to 20 times 

faster than traditional optical relay-switches [7]. In the future, MEMS will be used to 

shrink the electronics of a mobile phone to fit inside a wrist watch, to enable 

implantable human monitoring devices and reduce the size and expense of diagnostic 

and therapeutic equipment such as microfluidic devices for blood and DNA analysis.

The second largest sales volume among MEMS devices after pressure sensors is the 

micromachined accelerometer [8]. As with all MEMS devices the accelerometer has 

several attractive attributes which makes them applicable to a vast array of 

applications [9-11]. The sensors require a low voltage supply and offer a low current 

drain, which enables them to be powered by batteries. They are small, light and 

inexpensive and are capable of measuring a wide bandwidth and have a low noise 

floor, which enables small acceleration signals to be resolved. The integrated 

electronics onboard the chip provides a more stable and robust signal output and 

reduces the amount of signal processing circuitry required. An inertial accelerometer 

can potentially measure the tilt, motion, vibration and shock of the object to which it 

is attached [12]. The large volume demand for accelerometers is driven by the 

automotive industry [13]. These sensors are used to activate safety systems such as 

stability systems and electronic suspension, antitheft, occupant detection as well as 

airbags. Their uses have extended to biomedical applications for activity monitoring; 

numerous consumer applications such as active stabilization of picture in camcorders, 

head mounted displays and virtual reality, joysticks, laptops, two dimensional mouse 

[14], sports equipment and personal navigators; in industrial applications such as 

robotics and machine and vibration monitoring [15]; in the shipping industry for 

tracking and monitoring mechanical shock and vibration during transportation and 

handling of equipment or goods [16]; several military applications, including impact 

and void detection, safing and arming in missiles. Further applications include the use 

of high precision accelerometers in self-contained inertial navigation and guidance 

systems [17], seismometry for oil exploration and earthquake prediction, and
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microgravity measurements and platform stabilization in space [18]. These devices 

are also fast becoming viable alternative to mainstream motion analysis systems for 

the use in the field of biomechanics for human movement measurement.

The fascination of the understanding of human movement has given rise to 

speculation and discussion in a variety of biomechanical research activities. Much of 

the work can be categorised although not exclusively into the following research 

interests of orthopaedic, clinical, and sports. The field of orthopaedic includes the 

monitoring of the rehabilitation and recovery of patients after strokes, surgery, injuries 

or accidents [19], the understanding of the mobility abnormalities of patients with 

disorders, the development of prostheses and orthoses for amputee patients [20], and 

the understanding of physical behaviour [20]. Clinical research can involve for 

example, gait analysis [21], the understanding of the sequences of movement that 

constitute trips and falls, activity monitoring [22], the understanding of the mobility 

problems of the elderly [23] and posture and balance [24]. The research interest in 

sports largely involves monitoring muscle activity, research and design of materials 

and equipment, the simulation modelling of particular movements, gaining insight 

into the prevention of injury, and analysis of sports techniques to help improve sports 

performance [25-27].

The analysis of sports technique is where the interests of this thesis lie. It is widely 

understood that sports technique substantially affects performance. Technique can be 

defined as the pattern and sequence of movements that the athletes use to perform a 

sport skill [28]. The purpose of analysing technique is to reveal trends such as 

movement timings and key sequences, to monitor skill progression, to highlight 

physical limitations, to highlight fundamental principles within the sport, and to 

illustrate the critical factors that are associated with optimising performance and 

preventing injury [29]. The majority of the best athletes in the world, no matter what 

their sport, use a technique which appears smooth, coordinated, graceful and is an 

extremely efficient use of their physical abilities. Although a sports coach plays a vital 

role in analysing technique the human eye cannot see enough and the brain cannot 

remember enough information to provide the valuable feedback to strive towards 

improving technique. Therefore, various motion analysis systems that capture human 

movement are being utilised frequently and widely today.
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Inertial sensor systems using MEMS sensors are gaining in reputation of being a 

viable alternative to the more popular, well established motion analysis systems. The 

small size and light weight means they are suitable as body worn sensors, being easily 

attached to athletes and without cumbrance. The sensors offer the potential to be 

portable since they can be battery powered enabling data collection to be carried out 

in a natural training environment. The size and potentially the latency of the MEMS 

sensors are reduced by the on-board conditioning circuitry increasing the possibility 

of real-time feedback. This provides the ability to analyse training during or soon after 

completion. The rich information supplied by the sensors offers the potential to 

provide adequate measurements of the majority of the human movements that 

describe the techniques in sports, for example, sprinting. All of these characteristics 

contribute to an advantageous motion analysis system.

1.3 Review of Current Kinematic Motion Analysis 
Technology

1.3.1 Introduction

The majority of the biomechanical research activities listed above involves 

experimental work that requires motion analysis techniques. There are many 

measuring techniques available today which are highly developed and allow the 

quantification of kinematic, kinetic and other aspects of human movement such as 

pressure distribution, strain measurement and electromyography (EMG). The interest 

of this research is concerned with the kinematic measurements of human movement. 

The main motion analysis techniques for measuring the kinematics of movements are 

reviewed with respect to a number of parameters. These are their accuracy and 

resolution (smallest change detected), responsiveness in terms of sample rate and 

latency, robustness as a measure of the system’s susceptibility to noise and 

interference from outside sources, usability in terms of range of operation, working 

volume and ease and time to set up, and finally the cost of the systems.
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1.3.2 Acoustic Systems

Acoustic systems such as Logitech trackers (VR Depot) and the Gesture and Media 

System (GAM) (Acoustic Position Research (APR)) [30, 31], use the transmission 

and sensing of high frequency ultrasonic sound waves to determine position. These 

systems are based on the principle of time of flight (ToF) of signals travelling at the 

speed of sound through the air to determine the distance between transmitters and 

receivers. The systems are limited by multipath reflections due to hard surfaced 

objects such as walls and floors within or near by the tracking area. The emitters need 

to be omni-directional so that they can be positioned and orientated arbitrarily within 

the tracking area and a line of sight between emitter and receivers is required. They 

suffer noise interference, which can be reduced by resonating at high frequencies, 

offering the possibility of higher resolution. However, this reduces the range due to an 

increase in transducer size and frequency attenuation of sound in air after 40 kHz 

depending on humidity [32]. The performance can be affected by environmental 

factors such as wind, temperature, humidity and air currents causing uncertainty in the 

speed of sound [33]. Therefore the system operates more reliably in a laboratory 

environment. The sampling rate and latency of the systems are limited by multipath 

reflection, tracking volume, frequency and the environment.

1.3.3 Magnetic Systems

Magnetic (or electromagnetic) systems such as MotionStar (Ascension Technology 

Corporation) and Liberty (Polhemus) [34, 35], rely on sensor measurements of the 

local magnetic field vector to track position and orientation. Typically, a fixed source 

unit generates three orthogonal electromagnetic fields by actively inducing excitations 

of three orthogonal coils of wire wound around a common core in sequence. The 

system can either have an active alternating current (AC) or static direct current (DC) 

source [32, 36]. An AC source emits continuously changing magnetic fields 

producing circulating currents (eddy currents) which in turn produces a secondary 

magnetic field that distorts the emitter field pattern. A DC source emits a sequence of 

pulses. The sensor units contain electromagnetic coils and three orthogonal magnetic 

sensors (such as magneto-resistive, magneto-inductive, micro-mechanical and hall-
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effect sensors) for AC or DC systems, respectively, and provide a three dimensional 

vector defining the position and orientation with respect to the excitation. Pulsed DC 

systems are preferred over AC systems because of the reduction in transient 

distortions (since eddy currents are created only when the magnetic field is changing 

i.e. at the beginning when the pulse is sent) but the system must wait for the initial 

transient to subside and the field to reach its steady state. The major disadvantages of 

these systems are ferromagnetic disturbances, limited range and volume, latency and 

slow update rate [32]. The effects of ferromagnetic and conductive material within 

close proximity to the source induce eddy currents that act as unwanted source units 

and cause disturbance to the magnetic field. The most common approach to address 

these distortions is to ensure that the working volume contains no offending objects. 

The system may require frequent recalibration in new testing environments. The range 

of operation (typically 3 m) and volume is severely limited by the strength of the 

magnetic field which diminishes with distance [32, 36]. The latency and low update 

rate are caused by the time required in waiting for the magnetic field to reach its 

steady state after a pulse is sent. Typically, the receivers are sampled at rates 

approaching 240 Hz for 16 sensors with a latency of 3.5 ms [34]. The sensors are 

normally tethered to the host computer which may be cumbersome to the user and 

restrict movements. Despite these problems, there are some noteworthy advantages to 

using a magnetic approach for tracking human movements. Firstly, the size of the 

user-worn component can be quite small. Secondly, the magnetic fields pass right 

through the human body, eliminating line-of-sight requirements. Thirdly, you can use 

a single source unit to simultaneously excite and thus track multiple sensor units. The 

type of motion analysis system using this technique claims to provide accurate and 

reproducible six dimensional tracking of the body in real time to the resolution of 

0.0012° and 0.04 mm and accuracy of 0.15° and 0.76 mm [34]. They are simple to set 

up and operate, they have no moving parts and so are very durable. The systems 

typically cost around £21,000. Ascension technology also offers the Minibird 500 

which is the smallest available magnetic tracker with a size of 10 x 5 x 5 mm [35]. 

However, it has to be wired and the base unit is fairly cumbersome.
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1.3.4 Mechanical Systems

Mechanical systems such as body tracker II (Puppetworks) and X-IST Fullbody 

tracker (nodna) [37, 38], typically involves some form of a direct physical linkage of 

rigid mechanical pieces interconnected with electromechanical transducers such as 

potentiometers or shaft encoders. These are often incorporated into a re-sizable 

exo-skeletal suit and the sensors are adjusted so that they are positioned about the 

joints of interest. The amount of deformation is proportional to the change in angular 

displacement, which is measured during movements and can be sent wirelessly to a 

host computer. The mechanical system offers the advantages of simplicity, are precise 

and responsive to user inputs, no external source is required, no interference from 

external sources such as light or magnetic fields and an increase in capture range is 

achievable (such as cameras or wires). However, they only measure rotations and thus 

absolute positions in three dimensions are required to be derived through appropriate 

software, the equipment must be adjusted regularly and suffers from wear, is heavy 

and cumbersome [32, 36]. Typical resolution of the systems is 0.15° with an update 

rate of 240 Hz [37]. The system can measure up to 18,000°s'1 and a standard system 

costs roughly £24,000 [37].

1.3.5 Optical Image Based Systems

Optical systems can be initially categorised by the type of acquisition. The two types 

of acquisition are manual and automatic. Manual acquisition involves cinefilm 

[39, 40] or video-based [41-43] systems that capture and record images in either 

analogue or digital format. The majority of cameras comprise of a lens system (lens, 

aperture and shutter), a charge couple device (CCD) containing an array of photosides 

to convert the intensity of the light entering the camera into electronic signals and a 

recording medium. Analogue cameras use recording formats such as VHS, S-VHS, 

8mm or Hi-8 and store the information as a magnetic pattern on the tape with a 

horizontal resolution from 240 to 400 lines. Digital cameras (DV or Digital-8) store 

information on tape, DVD or directly into memory via Firewire Port or Ethernet with 

an increased horizontal resolution of over 500. The standard sampling rate for video 

cameras is generally fixed at 50 Hz or 60 Hz, for Europe and US, respectively,
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although high speed cameras can also be used. The movement can be recorded 

without markers [44, 45] or with passive (reflective spheres or tape) markers. Passive 

markers reflect external ambient light. Recording with suitable lighting gives a good 

contrast between the markers and the rest of the objects i.e. the human limb in the 

images. Once the images are recorded, they are digitised (if not already) and the 

coordinates of the marker locations can be identified either manually or by a semi

automatic image analysis software application such as Peak Performance (Vicon 

Peak), Target and WinAnalyse (Mikromak). The marker locations are reconstructed 

within the reference frame of the movement space normally by the direct linear 

transformation (DLT) [46] or scaling. This technique requires the synchronised 

digitised coordinates of body landmarks from images obtained from one camera or at 

least two cameras for two and three-dimensionally analysis, respectively [47]. A 

typical calibration routine involves the collection of static and/or dynamic data of a 

calibration object such as frame, wand or cube with markers at known coordinates. 

Synchronisation of multiple cameras can be achieved by genlocking or by using a 

timing device in the field of view of each camera. More information regarding the 

equipment and procedures can be found in the literature [48, 49] and reviews of 

camera systems can be found in [50-52].

Alternatively, an automatic system may be used. This involves a detection system 

which tracks the location of markers automatically providing three-dimensional 

movement information in real time. The two types of detection systems available are a 

camera based system such as Eagle or Hawk system (Motion Analysis Corporation), 

Mac or ProReflex (Qualisys) [53] and Vicon MX (Vicon Peak) [54-56] or a scanner 

unit system containing a number of sensors such as CODA (Chamwood Dynamics), 

SELSPOT (Innovision Systems Inc) [57] and OptoTrak (Northern Digital). The 

camera based system tracks passive markers and follows the requirements with 

regards to the number of cameras, calibration, synchronisation and lighting conditions 

mentioned above. The availability of specialised camera units allow greater number of 

pixels and higher frame rates in excess of 50Hz due to reductions in data processing 

within the camera and transfer rates via ethemet ports. A scanner unit, such as CODA, 

typically contains a linear array of three sensors in fixed positions that receive the 

signals from active markers. Active markers are infrared light emitting diodes 

(LED’s), which are triggered and pulsed sequentially. Knowledge of when and which



10

LED has emitted a signal is used to triangulate the origin of the signal to determine 

the position of each marker. These systems have been typically limited to movements 

that do not involve a wide range of movement.

Traditionally, 16mm cinefilm was used because it offered a higher image resolution 

than video [58]. Due to developments in technology, digital cameras and computer 

based analysis software, the difference in resolution is somewhat reduced between 

cinefilm and video based systems. Commercially available automatic video based 

systems have an accuracy between 0.1 mm to 0.6 mm [51]. Automatic active marker 

systems offer a similar level of accuracy between 0.1 mm to 0.2 mm from CODA and 

OptoTrak, respectively, typically within a 3m field of view [51]. Automatic motion 

analysis systems offer increased acquisition rates in excess of the traditional 50 Hz but 

invariably depend on the number of markers being tracked. For example, CODA can 

achieve an acquisition rate of 800 Hz with only 6 markers but this decreases to 100 

Hz as the number of markers increases to 56 [59]. The ProReflex system (Qualisys) 

offers the highest acquisition rate at 1000 Hz [60]. Although the automatic systems 

calculate information in real-time the latency can be from 3 ms to 5 ms for the active 

marker systems. Typically, optical motion analysis systems are inhibited by sunlight 

which causes shadowing, reflections and loss of contrast of the markers often 

restricting their use to a laboratory. Video based systems are not restricted by 

requiring markers or by a specified number of markers. Active markers are heavy and 

more expensive than passive markers since they require battery packs to be placed 

somewhere on the subject with wires connected to the markers. The systems that 

stipulate that markers are required are precluded for use in sports competition. All 

optical motion capture systems require a line of sight for maximum accuracy [32, 48, 

50-52]. Passive marker systems also suffer from marker blurring caused by markers 

getting to within to 2mm of each other [51], crossing paths or becoming non visible. 

This may require a large amount of post processing since points have to be manually 

estimated. Automatic acquisition with passive markers may interpolate the blurred or 

occluded markers to alleviate this limitation. Active markers have the advantage that 

they are intrinsically identified by virtue of their position and in a time multiplexed 

sequence but still require a line of sight for maximum accuracy. However, they only 

track markers rather than the image.
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Both types of markers when attached to the skin may experience movement between 

the skin and the underlying bone [61]. Placement of the markers requires a level of 

experience and knowledge of anatomical body landmarks. In all cases the subjects are 

required to wear clothing to allow the points of interest to be visible for capture or for 

positioning markers. Most camera based systems are typically laborious to set up as 

they require multiple cameras to be positioned appropriately, calibrated and 

synchronised. Whereas, scanner systems typically take less time to set up since they 

are factory calibrated, and only one scanner unit is required for three dimensional 

movements. Both systems offer wireless tracking of motion. A single scanner system 

typically has a range between 2 m and 6 m in front of the measurement unit and a 

width and height of 1.5 times. The measurement volume may be extended by adding 

additional measurement units. Camera based systems typically have a bigger range up 

to 70 m. However, the field of view can be reduced by zooming in and thus is likely 

to increase the accuracy of the system. All optical systems find linear and angular 

displacements directly but the process of differentiation to yield acceleration can 

introduce a large amount of noise [57]. All optical systems are expensive in 

comparison with the other available techniques mentioned. For example, the 

ProReflex system (Quailsys) starts at £20,000 for a basic two camera system, Vicon 

offers a range of products from £48,000 to £90,000 depending on the frequency of 

movements and resolution required and Motion analysis corporation systems such as 

the Falcon costs around £18,000 and the Eagle or Hawk from around £70,000. For 

active optical capture systems the Optotrak costs £32,000 to £38,000 for only one 

sensor and 24 markers, respectively, and a basic COD Amotion system starts at around 

£40,000, with the added costs of expensive markers.

1.3.6 Inertial Sensor Systems

Inertial sensors have been used since the 1920s for guidance, navigation and control 

purposes on ships, submarines and aeroplanes. Inertial navigation is the process 

whereby the measurements provided by inertial sensors, accelerometers and 

gyroscopes are used to define the rotational and translational motion of the vehicle or 

object within the inertial reference frame. Although advancing technologies have 

improved the performance and reliability of the sensors over the years, they are still
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bulky and heavy. The driving force to achieve equivalent performance at lower cost 

caused the advent of MEMS inertial sensors [17]. The principle of inertial navigation 

can be applied to measuring human movements. Their small and compact size is light 

and means they are more suitable as a wearable device to a variety of applications 

such as biomechanical analysis.

The MEMS inertial sensors are available in chip form which means the typical size of 

an inertial measurement unit (IMU) can be quite small and light. The sensors are 

completely self-containing so do not require any external sources (other than power), 

and therefore have minimal range restrictions and no line of sight requirements. They 

respond to both frequency and intensity of movements, without being sensitive to 

external interference such as light and ferromagnetic objects. The latency of the 

system potentially depends only on the computational demands of the data processing 

and filtering algorithms required since there is no dependency on a source. The 

system, therefore, displays the potential to provide real-time information at relatively 

high sample rates. The system has the potential to transmit data by wireless means 

from the subject to the host computer. The sensors typically cost less than £5 and £30 

each for the accelerometers and gyroscopes, respectively [62, 63]. The cost advantage 

over the other technologies due to the small size, mass production and low power 

requirements is huge.

However, the inertial sensors have some disadvantages. The outputs of the sensors 

may contain errors and could be caused by noise, inherent drift of the stationary 

output, nonlinearity of the output or temperature effects. Also, the absolute orientation 

is difficult to measure because the accelerometers are sensitive to both gravitational 

acceleration (static) and linear acceleration (dynamic) which are difficult to separate. 

The gyroscopes offer a solution by integration of the measured angular rate output, 

but due to the errors in the output, the resultant orientation is only reliable for short 

periods. These errors are largely due to the instability of the output of the gyroscope 

whilst stationary [56]. Integration is also required to derive positional information 

from the measured accelerations. The integration procedure requires the knowledge of 

initial conditions and to be implemented over a short duration to limit the propagation 

of errors. The movements of interest do not always offer periods of inactivity to 

determine accurate initial conditions.
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Commercially available inertial systems available are Angularis VR-360 (Angularis 

Inertial Technologies) [64], InertiaCube3 (Intersense)[65], MT9 (Xsens) [66], 

MotionPak (BEI Systron Donner) [67] and TriaxlOO (Dynastream and Nike) [68]. 

Commercially available systems such as the InertialCube3 and the MT9 offer an 

accuracy to the nearest degree and a resolution of 0.03 to 0.05°. The sample rates are 

typically 180 Hz and 512 Hz respectively with a latency of less than 6 ms. The 

measurement ranges are ± 900°s_1 to 1200°s_1 and ± 20 g. The InertialCube can be 

wireless and works within a range of 30 m tracking a maximum of 4 sensors. Both 

systems are very small less than 5 cm3, weigh less than 0.035 kg and cost around 

£1,500. They withstand shock up to 500 g when powered. They are powered by 5.5 V 

and typically draw 40 mA of current. Crossbow Technologies has developed the
•j

DMU-6X inertial measurement unit but is quite large at 76 cm and is also expensive.
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1.3.7 Summary

Each of the techniques described have their limitations. These limitations include the 

sensors or markers, the capture range, the environment, expense, the amount of 

equipment required and the time involved in setting it up. The sensors or markers 

required to be attached to the subject are often bulky, heavy and sometimes tethered. 

The non-expert positioning of the sensors or markers, unwanted movement and 

occlusion of the markers or sensors can cause accuracy errors. The capture range is 

limited by the field of view, strength of signals and tethering and limits the type of 

movements that can be analysed. The environmental interferences of light, wind and 

humidity and neighbouring magnetic objects often restrict the use of the systems to a 

dedicated laboratory space. Moreover, measurements of movements made in such 

restricted environments may not reflect the true functional ability of the subject. The 

systems reviewed can cost between £1,500 and up to and beyond £90,000. The 

numerous pieces of equipment required can be cumbersome to transport, time 

consuming to set up and require recalibration in comparison to an inertial sensor 

system. This often means the equipment remains set up in a dedicated laboratory. The 

MEMS inertial sensors offer the potential to avoid the majority of the limitations 

outlined for the other motion analysis techniques and are fast becoming a viable 

alternative. The sensors are small, light, inexpensive, self-contained, require low 

power and offer the potential to be portable. They can potentially measure parameters 

such as tilt, motion, vibration and shock which can be used further to describe human 

movements. However, it is uncertain how much the choice of inexpensive MEMS 

sensors will compromise the performance of the sensors.
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1.4 Contribution of this Research

The focus of this thesis is outlined by the following aim:

To design and develop a three-dimensional motion capture system based only on 

MEMS sensors and to subsequently gain an understanding of the capabilities 

and potential of the system to measure useful kinematic parameters.

To achieve this aim the following objectives are to be met:

To design the system to meet a number of requirements such as providing a 

sufficient dynamic response and update rate, robust within the environment, 

not cumbersome, portable, and low cost.

To develop a procedure for calibrating the individual sensors.

To evaluate the performance of the sensors with regard to resolution, precision 

and drift.

To evaluate the potential of the system to provide reliable and accurate 

kinematic information, based on raw measurement data.

To tailor the design of the system to be used daily in the natural training 

environment for measuring the technical aspects of athletic events, in 

particular the short sprints.
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1.5 Thesis Organisation

This thesis contains seven chapters. Chapter 2 explores the background information 

and surveys the relevant literature surrounding MEMS sensors. Chapter 3 outlines the 

specification for the inertial sensor system and a detailed description of the design of 

the inertial sensor system. Chapters 4 to 6 present the results of the research study. 

Chapter 4 presents the results from the experiments conducted to develop and verify 

the system. This involved the calibration routine, verification of the derived 

calibration parameters and axes arrangement of the sensors, and also the investigation 

into the variation of the gyroscope zero bias drift over time and temperature. 

Chapter 5 presents the results from the experiments conducted to gain an 

understanding of the potential of the system to identify temporal parameters. Chapter 

6 presents the results from the experiments conducted to gain an understanding of the 

potential of the system to provide spatial parameters. Finally, Chapter 7 states the 

conclusions and recommends possible directions for future work.



17

Chapter 2 Review of the Literature
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2.1 Introduction
This chapter reviews the literature to date that have used accelerometers, gyroscopes 

and magnetometers to measure human movements. Other body worn sensors used for 

the measurement of human body movements are inclinometers, pedometers, 

actometers, goniometers and foot switches. These sensors have been found to be 

associated with all or some of the following attributes and thus, have not been 

considered in this research study. These attributes are cumbersome, inaccurate, 

unreliable, slow response, require careful placement and frequent adjustments and not 

very robust. The first section of this chapter describes the types of devices used, the 

number of sensors required and their arrangement, the position of the sensors and the 

possible sensor calibration methods. The next section outlines the possible measurable 

parameters and how these were achieved. The third section outlines the variety of 

applications the sensors have been successfully implemented in. A description of the 

reported performances of the sensors in terms of the likely errors follows next. The 

fifth section collectively presents the processing procedures such as the 

decomposition of the acceleration signal, possible model assumptions and the types of 

orientation representations, reference frames and the rotation sequences available. 

Finally, the filtering algorithms implemented to optimise the sensor outputs and to 

provide the ‘best’ overall system estimates are described.

2.2 Inertial Sensors

2.2.1 Types of Sensor

The vast majority of investigations reviewed have used either piezoresistive 

accelerometers [20, 22, 54, 61, 69-88] or differential capacitance accelerometers 

[24, 89] and specifically those manufactured by Analog Devices [90-105]. Both of 

these types of accelerometer respond to gravitational acceleration as well as to 

acceleration due to movement. The most commonly used gyroscope has been the 

vibratory type [95, 102] and specifically the ‘Gyrostar’ sensor manufactured by 

Murata [54, 56, 74, 86, 87, 90, 92-94, 96, 97, 99, 100, 103-111]. There are several
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types of electronic compasses currently available from fluxgate, magnetoresistive and 

magneto inductive [112]. The investigations reviewed have used either fluxgate 

compass [89, 113, 114] or a magnetoresistive compass [115] and specifically those 

manufactured by Honeywell [92, 95, 103-105]. It is evident that the sensors described 

by Analog Devices, Murata and Honeywell have been extensively used for capturing 

human movements. This highlights the likely suitability of these sensors to potentially 

form the MEMS sensor system for this research study.

2.2.2 Number of Sensors and the Combinations

The first accelerometry investigations for capturing human movements began in the 

1960s and 1970s. The sensors measured vertical and horizontal acceleration 

components as close as possible to the centre of gravity and used a pair of tandem 

sensors to measure the angular accelerations of the shank [116, 117]. Further to these 

studies, the theory behind multiple accelerometer systems to resolve full segmental 

kinematics of single segments was explored and represented a promising method to 

study limb motions and joint forces. The number of sensors used varied from six [21], 

to eight [118], nine [40, 69] and twelve [85, 101, 119]. The accelerations were 

measured from multiple accelerometers positioned appropriately on a rigid body (not 

necessarily at the centre of mass of the rigid body segment) and were required to solve 

the nonlinear acceleration equation reported by a number of authors [21, 69, 70], 

From this equation the angular acceleration and velocity of the rigid body could be 

found directly [69]. Using these parameters it was possible to derive angular position 

and therefore the linear acceleration component can be extracted from the measured 

acceleration [70]. Padgaonkar et al. [69] reported that nine sensors were required to 

determine the angular acceleration and angular velocity vectors, arranged as three tri- 

axial units in three positions per rigid segment. Morris et al. [21] reduced the number 

to six or two tri-axial units since the nonlinear acceleration equations were treated as 

differential equations. On the contrary, Van den Bogert and Read [85] and Baseli 

[101] extended the number of sensors by three in order to avoid the singularities 

introduced by Padgaonkar et al. [69]. It is evident that accelerometers are perhaps a 

crucial element of any potential MEMS sensor system. An appropriate arrangement of 

a set of accelerometer can provide enough information to measure full segmental
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kinematic parameters of human movement. However, the large number of sensors 

required per segment will involve a large number of attachment sites, potentially 

longer set up time, more signals to collect and digitise, plus the algorithms to extract 

the desired parameters are likely to be computationally demanding. Thus, many 

authors have sought solutions to reduce the number of sensors required.

Reductions in the number of sensors have been achieved by various methods. These 

methods include introducing model assumptions such that movements occur only in 

two dimensions [120] or interest in particular parameters causing some of the sensors 

to become redundant [22, 24, 73, 76, 78, 98, 121-123], Other methods of reduction are 

implementing the process of integration [70, 124] or using known parameters [72] and 

operators [125]. Further reductions are to be expected [126, 127], Lotters et al. [126] 

introduced the theory behind the development of a tri-axial accelerometer using a 

single mass in a single housing unit which has been used experimentally [24], and 

more recently the commercial availability of Analog Devices tri-axial accelerometer 

following their press release in January 2005 [127]. The majority of these solutions 

come with limitations. Perhaps the most suitable solution not mentioned would be to 

introduce another type of sensor.

It wasn’t until 1996 that miniature gyroscopes were first introduced for the direct 

measurement of angular velocity [128]. Traditionally, gyroscopes have been used 

extensively in navigation systems in planes and ships, but they are bulky, expensive 

and composed of components that have a short life time. Recently, manufactures have 

utilised the advantages of MEMS to produce miniature gyroscopes that offer similar 

advantages to its compatriots, the accelerometers. Miniature gyroscopes are attractive 

because they reduce the number of accelerometer sensors required since they measure 

angular velocity directly. They are also insensitive to gravitational acceleration and 

therefore can be positioned in an arbitrary orientation with respect to the gravitational 

vector. Tong and Granat [129] showed experimentally that two different positions 

anywhere along the same plane on the same segment of a rigid body gave an almost 

identical signal.

The gyroscope sensors have been documented in investigations as the only sensor 

[56, 106, 107, 109, 129] or in combination with accelerometers [54, 55, 74, 81, 86, 87,
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93, 94, 97, 99, 130, 131]. Baten et al. [86] used one tangentially orientated 

accelerometer and one gyroscope for preliminary investigations into measuring back 

angle inclination. Veltink et al. [87] described a dynamometer which could in 

principle be positioned in different places to measure segment inclination and angular 

velocity from two accelerometers and one single gyroscope. Heyn et al. [130] 

implemented the configuration outlined by Willemsen et al. [120] of one gyroscope 

and four accelerometers per segment and used the formulas also outlined by 

Willemsen et al. [132] to obtain the moments about the knee joint. The same 

configuration and method was used later by Nene et ai. [55] and then by Mayagoitia 

et al. [54]. Williamson and Andrews [93] and Sabatini et al. [97] only used a cluster 

consisting of one two-axis accelerometer and one gyroscope since the angular 

acceleration of each segment was not required to be measured directly. The smartsole 

invented by Kirtley et al. [131] used two gyroscopes and two bi-axial accelerometers.

The principles for measuring orientation and position of a moving body in three 

orthogonal directions using three gyroscopes and three accelerometers has been well 

established in the field of Inertial Navigation Systems (INS) [133-135]. Human body 

tracking is essentially a navigation problem with the aim of determining the 

orientation and position of the body segment of interest. This approach of a three 

accelerometer and three gyroscope arranged into one sensor unit was adopted by a 

number of authors [81, 90, 94, 99, 100, 136, 137]. Firstly, Luinge et al. [90] 

introduced just the theory for estimating orientation for the possibility of measurement 

of human kinematics. Baten et al. [86], Veltink et al. [99] and then Ohgi et al. [94] 

implemented this theory experimentally. Benbasat [100] proposed a multisensor 

design but with no immediate application. Vetlink et al. [137] reported the design of a 

tri-axial inertial sensor system combining a triaxial accelerometer and triaxial angular 

rate sensor into a single device. Presently there is no commercially available inertial 

device of this kind. Inertial sensors have also been combined with Global Navigation 

Satellite Systems (GNSS) (such as GPS, GLONASS) to provide a source of dead 

reckoning when the GPS signal was not available. Typically applications have been in 

avionics, marine, car navigation and more recently for pedestrian navigation [138, 

139]. Terrier et al. [138] used a triaxial accelerometer and Ladetto [139] described an 

accelerometer and magnetometer system.



22

Although it has been shown that gyroscopes on their own can also provide useful 

information, the measurable parameters are limited in comparison to the 

accelerometer sensors. The sensor is best used in combination with accelerometers 

and together they provide a complementary mix of attributes. This combination in 

most cases reduces the number of sensors, only requires one attachment site per 

segment and the complexity of the processing algorithms is likely to be reduced.

The introduction of MEMS magnetic compasses or often named ‘magnetoresistive 

sensors’ in recent years have been documented in systems with only accelerometers 

[89, 115], with only gyroscopes [140], with gyroscopes and fluid inclinometers [113] 

and with gyroscopes and accelerometers [92, 95, 102, 105, 114, 136, 141]. Fontaine et 

al. [89] and Bonnet et al. [115] described a system consisting of three accelerometers 

and three magnetic compasses which did not require the use of external sources and 

integration. Careful weighting of the sensor data from the magnetic compass, with 

respect to the accelerometer data, handled situations with object acceleration and 

magnetic disturbances. Whereas Ladetto and Merminod [140] introduced a system to 

determine heading for localisation of a pedestrian when the GPS signal was not 

available. Since both gyroscopes and magnetic compasses have limitations, the rate of 

change from both of the sensors was compared to estimate the magnetic disturbance. 

In the absence of such disturbance, the continuous measurement of the heading 

provided information to enhance the output of the gyroscope. Foxlin et al. [113] 

described an inertial tracker, which incorporated three low cost solid state gyroscopes, 

two axis inclinometer and a two axis fluxgate compass. This work led to the 

commercial release of the IS-300, now formally known as Inertialcube3, a sourceless 

three degrees of freedom orientation tracker. The device uses gravimetric tilt-sensing 

to prevent any gyroscopic drift in pitch and roll, and geo-magnetic compassing to 

prevent any gyroscopic drift in the yaw angle [114]. Paradiso et al. [92] incorporated 

all three types of sensors alongside an array of other types of sensors for the design 

and implementation of expressive footwear. In 2002, Microstrain unveiled the 3DM- 

G Gyro enhanced orientation sensor composed of the three types of sensors. 

Bachmann et al. [95] reported that the sensor was bulky and the accuracy of the 

associated filtering algorithm was ± 5°. They suggested this was not acceptable for 

full body tracking applications. An alternative design was proposed that consisted of a
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magnetic, angular rate, and gravity (MARG) sensors [95]. The system was composed 

of two dual axis accelerometers, three gyroscopes and one dual axis and one signal 

axis magnetometers arranged in three orthogonal sensing directions. Hutchings et al.

[141] filed a patent using triaxial arrangements of the three types of sensors integrated 

with GPS signals to measure the kinematics of running. Saripalli et al. [105] 

developed a custom built low-cost inertial measurement unit (IMU) and magnetic 

compass named an embedded inertial measurement unit (EiMU) to aid the control of a 

model helicopter. The EiMU was comprised of three gyroscopes, two dual axis 

accelerometers and three uni-axial magnetometers. Luinge [136] initiated the 

commercialization of Xsens [66], a motion technology that offers a wireless sensor 

system of six inertial and three magnetic sensors with advanced signal analysis for the 

applications in sports, rehabilitation and entertainment markets. The addition of a 

magnetoresistive sensor in various combinations with other sensors is beneficial. 

However, the effect of the magnetic disturbance on the performance of the sensor is 

likely to limit its versatility somewhat. Although there are commercially available 

systems that utilise these sensors as part of their systems, the possible applications of 

these systems remain greatly unexplored.

Tri-axial accelerometer sensor units can be assembled from single or dual axis 

accelerometers or constructed using a single mass [126], The theory for the 

construction of a three dimensional accelerometer based on only one mass with three 

translational degrees of freedom was presented by Lotters et al. [126]. Similar to the 

three dimensional accelerometer setup, a three dimensional gyroscope can be 

assembled using three single axis gyroscopes. A sensor unit, consisting of three uni

axial accelerometers and three uni-axial gyroscopes, approximately mounted at one 

point is called an inertial measurement unit (IMU). There have been a few studies 

which have used IMUs consisting of Analog Device accelerometers and Murata 

gyroscopes [100, 136].

2.2.3 The Location of the Sensors

The placement and positions of the sensors on the human body depends on the 

movement of interest and have been documented at the head [82, 83, 101, 113], upper 

body [75, 115, 136], sternum (chest) and thigh [20, 76], sternum, thigh, lower leg and
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wrist [77, 80], wrist [94]. Several authors have used sensors in the lower back 

[24, 72, 73, 78, 82, 86, 115-117, 121, 123, 125, 142, 143], the lower limbs (thigh, 

shank and ankle) [21, 53, 70, 79, 84, 87, 91, 93, 106, 124, 129, 144], and on the foot 

[56, 73, 97, 99, 107, 145]. The lower back has been a frequently used position for 

placing sensors primarily because it approximately represents the centre of mass 

(CoM) of the body and so velocities and positions of the whole body can be derived.

The CoM is defined as the point around which every particle of a body’s mass is 

equally distributed. In motion analysis, the CoM is typically estimated from a model 

based on a series of rigid, articulated body segments, which require estimates of both 

position and magnitude of each body segment. It is necessary to recalculate the 

position of the CoM using this method after each interval of time since the CoM 

continuously changes with time [146]. However, an alternative ad-hoc approach has 

been to choose a surface reference point in the proximity to where the CoM is 

believed to be, and estimate movements of the CoM relative to this point [78]. Any 

point moving parallel to the CoM will produce similar results as the CoM as far as 

position, velocity and acceleration are concerned. The error by choosing a surface 

reference point is therefore restricted to changes in the position of the reference point 

relative to the CoM. For gait analysis, this error can be minimised by selecting a 

convenient point in the lower part of the trunk. During quiet standing the whole body 

CoM has been located in the sacral section of the spinal cord, anterior to the segment 

s2, at 55-57% of body height [146], It has been shown that the vertical acceleration 

component of a sensor mounted on the lower back has been proved to be the most 

important in the assessment of gait [77, 80, 147]. Accelerations measured at the lower 

back (sacrum) have allowed the identification of heel strike of each foot [72]. 

Although, this was contrary to Henty et al. [107] who suggested sensors positioned on 

the heel a more directly indicate foot contact. Overall, it is proposed that positioning 

the MEMS sensor system at a representative point of the CoM introduces several 

advantages. These advantages are minimal points of attachment, little cumbrance to 

the user and perhaps provides the most information from one point of attachment.
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2.2.4 The Calibration Procedure

The purpose of the calibration procedure is to define the calibration parameters for 

each sensor in the system. These parameters are the zero bias or commonly named 

offset, and the scale factor. The zero bias is defined as the output of the sensors in a 

stationary position. In the case of the accelerometers the sensitive axis of the 

accelerometers is also required to be parallel to the earth’s surface therefore 

measuring zero gravitational acceleration. The scale factor is the change in the sensor 

output at a rate of one measurement unit. The accelerometer sensor has been 

calibrated by rotation within the gravitational field [54, 72, 83, 86, 93, 95, 97, 102, 

143] or by pendulum swings [81] using the static response of the sensor. The rotation 

within the gravitational field involved subjecting each sensitive axis to the 

gravitational force so that the sensors experience both ±1 g. The outputs were 

recorded in both positions and were used to determine the zero bias and the scale 

factor of the sensors.

The calibration of gyroscopes is not as well documented. The most commonly used 

method involved rotating the gyroscopes through known angles by hand and 

recording the time period to determine the sensors scale factor [54, 81, 86, 95, 97, 

102], but the sensor has also been used without calibration [93]. The zero bias of the 

gyroscopes have been determined from periods of collected data when the sensors 

were stationary [86, 93, 95, 97, 102]. Tong and Granat [129] suggested using the 

average output over a period of 5 s, whereas Veltink [76] suggested 10 s was adequate 

to determine the zero bias of each gyroscope. Accelerometers have been used to help 

detect when the gyroscope was stationary by monitoring the low variance of the 

equivalent angle change of below 0.1° [93]. Williamson et al. [93] showed that 

finding a null prior to the experiment was more accurate than finding the null 24 hours 

before. The use of low-cost sensors often makes it necessary to perform the sensor 

calibration in-field immediately before use [102, 148]. Ferraris et al. [148] described a 

simultaneous calibration procedure for a sensor module containing three gyroscopes 

and accelerometers that could be executed anywhere. The procedure involved a 

simple dice roll manoeuvre and full rotations, utilising the local gravity component 

and known angles of rotation. The algorithm determined all scale factors and zero bias 

values plus the orientation of the three sensitive axes with respect to the housing. The
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procedure took less than 20 minutes. This method was employed by Luinge [136]. 

Bachmann [102] outlined a similar procedure in his thesis. The method consisted of 

placing the sensor unit in a series of predetermined orientations and subjecting it to 

several rotations about single sensor axes. The accuracy of the calibration parameters 

resulting from the hand performed calibration procedure was verified by a precision 

Hass rotary table.

When the sensor module is placed in the desired position the sensor’s reference frame 

nominally known as ‘body’ may not be aligned with the ‘flat earth’ reference frame 

(an explanation on reference frames follows in a later section) thus it is common to 

collect a period of data prior to an experiment to determine the relevant 

transformation matrix between the two coordinate systems [78, 115]. Alternatively, 

Smidt et al. [149] used an adjusting device for levelling the accelerometer while the 

subject was standing still.

It is evident that a calibration procedure is an essential routine that derives the 

respective calibration parameters. Without this routine the sensor outputs cannot be 

quantified. It is reasonable to assume the most suitable calibration procedure is the 

implementation of an initial accurate but perhaps laborious routine coupled with a 

frequently implemented, simpler, and in-situ calibration process.

2.3 Sensor Measurements

2.3.1 Accelerometer

The theoretical properties of the accelerometer signal were presented by Veltink and 

Boom [128]. Accelerometers measure acceleration which is made up of linear 

acceleration and gravitational acceleration [20, 53, 77, 128, 150, 151]. The linear 

acceleration can be extracted if the orientation of the sensor or module is known 

[132], thus eliminating the gravitational component. Then the single and double 

integration of the linear acceleration yields linear velocity and distance, respectively. 

The inertial component of the acceleration signal can be decomposed into three types 

of acceleration [53]. These are translation and rotational accelerations, and
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accelerations due to non-rigidity (deformation) of the segment such as vibrations and 

muscular contractions. The gravitational component of the measured acceleration has 

been used to calculate inclination or tilt information [54, 128]. This property was true 

only under static conditions. The tilt was defined as the angles of the sensitive axes of 

the sensor with respect to the local vertical vector [53] and can be determined in two 

directions from the following equation 2-1 [78, 102, 152]:

6 = asin X

g

= -asm
g-cos#

2-1

Where, 0 and <|) are the tilt angles

ax and ay are the accelerations in two orthogonal directions parallel to the

earth’s surface or ground.

Alternatively, the arctangent was used in the following equation 2-2 [93]:

6 = atan
a X

a Y

2-2

Williamson and Andrews [93] used this inverse tangent function in preference to the 

inverse sine function since it was less sensitive to noise and has an infinite range of 

inputs. The accelerometer measurements recorded prior to the commencement of the 

trial was averaged over 50 samples (at 100 Hz, t= 0.5 s) and then implemented in the 

equation above. Under dynamic conditions, if the measured acceleration was averaged 

for a sufficiently long period the object or subject’s linear acceleration will eventually 

be zero (if a body was not continuously accelerating in one direction) [102], thus the 

resultant acceleration is equivalent to the gravitation acceleration and tilt can be 

determined following the equations above. The accelerometers cannot measure 

rotations around the vertical axis and therefore do not give a complete description of 

the orientation of the sensor module.
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As described in the previous section, angular acceleration and velocity vectors have 

been determined from the direct measurement of a number of tri-axially arranged 

accelerometers per rigid segment without knowledge of the orientation of the leg 

[21, 40, 69, 70, 118, 119, 128]. More simply, assuming movements are in two 

dimensions, two accelerometers tangentially mounted on a rigid body at two points 

can determine the angular acceleration. This approach uses the property that gravity 

and the reference point are independent of the position along the rigid body, thus the 

difference in tangential acceleration experienced was related directly to the angular 

acceleration [54, 124]. A similar relationship, but with two radial accelerometers, 

measured accelerations at two points on one segment provided the square of the 

angular velocity [124], Double integration of the angular acceleration from either 

method yields the angle of the segment avoiding the almost impossible task of 

separating the acceleration components [124, 128, 153]. It appeared more convenient 

to use the angular velocity for angle estimation, because it saves one integration step 

reducing the computational time and reducing subsequent propagation of error. 

However, the nonlinear square function prevented access to the sign of the estimated 

angles, which makes it unusable for angle estimation [124]. To determine the signs, 

an assumption concerning the sign of one of the angular velocity components must be 

imposed at the t=0 [70], which is always known.

Following on from the theory outlined by a number of authors [54, 120, 128], the 

three-dimensional acceleration signal vector can be expressed in any position on a 

rigid segment from the construction of a minimum of three independent linear 

accelerometer signal vectors at three points on the rigid body. Willemsen et al. [120] 

used this concept but for two dimensional analysis with the assumptions of rigid body 

conditions and a hinge joint to calculate knee joint. De Vries et al. [124] outlined the 

potential to use this concept to determine the shank, thigh and hip segment angles as 

well as the knee joint angles.
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2.3.2 Gyroscopes

The theoretical aspects of the gyroscope signal were outlined by Pappas et al. [145]. 

Gyroscopes measure the angular rate about a fixed axis and yield the angular velocity 

of the attached rigid segment or object directly. The change in orientation can be 

estimated by integration of the angular velocity [154]. This orientation is expressed in 

the reference frame of the sensor module, nominally known as ‘body’ reference 

frame. Moreover, if an absolute orientation instead of a change in orientation is 

required, a reference orientation has to be obtained at least once during a recording. 

The accelerometers estimate of orientation under static conditions can be used as the 

initial conditions required for the gyroscope integration.

The orientation of the rigid body segment or the point of attachment is often estimated 

by combining the outputs from both accelerometers and gyroscope sensors. The 

accelerometers are likely to be subjected to dynamic accelerations for the majority of 

the time, preventing the reliable indication of orientation referred to as the ‘slosh’ 

effect [155]. Therefore, under these conditions the accelerometers only provide a 

long-term indication of orientation. Consequently, the gyroscope estimate of 

orientation is only reliable for a short period of time due to the build up of errors 

associated with the sensor and the integration process, an explanation follows in a 

later section. The combination of both sensors has been performed for mobile robots 

[156, 157] and the assessment of human movements [54, 81, 90, 95, 101]. In most 

applications, orientation is an essential quantity to be estimated. Moe-Nilssen et al. 

[158] reported a significant amount of change of inclination measured by 

accelerometers during walking. Therefore it was important to know the orientation of 

the sensor box with respect to gravity.

2.3.3 Inertial Measurement Unit (IMU)

Although single sensors have been shown to provide a lot of useful information [129], 

multiple sensor units or complete sensors, which sense in three orthogonal directions, 

are required for a three-dimensional representation of the attached rigid segment or 

object [89] and reliable analysis of movement [72, 73, 125]. In theory, a calibrated 

IMU measures three-dimensional angular velocity and acceleration orthogonally with
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respect to the sensor module. Whenever a sensing axis deviates from the horizontal 

plane, the gravity component must be corrected for in order to estimate the linear 

acceleration. The acceleration vector expressed in the ‘body’ reference frame can be 

converted to ‘flat earth’ reference frame using the known instantaneous orientation of 

the body (see later section). Once the gravitational acceleration is eliminated from the 

measured acceleration, the velocity and position of the point of attachment with 

respect to the ground can be derived by single and double integration, respectively, 

with known initial conditions [21, 40, 69, 70, 113, 119, 149].

2.3.4 Magnetic Compass

Magnetic compasses detect the earth’s magnetic field. The components of this field 

that are parallel to the earth’s surface are used to determine the compass heading or 

azimuth. The magnetoresistive sensor is therefore required to be horizontal or level 

with respect to the earth’s surface which is not often the case when attached to a rigid 

segment or object. Therefore reliable heading information (direction of movement) 

requires sensing in three orthogonal sensing axes and the tilt of the sensor to be 

known. The combination of accelerometers and magnetoresistive sensors under static 

conditions provides complete indication of the sensors module orientation. A more 

detailed explanation can be found in Caruso et al. [159].

2.3.5 Section Summary

In theory, all three types of sensor: accelerometers, gyroscopes and magnetometers 

provide valuable information about human movements. The accelerometers can be 

used to determine the direction of the local vertical vector, the orientation of the rigid 

segment, joint angles, and the linear velocity and position of the rigid segment. The 

gyroscope can be used to determine the absolute orientation of the segment or point of 

attachment provided initial conditions are known. The magnetometers can determine 

the heading or azimuth of the segment or point of attachment provided they are 

compensated for the tilt o f the sensor module. It is reasonable to assume that 

potentially the best solution for measuring human movements during walking and



31

running and in particular analysing sprinting technique, is to use a combination of 

three accelerometers, three gyroscopes and three magnetometers.

2.4 Applications of the Sensors
A number of studies have been performed and documented which highlight the 

potential of MEMS sensors to capture the parameters that describe a variety of human 

movements. The validity of the MEMS sensor measurements can be compared to 

other motion capture system such as an optical system [54, 94, 115]. Further, the 

ability to identify events can be compared to foot switches (foot sensitive resistors 

(FSRs)) [53, 93, 97, 107, 129, 130, 145].

2.4.1 Physical Activity

Accelerometry can be used to provide an indirect method of assessing physical 

activity to enable the study of the effect of certain treatments. The gravitational 

acceleration is used to estimate metabolic energy expenditure during activity [22, 160] 

since the integral per unit time of this signal has been shown to have high correlation 

to energy expenditure. Accelerometers can also measure the functional use of body 

segments, the intensity of physical activity levels and/or the identification of tasks, 

during various actions. Examples of the measurable actions are sitting, lying and 

standing [150, 151], and activities associated with mobility such as walking, cycling 

and ascending and descending stairs [20, 76, 77, 80] and other daily functional 

activities [20, 161]. It is also possible to obtain results outside of a laboratory 

environment [80] or in a simulated semi-natural setting [20]. Such research has lead to 

commercially available systems such as the Caltrac and TriTrac-R3D (Professional 

Products Division of Reining International, Ltd), CSA (Computer Simulations and 

Applications Inc.), RT3 (Stayhealthy) [162], Dynaport [163] and BioTrainer-Pro 

(IM systems) [164].
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2.4.2 Kinematics and Kinetic Parameters

The sensors can be used to measure the kinematics and kinetics of human movement. 

Kinematics is the study of motion without regard of the causes of motion. The 

complete kinematics of body segment requires the following parameters, all of which 

change with time. These are the position, velocity and acceleration of the segment 

centre of mass and the angle, angular velocity and angular acceleration of the segment 

in two or three planes [146]. All or some of these parameters can be derived 

experimentally [21, 54, 70, 81, 86, 87, 93, 98, 120, 124, 129, 130, 132, 136, 141]. 

Hayes et al. [70] outlined the theory to derive the angular position, velocity and 

acceleration of the lower leg and the acceleration of the mass centre at each time step 

during walking. Hutchings et al. [141] filed a patent for a system and method for 

measuring movements of objects. This system provides the following parameters such 

as speed, distance and height traversed by a person or object. The intended application 

is to measure movements of a person while walking and running although no 

commercial device has been released. Mayagoitia et al. [54] demonstrated the ability 

of inertial sensors to provide an array of kinematic parameters such as angular 

velocity and acceleration and knee linear acceleration as well as segment angles. The 

sensors used demonstrated the potential to estimate various kinematic parameters to 

within 7% at five different walking speeds compared to an optical motion analysis 

system. Out of the multiple accelerometry systems proposed [21, 40, 69], only Morris 

et al. [21] reported an experimental study that derived the kinematic parameters of the 

mid-shank origin during walking.

Segmental angles can be found by expressing the acceleration signal at a joint in two- 

dimensions [120, 132], integrating the angular acceleration [129, 130] or angular 

velocity [81, 87, 93], or using existing relations between acceleration and 

gravitational acceleration [87, 98] and anatomical constraints [136]. De Vries et al. 

[124] compared all of these methods for estimating leg segment angles and concluded 

that neither method was suitable on their own. Willemsen et al. [120] proposed the 

concept of directly describing the two-dimensional kinematics of the lower leg 

enabling the calculation of segment and joint angles. This method avoids using 

integration by utilising the property of expressing the accelerometer signals at the 

joints in the fixed body coordinate system. However, absolute segment angles can
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only be determined if a reference body with known orientation is present. Willemsen 

et al. [132] extended this concept to calculate hip, knee and ankle angles with 

additional sensors. Once absolute segment angles are known it is possible to 

determine linear acceleration components at a particular point. Heyn et al. [130] 

presented the absolute angles of the shank and thigh obtained through an integration 

process. Vetlink et al. [87] outlined a hand held dynamometer comprised of inertial 

sensors and compared two methods of assessing shank angle during movements in a 

seated position. Baten et al. [81] presented a pilot study, which examined the accuracy 

and reproducibility of a practical implementation of an estimation method based on 

inertial sensors to derive three-dimensional body segment orientation. Tong and 

Granat [129] derived segment inclinations and knee angles from segment angular 

velocities registered at the thigh and shank from single uni-axial gyroscopes. Lee and 

Ha [98] developed a motion capture system based on a single sensor type, 

accelerometers. This study introduces the possibility of using more sensor modules to 

determine joint movements when the movement of interest is likely to have increase 

in degrees of freedom. Williamson and Andrews [93] derived knee joint angle and 

angular velocity of the thigh in real time during the actions of standing up and sitting 

down. The tilt of the thigh and shank segments can be calculated by combining the 

signals from accelerometers and gyroscopes and thus, the difference in the tilts yields 

the knee angle. The experiment is suitable to be conducted on able-bodied and a 

paraplegic person assisted by functional electrical stimulation (FES). Luinge [136] 

described a method for measuring the orientation of the forearm with respect to the 

upper arm utilising the third approach outlined by De Vries et al. [124].

Kinetics is the study of forces and moments that cause motion of a body or object. 

The resultant force and moments at particular joints during contact with the ground 

can be determined using inverse dynamic techniques and ground reaction forces [75]. 

However, resultant force and moments during the swing phase of locomotion when no 

external forces (other than gravity) are acting on the leg, can be deduced from inertial 

sensor derived parameters and applying the principles of linear and angular 

momentum [55, 70, 86, 119, 130, 136]. These parameters are orientation, angular 

velocity and acceleration of the segment. Kane et al. [119] determined and analysed 

the forces exerted on a tennis racket and the moments during impact and swing. Hayes 

et al. [70] proposed a theory for studying limb motions and joint kinetics, but no
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actual application was developed. Van den Bogert et al. [75] estimated torque at the 

hip joint during walking and running using ground reaction forces. Heyn et al. [130] 

calculated the moment of the knee during the swing phase of gait. Nene et al. [55] 

developed the method presented by Heyn et al. [130] to investigate the relationship 

between muscular knee torque produced predominately by the rectus femoris (RF) at 

various walking speeds. Baten et al. [86] outlined a method for estimating load on the 

back in daily and work life and Lunige [136] carried out a study which estimated the 

load on the back while lifting empty beer crates. Accelerometers can also determine 

the levels of shock experienced at the tibia during impact [61, 88]. Investigations in 

this area provide valuable information for the development of adequate footwear and 

floor surfaces to help prevent injuries. LaFortune [61] found acceleration levels to be 

2.7 g to 3.7 g and 10.6 g during walking at 1.5 ms*1 and running at 3.5 ms*1 and 4.7 

ms'1, respectively. Sterzing and Henning [88] found a lower peak level of 8.7 g during 

running at similar speeds between 3 ms*1 to 5 ms'1.

2.4.3 Gait Analysis

Inertial sensors can be used to detect temporal and spatial parameters that describe 

human gait. In general, such parameters are identified by invariant signal features (i.e. 

sharp peaks) [56, 107] and events identified by rule based detection algorithms [56, 

73, 79, 97]. The phases of a gait cycle are most commonly defined using four events. 

These are heel strike, foot flat, heel off and toe off [107, 129] or alternatively stance, 

toe-off, swing and heel strike [56, 79, 97, 144, 145]. Williamson and Andrews [93] 

extended the phases into five events defined as loading response, midstance, terminal 

stance, pre-swing and swing [97]. However, Dai et al. [165] and Willemsen [144] 

provided information of the transition between stance and swing phases. This 

information is considered the essential information of the gait cycle and can be used 

in artificial sensory feedback in the control of FES systems. The two most important 

investigated events are heel strike and toe-off [56, 97, 109]. The primary motivation 

for these investigations is to replace the use of FSRs. The problems associated with 

FSRs are, they prevent clear event prediction in some cases (for example, unloading 

of the foot can be seen as heel-off), typically have a short sensor life, require footwear 

to be worn, and have limited applications. Pappas et al. [56] identified heel strike by
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using FSRs and toe off was identified by the change in sign of the measured angular 

velocity signal from the gyroscope sensor after heel off. A 100% detection rate was 

presented. Aminian et al. [109] used a similar sensor and found that toe-off was 

detected without any temporal change compared to the FSRs, this was verified in 

[129], but heel strike was affected by a small systematic delay of on average 10 ms. In 

contrast, Sabatini et al. [97] also used a similar sensor and found a delay for toe-off 

detection of on average 35 ms, whilst heel strike showed no delay.

The parameters such as step time, step length, duration of swing, cycle time, stride 

symmetry, inclination and speed during normal gait are also identifiable [72, 73, 79, 

106, 109, 121, 125, 129, 143, 153]. Aminian et al. [73] used the acceleration pattern 

from three orthogonal directions at the trunk within each cycle time to estimate speed 

and inclination of walking using a Neural Network. Further, Aminian et al. [79] used 

the events of hee 1-strike and toe-off to derive the temporal parameters such as 

duration of swing and total or double stances of the gait cycle. Sekine et al. [121] 

demonstrated the ability to distinguish between walking on level ground and walking 

on a stairway. The low-frequency components of the accelerometer signal can identify 

posture changes, which in turn can distinguish between the two events. Tong and 

Grant [129] demonstrated that a single gyroscope could provide information on 

segment inclination, cadence, number of steps and estimation of stride length and 

walking speed. Aminian et al. [109] used the events of heel strike and toe-off to 

estimate stride length and stride velocity using a double segment gait model. Miyazaki 

[106] developed a simplified gait model and integrated the gyroscope measurements 

through an analogue integrator to give absolute thigh angle and thus estimated stride 

length, cycle time and also velocity during walking. The sensors can estimate the 

sagittal plane thigh velocity to within a ± 15% accuracy. Moe-Nilssen et al. [143] 

suggested a protocol for estimating the parameters such as cadence, step length, gait 

regularity and symmetry at various self administered walking speeds. DeVries et al. 

[153] consolidated that absolute angles were essential for the estimation of step length 

and would require a set of more than one accelerometer per segment.
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2.4.4 Posture and Balance

Accelerometry can be used to assess balance and postural sway by measuring the 

position of the body relative to the surroundings and the ability of the body to 

generate forces to control movement. In particular, posture can be investigated for 

stability during standing [24], simulated stationary and rotational head movements 

[83], walking [78, 82, 115, 122, 142, 143] and in areas of occupational work [86]. 

Mayagoitia et al. [24] assessed the ability of male subjects to maintain balance while 

standing. Hansson et al. [83] reported a relatively small error even under dynamic 

accelerations of head inclinations and concluded that an accelerometer-based system 

was suitable for the objective assessment of posture during whole day recording in a 

work environment. Moe-Nilssen [158] investigated the assessment of the body’s 

centre of mass to infer posture and balance during walking, eliminating the 

gravitational acceleration from the measured acceleration [78]. Menz et al. [82] 

studied acceleration patterns while subjects walked on level and an irregular surface, 

to develop an understanding of how a postural control system responded to 

challenging walking conditions. They implemented the harmonic ratio principle, 

which was initially described by Gage [116] and later modified by Smidt et al. [117], 

to highlight irregular acceleration patterns and provide a measure of stability. The 

maintenance of head stability is important for posture stability and can be largely 

facilitated by changing stepping patterns. Bonnet et al. [115] described an 

accelerometer and magneto-resistive device that estimated the trunk orientation in real 

time, which was sensitive in the anterior posterior and mediolateral sway directions. 

The assessment and quantification of balance function is possible with these sensors. 

Mayagoitia et al. [122] used an accelerometer system and developed a set of task tests 

to distinguish between stable and unstable subjects during standing. Waarsing et al.

[142] introduced a performance parameter related to the power spectrum derived from 

the frequency of the irregular part of the acceleration signal. The measurement of this 

parameter in three orthogonal directions can provide an indication of stability.

2.4.5 Other Applications

There are various other applications of the sensors accelerometers, gyroscopes and 

magnetometers such as body segment tracking, virtual reality, robotics, underwater
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vehicles, and others which have been less explored than the former mentioned ones. 

The sensors can be used to measure the forearm movements for gesture recognition 

[74, 100] and for analysing swimming technique [94]. Sakaguchi et al. [74] outlined a 

human arm tracking system for identifying gestures and segment positions for natural 

sign-languages. Other experiments involving the arm were carried out by Ohgi et al. 

[94] to discriminate the phases of freestyle and breaststroke swimming strokes. It is 

thought that inertial sensor-based motion analysers could enhance the training and 

coaching of swimmers. Full body motion capture systems are designed mainly for 

virtual reality applications [89, 95, 114]. Fontaine et al. [89] described a sourceless 

motion capture system which could be used for character animation. Foxlin et al. 

[114] described two commercially available motion capture systems, IS-300 and IS- 

600, for head mounted displays. Bachmann et al. [95] outlined a full body tracking 

system using 15 MARG sensors to track 15 limb segments [166]. The sensors have 

also been used in robots and vehicle navigation [156, 157]. Vaganay et al. [157] used 

the sensors to estimate attitude of the robot and Barshan and Durrant-Whyte [156] 

outlined a low cost inertial navigation system (INS) for mobile robots. Bachmann et 

al. [167] described a sensor based system for the autonomous underwater vehicle 

navigation. Other applications include expressive footwear [92], outdoor walking 

speed [168] and combined with GPS systems to aid navigation [138, 139], Paradiso et 

al. [169] designed an expressive footwear system for dancers. One gyroscope can be 

used to directly measure the angular rate about the vertical, giving a clear response to 

spins and twist. A two axis accelerometer can measure tilt of the shoe with respect to 

gravity vector and respond to the moderate accelerations of foot swings. Impact 

shocks and kicks, at higher g levels can be measured in three axes by a triple 

piezoelectric accelerometer. Perrin [168] used a combination of accelerometry and 

altimetry to accurately measure outdoor walking speed. Bonnet et al. [115] and 

Ladetto et al. [140] combined the sensors with a GNSS positioning system (such as 

GPS, Galileo GLONASS). This approach reduces the problems associated with GPS 

signals such as latency, obstruction of the signal and degradation requiring a DGPS.
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2.4.6 Section Summary

MEMS sensors can be used in numerous and diverse applications. However, it is 

apparent that their use in a sporting context remains largely unexplored. To the 

knowledge of the author, there have been no documented applications which have 

used MEMS inertial sensors as part of a motion analysis system to analyse the 

kinematic parameters that describe sprinting technique. The investigation conducted 

by Mayagoitia et al. [54] is perhaps the one of the more significant papers in relation 

to this research study. The investigation demonstrated the potential and accuracy of 

the sensors to determine several kinematic parameters such as linear acceleration of 

the knee. The sensor measurements were compared to an optical motion analysis 

system and reported an RMS error which was less than 7% at five different walking 

speeds. However, this theory is yet to be applied in a sporting context. Further, this 

concept could be translated to fixing the sensors to other body locations such as the 

body’s CoM. The sensors also demonstrated their potential to detect the events of 

contact and non-contact [56, 97, 109]. This attribute is of great interest for the analysis 

of any locomotive movements. The time period between the points of contact can be 

used to determine stride frequency. Consequently, if the average velocity during the 

stride is known, then stride length can be calculated. It is clear from previous studies 

in other application areas that the sensors have the potential to measure a number of 

the required parameters to describe sprinting technique.

2.5 Sensor Errors
The main attributes that specify the performance of the inertial sensors are zero bias, 

scale factor, measurement range, temperature, environmental disturbances, non- 

linearity, noise and the attachment site and mounting. Each of these attributes could 

contain errors which influence the output of the sensors.

2.5.1 Zero Bias and Scale Factor

The zero bias and scale factor are determined through a calibration procedure (see 

section 2.2.4) prior to any experiments. These values are then used to convert the raw 

sensor outputs into their respective units. Therefore the stability of these parameters is
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probably the most influential factor of the overall sensor performance since it affects 

the accuracy of the outputs. The zero bias (or offset) for the accelerometers and 

gyroscopes is the output of the sensors in a stationary position. For the 

accelerometers, this also means that the accelerometer’s sensitive axis must be 

parallel with the earth’s surface to experience zero gravitational acceleration. This is 

not the case for the magnetoresistive sensor as the zero bias is determined through a 

calibration procedure of rotations whilst on a level plane. The scale factor (or 

sensitivity) is the change in voltage at a rate of one measurement unit. The 

measurement units for the sensors are Vg'1, m Vdeg'V1, mVV^g'1 for the 

accelerometer, gyroscope and magnetoresistive sensor, respectively. The unit g in the 

scale factor units for the magnetoresistive sensor represents Gauss, which is the 

measure of magnetic flux density. The earth’s magnetic field intensity is about 0.5 to 

0.6 gauss.

There is little quantified evidence in the literature about the stability of the zero bias 

and scale factor and thus the accuracy of the outputs. From the available literature, the 

bias stability of inexpensive, miniature gyroscopes is documented as being most 

concerning. This is largely due to the use of piezoelectric transducers which is the 

most frequently documented sensing element in the vibratory MEMS gyroscopes in 

the literature. The piezoelectric material is more susceptible to noise and temperature 

changes than the capacitive technique used in the accelerometers [170]. The zero bias 

is normally found prior to the commencement of each trial within an experiment. 

Using an average bias value, instead of calibrating the sensor for every trial, can 

deteriorate the accuracy of subsequent estimated parameters [86]. Typical bias 

stability of high quality gyroscope sensors such as ring laser gyro (RLG) and fibre 

optic gyro (FOG) is reported by several authors [17, 113, 114] to be on average 

0.00 U hr'1 and in the range of 0.1 °hr'1 to U hr'1, respectively. However, the bias 

stability of commercially available sensors of these types are typically 0.0035°hr'1 

[171] and 7.67°hr'1 [172], respectively. Foxlin et al. [113] reported that the stability of 

inexpensive MEMS gyroscopes can be as much as O.Us'1 to U s'1. This amount of 

drift can cause an angle error of 60° to 600° in only 10 minutes. Lunige [136] and 

Baerveldt and Klang [111] reported variations in the gyroscope output during 

stationary data collection to be 0.57°s'1 and 0.42°s'1, respectively. Barshan and
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Durrant-Whyte [156] recorded a standard deviation of the output fluctuations over a 

12 hour period of 0.16°s'1 and 0.24os_1 for two types of gyroscope. It is therefore, 

reasonable to assume that the performance of the selected gyroscope sensor will 

require extensive investigation.

There is little reported information on the performance of the accelerometer sensors. 

Luinge [136] found a fluctuation of 0.1 ms’ whilst the sensors were stationary. It was 

suggested that a zero bias error of 1 ms'2 (0.1 g) in a horizontal direction will cause an 

inclination error of nearly 6°.

2.5.2 Measurement Range

Choosing the correct sensor for adequate measurement range can prevent signal 

clipping, which will cause the collection of incorrect data values and saturation of the 

sensors [56] resulting potentially in permanent mechanical change. Different positions 

of the sensors on the human body exhibit different measurement ranges [97, 109, 

173]. Sabatini et al. [97] found foot acceleration peaks during walking to be less than 

5 g and peak angular velocities of 650°s'1 and 300°s'1 recorded at heel strike and mid 

swing, respectively. However, the measurement range of the gyroscope used was ± 

300°s'1. Aminian et al. [109] and Wu and Ladin [173] found peak angular velocities to 

be 400°s'1 at mid swing for the shank. It is assumed that much lower rotational rates 

are likely to be experienced at the CoM. Pappas et al. [56] experienced saturation in 

the output of the gyroscope positioned on the heel because of large rotational 

velocities of the foot at high speeds of 13 kmh'1. It is evident that the sensors should 

be chosen well within the maximum likely recorded measurement.

It is known that the accelerometer output under stationary conditions can determine 

the local vertical vector, and therefore the tilt of an object, in two directions. Since the 

local vertical vector points down towards the earth, tilt and also rotations about this 

axis (known as azimuth) are not measurable by the accelerometers [90, 136, 174, 

175]. This is seen as a fundamental limitation of the accelerometer device [83]. 

Ladetto et al. [174], Lunige [136] and Rehbinder and Hu [175] stated the main source 

of error in positions derived from inertial sensors was associated with the azimuth
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determination. Luinge et al. [90] used only the integrated gyroscope signal to 

determine angular position about the azimuth and found the estimation became 

increasingly inaccurate over time.

For applications in which heading is important, additional sensors such as 

magnetometers or assumptions of the measured movement could be implemented 

[136, 174]. Ladetto et al. [174] introduced the combination of gyroscopes and a 

magnetic compass to provide complementary measures of the rotations about the 

azimuth axis. Lunige [136] conducted an experiment for measuring the orientation of 

the arm. The heading error between the forearm and the upper arm were minimised 

using knowledge that abduction and adduction of the elbow joint were constrained.

2.5.3 Temperature

Temperature variations of the surrounding environment [56, 93, 136, 156] and of the 

sensors themselves due to the mechanical nature [111, 156] can effect sensor 

performance [156] and in particular the stability of the zero bias. Again, the majority 

of the evidence surrounds the performance of the gyroscope zero bias stability, but in 

this case, with respect to temperature fluctuations. Pappas et al. [56] carried out 45° 

rotations at varying temperatures to show the effect of temperature on the gyroscope 

zero bias. A change in temperature between 18.7°C and 20.4°C can cause an angle 

error of about 10° and at higher temperatures of 50°C the angle errors can increase up 

to 70°. Pappas et al. [56] also reported that the other calibration parameter, scale 

factor of the gyroscope varied within a range of ± 5%. It is thought that this result is a 

less important error than the bias stability. The ideal start-up output values of the 

gyroscope zero bias can be lower than expected and subsequently can vary within 

each trial of the experiment [156]. Further, after start-up, the output can increase with 

time in an exponential fashion. The time-variation of the zero bias can be attributed to 

thermal effects based on observations that the sensor units gradually heat up during 

operation. Barshan and Durrant-Whyte [156] reported an increase of 30 mV, 

equivalent to 1.35°s‘l, in 10 minutes after switching on and thereafter a 10 mV change 

for the next 24 hours. An error model using the Levenberg-Marquardt iterative least 

squares fit method can compensate for the instability found in the zero biases [156].
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Baerveldt and Klang [111] also attributed the rather high drift rate of 0.4P s '1 to the 

gyroscope heating up to reach a stable temperature after start up. Lunige [136] 

exposed gyroscopes to a change in temperature from 30°C to 20°C and the recorded 

zero bias varied at a rate of 2°s‘1oC‘1. The investigations collectively highlight the 

desire to develop a temperature compensating circuitry, or to actively regulate the 

temperature of the gyroscope to a constant ambiance [56]. Otherwise considerable 

errors in any derived parameters such as orientation are likely to occur [136]. Again, it 

is reasonable to assume that the performance of any chosen gyroscope sensor requires 

investigation. In this instance, the performance with respect to the ambient 

temperature and also the internally produced temperature are of interest.

Two investigations have reported the performance of the accelerometer with respect 

to change in temperature [93, 136]. Williamson and Andrews [93] experienced a 

6 mV (equivalent to an angle of 4°) variation in an accelerometer zero bias for a 

temperature variation between 20° and 21°. Lunige [136] exposed accelerometers to a 

change in temperature from 30°C to 20°C and the recorded variation in the zero bias 

was on average 0.2 ms'2, which corresponds to an angle error of 1.1°. Barshan and 

Durrant-Whyte [156] investigated the stability of the zero bias for a piezoresistive 

type accelerometer. Although the variation was not quantified, from the displayed 

results the variation was about 0.032 ms'2 (equivalent to 0.00326 g). The performance 

of the accelerometer with respect to temperature requires less attention since the 

magnitude of the likely errors are much less than the gyroscope sensor.

2.5.4 Environmental Disturbances

The only performance related disturbance due to environmental interferences 

mentioned in the literature, other than temperature effects, is ferromagnetic 

interference. This only affects the magnetoresistive sensor. When a magnetoresistive 

sensor is operating in an open area, the presence of any ferrous metals for example 

iron, nickel, steel or cobalt will distort, or bend the earth’s field. This will in turn alter 

the compass heading [89]. Calibration of the magnetometer within the operating 

environment can reduce the measurement errors and increase the usability of the
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device. However, this can be an obvious constraint to the versatility of the system and 

the idea of daily recording of human movements [159].

2.5.5 Non-Linearity

Non linearity of the sensors output is defined as the largest deviation in the 

accelerometer output curve over its specified input range, when the output is 

compared to a least squares best fit straight line. It is common practice to assume that 

the sensors operate on a linear response which has been supported by some 

investigations [89, 93, 95]. Williamson and Andrews [93] confirmed that the non- 

linearity of the sensors was less than 0.5%. Bachmann et al. [95] described a testing 

procedure using a precision rotary tilt table. Linear responses from the accelerometers 

were seen during 360° rotation at l° s '\  and from the gyroscopes during 90° rotations 

at angular rates varying from ± 10°s’1 to 80°s'1. Fontaine et al. [89] also claimed that 

the accelerometers provided a linear response.

2.5.6 Noise

There are various causes of measurement noise. These are cable length and unshielded 

wires [56], environmental vibrations, electromagnetic interference (EMI), random, 

white noise with zero mean [56], or quantisation noise. Pappas et al. [56] defined that 

random noise increases with time with respect to the random walk law. Quantisation 

noise can be caused by the resolution limits of the A/D conversion process and also 

the sensor bandwidth and unwanted accelerations from skin and muscle movements. 

The typical noise floor is quoted in the data sheets of the sensors and is a contributing 

factor of the measured output of the sensors during stationary periods and in the 

absence of acceleration. It is possible to reduce the noise present on the sensor output 

by reducing the frequency response. However, this also has limitations.

2.5.7 Attachment Site and Mounting Arrangement

The placement of the sensors, specifically accelerometers, is an important design 

consideration of a MEMS sensor system since unwanted measurements of skin and
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muscle movements can distort sensor output profiles [61]. LaFortune [61] presented 

evidence that skin mounted accelerometers caused distortions of acceleration profiles 

compared to bone mounted accelerometers. The most significant skin movements 

were observed during impacts and in running. Various solutions have been proposed 

to reduce the amount of distortion [21, 22, 130, 169]. Heyn et al. [130] used metal 

plates to eliminate skin and muscle movements, but these were found to be 

cumbersome [54] and unnecessary [129]. Tong and Granat [129] demonstrated that 

accurate information could be produced when the sensors were affixed by a more 

simple, practical and tolerable manner for daily use, such as a strap tied around a 

limb. Paradiso et al. [169] suggested that the introduction of mechanical stabilizers in 

the sensor housing would prevent unwanted measurements. Morris [21] chose a 

mounting site specifically to minimise the effects of soft tissue movements and used a 

high friction cast to heavily damp skin movements. It is thought that, with careful site 

selection, and appropriate form of fixation, non-invasive measurements could be 

made on the majority of the parts of the body without capturing unwanted signals. 

Alternatively, Bouten et al. [147] suggested filtering out the high frequency noise 

components resulting from ‘jolting’ of the sensor. This, as mentioned previously 

reduces the frequency response and can sometimes result in valuable information 

being eliminated.

Gyroscopes offer more flexibility surrounding mounting arrangements since they are 

insensitive to gravitational accelerations [129, 130]. Heyn et al. [130] concluded that 

gyroscopes could be placed anywhere along the same plane of the segment to give 

almost identical signals. Tong and Granat [129] utilised this conclusion and the site of 

attachment was chosen so as to avoid the potential areas of skin and muscle 

movements. Measurement results from a thigh mounted sensor showed a weaker 

correlation than a shank mounted sensor when both were compared to a motion 

analysis system. This is likely to be caused by the muscle movement in the thigh 

during walking.
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2.6 Processing of the Outputs
Although inertial sensors have long been advocated for analysis of human movement 

their application has not gained widespread use because of methodological 

difficulties. The two major problems are accelerometer sensitivity to the local vertical 

vector (gravitational acceleration), which hinders the realisation of absolute linear 

accelerations, and unbounded drift arising through the integration of signals 

containing any number of sensor errors.

2.6.1 Decomposition of Accelerometer Signals

The composition of the acceleration signal and the desire to extract the various 

components (linear and gravitational acceleration) can introduce errors into the 

system. The linear acceleration component is extracted from the measured 

acceleration if the orientation of the sensors are known, thus eliminating the 

gravitational acceleration component. The gravitational acceleration can also be 

measured by the accelerometers themselves [153], but only when the object to which 

the sensors are attached is stationary or hardly moving (standing, swaying) i.e. under 

static accelerations [83, 90, 98, 128, 136]. The gravitational acceleration is of 

particular interest since it can be used to determine tilt in two directions. Hansson et 

al. [83] reported small errors of 1.3° when estimating the inclination under static 

conditions by accelerometry. However, these conditions are seldom the case in many 

of the applications mentioned previously and the presence of linear accelerations 

prevents the accelerometers providing a reliable indication of the object’s tilt. This 

characteristic was referred to as ‘slosh’ [114]. Foxlin et al. [114] avoided the effect of 

‘slosh’ by ignoring the accelerometer outputs during dynamic head motion and 

consulting them during natural pauses to provide a comparison to measurements from 

other sensors. This approach is only suitable to burst-like movements. Fontaine et al. 

[89] suggested it was possible to detect when the accelerometers measure anything 

else other than the gravitational field by calculating the normal of the acceleration by 

equation 2-3.
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Normal = x 2 + y 2 + z 2 2-3

where x, y and z are accelerations in three orthogonal directions.

Any difference between the calculated normal and 1 identifies that dynamic 

acceleration is being experienced and the amount of difference gives the significance 

of the error. Moe-Nilssen [78] suggested that the approximation of tilt from the 

inverse sine of the anterior posterior and mediolateral accelerations could however be 

used as best estimates of tilt of the accelerometer, even when the subject tested was 

walking. This is unlikely to be the case for a wide number of applications. Lee and Ha 

[98] introduced the use of additional sensors under dynamic conditions to estimate the 

local vertical vector.

An alternative approach is to low-pass filter the accelerometer outputs [53, 76, 80, 

103, 153], although this adds a lag to the computations. Bussmann et al. [53] 

demonstrated that the components of the measured acceleration differ in frequency 

and suggested they could be distinguished. DeVries et al. [153] and Foerster et al. [80] 

suggested that the gravitational component named the slow or DC component had a 

frequency content of under 0.5 Hz. Harada et al. [103] filtered the acceleration data, 

choosing a linear phase finite impulse response (FIR) filter so as not to distort the 

phase of the signal, using a cut off frequency of 1 Hz for measuring orientation of the 

point of attachment during daily life activities. Veltink et al. [76] described the design 

of a frequency detector to distinguish the static and dynamic nature of activities. The 

accelerometer signals were high pass filtered at a cut-off frequency of 0.5 Hz to 

eliminate the offset within the signal followed by rectification and low pass filtered at 

a cut-off frequency of 0.1 Hz to yield a measure of average signal deviation from the 

mean. The resultant was compared to a threshold level to discriminate either static or 

dynamic activities. Filtering the output of the sensors may isolate static and dynamic 

acceleration to some extent. However, it is important to acknowledge the frequency 

which divides the two categories of acceleration is likely to be unclear and this 

approach may only provide an approximation of the tilt of the sensor.
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2.6.2 Integration

Various methods are available which obtain the orientation from the sensor outputs of 

rigid body segments or the point of attachment without integration [21, 70, 118, 120] 

and also with integration [81, 86, 93, 97, 99, 103, 113, 129, 130]. The integration of 

the gyroscope outputs can provide absolute orientation if initial conditions are known. 

Integration can be estimated by varying levels of numerical approximation algorithms 

such as the trapezium rule, Simpson’s rule and increasing in complexity to the Gauss 

Quadrature [176]. Foxlin [113] integrated the gyroscope output following an 

approximation over a short time interval using the following Taylor series expansion 

in equation 2-4.

6(t + AO = 0(0  + 0 (0  • At + 0 (0  • —  2-4

where 6 is the angle

0 is the angular velocity (the derivative of 0 )

0 is the angular acceleration (the derivative of 6 )

t is the time

At is the time step between samples

The number of terms retained depends on the sampling rate and an acceptable rate of 

error. For a first order integration algorithm, the error rate for an expected angular rate 

of 300°s_1 and a sampling rate of 1000Hz, is approximately 0.79°s'1 [113]. Sabatini et 

al. [97] and Williamson and Andrews [93] used the trapezium rule as an 

approximation to determine the tilt of the segment from the gyroscope outputs. The 

general method for this technique is expressed in equation 2-5 [176]:

0, - + At 2-5

Where, 6 is the angle

6 is the angular velocity

t is the time



48

This method is not very computationally demanding and provided the sampling rate is 

fairly high the likely errors can be minimised. An alternative analogue integration 

method using active and passive components was implemented by Miyazaki (1997). 

The disadvantages of analogue filtering compared to digital filtering are that 

additional circuitry is involved, it is less flexible, it is not easy to modify and it can be 

sensitive to temperature, supply change, interference and aging.

Integration can provide reliable results over a period of time with the use of high 

quality sensors and good initial conditions [175]. A well known problem when 

implementing integration is the appearance of unbounded drift in the integrated 

signal. This causes errors in the output signals of the low cost MEMS sensors. Bortz 

[154] presented a new concept for strapdown inertial navigation integration. The 

method isolated the non-commutativity rate vector (known to cause problems in 

integration to obtain transformation matrix) and treated it separately [40, 154]. The 

advantage of this method is that it generates an orthogonal transformation matrix, 

which needs to be evaluated only when it is required to transform a vector from body 

reference frame to an inertially-fixed frame such as ‘flat earth’. The frequency at 

which the transformation matrix was updated is reduced and therefore the 

accumulating errors are also likely to be reduced. Mital and King [40] tested this 

concept against hypothetical data and concluded that integration using the above 

technique was relatively drift free for short periods. Baten et al. [86] also implemented 

this algorithm. It has been suggested that integration of the low cost MEMS sensors 

should be limited to short periods, for example 30 seconds [56, 81, 86, 103, 130]. 

Baten et al. [86] presented an error of ± 10% when estimating absolute back 

orientation through integrating the gyroscope signal. Heyn et al. [130] found 

comparable accuracy to an optical system when using integration to determine shank 

angle, although it was not quantified. Baten et al. [81] found integration drift errors of 

0.02°s'1, 0.03°s'1 and 0.10°s’1 over a period of 180 s equivalent to 3°, 6° and 18° angle 

errors for no movement, single axis rotation and conic motion, respectively. Harada et 

al. [103] showed their three dimensional nine sensor device system can estimate 

absolute orientation with less than a 4° error. Pappas et al. [56] attributed the 

integration errors to the effects from temperature fluctuations. An error of 1.5° was
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found when a gyroscope sensor was rotated 45° at a rate of 220s_1. This was 

equivalent to an error of 3.33%.

Improvement of the orientation estimate can be achieved by combining the attitude 

estimates from the accelerometer and the integrated gyroscope estimate of orientation 

[93, 95, 113, 157, 177]. The output of the accelerometer is used to determine 

inclination with the knowledge that it is reliable under static conditions and under 

dynamic acceleration only after a long period of time. This is because in the presence 

of dynamic acceleration, the acceleration signal deviates from the line of gravity and 

contains ‘slosh’ errors. Over a long enough period, the dynamic acceleration can be 

assumed to be zero. Thus, the average output over this period is equal to the 

gravitational acceleration component only. The output of the gyroscope for a short 

period under little temperature fluctuating conditions provides a reliable estimate of 

orientation [54, 81, 102]. Williamson and Andrews [93] concluded that a combined 

system was more accurate rather than using only an accelerometer to estimate 

inclination. This may be justified since combining the sensor types is likely to 

increase the bandwidth of the parameter.

The methods of overcoming the problem of integration drift are to periodically reset 

the integration algorithm [21, 70, 81], high pass filtering the gyroscope output 

[106, 129], or avoid the integration process altogether [120]. One method for resetting 

the integration algorithm and reducing the drift is to utilize the facts presented by 

Morris [21]. These are that the acceleration signals are cyclic and that the average 

value of the angular acceleration over a cycle must be zero. However, Willemsen et 

al. [120] suggested that this method would not be suitable in some applications that 

use feedback control systems such as FES. Also, implementation of this method is 

likely to add latency to the system reducing the potential of real time analysis. 

However, Baten et al. [81] implemented this approach, measuring the gyroscope bias 

and orientation under static conditions at the beginning and end of the movement and 

used linear interpolation to predict the effect of the drift. Alternatively, the foot flat 

phase of the gait cycle can provide an absolute estimate of orientation at every step 

(i.e. initial conditions) [56, 70, 93, 97, 99, 106, 129, 144, 165, 178]. During this event, 

the motion of the leg is assumed to be constrained and the accelerometers sensed only
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gravitational acceleration since the velocity was assumed to be zero. For example, 

Tong and Granat [129] assumed that during midstance, the thigh and the shank were 

in a vertical position, and set the angles to zero at this point. The time period with 

which drift can accumulate by the integration process will be limited to one step per 

cycle. Using the measured acceleration during this phase, the estimated angles are 

absolute angles. However, DeVries et al. [124] showed that this method does not yield 

an adequate estimation of shank angle during stance phase, because contact between 

the foot and the floor constantly changes and the assumption of the joint as a simple 

hinge joint was not all encompassing. Pappas et al. [56] highlighted the difficulty of 

this method when applied to fast walking speeds. Since the stance phase of the cycle 

reduces as speed increases, the assumption of there being a period of zero velocity 

during this phase becomes less valid. At 13 kmh*1, which is equivalent to a slow 

jogging pace, stance phase was recorded as 0.1 s.

An alterative method was to high pass filter the gyroscope output to eliminate the 

drifting zero bias. Various cut-off frequencies have been selected [106, 129]. Tong 

and Granat [129] and Miyazaki [106] used frequencies of 0.3 Hz and 0.5 Hz, 

respectively. The last alternative is to determine kinematic parameters without 

integration, typically from multiple accelerometer systems [120]. However, this 

approach is not without its problems. Willemsen et al. [120] experienced high 

frequency noise errors in their proposed approach to estimate joint angle and segment 

orientation.

Obtaining a change in position using a low cost IMU is even more problematic. The 

acceleration with respect to the ‘flat earth’ reference frame is integrated once to yield 

linear velocity and twice for positional information. The accuracy of the resultant 

velocity or position, not only depends on the quality of the accelerometer sensor, but 

also on the accuracy of the orientation estimate. Assuming the error in the 

accelerometer signal is fixed, the positional drift error will grow quadratically with 

time according to equation 2-6.



where, x is the position

ab is the acceleration in the ‘body’ reference frame

t is the time

A good estimate of the orientation is required, because it is used in three algorithms to

produce the linear accelerations with respect to the ‘flat earth’ reference frame [102],

These are the subtraction of gravitational acceleration component from the measured 

acceleration, transforming the gyroscope outputs into the appropriate angle 

representation, and rotating the absolute linear acceleration from the body fixed 

reference frame to the earth reference frame. The errors occurring when subtracting 

the gravitational accelerometer with an inaccurate orientation value is found by 

equation 2-7:

Error = g sin(angle) 2-7

where, g  is the gravitational acceleration.

Since the gravitational component of acceleration can be significantly larger in most 

cases compared to the measured acceleration of many typical human movements 

[136], there is little scope to accommodate inaccurate orientation vectors. Miyazaki 

[106] concluded that the inherent zero bias drift in the gyroscope output prevented 

true determination of the absolute angle of the limb and also accurate calculation of 

the stride length was impossible.

The initial conditions for the integration can be determined at the beginning of the 

analysed movement. If the subject or object starts at rest then it is feasible to assume 

that the velocity and distance can be set to zero and the absolute orientation of the 

rigid body segment or point of attachment can be measured during this stationary 

period prior to the commencement of the experiment.
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2.6.3 Model Assumptions

Numerous assumptions can be implemented which simplify the analysis of the human 

movement and reduce the number of sensors required. These assumptions are the 

number of dimensions of the analysed movement [54, 120], representation of the 

segment joints [54, 87, 132], definition of segments [54] and alignment of reference 

frames at the commencement of any experiments [81]. The most common assumption 

is that during walking and running the movement of the lower body (and projection of 

the centre of mass) occurs primarily in the sagittal plane. This assumption reduces the 

analysis of movement from three to two dimensions [54, 97, 120, 129, 130, 132]. 

However, this assumption typically only applies when it is assumed that movement in 

the third dimension can be ignored. Ideally, three dimensions will be measured in the 

proposed sensor system. In most experiments, although not widely documented, it is 

assumed that the sensors, particularly the accelerometers, are securely attached to a 

point or segment which acts as a rigid body [40, 69, 70, 76, 93, 120, 132, 144, 147]. A 

rigid body is defined as an idealisation of a body with volume and mass which has a 

shape that cannot change. Willemsen et al. [132] concluded that fixation of 

accelerometers was unlikely to fulfil the rigid-body condition. For this assumption to 

stand, careful selection of the site of attachment is required since any unwanted 

movements caused by the sensor and the point of attachment not acting as a rigid 

body is a possible source of error discussed in the error section. The assumption of the 

angular motion at a joint has helped to simplify the movement models. It is widely 

accepted that unloaded joint motion at the ankle and knee can be described using a 

one degree of freedom model such as the hinge joint, because there is a distinct 

movement path in these joints that offers minimal resistance. This assumption has 

been implemented for the knee joint [54, 55, 74, 87, 129, 132] and ankle joint [144]. 

Mayagoitia et al. [54] assumed that the shank and foot could be considered as a single 

segment. Baten et al. [81] assumed the initial conditions that the shank and thigh 

coordinate systems were in alignment to the ‘flat earth’ reference frame. This is not 

always the case and perhaps it is preferable to determine initial orientation and 

position of the sensor system.
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2.6.4 Orientation Representation, Reference Frames and 

Rotation Sequences

In order to track the three-dimensional movements of humans either in a laboratory or 

in natural surroundings, it is conventional to express the movements within a set of 

reference frames to make some determination regarding the physical world. The most 

commonly used reference frame is the ‘flat earth’ or sometimes defined as the world 

reference frame [102, 179, 180]. This is a fixed frame defined as an arbitrarily 

selected origin on the surface of the earth (assuming it to be flat), for example at the 

starting position of the movement activity and with axes, X, Y and Z directed in the 

local north, east and down directions respectively. The velocity and positional 

information with respect to the earth reference frame of a rigid body reflects the 

velocity and actual distance travelled across the ground (earth’s surface). Other 

reference frames exist, definitions of which can be found in Titterton and Weston 

[181]. Sensors affixed to objects or rigid body segments measure movements relative 

to what is known as a ‘body’ reference frame (where body refers to an object with 

mass) or local reference frame. The body reference frame is stationary or moving with 

uniform velocity relative to a fixed frame (i.e. ‘flat earth’ frame). It is defined as an 

orthogonal axis set which is aligned with the axes of the vehicle or object in or on 

which the sensor module is installed or affixed [181]. These two reference frames 

have been implemented by several authors [90, 94, 97, 99, 103, 115, 136, 175, 182] to 

describe the movements of the human body and it is thought that they are suitable for 

this research study.

The mathematical relationship of the orientation between two independent frames can 

be carried out by numerous models [183, 184]. The two most implemented in the 

literature are Euler angle [70, 103, 113, 156, 185] and quaternion [95, 103, 104, 179, 

182, 185-187]. Euler angle representation is defined by a rotation matrix, which is 

rotated in succession about three independent axes by three independent Euler angles. 

There are twelve possible combinations to define rotations, each with potentially 

different results. This means that the order of these rotations is important. Quaternion 

representation is based on the axis-angle model, defined as a rotation following the 

right hand rule around an axis by some angle. A quaternion represents a three-
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dimensional rotation as a four component row vector of unit length. A more in depth 

description of both models can be found in Kuipers [183], The choice of model has 

depended largely on the required application and the objectives of the system since 

both have certain advantages. For example, the Euler angle model requires a three 

component vector representation compared with four for quaternions. The number of 

arithmetic operations in the Euler angle model is higher since quaternions are defined 

directly from the dynamic equations. Since Euler angles are easier to visualise they 

are often the preferred outputs and if it is necessary to compute angles at each 

orientation update, then quaternions are converted to Euler angles which adds more 

steps. Quartemions are then no longer the most computational efficient of the two. 

The most significant advantages of quaternions are that no singularity exists when the 

elevation angle passes through 90° (defined as nose up or down) and angles are only 

computed should a rate of change occur. Singularities is commonly defined as ‘gimbal 

lock’ [133, 135], since when elevation passes through 90° the other two axes became 

collinear and therefore the angles about these axes cannot be uniquely defined (due to 

divisions by zero). Both Hayes et al. [70] and Foxlin et al. [155] were aware of the 

limitations caused by singularities, but this was not found to produce any noticeable 

disturbances in practice.

Regardless of which orientation representation is chosen, a transformation between 

the two independent reference frames consisting of a transformation matrix and 

rotation sequence is required. The most commonly used rotation sequence in aircraft 

and aerospace applications is ZYX, and more importantly this sequence has been 

implemented by several authors [103, 140, 175, 184, 185]. Within this representation 

the body frame follows the right hand rule, and is defined, as positive x-axis of the 

aircraft points forwards along the longitudinal axis, the positive y-axis is directed 

along the right wing and the positive z-axis is normal to the x and y axes, pointing 

down. The ‘flat earth’ frame is defined as mentioned previously for X, Y and Z. The 

ZYX rotation relates the two frames by first a rotation about the z-axis by an angle 

that defines the heading. This is followed by a rotation about the new y-axis through 

an angle which defines the elevation of the aircraft. Finally, the last rotation was about 

the newest x-axis by an angle which defines the bank of the aircraft. It is thought that
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this rotation sequence is suitable for this research study. A more in depth definition 

and description of other possible sequences can be found in Kuipers [183].

2.7 Filters

2.7.1 Introduction

It has been shown that the choice of small, light weight and low cost sensors for 

human tracking applications is limited by the output of the sensors being corrupted 

with noise. Thus various filtering algorithms have been implemented to make the 

most effective use of the sensor outputs and provide the optimal estimates of the 

parameters that describe the movements of interest. The purpose of a filter in the case 

of electronic signals is to separate signals of different frequencies yielding the desired 

frequency response. Further, a more sophisticated filter can perform the best 

separation of a signal from noise which are both noise-like in characteristic. “Best” 

separation is defined as the compromise of passing the signal and, at the same time, 

suppressing most of the noise in a linear manner by minimising mean-square error. 

These types of filters are based upon the spectral characteristics of the signals 

probability distributions known as probabilistic models and produce the optimal 

estimate of the signal. Two well known filter theories of this type are called Wiener 

and Kalman filters and a more simplistic type is the complementary filter.

2.7.2 Wiener and Kalman Filters

Wiener filters are not generally implemented into applications such as navigation and 

human body tracking and are therefore not discussed here. However it is worthy to 

point out that the Wiener theory minimises the mean square estimation error, subject 

to certain constraints and assumptions, which to some extent led to the birth of the 

Kalman filter. The Wiener filter depends on the known statistical functions of the 

signals and uses only this information in its optimal estimate. In many practical 

applications these functions may not be known. Although the filter can accommodate 

multiple inputs, only a single scalar output can be estimated. It is also not very 

computationally efficient since it reprocesses all previous data each time a new
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estimate is required. Implementation of the filter on a computer requires that all 

previous measurement data be stored in memory and be available for recalculation. 

The theory is therefore not easily extended to complicated time-variable, multiple 

input and output problems. A description of this filter design can be found in either 

Brown and Hwang [188] or Grewel and Andrews [189]. The Kalman filter is an 

alternative method of formulating the linear minimum mean square error which 

utilizes state space methods. The two main features of this formulation are vector 

modelling of the random or known dynamic processes under consideration (as 

opposed to scalar) and recursive processing of the noisy input data. There are 

numerous possible dynamic models depending on the motion of interest and 

associated input and output state configurations. Also, it may be desirable to model 

parameters which can be difficult to measure, for example, the zero bias of the 

gyroscope. A detailed explanation and mathematical description of this filter is given 

in Brown and Hwang [188] or Grewel and Andrews [189]. The principal applications 

of Kalman filtering have been in control systems, and the tracking and navigation of a 

variety of vehicles. A key characteristic of the Kalman filter is its ability to combine 

the information from multiple types of systems with complementary characteristics to 

provide superior estimates to that of any of the systems alone. One example, which 

has been implemented extensively, was combining GPS and IMU for the field of 

navigation [190]. This principle has been applied to the outputs of the accelerometers 

and gyroscopes to produce the optimal estimate of orientation in stand alone IMU’s 

[102, 113].

Due to the nonlinear characteristics of three-dimensional human movements, the 

traditional Kalman filter such as a discrete filter [185] was required to be linearized. 

This development has lead to various types of Kalman filters. These are linearized 

[175], extended [105, 156, 157, 182, 187], unscented [103] and sigma points [104]. 

The following review gives a few examples of the implementation of various types of 

Kalman filters using inertial sensor inputs. Emura and Tachi [185] designed a discrete 

Kalman filter to improve the performance of a magnetic motion sensing system by 

Polhemus, by using gyroscopes. The filter modelled the dynamic rotational motion of 

the head and the integration process. The magnetic motion capture system suffers 

from a low sampling rate and latency which is likely to cause difficulties when used 

for measuring rotational motion for head mounted display (HMD) in the field of
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virtual reality. Gyroscopes offer complementary characteristics compared to magnetic 

motion capture system. It was shown that the performance of the system was 

enhanced when combining the gyroscope sensors. Rehbinder and Hu [175] used a 

modified linear Kalman filter to provide stable estimates of the attitude of a robot. The 

filter fused information from a three-axis gyroscope and a three-axis accelerometer 

and known natural conditions of the motion of interest. The filter was based on a 

switching architecture consisting of two modes, one when accelerations were low 

using a combination of the outputs from the two sensors, and one when accelerations 

were high relying solely on the gyroscope output due to the gravitational component 

in the measured acceleration.

Barshan and Durrant-Whyte [156] implemented an extended Kalman filter (EKF) to 

estimate position and orientation as part of a low-cost INS system. The filter 

incorporated error models of the performances of the accelerometers and gyroscopes 

over time. Testing of the algorithm found the orientation estimates were reliable over 

periods of 10 minutes and therefore successfully reduced the growth of the gyro drift 

error. However, the position estimates grew unbounded and were reliable only for 5 to 

10 s. This was thought to be caused by large vibrations under unconstrained 

environmental conditions. The application of this system was for general use in 

mobile robot guidance problems. Vaganay et al. [157] designed a reduced order EKF 

to describe attitude of a mobile robot. The filter fused together roll and pitch 

estimations from accelerometers and odometry measurements and integrated 

gyroscopes outputs. The integration was implemented outside the filter. Thus, the 

process was not modelled within the filter. The filter estimated the drift of the 

orientation estimates to be 0.08°s'1. Marins et al. [187] proposed an alterative 

approach to a Kalman filter following on from the MARG system developed by 

Bachmann [102]. They found an EKF was computationally demanding making it 

unfeasible for real-time tracking. Instead, their approach utilized a Gauss-Newton 

iteration algorithm to find the optimal representation relating the measurements of 

linear acceleration and earth magnetic field from the body to the earth reference 

frame. In this approach, the input measurement and the process essentially become 

linearized and hence reduces the complexity and requires only a simple discrete 

Kalman filter. Testing of the filter by rotating the MARG through 90° about each axis
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produced near zero angular rates apart from the appropriate change during the rotation 

and returned to near zero afterwards. Saripalli et al. [105] described an extended 

Kalman filter to merge information from an EiMU, differential GPS (DGPS) and 

external measures of height and velocity for the control of autonomous helicopters. 

Instead of the helicopter dynamics, the rigid body motion equations and the gyroscope 

drift were modelled in the filter using the acceleration and rotational velocities from 

the EiMU as inputs. The DGPS and stereo and vision-based measurements provided 

infrequent updates. The performance of the filter was not quantified. Santiago [182] 

designed an EKF to fuse together the linear and angular acceleration vector produced 

solely from 12 accelerometers and baro-altimeter measurements, and updates by GPS 

signals during periods of large acceleration. The navigation process was modelled 

within the filter generating a full state estimate instead of just the error.

Harada et al. [103] used an unscented Kalman filter (UKF) to estimate orientation for 

a portable device. The filter was based on a Gaussian distribution approximation and 

was composed of accelerometers, gyroscopes and magnetometers. It was reported that 

this type of filter was more suitable for the nonlinear systems then EKF. They 

suggested that an EKF was too complex for implementation and the method of 

linearization led to instability if time steps were not sufficiently small. Testing of the 

device showed an absolute orientation error of less than 4°. Harada et al. [104] 

developed their optimising algorithm further by introducing a sigma-points Kalman 

filter (SPKF). A SPKF uses a weighted statistical linear regression (WSLR) technique 

to calculate the optimal terms. Lee and Ha [98] described a geometric fusion 

algorithm which functions similarly to a form of the Kalman filter.

2.7.3 Complementary Filter

A complementary filter is a more straightforward and simplified version of the 

Wiener and Kalman filters. Its primary goal continues to be the minimisation of the 

square of the expected error and it has several advantages over the Wiener and 

Kalman filters. These advantages are that the theory of the filter is not based upon the 

assumption of having complete statistical data regarding the signals involved, less 

development time, lower computational time and processing, and the choice of any
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appropriate parameter optimisation technique. A complementary filter combines 

multiple noisy measurements of the same parameter. The measurements must exhibit 

complementary spectral characteristics, and the transfer functions of the system are 

chosen in such a way to minimise the estimation error. Accelerometers and 

gyroscopes display complementary spectral characteristics. Accelerometer outputs 

utilised in attitude estimations become unreliable under dynamic acceleration 

conditions and therefore only provide reliable long term (low frequency) attitude 

estimates. The gyroscope outputs suffer from (low frequency) zero bias drift and 

therefore only provide reliable short term (high frequency) attitude estimates.

Although the performance is perhaps not as optimal, this type of filter has been 

implemented in numerous applications with remarkably accurate results [90, 102, 111, 

113, 136, 177, 191]. Baerveldt and Klang [111] successfully fused the integrated 

signal of a rate gyroscope with the signal from an inclinometer to obtain optimal 

attitude estimations. The filter design was based on the known dynamics of the 

inclinometer. Roberts et al. [191] implemented a filter that calculated the error 

between the accelerometer and gyroscope attitude estimates. This error was then 

added to the angular rate error to be integrated again to yield a more optimal estimate. 

Lunige et al. [90] used the theory outlined in Brown and Hwang [188] and described a 

filter to estimate tilt of a three accelerometer three gyroscope sensor module unit. The 

gyroscope estimation of angle was split into tilt and rotation (method not stated). The 

tilt from both types of sensors was fused through a filter to provide a drift free 

estimate of tilt. The filter was essentially an error model which adjusts the sensor 

parameters like gain and offset and produces optimised estimates of output 

parameters. A more sophisticated complementary filter which had a separate bias was 

described by Foxlin [113]. The complementary filter fundamentals were extended into 

a reduced order linearized Kalman filter which modelled the errors of the gyroscopes 

such as high hysterises and nonlinearity and also the zero bias but as a separate error 

state. The system was implemented to track the motions of the head. An inclinometer 

described in this paper was replaced by accelerometers later on by Foxlin et al. [114],

Bachmann [102] implemented a type of complementary filter (named the quaternion 

filter) to estimate orientation. The basic design of the filter was outlined previously by 

Frey [152]. The orientation estimates combined from accelerometers and
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magnetoresistive sensors were compared to those from the gyroscopes and the 

difference was added to the original angular rate output and integrated again. This 

method seemed theoretically robust and preliminary tests showed the accuracy of the 

filter to be within 1° during dynamic rotations. Luinge [136] and Luinge and Vetlink 

[177] described firstly a discrete-time complementary Kalman filter to estimate the 

acceleration, offset and gravity. The error model within the filter was based on a set of 

sensor assumptions. A further filter was then designed which fused the information of 

a tri-axial accelerometer system with a tri-axial gyroscopes system in order to 

measure orientation of a human body segment. The filter modelled the sensor signals, 

made assumptions about the sensors’ behaviour and frequency, the magnitude of the 

outputs and incorporated assumptions about the movement being measured. The filter 

estimated the states of the model in a statistical most-likely sense, considered the 

measured signal and continuously adjusted the gyroscope zero bias.

2.8 Summary

The most commonly used body worn sensors for human movement analysis are 

differential capacitive accelerometers, piezoelectric vibrating gyroscope and 

magnetoresistive compasses. It is evident that for complete movement analysis of 

rigid bodies or point of attachment, a sensor module that measures parameters in three 

orthogonal directions is required for all three types of sensor. It is assumed that 

positioning of the sensor module at a point assumed to be representative to the CoM 

of the body provided a measure of overall body movements. A calibration procedure 

is essential to determine calibration parameters, zero bias and scale factor, to 

transform the sensor outputs into their respective units. The procedure can be easy to 

perform, repeatable and produce accurate calibration parameters.

All three types of sensor provide important information to help describe human 

movements. The accelerometers can be used to determine the direction of the local 

vertical vector, the orientation of the rigid body segment and joint angles. They can 

also be used to determine the linear velocity and position of the rigid body segment or 

point of attachment. However, the accelerometers do not measure rotation about the 

vertical axis and therefore cannot give a complete description of the orientation
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vector. The gyroscopes can be used to determine the absolute orientation of the 

segment or point of attachment providing initial conditions were known. Initial 

conditions for the integration process can be found from accelerometer and 

magnetoresistive compass measurements under static conditions prior to the 

commencement of the experiment. The magnetoresistive compasses can be used to 

determine the heading or azimuth of the rigid body segment or point of attachment, 

provided the tilt of the sensor module is known. It is evident that the best solution for 

measuring human movements would be to use a combination of three accelerometers, 

three gyroscopes and three magnetometers. If the movement of interest can be 

assumed to be conducted with a near continuous heading then an inertial sensor 

module of three accelerometers and three gyroscopes can provide sufficient 

information. An example of such a movement would be the 100 m sprint.

The sensors can be positioned in various places largely depending on what was 

required to be measured. It is thought that a cluster of sensors positioned at a point 

assumed to represent the body’s CoM would provide valuable information of overall 

body movements during walking and running, and in particular, sprinting. 

Subsequently, this approach results in one attachment site and a minimal number of 

sensors, reducing the likely size and cumbrousness of the system.

MEMS sensors can be used in numerous and diverse applications. In relation to 

designing a sensor system to be used as a training tool in the field of athletics, there 

are several important studies. Mayagoitia et al. [54] demonstrated the potential and 

accuracy of the sensors to determine several kinematic parameters such as linear 

acceleration of the knee. The sensor measurements were compared to an optical 

motion analysis system and reported an RMS error of less than 7% at five different 

walking speeds. The theory outlined in this paper was applied in a biomechanics study 

by Nene et al. [55]. This concept can be translated to other body segments or the 

body’s CoM. Pappas et al. [56], Aminian et al. [109] and Sabatini et al. [97] 

demonstrated the potential of the sensors to detect the gait events of heel strike and 

toe-off. It is thought that the timings of these events can be used to estimate stride 

frequency. Consequently, if the average horizontal velocity is known for each stride 

then the stride length can be derived. A MEMS sensor system can also be used in 

sports situations [54, 141]. However, to the knowledge of the author there are no
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applications where the sensors have been utilised as a training tool describing the 

kinematic parameters of human movements in the sporting context such as analysing 

sprinting motion.

The review highlighted that the most prominent error characteristics of the sensors are 

the noisy signals and the zero bias of the gyroscope drifting with respect to time and 

also temperature. These errors within the signal then cause accumulating drift when 

the gyroscope signals are integrated to produce the orientation vector. The amount of 

integration drift in the orientation vector is likely to cause further errors when the 

linear acceleration is separated from the measured acceleration, transformation of the 

angular rates to the respective representation and rotation of the accelerations to the 

earth reference frame. Therefore, the velocity and positional parameters derived 

through double integration of these linear accelerations can be difficult to estimate 

reliably and accurately for long periods of time. However, if the movement of interest 

is short in duration, for example, sprinting, and if there are periods when the system 

could be reset, then calculation of velocity and positional information may be feasible.

The preferred choice of angle representation from the literature is Euler angles, 

provided that the intended application is not concerned with the problem of 

singularities. The two reference frames commonly used in human movement analysis 

are the body and ‘flat earth’ frames. These frames are translated by the rotation 

sequence ZYX.

It is evident that some level of filtering is desirable to fuse together the outputs from 

the sensors to provide optimal parameter estimates. The complementary filter is 

perhaps not the most optimal of the filters discussed. However, it offers numerous 

advantages. These advantages are minimal development time, low levels of 

computational time and processing power, and the fact that statistical data about the 

signals is not required to be known.
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Chapter 3 The System
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3.1 Introduction

This chapter describes in detail the elements that comprise the proposed inertial 

sensor system. The first section presents the specification of the system in light of the 

facts outlined in the first two chapters. The second section describes the type of 

sensors chosen and how those sensors function. This is followed by a pictorial 

overview of the system. The fourth section presents the hardware of the system, this 

comprises schematic circuit designs, signal processing steps of the sensor outputs, 

how the data is acquired and details of the power supplied to the system. Next, the 

allocated arrangements of the sensitive axes of the sensors are defined. The sixth 

section outlines the processes required to convert the sensor outputs into usable, 

meaningful values. This is followed by details of the chosen enclosure and the method 

of attaching the system to the subject. Finally, the last section is a summary of the key 

elements.

3.2 The System Specification

The main aim of this thesis is outlined in chapter 1. Several features were considered 

imperative if this aim was to be met. Thus the system specification was outlined as 

follows:

>  A kinematic analysis of an assumed representative point of body’s 

CoM by direct measurement of accelerations and angular rates in three 

dimensions.

> Acceptable levels of accuracy, resolution and precision suitable for the 

intended application.

The accuracy of the system largely depended on the sensors 

themselves. The performance of the sensors is typically dictated by the 

factors of non-linearity, sensitive axis alignment error and in the case 

of a dual axis sensor the cross-axis sensitivity. Typical values of these
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factors for the accelerometer were between 0.2% to 5% of the full scale 

(FS), to within 1° and ± 2%, respectively. The non-linearity term 

would increase or decrease the sensitivity of the sensors which would 

increase or decrease the accuracy, respectively. The alignment error 

would cause an increase of decrease to the respective signal equal to 

the sine of the alignment angle multiplied by the gravitational 

acceleration constant. The smaller the cross-axis sensitivity, the higher 

the accuracy of the acceleration signal in the non-sensing direction of a 

dual axes sensor.

The resolution of the system largely depended on the bandwidth and 

the noise performance of the sensor and also resolution of the A/D 

converter. A bandwidth of 50 Hz typically yielded a measurement 

noise of 0.0018 mg and 0.5°s'1. If a 12 bit A/D converter was used then 

the resolution of the sensors would be 1 mg and 0.14°s'1, respectively. 

The quantisation resolution was comparable to the noise performance 

which indicated that meaningful signals could be recorded.

The precision of the system largely depended on the stability and 

repeatability of the sensors with regard to random walk and 

temperature effects. Typical values are 0.5°s'1, and 2 mg°C'1 and 10% 

of FS over temperature range, respectively.

>  Capture both slow and fast human movements typically up to 50 Hz 

with an adequate measurement range.

The accelerations experienced at the assumed representative point of 

the CoM during walking have been found to be ± 1-1.5 g [79, 143] 

and up to 10 g to register impacts [61, 97]. Thus adequate 

measurement levels are ± 2 g and perhaps up to ± 10 g in the vertical 

direction. The angular rates experienced at the shank and thigh during 

walking have been found to be at maximum 400°s_1 and 230°s'1, 

respectively [54, 109, 192]. The angular movement at the assumed
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representation point of the CoM during walking is likely to experience 

a lower angular rate, thus a range of + 300°s'1 would be adequate.

>  Provide low latency

The signals should be automatically processed and the desired 

parameters should be available within minutes after the data collection 

and in situ.

>  Robust in all environments

The system should suffer no degradation in performance with regards 

to light, magnetic objects, signal reflections, transient noise and 

occlusions.

>  Unrestricted capture range

>  Not cumbersome to the user in terms of size, weight and as not to 

restrict movement.

The size of the system should be as small as physically possible which 

is largely dependent on the size of the actual sensors. Typically the 

sensors are less than 10 mm in any one dimension.

>  Offer a suitable mounting arrangement

The system should be affixed quickly, repeatedly in the same position 

and offer low levels of unwanted movements between the affixing 

point and the body.

> Portable and self-contained (sourceless)
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The system should be battery powered and offer the potential to 

support wireless transmissions.

>  Quick and easy to set up

> Inexpensive

For example, the cost should be less than a few hundred pounds, thus 

making it viable for mass markets.

3.3 Sensors
The selected accelerometer and gyroscope sensors are presented and justified below. 

Following on from the review of the literature (see Chapter 2) it was assumed that the 

system would not require magnetoresistive sensors, and rely on the gyroscope sensor 

only to estimate the rotation about the z axis (azimuth). This assumption was 

supported by the fact that the system was designed to be limited to short data 

collection periods i.e. a few minutes, and to accommodate an interlude for resetting 

the accumulating errors between collection periods as a consequence of the intended 

application.

3.3.1 Accelerometers

An accelerometer is a device which senses both the dynamic and static accelerations 

about a defined axis. In the most general sense, the vast majority of accelerometers 

are typically modelled by a second order mass-damper-spring system. This system 

consists of a proof mass coupled to the sensor body by a spring like hinge or tether 

[8, 9, 76]. An applied acceleration and/or gravitational acceleration causes a 

displacement of the proof mass and deformation of the coupling occurring in a 

predetermined direction [178]. The amount of deformation or corresponding 

displacement is transduced by a sensing element and yields an electrical output 

proportional to the acceleration experienced. These electromechanical principles of 

the accelerometer have been formed in a MEMS device. There are numerous MEMS
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accelerometers commercially available which can be predominantly categorised by 

the type of transduction method used. Within each category the sensors vary by 

mechanical design, fabrication technique, sensor material and the techniques of 

sensing electronics integration, and packaging of each specific sensor design.

The type of transduction methods implemented in accelerometer designs can be 

categorised, though not exclusively into: piezoelectric, piezoresistive and capacitive. 

Piezoelectric accelerometers like those by Measurement Specialties (formally AMP 

Inc.) [193] and used in [92] measure the change in electric charge of the piezoelectric 

material within the sensor. They require a dynamic input (time-varying) of some 

minimum frequency to generate a response and thus they have limited capabilities to 

measure low frequency inputs such as gravitational acceleration [194]. Piezoresistive 

accelerometers such as Entran EG AX [195] measure the change in resistance when 

strained or deflected and remain changed until the original position of the material is 

restored. Even though they sense low frequency inputs their operational temperature 

range is substantially limited [8, 9]. Capacitive micromachined accelerometers offer 

several benefits when compared to the piezoresistive and piezoelectric type 

accelerometers. These benefits are capable of low frequency response, low noise 

performance, high sensitivity, low drift and low temperature sensitivity [8, 17]. They 

measure the change in capacitance of the parallel plate typically formed by the mass 

separated by a narrow air gap from a fixed plate [8]. The displacement of the mass 

changes the air gap and thus the capacitance. Differential capacitance has increased 

performance over capacitive sensing due to the improved linearity response for small 

deflections. Also, the added advantage of this method is that the acceleration induced 

electrostatic force causing the deflection of the sensing elements means motion can be 

both induced and sensed allowing for the operation of a self test function. It was 

evident from the literature review that the most widely used accelerometer sensor for 

human movement analysis is the differential capacitive type and those specifically 

manufactured by Analog Devices [62].

Acar and Shkel (2003) evaluated four commercial available capacitive MEMS 

accelerometers. The sensors were manufactured by Endevco, Analog Devices, Silicon 

Designs and Motorola. The sensors were assessed in a number of tests to determine 

the characteristics such as sensitivity, resolution, linearity, frequency response,
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transverse sensitivity (cross-axis), temperature effects, noise level and long term 

stability. In summary, although there was no clear preference of sensor, the Analog 

Devices’ sensor demonstrated some significant performances. The sensor displayed 

the best sensitivity performance when subjected to a 100 Hz dynamic input, with no 

deviation over a 30 day period and less than 1% maximum deviation over the 

temperature range. The noise level and non-linearity responses of the sensor and the 

long term zero bias stability were recorded as 1.29 mg, 0.44% of full scale (FS) and 

0.11% of FS, respectively, and were all ranked a close second behind the performance 

of the Endevco sensor. However, the cost and size of the Analog Devices sensor was 

considerably less at $8.50 a piece and 5 x 5 x 2  mm than the Endevco sensor. The 

lower cost and smaller size is a result of the manufacturing process. The Analog 

Devices and Endevco accelerometers are fabricated by using surface and bulk 

micromachining, respectively. Surface micromachining involves interfacing the 

sensing element and the signal conditioning circuitry onto the surface of a single 

substrate integrated circuit (IC) chip [8]. The substrate material can be for example 

silicon, glass or ceramic. This technique lends itself to batch fabrication and therefore 

the cost of the sensors can be low. Bulk micromachining involves etching the sensing 

element onto a silicon wafer and is not typically integrated with supporting 

conditioning circuitry resulting in a two chip device [8]. Therefore this fabrication 

technique produces a larger package size along with the increased expense restricts 

their applications [196]. The Analog Devices sensor offers a number of additional 

advantages. These are dual axis sensitivity, measurement ranges of ± 2g and ± lOg 

digital outputs which can be input straight into a microprocessor as well as analogue 

outputs, adjustable frequency response range up to 6 kHz, low operating voltage and 

low current consumption.

A summary of the characteristics of the device are shown in table 3-1 and visual 

description of the functionality of the sensor is displayed in figure 3-1. The figure 

displays two diagrams. The diagram on the left shows the accelerometer sensor at rest 

and with the sensitive axis parallel to the earth’s surface therefore no dynamic and 

gravitational accelerations are experienced. The diagram on the right shows the 

response of the accelerometer sensor when an acceleration is applied. The proof mass 

is deflected and the differential capacitor becomes unbalanced. The accelerometer



70

provides an output with amplitude proportional to the acceleration applied. The full 

m anufacturer’s data sheet is found on the Analog Devices website [62].

Table 3-1 A summary of the characteristics of the Analog Devices capacitive 

accelerometer [62].

Param eter Unit Analog Devices

Type ADXL202 (210)

Axes 2

Range g ± 2  (± 1 0 )

Sensitivity

Analog m V g'1 312 (100)

Digital % g '1 12.5 (4)

Supply Voltage V 3 to 5.25

Current per axis mA 0.6

Noise pgVHz 200

Frequency Response kHz 6

Non- Linearity % o f FS 0.2

Size mm 5x5x2

TOP VIEW

TETHERPROOF MASS 
(BEAM)

FIXED
OUTER
PLATES
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/fPUED 
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CS1 < CS2

Figure 3-1 A diagram displaying the functionality of the Analog Devices 

differential capacitive accelerometer [62].
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3.3.2 G yroscopes

A gyroscope, commonly called the gyro, is a device which senses the rate o f angular 

rotation about a defined axis. Almost all reported micromachined gyroscopes use 

vibrating mechanical elements to sense rotation. They have no rotating parts that 

require bearings, and hence they can be easily miniaturised into a MEMS device 

[196, 197]. Their operational principle is based on the Coriolis effect [190, 198]. 

Coriolis force, named after the French scientist and engineer G. G. de Coriolis (1792- 

1843), is an apparent force that arises whenever linear motion occurs in a rotating 

reference frame. In the case o f vibrating gyroscopes the linear motion is typically 

produced by an oscillating element and controlled by an embedded circuit to oscillate 

at a constant amplitude. The Coriolis force experienced induces oscillations that have 

a direction perpendicular to both the axis o f rotation and the axis o f driven oscillation. 

These induced oscillations are detected by a sensing element and are proportional to 

the angular rate. A visual description o f the effect is shown in figure 3-2. The figure 

displays a moving object which oscillates about the Y axis. A rotation about the z axis 

induces oscillations about the X axis which are proportional to the angular rate about 

the Z axis. The types o f micromachined vibratory gyroscopes can be categorised, 

though not exclusively, into three groups [8, 196]. These are tuning forks such as 

those manufactured by Murata [63], Tokin [199] and Analog Devices [62], vibrating 

wheels such as those manufactured by Bosch [200] and wine glass resonators such as 

those manufactured by Silicon Sensing Systems [201], A description o f the more 

traditional gyroscope can be found in Barbour and Schmidt [17].

acor = 2V x Q

R a te  o f 
R o ta tio n

M oving
O b jec t INVENSENSE

Figure 3-2 The Coriolis effect [197].
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A tuning fork vibratory gyroscope typically contains a pair of masses that are driven 

to oscillate with equal amplitude but in opposite directions. When rotated, a Coriolis 

force is experienced and induces oscillations which are detected by a number of 

sensing elements such as capacitive [202] and piezoelectric [63, 199]. A vibrating 

wheel gyroscope has a wheel that is driven to vibrate about its axis of symmetry. A 

rotation results in the rocking or tilting of the wheel in a direction perpendicular to the 

driven movement. The change in air gap between the vibrating element and the 

substrate was typically detected with capacitive electrodes under the wheel. It is 

possible to sense two axes of rotation with a single vibrating wheel. A wine glass 

resonator is sometimes referred to as ring resonator [196]. The vibrating element is 

formed as a ring and is driven to oscillate. When rotated, a Coriolis force is 

experienced and causes the oscillation pattern to move around the resonator. The 

change in direction is sensed by electromagnetism. This design offers the advantages 

of being less sensitive to shock, vibration and linear acceleration [203].

Gyroscopes are much more challenging sensors than the accelerometers and this may 

be why the market is less mature. As a consequence, at the time when a gyroscope 

was selected for the inertial sensor system there was limited choice and certainly less 

documented reviews on the performances of commercially available MEMS 

gyroscope sensors [100, 178, 197]. Both Benbasat [100] and Verplaetse [178] 

compared the characteristics of several gyroscopes but of varying operating 

technologies. Whereas, Nasiri [197] presented the top four manufacturers of MEMS 

vibrating gyroscopes but only referring to their micromachining fabrication, driving 

and sensing elements and package type. Therefore, a summary of the performance 

parameters of these four manufactures specified in their data sheets is included and 

displayed in table 3-2.
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Table 3-2 A summary of the characteristics of five vibratory MEMS gyroscopes.

Parameter Units Bosch BEI Analog Devices Murata Tokin

Part Number SMG040 QRS11 ADXRS300 ENC-03J CG-16D

Axes 2 1 1 1 1

Element material Polysilicon Quartz Polysilicon Ceramic Bimorph Ceramic

Voltage Supply V 4.8 ± 5 4.75-5.25 2.7-5.25 5

Current Consumption mA <30 <80 6 3.2 7

Range V 1 ±250 ± 50-1000 ±300 ±300 ± 90

Linearity % FS ± 1 0.05 0.1 ± 5 n/g

Frequency Response Hz 21-33 > 60 40 50 100

Noise W H z '1 0.2 0,01 0.1 0.05 a n/s

Drift V n/s 0.2 n/s 0.5 a n/s

Size mm 1 7 x 1 8 x 5 38 x 38 x 16 7 x 7 x 4 7 x  12x3 8 x 20 x 8

Cost £ n/s $1400 $30 $80 n/s

“Not given on data sheet. Taken from [100]. However, this value originally claimed to be 7 ° s'1 [204]. 

n/s refers to not specified on the data sheet or not found in the literature.
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The Analog Devices gyroscope has some notable strengths when compared to the 

others. It requires only a single voltage supply unlike the BEI gyroscope, requiring 

less battery power. The sensor has a higher bandwidth and lower noise floor than the 

Bosch gyroscope. The sensor is also the smallest and the least expensive. However, 

the pins of the sensor are semi-spherical in shape, positioned on the underside of the 

sensor and configured with inner pins. This configuration proved to cause a number of 

associated difficulties. These difficulties were the limitations of the available 

equipment to design and make a printed circuit board (PCB) that gives connections to 

the inner pins and to solder the sensor onto the PCB. As an alternative, the Murata 

gyroscope offers the same operating range and voltage supply, lower current 

consumption and higher frequency response. The sensor is also only fractionally 

bigger and more expensive, but readily available to purchase from a UK distributor. 

The evidence presented in the literature review also supports the choice of this sensor. 

Murata offers two types of gyroscope, the ENC-03JA and ENC-03JB. The two types 

have different resonant frequencies and are typically used in combination if two 

sensors are mounted in close proximity. This reduces the interference effects caused 

by cross coupling and the sensing of unwanted signals [205].

3.3.3 Section Summary

The sensor system combined two two-axis accelerometers from Analog Devices and 

three single axis gyroscopes from Murata. Since the system contained only inertial 

sensors, it will from this point onwards be referred to as the inertial sensor system.

3.4 System Hardware
3.4.1 An Overview of the Inertial Sensor System

The figure 3-3 shows a pictorial overview of the whole inertial sensor system.
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Figure 3-3 The overview of the inertial sensor system
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3.4.2 Sensor Boards

3.4.2.1 Board 1: X and Y Axes

Board 1 is displayed in figure 3-4 and contains one dual axis accelerometer, IC1, two 

single axis gyroscopes, IC2 and IC3, a voltage regulator, IC4, and some passive 

components. All sensor outputs were fed directly to the connector which was coupled 

to the processing box. The accelerometer was operated on a fixed-output regulated +5 

V supply which was decoupled from noise on the power supply by resistor, R1 and 

capacitor, C3. The accelerometer was band limited to 50 Hz by capacitors Cl and C2 

connected across the analogue output pins and ground. Although the digital outputs 

were not being used, the duty cycle modulator was kept running at 8 ms repetition rate 

set by the value of resistor R2. The gyroscopes operate from an on-board fixed output 

regulated +3.3 V, 100 mA supply. Since the gyroscopes were mounted in close 

proximity their resonating frequencies needed to be different to minimise interference. 

Therefore, one gyroscope was an ENC-03JA, IC2, and the other was an ENC-03JB 

type, IC3. The components were arranged so that the rotation axis of each gyroscope 

was consistent with the sensitive axes of the accelerometer. The gyroscope, IC2, 

measured rotations about the accelerometer’s x axis and IC3 measured rotations about 

the accelerometer’s y axis.

3.4.2.2 Board 2: Z Axis

The second board in the box displayed in figure 3-5 was much smaller and contains 

only one dual axis accelerometer, IC6, and one single axis gyroscope, IC5, a voltage 

regulator, IC7, and some passive components. The circuitry was configured as 

detailed for board 1. The gyroscope was arranged so that the axis of rotation was 

consistent with the y sensitive axis of the accelerometer. This board was mounted 

orthogonally with respect to board 1 within the sensor box and hence the 

accelerometer’s sensitive axes were such that x is sensitive in the same direction as 

the x axis from Board 1 and y is orthogonal to the x and y axes of board 1. The y axis 

on this board was renamed z axis and together the two boards sensed three
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accelerations in orthogonal directions and three rotations about the three acceleration 

directions.

3.4.2.3 Connectors

Tables 3-3 and 3-4 outline the signal arrangements in the connectors for boards 1 and 

2 .

Table 3-3 Connector PL1 between sensor module and processing box.

Pin Signal Colour

1 +5V Red

2 Spare Acceleration Brown

3 Z Acceleration Purple

4 Spare Acceleration Brown

5 Z Acceleration Purple

6 GND Black

7 Z Gyroscope Vref Grey

8 Z Gyroscope Vout Grey

9 X Acceleration (Analogue) Orange

10 Y Acceleration (Analogue) Yellow

11 X Acceleration (Digital) Orange

12 Y Acceleration (Digital) Yellow

13 Y Gyroscope Vout Blue

14 Y Gyroscope Vref Blue

15 GND

16 n/c

17 n/c

18 X Gyroscope Vref Green

19 X Gyroscope Vout Green

20 +5V
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Table 3-4 Connector PL2 between board 1 and board 2.

Pin Signal Colour

1 X Acceleration (Analogue) Grey

2 Y Acceleration (Analogue) Grey

3 X Acceleration (Digital) Grey

4 Y Acceleration (Digital) Grey

5 GND Grey

6 Z Gyroscope Vref Grey

7 Z Gyroscope Vout Grey

8 +5V Red
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Figure 3-4 The schematic circuit for board 1 of the inertial sensor system.
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3.4.3 Signal Processing

All of the sensor outputs required some signal processing before they were converted 

into a digital value. For the accelerometer sensors this meant amplification and a DC 

level shift to maximise the resolution. Whereas, the two outputs from each gyroscope, 

Vout and Vref, were compared and the result was amplified and low pass filtered to 

increase resolution and to eliminate high frequency vibrations and transient noise, 

respectively.

3.4.3.1 Accelerometer Processing Board

The accelerometer processing board displayed in figure 3-6 consisted of one quad 

operational amplifier, IC12, two fixed voltage regulators, IC13 and IC14, and some 

passive components. The output of each accelerometer axis was fed into a high input 

impedance unity inverting buffer, IC12a. This buffer was required due to the 

relatively low output impedance, 32 kQ, of the accelerometer analogue outputs. The 

buffered signal was then inverted and amplified, by operational amplifier, IC12b, at a 

gain determined by the resistor ratio of the sum of R22 + R30 + R23, to R23. Resistor 

R30 allowed the gain to be adjustable from 1.5 to 3.5 to make the full use of the input 

range of the A/D converter. The third amplifier in the circuit, IC12c, provided a DC 

voltage which was adjustable within a range from -10 V to +10 V. The two fixed 

output voltage regulators, IC 13 and IC14, supply +5 V and -5 V, respectively, to each 

end of the multi-turn pot resistor R29. The input to IC12c varied in accordance to the 

resistance of R29, for example if the resistance is low then the input DC voltage level 

would be near 5 V. Subsequently, the DC voltage level into IC12c was amplified by a 

gain of 2 by the ratio of the resistors, R27 and R28. Therefore the range of -10 V to 

+10 V was achievable. The outputs of the operational amplifiers, IC12b and IC12c 

were fed into the fourth operation amplifier, IC12d which was configured as a current 

summing amplifier with unity gain. The operational principle of IC12d is to shift the 

DC level of the input from IC12b by the magnitude of the input from IC12c. The 

resistor R29, was adjusted so that when the raw output of the accelerometer read 2.5 

V i.e. experiencing zero acceleration, the resultant output of IC12d was half of the 

specified input range of the A/D converter.
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3.4.3.2 Gyroscope Processing Board

The gyroscope processing board, displayed in figure 3-7, performed a very simple 

operation involving amplification and low pass filtering of the change in the 

gyroscope output Vout compared to the other output Vref. Each axis was configured 

identically. The amplification gain was set at 2.5 by the ratio of resistors R58 to R55. 

The cut off frequency of the lowpass filter was set at 106 Hz by the combination of 

resistor R58 and capacitor, C28. The signals into the processing board and out of the 

board via connectors PL5 and PL6 were defined in table 3-5 and 3-6, respectively.

Table 3-5 Connector PL5 raw gyroscope signals into the processing board.

Pin Signal Colour

1 X Gyroscope Vref Grey

2 X Gyroscope Vout Grey

3 Y Gyroscope Vout Grey

4 Y Gyroscope Vref Grey

5 Z Gyroscope Vout Grey

6 Z Gyroscope Vref Grey

Table 3-6 Connector PL6 processed gyroscope signals out of the processing 

board and sent to the A/D converter.

Pin Signal Colour

1 X Gyroscope Orange

2 Y Gyroscope Yellow

3 Z Gyroscope Purple

4 n/c
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3.4.4 Data Acquisition

It was thought that at this stage in the project, analysis of the sensor outputs carried a 

higher precedence than designing and implementing a data acquisition system. 

Therefore, an off-the-shelf data logging system from Pico Technology Ltd consisting 

of an A/D converter, parallel port interface and software controlled data recorder was 

selected. Once the sensor system outputs were shown to provide useful information 

then it would be straightforward to replace the data logger with a preferred data 

acquisition system tailored to the requirements of the sensor system. The ADC11/12 

Pico data logger was chosen on the merits of the A/D converter. The converter offered 

the highest resolution for the largest number of channels. The converter offered 12 bit 

resolution and an input range of 2.5 V, thus, the smallest measurable change in 

voltage was 0.61 mV. This corresponds to 1 pg and 0.36°s'1 for the accelerometer and 

gyroscope sensors, respectively. The maximum number of channels available was 11 

of which seven were subscribed by three accelerometer sensor signals, three 

gyroscope sensor signals and also one channel was assigned to be used for 

synchronisation to other data collection systems. The logger is capable of recording 

data at a rate of as little as once an hour to 1000Hz. It had the ability to display the 

data visually by a graph and/or on a spreadsheet in real time. However, because the 

data logger was controlled by software the parallel port interface was required to be 

connected at all times during recording. This may prove to be cumbersome during 

experiments but it was not a long term design feature of the overall marketable sensor 

system.

3.4.5 Power Supply

The whole system was supplied by four 9 V d-type batteries to provide +18 V, -18 V 

and mid rail (Ground). The battery supply was regulated to +12 V and -12 V, 

respectively to provide a dual supply to the operational amplifiers on the processing 

boards. Typically, a dual supply was required for the operation of the majority of 

operational amplifiers and it was also required for the chosen method to shift the DC 

level of the accelerometer signals. However, the disadvantages were the increased
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number of components and batteries which increased the size, bulk and weight of the 

system. The +12V is regulated to +5V within the processing box to supply the sensor 

module via the connecting cabling and also the single supply to the operational 

amplifiers on the gyroscope board.

3.5 Sensor Arrangement and Module

It was evident from the literature review that the most commonly used reference 

system and method in which they were described for human movement applications 

was the aerodynamic model and Euler angle representation. A definition of this model 

can be found in Grewel et al. [190] and Kuipers [183]. The two reference systems that 

were used were body and ‘flat earth’ and are displayed in figure 3-8. The body 

reference frame denoted by B, had an origin based at the point of attachment and 

continuously moved with the body. The body coordinates within this frame were 

defined with the x axis “out of the nose” in the forward direction, the y axis, “out of 

the right side” and the z axis, “out of the belly”. The ‘flat’ earth reference frame, 

denoted by E, was an inertial fixed frame with an arbitrarily selected origin, in this 

case on the ground at the starting position of the movement. The term ‘flat earth’ 

arises from the assumption that motion on or near the surface of the earth at speeds far 

below the orbital velocity has limited influence from the curvature of the earth [102], 

The earth coordinates within this frame were defined following the convention of the 

X axis pointing North, Y axis pointing East and the Z axis point down known as NED 

[190].



87

Figure 3-8 The ‘flat earth’ and ‘body’ reference frames and coordinate 

directions.

The orientation o f the rigid body was represented by Euler angles. This representation 

approach was selected on its merits such as the preferred visual comprehension, less 

computational steps and also that the singularity limitation would never be broached. 

Euler angles specify a sequence o f three angles defined as roll (bank) about the x axis 

by angle <|>, pitch (elevation) about the y axis by angle 0, and yaw (azimuth) about the 

z axis by angle ij/. Positive rotations are to the right. A three dimensional sensor 

module o f accelerometers and gyroscopes were arranged to provide three axes of 

acceleration and angular rate information in three directions to which the module was 

affixed. The three measurement directions are marked x, y and z and the gyroscope 

sensors are mounted with respect to the sensitive axes o f the accelerometers. The 

arrows define the positive acceleration and rotation directions. The body coordinates 

can be expressed in the ‘flat earth’ reference frame by combinations o f  the rotation 

matrices about each axis denoted in the following equations 3-1 to 3-3.
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rot(x, (j)) =
1 0  0 
0 cos^ -s in i 
0 sin^ cos^

3-1

rot (y,6) =
cos 6 0 sin#

0 1 0 
-  sin 6  0 cos 6

3-2

ro t(z ,^) =

cosy/ - s i n ^  0
siny/' cosy/ 0

0 0 1
3-3

Where, (j) is the roll angle about the x axis

0 is the pitch angle about the y axis

H/ is the yaw angle about the z axis

3.6 System Software

Once the sensor outputs have been recorded a certain amount of software processing 

was required to produce meaningful information. All of this processing was executed 

manually and off line. It is possible in collaboration with the Pico data logger to write 

a tailored software program which controls the A/D converter and executes the 

required processing to provide final outputs in real time. However, again at this stage 

the importance of analysing the data was prevalent over the need for real time 

answers. The processing steps fall into the following categorises: unit conversion, 

angular rate transformation, integration, accelerometer attitude estimation, 

complementary filtering, elimination of gravitational acceleration and rotation to the 

appropriate reference frame.
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3.6.1 Unit Conversion

The first step of digital processing was to convert the sensor outputs from the 

measured unit of volts into the appropriate units of g and °s_1 for accelerations and 

angular rates, respectively. All of the sensors underwent a calibration procedure from 

which the calibration parameters such as scale factor and zero bias were derived. 

These parameters are used in the equations 3-4 and 3-5 below.

a i / x  Output (V) -  Zero bias (V) _ .Acceleration (e) = ------ — — --------------- —1—  3-4
Scale Factor (V g ')

a i tx /o -k  Output (V) -  Zero Bias (V) _ _Angular Rate(°s 1) =  F v J 3-5
Scale Factor (mV°' s‘ )

3.6.2 Transformation Matrix: Angular Rates to Euler Rates

The aerodynamic model generates rotational velocities known as angular rates relative 

to the body coordinates within the body reference frame denoted as p, q and r about 

the body axes x, y and z. Unlike linear velocities which may be integrated to obtain 

position, the angular rates cannot be integrated to obtain Euler angles. Instead the 

angular rates were transformed following equation 3-6. To derive the transformation 

matrix, T, the angular rates must first be expressed about the body reference frame in 

terms of angular rates about the earth reference frame as displayed in equation 3-7. 

This process uses the transpose of the orientation matrices in equations 3-1 to 3-3. A 

more detailed derivation can be found in McGhee et al. [179].

V P
e = T q
V

E
r
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p  = j)-\frs\n6

q = 6 qos (f> + \fr sin <() cos 6 3-7

r = - tfs in ^  + ^ c o s^ c o s#

where, p, q and r are the angular rates about the x, y and z axes

(j), 0 and v|/ are the angles roll, pitch and yaw about the x, y and z axes

6 and \j/ are the Euler rates about the x, y and z axes.

The equation 3-7 was rearranged to solve for the Euler rates and formed into the 

transformation matrix, T, displayed in equation 3-8.

T '1 sin ̂  tan 6 cos (f) tan 6 P
6 = 0 cos ̂ - s in  (f) X q 3-8

V
E

0 sin (f> sec 6 cos ̂  sec 6 r
B

The resultant Euler rates were defined as roll rate, pitch rate and yaw rate, 

respectively. The orientation angles used in the matrix were the overall outputs from 

the system at the previous time step.

3.6.3 Integration: Euler Rates to Orientation Angles

The Euler rates were integrated by a numerical approximation, the trapezium rule, to 

yield the orientation angles. The trapezium rule is an approximation to the integral of 

a function and estimates the area under the curve of the function. This area is found 

by dividing the data collection period into a sequence of approximating trapezoids 

(conveniently using the sampling rate) and adding the areas of the trapezoids. A 

trapezoid is formed by replacing the function by a straight line between each sampling 

point and thus the area is found following equation 3-9.
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where, AA is the area of the trapezoid 

/  is the function

t, is the time at sampling interval j

ti+i is the time at sampling interval j+i.

At is the sampling period

Therefore the integral can be expressed by equation 3-10 [206].

J / ( t )
a

A t tb_1 
dt = - [ / „ + / b + 2 £ / ( t i)]

^  i=l

where, a is the starting point for the integration

b is the end point of the integration

/a is the function at the starting point a

/b is the function at the end point b

tb is the time at the end point b.

The round off errors introduced by the approximation can be minimised by the greater 

the number of sampling intervals, for example 1000 samples per second. This 

integration method was applied to the Euler rates to yield orientation angles and also 

to the linear accelerations with respect to the ‘flat earth’ coordinates to yield velocity 

and position.

3.6.4 Accelerometer Attitude Estimations

It was evident from the literature review that the accelerometer can be used to 

estimate the roll and pitch angles of the sensor module in the ‘flat earth’ reference 

frame with respect to the gravitational acceleration. The reliability of this estimation 

depended upon the amount of linear acceleration being experienced. The gravitational 

acceleration vector was derived by the multiplication of the gravity vector and the
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rotation matrix RT, as shown in equation 3-11. The matrix RT was derived by the 

multiplication of the transpose of the rotation matrices found in equations 3-1 to 3-3.

X" " 0 "

= Rt 0
z s E

_g_

where, g is the gravitational acceleration.

Therefore the resultant gravitation acceleration follows equation 3-12 to 3-14.

X g = - g  sin 0 

Yg = g s in ^ co s#  

Zg = g  cos ̂  cos 6

3-12

3-13

3-14

From these equations, the pitch angle was found easily by rearranging equation 3-12 

into equation 3-15. The roll angle was found by dividing equation 3-13 by 3-14 and 

rearranging to yield equation 3-16

6 = arcsin 3-15
g

$ = arctan 3-16

where, Xg, Yg and Zg are equal to ax, ay and az accelerations in the x, y and z 

directions, respectively (see section 2.3).

The accelerometer attitude estimates were executed through a Matlab program. 

Firstly, all of the accelerometer outputs were low-pass filtered by a 7th order 

Butterworth Matlab function filter at 0.5 Hz. The principle of the filter was to isolate
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the static acceleration from as much of the dynamic acceleration as possible. The cut

off frequency was chosen following the experimental theory published on 

distinguishing between static and dynamic acceleration [76, 80, 151]. Then the 

attitude angles were estimated following the equations 3-15 to 3-16. The software 

code can be found on the supplied compact disc (CD).

3.6.5 Complementary Filtering

As previously discussed (see section 2.7.3), the complementary filter used in this 

system fused the high frequency (short term) characteristics of the gyroscopes with 

the low frequency (long term) characteristics of the accelerometers. Together the 

outputs generate the optimal estimation of the orientation of the inertial sensor 

system. The operation of the filter is presented as a flow diagram in figure 3-9 and 

was outlined in Brown and Hwang [188] and subsequently adapted by Bachmann 

[102]. A detailed theoretical derivation of the operation can be found in Bachmann 

[102].

Angle Estimates

Accelerations
[ax,a y, a j 6„ = arcsin

d> ,er a ’ a
<f)a = arctan

Angular Rates
Angular Rates to Euler Rates

Euler Angles 
[<|),e,v|/]

Euler Angles

»,0 ,v]

Figure 3-9 A flow diagram of the operation of the complementary filter.
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The angular rate outputs of the gyroscope sensors (p,q,r) were transformed to Euler 

rates using the transformation matrix T (see section 3.6.2). The Euler rates were 

integrated to yield Euler angles. The pitch (about the X axis) and roll (about the Y 

axis) angles were compared to the attitude angles derived from the accelerometer 

outputs, the difference was multiplied by the factor, K, added to the Euler rate output 

and then integrated to yield and optimal estimate of the Euler angles. The Euler rate 

about the Z axis, azimuth, is simply integrated to yield an azimuth angle and not feed 

into the filter. The reasons for this were explained in section 2.3.1.

The key feature of the filter was the idea of a cross over frequency, fc. This frequency 

represented the value below which the signals from the accelerometer sensors were 

given greater weighting and above which signals from the gyroscope sensors were 

favoured. The cross over frequency was adjusted by varying the filter gain, K by the 

equation 3-17.

K  =  2 7tfc 3-17

This frequency was chosen theoretically and fine adjustments were made 

experimentally. The filter was only implemented for two of the orientation angles, roll 

and pitch. There was no filter implemented for rotations about the z axis (yaw) due to 

no comparison available from the accelerometer or any other sensor. The 

accelerometers’ outputs remained constant with respect to gravity during rotations 

about the z axis. It is possible to use the magnetoresistive sensor to provide a heading 

angle but this is beyond the scope of this project.

3.6.6 Gravitational Acceleration Compensation

Given that the orientation of the inertial sensor system was known, the linear 

acceleration was extracted from the measured acceleration by subtracting the 

gravitational acceleration. Using equations 3-12 to 3-14 the linear acceleration 

denoted by / is expressed in matrix form by equation 3-18.
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V a x - g  sin#

'y = a y + g sin (j) cos#

A . B _a z_ B
g CO S (f) cos#

3.6.7 Rotation Matrix: Body to Earth Coordinate Transform

The aerodynamic model typically represented the transformation between the body 

and ‘flat earth’ coordinates with the direction cosines matrix. The rotation sequence 

used was the ZYX convention and is described following the right hand rule as the 

first rotation about the z axis by the yaw angle, ij/, then about the new y axis by the 

pitch angle, 0, and finally about the new x axis by the roll angle, <|). The rotation 

matrices from equations 3-1 to 3-3 were multiplied to yield the rotation matrix R as 

displayed in equation 3-19.

=

cos#cos^ sin^sin^cos^-cos^sin^ cos^sintfcos^+sin^sin^ 
cos^sin^ sin^sin#sin^+cos^cosy/’ cos^sin#siny/’-sin^cosy/' 

-sin# sin^cos# cos^cos#
3-19

This matrix was used to transform the linear accelerations about the x, y and z axes in 

body coordinates to the linear accelerations about the X, Y and Z in ‘flat earth’ 

co-ordinates by equation 3-20.

X ' V

A y 'y

A . E A .

3.7 Casing and Method of Attachment

The two sensor boards were mounted inside an enclosed polycarbonate box with 

dimensions 65 x 65 x 57 mm (L x W x H). The orthogonality of the box was
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measured using a workshop milling machine. The machine needle can move in two 

axes and provides a position to the nearest 0.0125 mm. Following the result of an 

experiment that confirmed the sides and base of the box could be assumed to be 

orthogonal, it seemed viable to mount board 1 and board 2 onto the base and one of 

the sides, respectively. It was assumed that the boards containing the sensors were 

positioned inside the casing such that the x, y and z axes were parallel with the width, 

length and height of the casing, respectively. A hole was cut at the back of the box to 

provide an access for the connecting cabling and a grommet was placed around the 

cabling to prevent any shearing of the wires. The box was fixed onto the leg of an off- 

centred T-shaped plastic structure measuring 75 x 75 x 100 mm (W x D x H) and then 

the head of the T was attached to a substantial belt designed for lumbar support during 

weight lifting training. A picture of the method of attachment can be found in 

Appendix B. Following the evidence from the literature review the belt was secured to 

the subject by a velcro strap and was positioned onto the lower back at the assumed 

representative point of the body’s CoM during quiet standing.

3.8 Summary
The inertial sensor system was comprised of two dual axis accelerometers 

manufactured by Analog Devices and three single axis gyroscopes manufactured by 

Murata. They were mounted and arranged into a small box which was subsequently 

designed to be attached to the subject at the point assumed to be representative of the 

body’s CoM. The two reference frames were taken from the aerodynamics model and 

were defined as body and ‘flat earth’. The measurement directions with respect to the 

body coordinates were defined as x axis “out of the nose”, y axis as “out of the right” 

and the z axis as “out of the belly”. The sensors sensitive axes were aligned with this 

convention. The angular rates denoted as p, q and r were transformed to Euler rates 

and then integrated by the trapezium rule to yield an estimation of the Euler angles, 

and thus orientation. Simultaneously, the accelerometer outputs were low-pass filtered 

and then implemented into the attitude estimation equations to yield an estimation of 

the roll and pitch angles. The estimations from both sensors were then fused by a 

complementary filter with gain K to provide the most optimal estimation of the 

orientation angles, roll and pitch. The yaw angle depended solely on the gyroscope
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output sensitive about the z axis. Using the known orientation, the measured 

acceleration could be separated into its components of gravitational and linear 

acceleration. Following on from this, the linear accelerations were rotated into the 

‘flat earth’ reference frame denoted by the NED axes arrangement using the rotation 

sequence ZYX.



Chapter 4 Results 1: Development and 
Validation
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4.1 Introduction

The first imperative step towards developing the sensor system was to apply a suitable 

and repeatable calibration procedure to deliver the set of calibration parameters 

required to convert the sensor outputs into the respective units. Subsequently, these 

calibration parameters along with the proposed processing steps necessary to produce 

usable acceleration data in three orthogonal directions with respect to the earth 

coordinate system were verified following a series of relevant experiments. Lastly, 

specific attention was applied to the response of the zero bias gyroscope output over 

time and temperature, and validating the use of this output as an integral part of the 

system. The zero bias drift has been frequently highlighted as a limitation to the 

accuracy of the orientation estimates derived from the gyroscope outputs.

4.2 Calibration

4.2.1 Introduction

Practical use of the sensor system depends heavily on an accurate and easily 

repeatable calibration procedure. The purpose of the procedure was to identify the 

zero bias and scale factor for each sensor. These parameters are imperative for 

describing the sensor outputs in their respective units. The accuracy of these 

parameters influences the three orthogonal acceleration estimates produced by the 

system with respect to the earth coordinates. A simple experiment that incorporates 

the calibration of both types of sensors is outlined below. The results presented were 

then used in subsequent experiments.

The calibration procedure for all sensors was carried out in a simultaneous manner as 

both types of sensor required rotations about each sensitive axis. The accelerometers 

utilised the earth’s gravitational acceleration. This has a vector of magnitude lg  

pointing towards the centre of the earth, or more commonly denoted as downwards. 

Each sensitive axis of each accelerometer sensed the gravitational acceleration 

positively when the sensitive axis was downwards, and negatively when the sensitive 

axis was upwards. However, the gyroscopes were each rotated about their sensitive
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axis of rotation for a period of time. The known rate of rotation was utilised to 

evaluate the change in voltage induced at the sensor output. For example, when the 

sensor system was rotated about its y axis, the gyroscope sensitive about the y axis 

demonstrated a change in output voltage. Correspondingly, the x and z accelerometer 

outputs varied in a sinusoidal fashion sensing both positive and negative magnitudes 

of gravitational acceleration.

4.2.2 Rotating Arm Mechanism

The mechanism which is displayed in figure 4-1 consisted of a shaft which rotated 

through a set of bearings. At one end of the shaft there was an arm which rotated 

perpendicular to it, and at the other end there was, either a direct current (DC) motor 

or handle. The sensor system was easily and quickly secured to the arm by two screws 

fixings in any of the three orthogonal orientations. The DC motor was attached 

securely by a two-way grub screw cuff and was used for rotations of constant speed. 

Alternatively, the arm was rotated by using a handle to turn it through the required 

angle. An additional function of the mechanism was an adjustable friction system to 

provide little or maximum resistance to the rotating shaft. This was important when 

angle movements were performed as the position of the arm needed to be maintained 

without an operator.
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Figure 4-1 The rotating arm mechanism.

The power supply and the direction o f rotation o f the dc motor were controlled by a 

PIC microprocessor, PIC16F84 and H bridge mosfet driver circuit (see appendix A). 

The PIC was programmed to provide two signals to the H bridge mosfet driver 

(TC4426A). One o f the signals was a pulse width modulated (PWM) signal that 

determined the rotation speed o f the motor by the ratio o f the on to off period o f the 

pulses. The second signal defined the direction o f rotation. A logic low signal denoted 

forward direction and a logic high denoted reverse direction. A H bridge circuit was 

essentially four transistors arranged in a H configuration. The transistors functioned in 

pairs, for example pair A and pair B. Switching on pair A only (that is to say applying 

a voltage to the base o f the transistor resulting in a collector-emitter current) specified 

the direction o f the current through the H bridge and thus the direction o f rotation of 

the motor. The programming code for the PIC can be found on the CD. The diodes are 

for protecting the chip from over and under voltage supplies. The pull-up resistors 

prevent jerking o f the motor when powered up or down.
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4.2.3 Method

There were two sets of equipment required for this experiment. One for initiating and 

collecting sensor data which consisted of the sensor system mounted on the rotating 

arm mechanism, a dc motor with its own power supply and a control circuit for 

moving the arm, the processing box and Pico A/D, and a computer for recording the 

data. The second set of equipment provided an independent measure of angular 

displacement and thus angular rate. It consisted of a CODA motion analysis system, 

CODA markers and a CODA acquisition computer. A trigger signal from the CODA 

acquisition system rose from 0 to 5 V (which was subsequently potential divided 

down to 1.5 V) when acquisition had begun. This was recorded on a channel of the 

Pico A/D converter. The trigger pulse enabled the two data acquisition systems to be 

manually synchronised and then a comparison of the two sets of data was made.

The rotating arm mechanism with the sensor system attached was mounted securely 

onto a table which was resting on a known level surface. The three dimensional 

coordinate system was calibrated using three markers on this levelled table. CODA 

markers 1 and 2 on the table defined the x axis and CODA markers 1 and 3 defined 

the y axis. Marker 1 was the origin and the movements of the two markers on the 

rotating arm were quantified in terms of three dimensional coordinates (x, y, z) 

relative to this origin. The sensor system was secured to the rotating arm in the first of 

three orientations. The DC motor was attached to the other end of the shaft the 

mechanism was positioned on the table so that the rotating arm was parallel with the 

calibrated x axis. The processing circuits, power supplies and PC were situated on a 

nearby table. The movement of the rotating arm within the xz plane was validated by 

a preliminary collection of marker data and adjustments were made accordingly by 

manipulating the position of the mechanism to minimise movement registered in the y 

direction. Since the inertial sensor system was mounted onto the rotating arm which 

forms a rigid body then it was assumed that since: ‘all points on a rigid body 

undergoing rotation about a fixed axis necessarily have the same angular 

displacement, speed and acceleration ’ [207], the markers on either end of the arm 

would experience the same rotational kinematics as the gyroscope sensors.
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Figure 4-2 The positions of the CODA markers during the calibration.

Sensor and marker data was collected at a sampling rate o f 200Hz for 50 and 60 s by 

the CODA and Pico data acquisition systems, respectively. The Pico data acquisition 

system was initiated first allowing for a collection period o f a few seconds whilst the 

sensors were stationary. Next, the motor was activated followed shortly by the CODA 

acquisition system. Each orthogonal position was subjected to two rotations in a 

clockwise direction and two in an anticlockwise direction.

Although the inertial sensor module is rotated at a constant velocity, the distance 

between the centre o f rotation and the accelerometer sensors is very small. Therefore 

the centrifugal acceleration acting on the accelerometers is insignificant. During one 

rotation the accelerometer will experience the gravitational acceleration as ± 1 g. For 

each accelerometer axis averages o f the minimum and maximum acceleration outputs 

experienced during each trial and over all o f the trials were calculated and were used 

in equation 4-1 to produce the desired calibration parameters.
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Zero Bias (V) =
Max Acceleration (V) + Min Acceleration (V) 

2
4-1

Scale Factor (mVg*1) =
Max Acceleration (mV) -  Min Acceleration (mV) 

2g

For each of the three single axis gyroscopes the zero bias value was found by 

averaging the sensor outputs during the stationary collection period at the beginning

requirement that these values need to be identified prior to each subsequent 

experiment. The other calibration parameter was the scale factor and this was derived 

by rearranging equation 3-5 into equation 4-2.

The angular rate of the sensor at each time sample was found by evaluating the known 

angular positions of the two CODA markers on either end of the mechanical arm. A 

rigid straight line was defined between these two markers in the CODA acquisition 

system. It was assumed that the point of rotation lies on this stick. The instantaneous 

angle of the stick with respect to the x axis was found by using right-angled geometry 

through the equation 4-3.

of each trial. These zero bias values for each sensor are likely to change so it is a

Scale Factor (mV0'1 s '1) =
Output (mV) -  Zero Bias (mV) 

Angular Rate (°s’!)
4-2

angle (°) = atan
Z difference (mm) 
X difference (mm)

4-3
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Figure 4-3 Pictorial description of the derivation of the angle of the arm.

The difference between two consecutive instantaneous angles multiplied by the 

sampling frequency gave the instantaneous angular rate at each time sample. The 

delay o f the trigger pulse from the CODA acquisition was less than two sampling 

periods. The two data sets were aligned one sample period after the trigger was 

identified on the Pico acquisition system. The scale factor at each time step was 

derived following equation 4-2. An average scale factor for each experiment was 

found and further an average scale factor for each o f the two experiments for each 

rotation direction was found.
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4.2.4 Results

The stages o f analysis o f the accelerometers and gyroscopes responses are detailed 

below. All of the data was taken from the experiment: Anticlockwise Rotation about y 

axis trial 1. Firstly, the movement o f the mechanical arm was assessed for its planar 

motion and hence its accuracy in providing calibration parameters. An indication o f 

planar motion can be shown by circular movements o f the rotating arm as opposed to 

spherical. Also, there was minimal movement o f the arm in the y axis which was 

assumed to be insignificant. The two CODA markers positioned on the mechanical 

arm, marker 5 and marker 6 each traced a circle in the xz plane when rotated as 

displayed in figure 4-4.
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Figure 4-4 The positions of markers 5 and 6 within the xz plane during a typical 
rotation of the mechanical arm.
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Next, the analysis of the accelerometer response is presented. An example of the 

response of the accelerometers during one rotation trial is shown in figure 4-5. In this 

case the rotation was about the y axis therefore sinusoidal variation in the x and z axes 

outputs and minimal variation in the y axis output was seen.
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Figure 4-5 An example of the response from all accelerometers and y gyroscope during a rotation about the y axis.
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Finally, analysis o f the gyroscope response is presented. The visual shape o f the 

response from the gyroscope and the derived angular rate from CODA were compared 

and are displayed in figure 4-6. By comparison, the two signals displayed similar 

shaped responses, suggesting the angular rate output derived by CODA was likely to 

deduce a suitable scale factor at each time step.

Y Gyroscope 
Coda Angular Rate

Time (s)

Figure 4-6 A comparison of the y gyroscope sensor output in volts and the 
derived angular rate output from the CODA acquisition system.

The angular rate difference that occurred between the angular rate output from the 

gyroscope sensor using the average scale factor and the angular rate output derived 

from the CODA acquisition system is displayed in figure 4-7. This difference was 

within ±  2°s'1 in 92.2% o f samples.
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Figure 4-7 The difference between the gyroscope sensor and the CODA angular 
rate outputs.

Average scale factors, standard deviations and confidence intervals o f  the data from 

all three gyroscopes for each trial were displayed in table 4-1. Confidence intervals 

for the data sets from each trial are calculated to provide a measure o f the spread of 

the data about the mean with a 95% probability that the population mean lay within 

this range [208]. The results in table 4-1 showed a significant difference in scale 

factors between the two rotation directions for all axes. However, repetitions of 

rotations about each axis showed similar scale factor magnitudes. The confidence 

interval values demonstrated that 95% o f the data lay within 2 pV across all trials.
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Table 4-1 Statistical analysis on the average scale factors derived from each trial.

Rotation
Direction

Average
Scale
Factor

Standard
Deviation

95% Cl

x + 1.96-^=

95% Cl

3 c -1 .9 6 -^
Vn

mV mV mV
X Axis Anticlockwise 1.7651 0.0462 1.7660 1.7642

Clockwise 1.7762 0.0402 1.7769 1.7758
Y Axis Anticlockwise 1 1.6956 0.0459 1.6945 1.6947

Anticlockwise2 1.6974 0.0479 1.6984 1.6965
Clockwisel 1.7209 0.0372 1.7216 1.7202
Clockwise2 1.7220 0.0422 1.7228 1.7211

Z Axis Anticlockwisel 1.7148 0.0413 1.7156 1.7140
Anticlockwise2 1.7193 0.0502 1.7204 1.7189

Clockwisel 1.7232 0.0526 1.7242 1.7221
Clockwise2 1.7233 0.0415 1.7241 1.7224

The resultant calibration parameters for the accelerometers and gyroscopes are shown 

in tables 4-2 and 4-3, respectively. The accelerometer signals were processed prior to 

digital conversion to satisfy the constraints of the A/D converter and to provide 

maximum resolution. Reversing the process deduced the raw zero bias and scale 

factor parameters. The zero bias parameters were found to be 2.26 V, 2.48 V and 

2.42 V and the scale factors were 305 mVg'1, 292 mVg'1 and 97 mVg'1. All of these 

values were within 9% and 7% of the stipulated zero bias of 2.5 V and scale factor of 

312 mVg'1 or 100 mVg'1, respectively. The gyroscope signals were processed prior to 

digital conversion to eliminate high frequency noise and increase the resolution. The 

raw scale factor values were deduced by dividing by the multiplication factor yielding 

0.7106 mV^'V1, 0.6836 m V ^’s'1 and 0.6881 m V ^ 's '1. These values were within 6% 

of the stipulated scale factor denoted in the data sheet of 0.67 m V ^’s*1. The average 

scale factor from both rotations would be used so that the direction of rotation was not 

required to be known before the signals were converted into the appropriate units. 

However, this could potentially introduce errors into the unit converted signal.
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Table 4-2 A summary of the accelerometer calibration parameters.

Parameter X
Accelerometers

Y Z
Zero Bias V 1.3257 1.2368 1.7171
Scale Factor Vg'1 0.6100 0.5840 0.3073

Table 4-3 A summary of the gyroscope scale factor parameters.

Rotation X
Gyroscopes (mV°V1)

Y Z
Anticlockwise 1.7651 1.6965 1.7171
Clockwise 1.7762 1.7214 1.7232
Average 1.7766 1.7090 1.7202
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4.2.5 Discussion

The results from verifying the motion of the mechanical arm suggested near planar 

motion since the CODA markers measured near circular movements and the 

maximum registered movement in the Y coordinate was only 4 mm. It was therefore 

assumed that the experimental setup provided an adequate means for deducing 

calibration parameters. For the accelerometers, the raw zero bias values were 2.26 V, 

2.48 V and 2.42 V and the scale factors values were 305 mVg"1, 292 mVg'1 and 

97 mVg'1. All of these values were within 9% and 7% of the stipulated zero bias and 

scale factor parameters denoted from the sensor data sheet. The difference in scale 

factors was due to the fact that the z accelerometer measures a greater range of ± 10 g. 

For the gyroscopes, the zero bias values were found immediately prior to any 

experiments. The reason for this statement is detailed in the later section of this 

chapter. For the gyroscopes, the raw scale factors were 0.7106 m V ^’s '1, 

0.6836 m V ^ 's '1 and 0.6881 m V ^ 's '1. These values were within 6% of the stipulated 

scale factor parameter denoted from the sensor data sheet. A good comparison was 

seen between the angular rate derived from CODA and the angular rate calculated by 

using the average scale factor yielding a difference within ± 2°s''.
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4.3 Verification

4.3.1 Introduction

The overall purpose of all the verification experiments outlined below was to validate 

the functioning of the overall sensor system. The experiments are categorised as 

follows:

1) Definition of positive linear acceleration and positive rotation axes.

2) Validation of gyroscope calibration parameters.

3) Validation of angle estimates by executing the following:

a. Implementation of the chosen integration process.

b. Implementation of the accelerometer attitude estimation process 

which also incorporates the validation of the accelerometer 

calibration parameters.

4) Validation of the functioning of the overall system and in particular the 

implementation of the rotation matrix

Firstly, the three positive acceleration directions and three positive rotation directions 

about those acceleration directions were defined. This involved the sensor system 

being subjected to a series of linear accelerations along a flat surface and rotations 

about each axis by hand. Next, the gyroscope scale factors derived from the previous 

section were verified by subjecting the sensor system to five different but constant 

rotational rates in both positive and negative directions. The five rates of rotation were 

selected by defining a series of fixed voltage levels which supplied a dc motor, thus 

controlling the rate of rotation of arm. An independent measure of the rate of rotation 

was determined by capturing an average output pulse from a high resolution encoder 

on an oscilloscope. The output pulse period was used to derive the angular rate of the 

rotating arm. The next verification experiment involved controlled rotations of the 

sensor system through a series of 90° rotations about each axis. The digitised outputs 

of the gyroscopes were integrated by the trapezium rule to provide an angle estimate. 

The digitised outputs of the accelerometer were low pass filtered and then substituted 

into the attitude angle estimation equations, 3-15 and 3-16, to also provide an angle
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estimate. These processing steps were outlined in chapter 3. The derived angles from 

the gyroscopes and the accelerometers were compared to an independent high 

resolution angle measurement from an optical encoder. Finally, the last verification 

experiment consisted of controlled rotations of the sensor system through a series of 

known angle rotations from 15° to 90° about the y (pitch) axis. All six sensor outputs 

were utilised and each processing step outlined in the previous chapter was 

implemented to provide three orthogonal linear accelerations with respect to earth 

coordinates and three Euler angles. Correct functioning of the rotation matrix was 

judged by all three accelerations remaining at zero and that only the Euler angle of 

interest registering the applied angle movement.

4.3.2 Optical Encoder and PIC Pulse Counter

A high resolution incremental optical encoder made by Agilent Technology was 

chosen as an independent angle measurement system used as a comparison to that 

produced by the sensor system. The technology utilised an optical codewheel and an 

encoder module housing a light source and two pairs of photoelectric sensors which 

sensed both direction and size of the motion. The film codewheel, HEDS-6120-T06, 

was mounted on the shaft of the rotating arm mechanism. The codewheel material 

was chosen to be film as the wheel was not required to endure high temperatures or 

rugged experiments which required metal wheels and was cheaper than glass offering 

the same high resolution. The encoder, HEDS-9000, was mounted on an upright 

support so that gap dimension between the wheel and the detector were within the 

tolerances specified in the datasheet. Since the code wheel is a one-track disk, the two 

pairs of sensors are arranged in such a way that one is displaced from the other by one 

and one-half slot widths. The encoder provided a pulse train at a resolution of 2000 

pulses per revolution from each of the two pairs of photoelectric sensors. These pulses 

were interpreted to obtain rotational position and direction. Since the direction of 

rotation was known then only one of the two pulse trains was feed into a PIC 

microprocessor (PIC16F84A). An interrupt run software program on the PIC chip 

counted the number of pulses and displayed a running total value on a miniature 

liquid crystal display (LCD) screen. The PIC software code can be found on the 

enclosed CD. As an alternative a typical output of the pulse train for a constant
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rotational speed was captured on an oscilloscope and used to manually calculate the 

rotational speed. From the number of pulses collected over a period or the average 

pulse period, the number of pulses per second and thus the rotational velocity in 

degrees per second was derived. Equation 4-4 was used to find the rotation rate:

Rate of rotation ( V )  = pU'SeS pCT SeC°nd x 360 4-4
2000

4.3.3 Method

The first experiment only required the use of a flat surface and a ruler fixed to the 

surface acting as a guide for the path of the sensor system. The positive linear 

acceleration axes were evaluated first. The sensor system was manually pushed 

600 mm in a smooth manner along the guide three times. The sensor system was 

orientated so that in turn each positive axis was pointing in the direction of travel. 

Next the positive rotation directions were defined. The sensor system was placed in a 

stationary position on the flat surface and rotated manually about each of the three 

axes in turn by approximately 90° in both directions. The sensor outputs for all of the 

above experiments were recorded for 40 s at 100 Hz. An increase in output would 

signify a positive acceleration or rotation experienced. The arrangement of the sensors 

sensitive axes and the chosen rotation sequence are detailed in the previous chapter. 

The rotation sequence chosen was a NED convention which follows the right hand 

rule. Positive accelerations should be seen when the sensor system was accelerated in 

the north (forward), east (right) and down directions. Positive rotations should be seen 

when rotated in a clockwise direction (right bank) about the x axis (roll), 

anticlockwise (climb) about the y axis (pitch) and clockwise (right turn) about the z 

axis (yaw). The results are displayed on pages 119 and 120.

The other three verification experiments all required the use of the sensor system 

attached to the rotating arm. For the first of the three remaining verification 

experiments, five clearly different rotation rates were chosen by selecting the 

operating voltages: 4, 6, 8, 10 and 12 V respectively. The voltage supply to the motor
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was measured by a fluke multi-meter to ensure that the same voltages were supplied 

to the experiments of all three axes. The polarity of the power supply was alternated 

to change the motor rotation direction and was switched on and off manually at 

specified intervals. The gyroscope output for each axis was collected for 60 s at 

200 Hz with a stationary period at the beginning and end of the collection period. The 

gyroscope output during this stationary period was averaged to provide the zero bias 

calibration parameter. This parameter along with the derived scale factors of the 

gyroscope outputs were converted into a rotation rate with units, ° s '\  The rate of 

rotation of the rotary shaft was measured by capturing an average pulse period from 

the optical encoder on an oscilloscope. Comparisons were made between the five 

gyroscope angular rates and the rates of rotation found from the optical encoder. The 

results are displayed on pages 121 to 124.

The next verification experiment involved rotated the arm manually through an angle 

of approximately 90° ten times in each rotation direction and about each axis. The 

number of degrees rotated was determined by the number of pulses counted by the 

PIC pulse counter circuit and this was displayed on the LCD screen. A 90° rotation is 

equivalent to 500 pulses. The sensor outputs were collected for 10 s at 200 Hz, again 

with a stationary period at the beginning and end. The PIC pulse counter circuit was 

reset after each rotation. Once the data was collected, both the accelerometers and 

gyroscope outputs were converted into their respective units using the previously 

derived calibration parameters. The accelerometer sensor which is sensitive about the 

axis of rotation should remain at a constant output during the rotation since its 

orientation with respect to gravity is not changing. The other two accelerometer 

sensors with perpendicular sensitive axes, experienced the gravitational acceleration 

as they were rotated simultaneously. The outputs were utilised in equation 3-16 to 

yield an instantaneous angle at each time sample. The gyroscope angular rate output 

about the axis of rotation was integrated using the trapezium approximation method to 

yield an instantaneous angle estimate at each time sample. For both the sensors the 

angle estimates were summed to yield accumulative angles which were compared to 

the angle derived from the number of pulses counted from the optical encoder. The 

start of the rotation was defined by a trigger pulse sent from the PIC pulse counter 

circuit into Channel 11 of the A/D converter. The point at which rotation ended was
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harder to identify as there was no trigger pulse and was performed by visual 

inspection of the gyroscope graph. In hindsight, it would have been preferable to 

re-use the trigger pulse returning the signal to 0 V once 500 pulses had been counted 

to indicate 90° of rotation. The results are displayed on pages 125 to 128.

The final experiment involved moving the rotating arm manually through a series of 

angles (approximately 15, 30, 45, 60, 75, and 90°) about the Y axis (Pitch). The 

encoder pulses were counted by the PIC pulse counter circuit (83, 167, 250, 333, 417 

and 500 pulses respectively). The sensor outputs were collected following the 

previous verification experiment and were processed by the steps outlined in chapter 

3. These steps included conversion into appropriate units using the derived calibration 

parameters, transformation of angular rates to Euler rates, integration of the Euler 

rates to yield Euler angles, subtraction of gravitational component of the measured 

acceleration and finally, rotation of the linear acceleration components from body to 

earth reference frames. The initial attitude of the inertial sensor module was derived 

from the accelerometer sensor outputs during the stationary period at the beginning of 

each trial. The initial yaw angle was assumed to be zero degrees. The results are 

displayed on pages 129 to 131.
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4.3.4 Results

The results from the first verification experiment which defined the positive 

acceleration and rotation directions o f the sensor system are displayed in figures 4-8 

and 4-9.
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Figure 4-8 Accelerometer outputs when accelerated in a north, east or down 
direction (NED).

The acceleration results showed a partial contradiction to what was expected. 

Accelerations in the east and downward directions were positive accelerations and 

acceleration in the northerly direction was a negative acceleration.
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Figure 4-9 Gyroscope outputs when rotated clockwise about x and z axes and 
counter-clockwise about y axis.

The gyroscope output results showed negative rotations about the x and z axes and a 

positive rotation about y axis. The orientation arrangement o f the gyroscopes was a 

critical design error and in retrospect they should have been arranged to comply with 

the chosen rotation sequence. However, since the conversion o f the sensor outputs 

into the respective units normalises the outputs about zero, it was easy to modify the 

particular accelerometer and gyroscope outputs to respond in the opposite way by 

multiplying by -1. Thus the NED arrangement was still achieved.
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The second verification experiment showed five clear changes in output from each of 

the gyroscope sensors when the supply voltage and thus the speed o f the motor was 

increased, see tables 4-4 and 4-5. The voltage differences translated to five distinctive 

angular rates. Figure 4-10 shows an example from the counter clockwise experiment 

about the x axis.

Tim e (s)

Figure 4-10 The increasing angular rate derived from the gyroscope output due 
to the increasing supply voltage to the motor during a counter
clockwise rotation about the X axis.

Typical average pulse periods from the optical encoder at each speed for each axis 

experim ent were captured on an oscilloscope and the data downloaded into an excel 

file. An example o f a typical pulse from the encoder is displayed in figure 4-11. The 

time period for one pulse was utilised in equation 4-4 to determine the angular rate of 

the rotating arm and thus the sensor system. There were very strong comparisons 

between the two sets o f angular rate values (tables 4-4 and 4-5) which suggested that 

the scale factor was sufficiently accurate.
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Table 4-4 Counter-clockwise rotation results for all three axes

Motor
Supply

Gyroscope 
Change in Angular 

Voltage Rate

Encoder 
Pulse Angular 
Period Rate

Difference
Angular

Rate
V V °s'1 s °s'1 °s-1

X Axis 4 0.029 16.55 0.0113 15.92 0.62
6 0.044 25.10 0.0073 24.73 0.37
8 0.059 33.59 0.0054 33.34 0.26
10 0.075 42.61 0.0043 41.76 0.84
12 0.088 49.73 0.0036 49.72 0.01

Motor
Supply

Change in 
Voltage

Angular
Rate

Pulse
Period

Angular
Rate

Angular
Rate

V V 's '1 s °s'1 °s'1
Y Axis 4 0.028 16.23 0.0110 16.37 0.14

6 0.043 25.18 0.0072 25.14 0.04
8 0.057 33.82 0.0054 33.27 0.55
10 0.072 42.64 0.0042 42.75 0.11
12 0.087 51.18 0.0035 51.58 0.40

Motor
Supply

Change in 
Voltage

Angular
Rate

Pulse
Period

Angular
Rate

Angular
Rate

V V °s'1 s °s-1 V
Z Axis 4 0.028 16.31 0.0106 16.96 0.64

6 0.043 25.10 0.0073 24.79 0.31
8 0.058 33.81 0.0051 35.02 1.20
10 0.073 42.55 0.0042 43.17 0.62
12 0.086 50.34 0.0035 50.99 0.65
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Table 4-5 Clockwise rotation results for all three axes.

Motor
Supply

Gyroscope 
Change in Angular 

Voltage Rate

Encoder 
Pulse Angular 
Period Rate

Difference
Angular

Rate
V V 's '1 s °s'1 °s'1

X Axis 4 0.029 16.33 0.0112 16.07 0.26
6 0.044 24.78 0.0074 24.33 0.46
8 0.059 33.48 0.0054 33.27 0.21
10 0.075 42.07 0.0043 41.96 0.11
12 0.090 50.90 0.0036 50.26 0.64

Motor
Supply

Change in 
Voltage

Angular
Rate

Pulse
Period

Angular
Rate

Angular
Rate

V V °s-1 s °s-1 V
Y Axis 4 0.028 16.43 0.0111 16.25 0.18

6 0.043 24.70 0.0073 24.66 0.04
8 0.057 33.37 0.0054 33.39 0.02
10 0.072 42.01 0.0044 41.10 0.90
12 0.086 50.19 0.0035 51.27 1.08

Motor
Supply

Change in 
Voltage

Angular
Rate

Pulse
Period

Angular
Rate

Angular
Rate

V V °s’1 s °s'1 °s'1
Z Axis 4 0.028 16.17 0.0102 15.87 0.30

6 0.043 25.02 0.0072 25.07 0.05
8 0.058 33.71 0.0050 32.26 1.45
10 0.073 42.24 0.0043 41.48 0.77
12 0.087 50.24 0.0036 50.70 0.46



En
co

de
r 

Pu
lse

 
(V

)

124

3

.Pulse Period = 0.0112s

1 ---------------------------- r

0.002 0.004

u

- 0.002 0.006 0.008 0.01 0.012

—1-

- 3  -

Time (s)

Figure 4-11 A typical output pulse from the optical encoder at a motor supply of 
4 V captured on an oscilloscope.
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The results from the third verification experiment demonstrated the ability o f each 

type o f sensor to define the orientation o f the sensor system. An example o f the 

sensors response to a rotation o f 90°, in this case counter clockwise is displayed in 

figure 4-12. It was clear from the figure that the trigger pulse was an accurate method 

o f identifying the beginning o f rotation as this corresponded to the changes in output 

from the sensors. The end o f rotation was determined visually by when the gyroscope 

output returned to its initial value.

T 201.5

1

-20

0.5
-40

-600

- -80
-0.5

-100— Y Accelerometer 
Z Accelerometer 
Trigger (V)
X Gyroscope

1
-  -120

1 -1401.5
Time (s)

Figure 4-12 The response of the sensors during a 90° rotation in the counter
clockwise direction.

A typically example o f the instantaneous angle estimates through the period of 

rotation is displayed in figure 4-13.
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-30

-70

-90
— Accelerometer Estimate 

Gyroscope Estimate

-110 J

Time (s)

Figure 4-13 A typical example of the derived angle estimates from both the 
accelerometer and gyroscope sensor outputs.

All o f  the results for the ten trials in each rotation direction are displayed in tables 4-6 

and 4-7. The majority o f the estimates were within a ± 2° difference to the measured 

angles. The majority o f the average values for the respective ten trials for each axis 

were within ± 1° and the standard deviations o f  the estimates showed good 

consistency within each set o f the ten trials. The slight difference in angle was likely 

to be a combination o f scale factor errors and the errors introduced by the estimation 

processes (integration and attitude estimation) used. At this point in the project this 

error was accepted and therefore validated the use o f the scale factors.
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Table 4-6 The results of the angle estimates from the inertial sensor system and 

deduced optical encoder angles during ten rotations in the clockwise 

direction.

Pulses
Encoder

Angle
Accelerometer

Angle
Gyroscope Angle 

Using Rotation SF Using Average SF
deg deg deg deg

X Axis 1 505 90.90 89.97 89.67 89.95
2 504 90.72 89.94 89.61 89.89
3 505 90.90 89.54 89.57 89.84
4 504 90.72 89.47 89.69 89.97
5 504 90.72 89.77 89.45 89.73
6 504 90.72 89.66 88.34 88.61
7 504 90.72 89.85 89.41 89.69
8 504 90.72 89.78 89.22 89.50
9 504 90.72 89.67 89.31 89.59
10 504 90.72 89.46 89.35 89.63

Average 504.2 90.76 89.71 89.36 89.64
Std 0.4 0.08 0.18 0.39 0.39

Y Axis 1 502 90.36 89.57 89.11 89.76
2 502 90.36 89.55 89.03 89.68
3 501 90.18 89.21 88.93 89.58
4 502 90.36 89.24 88.96 89.61
5 502 90.36 89.35 89.01 89.66
6 502 90.36 89.37 88.93 89.57
7 502 90.36 89.12 88.92 89.57
8 502 90.36 89.18 89.04 89.69
9 502 90.36 89.18 88.96 89.61
10 502 90.36 89.32 89.13 89.78

Average 501.9 90.34 89.31 89.00 89.65
Std 0.3 0.06 0.15 0.08 0.08

Z Axis 1 503 90.54 90.91 90.44 90.60
2 503 90.54 90.88 90.80 90.96
3 504 90.72 91.70 90.58 90.74
4 504 90.72 90.78 90.59 90.76
5 504 90.72 91.94 90.58 90.74
6 504 90.72 91.13 90.57 90.73
7 504 90.72 91.68 90.59 90.75
8 504 90.72 91.68 90.61 90.78
9 503 90.54 90.27 90.51 90.67
10 504 90.72 91.47 90.57 90.73

Average 503.7 90.67 91.24 90.58 90.75
Std 0.5 0.09 0.53 0.09 0.09
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Table 4-7 The results of the angle estimates from the sensor system and

deduced optical encoder angles during ten rotations in the counter 

clockwise direction.

Pulses
Encoder

Angle
Accelerometer

Angle
Gyroscope Angle 

Using Rotation SF Using Average SF
deg deg deg deg

X Axis 1 503 -90.54 -90.09 -90.08 -89.77
2 503 -90.54 -90.22 -90.15 -89.87
3 503 -90.54 -90.07 -89.96 -89.67
4 503 -90.54 -89.41 -90.23 -89.95
5 503 -90.54 -89.63 -90.13 -89.85
6 503 -90.54 -89.38 -90.01 -89.73
7 503 -90.54 -89.75 -89.92 -89.64
8 503 -90.54 -90.04 -89.79 -89.51
9 503 -90.54 -89.69 -89.35 -89.63
10 503 -90.54 -93.47 -93.94 -93.65

Average 503 -90.54 -90.18 -90.36 -90.13
Std 0.00 0.00 1.19 1.29 1.25

Y Axis 1 505 -90.90 -89.58 -90.81 -90.15
2 505 -90.90 -89.43 -90.82 -90.16
3 505 -90.90 -90.01 -90.79 -90.13
4 505 -90.90 -90.26 -90.68 -90.02
5 505 -90.90 -90.88 -90.78 -90.11
6 504 -90.72 -90.72 -90.84 -90.18
7 504 -90.72 -89.73 -90.83 -90.17
8 504 -90.72 -90.01 -90.71 -90.05
9 504 -90.72 -90.44 -90.75 -90.09
10 504 -90.72 -89.75 -90.67 -90.01

Average 504.5 -90.81 -90.08 -90.77 -90.11
Std 0.5 0.09 0.49 0.06 0.06

Z Axis 1 505 -90.90 -91.53 -90.96 -90.80
2 504 -90.72 -91.73 -91.01 -90.84
3 505 -90.90 -91.63 -90.91 -90.75
4 505 -90.90 -91.70 -90.93 -90.77
5 505 -90.90 -91.85 -91.09 -90.93
6 505 -90.90 -91.97 -90.76 -90.60
7 505 -90.90 -91.41 -90.95 -90.79
8 505 -90.90 -91.79 -91.08 -90.92
9 505 -90.90 -91.73 -91.02 -90.86
10 504 -90.72 -91.85 -90.96 -90.80

Average 504.8 -90.86 -91.72 -90.97 -90.81
Std 0.4 0.08 0.16 0.09 0.09
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The last verification experiment successfully demonstrated the correct functionality of 

the processing steps. Figure 4-14 displays an example o f one o f the six angles, 

approximately 30°, which the y axis was rotated through. This provided evidence that 

the transformation matrix was functioning correctly. It is clear from the figure that the 

only angle to increase is the pitch angle. The other angles demonstrated very minimal 

fluctuations about zero degrees.

—  Roll 
Pitch 
Yaw

cn

2  15 
o

10

Time (s( )

Figure 4-14 The resultant Euler angles from a 30° rotation about the y axis 
(pitch).

Since, the accelerometers measured both gravitational and dynamic accelerations the 

outputs o f the accelerometers registered some m ovement during the rotations as 

displayed in figure 4-15.
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Figure 4-15 The acceleration outputs captured during a 30° rotation about the y 
axis (pitch).

The next two steps performed were subtracting the gravitational component from the 

measured acceleration and translating the accelerations measured from the body to the 

earth reference frames by applying the rotation matrix. Since, the gravitational 

acceleration components were derived from the rotation matrix, testing the overall 

output o f the system would therefore verify both steps at once. Since the sensor 

system was only rotated, it was assumed that the accelerometers experienced an 

insignificant magnitude o f linear acceleration in any direction. Implementation o f the 

rotation matrix resulted in the acceleration values denoted in figure 4-15 being 

reduced to zero accelerations as displayed in figure 4-16.
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Figure 4-16 The acceleration outputs with respect to the ‘flat earth ’ reference 
frame captured during a 30° rotation about the y axis (pitch).

The results for five o f the six selected angles, 15, 30, 45, 60 and 75° were consistent 

to the example show above. However, when the sensor system was rotated 90° about 

the y axis (pitch) errors occurred in the other angles due to ‘gimbal lock’. Gimbal lock 

occurred when the pitch angle neared 90° and therefore the angle became undefined 

in the equations used to calculate the other Euler angles (see section 2.6.4). An 

example o f the resultant response o f the Euler angles under such a condition is 

displayed in figure 4-17.

X Acceleration 
Y Acceleration 
Z Acceleration

10 15 20 25 30 35

Time (s)

4-16 The acceleration outputs with respect to the ‘flat earth ’ reference 
frame captured during a 30° rotation about the y axis (pitch).



132

<  -50

-100

-150 -

Tim e (s)

Figure 4-17 The resultant Euler angles during a 90° rotation about the y axis 
(pitch). This condition is named ‘Gimbal lock’.

It was assumed that this condition would not occur for the intended application and 

thus no further problems were anticipated.
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4.3.5 Discussion

The first verification experiment produced surprising results. The accelerometer 

sensors were arranged on the sensor system circuit boards following the sensitive axis 

illustration in the manufactures datasheet. The results from this first experiment 

demonstrated that a positive acceleration was in fact in the opposite direction to 

information interpreted on the sensor’s data sheets. Definition of the positive rotation 

directions showed that two out of the three gyroscopes were orientated incorrectly. 

These gyroscope sensors should have been orientated on the sensor system circuit 

boards with consideration to the prospective body to earth coordinates transformation 

process to be applied. The accelerometer and gyroscope outputs once calibrated i.e. 

distributed about the horizontal axis, could be inverted by simply multiplying by a 

factor of minus one. The following axes needed conversion to facilitate a NED 

arrangement: x accelerometer, y and z gyroscopes.

The gyroscope scale factors implemented to deduce angular rates showed encouraging 

results by identifying five clearly defined angular rates. Each of the five angular rates 

showed good agreement to those determined by the optical encoder. The angular 

displacement experiments also demonstrated surprisingly consistent results. The 

accelerometer and gyroscope angle estimates were within ± 1° compared to the 

optical encoder angles. The accelerometer angle estimates proved to be slightly 

superior to the gyroscope estimates in terms of magnitude. This experiment also 

validated the accelerometer calibration parameters. Finally, the overall sensor system 

outputs compared favourably to the hypothesised results. These results suggested the 

implementation of the rotation matrix was of correct functionality.
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4.4 Gyroscope Drift Experiments

4.4.1 Introduction

The purpose of the following experiments was to characterise the performance of each 

gyroscope output when in a stationary position and to deduce a method for predicting 

this output. The output of the gyroscope in a stationary position was denoted as the 

zero bias value and this value was captured by invoking a stationary data collection 

period prior to any experiments. It had been shown that the zero bias value varies 

considerably each time the sensor was powered-up [156]. Further drifting of this value 

was then seen. The uncompensated drifting from an initial zero bias value would 

introduce errors in the newly converted angular rate output. These errors were more 

prominent due to the small magnitude of the scale factor, 0.67 mV^'V1. These errors 

were likely to be magnified even further during the integration process and then 

carried forward into subsequent equations.

One of the main causes of the zero bias variation has been shown to be thermal effects 

[56, 93, 111, 136, 156]. The gyroscope sensor is a mechanical device and when it was 

powered up its elements began oscillating at a constant frequency even when the 

gyroscope was stationary. This mechanical work created heat which caused the 

ambient temperature within the sensor itself to increase initially and then stabilised 

after a period of time. Secondly, transient effects which caused thermal expansion of 

the elements and its housing also affected the stability of the zero bias value. The 

manufacturers recommended use of the sensor was to apply a high pass filter directly 

across the output of the sensor at a cut of frequency of 0.3 Hz to eliminate any dc 

component of the signal thus reducing the effects of the temperature. As denoted in 

the introduction this human movement measurement system was required to measure 

slow rotations of less than 1 Hz and so a method for compensation of the zero bias 

drift was investigated.
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4.4.2 Temperature Sensors

Several preliminary experiments were conducted to find the most feasible method of 

measuring the temperature that could be used as part of a compensation method for 

eliminating the drift. Firstly, the ambient temperature in close proximity to the sensor 

system was measured using a PT100 probe. The probe in conjunction with a Pico 

PT104 16-bit resolution data logger provided an accurate measure of temperature to 

0.01°C. This ambient temperature measurement did not provide a repeatable response 

with respect to the gyroscope sensor output. This was due to the probe measuring the 

temperature environment around the sensor system as opposed to the temperature of 

the sensor. Further, this set up was conducted inside a medium-sized temperature 

regulated room which added little improvement to the relationship from the previous 

experiment. Subsequently, the sensor system was placed in a rectangular box of 

dimensions, 28 x 15 x 10 mm with a fan mounted on the inside of one of the lengths 

and small holes on the opposite length to help circulate the flow of air around the box. 

The fan and the enclosed box produced a smaller regulated environment around the 

sensor system hoping to provide an actual temperature measurement in close 

proximity to the gyroscopes. Although the temperature and gyroscope zero bias 

output response displayed an increased linear relationship, the practicalities of 

applying such principles on a smaller scale to produce a wearable, fan cooled 

temperature regulated environment for the sensors was unrealistic. This experiment 

highlighted the need for a temperature regulated space and for the temperature 

measurement to be taken as close as possible to the gyroscopes. A more practical 

implementation of the last experiment was to mount three temperature sensors each 

within close proximity to its respective gyroscope. Since the box is small in size, the 

ambient temperature should be to some extent self-regulated.

The temperature sensors used were analog devices AD592. This device is a two 

terminal monolithical integrated circuit transducer which provides a current output 

proportional to absolute temperature. The sensor benefits from high accuracy, 

minimal nonlinearity errors and a low price compared to older technology sensors 

such as thermistors, resistance temperature detectors (RTDs) and thermocouples. The 

sensors were utilised in accordance with the manufacturer’s reference design, found



136

on the Analog Devices’ website [62], This circuit was chosen over the simpler circuit 

design found in figure 4 (on the datasheet) due to the greater amplification of the 

temperature output by a scale factor of 100 mV°C']. The trimming function 

(adjustment of R l) was not utilised. This is because an absolute temperature value 

was not desired. The change in temperature output over a collection period was the 

important factor to allow a comparison with the gyroscope output. The DC level 

output of the circuit was shifted using a current summing amplifier as described 

previously. The range of the analogue output was 25°C and was centred about the 

laboratory temperature of 20°C. The 12-bit A/D converter gave a resolution of 

0.01°C.

For each temperature sensor, the two legs of the sensor were mounted on solder pins 

affixed to the circuit board within 1 mm of each gyroscope. Orientation of the 

temperature sensor was such that the flat face was resting slightly above the top 

surface of the gyroscope. Three separate screened wires from underneath the boards 

carried the induced currents to three identical processing circuits housed in the 

‘processing’ box and from there to the respective A/D channels.

4.4.3 Method

Two types of temperature experiments were conducted. Firstly, an experiment to 

investigate the response and repeatability of the gyroscope output from power-up over 

a period of 30 minutes in a laboratory environment regulated at approximately 20°C. 

The sensor system was placed on a level surface, powered up and remained stationary 

for the 30 minute data collection period. A PT100 probe was placed near to the sensor 

box measuring the ambient temperature outside of the box. After the collection period 

the power supply to the sensor system was disconnected for another 30 minute period. 

This process was repeated eight times each day for two consecutive days. All outputs 

were recorded at 1 Hz yielding a total of 1800 samples per experiment. The results are 

displayed on pages 138 to 149.

Secondly, an investigation was performed into the changes in response due to 

different ambient temperatures outside the sensor box. An incubator (used in the
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biological department for developing cells in controlled environments) was used to 

provide two temperature environments, 12° and 30°. These values represent the lower 

and upper ends of the measurable temperature range through the A/D converter and 

typically the extremes of the likely environment the sensor system will be used in. 

The sensor system was placed on a shelf inside the incubator alongside a PT100 probe 

to record the ambient temperature outside the sensor box. The door of the incubator 

remained closed for the duration of the experiments, with the wires protruding though 

a gap in the seal. The incubator was brought to the required temperature prior to 

commencing the experiments. Results from the first set of experiments showed that a 

shorter collection period of 15 minutes after power up at a sampling rate of 1 Hz was 

sufficient to capture the desired gyroscope output response. Several consecutive 

experiments were conducted over consecutive days. The results are displayed on 

pages 150 to 153.
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4.4.4 Results

The response of each gyroscope was investigated and typical outputs were seen in 

figures 4-15 to 4-17. All three gyroscopes outputs increased over time whilst in a 

stationary position. These typical output responses from the gyroscopes raised the 

question of what was a suitable zero bias value. If the initial output was used, an 

angular rate error in the region of 5 to 9°s'1 over a 30 minute period was produced. On 

these grounds, a method of predicting the gyroscope output using a temperature 

measurement was sought.
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Figure 4-18 The response of the x axis gyroscope and the respective temperature sensor output from day 1, trial 1.
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Figure 4-19 The response of the y axis gyroscope and the respective temperature sensor output from day 1, trial 1.
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The temperature measurements recorded within millimetres of each of the gyroscopes 

produced similar shaped responses to that of the gyroscope output as seen in the 

previous three figures. All trials were reviewed to decipher the possibility of a linear 

relationship existing between the two variables. A linear approximation was chosen 

because it is simple and far less complex than other approximations that would be 

beyond the scope of this thesis. First order linear approximations in the form of 

equations 4-5 and 4-6 were utilised to ascertain the linearity between the two 

variables.

s *y =’El(x-x)x(y-y)
S „ = £ ( * - * ) 2 4-5

S^ = I  (y~y)2

m = xy

b = y  - ( m x x )
4-6

where, x and y are the temperature and gyroscope outputs

m is the gradient

b is the intersect.

The gradient, intersect and temperature output were implemented in the standard 

equation for a straight line to predict the drifting zero bias value. A comparison of the 

actual output against the predicted for each sensor cluster is displayed in figures 4-18 

to 4-20.
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Figure 4-21 Actual sensor output and a line of best fit from day 1, trial 2 about the x axis
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Figure 4-22 Actual sensor output and a line of best fit (for a straight line approximation) from day 2, trial 4 about the y axis
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Figure 4-23 Actual sensor output and a line of best fit from day 2, trial 2 about the z axis.
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The x and z axes gyroscopes and the respective temperature sensors demonstrated a 

moderately linear relationship. However, it was evident that a linear approximation 

was perhaps not the most suitable line of best fit for the y axis gyroscope , figure 4-19. 

Coincidently, this gyroscope is the ENC-03JB type which is different from the x and z 

axes sensors being of the A type. The angular rate error was calculated by dividing the 

difference between the actual and the predicted outputs, by the respective scale factors 

for each axis. The RMS error for the y axis was 0.58°s'1 with a maximum of 3.62°s‘1 

and a minimum of -1.55°s'1. Although a linear approximation may not seem the best 

approach, these errors were a significant reduction in angular rate error. This is 

compared to an angular rate error of 7°s'1, without applying any compensation. An 

example of the typical angular rate error is displayed in figure 4-21.
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Figure 4-24 Angular rate errors for all axes from day 2 trial 2.
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The following parameters for all axes and for both days are displayed in tables 4-8 to 

4-10: the start up output of the gyroscopes, the gradients and intersects of the linear 

lines of best fit and the angular rate errors without and with predicting the angular rate 

output. The start values exhibit small variations which can be seen in the low 

magnitude of the standard deviation. However, the scale factors are smaller in 

magnitude which would result in initial large angular rates. This highlights the need to 

use derived zero bias parameters immediately prior to each trial. Using the 

temperature output to prediction the zero bias reduced the angular rate error to U s'1 

and 1.3°s’1 for the x and z axes, respectively, and 4.5°s'1 for the y axis. This was 

compared to using the initial output as the zero bias.

Table 4-8 Gradient scale factors and angular rate error ranges for the x axis.

x Axis Sensor Start 
Value

Gradient Intersect Angular Rate 
Error without

Angular Rate 
Error with

Correction Correction
Gyro Temp Min Max Min Max

V V V V deg/s deg/s deg/s deg/s
Day 1 1 1.3956 1.5965 -0.0790 1.5198 0.00 6.19 -0.44 1.07

2 1.3987 1.5147 -0.0848 1.5264 0.00 6.53 -0.38 0.41
3 1.3993 1.5031 -0.0821 1.5216 0.00 7.90 -0.52 0.81
4 1.4029 1.4316 -0.0911 1.5319 0.00 7.56 -0.43 0.83
5 1.4954 1.3981 -0.0950 1.5364 0.00 6.53 -0.40 1.04
6 1.4035 1.4298 -0.0987 1.5421 0.00 6.53 -0.43 1.45

Average 1.4159 1.4789 -0.0885 1.5297 0.00 6.87 -0.43 0.94
Std 0.0390 0.0733 0.0077 0.0087 0.00 0.69 0.05 0.35

Day 2 1 1.3932 1.6722 -0.0705 1.5092 0.00 7.56 -0.44 1.01
2 1.4096 1.3942 -0.0806 1.5219 0.00 7.13 -0.48 0.82
3 1.4023 1.4768 -0.0834 1.5236 0.00 6.87 -0.52 1.06
4 1.4054 1.4115 -0.0885 1.5282 0.00 8.25 -0.47 1.17
5 1.4097 1.3468 -0.0941 1.5347 0.00 6.87 -0.41 0.93
6 1.4127 1.3132 -0.0878 1.5269 0.00 7.90 -0.44 0.61

Average 1.4055 1.4358 -0.0841 1.5241 0.00 7.43 -0.46 0.94
Std 0.0070 0.1287 0.0081 0.0085 0.00 0.57 0.04 0.20
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Table 4-9 Gradient scale factors and angular rate error ranges for the y axis.

Y Axis Sensor Start 
Value

Gradient Intersect Angular Rate 
Error without

Angular Rate 
Error with

Correction Correction
Gyro Temp Min Max Min Max

V V V V deg/s deg/s deg/s deg/s
Day 1 1 1.3626 1.5891 -0.1158 1.5382 -1.43 8.57 -1.33 4.97

2 1.3663 1.5031 -0.1133 1.5307 -1.07 8.57 -1.16 3.46
3 1.3700 1.4884 -0.1055 1.5193 -1.78 7.50 -1.49 4.56
4 1.3718 1.4322 -0.1049 1.5154 -1.43 7.51 -1.34 3.92
5 1.3736 1.3974 -0.1164 1.5282 -1.43 7.50 -1.46 4.74
6 1.3736 1.4188 -0.1143 1.5275 -1.08 6.79 -1.63 4.82

Average 1.3697 1.4715 -0.1117 1.5265 -1.37 7.74 -1.40 4.41
Std 0.0044 0.0706 0.0051 0.0082 0.27 0.70 0.16 0.59

Day 2 1 1.3559 1.6648 -0.0931 1.5045 -1.78 8.93 -1.66 3.80
2 1.3620 1.5360 -0.1108 1.5243 -1.43 8.93 -1.44 4.62
3 1.3681 1.4695 -0.1149 1.5280 -1.78 8.22 -1.52 5.23
4 1.3724 1.4048 -0.0911 1.4943 -1.43 7.14 -1.55 3.63
5 1.3736 1.3425 -0.1216 1.5276 -1.79 7.14 -1.31 5.43
6 1.3724 1.3120 -0.1043 1.5017 -1.43 7.86 -1.29 4.42

Average 1.3674 1.4549 -0.1060 1.5134 -1.61 8.04 -1.46 4.52
Std 0.0071 0.1315 0.0121 0.0149 0.19 0.81 0.15 0.73

Table 4-10 Gradient scale factors and angular rate error ranges for the z axis.

Z Axis Sensor Start 
Value

Gradient Intersect Angular Rate 
Error without

Angular Rate 
Error with

Correction Correction
Gyro Temp Min Max Min Max

V V V V deg/s deg/s deg/s deg/s
Day 1 1 1.1917 1.6294 -0.0672 1.2987 0.00 5.32 -0.38 1.41

2 1.1960 1.5434 -0.0659 1.2965 0.00 5.68 -0.33 0.66
3 1.1990 1.5299 -0.0630 1.2930 0.00 4.97 -0.35 1.37
4 1.2015 1.4640 -0.0653 1.2951 0.00 5.32 -0.28 1.09
5 1.2033 1.4286 -0.0731 1.3055 0.00 5.32 -0.34 1.33
6 1.2033 1.4579 -0.0702 1.3033 0.00 4.61 -0.46 1.40

Average 1.1991 1.5089 -0.0674 1.2987 0.00 5.20 -0.36 1.21
Std 0.0046 0.0738 0.0037 0.0048 0.00 0.37 0.06 0.29

Day 2 1 1.1868 1.6886 -0.0573 1.2818 0.00 6.03 -0.33 1.19
2 1.1935 1.5635 -0.0641 1.2915 0.00 5.68 -0.33 1.33
3 1.1978 1.5031 -0.0722 1.3030 0.00 5.33 -0.52 1.89
4 1.2027 1.4359 -0.0567 1.2827 0.00 5.32 -0.49 0.78
5 1.2051 1.3687 -0.0724 1.3017 0.00 4.61 -0.44 1.45
6 1.2057 1.3339 -0.0626 1.2874 0.00 5.68 -0.40 1.06

Average 1.1986 1.4823 -0.0642 1.2914 0.00 5.44 -0.42 1.28
Std 0.0074 0.1316 0.0069 0.0092 0.00 0.49 0.08 0.38
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The second experiment in this section was to investigate the response of the sensors 

whilst in different but controlled temperature environments. The chosen temperatures 

were 12.85°C, 22.97°C and 30.20°C. The results of six out of the eight trials 

performed under each temperature condition are displayed in tables 4-11 to 4-13. The 

first trial was discarded since it was likely to contain variations due to the initial trial, 

after this the first six trials were selected therefore discarding the last trial also.

During all trials it was noted that the x and z axes gyroscopes drifted up and the y 

gyroscope drifted down with respect to time regardless of the temperature 

environment. The y gyroscope sensor used in this experiment was a different sensor 

than used in the previous section. The sensor change was required due to the lid of the 

sensor becoming unstuck. It was found that the response of several gyroscope sensors 

of the same manufacturing part displayed both increasing and decreasing drifting 

outputs. The point demonstrated in this experiment was not dependent on whether the 

drifting output increases or decreases. The initial output value of each gyroscope 

varied with respect to the ambient temperature. The x and z axes outputs increased as 

the ambient temperature increased, while the y axis output decreased as the ambient 

temperature increased. Within the series of six trials for each temperature condition 

there was also a variation in the initial gyroscope outputs. For example, the variation 

was greatest in the y axis gyroscope, 10.37 mV compared to 3.05 mV and 4.27 mV 

for x and z, respectively. If the initial gyroscope output was recorded and assigned to 

be the zero bias then the accumulated angular rate error was as large as 8.60s‘', 

17.5°s'1 and 4.3°s'] for x, y and z axes gyroscopes respectively. The average angular 

rate errors for each temperature condition increased as the ambient temperature 

increased. The average gradients for each axis changed with respect to the ambient 

temperature. The x and z axis gyroscopes average gradient value decreased as the 

ambient temperature increased, while the y axis value increased. When the straight 

line approximation was applied to the data sets to predict the zero bias values the 

range of angular rate error was somewhat reduced.
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Table 4-11 Gradient scale factors and angular rate errors for the x axis under varying temperature environments.

X Axis Temperature Sensor Start Value Gradient intersect Error without Correction Error with Correction
Gyro Temp Min Max Min Max

°C V V V V deg/s deg/s deg/s deg/s
Low Temperature 1 12.61 1.3034 2.4939 -0.0747 1.4864 0.00 4.81 -0.85 1.88

2 13.05 1.3046 2.4542 -0.0837 1.5057 -0.34 5.16 -0.73 2.42
3 12.97 1.3065 2.4444 -0.0766 1.4899 -0.34 4.13 -0.81 2.13
4 12.91 1.3059 2.4438 -0.0774 1.4920 -0.34 4.47 -0.72 1.75
5 12.83 1.3053 2.4640 -0.0748 1.4860 -0.34 4.47 -0.71 1.95
6 12.75 1.3053 2.4725 -0.0731 1.4823 -0.34 4.13 -0.66 2.08

Average 12.85 1.3051 2.4621 -0.0767 1.4904 -0.29 4.53 -0.74 2.04
Std 0.16 0.0011 0.0191 0.0037 0.0082

Room Temperature 1 22.97 1.3669 1.3645 -0.1060 1.5112 0.00 5.50 -0.65 0.69
2 22.99 1.3663 1.3950 -0.1075 1.5123 -0.34 8.59 -0.75 3.54
3 22.97 1.3651 1.4023 -0.1100 1.5152 -0.34 8.59 -0.78 3.40
4 22.98 1.3657 1.4243 -0.1086 1.5130 -0.34 5.84 -0.75 2.26
5 22.96 1.3651 1.3919 -0.1128 1.5185 -0.34 6.19 -0.68 2.00
6 22.97 1.3669 1.3462 -0.1207 1.5284 0.00 5.16 -0.49 0.63

Average 22.97 1.3660 1.3874 -0.1109 1.5164 -0.23 6.64 -0.68 2.09
Std 0.01 0.0008 0.0279 0.0053 0.0064

High Temperature 1 30.21 1.4176 0.6728 -0.1195 1.4947 -0.34 8.25 -0.96 1.85
2 30.19 1.4182 0.6667 -0.1204 1.4946 0.00 7.56 -0.91 2.21
3 30.21 1.4170 0.6630 -0.1213 1.4945 0.00 8.25 -0.73 1.65
4 30.21 1.4176 0.6569 -0.1241 1.4954 0.00 7.56 -1.04 2.04
5 30.18 1.4182 0.6477 -0.1241 1.4956 -0.34 6.87 -1.03 1.67
6 30.18 1.4164 0.6661 -0.1232 1.4950 0.00 7.90 -0.86 1.93

Average 30.20 1.4175 0.6622 -0.1221 1.4950 -0.11 7.73 -0.92 1.89
Std 0.02 0.0007 0.0088 0.0020 0.0005
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Table 4-12 Gradient scale factors and angular rate errors for the y axis under varying temperature environments.

Y Axis Temperature Sensor Start Value Gradient Intersect Error without Correction Error with Correction
Gyro Temp Min Max Min Max

°C V V V V deg/s deg/s deg/s deg/s
Low Temperature 1 12.61 2.2485 2.4762 0.1841 1.7950 -16.07 0.00 -1.34 0.74

2 13.05 2.2405 2.4347 0.1722 1.8231 -16.79 0.00 -1.37 3.82
3 12.97 2.2393 2.4225 0.1249 1.9371 -12.15 0.00 -2.18 3.09
4 12.91 2.2399 2.4231 0.1402 1.9025 -11.43 0.00 -2.47 2.87
5 12.83 2.2418 2.4438 0.1394 1.9223 -11.43 0.00 -2.65 2.80
6 12.75 2.2442 2.4524 0.1360 1.9126 -12.50 0.00 -2.29 3.01

Average 12.85 2.2424 2.4421 0.1495 1.8821 -13.40 0.00 -2.05 2.72
Std 0.16 0.0035 0.0204 0.0232 0.0584
Room Temperature 1 22.97 2.0763 1.3651 0.2097 1.7896 -14.29 0.00 -0.64 0.60

2 22.99 2.0806 1.3981 0.2090 1.7924 -16.44 0.00 -0.57 0.74
3 22.97 2.0843 1.4066 0.2132 1.7881 -17.51 0.00 -0.72 0.65
4 22.98 2.0763 1.4005 0.2145 1.7872 -16.79 0.36 -0.68 0.76
5 22.96 2.0830 1.3938 0.2160 1.7854 -16.07 0.36 -1.97 0.63
6 22.97 2.0763 1.3431 0.2077 1.7975 -12.14 0.00 -0.80 0.64

Average 22.97 2.0795 1.3845 0.2117 1.7900 -15.54 0.12 -0.89 0.67
Std 0.01 0.0037 0.0249 0.0033 0.0044
High Temperature 1 30.21 1.9457 0.6917 0.1871 1.8250 -17.50 0.00 -0.73 0.69

2 30.19 1.9469 0.6807 0.1866 1.8270 -16.79 0.00 -0.88 0.89
3 30.21 1.9481 0.6764 0.1915 1.8264 -16.79 0.00 -0.86 0.81
4 30.21 1.9475 0.6752 0.2002 1.8215 -17.15 0.00 -0.77 0.88
5 30.18 1.9518 0.6630 0.1931 1.8255 -15.00 0.00 -0.81 0.77
6 30.18 1.9560 0.6807 0.1955 1.8244 -16.79 0.00 -0.83 0.85

Average
Std

30.20
0.02

1.9493 0.6780 0.1923 1.8249 -16.67 0.00
0.0039 0.0094 0.0052 0.0019

-0.81 0.82
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Table 4-13 Gradient scale factors and angular rate errors for the z axis under varying temperature environments.

Z Axis Temperature Sensor Start Value Gradient Intersect Error without Correction Error with Correction
Gyro Temp Min Max Min Max

°C V V V V deg/s deg/s deg/s deg/s
Low Temperature 1 12.61 1.1935 2.4841 -0.0290 1.2663 0.00 3.19 -0.78 0.46

2 13.05 1.1948 2.3932 -0.0226 1.2502 0.00 3.19 -0.90 0.64
3 12.97 1.1954 2.3852 -0.0218 1.2487 0.00 3.19 -0.85 0.66
4 12.91 1.1954 2.3846 -0.0215 1.2481 0.00 3.19 -0.88 0.60
5 12.83 1.1954 2.4011 -0.0175 1.2391 0.00 3.19 -1.12 0.59
6 12.75 1.1954 2.2161 -0.0144 1.2288 0.00 3.19 -0.97 0.62

Average 12.85 1.1950 2.3774 -0.0211 1.2468 0.00 3.19 -0.92 0.59
Std 0.16 0.0007 0.0876 0.0050 0.0125

Room Temperature 1 22.97 1.2314 1.3877 -0.0453 1.2942 0.00 3.20 -0.33 0.53
2 22.99 1.2320 1.4182 -0.0403 1.2888 0.00 3.20 -0.33 0.31
3 22.97 1.2320 1.4206 -0.0395 1.2884 0.00 3.55 -0.44 0.38
4 22.98 1.2332 1.4243 -0.0374 1.2862 0.00 3.20 -0.40 0.38
5 22.96 1.2338 1.4097 -0.0359 1.2846 0.00 2.84 -0.33 0.30
6 22.97 1.2357 1.3614 -0.0364 1.2853 0.00 4.26 -0.35 2.45

Average 22.97 1.2330 1.4036 -0.0391 1.2879 0.00 3.37 -0.36 0.72
Std 0.01 0.0016 0.0245 0.0035 0.0035

High Temperature 1 30.21 1.2534 0.7149 -0.0448 1.2851 0.00 4.26 -0.55 0.54
2 30.19 1.2552 0.7076 -0.0430 1.2849 0.00 3.55 -0.49 0.56
3 30.21 1.2558 0.6990 -0.0411 1.2845 0.00 3.54 -0.53 0.51
4 30.21 1.2570 0.6978 -0.0392 1.2837 -0.35 3.20 -0.61 0.56
5 30.18 1.2576 0.6874 -0.0407 1.2851 0.00 3.19 -0.59 0.48
6 30.18 1.2570 0.7027 -0.0410 1.2856 0.00 3.55 -0.57 0.73

Average 30.20 1.2560 0.7016 -0.0417 1.2848 -0.06 3.55 -0.56 0.56
Std 0.02 0.0016 0.0093 0.0020 0.0007



4.4.5 Discussion

If the initial gyroscope output was assigned to the zero bias value the accumulated 

angular rate error range was between 5 to 8 °s_1 for all axes. Although the relationship 

between the two variables was only moderately linear, the implementation of a rather 

simplistic first order linear approximation predicted'a zero bias output at each time 

step that reduced the angular rate error significantly. Similar experiments conducted 

under various temperature conditions suggested that the same relationship holds yet 

there was a visible variation in gradient with respect to the change in temperature and 

a less obvious explanation of the variation in the intersects. This variation in gradient 

and intercept would introduce errors if an average set of parameters were 

implemented regardless of the ambient temperature. The least linearity section of all 

axes for all trials was from as little as a few seconds to 60 s. This suggested a further 

reduction in the angular rate errors was possible by stipulating a maximum boot up 

time period of 60 s.

4.5 Summary
An accurate, practical and repeatable calibration method was achieved. Calibration 

parameters were verified along with the processing steps required to produce the 

desired outputs. The three positive accelerations and rotation directions were defined 

along with the modifications needed to comply with the NED axes arrangement. The 

gyroscopes and accelerometer calibration parameters were verified along with the 

methodology and both types of sensor provided accurate orientation angles. The last 

two processing steps: gravitational compensation and rotation of the accelerations 

from body to earth coordinates were valid. Finally the implemented approximation 

technique to predict the drifting zero bias value for each gyroscope proved successful 

in minimising the angular rate error.
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Chapter 5 Results 2: Timing Experiments
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5.1 Introduction

The main purpose of this chapter was to evaluate the performance of the inertial 

sensor system with respect to a number of factors. Firstly, the potential of the inertial 

system to identify certain characteristic events that occurred within the experiments 

was demonstrated. Subsequently, the ability of the inertial sensor system to measure a 

periodic movement and finally, the ability to describe both rapid and slow changes in 

acceleration was established. However, in order to draw a comparison between the 

inertial sensor system and the performance of another measurement system such as 

the force plate the outputs from both systems needed to be synchronised. The first 

section of this chapter describes the synchronisation method utilised. This is then 

followed by the outline of the experiments conducted to evaluate the performance of 

the inertial sensor system.

5.2 Drop Tests

5.2.1 Introduction

The purpose of the drop test experiment was to identify the time delay, if any, 

between the force plate and inertial sensor acquisition systems. This was achieved by 

selecting a specific event which was easily identified on both systems. The event 

chosen was a sharp single vertical impact of a light, rigid object such as a metal rod, 

onto the force plate. The events were recorded on both systems and the calculated 

time difference averaged over all trials was used to synchronise the systems in 

subsequent experiments. Once the systems were synchronised comparisons of the 

output responses could be made.

5.2.2 Apparatus

The apparatus for the drop test experiment included the force plate and inertial sensor 

acquisition systems, the inertial sensor module, a metal rod and adhesive tape. The
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force plate used was a Kistler 9287BA. The plate measured force in three orthogonal 

axes and was controlled remotely by a PC through the software package, Bioware 

version 3.2. The metal rod was light, rigid and hollow with a square cross section. The 

inertial sensor module was attached securely to one flat side of metal rod by adhesive 

tape.

5.2.3 Method

The inertial sensor module was attached to the metal rod so that the Z axis was 

parallel with the edge of the rod and the sensitive axis pointing upwards. The inertial 

sensor system was set up exactly as detailed in the experiments in chapter 4. The force 

plate system was permanently set up in a walkway in a biomechanics laboratory and 

connected to a PC. The rod was dropped from waist height, where the bottom of the 

rod was approximately 400 mm above the force plate. The rod made five clearly 

defined contacts with the force plate within in each trial. It was assumed that the rod 

would impact the force plate in a vertical orientation. Each strike of the force plate 

was a sharp, clean single contact. Data was collected for ten and twelve seconds at a 

sampling rate of 1000 Hz by the force plate and inertial sensor acquisition systems 

respectively. The inertial sensor system was started fractionally before the force plate 

system. The two systems were activated by manual instruction. A trigger pulse sent 

from the force plate system was recorded on a channel of the data logger within the 

inertial sensor system. The trigger pulse indicated the start of the data acquisition of 

the force plate system by increasing to 1.6 V from the nominal 0 V value. The trial 

was repeated ten times.

It was proposed that each contact with the force plate made by the rod would be easily 

identified in both data acquisition systems. The force plate indicated a point of contact 

by a rapid change in measured force in the vertical direction. The inertial sensor 

system utilized the vertical acceleration component, z, to indicate the point of contact. 

When the rod was held in a stationary position the magnitude of the measured 

acceleration would be equal to the gravitational acceleration. Once the rod was 

dropped, the accelerometer would experience free fall as it accelerated towards the
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ground. Then upon contact with the force plate, a change in acceleration due to the 

reaction force of the impact should be seen.
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5.2.4 Results

A typical response o f a single contact from both systems is displayed in figure 5-1. In 

this experiment it was assumed that the inertial sensor system remained in a vertical 

position and so the true vertical acceleration was measured at all times. The figure 

demonstrated the ease o f identifying the point o f contact in both systems. At the 

beginning o f each drop the rod was held at arms length over the force plate. In this 

stationary position the vertical accelerometer experienced zero acceleration. Once the 

rod was dropped the vertical accelerometer was instantly in free-fall and therefore the 

acceleration experienced decreased towards -1 g. When the rod made contact with the 

force plate, the force plate system recorded a large reaction force in the upward 

direction (positive) and the inertial sensor system also recorded a large positive 

vertical acceleration. The rod was caught and resumed a stationary position shortly 

after one impact. Therefore the vertical acceleration returned to experiencing zero 

acceleration.
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Figure 5-1 A snap shot of one contact by the rod on the force plate.
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The timings of the points of contact identified in the vertical acceleration component 

were recorded. The time point at which the trigger pulse was sent from the force plate 

indicating the start of its data collection was subtracted from these timings. The 

resultant timings were then compared to the timings of the points of contact identified 

in the force plate system. The average time differences for all contacts within each 

trial and for all trials were calculated. The overall averaged time delay between the 

systems was found to be 15 ms with a standard deviation of 1 ms. The results from all 

ten trials are displayed in table 5-1.
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Table 5-1 The drop test experimental results from all ten trials.

Trigger
Pulse

Accelerometer
Impact

(recorded)

Accelerometer
Impact

(recorded-trigger)

Force Plate 
Impact

Delay

s s s s ms
Trial 1 1 3.404 4.611 1.2081 1.192 16

2 3.404 6.532 3.129 3.114 15
3 3.404 8.305 4.902 4.887 15
4 3.404 10.122 6.718 6.703 15
5 3.404 11.816 8.413 8.397 16

Average 15
Std 0

Trial 2 1 1.698 3.214 1.516 1.503 13
2 1.698 4.835 3.137 3.123 14
3 1.698 6.587 4.889 4.876 13
4 1.698 8.463 6.765 6.751 14
5 1.698 10.176 8.477 8.464 13

Average 13
Std 1

Trial 3 1 1.659 2.811 1.153 1.138 15
2 1.659 4.253 2.595 2.579 16
3 1.659 5.808 4.150 4.136 14
4 1.659 7.431 5.772 5.758 14
5 1.659 8.961 7.302 7.287 15

Average 15
Std 1

Trial 4 1 1.434 2.561 1.127 1.112 15
2 1.434 4.095 2.661 2.645 16
3 1.434 5.554 4.120 4.106 14
4 1.434 7.130 5.696 5.680 16
5 1.434 8.652 7.218 7.202 16

Average 15
Std 1

Trial 5 1 1.519 2.578 1.059 1.044 15
2 1.519 4.145 2.625 2.610 15
3 1.519 5.723 4.192 4.176 16
4 1.519 7.163 5.644 5.629 15
5 1.519 8.842 7.322 7.306 16

Average 15
Std 1
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Table 5-1 continued.

Trigger Accelerometer Accelerometer Force Plate Delay
Pulse Impact

(recorded)
Impact

(recorded-trigger)
Impact

s s s s ms
Trial 6 1 1.380 2.465 1.0861 1.069 17

2 1.380 3.937 2.558 2.541 17
3 1.380 5.551 4.171 4.157 14
4 1.380 7.443 6.064 6.048 16
5 1.380 9.087 7.708 7.692 16

Average 16
Std 1

Trial 7 1 1.427 2.566 1.140 1.127 13
2 1.427 4.293 2.867 2.852 15
3 1.427 5.997 4.571 4.556 15
4 1.427 7.625 6.198 6.183 15
5 1.427 9.277 7.850 7.834 16

Average 15
Std 1

Trial 8 1 1.441 2.563 1.122 1.108 14
2 1.441 4.128 2.687 2.671 16
3 1.441 5.793 4.352 4.335 17
4 1.441 7.490 6.049 6.033 16
5 1.441 9.120 7.679 7.663 16

Average 16
Std 1

Trial 9 1 1.608 2.816 1.208 1.192 16
2 1.608 4.458 2.850 2.834 16
3 1.608 6.225 4.617 4.602 15
4 1.608 7.984 6.375 6.360 15
5 1.608 9.737 8.129 8.114 15

Average 15
Std 0

Trial 10 1 1.408 2.560 1.152 1.136 16
2 1.408 4.374 2.966 2.951 15
3 1.408 6.135 4.727 4.713 14
4 1.408 8.046 6.638 6.623 15
5 1.408 9.655 8.247 8.231 16

Average 15
Std 1

Overall Average 15
Overall Std 1

'There appears to be a calculation error. This is not the case. The calculation is done in Excel and uses more significant figures 
than are shown.
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5.2.5 Discussion

All impacts on the force plate were very visible and easily identified to the nearest 

time sample on both systems. The averaged time delay between the systems was 

found to be 15 ms with a standard deviation of 1 ms for 50 samples.
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5.3 Vertical Bounce and Counter Move Jump Trials

5.3.1 Introduction

This experiment was divided into two parts. The first part involved subjecting the 

inertial sensor module to a series of vertical bounce trials conducted on a force plate. 

At the point of contact of each bounce the subject landed with straight legs and a fast 

flapping action of the feet before take off. These actions produced rapid acceleration 

changes which should help to clearly identify points of contact and take off. The 

timings of these events identified by both the force plate and inertial sensor systems 

were compared. The second part of the experiment comprised of a series of counter

movement jumps [209]. These jumps were performed with a squat prior to take off 

and also as part of the landing. This type of movement produced slow acceleration 

changes and a more complex output pattern than the vertical bounce jumps. The 

response from the inertial sensor system was compared to vertical ground reaction 

force (GRF) and the similarity between them was quantified.

5.3.2 Method

The inertial sensor module was attached to a weightlifting belt as described in 

chapter 3. This belt was secured around the lumbar region of the subject. The inertial 

sensor module was therefore positioned in the closest possible way to the subject’s 

centre of mass whilst in a standing position. The inertial sensor system was set up as 

detailed in the chapter 4. The force plate system was set up and activated as detailed 

in the previous experiment of this chapter. The inertial sensor system was activated 

first, by manual instruction, to allow the trigger pulse to be recorded. The results from 

the drop test experiment showed that an average discrepancy of 15 ms (to the nearest 

ms) existed between the two systems. This value and the point at which the trigger 

pulse increased from the nominal 0 V was used to synchronise the two data sets from 

the two systems. The subject executed eight trials with ten jumps in each trial for both 

types of jump. A period of approximately five minutes was given to the subject in
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between trials to allow recovery. The vertical bounce jumps were conducted in a way 

which induced rapid changes in acceleration at the point of contact. The counter 

movement jumps were performed in a way which induced slower changes in 

accelerations about this point and a more descriptive response during the contact 

phase. All jumps were repeated in the same manner and to the subject’s best ability. 

The data was recorded on both acquisition systems at 1000 Hz for 15 and 20 s for the 

force plate and inertial sensor systems, respectively. The inertial sensor system 

outputs were processed offline following the steps outlined in chapter 4. The output of 

interest for this experiment was the vertical acceleration component, z. The 

acceleration in this direction was limited to a range of ± 3 g. From the ten jumps in 

each trial, eight were selected for analysis discarding the first and last jumps. The first 

and last jumps were discarded to eliminate any features introduced into the responses 

from starting and finishing each trial.

For the vertical bounce jump experiments, the vertical GRF produced by the force 

plate was analysed to determine the timings of the points of contact and take-off. The 

events were indicated by a change in force above or below the average force output 

during the non contact periods plus two standard deviations. It was assumed that these 

points would provide accurate timing information that would be used as a reference. 

The vertical acceleration component was analysed about these reference points for 

any repeating characteristic features such as local minimum or maximum points, 

similar gradients or axis crossing points. The method used to identify either a local 

maximum or minimum point was a simple subtraction sum. The previous acceleration 

value was subtracted from the current value at each time sample. This subtraction sum 

was applied to the whole acceleration data set. The analysis of the resultant from the 

subtraction sum began at the first positive acceleration peak of the contact phase 

(point B in figure 5-3) and worked backwards or forwards for the points of contact 

and take off, respectively. All of the changes in polarity were recorded. Comparisons 

o f the timings of the events of contact and take off for the vertical acceleration 

component and the vertical GRF were made. Also, the frequency of the contact points 

(i.e. the time period from contact to contact) for both systems were deduced and 

compared.
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For the counter movement jumps, the response of the vertical GRF was compared to 

the response of the vertical acceleration component during periods of contact. In order 

to quantify the likeness of the two responses the vertical GRF was converted into an 

acceleration. This was achieved by dividing it by the subject’s mass. The subject’s 

mass was measured by taking the average of the vertical GRF output over all the data 

in each trial. The overall mass was an average of the masses from each trial. This 

method provides the best estimate since the subject began and ended the experiment 

at rest resulting in a net impulse over each trial equal to zero. The overall average 

weight from the eight vertical bounce trials was 807.72 N and the equivalent mass 

was 82.34 kg. Analogue filtering was implemented at the output of the accelerometer 

prior to digitization to increase the noise performance of the sensor. As a consequence 

the filtering limited the transient performance resulting in the ‘ringing’ of the output 

when presented with a step change at the input. To reduce this effect a running 

average filter was implemented of a capture length of 100 samples. The filter length 

was determined empirically as the best compromise between noise and transient 

performance. The filter reduced the maximum signal bandwidth from 500 to 5 Hz. 

The similarity of the responses was quantified by calculating the average root mean 

squared (RMS) error only during the periods of contact for each trial. This error was 

also computed as a percentage of the measured acceleration range. The measured 

acceleration range was found by finding the maximum and minimum recorded 

acceleration within each trial.

It was hypothesised that the vertical GRF response for both types of jump could be 

categorised into several distinctive parts. These parts were a period of non-contact 

(i.e. approximately 0 N) when the subject is in the air, followed by a contact phase 

and finally the force measurement decreases until the level required to indicate the 

non-contact period (~0 N). The response of the vertical GRF during the contact phase 

would be different for the two types of jump. The contact phase for a vertical bounce 

jump was assumed to consist of a steep positive gradient forming a peak at the initial 

point o f contact and then a positive increase in force prior to take off. The contact 

phase for a counter movement jump was assumed to produce lower force peaks due to 

the softer landing occurring by executing the squatting action. It was hypothesised 

that the response of inertial sensor system would ideally mirror that of the force plate 

for both types of jump since acceleration is proportional to force. Thus, it was
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assumed that the acceleration component would consistently produce prominent 

features at certain timing points around the points of contact and take off and would 

be capable of describing both slow and rapid accelerations.
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5.3.3 Results

The first section o f the experiment involved a series o f vertical bounce jum ps. The 

response o f the vertical acceleration component showed a periodic output which 

compared favourably to the response from the force plate for all trials. An example of 

the responses from both systems during this experiment is displayed in figure 5-2 and 

an expanded version shown in figure 5-3. The vertical acceleration component clearly 

showed periods o f contact and non contact. The period o f contact was illustrated with 

a positive peak limited to 3 g by the capture range o f the sensor. The period o f non- 

contact was illustrated initially by a ringing effect i.e. damped response but this 

settled at around -1 g (gravitational acceleration) after a short period.

8 0 0 0

— Z Acceleration 
Force Plate

7 0 0 0

6 0 0 0

5 0 0 0

4 0 0 0

3 0 0 0

2000

1000

-  -1000

-  -2000

-1- -3 0 0 0

T i m e  (s )

Figure 5-2 The responses from both systems during vertical bounce trial 1.
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Figure 5-3 The expanded responses from both systems during vertical bounce 

trial 1.

The vertical GRF clearly identified the timings of the points o f contact and take off. 

An example o f the vertical GRF response identifying these points is displayed in 

figure 5-4 and the timings for all jum ps and all trials are displayed in table 5-2.



170

80

6 0

_  20 
z
O nO o
°  1 LL

-20

- 4 0

- 6 0

- 8 0

C .5  1 0 .6  1 0 .7  1 0 .8  1 0 .9  11 11

Time (s)

Figure 5-4 An example of the vertical GRF response showing how clearly the 

points of contact and take off were identified.

The evaluation o f the vertical acceleration component about the actual points of 

contact showed a minimum point as the most prominent feature (point A in 

figure 5-3). This was followed by a steep increase in acceleration to value o f more 

than 3 g. This minimum point occurred consistently after the actual point o f  contact at 

an average 8 ms across all trials. The evaluation o f the vertical acceleration 

com ponent about the actual points o f take-off showed several prominent features. 

These were a steep negative gradient, followed by a minimum peak and then an 

oscillating output which eventually settled near to -1 g. However, not one o f these 

listed features demonstrated the potential to provide a means o f identifying the point 

o f take o ff clearly, accurately and repeatedly. The frequencies deduced from both 

systems, when compared, showed extremely similar and consistent values with an 

average difference o f 2 mHz across all trials. The timings for the points o f contact and 

the frequencies deduced from both systems for all jum ps are displayed in table 5-2.
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Table 5-2 Timings of the contact points and contact frequencies deduced from 

the vertical acceleration component and the vertical GRF for the ten 

trials.

Z Accel
Contact Point 
Force Plate Difference

Contact to Contact Frequencies 
Accelerometer Force Plate Difference

Time
s

Time
s

Time
ms

Time
s

Freq
Hz

Time
s

Freq
Kz

Freq
mHz

Trial 1 2 8.854 8.843 11
3 9.447 9.436 11 0.593 1.686 0.593 1.686 0
4 10.077 10.068 9 0.630 1.587 0.632 1.582 5
5 10.714 10.705 9 0.637 1.570 0.637 1.570 1
6 11.355 11.354 1 0.641 1.560 0.649 1.541 19
7 11.996 11.985 11 0.641 1.560 0.631 1.584 -25
8 12.649 12.643 6 0.653 1.531 0.658 1.520 11
9 13.327 13.320 7 0.678 1.475 0.677 1.477 -2

Average 8 0.639 1.567 0.640 1.566 1
Std 3 0.026 0.064 0.026 0.065 14

Trial 2 2 10.171 10.158 13
3 10.779 10.767 12 0.608 1.644 0.609 1.641 3
4 11.401 11.390 11 0.622 1.608 0.623 1.605 3
5 12.026 12.020 7 0.625 1.600 0.629 1.590 10
6 12.611 12.629 -18 0.585 1.710 0.609 1.641 69
7 13.281 13.270 11 0.669 1.494 0.641 1.560 -67
8 13.905 13.895 10 0.624 1.602 0.625 1.600 3
9 14.535 14.524 11 0.630 1.587 0.629 1.589 -2

Average 7 0.623 1.606 0.624 1.604 3
Std 10 0.025 0.065 0.011 0.029 39

Trial 3 2 9.398 9.373 26
3 10.638 10.627 11 1.240 0.807 1.254 0.797 9
4 11.268 11.253 15 0.630 1.587 0.626 1.597 -10
5 11.897 11.887 10 0.629 1.591 0.634 1.578 12
6 12.548 12.537 11 0.651 1.535 0.650 1.538 -2
7 13.168 13.153 15 0.620 1.613 0.616 1.623 -10
8 13.807 13.812 -5 0.639 1.566 0.658 1.519 47
9 14.468 14.460 8 0.661 1.513 0.648 1.543 -30

Average 11 0.724 1.459 0.727 1.456 2
Std 8 0.228 0.290 0.233 0.293 24

Trial 4 2 9.471 9.461 11
3 10.094 10.083 11 0.623 1.605 0.623 1.606 0
4 10.715 10.705 11 0.621 1.610 0.621 1.610 0
5 11.340 11.335 5 0.625 1.600 0.631 1.585 15
6 11.975 11.973 2 0.635 1.576 0.638 1.568 7
7 12.618 12.614 4 0.643 1.556 0.641 1.560 -5
8 13.255 13.257 -2 0.637 1.570 0.643 1.556 14
9 13.912 13.901 11 0.657 1.521 0.644 1.552 -30

Average 7 0.634 1.577 0.634 1.577 0
Std 5 0.013 0.032 0.009 0.024 15
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Table 5-2 continued.

Z Accel
Contact Point 
Force Plate Difference

Contact to Contact Frequencies 
Accelerometer Force Plate Difference

Time
s

Time
s

Time
ms

Time
s

Freq
Hz

Time
s

Freq
Hz

Freq
mHz

Trial 5 2 9.154 9.145 9
3 9.772 9.763 9 0.618 1.618 0.618 1.618 0
4 10.381 10.375 6 0.609 1.642 0.612 1.634 8
5 10.995 10.986 9 0.614 1.629 0.611 1.637 -8
6 11.615 11.606 9 0.620 1.613 0.620 1.612 0
7 12.236 12.229 7 0.621 1.610 0.623 1.605 5
8 12.849 12.842 7 0.613 1.631 0.613 1.631 0
9 13.500 13.491 9 0.651 1.537 0.649 1.541 -5

Average 8 0.621 1.611 0.621 1.611 0
Std 1 0.014 0.035 0.013 0.033 5

Trial 6 2 8.773 8.764 9
3 9.356 9.343 13 0.583 1.714 0.580 1.726 -12
4 9.949 9.939 11 0.593 1.686 0.595 1.680 6
5 10.556 10.548 8 0.606 1.649 0.609 1.641 8
6 11.164 11.161 3 0.608 1.645 0.613 1.631 13
7 12.417 12.415 2 1.253 0.798 1.254 0.797 1
8 13.059 13.050 9 0.642 1.558 0.635 1.575 -17
9 13.682 13.681 1 0.623 1.606 0.631 1.586 20

Average 7 0.701 1.522 0.702 1.520 3
Std 4 0.244 0.323 0.244 0.323 13

Trial 7 2 8.387 8.375 12
3 9.006 8.995 11 0.619 1.615 0.620 1.612 3
4 9.631 9.621 10 0.625 1.599 0.626 1.597 3
5 10.266 10.251 15 0.635 1.575 0.630 1.587 -12
6 10.880 10.875 5 0.614 1.628 0.624 1.603 26
7 11.522 11.509 14 0.642 1.557 0.633 1.579 -22
8 12.133 12.128 5 0.610 1.638 0.619 1.615 23
9 12.769 12.757 13 0.637 1.570 0.629 1.590 -20

Average 10 0.626 1.598 0.626 1.598 0
Std 4 0.012 0.031 0.005 0.013 19

Trial 8 2 9.380 9.368 12
3 9.948 9.940 8 0.568 1.760 0.572 1.748 12
4 10.562 10.556 6 0.614 1.628 0.616 1.623 5
5 11.176 11.166 11 0.614 1.628 0.609 1.642 -13
6 11.775 11.764 11 0.599 1.670 0.599 1.670 0
7 12.381 12.372 10 0.606 1.649 0.607 1.647 3
8 12.990 12.989 1 0.608 1.644 0.617 1.621 24
9 13.620 13.617 3 0.630 1.587 0.628 1.592 -5

Average 8 0.606 1.653 0.607 1.649 4
Std 4 0.019 0.054 0.018 0.050 12

Overall Average 8 0.647 1.574 0.648 1.572 2
Overall Std 6 0.118 0.159 0.119 0.158 19
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The second section o f the experiment involved a series o f counter movement jumps. 

An example o f a typical response form both systems is displayed in figure 5-5. The 

figure clearly highlighted the close likeness o f the output responses.
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Figure 5-5 An example of the responses from both systems during counter 

movement jump trial 1.

The RMS errors, relative to the force plate, were extremely consistent at an average of 

0.305 g. This average error was computed as a percentage o f the acceleration range 

measured in this direction o f the inertial sensor system and was found to be 10.10%. 

The RMS errors, recorded acceleration ranges and error percentages for all trials are 

displayed in

table 5-3.
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Table 5-3 Results from the analysis of the likeness of the responses from the force 

plate and the inertial sensor system.

RMS Vertical
Trial error Acceleration range % error

la)_ _ _ _ _ _ _ ial
1 0.295 3.241 9.12
2 0.334 3.129 10.68
3 0.359 3.086 11.65
4 0.294 3.043 9.66
5 0.300 2.861 10.50
6 0.288 3.020 9.53
7 0.267 2.820 9.46
8 0.305 2.999 10.18

Average 0.305 3.025 10.10
Std 0.029 0.137 0.83
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5.3.4 Discussion

The point of contact in the vertical acceleration component of the vertical bounce 

jumps was identified by finding the minimum peak prior to the steep positive gradient 

caused by the impact. The average time difference found between the minimum peak 

and the force plate point of contact was found to be 8 ms. This result was lower than a 

delay of 10ms reported by Aminian et al. [109], and 65 ms reported by Heiden and 

Burnett [84], for walking and running, respectively. The point of take-off was much 

harder to identify and required further investigation to explore more complex methods 

of feature detection. The frequency of the contact points deduced from the vertical 

acceleration response compared well to those from the force plate. This result 

demonstrated the ability of the inertial sensor system to measure periodic movements 

and provide timing information between identified events. This information in the 

context of this thesis could be used to calculate the parameter stride frequency. The 

counter movement jump experiments demonstrated the ability of the inertial sensor 

system to produce a more descriptive acceleration response. The accuracy and 

reliability of the force measurements depend on the criterion specification of the force 

platform [146], The specification of the force plate is outlined on the Kistler website 

[210] and have been regarded suitable for the use in sports biomechanics [146]. 

Bartlett [146] stated that Kistler was regarded as ‘generally very accurate’. Therefore 

the force measurement is generally accepted as the true measurement and has been 

used by many authors as a source for comparison [211]. The comparison of the 

acceleration output to that of the force plate produced a match with a 10.10% error 

over the measured acceleration range. Bobbert et al. [211] used positional data to 

estimate the magnitude of the vertical force during running with errors of 10%. This 

result was stated as an acceptable error to provide mechanical analysis of the landing 

phase in running.
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5.4 Summary

The time discrepancy that existed between the two data acquisition systems was 

15 ms. This time delay was used to synchronise the two systems and to enable 

comparison. The response of the vertical acceleration component, z, was shown to 

have the potential to be used to identify the points of contact. The periodicity of these 

contact points could be used to illustrate movement frequency such as stride 

frequency. However, the identification of the points of contact in subsequent 

experiments involving more complex movements is subject to further investigation. 

The response of the acceleration component showed the potential to offer the 

sensitivity to describe both rapid and slow acceleration changes and detailed 

movements. However, it was shown that the acceleration response could not identify 

the point of take-off in the scope of this thesis.
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Chapter 6 Results 3: Horizontal Velocity 
Experiments
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6.1 Introduction
This chapter comprises of two experiments. The purpose of the first experiment was 

to examine the response of the estimated horizontal velocity derived from the inertial 

sensor system and to investigate the ability of the vertical acceleration component to 

identify the point of contact from a running movement. The purpose of the second 

experiment was to investigate the sources of errors discovered in the horizontal 

velocity results from the first experiment and to demonstrate how these errors could 

be reduced. Further the experiment was designed to demonstrate the potential of the 

inertial sensor system to distinguish between different distances travelled and to 

consolidate that the periodicity of the acceleration signals could be used to determine 

step frequency.

6.2 Running Trials over a Force Plate

6.2.1 Introduction

The primary purpose of the first experiment was to investigate the ability of the 

inertial sensor system to quantitatively describe the movement of the subject whilst 

running over a force plate in a forward direction. The derived change in horizontal 

velocity component between the points of contact and take off was compared to the 

change in velocity deduced from the force plate system. The vertical ground reaction 

force was used as a reference to identify the single point of contact in each trial. 

Following the results of the previous experiment, the response of the acceleration 

component was analysed for local minimum points prior to a positive acceleration of 

a steep gradient. The periodic response of the vertical acceleration component from 

the inertial sensor system was examined for its ability to identify all of the individual 

steps taken.
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6.2.2 Method

The inertial sensor module was attached to a weightlifting belt and was secured 

around the lumbar region of the subject as described in chapter 3. It was assumed that 

the inertial sensor system’s x axis (i.e. forward acceleration) was pointing directly in 

the direction of movement. The inertial sensor and force plate systems were set up, 

initiated and synchronised as detailed in chapter 4 and 5, respectively. Since the 

inertial sensor module was tethered, the sensor acquisition system equipment was 

arranged on a trolley so that it could be wheeled in the same direction as the subject. 

The trolley was pushed a few metres to prevent the tether becoming taut and 

cumbersome to the subject. The subject ran a short distance making sure that the third 

step made contact with the force plate. Data was collected for ten and twelve seconds 

at a sampling rate of 1000 Hz for the force plate and inertial sensor acquisition 

system, respectively.

Linear momentum is a quantity associated with how a mass moves along a straight 

path.

Linear Momentum = mass x velocity 6-1

A change in momentum of an object is equal to the impulse exerted on it and known 

as the momentum-impulse theorem. Impulse is defined as a force changing with time.

h
Impulse = jFx(/)J/ 6-2

' i

where:

ti = first contact with the force plate

t2 = last contact with the force plate

Fx = force in the anterior-posterior (forward) direction

A force can change the linear momentum of a mass [49]. When the subject made 

contact with the ground, the reaction force resulting from the contact was acting on



180

the subject causing the linear momentum of the subject to change. Since the subject's 

mass remained constant the subject must therefore have experienced a change in 

velocity.

h
mass x velocityfllia] -  mass x velocity^^ = Jp'x(t)dt 6-3

<1

The points of contact and take off were identified from the response of the vertical 

GRF. The anterior-posterior force measured between these points was integrated with 

time to yield impulse in the forward direction. The integration method applied was the 

trapezium rule. The induced error from the approximation was assumed to be 

insignificant due to the large number of samples available per second. The impulse 

was set to zero at the point of contact. At the point of take off the accumulated sum 

was recorded as the net impulse during contact with the force plate. This impulse was 

then divided by the subject’s mass to yield the change in velocity. It was assumed that 

the weight of the subject deduced from the force data collected during the vertical 

bounce jump experiment could be used with the data collected from the running 

experiments. This was because the experiments were conducted consecutively and 

with the same subject. The subject’s weight was measured by taking the average over 

the whole vertical force data for each trial. The overall average weight over the eight 

vertical bounce trials was 807.72 N and the equivalent mass was 82.34 Kg.

The inertial sensor system raw outputs were processed off-line following the steps 

outlined in chapter 3. The calibration parameter, zero bias, for each of the three 

gyroscopes was computed by taking the average output over the first six seconds of 

the collection period when the subject was known to be stationary. The horizontal 

acceleration component was converted into units of ms' by multiplying by 9.81 ms' , 

(since lg  equals 9.81 ms'2) and then integrated to yield an estimated horizontal 

velocity. The integration process applied was the same method as detailed above and 

commenced at time, t=0. Any non-zero horizontal acceleration discrepancies present 

during the stationary periods would introduce errors into the estimated velocity. These 

errors would accumulate over time and the estimated velocity would drift either up or 

down. With this in mind, the relative velocity values were computed as the actual 

increase in velocity from the defined start of movement to the actual points of contact
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and take off. The start of movement was defined by visual inspection of the graph of 

the horizontal acceleration component. This acceleration component was chosen since 

it clearly defined the starting point. The relative velocity at the points of contact and 

take off (defined by the force plate system) were recorded and the difference yielded 

the change in velocity. The change in velocity found from the force plate acquisition 

system was compared to the value found from the inertial sensor system.

The response of the vertical acceleration component of the inertial sensor system was 

analysed to determine its ability to identify the point of contact. There was only one 

contact with the force plate per trial to analyse, totalling eight contacts. The point of 

contact identified from the vertical GRP from the force plate system was used as a 

reference to identify a minimum point in the acceleration component. The method 

previously used for the vertical bounce jump experiments was implemented. The 

timings of any other minimum points within each of the trials were also identified and 

were used to define the other steps taken in each trial.
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6.2.3 Results

The anterior-posterior GRF, Fx, from all trials showed similar characteristic 

responses. The responses displayed sinusoidal shaped waveforms with amplitudes of 

approximately 25% o f the subjects body weight (BW). The shape o f the response 

corresponds to the examples displayed in Nigg [49]. The majority o f the first half o f 

the horizontal component o f the ground reaction force was negative and the second 

half was positive. The derived net impulse results varied from -5.68 to 9.87 Ns. The 

anterior-posterior GRF responses from the three trials that represent the range o f the 

net impulses are displayed in figure 6-1.
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Figure 6-1 The anterior-posterior GRF responses from the three selected trials.

The horizontal acceleration component from all trials showed similar periodic 

responses. The individual steps within the acceleration component for each trial were 

outlined using the vertical acceleration component (see figure 6-7). An example of the 

response o f the acceleration component with the individual steps outlined by vertical 

grid lines is shown in figure 6-2. For the first few steps, the net horizontal acceleration 

was shown to be positive within each step. The last steps showed the opposite.
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Figure 6-2 An example of the response of the horizontal acceleration component 

with the individual steps outlined.

This pattern o f acceleration was reflected in the estimated horizontal velocity. The 

estimated velocity during the movement was similarly shaped in the form o f a 

parabola for all trials. An example o f the estimated velocity is shown in figure 6-3.
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Figure 6-3 An example of the response of the horizontal acceleration component 

and the respective estimated horizontal velocity.

Within the parabola shaped response the velocity repeatedly oscillated. These 

oscillations coincided with the outlined steps. The estimated velocity was compared to 

the single step on the force plate from each trial as displayed in figure 6-4. Following 

the point o f contact (defined by the vertical GRF) the estimated velocity reached a 

minimum point and then a maximum point shortly before take off.
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Figure 6-4 An example of the estimated horizontal velocity compared to the 

horizontal GRF.

The estimated velocity clearly displayed an element o f drift in all trials. Across all 

trials, some showed positive drifting and others showed negative drifting. The amount 

o f drift within the signal during the trial as a whole, and the likely causes, require 

further investigation. Although there was an element o f drift present, the shape o f the 

velocity response seemed to visually emerge from the signal. An example o f the worst 

case o f drift occurring over all trials is shown in figure 6-5.
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Figure 6-5 An example of the worst case of drift out of all the trials.

The derived impulses and their respective change in velocities from the anterior- 

posterior GRF are shown in table 6-1 for all trials. The relative velocity values at the 

points o f  contact and take-off and the computed change in velocities from the inertial 

sensor system are also shown in table 6-1. The change in velocity derived form the 

force measurements were proportional to the derived impulses. The average velocities 

at the points o f contact and take o ff (determined by the force plate) were 2.41 m s'1 

and 2.60 m s'1, respectively. Although the speed o f the trials was not dictated the 

relative velocity values o f both events were fairly consistent, with standard deviations 

o f  0.13 m s'1 and 0.18 m s'1, respectively. The change in velocity values across all trials 

derived from the inertial sensor system varied considerably from 0.08 to 0.27 m s'1. A 

comparison o f the change in velocities deduced from both systems presented no 

relationship. The average change in velocity value deduced from the inertial sensor 

system was seven times the magnitude o f the average change in velocity from the 

force plate system.
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Table 6-1 The change in velocity results deduced from both acquisition systems.

Experiment Event
Force Plate 

lmpulsex A Vx 
Ns ms'1

Accelerometer 
Vx AVX 

ms'1 m s'1

Difference
A Vx 
m s'1

1 Contact
Take-off 7.01 0.09

2.47
2.68 0.21 0.13

2 Contact
Take-off 6.29 0.08

2.35
2.57 0.22 0.14

3 Contact
Take-off 4.72 0.06

2.60
2.85 0.24 0.19

4 Contact
Take-off -5.68 -0.07

2.42
2.52 0.11 0.17

5 Contact
Take-off 0.19 0.00

2.15
2.23 0.08 0.08

6 Contact
Take-off 3.88 0.05

2.36
2.56 0.20 0.15

7 Contact
Take-off 0.06 0.00

2.50
2.70 0.20 0.20

8 Contact
Take-off 9.87 0.12

2.41
2.68 0.27 0.15

Average
Std

0.04
0.06

0.19
0.06

0.15
0.04
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The vertical GRF displayed two positive peaks during contact with the force plate. 

The second peak was o f greater magnitude than the first. The response o f the vertical 

acceleration component also showed two positive peaks but exhibited a ‘ringing 

effect’ shortly after the actual point o f contact. An explanation o f this effect was given 

in chapter 5, section 5.3.2. As the subject’s velocity increased the ‘ringing effect’ 

increased occurring in the same place each time. An increase in the ringing effect was 

denoted as an increase in the magnitude o f the peaks in the oscillations. There was 

little visual association between the patterns o f the force and acceleration responses, 

an example is shown in figure 6-6. In particular, the second o f the positive peaks in 

the response o f the acceleration component was in most cases o f lower magnitude 

than the first.

t  3 2 0 0

Acceleration
Force 2 4 0 0

16 00

o>

8 0 0  £

9 .2

-8 0 0

-1 6 0 0-2

-2 4 0 0
T im e (s)

Figure 6-6 An example of the comparison between the vertical GRF and 

acceleration responses.

Only one single contact on the force plate was available for analysis within each trial. 

A local minimum point in the vertical acceleration signal was identified as the 

prom inent feature at an average 15 ms after to the actual point o f  contact. The timing 

results are shown in table 6-2.
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Table 6-2 Identification of the points of contact in the responses from both 

acquisition systems and for all trials.

Experiment Force Plate 
Time(s)

Accelerometer
Time(s)

Difference 
Time (ms)

1 10.061 10.070 9
2 8.883 8.902 19
3 8.980 8.991 11
4 8.955 8.971 16
5 9.998 10.013 16
6 9.665 9.679 14
7 9.705 9.720 16
8 9.718 9.735 17

Average
Std

15
3

Using the same feature, the additional contacts that occurred before and after the 

contact with the force plate were identified in the vertical acceleration component. An 

example of the response of the vertical acceleration component and the local 

minimum points defined as possible points of contact is shown in figure 6-7. There 

was no alternative measurement of the contacts to provide a comparison to the 

periodicity of the acceleration component.



A
cc

el
er

at
io

n 
(g

)

190

4

3

2

1

0
9 .5

1

2

■3

-4

T im e (s)

Figure 6-7 An example of the response of the vertical acceleration component 

with the vertical grid lines stipulating all possible points of contact 

within the trial.
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6.2.4 Discussion

The anterior-posterior GRF displayed a sinusoidal shaped response with the majority 

of the first half a negative force and the second half a positive force. The negative and 

positive forces were associated with the reaction force pushing backwards on the 

subject i.e. braking and forwards on the subject i.e. propulsion, respectively. The 

magnitude of the anterior-posterior GRF was shown to be approximately 25% of the 

subjects BW which was consistent with the literature [212]. The derived net impulse 

values varied from -5.68 to 9.87 Ns. The polarity of the net impulse indicated the 

subject experienced either a slowing down or a speeding up. To travel at a constant 

speed the net impulse for a complete step will always be zero (if air resistance is 

ignored). The horizontal acceleration component showed the first few steps to have a 

positive net acceleration and the last steps showed the opposite. The positive net 

acceleration within a step was associated with the acceleration required for the subject 

to change from a stationary position to move in the forward direction. Whereas the 

negative net acceleration within a step was associated with the de-acceleration 

required for the subject to change from moving in a forward direction to stopping. An 

element of drift was shown in the estimated velocity results. An obvious cause of the 

drift was the non-zero discrepancies in the order of < 0 .01  g in the horizontal 

acceleration in the first and last sections of each trial. During these sections the 

subject was known to be stationary, therefore all accelerations should have been zero. 

The non-zero discrepancies were either positive or negative. Through the integration 

process this error accumulated over time. The effects of the drift and the likely causes 

required further investigation. The parabola shaped estimated velocity during 

movement was expected since the subject started at rest and returned to rest. The 

relative velocities at the points of interest seemed to be of reasonable magnitude. In 

comparing the change in velocities from both systems for each trial, the inertial sensor 

system values were an average seven times larger than the force plate information. A 

comparison of the change in velocity results from both systems presented no 

relationship.

The vertical GRF displayed two positive peaks during the contact phase. These peaks 

were associated with the impact to the ground and the propulsion of the subject,
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respectively. The lack of visual association between the vertical GRP and the vertical 

acceleration component could be attributed to the ‘ringing effect’ identified in 

Chapter 5. It was likely that a similar ringing effect could contribute to the greater 

magnitude of the first acceleration peak seen at the point of contact. The response of 

the vertical acceleration component identified the point of contact by a minimum 

point similar to the feature used in the vertical bounce jump experiments. The average 

time discrepancy was 15 ms after the actual point of contact. This time delay was 

7 ms more than the point of contact found in the vertical bounce jump experiments. 

This may be attributed to the manner in which the contacts were performed in the two 

experiments. The vertical bounce jumps were conducted in a way which induced rapid 

changes in acceleration at the points of contacts. Whereas the running trials displayed 

much slower changes in acceleration at the points of contacts. The minimum points 

within each trial successfully identified four steps. Unfortunately, there was no 

alternative measurement of the contacts to compare the contact periodicity of the 

acceleration component.
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6.3 Walking Trials on an Athletics Track

6.3.1 Introduction

The main purpose of this experiment was to investigate the core factors influencing 

the drifting of the horizontal acceleration component which was highlighted in the 

pervious experiment. The two factors chosen for investigation were the Y gyroscope 

zero bias value and the pitch angle. These were chosen on the theoretical basis that 

they had the most influence on the horizontal acceleration component and hence the 

horizontal velocity component. The two factors were in turn manipulated to rectify the 

horizontal velocity component so that the velocity was equal to zero at the end of the 

movement. The secondary purpose of this experiment was to demonstrate the ability 

of the inertial sensor system to clearly distinguish between the three different 

distances covered within the trials. The average velocities and the estimated distances 

were compared within each corresponding group to the actual distances travelled. The 

third purpose of this experiment was to illustrate the periodicity of the vertical 

acceleration component and its ability to define the number of steps counted during 

each trial.

6.3.2 Method

The inertial sensor module was attached to a weightlifting belt and was secured 

around the lumbar region of the subject as described in chapter 3. Again, it was 

assumed that the inertial sensor module’s x axis was pointing directly in the direction 

of movement. The inertial sensor system was the only acquisition system used and 

was set up as described in Chapter 4. The system’s equipment consisted of a Laptop 

as the PC since the system was required to be portable and battery powered. The 

equipment was installed on a three-wheeled children's buggy and was pushed along 

side the subject during the trials to prevent the tether becoming taut and cumbersome. 

This type of buggy was easy to control along a straight line.
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A subject walked three different distances in a straight line along an indoor athletics 

track. The distances were 10 m, 17 m and 24 m to three designated pink marks 

painted on the track. The distances to each mark were measured using a tape measure. 

Five trials at each distance were executed consecutively totalling fifteen trials. Data 

was collected for 30 s at a sampling rate of 100 Hz for all trials. The data collection 

period began with the subject remaining stationary for a period of approximately three 

seconds. The subject resumed a stationary position once the stipulated distance had 

been reached and remained stationary until the end of the data collection period. The 

raw sensor outputs from the inertial sensor system were processed off-line following 

the steps previously described in Chapter 3. The zero bias of the gyroscope was 

computed by taking the average output of each gyroscope over the stationary periods 

of the collected data for all trials. The inertial sensor module was powered for more 

than 30 minutes prior to commencement of the experiment. It was assumed that there 

would be minimal drifting of the gyroscope zero bias since the experiments were short 

in duration, the inertial sensor module was allowed a period to ‘warm up’ and the zero 

bias was measured during the stationary periods of each trial. The horizontal 

acceleration component (about the earth coordinates) was integrated once to yield an 

estimated velocity. The integration method implemented was the same as described in 

the previous experiment of this chapter. The timings of the start and stop of the 

movement were identified from the horizontal acceleration component. The number 

of steps executed by the subject was counted.

An ideal horizontal acceleration component should be zero during the stationary 

periods and produce a periodic output corresponding to the number of steps executed 

during the movement. The acceleration component was analysed for any corrupting, 

drifting or fluctuating outputs within the stationary period. The stationary period when 

the output was known to be zero was the easiest place to try to understand which 

components were introducing errors into the response. The contributing factors which 

constitute the response of the acceleration component were outlined. The analysis 

began at the end result, the acceleration about the earth coordinates and stepped 

backwards through the processing steps (see chapter 3) to the raw inertial sensor 

outputs. The horizontal acceleration components about the earth and body coordinates 

were compared. This comparison illustrated any differences resulting from the 

implementation of the rotation matrix shown in equation 3-19. The linear acceleration
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in the x axis about the body reference frame was computed following equation 3-18 

and for the x axis only is shown in equation 6-4.

X/ = x m-g s in (0 )  6-4

where, x/ is the linear acceleration in the x axis in the units of g

xm is the measured acceleration in the x axis in the units of g

0 is the pitch angle

g is the gravitational acceleration.

The pitch angle was integrated using the numerical approximation outlined in 

equation 3.10 and specifically in equation 6-5.

0(t) = 6At + 0 ( t - \ )  6-5

where, 0 is the pitch rate

At is the sampling period

t is the current time point

t-1 is the previous time point

The pitch rate, 0, was computed by the implementation of the transformation matrix 

to the angular rate output about the y axis. The pitch rate and the angular rate output 

about the y axis were compared. Further, the angular rate output was a result of 

converting the raw y gyroscope output from the units of V to °s'1 by using the pre

determined calibration parameter scale factor and the zero bias found during or 

immediately prior to the experiment.

In summary, the contributing factors which constitute the horizontal acceleration 

component are:

1) Rotation matrix

2) The pitch angle

3) Integration process

4) Transformation matrix
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5) The pre-determined calibration parameters for the Y gyroscope

6) The raw gyroscope output about the Y axis

7) The pre-determined calibration parameters for the X accelerometer

8) The raw acceleration output along the X axis

There are several components within the rotation and transformation matrices that 

have not been mentioned here. It was assumed that the implementation of these 

matrices introduced insignificant changes to the respective signals. This was based on 

the type of movement executed, walking, involving insignificant changes to the 

orientation of the inertial sensor module. This assumption was only valid if the inertial 

sensor module’s x axis was parallel with the ground when secured to the subject at the 

commencement of the experiment i.e. the two coordinate systems were in alignment. 

As explained previously, although the integration process is a crude approximation, 

since there were a large number of samples, the induced error was likely to be 

insignificant. It was shown following the validation experiments in Chapter 5 that the 

pre-determined calibration parameters for both types of sensors and the stability of the 

accelerometer’s output whilst stationary were verified. The gyroscope zero bias was 

not a constant pre-determined value and was determined within the data collected for 

each experiment. Therefore, the components chosen for investigation within this 

experiment were the Y gyroscope calibration parameter, zero bias, and the pitch 

angle.

The effect of manipulating the gyroscope zero bias value and the pitch angle on the 

horizontal velocity was investigated. The response of the estimated horizontal velocity 

was set to zero at the start of movement. It was assumed that at the end of the 

movement the velocity should return to zero. The zero bias value of the gyroscope 

was varied until such a condition was satisfied for each trial. The new zero bias values 

and the differences between these and the average zero bias values deduced from the 

collected data and were recorded. The amount of change experienced across all trials 

was analysed. The average velocity value between the start and end of the movement 

was computed and multiplied by the corresponding time difference to yield an 

estimated distance travelled for each trial. These distances were compared within each 

group of trials. Conversely, the pitch angle was improved in order to satisfy the 

horizontal velocity assumption stated above. The average output of the y gyroscope
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computed from the stationary periods within the collected data was used as the zero 

bias value. The simple complementary filter described in chapter 3 was implemented 

for the pitch angle only. The theory behind the complementary filter suggests that a 

constant K factor value should be chosen on the basis of the reliability and accuracy 

of the output of each type of sensor during the movements executed in the experiment. 

It had been shown that this factor was determined experimentally [102]. It was 

assumed for this section of the experiment that there were no other errors in the signal 

other than ones caused by the pitch angle. The K factor of the filter was iteratively 

selected for each trial individually which satisfied the velocity assumption. It was 

interesting to discover if the K values remained constant or varied across the trials. 

The K factor values were recorded and analysed within each group and across all 

trials. Again, the average velocity value between the start and end of the movement 

was computed and multiplied by the corresponding time difference to yield an 

estimated distance travelled for each trial.
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6.3.3 R esults

An example o f the drift o f the horizontal acceleration component similar to the results 

from the previous experiment in this chapter is displayed in figure 6-8. The figure 

showed the presence o f non-zero discrepancies during the stationary period and also 

illustrated an element o f drifting over the whole period. Although the drifting was 

present the acceleration component still demonstrated periodicity.
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Figure 6-8 The horizontal acceleration component from trial 1.

The assumptions made about the influence o f the rotation and transformation matrices 

were successfully validated. The difference between the earth and body horizontal 

accelerations during the stationary periods was proved to be fairly insignificant at an 

average o f 0.00083 g across all trials. The transformation between the angular rate 

about the y axis and the pitch rate during the stationary periods proved to be the more 

significant process with an average difference o f 0.01 °s_l across all trials.

The zero bias values o f  the gyroscope about the y axis across all trials was an average 

difference o f 0.29 mV equivalent to 0.17°s"' alone. The range o f the differences varied 

from as little as 0.01 mV to 1 mV. The variations in the average zero bias required to

T im e (s)
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correct the horizontal velocity component so that at the end o f the movement the 

velocity returned to zero, was an average o f 0.13 mV. The majority o f the trials (79%) 

required the zero bias voltage level to decrease. W hereas the remaining trials, which 

happened to be one from each group required the zero bias voltage level to increase. 

When these new zero bias values were utilised over the whole collection period the 

stationary periods exhibited non-zero accelerations. An example o f the corrected 

velocity component is displayed in figure 6-9 and the zero bias values for all trials are 

displayed in table 6-3.
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Figure 6-9 The horizontal acceleration and velocity components from trial 3 with 

the zero bias value set to satisfy the velocity assumption.
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Table 6-3 The gyroscope zero bias values.

Average Average Average
Bias Prior Bias After Difference Difference Bias New Bias Difference Difference 

V V mV ° s 1 V V mV ° s 1
1.41271 1.41238 0.34 0.20 1.41255 1.41227 0.27 0.16
1.41200 1.41251 0.52 0.30 1.41226 1.41236 0.11 0.06
1.41308 1.41253 0.55 0.32 1.41281 1.41263 0.18 0.11
1.41259 1.41286 0.27 0.16 1.41273 1.41270 0.03 0.02
1.41341 1.41295 0.46 0.27 1.41318 1.41278 0.40 0.23
1.41330 1.41337 0.06 0.04 1.41334 1.41322 0.11 0.07
1.41355 1.41333 0.22 0.13 1.41344 1.41341 0.03 0.02
1.41352 1.41387 0.35 0.21 1.41369 1.41361 0.08 0.05
1.41426 1.41405 0.20 0.12 1.41415 1.41393 0.22 0.13
1.41384 1.41454 0.70 0.41 1.41419 1.41423 0.04 0.02
1.41432 1.41467 0.35 0.20 1.41449 1.41443 0.06 0.04
1.41452 1.41454 0.02 0.01 1.41453 1.41465 0.12 0.07

(1.41491) (1.41391) (1.00) (0.59) Corrupted data
1.41491 1.41492 0.01 0.01 1.41491 1.41484 0.07 0.04
1.41493 1.41489 0.04 0.02 1.41491 1.41488 0.03 0.02
1.41364 1.41367 0.29 0.17 1.41366 1.41357 0.13 0.07
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The velocity and distance results are displayed in table 6-4. Using the corrected 

horizontal velocity component the average velocities for the three groups were 

1.15 ms'1, 1.33 ms'1 and 1.48 ms'1. The estimated distances maintained clear 

distinctions between the groups of trials and were within an average 0.37 m, 0.74 m 

and 0.56 m of the actual distances walked.

Table 6-4 The velocity and distance results for all trials.

Trial
Start
Time

Stop
Time

Walking
Time

Average
Velocity Distance

Distance
Error

s s s me'1ms m m
1 3.678 12.188 8.510 1.20 10.21 0.21
2 3.651 11.830 8.179 1.18 9.62 0.38
3 2.620 10.999 8.379 1.19 10.00 0.00
4 3.790 12.399 8.609 1.09 9.41 0.59
5 3.159 11.780 8.621 1.09 9.35 0.65

Average 1.15 9.72 0.37
6 3.940 16.169 12.229 1.22 14.87 2.13
7 3.839 16.209 12.370 1.38 17.13 0.13
8 4.481 17.320 12.839 1.35 17.34 0.34
9 4.311 16.461 12.150 1.32 16.09 0.91
10 4.070 16.539 12.470 1.35 16.81 0.19

Average 1.33 16.45 0.74
11 3.800 19.439 15.639 1.48 23.20 0.80
12 4.451 20.450 16.000 1.47 23.49 0.51
13 (4.800) (21.010) (16.210) Corrupted Data
14 4.460 21.330 16.870 1.43 24.16 0.16
15 3.370 19.720 16.349 1.52 24.85 0.85

Average 1.48 23.93 0.58

The comparison between the pitch angles deduced from the gyroscope and the 

accelerometer based attitude equations is displayed in figure 6-10. The figure showed 

several differences. These were the lagging of the accelerometer based attitude 

estimate (due to the low pass filtering), the difference in the DC levels of the 

estimates and the significant difference in the magnitude of the angle at the end of 

movement. The implementation of the filter is also shown in figure 6-10.
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Figure 6-10 The pitch angles from both types of sensor and the combined angle 

from the complementary filter.

The operation o f the filter successfully combined the low frequency o f the 

accelerom eter angle estimation with the sensitive response (high frequency) from the 

gyroscope angle estimation. The results o f the K factor are displayed in table 6-5. The 

variations to the K factor o f the complementary filter required to correct the 

horizontal velocity component so that at the end o f the m ovement the velocity 

returned to zero, were found to be an average of 0.08, 0.04 and 0.03 for the three 

groups o f trials, respectively. The average velocity values and deduced distances 

using the filtered pitch angle were again found to fall into three distinctive groups. 

The magnitudes o f the distances were on average 0.42 m, 0.85 m and 0.92 m o f the 

actual distances walked. These distance errors were found to be higher compared to 

those from changing the gyroscope zero bias. An example o f the corrected velocity 

component is displayed in figure 6-11.
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Figure 6-11 The horizontal acceleration and velocity components using the

complementary filtered pitch angle with a K factor of 0.0714 for 

trial 3.
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Table 6-5 The K values of the complementary filter and the average velocity and 

estimated distances.

Trial
Walking

Time
Average

Bias
Filter value 

K
Average
Velocity Distance

Distance
Error

s V me’1ms m m
1 8.510 1.41255 0.105 1.12 9.56 0.44
2 8.179 1.41226 0.090 1.23 10.10 0.10
3 8.379 1.41281 0.071 1.16 9.73 0.27
4 8.609 1.41273 0.025 1.07 9.22 0.78
5 8.621 1.41318 0.132 1.10 9.47 0.53

Average 1.14 9.62 0.42
6 12.229 1.41334 0.067 1.18 14.40 2.60
7 12.370 1.41344 0.016 1.37 16.93 0.07
8 12.839 1.41369 0.039 1.33 17.10 0.10
9 12.150 1.41415 0.090 1.31 15.93 1.07
10 12.470 1.41419 0.032 1.40 17.40 0.40

Average 1.32 16.35 0.85
11 15.639 1.41449 0.034 1.42 22.22 1.78
12 16.000 1.41453 0.030 1.46 23.42 0.58
13 (16.210) Corrupted Data
14 16.870 1.41491 0.036 1.36 22.97 1.03
15 16.349 1.41491 0.020 1.45 23.73 0.27

Average 1.42 23.08 0.92

The number of steps counted and deduced from the vertical acceleration component 

corresponded exactly. The step frequencies were found to be an average of 

1.57 steps-s'1, 1.77 steps-s'1 and 1.89 steps-s'1 for each of the groups. An example of 

the vertical acceleration component clearly displaying the number of steps is 

displayed in figure 6-12 and the results of the number of steps deduced and the 

corresponding frequencies are displayed in table 6-6.
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Figure 6-12 The vertical acceleration component displaying 13 steps from 

Trial 3.

Table 6-6 The number of steps counted during the trials and deduced from the 

vertical acceleration component.

T ria l
A c tu a l
S t e p s T im e

S te p
F r e q u e n c y

D e d u c e d
S t e p s

s s t e p s  s  1

1 1 4 8 . 5 1 0 1 . 6 4 5 1 4
2 1 3 8 . 1 7 9 1 . 5 8 9 1 3
3 1 3 8 . 2 6 9 1 . 5 7 2 1 3
4 1 3 8 . 6 0 9 1 . 5 1 0 1 3
5 1 2 8 . 6 2 1 1 . 3 9 2 1 2

A v e r a g e 13 8 .4 3 8 1 .5 4 2 13

6 2 2 1 2 . 2 2 9 1 . 7 9 9 2 2
7 2 3 1 2 . 3 7 0 1 . 8 5 9 2 3
8 2 2 1 2 . 8 3 9 1 . 7 1 3 2 2
9 2 2 1 2 . 1 5 0 1 . 8 1 1 2 2

1 0 2 2 1 2 . 4 7 0 1 . 7 6 4 2 2
A v e r a g e 2 2 .2 1 2 .4 1 2 1 .7 8 9 2 2 .2

11 3 0 1 5 . 6 3 9 1 . 9 1 8 3 0
1 2 31 1 6 . 0 0 0 1 . 9 3 8 31
1 3 3 0 1 6 . 2 1 0 1 . 8 5 1 3 0
1 4 31 1 6 . 8 7 0 1 . 8 3 8 31
1 5 31 1 6 . 3 4 9 1 . 8 9 6 31

A v e r a g e 3 0 .4 1 6 .2 1 4 1 .8 8 8 3 0 .4
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6.3.4 Discussion

Although the horizontal acceleration component experienced drifting the response 

was found to be periodic. Within each step there were both negative and positive 

peaks of acceleration. The most positive and negative points of acceleration occurred 

just before and just after the positive vertical acceleration peak indicating contact. 

These points were attributed to the propulsion required to bring the limb through for a 

contact and the breaking occurring after contact, respectively.

The two factors investigated for their influence over the horizontal acceleration 

component showed significant results. For the zero bias investigation, the zero bias 

parameter deduced from the collected data showed a significant difference between 

the average zero bias found before and after the movement of 0.29 mV which was 

equivalent to 0.17°s'1. This result highlighted the unstable characteristics of the zero 

bias from this type of gyroscope. This raised the question whether this change was 

predictable or unpredictable and more importantly how to measure the zero bias when 

the gyroscope was subjected to movements. The small changes to the zero bias 

parameter to rectify the estimated velocity component were an average of 0.13 mV. 

Changes to the zero bias parameter resulted in the position of the horizontal 

acceleration about the x axis to change. Although this corrected the estimated velocity 

during the movement it was shown that the zero bias parameter used did not produce 

zero acceleration at the end of the movement whilst stationary. This result suggested 

that perhaps the zero bias levels of the gyroscope whilst stationary and moving should 

be different. For the pitch angle investigation, the pitch angle estimates deduced from 

the accelerometer and the gyroscope about the y axis showed some discrepancies. The 

DC level of the two pitch estimates were notably different. At the end of the 

movement, a variation in magnitude of the pitch angle between the two estimates was 

seen. The pitch angle estimate from the gyroscope then proceeded to drift. This was 

apparent for all trials. It was assumed that the accelerometer based attitude estimates 

were more accurate than the gyroscope estimates under static conditions i.e. during 

the stationary periods and under any conditions over a long period of time. Whereas 

the gyroscope deduced pitch angle comprised the high frequency components of the 

movement but was subject to drift over time. This trait could be the cause of the
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difference in angle occurring at the end of the movement. Implementation of the filter 

showed improvement in the pitch angle as it became composed of a fusion of the low 

and high frequency components from the two estimates. The variations in the K factor 

to produce an appropriate pitch angle and thus the correct position of the acceleration 

component to produce a theoretically valid horizontal velocity were an average of 

0.08, 0.04 and 0.03 for the three groups of trials. The difference in magnitude of the K 

factor between the groups could be associated with the speed of the movement. The 

average velocities and step frequencies of the three groups of trials were found to be 

1.15, 1.33 and 1.48 ms'1 and 1.57, 1.77 and 1.89 steps-s'1 respectively. The increases 

in velocities between the groups corresponded to the increases in walking speeds 

required to complete the increased distances within the same data collection period. 

The association of the K factor to the speed and frequency of the movement and the 

performance of the filter compared to an independent angle measurement required 

further investigation which was beyond the scope of this thesis.

The estimated distances deduced from both correcting methods were all within an 

average of 1 m of their respective distances for the zero bias and filter parameter 

investigations, respectively. The purpose of this experiment was not to assess the 

accuracy of the distance results, but to show that the inertial sensor system 

distinguished three groups of fairly significantly different distances. These results 

suggested that the inertial sensor system had the potential to describe the velocity and 

distance of movements if more investigation into reducing the errors is undergone. 

The number of steps outlined in the vertical acceleration component corresponded 

exactly to the steps counted for each trial. This result consolidated the ability of the 

inertial sensor system to identify each contact and to compute the step frequency.
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6.4 Summary

The derived net impulse values derived from the anterior-posterior GRP varied from 

-5.68 to 9.87 Ns. The polarity indicated the subject experienced either a slowing down 

or a speeding up. The estimated velocity components exhibited elements of drift 

which was either up or down. Although the relative velocity results seemed to be of 

reasonable magnitude the change in velocity results deduced from the inertial sensor 

system varied between 0.08 to 0.27 ms'1 and were on average seven times greater in 

magnitude than the results from the force plate system. The change in velocity results 

between the force plate and the inertial sensor system presented no relationship. The 

response of the vertical acceleration component identified the point of contact by a 

minimum point at an average time discrepancy of 15 ms after the actual point of 

contact. All of the other minimum points within each trial successfully identified four 

of the individual steps.

The two factors investigated for their influence over the horizontal acceleration results 

required minimal changes in order to produce a valid estimated velocity. The small 

changes to the zero bias value to rectify the acceleration’s position to produce a 

theoretically valid horizontal velocity component were an average of 0.13 mV. The 

average K factor values found for each group varied from 0.08, 0.04 and 0.03 for the 

three groups respectively. It was suggested that there may be a relationship existing 

between the K factor and the speed and frequency of the movements. The estimated 

distances were accurate to within lm when adjusting the two factors. However, the 

inertial sensor system demonstrated the ability to distinguish between the groups of 

trials. The number of steps outlined in the vertical acceleration component 

corresponded exactly to the number of steps counted for each trial.
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Chapter 7 Conclusions and Further Work
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7.1 Introduction
The final chapter presents the conclusions of the research study following the results 

previously discussed. This research has laid some of the groundwork for the 

development of an MEMS inertial sensor system that measures human movements 

and provides useful kinematic parameters of technical sports. The success of the 

research study has been evaluated against the aim in terms of three purposes. These 

are:

> The design of inertial sensor system

> The development and verification of the system

> The understanding gained with respect to the potential of the system to 

measure temporal and spatial parameters.

Furthermore, a number of directions for further work are proposed.

7.2 Inertial Sensor System

The first purpose was to design a motion capture system based on MEMS sensors to 

meet the specified requirements. It was apparent that the inertial sensor system met a 

number of these requirements. The size of the sensor module was fairly small at 

65 x 65 x 57 mm but was largely dictated by the physical size of the sensors in 

particular the gyroscope sensors. The sensor module was also light at 0.155 kg and 

together with the fixings and belt weighed a total of 0.625 kg. The selected position of 

the sensor module and method of attachment did not restrict movement and was not 

cumbersome to the user. Only inertial sensors were used which meant that the system 

was self-contained, required no external sources and that the only environmental 

interference was temperature. The inertial sensor system measured accelerations and 

angular rates in three dimensions. The frequency response was 50 Hz with 

acceleration measurement range of + 2 g in the anterior-posterior and medial-lateral 

directions and ± 3 g for the vertical direction. The angular rate measurement range
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was ± 300°s'1 about each axis. The inertial sensor system was inexpensive at an 

estimated £350 and took less than 10 minutes to set up and initiate.

At this stage in the project the inertial sensor system did not offer the desired levels of 

latency or portability. The outputs of the system were tethered to a processing box 

which pre-processed the outputs and converted them into digital signals. The outputs 

were then processed further to provide useful kinematic parameters through 

algorithms implemented on a PC.

7.3 Development and Verification

The second purpose aimed to develop and verify the functionality of the system. This 

specifically involved the implementation of a calibration procedure, and the 

verification of the calibration parameters, the axes arrangement, and the processing 

algorithms. Further, an investigation was implemented to gain an understanding of the 

performance of the zero bias output of the gyroscope with respect to time and 

temperature.

The proposed calibration routine which used the opto-electronic motion capture 

system, CODA, was found to calibrate the inertial sensor system successfully. This 

procedure was thought to be the principal method for determining calibration 

parameters but was not suitable to be executed frequently. Therefore, in conjunction 

with this procedure, a calibration method that was simpler, frequently implementable 

and involved an in-situ course of movements executed by hand was specified. This 

procedure was similar to those outlined by Bachmann [102] and Ferraris et al. [148]. 

It was evident that the zero bias of the gyroscope sensors was required to be found 

during a stationary period, immediately prior to the commencement of any 

experiments.

The resultant calibration parameters were successfully verified through two simple 

experiments involving constant rotations at five pre-selected rates and repeated 

rotations through a known angle. The angular rates and angles derived by the inertial 

sensor system demonstrated highly comparable results with respect to the optical
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encoder system. It was apparent that there was little difference in the derived angular 

rates when using either the respective scale factor for the direction of rotation or the 

average scale factor. Thus, the average scale factor was used for further experiments 

and meant that the direction of rotation was not required to be known prior to the unit 

conversion processing step. The accelerometer and gyroscope sensors individually 

showed their potential to determine the absolute orientation of the inertial sensor 

system. The accelerometers performed well under static conditions but were not tested 

for angle estimation during dynamic conditions. Angle estimations through the 

integration of the gyroscope outputs (no transformation was applied since it was 

assumed that the two reference frames were aligned) indicated the usability of the 

gyroscope sensors to determine orientation of the inertial sensors system for short 

periods of time.

An understanding of the sensor axes sensitivity arrangement was gained 

experimentally and was subsequently configured to follow the NED arrangement.

The proposed algorithms of the processing steps applied to derive kinematic 

parameters with respect to the earth reference frame were successfully verified by 

more experiments. These experiments involved pure rotations thorough a series of 

known angles. It was assumed that the algorithms were correct since the results 

indicated the correct orientation for each rotation and that the linear accelerations with 

respect to the earth reference frame in all three axes showed no acceleration.

The investigation into the performance of the zero bias of the gyroscopes with respect 

to time and temperature introduced some important issues which were considered 

with regard to the functioning of the system. It was evident that the zero bias output of 

the gyroscope in temperature regulated conditions varied considerably with respect to 

time. It was thought that this variation occurring immediately after power up was 

attributed to the sensor self-heating. This parameter was therefore required to be 

either predicted during the first 30 minutes or alternatively measured after the inertial 

sensor system had been powered for 30 minutes prior to the commencement of the 

experiment. It was shown that prediction of the zero bias output could be achieved by 

applying a linear approximation using temperature measurements taken in very close 

proximity to each gyroscope. However, the proposed prediction method was not
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implemented within the scope of this thesis. The alternative method of conducting the 

experiments once the inertial sensor system was powered for 30 minutes was 

implemented. After this period the zero bias was known to become somewhat more 

stable and since the period of data collection was likely to be limited to short 

durations, for example less than 30 seconds, it was hoped that the zero bias performed 

adequately. The importance of the stability of the zero bias was highlighted since it 

was used not only in the conversion of the output signal to an angular rate but 

subsequently in further algorithms. These algorithms were: integration to yield angles, 

the transformation to Euler rates, the elimination of the gravitation acceleration and 

also the rotation matrix to rotate the acceleration into the earth reference frame.

7.4 Measurement of Temporal Parameters

The third purpose aimed to obtain an understanding of the capabilities and potential of 

the inertial sensor system to provide useful kinematic parameters. There were two 

sections for this purpose. The first of these was to gain an understanding of the 

potential of the system to measure temporal parameters. This involved the 

experiments of the synchronisation of the inertial sensor system to the force plate 

system, and the identification of the points of contact and non-contact during vertical 

bouncing and running.

The force plate and the inertial sensor systems were synchronised in order to compare 

the responsiveness and capabilities of the system to determine certain events. The 

results showed there to be an average delay of 15 ms between the inertial sensor 

system and the force plate recording the point of contact. Therefore in subsequent 

experiments the recorded data sets were offset by this time delay. The results from the 

vertical bouncing and running experiments showed that the inertial system was 

capable of identifying the point at which the subject contacted the ground. In both 

cases this event was identified by a local minimum point within the vertical 

acceleration output immediately prior to the large positive acceleration peak induced 

by the impact. It has been shown that similar characteristic patterns in the sensor 

signals have been used to signify certain events [97], This characteristic feature was 

found to be 8 ms and 15 ms, respectively after the force plate indicated the point of
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contact. These times were preferable compared to previously documented delays of 

10 ms and 65 ms, respectively [84, 109]. It was evident that this time lag was constant 

since the frequency of the contacts described by the inertial sensor system compared 

almost exactly to force plate system. This repetitive pattern produced by the inertial 

sensor system was used to identify the correct number of steps taken during the 

walking trials executed on an indoor running track. However, the point at which the 

subject left the ground was harder to identify and was beyond the scope of this thesis.

7.5 Measurements of Spatial Parameters
The third purpose aimed to obtain an understanding of the capabilities and potential of 

the inertial sensor system to provide useful kinematic parameters. The second part to 

this purpose was to obtain an understanding of the potential of the inertial sensor 

system to provide spatial parameters. This involved the experiments of comparing the 

change in velocity during stance phase whilst running over the force plate, and the 

identification of three different distances travelled whilst walking on an indoor 

running track.

The inertial sensor system showed considerably less potential to provide usable 

spatial parameters such as velocity and distance, than its ability to provide temporal 

parameters. The change in velocity results derived from the inertial sensor system 

during the contact phase of running trial over the force plate bore no relationship to 

the change in velocity results deduced from the impulse indirectly measured by the 

force plate system. Further, the derived velocity parameter from the walking trials on 

an indoor track drifted unpredictably which highlighted the instability of the 

horizontal acceleration output of the inertial sensor system. The likely causes of this 

instability were deemed to be either or a combination of, the pitch angle and the zero 

bias of the gyroscope sensitive about the y axis. Investigations into the effects of these 

two factors introduced some stimulating results. The two factors were manipulated to 

satisfy the assumption that the velocity having started at zero at the commencement of 

the movement returned to zero at the termination of the movement. It was shown that 

by changing the zero bias value fractionally the derived velocity parameter satisfied 

the assumption, thus, improving the usability of the velocity parameter. Further, it was
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shown that a preliminary investigation which implemented a simple complementary 

filter to provide an optimal estimate of the pitch angle, also helped to improve the 

usability of the velocity parameter. The filter provided the ‘best’ estimate of the 

orientation of the inertial sensor system by fusing the available orientation estimates 

from the accelerometer and gyroscope sensors.

7.6 Future Research Directions
The inertial sensor system designed, developed and evaluated in this research study is 

far from an ideal motion capture system for measuring human movements. Thus the 

system would benefit from a number of future research directions. These are 

improved performance of the gyroscope sensors, reductions in size of the inertial 

sensor module, improved latency and portability, further investigation into 

temperature compensation of the gyroscope sensors, and further investigation into the 

implementation of the complementary filter and determination of the value of K 

factor. Lastly, an investigation into the suitability and potential of the system to 

measure the essential kinematic parameters of the technical aspects of athletic events, 

in particular the short sprint events is required. Measurements of these parameters 

have been shown to describe and analyse technique and are utilised to enhance 

performance.

The first area that requires attention if further work was to be conducted would be to 

change the selected gyroscope sensor. At the time when the sensor was selected there 

was a somewhat limited choice. The chosen gyroscope sensor was found to have two 

main disadvantages. These were its physical size and the instability of the zero bias 

with respect to time and temperature. There is now a wider selection of sensors due to 

the advancements of functionality and packaging of the more complex and robust 

gyroscope sensor technology which has reduced their physical size, making them 

more suitable as body worn sensors. For example, the KGF01 by Kionix [213], the 

recent CRS07-11 by Silicon Sensing [214], and IDG-lOOOc or IDG-300i by 

InvenSense [215], These sensors are considerably more expensive, difficult to mount 

and/or still larger in size. Any of these characteristics may be required to be
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accommodated at the gain of a better performance. In turn the overall performance of 

the inertial sensor system is likely to be improved.

With further advances in MEMS sensors looming there is likely to be a smaller 

gyroscope with adequate performance ratings available in the near future. The 

physical size of the gyroscope largely dictates the overall size of the inertial sensor 

system. The connectors, PCB boards and cabling can all be readily reduced in size. 

Without a reduction in size of this sensor the reduction to the overall sensor module is 

somewhat limited. Further, if a three-axis gyroscope became available together with 

the now available three-axis accelerometer from Analog Devices [127] this would 

eliminate the need for two boards mounted orthogonally thus reducing the height 

dimension of the sensor module. There is evidence to suggest that further into the 

future there is likely to be a three-axis accelerometer and three-axis angular rate 

sensor combined into one sensor which uses a single mass, potentially offering the 

most reduction in size. The pre-processing boards could be changed to contain single 

supply amplifiers, if the amplification can be accommodated, and condensed onto 

surface mount boards. Further, these boards could be housed within the sensor module 

together with a microprocessor which facilitates an A/D converter function with 

enough input channels to replace the Pico Technology data logger. The data would be 

either stored or transmitted.

The latency of the system can be improved by utilising the microprocessor housed in 

the inertial sensor module mentioned in the above section. The microprocessor could 

be used to implement all of the processing steps involving the algorithms such as, 

integration, transforming to Euler angles, gravity compensating and filtering as well 

as A/D conversion. The system could offer the potential to calculate kinematic 

parameters in near to real time depending on the time to process the algorithms. The 

information could then be displayed in real time, stored and/or transmitted. The 

portability of the system can be improved by reducing the power requirement and 

subsequently reducing the size of the batteries. For example, rechargeable, slim, 

lithium batteries similar to those used in mobile phones or by Varta PoLiFlex [216]. 

Further portability could be achieved in either two ways. Firstly, the calculated 

kinematic parameters could be stored on board, for example on a PCMCIA data
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acquisition card, and downloaded later after the experiment. Alternatively, the digital 

data could be transmitted wirelessly to a receiver and stored on a PC [217].

Even if a more preferable gyroscope sensor is chosen, it is likely that the performance 

of the sensor may still be affected by the external and/or internal temperature. In the 

case of the some sensors, the device provides an internal temperature measurements 

output onto one of the pins of the IC [213]. This could eliminate the need for 

additional temperature sensors. The simple linear approximation that was 

implemented in this thesis could be explored further to provide a more preferable 

prediction of the output of the gyroscope using the temperature measurements 

recorded within close proximity of the gyroscope sensors. For example, the 

Levenberg-Marquardt iterative least squares fit method implemented by Barshan and 

Durrant-Whyte [156]. A description of this method can be found in Borse [206] and 

Press [176].

Preliminary investigations involving the implementation of a complementary filter 

were conducted. In light of the results further investigations are required in order to 

determine the most suitable value for the K factor and the suitability of the complexity 

of the complementary filter. Although the value of the K factor can be found 

theoretically, an experimental approach found a variation in value that could be linked 

to the speed of the movement. This assumption required further investigation. It is 

also unclear if such a simplistic filter provides adequate estimations of orientation. 

From the literature review, other investigations that have initially used a simpler 

approach, have then modified their system to incorporate a more complex filter. A 

more complex filter typically models some of the processes as well as predicting the 

zero bias output of the gyroscope [102, 113]. Again, further investigations are 

required to gain an understanding of the level of performance provided by the 

complementary filter.

The performance of the inertial sensor system needs to be improved before the 

capability and potential of the system to measure kinematic parameters of the 

technical aspects of athletic events such as the sprinting events can be realised. There 

are several variables that influence sprint running one of which is technique [218]. 

The most investigated parameters that constitute technique in sprinting are horizontal



218

velocity [219-221], stride length and stride frequency [219, 222-224], and contact 

time [222]. Theoretically, an inertial sensor system should have the ability to measure 

all of these parameters. There are two variables of the horizontal velocity that are of 

great interest, maximum horizontal velocity and average velocity at every 10m 

sections. The maximum horizontal velocity that an individual can achieve is of 

interest since it is a precondition of a potentially excellent performance [220, 225], 

The time at which the maximum horizontal velocity occurred can be found by 

searching for the highest instantaneous velocity recording within the collected data. 

The knowledge of the average horizontal velocity every 10 m can be used to provide 

velocity curves which can be compared between runs and to other athletes. The 

velocity curve identifies the different sections that constitute a sprint run such as the 

acceleration period, the section which recorded the maximum horizontal velocity and 

the ability to sustain maximum velocity towards the end [221]. The average velocity 

every 10 m can be calculated by averaging the instantaneous velocities at each 

sampling point. Stride length and stride frequency and particularly the relationship 

between these parameters have been shown to influence sprinting performance 

[219, 222-224]. Kunz and Kaufmann [223] suggested that too long a stride length 

may decrease stride frequency and too fast a stride frequency may shorten stride 

length, both of these conditions can decrease performance. It has also been shown that 

these parameters increase with increases in speeds. However, at high speeds, above 

7 m s'1, there is smaller increment in stride length and a greater increment in stride rate 

for a given increase in speed [224, 226]. It has been shown that the inertial sensor 

system can identify the point of contact during certain movements. If it is possible to 

determine the point of contact during sprinting then the stride frequency can be 

deduced from the time period between contacts. Also, if the average velocity between 

two contact points is known then the stride length can also be deduced. The duration 

of contact is another important parameter which influences sprinting performance. In 

short, the less time that is spent in contact with the ground the higher the stride rate 

[222], An increase in performance through shortening contact time is based on the 

assumption that stride length is not compromised, that touch down distance is 

minimal and that the athlete has the required leg strength. It is likely to be harder for 

the inertial sensor system to determine the duration of contact since it has been shown 

that the point of take off is difficult to identify repeatedly. It is evident that 

measurements of any or all of these parameters mentioned above, provide valuable
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insight into technique of sprint running and with regular monitoring are likely to aid 

the training of athletes to help achieve enhanced performance.

Clearly, there is a need for a low-cost, self-contained and portable motion capture 

system based on MEMS inertial sensors that is not cumbersome to the user, is quick 

to set up and provides kinematic parameters to describe the technical aspects of sports 

in real time. The work that has been demonstrated in this research study has shown 

that inertial sensors have the potential to measure temporal parameters, such as the 

point of contact and stride frequency. This information can now be used and built 

upon to provide an improved inertial sensor system for the use of measuring human 

movements.
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Appendix A: PCB Layouts and circuits

In this appendix, the PCB layouts for boards 1 and 2 that comprise the inertial sensor 

system are presented. These circuits along with the schematics displayed in chapter 3 

are constructed using the package, Easy PC.

□ []

u

Figure A - 1 PCB layout for Board 1 (not actual size)
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Figure A- 2 PCB layout for board 2 (not actual size)
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Figure A- 3 H Bridge MOSFET Driver Circuit
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Appendix B Photo Gallery
In this appendix, a collection o f photographs o f the inertial sensor system is presented.

PMliSi

Figure B-1 The inertial sensors used in the inertial sensor system. At the top is 

the gyroscope (M urata) and underneath is the accelerometer 

(Analog Devices)
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Figure B- 2 Inside the inertial sensor system

Figure B- 3 The casing of the inertial sensor system and the method of 

attachment to the T-shaped plastic and then onto the belt.
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Figure B- 4 The point of attachment (assumed representative point of the CoM) 

of the inertial sensor system.

■mass

Figure B- 5 The rotating arm mechanism.
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Figure B- 6 The calibration experiment.

Figure B- 7 The positions of the CODA markers during the calibration 

Experiment.
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Figure B- 8 The verification experiment to validate the gyroscope scale factors,

Figure B- 9 The verification experiment to validate the angle estimates from the 

accelerometers and gyroscopes. The stoppers have been added to 

restrict the movement of the arm.
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Figure B - 10 A close-up of the PIC pulse counter circuit

Figure B- 11 A simulation of the running experiments conducted in the 

Biomechanics Laboratory over the Force plate.
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Figure B -12 The running experiments on the track.


