

University of Bath

PHD

Techniques for planning computer animation

John, Nigel William

Award date:
1989

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

Techniques for Planning
Computer Animation

submitted by

Nigel William John

for the degree of Ph.D of the

University of Bath

1989

Attention is drawn to the fact that the copyright of this thesis rests with its author.
This copy of the thesis has been supplied on condition that anyone who consults
it is understood to recognise that its copyright rests with the author and that no
quotation from the thesis and no information derived from it may be published
without the prior written consent of the author.
This thesis may be made available for consultation within the University Library
and may be photocopied or lent to other libraries for the purposes of consultation.

U.W>u
N. W. John

UMI Number: U021132

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U021132
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

urJ I V E F r i T V O F B/ Vr

2 ^ 1 9 APR l^fao

. Jhy-

“Everything should always be made as simple as possible, but not simpler”,

Albert Einstein

Table of Contents

Summary .. iv

Acknowledgements .. v

Chapter 1: Background

1.1 Introduction ... 1

1.2 The Application of Animation ... 2

1.3 The History of Animation .. 3

1.4 An Overview of Traditional Animation... 4

1.5 An Overview of Computer Animation... 9

1.6 Computer Animation: The State of the A r t 11

1.7 Research Possibilities.. 30

1.8 Summary and Conclusion... 31

Chapter 2: The Controller Animation System

2.1 Introduction ... 33

2.2 The Graphics Environment... 33

2.3 Designing Controller’s User Interface 36

2.4 Sets and C ast... 41

2.5 Designing the Implementation of Controller 46

2.6 Data Structures.. 50

2.7 An Object Orientated Environment.. 53

2.8 Summary ... 59

Chapter 3: Motion Paths

3.1 Introduction ... 60

- i i -

3.2 The Spatial Definition.. 60

3.3 The Temporal Definition ... 67

3.4 Achieving Smooth Motion .. 72

3.5 Techniques For Faking Mass .. 81

3.6 Verifying the Motion Definition................... 89

3.7 Summary .. 91

Chapter 4: Parametric Animation

4.1 Introduction .. 92

4.2 Specifying the Parameter Values .. 92

4.3 Verifying the Animation.. 102

4.4 The Animation Data .. 105

4.5 Generating the Frames... 106

4.6 Real time playback .. 108

4.7 Post Production .. 109

4.8 Summary .. I l l

Chapter 5: The Role of Traditional Animation Methods in

Computer Animation

5.1 Introduction .. 112

5.2 Why Use Traditional Animation Principles? 113

5.3 Assisting the Animator .. 114

5.4 Controller in U se .. 127

5.5 Summary and Conclusion.. 136

Chapter 6: Conclusion

6.1 Introduction .. 138

6.2 Results of the Research ... 138

- i i i -

6.3 Future Investigation ... 140

References.. 143

Appendix A: Three Dimensional Model Descriptions.................................. 152

Appendix B: Colour Plates ... 155

Appendix C: Extract from the Robot Storyboard 159

Appendix D: Publications.. 162

Summary

Finding optimal methods of producing computer animation is an active field of

research and the thesis begins with a literature review of this subject. We pick

out the development of techniques for planning motion in computer animation as

an area for further investigation. Many of the earlier key frame and scripted

computer animation systems tended to require considerable effort from the

animator. With the development of systems using physical laws greater

automation has been introduced, and more complex animation can be generated.

The animator can argue however that he is losing fine control over the motion

produced. We want to develop a system that gives the animator as much control

as possible over motion planning, without the interface becoming too cumbersome

to use.

A major part of the thesis contains a description of the Controller animation

system that has been designed to satisfy the above criteria. Emphasis has been

given to the use of kinematic techniques for modeling motion effects. These are

fast to evaluate and help to provide an easy to use interface between the animator

and the animation system. Controller produces animation for entertainment

applications and we require this animation to be visually realistic. To facilitate

this we examine several long-established techniques that have been employed in

conventional animation. Applying these techniques in Controller enables us to

‘fake* reality without having to use physical simulations.

- V -

Acknowledgements

I would like to thank all members of the graphics team at the University of Bath

for their help and suggestions during the tenure of my research. In particular I

wish to acknowledge the assistance given to me by my supervisor, Phil Willis,

and by my colleagues, Andy Hunter and John Spackman. My thanks also go to

the Science and Engineering Research Council for funding the project.

I would also like to take the opportunity of thanking my parents for their

moral support, but most of all for the encouragement (and proof reading) given by

my wife, Shirley.

Chapter 1

Background

1.1 Introduction

This thesis is concerned with the art and science of computer animation. To

introduce this subject we will look at the background of animation in general,

beginning with an explanation of just what animation is.

Definition: To animate an object is to give apparent life to that object;

movement is usually the essence of such animation.

This is one possible definition of animation and it can apply in several contexts.

Most people, however, think of animation in terms of drawn animation. Here a

series of gradually varied drawings (or frames) are photographed onto film. When

the film is projected at an appropriate rate the figures in the drawings will appear

to move*, because the retina in the human eye continues to register an image for a

brief period after that image has been removed; a phenomenon known as

persistence o f vision. Presenting several images in quick succession results in

them being blurred into a single continuous image giving the illusion of motion.

Not just movement but anything that can change over time, colour for example,

can be animated.

Traditionally animation sequences have been drawn by hand and we will

give an overview of that process in this chapter. Over the last two decades,

however, computers have become more and more prevalent in the creation of

animation. They assist in the production process and are a valuable tool in the

* To provide an illusion of continuous motion at least 15 frames per second are required. Film,
for example is projected at 24 frames per second, and video at 25 frames per second.

- 2 -

making of complex animation sequences. A literature survey of computer

animation outlining areas of current research in this field will also be presented.

From this we can identify new research possibilities, and the remainder of the

thesis will describe the work that has subsequendy been carried out. First we will

look at the motivation for producing animation and give a synopsis of its history.

1.2 The Application of Animation

Animation has several useful applications and some examples of these are given

here.

1.2.1 Scientific Simulation

Animation can depict processes that cannot be visualised by live action

simulations. This makes it ideal for providing a visual simulation of a problem

and thus help to solve or explain that problem. Some examples include

simulations of chemical reactions, crashes, and explosions.

1.2.2 Entertainment

One of the main uses of animation is to entertain people. Commercials, film

special effects, and children’s cartoons all utilise animation for this purpose. The

production of animated cartoons is often referred to as character animation.

1.2.3 Mass Communication

Governments and industry will often use animation as a means of mass

communication. Animation can present a message clearly and emphasise

important points.

- 3 -

1.2.4 Education

Animation can simplify complex processes and so is a useful tool in education.

For example, it can help to explain functions of the human body such as the

blood circulatory system.

13 The History of Animation

Animation as an illusion of movement can be traced back to the cave drawings of

Neanderthal man. He would often draw animals with blurred or multiple limbs to

try to give the impression of movement Animation as we know it today,

however, developed much later beginning with the invention of image projectors.

The first example of such a device was the Magic Lantern built by Kirscher in

the seventeenth century. It projected a hand drawn slide using a candle or

reflected sunlight as its light source.

The next advancement was to project images in motion but this did not occur

until the nineteenth century. In 1824 Peter Mark Roget published his studies on

the persistence of vision. He discovered four basic principles about this

phenomenon:

(i) the viewer’s vision must be restricted;

(ii) the eye blurs many images into one;

(iii) a minimum speed of presentation is required to prevent the images

being broken up;

(iv) a large quantity of light is required for convincing results.

This led to the invention of devices such as the Phenakistiscope, Thawnatrope,

and Zoetrope. The Zoetrope, for example, consisted of a revolving drum with

regularly spaced slits along its sides. Drawings were held on the inner wall of the

drum and would appear to move when viewed through the slits. Devices such as

these became popular and were a standard feature in Victorian penny arcades

where they could be used, for example, to discover What the Butler Saw.

The development of film in the early twentieth century really led to

animation taking off as a new art form. In Europe and particularly in America

- 4 -

various cartoon films began to appear both for instructional and entertainment

purposes. In 1914 the technique of cel animation was introduced by Earl Hurd.

This involved drawing backgrounds and characters on sheets of celluloid that

could be overlayed to form the final frame. These cels are reusable and thus

reduce the amount of drawings required. In 1928 Walt Disney arrived on the

scene and he turned animation production into a commercial industry. His studio

produced such classics as Snow White and the Seven Dwarfs and Fantasia. These

films were two dimensional cartoons but, owing to the many techniques

developed by the studio animators, were very convincing. These techniques are

still in use today.

The production of hand animation has always been costly in terms of both

time and money. A Disney production, for example, would take at least three

years and over two million drawings to make. Matters were mot helped by the

development of television and the resulting decline in cinema audiences. To

make animation production more economically viable computers began to be

introduced. Initially they were used to assist in the animation process but today

they can generate the whole animation sequence. In particular, they make three

dimensional animation more readily available. Productions such as Luxo Jnr and

Tin Toy by the American company Pixar demonstrate the current state of the art.

These films are still time consuming to produce as computers are not yet powerful

enough to produce high quality three dimensional animation in anything like real

time. The only real time applications of computer animation to date have relied

on special hardware. They include extremely costly visual simulators, and

computer games where the quality of animation used is limited.

For more details on the early history of animation refer to Madsen (1970).

1.4 An Overview of Traditional Animation

In this section we will review the process of traditional animation. This process

dictated the early development of computer animation and many of the techniques

leamt here are relevant to the computer medium.

- 5 -

1.4.1 The Production Line

A large team of people performing a variety of tasks are needed to produce an

animation sequence. Thousands of drawings will be flowing through the

production line and these have to be well organised. Different animation houses

use slightly different production methods but they all follow the same basic steps.

These are summarised below, and further details can be found in Magnenat-

Thalmann and Thalmann (1985), and White (1986).

(i) The Script

The subject matter is extensively researched particularly when simulations are

being produced. An animator, for example, will often study the structure and

timing of live action movements. This will help ensure that the final animation is

accurate. A detailed scenario is then prepared as a script. It will concentrate on

the visual action rather than dialogue as action is more important in animation.

(ii) The Storyboard

Using the script a series of drawings depicting the key points in the action are

produced as a storyboard. This visual presentation of the scenario will often

identify areas where the story requires the addition of more polish. The

storyboard is usually divided into action sequences that are in turn divided into

scenes.

(iii) The Soundtrack

The dialogue and key music are recorded at this point as the animation must be

drawn to synchronise with its soundtrack. The soundtrack is analysed

phonetically to determine the precise frame position of each sound. This

information is recorded on the bar sheet.

- 6 -

(iv) Designs

Visual interpretations of the characters to be used are created. Model sheets

depicting the characters in different poses can then be produced.

(v) Animation

The first step in producing the animation is to create a leica reel. This is a filmed

storyboard that can be projected in sequence with the soundtrack. Pencil

drawings of each scene are then filmed. The animator will draw in the key

frames or extremes of the action using the bar and model sheets as a guideline.

Assistant animators and in-betweeners will then draw in the frames required

between these extremes. When the line test is acceptable, it is cut into the leica

reel. Note that all the drawings must be cleaned up at this point to ensure that a

consistent style is maintained.

(vi) Trace and Paint

Each drawing will be traced or xeroxed onto a celluloid or acetate cel. These cels

will then be coloured as appropriate and carefully checked for errors.

Backgrounds are also prepared in this manner.

(vii) Final Shoot

The artwork must then be filmed. A machine called a multiplane (or rostrum

camera) is used for this puipose. It consists of a series of glass layers mounted at

different distances below a camera. Each cel needed for a particular frame will

be placed on the appropriate glass level and the composed frame is then

photographed. The multiplane allows the cameraman to achieve effects such as

zooms, pans, tilts and spins. He is given a dope or exposure sheet containing the

shooting information for each scene so that he knows when such an effect is

required. Another machine called an optical printer can be used to provide fades

and multiple images.

- 7 -

(viii) Post Production

After processing, the raw film, or rushes, is projected and viewed. If satisfactory

the rushes can be cut into the final Aim, otherwise reshooting will be necessary.

Meanwhile the voice track, music and sound effects are mixed onto the final

soundtrack. This is then merged with the final cut of the animation film to

produce the answer print. The animation will now be complete.

1.4.2 The Art of the Traditional Animator

Much material is available to the animator to teach him the art of animation

(Madsen 1970; Thomas and Johnstone 1981; White 1986). His skill and

experience in applying this knowledge will determine the overall effectiveness of

the animation produced. Note that with character animation the main concern is

to entertain the audience and so the action only needs to look right in an artistic

rather than in a scientific sense. Several principles have been developed to assist

the animator in doing this. These principles o f animation are his tools of the

trade and are summarised below.

(i) Staging

Make sure that the action is well laid out and prevent the audience from getting

confused.

(ii) Straight Ahead Action and Pose to Pose

Animating from pose to pose is another name for key frame animation. The

animator will draw poses of a character at some key frames and his assistants will

then draw in the inbetweens. The resulting animation has clarity and strength.

Alternatively, more spontaneity can be obtained by animating straight ahead.

This involves drawing successive frames ‘on the fly* using only the storyboard as

a guideline. A combination of these two techniques is usually used.

- 8 -

(iii) Slow In and Slow Out

Space successive frames to make the moving object slow down or speed up to

ensure smooth motion transitions.

(iv) Anticipation

Let the audience know what is about to happen by using a preparatory move. For

example, swing a leg backwards before kicking a ball.

(v) Timing

The timing depends on the number of drawings being used for an action. For

example, timing can be used to emphasise the weight and size of a moving object

The whole subject of timing for animation is discussed in detail by Whitaker and

Halas (1981).

(vi) Arcs

Motion will look less mechanical if the path of the moving object traces out a

curve rather than a straight line.

(vii) Follow Through and Overlapping Action

Make sure that an action does not end suddenly and determine if it will affect any

later action.

(viii) Secondary Action

Enhance the main action with smaller secondary actions.

(ix) Squash and Stretch

Deform a moving object in order to remove the appearance of rigidity. This

applies to both rigid and soft objects. Clothing, for example, should be deformed

as the person wearing it moves.

- 9 -

(x) Exaggeration

Exaggerating an action can help it appear more realistic, or at least caricature

reality.

(xi) Solid Drawing

The animator must be able to produce solid drawings of the action at a particular

frame from any angle. If drawn well, extra weight, depth and balance will be

added to the animation.

(xii) Appeal

It is important to give a drawing appeal to capture and maintain the attention of

the audience. A quality of charm, a pleasing design, simplicity, communication

and magnetism are some of the factors that can give appeal to a drawing.

1.5 An Overview of Computer Animation

The term computer animation is applied to any of several uses that a computer

can have when producing animation. In this overview of computer animation we

will distinguish between computer assisted animation and modelled animation

(Magnenat-Thalmann and Thalmann 1985). This is a simple way of classifying

the subject but will introduce most of the relevant topics. A more detailed survey

of the classification of computer animation is given by Pueyo and Tost (1988).

1.5.1 Computer Assisted (or Key Frame) Animation

Computers were first introduced into animation production to help reduce the cost

and tedium involved in the manufacture of two dimensional character animation.

One possible use of a computer, for example, is to control a physical device such

as the rostrum camera (Kallis 1971). More often, however, computers are utilised

in the key frame animation process where they have two main functions:

- 10 -

(i) the drawing and colouring of key frames;

(ii) automatic inbetweening.

Note that the actual image in each key frame has to be interpolated, a process

called shape interpolation (Zeltzer 1985) or image based key frame animation

(Steketee and Badler 1985). Lewell (1985) provides an overview of how the

Hanna Barbera studios use computers in their animation process.

Key frame animation can also be extended into three dimensions by using a

technique called parametric key frame animation (Hanrahan and Sturman 1985;

Steketee and Badler 1985; Zeltzer 1985). Here an object is described by a set of

parameter values such as its position vector. Each frame will be constructed

using the information supplied by these parameters. The animator will use either

an interactive system or an animation programming language to set the value of

each parameter at the key frames. The computer will then interpolate the

parameters (rather than the shape of the object) to produce the inbetween frames.

Interpolating between the physical parameters of a body will produce better

results than those obtained from shape transformations.

1.5.2 Modelled (or Algorithmic) Animation

The computer should not just be a labour saving device, it should also improve

the quality and complexity of animation. Drawing and manipulating objects in

three dimensional space, for example, would be a difficult procedure without the

aid of a computer. This is also true of providing animated simulations from

numerical data. Applications such as these where the computer is the main tool

of animation production are often termed modelled animation. The motion

applied to the objects here is usually described algorithmically using physical

laws, for example. The animator is thus relieved from tedium of producing

thousands of drawings and allowed to be more creative.

The production of modelled animation can be divided into four stages

(compare these with the stages involved in traditional animation production):

-11 -

(i) modeling objects in three dimensions;

(ii) animating the objects;

(iii) rendering the frames;

(iv) post production.

The emphasis placed on each stage will vary, depending on the application of the

animation. Each stage also has its own set of problems and we will present

details of these in the next section.

1.6 Computer Animation: The State of the Art

Computer animation must at least match the results obtainable from traditional

methods and should allow more complex animation to be created. Merely

attempting to emulate traditional animation is not enough (Thomas 1984); a new

generation of animation should be possible. The computational power of

computers provides us with the basis to achieve this aim and realistic static

images can already be produced. We need to extend this use of computers further

to include the temporal changes required for animation.

This section presents a literature survey of the current state of the art in

computer animation. For clarity, we have divided the subject into separate topics

although these should not be regarded as disjoint As we are concerned with a

wide ranging field there will often be an overlap between them.

1.6.1 Generating Key Frames

Burtnyk and Wein (1971) and Catmull (1979) describe typical image based key

frame animation systems. With such a system the animator will draw a set of key

frames directly onto a computer graphics screen using a data tablet. Software

tools are often provided to aid in the drawing of these key frames enabling the

animator, for example, to fit smooth curves. Paint systems are another common

feature. The area filling algorithms provided by these alleviates the tedium of

hand colouring the frames. A key frame can also be built up by composing

several images that the animator has already drawn (Wallace 1981). Unlike cel

- 12 -

animadon many images can be composed without any loss in the quality of the

key frame.

The animator will have to identify a set of boundary points (or vertices) on

each key frame. The computer can then generate inbetweens by interpolating

between corresponding points in successive key frames. Burtnyk and Wein

(1976), for example, record the order of the strokes that the animator makes while

he is drawing a key frame. A correspondence is then set up by making a stroke

to stroke mapping between successive key frames.

Automatic inbetweening using shape interpolation, however, has its

limitations (Catmull 1979b). A key frame image is a two dimensional projection

of a three dimensional character as visualised by the animator. Often some part

of the character will be obscured by another part of it, for example, if a head is

drawn in right profile then the left ear will not be visible. The computer does not

have any information about this obscured part and so it has to be supplied in

some way, usually by the input of more key frames. This means that the time

saved by using a computer in the first place is being negated. Catmull also points

out that efficient handling of the thousands of frames that are created during the

animation process is not often considered. He advocates greater use of data base

technology for this purpose.

A possible solution to the missing information problem is to define the key

frames in three dimensions. Geometric models of the characters have to be

provided so that the computer will have all the information it requires. Two

dimensional projections of the frames can then be made after the interpolation

process. First, however, methods of three dimensional modeling are needed.

1.6.2 Modeling in Three Dimensions

Both parametric key frame animation and modelled animation take place in

simulated three dimensional environments. The computer models required here

must also be defined in three dimensions and Lansdown (1983) reviews many of

the modeling techniques used for this purpose.. They include rotational sweeping,

- 13 -

curved surface representations, quadrics, and stochastic methods. Note that the

format of the model used will often determine how the motion of an object can be

calculated. A model format that will facilitate animation is therefore

advantageous.

The use of wire frame models provide the simplest three dimensional

representation. Such models have low storage requirements and are fast to

calculate. Solid models, however, provide the realism needed for most animation

applications. Ostby (1987) identifies two classes of geometric solid modeling:

homogeneous: all elements of the model are expressed as collections of

some basic primitive such as polygons. These are simple to

use but are a crude way of expressing non-polygonal

objects;

heterogeneous: all elements of the model are expressed as collections of

wider-ranging primitives such as quadrics, or patches.

Quadrics are easily parameterised (a property that facilitates

animation) but limited in what they can express.

Conversely, patches give good approximations of objects

but can be difficult to parameterise.

For flexibility a combination of techniques should be offered.

The use of polygonal models in key frame animation is similar to the two

dimensional case (Thalmann 1989) and a correspondence between vertices at each

key frame must be defined. Extra vertices often have to be added to ensure that

the same number of vertices exist at each key frame. If faceted models are being

used then the process is more complex as there must be a correspondence

between facets as well as vertices. More often three dimensional interpolation is

based on parameterised models using joint angles, for example. Whatever type of

model is used, however, an object creation facility is required.

The animator will typically be provided with an interactive graphics editor

such as the “ body-building” system (Magnenat-Thalmann et al. 1985). An editor

of this type will allow the instantiation of elemental primitives that have been

- 14 -

transformed by some combination of translations, rotations, scales and shears

(Herbison-Evans 1978). Instances of already modelled objects can also be utilised

by assigning them different scales and colours (Magnenat-Thalmann and

Thalmann 1985b). The primitives are often composed using boolean operations

(unions, intersections, etc) as, for example, in constructive solid geometry (C.S.G).

Another technique is to build the models hierarchically. This is particularly useful

for articulated objects as it has the advantage that any movement applied at one

level of the hierarchy will automatically effect everything below this level. Also,

when an object is distant from the viewer there is no need to display it in as

much detail as when it is close up (Lansdown 1983; Pueyo and Tost 1988). A

hierarchical model can be used for displaying an object at the level of detail

required.

It may be possible to write a computer program to build object models and

this is more appropriate when an object is to be constructed out of many

constituent parts. Some computer proficiency is necessary here, however. A

different approach is to reconstruct a three dimensional model from digitised

photographs of the real thing (Magnenat-Thalmann and Thalmann 1985). This

technique is useful when an object is too complex to model using other methods.

Stochastic methods such as fractals are used in solid modeling to create

objects that exhibit a degree of randomness. Trees and mountains are well known

examples of the application of fractals. Stochastic methods can also be applied in

animation for modeling fire, water and clouds where movement can be regarded

as a parameter of the model. Reeves (1983) has described a method of modeling

such ‘fuzzy* objects using particle systems. A particle is represented as a short,

anti-aliased line segment whose lifetime and movement are controlled by

stochastic procedures. Ousters of these particles defined in the appropriate

manner are used to create the desired object. This work was later extended

(Reeves and Blau 1985) by using structured particle systems to model solid

objects of trees and grass. This technique enables the production of complex

motions with random variation such as a field of grass blowing in a breeze.

- 15 -

Note that the quality of the models generated for character animation will

usually be to a higher standard than that used in scientific and educational

applications. Appearance and visual richness are of more importance in the

former case.

1.6.3 Inbetweening in Key Frame Animation

Once a correspondence between key frames has been defined, the next step is for

the computer to calculate the inbetweens. Whether for two or three dimensional

applications the computer has to define a path between corresponding points in

the key frames, taking both space and time into account. Several interpolation

methods are available to do this, most of which can be applied to either vertices

or parameters. Note that motion, particularly that of living beings, is complicated

to model accurately and often appears artificial or robotic. The result obtained

will be greatly determined by the interpolation method used. When evaluating

such methods Reeves (1981) considers their generality, smoothness, efficiency,

and ease of specification. These criteria are also considered for the methods

described below.

In linear interpolation the corresponding points between each pair of key

frames are joined by regularly divided straight lines. This is the simplest and

fastest method of inbetweening but produces the least favourable results. At the

key frames there is often a lack of smoothness in the motion, discontinuities in

speed, and distortions in any rotations used (Thalmann 1989). Using fewer key

frames will of course produce less discontinuities but will make it more difficult

for the animator to define animation in any detail. Non-linear divisions of time

will produce acceleration effects and are simple to introduce (see chapter 3). The

motion will still be in a straight line, however, and can look artificial. Techniques

of providing a non-linear spatial division also need to be applied.

Burtnyk and Wein (1976) introduce a skeleton technique to ease

inbetweening and allow the animator to define complex motion. An initial

correspondence is made between a skeleton and a fully drawn figure. The

animator then only needs to animate the skeleton with the details of the figure

- 1 6 -

being added later. Such a skeleton will always have a similar structure in the key

frames and so better inbetweens can be calculated. The approach adopted by

Gomez (1984) also attempts to simplify inbetweening. Instead of having arbitrary

spaced key frames he defines them only when something happens to an object.

These events are stored in a linked list called a track, a separate track being used

for each object (or moving part of an object). A frame is then formed from the

union of activity of all the tracks.

Baeker’s picture driven animation system (1969) introduced parametric

curves, called P-curves, for defining motion. The shape of a P-curve represents

the trajectory (in two dimensions) of some moving point. A trail of symbols

rather than a continuous line is used to plot this shape. These symbols are

equally spaced in time and so the relative density of them along the trajectory will

indicate the speed of motion. Both spatial and temporal information are thus

available on a single graph.

Reeves (1981) use of moving point constraints in the inbetweening process

takes a similar approach to the P-curve method. A moving point is a curve

sketched by the animator to connect a pair of corresponding points in two

successive key frames. The shape of this curve determines the trajectory of the

motion, and symbols marked at regular intervals of time along it determines the

timing of the motion. As the trajectory is not linear a better approximation of

natural motion will be obtained. The shape of the object at each frame is then

obtained by interpolating through the moving points using an appropriate curve

drawing algorithm. This method enables multiple paths and speeds to be

specified and helps to reduce the discontinuities at the key frames. The animator,

however, is required to specify additional information other than just the key

frames.

Piecewise cubic polygons (or splines) can also be used to connect

corresponding points in key frames. Kochanek and Bartels (1984) describe such a

method. They allow the shape of the spline to be adjusted at the key frames by

altering tension, continuity and bias parameters. The animator can thus fine tune

the movement of an object without having to redraw key frames. This method

- 17 -

can be used to interpolate angles and vectors and Thalmann (1989) makes use of

this to animate the human body.

Steketee and Badler (1985) give an interpolation method for parametric key

frame animation. They make use of the B-spline curve representation as it

provides second order continuity and therefore smooth curves (see chapter 3 for

more details). Their system allows for kinematic control and the joining and

phrasing of successive motions. They claim, however, that there is no satisfactory

solution to the deviations between the interpolated image and the object being

modelled.

A different approach for three dimensional applications is to draw smooth

path curves through space to control the interpolation process. Shelley and

Greenberg (1982) also utilise the B-spline curve representation for this purpose.

The animator first defines a B-spline in three dimensions to represent the

trajectory of the object or camera. A separate B-spline is then used to provide the

timing information. This second curve is regarded as a function of velocity

against distance and the animator has to input the required velocity values along

it. The use of path curves such as these enable the animator to think about the

entire motion of an object. Unlike key framing, however, it is difficult to

visualise the total configuration of the animation at a given time. Matters are also

more complicated if the object has to exhibit internal motion. The post process

techniques described by Lundin (1984), however, provide one method that can be

used to solve this problem.

Spencer-Smith and Wyvill (1989) also control motion by using a spline.

They have developed a four dimensional spline that passes through both space

and time. The way in which the motion timing is defined is again similar to the

P-curve approach. The spline is plotted using a trail of spheres that are equally

spaced in time. The relative density of these spheres and hence the motion effect

achieved can be varied by adjusting the control points of the spline.

The introduction of cubic splines has helped to provide motion with a

smoother, more natural appearance. The animator has to define or control several

- 18 -

additional parameters, however, and so using splines can be a time consuming

process. If realistic motion is the major concern then a different approach is to

utilise physical laws. Brotman and Netravali (1988), for example, describe an

interpolation process that makes use of differential equations obtained from

classical mechanics. The application of physical laws is more common in

modelled animation processes, however.

1.6.4 Motion in Modelled Animation

In three dimensional animation actors, cameras and lights are generally defined at

each frame by an appropriate set of parameters. For example,

camera = {location, direction, zoom};

actor = {location, orientation};

light = {location, direction, intensity }.

Animation is obtained by gradually varying the value of these parameters across

successive frames, usually by applying a list of transformations. To achieve

motion around a set, for example, the parameter that defines the location of each

object must be updated using an appropriate translation. For cameras, effects

such as spins, pans and tilts must be allowed for (Magnenat-Thalmann and

Thalmann 1986). The simulation of different lighting effects should also be

possible. Methods of calculating the change in state of these various parameters

are therefore needed. In modelled animation the two techniques most often used

for this purpose are:

(i) kinematics;

(ii) physical laws such as the laws of dynamics.

Kinematic motion is obtained by calculating positions, speeds and

accelerations as a function of time. We have already seen how kinematics have

been employed in the key frame animation process (§1.6.3). Linear interpolation,

spline interpolation and path curves all fall into this category. Often the motion

- 19 -

applied to an object is faired (Lansdown 1983). Here the object is made to

accelerate from rest at the beginning of its movement, and decelerate to rest at the

end of its movement. This emulates the traditional animation principle of slow in

and slow out thus providing a smoother motion effect By using techniques such

as fairing the animator can obtain convincing motion in his animation.

Sometimes, however, the motion is too laborious or too complicated to model

kinematically and so physical laws are utilised.

The use of dynamics to model motion, particularly that of the human body,

has been developed (Armstrong and Green 1985; Wilhelms and Barsky 1985).

With dynamics the forces and torques acting on an object are taken into account.

This dynamic information is then used to calculate the kinematic motion of the

object. Newton’s laws of motion are the basis of dynamic modelling (Wilhelms

1987; Selbie 1989). For example, Newton’s second law can be stated as

F = ma (*)

where F is the force acting on an object, m is the mass of the object, and a is the

acceleration that the object will undergo. Numerical methods are usually needed

to satisfy the constraints of the animation but these are derived from (*). The

actual forces used by the system can be calculated automatically (as with gravity),

modelled with springs and dampers, or supplied by the animator.

Hahn (1988) and Miller (1988) show how dynamics can be used to produce

realistic animation. Hahn’s system models the motion of rigid bodies taking

mass, elasticity, friction and moment of inertia into account. In his animation of

snakes and worms Miller makes use of a mass-spring system where muscle

contractions are modelled by spring tensions. The use of dynamics is essential in

such simulations where the modeling of reality is important but there are

disadvantages. Dynamic systems can be hard to implement, the computation time

is higher than with kinematics, and the control of forces and torques is non-

intuitive and so difficult to use.

Many authors consider that the optimal approach for modeling motion is to

provide a combination of kinematic and dynamic techniques. Wilhelms (1986),

- 2 0 -

for example, describes an interactive motion control editor that achieves this. In

her VIRYA system the animator will control most of the animation kinematically

but have the option of using dynamics to add more realism where required.

Forest et al. (1986) show how the same approach can be used in the animation of

articulated bodies. A mixture of kinematics and dynamics is also used by Witltin

and Kass (1988) in their spacetime constraints method of animation. The

animator specifies a minimal number of kinematic constraints such as an object's

location at different times, and the manner in which it is to move. Physical laws

are then used to calculate how best to satisfy these constraints. By satisfying

kinematic constraints in a physically valid way they claim that traditional

principles such as anticipation and timing will emerge automatically. The

approach of Pintado and Fiume (1988) is different again. Their motion

specification and control environment system based on fields is a kinematic

technique. The dynamic splines that they develop, however, mimic the effects of

dynamic control but without the high computational cost usually associated with

this.

Other methods of modeling motion can be used. Magnenat-Thalmann and

Thalmann (1985c) advocate greater use of evolution laws that change the state of

some system over time. Brownian motion and chaotic attractors are two examples

of such laws. In a similar vein Wilhelms (1987b) argues that the control of

motion can be aided by integrating knowledge from other fields such as robotics,

biology and physics. Use of more automatic techniques is also advocated to

counteract the trend towards greater complexity. Algorithmic control, for

example, is useful for modeling repetitive motion. The motion is generated using

a series of preprogrammed instructions and so little user input is required.

Applications of this technique include modeling the elliptical orbit of a planet and

the oscillation of a pendulum.

Using a technique called inverse kinematics it is possible to determine the

orientation of an object given the position of some distal part of that object The

programming of a robot arm for object grasping is an inverse kinematics problem

and is analogous to object grasping in human animation (Amaldi et al. 1989).

-21 -

Another of its uses in animation is to ensure that a body maintains realistic

contact with the ground. The inverse kinematics problem can be divided into two

stages:

(i) find any solution to achieve the desired goal;

(ii) find the best solution.

As the complexity of an object increases so does the difficulty of solving the

problem. An analogous problem is that of inverse dynamics where the forces and

torques that satisfy certain constraints must be found. Barzel and Barr (1988) use

inverse dynamics in their modeling system. The constraint forces calculated cause

the assembly of the model components and ensure that the components stay

together as the model moves.

Another recent development is behavioural control where environment

interactions are taken into account. The motion of an object here is made to

depend on the behaviour of other objects. The system has to recognise the state

of the environment and generate a response to it. Reynolds (1987) describes a

model of polarised, non-colliding aggregate motion that can be used to generate

flocks and herds. His method is an elaboration of particle systems using birds

say, instead of particles. The behaviour of each bird is simulated independently.

They try to both stick together and to avoid collision with each other or other

environmental objects. Collision avoidance is another problem from robotics that

is applicable to computer animation. When defining path curves, for example, the

animator could easily end with objects that interpenetrate owing to the proximity

of two or more paths. The animation system should be able to detect such

collisions and respond to them in an appropriate way. Moore and Wilhelms

(1988) suggest methods of solving this problem.

- 2 2 -

1.6.5 Human Animation

The realistic animation of computer generated human figures is a complex

problem and is a large area of research in computer animation. We present a

summary of the work carried out in this area whilst more detailed surveys can be

found in Badler and Smoliar (1979), Magnenat-Thalmann and Thalmann (1985)

and Tost and Pueyo (1988).

The first step is to produce a three dimensional representation of the human

body. The methods generally used for this are:

stick figures: a skeleton consisting of a hierarchical set of limbs

connected by joints (Zeltzer 1982). A stick figure is easy

to store and manipulate but it is difficult to represent some

motions such as twists;

surface models: a surface ‘skin’ representation is obtained by surrounding a

skeleton with planar or curved patches. A more realistic

model results but it is tedious defining the patches and

computationally expensive to render,

volume models: the body is decomposed into primitive volumes such as

ellipsoids (Herbison-Evans 1978) or spheres (Badler et al.

1970). Not as realistic in appearance as surface models but

far better than stick figures. Also, as they are easy to

define geometrically, efficient hidden surface algorithms

can be used to speed up visualisation (Herbison-Evans

1982).

Most systems will use stick figures for defining motion with the surface or

volume model being applied later. Magnenat-Thalmann and Thalmann (1987)

detail the steps involved when creating a synthetic human based on a real life

person.

Owing to the complexity of the human body the specification of its

movement is not an easy task. A possible solution is to utilise choreography

notations such as Labanotation, Eshkol-Wachmann notation, and Benesh notation.

- 2 3 -

These have been developed to record dance scores accurately, a problem of

representing three dimensional movements on paper. Labanotation views the

body as a set of joints connected by limbs while in Eshkol-Wachmann notation

limbs are connected at joints. Both of these notations can be used with the stick

figure representation, for example, Calvert et al. (1980) have used Labanotation.

Benesh movement notation is a hierarchical method that uses a music-like stave

for recording choreography. Singh et al. (1983) have developed an interactive

editor for such notation but this method is not used in computer animation as

often as the others are. The Effort/Shape notation (Badler and Smoliar 1979)

should also be mentioned. This notation is based on a muscular representation of

the body and so dynamic characteristics of movement can be specified.

Having obtained a motion description it must be applied to the human figure

that is to be animated. We have already looked at key framing methods and

indicated some of their applications to human body animation. Forest et al.

(1986b) control motion by specifying joint angles for the human figure at each

key frame. Kinematics or physical laws are used to interpolate the joint angles

according to the requirements of the animator. With systems of this type the flow

of motion is determined by the interpolation technique used. The ability to add

refinements to the resulting animation is therefore essential. Kinematic and

dynamic transformations can also be used to move a figure along a path and this

technique is useful for making global motion specifications. The main problem

here, however, is in describing internal movement of the body such as walks.

Armstrong et al. (1986) apply forces and torques to the limbs of the human figure

and so internal motion is automatically specified. They supply an interactive

interface to allow the animator to control and adjust the forces applied.

To take some of the burden of motion specification for articulated bodies

away from the animator, goal-directed motion techniques have been developed

(Korein and Badler 1982; Zeltzer 1982b). Using this approach the animation

software generates most of the motion and the animator just has to specify the

end constraints he requires. The cost is a trade off with the animator’s artistic

control. Another technique that can be used is rotoscopy. Here human

- 2 4 -

movements are digitised from real life and applied to their synthetic counterparts.

The ability to vary the anthropometry of different human figures should also

be available. This facility is useful in simulation applications where, for example,

the effects of a car crash on humans with a variety of different builds might need

to be determined. Grosso et al. (1989) describe a system offering such a facility.

They use a spreadsheet-like interface to alter the body parameters of a human

figure. Adjustments to the anthropometric structure of a figure can also be used

to add more ‘character’ to it.

The animations of faces and hands are particularly complex and usually

carried out separately from the rest of the body. These entities are generally

modelled as surface patches to which different motions can be applied. One

approach for animating a face is to associate two types of parameters with the

surface patches (Parke 1982). The conformation parameters define a neutral face

that is altered using expression parameters. Alternatively, a facial model based on

muscle deformations has been developed (Waters 1987). Emotions and speech

are two important aspects that should also be taken into account. A survey of the

more important facial animation techniques can be found in Magnenat-Thalmann

(1989). With hand animation, skeleton motion and shape deformation must be

considered. We have already mentioned that hand grasping is an inverse

kinematics problem.

1.6.6 Computer Animation Systems

One way of considering the data flowing through an animation system is in terms

of the degrees o f freedom of the moving objects (Zeltzer 1985; Wilhelms 1987b).

For example,

particles: particles have three degrees of freedom (a translation in

three dimensional space);

- 2 5 -

rigid bodies: a rigid body is made up of several points that must

move as one. They have six degrees of freedom (a three

dimensional translation and a three dimensional

rotation);

flexible bodies: a flexible body contains an infinite number of points that

can move relative to each other. The body is

approximated with a finite number of control points,

each having three degrees of freedom that vary over

time;

articulated bodies: the total degrees of freedom is equal to the sum of the

degrees of freedom at each joint.

Having fifty or more degrees of freedom involved at each frame is not unusual.

Considering the many frames required to produce even a short animation

sequence a large volume of data has to be handled by the animation system. Note

that there may also be constraints applied to the degrees of freedom. A human

head, for example, can be rotated but not through 360 degrees. The animator

requires a system that will enable him to control these data efficiently.

Several different types of animation systems have been developed. Zeltzer

(1985) states that an animation system will fall into one of three categories

depending on how the motion specification is dealt with. These are:

(i) guiding systems;

(ii) animator-level systems;

(iii) task-level systems.

An integration of these systems may also be advantageous.

In guiding systems animation is usually defined and created at a graphics

screen. These are interactive systems and so provide an immediate response on

what the animation will look like. The animator has nearly complete control over

the motion and can specify fine details. Guiding systems tend to be unsuitable for

specifying complex motions, however. Computer assisted and path specification

systems fall into this category and specific examples include Bbop (Stem 1983),

- 2 6 -

TWIXT (Gomez 1984) and Graphicsland (Wyvill et al. 1985).

The animator-level or scripted systems are animation languages. The

computational power of a programming language is thus made available to the

animator. He has to prepare a script by describing actions as low level elemental

motions such as translations and velocities. Control structures enable him to

associate successive iterations of a loop with movement at successive frames.

Parallelism, synchronisation and data abstraction are also achievable. Examples

of systems falling into this category include ASAS (Reynolds 1982), MIRA 3-D

(Magnenat-Thalmann and Thalmann 1985), and NEM (Marino et al. 1985).

Scripted systems often allow for adaptive motion whereby information from the

environment is taken into account when calculating object positions. Collision

detection can be built into the system in this way. The disadvantage of scripted

systems is that the animator has to have a reasonable proficiency in software

development.

Task-level systems rely less on the animator and more on the intelligence of

the system. The animator describes motion implicitly using high level

terminology such as ‘walk’ or ‘swim*. Environment information is kept in a

database or knowledge base and is used by the system when it calculates the

required motion. One problem, however, is that there may be more than one

solution to the animator’s constraints. Goal-directed systems (§1.6.5) can be

placed into this category but the development of a complete task-level system is

still a matter of research. Task-level systems offer a more user-friendly interface

than other types of systems and so are easier to use. The trade off, however, is

with the ability of the animator to use his artistic skills.

Related to task-level systems is the use of artificial intelligence and expert

systems in computer animation. Magnenat-Thalmann and Thalmann (1986b) have

developed EXPERTMIRA, an animation language that uses concepts from

artificial intelligence. In a similar vein Badler (1989) uses natural language to

augment his task-level animation process. Arya (1986) describes the benefit of

using a functional approach to implement animation. A kernel of primitives can

be set up and combined into higher order functions.

- 2 7 -

A method that incorporates facilities from all the different categories of

animation systems will give complete yet economical motion control (Zeltzer

1985). Interactive systems, for example, are usually better for designing motion

(Entis 1986), and Hanrahan and Sturman (1985) who use a scripted approach

resort to key framing for motion definition. Schlag (1986) also encourages the

integration of scripting and interaction into a single system. A final example is

provided by Chuang and Entis (1983). They use a key frame based system that

utilises a script facility for defining relationships between objects that affect their

motion. They place emphasis on the use of software tools and intermediate stage

graphics for design flexibility.

1.6.7 Rendering Animation

Once the animation has been defined the object, camera, and lighting information

are amalgamated to create a scene model for each frame of the sequence. A

variety of methods can then be used to produce a static image of each frame, for
example:

Renderer Comments
wire frame
scan line algorithms
ray tracing

fastest, useful for previewing animation
fast for solid rendering, can lack detail
simulates optical laws, realistic but slow

The speed at which the animation can be rendered is an important

consideration. Ideally the animator should be able to define and view an

animation sequence in real time. None of the above rendering techniques is fast

enough on conventional hardware to produce the minimum of fifteen frames that

would be needed every second. The actual time taken to generate each frame will

range from a few seconds to many hours depending on the power of the

computer, the complexity of the scene, and the Tenderer being used. The

rendering of a complete animation sequence is therefore a time consuming process

and so methods of improving this time performance have been researched.

The term frame to frame coherence refers to the similarity of successive

frames in an animation sequence. It should be possible to exploit this property to

- 2 8 -

reduce the time spent performing hidden surface removal calculations in scanline

algorithms. Many flight simulators, for example, contain special hardware that

rely on frame to frame coherence. This property is also used by Hubshman and

Zucker (1982), but here only the position of the view point is allowed to change

whilst the scene remains static. Noma and Kunii (1985) reverse this situation by

keeping the view point static whilst the scene moves in front of i t Both these

methods have further restrictions applied to them and so their use is limited.

Shelley and Greenberg (1982) have used a variation of frame to frame

coherence. In their animation system each successive position of the view point

lies on a smooth path defined by the animator. They use the coherence of this

path to reduce the amount of culling and sorting that must be performed when

determining the visible surfaces.

The time needed to ray trace an animation sequence can also be reduced.

Glassener (1988) uses a hybrid adaptation of space subdivision and bounding

volume techniques applied to four dimensions; with time as the fourth dimension.

Information from the animation is used at a preprocessing stage to produce a

spacetime subdivision. This subdivision is then used to determine the volume of

space that will contain an object at a given time. The number of rays that need to

be traced is thus reduced.

Effects that will improve animation can also be introduced at the rendering

stage. A fast moving object in an animation sequence, for example, will often

suffer from temporal aliasing and appear to move with a jerky action. Compare

this with the blurred image of such an object that the human eye will register in a

real life situation. This suggests that the motion of fast moving objects in

animation will appear smoother and more realistic if they too are blurred. Several

methods of achieving such motion blur in animation have been proposed. Korein

and Badler (1983), for example, have employed temporal antialiasing and one

technique they describe is supersampling. This involves taking several images for

each frame at slightly different points in time. The intensity of corresponding

pixels in all these images are then filtered to produce the frame pixel intensity to

be used. Cook (1986), however, claims that supersampling can only reduce

- 2 9 -

aliasing and cannot remove it completely. His strategy is to replace aliasing with

noise as noise is considered to be more acceptable to the human eye. He uses a

stochastic method applied to the sampling of time called jittering. It involves

dividing the frame time into slices and randomly assigning a slice of time to each

sample point Motion blur can also be achieved in particle systems, by using a

model of an optical camera (Potmesil and Chakravarty 1983), and by using post

process algorithms (Max 1989).

The traditional principles of animation should not be forgotten here. At the

rendering stage, for example, effects such as squash and stretch can be introduced

(see §1.4.2). Methods of distorting the shape of solid objects have been described

(Barr 1984), and Bethel and Uselton (1989) have provided tools for shape

distortion in computer assisted key frame animation.

1.6.8 Post Production

The animator will need to view the animation before it is photographed onto film.

Although it is sometimes possible to generate and project a short two dimensional

sequence in real time this is not generally the case. Frames that have already

been rendered can be viewed using real time playback, however (Magnenat-

Thalmann and Thalmann 1985). The rendered frames are placed into mass

storage from whence they can be displayed on a graphics screen at the appropriate

rate. Denber and Turner (1986) describe a differential compiler that will allow

such real time playback on a general puipose computer. Each frame is run

through a data compression algorithm and only the differences between successive

frames are placed into memory. Their system also allows for frame editing.

When satisfactory the rendered frames have to be transferred onto film or

video and a soundtrack applied. Unlike in conventional animation the soundtrack

tends to be considered only at the post process stage. Computer animation to date

has generally relied on music and sound effects rather than dialogue. The

problem of synchronising the animation to the dialogue is thus avoided. This is

an area requiring more research. Note that the development of facial animation is

important here.

- 3 0 -

1.7 Research Possibilities

The literature survey presented in the previous section details the large volume of

research that has been carried out in the computer animation field. Several areas

are still in need of improvement, however.

The rendering of an animation sequence is the most time consuming stage of

computer animation production. In most animation systems each frame is

generated sequentially using a standard rendering technique. It should be

possible, however, to utilise the ffame-to-ffame coherence of successive frames to

greatly speed up the rendering process. We have seen that some success has

already been achieved in this area (§1.6.7) but these solutions impose several

restrictions on the animation. An all-embracing solution has yet to be discovered.

Substances such as skin and hair are difficult to model realistically on a

computer and are areas of current research (Tost and Pueyo 1988). A skin model,

for example, would probably need to be based on some form of deformable

continuous surface. The modeling of facial expressions is another related area of

active research. New modeling techniques designed specifically for the purposes

of animation should also be evolved. At present most people generate objects

using techniques taken from other areas of computer graphics. They then find

that limitations are placed on the ways in which they can make their objects

move. None of the techniques we examined earlier (§1.6.2), for example,

overcome rigidity well and it is hard to show that living things bend as they

move.

The development of motion specification systems is probably the most active

area of research in computer animation. There has been a recent trend here

towards the production of more realistic motion by making greater use of physical

laws. Often, however, satisfactory results can be obtained without having to

resort to complicated strategies. Interpolation techniques, for example, are cheap

and easy to implement and should be more widely developed. Systems that offer

the animator a combination of methods for motion specification are becoming

more prevalent.

-31 -

At the moment there is a progression towards task-level systems and away

from computer assisted animation. The task-level approach injects more

automation into an animation system and so makes it easier to use. The

drawback, however, is that the skills of the animator are in danger of being

overlooked. We should not forget that traditional animation is a well established

art form that produces high quality animation. The recent feature film Who

Framed Roger Rabbit? demonstrates this fact admirably. The art of the

traditional animator should be utilised when generating computer animation.

Greater use of the principles of traditional animation in the computer medium has

already been advocated (Lasseter 1985; Van Baerle 1985). Lasseter emphasises

that the success of character animation lies in the ‘personality* of the character.

By this he means that the animation principles should be applied intelligently to

produce convincing, believable results. The use of the traditional principles of

animation is a theme open for development in computer animation.

1.8 Summary and Conclusion

This chapter has given an overview of the production of both traditional and

computer animation. We have noted that the technique used to accomplish a

particular stage in the animation process will often depend on the application of

the animation. Visual realism is important in entertainment applications whilst

priority is given to precision and real time performance in scientific simulations.

Our interests lie with the former class of application and this thesis will be

concerned with techniques that are appropriate to this area of animation.

Although we have pointed out the need for improved modeling and rendering

techniques in computer animation these will not be developed in this thesis. We

will concentrate on finding new ways in which computer animation can be

specified, particularly for entertainment applications. To ensure that the skill of

the animator remains an important factor we will avoid the introduction of too

much automation into the system. Instead we will encourage the animator to

utilise the principles of traditional animation to achieve the appearance of reality.

We do not want to make the animator’s task difficult, however, and so a well

- 3 2 -

designed user interface will be important.

To summarise, we can identify two main aims for this thesis:

(i) to provide a system of animation planning that is straightforward to use

but at the same time keeps the animator in control;

(ii) to enhance the animation effects attainable by incorporating the

principles of traditional animation.

Chapter 2

The Controller Animation System

2.1 Introduction

The first aim of this thesis is to provide a flexible system for planning computer

animation that is straightforward to use and keeps the animator in control. We

will begin this chapter with an overview of the graphics environment available for

the development of such a system. This includes the facilities that can be used to

generate three dimensional models of the objects to be animated.

The Controller animation system is then introduced (see also John and Willis

1989). Its operation is based on that of a television studio with the intention of

creating a user friendly interactive graphics system in which the animator

becomes the programme controller. This studio model is particularly apt as we

are concerned with producing animation for entertainment applications. The

programming principles used to implement Controller are also important and are

discussed later in the chapter.

2.2 The Graphics Environment

A determining factor in the development of any computer graphics package are

the facilities that are available. For our purposes the equipment should make

possible the production of three dimensional computer animation. This section

details the resources available in the Graphics Group at Bath University.

- 3 4 -

2.2.1 The Processors

Two High Level Hardware Orion-1/05 super minicomputers are available

exclusively for graphics work. These machines are high performance computers

aimed at the scientific community. They run the UNIX 4.2 BSD operating

system and thus benefit from the extensive range of programming tools and

languages available for UNIX implementations. The principle programming

language is C.

The Graphics Group initially used Orion-1 computers and these were

comparable in power to a VAX 11/750. However, with the inclusion of the

CLIPPER 32-bit microprocessor (with its built in floating point unit), the

performance of an upgraded Orion-1/05 exceeds that of a VAX 8600. This

computational power is useful for many graphics applications. In particular it

makes feasible the rendering of an animation sequence using the realistic, but

computationally expensive, technique of ray tracing.

2.2.2 Input Devices

Alphanumerical information is entered into the computer using a keyboard.

However, for specific graphical input a digitising tablet and four-button cursor (or

puck) is used. Magnetic induction generated between a coil in the puck and grid

wires inside the tablet allows the position of the puck to be detected. The puck

coordinates are then transmitted to the computer together with an indication of

whether a button is being pressed. The puck is a locator device for obtaining

screen coordinates and the buttons are choice indicators.

A colour digitiser is also available for scanning images into the computer.

These images can be used as texture maps in the modeling stage.

- 3 5 -

2.2.3 Output Devices

Each computer has an eight-bit colour display with a resolution of 1280 by 1024

pixels for graphical output The images displayed on this screen can also be

captured using the Graphics Group’s Colour Graphic Recorder. This is a device

for recording colour photographic hard copy from the analogue video output of a

raster scan screen. We can use it to obtain 35mm still photographs or, more

appropriately for animation purposes, 16mm cine.

A standard visual display unit used with the keyboard is, of course, also

available.

2.2.4 The Software Environment

Software in the group is written in the C programming language. It includes a

library of graphics operations and a variety of tools used with the above hardware.

As well as providing the interface between the screen and the tablet, this library

offers drawing facilities, colour control, and menu handling facilities.

A highly interactive system with good quality raster scan colour display is

thus provided, encouraging interactive rather than batch-oriented programs to be

written.

2.2.5 Ray Tracing and Wire Frames

During the development of our animation system a concurrent research project has

taken place to improve the performance of ray tracing algorithms (Spackman

1989). As a result of this project, an efficient ray tracer is available that can

synthesise realistic solid images containing many optical effects. Surface

radiance, shadows, reflection, refraction and light attenuation are just some of the

features that are offered. Obtaining such realistic effects in a computer animation

is desirable, and so we decided to utilise this system. Note, however, that the

computational cost of generating a ray traced image is high, and it can several

hours to render a complex image at a reasonable resolution.

- 3 6 -

A scene is described in a left-handed coordinate system and is divided into a

a lighting model, and an object model (see appendix A). The lighting model

defines the configuration of the viewer, and the position and intensity of all the

point light sources required. The object model describes the bodies that are to be

found in the scene. They are assembled from cones, cubes, cylinders, ellipsoids,

planes, spheres and tori, using constructive solid geometry (unions, intersections

and differences). The objects so formed are then defined optically by reference to

the materials from which they are made. Silver, for example, can be simulated by

making the colour of the material an appropriate shade of grey and giving it

reflective properties. Texture maps can also be wrapped around specified objects.

A facility to assemble three dimensional models interactively has not yet

been implemented. The design process can therefore be cumbersome, especially

if the model is complex. Fortunately, however, each model can be previewed

before it is rendered by the ray tracer. The same two source files used by the ray

tracer can be fed into a mesh Tenderer producing a wire frame representation of

the model. For speed, the mesh Tenderer does not do any constructive solid

geometry or hidden line removal. The resulting image, however, is usually

informative enough for confirmation of the model design.

The models generated will be needed at various stages throughout the

production of an animation sequence. For example, they will be used when

converting the data specified by an animator into scene models for each frame of

the animation sequence (see chapter 4).

23 Designing Controller’s User Interface

The art of animation is in making objects move convincingly and traditionally this

has depended on the skill of the animator. With the development of computer

animation systems the resulting animation is also dependent on how the system

allows motion to be planned. The design of the user interface is therefore an

important factor in determining the quality of the animation produced and should

be well thought out before proceeding to the implementation stage. We will

begin this task by determining exactly what is required from our system of

- 3 7 -

animadon planning (hereafter referred to as Controller).

Since Controller is to be primarily concerned with motion specification tasks

it makes sense to implement it as an interactive system. This also fits in with the

graphics environment described above. The following guidelines (Foley and Van

Dam 1982) developed to enhance the user-program interaction of any graphics

system are considered:

(i) keep the interaction sequences simple and consistent;

(ii) do not use too many options or different styles;

(iii) provide prompts, but ensure that they do not hamper the experienced

user,

(iv) supply the user with appropriate feedback;

(v) allow the user to correct any errors that he makes.

The development of Controller’s user interface is also helped by modeling it

on a real life application. The production of a computer animation sequence

using an interactive system can be compared to the production of a television

programme. In the latter case the programme director will be in a control room

overlooking the studio. From here he will coordinate the action and movement of

the actors, camera crew, sound crew and stage crew. In the former case the

animator will be sitting at his graphics terminal. He too has to coordinate the

action and movement of cameras, cast and lights, except that the cast are

computer generated, the cameras are virtual, and the lights are synthetic. As our

system will mainly produce animation for the entertainment market a television

control room model seems particularly apt. The analogy with a control room also

elucidates why the system has been called Controller. Let us consider in more

detail the activities that a television control room monitors and determine how

they can be adapted to computer animation.

- 3 8 -

2.3.1 The Control Room Scenario

Careful planning and preparation take place before the shooting of a television

programme commences. Scripts are written and examined by the cast and crew

so that they know their role during the scene about to be filmed. The set for the

scene is built and numerous lights located around it. The angle and intensity of

the lights are carefully selected to give the exact lighting effect required.

Cameras and microphones are also positioned and set up. Various test shots may

then be made to establish camera paths and actor position and movement The

studio floor will often be crayoned or taped with toe marks and camera locations

to show the final position of these paths.

The programme director takes his place in the production control room when

everyone is prepared for filming. From here he can view the shot being

transmitted from each camera on a series of monitors. This will enable him to

select the camera shot that is to be broadcast during the filming of the scene. He

will communicate with his technical crew using talk-back circuits and his floor

manager will pass on any instructions to the actors. If the production is not being

transmitted live he can stop the action at any point to make changes as necessary.

2.3.2 Adapting the Control Room Model

The studio control room model was chosen with the intention of creating from it a

user friendly interactive graphics system. The animator becomes the programme

controller and his graphics terminal is the control room. The computer thus

assumes the roles of the camera and stage crews, receiving the animator’s

instructions from either the keyboard, or the tablet and puck. Function menus

replace the communication system found in the television studio. Controller does

not, however, cater for the addition of a sound track and so the role of the sound

crew has so far been overlooked.

Before filming takes place a television production will be carefully

rehearsed. Similarly, the scene to be animated will be carefully planned before

proceeding to the animation stage. Storyboards depicting the action of the scene

- 3 9 -

(see §1.4.1) are created and used as a guideline throughout the animation process.

Using information from the storyboard and elsewhere, the sets and actors required

for the scene are generated (§2.4). Controller can then be used to define an

animation sequence.

Controller creates an artificial television studio that uses virtual cameras,

synthetic lights and computer generated actors. Methods of defining these entities

within Controller are required. We have seen that one technique that can be

adopted is to consider an object as a set of parameter values (§1.6.4). A camera,

for example, can be parameterised by its location, orientation, and zoom angle.

The location at every frame is then determined by specifying a path in some way.

This technique is in keeping with the control room analogy where location marks

are made on the studio floor (although the height of the object still has to be

determined). Both spatial and temporal aspects of the moving object must be

catered for. This is an important stage when planning animation and is discussed

fully in the next chapter.

The animator still has to specify other parameter values at the frame

locations defined by a path. Use of graphical valuators such as dials and sliding

scales are appropriate for this task. The animator cannot be expected to define

these values at every frame, however, as an animation sequence contains far too

many frames. The obvious solution is to interpolate the parameter values between

selected key frames (see §1.5.1). The view from each camera should also be

accessible to the animator. This allows him to check the motion of a moving

object and ensure that the camera is looking at the correct part of the set. If any

changes are necessary they are then made before the final rendering of the

sequence. The information gathered by Controller in this way is converted into

three dimensional models, one for each frame of the animation sequence. Finally

the frames are rendered and transferred onto film or video.

Using the above criteria the overall structure of Controller is represented in

fig. 2.1 as a module hierarchy. We will now analyze the implementation of this

module hierarchy.

Define Path

Cast Create 3d Models

Define Path

Set
Parameters

CONTROLLER

Lights

Set
Parameters

Render

CamerasS ets

Define Path

Pencil Test

Exit

Store Data

Create Valuators

Create Menus Display Plan View

Initialise

Set
Parameters

Figure 2.1. A Module Hierarchy for Controller

-40-

- 41 -

2.4 Sets and Cast

The first stage in computer animation production is to provide models of the

actors and sets required (see §1.5.2). Many ways of building and rendering three

dimensional models are available in the world of computer graphics. By

providing the appropriate interface, Controller is intended to be compatible with

any type of modeiing system. So far, however, we have only used the in house

systems described in section 2.2.5.

2.4.1 Sets

The set consists of the background and static objects about which an animation

sequence is to be filmed. Before an animator can use Controller he has to create

the scene model of any set he wishes to use (§2.2.5). A front elevation of this

scene model will usually give a good feel for the appearance of the set and such a

view is rendered using the ray tracer. When a set is required from within

Controller these front elevation views are displayed on the graphics screen (fig.

2.2).

Figure 2.2. A Set Menu

- 4 2 -

The puck is then used to pick the required set from this menu. The animator also

specifies the scene number and start frame number of the sequence at this point.

Note that there is a maximum to the number of sets that can be displayed on the

graphics screen in this way. To ensure that the animator is given the choice of

sets that he requires, he specifies a file containing the titles of the sets that he is

most likely to use. When invoked, Controller offers him the choice of the sets

listed in this file.

Once a set has been selected its plan view is displayed at a resolution of

1024 by 1024 pixels so that it covers most of the screen. This is the same view

that the programme controller will get from a window in his control room.

Perspective Parallel

Figure 2.3. Plan View Projections

Most of the movement is planned by the animator on top of this plan view, hence

the use of a large area of the screen. The ray tracer is also used here so that a

realistic shaded image is obtained. Controller can, however, utilise the equivalent

wire frame image if there is not enough time available for ray tracing. Note that

the ray tracer can generate an image using either a perspective or a parallel

projection. A perspective projection is always used for the final rendering of an

-43 -

animation sequence as this is more realistic to the human eye. The animator

decides on the most appropriate projection for representing the plan view of a set

at the modeling stage. Figure 2.3, for example, depicts the perspective and

parallel plan views of a three walled room (the second set in fig. 2.2). The view

point used when generating these images is directly above the centre of the

room’s floor. In the perspective view the animator can clearly see the objects

mounted on the walls and they do not obscure any part of the floor. The cone,

however, has been distorted by the effects of perspective and may give the

animator the wrong impression about its geometry. This may interfere with his

design of a path. The position and orientation of the cone in the parallel view is

much clearer but here the floor is obscured by the objects on the wall. This is

more likely to interfere with the design of a path and so the perspective projection

is preferred in this example.

When a plan view is generated using perspective, the screen on which the

rendered image is formed is configured so that:

(i) its dimensions are one unit by one unit (here the screen is in the xz

plane);

(ii) it is one unit away from the view point;

(iii) it is orthogonal to the view direction vector,

(iv) The view direction vector passes through the centre of the screen.

The height of the view point determines the scale of the objects in the final

image. If the screen remains at a fixed distance from the view point, then

increasing the height of this point above the scene centre results in a larger area

of the set being captured (fig. 2.4). The objects in the set appear smaller as a

result. Again the animator decides at the modeling stage what scale best suits his

purposes as any path defined by him has to be calibrated to the set dimensions.

A large scale is usually necessary for outside scenes while a smaller scale is

enough for inside scenes. He can always make the same set available to

Controller at several different scales if required. Altering the distance of the

screen from the view point also affects the area of the scene covered by the final

- 44 -

viewer’s height
increases

Figure 2.4. The Height of the Viewer in a Perspective Projection

image. The virtual cameras used by Controller can be made to ‘zoom’ in this

way (see chapter 4). Note that with a parallel projection the height of the view

point is immaterial. Here it is the dimensions of the screen that determine the

scale of the objects in the set. In fig 2.5, for example, we require the parallel

projection to use the same field of view as that used in the corresponding

perspective projection. The view point in the perspective projection is at a height

h above the scene centre. Simple geometry shows that the dimension of the

screen in the xz plane should be h by h for the parallel projection to appear at the

same scale.

- 45 -

mvmmim

perspective

parallel

k
Figure 2.5. The Field of View for a Perspective and a Parallel Projection

2.4.2 Cast

A model of each new actor (or cast member) is produced in the same way as it is

for a set. Appropriate views are rendered to give a clear picture of what the cast

member looks like. These views are displayed on the graphics screen when the

animator wants to select a cast member (fig, 2.6). Again, before activating

Controller, the animator specifies a file listing the cast members used in the script.

Controller allows a cast member to be used more than once in the same scene.

The scale at which the cast members are to appear can also be varied by the

animator. This scale is specified when using the pencil test facility and at the

frame rendering stage (chapter 4).

When defining cameras and lights only their overall motion about the set is

considered. A member of the cast, however, also has its own internal movement,

such as limb motion. At present, Controller takes a simplified approach when

providing motion of this type. For each cast member, enough poses are created to

depict the motion style required. For example, the ‘pacman’ character in fig. 2.7

uses three poses to depict his chomp. The poses are then used in turn at

Figure 2.6. A Cast Menu

successive frame positions. If the same cast member is to have several styles of

internal motion then a different set of poses depicts each motion. The animator

ensures that the cast member is exhibiting the correct motion style throughout the

animation sequence. Although this solution has its limitations, it is still effective

in many cases (especially when a large number of poses are used). A more

comprehensive solution such as the post process techniques described by Lundin

(1984) will be needed in the future, however.

2.5 Designing the Implementation of Controller

The main programming language available under the UNIX environment is C and

the Graphics Group’s software utilities have been developed in this language. C

is therefore an obvious choice for the implementation of Controller and also

provides the benefits of a flexible, structured, and portable language. We will

assume that the reader is familiar with the basic concepts of C as we use portions

Figure 2.7. Motion Poses for a ‘Pacman’ Character

-48 -

of code from this language to illustrate points below.

First we will apply the guidelines for good user-program interaction to

Controller.

2.5.1 Interaction Sequences

The overall operation of Controller is set up as an event driven interaction loop,

where an event is defined to be an action performed by the animator. The

animator uses the tablet and puck as the main input device, although he will

occasionally utilise the keyboard. To avoid complexity, however, these two

devices are never used as part of the same function. In its default mode

Controller polls the puck for its current status. The cursor on the graphics screen

is then updated to reflect the position of the puck on the tablet. Whenever a puck

button is pressed an event is triggered and the appropriate action is taken by

Controller. Controller then waits for the next event to occur.

2.5.2 Options and Styles

Controller is driven interactively by a hierarchy of function menus displayed on

the graphics screen. In keeping with our control room interface the names of

these functions use terminology from television production. At the top level the

animator chooses from broad categories such as camera control, lighting control,

and cast control. As the menu hierarchy is descended more specific options are

given. To obtain the maximum use of the screen, areas of it are not reserved

specifically for these menus. Instead dynamic or pop-up menus are utilised.

These are created on bit maps that can be held in memory off screen until

required. They can then be copied to any position on the screen, usually at the

cursor position. The area of screen being overwritten is recorded to enable it to

be restored to its original state when the menu is removed.

Appropriate flags are used to keep track of where in the program hierarchy

the animator currently is. They determine whether a menu should be displayed or

removed and what function is being or has been selected. The event triggered by

- 4 9 -

the animator also depends on the current status of Controller. It may be a menu

selection, keyboard or valuator data entry, or the location of some point on the

screen. Always, however, an event occurs when data are supplied by the

animator.

2.5.3 Prompts

The automatic appearance of a menu or valuator on the graphics screen prompts

the animator on his next course of action. Other prompts, such as instructions to

the animator, are sent to the visual display unit. Since the animator is

concentrating on the graphics screen, he can ignore these instructions if he already

knows what to do next. To inform the inexperienced user that an instruction has

appeared on the visual display unit, however, the terminal is made to ‘beep*.

Alternatively, we could supply a prompt line on the graphics screen. This

would mean either reserving a specific area of the screen for the prompt line, or

having a pop-up prompt line similar in use to menus. A pop-up prompt line,

however, would soon become irritating to an experienced user. At the same time

we did not want to reserve areas of the screen to display a prompt that the

experienced animator is already expecting. For these reasons, instructions on the

use of Controller only appear on the visual display unit

2.5.4 Feedback

As Controller is a graphics system most of the feedback given to the animator is

visual. For example, the menu functions selected are highlighted, valuators can

be adjusted dynamically, and the path defined by the animator will change

according to his instructions. Controller also uses a variety of cursors to help

remind the animator about the current status (Fig. 2.8). The most important

feedback for the animator comes from the pencil test and real time playback

facilities that enable him to preview the animation. The implementation of these

facilities are described in chapter 4.

- 5 0 -

r

-««»

Tracker: for plotting paths and selecting frame locations;

Camera: for selecting camera functions;

Pan: for specifying a camera’s heading;

Zoom: for changing the lens angle of a camera;

Cast: for selecting cast functions;

Light: for selecting light functions;

Bee: to indicate that Controller is ‘busy* and the animator must wait.

Figure 2.8. The Graphics Cursors used by Controller

2.5.5 Correcting Errors

Error handling facilities are built into Controller. For example, the animator is

allowed to alter the shape of a path, relocate frame positions along the path, and

change the value of any parameter. These facilities are covered in detail in the

following chapters.

2.6 Data Structures

One consideration when implementing Controller is how to store and handle the

animation data associated with an object*. We propose using sets of parameter

values such as:

Cast member = {location, orientation };

* Throughout this text we use the term object to refer to one of a camera, a cast member, or a
light.

-51 -

Camera = {location, orientation, zoom };

Light = {location, intensity}.

These parameters can be broken down into a form in which their values can be

recorded in Controller:

location: a three dimensional coordinate, (x,y,z);

orientation: the way in which the object is heading, use a vector or a point in

space;

zoom: the camera lens angle, typically between 10° and 50°;

intensity: the brightness of the light source, usually defined in the scale

10,1];

Bearing in mind that even a short animation sequence is made up of many frames,

efficient handling of the data is essential.

Linked lists or chains are created to store the animation data. Each node in

a chain is a C structure containing appropriate fields in which to store the data for

a single frame. Below, for example, is a node fiom a camera chain

s t r u c t c a m e ra _ in fo {
x y z _ c o o rd p o s i t i o n ;
x y z _ c o o rd c e n t r e _ o f _ i n t e r e s t ;
d o u b le l e n s _ a n g le ;
s t r u c t c a m e ra _ in fo * n e x t_ f ra m e ;
s t r u c t c a m e r a _ i n f o * l a s t _ f r a m e ;

};

Note that a node contains a link to both the next and previous nodes in the chain.

This is because a doubly linked chain is useful when it comes to searching the

chain for data belonging to an arbitrary frame. The nodes in these frame chains

run sequentially and so there is no need to explicitly store the frame number in

each node. We just need to keep track of how far along the chain we are from

the initial node. This is also the number of the frame currently being accessed.

When the animator defines a new frame location an instance of the above

structure is added to the end of the chain. We are thus using dynamic memory

- 5 2 -

allocation, obtaining the storage space required at run time. Therefore, the only

limitation on the length of a frame chain is the amount of memory available on

the host machine. This is far more satisfactory than using an array to store the

frame data. The length of an array has to be determined before the source code is

compiled but at this stage we do not know what this length should be.

In all, three types of chain are set up, one each to deal with cameras, cast

and lights. Every object has its own chain and there are usually several of them

in existence at one time. A link to the initial node of each chain is maintained to

allow us access to and to switch between them as required. The links held within

a node can then be used to move along the chain so that data are stored or

retrieved as desired.

A node is defined by one of three different parameter sets and so its size

depends on the object it belongs to. Storage fields such as the frame location

coordinate are common to all three nodes, however. It would be efficient if the

same source code is used to access one of these common fields without having to

determine on each access the type of chain being used. The node cannot

normally be passed in the argument list of some general procedure, however. We

do not know in advance which of the three data types the node argument has to

be declared as within this procedure. The solution adopted is to use pointers to

functions. Consider the problem of extracting the frame location coordinate from

an arbitrary node. Three simple functions are provided to return this coordinate

from each of the node types. For example, the camera function is

i n t g e t _ c a m e r a _ c o o r d i n a t e (x , y, z)
d o u b l e *x, *y, *z;
{

*x = c a m e r a _ l i n k - > p o s i t i o n . x ;
*y = c a m e r a _ l i n k - > p o s i t i o n . y ;
*z = c a m e r a _ l i n k - > p o s i t i o n . z ;

};

A global pointer is set to this function whenever the animator selects a new

camera, that is

- 5 3 -

g e t _ c o o r d i n a t e = g e t _ c a m e r a _ c o o r d i n a t e ;

Similarly for the cast and lights. A common procedure can then be written to

access the required coordinate using this function pointer as follows

(* g e t _ c o o r d i n a t e) (& x , & y , & z) ;

Once the global function pointer has been set there is no need to determine the

type of chain being used at each access. This technique is also applied to storing

the object position and orientation at one of its frames.

2.7 An Object Orientated Environment

Controller has been implemented in an event driven environment (§2.5) using

general purpose procedures (§2.6). An alternative approach would be to include

procedural information as part of a property list belonging to some specific object.

New facilities can then be included by extending this property list as appropriate.

An environment that is set up in this way is often referred to as an object

orientated environment. Procedures called methods can be attached to an object

and executed whenever an appropriate message is sent to that object.

As we have already described, the director of a television studio will

coordinate the production of a programme by sending messages to the stage and

camera crews. This scenario is an ideal candidate for being modelled in an object

orientated environment. We therefore decided to produce an experimental version

of Controller using:

(i) the C++ programming language, and

(ii) UNIX message sending facilities.

Our intention is to use these to simulate an object orientated environment

- 5 4 -

2.7.1 Experiments with C++

C++ is a development of the C programming language and retains C as a subset.

Its compiler acts as a preprocesser for the normal C compiler. The main ways in

which C++ differs from C are by the provision of:

(i) type checking of function arguments;

(ii) modular design;

(iii) classes and inheritance;

(iv) operator overloading.

Full details of these and other differences are given by Stroustrup (1986).

C++ offers features found in an object orientated environment In particular,

it allows types called classes to be defined for which access to data is restricted to

a specific set of functions (the member functions). An object is declared to be a

member of a certain class in the same way as variables are declared to be, for

example, of type integer. A hierarchy of classes can then be created by deriving

further classes from the base class. An important feature of such a hierarchy is

that a derived class inherits the properties of its base class, in addition to any

new properties defined just for it.

A subset of Controller was converted into C++ so that a class structure could

be incorporated. This version of Controller allows for path specification and the

plotting of frame positions along the path. It also contains the code for the

selection of the frame positions between which some parameter is to be defined.

Detailed descriptions of these facilities are not required here as they are covered

in the following chapters.

When a path is drawn onto the graphics screen, a container class is required

to store the path coordinates, for example

- 5 5 -

c l a s s p a t h {
i n t s z ;
i n t * x;
i n t * z ;

p u b l i c :
p a t h (i n t) ;
v o i d s t o r e (i n t , i n t , i n t) ;
v o i d g e t (i n t , i n t * , i n t *) ;

The variables sz , x and z are only accessible to the member functions path,

store and get. The function path is called the constructor function and initialises

x and z to point to vectors of length sz. These hold the coordinates that are

accessed by the store and get functions. A container class is also required to

hold the cast or camera frame positions along such a path

c l a s s movabl e {
f r i e n d c l a s s c amera ;
f r i e n d c l a s s c a s t ;
i n t *x;
i n t *y;
i n t *z;
i n t s z ;
i n t c h o o s e _ f r o m _ r a n g e (i n t) ;

p u b l i c :
movable () ;
i n t s t o r e x (i n t , i n t) ;
i n t s t o r e y (i n t , i n t) ;
i n t s t o r e z (i n t , i n t) ;
i n t g e t (i n t , i n t * , i n t * , i n t *) ;
i n t g e t _ p o s () ;

Any object declared to be a member of this class is automatically provided with

functions to access its frame location coordinates. A subclass can then be derived

from movable to deal with options related specifically to cameras, for example

- 5 6 -

c l a s s c am er a : p u b l i c movabl e {
i n t * z f ;
i n t * i x ;
i n t * i z ;

p u b l i c :
c a m e r a () ;
v o i d s e t _ h e a d i n g (i n t , i n t , i n t) ;
v o i d g e t _ h e a d i n g (i n t , i n t * , i n t *) ;
i n t s e t _ z o o m (i n t , i n t) ;

};

The specification of a cameras heading and zoom are thus provided for. A class

dealing with cast specific functions can similarly be derived. Note that the base

class movable has to declare both cast and camera as being a friend. This

enables the derived classes to access the variables that would otherwise be private

to movable. The derived class camera inherits the properties of the base class as

well as having its own specific properties.

2.7.2 Sending Messages

An important feature of an object orientated environment not supplied by C++ is

the ability for objects to communicate with each other by sending messages. An

attempt was made to simulate message sending by using the UNIX toolkit of

forks, system calls, pipes and sockets.

A fork creates a new (child) process. The child process is an exact copy of

the parent process except that it has a unique process identifier.

A system call can be used to execute a process from within a different

process. Control is then returned to the calling process.

A pipe can be used to send data from a parent process to a child, or vice

versa:

- 5 7 -

Parent:
Make a connection to the child:
f o u t = p o p e n (" c h i l d " , " r ") ;
f p r i n t f (f o u t , " I n f o r m a t i o n f rom t h e p a r e n t ") ;
Close the connection:
p c l o s e (f o u t) ;

Child:
Read from parent and output the message:
w h i l e ((c = g e t c h a r ()) != ' 0) p u t c h a r (c) ;

However, when two way communication between processes is required it is

simpler to use sockets, in particular a socketpair which creates a pair of

connected sockets. Figure 2.9 provides a simple example where data are sent to

and from the parent and child.

If two or more processes require use of the graphics screen then our task is

made more complex. Normally a screen lock ensures that only one process is

allowed access to the graphics screen at any given time. We can override the

screen lock, but there are still problems. Before a process can use the graphics

screen information internal to the graphics system is initialised. This information

must be available to all processes using the screen or it is still impossible for

more than one process to have access to it. This rules out the use of a system

call to initialise animation functions under the control of other processes. To

ensure that the required information is available to each process, the entire source

code has to be copied by using a fork. Each time a process is spawned in this

way, however, there is a substantial (and undisirable) increase in the memory used

by the system.

2.7.3 Comments

There is no noticeable difference in the performance of either the C or the C++

version of Controller as far as the animator is concerned. The C++ version,

however, produces larger executable code owing to the extra overhead involved.

So what are the advantages, if any, of using the C++ programming environment?

- 5 8 -

main ()
{

i n t sv [2] ; - contains the two socket descriptors
c h a r b u f 1 [2 0] , b u f 2 [2 0 J ;

Make a two way connection:
s o c k e t p a i r (A F_U N IX,SOCK _STREA M ,0 , s v) ;

Use a fork() to create a child process:
i f (f o r k () == 0)
{ In the child

Receive a message from the parent:
r e a d (s v [l] , b u f 2 , s i z e o f (b u f 2)) ;
s h u t d o w n (s v [l] , 0) ;

Send a message to the parent:
b u f l = MM e s s a g e _ f r o m _ c h i l d " ;
w r i t e (s v [l] , b u f 1 , s i z e o f (b u f 1)) ;
s h u t d o w n (s v [l] , 1) ;
e x i t (1) ;

)

e l s e
{ In the parent

Send a message to the child:
b u f l = " M e s s a g e _ f r o m _ p a r e n t ";
w r i t e (s v [0] , b u f l , s i z e o f (b u f l)) ;
s h u t d o w n (s v [0] , 1) ;

Receive a message from the child:
r e a d (s v [0] , b u f 2 , s i z e o f (b u f 2)) ;
s h u t d o w n (s v [0] , 0) ;

}
}

Figure 2.9. Communicating Between Two Processes Using a Socketpair

The inheritance feature encourages more economical code to be written and

it is a lot easier to share code in this way than having to manipulate pointers to

functions. The class structure with its ‘private* variables helps to locate code and

make debugging easier. The strict type checking performed by C++ also helps to

- 5 9 -

reduce bugs. Despite these features, it did not seem to be worthwhile converting

the whole of Controller into C++. A useful facility of an object orientated

environment is the ability of objects to communicate with each other by message

passing and this is not available in C++. Although we attempted to overcome

this deficiency, our experiment was not a great success. We therefore decided to

continue the development of Controller using our event driven approach.

2.8 Summary

This chapter has introduced the Controller system of animation planning. After

describing methods of modeling actors and backgrounds, we considered the design

of Controller’s user interface. By basing this on the operation of a television

control room we have provided a foundation for an easy to use interactive

graphics system. We have also examined different approaches for coding the

system and found that an event driven approach is suitable for our requirements.

We will now look in more detail at techniques that can be used to cany out

the animation planning.

Chapter 3

Motion Paths

3.1 Introduction

The main function of Controller is to allow the animator to plan the movement of

cameras, cast members, and lights. He achieves this task by:

(i) defining a motion path for each object;

(ii) setting the parameters associated with an object at each frame.

This chapter describes the first of these stages (see also John and Willis 1989b).

A motion path will determine the overall position of an object during the

scene being animated. To specify such a path, the animator will have to supply

Controller with both spatial and temporal information about the object. In both

cases we aim to provide a flexible interface offering him fine control over the

motion specification. The chapter begins by following the procedure that the

animator uses to provide the spatial information. We then present and compare

various methods by which the temporal definition can be implemented. Our main

objective is to achieve smooth motion but we also examine whether the mass of

an object can be simulated.

3.2 The Spatial Definition

At this point the animator has already chosen the set to be used for the scene and

its plan view is on the graphics screen (see §2.4.1). He will now choose the cast

member, camera or light that he wishes to define a motion path for, and will

commence its spatial definition. In general we have to define a three dimensional

path using a two dimensional device so we consider first only the xz or ground

plane. The extension into three dimensions by the setting of the object’s height

-61 -

parameter will be described in the next chapter. The animator will therefore

proceed to draw a two dimensional track onto the plan view of the set. The

object will move along this track during the period that it is present in the scene.

Controller provides the animator with several methods of using the tablet and

puck for drawing tracks. One option allows the animator to define a track using a

series of straight line segments. If selected, a line is ‘rubber banded* from the

part of the track already drawn (if any) to the current cursor position. Pressing a

puck button will fix the line segment, and so on. Although a track defined in this

way is sometimes appropriate (a camera often tracks along a straight line), natural

movement tends to follow arcs rather than straight lines. A circular track can be

drawn by the animator but although this facility is useful, motion in a circle can

often look too mechanical. Another option is to allow the animator to draw a

track freehand. However, it is difficult to draw the track smoothly in this way

and the resulting motion will often appear erratic. A method of representing

natural movement in a more convenient way was therefore sought.

3.2.1 Spline Curve Formulations

If a draughtsman wishes to produce a smooth curve he will use a flexible strip

called a spline to draw through a set of control points. Spline curves can be

represented mathematically and their application to computer graphics is well

known. We decided to include such spline techniques in Controller so that the

animator can construct a track out of smooth curve segments. Several different

forms of splines exist (see Foley and Van Dam 1982), but they are all based on

the parametric representation of a three dimensional curve

x(t) = ax t3 + bxt2 + cx t + dx ;

y (t) = ay t3 + by t2 + cy t + dy ; (3.2a)

z(r) = azt3 + bzt2 + czt + dz .

We are dealing with finite curve segments so t is usually limited to the range

[0,1]. A spline curve is made up of a series of these curve segments linked

6 < j l f c « l l 'R .om Spline 15 Hfcrm' ^ ipli»C w l itre. Hie fa

IS « W . M * D ^ U P m , “ M - < ^ P : h - P £) . K P i ’ P j . - .))

i . e. ife hkt oyerwje ®f fvo <Uj«ce*f ajrcU be/vec* H)«. co*fol p h .

- 6 2 -

together so that there is continuity of position and slope across the joins. A true

spline has second order continuity (for example, B splines and P splines),

although some spline curve formulations provide only first order continuity (for

example, Hermite and Bezier splines).

The Hermite formulation produces a curve with first order continuity. Each

curve segment is defined by two control points and the tangent vector at these

points. The curve produced will pass through the control points.

Bezier curves also have first order continuity. Here the curve segments are

defined by four points and tangent vectors are not needed. A Bezier curve is thus

easier to define than a Hermite curve. Two of the defined control points are the

end points of the curve segment and all four control points form a convex hull in

which the curve segment will lie. This ensures that the curve will smoothly

follow its control points without erratic oscillations.

The B spline is an approximating spline and so does not pass through its

defining control points. Its formulation, however, produces a curve that has

second order continuity. This means that each curve segment making up the

spline is joined with the next in such a way that the first and second derivatives

across the join are continuous. A much smoother curve is therefore produced.

The B spline also has the convex hull property.

Second order continuity is also provided by p splines. Two parameters

(called beta parameters) are introduced to provide greater manipulation of the

shape of the spline. The beta parameters adjust the shape of the curve segments

about the convex hull of their control points.

We chose to use B splines in Controller. The smooth curve produced by

splines with second order continuity are more suitable for plotting tracks that can

represent natural motion. They will prevent discontinuities in the direction of

motion from occurring. We do not need the extra shape manipulation provided

by P splines, however, the B spline will be satisfactory. The formulation given

by Foley and Van Dam (1982) is of the form

x(t) = TMGXt

where

T = l t 3 t2 t 1] , M = 4
6

- 1 3 - 3 1
1 3 - 6 3 0
6 - 3 0 3 0

Ll 4 1 0.

P 0 • • • Pn are the control vertices.

The use of a cubic spline means that a track could be defined through the set

in three dimensions. However, providing an easy to use interface for the animator

to do this is not straightforward. We therefore restrict the spline to two

dimensions when carrying out the track drawing stage. This also simplifies the

calculations involved. As we have already stated, the setting of an object’s height

will be discussed in the next chapter.

3.2.2 B Spline Tracks

To define a B spline track in Controller the animator begins by drawing a series

of (rubber-banded) straight line segments onto the plan view of the set (fig. 3.1).

The end points of these segments are the points to be interpolated by the spline

and they approximate the desired shape of the track. A B spline does not

generally interpolate any of the control points defining it, however, it just passes

close to them. If the end points of the straight line segments are used as control

vertices then they will not lie on the track as desired. We therefore have to

calculate the control vertices that will result in the interpolation of the desired

points. To do this Controller uses a method described by Barsky and Greenberg

(1980) but we only have to apply their method to two dimensions. It works by

deriving and solving a set of linear equations that express the interpolation

condition for each point about the unknown control vertices. Specialised

algorithms for evaluating these unknowns are also provided.

Controller composes the shape of each spline segment by using ten

coordinates joined by straight lines. These are usually enough to draw a visually

smooth curve although the resolution of the segment can be altered as desired.

The animator also has the option of defining the B spline curve to form a closed

- 6 4 -

start of track

a. Defining the shape of the track

b. The interpolated B spline

Figure 3.1. Defining a B Spline Track

- 65 -

loop. Below, for example, is the track obtained by interpolating a closed B spline

through the same defining points as those used for the open spline in fig. 3.1.

□

extra spline segment

□ 4 control vertex

Figure 3.2. A Closed B spline

If a B spline is closed in this way then an extra cubic segment between the start

and end points has to be drawn. The control vertices calculated at the end points

of the track differ for the open and closed splines.

3.2.3 The B Spline Editor

An important part of the design of Controller are the provision of error correcting

facilities. An obvious place for such a facility is at the track drawing stage,

especially when B splines are being used. The animator is often unhappy with

the B spline track after it has been interpolated as it may, for example, be too

close to some object in the set. Controller provides a B spline editor to allow the

track to be adjusted accordingly.

When the B spline track is drawn, the position of the control vertices that

define it are also displayed on the screen (fig. 3.3). The animator can use the

puck to select a control vertex and move it to a new position. The B spline track

is then redrawn to reflect this change. An advantage of the B spline formulation

- 6 6 -

□

a. The original track

□

□

b. The updated track

Figure 3.3. Editing a B Spline Track

\
x selected control vertex

- 6 7 -

is that each control vertex only exerts a local influence on the spline. Therefore,

the whole spline curve does not have to be redrawn as only the two cubic

segments influenced by the selected control vertex have to be erased and

recalculated. This process is illustrated in fig. 3.3.

To erase a section of track the screen pixels that define it must be restored to

the original colour of the set. If the track is plotted by complementing the colour

of each pixel that it covers then this is a simple task. By complementing the

colour of the pixel a second time it is restored to its original state. Because of the

dithering techniques used by the ray tracer when generating images, however, this

method is unsatisfactory. Areas in the set picture that look as if they are of

constant colour are made up of many different coloured pixels. When lines of

complemented pixels are drawn on top of such an area they appear to change

colour frequently and are often difficult to discern.

Visibility is not a problem if tracks are plotted using lines of pure colour.

Such tracks show up clearly on the set and can also be colour coded to help the

animator identify the type of object that the path represents*. Therefore, when a

track is plotted the colour values of the pixels being overwritten are placed onto a

stack. To erase the track it is plotted again, but this time in reverse. Each pixel

is assigned a colour value popped off the stack and is thus restored to its original

colour. Note that one byte of storage space is needed for each pixel value

recorded on the stack. Extra storage space is therefore required when using this

method but the improved visibility of the tracks make this cost worthwhile.

3.3 The Temporal Definition

So far we have been generating positional information without any reference to

time. Therefore, when the animator is satisfied with his spatial definition the next

step is to decide where the object will be at each frame. Remember that an

animation sequence is displayed at a constant rate and so Controller has to

* Controller uses red for cameras, green for cast members, and blue for lights.

- 6 8 -

calculate the position of the object at fixed time intervals. The method used to

achieve this will be an important factor in determining the effectiveness of the

final motion. In Controller we do not use splines and complicated physical laws

for this purpose. The latter produce realistic results but are also computationally

expensive. Further, both techniques increase the difficulty the animator has in

specifying the exact motion he requires. We define the temporal information of a

motion path using kinematic techniques as these provide the animator with a more

intuitive method of carrying out this task. To produce realistic results we rely on

the animator’s skill and the flexibility of the system.

An object in motion will be accelerating, decelerating, or moving at a

constant speed. First we describe how the animator specifies the temporal

information to simulate these styles of motion.

3.3.1 Motion Segments

The direction in which an object traverses its track is in the same direction as that

in which the track is drawn. The resulting motion is described by a series of

motion segments. Typically, the animator places three constraints on each motion

segment he defines:

(i) the length of track to be used;

(ii) the number of frames to be taken;

(iii) the motion style (acceleration, deceleration or constant speed).

The length of track used is taken from the most recently calculated frame position

(the beginning of the track or the end of the previous motion segment) to some

point that the animator indicates on the path by using the puck (fig. 3.4). This

point is identified by searching through the track coordinates for the nearest one

to the puck when a puck button is pressed.

The animator then selects the motion style required from the menu displayed.

If acceleration or deceleration is selected then the animator is also required to

enter the duration (in frames) of the motion segment The procedure is slightly

different if the object is to move at a constant speed. Here the animator only

start of this motion segment

/

motion menu

Deceleration

Acceleration

\
N end of motion segment

a. The current motion path

b. The updated motion path

Figure 3.4. Defining a Motion Segment

- 7 0 -

indicates the distance to be covered during the motion segment and as many

frames as possible are then fitted in. The frame locations that Controller

calculates to satisfy the animator’s specification are indicated on the track by

plotting small squares. In fig. 3.4 we can see from these location indicators that

the first motion segment defined is an acceleration phase lasting for nine frames.

The animator then specifies a constant speed motion segment Note that he can

also make the object remain at the most recently calculated frame position for any

number of frames. Before the methods used to calculate the distance travelled

between frames are discussed, we will detail how the location indicators are

plotted onto the track.

All tracks (see §3.2) are constructed out of straight line segments, even

curved segments of a track are made up of several small straight lines. The

coordinates of the end points of each line segment are known and so it is

straightforward to calculate the length of these segments. This procedure is

computationally fast to carry out and gives a good approximation of the length of

the track. Let us assume that the motion modeller calculates that the next frame

location is at a distance, d, from the previous location. The particular line

segment along which this location lies is determined by first subtracting from d

all successive line segments that can be completely engulfed. This will leave a

residue, r, that is the distance along the identified segment of the required frame

location. In the example of fig. 3.5, a constant speed motion segment is being

evaluated. Here

J? = rQ&

where]f is a vector denoting the required frame position, and so

px = Q X + r sin®»

P z = Q z ~ r cosG.

The angle 0 is obtained using simple geometry. The calculation of the values of

px and pz depend on the direction of the line segment vector. Here x is

- 71 -

Zoom

Figure 3.5. Calculating the Frame Locations

increasing and z is decreasing. Note also that the distance, Q R -r , must be taken

into account when calculating the next frame position.

3.3.2 The Undo Command

Motion segments can be combined in any manner and so many motion effects can

be achieved. The animator decides whether the resulting motion appears realistic

or unrealistic. Any motion segment that he is not satisfied with can be undone

and another attempt made. The values of the pixels overwritten by the frame

location indicators are recorded in the same manner as when a track is drawn.

These pixels are restored when a motion segment is undone so that the squares

are erased. All motion segments that have been defined can be removed in this

- 7 2 -

way. The whole path, that is the spatial and the temporal definition, can be

completely removed if desired.

3.4 Achieving Smooth Motion

This section presents several kinematic methods that can be used to calculate

motion segments. These methods calculate positions, speeds and accelerations as

a function of time. We also have to consider the interchange between successive

motion segments. Usually we will require this interchange to occur smoothly so

that it cannot be detected by the viewer. Note, however, that the animator will

not always require smooth flowing motion and so he should be able to prevent

this from occurring.

3.4.1 Trigonometric Functions

In key frame interpolation, acceleration and deceleration effects are often

modelled using

y = 1 - cos(x), 0 ^ x £ 7t; (3.4a)

y = sin(jt), 0 <n/2 (3.4b)

respectively (Magnenat-Thalmann and Thalmann 1985). We can see why such

motion effects are obtained from these functions by considering their graphs as

functions of distance against time (fig. 3.6).

Suppose that the animator wishes to define a motion segment for an

accelerating object He supplies the length of the track to be used for this motion

segment, call this Ls , plus its duration in frames. Applying (3.4a) over the range

[0,^/2] gives the required acceleration effect. We calculate the distance along the

track at each frame of the motion segment using

l(t) = Ls x (l-cos(7t/2 x t)), (3.4c)

where l(t) is the proportion of Ls traversed up to time t. The value of t must fall

into the range [0,1] to be used with (3.4c) and so it is scaled using

2

1

0

2

1

0

s = sin(t) s = l-cos(t)

Figure 3.6. Motion Curves for the Trigonometric Functions

t _ current fram e o f this motion segment
duration in frames o f this motion segment

If the animator requires the motion segment to show acceleration followed by

deceleration then (3.4a) is applied over the range [0,7t]. The motion segment

equation is now

K t) = Ls x 1—C O S(7t X t) (3.4d)

Similarly, to obtain just a deceleration effect, (3.4b) is applied to the motion

segment producing

l(t) = L, x sin(7i/2 x t). (3.4e)

The animator may require an object to continue at a constant speed as well

as accelerating and decelerating it. This speed will be that attained by the object

at the end of the motion segment last calculated. A reasonable approximation of

this is to take the average speed of the object between the two most recently

- 7 4 -

calculated frame positions. This is, in effect, the distance between these two

frame positions.

The overall motion definition consists of some combination of motion

segments. Suppose, for example, that the animator defines a sequence of motion

segments when an object:

(a) accelerates from rest;

(b) maintains a constant speed;

(c) accelerates again;

(d) decelerates.

The graph of distance against time for this motion definition is given in fig. 3.7.

We require a smooth interchange between each motion segment Note that if two

or more successive motion segments are of the same style, acceleration for

example, then the best results are obtained by combining them into one motion

segment. We thus have less interchange points to consider.

s

smoother method

simplest method

Figure 3.7. Using the Trigonometric Functions

-75 -

The first motion segment of our example presents no problem as we can

satisfy the distance and time constraints using (3.4c). The third motion segment

also involves acceleration, but here we have to take the current speed of the

object into account. The acceleration function does not do this and so cannot be

used as it stands. We adopt the following simple solution to this problem.

The distance yielded by the acceleration function is only used if it is greater

than the distance that would be covered by the object continuing to move at its

current speed. Until this happens the object’s speed is not altered. The point at

which the acceleration function takes over can be noticeable, as it is in fig. 3.7.

Further, if we increment the object’s speed after every frame by some appropriate

amount so that the object does indeed appear to accelerate, then the change over

point is much smoother. Up to the change over point the object’s speed increases

in an arithmetic progression. A similar technique can also be used when

modelling deceleration using (3.4e). Here we have to ensure that the speed of the

object is always less than its speed coming into the current motion segment. We

have not needed to do this in the above example as the initial speed obtained

from (3.4e) is a lot less than the speed of the object at the end of the third motion

segment. Unfortunately the difference is too great for a smooth interchange.

Sometimes the constraints that the animator defines make it impossible

(perhaps deliberately so) for the desired smooth interchange between successive

motion segments to be achieved. We can check for such cases and warn the

animator who may then decide to change his motion definition.

3.4.2 Sinusoidal Fairing

The process of accelerating an object from rest to some steady speed is sometimes

called in-fairing. A technique known as sinusoidal fairing offers an alternative

solution to providing a smooth interchange between the two motion styles

involved here (Kingslake 1986). An object decelerating to rest from a constant

speed (out-fairing) can also be taken care of.

In fig. 3.8, arcs AB and CD are quarter circles, so

- 7 6 -

B C

A D

Figure 3.8. Motion Graph for Sinusoidal Fairing

n

Consider a point moving at a constant speed over ABCD. If this point is

projected onto AB'CT), then the resulting motion will appear to consist of

acceleration, movement at a constant speed, and then deceleration to rest. In

other words the motion will be faired.

To implement sinusoidal fairing suppose that the point traverses AB in n

frames, and BC in m frames. The steady speed reached after the in-fairing stage

is greater than that reached if fairing is not used. This speed will be the distance

covered along AB'CT) divided by some virtual number of frames, v. The value

of v is calculated by

n

2 nv = m + n -n -1----- ,
Jt

v = (m+n)- 1 n ,
n

-77 -

v = total frames - i - 2
K

fairing frames. (3.4f)

If the same number of fairing frames, n> are also used at the out-fairing stage,

then we obtain

v = (m +n)-2n i - 2
n

(3.4g)

We can thus evaluate the steady speed reached between B'C'. The frame

locations during the in-fairing phase are calculated by applying equation (3.4a).

Similarly the frame positions for any out-fairing phase are calculated by applying

(3.4b).

3.4.3 Laws of Motion for Constant Acceleration

Another way of modelling the motion effects we require is to use the laws of

motion for constant acceleration. Particularly appropriate to our needs is

s = ut + -^-at2 (3.4h)
2

where s is the displacement, u is the initial speed, a is the acceleration, and t is

the time. By substituting the animator’s defining conditions into this equation we

obtain the value of the acceleration required over the motion segment. The

individual frame positions of the moving object can then be calculated. Figure

3.9 depicts the distance against time graph obtained by using this technique on the

same example motion definition as that used in section 3.4.1.

We automatically get a smooth interchange between motion segments as this

equation allows for the initial speed of the object A new constraint, however, is

that since the object only travels around its path in one direction, the value of the

object’s velocity must not change its sign during the motion definition. When

decelerating an object we found that in too many cases the animator’s distance

and time constraints could only be satisfied if the velocity did change sign. This

is the case in the fourth motion segment of our example, the distance-time graph

- 7 8 -

s

Figure 3.9. Using a Law of Constant Acceleration

goes through a maximum. The reason for this is illustrated graphically in fig.

3.10. The motion segment in these cases has to be rejected.

3.4.4 Using an Arithmetic Progression

It is also possible to model acceleration and deceleration by using the formula for

an arithmetic progression

S = a + (a+d) + (a+2 d) + • • • + (a+ [/i-l] = y (2 (3 . 4 i)

Making a the current speed ensures a smooth interchange between motion

segments. This means that the penultimate position of the previous motion

segment is used as the initial position of the new motion segment. An extra

‘virtual frame’ is thus incorporated and so the number of frames allocated for this

motion segment should be incremented by one, call this n. By substituting these

constraints into (3.4i) we obtain a value for d. The resulting motion effect is one

of acceleration if d is positive, constant speed if d equals zero, and deceleration if

7 9 -

Graph 1: displacement, s = A;

► t

u

Increase time taken
for the deceleration:

v

Graph 2: s = B > A,
but animator wants s = A;

► t

To satisfy this:

► t

Graph 3: s = C - D = A,
but v becomes negative!

Figure 3.10. Why Velocity can Become Negative

- 8 0 -

d is negative. The value of d is equivalent to the acceleration value in (3.4h) and

so using an arithmetic progression is not really any different from using this

acceleration law. The results obtained in section 3.4.3 also apply here.

3.4.5 Comparisons

To compare the methods used to achieve smooth motion we have superimposed

the two distance against time graphs obtained in section 3.4.1 and section 3.4.3

(fig. 3.11).

s

Figure 3.11. Comparing the Trigonometric Functions with the Acceleration Law

We can see that both methods give acceptable results when accelerating an object

from rest. The final speed attained by the object differs, but this does not matter.

We are not concerned with the actual value of the object’s speed, only that the

final motion is visually acceptable to the animator. Maintaining an object at a

constant speed is straightforward in both cases. The law of constant acceleration,

however, is far better at accelerating an object when it is already in motion. The

initial speed of the object is automatically taken into account and so we do not

- 81 -

need to apply extra techniques to get a smooth interchange. As we have seen,

there can be a problem when using the acceleration law to decelerate an object.

In some circumstances the object can only satisfy the animator’s constraints if it

overshoots its destination and then comes back. We do not get this problem using

the sine function, however. Fitting the motion to a sine curve ensures that the

distance and time constraints are satisfied without a change in the direction of the

motion. The cost is that the initial speed of the object is ignored and so we lose

the smoothness of the interchange.

We decided not to offer the technique of sinusoidal fairing in Controller.

This effect can already be achieved by combining motion segments obtained from

the other techniques that we have described. We also have the problem of

accelerating the object when it is already in motion. The formula for sinusoidal

fairing does not take this into account.

Our best approach for achieving smooth motion has been to use a

combination of (3.4a), (3.4b) and (3.4h). Priority is given to the law of constant

acceleration, but where this fails the trigonometric functions are utilised. More

complicated strategies would produce more realistic motion. However, by using

the techniques described above we get an acceptable method of motion planning

that is straightforward to carry out.

3.5 Techniques For Faking Mass

By carefully timing the motion of an object an animator can emphasise its size or

weight (White 1986). He has to make objects move more slowly as they get

heavier, and perhaps give them more difficulty in controlling their weight.

Using the previous methods of motion planning the animator can easily make

two objects move at different rates. If both objects are to move from rest, the

first motion segment of each will be an acceleration phase. At any given time

during this period the total distance covered by the heavier object must be less

than that covered by the lighter object. So if he wants both acceleration phases to

last for the same amount of time he must ensure that the heavier object will

- 8 2 -

traverse less of its path. This distance is a constraint that the animator has to

define when specifying a motion segment and so there is no difficulty in doing

this. If the objects now proceed at a constant speed the lighter object will be

travelling at a faster rate. The animator’s judgement in indicating the distance of

the acceleration phase will determine how convincing the final result will be.

One aim of our approach to computer animation has been to give the

animator fine control such as he has in the above example. We do not want to

make the specification too difficult for the animator and it will not be if we are

only concerned with a few objects. However, if the scene is to contain many

objects each with a different weight, such motion control could become a

headache to the animator. He has to keep track of how heavy all the previous

objects were and fit in new objects accordingly. It might be easier if the animator

just estimates the weight (or mass) of each object and lets the animation system

take care of the rest We therefore provide a facility to do this and again avoid

the use of computationally expensive dynamic methods.

When the animator selects a cast member he has the option of defining its

mass. The unit of mass is immaterial as we only need to depict the relative mass

of the objects in the scene. We now have to satisfy three user-defined constraints

(mass, distance and time) and so the complexity of the problem increases. The

purpose of this exercise, however, is to save the animator from having to

remember all the distances he has been using to emphasise the mass of each

object. So we let Controller work out how much of the path will be traversed and

just get the animator to specify time and mass.

3.5.1 Utilising Existing Methods

When we use equation (3.4c) to model distance travelled under acceleration, the

result is scaled by the total length of the motion segment. This segment length

must now be determined by Controller using a function that depends on the mass

of the object and the duration of the motion segment. The same is true if we are

using the law of constant acceleration (3.4h), the segment length must now be

calculated by the system and not defined by the animator. The segment length

- 83 -

should increase with time but decrease as the mass of the object increases, so

i time c xsegment length a . (3.5a)
mass

The simplest relationship satisfying this condition is

segment length = k x tlme t g constant. (3.5b)
mass

We let the animator determine the value of k by getting him to define the distance

he would expect an accelerating object of unit mass to cover in some specified

time interval. This task is performed by the animator before the path planning

stage of our system. He uses a graphical valuator to input the required distance.

The animator is thus still in general control of the final motion effects achieved.

The distance-time graphs obtained by doubling the mass of an accelerating

object whilst keeping the other constraints fixed are given in fig. 3.12.

(3.4c)

M3.4h)

mass
increasing

V

Figure 3.12. Faking Mass using Existing Techniques

Here the animator has already indicated the distance that an object of unit mass is

required to cover and Controller automatically calculates the other distances. In

- 8 4 -

both cases the total distance covered in a fixed interval of time is halved as the

mass of an object doubles. This is what we would expect if the objects are

accelerating from rest.

The technique of sinusoidal fairing can also be adapted to take into account

the mass of an object. For an object that accelerates to some steady speed, the

number of in-fairing frames allocated should be proportional to the mass of the

object. As the mass increases so should the number of fairing frames used. The

animator specifies the total number of frames required for the whole of the

motion segment. Sometimes, however, the mass of an object is such that more

in-fairing frames are required than the total number of frames allocated by the

animator. A maximum must therefore be placed on the proportion of the total

number of frames that can be used for fairing. Unfortunately this means that the

motion effect achieved for objects over a certain mass is the same.

3.5.2 Using a Family of Acceleration Curves

We decided to look for other ways of modelling the motion of objects with

different mass to see if we could improve on the above methods. For example,

the function

has been experimented with. By varying the values of a and b a family of curves

can be produced (fig. 13a. and fig. 13b). We tried

(i) varying the value of a whilst keeping b fixed;

(ii) varying the value of b whilst keeping a fixed.

We then considered what the motion effect would be if these graphs represented

plots of velocity against time, that is

Each plot has the same general shape. Up to the point of inflection* the moving

y = — -------, a and b are constants,
ax2 + b

(3.5c)

t2
v = — , v = velocity, t = time.

at2 + b
(3.5d)

* This occurs at

- 8 5 -

mcreasing a

a. Varying the value of a whilst keeping b fixed

increasing b

points of inflection

b. Varying the value of b whilst keeping a fixed

Figure 3.13. The Family of Curves produced from (3.5c)

- 8 6 -

object can be thought of as overcoming its inertia. It then proceeds to accelerate,

tending toward some maximum velocity. Increasing the value of a decreases the

maximum velocity obtainable by the object This suggests that a is related to the

force that propels the object. So if a is fixed each object is propelled by the same

amount of force. Increasing the value of b then increases the time taken for the

object to reach any given velocity; up to the maximum velocity obtainable. So b

appears to be related to the weight or mass of the object.

We can get a distance against time function by integrating over time.

We need to determine suitable values for a and b. In our current implementation

we emphasise the mass of the object and so keep a fixed at a-1. Equation (3.5e)

can then be simplified to

Although b is proportional to the mass of the object we do not set b to be equal

to this mass. In fig. 3.14 the value of b has been successively increased by a

factor of 10. The mass defined by the animator is typically in the range one to

one hundred. However, if the value of b is also in this range then the object

rapidly reaches its maximum velocity, too rapidly to be usable in Controller. To

obtain the best results we found that the value of b should be much larger.

Multiplying the mass by a factor of 105, for example, produces a more gradual

f t*s = — ------ dt , s = displacement, t = time.
J at + b

(3.5e)

s = t — 'Jb tan 1 . (3.5f)

b increasing

Figure 3.14. Using a Family of Acceleration Curves

increase in velocity and is more suitable for our purposes.

The period of time between successive frame positions is constant and is

used as the unit of time in Controller. Time can therefore be represented as

integer values starting from t=l. However, using a value of b in the magnitude

of 105 means that 5 is too small until many time units have elapsed*. Again this

is not suitable for Controller’s purposes and so s must also be scaled.

Maintaining our approach of giving the animator as much control as possible, it is

he who determines the value of the distance scale factor. He specifies the total

distance that an object of unit mass will cover over a specified interval of time.

We also have to allow for the deceleration of an object. To do this we keep

the time argument used by the distance function separate from the total time

elapsed. The latter is always incremented as new frames are defined by the

* For example, when i - l and 6=105, (3.4f) returns s-0.000003.

- 88 -

animator. We only increment our distance function time, however, when the

object is accelerating. When the object is decelerating it is decremented, and

when the object is moving at a constant speed it is left unaltered. We thus travel

back down the distance time curve when decelerating and a correspondingly

smaller inter frame distance is calculated. This method will give a smooth

interchange between successive motion segments. A drawback, however, is that

the object’s rate of deceleration will be the same as its rate of acceleration. The

animator cannot, therefore, make an object decelerate over a period longer in time

than it accelerated in. We can overcome this by varying the time intervals used

with the distance function, but will then lose out on the smoothness of the

interchange between motion segments.

3.5.3 Comparisons

The motion graphs given in fig. 3.15 provide a comparison of the two methods

that we have described for faking mass.

mass
increasing

V

Figure 3.15. Comparison of the Methods used to Fake Mass

To aid in this comparison we have made sure that the final distance covered is the

- 89 -

same in both cases. We can see that when (3.5f) is used, an object accelerates

more slowly to begin with, and consequently gives us a better feel for the inertia

of the object. It thus reaches a greater final speed in covering the same distance

in the same time than when the acceleration law is used. Note that in both cases

the total distance covered appears to be halved as the mass of an object doubles.

This is not true when using (3.5f), but when large values are used for b (as in our

implementation) the differences are not significant.

We have preferred to incorporate mass by using the family of acceleration

curves. A motion graph resulting from this method is an intuitively better

approximation to the real thing. We also have a way of manipulating the force

applied to an object built into this distance function. This facility has yet to be

exploited.

3.6 Verifying the Motion Definition

In general the motion segments defined by the animator can be combined in any

manner. He is thus in control of a flexible system of motion planning and can

move an object in many different ways. Such flexibility, however, may produce

anomalies in the motion definition. Controller therefore provides a motion verifier

to determine how well each motion segment fits in with the current state of the

overall motion. If a good fit can be made then no action is taken. Otherwise,

warning or error messages are issued, and these are detailed below.

3.6.1 Warnings

The animator is given a warning if the resulting motion is unrealistic or cannot be

fitted in smoothly. He can either ignore this warning (as he may really want such

an effect), or repeat the specification for the motion segment concerned.

Warnings occur, for example, when:

- 9 0 -

(i) A stationary object is made to move at a constant speed without first

accelerating it from rest. The facility to do this is needed, however. A cast

member, for example, may enter the scene already travelling at a constant

speed.

(ii) The object is to continue its motion at a constant speed. However, the

distance that can be covered in one unit of time by maintaining this speed is

greater than the total length of the motion segment defined. Here one frame

position is plotted and the object’s speed is decreased accordingly.

(iii) Deceleration is required but the constraints cannot be fitted in smoothly (see

§3.4).

(iv) The object is held at its present position for several frames but its current

speed is greater than zero. Here the object is coming to a sudden halt. Note

that this is acceptable if the current speed of the object is small enough so

that the object may be stopping anyway. The warning is only given if the

speed is greater than some threshold value above which it is unrealistic for

an object to stop in a single frame.

3.6.2 Errors

Some motion segment specifications will be impossible to carry out, but these are

usually obvious:

(i) A stationary object is asked to decelerate.

(ii) Deceleration in one frame is required but the segment length is greater than

the distance that can be covered by the object if it maintains its current

speed. Here the object can only satisfy the distance and time constraints by

accelerating.

(iii) An object is asked to accelerate over a distance that is less than the distance

it can cover in one time unit by maintaining its current speed.

-91 -

3.6.3 Using the Automatic Mass Facility

When the automatic mass facility is being used much of the above motion

verification is not applicable. The animator does not specify the distance of the

motion segment here. Note that the mass of an object is emphasised when objects

are accelerating from rest If an object appears on the scene already travelling at

a constant speed then using the automatic mass facility is not as effective. In

these circumstances the animator is warned of this fact.

3.7 Summary

In this chapter we have described a procedure that allows an animator to specify

the overall motion of an object about a set. The motion path generated for this

purpose is made up of a spatial definition (in two dimensions), and a temporal

definition. The former involves drawing the track that the object moves along

whilst the latter involves the specification of a series of motion segments. Each

motion segment describes how the object will move over a particular section of

its track.

With both definitions we have attempted to provide the animator with a

flexible interface offering him fine control over the motion specification. The

interface should not be impossible to use, however. The animator should find that

moving an object along its path is as natural as driving a car along a road. For

the latter decisions about whether to slow down, speed up or stop depend on the

road conditions and the driver’s destination. In the animation case the decisions

are similarly governed by the storyboard that describes the scene. We have found

that the ease of use of the interface decreases as the complexity of the problem

increases. We therefore endeavour to keep the implementation as simple as

possible. For example, we have used kinematics rather than dynamics to

implement the temporal definition.

The motion specification is not yet finished. Several parameters are

associated with an object at each frame position that has been defined. We will

now go on to look at how the animator can specify the value of these parameters.

Chapter 4

Parametric Animation

4.1 Introduction

In chapter 2 we describe how to represent objects using an appropriate set of

parameters such as

Cast member = {location, orientation };

Camera = {location, orientation, zoom};

Light = {location, intensity}.

The motion path defined by the animator provides the location (in the ground

plane) of an object at each frame of the animation. He must now complete the

specification of the above parameters and so provide the configuration of the

object at these locations. In this chapter we will detail Controller’s version of

parametric keyframe animation that allows the animator to do this.

We will also describe the remaining facilities that Controller offers to the

animator. They include a computer version of the pencil test used in conventional

animation, and methods for generating the frames.

4.2 Specifying the Parameter Values

Having defined a motion path, the animator begins specifying the parameter

values associated with the camera, cast member, or light to which it belongs. He

does not have to specify these values at every frame location, however, as this

would be far too tedious. The advantage of parametric animation is that

parameter values can be interpolated across a range of frames. Note that the

- 9 3 -

animator can also go back to a previously defined object and refine its parameter

values.

The animator follows the same procedure regardless of the parameter being

specified. First he selects (on screen) the two frame locations between which a

parameter value is to be computed. The rectangles in fig. 4.1 are centred on the

frame locations that have been chosen in this way.

start location
end location

Figure 4.1. Selecting the Frame Locations

Each location is defined to have a small gravity field surrounding it so that the

puck does not have to coincide exactly with the screen coordinate of the selected

frame. The puck position may fall within the gravity field of several frame

locations, however. If this occurs then the distance of each frame location from

the puck is calculated so that the nearest one can be identified. If the required

frame still cannot be determined then the animator is informed of the possible

candidates and requested to use the keyboard to select the one he wants. A

keyboard entry is always needed when an object is at the chosen location for

more than one frame.

9 / f & . .

C U f h r W k y | e d i / « l \ « i j h f u n i > I / h

VAij <•«■-)>w (45 e, Hie. • 4+s l u j t a ?
^ of v ie* * <*> **<>1 ly M|{? f ly h roc^r-

I * i S 4 . 1 - t l n * 4 f H a * - c *l

- 9 4 -

The value required for the parameter at the second frame location is now

input using an appropriate graphical valuator (these are described below). The

parameter value at the first frame location is not specified at this stage, however.

Controller uses its existing value or, if this has not been defined, the value found

at the preceding location that is nearest to it in time. This helps to ensure that

there are no sudden changes in the motion affected by this parameter. The

techniques used to calculate the frame locations along a motion path (chapter 3)

are now used to interpolate between these two values. The animator chooses the

method that will give him the effect that he is after. The use of splines and

physical laws are again avoided when carrying out the interpolation. We

endeavour to keep parametric animation as straightforward as possible and so do

not use the more complicated strategies.

The animator can also specify the value of a parameter at a single frame

location only. He has to carry out the above process but selects the same frame

location as the start and end points. The value then input using a graphical

valuator becomes the value of the parameter at this frame. Let us now examine

in more detail the parameters that express the cameras, cast, and lights.

4.2.1 Height

To complete the definition of a three dimensional path the height of the object

must be determined. The object is assumed to be at the level of the ground plane

until the animator carries out this task.

Following the above process, the animator uses a ‘sliding scale* valuator (fig.

4.2 and colour plate 3) to define the object’s height at the second frame location

selected. The criterion for calculating the height at the inbetween frames is then

chosen from the following:

Linear The total height difference is divided equally between all the

frames involved.

< height adjuster

0 0digital readout—►*—

Figure 4.2. The Height Valuator

Faired The height difference is divided so that successive increments are

increasing at the beginning, and decreasing at the end. Equation

(3.4a) is suitable for this task.

Gravity Successive increments in the height are calculated as if the object

is falling or rising under gravity. More details of this option are

given in chapter 5.

Constant All the inbetween frames are assigned the same height value.

The height of an object is more conveniently defined in this way than at the

track drawing stage. The latter would require the animator to draw a three

dimensional path using a two dimensional device. Providing him with an easy to

use method for achieving this is not straightforward. Here, however, the

animators task is less complicated and effective results are produced.

- 9 6 -

4.2.2 Orientation

The animator has to determine the orientation of an object along its motion path.

For example, the camera head* must be adjustable so that it can point in any

desired direction in three dimensional space. We will describe separately how the

cameras, cast members and lights can be orientated by an animator.

(i) Cameras

A camera moves in the left-handed coordinate system used to generate the set

models (see §2.3.1). Initially the camera head is assumed to point along a straight

line parallel to the z axis and in the direction of positive z. The animator can,

however, select two frame locations and alter the orientation of the camera head

between them. The following options, for example, enable him to rotate the

camera in the ground plane away from its default heading:

Point The animator selects on screen a position in the set at which he

requires the camera to point. The camera is then directed

towards this point from each of the specified frame locations.

Fixed The ‘dial* valuator (fig. 4.3) fixes the camera head at a constant

angle to its default heading. The dial will show the angle of the

camera head from its default position at the start frame location

when it is initially displayed on the graphics screen.

Track The animator uses the puck to select a motion path belonging to

a cast member. The camera is then centred on the location of

this cast member at each frame.

Revolve The camera is made to turn through some angle determined by

the animator. He also specifies whether the rotation is to be

clockwise or anticlockwise.

* The camera head is the term used when the view position and the view direction of the camera
are considered as one entity.

Figure 4.3. The Dial Valuator

Tangent The camera is made to follow the tangent to its motion path at

each frame location, or to be at some fixed angle to this tangent.

The dial valuator defines the value of this angle.

Pan The camera is interpolated from it initial heading to some new

heading defined by the animator.

All these methods deal with just one parameter, the angle of the camera head

from its default position. For the revolve and pan options, this angle is

interpolated across the inbetween frames using the technique considered the most

appropriate by the animator. A short line is also plotted from each frame location

in the direction in which the camera head now points. This is demonstrated in

fig. 4.4 where the animator has just used the point option. He thus has a visual

impression of the camera’s heading.

As well as rotating the camera head in the ground plane, the animator can

make it tilt. A default tilt angle of zero is assumed and this corresponds to the

camera head being parallel to the ground plane. The valuator illustrated in fig.

4.5 then enables the animator to define the tilt angle he requires. The two end

values are interpolated across the inbetween frames.

- 98 -

puck position

Figure 4.4. ‘Pointing’ the Camera Head

Ti l t :

Figure 4.5. The Tilt Valuator

(ii) Cast

The internal motion of each cast member is portrayed by using an appropriate set

of poses (see §2.3.3). Hence, when using Controller to plan the motion of the

cast, they can be considered as rigid bodies. The animator’s task is thus greatly

- 9 9 -

simplified and most of the functions used to manipulate the orientation of a

camera are reusable here (the track facility is the obvious exception). A cast

member can be made to follow the tangent to its motion path, revolve about some

point, and so on.

When rotating a cast member, its current frame location is used as the origin

of its coordinate system and each axis of rotation passes through this point. The

centre of rotation of the object must also be specified, for example, it may be at

the base of the object, or at its centre of gravity. This point is defined at the

modeling stage and its placement depends on the cast member being designed.

(iii) Lights

A point light source radiates light in all directions and so its orientation is

immaterial. A spot light, however, is restricted to radiate light in the particular

direction defined by the animator. The functions for determining the camera’s

heading are again suitable for this purpose. The track function, for example, will

define a light to follow a cast member around a set just as a real spot light

follows an actor around a stage.

4.2.3 Camera Zooms

A camera can obtain close up shots of a scene by moving nearer to the objects in

that scene, and distant shots by moving away from these objects. Often, however,

physical restrictions are imposed on the movement of a television camera and the

desired shot can only be obtained by using different lens angles. Typically, a lens

angle of between 10° (for close ups) and 50° (for distant shots) will be used by

the cameraman (Millerson 1973). A television camera is equipped with a zoom

lens that allows the required angle of view to be varied with a smooth continuous

action. Narrowing the lens angle in this way is termed zooming in whilst

widening the lens angle is termed zooming out.

Although the virtual cameras used in Controller do not suffer from as many

restrictions as television cameras, a zoom facility is still useful. A virtual camera,

- 100 -

for example, must be located somewhere on the set and so it may be impossible

to obtain the required shot without using a zoom. As before, the animator selects

the frame locations between which the lens (or view) angle of the camera is to be

changed. The valuator illustrated in fig. 4.6 then allows him to define a view

angle at the end of the zoom of between 10° and 170°. The range available for

this view angle is much larger than that obtainable with a television camera.

Controller also supplies the animator with a wire frame view of the shot obtained

from the camera. In fig. 4.6, for example, the animator is adjusting the view

angle so that a zoom out is obtained and the area of the scene covered by the

camera shot is increased. Just as when using a real zoom lens, the zoom process

should occur smoothly. Equation (3.4a) is again suitable for the interpolation of

the view angle parameter across the inbetween frames, although other methods

can be used if desired.

4.2.4 Rotating the Camera Shot

By using image inverter prisms the shot obtained from a television camera can be

made to rotate (Millerson 1973). This special effect is also available in

Controller. The animator uses the dial valuator to define the angle of rotation to

be applied to the camera shot. This angle is then interpolated between the

specified frame locations, usually with a faired motion.

The required effect is achieved during the rendering process. The image

rotation angle is applied to the screen on which the rendered image is formed.

4.2.5 Light Intensity

Controller allows the animator to position light sources about the set currently

being used*. The intensity of each of these lights must be defined by the

animator and the valuator depicted in fig. 4.7 is used for this purpose. The

intensity is defined to fall between zero (dim) and one (bright). The animator can

* Usually these lights will be stationary throughout the scene, but can be defined to follow a
motion path if desired.

- 1 0 1 -

170

135

50*
301
10* _________________________________

Len9 flns I e : 9 0 .5 |Re9eb

Figure 4.6. Changing the Angle of View

- 102 -

Figure 4.7. The Light Intensity Valuator

also request a light to be faded in to a certain intensity and faded out from a

certain intensity. For the former the intensity is increased from zero over the

specified frames, whilst for the latter it is decreased to zero.

4.3 Verifying the Animation

The animator will need to preview the results of his animation planning and make

any adjustments that he deems necessary. In this section we will describe how

Controller aids the animator in this task. Note that the facilities provided can be

used with any of the motion paths currently plotted onto the set.

4.3.1 The Status Function

A digital read out of an object’s status at a frame location selected by the

animator is useful. He can then determine whether a particular parameter has

been defined. He may also want to obtain the value of a parameter at this

location so that he can use the same value at other locations. This will help to

keep the motion flowing smoothly.

When using this status option, the required information is displayed in a

pop-up window. The window in fig. 4.8, for example, lists the parameter values

found at a frame location belonging to a camera. A wire frame view of the

camera shot at this location is also displayed on the graphics screen.

- 103 -

Frame: 2

Camera: 1

Zoom: 5 4 . 0

T i l t : - 1 8 . 7 *

S cr ee n: 0 . 0

Pos: (4 . 6 . 6 . 3 . - 2 4 . 6)

Figure 4.8. The Status Function in Use

- 104 -

4.3.2 The Pencil Test

When developing an animation it is important that the animator can preview each

action in real time. A facility similar to the pencil test used in conventional

animation is provided for this purpose. The animator selects the range of frames

over which a computer animation pencil test is to be performed. An animated

line drawing is then calculated frame by frame and presented to him on the

graphics screen. The pencil test can be of either a cast member or of a camera.

If the object is a camera then the scene at each frame location along the path is

displayed so that the animator can verify that the camera shot is as he desires. At

this stage none of the cast members are shown. If the object is a cast member it

is also necessary to specify the camera it is to be viewed from. The sequence

then presented is that resulting from animating both this camera and the cast

member for the selected frames.

Ideally, all cast members currently in the scene are displayed during the

pencil test. However, even if only a few cast members are drawn then the

generation of each frame takes several seconds. This makes the pencil test far too

slow to be useful in an interactive animation system. We therefore restrict the

pencil test to show the set and selected cast member only. The motion of an

individual cast member can then be studied in detail. The interaction between

several cast members can be viewed later using a real time playback facility (see

§4.6) that displays pregenerated images at an appropriate rate. If the animator

wants to do this at this stage then he must wait (perhaps for several minutes) for

the selected frames to be generated.

To present a pencil test in real time, twenty four or twenty five frames have

to be displayed every second. To calculate each line drawing as quickly as

possible, hidden line removal is not considered. Also, wire frame representations

of the sets and cast are generated before Controller is invoked and often use a

simpler model of these objects. For example, a stick figure representation may be

good enough to represent some cast members. Only the configuration defined by

the animator then has to be calculated and applied. We are ultimately restricted

by the hardware available, however, and Controller only manages to generate up

- 105 -

to three frames every second. The animation is thus presented in slow motion but

despite this we still find the pencil test facility useful. Another possibility is to

plot only the vertices of the line drawings as the resulting sequence may still give

a feel for the motion. The time savings here, however, are unlikely to

compensate for the loss of detail in the sequence, but may be worth investigating.

The main disadvantage of Controller’s pencil test is that it fails to indicate

the timing of a motion. One way of providing for this is to calculate the frames

after longer intervals of time. For example, if Controller calculates only every

eighth frame then, although the resulting sequence will appear to ‘flicker’ badly, it

is displayed in the correct time. Providing the animator with the option to miss

out frames in this way could be the most flexible method of providing a pencil

test facility.

4.4 The Animation Data

Once the animator has completed a session with Controller, the animation data is

recorded in an appropriate file such as that represented in fig. 4.9. It contains

(i) the name of the set model used;

(ii) the number and initial frame of the scene;

(iii) the parameter list of every camera defined;

(iv) the parameter list of every cast member defined;

(v) the parameter list of every light defined.

A data file will not usually be as short as the one in our example (fig. 4.9).

Many frames are required for an animation and so the parameter lists of the

objects involved will be much longer.

All data files created by Controller can be loaded back into the system so

that the animator can refine the animation and include new objects. When

satisfied with his specification, the animator uses the data to generate the frames

of the animation.

- 106 -

/ g r a p h i c s / C o n t r o l l e r / S e t s / s t u d i o

S c e n e = 1
I n i t i a l f r a m e = 1

Camera= 1 4 Camera d a t a :

4 7 1 0 2 1 0 470 2 2 9 0 0 . 0 0 0 0 0 0 0 . 0 0 0 0 0 0
4 7 1 0 2 1 0 470 2 2 9 0 0 . 0 0 0 0 0 0 0 . 0 0 0 0 0 0
4 7 1 0 2 1 0 470 2 2 9 0 0 . 0 0 0 0 0 0 0 . 0 0 0 0 0 0
4 7 1 0 2 1 0 470 2 2 9 0 0 . 0 0 0 0 0 0 0 . 0 0 0 0 0 0

O b j e c t = 3 4 O b j e c t d a t a :

4 6 2 - 6 0 5 4 2 0 . 0 0 0 0 0 0 0 . 0 0 0 0 0 0
4 6 2 - 5 5 5 4 2 0 . 0 2 6 8 7 7 0 . 0 0 0 0 0 0
4 6 2 - 4 0 5 4 2 0 . 1 0 7 0 4 7 0 . 0 0 0 0 0 0
4 6 2 - 1 6 5 4 2 0 . 2 3 9 1 4 0 0 . 0 0 0 0 0 0

O b j e c t = 6 1 O b j e c t d a t a :

4 6 4 - 6 0 5 4 1 0 . 0 0 0 0 0 0 0 . 0 0 0 0 0 0

Figure 4.9. An Animation Data File

4.5 Generating the Frames

The animation frames can be generated using either a mesh Tenderer or a ray trace

Tenderer. The former method is fast and is useful for previewing the animation.

Unlike the pencil test facility, all the cast members defined are now included in

the animation. Ray traced images are computationally expensive to calculate and

so are only produced when the animator is certain that the animation is correct.

The object and lighting models required to define the scene at each frame are

calculated and then rendered by the ray tracer as a batch job. Other rendering

techniques may be required, however, and will need to be supplied with an

appropriate interface to the animation data file. So far we have only provided this

interface for the two in house rendering systems mentioned here.

Once the rendering system has been selected, the animation data is

summarised on the visual display unit For example, a summary of the data file

listed in fig. 4.9 is given below (fig. 4.10).

S e t : / g r a p h i c s / C o n t r o l l e r / S e t s / s t u d i o S c e n e : 1

C a m e ra s :

Code
1

S t a r t fram e
1

End fram e
4

C a s t

Code Name
1 d i c e
2 t u m b l e r

Fram e D u ra t io n
4
1

N e x t S h o t i s f o r f r a m e 1;
What c a m e r a i s t o b e u s e d ?

Figure 4.10. Summary of an Animation Data File

The animator now defines his final requirements for the rendering of this

animation sequence. He begins by selecting the order and duration that each

camera shot is to be used. The viewer and screen positions used by the rendering

system are calculated from the data found in the parameter list of the active

camera. The area of the image obtained from a camera shot is known as the field

size (White 1986). In both film and television a height to width ratio of 36:50

(the academy field ratio) is normally used for this field size. The animation

frames produced in our system can also be rendered using this ratio. The

animator specifies the width of the frames and their height is calculated

accordingly.

The animator next decides the frames at which the cast will enter and exit

the scene. They can be ‘cued* at any point in the action and ‘cut* from the scene

even if all the frames specified for them have not yet been exhausted. The scale

and colour scheme to be used for each cast member are also defined at this stage.

The validity of frame durations specified by the animator throughout the above

process are checked, and he is informed whenever a discrepancy occurs.

- 108 -

The rendering system also requires the following information (determined at

the modeling stage) about each member of the cast;

(i) the number of poses used to define its motion;

(ii) the number of primitives used in the composition of each pose;

(iii) the centre of rotation of the composite cast model (see §4.2.2).

The motion poses are used cyclically at successive frames. The rendering system

uses the animator’s specification to update the original configuration of the pose

currently being used. Each primitive it contains is therefore transformed as

follows:

(i) it is scaled to the size specified by the animator;

(ii) the heading and tilt rotations are applied (in its own coordinate space);

(iii) it is translated to the set location defined for the current frame.

If the mesh renderer is being used then a line drawing of each cast member in its

resulting configuration is plotted onto the frame image (using a perspective

projection). Alternatively, if the ray tracer is being used then the resulting

description of each cast member is appended to the object model being created for

this frame. The process is then repeated for all the cast members that are present

in the frame. Lighting information is only required by the ray tracer and, if not

explicitly defined by the animator, is obtained from the original model of the set

being used.

4.6 Real Time Playback

After an animation sequence has been rendered it is possible to view the frames

using real time playback (see §1.6.8). A facility called video is provided for this

purpose. The rendered frames are stored in the main memory of the host

computer from where they can be quickly copied to the graphics screen. By

displaying successive frames on top of one another the illusion of motion is

produced in the same way as it is in projected film.

The frames are cycled continuously (in reverse order if required) and the

time taken for the completion of each cycle is given to the animator. He can thus

- 109 -

calculate the pause required between successive frames that will produce the

appropriate animation rate. This time delay can then be incorporated into the

display cycle. The size of the rendered frames must be small, however, if the

system is to cope with a rate of twenty four or more frames every second. Each

frame can also be displayed several times in succession and so holds and double

framing (see chapter 5) are catered for.

When using video, the animator may notice some error or discrepancy in the

animation. He will then need to study the suspect frames so that he can identify

the exact point where this occurs. A facility called storyboard displays a

specified range of frames on the graphics screen and can be used for this purpose.

In fig. 4.11, for example, twenty frames are being displayed from an animation

sequence that contains such a discrepancy. This enables the animator to discover

that the ‘clown* character is missing from the sixteenth frame of the sequence.

He can now take corrective measures beginning with an examination of the data

file for this animation.

4.7 Post Production

The rendered frames are transferred onto film or video and a soundtrack is

applied. These stages to produce the final computer animation are hardware

dependent and outside the scope of Controller.

Note that the pencil test and real time playback facilities supplied by

Controller allow the animator to preview and refine the animation as desired. He

can therefore be confident that the appearance of the resulting animation will be

satisfactory before the film transfer stage takes place.

The soundtrack should be used throughout the development of the animation

so that the action is correctly synchronised with the sound. We do not have the

necessary equipment for producing a soundtrack, however, and so (as with many

computer animation applications) sound is only provided during post production.

The synchronisation of sound with computer animation is an area in need of

research.

- 110-

Figure 4.10. Identifying Rogue Frames

- I l l -

4.8 Summary

In this chapter we have described the process of parametric key frame animation

as it is carried out in Controller. Our main objectives have again been to develop

this process so that the animator finds it both flexible and straightforward to use.

This is partly achieved by providing the same simple procedure for the

specification of all parameter values. The animator is given a choice of the

kinematic interpolation methods described in chapter 3. He can thus produce a

variety of effects and ensure that the motion affected by a parameter occurs

smoothly. The production of smooth flowing motion is further aided by

interpolating from the existing value of this parameter.

Visual feedback is important in the development of any animation.

Controller therefore provides a computer animation pencil test and facilities for

previewing the animation using real time playback. The animator can thus refine

the animation so that minimum editing will be required when it is finally

transferred onto film or video.

Chapter 5

The Role of Traditional Animation Methods
in Computer Animation

5.1 Introduction

In the previous three chapters we have described the development of the

Controller animation system and detailed its use as a tool for the generation of

computer animation sequences. Emphasis has been placed on making Controller

both flexible and straightforward to use so that the animator is kept in control of

the animation specification. This means that the skill of the animator remains an

important factor. It can be argued, however, that it is difficult to define complex

animation using Controller. We could overcome this by introducing greater

automation into the system. Many systems for example use physical laws, such

as the laws of dynamics, for this purpose (see §1.6.4). The amount of control that

the animator then has will decrease, however, and so would be contrary to the

aims of this thesis. We want to enhance the versatility of the animation that can

be obtained without sacrificing the control of the animator. Our approach is to

encourage the animator to utilise techniques taken from traditional animation and

Controller will assist him in doing this wherever possible. This chapter will

explain the advantages of such an approach and detail how we have carried it out.

A practical test is required to discover if Controller really is flexible and

easy to operate. Controller was therefore made available to a graphic design

student who used it to generate a complete computer animation. The results of

this experiment and the experience obtained from it are detailed later in this

chapter.

- 113 -

5.2 Why Use Traditional Animation Principles?

In chapter 1 we described the twelve principles most often adhered to by

traditional animators. They are:

• staging;

• straight ahead action and pose to pose;

• slow in and slow out;

• anticipation;

• timing;

• arcs;

• follow through and overlapping action;

• secondary action;

• squash and stretch;

• exaggeration;

• solid drawing;

• appeal.

Most of these principles are useful in the generation of computer animation,

particularly if the animation is for entertainment purposes. Their intelligent

application can produce results that are just as convincing as those obtained from

the use of physical laws. The computation cost will also be a lot less.

Controller already makes it possible for the animator to apply some of these

principles. Using B splines to plot out the path of a moving object, for example,

ensures that the object will move in an arc and not in a straight line (see §3.2.1).

This helps to prevent motion from appearing too mechanical. The animator can

also apply the principle of slow in and slow out when specifying the motion of

some object. The techniques that we described in chapter 3 for supplying the

temporal definition of an object can easily be used to ‘fair* its motion in this way.

We will now consider how we can develop this theme further.

- 114 -

53 Assisting the Animator

Several facilities have been introduced into Controller to assist in the specification

of animation. Controller can, if required, take into account the mass of an object

and calculate the effects of environmental factors such as wind and gravity.

Objects and cameras can also be made to vibrate or ‘stagger*. All these facilities

have been designed to ‘fake’ reality rather then give an accurate simulation.

Dynamic simulations have not been used to any great extent and instead emphasis

has been placed on the use of long-established techniques from conventional

animation. Details of these facilities are given below.

53.1 The mass of an object

We described the method that Controller uses to take the mass of an object into

account in section 3.5. We will now consider how the use of this facility will

influence the animator.

The animator emphasises the mass or size of an object by carefully timing

the motion of that object. He will make objects move more slowly as they get

heavier, and perhaps give them more difficulty in controlling their bulk. When

only a few objects are involved in a scene it is straightforward to time motion in

this way using Controller’s standard method of motion specification. The

animator has to ensure that heavier objects cover less distance than lighter objects

in the same period of time. This involves keeping track of the relative distances

covered by objects of different mass so that new objects can be fitted in

accordingly. If the scene is to contain many objects, however, the animator has to

keep track of a large volume of information and his task becomes difficult. A

method of calculating the motion of objects so that their mass is taken into

account by Controller rather than by the animator was therefore provided.

To invoke Controller’s mass facility the animator must define a mass value

for each member of his cast. He is given the opportunity to enter this value at the

keyboard whenever he selects a new cast member. The three ‘ducks* illustrated

in fig. 5.1., for example, have been defined so that the largest is also the heaviest

- 115 -

and the smallest is also the lightest. The unit of mass is immaterial as we are

only interested in the relative motion of objects. In Controller the animator can

select any value greater than zero to represent an object’s mass. The selected

value, however, is nearly always between one and one hundred and will rarely

reach the thousands.

In our example (fig. 5.1), the animator has specified that each duck moves

from rest with the same amount of acceleration. He has to define their track

through the set and the duration of this acceleration phase, but Controller then

takes over. We can see that after a slow start, where it appears that the ducks are

overcoming their inertia, the distance attained by them is proportional to their

mass. Note that it is the animator who usually defines the distance to be covered

during a motion segment. The purpose of this exercise, however, is to save the

animator from having to remember this information when a large number of

objects are involved. He is therefore no longer required to specify distances in

this case. We do not feel that this approach means that the animator suffers a

significant reduction in his control over the motion specification. By selecting the

value of the mass to be used he is still in general command of the situation.

53,2 Wind

Our next experiment was to determine whether wind could be incorporated into

Controller. If the animator requires such an effect he must first define the

strength of the wind and the direction that it is coming from. Wind strength is

often indicated by a force number taken from the Beaufort wind scale. The

following table summarises the Beaufort scale for land and will be familiar to

most people (note that the relationship between the force number and wind speed

is non-linear):

-116-

Figure 5.1. Motion of ‘Ducks’ with Different Mass

- 117 -

Beaufort Wind Scale
Force m.p.h

0 1 light
1 1-3 light
2 4-7 light
3 8-12 gentle
4 13-18 moderate
5 19-24 fresh
6 25-31 strong
7 32-38 strong
8 39-46 gale
9 47-54 gale

10 55-63 storm
11 64-72 violent storm
12 >72 hurricane

In accordance with the Beaufort scale, we let the animator specify the force of the

wind as a number between zero and twelve. The valuator used for inputing the

intensity of a light is easily adapted to obtain this force value as well. Similarly

the dial valuator is utilised to obtain the wind direction. These parameters are

input before the animator defines the motion for any of the cast and they remain

constant throughout the scene. To obtain effects such as gusting this will need to

be extended so that wind force and direction can be varied over time. Such

variation and lack of consistency add to the realistic animation of a wind.

Wind cannot be seen so it is modelled by the effects that it has on an object.

Soft objects are not yet available in Controller and so this experiment is initially

concerned with the effect of wind on rigid bodies. We identify two ways in

which wind can affect such an object:

(i) making the object tilt or sway;

(ii) displacement of the object.

Making the object tilt in the direction in which the wind is blowing is an

application of the traditional principle of anticipation. It gives an indication that

the object may be about to move in the wind. Any displacement required is

faired so that it appears more realistic. Our strategy is to add these wind effects

onto the animator’s normal motion definition.

- 118 -

In many cases wind effects are negligible and cannot be discerned by the

viewer. A gentle breeze, for example, has no noticeable affect on a massive

granite boulder. We therefore developed a quick test to determine if it is

worthwhile calculating the tilt and displacement owing to the wind. We define

the wind strength, 5, to be

S = 2®-l (*)

where B is the Beaufort scale force number. If the value returned by (*) is less

than the mass of an object then we conclude that the wind has no noticeable

affect on that object. These values can be precalculated and will be one of

0, 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, and 4095.

They are of the same magnitude as the mass values that the animator defines

when using Controller (see §5.3.1). Comparing the mass of the object with the

appropriate value obtained from (*) is then a straightforward task. A hurricane

will therefore affect all objects with a mass less than 4095 units whereas a

moderate wind affects only those objects with a mass less than 15 units. Many

criteria could be used instead of (*) but we found this to be a reasonable method.

It also reflects the non-linear relationship between the Beaufort force number and

the wind speed.

We next need to calculate what the wind tilt and displacement will be. The

maximum tilt angle reached will increase with the strength of the wind but

decrease with the mass of the object. This relationship can be represented as

tilt angle = k x wln(̂ stren8t 1̂ ̂ £ constant,
mass

For simplicity we use k=l. The tilt angle obtained from this formula tends to be

greater than what would occur in reality. This means that the amount of tilt is

exaggerated and is thus conforming to another of the traditional principles. How

quickly the tilt angle is reached depends on the strength of the wind, slowly for a

light wind but fast for a hurricane. Controller uses as a default value

- 119-

number o f interpolation frames =2(13-B) ,

where B is the Beaufort scale force number. This formula returns a value

between two and twenty four frames but there is no reason it should be imposed

on the animator. He is allowed to assign his own value for the number of frames

to be used if he desires. The interpolation of the tilt angle is calculated using

equation (3.4a) so that the motion is faired. At the same time as tilting an object,

the wind will begin to displace i t We know the force of the wind and the mass

of the object so Newton’s second law of motion is used to calculate the

acceleration owing to the wind. The law of constant acceleration that we used

previously (equation 3.4h) then supplies us with the wind displacement. As with

the tilt, this displacement is applied in the direction of the wind. The resulting

transformation to be administered to the object is placed into a wind matrix. This

matrix is then applied after the animator has specified any other motion for the

object. Figure 5.2 illustrates how the resulting object path is presented to the

animator.

wind
direction

Figure 5.2. The Effect of Wind on a Motion Path

Here the animator has selected a wind of force five and given the object a mass

of twenty five units. After the track is drawn, the object is accelerated from rest

and then maintained at a constant speed. Note how the displacement of the object

from the track increases with successive frames.

- 120 -

In the example of fig. 5.3 an otherwise stationary ‘clown* character has been

exposed to a wind simulated by the animator. If viewed at the appropriate rate,

these frames provide a good demonstration of how convincing the wind facility

can be. Several factors still need to be considered, however. The animator will

not want the wind to affect fixed objects such as buildings and so will require the

option of defining objects to be immune from the wind. In our current

implementation, assigning an object a mass of greater than 4095 units achieves

this. Also, if the object tilts so much that it becomes unstable then we have to

provide some mechanism for it to topple over. At the moment it is up to the

animator to refine such motion until it appears visually correct. So far we have
i

assumed that the cast do not attempt to counteract the effects of a wind but this is

not always the case. Human characters, for example, will often tilt into the wind

(to obtain greater stability as they move) rather than being tilted away from it.

The displacement of an object away from the track drawn for it by the animator

can also present problems. The object may be ‘blown’ into other objects or even

disappear from the set. The animator, however, can always redefine the object

path or wind parameters to overcome these problems.

5.3.3 Staggers

A stagger is the term applied to the animation of an action involving a vibration

or oscillation (White 1986). A javelin hitting the ground, for example, will

usually vibrate after impact. Its animation will consist of a series of oscillations

gradually decreasing in amplitude until an equilibrium position is reached. A

character can also be made to shake with fear by the appropriate application of a

stagger. A stagger is therefore a useful tool for the traditional animator and we

decided to provide a similar facility in Controller.

The physical model of a stagger would be based on a damped oscillation.

For example, Smyrl (1978) states the formula for a slightly damped oscillation as

s = e-p'/?cos{(a>2-p 2)1/*r-a},

where s is the displacement, t is the time, R is the amplitude of the oscillation, a

.

- 121 -

IB l

Figure 5.3. The Effect of a Wind on the ‘Clown’ Character

- 122 -

is the phase angle, and p and co are constants. This equation is unlikely to be

familiar to an animator and would be difficult for him to use effectively. An

alternative approach is to base the computer version of a stagger on the traditional

procedure. The animator is then in familiar territory and he can use his skill to

the best effect. We have preferred to use this second approach.

To define a stagger in Controller, the animator is required to:

(i) select the frame positions between which the stagger is to occur,

(ii) enter the number of oscillations required at the keyboard;

(iii) use the dial valuator to enter the angle of the object’s maximum swing

from its equilibrium position.

The amplitude reached on successive oscillations will gradually decay until the

object comes to rest at its equilibrium position. This decay can be carried out

linearly or by using some more complicated interpolation method, according to

the animator’s wishes. We usually find that a simple linear division produces

acceptable results. The time taken for each oscillation must also be allocated. As

the object ends at rest and the amplitude of its extreme positions is decaying,

fewer frames are needed for each successive oscillation. The deceleration

function (3.4b) is applied to the total number of frames defined for the stagger to

obtain the actual frame allocation for each oscillation. The final step is to

interpolate the oscillation between the object’s current extreme position and its

next extreme position. If it takes longer to come out of an extreme than it does to

enter it then the resulting motion will appear to have more ‘snap*. To exaggerate

the oscillations in this way they are interpolated using the acceleration function

(3.4a) over the interval [0,tc/2]. Figure 5.4 illustrates an example of a stagger

obtained from Controller. Here a child’s toy has been ‘pushed’ from its

equilibrium position and oscillates four times. Such a stagger is quickly

calculated using the technique that we have described above and is much cheaper

to evaluate than the damped oscillation formula is.

The use of staggers in Controller presents new possibilities for their

application. For example, when a heavy object falls to the ground the animator

- 123-

Figure 5.4. A Child’s Toy After it has Been Made to Stagger

- 124 -

will often require the ground to tremor as a result of the impact. Applying a

stagger to the view point of a virtual camera will give this impression. The

implementation of a stagger in Controller is not yet complete, however. At

present we restrict the animator to align an object’s equilibrium position with a

principle axis from its own coordinate space. We will have to extend this so that

a stagger can occur in any direction. How the mass of an object affects a stagger

could also be considered.

53.4 Gravity

An object released from above the earth’s surface will fall towards it with an ever

increasing velocity. The rate of change of this velocity is called the acceleration

due to gravity, g, and is the same for all objects at a given location on the earth.

The actual value of g varies between 9.78ms~2 and 9.83ms~2> depending on the

location. Gravity also causes an ascending object to decelerate until its velocity

reaches zero, after which point it begins to fall. An animator will often want to

reflect the effects of gravity in an animation sequence. Once again, Controller

will assist him in this carrying out task.

The animator defines the height of an object at its start and end frames and

Controller calculates the inbetweens. The constant acceleration law (3.4h) is

appropriate for modeling gravity. Here, however, we do not calculate the

acceleration required to precisely satisfy the displacement and time constraints of

the motion segment. To mimic gravity, the same value must be used for the

acceleration due to gravity on all objects. This could be the value of g quoted

above even though Controller’s environment is artificial and does not use the

metric system of measurement. The only criterion that must be satisfied in

Controller is that the motion obtained is visually realistic. To simplify the

inbetween calculations we use a value of 10 units for g and find that this

produces acceptable results. The animator can also specify his own value for g as

he may, for example, be setting the animation in outer space.

The level of the ground plane is obtained from the set model currently being

used. When a falling object reaches this level it will either carry on travelling

- 125 -

below the surface of the ground, or come to an abrupt halt. Usually the animator

will require the object to be stopped by the ground. An example of such motion

is depicted in fig. 5.5.

Figure 5.5 An Object Falling Under Gravity

Here the object is falling from rest and is accelerating towards the ground. The

distance travelled between the final two frame positions, however, is less than the

preceding inter frame distance. This gives the effect that the object is ‘crashing’

into the ground. The animator can enhance the impact by making the object

bounce or by applying a stagger to the camera. Note that if the impact occurs

before the time specified for the motion segment has elapsed then any residual

frames are ignored.

An animator will not want a feather to fall to the ground as quickly as a

cannon ball. A feather is subject to more air resistance than the cannon ball and

consequently takes longer to fall. Similarly, its ascent is retarded by air

resistance. Controller therefore allows the animator to take air resistance into

account. He assigns each object a value, ar , between 0 and 1. When ar= 0 there

is no air resistance and when ar= 1 air resistance will completely counteract

gravity. This value is incorporated into the calculation by scaling the interpolated

height by (l-flr). A pictorial example of the effects of air resistance is given in

fig. 5.6 that depicts two spheres rising and falling under gravity. For the sphere

- 126-

*

Figure 5.6. Gravity and Air Resistance

- 127 -

on the left ar= 0, whilst for the sphere on the right ar= 0.5.

5.4 Controller in Use

The main purpose of Controller is to allow us to experiment with different

methods of defining computer animation. We aim to provide a flexible system

that does not overlook the craft of the traditional animator, and have developed

Controller accordingly. A practical test will help show our success in achieving

this aim. A student* from an arts background was therefore asked to use the

current version of our system to generate a computer animation sequence. This

section details the strengths and weaknesses of Controller that became apparent

during the making of this sequence.

5.4.1 Preliminaries

The student (hereafter referred to as the animator) decided to produce a

commercial for his college degree show. As with all animation production, the

first step is to write the script and a synopsis of this is given below. To present

the action in more detail the animator also prepared a storyboard and an extract

from this can be found in Appendix C.

The sequence begins with a camera shot of a dimly lit room. A large

window covered by a Venetian blind is on the far wall, and a large television

monitor is mounted on a side wall. On the floor of the room there are seven

dustbin-like wheeled objects each painted in a different colour. An alarm clock

hanging on the wall above the window suddenly begins to flash and appears to

have an effect on the ‘dustbins*. It turns out that they are a group of robots

resting in their dormant state. The alarm has roused them, however, and their

eyes gradually illuminate whilst their heads and wheels extend out from their

bodies. Once all the robots have been activated the chief robot decides to inspect

his subordinates. The last to be inspected is a blue robot but while he is under

* Peter Wong Ming, Graphics Design student, Bath College of Higher Education.

- 128 -

the gaze of his chief he topples over and crashes to the floor. The chief shakes

his head in dismay and realises that the blue robot is in need of major repair. At

this point the television monitor energises and displays an advert for a degree

show. The robots have to hurry if they are to make the show in time and so the

chief leads them out of the room. Meanwhile the blue robot has managed to get

up off the floor but his head has been dislocated by the fall. This injury has

affected his coordination and although he attempts to follow the others, his

movement is erratic.

The scene now changes to a strange alien landscape dominated by a huge

dome. This is the location of the degree show and six of the robots can be seen

making their way inside. They are followed by various other visitors to the show

but there is no sign yet of the faulty robot. By the time he does appear the

degree show is over and the other robots are leaving the dome and heading back

home. They do not notice their compatriot and he is knocked over by one of

them as they pass. The faulty robot attempts to get up but this time he does not

succeed. He turns his head towards the camera and he looks appealingly at the

audience as the scene fades out.

5.4.2 Generating the Models

The information contained in the script and storyboard enable the models required

for the animation to be generated. The animator is not expected to do this,

however, as Controller does not yet include an interactive modeling facility. We

have to prepare cast and set models using the procedure described earlier (§2.3).

Two sets are required, one for the room where we first meet the robots and

another for the alien landscape. Both of these contain objects that are easily built

out of quadrics and so are straightforward to generate. Cast models are then

needed for the robots and the other visitors to the degree show and are again built

out of quadrics. The cast will often exhibit some form of internal motion as well.

An activated robot, for example, keeps his head fixed but swings his body with a

slight oscillatory action. We describe such motion by using an appropriate set of

poses (see §2.3.3), here we have used those depicted in fig. 5.7. A model

- 129 -

Figure 5.7. Motion Poses for a Robot Character

containing only a robot head and another model containing only a robot body

were also provided. These will make it possible for the animator to have more

control over the head and rotate it in a different direction from the rest of the

body (see §5.4.3). A colour plate showing the cast used for the animation

sequence can be found in Appendix B.

5.4.3 Defining the Animation

Once the models have been generated, careful planning or staging of the

animation is necessary. A detailed description of how the animator carried out his

plans is not needed here. We will concentrate on the occasions when a particular

strength or weakness of Controller became evident.

(i) Activating the robots

At the beginning of the sequence the robots are transformed from their dormant

state to their active state. This process was straightforward to carry out by using

Controller’s motion pose technique. The robot activation is a mechanical process

and so was modelled effectively by this method. The motions of the head and

wheels away from the body were interpolated using equation (3.4a) over [0,rc] and

thus appeared visually smooth. The head motion is depicted in fig. 5.8. The

Figure 5.8. A Robot’s Head Motion During its Activation

- 131 -

colour of the robots* eyes were also interpolated from black (when dormant) to

white (when activated) using the same method.

(ii) Plotting the path of a single object

Controller’s method of path planning was used effectively by the animator when

defining the motion of a single object The control that he had over both the

spatial and temporal aspects of the path allowed him to produce the exact motion

he wanted. The B spline editor, undo facility, and pencil test proved particularly

useful to him. Most of the motion in the final sequence was refined and

smoothed using the facilities offered by Controller.

(iii) Moving the cast in different directions

When many objects move at the same time and in different directions, care must

be taken to ensure that they do not collide with one another. The animator had to

consider this when all the robots left for the degree show (fig. 5.9). Using

Controller a visual check determined if the cast would collide. The proximity of

the motion paths was one guide as to whether this would occur but these paths

did not give an impression of the size of the character in the scene. Therefore

possible collisions might have been missed. Another method that proved useful

here was to generate a wire frame sequence of the action. Such a sequence was

fast to generate and identified several points in the action where adjustments were

needed. Some form of automatic collision detection in Controller would be

desirable, however, but has yet to be carried out.

(iv) Moving the cast in a procession

When the robots enter the dome they do so in a procession, that is, in single file

one behind the other. Although the animator could define each object’s path

individually to produce such a procession, this is unnecessarily tedious. We

therefore provided a new facility that enabled the animator to use the same

motion path for several objects with a specified time lag between the original

object and the current object. A still from the robot sequence demonstrating the

Figure 5.9. The Robots Leave for the Degree Show

robot procession is given in fig. 5.10. Note that there is a gap in this procession.

The animator has added more interest (or appeal) to the action by making a robot

break out of the procession and rush into the dome ahead of the others.

(v) A falling robot

The faulty robot falls to the ground with a crash at two points in the animation

sequence. The stagger facility described earlier in this chapter (§5.3.3) proved

useful here. Applied to the view point of the camera after the robot hits the

ground, the stagger gave the impression that the ground was shaking.

Figure 5.10. The Robots Arrive at the Dome

(vi) Head movements

After the faulty robot falls over for the first time, the chief shakes his head in

dismay and then turns his head towards the television monitor. So that the

animator can manipulate the head in this way, separate models of the robot’s head

and body were provided (fig. 5.11). The facility that allows a path to be occupied

by more than one member of the cast was again useful here. The animator began

by defining the path for the robot’s body. The head was then defined to occupy

the same path but without any time lag. As long as the head is maintained at the

correct height then the resulting robot appears no different from the others. Now,

however, the animator can set the orientation of the head independently from its

body and achieve the desired head movements.

The alternative to this approach is to use an articulated model of the robot

- 134 -

Figure 5.11. Models of a Robot’s Head and Torso

but a more complex interface is then needed to manipulate it. The animator has

to ensure that a movement is applied to the correct part of the model hierarchy so

that only the required components of the robot are affected. In our method the

animator can consider the head as a separate entity that he has defined to follow

the same track as the body. The body does not then have to be considered while

he is manipulating the head. We feel that this provides the animator with a more

natural way of defining the movements of the robot head and the results are just

as effective.

(vii) Holds

The cheapest way of generating a hold or pause in the action is to display the

same frame for some specified length of time. This technique was used in the

robot sequence but there are drawbacks. The resulting hold is stiff and frozen and

will often look unnatural. This occurred when the satellite dishes found on the

alien landscape suddenly stopped rotating owing to the specification of such a

pause. Even during a hold it looks far better if some motion continues to flow.

The satellite dishes should therefore have continued to rotate when the other

characters halted. The animator could have easily arranged for this to happen in

Controller but of course many more frames would then have needed to be

rendered. Owing to the animator’s deadline for completion, he opted for the least

expensive method.

- 135 -

(viii) Camera movements

Controller’s facilities for manipulating a camera were used extensively by the

animator. In the robot animation sequence tracks, zooms and pans were put to

good effect. At one point in the action the animator required the view point of

the camera to be inside the chief robot. We therefore allowed a path already

defined for a cast member to also be occupied by a camera. This enabled the

camera to exactly mimic the overall motion of the chief robot and so gave the

desired effect

(ix) Lighting

Providing effective illumination of a scene is a difficult task for the animator.

Using Controller he can position lights about a set and define their intensity. The

problem is that we do not know the extent of the illumination provided by them

until an example image has been rendered using the ray tracer. Often the

resulting scene is far too dark. We found that the best approach was to start with

a uniform even illumination of the set using light locations and intensities

determined at the modeling stage. If desired, the animator can then use Controller

to vary the default lighting.

5.4.4 The Final Touches

Having specified the data required to produce the robot animation, the individual

frames could be rendered. A wire frame version of each action was first

generated and viewed using the video facility (§4.6). This highlighted the

adjustments that needed to be made before the expensive ray tracer was invoked.

Controller can easily be reactivated at this stage to make the necessary changes.

The video facility is also useful for viewing a sequence that is double

framed. Double framing an action is a common technique for reducing the cost

of animation production. It involves using each frame twice so that the action can

be depicted in only half the number of frames that would otherwise be required.

Except for rapid movements, the human eye cannot detect whether an action has

- 136 -

been double or single framed. In the robot sequence, for example, every action

except for the camera stagger (staggers are more effective when they occur

quickly) was double framed. Note that it is the animator and not Controller who

has to define a motion path according to whether double or single framing is to

be used. It would be straightforward, however, to enhance Controller so that if an

action is to be doubled frame then only alternate frame positions are calculated.

The frames were then rendered using the ray tracer (see colour plates 5 and

6) and transferred onto video tape. Finally, the animation was completed by

adding a soundtrack composed by the animator. A local television company*

provided us with the facilities to apply the required music and sound effects onto

the video tape.

5.5 Summary and Conclusion

The methods described at the beginning this chapter show some of the ways in

which traditional principles can be used in computer animation. They enable

visually realistic animation to be generated quickly and cheaply. We do not want

to build into Controller too many facilities that will have infrequent use, however

(for example, the wind facility). Our aim is to provide the animator with a tool

box of animation techniques that can be combined in any manner. He will then

be able to carry out any animation effect that he desires. The examples given in

this chapter are meant to demonstrate how this can be done.

The way in which Controller is used to generate the robot sequence also

reinforces our claim that traditional skills should not be overlooked. The student

often exaggerated the action, added appeal, faired the motion, and so on.

Controller is being developed so that an animator can apply his craft in the

majority of cases. The production of the robot animation also helps us to assess

how usable Controller is at present. After an initial period of familiarisation with

the system we found that the student soon got an idea of its capabilities.

* HTV West, Bristol.

- 137 -

Although he needed periodic assistance throughout the production of the

animation, we have seen that he was able to effectively utilise many of

Controller’s facilities. We were also able to identify and implement new facilities

for our system. We feel that the results of this experience augur well for the

future of Controller.

- 138 -

Chapter 6

Conclusion

6.1 Introduction

At the beginning of this thesis we set out to:

(i) provide a system of animation planning that is straightforward to use

but at the same time keeps the animator in control;

(ii) enhance the animation effects attainable by incorporating the principles

of traditional animation.

We have been interested in producing animation for entertainment (rather than

scientific) applications and have developed techniques of planning animation

accordingly. In this final chapter we will consider how successful we have been

in satisfying the above aims and propose possible areas for future investigation.

6.2 Summary of Results

We can identify several areas where the work carried out during the thesis has

been worthwhile and these are summarised below.

6.2.1 Planning Animation

The Controller system for planning three dimensional computer animation has

been developed. At all stages of its operation Controller is intended to be

straightforward and flexible to use. To contribute to the success of this goal we

have:

- 139 -

• developed Controller as an interactive graphics system so that the

animator is provided with an immediate visual response;

• used kinematic techniques (rather than more complicated strategies) for

modeling motion;

• allowed the animator to undo or alter his specification at will;

• kept the implementation of Controller as simple as possible so that the

need for a complex interface is avoided.

We have experimented with a variety of methods that can be used to specify

an animation and made the best of these available in Controller. The animator

should not be offered too many facilities that he will rarely (if ever) use, however.

Instead we provide him with the necessary tools to perform his desired task and

let his skill determine the effectiveness of the results. The animator, and not the

animation system, controls the quality of the animation produced.

6.2.2 Adaptation of Conventional Animation Techniques

We have modelled motion by using uncomplicated kinematic methods that are

straightforward to use and can be evaluated quickly. At the same time, however,

we wanted to ensure that convincing animation could be produced. We found

that an effective approach was to make use of the principles of animation

developed by conventional animators. For example, an animator using Controller

can:

• use arcs when drawing tracks and so avoid motion that is mechanical in

appearance;

• time the motion of several objects to mimic the effects of mass;

• slow in and slow out the motion of an object both along its path and

between an interpolation;

• specify the extremes of an interpolation so that the resulting motion is

exaggerated.

The application of these techniques result in animation that is convincing in

an artistic rather than in a scientific sense and so is ideal for animation aimed at

- 140 -

the entertainment market We did not have to adhere to computationally

expensive physical laws to implement them and the animator is provided with the

familiar tools of his trade.

6.2.3 The Portability of Controller

Our approach of ‘faking reality* is cheaper to implement than a full dynamic

implementation and motion interpolations are fast to calculate. Controller has also

been written in the highly portable C programming language. These factors make

it feasible for Controller to be installed on machines where the computing power

available is limited (such as portable computers). Our system for animation

planning could therefore be made more widely available and offer many

animators the chance to experiment with the computer medium. The final

animation might still have to be rendered on a more powerful machine, however,

especially if realistic shaded images are required. The animation data then has to

be transferred to an appropriate host but this procedure should not present any

major problems.

6.3 Future Investigation

There are several areas where the techniques of planning animation developed

during the thesis could be improved and new techniques evolved.

6.3.1 Further use of the Traditional Principles of Animation

The use we have made of traditional animation principles have produced

promising results and there is scope here for further investigation. Several of the

principles described in chapter 1 have not yet been considered. Squash and

stretch, for example, should be provided so that the rigidity of moving objects is

reduced. Such an effect would be carried out at the rendering stage by applying

the appropriate deformations to the object. Within Controller we will need some

mechanism whereby the animator can define the amount of deformation required

and at what points in the action it should occur.

- 141 -

Controller is a key frame animation system and so it generates animation

from pose to pose. The alternative is to animate ‘straight ahead*, a method that

introduces more spontaneity into the action. The motion path technique of

planning animation is unsuitable for this purpose. Here the animator defines each

frame in sequence from the beginning of the scene to its end. To carry out this

procedure without some form of frame interpolation would be laborious, however.

Determining the best way of providing for this would be an interesting area to

develop.

Another possibility is to provide automatic anticipation of an action before it

is initiated. The animator would define the required action as usual but also have

the option of requesting it to be anticipated. The animation system would then

begin by calculating the ‘opposite’ of the defined motion over some specified

number of frames. For example, if the animator defines an object to move

quickly to the right of the set then this action could be anticipated by first moving

the object (in reverse) to the left of the set. Such a ‘wind-up* anticipation is often

found in animated cartoons when a character is chased off the scene (White

1986). Assisting the animator with follow through, overlapping action, and

secondary action could also be investigated.

6.3.2 Improvements to Controller

The prototype version of Controller is not without its flaws and several areas

could be improved. Defining the orientation of a cast member, for example,

would be aided by displaying a line drawing of the object whilst it is being

manipulated into different configurations. We also need to develop the way in

which the internal motion of the cast is modelled. One possibility is to use

articulated objects but this will also complicate the animator’s task of planning the

movements of such objects. Alternatively, the technique that we described in

chapter 5 for allowing several objects to share the same motion path could be

extended further. Note that the motion pose method need not be discarded

altogether as it is an effective and simple way of modeling repetitive motions.

- 142 -

The interpolation methods offered could also be improved and new ones

developed. For example, our automatic mass facility has only been used during

the definition of a motion path. Mass could be considered at the parametric

animation stage as well. Again, however, such a facility is only needed when

there are many cast members involved in a scene. We have not yet investigated

how the family of acceleration curves formula can be used to model the forces

applied to objects (see chapter 3).

Other possibilities include varying the direction in which motion paths can

be traversed, and the provision of a facility to coordinate the animation with its

soundtrack.

- 143 -

References

Armstrong, W.W. and Green, M. W. (1985). The Dynamics of Articulated Rigid

Bodies for Purposes of Animation. The Visual Computer 7, pp. 231-240.

Armstrong, W.W. Green, M. and Lake, R. (1986). Near-Real-Time Control of

Human Figure Models. Proc Graphics Interface ’86, pp. 147-151.

Amaldi, B. Dumont, G. Hegron, G. Magnenat-Thalmann, N. Thalmann D. (1989).

Animation Control with Dynamics. Proceedings o f Computer Animation ’89,

pp. 113-123.

Arya K. (1986). A Functional Approach to Animation. Computer Graphics

Forum 5, pp. 297-312.

Badler, N.I. O’Rourke, J. and Toltzis, H. (1979). A Spherical Representation of a

Human Body for Visualizing Movement. Proc. o f the IEEE 67(10), pp.

1397-1403.

Badler, N.I. Smoliar, S.W. (1979). Digital Representations of Human Movement.

Computing Surveys 11(1), pp. 19-38.

Badler, N.I. (1989). Artificial Intelligence, Natural Language, and Simulation for

Human Animation. Proceedings of Computer Animation ’89, pp. 19-31.

Baeker, R. M. (1969). Picture-Driven Animation. Proc. Spring Joint Computer

Conference, pp. 273-288.

Van Baerle, S. (1987). Combining Computer Graphics and Traditional

Animation. Eurographics 87 Character Animation Tutorial, pp. 134-145.

Barr, A. H. (1984). Global and Local Deformations of Solid Primitives. Proc.

SIGGRAPH ’84. Computer Graphics 18(3), pp. 21-30.

- 144 -

Barsky, B.A. and Greenberg, D.P. (1980). Detemining a Set of B-Spline Control

Vertices to Generate an Interpolating Surface. Computer Graphics and

Image Processing 14, pp. 203-226.

Barzel, R. and Barr, A.H. (1988). A Modeling System Based On Dynamic

Constraints. Proc. SIGGRAPH ’88. Computer Graphics 22(4), pp. 179-188.

Bethel, E.W. and Uselton, S.P. (1989). Shape Distortion in Computer-Assisted

Keyframe Animation. Proceedings o f Computer Animation ’89, pp. 3-17.

Brotman, L.S. and Netravali, A.N. (1988). Motion Interpolation by Optimal

Control. Proc. SIGGRAPH *88. Computer Graphics 22(4), pp. 309-315.

Burtnyk, N. and Wein, M. (1971). Computer Generated Key-Frame Animation.

Journal o f the SMPTE 80, pp. 149-153.

Burtnyk, N. and Wein, M. (1976). Interactive Skeleton Techniques for Enhancing

Motion Dynamics in Key Frame Animation. Communications o f the ACM

19(10), pp. 564-569.

Calvert, T.W. Chapman, J. and Patla, A. (1980). The Integration of Subjective

and Objective Data in the Animation of Human Movement. Proc.

SIGGRAPH '80. Computer Graphics 14(3), pp. 198-203.

Catmull, E. (1978). The Problems of Computer-Assisted Animation. Proc.

SIGGRAPH f78. Computer Graphics 12(3), pp. 348-353.

Catmull, E. (1979). New Frontiers in Computer Animation. American

Cinematographer, pp. 1000-1053.

Chuang, R. and Ends, G. (1983). 3-D Shaded Computer Animation - Step by

Step. IEEE Computer Graphics and Applications, December, pp. 18-25.

Cook, R.L. (1986). Stochastic Sampling in Computer Graphics. ACM

Transactions on Graphics 5(1), pp. 51-72.

Denber, M.J and Turner, P.M. (1986). A Differential Compiler for Computer

Animation. Proc. SIGGRAPH ’88. Computer Graphics 20(4), pp. 21-27.

- 145 -

Ends, G. (1986). Computer Animation - 3D Motion Specification and Control.

SIGGRAPH *86 Tutorial Notes.

Foley, J.D. and Van Dam, A. (1982). Fundamentals o f Interactive Computer

Graphics. Addison Wesley.

Forest, L. Magnenat-Thalmann, N. and Thalmann, D.(1986). Integrating Key-

Frame Animation and Algorithmic Animation of Articulated Bodies. Proc.

o f Computer Graphics Tokyo *86, pp. 263-273.

Forest, L. Rambaud, R. Magnenat-Thalmann, N. and Thalmann, D. (1986b).

Keyframe-Based Subactors. Proc Graphics Interface *86, pp. 213-216.

Glassner, A.S. (1988). Spacetime Ray Tracing for Animation. IEEE Computer

Graphics and Applications, March, pp. 60-70.

Gomez, J.E. (1984). Twixt: A 3D Animation System. Proc. Eurographics *84,

pp. 121-133.

Grosso, M.R. Quach, R.D. and Badler, N.I.(1989). Anthropometry for Computer

Animated Human Figures. Proceedings of Computer Animation '89, pp. 83-

95.

Hahn, J.K. (1988). Realistic Animation of Rigid Bodies. Proc. SIGGRAPH *88.

Computer Graphics 22(4), pp. 299-308.

Hanrahan, P. and Sturman, D. (1985). Interactive Animation of Parametric

Models. The Visual Computer 1, pp. 260-266.

Herbison-Evans, D. (1978). NUDES 2: A Numeric Utility Displaying Ellipsoid

Solids, Version 2. Proc. SIGGRAPH *78. Computer Graphics 12(3), pp.

354-356.

Herbison-Evans, D. (1982). Real-Time Animation of Human Figure Drawings

with Hidden Lines Omitted. IEEE Computer Graphics and Applications,

November, pp. 27-33.

- 146 -

Hubschman, H. and Zucker, S.W. (1982). Frame-to-Frame Coherence and the

Hidden Surface Computation: Constraints for a Convex World. ACM

Transactions on Graphics 1(2), pp. 129-162.

John, N.W. and Willis, P.J. (1989). The Controller Animation System. Computer

Graphics Forum 8(2), pp. 133-138.

John, N.W. and Willis, P.J. (1989b). Some Methods to Choreograph and

Implement Motion in Computer Animation. Proceedings o f Computer

Animation ’89, pp. 125-139.

Kallis, S.A. (1971). Computer Animation Techniques. Journal o f the SMPTE

80(3), pp. 145-148.

Kingslake, R. (1985). An Introductory Course in Computer Graphics.

Chartwell-Bratt Studentlittetatur.

Kochanek, D.H.U and Bartels, R.H. (1984). Interpolating Splines with Local

Tension, Continuity, and Bias Control. Proc. SIGGRAPH ’84. Computer

Graphics 18(3), pp. 33-41.

Korein, J. and Badler, N.I. (1983). Temporal Anti-Aliasing in Computer

Generated Animation. Proc. SIGGRAPH '83. Computer Graphics 17(3), pp.

377-388.

Korein, J.U. and Badler, N.I. (1982). Techniques for Generating the Goal-

Directed Motion of Articulated Structures. IEEE Computer Graphics and

Applications, November, pp. 71-81.

Lansdown, J. (1983). Object and Movement Description Techniques for

Animation: An Informal Review. First Australian Conference on Computer

Graphics, pp. 82-85.

Lasseter, J. (1987). Principles of Traditional Animation Applied to 3D Computer

Animation. Proc. SIGGRAPH ’87. Computer Graphics 21(4), pp. 35-44.

- 147 -

Lewell, J. (1985). Behind the Scenes at Hanna-Barbera. Computer Pictures, pp.

15-43.

Lundin, R.V. (1984). Motion Simulation. Proc. NICOGRAPH ’84, pp. 2-10.

Madsen, R. (1970). Animated Film. Interland Publishing Inc.

Magnenat-Thalmann, N. and Thalmann, D. (1985). Computer Animation Theory

and Practice Springer-Verlag.

Magnenat-Thalmann, N. and Thalmann, D. (1985b). Subactor Data Types as

Hierarchical Procedural Models For Computer Animation. Proc.

Eurographics ’85, pp. 121-128.

Magnenat-Thalmann, N. and Thalmann, D. (1985c). Three-Dimensional

Computer Animation: More an Evolution Than a Motion Problem. IEEE

Computer Graphics and Applications, October, pp. 47-57.

Magnenat-Thalmann, N. Thalmann, D. and Fortin, M. (1985). Miranim: An

Extensible Director-Orientated System for the Animation of Realistic Images.

IEEE Computer Graphics and Applications, March, pp. 61-73.

Magnenat-Thalmann, N. and Thalmann, D. (1986). Special Cinematographic

Effects With Virtual Movie Cameras. IEEE Computer Graphics and

Applications, April, pp. 43-50.

Magnenat-Thalmann, N. and Thalmann, D. (1986b). Artificial Intelligence in

Three-Dimensional Computer Animation. Computer Graphics Forum 5, pp.

341-348.

Magnenat-Thalmann, N. and Thalmann, D. (1988). Construction and Animation

of a Synthetic Actress. Proc. Eurographics ’88, pp. 55-66.

Magnenat-Thalmann, N. (1989). The Problematics of Facial Animation.

Proceedings o f Computer Animation ’89, pp. 47-55.

Marino, G. Morasso, P. and Zaccaria, R. (1985). NEM: A Language for

Animation of Actors and Objects. Proc. Eurographics ’84, pp. 129-140.

- 148 -

Max, N. (1989). A 3-D Error Diffusion Dither Algorithm for Half-Tone

Animation on Bitmap Screens. Proceedings of Computer Animation ’89, pp.

169-179.

Miller, G.S.P. (1988). The Motion Dynamics of Snakes and Worms. Proc.

SIGGRAPH ’88. Computer Graphics 22(4), pp. 169-178.

Millerson, G. (1973). TV Camera Operation, Focal Press.

Moore, M. and Wilhelms, J. (1988). Collision Detection and Response for

Computer Animation. Proc. SIGGRAPH ’88. Computer Graphics 22(4), pp.

289-298.

Noma, T. and Kunii, T.L. (1985). ANIMENGINE: An Engineering Animation

System. IEEE Computer Graphics and Applications, October, pp. 24-33.

Ostby, E. (1987). Survey of Computer Graphics for Character Animation.

Eurographics ’87 Tutorial.

Parke, F.I. (1982). Parameterized Models for Facial Animation. IEEE Computer

Graphics and Applications, November, pp. 61-68.

Pintado, X. and Fiume, E. (1988). Grafields: Field-Directed Dynamic Splines for

Interactive Motion Control. Proc. Eurographics ’88, pp. 43-54.

Potmesil, M. and Chakravarty, I. (1983). Modeling Motion Blur in Computer-

Generated Images. Proc. SIGGRAPH ’83. Computer Graphics 17(3), pp.

389-398.

Pueyo, X. and Tost, D. (1988). A Survey of Computer Animation. Computer

Graphics Forum 7, pp. 281-300.

Reeves, W.T. (1981). Inbetweening for Computer Animation Utilizing Moving

Point Constraints. Proc. SIGGRAPH ’81. Computer Graphics 15(3), pp.

263-269.

Reeves, W.T. (1983). Particle Systems - A Technique for Modeling a Class of

Fuzzy Objects. ACM Transactions on Graphics 2(2), pp. 91-108.

- 149 -

Reeves, W.T. (1985). Approximate and Probabilistic Algorithms for Shading and

Rendering Structured Particle Systems. Proc. SIGGRAPH ’85. Computer

Graphics 19(3), pp. 313-322.

Reynolds, C. (1987). Flocks, Herds, and Schools: A Distributed Behavioral

Model. Proc. SIGGRAPH ’87. Computer Graphics 21(4), pp. 25-34.

Reynolds, C.W. (1982). Computer Animation with Scripts and Actors. Proc.

SIGGRAPH ’82. Computer Graphics 18(3), pp. 289-296.

Schlag, J.F. (1986). Eliminating the Dichotomy Between Scripting and

Interaction. Proc. Graphics Interface ’86, pp. 202-206.

Selbie, S. (1989). An Introduction to the Use of Dynamic Simulation for the

Animation of Human Movement. Proceedings o f Computer Animation ’89,

pp. 33-45.

Shelley, K.L. and Greenberg, D.P. (1982). Path Specification and Path

Coherence. Proc. SIGGRAPH ’82. Computer Graphics 16(3), pp. 157-166.

Singh, B. Beatty, J.C. Booth, K.S. and Rhyman, R (1983). A Graphics Editor for

Benesh Notation. Proc. SIGGRAPH ’83. Computer Graphics 17(3), pp. 51-

62.

Smyrl, J.L. (1978). An Introduction to University Mathematics, Hodder and

Stoughton.

Spackman, J. N. (1989). The Use and Automatic Generation o f Scene

Decompositions for Accelerated Ray Tracing, Ph.D thesis, University of

Bath.

Spencer-Smith, T. and Wyvill, G. (1989). Four Dimensional Splines for Motion

Control in Computer Animation. Proceedings o f Computer Animation ’89,

pp. 153-167.

Steketee, S.N and Badler, N.I. (1985). Parametric Keyframe Interpolation

Incorporating Kinematic Adjustment and Phrasing Control. Proc.

- 150 -

SIGGRAPH ’85. Computer Graphics 19(3), pp. 255-262.

Stem, G. (1983). Bbop - A Program for 3-Dimensional Animation. Proc.

NICOGRAPH ’83, pp. 403-404.

Stroustrup, B. (1986). The C++ Programming Language Addison Wesley.

Thalmann, D. (1989). Motion Control: From Keyframe to Task-Level Animation.

Proceedings o f Computer Animation ’89, pp. 3-17.

Thomas, F. and Johnstone, O. (1981). Disney Animation The Illusion Of Life.

Abbeville Press.

Thomas, F. (1984). Can Classic Disney Animation be Duplicated on the

Computer? Computer Pictures 2(4), pp. 20-26.

Tost, D. and Pueyo, X. (1988). Human Body Animation: A Survey. The Visual

Computer 3, pp. 254-264.

Wallace, B.A. (1981). Merging and Transformation of Raster Images for Cartoon

Animation. Proc. SIGGRAPH ’81. Computer Graphics 15(3), pp. 253-262.

Waters, K. (1987). A Muscle Model for Animating Three-Dimensional Facial

Expression. Proc. SIGGRAPH ’87. Computer Graphics 21(4), pp. 17-24.

Whitaker, H. and Halas, J. (1981). Timing for Animation. Focal Press Ltd

White, T. (1986). The Animator’s Workbook. Watson-Guptill.

Wilhelms, J. and Barsky, B.A. (1985). Using Dynamic Analysis to Animate

Articulated Bodies Such as Humans and Robots. Proc. Graphics Interface

’85, pp. 97-104.

Wilhelms, J. (1986). VIRYA - A Motion Control Editor for Kinematic and

Dynamic Animation. Proc. Graphics Interface ’86, pp. 141-146.

Wilhelms, J. (1987). Dynamics for Everyone. University of California, Santa

Cruz.

Wilhelms, J. (1987b). Toward Automatic Motion Control. IEEE Computer

Graphics and Applications, April, pp. 11-22.

Witkin, A. and Kass, M. (1988). Spacetime Constraints. Proc. SIGGRAPH ’88.

Computer Graphics 22(4), pp. 159-168.

Wyvill, B. McPheeters, C. and Garbutt, R. (1985). A Practical 3D Computer

Animation System. The BKSTS Journal, pp. 328-332.

Zeltzer, D. (1982). Representation of Complex Animated Figures. Proc.

Graphics Interface *82, pp. 205-211.

Zeltzer, D. (1982b). Motor Control Technique for Figure Animation. IEEE

Computer Graphics and Applications, November, pp. 53-59.

Zeltzer, D. (1985). Towards an Integrated View of 3-D Computer Animation.

The Visual Computer I , pp. 249-259.

Appendix A

Three Dimensional Model Descriptions

This appendix contains an example of the object and lighting decription files

required to model a three dimensional scene. Both the ray tracer and the mesh

renderer use these description files. The object description given here is used to

generate the head of the ‘robot’ character (see chapter 5).

Note that the models are formed in a left handed coordinate system.

- 153 -

X M A X 2 5 6
Y M A X 2 5 6
S C R E E N 1.0 1.0 1 .0
V I E W oo

1 . 0 - 6 . 0
S C E N E _ C E N T R E 0.0 1 . 0 oo

S C R _ R O T oo

B C O L O R 0 0 0
F O G 0.0

L T _ T Y P E 1
L T _ I N T E N S I T Y 1.0
L T _ O R I G I N - 8.0 10. -21
L T _ C O L O R 1.0 1 . 0 1.0

L T _ T Y P E 0
L T _ I N T E N S I T Y 1.0
L T _ O R I G I N 00 o 10. -21
L T _ C O L O R 1.0 1 .0 1.0

image resolution

screen dimensions
location of view point
location towards which the viewer points
rotation of the screen
background colour

point light source

infinite light source

A Lighting Model

- 154 -

M A T E R I A L r e d m e t a l
C O L O R 1 . 0 0 . 0 0 . 0
S U R F A C E 1 . 0
R E F L E C T I O N 0 . 0
M I R R O R 0 . 0
T R A N S L U C E N C Y 0 . 0
A T T E N _ R A T E 0 . 0
R E F R A C T I O N 1 . 0

M A T E R I A L b l a c k e y e s
C O L O R 0 0 0
S U R F A C E 1 . 0
R E F L E C T I O N 0 . 0
M I R R O R 0 . 0
T R A N S L U C E N C Y 0 . 0
A T T E N _ R A T E 0 . 0
R E F R A C T I O N 1 . 0

M A T E R I A L c o r n e a
C O L O R 1 . 0 1 . 0 1 . 0
S U R F A C E 1 . 0
R E F L E C T I O N 0 . 0
M I R R O R 0 . 0
T R A N S L U C E N C Y 0 . 0
A T T E N _ R A T E 0 . 0
R E F R A C T I O N 1 . 0

P R I M I T I V E h e a d
NAME S P H E R E
C E N T E R 0 . 0 1 . 0 0 . 0
R O T A T I O N O x O y O z
S C A L E 0 . 7

P R I M I T I V E h e a d 5
NAME S P H E R E
C E N T E R 0 . 0 1 . 0 0 . 0
R O T A T I O N O x O y O z
S C A L E 0 . 6 7 5

P R I M I T I V E h e a d 2
NAME C U B E
C E N T E R 0 . 0 1 . 8 0 . 0
R O T A T I O N O x O y O z
S C A L E 1 . 6 1 . 6 1 . 6

P R I M I T I V E h e a d 3
NAME C U B E
C E N T E R . 9 5 1 . 9 5 - 1 . 4
R O T A T I O N O x O y Oz
S C A L E 1 . 8 1 . 8 2 . 0

P R I M I T I V E h e a d 4
NAME C U B E
C E N T E R - 0 . 9 5 1 . 9 5 - 1 . 4
R O T A T I O N O x 0 y Oz
S C A L E 1 . 8 1 . 8 2 . 0

P R I M I T I V E 1 e y e
NAME S P H E R E
C E N T E R 0 . 2 5 1 . 2 5 - 0 . 5
R O T A T I O N O x 0 y O z
S C A L E 0 . 0 7 5

P R I M I T I V E r e y e
NAME S P H E R E
C E N T E R - 0 . 2 5 1 . 2 5 - 0 . 5
R O T A T I O N O x 0 y O z
S C A L E 0 . 0 7 5

D I S P L A Y h e a d 2 * (h e a d - h e a d 5) -
h e a d 3 - h e a d 4

M A D E _ O F r e d _ m e t a l

D I S P L A Y h e a d 2 * h e a d 5
M A D E _ O F c o r n e a

D I S P L A Y l _ e y e
M A D E _ O F b l a c k _ e y e s

D I S P L A Y r _ e y e
M A D E _ O F b l a c k _ e y e s

The Object Model used for the ‘Robot’ Character’s Head

Appendix B

Colour Plates

The following colour plates are divided into two categories. The first four plates

illustrate the Controller animation system in use. The final two plates are

example frames taken from the robot animation, “ Hit the Show, MAC!” . They

have been rendered using the ray tracer.

Plate 1: Controller’s Title Page

Plate 2: A Cast Menu

Plate 3: Defining the Height Parameter along a Motion Path

Plate 4: Motion Paths from the Specification of the Robot Animation

Plate 5: The Robots soon after they have been Activated

Plate 6: The Procession of Robots Entering the Dome

- 156

Conhroller

Plate 1. Controller’s Title Page

Plate 2. A Cast Menu

- 157 -

Plate 3. Defining the Height Parameter along a Motion Path

A

1 ! 1 f t 1 '
\

m

r

/

Plate 4. Motion Paths from the Specification of the Robot Animation

- 158 -

Plate 5. The Robots soon after they have been Activated

Plate 6. The Procession of Robots Entering the Dome

Appendix C

Extract from the Robot Storyboard

This appendix contains an example of the storyboard used during the production

of the robot animation, “ Hit the Show, MAC!” .

Statistics

Animation length:

Frames generated:

Approximate rendering time per frame:

Total CPU time for animation:

Time spent on the production:

68 seconds

420

3 hours CPU time

1,230 hours

3 months

Credits

Designer: Peter Ming Wong, Bath College of Higher Education

Producer: Nigel John, University of Bath

Ray Traced Images: John Spackman, University of Bath

Video Transfer: CAL Videographics, London

Soundtrack: HTV West, Bristol

scene: 1
action: camera shot showing

room and dormant robots;
sound: atmosphere.

scene: 1
action: robots’ heads raise;
sound: William Tell Overture,

bleeps.

scene: 1
action: the chief inspects his

subordinates;
sound: William Tell Overture.

- 161 -

scene: 1
action: robots leave for

the degree show;
sound: William Tell Overture,

squeaky wheels.

 - ■ /

scene: 2
action: robot procession

enters dome;
sound: William Tell Overture.

scene: 2
action: faulty robot is

knocked over;
sound: *crashing’ noises.

Appendix D

Publications

The Controller Animation System”

This paper co-authored by P.J. Willis was presented at Eurographics(UK) in

March 1987. It was published in Computer Graphics Forum 8(2), June 1989.

Some Methods to Choreograph and Implement Motion in Computer Animation”

This paper co-authored by P.J. Willis was presented at Computer Animation

’89 in June 1989. It was published in State-of-the-Art in Computer

Animation, Springer-Verlag, 1989.

133

The Controller Animation System

Nigel W. John and Philip J. Willis*

Abstract

One of the ways in which computer animation can be
generated is to use interactive graphics systems. In this
paper we describe Controller, an animation system of
this type. We concentrate on the operation of Con
troller and detail how an animator can plan and chore
ograph the motion of objects and cameras. We have
intended to provide a system that gives the animator as
much control as possible subject to keeping the inter
face simple to operate.

1. Introduction

Computer animation systems fall into a number of
different categories1, with their own advantages and
disadvantages. Typically there is a division between
interactive systems and scripted systems producing ani
mation in two or three dimensions. The methods used
within one of these categories can also follow quite
different approaches. For example, an interactive sys
tem could use either key framing techniques or path
specification to develop motion.

In this paper we describe Controller, a system to
produce three dimensional computer animation. We
have concentrated here on a description of the user
interface, but of equal importance have been the
methods used to implement the facilities it offers. We
decided to build an interactive system using path
specification, with the intention of making it flexible
and easy to use. However, why is another animation
system needed at all?

2. Generating Motion
Whether we are concerned with traditional or computer
generated animation we have to find ways of making
objects move, yet different methods of producing
motion have been developed within the two mediums.

In computer animation we are currently seeing a
progression from the use of kinematics to the use of
dynamics1'3. With kinematics some criterion is used to

This paper was presented at the 7th Annual EURO
GRAPHICS (UK) Conference, Manchester, March 29-
31, 1989.

* Computing Group
School of Mathematical Sciences
University of Bath
Bath, Avon, UK

calculate the position of the moving object over time
However, more realistic results will be obtained if the
motion is modelled using an appropriate physical law,
such as one of the laws of dynamics. The cost is an
increase in computation time, but there is also an
increase in the amount of automation in the system
(and arguably less fine control for the animator). In
our animation system emphasis has been placed on giv
ing the animator as much control as possible subject to
keeping it simple to operate.

In contrast traditional animation is not always
concerned with whether the motion required is possible
in the real world. For example, when a cartoon charac
ter is chased over the edge of a cliff he does not fall
immediately. He will run on in mid air for a few
seconds before he realises that he is no longer on solid
ground and only then will he fall. Here the animator is
more interested in entertaining the audience, and
therefore needs to make the motion look right in an
artistic rather than in a scientific sense. Traditional ani
mators have developed a number of principles to help
achieve effects such as this. A summary of some of
them follows and further details can be found in the
literature4-6.
Staging

Make sure that the action is well laid out and
prevent the audience from getting confused.

Slow in and slow out
Space successive frames to make the moving
object slow down or speed up to ensure smooth
motion transitions.

Anticipation
Let the audience know what is about to happen
by using a preparatory move e.g. swing a leg
backwards before kicking a ball.

Tuning
The timing depends on the number of drawings
being used for an action. It can be used to
emphasise the weight and size of a moving object.

Arcs
Motion will look less mechanical if the path of the
moving object traces out a curve rather than a
straight line.

Follow through and overlapping action
Make sure that an action does not end suddenly
and determine if it will affect any subsequent
action.

North-Holland
Computer Graphics Forum fi (1989) 133-138

134 N. W. John el al. / The Controller Animation System

Secondary action
Enhance the main action with smaller secondary
actions.

Squash and stretch
Deform a moving object in order to remove the
appearance of rigidity.

Exaggeration
Exaggerating an action can help it appear more
realistic, or at least caricature reality.

Note that not all of these principles conform to any
physical laws. Greater use of these principles in com
puter animation has been advocated by Van Baerle7,
and Lassetef4 and they have been a guideline in the
design of Controller.

3. Designing an Animation System

We decided to model the interface of our animation
system on a television control room. To determine the
facilities that should be offered by our system we con
sidered the activities which are monitored from such a
control room.

Firstly the set for the scene to be filmed is built.
Cameras, lighting and microphones must then be posi
tioned and set up. Various test shots may be made to
establish camera paths and actor position and move
ment. Cast and crew must learn their scripts so that
they know what they should be doing during the scene.

When filming takes place the programme con
troller will be coordinating all movements, special
effects, and giving instructions where necessary.

We chose this studio model with the intention of
creating from it a user friendly interactive graphics sys
tem in which the animator becomes the programme
controller. At this stage therefore the animator is pri
marily concerned with choreographing the action: we
also have work in hand on the more specialised task of
animating the individual characters but that is not
reported in this paper.

Before proceeding to explain the facilities that
Controller provides we briefly describe the equipment
we have available.

4. The Graphics Environment
The Graphics Group at Bath University work with two
Orion-1/05 super minicomputers running under the
UNIX 4.2 BSD operating system. Other hardware
includes two eight-bit colour displays with a resolution
of 1280 by 1024 pixels, two digitising tablets with four-
button pucks, a colour digitizer and equipment for
automatic screen photography at 35mm still and 16mm
cine.

Software in the group is written in the C program
ming language. It includes a library of graphics opera
tions and a variety of tools used in conjunction with
the above hardware. As well as providing the interface
between the screen and the tablet, this library offers the
usual drawing facilities, colour control, etc. We have a
state of the art ray tracer and can also render meshes.

We thus have a highly interactive system with
good quality raster scan colour displays, encouraging us
to write interactive rather than batch-oriented pro
grams.

5. Producing Animation Using Controller

5.1. Overview

Controller has been developed so that options are
selected via menus, and parameters are set using valua
tor simulators (e.g. dials and scales). At the top level
the animator can either accumulate animation data by
dealing with set, cameras, lights or cast options, or con
vert the data into a scene model for each frame.
Depending on his choice the appropriate sub-menu or
valuator is displayed, and the system will wait for
further interaction.

We will now look in more detail at the operation
of each part of Controller, and consider some of the
thinking behind it.

5.2. Choosing a Set
A number of simple scene models have been produced
for experimental purposes. When the animator wishes
to select a set a front elevation of each set is displayed
on the graphics screen and the puck can be used to
pick the one that is required. We prefer to use a front
elevation because this gives a good feel for the appear
ance of the set. Once a set has been selected its plan
view is displayed at a resolution of 1024 by 1024 pixels.
It is on this plan view that most of the movement is
planned by a combination of direct drawing with some
mechanical assistance. The user also specifies the scene
number and start frame number at this stage.

53. Cameras, Cast and lights

In general an animator will select one of these items
and then plan its movement. The process of selecting a
cast member is similar to that of a set. For each new
cast member a model is produced and an appropriate
view rendered. These views are displayed on the graph
ics screen and the animator chooses the one he wants.
Cameras and lights are numbered and so are selected
from menu options, one entry for each camera and one
for each light.

N. W. John et al. / The Controller Animation System 135

The animator can now begin to stage the action
by defining a path around the set for the chosen cam
era, cast member or light.

S.4. Defining a Path

Firstly a path is plotted onto the plan view of the set.
In general we have to define a three dimensional path
using a two dimensional device, so we consider first
only the xz plane. The extension into three dimensions
by the setting of the object’s height is described later.
One of the principles of traditional animation explains
that natural movement tends to follow arcs rather than
straight lines. The use of B splines is ideal for this task
as it produces a smooth curved path that can easily be
altered locally. The animator thus draws a series of
(rubber-banded) straight line segments onto the plan
view of the set in order to approximate the desired path
(Figure la). The end points of these segments are the
points to be interpolated by the spline. These points
are used to calculate the control vertices of the spline
using a method described by Barsky and Greenberg8.

m itiai fram e p osition

Figure la. Defining the shape of the path

jcontrol vertex

The B spline curve is then calculated and drawn (Fig
ure lb). The animator can easily adjust the path by
selecting a control vertex and moving it to a new posi
tion. Only the two spline segments immediately before
and after the changed control vertex need be redrawn
because each control vertex has only a local influence.

The option of using straight lines to define a path
is still available to the animator as this is more
appropriate in some cases. For example, a camera
often tracks along a straight line.

So far we have only been generating positional
information, without any reference to time. Therefore
when the animator is happy with the path the next step
is to decide where the object should be at each frame of
the scene. This is an important stage in determining
the realism of the motion achieved.

5.4.1. Motion Planning
Moving objects can accelerate, move at a constant
speed, or decelerate. We have designed Controller so
that these three modes of motion can be combined in
any manner. It is left to the animator to dictate
whether the result appears natural or unnatural.

The animator is presented with a menu of the
three modes of motion. To specify a segment of
motion he selects the mode required, and enters the
duration of this segment in terms of the number of
frames. The necessary frame positions are then calcu
lated using the appropriate modelling function, and
plotted onto the path. For example, in Figure 2a the
animator has specified that the object should accelerate
for ten frames. If the result is unsatisfactory it can be
undone and another attempt made. Controller keeps

Cnsfc Speed

Decelerotton
/

motion menu

\ !
\ 1

4

i
f \
« V
? V
1

\

Figure lb. The B spline path with its control vertices Figure 2a. Accelerating along the path

136 N. W John et al. / The Controller Animation System

Cnsfc Speed

D e c e le ro k io n

RcceIoration

I

Figure 2b. Continuing along the path at a constant
speed

Note that we are only defining the overall motion
about the set. This is satisfactory for cameras and
lights, but a member of the cast will also have its own
internal movement, such as limb motion. Controller
only takes a very simplified approach to achieve this at
present. For a cast member enough poses are created
to depict the motion style being exhibited and each
pose will then be used in turn at successive frame posi
tions. Figure 3 shows three poses of the pacman char
acter used to depict his chomp.

S.5. Setting the Values of an Object’s Parameters

A variety of parameters can be associated with each
frame and can be made to change dynamically. As
soon as the frame positions along the object’s path have
been determined parameter values can be specified at
certain key frames and Controller will then interpolate
across the in-between frames. The animator selects (on
screen) a start and end frame position and gives the

track of the current speed attained by the object at the
end of each motion segment and uses this to ensure
that a smooth carry on is obtained at the start of the
next motion segment (Figure 2b). The animator will be
warned if the specification he requires is unrealistic.
For example, he may ask for a stationary object to
move at a constant speed without first accelerating it
from rest. The warning can be ignored, however, as the
anim ator may actually want such an effect. The timing
of the motion by the animator is thus very flexible, and
he can easily achieve effects such as slow in and slow
out.

If the animator desires, Controller can automati
cally take into account the weight of an object. He has
to inform Controller what the weight is (using an arbi
trary unit of weight) and the modelling functions will
then use this value to ensure that fighter objects
accelerate and decelerate in less time than heavier
objects.

height valuator

I
selected frame positions

Figure 4. Setting the height

1

iiiiii

3.

Figure 3. Motion poses

N. W. John et al. / The Controller Animation System 137

value of the parameter being set at these points. The
in-between values are then calculated and assigned to
the intermediate frames. It is just as important to con
sider traditional animation principles for this calcula
tion as it was when the position along the path was
being established.

For example, to complete the definition of a three
dimensional path the height of the object must be set.
A suitably scaled valuator is used to set the height at
the end frame positions (Figure 4). The animator can
then choose the criterion for calculating the height at
the in-between frames from the following:

Linear
The total height difference is divided equally
between all the frames involved.

Faired
The height difference is divided so that successive
increments are increasing at the b e g in n in g, and
decreasing at the end.

Gravity
Successive increments in the height are calculated
as if the object is falling or rising under gravity.

Constant
All the in-betweens are assigned the same value.

Similar methods are used when the animator sets the
value of other parameters. Hence a camera can be
made to zoom by changing its lens angle, its heading
can be set, and it can be tilted. Camera heading can be
fixated on a particular point in the scene, it can be
tangential to its motion, it can rotate or it can have a
fixed heading regardless of motion. The heading of the
cast and lights may also be set and the intensity of a
light varied.

5.6. Using the Animation Data
The animator will need to preview the results of his
planning and then make any necessary adjustments.
To achieve this Controller offers a pencil test facility
which presents the user with an animated line drawing
on the screen. This test can be of either a cast member
or of a camera. The animator uses the path on the
screen to select a range of frames over which the pencil
test is to be performed. If the object is a camera then
the set view at each position along the path is calcu
lated and displayed. At this stage none of the cast
members are shown. If the object is a cast member it
is also necessary to specify the camera it is to be viewed
from. The sequence presented is that resulting from
a n im a tin g both this camera and the cast member for
the selected frames. It shows the set and the selected
cast member only.

At the end of a session all the information col
lected is written to a data file. The animator can load
this file back into Controller in order to add further
detail, or he can use it to generate a scene model for
each frame of the film. During this frame generation
stage the animator interacts with the system, coordinat
ing and controlling all the data available. He has to
decide which camera is to be used at each frame and to
make sure that the cast are activated at the correct
time. He also decides how the frames are to be ren
dered and at what resolution. The fast wire frame
Tenderer can be used to preview the animation
sequence before the more time consuming ray tracer is
evoked.

Once rendering is complete it only remains to put
the finished frames onto film or video.

6. Summary and Conclusions
We have described how an anim ator can use Controller
to generate computer animation sequences. He should
be able to apply the traditional animation principles
and in many cases Controller will assist him in doing
this. The animator should also find himself in complete
control of what he wants to achieve.

We have been using Controller as a test bed for
experimenting with computer animation techniques. It
is intended to offer an alternative to the more complex
systems that utilise the laws of dynamics. The basis of
motion in our system is kinematics, but building on
existing kinematic techniques in order to improve
results. This is where the main thrust of the future
development of Controller will be.

Acknowledgements

We would like to thank all the members of the graphics
group for their help and suggestions, and the U.K. Sci
ence and Engineering Research Council for funding the
project.

References

1. Jane Wilhelms, “Toward Automatic Motion Con
trol,” IEEE Computer Graphics and Applications,
pp. 11-22 (April 1987).

2. Richard V. Lundin, “Motion Simulation,” in
Nicograph ’84 Proceedings, Tokyo (1984).

3. Nadia Magenat-Thalmann and Daniel Thalmann,
“Three-Dimensional Computer Animation: More
an Evolution Than a Motion Problem,” IEEE
Computer Graphics and Applications, pp. 47-57
(October 1985).

4. John Lasseter, “Principles of Traditional Anima
tion Applied to 3d Computer Animation,” ACM

138 N. W. John el al. / The Controller Animation System

Computer Graphics (Proc. SIGGRAPH 87) 21(4),
pp. 35-44 (July 1987).

5. Frank Thomas and Ollie Johnstone, in Disney
Animation The Illusion O f Life, Abbeville Press,
New York (1981).

6. Tony White, The Animator’s Workbook, Watson-
Guptill, New York (1986).

7. Susan Van Baerle, Character Animation: Combin

ing Computer Graphics and Traditional Animation,
Eurographics 87 Character Animation Tutorial,
August 1987.

8. Brian A. Barsky and Donald P. Greenberg,
“Determining a Set of B-Spline Control Vertices
to Generate an Interpolating Surface,” Computer
Graphics and Image Processing 14, pp. 203-226
(1980).

Some Methods to Choreograph and Implement Motion
in Computer Animation

N i g e l W . J o h n a n d P h i l i p J. W il lis

Abstract
Many methods of choreographing motion in computer animation have been
developed. Many of the earlier key frame and scripted animation systems
tended to require considerable effort from the user. With the develop
ment of systems using physical laws greater automation has been intro
duced, and more complex animation can be generated. The animator can ar
gue however, that he is losing fine control over the motion produced. We
wanted to develop a system that gives the animator as much control as
possible over motion choreography, without the interface becoming too
cumbersome to use. This paper describes some of the methods that we have
used to achieve this aim.

Keywords: computer animation, faking mass, interactive, motion choreogra
phy, smooth motion.

1. INTRODUCTION

The art of animation is in making objects move in a convincing manner,
which traditionally has depended on the skill of the animator. However,
with the development of computer animation systems the resulting anima
tion is also dependent on how the animation system allows motion to be
choreographed.
Early computer animation systems often modelled closely the methods used
to produce traditional animation, such as key framing (Catmull 1979).
Although interactive they tend to require large amounts of input from the
animator and are not always easy to use. An alternative is to use
scripted systems that often appear in the form of an animation language.
Although such systems have their advantages they tend not to be ideal
when it comes to motion specification (Entis 1986).
Recently there has been research into developing more complex animation
by using techniques such as dynamic analysis, automatic path planning,
and stochastic algorithms (Magnenat-Thalmann 1985; Wilhelms 1987). In
herent with such systems is greater automation of the animation process.
Arguably, greater automation can mean that the traditional skills of an
animator are in danger of being overlooked.
There should be a place for the use of the traditional principles of ani
mation in the computer medium (Van Baerle 1987; Lasseter 1987). We de
cided, therefore, to investigate ways in which computer aided motion
choreography can be carried out. We have two goals to our approach:

(1) Giving the animator fine control over the motion produced;
(2) Keeping the interface simple.

126

2. THE ANIMATION TEST BED

Before we could experiment with the choreography of motion in computer
animation we needed a system that would produce animated sequences. As
we have already stated, an interactive system is generally considered to
be preferable for motion definition tasks. We therefore implemented a
system of this type, called Controller (John 1989), and a brief descrip
tion of it is given here.
The overall interface of Controller is- based on the operation of a telev
ision control room. Menus are used to drive the system and it makes use
of graphical valuators such as dials and scales for the input of numeri
cal data. when the animator wishes to film a scene he will be presented
with a plan view of the set to be used. The animator is analogous with
the programme controller and coordinates all the movements of the cam
eras, lights, and cast taking part. To choreograph the motion of one of
these objects he will begin by planning the path that it will take in the
x z plane of the set. To determine this positional information we have
used a method of path specification similar to that described by Shelley
and Greenberg (1982) . We provide for a linear path, or a smooth continu
ous path (by using B splines). The latter can be adjusted if necessary.
The next step is to determine the frame positions along this path. This
-is one way in which Controller differs from other animation systems and
some of the methods it uses are described below. We also detail how the
height of the object can be set over these frame positions.
Controller provides facilities for the setting of the object's orienta
tion, changing the zoom of a camera, and varying the intensity of lights.
The animator needs to know what effect changing one or more of these
parameters has and should be allowed to make adjustments where necessary.
Controller can, therefore, be instructed to display the view obtained by
a particular camera at each frame, similar to a pencil test in tradition
al animation. A wire frame representation depicts the view obtained as
this can be calculated in real time.
When the animator is happy with his specification all the data are con
verted into scene descriptions for each frame. Next, the animator de
cides when each camera will be used. The scene descriptions can then be
fed to an appropriate rendering system, producing the final animated se
quence .

3. MOTION IN COMPUTER ANIMATION

When an animation sequence is displayed it will be projected at a con
stant rate, video for example is projected at twenty five frames per
second. Varying the time interval between successive frames in the se
quence is not possible. Therefore an animation system has to calculate
the position of a moving object at fixed time intervals. The distance
covered during each of these time intervals will determine the overall
effectiveness of the motion.
This section describes how the Controller animation system can be used to
choreograph motion. We have attempted to provide a flexible interface
offering the animator fine control over motion specification. However,
we do not want to make this interface impossible to use; it should appear
to the animator as a natural way of defining motion. The following sec
tions detail some of the methods we have used to carry out the motion
specification. In doing this we found that the ease of use of the inter
face decreases as the complexity of the problem increases. We have en
deavoured, therefore, to keep the implementation as simple as possible.

127

3 . 1 Choreographing Motion
In Controller, the choreography of a moving object consists of two
stages:
(1) Drawing a path to define the overall position of the object;
(2) Deciding on the object's position along the path at each frame.
We have already mentioned how an animator can do the first stage by using
a path specification technique. An example of a path that has been drawn
using B splines can be seen in Fig. 1. At this stage no regard has been
given to time, this being the next stage of the problem.

Cnst Speed

Rccel

•e n d of previous
motion segment

Decel

end of new
motion segment

object's path

Fig. 1. Defining a Motion Segment

At present we do not provide facilities for modelling internal movement,
such as the limb movement of a human character. Post process animation
algorithms such as those described by Lundin (1984) would be ideal here.
We are concerned with the overall motion choreography about the set. The
animator divides the path into a series of motion segments, when the ob
ject will be accelerating, decelerating, or moving at a constant speed.
These three modes of motion can be combined in any manner, the animator
decides whether the resulting motion appears realistic or unrealistic.
Sometimes he will be warned of an unrealistic combination. For example,
he may ask for a stationary object to move at a constant speed without
first accelerating it from rest. The warning can be ignored however,
since the animator may really want such an effect.
To specify a motion segment the animator first shows how far he wishes
the object to travel. This is the distance from the most recently calcu
lated frame position to some point he now marks on the path (see Fig. 1).
He then selects the motion style required from the menu displayed. If
either acceleration or deceleration is selected, the animator is required
to enter the number of frames to be taken. Using this specification the
animation system will then calculate the frame positions along the path

128

segment. The procedure is slightly different if the object is to move at
a constant speed; in this case the animator only needs to show the dis
tance of the motion segment, and as many frames as possible will be fit
ted in. If the resulting motion segment is unsatisfactory it can be un
done and another attempt made. He can also make the object remain at the
most recently calculated frame position for any number of frames.
The animator should find that moving an object around its path is as na
tural as driving a car along a road. For the latter decisions about
whether to slow down, speed up or stop depend on the road conditions and
the driver's destination. In the animation case the decisions are simi
larly governed by the story board that describes the whole scene.
As well as defining motion segments, the animator can set various parame
ters over a range of existing frame positions. One of these parameters
is the height of the object. A valuator such as a sliding scale sets the
height at two frame positions. The animation system will then calculate
the height at the frames between these, according to the animator's
needs. The animation of this height change is also important.

3.2 Methods of Implementing Smooth Motion
An object in motion will be accelerating, decelerating, or moving at a
constant speed. Our aim is to simulate such motion around an object's
path using simple kinematic techniques. To produce realistic results we
rely on the animator's skill and the flexibility of the system. We have
avoided the use of splines and complicated physical laws. The latter
tend to produce more realistic results but are also computationally more
expensive. Further, both techniques increase the difficulty the animator
has in specifying the exact motion he requires.
We use the duration of the fixed interval between successive frames as
our unit of. time when calculating motion. As we have seen, the animator
places two constraints on each motion segment he defines in the ground
plane:
(1) The length of the path segment;
(2) The number of frames to be taken.
We have to consider the interchange between successive motion segments.
Usually we will require this interchange to occur smoothly.

Method 1: Trigonometric Functions
In key frame interpolation acceleration and deceleration effects are
often modelled using

1 - cos(t), 0 <, t <, iU2\
sin(t), 0 <t£n/2

respectively (Magnenat-Thalmann 1985). These formulae can be used to
calculate the frame positions along a path. We require

l(t) = length of path segment x (l-coa(n/2 x t)), or
l(t)= length of path segment x sin(n/2 x t),

where l(t) is the fraction of the path segment length covered up to time
t. The value of t is scaled so that it falls into the range [0,1] by
using

____ current frame of this motion segment
duration in frames of this motion segment

As well as accelerating or decelerating the object, the animator may
require it to continue at a constant speed. This speed will be that

129

attained by the object at the end of the motion segment last calculated.
A reasonable approximation of thi3 is to take the average speed of the
object between the two most recently calculated frame positions. This
is, in effect, the distance between these two frame positions.
The overall motion definition will consist of some combination of motion
segments. As an example suppose that the animator defines a sequence of
motion segments during which an object:

1) accelerates from rest,
2) maintains a constant speed,
3) accelerates again,
4) decelerates.

The graph of distance against time for this motion definition is given in
Fig. 2a. We require a smooth interchange between each motion segment.
Note that if two or more successive motion segments are of the. same
style, acceleration for example, then the best results are obtained by
combining them into one motion segment. We thus have less interchange
points to consider.

s

smoother change
over point

Fig. 2a. Using the Trigonometric Functions

The first motion segment of our example presents no problem: we fit the
distance and time constraints to a graph of (1-cosine). When the object
is not accelerating from rest, as in the third motion segment, this is
not as easy to do as we have to take the current speed of the object into
account. The acceleration function as it stands does not do this. We
decided to adopt the simplest solution to this problem.
The distance yielded by the acceleration function is only used if it is
greater than the distance that would be covered by the object continuing
to move at its current speed. Until this happens the object's speed is
not altered. The point at which the acceleration function takes over can
be quite noticeable, as it is in Fig. 2a. However, if we increment the

130

object's speed after every frame by some appropriate amount so that the
object does indeed appear to accelerate, then the change over point will
be much smoother (Fig. 2a.) . Note that up until this change over point
the object's speed is increasing in an arithmetic progression. A similar
technique can also be used when modelling deceleration with the sine
function. In this case we have to ensure that the speed of the object is
always less than its speed coming into the current motion segment. We
have not needed to do this in the above example as the initial speed
obtained from the sine function is a lot less than the speed of the
object at the end of the third motion segment. In fact the difference is
too great for a smooth interchange.
Sometimes the constraints that the animator has defined make it impossi
ble to achieve the desired smooth interchange between successive motion
segments. We can check for such cases and warn the animator who may then
decided to change his motion definition.

Method 2: Laws of Motion for Constant Acceleration
Another way of modelling the motion effects we require is to use the laws
of motion for constant acceleration. Particularly appropriate to our
needs is the following motion law

a = ut + jat2 ,

where s is the displacement, u is the initial speed, a is the accelera
tion, and t is the time. By substituting the animator's defining condi
tions into this equation we obtain the value of the acceleration required
over the motion segment. The individual frame positions of the moving
object can then be calculated. Figure 2b. depicts the distance against
time graph obtained by using this technique on the same motion definition
as in the previous method. We can now automatically get a good inter
change between motion segments as this equation allows for the initial
speed of the object.

s

Fig. 2b. Using One of the Laws of Constant Acceleration

131

There is a further constraint, however, in that since the object only
travels around its path in one direction, the value of the object's velo
city must not change its sign during the motion definition. We found
that when decelerating an object, in too many cases the animator's con
straints could only be satisfied if the velocity did change sign. This
is the case in the fourth motion segment of our example, the distance
time graph goes through a maximum. The motion segment in these cases had
to be rejected.

3.2.1 Comparisons
For the purpose of comparing the above two methods we have superimposed
the two distance against time graphs obtained (Fig. 2c.).

s

Fig. 2c. Comparison of Methods 1 and 2

We can see that both methods give acceptable results when accelerating an
object from rest. The final speed attained by the object does differ,
but this does not matter. We are not concerned with the actual value of
the object's speed, only that the final motion is visually acceptable to
the animator. Maintaining an object at a constant speed is straightfor
ward in both cases. However, the law of constant acceleration is far
better at accelerating an object when it is already in motion. The ini
tial speed of the object is automatically taken into account so we do not
need to do apply extra techniques in order to get a smooth interchange.
As we have seen, however, there can be a problem when using method 2 to
decelerate an object. In some circumstances the object can only satisfy
the animator's constraints if it overshoots its destination and then
comes back. We will not get this problem using the sine function, how
ever. Fitting the motion to a sine curve ensures that the distance and
time constraints are satisfied without the motion changing direction.
The cost is that the initial speed of the object is ignored and so we
lose out on the smoothness of the interchange.

132

Our best approach for achieving smooth motion has been to use a combina
tion of the above methods. Priority is given to the law of constant
acceleration, but where this fails the trigonometric functions are util
ised. More complicated strategies would produce more realistic motion.
However by using the techniques described above we get a quite acceptable
method of motion planning that is straightforward both to implement and
to operate.

3.3 Techniques For Faking Mass
By carefully timing the motion of an object an animator can emphasise its
size or weight (White 1986) . He has to make objects move more slowly as
they get heavier, and perhaps give them more difficulty in controlling
their weight.
Using the previous methods of motion planning the animator can easily
make two objects move at different rates. If both objects are to move
from rest, the first motion segment of each will be an acceleration
phase. At any given time during this phase the total distance covered by
the heavier object must be less than that covered by the lighter object.
So if he wants both acceleration phases to last for the same amount of
time he must ensure that the heavier object will traverse less of its
path. This distance is one constraint that the animator has to define
when specifying a motion segment, so there is no difficulty in doing
this. If the objects now proceed at a constant speed the lighter object
will be travelling at a faster rate. The animator's judgement in indi
cating the distance of the acceleration phase will determine how convinc
ing the final result will be.
One aim of our approach to computer animation has been to give the anima
tor fine control such as he has in the above example. We do not want to
make the specification too difficult for the animator and it will not be
if we are only concerned with a few objects. However, if the scene is to
contain many objects each with a different weight, such motion control
could become a headache to the animator. He has to keep track of how
heavy all the previous objects were and fit in each new object accord
ingly. It might be easier if the animator just estimates the weight of
each object and lets the animation system take care of the rest. We
therefore provided a facility to do this.
when the animator selects a cast member he has the option of defining its
mass. The unit of mass is immaterial as we only need to depict the rela
tive mass of the objects in the scene. We now have to satisfy three
user-defined constraints (mass, distance and time), so the complexity of
the problem will increase. However, the purpose of this exercise is to
save the animator from having to remember all the distances he has been
using to emphasise the mass of each object. So we let the motion
modeller work out how much of the path will be traversed and merely get
the animator to specify time and mass.

Method 3: Utilising Existing Methods
When we use

(l-cos(t ime)) on [0, iU2]
to model distance travelled under acceleration the result is scaled by
the total length of the motion segment. This segment length must now be
determined by the system using a function that depends on the mass of the
object and the total time of the motion segment. The same is true if we
are using the law of constant acceleration, the segment length must now
be calculated by the system and not defined by the animator. The segment
length should increase with time but decrease as the mass of the object
increases, so

133

segment length a lm— ,
mass

The simplest relationship satisfying this condition is

segment length = Ax— , k constant,
mass

We let the animator determine the value of k by getting him to define the
distance he would expect an accelerating object of unit mass to cover in
some specified time interval. This task is performed by the animator
before the path planning stage of our system. He uses a graphical valua
tor to input the required distance. The animator is thus still in gen
eral control of the final motion effects achieved.

Method 4: Using a Family of Acceleration Curves
Several other ways of modelling the motion of objects with different mass
exist. For example, the function

x*
y - :--- , a and b are constants,

ax* + b
has been experimented with. By varying the values of a and b a family of
curves can be produced (Fig. 3a. and Fig. 3b). We tried
a) varying the value of a whilst keeping b fixed,
b) varying the value of b whilst keeping a fixed.

Y ax2 + I

a increases

Fig. 3a. Changing the Value of a

We then considered what the motion effect would be if these graphs
represented plots of velocity against time i.e.

t2v = ; , v = velocity, t = time.
at2 + b

Each plot has the same general shape. Up to the point of inflection the
moving object can be thought of as overcoming its inertia. It then
proceeds to accelerate, tending toward some maximum velocity. Increasing
the value of a decreases the maximum velocity obtainable by the object.

Fig. 3b. Changing the Value of b

This suggests that a is related to the force that propels the object. If
a is fixed i.e. each object is propelled by the same amount of force,
then increasing the value of b increases the time taken for the object to
reach any given velocity - up to the maximum velocity obtainable. So b
appears to be related to the weight or mass of the object.
We can get a distance against time function by integrating with respect
to time

We need to determine suitable values for a and b.
In our current implementation we emphasise the mass of the object so we
keep a fixed at a=I . We do not set b to be equal to the value of the
object's mass. The mass defined by the animator is typically in the
range (0,100], but to obtain the best results we found that the value of
b should be much larger. If b is too small then the object rapidly
reaches its maximum velocity, too rapidly to be usable in our system
(Fig. 4b.) . We have found that multiplying the mass by a factor of
100,000 provides a suitable value for b. We again let the animator
determine the value of the distance scale factor. He specifies the total
distance that an object of unit weight will cover over a specified inter
val of t ime.
We also have to allow for the deceleration of an object. To do this we
keep the time argument used by the distance function separate from the
total time elapsed. The latter is always incremented as new frames are
defined by the animator. We only increment our distance function time,
however, when the object is accelerating. When the object is decelerat
ing it is decremented, and when the object is moving at a constant speed
it is left unaltered. We thus travel back down the distance time curve
when decelerating and a correspondingly smaller inter frame distance is

ts - — a , s = displacement, t = time.

135

calculated. Note that this method will give a smooth interchange between
successive motion segments. There is a drawback, however. The object's
rate of deceleration will be the same as its rate of acceleration, and so
the animator cannot make an object decelerate over a period longer in
time than it accelerated in. We can overcome this by varying the time
intervals used with the distance function, but will lose out in the
smoothness of the interchange between motion segments.

3.3.1 Comparisons
We want to compare the motion of objects that have been given different
masses. As an example, consider the case when objects are accelerating
from rest. Some distance-time graphs obtained by doubling the mass of an
object whilst keeping the other constraints fixed are given below.

s

increases

= ut + —a t

Fig. 4a. Using Existing Techniques

In Fig. 4a. we have used the techniques of method 3, that is the law of
constant acceleration and the trigonometric function (1-cos). The anima
tor has indicated the distance an object of unit mass is required to
cover, the system will then automatically calculate other distances. We
can see that in both carses the total distance covered in a fixed interval
of time is halved as the mass of an object doubles. This is what we
would expect if the objects are accelerating from rest. Repeating the
procedure for method 4 yields the distance-time graphs of Fig. 4b. Again
the distance covered appears to be halved as the mass of an object dou
bles. In fact this is not quite true, but when large values are used for
b (as in our implementation) the differences are not significant.
Figure 4c. enables us to compare the shape of the motion graphs obtained
by using method 4, and the law of constant acceleration from method 3.
To aid in this comparison we have made sure that the final distance
covered is the same in both cases. We can see that when we use method 4,
an object accelerates more slowly to begin with, and consequently gives

136

mass
increases

Fig. 4b. Using a Family of Acceleration Curves

Fig. 4c. Comparison of Methods 3 and 4

137

us a better feel for the inertia of the object. It thus has to reach a
greater final speed in covering the same distance in the same time inter
val as that of method 3.
We have preferred to use the family of acceleration curves method of
incorporating mass. A motion graph resulting from this method is an
intuitively better approximation to the real thing. We also have a way
of manipulating the force applied to an object built into this distance
function. This facility has not yet been exploited.

3.4 Height and Orientation
To complete the specification of a three dimensional path the height of
the object must be determined. As described earlier, the animator will
set the height at two frame positions and leave the system to calculate
the height at the frames between. The animation of any height change is
just as important as the determination of the object's position in the
ground plane. We again leave it the animator to combine these two
motions in a sensible way, but provide some tools to assist him.
We know the height at the two frame positions the animator has set and
thus the difference in height between them. The simplest way to calcu
late the height at each frame in between is to linearly divide this total
height difference. This is analogous to an object at rest instantane
ously reaching a constant speed without accelerating first. To give a
smoother look to the height change the animator may be better off using a
fairing technique. Such a technique will give a gradual increase in suc
cessive height differences at the beginning of the movement, and a gra
dual decrease at the end. We can use

1 - cos(x) on [0, it]
to model such a change. Alternatively, if a period of constant change is
required at the centre of the movement we can use the technique of
sinusoidal fairing described by Kingslake (1986) .
What if the animator wishes the object to appear to be falling or rising
under gravity? Then the object should be accelerating if falling, and
decelerating if rising. Clearly the methods we have already used for
modelling acceleration and deceleration should also be applied to the
animation of height changes. Not only height changes can be treated in
this way. We also have to animate changes in the object's orientation
and the zoom setting of a camera.
As an example of changing the orientation of an object, let us look at
how it can be made to stagger or vibrate. We require the object to swing
back and forth for several oscillations. The amplitude reached on each
swing will gradually decay until the object comes to rest at its equili
brium position. An animation system using the laws of dynamics would
model such motion on a damped oscillation, but we take a simpler
approach. The animator will define the total number of frames to be
used, the number of oscillations required, and the maximum angle from its
equilibrium position that the object can reach. As the object ends at
rest and the amplitude of the extreme positions is decaying, fewer frames
are assigned to each successive swing. We can use a deceleration func
tion to determine how the total number of frames should be split up
between the number of oscillations required. To give more snap to each
swing an animator will usually require that more in betweens are used
coming out of an extreme than are used going into it. An acceleration
function should be used, therefore, to determine the position of the
object between its extremes. All that remains to be done is to decay the
angle of the extreme positions until the equilibrium position is reached.
This can be done linearly or by using one of our other methods, according
to the animator's wishes.

138

Two Frames from an Animation Sequence Currently Being Produced using
Cont ro1le r

139

4. SUMMARY AND CONCLUSIONS

We have presented some methods by which motion can be choreographed in a
computer animation system. By keeping the modelling functions as simple
as possible we have been able to keep the interface straight forward to
use. We feel that this helps to present the animator with fine control
over motion definition. He can thus apply traditional techniques to pro
duce convincing animation.

ACKNOWLEDGEMENTS

We would like to thank all the members of the graphics research team at
the University of Bath for their help and suggestions, the U.K. Science
and Engineering Research Council for funding the project, and Peter Wong
of the Bath College of Higher Education for his artistic input.

REFERENCES

Van Baerle S (1987) Character animation: combining computer graphics and
traditional animation. Eurographics 87 Character Animation Tutorial:
134-145 .

Catmull EE (1979) New frontiers in computer animation. American
Cinematographer 60 (10) :1000-1003.

Entis G (1986) Computer animation - 3D motion specification and control.
SIGGRAPH '86 Tutorial Notes.

John NW, Willis PJ (1989) The controller animation system. To be
presented at Eurographics UK Conference 1989, to appear in Computer
Graphics Forum.

Kingslake R (1986) An introductory course in computer graphics.
Chartwell-Bratt, pp 100-102

Lasseter J (1987) Principles of traditional animation applied to 3d
computer animation. Proceedings of Siggraph, Computer Graphics 21(4) :
35-44

Lundin RV (1984) Motion simulation. Nicograph '84 Proceedings, Tokyo
Magenat-Thalmann N, Thalmann D (1985) Three-dimensional computer
animation: more an evolution than a motion problem. IEEE Computer
Graphics and Applications: 47-57

Magenat-Thalmann N, Thalmann D (1985) Computer animation theory and
practice. Springer-Verlag, Tokyo Berlin Heidelberg New York, p49

Shelley KL, Greenberg DP (1982) Path specification and path coherence.
Proceedings of Siggraph, Computer Graphics 16(3) : 157-166

White T (1986) The animator's workbook. Watson-Guptill, New York, p74
Wilhelms J (1987) Toward automatic motion control. IEEE Computer Graphics
and Applications: 11-22

140

Nigel John

Nigel John is a postgraduate student in the Comput
ing Group at the University of Bath, where he is
currently researching for the degree of Doctor of
Philosophy. His research interests are mainly in
the area of computer animation, particularly the
choreography of motion in this medium.
Address: Computing Group, School of Mathematical
Sciences, University of Bath, Bath, Avon, UK.

Philip Willis

Philip Willis is Head of the Computing Group at the
University of Bath where he leads one of the larger
university computer graphics research teams in the
UK. This is active in applications of colour ras
ter graphics to animation, workstation design,
printing and picture archives, He is also a member
of the Eurographics Conference Board, co-convener
of Working Group 2 on Picture Databases and is
Treasurer to the Eurographics UK Chapter.
Address: Computing Group, School of Mathematical
Sciences, University of Bath, Bath, Avon, UK.

