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“Everything should always be made as simple as possible, but not simpler”,
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Summary

Finding optimal methods of producing computer animation is an active field of 

research and the thesis begins with a literature review of this subject. We pick 

out the development of techniques for planning motion in computer animation as 

an area for further investigation. Many of the earlier key frame and scripted 

computer animation systems tended to require considerable effort from the 

animator. With the development of systems using physical laws greater 

automation has been introduced, and more complex animation can be generated. 

The animator can argue however that he is losing fine control over the motion 

produced. We want to develop a system that gives the animator as much control 

as possible over motion planning, without the interface becoming too cumbersome 

to use.

A major part of the thesis contains a description of the Controller animation 

system that has been designed to satisfy the above criteria. Emphasis has been 

given to the use of kinematic techniques for modeling motion effects. These are 

fast to evaluate and help to provide an easy to use interface between the animator 

and the animation system. Controller produces animation for entertainment 

applications and we require this animation to be visually realistic. To facilitate 

this we examine several long-established techniques that have been employed in 

conventional animation. Applying these techniques in Controller enables us to 

‘fake* reality without having to use physical simulations.
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Chapter 1 

Background

1.1 Introduction

This thesis is concerned with the art and science of computer animation. To 

introduce this subject we will look at the background of animation in general, 

beginning with an explanation of just what animation is.

Definition: To animate an object is to give apparent life to that object;

movement is usually the essence of such animation.

This is one possible definition of animation and it can apply in several contexts. 

Most people, however, think of animation in terms of drawn animation. Here a 

series of gradually varied drawings (or frames) are photographed onto film. When 

the film is projected at an appropriate rate the figures in the drawings will appear 

to move*, because the retina in the human eye continues to register an image for a 

brief period after that image has been removed; a phenomenon known as 

persistence o f vision. Presenting several images in quick succession results in 

them being blurred into a single continuous image giving the illusion of motion. 

Not just movement but anything that can change over time, colour for example, 

can be animated.

Traditionally animation sequences have been drawn by hand and we will 

give an overview of that process in this chapter. Over the last two decades, 

however, computers have become more and more prevalent in the creation of 

animation. They assist in the production process and are a valuable tool in the

* To provide an illusion of continuous motion at least 15 frames per second are required. Film, 
for example is projected at 24 frames per second, and video at 25 frames per second.
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making of complex animation sequences. A literature survey of computer 

animation outlining areas of current research in this field will also be presented. 

From this we can identify new research possibilities, and the remainder of the 

thesis will describe the work that has subsequendy been carried out. First we will 

look at the motivation for producing animation and give a synopsis of its history.

1.2 The Application of Animation

Animation has several useful applications and some examples of these are given 

here.

1.2.1 Scientific Simulation

Animation can depict processes that cannot be visualised by live action 

simulations. This makes it ideal for providing a visual simulation of a problem 

and thus help to solve or explain that problem. Some examples include 

simulations of chemical reactions, crashes, and explosions.

1.2.2 Entertainment

One of the main uses of animation is to entertain people. Commercials, film 

special effects, and children’s cartoons all utilise animation for this purpose. The 

production of animated cartoons is often referred to as character animation.

1.2.3 Mass Communication

Governments and industry will often use animation as a means of mass 

communication. Animation can present a message clearly and emphasise 

important points.
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1.2.4 Education

Animation can simplify complex processes and so is a useful tool in education. 

For example, it can help to explain functions of the human body such as the 

blood circulatory system.

13 The History of Animation

Animation as an illusion of movement can be traced back to the cave drawings of 

Neanderthal man. He would often draw animals with blurred or multiple limbs to 

try to give the impression of movement Animation as we know it today, 

however, developed much later beginning with the invention of image projectors. 

The first example of such a device was the Magic Lantern built by Kirscher in 

the seventeenth century. It projected a hand drawn slide using a candle or 

reflected sunlight as its light source.

The next advancement was to project images in motion but this did not occur 

until the nineteenth century. In 1824 Peter Mark Roget published his studies on 

the persistence of vision. He discovered four basic principles about this 

phenomenon:

(i) the viewer’s vision must be restricted;

(ii) the eye blurs many images into one;

(iii) a minimum speed of presentation is required to prevent the images 

being broken up;

(iv) a large quantity of light is required for convincing results.

This led to the invention of devices such as the Phenakistiscope, Thawnatrope, 

and Zoetrope. The Zoetrope, for example, consisted of a revolving drum with 

regularly spaced slits along its sides. Drawings were held on the inner wall of the 

drum and would appear to move when viewed through the slits. Devices such as 

these became popular and were a standard feature in Victorian penny arcades 

where they could be used, for example, to discover What the Butler Saw.

The development of film in the early twentieth century really led to 

animation taking off as a new art form. In Europe and particularly in America
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various cartoon films began to appear both for instructional and entertainment 

purposes. In 1914 the technique of cel animation was introduced by Earl Hurd. 

This involved drawing backgrounds and characters on sheets of celluloid that 

could be overlayed to form the final frame. These cels are reusable and thus 

reduce the amount of drawings required. In 1928 Walt Disney arrived on the 

scene and he turned animation production into a commercial industry. His studio 

produced such classics as Snow White and the Seven Dwarfs and Fantasia. These 

films were two dimensional cartoons but, owing to the many techniques 

developed by the studio animators, were very convincing. These techniques are 

still in use today.

The production of hand animation has always been costly in terms of both 

time and money. A Disney production, for example, would take at least three 

years and over two million drawings to make. Matters were mot helped by the 

development of television and the resulting decline in cinema audiences. To 

make animation production more economically viable computers began to be 

introduced. Initially they were used to assist in the animation process but today 

they can generate the whole animation sequence. In particular, they make three 

dimensional animation more readily available. Productions such as Luxo Jnr and 

Tin Toy by the American company Pixar demonstrate the current state of the art. 

These films are still time consuming to produce as computers are not yet powerful 

enough to produce high quality three dimensional animation in anything like real 

time. The only real time applications of computer animation to date have relied 

on special hardware. They include extremely costly visual simulators, and 

computer games where the quality of animation used is limited.

For more details on the early history of animation refer to Madsen (1970).

1.4 An Overview of Traditional Animation

In this section we will review the process of traditional animation. This process 

dictated the early development of computer animation and many of the techniques 

leamt here are relevant to the computer medium.
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1.4.1 The Production Line

A large team of people performing a variety of tasks are needed to produce an 

animation sequence. Thousands of drawings will be flowing through the 

production line and these have to be well organised. Different animation houses 

use slightly different production methods but they all follow the same basic steps. 

These are summarised below, and further details can be found in Magnenat- 

Thalmann and Thalmann (1985), and White (1986).

(i) The Script

The subject matter is extensively researched particularly when simulations are 

being produced. An animator, for example, will often study the structure and 

timing of live action movements. This will help ensure that the final animation is 

accurate. A detailed scenario is then prepared as a script. It will concentrate on 

the visual action rather than dialogue as action is more important in animation.

(ii) The Storyboard

Using the script a series of drawings depicting the key points in the action are 

produced as a storyboard. This visual presentation of the scenario will often 

identify areas where the story requires the addition of more polish. The 

storyboard is usually divided into action sequences that are in turn divided into 

scenes.

(iii) The Soundtrack

The dialogue and key music are recorded at this point as the animation must be 

drawn to synchronise with its soundtrack. The soundtrack is analysed 

phonetically to determine the precise frame position of each sound. This 

information is recorded on the bar sheet.
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(iv) Designs

Visual interpretations of the characters to be used are created. Model sheets 

depicting the characters in different poses can then be produced.

(v) Animation

The first step in producing the animation is to create a leica reel. This is a filmed 

storyboard that can be projected in sequence with the soundtrack. Pencil 

drawings of each scene are then filmed. The animator will draw in the key 

frames or extremes of the action using the bar and model sheets as a guideline. 

Assistant animators and in-betweeners will then draw in the frames required 

between these extremes. When the line test is acceptable, it is cut into the leica 

reel. Note that all the drawings must be cleaned up at this point to ensure that a 

consistent style is maintained.

(vi) Trace and Paint

Each drawing will be traced or xeroxed onto a celluloid or acetate cel. These cels 

will then be coloured as appropriate and carefully checked for errors. 

Backgrounds are also prepared in this manner.

(vii) Final Shoot

The artwork must then be filmed. A machine called a multiplane (or rostrum 

camera) is used for this puipose. It consists of a series of glass layers mounted at 

different distances below a camera. Each cel needed for a particular frame will 

be placed on the appropriate glass level and the composed frame is then 

photographed. The multiplane allows the cameraman to achieve effects such as 

zooms, pans, tilts and spins. He is given a dope or exposure sheet containing the 

shooting information for each scene so that he knows when such an effect is 

required. Another machine called an optical printer can be used to provide fades 

and multiple images.
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(viii) Post Production

After processing, the raw film, or rushes, is projected and viewed. If satisfactory 

the rushes can be cut into the final Aim, otherwise reshooting will be necessary. 

Meanwhile the voice track, music and sound effects are mixed onto the final 

soundtrack. This is then merged with the final cut of the animation film to 

produce the answer print. The animation will now be complete.

1.4.2 The Art of the Traditional Animator

Much material is available to the animator to teach him the art of animation 

(Madsen 1970; Thomas and Johnstone 1981; White 1986). His skill and 

experience in applying this knowledge will determine the overall effectiveness of 

the animation produced. Note that with character animation the main concern is 

to entertain the audience and so the action only needs to look right in an artistic 

rather than in a scientific sense. Several principles have been developed to assist 

the animator in doing this. These principles o f animation are his tools of the 

trade and are summarised below.

(i) Staging

Make sure that the action is well laid out and prevent the audience from getting 

confused.

(ii) Straight Ahead Action and Pose to Pose

Animating from pose to pose is another name for key frame animation. The 

animator will draw poses of a character at some key frames and his assistants will 

then draw in the inbetweens. The resulting animation has clarity and strength. 

Alternatively, more spontaneity can be obtained by animating straight ahead. 

This involves drawing successive frames ‘on the fly* using only the storyboard as 

a guideline. A combination of these two techniques is usually used.
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(iii) Slow In and Slow Out

Space successive frames to make the moving object slow down or speed up to 

ensure smooth motion transitions.

(iv) Anticipation

Let the audience know what is about to happen by using a preparatory move. For 

example, swing a leg backwards before kicking a ball.

(v) Timing

The timing depends on the number of drawings being used for an action. For 

example, timing can be used to emphasise the weight and size of a moving object 

The whole subject of timing for animation is discussed in detail by Whitaker and 

Halas (1981).

(vi) Arcs

Motion will look less mechanical if the path of the moving object traces out a 

curve rather than a straight line.

(vii) Follow Through and Overlapping Action

Make sure that an action does not end suddenly and determine if it will affect any 

later action.

(viii) Secondary Action

Enhance the main action with smaller secondary actions.

(ix) Squash and Stretch

Deform a moving object in order to remove the appearance of rigidity. This 

applies to both rigid and soft objects. Clothing, for example, should be deformed 

as the person wearing it moves.
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(x) Exaggeration

Exaggerating an action can help it appear more realistic, or at least caricature 

reality.

(xi) Solid Drawing

The animator must be able to produce solid drawings of the action at a particular 

frame from any angle. If drawn well, extra weight, depth and balance will be 

added to the animation.

(xii) Appeal

It is important to give a drawing appeal to capture and maintain the attention of 

the audience. A quality of charm, a pleasing design, simplicity, communication 

and magnetism are some of the factors that can give appeal to a drawing.

1.5 An Overview of Computer Animation

The term computer animation is applied to any of several uses that a computer 

can have when producing animation. In this overview of computer animation we 

will distinguish between computer assisted animation and modelled animation 

(Magnenat-Thalmann and Thalmann 1985). This is a simple way of classifying 

the subject but will introduce most of the relevant topics. A more detailed survey 

of the classification of computer animation is given by Pueyo and Tost (1988).

1.5.1 Computer Assisted (or Key Frame) Animation

Computers were first introduced into animation production to help reduce the cost 

and tedium involved in the manufacture of two dimensional character animation. 

One possible use of a computer, for example, is to control a physical device such 

as the rostrum camera (Kallis 1971). More often, however, computers are utilised 

in the key frame animation process where they have two main functions:
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(i) the drawing and colouring of key frames;

(ii) automatic inbetweening.

Note that the actual image in each key frame has to be interpolated, a process 

called shape interpolation (Zeltzer 1985) or image based key frame animation 

(Steketee and Badler 1985). Lewell (1985) provides an overview of how the 

Hanna Barbera studios use computers in their animation process.

Key frame animation can also be extended into three dimensions by using a 

technique called parametric key frame animation (Hanrahan and Sturman 1985; 

Steketee and Badler 1985; Zeltzer 1985). Here an object is described by a set of 

parameter values such as its position vector. Each frame will be constructed 

using the information supplied by these parameters. The animator will use either 

an interactive system or an animation programming language to set the value of 

each parameter at the key frames. The computer will then interpolate the 

parameters (rather than the shape of the object) to produce the inbetween frames. 

Interpolating between the physical parameters of a body will produce better 

results than those obtained from shape transformations.

1.5.2 Modelled (or Algorithmic) Animation

The computer should not just be a labour saving device, it should also improve 

the quality and complexity of animation. Drawing and manipulating objects in 

three dimensional space, for example, would be a difficult procedure without the 

aid of a computer. This is also true of providing animated simulations from 

numerical data. Applications such as these where the computer is the main tool 

of animation production are often termed modelled animation. The motion 

applied to the objects here is usually described algorithmically using physical 

laws, for example. The animator is thus relieved from tedium of producing 

thousands of drawings and allowed to be more creative.

The production of modelled animation can be divided into four stages 

(compare these with the stages involved in traditional animation production):
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(i) modeling objects in three dimensions;

(ii) animating the objects;

(iii) rendering the frames;

(iv) post production.

The emphasis placed on each stage will vary, depending on the application of the 

animation. Each stage also has its own set of problems and we will present 

details of these in the next section.

1.6 Computer Animation: The State of the Art

Computer animation must at least match the results obtainable from traditional 

methods and should allow more complex animation to be created. Merely 

attempting to emulate traditional animation is not enough (Thomas 1984); a new 

generation of animation should be possible. The computational power of 

computers provides us with the basis to achieve this aim and realistic static 

images can already be produced. We need to extend this use of computers further 

to include the temporal changes required for animation.

This section presents a literature survey of the current state of the art in 

computer animation. For clarity, we have divided the subject into separate topics 

although these should not be regarded as disjoint As we are concerned with a 

wide ranging field there will often be an overlap between them.

1.6.1 Generating Key Frames

Burtnyk and Wein (1971) and Catmull (1979) describe typical image based key 

frame animation systems. With such a system the animator will draw a set of key 

frames directly onto a computer graphics screen using a data tablet. Software 

tools are often provided to aid in the drawing of these key frames enabling the 

animator, for example, to fit smooth curves. Paint systems are another common 

feature. The area filling algorithms provided by these alleviates the tedium of 

hand colouring the frames. A key frame can also be built up by composing 

several images that the animator has already drawn (Wallace 1981). Unlike cel
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animadon many images can be composed without any loss in the quality of the 

key frame.

The animator will have to identify a set of boundary points (or vertices) on 

each key frame. The computer can then generate inbetweens by interpolating 

between corresponding points in successive key frames. Burtnyk and Wein 

(1976), for example, record the order of the strokes that the animator makes while 

he is drawing a key frame. A correspondence is then set up by making a stroke 

to stroke mapping between successive key frames.

Automatic inbetweening using shape interpolation, however, has its 

limitations (Catmull 1979b). A key frame image is a two dimensional projection 

of a three dimensional character as visualised by the animator. Often some part 

of the character will be obscured by another part of it, for example, if a head is 

drawn in right profile then the left ear will not be visible. The computer does not 

have any information about this obscured part and so it has to be supplied in 

some way, usually by the input of more key frames. This means that the time 

saved by using a computer in the first place is being negated. Catmull also points 

out that efficient handling of the thousands of frames that are created during the 

animation process is not often considered. He advocates greater use of data base 

technology for this purpose.

A possible solution to the missing information problem is to define the key 

frames in three dimensions. Geometric models of the characters have to be 

provided so that the computer will have all the information it requires. Two 

dimensional projections of the frames can then be made after the interpolation 

process. First, however, methods of three dimensional modeling are needed.

1.6.2 Modeling in Three Dimensions

Both parametric key frame animation and modelled animation take place in 

simulated three dimensional environments. The computer models required here 

must also be defined in three dimensions and Lansdown (1983) reviews many of 

the modeling techniques used for this purpose.. They include rotational sweeping,
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curved surface representations, quadrics, and stochastic methods. Note that the 

format of the model used will often determine how the motion of an object can be 

calculated. A model format that will facilitate animation is therefore 

advantageous.

The use of wire frame models provide the simplest three dimensional 

representation. Such models have low storage requirements and are fast to 

calculate. Solid models, however, provide the realism needed for most animation 

applications. Ostby (1987) identifies two classes of geometric solid modeling:

homogeneous: all elements of the model are expressed as collections of

some basic primitive such as polygons. These are simple to 

use but are a crude way of expressing non-polygonal 

objects;

heterogeneous: all elements of the model are expressed as collections of 

wider-ranging primitives such as quadrics, or patches. 

Quadrics are easily parameterised (a property that facilitates 

animation) but limited in what they can express. 

Conversely, patches give good approximations of objects 

but can be difficult to parameterise.

For flexibility a combination of techniques should be offered.

The use of polygonal models in key frame animation is similar to the two 

dimensional case (Thalmann 1989) and a correspondence between vertices at each 

key frame must be defined. Extra vertices often have to be added to ensure that 

the same number of vertices exist at each key frame. If faceted models are being 

used then the process is more complex as there must be a correspondence 

between facets as well as vertices. More often three dimensional interpolation is 

based on parameterised models using joint angles, for example. Whatever type of 

model is used, however, an object creation facility is required.

The animator will typically be provided with an interactive graphics editor 

such as the “ body-building” system (Magnenat-Thalmann et al. 1985). An editor 

of this type will allow the instantiation of elemental primitives that have been
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transformed by some combination of translations, rotations, scales and shears 

(Herbison-Evans 1978). Instances of already modelled objects can also be utilised 

by assigning them different scales and colours (Magnenat-Thalmann and 

Thalmann 1985b). The primitives are often composed using boolean operations 

(unions, intersections, etc) as, for example, in constructive solid geometry (C.S.G). 

Another technique is to build the models hierarchically. This is particularly useful 

for articulated objects as it has the advantage that any movement applied at one 

level of the hierarchy will automatically effect everything below this level. Also, 

when an object is distant from the viewer there is no need to display it in as 

much detail as when it is close up (Lansdown 1983; Pueyo and Tost 1988). A 

hierarchical model can be used for displaying an object at the level of detail 

required.

It may be possible to write a computer program to build object models and 

this is more appropriate when an object is to be constructed out of many 

constituent parts. Some computer proficiency is necessary here, however. A 

different approach is to reconstruct a three dimensional model from digitised 

photographs of the real thing (Magnenat-Thalmann and Thalmann 1985). This 

technique is useful when an object is too complex to model using other methods.

Stochastic methods such as fractals are used in solid modeling to create 

objects that exhibit a degree of randomness. Trees and mountains are well known 

examples of the application of fractals. Stochastic methods can also be applied in 

animation for modeling fire, water and clouds where movement can be regarded 

as a parameter of the model. Reeves (1983) has described a method of modeling 

such ‘fuzzy* objects using particle systems. A particle is represented as a short, 

anti-aliased line segment whose lifetime and movement are controlled by 

stochastic procedures. Ousters of these particles defined in the appropriate 

manner are used to create the desired object. This work was later extended 

(Reeves and Blau 1985) by using structured particle systems to model solid 

objects of trees and grass. This technique enables the production of complex 

motions with random variation such as a field of grass blowing in a breeze.
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Note that the quality of the models generated for character animation will 

usually be to a higher standard than that used in scientific and educational 

applications. Appearance and visual richness are of more importance in the 

former case.

1.6.3 Inbetweening in Key Frame Animation

Once a correspondence between key frames has been defined, the next step is for 

the computer to calculate the inbetweens. Whether for two or three dimensional 

applications the computer has to define a path between corresponding points in 

the key frames, taking both space and time into account. Several interpolation 

methods are available to do this, most of which can be applied to either vertices 

or parameters. Note that motion, particularly that of living beings, is complicated 

to model accurately and often appears artificial or robotic. The result obtained 

will be greatly determined by the interpolation method used. When evaluating 

such methods Reeves (1981) considers their generality, smoothness, efficiency, 

and ease of specification. These criteria are also considered for the methods 

described below.

In linear interpolation the corresponding points between each pair of key 

frames are joined by regularly divided straight lines. This is the simplest and 

fastest method of inbetweening but produces the least favourable results. At the 

key frames there is often a lack of smoothness in the motion, discontinuities in 

speed, and distortions in any rotations used (Thalmann 1989). Using fewer key 

frames will of course produce less discontinuities but will make it more difficult 

for the animator to define animation in any detail. Non-linear divisions of time 

will produce acceleration effects and are simple to introduce (see chapter 3). The 

motion will still be in a straight line, however, and can look artificial. Techniques 

of providing a non-linear spatial division also need to be applied.

Burtnyk and Wein (1976) introduce a skeleton technique to ease 

inbetweening and allow the animator to define complex motion. An initial 

correspondence is made between a skeleton and a fully drawn figure. The 

animator then only needs to animate the skeleton with the details of the figure
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being added later. Such a skeleton will always have a similar structure in the key 

frames and so better inbetweens can be calculated. The approach adopted by 

Gomez (1984) also attempts to simplify inbetweening. Instead of having arbitrary 

spaced key frames he defines them only when something happens to an object. 

These events are stored in a linked list called a track, a separate track being used 

for each object (or moving part of an object). A frame is then formed from the 

union of activity of all the tracks.

Baeker’s picture driven animation system (1969) introduced parametric 

curves, called P-curves, for defining motion. The shape of a P-curve represents 

the trajectory (in two dimensions) of some moving point. A trail of symbols 

rather than a continuous line is used to plot this shape. These symbols are 

equally spaced in time and so the relative density of them along the trajectory will 

indicate the speed of motion. Both spatial and temporal information are thus 

available on a single graph.

Reeves (1981) use of moving point constraints in the inbetweening process 

takes a similar approach to the P-curve method. A moving point is a curve 

sketched by the animator to connect a pair of corresponding points in two 

successive key frames. The shape of this curve determines the trajectory of the 

motion, and symbols marked at regular intervals of time along it determines the 

timing of the motion. As the trajectory is not linear a better approximation of 

natural motion will be obtained. The shape of the object at each frame is then 

obtained by interpolating through the moving points using an appropriate curve 

drawing algorithm. This method enables multiple paths and speeds to be 

specified and helps to reduce the discontinuities at the key frames. The animator, 

however, is required to specify additional information other than just the key 

frames.

Piecewise cubic polygons (or splines) can also be used to connect 

corresponding points in key frames. Kochanek and Bartels (1984) describe such a 

method. They allow the shape of the spline to be adjusted at the key frames by 

altering tension, continuity and bias parameters. The animator can thus fine tune 

the movement of an object without having to redraw key frames. This method
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can be used to interpolate angles and vectors and Thalmann (1989) makes use of 

this to animate the human body.

Steketee and Badler (1985) give an interpolation method for parametric key 

frame animation. They make use of the B-spline curve representation as it 

provides second order continuity and therefore smooth curves (see chapter 3 for 

more details). Their system allows for kinematic control and the joining and 

phrasing of successive motions. They claim, however, that there is no satisfactory 

solution to the deviations between the interpolated image and the object being 

modelled.

A different approach for three dimensional applications is to draw smooth 

path curves through space to control the interpolation process. Shelley and 

Greenberg (1982) also utilise the B-spline curve representation for this purpose. 

The animator first defines a B-spline in three dimensions to represent the 

trajectory of the object or camera. A separate B-spline is then used to provide the 

timing information. This second curve is regarded as a function of velocity 

against distance and the animator has to input the required velocity values along 

it. The use of path curves such as these enable the animator to think about the 

entire motion of an object. Unlike key framing, however, it is difficult to 

visualise the total configuration of the animation at a given time. Matters are also 

more complicated if the object has to exhibit internal motion. The post process 

techniques described by Lundin (1984), however, provide one method that can be 

used to solve this problem.

Spencer-Smith and Wyvill (1989) also control motion by using a spline. 

They have developed a four dimensional spline that passes through both space 

and time. The way in which the motion timing is defined is again similar to the 

P-curve approach. The spline is plotted using a trail of spheres that are equally 

spaced in time. The relative density of these spheres and hence the motion effect 

achieved can be varied by adjusting the control points of the spline.

The introduction of cubic splines has helped to provide motion with a 

smoother, more natural appearance. The animator has to define or control several
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additional parameters, however, and so using splines can be a time consuming 

process. If realistic motion is the major concern then a different approach is to 

utilise physical laws. Brotman and Netravali (1988), for example, describe an 

interpolation process that makes use of differential equations obtained from 

classical mechanics. The application of physical laws is more common in 

modelled animation processes, however.

1.6.4 Motion in Modelled Animation

In three dimensional animation actors, cameras and lights are generally defined at 

each frame by an appropriate set of parameters. For example,

camera = {location, direction, zoom};

actor = {location, orientation};

light = {location, direction, intensity }.

Animation is obtained by gradually varying the value of these parameters across 

successive frames, usually by applying a list of transformations. To achieve 

motion around a set, for example, the parameter that defines the location of each 

object must be updated using an appropriate translation. For cameras, effects 

such as spins, pans and tilts must be allowed for (Magnenat-Thalmann and 

Thalmann 1986). The simulation of different lighting effects should also be 

possible. Methods of calculating the change in state of these various parameters 

are therefore needed. In modelled animation the two techniques most often used 

for this purpose are:

(i) kinematics;

(ii) physical laws such as the laws of dynamics.

Kinematic motion is obtained by calculating positions, speeds and 

accelerations as a function of time. We have already seen how kinematics have 

been employed in the key frame animation process (§1.6.3). Linear interpolation, 

spline interpolation and path curves all fall into this category. Often the motion
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applied to an object is faired (Lansdown 1983). Here the object is made to 

accelerate from rest at the beginning of its movement, and decelerate to rest at the 

end of its movement. This emulates the traditional animation principle of slow in 

and slow out thus providing a smoother motion effect By using techniques such 

as fairing the animator can obtain convincing motion in his animation. 

Sometimes, however, the motion is too laborious or too complicated to model 

kinematically and so physical laws are utilised.

The use of dynamics to model motion, particularly that of the human body, 

has been developed (Armstrong and Green 1985; Wilhelms and Barsky 1985). 

With dynamics the forces and torques acting on an object are taken into account. 

This dynamic information is then used to calculate the kinematic motion of the 

object. Newton’s laws of motion are the basis of dynamic modelling (Wilhelms 

1987; Selbie 1989). For example, Newton’s second law can be stated as

F = ma (*)

where F is the force acting on an object, m is the mass of the object, and a is the 

acceleration that the object will undergo. Numerical methods are usually needed 

to satisfy the constraints of the animation but these are derived from (*). The 

actual forces used by the system can be calculated automatically (as with gravity), 

modelled with springs and dampers, or supplied by the animator.

Hahn (1988) and Miller (1988) show how dynamics can be used to produce 

realistic animation. Hahn’s system models the motion of rigid bodies taking 

mass, elasticity, friction and moment of inertia into account. In his animation of 

snakes and worms Miller makes use of a mass-spring system where muscle 

contractions are modelled by spring tensions. The use of dynamics is essential in 

such simulations where the modeling of reality is important but there are 

disadvantages. Dynamic systems can be hard to implement, the computation time 

is higher than with kinematics, and the control of forces and torques is non- 

intuitive and so difficult to use.

Many authors consider that the optimal approach for modeling motion is to 

provide a combination of kinematic and dynamic techniques. Wilhelms (1986),
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for example, describes an interactive motion control editor that achieves this. In 

her VIRYA system the animator will control most of the animation kinematically 

but have the option of using dynamics to add more realism where required. 

Forest et al. (1986) show how the same approach can be used in the animation of 

articulated bodies. A mixture of kinematics and dynamics is also used by Witltin 

and Kass (1988) in their spacetime constraints method of animation. The 

animator specifies a minimal number of kinematic constraints such as an object's 

location at different times, and the manner in which it is to move. Physical laws 

are then used to calculate how best to satisfy these constraints. By satisfying 

kinematic constraints in a physically valid way they claim that traditional 

principles such as anticipation and timing will emerge automatically. The 

approach of Pintado and Fiume (1988) is different again. Their motion 

specification and control environment system based on fields is a kinematic 

technique. The dynamic splines that they develop, however, mimic the effects of 

dynamic control but without the high computational cost usually associated with 

this.

Other methods of modeling motion can be used. Magnenat-Thalmann and 

Thalmann (1985c) advocate greater use of evolution laws that change the state of 

some system over time. Brownian motion and chaotic attractors are two examples 

of such laws. In a similar vein Wilhelms (1987b) argues that the control of 

motion can be aided by integrating knowledge from other fields such as robotics, 

biology and physics. Use of more automatic techniques is also advocated to 

counteract the trend towards greater complexity. Algorithmic control, for 

example, is useful for modeling repetitive motion. The motion is generated using 

a series of preprogrammed instructions and so little user input is required. 

Applications of this technique include modeling the elliptical orbit of a planet and 

the oscillation of a pendulum.

Using a technique called inverse kinematics it is possible to determine the 

orientation of an object given the position of some distal part of that object The 

programming of a robot arm for object grasping is an inverse kinematics problem 

and is analogous to object grasping in human animation (Amaldi et al. 1989).
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Another of its uses in animation is to ensure that a body maintains realistic 

contact with the ground. The inverse kinematics problem can be divided into two 

stages:

(i) find any solution to achieve the desired goal;

(ii) find the best solution.

As the complexity of an object increases so does the difficulty of solving the 

problem. An analogous problem is that of inverse dynamics where the forces and 

torques that satisfy certain constraints must be found. Barzel and Barr (1988) use 

inverse dynamics in their modeling system. The constraint forces calculated cause 

the assembly of the model components and ensure that the components stay 

together as the model moves.

Another recent development is behavioural control where environment 

interactions are taken into account. The motion of an object here is made to 

depend on the behaviour of other objects. The system has to recognise the state 

of the environment and generate a response to it. Reynolds (1987) describes a 

model of polarised, non-colliding aggregate motion that can be used to generate 

flocks and herds. His method is an elaboration of particle systems using birds 

say, instead of particles. The behaviour of each bird is simulated independently. 

They try to both stick together and to avoid collision with each other or other 

environmental objects. Collision avoidance is another problem from robotics that 

is applicable to computer animation. When defining path curves, for example, the 

animator could easily end with objects that interpenetrate owing to the proximity 

of two or more paths. The animation system should be able to detect such 

collisions and respond to them in an appropriate way. Moore and Wilhelms

(1988) suggest methods of solving this problem.
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1.6.5 Human Animation

The realistic animation of computer generated human figures is a complex 

problem and is a large area of research in computer animation. We present a 

summary of the work carried out in this area whilst more detailed surveys can be 

found in Badler and Smoliar (1979), Magnenat-Thalmann and Thalmann (1985) 

and Tost and Pueyo (1988).

The first step is to produce a three dimensional representation of the human 

body. The methods generally used for this are:

stick figures: a skeleton consisting of a hierarchical set of limbs

connected by joints (Zeltzer 1982). A stick figure is easy 

to store and manipulate but it is difficult to represent some 

motions such as twists;

surface models: a surface ‘skin’ representation is obtained by surrounding a 

skeleton with planar or curved patches. A more realistic 

model results but it is tedious defining the patches and 

computationally expensive to render,

volume models: the body is decomposed into primitive volumes such as 

ellipsoids (Herbison-Evans 1978) or spheres (Badler et al. 

1970). Not as realistic in appearance as surface models but 

far better than stick figures. Also, as they are easy to

define geometrically, efficient hidden surface algorithms 

can be used to speed up visualisation (Herbison-Evans 

1982).

Most systems will use stick figures for defining motion with the surface or 

volume model being applied later. Magnenat-Thalmann and Thalmann (1987) 

detail the steps involved when creating a synthetic human based on a real life 

person.

Owing to the complexity of the human body the specification of its

movement is not an easy task. A possible solution is to utilise choreography

notations such as Labanotation, Eshkol-Wachmann notation, and Benesh notation.
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These have been developed to record dance scores accurately, a problem of 

representing three dimensional movements on paper. Labanotation views the 

body as a set of joints connected by limbs while in Eshkol-Wachmann notation 

limbs are connected at joints. Both of these notations can be used with the stick 

figure representation, for example, Calvert et al. (1980) have used Labanotation. 

Benesh movement notation is a hierarchical method that uses a music-like stave 

for recording choreography. Singh et al. (1983) have developed an interactive 

editor for such notation but this method is not used in computer animation as 

often as the others are. The Effort/Shape notation (Badler and Smoliar 1979) 

should also be mentioned. This notation is based on a muscular representation of 

the body and so dynamic characteristics of movement can be specified.

Having obtained a motion description it must be applied to the human figure 

that is to be animated. We have already looked at key framing methods and 

indicated some of their applications to human body animation. Forest et al. 

(1986b) control motion by specifying joint angles for the human figure at each 

key frame. Kinematics or physical laws are used to interpolate the joint angles 

according to the requirements of the animator. With systems of this type the flow 

of motion is determined by the interpolation technique used. The ability to add 

refinements to the resulting animation is therefore essential. Kinematic and 

dynamic transformations can also be used to move a figure along a path and this 

technique is useful for making global motion specifications. The main problem 

here, however, is in describing internal movement of the body such as walks. 

Armstrong et al. (1986) apply forces and torques to the limbs of the human figure 

and so internal motion is automatically specified. They supply an interactive 

interface to allow the animator to control and adjust the forces applied.

To take some of the burden of motion specification for articulated bodies 

away from the animator, goal-directed motion techniques have been developed 

(Korein and Badler 1982; Zeltzer 1982b). Using this approach the animation 

software generates most of the motion and the animator just has to specify the 

end constraints he requires. The cost is a trade off with the animator’s artistic 

control. Another technique that can be used is rotoscopy. Here human
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movements are digitised from real life and applied to their synthetic counterparts.

The ability to vary the anthropometry of different human figures should also 

be available. This facility is useful in simulation applications where, for example, 

the effects of a car crash on humans with a variety of different builds might need 

to be determined. Grosso et al. (1989) describe a system offering such a facility. 

They use a spreadsheet-like interface to alter the body parameters of a human 

figure. Adjustments to the anthropometric structure of a figure can also be used 

to add more ‘character’ to it.

The animations of faces and hands are particularly complex and usually 

carried out separately from the rest of the body. These entities are generally 

modelled as surface patches to which different motions can be applied. One 

approach for animating a face is to associate two types of parameters with the 

surface patches (Parke 1982). The conformation parameters define a neutral face 

that is altered using expression parameters. Alternatively, a facial model based on 

muscle deformations has been developed (Waters 1987). Emotions and speech 

are two important aspects that should also be taken into account. A survey of the 

more important facial animation techniques can be found in Magnenat-Thalmann

(1989). With hand animation, skeleton motion and shape deformation must be 

considered. We have already mentioned that hand grasping is an inverse 

kinematics problem.

1.6.6 Computer Animation Systems

One way of considering the data flowing through an animation system is in terms 

of the degrees o f freedom of the moving objects (Zeltzer 1985; Wilhelms 1987b). 

For example,

particles: particles have three degrees of freedom (a translation in

three dimensional space);
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rigid bodies: a rigid body is made up of several points that must

move as one. They have six degrees of freedom (a three 

dimensional translation and a three dimensional

rotation);

flexible bodies: a flexible body contains an infinite number of points that

can move relative to each other. The body is

approximated with a finite number of control points, 

each having three degrees of freedom that vary over 

time;

articulated bodies: the total degrees of freedom is equal to the sum of the 

degrees of freedom at each joint.

Having fifty or more degrees of freedom involved at each frame is not unusual. 

Considering the many frames required to produce even a short animation 

sequence a large volume of data has to be handled by the animation system. Note 

that there may also be constraints applied to the degrees of freedom. A human 

head, for example, can be rotated but not through 360 degrees. The animator 

requires a system that will enable him to control these data efficiently.

Several different types of animation systems have been developed. Zeltzer

(1985) states that an animation system will fall into one of three categories

depending on how the motion specification is dealt with. These are:

(i) guiding systems;

(ii) animator-level systems;

(iii) task-level systems.

An integration of these systems may also be advantageous.

In guiding systems animation is usually defined and created at a graphics 

screen. These are interactive systems and so provide an immediate response on 

what the animation will look like. The animator has nearly complete control over 

the motion and can specify fine details. Guiding systems tend to be unsuitable for 

specifying complex motions, however. Computer assisted and path specification 

systems fall into this category and specific examples include Bbop (Stem 1983),
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TWIXT (Gomez 1984) and Graphicsland (Wyvill et al. 1985).

The animator-level or scripted systems are animation languages. The 

computational power of a programming language is thus made available to the 

animator. He has to prepare a script by describing actions as low level elemental 

motions such as translations and velocities. Control structures enable him to 

associate successive iterations of a loop with movement at successive frames. 

Parallelism, synchronisation and data abstraction are also achievable. Examples 

of systems falling into this category include ASAS (Reynolds 1982), MIRA 3-D 

(Magnenat-Thalmann and Thalmann 1985), and NEM (Marino et al. 1985). 

Scripted systems often allow for adaptive motion whereby information from the 

environment is taken into account when calculating object positions. Collision 

detection can be built into the system in this way. The disadvantage of scripted 

systems is that the animator has to have a reasonable proficiency in software 

development.

Task-level systems rely less on the animator and more on the intelligence of 

the system. The animator describes motion implicitly using high level 

terminology such as ‘walk’ or ‘swim*. Environment information is kept in a 

database or knowledge base and is used by the system when it calculates the 

required motion. One problem, however, is that there may be more than one 

solution to the animator’s constraints. Goal-directed systems (§1.6.5) can be 

placed into this category but the development of a complete task-level system is 

still a matter of research. Task-level systems offer a more user-friendly interface 

than other types of systems and so are easier to use. The trade off, however, is 

with the ability of the animator to use his artistic skills.

Related to task-level systems is the use of artificial intelligence and expert 

systems in computer animation. Magnenat-Thalmann and Thalmann (1986b) have 

developed EXPERTMIRA, an animation language that uses concepts from 

artificial intelligence. In a similar vein Badler (1989) uses natural language to 

augment his task-level animation process. Arya (1986) describes the benefit of 

using a functional approach to implement animation. A kernel of primitives can 

be set up and combined into higher order functions.
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A method that incorporates facilities from all the different categories of 

animation systems will give complete yet economical motion control (Zeltzer 

1985). Interactive systems, for example, are usually better for designing motion 

(Entis 1986), and Hanrahan and Sturman (1985) who use a scripted approach 

resort to key framing for motion definition. Schlag (1986) also encourages the 

integration of scripting and interaction into a single system. A final example is 

provided by Chuang and Entis (1983). They use a key frame based system that 

utilises a script facility for defining relationships between objects that affect their 

motion. They place emphasis on the use of software tools and intermediate stage 

graphics for design flexibility.

1.6.7 Rendering Animation

Once the animation has been defined the object, camera, and lighting information

are amalgamated to create a scene model for each frame of the sequence. A

variety of methods can then be used to produce a static image of each frame, for 
example:

Renderer Comments
wire frame 
scan line algorithms 
ray tracing

fastest, useful for previewing animation 
fast for solid rendering, can lack detail 
simulates optical laws, realistic but slow

The speed at which the animation can be rendered is an important 

consideration. Ideally the animator should be able to define and view an 

animation sequence in real time. None of the above rendering techniques is fast 

enough on conventional hardware to produce the minimum of fifteen frames that 

would be needed every second. The actual time taken to generate each frame will 

range from a few seconds to many hours depending on the power of the 

computer, the complexity of the scene, and the Tenderer being used. The 

rendering of a complete animation sequence is therefore a time consuming process 

and so methods of improving this time performance have been researched.

The term frame to frame coherence refers to the similarity of successive 

frames in an animation sequence. It should be possible to exploit this property to
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reduce the time spent performing hidden surface removal calculations in scanline 

algorithms. Many flight simulators, for example, contain special hardware that 

rely on frame to frame coherence. This property is also used by Hubshman and 

Zucker (1982), but here only the position of the view point is allowed to change 

whilst the scene remains static. Noma and Kunii (1985) reverse this situation by 

keeping the view point static whilst the scene moves in front of i t  Both these 

methods have further restrictions applied to them and so their use is limited.

Shelley and Greenberg (1982) have used a variation of frame to frame 

coherence. In their animation system each successive position of the view point 

lies on a smooth path defined by the animator. They use the coherence of this 

path to reduce the amount of culling and sorting that must be performed when 

determining the visible surfaces.

The time needed to ray trace an animation sequence can also be reduced. 

Glassener (1988) uses a hybrid adaptation of space subdivision and bounding 

volume techniques applied to four dimensions; with time as the fourth dimension. 

Information from the animation is used at a preprocessing stage to produce a 

spacetime subdivision. This subdivision is then used to determine the volume of 

space that will contain an object at a given time. The number of rays that need to 

be traced is thus reduced.

Effects that will improve animation can also be introduced at the rendering 

stage. A fast moving object in an animation sequence, for example, will often 

suffer from temporal aliasing and appear to move with a jerky action. Compare 

this with the blurred image of such an object that the human eye will register in a 

real life situation. This suggests that the motion of fast moving objects in 

animation will appear smoother and more realistic if they too are blurred. Several 

methods of achieving such motion blur in animation have been proposed. Korein 

and Badler (1983), for example, have employed temporal antialiasing and one 

technique they describe is supersampling. This involves taking several images for 

each frame at slightly different points in time. The intensity of corresponding 

pixels in all these images are then filtered to produce the frame pixel intensity to 

be used. Cook (1986), however, claims that supersampling can only reduce
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aliasing and cannot remove it completely. His strategy is to replace aliasing with 

noise as noise is considered to be more acceptable to the human eye. He uses a 

stochastic method applied to the sampling of time called jittering. It involves 

dividing the frame time into slices and randomly assigning a slice of time to each 

sample point Motion blur can also be achieved in particle systems, by using a 

model of an optical camera (Potmesil and Chakravarty 1983), and by using post 

process algorithms (Max 1989).

The traditional principles of animation should not be forgotten here. At the 

rendering stage, for example, effects such as squash and stretch can be introduced 

(see §1.4.2). Methods of distorting the shape of solid objects have been described 

(Barr 1984), and Bethel and Uselton (1989) have provided tools for shape 

distortion in computer assisted key frame animation.

1.6.8 Post Production

The animator will need to view the animation before it is photographed onto film. 

Although it is sometimes possible to generate and project a short two dimensional 

sequence in real time this is not generally the case. Frames that have already 

been rendered can be viewed using real time playback, however (Magnenat- 

Thalmann and Thalmann 1985). The rendered frames are placed into mass 

storage from whence they can be displayed on a graphics screen at the appropriate 

rate. Denber and Turner (1986) describe a differential compiler that will allow 

such real time playback on a general puipose computer. Each frame is run 

through a data compression algorithm and only the differences between successive 

frames are placed into memory. Their system also allows for frame editing.

When satisfactory the rendered frames have to be transferred onto film or 

video and a soundtrack applied. Unlike in conventional animation the soundtrack 

tends to be considered only at the post process stage. Computer animation to date 

has generally relied on music and sound effects rather than dialogue. The 

problem of synchronising the animation to the dialogue is thus avoided. This is 

an area requiring more research. Note that the development of facial animation is 

important here.
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1.7 Research Possibilities

The literature survey presented in the previous section details the large volume of 

research that has been carried out in the computer animation field. Several areas 

are still in need of improvement, however.

The rendering of an animation sequence is the most time consuming stage of 

computer animation production. In most animation systems each frame is 

generated sequentially using a standard rendering technique. It should be 

possible, however, to utilise the ffame-to-ffame coherence of successive frames to 

greatly speed up the rendering process. We have seen that some success has 

already been achieved in this area (§1.6.7) but these solutions impose several 

restrictions on the animation. An all-embracing solution has yet to be discovered.

Substances such as skin and hair are difficult to model realistically on a 

computer and are areas of current research (Tost and Pueyo 1988). A skin model, 

for example, would probably need to be based on some form of deformable 

continuous surface. The modeling of facial expressions is another related area of 

active research. New modeling techniques designed specifically for the purposes 

of animation should also be evolved. At present most people generate objects 

using techniques taken from other areas of computer graphics. They then find 

that limitations are placed on the ways in which they can make their objects 

move. None of the techniques we examined earlier (§1.6.2), for example, 

overcome rigidity well and it is hard to show that living things bend as they 

move.

The development of motion specification systems is probably the most active 

area of research in computer animation. There has been a recent trend here 

towards the production of more realistic motion by making greater use of physical 

laws. Often, however, satisfactory results can be obtained without having to 

resort to complicated strategies. Interpolation techniques, for example, are cheap 

and easy to implement and should be more widely developed. Systems that offer 

the animator a combination of methods for motion specification are becoming 

more prevalent.
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At the moment there is a progression towards task-level systems and away 

from computer assisted animation. The task-level approach injects more 

automation into an animation system and so makes it easier to use. The 

drawback, however, is that the skills of the animator are in danger of being 

overlooked. We should not forget that traditional animation is a well established 

art form that produces high quality animation. The recent feature film Who 

Framed Roger Rabbit? demonstrates this fact admirably. The art of the 

traditional animator should be utilised when generating computer animation. 

Greater use of the principles of traditional animation in the computer medium has 

already been advocated (Lasseter 1985; Van Baerle 1985). Lasseter emphasises 

that the success of character animation lies in the ‘personality* of the character. 

By this he means that the animation principles should be applied intelligently to 

produce convincing, believable results. The use of the traditional principles of 

animation is a theme open for development in computer animation.

1.8 Summary and Conclusion

This chapter has given an overview of the production of both traditional and 

computer animation. We have noted that the technique used to accomplish a 

particular stage in the animation process will often depend on the application of 

the animation. Visual realism is important in entertainment applications whilst 

priority is given to precision and real time performance in scientific simulations. 

Our interests lie with the former class of application and this thesis will be 

concerned with techniques that are appropriate to this area of animation.

Although we have pointed out the need for improved modeling and rendering 

techniques in computer animation these will not be developed in this thesis. We 

will concentrate on finding new ways in which computer animation can be 

specified, particularly for entertainment applications. To ensure that the skill of 

the animator remains an important factor we will avoid the introduction of too 

much automation into the system. Instead we will encourage the animator to 

utilise the principles of traditional animation to achieve the appearance of reality. 

We do not want to make the animator’s task difficult, however, and so a well
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designed user interface will be important.

To summarise, we can identify two main aims for this thesis:

(i) to provide a system of animation planning that is straightforward to use 

but at the same time keeps the animator in control;

(ii) to enhance the animation effects attainable by incorporating the 

principles of traditional animation.



Chapter 2

The Controller Animation System

2.1 Introduction

The first aim of this thesis is to provide a flexible system for planning computer 

animation that is straightforward to use and keeps the animator in control. We 

will begin this chapter with an overview of the graphics environment available for 

the development of such a system. This includes the facilities that can be used to 

generate three dimensional models of the objects to be animated.

The Controller animation system is then introduced (see also John and Willis 

1989). Its operation is based on that of a television studio with the intention of 

creating a user friendly interactive graphics system in which the animator 

becomes the programme controller. This studio model is particularly apt as we 

are concerned with producing animation for entertainment applications. The 

programming principles used to implement Controller are also important and are 

discussed later in the chapter.

2.2 The Graphics Environment

A determining factor in the development of any computer graphics package are 

the facilities that are available. For our purposes the equipment should make 

possible the production of three dimensional computer animation. This section 

details the resources available in the Graphics Group at Bath University.
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2.2.1 The Processors

Two High Level Hardware Orion-1/05 super minicomputers are available 

exclusively for graphics work. These machines are high performance computers 

aimed at the scientific community. They run the UNIX 4.2 BSD operating 

system and thus benefit from the extensive range of programming tools and 

languages available for UNIX implementations. The principle programming 

language is C.

The Graphics Group initially used Orion-1 computers and these were 

comparable in power to a VAX 11/750. However, with the inclusion of the 

CLIPPER 32-bit microprocessor (with its built in floating point unit), the 

performance of an upgraded Orion-1/05 exceeds that of a VAX 8600. This 

computational power is useful for many graphics applications. In particular it 

makes feasible the rendering of an animation sequence using the realistic, but 

computationally expensive, technique of ray tracing.

2.2.2 Input Devices

Alphanumerical information is entered into the computer using a keyboard. 

However, for specific graphical input a digitising tablet and four-button cursor (or 

puck) is used. Magnetic induction generated between a coil in the puck and grid 

wires inside the tablet allows the position of the puck to be detected. The puck 

coordinates are then transmitted to the computer together with an indication of 

whether a button is being pressed. The puck is a locator device for obtaining 

screen coordinates and the buttons are choice indicators.

A colour digitiser is also available for scanning images into the computer. 

These images can be used as texture maps in the modeling stage.
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2.2.3 Output Devices

Each computer has an eight-bit colour display with a resolution of 1280 by 1024 

pixels for graphical output The images displayed on this screen can also be 

captured using the Graphics Group’s Colour Graphic Recorder. This is a device 

for recording colour photographic hard copy from the analogue video output of a 

raster scan screen. We can use it to obtain 35mm still photographs or, more 

appropriately for animation purposes, 16mm cine.

A standard visual display unit used with the keyboard is, of course, also 

available.

2.2.4 The Software Environment

Software in the group is written in the C programming language. It includes a 

library of graphics operations and a variety of tools used with the above hardware. 

As well as providing the interface between the screen and the tablet, this library 

offers drawing facilities, colour control, and menu handling facilities.

A highly interactive system with good quality raster scan colour display is 

thus provided, encouraging interactive rather than batch-oriented programs to be 

written.

2.2.5 Ray Tracing and Wire Frames

During the development of our animation system a concurrent research project has 

taken place to improve the performance of ray tracing algorithms (Spackman 

1989). As a result of this project, an efficient ray tracer is available that can 

synthesise realistic solid images containing many optical effects. Surface 

radiance, shadows, reflection, refraction and light attenuation are just some of the 

features that are offered. Obtaining such realistic effects in a computer animation 

is desirable, and so we decided to utilise this system. Note, however, that the 

computational cost of generating a ray traced image is high, and it can several 

hours to render a complex image at a reasonable resolution.
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A scene is described in a left-handed coordinate system and is divided into a 

a lighting model, and an object model (see appendix A). The lighting model 

defines the configuration of the viewer, and the position and intensity of all the 

point light sources required. The object model describes the bodies that are to be 

found in the scene. They are assembled from cones, cubes, cylinders, ellipsoids, 

planes, spheres and tori, using constructive solid geometry (unions, intersections 

and differences). The objects so formed are then defined optically by reference to 

the materials from which they are made. Silver, for example, can be simulated by 

making the colour of the material an appropriate shade of grey and giving it 

reflective properties. Texture maps can also be wrapped around specified objects.

A facility to assemble three dimensional models interactively has not yet 

been implemented. The design process can therefore be cumbersome, especially 

if the model is complex. Fortunately, however, each model can be previewed 

before it is rendered by the ray tracer. The same two source files used by the ray 

tracer can be fed into a mesh Tenderer producing a wire frame representation of 

the model. For speed, the mesh Tenderer does not do any constructive solid 

geometry or hidden line removal. The resulting image, however, is usually 

informative enough for confirmation of the model design.

The models generated will be needed at various stages throughout the 

production of an animation sequence. For example, they will be used when 

converting the data specified by an animator into scene models for each frame of 

the animation sequence (see chapter 4).

23  Designing Controller’s User Interface

The art of animation is in making objects move convincingly and traditionally this 

has depended on the skill of the animator. With the development of computer 

animation systems the resulting animation is also dependent on how the system 

allows motion to be planned. The design of the user interface is therefore an 

important factor in determining the quality of the animation produced and should 

be well thought out before proceeding to the implementation stage. We will 

begin this task by determining exactly what is required from our system of
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animadon planning (hereafter referred to as Controller).

Since Controller is to be primarily concerned with motion specification tasks 

it makes sense to implement it as an interactive system. This also fits in with the 

graphics environment described above. The following guidelines (Foley and Van 

Dam 1982) developed to enhance the user-program interaction of any graphics 

system are considered:

(i) keep the interaction sequences simple and consistent;

(ii) do not use too many options or different styles;

(iii) provide prompts, but ensure that they do not hamper the experienced 

user,

(iv) supply the user with appropriate feedback;

(v) allow the user to correct any errors that he makes.

The development of Controller’s user interface is also helped by modeling it 

on a real life application. The production of a computer animation sequence 

using an interactive system can be compared to the production of a television 

programme. In the latter case the programme director will be in a control room 

overlooking the studio. From here he will coordinate the action and movement of 

the actors, camera crew, sound crew and stage crew. In the former case the 

animator will be sitting at his graphics terminal. He too has to coordinate the 

action and movement of cameras, cast and lights, except that the cast are 

computer generated, the cameras are virtual, and the lights are synthetic. As our 

system will mainly produce animation for the entertainment market a television 

control room model seems particularly apt. The analogy with a control room also 

elucidates why the system has been called Controller. Let us consider in more 

detail the activities that a television control room monitors and determine how 

they can be adapted to computer animation.
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2.3.1 The Control Room Scenario

Careful planning and preparation take place before the shooting of a television 

programme commences. Scripts are written and examined by the cast and crew 

so that they know their role during the scene about to be filmed. The set for the 

scene is built and numerous lights located around it. The angle and intensity of 

the lights are carefully selected to give the exact lighting effect required. 

Cameras and microphones are also positioned and set up. Various test shots may 

then be made to establish camera paths and actor position and movement The 

studio floor will often be crayoned or taped with toe marks and camera locations

to show the final position of these paths.

The programme director takes his place in the production control room when

everyone is prepared for filming. From here he can view the shot being

transmitted from each camera on a series of monitors. This will enable him to 

select the camera shot that is to be broadcast during the filming of the scene. He 

will communicate with his technical crew using talk-back circuits and his floor 

manager will pass on any instructions to the actors. If the production is not being 

transmitted live he can stop the action at any point to make changes as necessary.

2.3.2 Adapting the Control Room Model

The studio control room model was chosen with the intention of creating from it a 

user friendly interactive graphics system. The animator becomes the programme 

controller and his graphics terminal is the control room. The computer thus 

assumes the roles of the camera and stage crews, receiving the animator’s 

instructions from either the keyboard, or the tablet and puck. Function menus 

replace the communication system found in the television studio. Controller does 

not, however, cater for the addition of a sound track and so the role of the sound 

crew has so far been overlooked.

Before filming takes place a television production will be carefully 

rehearsed. Similarly, the scene to be animated will be carefully planned before 

proceeding to the animation stage. Storyboards depicting the action of the scene
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(see §1.4.1) are created and used as a guideline throughout the animation process. 

Using information from the storyboard and elsewhere, the sets and actors required 

for the scene are generated (§2.4). Controller can then be used to define an 

animation sequence.

Controller creates an artificial television studio that uses virtual cameras, 

synthetic lights and computer generated actors. Methods of defining these entities 

within Controller are required. We have seen that one technique that can be 

adopted is to consider an object as a set of parameter values (§1.6.4). A camera, 

for example, can be parameterised by its location, orientation, and zoom angle. 

The location at every frame is then determined by specifying a path in some way. 

This technique is in keeping with the control room analogy where location marks 

are made on the studio floor (although the height of the object still has to be 

determined). Both spatial and temporal aspects of the moving object must be 

catered for. This is an important stage when planning animation and is discussed 

fully in the next chapter.

The animator still has to specify other parameter values at the frame 

locations defined by a path. Use of graphical valuators such as dials and sliding 

scales are appropriate for this task. The animator cannot be expected to define 

these values at every frame, however, as an animation sequence contains far too 

many frames. The obvious solution is to interpolate the parameter values between 

selected key frames (see §1.5.1). The view from each camera should also be 

accessible to the animator. This allows him to check the motion of a moving 

object and ensure that the camera is looking at the correct part of the set. If any 

changes are necessary they are then made before the final rendering of the 

sequence. The information gathered by Controller in this way is converted into 

three dimensional models, one for each frame of the animation sequence. Finally 

the frames are rendered and transferred onto film or video.

Using the above criteria the overall structure of Controller is represented in 

fig. 2.1 as a module hierarchy. We will now analyze the implementation of this 

module hierarchy.
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Figure 2.1. A Module Hierarchy for Controller
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2.4 Sets and Cast

The first stage in computer animation production is to provide models of the 

actors and sets required (see §1.5.2). Many ways of building and rendering three 

dimensional models are available in the world of computer graphics. By 

providing the appropriate interface, Controller is intended to be compatible with 

any type of modeiing system. So far, however, we have only used the in house 

systems described in section 2.2.5.

2.4.1 Sets

The set consists of the background and static objects about which an animation 

sequence is to be filmed. Before an animator can use Controller he has to create 

the scene model of any set he wishes to use (§2.2.5). A front elevation of this 

scene model will usually give a good feel for the appearance of the set and such a 

view is rendered using the ray tracer. When a set is required from within 

Controller these front elevation views are displayed on the graphics screen (fig. 

2.2).

Figure 2.2. A Set Menu
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The puck is then used to pick the required set from this menu. The animator also 

specifies the scene number and start frame number of the sequence at this point. 

Note that there is a maximum to the number of sets that can be displayed on the 

graphics screen in this way. To ensure that the animator is given the choice of 

sets that he requires, he specifies a file containing the titles of the sets that he is 

most likely to use. When invoked, Controller offers him the choice of the sets 

listed in this file.

Once a set has been selected its plan view is displayed at a resolution of 

1024 by 1024 pixels so that it covers most of the screen. This is the same view 

that the programme controller will get from a window in his control room.

Perspective Parallel

Figure 2.3. Plan View Projections

Most of the movement is planned by the animator on top of this plan view, hence 

the use of a large area of the screen. The ray tracer is also used here so that a 

realistic shaded image is obtained. Controller can, however, utilise the equivalent 

wire frame image if there is not enough time available for ray tracing. Note that 

the ray tracer can generate an image using either a perspective or a parallel 

projection. A perspective projection is always used for the final rendering of an
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animation sequence as this is more realistic to the human eye. The animator 

decides on the most appropriate projection for representing the plan view of a set 

at the modeling stage. Figure 2.3, for example, depicts the perspective and 

parallel plan views of a three walled room (the second set in fig. 2.2). The view 

point used when generating these images is directly above the centre of the 

room’s floor. In the perspective view the animator can clearly see the objects 

mounted on the walls and they do not obscure any part of the floor. The cone, 

however, has been distorted by the effects of perspective and may give the 

animator the wrong impression about its geometry. This may interfere with his 

design of a path. The position and orientation of the cone in the parallel view is 

much clearer but here the floor is obscured by the objects on the wall. This is 

more likely to interfere with the design of a path and so the perspective projection 

is preferred in this example.

When a plan view is generated using perspective, the screen on which the 

rendered image is formed is configured so that:

(i) its dimensions are one unit by one unit (here the screen is in the xz 

plane);

(ii) it is one unit away from the view point;

(iii) it is orthogonal to the view direction vector,

(iv) The view direction vector passes through the centre of the screen.

The height of the view point determines the scale of the objects in the final 

image. If the screen remains at a fixed distance from the view point, then 

increasing the height of this point above the scene centre results in a larger area 

of the set being captured (fig. 2.4). The objects in the set appear smaller as a 

result. Again the animator decides at the modeling stage what scale best suits his 

purposes as any path defined by him has to be calibrated to the set dimensions. 

A large scale is usually necessary for outside scenes while a smaller scale is 

enough for inside scenes. He can always make the same set available to 

Controller at several different scales if required. Altering the distance of the 

screen from the view point also affects the area of the scene covered by the final



-  44 -

viewer’s height 
increases

Figure 2.4. The Height of the Viewer in a Perspective Projection

image. The virtual cameras used by Controller can be made to ‘zoom’ in this 

way (see chapter 4). Note that with a parallel projection the height of the view 

point is immaterial. Here it is the dimensions of the screen that determine the 

scale of the objects in the set. In fig 2.5, for example, we require the parallel 

projection to use the same field of view as that used in the corresponding 

perspective projection. The view point in the perspective projection is at a height 

h above the scene centre. Simple geometry shows that the dimension of the 

screen in the xz plane should be h by h for the parallel projection to appear at the 

same scale.
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Figure 2.5. The Field of View for a Perspective and a Parallel Projection 

2.4.2 Cast

A model of each new actor (or cast member) is produced in the same way as it is 

for a set. Appropriate views are rendered to give a clear picture of what the cast 

member looks like. These views are displayed on the graphics screen when the 

animator wants to select a cast member (fig, 2.6). Again, before activating 

Controller, the animator specifies a file listing the cast members used in the script. 

Controller allows a cast member to be used more than once in the same scene. 

The scale at which the cast members are to appear can also be varied by the 

animator. This scale is specified when using the pencil test facility and at the 

frame rendering stage (chapter 4).

When defining cameras and lights only their overall motion about the set is 

considered. A member of the cast, however, also has its own internal movement, 

such as limb motion. At present, Controller takes a simplified approach when 

providing motion of this type. For each cast member, enough poses are created to 

depict the motion style required. For example, the ‘pacman’ character in fig. 2.7 

uses three poses to depict his chomp. The poses are then used in turn at



Figure 2.6. A Cast Menu

successive frame positions. If the same cast member is to have several styles of 

internal motion then a different set of poses depicts each motion. The animator 

ensures that the cast member is exhibiting the correct motion style throughout the 

animation sequence. Although this solution has its limitations, it is still effective 

in many cases (especially when a large number of poses are used). A more 

comprehensive solution such as the post process techniques described by Lundin 

(1984) will be needed in the future, however.

2.5 Designing the Implementation of Controller

The main programming language available under the UNIX environment is C and 

the Graphics Group’s software utilities have been developed in this language. C 

is therefore an obvious choice for the implementation of Controller and also 

provides the benefits of a flexible, structured, and portable language. We will 

assume that the reader is familiar with the basic concepts of C as we use portions



Figure 2.7. Motion Poses for a ‘Pacman’ Character
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of code from this language to illustrate points below.

First we will apply the guidelines for good user-program interaction to 

Controller.

2.5.1 Interaction Sequences

The overall operation of Controller is set up as an event driven interaction loop, 

where an event is defined to be an action performed by the animator. The 

animator uses the tablet and puck as the main input device, although he will 

occasionally utilise the keyboard. To avoid complexity, however, these two 

devices are never used as part of the same function. In its default mode 

Controller polls the puck for its current status. The cursor on the graphics screen 

is then updated to reflect the position of the puck on the tablet. Whenever a puck 

button is pressed an event is triggered and the appropriate action is taken by 

Controller. Controller then waits for the next event to occur.

2.5.2 Options and Styles

Controller is driven interactively by a hierarchy of function menus displayed on 

the graphics screen. In keeping with our control room interface the names of 

these functions use terminology from television production. At the top level the 

animator chooses from broad categories such as camera control, lighting control, 

and cast control. As the menu hierarchy is descended more specific options are 

given. To obtain the maximum use of the screen, areas of it are not reserved 

specifically for these menus. Instead dynamic or pop-up menus are utilised. 

These are created on bit maps that can be held in memory off screen until 

required. They can then be copied to any position on the screen, usually at the 

cursor position. The area of screen being overwritten is recorded to enable it to 

be restored to its original state when the menu is removed.

Appropriate flags are used to keep track of where in the program hierarchy 

the animator currently is. They determine whether a menu should be displayed or 

removed and what function is being or has been selected. The event triggered by
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the animator also depends on the current status of Controller. It may be a menu 

selection, keyboard or valuator data entry, or the location of some point on the 

screen. Always, however, an event occurs when data are supplied by the 

animator.

2.5.3 Prompts

The automatic appearance of a menu or valuator on the graphics screen prompts 

the animator on his next course of action. Other prompts, such as instructions to 

the animator, are sent to the visual display unit. Since the animator is 

concentrating on the graphics screen, he can ignore these instructions if he already 

knows what to do next. To inform the inexperienced user that an instruction has 

appeared on the visual display unit, however, the terminal is made to ‘beep*.

Alternatively, we could supply a prompt line on the graphics screen. This 

would mean either reserving a specific area of the screen for the prompt line, or 

having a pop-up prompt line similar in use to menus. A pop-up prompt line, 

however, would soon become irritating to an experienced user. At the same time 

we did not want to reserve areas of the screen to display a prompt that the 

experienced animator is already expecting. For these reasons, instructions on the 

use of Controller only appear on the visual display unit

2.5.4 Feedback

As Controller is a graphics system most of the feedback given to the animator is 

visual. For example, the menu functions selected are highlighted, valuators can 

be adjusted dynamically, and the path defined by the animator will change 

according to his instructions. Controller also uses a variety of cursors to help 

remind the animator about the current status (Fig. 2.8). The most important 

feedback for the animator comes from the pencil test and real time playback 

facilities that enable him to preview the animation. The implementation of these 

facilities are described in chapter 4.
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Tracker: for plotting paths and selecting frame locations;

Camera: for selecting camera functions;

Pan: for specifying a camera’s heading;

Zoom: for changing the lens angle of a camera;

Cast: for selecting cast functions;

Light: for selecting light functions;

Bee: to indicate that Controller is ‘busy* and the animator must wait.

Figure 2.8. The Graphics Cursors used by Controller

2.5.5 Correcting Errors

Error handling facilities are built into Controller. For example, the animator is 

allowed to alter the shape of a path, relocate frame positions along the path, and 

change the value of any parameter. These facilities are covered in detail in the 

following chapters.

2.6 Data Structures

One consideration when implementing Controller is how to store and handle the 

animation data associated with an object*. We propose using sets of parameter 

values such as:

Cast member = {location, orientation };

* Throughout this text we use the term object to refer to one of a camera, a cast member, or a 
light.
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Camera = {location, orientation, zoom };

Light = {location, intensity}.

These parameters can be broken down into a form in which their values can be 

recorded in Controller:

location: a three dimensional coordinate, (x,y,z);

orientation: the way in which the object is heading, use a vector or a point in

space;

zoom: the camera lens angle, typically between 10° and 50°;

intensity: the brightness of the light source, usually defined in the scale

10,1];

Bearing in mind that even a short animation sequence is made up of many frames, 

efficient handling of the data is essential.

Linked lists or chains are created to store the animation data. Each node in 

a chain is a C structure containing appropriate fields in which to store the data for 

a single frame. Below, for example, is a node fiom a camera chain

s t r u c t  c a m e ra _ in fo  {
x y z _ c o o rd  p o s i t i o n ;  
x y z _ c o o rd  c e n t r e _ o f _ i n t e r e s t ; 
d o u b le  l e n s _ a n g le ;  
s t r u c t  c a m e ra _ in fo  * n e x t_ f ra m e ;
s t r u c t  c a m e r a _ i n f o  * l a s t _ f r a m e ;

};

Note that a node contains a link to both the next and previous nodes in the chain. 

This is because a doubly linked chain is useful when it comes to searching the 

chain for data belonging to an arbitrary frame. The nodes in these frame chains 

run sequentially and so there is no need to explicitly store the frame number in 

each node. We just need to keep track of how far along the chain we are from

the initial node. This is also the number of the frame currently being accessed.

When the animator defines a new frame location an instance of the above 

structure is added to the end of the chain. We are thus using dynamic memory



- 5 2 -

allocation, obtaining the storage space required at run time. Therefore, the only 

limitation on the length of a frame chain is the amount of memory available on 

the host machine. This is far more satisfactory than using an array to store the 

frame data. The length of an array has to be determined before the source code is 

compiled but at this stage we do not know what this length should be.

In all, three types of chain are set up, one each to deal with cameras, cast 

and lights. Every object has its own chain and there are usually several of them 

in existence at one time. A link to the initial node of each chain is maintained to 

allow us access to and to switch between them as required. The links held within 

a node can then be used to move along the chain so that data are stored or 

retrieved as desired.

A node is defined by one of three different parameter sets and so its size 

depends on the object it belongs to. Storage fields such as the frame location 

coordinate are common to all three nodes, however. It would be efficient if the 

same source code is used to access one of these common fields without having to

determine on each access the type of chain being used. The node cannot

normally be passed in the argument list of some general procedure, however. We 

do not know in advance which of the three data types the node argument has to 

be declared as within this procedure. The solution adopted is to use pointers to 

functions. Consider the problem of extracting the frame location coordinate from 

an arbitrary node. Three simple functions are provided to return this coordinate 

from each of the node types. For example, the camera function is

i n t  g e t _ c a m e r a _ c o o r d i n a t e ( x ,  y,  z) 
d o u b l e  *x, *y, *z;
{

*x = c a m e r a _ l i n k - > p o s i t i o n . x ;
*y = c a m e r a _ l i n k - > p o s i t i o n . y ;
*z = c a m e r a _ l i n k - > p o s i t i o n . z ;

};

A global pointer is set to this function whenever the animator selects a new 

camera, that is
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g e t _ c o o r d i n a t e  = g e t _ c a m e r a _ c o o r d i n a t e ;

Similarly for the cast and lights. A common procedure can then be written to 

access the required coordinate using this function pointer as follows

( * g e t _ c o o r d i n a t e ) ( & x , & y , & z ) ;

Once the global function pointer has been set there is no need to determine the 

type of chain being used at each access. This technique is also applied to storing 

the object position and orientation at one of its frames.

2.7 An Object Orientated Environment

Controller has been implemented in an event driven environment (§2.5) using 

general purpose procedures (§2.6). An alternative approach would be to include 

procedural information as part of a property list belonging to some specific object. 

New facilities can then be included by extending this property list as appropriate. 

An environment that is set up in this way is often referred to as an object 

orientated environment. Procedures called methods can be attached to an object 

and executed whenever an appropriate message is sent to that object.

As we have already described, the director of a television studio will 

coordinate the production of a programme by sending messages to the stage and 

camera crews. This scenario is an ideal candidate for being modelled in an object 

orientated environment. We therefore decided to produce an experimental version 

of Controller using:

(i) the C++ programming language, and

(ii) UNIX message sending facilities.

Our intention is to use these to simulate an object orientated environment
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2.7.1 Experiments with C++

C++ is a development of the C programming language and retains C as a subset. 

Its compiler acts as a preprocesser for the normal C compiler. The main ways in 

which C++ differs from C are by the provision of:

(i) type checking of function arguments;

(ii) modular design;

(iii) classes and inheritance;

(iv) operator overloading.

Full details of these and other differences are given by Stroustrup (1986).

C++ offers features found in an object orientated environment In particular, 

it allows types called classes to be defined for which access to data is restricted to 

a specific set of functions (the member functions). An object is declared to be a 

member of a certain class in the same way as variables are declared to be, for 

example, of type integer. A hierarchy of classes can then be created by deriving 

further classes from the base class. An important feature of such a hierarchy is 

that a derived class inherits the properties of its base class, in addition to any 

new properties defined just for it.

A subset of Controller was converted into C++ so that a class structure could 

be incorporated. This version of Controller allows for path specification and the 

plotting of frame positions along the path. It also contains the code for the 

selection of the frame positions between which some parameter is to be defined. 

Detailed descriptions of these facilities are not required here as they are covered 

in the following chapters.

When a path is drawn onto the graphics screen, a container class is required 

to store the path coordinates, for example
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c l a s s  p a t h  { 
i n t  s z ;  
i n t *  x;  
i n t *  z ;  

p u b l i c :
p a t h ( i n t ) ;
v o i d  s t o r e ( i n t , i n t , i n t ) ; 
v o i d  g e t ( i n t , i n t * , i n t * ) ;

The variables sz , x and z are only accessible to the member functions path, 

store and get. The function path is called the constructor function and initialises 

x and z to point to vectors of length sz. These hold the coordinates that are 

accessed by the store and get functions. A container class is also required to 

hold the cast or camera frame positions along such a path

c l a s s  movabl e  {
f r i e n d  c l a s s  c amera ;
f r i e n d  c l a s s  c a s t ;
i n t  *x;
i n t  *y;
i n t  *z;
i n t  s z ;
i n t  c h o o s e _ f r o m _ r a n g e ( i n t ) ;  

p u b l i c :
movable  () ;
i n t  s t o r e x  ( i n t , i n t ) ;
i n t  s t o r e y ( i n t , i n t ) ;
i n t  s t o r e z  ( i n t , i n t ) ;
i n t  g e t ( i n t , i n t * , i n t * , i n t * ) ;
i n t  g e t _ p o s ( ) ;

Any object declared to be a member of this class is automatically provided with 

functions to access its frame location coordinates. A subclass can then be derived 

from movable to deal with options related specifically to cameras, for example
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c l a s s  c am er a :  p u b l i c  movabl e  { 
i n t *  z f ;  
i n t *  i x ;  
i n t *  i z ;  

p u b l i c :
c a m e r a ( ) ;
v o i d  s e t _ h e a d i n g ( i n t , i n t , i n t ) ; 
v o i d  g e t _ h e a d i n g ( i n t , i n t * , i n t * ) ;  
i n t  s e t _ z o o m ( i n t , i n t ) ;

};

The specification of a cameras heading and zoom are thus provided for. A class 

dealing with cast specific functions can similarly be derived. Note that the base 

class movable has to declare both cast and camera as being a friend. This 

enables the derived classes to access the variables that would otherwise be private 

to movable. The derived class camera inherits the properties of the base class as 

well as having its own specific properties.

2.7.2 Sending Messages

An important feature of an object orientated environment not supplied by C++ is 

the ability for objects to communicate with each other by sending messages. An 

attempt was made to simulate message sending by using the UNIX toolkit of 

forks, system calls, pipes and sockets.

A fork creates a new (child) process. The child process is an exact copy of 

the parent process except that it has a unique process identifier.

A system call can be used to execute a process from within a different 

process. Control is then returned to the calling process.

A pipe can be used to send data from a parent process to a child, or vice 

versa:



- 5 7 -

Parent:
Make a connection to the child: 
f o u t  = p o p e n ( " c h i l d " , " r  " ) ;
f p r i n t f ( f o u t , " I n f o r m a t i o n  f rom t h e  p a r e n t " ) ;  
Close the connection: 
p c l o s e ( f o u t ) ;

Child:
Read from parent and output the message:
w h i l e ( ( c = g e t c h a r () )  != ' 0  ) p u t c h a r ( c ) ;

However, when two way communication between processes is required it is 

simpler to use sockets, in particular a socketpair which creates a pair of 

connected sockets. Figure 2.9 provides a simple example where data are sent to 

and from the parent and child.

If two or more processes require use of the graphics screen then our task is 

made more complex. Normally a screen lock ensures that only one process is 

allowed access to the graphics screen at any given time. We can override the 

screen lock, but there are still problems. Before a process can use the graphics 

screen information internal to the graphics system is initialised. This information 

must be available to all processes using the screen or it is still impossible for 

more than one process to have access to it. This rules out the use of a system 

call to initialise animation functions under the control of other processes. To 

ensure that the required information is available to each process, the entire source 

code has to be copied by using a fork. Each time a process is spawned in this 

way, however, there is a substantial (and undisirable) increase in the memory used 

by the system.

2.7.3 Comments

There is no noticeable difference in the performance of either the C or the C++ 

version of Controller as far as the animator is concerned. The C++ version, 

however, produces larger executable code owing to the extra overhead involved. 

So what are the advantages, if any, of using the C++ programming environment?
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main ()
{

i n t  sv  [ 2 ] ;  - contains the two socket descriptors 
c h a r  b u f 1 [ 2 0 ] ,  b u f 2 [ 2 0 J ;

Make a two way connection:
s o c k e t p a i r (A F_U N IX,SOCK _STREA M ,0 , s v ) ;

Use a fork() to create a child process: 
i f ( f o r k ( )  == 0)
{ In the child

Receive a message from the parent: 
r e a d ( s v [ l ] , b u f 2 , s i z e o f ( b u f 2 ) ) ;  
s h u t d o w n ( s v [ l ] ,  0) ;

Send a message to the parent: 
b u f l = MM e s s a g e _ f r o m _ c h i l d " ; 
w r i t e ( s v [ l ] , b u f 1 , s i z e o f ( b u f 1 ) ) ;  
s h u t d o w n ( s v [ l ] ,  1) ; 
e x i t ( 1 ) ;

)

e l s e
{ In the parent

Send a message to the child: 
b u f l =  " M e s s a g e _ f r o m _ p a r e n t ";  
w r i t e ( s v [ 0 ] , b u f l , s i z e o f ( b u f l ) ) ;  
s h u t d o w n (s v [ 0 ] , 1 ) ;

Receive a message from the child: 
r e a d ( s v [ 0 ] , b u f 2 , s i z e o f ( b u f 2 ) ) ;  
s h u t d o w n ( s v [ 0 ] , 0 ) ;

}
}

Figure 2.9. Communicating Between Two Processes Using a Socketpair

The inheritance feature encourages more economical code to be written and 

it is a lot easier to share code in this way than having to manipulate pointers to 

functions. The class structure with its ‘private* variables helps to locate code and 

make debugging easier. The strict type checking performed by C++ also helps to
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reduce bugs. Despite these features, it did not seem to be worthwhile converting 

the whole of Controller into C++. A useful facility of an object orientated 

environment is the ability of objects to communicate with each other by message 

passing and this is not available in C++. Although we attempted to overcome 

this deficiency, our experiment was not a great success. We therefore decided to 

continue the development of Controller using our event driven approach.

2.8 Summary

This chapter has introduced the Controller system of animation planning. After 

describing methods of modeling actors and backgrounds, we considered the design 

of Controller’s user interface. By basing this on the operation of a television 

control room we have provided a foundation for an easy to use interactive 

graphics system. We have also examined different approaches for coding the 

system and found that an event driven approach is suitable for our requirements.

We will now look in more detail at techniques that can be used to cany out 

the animation planning.



Chapter 3

Motion Paths

3.1 Introduction

The main function of Controller is to allow the animator to plan the movement of 

cameras, cast members, and lights. He achieves this task by:

(i) defining a motion path for each object;

(ii) setting the parameters associated with an object at each frame.

This chapter describes the first of these stages (see also John and Willis 1989b).

A motion path will determine the overall position of an object during the 

scene being animated. To specify such a path, the animator will have to supply 

Controller with both spatial and temporal information about the object. In both 

cases we aim to provide a flexible interface offering him fine control over the 

motion specification. The chapter begins by following the procedure that the 

animator uses to provide the spatial information. We then present and compare 

various methods by which the temporal definition can be implemented. Our main 

objective is to achieve smooth motion but we also examine whether the mass of 

an object can be simulated.

3.2 The Spatial Definition

At this point the animator has already chosen the set to be used for the scene and 

its plan view is on the graphics screen (see §2.4.1). He will now choose the cast 

member, camera or light that he wishes to define a motion path for, and will 

commence its spatial definition. In general we have to define a three dimensional 

path using a two dimensional device so we consider first only the xz or ground 

plane. The extension into three dimensions by the setting of the object’s height
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parameter will be described in the next chapter. The animator will therefore 

proceed to draw a two dimensional track onto the plan view of the set. The 

object will move along this track during the period that it is present in the scene.

Controller provides the animator with several methods of using the tablet and 

puck for drawing tracks. One option allows the animator to define a track using a 

series of straight line segments. If selected, a line is ‘rubber banded* from the 

part of the track already drawn (if any) to the current cursor position. Pressing a 

puck button will fix the line segment, and so on. Although a track defined in this 

way is sometimes appropriate (a camera often tracks along a straight line), natural 

movement tends to follow arcs rather than straight lines. A circular track can be 

drawn by the animator but although this facility is useful, motion in a circle can 

often look too mechanical. Another option is to allow the animator to draw a 

track freehand. However, it is difficult to draw the track smoothly in this way 

and the resulting motion will often appear erratic. A method of representing 

natural movement in a more convenient way was therefore sought.

3.2.1 Spline Curve Formulations

If a draughtsman wishes to produce a smooth curve he will use a flexible strip 

called a spline to draw through a set of control points. Spline curves can be 

represented mathematically and their application to computer graphics is well 

known. We decided to include such spline techniques in Controller so that the 

animator can construct a track out of smooth curve segments. Several different 

forms of splines exist (see Foley and Van Dam 1982), but they are all based on 

the parametric representation of a three dimensional curve

x(t)  = ax t3 + bxt2 + cx t + dx ;

y (t) = ay t3 + by t2 + cy t + dy ; (3.2a)

z(r) = azt3 + bzt2 + czt + dz .

We are dealing with finite curve segments so t is usually limited to the range

[0,1]. A spline curve is made up of a series of these curve segments linked
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together so that there is continuity of position and slope across the joins. A true 

spline has second order continuity (for example, B splines and P splines), 

although some spline curve formulations provide only first order continuity (for 

example, Hermite and Bezier splines).

The Hermite formulation produces a curve with first order continuity. Each 

curve segment is defined by two control points and the tangent vector at these 

points. The curve produced will pass through the control points.

Bezier curves also have first order continuity. Here the curve segments are 

defined by four points and tangent vectors are not needed. A Bezier curve is thus 

easier to define than a Hermite curve. Two of the defined control points are the 

end points of the curve segment and all four control points form a convex hull in 

which the curve segment will lie. This ensures that the curve will smoothly 

follow its control points without erratic oscillations.

The B spline is an approximating spline and so does not pass through its 

defining control points. Its formulation, however, produces a curve that has 

second order continuity. This means that each curve segment making up the 

spline is joined with the next in such a way that the first and second derivatives 

across the join are continuous. A much smoother curve is therefore produced. 

The B spline also has the convex hull property.

Second order continuity is also provided by p splines. Two parameters 

(called beta parameters) are introduced to provide greater manipulation of the 

shape of the spline. The beta parameters adjust the shape of the curve segments 

about the convex hull of their control points.

We chose to use B splines in Controller. The smooth curve produced by 

splines with second order continuity are more suitable for plotting tracks that can 

represent natural motion. They will prevent discontinuities in the direction of 

motion from occurring. We do not need the extra shape manipulation provided 

by P splines, however, the B spline will be satisfactory. The formulation given 

by Foley and Van Dam (1982) is of the form

x(t)  = TMGXt



where

T = l t 3 t2 t 1 ] , M  = 4
6

- 1 3 - 3  1 
1 3 - 6 3 0  
6 - 3 0 3 0 

Ll 4 1 0.

P 0 • • • Pn are the control vertices.

The use of a cubic spline means that a track could be defined through the set 

in three dimensions. However, providing an easy to use interface for the animator 

to do this is not straightforward. We therefore restrict the spline to two 

dimensions when carrying out the track drawing stage. This also simplifies the 

calculations involved. As we have already stated, the setting of an object’s height 

will be discussed in the next chapter.

3.2.2 B Spline Tracks

To define a B spline track in Controller the animator begins by drawing a series 

of (rubber-banded) straight line segments onto the plan view of the set (fig. 3.1). 

The end points of these segments are the points to be interpolated by the spline 

and they approximate the desired shape of the track. A B spline does not 

generally interpolate any of the control points defining it, however, it just passes 

close to them. If the end points of the straight line segments are used as control 

vertices then they will not lie on the track as desired. We therefore have to 

calculate the control vertices that will result in the interpolation of the desired 

points. To do this Controller uses a method described by Barsky and Greenberg 

(1980) but we only have to apply their method to two dimensions. It works by 

deriving and solving a set of linear equations that express the interpolation 

condition for each point about the unknown control vertices. Specialised 

algorithms for evaluating these unknowns are also provided.

Controller composes the shape of each spline segment by using ten 

coordinates joined by straight lines. These are usually enough to draw a visually 

smooth curve although the resolution of the segment can be altered as desired. 

The animator also has the option of defining the B spline curve to form a closed
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start of track

a. Defining the shape of the track

b. The interpolated B spline

Figure 3.1. Defining a B Spline Track
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loop. Below, for example, is the track obtained by interpolating a closed B spline 

through the same defining points as those used for the open spline in fig. 3.1.

□

extra spline segment

□ 4 control vertex

Figure 3.2. A Closed B spline

If a B spline is closed in this way then an extra cubic segment between the start 

and end points has to be drawn. The control vertices calculated at the end points 

of the track differ for the open and closed splines.

3.2.3 The B Spline Editor

An important part of the design of Controller are the provision of error correcting 

facilities. An obvious place for such a facility is at the track drawing stage, 

especially when B splines are being used. The animator is often unhappy with 

the B spline track after it has been interpolated as it may, for example, be too 

close to some object in the set. Controller provides a B spline editor to allow the 

track to be adjusted accordingly.

When the B spline track is drawn, the position of the control vertices that 

define it are also displayed on the screen (fig. 3.3). The animator can use the 

puck to select a control vertex and move it to a new position. The B spline track 

is then redrawn to reflect this change. An advantage of the B spline formulation
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□

a. The original track

□

□

b. The updated track

Figure 3.3. Editing a B Spline Track

\
x selected control vertex
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is that each control vertex only exerts a local influence on the spline. Therefore, 

the whole spline curve does not have to be redrawn as only the two cubic 

segments influenced by the selected control vertex have to be erased and 

recalculated. This process is illustrated in fig. 3.3.

To erase a section of track the screen pixels that define it must be restored to 

the original colour of the set. If the track is plotted by complementing the colour 

of each pixel that it covers then this is a simple task. By complementing the 

colour of the pixel a second time it is restored to its original state. Because of the 

dithering techniques used by the ray tracer when generating images, however, this 

method is unsatisfactory. Areas in the set picture that look as if they are of 

constant colour are made up of many different coloured pixels. When lines of 

complemented pixels are drawn on top of such an area they appear to change 

colour frequently and are often difficult to discern.

Visibility is not a problem if tracks are plotted using lines of pure colour. 

Such tracks show up clearly on the set and can also be colour coded to help the 

animator identify the type of object that the path represents*. Therefore, when a 

track is plotted the colour values of the pixels being overwritten are placed onto a 

stack. To erase the track it is plotted again, but this time in reverse. Each pixel 

is assigned a colour value popped off the stack and is thus restored to its original 

colour. Note that one byte of storage space is needed for each pixel value 

recorded on the stack. Extra storage space is therefore required when using this 

method but the improved visibility of the tracks make this cost worthwhile.

3.3 The Temporal Definition

So far we have been generating positional information without any reference to 

time. Therefore, when the animator is satisfied with his spatial definition the next 

step is to decide where the object will be at each frame. Remember that an 

animation sequence is displayed at a constant rate and so Controller has to

* Controller uses red for cameras, green for cast members, and blue for lights.
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calculate the position of the object at fixed time intervals. The method used to 

achieve this will be an important factor in determining the effectiveness of the 

final motion. In Controller we do not use splines and complicated physical laws 

for this purpose. The latter produce realistic results but are also computationally 

expensive. Further, both techniques increase the difficulty the animator has in 

specifying the exact motion he requires. We define the temporal information of a 

motion path using kinematic techniques as these provide the animator with a more 

intuitive method of carrying out this task. To produce realistic results we rely on 

the animator’s skill and the flexibility of the system.

An object in motion will be accelerating, decelerating, or moving at a 

constant speed. First we describe how the animator specifies the temporal 

information to simulate these styles of motion.

3.3.1 Motion Segments

The direction in which an object traverses its track is in the same direction as that 

in which the track is drawn. The resulting motion is described by a series of 

motion segments. Typically, the animator places three constraints on each motion 

segment he defines:

(i) the length of track to be used;

(ii) the number of frames to be taken;

(iii) the motion style (acceleration, deceleration or constant speed).

The length of track used is taken from the most recently calculated frame position 

(the beginning of the track or the end of the previous motion segment) to some 

point that the animator indicates on the path by using the puck (fig. 3.4). This 

point is identified by searching through the track coordinates for the nearest one 

to the puck when a puck button is pressed.

The animator then selects the motion style required from the menu displayed.

If acceleration or deceleration is selected then the animator is also required to

enter the duration (in frames) of the motion segment The procedure is slightly 

different if the object is to move at a constant speed. Here the animator only



start of this motion segment

/

motion menu

Deceleration

Acceleration

\
N end of motion segment

a. The current motion path

b. The updated motion path 

Figure 3.4. Defining a Motion Segment
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indicates the distance to be covered during the motion segment and as many 

frames as possible are then fitted in. The frame locations that Controller 

calculates to satisfy the animator’s specification are indicated on the track by 

plotting small squares. In fig. 3.4 we can see from these location indicators that 

the first motion segment defined is an acceleration phase lasting for nine frames. 

The animator then specifies a constant speed motion segment Note that he can 

also make the object remain at the most recently calculated frame position for any 

number of frames. Before the methods used to calculate the distance travelled 

between frames are discussed, we will detail how the location indicators are 

plotted onto the track.

All tracks (see §3.2) are constructed out of straight line segments, even 

curved segments of a track are made up of several small straight lines. The 

coordinates of the end points of each line segment are known and so it is 

straightforward to calculate the length of these segments. This procedure is 

computationally fast to carry out and gives a good approximation of the length of 

the track. Let us assume that the motion modeller calculates that the next frame 

location is at a distance, d, from the previous location. The particular line 

segment along which this location lies is determined by first subtracting from d 

all successive line segments that can be completely engulfed. This will leave a 

residue, r, that is the distance along the identified segment of the required frame 

location. In the example of fig. 3.5, a constant speed motion segment is being 

evaluated. Here

J? = rQ&

where ]f  is a vector denoting the required frame position, and so

px = Q X + r sin®»

P z = Q z  ~ r cosG.

The angle 0 is obtained using simple geometry. The calculation of the values of 

px and pz depend on the direction of the line segment vector. Here x  is
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Zoom

Figure 3.5. Calculating the Frame Locations

increasing and z is decreasing. Note also that the distance, Q R -r , must be taken 

into account when calculating the next frame position.

3.3.2 The Undo Command

Motion segments can be combined in any manner and so many motion effects can 

be achieved. The animator decides whether the resulting motion appears realistic 

or unrealistic. Any motion segment that he is not satisfied with can be undone 

and another attempt made. The values of the pixels overwritten by the frame 

location indicators are recorded in the same manner as when a track is drawn. 

These pixels are restored when a motion segment is undone so that the squares 

are erased. All motion segments that have been defined can be removed in this
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way. The whole path, that is the spatial and the temporal definition, can be 

completely removed if desired.

3.4 Achieving Smooth Motion

This section presents several kinematic methods that can be used to calculate 

motion segments. These methods calculate positions, speeds and accelerations as 

a function of time. We also have to consider the interchange between successive 

motion segments. Usually we will require this interchange to occur smoothly so 

that it cannot be detected by the viewer. Note, however, that the animator will 

not always require smooth flowing motion and so he should be able to prevent 

this from occurring.

3.4.1 Trigonometric Functions

In key frame interpolation, acceleration and deceleration effects are often 

modelled using

y = 1 -  cos(x), 0 ^ x  £ 7t; (3.4a)

y  = sin(jt), 0 <n/2 (3.4b)

respectively (Magnenat-Thalmann and Thalmann 1985). We can see why such 

motion effects are obtained from these functions by considering their graphs as 

functions of distance against time (fig. 3.6).

Suppose that the animator wishes to define a motion segment for an 

accelerating object He supplies the length of the track to be used for this motion 

segment, call this Ls , plus its duration in frames. Applying (3.4a) over the range 

[0,^/2] gives the required acceleration effect. We calculate the distance along the 

track at each frame of the motion segment using

l(t) = Ls x  ( l-cos(7t/2 x t ) ), (3.4c)

where l(t) is the proportion of Ls traversed up to time t. The value of t must fall 

into the range [0,1] to be used with (3.4c) and so it is scaled using



2

1

0

2

1

0

s = sin(t) s = l-cos(t)

Figure 3.6. Motion Curves for the Trigonometric Functions

t _ current fram e o f  this motion segment 
duration in frames o f  this motion segment

If the animator requires the motion segment to show acceleration followed by 

deceleration then (3.4a) is applied over the range [0,7t]. The motion segment 

equation is now

K t) = Ls x 1—C O S(7t X  t ) (3.4d)

Similarly, to obtain just a deceleration effect, (3.4b) is applied to the motion 

segment producing

l(t)  = L, x sin(7i/2 x t). (3.4e)

The animator may require an object to continue at a constant speed as well 

as accelerating and decelerating it. This speed will be that attained by the object 

at the end of the motion segment last calculated. A reasonable approximation of 

this is to take the average speed of the object between the two most recently
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calculated frame positions. This is, in effect, the distance between these two 

frame positions.

The overall motion definition consists of some combination of motion 

segments. Suppose, for example, that the animator defines a sequence of motion 

segments when an object:

(a) accelerates from rest;

(b) maintains a constant speed;

(c) accelerates again;

(d) decelerates.

The graph of distance against time for this motion definition is given in fig. 3.7. 

We require a smooth interchange between each motion segment Note that if two 

or more successive motion segments are of the same style, acceleration for 

example, then the best results are obtained by combining them into one motion 

segment. We thus have less interchange points to consider.

s

smoother method

simplest method

Figure 3.7. Using the Trigonometric Functions
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The first motion segment of our example presents no problem as we can 

satisfy the distance and time constraints using (3.4c). The third motion segment 

also involves acceleration, but here we have to take the current speed of the 

object into account. The acceleration function does not do this and so cannot be 

used as it stands. We adopt the following simple solution to this problem.

The distance yielded by the acceleration function is only used if it is greater 

than the distance that would be covered by the object continuing to move at its 

current speed. Until this happens the object’s speed is not altered. The point at 

which the acceleration function takes over can be noticeable, as it is in fig. 3.7. 

Further, if we increment the object’s speed after every frame by some appropriate 

amount so that the object does indeed appear to accelerate, then the change over 

point is much smoother. Up to the change over point the object’s speed increases 

in an arithmetic progression. A similar technique can also be used when 

modelling deceleration using (3.4e). Here we have to ensure that the speed of the 

object is always less than its speed coming into the current motion segment. We 

have not needed to do this in the above example as the initial speed obtained 

from (3.4e) is a lot less than the speed of the object at the end of the third motion 

segment. Unfortunately the difference is too great for a smooth interchange.

Sometimes the constraints that the animator defines make it impossible 

(perhaps deliberately so) for the desired smooth interchange between successive 

motion segments to be achieved. We can check for such cases and warn the 

animator who may then decide to change his motion definition.

3.4.2 Sinusoidal Fairing

The process of accelerating an object from rest to some steady speed is sometimes 

called in-fairing. A technique known as sinusoidal fairing offers an alternative 

solution to providing a smooth interchange between the two motion styles 

involved here (Kingslake 1986). An object decelerating to rest from a constant 

speed (out-fairing) can also be taken care of.

In fig. 3.8, arcs AB and CD are quarter circles, so
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B C

A D

Figure 3.8. Motion Graph for Sinusoidal Fairing

n

Consider a point moving at a constant speed over ABCD. If this point is 

projected onto AB'CT), then the resulting motion will appear to consist of 

acceleration, movement at a constant speed, and then deceleration to rest. In 

other words the motion will be faired.

To implement sinusoidal fairing suppose that the point traverses AB in n 

frames, and BC in m frames. The steady speed reached after the in-fairing stage 

is greater than that reached if fairing is not used. This speed will be the distance 

covered along AB'CT) divided by some virtual number of frames, v. The value 

of v is calculated by

n

2 nv = m + n -n -1----- ,
Jt

v = (m+n)- 1 n ,
n
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v = total frames - i - 2
K

fairing frames. (3.4f)

If the same number of fairing frames, n> are also used at the out-fairing stage, 

then we obtain

v = (m +n )-2n i - 2
n

(3.4g)

We can thus evaluate the steady speed reached between B'C'. The frame 

locations during the in-fairing phase are calculated by applying equation (3.4a). 

Similarly the frame positions for any out-fairing phase are calculated by applying 

(3.4b).

3.4.3 Laws of Motion for Constant Acceleration

Another way of modelling the motion effects we require is to use the laws of 

motion for constant acceleration. Particularly appropriate to our needs is

s = ut + -^-at2 (3.4h)
2

where s is the displacement, u is the initial speed, a is the acceleration, and t is 

the time. By substituting the animator’s defining conditions into this equation we 

obtain the value of the acceleration required over the motion segment. The 

individual frame positions of the moving object can then be calculated. Figure 

3.9 depicts the distance against time graph obtained by using this technique on the 

same example motion definition as that used in section 3.4.1.

We automatically get a smooth interchange between motion segments as this 

equation allows for the initial speed of the object A new constraint, however, is 

that since the object only travels around its path in one direction, the value of the 

object’s velocity must not change its sign during the motion definition. When 

decelerating an object we found that in too many cases the animator’s distance 

and time constraints could only be satisfied if the velocity did change sign. This 

is the case in the fourth motion segment of our example, the distance-time graph
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s

Figure 3.9. Using a Law of Constant Acceleration

goes through a maximum. The reason for this is illustrated graphically in fig. 

3.10. The motion segment in these cases has to be rejected.

3.4.4 Using an Arithmetic Progression

It is also possible to model acceleration and deceleration by using the formula for 

an arithmetic progression

S = a + (a+d) + (a+2 d )  + • • • + (a+ [/i-l] = y ( 2 ( 3 . 4 i )

Making a the current speed ensures a smooth interchange between motion 

segments. This means that the penultimate position of the previous motion 

segment is used as the initial position of the new motion segment. An extra 

‘virtual frame’ is thus incorporated and so the number of frames allocated for this 

motion segment should be incremented by one, call this n. By substituting these 

constraints into (3.4i) we obtain a value for d. The resulting motion effect is one 

of acceleration if d is positive, constant speed if d equals zero, and deceleration if
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Graph 1: displacement, s = A;

► t

u

Increase time taken 
for the deceleration:

v

Graph 2: s = B > A,
but animator wants s = A;

► t

To satisfy this:

► t

Graph 3: s = C - D = A,
but v becomes negative!

Figure 3.10. Why Velocity can Become Negative
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d is negative. The value of d is equivalent to the acceleration value in (3.4h) and 

so using an arithmetic progression is not really any different from using this 

acceleration law. The results obtained in section 3.4.3 also apply here.

3.4.5 Comparisons

To compare the methods used to achieve smooth motion we have superimposed 

the two distance against time graphs obtained in section 3.4.1 and section 3.4.3 

(fig. 3.11).

s

Figure 3.11. Comparing the Trigonometric Functions with the Acceleration Law

We can see that both methods give acceptable results when accelerating an object 

from rest. The final speed attained by the object differs, but this does not matter. 

We are not concerned with the actual value of the object’s speed, only that the 

final motion is visually acceptable to the animator. Maintaining an object at a 

constant speed is straightforward in both cases. The law of constant acceleration, 

however, is far better at accelerating an object when it is already in motion. The 

initial speed of the object is automatically taken into account and so we do not
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need to apply extra techniques to get a smooth interchange. As we have seen, 

there can be a problem when using the acceleration law to decelerate an object. 

In some circumstances the object can only satisfy the animator’s constraints if it 

overshoots its destination and then comes back. We do not get this problem using 

the sine function, however. Fitting the motion to a sine curve ensures that the 

distance and time constraints are satisfied without a change in the direction of the 

motion. The cost is that the initial speed of the object is ignored and so we lose 

the smoothness of the interchange.

We decided not to offer the technique of sinusoidal fairing in Controller. 

This effect can already be achieved by combining motion segments obtained from 

the other techniques that we have described. We also have the problem of 

accelerating the object when it is already in motion. The formula for sinusoidal 

fairing does not take this into account.

Our best approach for achieving smooth motion has been to use a 

combination of (3.4a), (3.4b) and (3.4h). Priority is given to the law of constant 

acceleration, but where this fails the trigonometric functions are utilised. More 

complicated strategies would produce more realistic motion. However, by using 

the techniques described above we get an acceptable method of motion planning 

that is straightforward to carry out.

3.5 Techniques For Faking Mass

By carefully timing the motion of an object an animator can emphasise its size or 

weight (White 1986). He has to make objects move more slowly as they get 

heavier, and perhaps give them more difficulty in controlling their weight.

Using the previous methods of motion planning the animator can easily make 

two objects move at different rates. If both objects are to move from rest, the 

first motion segment of each will be an acceleration phase. At any given time 

during this period the total distance covered by the heavier object must be less 

than that covered by the lighter object. So if he wants both acceleration phases to 

last for the same amount of time he must ensure that the heavier object will
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traverse less of its path. This distance is a constraint that the animator has to 

define when specifying a motion segment and so there is no difficulty in doing 

this. If the objects now proceed at a constant speed the lighter object will be 

travelling at a faster rate. The animator’s judgement in indicating the distance of 

the acceleration phase will determine how convincing the final result will be.

One aim of our approach to computer animation has been to give the 

animator fine control such as he has in the above example. We do not want to 

make the specification too difficult for the animator and it will not be if we are 

only concerned with a few objects. However, if the scene is to contain many 

objects each with a different weight, such motion control could become a 

headache to the animator. He has to keep track of how heavy all the previous 

objects were and fit in new objects accordingly. It might be easier if the animator 

just estimates the weight (or mass) of each object and lets the animation system 

take care of the rest We therefore provide a facility to do this and again avoid 

the use of computationally expensive dynamic methods.

When the animator selects a cast member he has the option of defining its 

mass. The unit of mass is immaterial as we only need to depict the relative mass 

of the objects in the scene. We now have to satisfy three user-defined constraints 

(mass, distance and time) and so the complexity of the problem increases. The 

purpose of this exercise, however, is to save the animator from having to 

remember all the distances he has been using to emphasise the mass of each 

object. So we let Controller work out how much of the path will be traversed and 

just get the animator to specify time and mass.

3.5.1 Utilising Existing Methods

When we use equation (3.4c) to model distance travelled under acceleration, the 

result is scaled by the total length of the motion segment. This segment length 

must now be determined by Controller using a function that depends on the mass 

of the object and the duration of the motion segment. The same is true if we are 

using the law of constant acceleration (3.4h), the segment length must now be 

calculated by the system and not defined by the animator. The segment length
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should increase with time but decrease as the mass of the object increases, so

i time c xsegment length a   . (3.5a)
mass

The simplest relationship satisfying this condition is

segment length = k x  tlme t g constant. (3.5b)
mass

We let the animator determine the value of k by getting him to define the distance 

he would expect an accelerating object of unit mass to cover in some specified 

time interval. This task is performed by the animator before the path planning 

stage of our system. He uses a graphical valuator to input the required distance. 

The animator is thus still in general control of the final motion effects achieved.

The distance-time graphs obtained by doubling the mass of an accelerating 

object whilst keeping the other constraints fixed are given in fig. 3.12.

(3.4c)

M3.4h)

mass
increasing

V

Figure 3.12. Faking Mass using Existing Techniques

Here the animator has already indicated the distance that an object of unit mass is 

required to cover and Controller automatically calculates the other distances. In
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both cases the total distance covered in a fixed interval of time is halved as the 

mass of an object doubles. This is what we would expect if the objects are 

accelerating from rest.

The technique of sinusoidal fairing can also be adapted to take into account 

the mass of an object. For an object that accelerates to some steady speed, the 

number of in-fairing frames allocated should be proportional to the mass of the 

object. As the mass increases so should the number of fairing frames used. The 

animator specifies the total number of frames required for the whole of the 

motion segment. Sometimes, however, the mass of an object is such that more 

in-fairing frames are required than the total number of frames allocated by the 

animator. A maximum must therefore be placed on the proportion of the total 

number of frames that can be used for fairing. Unfortunately this means that the 

motion effect achieved for objects over a certain mass is the same.

3.5.2 Using a Family of Acceleration Curves

We decided to look for other ways of modelling the motion of objects with 

different mass to see if we could improve on the above methods. For example, 

the function

has been experimented with. By varying the values of a and b a family of curves 

can be produced (fig. 13a. and fig. 13b). We tried

(i) varying the value of a whilst keeping b fixed;

(ii) varying the value of b whilst keeping a fixed.

We then considered what the motion effect would be if these graphs represented 

plots of velocity against time, that is

Each plot has the same general shape. Up to the point of inflection* the moving

y = —  -------, a and b are constants,
ax2 + b

(3.5c)

t2
v = —  , v = velocity, t = time.

at2 + b
(3.5d)

* This occurs at
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mcreasing a

a. Varying the value of a whilst keeping b fixed

increasing b

points of inflection

b. Varying the value of b whilst keeping a fixed

Figure 3.13. The Family of Curves produced from (3.5c)
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object can be thought of as overcoming its inertia. It then proceeds to accelerate, 

tending toward some maximum velocity. Increasing the value of a decreases the 

maximum velocity obtainable by the object This suggests that a is related to the 

force that propels the object. So if a is fixed each object is propelled by the same 

amount of force. Increasing the value of b then increases the time taken for the 

object to reach any given velocity; up to the maximum velocity obtainable. So b 

appears to be related to the weight or mass of the object.

We can get a distance against time function by integrating over time.

We need to determine suitable values for a and b. In our current implementation 

we emphasise the mass of the object and so keep a fixed at a-1. Equation (3.5e) 

can then be simplified to

Although b is proportional to the mass of the object we do not set b to be equal 

to this mass. In fig. 3.14 the value of b has been successively increased by a 

factor of 10. The mass defined by the animator is typically in the range one to 

one hundred. However, if the value of b is also in this range then the object 

rapidly reaches its maximum velocity, too rapidly to be usable in Controller. To 

obtain the best results we found that the value of b should be much larger. 

Multiplying the mass by a factor of 105, for example, produces a more gradual

f t*s = — ------ dt , s = displacement, t = time.
J at + b

(3.5e)

s = t — 'Jb tan 1 . (3.5f)



b increasing

Figure 3.14. Using a Family of Acceleration Curves

increase in velocity and is more suitable for our purposes.

The period of time between successive frame positions is constant and is 

used as the unit of time in Controller. Time can therefore be represented as 

integer values starting from t=l. However, using a value of b in the magnitude 

of 105 means that 5 is too small until many time units have elapsed*. Again this 

is not suitable for Controller’s purposes and so s must also be scaled. 

Maintaining our approach of giving the animator as much control as possible, it is 

he who determines the value of the distance scale factor. He specifies the total 

distance that an object of unit mass will cover over a specified interval of time.

We also have to allow for the deceleration of an object. To do this we keep 

the time argument used by the distance function separate from the total time 

elapsed. The latter is always incremented as new frames are defined by the

* For example, when i - l  and 6=105, (3.4f) returns s-0.000003.
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animator. We only increment our distance function time, however, when the 

object is accelerating. When the object is decelerating it is decremented, and 

when the object is moving at a constant speed it is left unaltered. We thus travel 

back down the distance time curve when decelerating and a correspondingly 

smaller inter frame distance is calculated. This method will give a smooth 

interchange between successive motion segments. A drawback, however, is that 

the object’s rate of deceleration will be the same as its rate of acceleration. The 

animator cannot, therefore, make an object decelerate over a period longer in time 

than it accelerated in. We can overcome this by varying the time intervals used 

with the distance function, but will then lose out on the smoothness of the 

interchange between motion segments.

3.5.3 Comparisons

The motion graphs given in fig. 3.15 provide a comparison of the two methods 

that we have described for faking mass.

mass
increasing

V

Figure 3.15. Comparison of the Methods used to Fake Mass 

To aid in this comparison we have made sure that the final distance covered is the
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same in both cases. We can see that when (3.5f) is used, an object accelerates 

more slowly to begin with, and consequently gives us a better feel for the inertia 

of the object. It thus reaches a greater final speed in covering the same distance 

in the same time than when the acceleration law is used. Note that in both cases 

the total distance covered appears to be halved as the mass of an object doubles. 

This is not true when using (3.5f), but when large values are used for b (as in our 

implementation) the differences are not significant.

We have preferred to incorporate mass by using the family of acceleration 

curves. A motion graph resulting from this method is an intuitively better 

approximation to the real thing. We also have a way of manipulating the force 

applied to an object built into this distance function. This facility has yet to be 

exploited.

3.6 Verifying the Motion Definition

In general the motion segments defined by the animator can be combined in any 

manner. He is thus in control of a flexible system of motion planning and can 

move an object in many different ways. Such flexibility, however, may produce 

anomalies in the motion definition. Controller therefore provides a motion verifier 

to determine how well each motion segment fits in with the current state of the 

overall motion. If a good fit can be made then no action is taken. Otherwise, 

warning or error messages are issued, and these are detailed below.

3.6.1 Warnings

The animator is given a warning if the resulting motion is unrealistic or cannot be 

fitted in smoothly. He can either ignore this warning (as he may really want such 

an effect), or repeat the specification for the motion segment concerned. 

Warnings occur, for example, when:
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(i) A stationary object is made to move at a constant speed without first

accelerating it from rest. The facility to do this is needed, however. A cast

member, for example, may enter the scene already travelling at a constant 

speed.

(ii) The object is to continue its motion at a constant speed. However, the 

distance that can be covered in one unit of time by maintaining this speed is 

greater than the total length of the motion segment defined. Here one frame 

position is plotted and the object’s speed is decreased accordingly.

(iii) Deceleration is required but the constraints cannot be fitted in smoothly (see 

§3.4).

(iv) The object is held at its present position for several frames but its current 

speed is greater than zero. Here the object is coming to a sudden halt. Note 

that this is acceptable if the current speed of the object is small enough so 

that the object may be stopping anyway. The warning is only given if the 

speed is greater than some threshold value above which it is unrealistic for

an object to stop in a single frame.

3.6.2 Errors

Some motion segment specifications will be impossible to carry out, but these are

usually obvious:

(i) A stationary object is asked to decelerate.

(ii) Deceleration in one frame is required but the segment length is greater than 

the distance that can be covered by the object if it maintains its current 

speed. Here the object can only satisfy the distance and time constraints by 

accelerating.

(iii) An object is asked to accelerate over a distance that is less than the distance 

it can cover in one time unit by maintaining its current speed.
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3.6.3 Using the Automatic Mass Facility

When the automatic mass facility is being used much of the above motion 

verification is not applicable. The animator does not specify the distance of the 

motion segment here. Note that the mass of an object is emphasised when objects 

are accelerating from rest If an object appears on the scene already travelling at 

a constant speed then using the automatic mass facility is not as effective. In 

these circumstances the animator is warned of this fact.

3.7 Summary

In this chapter we have described a procedure that allows an animator to specify 

the overall motion of an object about a set. The motion path generated for this 

purpose is made up of a spatial definition (in two dimensions), and a temporal 

definition. The former involves drawing the track that the object moves along 

whilst the latter involves the specification of a series of motion segments. Each 

motion segment describes how the object will move over a particular section of 

its track.

With both definitions we have attempted to provide the animator with a 

flexible interface offering him fine control over the motion specification. The 

interface should not be impossible to use, however. The animator should find that 

moving an object along its path is as natural as driving a car along a road. For 

the latter decisions about whether to slow down, speed up or stop depend on the 

road conditions and the driver’s destination. In the animation case the decisions 

are similarly governed by the storyboard that describes the scene. We have found 

that the ease of use of the interface decreases as the complexity of the problem 

increases. We therefore endeavour to keep the implementation as simple as 

possible. For example, we have used kinematics rather than dynamics to 

implement the temporal definition.

The motion specification is not yet finished. Several parameters are 

associated with an object at each frame position that has been defined. We will 

now go on to look at how the animator can specify the value of these parameters.



Chapter 4

Parametric Animation

4.1 Introduction

In chapter 2 we describe how to represent objects using an appropriate set of 

parameters such as

Cast member = {location, orientation };

Camera = {location, orientation, zoom};

Light = {location, intensity}.

The motion path defined by the animator provides the location (in the ground 

plane) of an object at each frame of the animation. He must now complete the 

specification of the above parameters and so provide the configuration of the 

object at these locations. In this chapter we will detail Controller’s version of 

parametric keyframe animation that allows the animator to do this.

We will also describe the remaining facilities that Controller offers to the 

animator. They include a computer version of the pencil test used in conventional 

animation, and methods for generating the frames.

4.2 Specifying the Parameter Values

Having defined a motion path, the animator begins specifying the parameter 

values associated with the camera, cast member, or light to which it belongs. He 

does not have to specify these values at every frame location, however, as this 

would be far too tedious. The advantage of parametric animation is that 

parameter values can be interpolated across a range of frames. Note that the
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animator can also go back to a previously defined object and refine its parameter 

values.

The animator follows the same procedure regardless of the parameter being 

specified. First he selects (on screen) the two frame locations between which a 

parameter value is to be computed. The rectangles in fig. 4.1 are centred on the 

frame locations that have been chosen in this way.

start location
end location

Figure 4.1. Selecting the Frame Locations

Each location is defined to have a small gravity field surrounding it so that the 

puck does not have to coincide exactly with the screen coordinate of the selected 

frame. The puck position may fall within the gravity field of several frame 

locations, however. If this occurs then the distance of each frame location from 

the puck is calculated so that the nearest one can be identified. If the required 

frame still cannot be determined then the animator is informed of the possible 

candidates and requested to use the keyboard to select the one he wants. A 

keyboard entry is always needed when an object is at the chosen location for 

more than one frame.
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The value required for the parameter at the second frame location is now 

input using an appropriate graphical valuator (these are described below). The 

parameter value at the first frame location is not specified at this stage, however. 

Controller uses its existing value or, if this has not been defined, the value found 

at the preceding location that is nearest to it in time. This helps to ensure that 

there are no sudden changes in the motion affected by this parameter. The 

techniques used to calculate the frame locations along a motion path (chapter 3) 

are now used to interpolate between these two values. The animator chooses the 

method that will give him the effect that he is after. The use of splines and 

physical laws are again avoided when carrying out the interpolation. We 

endeavour to keep parametric animation as straightforward as possible and so do 

not use the more complicated strategies.

The animator can also specify the value of a parameter at a single frame 

location only. He has to carry out the above process but selects the same frame 

location as the start and end points. The value then input using a graphical 

valuator becomes the value of the parameter at this frame. Let us now examine 

in more detail the parameters that express the cameras, cast, and lights.

4.2.1 Height

To complete the definition of a three dimensional path the height of the object 

must be determined. The object is assumed to be at the level of the ground plane 

until the animator carries out this task.

Following the above process, the animator uses a ‘sliding scale* valuator (fig.

4.2 and colour plate 3) to define the object’s height at the second frame location 

selected. The criterion for calculating the height at the inbetween frames is then 

chosen from the following:

Linear The total height difference is divided equally between all the 

frames involved.



< height adjuster

0 0digital readout—►*—

Figure 4.2. The Height Valuator

Faired The height difference is divided so that successive increments are 

increasing at the beginning, and decreasing at the end. Equation 

(3.4a) is suitable for this task.

Gravity Successive increments in the height are calculated as if the object 

is falling or rising under gravity. More details of this option are 

given in chapter 5.

Constant All the inbetween frames are assigned the same height value.

The height of an object is more conveniently defined in this way than at the 

track drawing stage. The latter would require the animator to draw a three 

dimensional path using a two dimensional device. Providing him with an easy to 

use method for achieving this is not straightforward. Here, however, the 

animators task is less complicated and effective results are produced.
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4.2.2 Orientation

The animator has to determine the orientation of an object along its motion path. 

For example, the camera head* must be adjustable so that it can point in any 

desired direction in three dimensional space. We will describe separately how the 

cameras, cast members and lights can be orientated by an animator.

(i) Cameras

A camera moves in the left-handed coordinate system used to generate the set 

models (see §2.3.1). Initially the camera head is assumed to point along a straight 

line parallel to the z axis and in the direction of positive z. The animator can, 

however, select two frame locations and alter the orientation of the camera head 

between them. The following options, for example, enable him to rotate the 

camera in the ground plane away from its default heading:

Point The animator selects on screen a position in the set at which he 

requires the camera to point. The camera is then directed 

towards this point from each of the specified frame locations.

Fixed The ‘dial* valuator (fig. 4.3) fixes the camera head at a constant

angle to its default heading. The dial will show the angle of the 

camera head from its default position at the start frame location 

when it is initially displayed on the graphics screen.

Track The animator uses the puck to select a motion path belonging to

a cast member. The camera is then centred on the location of 

this cast member at each frame.

Revolve The camera is made to turn through some angle determined by

the animator. He also specifies whether the rotation is to be 

clockwise or anticlockwise.

* The camera head is the term used when the view position and the view direction of the camera 
are considered as one entity.



Figure 4.3. The Dial Valuator

Tangent The camera is made to follow the tangent to its motion path at 

each frame location, or to be at some fixed angle to this tangent. 

The dial valuator defines the value of this angle.

Pan The camera is interpolated from it initial heading to some new

heading defined by the animator.

All these methods deal with just one parameter, the angle of the camera head 

from its default position. For the revolve and pan options, this angle is 

interpolated across the inbetween frames using the technique considered the most 

appropriate by the animator. A short line is also plotted from each frame location 

in the direction in which the camera head now points. This is demonstrated in 

fig. 4.4 where the animator has just used the point option. He thus has a visual 

impression of the camera’s heading.

As well as rotating the camera head in the ground plane, the animator can 

make it tilt. A default tilt angle of zero is assumed and this corresponds to the 

camera head being parallel to the ground plane. The valuator illustrated in fig.

4.5 then enables the animator to define the tilt angle he requires. The two end 

values are interpolated across the inbetween frames.
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puck position

Figure 4.4. ‘Pointing’ the Camera Head

Ti l t :

Figure 4.5. The Tilt Valuator

(ii) Cast

The internal motion of each cast member is portrayed by using an appropriate set 

of poses (see §2.3.3). Hence, when using Controller to plan the motion of the 

cast, they can be considered as rigid bodies. The animator’s task is thus greatly
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simplified and most of the functions used to manipulate the orientation of a 

camera are reusable here (the track facility is the obvious exception). A cast 

member can be made to follow the tangent to its motion path, revolve about some 

point, and so on.

When rotating a cast member, its current frame location is used as the origin 

of its coordinate system and each axis of rotation passes through this point. The 

centre of rotation of the object must also be specified, for example, it may be at 

the base of the object, or at its centre of gravity. This point is defined at the 

modeling stage and its placement depends on the cast member being designed.

(iii) Lights

A point light source radiates light in all directions and so its orientation is 

immaterial. A spot light, however, is restricted to radiate light in the particular 

direction defined by the animator. The functions for determining the camera’s 

heading are again suitable for this purpose. The track function, for example, will 

define a light to follow a cast member around a set just as a real spot light 

follows an actor around a stage.

4.2.3 Camera Zooms

A camera can obtain close up shots of a scene by moving nearer to the objects in 

that scene, and distant shots by moving away from these objects. Often, however, 

physical restrictions are imposed on the movement of a television camera and the 

desired shot can only be obtained by using different lens angles. Typically, a lens 

angle of between 10° (for close ups) and 50° (for distant shots) will be used by 

the cameraman (Millerson 1973). A television camera is equipped with a zoom 

lens that allows the required angle of view to be varied with a smooth continuous 

action. Narrowing the lens angle in this way is termed zooming in whilst 

widening the lens angle is termed zooming out.

Although the virtual cameras used in Controller do not suffer from as many 

restrictions as television cameras, a zoom facility is still useful. A virtual camera,
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for example, must be located somewhere on the set and so it may be impossible 

to obtain the required shot without using a zoom. As before, the animator selects 

the frame locations between which the lens (or view) angle of the camera is to be 

changed. The valuator illustrated in fig. 4.6 then allows him to define a view 

angle at the end of the zoom of between 10° and 170°. The range available for 

this view angle is much larger than that obtainable with a television camera. 

Controller also supplies the animator with a wire frame view of the shot obtained 

from the camera. In fig. 4.6, for example, the animator is adjusting the view 

angle so that a zoom out is obtained and the area of the scene covered by the 

camera shot is increased. Just as when using a real zoom lens, the zoom process 

should occur smoothly. Equation (3.4a) is again suitable for the interpolation of 

the view angle parameter across the inbetween frames, although other methods 

can be used if desired.

4.2.4 Rotating the Camera Shot

By using image inverter prisms the shot obtained from a television camera can be 

made to rotate (Millerson 1973). This special effect is also available in 

Controller. The animator uses the dial valuator to define the angle of rotation to 

be applied to the camera shot. This angle is then interpolated between the 

specified frame locations, usually with a faired motion.

The required effect is achieved during the rendering process. The image 

rotation angle is applied to the screen on which the rendered image is formed.

4.2.5 Light Intensity

Controller allows the animator to position light sources about the set currently 

being used*. The intensity of each of these lights must be defined by the 

animator and the valuator depicted in fig. 4.7 is used for this purpose. The 

intensity is defined to fall between zero (dim) and one (bright). The animator can

* Usually these lights will be stationary throughout the scene, but can be defined to follow a 
motion path if desired.
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Figure 4.6. Changing the Angle of View
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Figure 4.7. The Light Intensity Valuator

also request a light to be faded in to a certain intensity and faded out from a 

certain intensity. For the former the intensity is increased from zero over the

specified frames, whilst for the latter it is decreased to zero.

4.3 Verifying the Animation

The animator will need to preview the results of his animation planning and make 

any adjustments that he deems necessary. In this section we will describe how 

Controller aids the animator in this task. Note that the facilities provided can be 

used with any of the motion paths currently plotted onto the set.

4.3.1 The Status Function

A digital read out of an object’s status at a frame location selected by the 

animator is useful. He can then determine whether a particular parameter has 

been defined. He may also want to obtain the value of a parameter at this 

location so that he can use the same value at other locations. This will help to 

keep the motion flowing smoothly.

When using this status option, the required information is displayed in a 

pop-up window. The window in fig. 4.8, for example, lists the parameter values 

found at a frame location belonging to a camera. A wire frame view of the

camera shot at this location is also displayed on the graphics screen.
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Frame:  2 

Camera:  1 

Zoom: 5 4 . 0  

T i l t :  - 1 8 . 7 *

S cr ee n:  0 . 0

Pos: ( 4 . 6 . 6 . 3 . - 2 4 . 6 )

Figure 4.8. The Status Function in Use
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4.3.2 The Pencil Test

When developing an animation it is important that the animator can preview each 

action in real time. A facility similar to the pencil test used in conventional 

animation is provided for this purpose. The animator selects the range of frames 

over which a computer animation pencil test is to be performed. An animated 

line drawing is then calculated frame by frame and presented to him on the 

graphics screen. The pencil test can be of either a cast member or of a camera. 

If the object is a camera then the scene at each frame location along the path is 

displayed so that the animator can verify that the camera shot is as he desires. At 

this stage none of the cast members are shown. If the object is a cast member it 

is also necessary to specify the camera it is to be viewed from. The sequence 

then presented is that resulting from animating both this camera and the cast 

member for the selected frames.

Ideally, all cast members currently in the scene are displayed during the 

pencil test. However, even if only a few cast members are drawn then the 

generation of each frame takes several seconds. This makes the pencil test far too 

slow to be useful in an interactive animation system. We therefore restrict the 

pencil test to show the set and selected cast member only. The motion of an 

individual cast member can then be studied in detail. The interaction between 

several cast members can be viewed later using a real time playback facility (see 

§4.6) that displays pregenerated images at an appropriate rate. If the animator 

wants to do this at this stage then he must wait (perhaps for several minutes) for 

the selected frames to be generated.

To present a pencil test in real time, twenty four or twenty five frames have 

to be displayed every second. To calculate each line drawing as quickly as 

possible, hidden line removal is not considered. Also, wire frame representations 

of the sets and cast are generated before Controller is invoked and often use a 

simpler model of these objects. For example, a stick figure representation may be 

good enough to represent some cast members. Only the configuration defined by 

the animator then has to be calculated and applied. We are ultimately restricted 

by the hardware available, however, and Controller only manages to generate up
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to three frames every second. The animation is thus presented in slow motion but 

despite this we still find the pencil test facility useful. Another possibility is to 

plot only the vertices of the line drawings as the resulting sequence may still give 

a feel for the motion. The time savings here, however, are unlikely to 

compensate for the loss of detail in the sequence, but may be worth investigating.

The main disadvantage of Controller’s pencil test is that it fails to indicate 

the timing of a motion. One way of providing for this is to calculate the frames 

after longer intervals of time. For example, if Controller calculates only every 

eighth frame then, although the resulting sequence will appear to ‘flicker’ badly, it 

is displayed in the correct time. Providing the animator with the option to miss 

out frames in this way could be the most flexible method of providing a pencil 

test facility.

4.4 The Animation Data

Once the animator has completed a session with Controller, the animation data is 

recorded in an appropriate file such as that represented in fig. 4.9. It contains

(i) the name of the set model used;

(ii) the number and initial frame of the scene;

(iii) the parameter list of every camera defined;

(iv) the parameter list of every cast member defined;

(v) the parameter list of every light defined.

A data file will not usually be as short as the one in our example (fig. 4.9). 

Many frames are required for an animation and so the parameter lists of the 

objects involved will be much longer.

All data files created by Controller can be loaded back into the system so 

that the animator can refine the animation and include new objects. When 

satisfied with his specification, the animator uses the data to generate the frames 

of the animation.
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/ g r a p h i c s / C o n t r o l l e r / S e t s / s t u d i o  

S c e n e =  1
I n i t i a l  f r a m e =  1

Camera=  1 4 Camera  d a t a :

4 7 1  0 2 1 0  470  2 2 9  0 0 . 0 0 0 0 0 0  0 . 0 0 0 0 0 0
4 7 1  0 2 1 0  470  2 2 9  0 0 . 0 0 0 0 0 0  0 . 0 0 0 0 0 0
4 7 1  0 2 1 0  470  2 2 9  0 0 . 0 0 0 0 0 0  0 . 0 0 0 0 0 0
4 7 1  0 2 1 0  470  2 2 9  0 0 . 0 0 0 0 0 0  0 . 0 0 0 0 0 0

O b j e c t =  3 4 O b j e c t  d a t a :

4 6 2  - 6 0  5 4 2  0 . 0 0 0 0 0 0  0 . 0 0 0 0 0 0
4 6 2  - 5 5  5 4 2  0 . 0 2 6 8 7 7  0 . 0 0 0 0 0 0
4 6 2  - 4 0  5 4 2  0 . 1 0 7 0 4 7  0 . 0 0 0 0 0 0
4 6 2  - 1 6  5 4 2  0 . 2 3 9 1 4 0  0 . 0 0 0 0 0 0

O b j e c t =  6 1 O b j e c t  d a t a :

4 6 4  - 6 0  5 4 1  0 . 0 0 0 0 0 0  0 . 0 0 0 0 0 0

Figure 4.9. An Animation Data File

4.5 Generating the Frames

The animation frames can be generated using either a mesh Tenderer or a ray trace 

Tenderer. The former method is fast and is useful for previewing the animation. 

Unlike the pencil test facility, all the cast members defined are now included in 

the animation. Ray traced images are computationally expensive to calculate and 

so are only produced when the animator is certain that the animation is correct. 

The object and lighting models required to define the scene at each frame are 

calculated and then rendered by the ray tracer as a batch job. Other rendering 

techniques may be required, however, and will need to be supplied with an 

appropriate interface to the animation data file. So far we have only provided this 

interface for the two in house rendering systems mentioned here.

Once the rendering system has been selected, the animation data is 

summarised on the visual display unit For example, a summary of the data file



listed in fig. 4.9 is given below (fig. 4.10).

S e t :  / g r a p h i c s / C o n t r o l l e r / S e t s / s t u d i o  S c e n e : 1

C a m e ra s :

Code
1

S t a r t  fram e
1

End fram e
4

C a s t

Code Name
1 d i c e
2 t u m b l e r

Fram e D u ra t io n
4
1

N e x t  S h o t  i s  f o r  f r a m e  1;  
What c a m e r a  i s  t o  b e  u s e d ?

Figure 4.10. Summary of an Animation Data File

The animator now defines his final requirements for the rendering of this 

animation sequence. He begins by selecting the order and duration that each 

camera shot is to be used. The viewer and screen positions used by the rendering 

system are calculated from the data found in the parameter list of the active 

camera. The area of the image obtained from a camera shot is known as the field 

size (White 1986). In both film and television a height to width ratio of 36:50 

(the academy field ratio) is normally used for this field size. The animation 

frames produced in our system can also be rendered using this ratio. The 

animator specifies the width of the frames and their height is calculated 

accordingly.

The animator next decides the frames at which the cast will enter and exit 

the scene. They can be ‘cued* at any point in the action and ‘cut* from the scene 

even if all the frames specified for them have not yet been exhausted. The scale 

and colour scheme to be used for each cast member are also defined at this stage. 

The validity of frame durations specified by the animator throughout the above 

process are checked, and he is informed whenever a discrepancy occurs.
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The rendering system also requires the following information (determined at 

the modeling stage) about each member of the cast;

(i) the number of poses used to define its motion;

(ii) the number of primitives used in the composition of each pose;

(iii) the centre of rotation of the composite cast model (see §4.2.2).

The motion poses are used cyclically at successive frames. The rendering system 

uses the animator’s specification to update the original configuration of the pose 

currently being used. Each primitive it contains is therefore transformed as 

follows:

(i) it is scaled to the size specified by the animator;

(ii) the heading and tilt rotations are applied (in its own coordinate space);

(iii) it is translated to the set location defined for the current frame.

If the mesh renderer is being used then a line drawing of each cast member in its 

resulting configuration is plotted onto the frame image (using a perspective 

projection). Alternatively, if the ray tracer is being used then the resulting 

description of each cast member is appended to the object model being created for 

this frame. The process is then repeated for all the cast members that are present 

in the frame. Lighting information is only required by the ray tracer and, if not 

explicitly defined by the animator, is obtained from the original model of the set 

being used.

4.6 Real Time Playback

After an animation sequence has been rendered it is possible to view the frames 

using real time playback (see §1.6.8). A facility called video is provided for this 

purpose. The rendered frames are stored in the main memory of the host 

computer from where they can be quickly copied to the graphics screen. By 

displaying successive frames on top of one another the illusion of motion is 

produced in the same way as it is in projected film.

The frames are cycled continuously (in reverse order if required) and the 

time taken for the completion of each cycle is given to the animator. He can thus
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calculate the pause required between successive frames that will produce the 

appropriate animation rate. This time delay can then be incorporated into the 

display cycle. The size of the rendered frames must be small, however, if the 

system is to cope with a rate of twenty four or more frames every second. Each 

frame can also be displayed several times in succession and so holds and double 

framing (see chapter 5) are catered for.

When using video, the animator may notice some error or discrepancy in the 

animation. He will then need to study the suspect frames so that he can identify 

the exact point where this occurs. A facility called storyboard displays a 

specified range of frames on the graphics screen and can be used for this purpose. 

In fig. 4.11, for example, twenty frames are being displayed from an animation 

sequence that contains such a discrepancy. This enables the animator to discover 

that the ‘clown* character is missing from the sixteenth frame of the sequence. 

He can now take corrective measures beginning with an examination of the data 

file for this animation.

4.7 Post Production

The rendered frames are transferred onto film or video and a soundtrack is 

applied. These stages to produce the final computer animation are hardware 

dependent and outside the scope of Controller.

Note that the pencil test and real time playback facilities supplied by 

Controller allow the animator to preview and refine the animation as desired. He 

can therefore be confident that the appearance of the resulting animation will be 

satisfactory before the film transfer stage takes place.

The soundtrack should be used throughout the development of the animation 

so that the action is correctly synchronised with the sound. We do not have the 

necessary equipment for producing a soundtrack, however, and so (as with many 

computer animation applications) sound is only provided during post production. 

The synchronisation of sound with computer animation is an area in need of 

research.
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Figure 4.10. Identifying Rogue Frames
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4.8 Summary

In this chapter we have described the process of parametric key frame animation 

as it is carried out in Controller. Our main objectives have again been to develop 

this process so that the animator finds it both flexible and straightforward to use. 

This is partly achieved by providing the same simple procedure for the 

specification of all parameter values. The animator is given a choice of the 

kinematic interpolation methods described in chapter 3. He can thus produce a 

variety of effects and ensure that the motion affected by a parameter occurs 

smoothly. The production of smooth flowing motion is further aided by 

interpolating from the existing value of this parameter.

Visual feedback is important in the development of any animation. 

Controller therefore provides a computer animation pencil test and facilities for 

previewing the animation using real time playback. The animator can thus refine 

the animation so that minimum editing will be required when it is finally 

transferred onto film or video.



Chapter 5

The Role of Traditional Animation Methods 
in Computer Animation

5.1 Introduction

In the previous three chapters we have described the development of the 

Controller animation system and detailed its use as a tool for the generation of 

computer animation sequences. Emphasis has been placed on making Controller 

both flexible and straightforward to use so that the animator is kept in control of 

the animation specification. This means that the skill of the animator remains an 

important factor. It can be argued, however, that it is difficult to define complex 

animation using Controller. We could overcome this by introducing greater 

automation into the system. Many systems for example use physical laws, such 

as the laws of dynamics, for this purpose (see §1.6.4). The amount of control that 

the animator then has will decrease, however, and so would be contrary to the 

aims of this thesis. We want to enhance the versatility of the animation that can 

be obtained without sacrificing the control of the animator. Our approach is to 

encourage the animator to utilise techniques taken from traditional animation and 

Controller will assist him in doing this wherever possible. This chapter will 

explain the advantages of such an approach and detail how we have carried it out.

A practical test is required to discover if Controller really is flexible and 

easy to operate. Controller was therefore made available to a graphic design 

student who used it to generate a complete computer animation. The results of 

this experiment and the experience obtained from it are detailed later in this 

chapter.
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5.2 Why Use Traditional Animation Principles?

In chapter 1 we described the twelve principles most often adhered to by 

traditional animators. They are:

• staging;

• straight ahead action and pose to pose;

• slow in and slow out;

• anticipation;

• timing;

• arcs;

• follow through and overlapping action;

• secondary action;

• squash and stretch;

• exaggeration;

• solid drawing;

• appeal.

Most of these principles are useful in the generation of computer animation, 

particularly if the animation is for entertainment purposes. Their intelligent 

application can produce results that are just as convincing as those obtained from 

the use of physical laws. The computation cost will also be a lot less.

Controller already makes it possible for the animator to apply some of these 

principles. Using B splines to plot out the path of a moving object, for example, 

ensures that the object will move in an arc and not in a straight line (see §3.2.1). 

This helps to prevent motion from appearing too mechanical. The animator can 

also apply the principle of slow in and slow out when specifying the motion of 

some object. The techniques that we described in chapter 3 for supplying the 

temporal definition of an object can easily be used to ‘fair* its motion in this way. 

We will now consider how we can develop this theme further.
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53 Assisting the Animator

Several facilities have been introduced into Controller to assist in the specification 

of animation. Controller can, if required, take into account the mass of an object 

and calculate the effects of environmental factors such as wind and gravity. 

Objects and cameras can also be made to vibrate or ‘stagger*. All these facilities 

have been designed to ‘fake’ reality rather then give an accurate simulation. 

Dynamic simulations have not been used to any great extent and instead emphasis 

has been placed on the use of long-established techniques from conventional 

animation. Details of these facilities are given below.

53.1 The mass of an object

We described the method that Controller uses to take the mass of an object into 

account in section 3.5. We will now consider how the use of this facility will 

influence the animator.

The animator emphasises the mass or size of an object by carefully timing 

the motion of that object. He will make objects move more slowly as they get 

heavier, and perhaps give them more difficulty in controlling their bulk. When 

only a few objects are involved in a scene it is straightforward to time motion in 

this way using Controller’s standard method of motion specification. The 

animator has to ensure that heavier objects cover less distance than lighter objects 

in the same period of time. This involves keeping track of the relative distances 

covered by objects of different mass so that new objects can be fitted in 

accordingly. If the scene is to contain many objects, however, the animator has to 

keep track of a large volume of information and his task becomes difficult. A 

method of calculating the motion of objects so that their mass is taken into 

account by Controller rather than by the animator was therefore provided.

To invoke Controller’s mass facility the animator must define a mass value 

for each member of his cast. He is given the opportunity to enter this value at the 

keyboard whenever he selects a new cast member. The three ‘ducks* illustrated 

in fig. 5.1., for example, have been defined so that the largest is also the heaviest
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and the smallest is also the lightest. The unit of mass is immaterial as we are 

only interested in the relative motion of objects. In Controller the animator can 

select any value greater than zero to represent an object’s mass. The selected 

value, however, is nearly always between one and one hundred and will rarely 

reach the thousands.

In our example (fig. 5.1), the animator has specified that each duck moves 

from rest with the same amount of acceleration. He has to define their track 

through the set and the duration of this acceleration phase, but Controller then 

takes over. We can see that after a slow start, where it appears that the ducks are 

overcoming their inertia, the distance attained by them is proportional to their 

mass. Note that it is the animator who usually defines the distance to be covered 

during a motion segment. The purpose of this exercise, however, is to save the 

animator from having to remember this information when a large number of 

objects are involved. He is therefore no longer required to specify distances in 

this case. We do not feel that this approach means that the animator suffers a 

significant reduction in his control over the motion specification. By selecting the 

value of the mass to be used he is still in general command of the situation.

53,2 Wind

Our next experiment was to determine whether wind could be incorporated into 

Controller. If the animator requires such an effect he must first define the 

strength of the wind and the direction that it is coming from. Wind strength is 

often indicated by a force number taken from the Beaufort wind scale. The 

following table summarises the Beaufort scale for land and will be familiar to 

most people (note that the relationship between the force number and wind speed 

is non-linear):
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Figure 5.1. Motion of ‘Ducks’ with Different Mass
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Beaufort Wind Scale
Force m.p.h

0 1 light
1 1-3 light
2 4-7 light
3 8-12 gentle
4 13-18 moderate
5 19-24 fresh
6 25-31 strong
7 32-38 strong
8 39-46 gale
9 47-54 gale

10 55-63 storm
11 64-72 violent storm
12 >72 hurricane

In accordance with the Beaufort scale, we let the animator specify the force of the 

wind as a number between zero and twelve. The valuator used for inputing the 

intensity of a light is easily adapted to obtain this force value as well. Similarly 

the dial valuator is utilised to obtain the wind direction. These parameters are 

input before the animator defines the motion for any of the cast and they remain 

constant throughout the scene. To obtain effects such as gusting this will need to 

be extended so that wind force and direction can be varied over time. Such 

variation and lack of consistency add to the realistic animation of a wind.

Wind cannot be seen so it is modelled by the effects that it has on an object. 

Soft objects are not yet available in Controller and so this experiment is initially 

concerned with the effect of wind on rigid bodies. We identify two ways in 

which wind can affect such an object:

(i) making the object tilt or sway;

(ii) displacement of the object.

Making the object tilt in the direction in which the wind is blowing is an 

application of the traditional principle of anticipation. It gives an indication that 

the object may be about to move in the wind. Any displacement required is 

faired so that it appears more realistic. Our strategy is to add these wind effects 

onto the animator’s normal motion definition.
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In many cases wind effects are negligible and cannot be discerned by the 

viewer. A gentle breeze, for example, has no noticeable affect on a massive 

granite boulder. We therefore developed a quick test to determine if it is 

worthwhile calculating the tilt and displacement owing to the wind. We define 

the wind strength, 5, to be

S = 2®-l (*)

where B is the Beaufort scale force number. If the value returned by (*) is less 

than the mass of an object then we conclude that the wind has no noticeable 

affect on that object. These values can be precalculated and will be one of

0, 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, and 4095.

They are of the same magnitude as the mass values that the animator defines 

when using Controller (see §5.3.1). Comparing the mass of the object with the 

appropriate value obtained from (*) is then a straightforward task. A hurricane 

will therefore affect all objects with a mass less than 4095 units whereas a 

moderate wind affects only those objects with a mass less than 15 units. Many 

criteria could be used instead of (*) but we found this to be a reasonable method. 

It also reflects the non-linear relationship between the Beaufort force number and 

the wind speed.

We next need to calculate what the wind tilt and displacement will be. The 

maximum tilt angle reached will increase with the strength of the wind but 

decrease with the mass of the object. This relationship can be represented as

tilt angle = k x wln(̂  stren8t 1̂  ̂ £ constant,
mass

For simplicity we use k=l. The tilt angle obtained from this formula tends to be 

greater than what would occur in reality. This means that the amount of tilt is 

exaggerated and is thus conforming to another of the traditional principles. How 

quickly the tilt angle is reached depends on the strength of the wind, slowly for a 

light wind but fast for a hurricane. Controller uses as a default value
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number o f  interpolation frames =2(13-B) ,

where B is the Beaufort scale force number. This formula returns a value 

between two and twenty four frames but there is no reason it should be imposed 

on the animator. He is allowed to assign his own value for the number of frames 

to be used if he desires. The interpolation of the tilt angle is calculated using 

equation (3.4a) so that the motion is faired. At the same time as tilting an object, 

the wind will begin to displace i t  We know the force of the wind and the mass 

of the object so Newton’s second law of motion is used to calculate the 

acceleration owing to the wind. The law of constant acceleration that we used 

previously (equation 3.4h) then supplies us with the wind displacement. As with 

the tilt, this displacement is applied in the direction of the wind. The resulting 

transformation to be administered to the object is placed into a wind matrix. This 

matrix is then applied after the animator has specified any other motion for the 

object. Figure 5.2 illustrates how the resulting object path is presented to the 

animator.

wind
direction

Figure 5.2. The Effect of Wind on a Motion Path

Here the animator has selected a wind of force five and given the object a mass 

of twenty five units. After the track is drawn, the object is accelerated from rest 

and then maintained at a constant speed. Note how the displacement of the object 

from the track increases with successive frames.
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In the example of fig. 5.3 an otherwise stationary ‘clown* character has been 

exposed to a wind simulated by the animator. If viewed at the appropriate rate, 

these frames provide a good demonstration of how convincing the wind facility 

can be. Several factors still need to be considered, however. The animator will 

not want the wind to affect fixed objects such as buildings and so will require the 

option of defining objects to be immune from the wind. In our current 

implementation, assigning an object a mass of greater than 4095 units achieves 

this. Also, if the object tilts so much that it becomes unstable then we have to 

provide some mechanism for it to topple over. At the moment it is up to the 

animator to refine such motion until it appears visually correct. So far we have
i

assumed that the cast do not attempt to counteract the effects of a wind but this is 

not always the case. Human characters, for example, will often tilt into the wind 

(to obtain greater stability as they move) rather than being tilted away from it. 

The displacement of an object away from the track drawn for it by the animator 

can also present problems. The object may be ‘blown’ into other objects or even 

disappear from the set. The animator, however, can always redefine the object 

path or wind parameters to overcome these problems.

5.3.3 Staggers

A stagger is the term applied to the animation of an action involving a vibration 

or oscillation (White 1986). A javelin hitting the ground, for example, will 

usually vibrate after impact. Its animation will consist of a series of oscillations 

gradually decreasing in amplitude until an equilibrium position is reached. A 

character can also be made to shake with fear by the appropriate application of a 

stagger. A stagger is therefore a useful tool for the traditional animator and we 

decided to provide a similar facility in Controller.

The physical model of a stagger would be based on a damped oscillation. 

For example, Smyrl (1978) states the formula for a slightly damped oscillation as

s = e-p'/?cos{(a>2-p 2)1/*r-a}, 

where s is the displacement, t is the time, R is the amplitude of the oscillation, a



.

- 121 -

IB l

Figure 5.3. The Effect of a Wind on the ‘Clown’ Character
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is the phase angle, and p and co are constants. This equation is unlikely to be 

familiar to an animator and would be difficult for him to use effectively. An 

alternative approach is to base the computer version of a stagger on the traditional 

procedure. The animator is then in familiar territory and he can use his skill to 

the best effect. We have preferred to use this second approach.

To define a stagger in Controller, the animator is required to:

(i) select the frame positions between which the stagger is to occur,

(ii) enter the number of oscillations required at the keyboard;

(iii) use the dial valuator to enter the angle of the object’s maximum swing 

from its equilibrium position.

The amplitude reached on successive oscillations will gradually decay until the 

object comes to rest at its equilibrium position. This decay can be carried out 

linearly or by using some more complicated interpolation method, according to 

the animator’s wishes. We usually find that a simple linear division produces 

acceptable results. The time taken for each oscillation must also be allocated. As 

the object ends at rest and the amplitude of its extreme positions is decaying, 

fewer frames are needed for each successive oscillation. The deceleration 

function (3.4b) is applied to the total number of frames defined for the stagger to 

obtain the actual frame allocation for each oscillation. The final step is to 

interpolate the oscillation between the object’s current extreme position and its 

next extreme position. If it takes longer to come out of an extreme than it does to 

enter it then the resulting motion will appear to have more ‘snap*. To exaggerate 

the oscillations in this way they are interpolated using the acceleration function 

(3.4a) over the interval [0,tc/2]. Figure 5.4 illustrates an example of a stagger 

obtained from Controller. Here a child’s toy has been ‘pushed’ from its 

equilibrium position and oscillates four times. Such a stagger is quickly 

calculated using the technique that we have described above and is much cheaper 

to evaluate than the damped oscillation formula is.

The use of staggers in Controller presents new possibilities for their 

application. For example, when a heavy object falls to the ground the animator
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Figure 5.4. A Child’s Toy After it has Been Made to Stagger
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will often require the ground to tremor as a result of the impact. Applying a 

stagger to the view point of a virtual camera will give this impression. The 

implementation of a stagger in Controller is not yet complete, however. At 

present we restrict the animator to align an object’s equilibrium position with a 

principle axis from its own coordinate space. We will have to extend this so that 

a stagger can occur in any direction. How the mass of an object affects a stagger 

could also be considered.

53.4 Gravity

An object released from above the earth’s surface will fall towards it with an ever 

increasing velocity. The rate of change of this velocity is called the acceleration 

due to gravity, g, and is the same for all objects at a given location on the earth. 

The actual value of g varies between 9.78ms~2 and 9.83ms~2> depending on the 

location. Gravity also causes an ascending object to decelerate until its velocity 

reaches zero, after which point it begins to fall. An animator will often want to 

reflect the effects of gravity in an animation sequence. Once again, Controller 

will assist him in this carrying out task.

The animator defines the height of an object at its start and end frames and 

Controller calculates the inbetweens. The constant acceleration law (3.4h) is 

appropriate for modeling gravity. Here, however, we do not calculate the 

acceleration required to precisely satisfy the displacement and time constraints of 

the motion segment. To mimic gravity, the same value must be used for the 

acceleration due to gravity on all objects. This could be the value of g quoted 

above even though Controller’s environment is artificial and does not use the 

metric system of measurement. The only criterion that must be satisfied in 

Controller is that the motion obtained is visually realistic. To simplify the 

inbetween calculations we use a value of 10 units for g and find that this 

produces acceptable results. The animator can also specify his own value for g as 

he may, for example, be setting the animation in outer space.

The level of the ground plane is obtained from the set model currently being 

used. When a falling object reaches this level it will either carry on travelling
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below the surface of the ground, or come to an abrupt halt. Usually the animator 

will require the object to be stopped by the ground. An example of such motion 

is depicted in fig. 5.5.

Figure 5.5 An Object Falling Under Gravity

Here the object is falling from rest and is accelerating towards the ground. The 

distance travelled between the final two frame positions, however, is less than the 

preceding inter frame distance. This gives the effect that the object is ‘crashing’ 

into the ground. The animator can enhance the impact by making the object 

bounce or by applying a stagger to the camera. Note that if the impact occurs 

before the time specified for the motion segment has elapsed then any residual 

frames are ignored.

An animator will not want a feather to fall to the ground as quickly as a 

cannon ball. A feather is subject to more air resistance than the cannon ball and 

consequently takes longer to fall. Similarly, its ascent is retarded by air 

resistance. Controller therefore allows the animator to take air resistance into 

account. He assigns each object a value, ar , between 0 and 1. When ar= 0 there 

is no air resistance and when ar= 1 air resistance will completely counteract 

gravity. This value is incorporated into the calculation by scaling the interpolated 

height by (l-flr ). A pictorial example of the effects of air resistance is given in 

fig. 5.6 that depicts two spheres rising and falling under gravity. For the sphere
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*

Figure 5.6. Gravity and Air Resistance
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on the left ar= 0, whilst for the sphere on the right ar= 0.5.

5.4 Controller in Use

The main purpose of Controller is to allow us to experiment with different 

methods of defining computer animation. We aim to provide a flexible system 

that does not overlook the craft of the traditional animator, and have developed 

Controller accordingly. A practical test will help show our success in achieving 

this aim. A student* from an arts background was therefore asked to use the 

current version of our system to generate a computer animation sequence. This 

section details the strengths and weaknesses of Controller that became apparent 

during the making of this sequence.

5.4.1 Preliminaries

The student (hereafter referred to as the animator) decided to produce a 

commercial for his college degree show. As with all animation production, the 

first step is to write the script and a synopsis of this is given below. To present 

the action in more detail the animator also prepared a storyboard and an extract 

from this can be found in Appendix C.

The sequence begins with a camera shot of a dimly lit room. A large 

window covered by a Venetian blind is on the far wall, and a large television 

monitor is mounted on a side wall. On the floor of the room there are seven 

dustbin-like wheeled objects each painted in a different colour. An alarm clock 

hanging on the wall above the window suddenly begins to flash and appears to 

have an effect on the ‘dustbins*. It turns out that they are a group of robots 

resting in their dormant state. The alarm has roused them, however, and their 

eyes gradually illuminate whilst their heads and wheels extend out from their 

bodies. Once all the robots have been activated the chief robot decides to inspect 

his subordinates. The last to be inspected is a blue robot but while he is under

* Peter Wong Ming, Graphics Design student, Bath College of Higher Education.
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the gaze of his chief he topples over and crashes to the floor. The chief shakes 

his head in dismay and realises that the blue robot is in need of major repair. At 

this point the television monitor energises and displays an advert for a degree 

show. The robots have to hurry if they are to make the show in time and so the 

chief leads them out of the room. Meanwhile the blue robot has managed to get 

up off the floor but his head has been dislocated by the fall. This injury has 

affected his coordination and although he attempts to follow the others, his 

movement is erratic.

The scene now changes to a strange alien landscape dominated by a huge 

dome. This is the location of the degree show and six of the robots can be seen 

making their way inside. They are followed by various other visitors to the show 

but there is no sign yet of the faulty robot. By the time he does appear the 

degree show is over and the other robots are leaving the dome and heading back 

home. They do not notice their compatriot and he is knocked over by one of 

them as they pass. The faulty robot attempts to get up but this time he does not 

succeed. He turns his head towards the camera and he looks appealingly at the 

audience as the scene fades out.

5.4.2 Generating the Models

The information contained in the script and storyboard enable the models required 

for the animation to be generated. The animator is not expected to do this, 

however, as Controller does not yet include an interactive modeling facility. We 

have to prepare cast and set models using the procedure described earlier (§2.3).

Two sets are required, one for the room where we first meet the robots and 

another for the alien landscape. Both of these contain objects that are easily built 

out of quadrics and so are straightforward to generate. Cast models are then 

needed for the robots and the other visitors to the degree show and are again built 

out of quadrics. The cast will often exhibit some form of internal motion as well. 

An activated robot, for example, keeps his head fixed but swings his body with a 

slight oscillatory action. We describe such motion by using an appropriate set of 

poses (see §2.3.3), here we have used those depicted in fig. 5.7. A model
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Figure 5.7. Motion Poses for a Robot Character

containing only a robot head and another model containing only a robot body 

were also provided. These will make it possible for the animator to have more 

control over the head and rotate it in a different direction from the rest of the 

body (see §5.4.3). A colour plate showing the cast used for the animation 

sequence can be found in Appendix B.

5.4.3 Defining the Animation

Once the models have been generated, careful planning or staging of the 

animation is necessary. A detailed description of how the animator carried out his 

plans is not needed here. We will concentrate on the occasions when a particular 

strength or weakness of Controller became evident.

(i) Activating the robots

At the beginning of the sequence the robots are transformed from their dormant 

state to their active state. This process was straightforward to carry out by using 

Controller’s motion pose technique. The robot activation is a mechanical process 

and so was modelled effectively by this method. The motions of the head and 

wheels away from the body were interpolated using equation (3.4a) over [0,rc] and 

thus appeared visually smooth. The head motion is depicted in fig. 5.8. The



Figure 5.8. A Robot’s Head Motion During its Activation
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colour of the robots* eyes were also interpolated from black (when dormant) to 

white (when activated) using the same method.

(ii) Plotting the path of a single object

Controller’s method of path planning was used effectively by the animator when 

defining the motion of a single object The control that he had over both the 

spatial and temporal aspects of the path allowed him to produce the exact motion 

he wanted. The B spline editor, undo facility, and pencil test proved particularly 

useful to him. Most of the motion in the final sequence was refined and 

smoothed using the facilities offered by Controller.

(iii) Moving the cast in different directions

When many objects move at the same time and in different directions, care must 

be taken to ensure that they do not collide with one another. The animator had to 

consider this when all the robots left for the degree show (fig. 5.9). Using 

Controller a visual check determined if the cast would collide. The proximity of 

the motion paths was one guide as to whether this would occur but these paths 

did not give an impression of the size of the character in the scene. Therefore 

possible collisions might have been missed. Another method that proved useful 

here was to generate a wire frame sequence of the action. Such a sequence was 

fast to generate and identified several points in the action where adjustments were 

needed. Some form of automatic collision detection in Controller would be 

desirable, however, but has yet to be carried out.

(iv) Moving the cast in a procession

When the robots enter the dome they do so in a procession, that is, in single file 

one behind the other. Although the animator could define each object’s path 

individually to produce such a procession, this is unnecessarily tedious. We 

therefore provided a new facility that enabled the animator to use the same 

motion path for several objects with a specified time lag between the original 

object and the current object. A still from the robot sequence demonstrating the



Figure 5.9. The Robots Leave for the Degree Show

robot procession is given in fig. 5.10. Note that there is a gap in this procession. 

The animator has added more interest (or appeal) to the action by making a robot 

break out of the procession and rush into the dome ahead of the others.

(v) A falling robot

The faulty robot falls to the ground with a crash at two points in the animation 

sequence. The stagger facility described earlier in this chapter (§5.3.3) proved 

useful here. Applied to the view point of the camera after the robot hits the 

ground, the stagger gave the impression that the ground was shaking.



Figure 5.10. The Robots Arrive at the Dome

(vi) Head movements

After the faulty robot falls over for the first time, the chief shakes his head in 

dismay and then turns his head towards the television monitor. So that the 

animator can manipulate the head in this way, separate models of the robot’s head 

and body were provided (fig. 5.11). The facility that allows a path to be occupied 

by more than one member of the cast was again useful here. The animator began 

by defining the path for the robot’s body. The head was then defined to occupy 

the same path but without any time lag. As long as the head is maintained at the 

correct height then the resulting robot appears no different from the others. Now, 

however, the animator can set the orientation of the head independently from its 

body and achieve the desired head movements.

The alternative to this approach is to use an articulated model of the robot
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Figure 5.11. Models of a Robot’s Head and Torso

but a more complex interface is then needed to manipulate it. The animator has 

to ensure that a movement is applied to the correct part of the model hierarchy so 

that only the required components of the robot are affected. In our method the 

animator can consider the head as a separate entity that he has defined to follow 

the same track as the body. The body does not then have to be considered while 

he is manipulating the head. We feel that this provides the animator with a more 

natural way of defining the movements of the robot head and the results are just 

as effective.

(vii) Holds

The cheapest way of generating a hold or pause in the action is to display the 

same frame for some specified length of time. This technique was used in the 

robot sequence but there are drawbacks. The resulting hold is stiff and frozen and 

will often look unnatural. This occurred when the satellite dishes found on the 

alien landscape suddenly stopped rotating owing to the specification of such a 

pause. Even during a hold it looks far better if some motion continues to flow. 

The satellite dishes should therefore have continued to rotate when the other 

characters halted. The animator could have easily arranged for this to happen in 

Controller but of course many more frames would then have needed to be 

rendered. Owing to the animator’s deadline for completion, he opted for the least 

expensive method.
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(viii) Camera movements

Controller’s facilities for manipulating a camera were used extensively by the 

animator. In the robot animation sequence tracks, zooms and pans were put to 

good effect. At one point in the action the animator required the view point of 

the camera to be inside the chief robot. We therefore allowed a path already 

defined for a cast member to also be occupied by a camera. This enabled the 

camera to exactly mimic the overall motion of the chief robot and so gave the 

desired effect

(ix) Lighting

Providing effective illumination of a scene is a difficult task for the animator. 

Using Controller he can position lights about a set and define their intensity. The 

problem is that we do not know the extent of the illumination provided by them 

until an example image has been rendered using the ray tracer. Often the 

resulting scene is far too dark. We found that the best approach was to start with 

a uniform even illumination of the set using light locations and intensities 

determined at the modeling stage. If desired, the animator can then use Controller 

to vary the default lighting.

5.4.4 The Final Touches

Having specified the data required to produce the robot animation, the individual 

frames could be rendered. A wire frame version of each action was first 

generated and viewed using the video facility (§4.6). This highlighted the 

adjustments that needed to be made before the expensive ray tracer was invoked. 

Controller can easily be reactivated at this stage to make the necessary changes.

The video facility is also useful for viewing a sequence that is double 

framed. Double framing an action is a common technique for reducing the cost 

of animation production. It involves using each frame twice so that the action can 

be depicted in only half the number of frames that would otherwise be required. 

Except for rapid movements, the human eye cannot detect whether an action has
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been double or single framed. In the robot sequence, for example, every action 

except for the camera stagger (staggers are more effective when they occur 

quickly) was double framed. Note that it is the animator and not Controller who 

has to define a motion path according to whether double or single framing is to 

be used. It would be straightforward, however, to enhance Controller so that if an 

action is to be doubled frame then only alternate frame positions are calculated.

The frames were then rendered using the ray tracer (see colour plates 5 and 

6) and transferred onto video tape. Finally, the animation was completed by 

adding a soundtrack composed by the animator. A local television company* 

provided us with the facilities to apply the required music and sound effects onto 

the video tape.

5.5 Summary and Conclusion

The methods described at the beginning this chapter show some of the ways in 

which traditional principles can be used in computer animation. They enable 

visually realistic animation to be generated quickly and cheaply. We do not want 

to build into Controller too many facilities that will have infrequent use, however 

(for example, the wind facility). Our aim is to provide the animator with a tool 

box of animation techniques that can be combined in any manner. He will then 

be able to carry out any animation effect that he desires. The examples given in 

this chapter are meant to demonstrate how this can be done.

The way in which Controller is used to generate the robot sequence also 

reinforces our claim that traditional skills should not be overlooked. The student 

often exaggerated the action, added appeal, faired the motion, and so on. 

Controller is being developed so that an animator can apply his craft in the 

majority of cases. The production of the robot animation also helps us to assess 

how usable Controller is at present. After an initial period of familiarisation with 

the system we found that the student soon got an idea of its capabilities.

* HTV West, Bristol.
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Although he needed periodic assistance throughout the production of the 

animation, we have seen that he was able to effectively utilise many of 

Controller’s facilities. We were also able to identify and implement new facilities 

for our system. We feel that the results of this experience augur well for the 

future of Controller.
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Chapter 6 

Conclusion

6.1 Introduction

At the beginning of this thesis we set out to:

(i) provide a system of animation planning that is straightforward to use 

but at the same time keeps the animator in control;

(ii) enhance the animation effects attainable by incorporating the principles 

of traditional animation.

We have been interested in producing animation for entertainment (rather than 

scientific) applications and have developed techniques of planning animation 

accordingly. In this final chapter we will consider how successful we have been 

in satisfying the above aims and propose possible areas for future investigation.

6.2 Summary of Results

We can identify several areas where the work carried out during the thesis has 

been worthwhile and these are summarised below.

6.2.1 Planning Animation

The Controller system for planning three dimensional computer animation has 

been developed. At all stages of its operation Controller is intended to be 

straightforward and flexible to use. To contribute to the success of this goal we 

have:
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• developed Controller as an interactive graphics system so that the 

animator is provided with an immediate visual response;

• used kinematic techniques (rather than more complicated strategies) for 

modeling motion;

• allowed the animator to undo or alter his specification at will;

• kept the implementation of Controller as simple as possible so that the 

need for a complex interface is avoided.

We have experimented with a variety of methods that can be used to specify 

an animation and made the best of these available in Controller. The animator 

should not be offered too many facilities that he will rarely (if ever) use, however. 

Instead we provide him with the necessary tools to perform his desired task and 

let his skill determine the effectiveness of the results. The animator, and not the 

animation system, controls the quality of the animation produced.

6.2.2 Adaptation of Conventional Animation Techniques

We have modelled motion by using uncomplicated kinematic methods that are 

straightforward to use and can be evaluated quickly. At the same time, however, 

we wanted to ensure that convincing animation could be produced. We found 

that an effective approach was to make use of the principles of animation 

developed by conventional animators. For example, an animator using Controller 

can:

• use arcs when drawing tracks and so avoid motion that is mechanical in 

appearance;

• time the motion of several objects to mimic the effects of mass;

• slow in and slow out the motion of an object both along its path and 

between an interpolation;

• specify the extremes of an interpolation so that the resulting motion is 

exaggerated.

The application of these techniques result in animation that is convincing in 

an artistic rather than in a scientific sense and so is ideal for animation aimed at
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the entertainment market We did not have to adhere to computationally 

expensive physical laws to implement them and the animator is provided with the 

familiar tools of his trade.

6.2.3 The Portability of Controller

Our approach of ‘faking reality* is cheaper to implement than a full dynamic 

implementation and motion interpolations are fast to calculate. Controller has also 

been written in the highly portable C programming language. These factors make 

it feasible for Controller to be installed on machines where the computing power 

available is limited (such as portable computers). Our system for animation 

planning could therefore be made more widely available and offer many 

animators the chance to experiment with the computer medium. The final 

animation might still have to be rendered on a more powerful machine, however, 

especially if realistic shaded images are required. The animation data then has to 

be transferred to an appropriate host but this procedure should not present any 

major problems.

6.3 Future Investigation

There are several areas where the techniques of planning animation developed 

during the thesis could be improved and new techniques evolved.

6.3.1 Further use of the Traditional Principles of Animation

The use we have made of traditional animation principles have produced 

promising results and there is scope here for further investigation. Several of the 

principles described in chapter 1 have not yet been considered. Squash and 

stretch, for example, should be provided so that the rigidity of moving objects is 

reduced. Such an effect would be carried out at the rendering stage by applying 

the appropriate deformations to the object. Within Controller we will need some 

mechanism whereby the animator can define the amount of deformation required 

and at what points in the action it should occur.
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Controller is a key frame animation system and so it generates animation 

from pose to pose. The alternative is to animate ‘straight ahead*, a method that 

introduces more spontaneity into the action. The motion path technique of 

planning animation is unsuitable for this purpose. Here the animator defines each 

frame in sequence from the beginning of the scene to its end. To carry out this 

procedure without some form of frame interpolation would be laborious, however. 

Determining the best way of providing for this would be an interesting area to 

develop.

Another possibility is to provide automatic anticipation of an action before it 

is initiated. The animator would define the required action as usual but also have 

the option of requesting it to be anticipated. The animation system would then 

begin by calculating the ‘opposite’ of the defined motion over some specified 

number of frames. For example, if the animator defines an object to move 

quickly to the right of the set then this action could be anticipated by first moving 

the object (in reverse) to the left of the set. Such a ‘wind-up* anticipation is often 

found in animated cartoons when a character is chased off the scene (White 

1986). Assisting the animator with follow through, overlapping action, and 

secondary action could also be investigated.

6.3.2 Improvements to Controller

The prototype version of Controller is not without its flaws and several areas 

could be improved. Defining the orientation of a cast member, for example, 

would be aided by displaying a line drawing of the object whilst it is being 

manipulated into different configurations. We also need to develop the way in 

which the internal motion of the cast is modelled. One possibility is to use 

articulated objects but this will also complicate the animator’s task of planning the 

movements of such objects. Alternatively, the technique that we described in 

chapter 5 for allowing several objects to share the same motion path could be 

extended further. Note that the motion pose method need not be discarded 

altogether as it is an effective and simple way of modeling repetitive motions.
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The interpolation methods offered could also be improved and new ones 

developed. For example, our automatic mass facility has only been used during 

the definition of a motion path. Mass could be considered at the parametric 

animation stage as well. Again, however, such a facility is only needed when 

there are many cast members involved in a scene. We have not yet investigated 

how the family of acceleration curves formula can be used to model the forces 

applied to objects (see chapter 3).

Other possibilities include varying the direction in which motion paths can 

be traversed, and the provision of a facility to coordinate the animation with its 

soundtrack.
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Appendix A

Three Dimensional Model Descriptions

This appendix contains an example of the object and lighting decription files 

required to model a three dimensional scene. Both the ray tracer and the mesh 

renderer use these description files. The object description given here is used to 

generate the head of the ‘robot’ character (see chapter 5).

Note that the models are formed in a left handed coordinate system.
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X M A X 2 5 6
Y M A X 2 5 6
S C R E E N 1.0 1.0 1 .0
V I E W oo

1 . 0 - 6 . 0
S C E N E _ C E N T R E 0.0 1 . 0 oo

S C R _ R O T oo

B C O L O R 0 0 0
F O G 0.0

L T _ T Y P E 1
L T _ I N T E N S I T Y 1.0
L T _ O R I G I N - 8.0 10. -21
L T _ C O L O R 1.0 1 . 0 1.0

L T _ T Y P E 0
L T _ I N T E N S I T Y 1.0
L T _ O R I G I N 00 o 10. -21
L T _ C O L O R 1.0 1 .0 1.0

image resolution

screen dimensions
location of view point
location towards which the viewer points
rotation of the screen
background colour

point light source

infinite light source

A Lighting Model
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M A T E R I A L r e d  m e t a l
C O L O R 1 . 0  0 . 0  0 . 0
S U R F A C E 1 . 0
R E F L E C T I O N 0 . 0
M I R R O R 0 . 0
T R A N S L U C E N C Y 0 . 0
A T T E N _ R A T E 0 . 0
R E F R A C T I O N 1 . 0

M A T E R I A L b l a c k  e y e s
C O L O R 0 0 0
S U R F A C E 1 . 0
R E F L E C T I O N 0 . 0
M I R R O R 0 . 0
T R A N S L U C E N C Y 0 . 0
A T T E N _ R A T E 0 . 0
R E F R A C T I O N 1 . 0

M A T E R I A L c o r n e a
C O L O R 1 . 0  1 . 0  1 . 0
S U R F A C E 1 . 0
R E F L E C T I O N 0 . 0
M I R R O R 0 . 0
T R A N S L U C E N C Y 0 . 0
A T T E N _ R A T E 0 . 0
R E F R A C T I O N 1 . 0

P R I M I T I V E h e a d
NAME S P H E R E
C E N T E R 0 . 0  1 . 0  0 . 0
R O T A T I O N O x  O y  O z
S C A L E 0 . 7

P R I M I T I V E h e a d 5
NAME S P H E R E
C E N T E R 0 . 0  1 . 0  0 . 0
R O T A T I O N O x  O y  O z
S C A L E 0 . 6 7 5

P R I M I T I V E h e a d 2
NAME C U B E
C E N T E R 0 . 0  1 . 8  0 . 0
R O T A T I O N O x  O y  O z
S C A L E 1 . 6  1 . 6  1 . 6

P R I M I T I V E h e a d 3
NAME C U B E
C E N T E R . 9 5  1 . 9 5  - 1 . 4
R O T A T I O N O x  O y  Oz
S C A L E 1 . 8  1 . 8  2 . 0

P R I M I T I V E  h e a d 4
NAME C U B E
C E N T E R - 0 . 9 5  1 . 9 5  - 1 . 4
R O T A T I O N  O x  0 y  Oz
S C A L E 1 . 8  1 . 8  2 . 0

P R I M I T I V E  1  e y e
NAME S P H E R E
C E N T E R 0 . 2 5  1 . 2 5  - 0 . 5
R O T A T I O N  O x  0 y  O z
S C A L E 0 . 0 7 5

P R I M I T I V E  r  e y e
NAME S P H E R E
C E N T E R - 0 . 2 5  1 . 2 5  - 0 . 5
R O T A T I O N  O x  0 y  O z
S C A L E 0 . 0 7 5

D I S P L A Y h e a d 2 * ( h e a d - h e a d 5 ) -
h e a d 3  -  h e a d 4

M A D E _ O F r e d _ m e t a l

D I S P L A Y h e a d 2 * h e a d 5
M A D E _ O F c o r n e a

D I S P L A Y l _ e y e
M A D E _ O F b l a c k _ e y e s

D I S P L A Y r _ e y e
M A D E _ O F b l a c k _ e y e s

The Object Model used for the ‘Robot’ Character’s Head



Appendix B

Colour Plates

The following colour plates are divided into two categories. The first four plates 

illustrate the Controller animation system in use. The final two plates are 

example frames taken from the robot animation, “ Hit the Show, MAC!” . They 

have been rendered using the ray tracer.

Plate 1: Controller’s Title Page

Plate 2: A Cast Menu

Plate 3: Defining the Height Parameter along a Motion Path

Plate 4: Motion Paths from the Specification of the Robot Animation

Plate 5: The Robots soon after they have been Activated

Plate 6: The Procession of Robots Entering the Dome
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Conhroller

Plate 1. Controller’s Title Page

Plate 2. A Cast Menu
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Plate 3. Defining the Height Parameter along a Motion Path
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Plate 4. Motion Paths from the Specification of the Robot Animation
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Plate 5. The Robots soon after they have been Activated

Plate 6. The Procession of Robots Entering the Dome



Appendix C 

Extract from the Robot Storyboard

This appendix contains an example of the storyboard used during the production 

of the robot animation, “ Hit the Show, MAC!” .

Statistics

Animation length:

Frames generated:

Approximate rendering time per frame: 

Total CPU time for animation:

Time spent on the production:

68 seconds 

420

3 hours CPU time 

1,230 hours 

3 months

Credits

Designer: Peter Ming Wong, Bath College of Higher Education

Producer: Nigel John, University of Bath

Ray Traced Images: John Spackman, University of Bath

Video Transfer: CAL Videographics, London

Soundtrack: HTV West, Bristol



scene: 1
action: camera shot showing

room and dormant robots; 
sound: atmosphere.

scene: 1
action: robots’ heads raise; 
sound: William Tell Overture, 

bleeps.

scene: 1
action: the chief inspects his 

subordinates; 
sound: William Tell Overture.
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scene: 1
action: robots leave for 

the degree show; 
sound: William Tell Overture, 

squeaky wheels.

 - ■   /

scene: 2
action: robot procession 

enters dome; 
sound: William Tell Overture.

scene: 2
action: faulty robot is 

knocked over; 
sound: *crashing’ noises.



Appendix D

Publications

The Controller Animation System”

This paper co-authored by P.J. Willis was presented at Eurographics(UK) in 

March 1987. It was published in Computer Graphics Forum 8(2), June 1989.

Some Methods to Choreograph and Implement Motion in Computer Animation” 

This paper co-authored by P.J. Willis was presented at Computer Animation 

’89 in June 1989. It was published in State-of-the-Art in Computer 

Animation, Springer-Verlag, 1989.
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The Controller Animation System

Nigel W. John and Philip J. Willis*

Abstract

One of the ways in which computer animation can be 
generated is to use interactive graphics systems. In this 
paper we describe Controller, an animation system of 
this type. We concentrate on the operation of Con
troller and detail how an animator can plan and chore
ograph the motion of objects and cameras. We have 
intended to provide a system that gives the animator as 
much control as possible subject to keeping the inter
face simple to operate.

1. Introduction

Computer animation systems fall into a number of 
different categories1, with their own advantages and 
disadvantages. Typically there is a division between 
interactive systems and scripted systems producing ani
mation in two or three dimensions. The methods used 
within one of these categories can also follow quite 
different approaches. For example, an interactive sys
tem could use either key framing techniques or path 
specification to develop motion.

In this paper we describe Controller, a system to 
produce three dimensional computer animation. We 
have concentrated here on a description of the user 
interface, but of equal importance have been the 
methods used to implement the facilities it offers. We 
decided to build an interactive system using path 
specification, with the intention of making it flexible 
and easy to use. However, why is another animation 
system needed at all?

2. Generating Motion
Whether we are concerned with traditional or computer 
generated animation we have to find ways of making 
objects move, yet different methods of producing 
motion have been developed within the two mediums.

In computer animation we are currently seeing a 
progression from the use of kinematics to the use of 
dynamics1'3. With kinematics some criterion is used to

This paper was presented at the 7th Annual EURO
GRAPHICS (UK) Conference, Manchester, March 29- 
31, 1989.

* Computing Group
School of Mathematical Sciences
University of Bath
Bath, Avon, UK

calculate the position of the moving object over time 
However, more realistic results will be obtained if the 
motion is modelled using an appropriate physical law, 
such as one of the laws of dynamics. The cost is an 
increase in computation time, but there is also an 
increase in the amount of automation in the system 
(and arguably less fine control for the animator). In 
our animation system emphasis has been placed on giv
ing the animator as much control as possible subject to 
keeping it simple to operate.

In contrast traditional animation is not always 
concerned with whether the motion required is possible 
in the real world. For example, when a cartoon charac
ter is chased over the edge of a cliff he does not fall 
immediately. He will run on in mid air for a few 
seconds before he realises that he is no longer on solid 
ground and only then will he fall. Here the animator is 
more interested in entertaining the audience, and 
therefore needs to make the motion look right in an 
artistic rather than in a scientific sense. Traditional ani
mators have developed a number of principles to help 
achieve effects such as this. A summary of some of 
them follows and further details can be found in the 
literature4-6.
Staging

Make sure that the action is well laid out and 
prevent the audience from getting confused.

Slow in and slow out
Space successive frames to make the moving 
object slow down or speed up to ensure smooth 
motion transitions.

Anticipation
Let the audience know what is about to happen 
by using a preparatory move e.g. swing a leg 
backwards before kicking a ball.

Tuning
The timing depends on the number of drawings 
being used for an action. It can be used to 
emphasise the weight and size of a moving object.

Arcs
Motion will look less mechanical if the path of the 
moving object traces out a curve rather than a 
straight line.

Follow through and overlapping action
Make sure that an action does not end suddenly 
and determine if it will affect any subsequent 
action.

North-Holland
Computer Graphics Forum fi (1989) 133-138



134 N. W. John el al. /  The Controller Animation System

Secondary action
Enhance the main action with smaller secondary 
actions.

Squash and stretch
Deform a moving object in order to remove the 
appearance of rigidity.

Exaggeration
Exaggerating an action can help it appear more 
realistic, or at least caricature reality.

Note that not all of these principles conform to any 
physical laws. Greater use of these principles in com
puter animation has been advocated by Van Baerle7, 
and Lassetef4 and they have been a guideline in the 
design of Controller.

3. Designing an Animation System

We decided to model the interface of our animation 
system on a television control room. To determine the 
facilities that should be offered by our system we con
sidered the activities which are monitored from such a 
control room.

Firstly the set for the scene to be filmed is built. 
Cameras, lighting and microphones must then be posi
tioned and set up. Various test shots may be made to 
establish camera paths and actor position and move
ment. Cast and crew must learn their scripts so that 
they know what they should be doing during the scene.

When filming takes place the programme con
troller will be coordinating all movements, special 
effects, and giving instructions where necessary.

We chose this studio model with the intention of 
creating from it a user friendly interactive graphics sys
tem in which the animator becomes the programme 
controller. At this stage therefore the animator is pri
marily concerned with choreographing the action: we 
also have work in hand on the more specialised task of 
animating the individual characters but that is not 
reported in this paper.

Before proceeding to explain the facilities that 
Controller provides we briefly describe the equipment 
we have available.

4. The Graphics Environment
The Graphics Group at Bath University work with two 
Orion-1/05 super minicomputers running under the 
UNIX 4.2 BSD operating system. Other hardware 
includes two eight-bit colour displays with a resolution 
of 1280 by 1024 pixels, two digitising tablets with four- 
button pucks, a colour digitizer and equipment for 
automatic screen photography at 35mm still and 16mm 
cine.

Software in the group is written in the C program
ming language. It includes a library of graphics opera
tions and a variety of tools used in conjunction with 
the above hardware. As well as providing the interface 
between the screen and the tablet, this library offers the 
usual drawing facilities, colour control, etc. We have a 
state of the art ray tracer and can also render meshes.

We thus have a highly interactive system with 
good quality raster scan colour displays, encouraging us 
to write interactive rather than batch-oriented pro
grams.

5. Producing Animation Using Controller

5.1. Overview

Controller has been developed so that options are 
selected via menus, and parameters are set using valua
tor simulators (e.g. dials and scales). At the top level 
the animator can either accumulate animation data by 
dealing with set, cameras, lights or cast options, or con
vert the data into a scene model for each frame. 
Depending on his choice the appropriate sub-menu or 
valuator is displayed, and the system will wait for 
further interaction.

We will now look in more detail at the operation 
of each part of Controller, and consider some of the 
thinking behind it.

5.2. Choosing a Set
A number of simple scene models have been produced 
for experimental purposes. When the animator wishes 
to select a set a front elevation of each set is displayed 
on the graphics screen and the puck can be used to 
pick the one that is required. We prefer to use a front 
elevation because this gives a good feel for the appear
ance of the set. Once a set has been selected its plan 
view is displayed at a resolution of 1024 by 1024 pixels. 
It is on this plan view that most of the movement is 
planned by a combination of direct drawing with some 
mechanical assistance. The user also specifies the scene 
number and start frame number at this stage.

53. Cameras, Cast and lights

In general an animator will select one of these items 
and then plan its movement. The process of selecting a 
cast member is similar to that of a set. For each new 
cast member a model is produced and an appropriate 
view rendered. These views are displayed on the graph
ics screen and the animator chooses the one he wants. 
Cameras and lights are numbered and so are selected 
from menu options, one entry for each camera and one 
for each light.
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The animator can now begin to stage the action 
by defining a path around the set for the chosen cam
era, cast member or light.

S.4. Defining a Path

Firstly a path is plotted onto the plan view of the set. 
In general we have to define a three dimensional path 
using a two dimensional device, so we consider first 
only the xz plane. The extension into three dimensions 
by the setting of the object’s height is described later. 
One of the principles of traditional animation explains 
that natural movement tends to follow arcs rather than 
straight lines. The use of B splines is ideal for this task 
as it produces a smooth curved path that can easily be 
altered locally. The animator thus draws a series of 
(rubber-banded) straight line segments onto the plan 
view of the set in order to approximate the desired path 
(Figure la). The end points of these segments are the 
points to be interpolated by the spline. These points 
are used to calculate the control vertices of the spline 
using a method described by Barsky and Greenberg8.

m itiai fram e  p osition

Figure la. Defining the shape of the path

jcontrol vertex

The B spline curve is then calculated and drawn (Fig
ure lb). The animator can easily adjust the path by 
selecting a control vertex and moving it to a new posi
tion. Only the two spline segments immediately before 
and after the changed control vertex need be redrawn 
because each control vertex has only a local influence.

The option of using straight lines to define a path 
is still available to the animator as this is more 
appropriate in some cases. For example, a camera 
often tracks along a straight line.

So far we have only been generating positional 
information, without any reference to time. Therefore 
when the animator is happy with the path the next step 
is to decide where the object should be at each frame of 
the scene. This is an important stage in determining 
the realism of the motion achieved.

5.4.1. Motion Planning
Moving objects can accelerate, move at a constant 
speed, or decelerate. We have designed Controller so 
that these three modes of motion can be combined in 
any manner. It is left to the animator to dictate 
whether the result appears natural or unnatural.

The animator is presented with a menu of the 
three modes of motion. To specify a segment of 
motion he selects the mode required, and enters the 
duration of this segment in terms of the number of 
frames. The necessary frame positions are then calcu
lated using the appropriate modelling function, and 
plotted onto the path. For example, in Figure 2a the 
animator has specified that the object should accelerate 
for ten frames. If the result is unsatisfactory it can be 
undone and another attempt made. Controller keeps

Cnsfc Speed

Decelerotton
/

motion menu

\  !
\  1
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f \
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Figure lb. The B spline path with its control vertices Figure 2a. Accelerating along the path
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Cnsfc Speed

D e c e le ro k io n

RcceIoration

I

Figure 2b. Continuing along the path at a constant 
speed

Note that we are only defining the overall motion 
about the set. This is satisfactory for cameras and 
lights, but a member of the cast will also have its own 
internal movement, such as limb motion. Controller 
only takes a very simplified approach to achieve this at 
present. For a cast member enough poses are created 
to depict the motion style being exhibited and each 
pose will then be used in turn at successive frame posi
tions. Figure 3 shows three poses of the pacman char
acter used to depict his chomp.

S.5. Setting the Values of an Object’s Parameters

A variety of parameters can be associated with each 
frame and can be made to change dynamically. As 
soon as the frame positions along the object’s path have 
been determined parameter values can be specified at 
certain key frames and Controller will then interpolate 
across the in-between frames. The animator selects (on 
screen) a start and end frame position and gives the

track of the current speed attained by the object at the 
end of each motion segment and uses this to ensure 
that a smooth carry on is obtained at the start of the 
next motion segment (Figure 2b). The animator will be 
warned if the specification he requires is unrealistic. 
For example, he may ask for a stationary object to 
move at a constant speed without first accelerating it 
from rest. The warning can be ignored, however, as the 
anim ator may actually want such an effect. The timing 
of the motion by the animator is thus very flexible, and 
he can easily achieve effects such as slow in and slow 
out.

If the animator desires, Controller can automati
cally take into account the weight of an object. He has 
to inform Controller what the weight is (using an arbi
trary unit of weight) and the modelling functions will 
then use this value to ensure that fighter objects 
accelerate and decelerate in less time than heavier 
objects.

height valuator

I
selected frame positions

Figure 4. Setting the height

1

iiiiii

3.

Figure 3. Motion poses
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value of the parameter being set at these points. The 
in-between values are then calculated and assigned to 
the intermediate frames. It is just as important to con
sider traditional animation principles for this calcula
tion as it was when the position along the path was 
being established.

For example, to complete the definition of a three 
dimensional path the height of the object must be set. 
A suitably scaled valuator is used to set the height at 
the end frame positions (Figure 4). The animator can 
then choose the criterion for calculating the height at 
the in-between frames from the following:

Linear
The total height difference is divided equally 
between all the frames involved.

Faired
The height difference is divided so that successive 
increments are increasing at the b e g in n in g, and 
decreasing at the end.

Gravity
Successive increments in the height are calculated 
as if the object is falling or rising under gravity.

Constant
All the in-betweens are assigned the same value.

Similar methods are used when the animator sets the 
value of other parameters. Hence a camera can be 
made to zoom by changing its lens angle, its heading 
can be set, and it can be tilted. Camera heading can be 
fixated on a particular point in the scene, it can be 
tangential to its motion, it can rotate or it can have a 
fixed heading regardless of motion. The heading of the 
cast and lights may also be set and the intensity of a 
light varied.

5.6. Using the Animation Data
The animator will need to preview the results of his 
planning and then make any necessary adjustments. 
To achieve this Controller offers a pencil test facility 
which presents the user with an animated line drawing 
on the screen. This test can be of either a cast member 
or of a camera. The animator uses the path on the 
screen to select a range of frames over which the pencil 
test is to be performed. If the object is a camera then 
the set view at each position along the path is calcu
lated and displayed. At this stage none of the cast 
members are shown. If the object is a cast member it 
is also necessary to specify the camera it is to be viewed 
from. The sequence presented is that resulting from 
a n im a tin g  both this camera and the cast member for 
the selected frames. It shows the set and the selected 
cast member only.

At the end of a session all the information col
lected is written to a data file. The animator can load 
this file back into Controller in order to add further 
detail, or he can use it to generate a scene model for 
each frame of the film. During this frame generation 
stage the animator interacts with the system, coordinat
ing and controlling all the data available. He has to 
decide which camera is to be used at each frame and to 
make sure that the cast are activated at the correct 
time. He also decides how the frames are to be ren
dered and at what resolution. The fast wire frame 
Tenderer can be used to preview the animation 
sequence before the more time consuming ray tracer is 
evoked.

Once rendering is complete it only remains to put 
the finished frames onto film or video.

6. Summary and Conclusions
We have described how an anim ator can use Controller 
to generate computer animation sequences. He should 
be able to apply the traditional animation principles 
and in many cases Controller will assist him in doing 
this. The animator should also find himself in complete 
control of what he wants to achieve.

We have been using Controller as a test bed for 
experimenting with computer animation techniques. It 
is intended to offer an alternative to the more complex 
systems that utilise the laws of dynamics. The basis of 
motion in our system is kinematics, but building on 
existing kinematic techniques in order to improve 
results. This is where the main thrust of the future 
development of Controller will be.
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Some Methods to Choreograph and Implement Motion 
in Computer Animation

N i g e l  W .  J o h n  a n d  P h i l i p  J. W il lis

Abstract
Many methods of choreographing motion in computer animation have been 
developed. Many of the earlier key frame and scripted animation systems 
tended to require considerable effort from the user. With the develop
ment of systems using physical laws greater automation has been intro
duced, and more complex animation can be generated. The animator can ar
gue however, that he is losing fine control over the motion produced. We 
wanted to develop a system that gives the animator as much control as 
possible over motion choreography, without the interface becoming too 
cumbersome to use. This paper describes some of the methods that we have 
used to achieve this aim.

Keywords: computer animation, faking mass, interactive, motion choreogra
phy, smooth motion.

1. INTRODUCTION

The art of animation is in making objects move in a convincing manner, 
which traditionally has depended on the skill of the animator. However, 
with the development of computer animation systems the resulting anima
tion is also dependent on how the animation system allows motion to be 
choreographed.
Early computer animation systems often modelled closely the methods used 
to produce traditional animation, such as key framing (Catmull 1979). 
Although interactive they tend to require large amounts of input from the 
animator and are not always easy to use. An alternative is to use 
scripted systems that often appear in the form of an animation language. 
Although such systems have their advantages they tend not to be ideal 
when it comes to motion specification (Entis 1986).
Recently there has been research into developing more complex animation 
by using techniques such as dynamic analysis, automatic path planning, 
and stochastic algorithms (Magnenat-Thalmann 1985; Wilhelms 1987). In
herent with such systems is greater automation of the animation process. 
Arguably, greater automation can mean that the traditional skills of an 
animator are in danger of being overlooked.
There should be a place for the use of the traditional principles of ani
mation in the computer medium (Van Baerle 1987; Lasseter 1987). We de
cided, therefore, to investigate ways in which computer aided motion 
choreography can be carried out. We have two goals to our approach:

(1) Giving the animator fine control over the motion produced;
(2) Keeping the interface simple.
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2. THE ANIMATION TEST BED

Before we could experiment with the choreography of motion in computer 
animation we needed a system that would produce animated sequences. As 
we have already stated, an interactive system is generally considered to 
be preferable for motion definition tasks. We therefore implemented a 
system of this type, called Controller (John 1989), and a brief descrip
tion of it is given here.
The overall interface of Controller is- based on the operation of a telev
ision control room. Menus are used to drive the system and it makes use 
of graphical valuators such as dials and scales for the input of numeri
cal data. when the animator wishes to film a scene he will be presented 
with a plan view of the set to be used. The animator is analogous with 
the programme controller and coordinates all the movements of the cam
eras, lights, and cast taking part. To choreograph the motion of one of 
these objects he will begin by planning the path that it will take in the 
x z plane of the set. To determine this positional information we have 
used a method of path specification similar to that described by Shelley 
and Greenberg (1982) . We provide for a linear path, or a smooth continu
ous path (by using B splines). The latter can be adjusted if necessary. 
The next step is to determine the frame positions along this path. This 
-is one way in which Controller differs from other animation systems and 
some of the methods it uses are described below. We also detail how the 
height of the object can be set over these frame positions.
Controller provides facilities for the setting of the object's orienta
tion, changing the zoom of a camera, and varying the intensity of lights. 
The animator needs to know what effect changing one or more of these 
parameters has and should be allowed to make adjustments where necessary. 
Controller can, therefore, be instructed to display the view obtained by 
a particular camera at each frame, similar to a pencil test in tradition
al animation. A wire frame representation depicts the view obtained as 
this can be calculated in real time.
When the animator is happy with his specification all the data are con
verted into scene descriptions for each frame. Next, the animator de
cides when each camera will be used. The scene descriptions can then be 
fed to an appropriate rendering system, producing the final animated se
quence .

3. MOTION IN COMPUTER ANIMATION

When an animation sequence is displayed it will be projected at a con
stant rate, video for example is projected at twenty five frames per 
second. Varying the time interval between successive frames in the se
quence is not possible. Therefore an animation system has to calculate 
the position of a moving object at fixed time intervals. The distance 
covered during each of these time intervals will determine the overall 
effectiveness of the motion.
This section describes how the Controller animation system can be used to 
choreograph motion. We have attempted to provide a flexible interface 
offering the animator fine control over motion specification. However, 
we do not want to make this interface impossible to use; it should appear 
to the animator as a natural way of defining motion. The following sec
tions detail some of the methods we have used to carry out the motion 
specification. In doing this we found that the ease of use of the inter
face decreases as the complexity of the problem increases. We have en
deavoured, therefore, to keep the implementation as simple as possible.
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3 . 1 Choreographing Motion
In Controller, the choreography of a moving object consists of two 
stages:
(1) Drawing a path to define the overall position of the object;
(2) Deciding on the object's position along the path at each frame.
We have already mentioned how an animator can do the first stage by using 
a path specification technique. An example of a path that has been drawn 
using B splines can be seen in Fig. 1. At this stage no regard has been 
given to time, this being the next stage of the problem.

Cnst Speed

Rccel

•e n d  of previous 
motion segment

Decel

end of new 
motion segment

object's path

Fig. 1. Defining a Motion Segment

At present we do not provide facilities for modelling internal movement, 
such as the limb movement of a human character. Post process animation 
algorithms such as those described by Lundin (1984) would be ideal here. 
We are concerned with the overall motion choreography about the set. The 
animator divides the path into a series of motion segments, when the ob
ject will be accelerating, decelerating, or moving at a constant speed. 
These three modes of motion can be combined in any manner, the animator 
decides whether the resulting motion appears realistic or unrealistic. 
Sometimes he will be warned of an unrealistic combination. For example, 
he may ask for a stationary object to move at a constant speed without 
first accelerating it from rest. The warning can be ignored however, 
since the animator may really want such an effect.
To specify a motion segment the animator first shows how far he wishes 
the object to travel. This is the distance from the most recently calcu
lated frame position to some point he now marks on the path (see Fig. 1). 
He then selects the motion style required from the menu displayed. If 
either acceleration or deceleration is selected, the animator is required 
to enter the number of frames to be taken. Using this specification the 
animation system will then calculate the frame positions along the path



128

segment. The procedure is slightly different if the object is to move at 
a constant speed; in this case the animator only needs to show the dis
tance of the motion segment, and as many frames as possible will be fit
ted in. If the resulting motion segment is unsatisfactory it can be un
done and another attempt made. He can also make the object remain at the 
most recently calculated frame position for any number of frames.
The animator should find that moving an object around its path is as na
tural as driving a car along a road. For the latter decisions about 
whether to slow down, speed up or stop depend on the road conditions and 
the driver's destination. In the animation case the decisions are simi
larly governed by the story board that describes the whole scene.
As well as defining motion segments, the animator can set various parame
ters over a range of existing frame positions. One of these parameters 
is the height of the object. A valuator such as a sliding scale sets the 
height at two frame positions. The animation system will then calculate 
the height at the frames between these, according to the animator's 
needs. The animation of this height change is also important.

3.2 Methods of Implementing Smooth Motion
An object in motion will be accelerating, decelerating, or moving at a 
constant speed. Our aim is to simulate such motion around an object's 
path using simple kinematic techniques. To produce realistic results we 
rely on the animator's skill and the flexibility of the system. We have 
avoided the use of splines and complicated physical laws. The latter 
tend to produce more realistic results but are also computationally more 
expensive. Further, both techniques increase the difficulty the animator 
has in specifying the exact motion he requires.
We use the duration of the fixed interval between successive frames as 
our unit of. time when calculating motion. As we have seen, the animator 
places two constraints on each motion segment he defines in the ground 
plane:
(1) The length of the path segment;
(2) The number of frames to be taken.
We have to consider the interchange between successive motion segments. 
Usually we will require this interchange to occur smoothly.

Method 1: Trigonometric Functions
In key frame interpolation acceleration and deceleration effects are 
often modelled using

1 - cos(t), 0 <, t <, iU2\ 
sin(t), 0 <t£n/2

respectively (Magnenat-Thalmann 1985). These formulae can be used to
calculate the frame positions along a path. We require

l(t) = length of path segment x ( l-coa(n/2 x t) ), or
l(t)= length of path segment x sin(n/2 x t),

where l(t) is the fraction of the path segment length covered up to time
t. The value of t is scaled so that it falls into the range [0,1] by
using

____ current frame of this motion segment
duration in frames of this motion segment

As well as accelerating or decelerating the object, the animator may 
require it to continue at a constant speed. This speed will be that
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attained by the object at the end of the motion segment last calculated. 
A reasonable approximation of thi3 is to take the average speed of the 
object between the two most recently calculated frame positions. This 
is, in effect, the distance between these two frame positions.
The overall motion definition will consist of some combination of motion 
segments. As an example suppose that the animator defines a sequence of 
motion segments during which an object:

1) accelerates from rest,
2) maintains a constant speed,
3) accelerates again,
4) decelerates.

The graph of distance against time for this motion definition is given in 
Fig. 2a. We require a smooth interchange between each motion segment. 
Note that if two or more successive motion segments are of the. same 
style, acceleration for example, then the best results are obtained by 
combining them into one motion segment. We thus have less interchange 
points to consider.

s

smoother change 
over point

Fig. 2a. Using the Trigonometric Functions

The first motion segment of our example presents no problem: we fit the
distance and time constraints to a graph of (1-cosine). When the object 
is not accelerating from rest, as in the third motion segment, this is 
not as easy to do as we have to take the current speed of the object into 
account. The acceleration function as it stands does not do this. We 
decided to adopt the simplest solution to this problem.
The distance yielded by the acceleration function is only used if it is 
greater than the distance that would be covered by the object continuing 
to move at its current speed. Until this happens the object's speed is 
not altered. The point at which the acceleration function takes over can 
be quite noticeable, as it is in Fig. 2a. However, if we increment the
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object's speed after every frame by some appropriate amount so that the 
object does indeed appear to accelerate, then the change over point will 
be much smoother (Fig. 2a.) . Note that up until this change over point 
the object's speed is increasing in an arithmetic progression. A similar 
technique can also be used when modelling deceleration with the sine 
function. In this case we have to ensure that the speed of the object is 
always less than its speed coming into the current motion segment. We 
have not needed to do this in the above example as the initial speed 
obtained from the sine function is a lot less than the speed of the 
object at the end of the third motion segment. In fact the difference is 
too great for a smooth interchange.
Sometimes the constraints that the animator has defined make it impossi
ble to achieve the desired smooth interchange between successive motion 
segments. We can check for such cases and warn the animator who may then 
decided to change his motion definition.

Method 2: Laws of Motion for Constant Acceleration
Another way of modelling the motion effects we require is to use the laws
of motion for constant acceleration. Particularly appropriate to our 
needs is the following motion law

a = ut + jat2 ,

where s is the displacement, u is the initial speed, a is the accelera
tion, and t is the time. By substituting the animator's defining condi
tions into this equation we obtain the value of the acceleration required 
over the motion segment. The individual frame positions of the moving 
object can then be calculated. Figure 2b. depicts the distance against 
time graph obtained by using this technique on the same motion definition 
as in the previous method. We can now automatically get a good inter
change between motion segments as this equation allows for the initial 
speed of the object.

s

Fig. 2b. Using One of the Laws of Constant Acceleration
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There is a further constraint, however, in that since the object only 
travels around its path in one direction, the value of the object's velo
city must not change its sign during the motion definition. We found 
that when decelerating an object, in too many cases the animator's con
straints could only be satisfied if the velocity did change sign. This 
is the case in the fourth motion segment of our example, the distance
time graph goes through a maximum. The motion segment in these cases had 
to be rejected.

3.2.1 Comparisons
For the purpose of comparing the above two methods we have superimposed 
the two distance against time graphs obtained (Fig. 2c.).

s

Fig. 2c. Comparison of Methods 1 and 2

We can see that both methods give acceptable results when accelerating an 
object from rest. The final speed attained by the object does differ, 
but this does not matter. We are not concerned with the actual value of 
the object's speed, only that the final motion is visually acceptable to 
the animator. Maintaining an object at a constant speed is straightfor
ward in both cases. However, the law of constant acceleration is far 
better at accelerating an object when it is already in motion. The ini
tial speed of the object is automatically taken into account so we do not 
need to do apply extra techniques in order to get a smooth interchange. 
As we have seen, however, there can be a problem when using method 2 to 
decelerate an object. In some circumstances the object can only satisfy 
the animator's constraints if it overshoots its destination and then 
comes back. We will not get this problem using the sine function, how
ever. Fitting the motion to a sine curve ensures that the distance and 
time constraints are satisfied without the motion changing direction. 
The cost is that the initial speed of the object is ignored and so we 
lose out on the smoothness of the interchange.
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Our best approach for achieving smooth motion has been to use a combina
tion of the above methods. Priority is given to the law of constant 
acceleration, but where this fails the trigonometric functions are util
ised. More complicated strategies would produce more realistic motion. 
However by using the techniques described above we get a quite acceptable 
method of motion planning that is straightforward both to implement and 
to operate.

3.3 Techniques For Faking Mass
By carefully timing the motion of an object an animator can emphasise its 
size or weight (White 1986) . He has to make objects move more slowly as 
they get heavier, and perhaps give them more difficulty in controlling 
their weight.
Using the previous methods of motion planning the animator can easily 
make two objects move at different rates. If both objects are to move
from rest, the first motion segment of each will be an acceleration
phase. At any given time during this phase the total distance covered by 
the heavier object must be less than that covered by the lighter object. 
So if he wants both acceleration phases to last for the same amount of 
time he must ensure that the heavier object will traverse less of its 
path. This distance is one constraint that the animator has to define 
when specifying a motion segment, so there is no difficulty in doing 
this. If the objects now proceed at a constant speed the lighter object
will be travelling at a faster rate. The animator's judgement in indi
cating the distance of the acceleration phase will determine how convinc
ing the final result will be.
One aim of our approach to computer animation has been to give the anima
tor fine control such as he has in the above example. We do not want to
make the specification too difficult for the animator and it will not be
if we are only concerned with a few objects. However, if the scene is to
contain many objects each with a different weight, such motion control 
could become a headache to the animator. He has to keep track of how 
heavy all the previous objects were and fit in each new object accord
ingly. It might be easier if the animator just estimates the weight of 
each object and lets the animation system take care of the rest. We 
therefore provided a facility to do this.
when the animator selects a cast member he has the option of defining its 
mass. The unit of mass is immaterial as we only need to depict the rela
tive mass of the objects in the scene. We now have to satisfy three 
user-defined constraints (mass, distance and time), so the complexity of 
the problem will increase. However, the purpose of this exercise is to 
save the animator from having to remember all the distances he has been 
using to emphasise the mass of each object. So we let the motion 
modeller work out how much of the path will be traversed and merely get 
the animator to specify time and mass.

Method 3: Utilising Existing Methods
When we use

( l-cos(t ime)) on [0, iU2]
to model distance travelled under acceleration the result is scaled by 
the total length of the motion segment. This segment length must now be
determined by the system using a function that depends on the mass of the
object and the total time of the motion segment. The same is true if we 
are using the law of constant acceleration, the segment length must now 
be calculated by the system and not defined by the animator. The segment
length should increase with time but decrease as the mass of the object
increases, so
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segment length a lm— , 
mass

The simplest relationship satisfying this condition is

segment length = Ax— , k constant, 
mass

We let the animator determine the value of k by getting him to define the 
distance he would expect an accelerating object of unit mass to cover in 
some specified time interval. This task is performed by the animator 
before the path planning stage of our system. He uses a graphical valua
tor to input the required distance. The animator is thus still in gen
eral control of the final motion effects achieved.

Method 4: Using a Family of Acceleration Curves
Several other ways of modelling the motion of objects with different mass 
exist. For example, the function

x*
y -  :--- , a and b are constants,

ax* + b
has been experimented with. By varying the values of a and b a family of
curves can be produced (Fig. 3a. and Fig. 3b). We tried
a) varying the value of a whilst keeping b fixed,
b) varying the value of b whilst keeping a fixed.

Y ax2 + I

a increases

Fig. 3a. Changing the Value of a

We then considered what the motion effect would be if these graphs 
represented plots of velocity against time i.e.

t2v =  ; , v = velocity, t = time.
at2 + b

Each plot has the same general shape. Up to the point of inflection the 
moving object can be thought of as overcoming its inertia. It then 
proceeds to accelerate, tending toward some maximum velocity. Increasing 
the value of a decreases the maximum velocity obtainable by the object.



Fig. 3b. Changing the Value of b

This suggests that a is related to the force that propels the object. If 
a is fixed i.e. each object is propelled by the same amount of force, 
then increasing the value of b increases the time taken for the object to 
reach any given velocity - up to the maximum velocity obtainable. So b 
appears to be related to the weight or mass of the object.
We can get a distance against time function by integrating with respect 
to time

We need to determine suitable values for a and b.
In our current implementation we emphasise the mass of the object so we 
keep a fixed at a=I . We do not set b to be equal to the value of the 
object's mass. The mass defined by the animator is typically in the 
range (0,100], but to obtain the best results we found that the value of 
b should be much larger. If b is too small then the object rapidly
reaches its maximum velocity, too rapidly to be usable in our system
(Fig. 4b.) . We have found that multiplying the mass by a factor of
100,000 provides a suitable value for b. We again let the animator 
determine the value of the distance scale factor. He specifies the total 
distance that an object of unit weight will cover over a specified inter
val of t ime.
We also have to allow for the deceleration of an object. To do this we 
keep the time argument used by the distance function separate from the 
total time elapsed. The latter is always incremented as new frames are 
defined by the animator. We only increment our distance function time, 
however, when the object is accelerating. When the object is decelerat
ing it is decremented, and when the object is moving at a constant speed
it is left unaltered. We thus travel back down the distance time curve
when decelerating and a correspondingly smaller inter frame distance is

ts - —  a , s = displacement, t = time.
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calculated. Note that this method will give a smooth interchange between 
successive motion segments. There is a drawback, however. The object's 
rate of deceleration will be the same as its rate of acceleration, and so 
the animator cannot make an object decelerate over a period longer in 
time than it accelerated in. We can overcome this by varying the time 
intervals used with the distance function, but will lose out in the 
smoothness of the interchange between motion segments.

3.3.1 Comparisons
We want to compare the motion of objects that have been given different 
masses. As an example, consider the case when objects are accelerating 
from rest. Some distance-time graphs obtained by doubling the mass of an 
object whilst keeping the other constraints fixed are given below.

s

increases

= ut + —a t

Fig. 4a. Using Existing Techniques

In Fig. 4a. we have used the techniques of method 3, that is the law of 
constant acceleration and the trigonometric function (1-cos). The anima
tor has indicated the distance an object of unit mass is required to 
cover, the system will then automatically calculate other distances. We 
can see that in both carses the total distance covered in a fixed interval 
of time is halved as the mass of an object doubles. This is what we 
would expect if the objects are accelerating from rest. Repeating the 
procedure for method 4 yields the distance-time graphs of Fig. 4b. Again 
the distance covered appears to be halved as the mass of an object dou
bles. In fact this is not quite true, but when large values are used for 
b (as in our implementation) the differences are not significant.
Figure 4c. enables us to compare the shape of the motion graphs obtained 
by using method 4, and the law of constant acceleration from method 3. 
To aid in this comparison we have made sure that the final distance 
covered is the same in both cases. We can see that when we use method 4, 
an object accelerates more slowly to begin with, and consequently gives
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mass
increases

Fig. 4b. Using a Family of Acceleration Curves

Fig. 4c. Comparison of Methods 3 and 4
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us a better feel for the inertia of the object. It thus has to reach a 
greater final speed in covering the same distance in the same time inter
val as that of method 3.
We have preferred to use the family of acceleration curves method of 
incorporating mass. A motion graph resulting from this method is an 
intuitively better approximation to the real thing. We also have a way 
of manipulating the force applied to an object built into this distance 
function. This facility has not yet been exploited.

3.4 Height and Orientation
To complete the specification of a three dimensional path the height of 
the object must be determined. As described earlier, the animator will 
set the height at two frame positions and leave the system to calculate 
the height at the frames between. The animation of any height change is 
just as important as the determination of the object's position in the 
ground plane. We again leave it the animator to combine these two 
motions in a sensible way, but provide some tools to assist him.
We know the height at the two frame positions the animator has set and 
thus the difference in height between them. The simplest way to calcu
late the height at each frame in between is to linearly divide this total 
height difference. This is analogous to an object at rest instantane
ously reaching a constant speed without accelerating first. To give a 
smoother look to the height change the animator may be better off using a 
fairing technique. Such a technique will give a gradual increase in suc
cessive height differences at the beginning of the movement, and a gra
dual decrease at the end. We can use

1 - cos(x) on [0, it]
to model such a change. Alternatively, if a period of constant change is 
required at the centre of the movement we can use the technique of 
sinusoidal fairing described by Kingslake (1986) .
What if the animator wishes the object to appear to be falling or rising 
under gravity? Then the object should be accelerating if falling, and 
decelerating if rising. Clearly the methods we have already used for 
modelling acceleration and deceleration should also be applied to the 
animation of height changes. Not only height changes can be treated in 
this way. We also have to animate changes in the object's orientation 
and the zoom setting of a camera.
As an example of changing the orientation of an object, let us look at 
how it can be made to stagger or vibrate. We require the object to swing 
back and forth for several oscillations. The amplitude reached on each 
swing will gradually decay until the object comes to rest at its equili
brium position. An animation system using the laws of dynamics would 
model such motion on a damped oscillation, but we take a simpler 
approach. The animator will define the total number of frames to be 
used, the number of oscillations required, and the maximum angle from its 
equilibrium position that the object can reach. As the object ends at 
rest and the amplitude of the extreme positions is decaying, fewer frames 
are assigned to each successive swing. We can use a deceleration func
tion to determine how the total number of frames should be split up 
between the number of oscillations required. To give more snap to each 
swing an animator will usually require that more in betweens are used 
coming out of an extreme than are used going into it. An acceleration 
function should be used, therefore, to determine the position of the 
object between its extremes. All that remains to be done is to decay the 
angle of the extreme positions until the equilibrium position is reached. 
This can be done linearly or by using one of our other methods, according 
to the animator's wishes.
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Two Frames from an Animation Sequence Currently Being Produced using
Cont ro1le r
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4. SUMMARY AND CONCLUSIONS

We have presented some methods by which motion can be choreographed in a 
computer animation system. By keeping the modelling functions as simple 
as possible we have been able to keep the interface straight forward to 
use. We feel that this helps to present the animator with fine control 
over motion definition. He can thus apply traditional techniques to pro
duce convincing animation.
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