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ABSTRACT

This thesis is concerned with extending the use of numerical models to the prediction 
of nonlinear ultrasonic fields in biological fluids and forms part of a longer term 
programme to predict nonlinear propagation of medical ultrasound in vivo.

The numerical model used in this work (Aanonsen et at 1984) takes into account the 
diffraction, attenuation and nonlinear propagation of sound from a circular single 
element source. Predictions, using the model, require knowledge of source and 
medium parameters. In particular the source characteristics and the frequency 
dependence of attenuation are needed.

This thesis describes the design of an experimental facility that is capable of 
measuring both the frequency dependence of attenuation and nonlinear pressure 
distributions (for high drive levels) on the same sample of biological fluid. The main 
feature of the flexible experimental rig is its variable length fluid chamber.

Broadband measurements (5 MHz to 20 MHz) of the frequency dependence of 
attenuation in three biological fluids, amniotic fluid, urine and 4.5% Human Albumin 
solution, are presented. This data, in conjunction with measurements of the sound 
source, is used to predict pressure distributions in the above fluids.

Measurements of the nonlinear pressure distribution, made using a 2.25 MHz single 
element transducer coupled to a PMMA lens with a focal gain of 12 are also 
presented. The transducer was driven with a pulse of 8 cycles at pressures ranging 
from 0.007 MPa to 0.244 MPa. The received signal was detected with a broadband 
0.5 mm diameter bilaminar Pvdf membrane hydrophone, so enabling the axial 
nonlinear pressure distribution to be measured.

A comparison between the experimental and theoretical pressure distributions for the 
first five harmonics is presented. In general the agreement is very good and indicates 
how more complex and 'real' in vivo situations can be modelled.
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1.0 INTRODUCTION

1.1 Background

The last twenty-five years have seen the widespread use of ultrasound in medicine. 

This is, in part, due to technological advances in transmission and detection at 

ultrasonic frequencies and in part due to the non-invasive and non-ionising nature of 

the radiation. The non-ionising aspect of ultrasound has in particular been attractive 

and has allowed clinical information to be obtained in areas such as obstetric scanning 

where other imaging techniques are not viable.

Allied to this there has subsequently been a growth in research into the fundamental 

physics behind the propagation of ultrasound and the biological consequences 

associated with its passage through living systems. This project is a continuation of 

this work and in particular is concerned with the nonlinear propagation of ultrasound 

beams in biological fluids. This section, with sections 1.2 and 1.3, therefore gives a 

brief overview of areas of uses of ultrasound in medicine, the possible biological 

effects of ultrasound and the nature of the nonlinear propagation that results from 

medical ultrasonic transducers.

At present the uses of ultrasound in medicine can be broadly classed into the 

following areas:

(i) Diagnostic imaging, including pulsed Doppler techniques;

(ii) Physiotherapy;
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(iii) Surgery (including hyperthermia).

Pulse-echo imaging is by far the most common use of medical ultrasound. Its 

applications and mode of operation are varied, the most common being in obstetric 

scanning. Here unique and valuable diagnostic information concerning the foetus is 

obtainable. For example information on placental location, foetal maturity and foetal 

abnormalities are all available. Foetal maturity can be assessed by measurements of 

skull and abdomen size and foetal abnormalities such as spinal defects can be imaged. 

In addition to this, obstetric imaging allows the clinical procedure of amniocentesis to 

be carried out with increased safety.

Other areas of pulse-echo imaging include ophthalmology, cardiology and general 

body imaging. In ophthalmology abnormal anatomical features in the eye can be 

investigated. In cardiology and general body imaging the usefulness of pulse-echo 

techniques includes the ability to obtain real-time images that can convey movement 

information and also allow very flexible interrogation of a region of interest

An increasingly useful technique in diagnostic ultrasound is the use of Doppler 

techniques for quantitative measurements of movement and flow. Foetal heart rate 

can be monitored and blood flow through normal and stenotic vessels can be 

measured.

In physiotherapy and surgery ultrasound plays a therapeutic rather than diagnostic 

role. Ultrasound physiotherapy is thought to provide help in accelerated soft tissue
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healing, pain relief and improved joint mobility. Ultrasonic surgery is used, for 

example, in lithotripsy where renal calculi are destroyed. More recently surgical 

applications are finding use in cancer therapy (hyperthermia) either by direct 

destruction of cancerous cells or as an enhancing agent for chemotheraputic drugs.

The wide variety of uses of ultrasound in medicine has led to the use of different 

modes of operation depending on the application. In pulse-echo imaging short pulses 

in the region of 2 MHz to 10 MHz are employed to give good spatial resolution. The 

peak pressures at the transducer reach values up to 1 MPa with focusing gains of 3 

to 8. In lithotripsy use is made of short high pressure pulses (with focusing to 

produce peak positive pressures of 50 MPa) in the hundreds of kilohertz frequency 

range. For physiotherapy long tonebursts or continuous waves are most commonly 

used with low intensities (3 W cm'2 spatial average temporal average) and 

frequencies of 1 MHz to 3 MHz. In surgery high intensities (200 W cm'2) and highly 

focused pulses, lasting up to ten seconds, in the low megahertz frequency range are 

used to obtain spot sizes of approximately 2mm2 in the focal region.

Ultrasound physiotherapy and surgery rely on biological changes occurring in the 

interrogated region. In surgery the damage is usually caused by thermal effects (the 

direct conversion of deposited energy to heat) but in physiotherapy there is no 

thorough understanding of the mechanisms of action. In particular the effect of 

non-thermal mechanisms (for example cavitation) is poorly understood.
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Although there are no reported references of biological effects associated with 

ultrasonic imaging in vivo the subject is by no means closed, mainly due to the lack 

of understanding of ultrasonic effects. In particular, the case of obstetric scanning 

has received attention recently due to the particular geometry associated with the 

scan (in which the sound beam passes through a substantial fluid path before 

impinging on the foetus) and the lack of data on the effects of ultrasound on the 

human foetus. Indeed, the available data shows that proliferating tissues are more 

susceptible to damage than non-proliferating tissue (Dickinson & Shah, 1972). Given 

that there may be biological effects associated with ultrasonic insonification a more 

detailed description of the possible effects is given below.

1.2 Biological effects of ultrasound

The effects of the passage of ultrasound through the human body can be classed into 

those that produce thermal effects and those that produce non-thermal effects. 

Thermal effects result in heating of the interrogated region, non-thermal effects 

include cavitation (bubble growth, oscillation and collapse) and streaming (bulk fluid 

movement).

7.2.7 Thermal effects

Heating of biological tissues arises due to the absorption of acoustic energy as the 

ultrasound wave passes through the body. The conversion of this acoustic energy 

into heat is the result of absorption, caused by relaxation and viscous processes.
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Both processes result in absorption of energy by causing the medium and the 

propagating wave to go out of phase with each other so preventing all the energy 

transferred to the medium returning to the wave. For example, Hynynen (1987) 

measured in vivo temperature rises of the order of 2°C in dog's thigh using 

hyperthermia beams. The exact form of the absorption depends on the medium of 

propagation. For example, in distilled water the absorption is purely viscous and 

therefore depends on the square of the frequency of propagation in the megahertz 

range. In biological media it is generally reported that the frequency dependence of 

absorption lies somewhere between one and two, the exact dependence being 

governed by factors such as the protein content of the medium. Pauly & Schwan 

(1971) measured the frequency dependence of absorption in homogenised liver to be 

a little greater than one. They attributed this behaviour to the multiple relaxation 

processes that occur from the protein structures in liver. The superposition of these 

relaxation's, over the low megahertz frequency range, produces a smooth frequency 

dependence which is non-square law.

The production of heating effects has consequently gained increased importance in 

recent years. The World Federation of Ultrasound in Medicine and Biology 

(WFUMB, 1991) published a report on 'issues and recommendations regarding 

thermal mechanisms for biological effects'. Since measurement of temperature rises 

in vivo is not at present possible, the report takes a computational approach and gives 

recommendations for permissible temperature rises. The computational models are 

based on the bio-heat equation (NRCP, 1983) which models the situation in terms of 

a thermal source function and a cooling function. The report states that accurate
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knowledge of the parameters that constitute these two terms is required in order to 

obtain realistic and meaningful results.

The thermal source function depends on the absorption coefficient in the medium of 

interest and the square of the pressure (proportional to intensity) at the point of 

interest. The absorption coefficient varies considerably for different tissue types and 

different specimens. Determining the pressure at the point of interest is also not a 

trivial problem due to the complex nature of the ultrasonic field from medical 

transducers.

The cooling function depends on factors such as blood temperature and blood flow 

and poses even more problems in modelling accurately. For the case of obstetric 

scanning (in second and third trimester) local deposition of heat is likely to occur in 

the foetal bone where there is little blood flow. Here the modelling is simplified as 

the cooling function can be set to zero.

In general the report provides useful guidelines as to the important parameters that

need consideration and establishes the importance of further work in this area. For

the particular case of foetal scanning the report recommends, based on experiments in

other species and results from theoretical models, that temperature rises of less than

1.5°C are deemed to be safe. The report does however point out that the accuracy

of the models used is an important consideration when assessing the usefulness of the 

predictions. For example a typical accuracy of ± 0.5°C could encompass an overall 

temperature rise between 1°C and 2°C, the former being deemed safe whereas the

latter potentially harmful.

6



1.2.2 Non-thermal effects

There exists a wide variety of non-thermal mechanisms associated with ultrasound, 

but only cavitation and streaming will be considered here. Cavitation is a complex 

phenomenon, and has many definitions in the literature. Broadly speaking, it can be 

termed as the formation and activity of simple or complex bubble systems in an 

acoustic field. There are generally two types of cavitation, stable and transient. With 

stable cavitation a bubble simply oscillates about an equilibrium radius in response to 

the pressure field generated by an ultrasonic wave. Transient cavities tend to 

oscillate nonlinearly; they expand to several times their mean radius and then 

collapse. This collapse can produce high temperatures and pressures which may be 

significant in terms of safety considerations. The actual role that cavitation plays in 

terms of biological effects is unclear due to the difficulty in performing and 

interpreting measurements in vivo. In vitro, membrane permeability and DNA 

degradation have been observed.

Acoustic streaming is referred to as bulk fluid movement It is essentially a nonlinear 

phenomenon of wave propagation. In a linear system acoustic variables (pressure, 

density, displacement) have time average values of zero. When second order terms 

are introduced in the equations of motion and state the fluid element experiences 

forces which result in bulk fluid movement The verification of streaming in water, 

from medical transducers, has been demonstrated with great clarity by Starritt 

(1990), but the occurrence and the effects, in vivo, of these forces on tissue 

structures is not so clear.
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1.3 Propagation of ultrasound

Although there are a number of modes of operation for ultrasonic transducers 

(described in section 1.1) the range of frequencies and pressures employed in medical 

applications results in nonlinear propagation being significant Nonlinear acoustic 

propagation has been the subject of investigation since the time of Eamshaw (1860). 

However, the realisation that nonlinear propagation could be important for medical 

ultrasonic systems was first reported by Muir & Carstensen (1980).

1.3.1 Linear propagation

The wave equation that describes the propagation of sound in a medium can be 

obtained by combining the equations of continuity, motion and state. The equation 

of continuity is a statement of the conservation of mass, the equation of motion 

concerns the conservation of momentum, and the equation of state is an expression 

that relates the response of a medium to thermal and mechanical stress. The 

combination of these equations results in relationships between the pressure in a 

medium, the density of a medium and the local particle velocity in the medium during 

the passage of an acoustic disturbance. If the acoustic disturbance produces small 

changes in the pressure, density and particle velocity (compared to the equilibrium 

value of these quantities) then the equations of propagation can be simplified by 

considering only first order approximations. Under such conditions the wave 

equation for particle displacement in one dimensional form (i.e. a plane wave) 

reduces to:
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(9)--(9) 1.1

where ^ is the particle displacement, c is the infinitesimal sound velocity, t is time 

and z is a distance co-ordinate. Solutions to this equation can be obtained for the

particle displacement, particle velocity and pressure displacement. For example, for a

harmonic source the excess pressure (P) can be expressed as:

P = P0sin((iit-kz) 1.2

where P0 is the source pressure co and k are the angular frequency and wavenumber 

respectively.

Equation 1.2 illustrates that an initially sinusoidal disturbance will propagate linearly

with no change in frequency of propagation. In addition it shows that the velocity of 

the acoustic disturbance, c, is constant during propagation.

The above equations describe propagation in a non-dissipative medium. Stokes 

(1845) was in fact the first to consider absorption of energy into the medium via 

viscous processes. Taking into account viscosity leads to a modified equation of 

motion (the Stokes-Navier equation) and yields the following expression for the 

pressure of a plane wave:

P = P0sm((dt-kz)e~a2 1.3

where a  is the amplitude absorption coefficient. More importantly the analysis based 

on Stokes' work (Beyer 1974) also revealed that for purely viscous processes the

attenuation of the wave was proportional to the frequency of propagation squared.
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As stated in section 1.2.1 the absorption of energy in biological media is influenced 

by viscous and relaxational processes. Relaxational processes result in the 

conversion of translational modes of energy propagation (i.e. the sound wave) into 

vibrational, rotational and chemical modes and there is consequently a departure from 

the squared law frequency dependence of attenuation.

1.3.2 Nonlinear propagation

For the frequencies and pressures employed in medical ultrasound the initial acoustic 

disturbance cannot be assumed to be small. This requires retention of second order 

quadratic terms in the equations of motion and state. The result is that wave 

propagation is affected by nonlinearity in the medium and nonlinearity in wave 

propagation. The two types of nonlinearity are usually referred to as medium and 

convective nonlinearity.

Medium nonlinearity arises from the equation of state for a medium. This relates the 

total pressure P and the instantaneous density p by:

where P0 and p0 are the equilibrium pressures and densities of the medium and only 

terms up to 2nd order have been retained. For a large acoustic disturbance the second

term on the right-hand side cannot be ignored and results in the sound velocity being

non-constant The relationship between the sound velocity and pressure is given by
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1.5

where c is the sound velocity, B and A are the 2nd and 1“ terms in equation 1.4.

The medium nonlinearity is expressed by the parameter (B/A) and is basically the 

ratio of the second order term to the first order term. The physical reason for 

medium nonlinearity lies in the fact that during the compression half cycle of a wave 

the medium is compressed. This causes an increase in its stiffness and therefore an 

increase in the sound velocity during this part of the cycle. Using a similar argument 

one can see that during the decompression half cycle the sound velocity decreases.

Convective nonlinearity arises from the equation of motion. Under linear 

propagation conditions the particle velocity u is much smaller than the sound velocity 

c and its effects can be ignored. It is usual to express this mathematically as:

e = (f) ,  1.6

where e is known as the acoustic Mach number. When e « 1  we have linear 

propagation. Under conditions of nonlinear propagation the local sound velocity is

dependent on the propagation velocity relative to the medium and the velocity of the

medium relative to a fixed observer. In effect because the wave itself induces local

motion in the medium the wave is convected by the fluid particles it sets into motion.

For longitudinal waves the consequence is that during the compressional half cycle

the particle velocity adds onto the sound velocity whereas during the

decompressional half cycle it subtracts from the sound velocity.
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Both types of nonlinearity combine and cause the compressional half cycle of the

wave to travel at a velocity c+ (3 u and the decompressional half cycle to travel at 
a velocity c-pw. Here p is the nonlinearity parameter and is related to medium and

convective nonlinearity by:

Consequently the peaks travel faster than the troughs resulting in them 'catching up' 

with the troughs. For a plane wave the effects that nonlinearity produces are 

cumulative and after propagation over a sufficient distance in a lossless medium, an 

initially sinusoidal wave will distort so that it resembles a sawtooth as illustrated in 

Figure 1.1.

Figure 1.1 Sketch illustrating progressive waveform distortion of an initially 
sinusoidal wave during propagation. The resultant waveform is fully distorted and 
forms a shock front.

1.7

original sinusoidal
wave

fully distorted wave 
resembling a saw tooth

various degrees of distortion 
during propagation.
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The extent of distortion of a plane wave is often characterised by a shock parameter 

a . For plane waves the shock parameter is defined as:

o  = p zkz. 1.8

If a  «  1 then nonlinear effects are small and can be neglected. When a  = 1 the wave 

has distorted to such an extent that a vertical discontinuity forms at the zero crossing

of the pressure waveform. At this stage the fundamental has lost 1 dB of energy. If 

a  = 3 a sawtooth shock forms. A large vertical discontinuity appears due to the

peaks moving forward by (tc/2) radians and the troughs lagging by the same phase.

The distortion of the wave shape in the time domain is equivalent to the generation

and propagation of harmonics in the frequency domain. The generation of harmonic

frequencies represents a loss of energy from the fundamental frequency of 

propagation. In a lossless medium the formation of a sawtooth shock, i.e. a  = 3, 

results in the generation of a large number of harmonic frequencies, with the

amplitude of each harmonic (n) being inversely proportional to its harmonic number.

In the absence of dissipation the distance at which an initially sinusoidal, plane wave

disturbance forms a mature shock can be expressed in terms of the discontinuity

distance ld, which is given by:

As can be seen the effect of nonlinear distortion increases as the source frequency, 

source pressure and nonlinearity parameter increase. By way of example, an

(
P P C ' 1.9
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unfocused transducer operating at 1 MHz with a source pressure of 1 MPa into water 

forms a mature shock at approximately 150 mm.

In an attenuating medium the extent of shock formation is dependent on the 

attenuation coefficient at the fundamental frequency of propagation and the 

frequency dependence of attenuation for the higher harmonics.

1.3.3 Consequences of nonlinear propagation

There are various consequences associated with nonlinear propagation of the 

ultrasound beam, which include:

(i) Enhanced heating;

(ii) Enhanced streaming;

(iii) Calibration;

(iv) Image quality.

(i) Harmonic frequencies, produced as a result of nonlinear distortion, are absorbed 

at a faster rate and result in a higher effective attenuation coefficient in the medium of 

propagation. This increase in the attenuation coefficient obviously has consequences 

when considering the safety aspects of medical ultrasound. The World Federation of 

Ultrasond in Medicine and Biology (1991) consider the effects of nonlinear 

propagation by estimating the shock parameter (degree of nonlinear distortion for a 

plane wave) and the resulting harmonic content of the distorted wave. Although
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appreciation of nonlinear effects is an important step towards making realistic 

estimates of temperature rises the above approach is to some extent very simplified as 

the processes of nonlinear generation and attenuation, from a finite source, have a 

complex interaction.

Measurements on the enhancement in heating due to nonlinear propagation have been 

made by Bacon & Carstensen (1990) in tissue mimicking gels. They observed a 

threefold increase in the temperature rise compared to the linear case. The large 

temperature rises measured by Hynynen (1987), in vivo, are also attributable to 

nonlinear effects.

(ii) Although streaming is a separate nonlinear phenomenon, enhanced attenuation 

due to nonlinear distortion of the waveform is also thought to play a role resulting in 

enhanced streaming. Starritt et al (1990) argue that the enhanced streaming 

observed in water is likely to be due to enhanced attenuation arising from the 

increased absorption of nonlinearly generated harmonics.

(iii) Biomedical hazards caused by ultrasound exposure are important and need 

consideration, however the accurate calibration of medical systems is also of 

paramount importance in quality control, exposure control and defect detection. 

Unless the output field and source parameters are known, any studies of ultrasonic 

effects are of limited value.
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In order to calibrate the ultrasonic field a medium of propagation is required. This is 

normally water, the reasons being that it is available in large quantities and its 

physical and chemical properties are well documented. Water does, however, have 

its disadvantages. It is not necessarily a good tissue-mimicking material. In 

particular the frequency dependence of attenuation in tissue (Duck, 1990) is reported 

to be quite different from water, so the field in vivo has to be inferred (via a de-rating 

procedure) from water based measurements.

Standardisation on the type of measurement made also needs to be considered. 

Normally the parameters measured are in four categories:

(a) output power;

(b) pressure and intensity;

(c) beam shape;

(d) transducer characteristics;

Under linear conditions determination of the ultrasonic field is not a great problem, as 

long as the calibrated receiving hydrophone does not have a resonance at the source 

frequency and its active area is small enough. However under nonlinear conditions 

the problems are accentuated. Waveform distortion causes the generation of 

harmonics which result in loss of energy from the fundamental. Simply measuring the 

amplitude of the fundamental will therefore not characterise the field. This is 

especially true in water where due to the low attenuation coefficient harmonic 

generation is rich. Accurate measurement of the pressure in the field requires use of 

calibrated wide bandwidth hydrophones. In addition waveform distortion and
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diffraction effects result in the peak positive pressure and the peak negative pressure 

being unequal. The importance of each in terms of biological effects is unclear.

(iv) Nonlinear propagation of the sound beam could be used advantageously to 

improve image quality in two ways. Firstly measurement of the degree of distortion 

after passage through a medium may in itself be used as an extra parameter by which 

to classify the medium. Apfel (1983), Everbach (1989) and other workers have 

considered this approach, however the interpretation of the results requires good 

knowledge of the nonlinearity parameter of the medium and the acoustic 

characteristics of the ultrasonic field. A more promising use of nonlinear effects is to 

use the harmonics generated in the imaging procedure. This is advantageous as these 

harmonics are more tightly focused than the fundamental and so could improve the 

lateral resolution of images considerably.

1.4 Aims of the project

The discussion above has attempted to give a brief overview of the uses of ultrasound 

in medicine, its biological effects and in particular the problems posed by the 

nonlinear propagation of the sound wave.

The biological effects of ultrasound cannot directly be determined due to the ethical 

and practical difficulty in performing experiments in vivo. An alternative approach is 

to try to numerically model the ultrasonic fields that may occur in vivo. When 

considering the nonlinear effects in the acoustic field of medical ultrasound
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transducers one also needs to take into account the diffraction of the sound beam 

due to a finite sized source (this is discussed further in Chapter 2). This requires that 

models that attempt to predict the ultrasonic field need to take account of the 

physics of nonlinearity, diffraction and attenuation.

Previous work at the University of Bath (Baker et al 1987,1988,1989) has 

demonstrated that excellent agreement can be obtained between experiment and 

theory for nonlinear ultrasonic fields in water. The aim of the present work was to 

extend this work to measurements made in real biological media. As a starting point 

it was decided to consider physically simple media such as biological fluids, where 

ultrasonic scattering does not play a role.

The general scheme of the project can be described with reference to Figure 1.2. The 

overall goal of the project is to compare experimentally measured nonlinear pressure 

distributions with those predicted theoretically.

In order to theoretically model the pressure distributions a finite difference model 

(Aanonsen et al 1984) based on the KZK equation (Kuznetsov 1971) was used. This 

model propagates the sound beam from a circular source taking into account the 

effects of attenuation, diffraction and nonlinear propagation and is described in more 

detail in Chapter 3.
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Figure 1.2. A schematic representation of the direction of the work presented in the 
thesis.

The theoretical model requires a number of input parameters that relate to the source 

and the medium of propagation. The source parameters relate to the transducer 

radius a> source pressure Pa, frequency /  and gain G of the source. These are

relatively easy to obtain experimentally. The medium parameters include the sound

velocity c, the frequency dependence of attenuation a  = a c f 1 and the nonlinearity 
parameter p. In contrast, these parameters, and in particular the frequency

dependence of attenuation may not be well known for biological fluids. It was, 

therefore, essential that as many of these parameters were measured at the same time 

as the nonlinear measurements. The data would also provide a useful addition to the 

available data on biological fluids. The fluids used in this work were amniotic fluid, 

urine, 4.5% Human Albumin solution and 20% Human Albumin solution.
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1.6 Thesis content

The remainder of this thesis is composed of the following sections. Chapters 2 and 4 

give a brief review of the literature on acoustics and measurement of acoustic 

parameters in biological media. Chapter 3 introduces the model used in the 

simulations and describes some initial experiments in water that demonstrate the 

importance of enhanced attenuation. Chapter 5 describes the design of an 

experimental rig for making the measurements described in section 1.5. Chapters 6 

and 7 illustrate the results of the frequency dependent attenuation, sound velocity and 

axial nonlinear pressure distribution for the biological fluids mentioned above. 

Chapter 8 discusses the results and their implications. In addition Appendix A is 

concerned with the measurement of the medium nonlinearity parameter B/A.
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2.0 REVIEW OF LITERATURE ON 
ACOUSTICS

Medical ultrasonic systems vary widely in their method of producing ultrasonic fields. 

In general the methods employed to transmit, receive and focus the sound beam are 

complex. For example the array in a typical B-mode scanner for imaging may have 

sixty or more elements each of which transmits individually with focusing achieved by 

electronic time delays between transmitting elements. In addition the elements 

themselves are not generally circular; rectangular, annular or square geometries are 

often used. Although a number of designs exist one can gain an understanding of the 

propagation of the sound beam from these complex geometries by considering a 

much simpler arrangement. The one most commonly cited in the literature is that of 

a plane piston radiator located in an infinite rigid baffle with focusing incorporated by 

introducing a phase variation across the source. This chapter reviews the relevant 

literature on linear and nonlinear propagation with an emphasis on the acoustic fields 

produced by a circular piston sources.

2.1 Infinitesimal acoustics

2.1.1 Plane Piston

Figure 2.1 illustrates the geometry that is often used to represent the physical 

situation of radiation from a plane piston located in an infinite rigid baffle.
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Figure 2.1 Schematic of the geometry associated with a circular piston source.

The piston source has a radius a and is located at the origin of the Cartesian 

co-ordinate system with v being the radius of a concentric ring. The z-axis is normal 

to the transducer face. It is also common to express the axial distance in terms of a 

dimensionless co-ordinate 5 which is given by:

The advantage of this nomenclature is that the variables determining the structure of 

the ultrasonic field ( the source radius and wavelength of sound) are normalised.

Initial studies of the pressure field from a baffled piston source were made by 

Rayleigh. The pressure field was expressed as the integrated effect of point sources 

over the piston face. This is referred to as the Rayleigh integral (a special case of

Helmholtz integral equation) in the literature and is in effect a statement of Huygens

principle of linear superposition. The integral is expressed below in terms of <I>, 
where ^represents a scalar potential:

2.1

where z is the axial distance, X is the wavelength of sound and a is the piston radius.
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& = -u 0eUatfl  ^ r^ v 8 v . 2.2

Here u0 is the source particle velocity, r is the distance between the point of

observation and a point on the surface of the source and the integration is performed 

over concentric shells of thickness 8v. The expression under the integral represents 

the sound field produced by a secondary point source. Although the form of this

in expressing the variable r into an integral form.

An exception to this lies in the on axis field. Due to symmetry, equation 2.2 reduces 

to one which can be integrated simply and results in the following relationship for the 

on axis pressure distribution:

Figure 2.2a and 2.2b plot the characteristic on-axis diffraction pattern produced by a 

plane piston radiator in terms of the actual axial distance and the normalised axial 

distance respectively. The result in Figure 2.2a is for a circular 38 mm diameter 

transducer operating at 2.25 MHz into a lossless medium. The main features are:

(i) The rapid oscillations in average pressure which increase in occurrence as

one approaches the source;

(ii) The variation in average pressure from 0 to 2P0;

(iii) The presence of two regions in the axial field.

expression is simple its solution in general is not easily attainable due to the difficulty

2.3
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Figure 2.2a On-axis diffraction pattern for a plane piston with respect to the axial 
distance in metres.
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Figure 2.2b On-axis diffraction pattern for a plane piston with respect to the 
normalised axial distance.

The two regions are commonly referred to as the near field (Fresnel diffractive zone) 

and the far field (Fraunhofer diffractive zone). The transition between the two
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regions is sometimes defined at the normalised distance s =1, the position of the last 

axial maximum. In the near-field rapid changes in phase, due to the contribution 

from concentric rings on the piston face, dominate the expression for the axial 

variation in pressure. For example, when all the components are in phase the 

resultant pressure is twice the source pressure. In the far-field the spherical spreading 

component from the secondary sources dominates resulting in a much slower 

variation in axial pressure (due to a slower phase variation) beyond the last axial 

maximum.

More general solutions to the Rayleigh integral, which include off-axis variations in 

the pressure, fall into two categories, i.e. those that consider the far-field and those 

that consider the near-field.

Historically the far-field distribution has been treated extensively. In this case the 

observation point r (i.e. the point at which the pressure is to be determined) is such 

that, mathematically r » a .  This allows the integral to be simplified, by 

approximations, so yielding a closed form solution. The main features of the pressure 

field obtained are in the directivity of the pressure distribution. Off-axis maxima and 

minima are revealed (side lobes) which vary in accordance with Bessel functions of 

zero order. In addition it is found that as the ratio of wavelength to piston radius is 

decreased so the number of side lobes increases.

Closed form solutions to the Rayleigh integral in the near-field, without 

approximations, are generally not attainable. Zemanek (1970) obtained numerical
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results (3-dimensional plots) from the Rayleigh integral for the near-field behaviour

of a circular piston source. The method did not require any approximations in the

integral equation, but merely considered the piston source as a double summation of

discrete secondary sources. His results were valid for a wide range of piston sources 

(J from 1 to 20) and indicated, with great clarity, the complex near-field behaviour 

caused by interference. He also demonstrated that a regular beam pattern (in the

far-field) forms much closer to the source than previously thought and that the

minimum beam width (-3 dB falloff in intensity) is approximately one quarter of the

transducer radius.

Tjotta & Tjotta (1980) produced an analytical expression for the sound pressure 

when k r » l  based on a parabolic equation. Using the parabolic approximation, 

only waves with small offset angle with respect to the propagation axis are 

considered. The expression was shown to be similar to the first order expansion of 

the Helmholtz equation. They reproduced the numerical results of Zemanek (1970) 

and verified that near the source the sound beam could be considered as plane and 

collimated whereas in the far field it had a Bessel function directivity. They included 

in their analysis the effects of absorption. Depending on the 'strength' of absorption 

the rapid near field oscillations in pressure between 0 and 2P0 were diminished in 

magnitude and in general caused a blurring of interference effects. Including 

dissipitative effects also revealed insights into how close to the piston source the 

parabolic approximation was valid. For example in the absence of absorption 

equations based on the parabolic approximation break down and do not yield the 

correct pressure of P0 at the piston face.
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Recently Hutchins et al (1986) developed a single integral equation to describe the 

whole pressure field from circular sources with variable amplitude and phase

distributions across the face of the piston. They also performed a detailed set of

experiments measuring the pressure distribution to a spatial resolution of In order 
to achieve this resolution ultrasonic frequencies were not employed, however, the J

ratio was still in the region of 5. They obtained good agreement between experiment 

and theory. In particular some asymmetric measured fields were accurately modelled 

using non-uniform source excitations.

2.7.2 Focused piston

In addition to plane piston excitation a considerable amount of work has been 

performed on focused sources. Initial work was done by O'Neil (1949). He 

expressed the sound field in terms of a double integral:

P(z^) = Ĵ j j , ^ d S ,  2.4

where, £ is the radial co-ordinate. From equation 2.4 expressions for the axial 

pressure distribution, pressure at the focus and pressure across the focal plane were

derived.

A useful insight into the field of a focusing source is given by Lucas & Muir (1982). 

They approach this problem by solving the Helmholtz equation in terms of the 

complex velocity potential. Instead of considering a physically concave source they 

make the assumption that an identical result can be obtained by treating the problem 

as radiation from a phase modulated plane source. A parabolic approximation is
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again applied yielding a single integral equation for the pressure field. The solution 

to this equation gives the pressure distribution on-axis and in the focal plane. Figure

2.3 illustrates the axial pressure distribution for a 38 mm diameter circular source 

operating at 2.25 MHz with a focal length of 140 mm.

0 0.05 0.1 0.15 0.2 0.25 0.
ax ia l rlist.ancp (7) /  m

Figure 2.3 Axial variation of the pressure field for a 2.25 MHz, 19 mm radius 
transducer with a focal length of 140 mm.

They show that the maximum pressure, on-axis, is achieved just before the focal 

plane on the transducer side. The axial distance to the position of maximum pressure 

is given by:

2.5
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where zQ is the position of the maximum pressure, D is the radius of curvature of the 

wavefront and R0 is the Rayleigh distance (kc?/2). Their results demonstrate that 

decreasing the ratio of the radius of curvature to the Rayleigh distance causes the 

position of the maximum pressure and focal plane to converge towards the same axial 

point. As can be seen in Figure 2.3 the two positions are close together due to the 

relatively high focusing gain. In addition the pressure at the focus is given by:

as the ratio of the pressure at the focal point to that at the source. This results in the 

gain being expressed as:

The near-field phase behaviour can be interpreted in terms of the central spherical 

component and the edge wave emanating from the rim of the transducer. On-axis the 

edge wave components are all in phase and add to form a significant edge 

contribution which adds vectorially to the spherical component. This produces 

periodic oscillations which result in on-axis maxima and minima. When the 

observation point is off-axis the components from the edge waves do not add 

coherently, so the phase is determined predominantly by the spherical component

2.6

Using this expression a definition for the focusing gain of the source can be obtained

2.7
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The results are also compared with those of O’Neil (1949) and found to be in 

excellent agreement for sources with small radii of curvature and high ka value. The 

main disagreement between the results is close to the source, at distances within 30% 

of the focal distance. The discrepancy arises due to the break down of the parabolic 

approximation close to the source in a similar way to that reported by Tjotta & Tjotta 

(1980) for the plane piston case.

Other researchers have also demonstrated good agreement between experiment and 

theory for focused sources. For example Madsen et al (1981) made measurements 

for a low gain transducer (G of approximately 4) that agreed well with an exact 

solution derived by them. As with Lucus & Muir (1982) the solution requires only a 

single integral to compute the pressure distribution.

2.1.3 Diffraction correction

The literature quoted above refers to the pressure field distributions that would be 

obtained with an infinitesimally small receiver. In reality however any measurements 

will always use a finite size receiver. The effect of this is to give a signal output 

proportional to the average pressure amplitude over the receiver. This is referred to 

as a diffraction correction (or diffraction loss) and has received significant theoretical 

study in the literature.

Huntington et al (1948) were one of the first to investigate the averaged pressure 

field over a finite sized receiver that was coaxial to and the same size as the source.
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They numerically integrated an expression derived by Lommel (1886). Lommel's 

expression originates from work done on the diffraction of light from a circular hole 

in an opaque screen (a situation that is analogous to the acoustic problem) and is 

composed of trigonometric functions and series expansions of cylindrical Bessel 

functions. Huntington et al (1948) expressed the integral in terms of the 

dimensionless parameter s. The results showed the Lommel diffraction integral to be 

a monotonically decreasing function of s.

Seki et al (1956), while measuring the attenuation in materials, observed that the 

usual exponential fall off in the detected signal amplitude with distance was not 

strictly correct. The non-exponential pattern was due to the presence of peaks in the 

amplitude of the detected signal. For confirmation the Lommel diffraction correction 

integral was evaluated numerically illustrating the presence of the peaks. They 

stated that the earlier computations of Huntington et al (1948) were not evaluated at 

close enough intervals and so skipped the observed peaks. Other researchers, 

Williams (1951) and Bass (1958) have obtained exact integral expressions. Both 

derive expressions from work done by King (1934) for radiation from an ideal piston 

radiator. Williams result has been calculated and verified experimentally by Seki et al 

(1956).

The work cited above was for an equal size transmitter and receiver. The more 

general case of unequal size apertures has been studied by Beissner (1981). He 

transformed a quadruple integral (based on Rayleigh's integral equation) into a single 

integral expression (based on elementary functions) using geometrical considerations
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and a change of variables. The resulting integral was evaluated numerically, and 

Figure 2.4 illustrates some results for the axial field from a 39 mm diameter, 2.25 

MHz transducer with various receiver sizes, b, plotted against the normalised axial

distance s.
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Figure 2.4 Illustration of the diffraction loss for a 19 mm radius 2.25 MHz 
transducer with receiver radii of 0.02 mm, 10 mm and 19 mm.

Figure 2.4 shows that as the receiver size is increased the minima and maxima appear 

at different locations in the axial field, but in general the axial variation in pressure is 

reduced.

Another source of diffraction correction (or diffraction loss) occurs when sound 

propagation is through media of different velocities. This is often the case with
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experiments where the attenuation properties of a medium are being investigated, and 

is discussed in Chapter 5 section 5.4.4.

2.2 Finite amplitude acoustics

2.2.1 Plane wave propagation

Equation 1.1 gave an approximate wave equation for particle displacement, for 

conditions of linear propagation. A more accurate expression for the particle 

displacement in a liquid is that given below:

where £ represents the particle displacement and B/A represents the medium 

nonlinearity. Eamshaw (1860) solved equation 2.8 implicitly to yield the following

relationship for the particle velocity:

The expression demonstrated that points of high particle velocity move faster than 

those of low velocity, resulting in progressive waveform distortion, as illustrated in

2.8

2.9

Figure 1.1, and the formation of a discontinuity distance as given by equation 1.7 and

illustrated in Figure 1.1.
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A number of workers have obtained solutions that are based on power series 

expansions of the excess pressure or particle velocity, expressed as a Fourier series. 

Fay (1931) obtained an analytical solution for highly shocked waves taking into 

account attenuation. Fubini (1935) considered the case of weak shocks in lossless 

media and expressed the particle velocity as an infinite summation of the harmonic 

components of the distorted waveform. The expression derived by Fubini (1935) is:

The expression illustrated that for low levels of nonlinearities (i.e. small u and small 

z) the second harmonic varied as the source particle velocity squared, the third 

harmonic varied as the source particle velocity cubed etc.

A large amount of work in the area of finite amplitude acoustics has been done by 

Blackstock (1962, 1964, 1966). He realised that the solutions of Fay and Fubini 

applied to different regions of propagation and was able to combine the two solutions 

to produce expressions for the pressure of the harmonic components of finite 

amplitude plane waves during propagation under both weak and strong shock. In 

addition Blackstock (1962) also initiated the analysis of finite amplitude wave by 

considering solutions to Burgers equation. The attractiveness of this approach was

(£ ) = B „sin n((Ht -  kz) , 2.10

where

2.11
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that Burgers equations could take into account both dissipative and dissipationless 

processes.

Because of problems in obtaining full analytical solutions to Burger’s equation, many 

workers attempted numerical solutions. Fox and Wallace (1954) used a method 

analogous to nonlinear distortion in electrical circuit analysis. This was 

computationally time consuming due to the need to apply a large number of Fourier 

transforms. Trivett and Van-Buren (1981) applied an efficient algorithm, carried out 

entirely in the frequency domain, to solve Burger's equation for plane, spherical or 

cylindrical waves. The solution took on the form of a trial Fourier series of linear 

waves, the coefficients of the series relating to the amplitude of the harmonic 

components. The above methods considered only one dimensional waves, with 

diffraction effects not included, and so were not capable of predicting the near-field 

of finite size sources.

2.2.2 Piston sources

In order to take diffraction into account two approaches are possible. Ingenito and 

Williams (1971) used a perturbation method to obtain the second harmonic variation 

in the near-field of finite size sources, finding good agreement between experiment 

and theory. Although this method is numerically simple it has some disadvantages. 

Since it uses a perturbation approach only low levels of nonlinearity can be 

considered and information at higher harmonics is not available. In addition 

diffraction of the second harmonic is also excluded.
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Lucas & Muir (1983) considered finite amplitude propagation from focused sources. 

Although their approach was a perturbation one and so valid for weak shocks, 

Humphrey et al (1986) have provided experimental confirmation for the predicted 

second harmonic levels.

An alternative is to start with the nonlinear parabolic equation of wave propagation in 

two dimensions. This equation is an approximation to the nonlinear wave equation 

and is relatively easy to implement numerically. In view of this Zabolotskaya & 

Khovkhlov (1969) (also Tjotta & Tjotta 1981) derived a parabolic equation for 

nonlinear waves. In 1971 Kusnetsov extended it to include absorption. This 

particular approach is discussed further in Chapter 3.

Recent work has concentrated on measuring and predicting the finite amplitude field 

of piston sources (in many cases at ultrasonic frequencies) and these will be 

mentioned briefly. Aanonsen et al (1984) and Hamilton et al (1985) used the 

parabolic approximation with a frequency domain solution for continuous waves and 

axially symmetric fields. Hart and Hamilton (1988) also produced an efficient 

frequency domain solution to solve coupled parabolic differential equations. Their 

method was very good for focused fields and agreed with available experimental 

data. In particular they illustrated the presence of higher harmonic sidelobes which 

earlier models had not accounted for. Baker et al (1987,1988,1989) using the 

solution described by Aanonsen et al (1984), for the KZK equation, produced a 

comprehensive set of theoretical and experimental results for plane, focused and 

pulsed fields in water with emphasis on medical systems. Their results showed good
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agreement, for the amplitude and phase of the first five harmonics, between 

experiment and theory. Discrepancies were caused by both experimental and 

theoretical limitations. Experimentally limitations occurred due to the accuracy with 

which measurements could be made for the higher harmonics especially due to the 

effects of hydrophone calibration, hydrophone averaging, hydrophone alignment and 

source pressure determination. Theoretical limitations resulted from the use of the 

parabolic approximation (especially for results close to the piston face) and a trade 

off between numerical accuracy and computational time.

The most recent model of nonlinear propagation, that takes into account attenuation 

and diffraction is that by Christopher & Parker (1991). This model does not rely on 

the parabolic approximation. The diffractive field, from a baffled piston source, is 

computed by considering the angular spectrum of the harmonic field at a particular 

plane. The harmonic field at a plane is in effect decomposed into a sum of plane 

waves travelling in different directions (i.e. at different angles) by applying a two 

dimensional Fourier transform to the field. The harmonic field at any other plane can 

then be calculated by summing these spatial Fourier components, in the new plane. 

Although this approach to diffractive field propagation is not new, Christopher & 

Parker (1991) have developed a computationally efficient algorithm for sources that 

resemble those encountered in medical ultrasound imaging. The model is similar to 

that of Aanonsen in that non-linearity is accounted for in the frequency domain. The 

predictions of the model agree well with the predictions and experiments of Baker et 

al (1988).
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3.0 THE NUMERICAL MODEL

The theoretical simulation of the pressure fields produced by medical ultrasonic 

transducers requires models to take into account the processes of attenuation, 

diffraction and nonlinear propagation. In chapter two reference was made to the 

approach taken by Kuznetsov et al (1971). The numerical implementation of 

Kuznetsov's equations by Aanonsen et al (1984) forms the basis of the model used in 

this work. The first part of this chapter gives a brief overview of the numerical 

model. The later part will demonstrate one of the uses of the model in the calculation 

of the enhancement of attenuation resulting from nonlinear propagation.

3.1 Introduction

The model used for the simulations discussed in this report is based on the equation

of propagation (the so called KZK equation) for finite amplitude waves in a viscous

heat conducting fluid derived by Kuznetsov (1971). In its general form the KZK 

equation can be expressed in terms of a scalar potential <I>:-

7̂ -  cJ V2<I> = |j^2acfc2V2fl>+(V<I>)2 + 2Cs( • 3-1

The right hand side of the equation consists of three terms, the first represents 

absorption, the second convective nonlinearity and the third medium nonlinearity.
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The left hand side of the equation corresponds to the wave equation for a lossless 

linear medium.

Kuznetsov also demonstrated that equation 3.1 could be simplified by using the 

parabolic approximation i.e. when most of the energy in the beam is confined to the 

axial direction, as is the case for the geometry's used from medical ultrasonic 

transducers. Mathematically this is normally fulfilled when ka »  1, where k is the 

wavenumber and a is the aperture radius. Physically the approximation implies that 

at the frequency of operation the aperture is many wavelengths across. The 

simplified equation is normally expressed in dimensionless form as:

82P  ~rt 83/* , 1X72 75 i ) n o~ + 7 + 2Td—& ~ * d.z

where P is the pressure normalised to the source pressure.

x is a retarded time that takes into account the phase behaviour for a plane 

progressive wave.

a  is an axial distance normalised by the Rayleigh distance.

V i is the two dimensional Laplace operator applied to the dimensionless vector

The parameters aR0 and R0Hd indicate the importance of absorption and nonlinearity 

respectively.

There is no general analytical solution to equation 3.2. However Aanonsen et al 

(1984) considered a numerical approach. They started by obtaining a trial Fourier
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series solution for the harmonics in terms of their amplitudes and phases with respect 

to axial and radial co-ordinates. The trial solution can be expressed in terms of the 

normalised pressure as:

P = X^=i(c«cos/ix + d„sin/ix). 3.3

Substituting this solution into equation 3.2 results in a set of coupled differential

equations for the coefficients cn and dn which are in effect the resolved vector 
components of the pressure amplitude of the nth harmonic. The differential equations

are given below in equations 3.4 and 3.5, where n represents the harmonic number:

fj- = ~<xr0n 2Cn -  £Vi<f„+

(c^d i+ d ^C i)+ Z Z ^  i ( d ,c ^ - c ,d ^ ) ] ;  3.4

= - a r0n2dn + c„+

(d„-idi - c„-id) - Z ^ +1 (c .c ^  + d.di-n)]. 3.5

These indicate how the coefficients cn and dn change with the normalised axial 

distance O. The right hand side of the above equations are composed of three terms, 

the first term relates to absorption, the second term to diffraction and the third to the

nonlinear interaction between the harmonics. Taking either equation we can gain a

qualitative understanding of the processes occurring during the propagation along the

normalised axial co-ordinate.
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As can be seen the absorption term depends on the harmonic number squared and is 

simply the classical viscous attenuation of sound in water. The forms of equations

3.4 and 3.5 allow this term to be generalised into an arbitrary absorption form 

(Korpel, 1980).

The diffractive term depends on the reciprocal of the harmonic number. This implies 

that diffraction becomes less important for the higher harmonics. In effect for the 

higher harmonics ka becomes larger and more wavelengths fit across the aperture 

resulting in their propagation tending towards that of a plane wave.

The nonlinear term is directly proportional to the harmonic number and inversely 

proportional to the plane wave shock distance. This results in nonlinearity becoming 

more important as the harmonic number, nonlinearity parameter and source pressure 

are increased. One can also see how the contribution from any particular harmonic is 

determined, for example the third harmonic results from interactions of the 1st and 

2nd, 1st and 4th, 2nd and 5th etc.

3.2 Numerical implementation and associated errors

The above differential equations can be solved by numerical methods; these solutions 

are based on that of Aanonsen et al (1984) who used a stepwise integration scheme 

using a backward finite difference formula. In order to obtain the numerical solution 

some approximations were made. These are grouped into three classes and discussed 

below.
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3.2.1 Region o f integration

Firstly, the infinite series of harmonics that represents the wavefield has to be 

truncated. Truncation causes the flow of energy to stop at the highest harmonic 

retained in the calculation, so artificially increasing its energy. Because energy also 

flows from the higher to the lower harmonics this truncation can also effect the 

energy in the lower harmonics and leads to inaccurate results. Provided a sufficient 

number of harmonics are retained the resultant error is negligible.

As in the case of truncation of the infinite harmonic series, there also needs to be a 

finite region of integration in the radial plane. In order to numerically implement the 

solution the radial boundary has to be at a sufficient distance so that ultrasonic energy 

does not reflect energy back from i t  This reflection is easily identified due to the 

presence of an oscillatory behaviour, resulting from the interference between the 

direct and reflected wave, in the on-axis pressure distribution.

3.2.2 Axial and radial step sizes.

The stepwise integration method used by Aanonsen calculates the coefficients (cn 

and dn) along the next radial plane by a direct iteration method. This imposes strict 

limitations on the values of the axial and radial step sizes. For the iteration to 

converge the step sizes must be chosen such that < 0-5.
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Since the solution is a numerical one there are errors associated with the chosen axial 

and radial step sizes. If the spatial variation of the pressure field is faster than either 

these step sizes then there will be some averaging in the predicted results. In 

particular the radial step size can be important in calculating the position of the rapid 

near field oscillations. The position of these maxima and minima depend on the 

square of the aperture radius. In the numerical implementation the aperture pressure 

distribution is represented by amplitude and phase variations across i t  Given that the 

exact aperture radius can only be represented by using a finite radial step size it 

follows that the step size chosen will determine how well the aperture is modelled. 

Using small step sizes does not necessarily produce higher accuracy; machine 

rounding error can become an important factor as the number of calculations 

performed increases.

3.2.3 Mathematical approximations

The numerical method implemented for the calculation relies on the reduction of fully 

implicit equations for c and d to partially implicit ones. This simplification in effect 

assumes that the variations in c and d due to the nonlinear term are small in 

comparison to the variations produced by the diffractive term. The result is that only 

nonlinearity from the previous calculation step is considered, so decreasing computer 

run-time significantly. Aanonsen indicated that for his conditions this was a valid 

approximation. The other simplification in the model is the parabolic approximation 

which has been mentioned previously.
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The simulated pressure and phase distributions, obtained from Aanonsen's model 

have been verified experimentally for ultrasonic measurements in water (Baker et al, 

1987,1988,1989). The next section will demonstrate some of the other calculations 

that can be performed with the model, in particular the determination of the 

enhancement of attenuation due to nonlinear propagation.

33  Enhanced attenuation

In the introductory chapter reference was made to measurements of enhanced 

streaming, resulting from nonlinear propagation, made by Starritt (1990). The 

explanation offered for the enhanced streaming was the extra absorption of energy 

resulting from the higher attenuation of nonlinearly generated harmonics. In order to 

quantify this enhanced attenuation, the numerical model has been used to simulate 

the experimental conditions used by Starritt. The remainder of this chapter will 

describe the method employed to determine the enhanced attenuation theoretically. A 

comparison will then be made between the measurements made by Starritt and the 

predictions of the model; this will illustrate the parameters required to simulate 

experimentally determined pressure distributions. In addition measurements and 

predictions for a 5 MHz focused single element transducer operating in water will be 

presented. These results will demonstrate the potential of using numerical models to 

accurately predict derived parameters such as enhanced attenuation.
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3.3.1 Determination o f enhanced attenuation.

Determination of the enhanced attenuation, due to nonlinear propagation, requires a 

knowledge of the intensity in the sound beam. In general detectors of acoustic 

radiation measure pressure not intensity. However a quantity that is closely related to 

intensity is the pressure squared integral and is discussed below.

33.1.1. Pressure squared integral (PSI).

Intensity is defined as:

/  = P.v, 3.6

where P and V are the acoustic pressure and particle velocity respectively. Note that 

both the intensity and particle velocity are vector quantities.

For an infinite plane progressive wave the pressure and particle velocity are always in 

phase so the intensity becomes proportional to P2. In the near-field of a piston 

source the particle velocity has both axial and radial components and it cannot

immediately be assumed that it and the pressure are in phase. However for most

piston sources the radius of the source is much larger than the wavelength of the

sound and quasi-plane wave propagation can be assumed, allowing the intensity to

be approximated to pressure squared. The validity of this has been studied by Mair et

al (1987). They calculated the intensity using the formal definition (given by

equation 3.6) and compared it with the pressure squared assumption. Their results

suggest that the approximation is valid, on-axis, when the axial distance from the
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source is greater than a few piston radii. In the very near field however the results 

can differ by as much as 50%. They also presented results for focused sources, but 

only for piston sizes of a few wavelengths across. The results seem to indicate that 

there is some difference between intensity and the pressure squared approximation, 

but the effect is reduced for larger pistons.

For a plane wave the time average intensity is expressed as:

3-7

where x is the period of the wave and P(t) is the complex acoustic pressure. The

complex acoustic pressure for a distorted sine wave can itself be expressed as:

P(0=£„P«e,("ŵ ' ,). 3.8

Here the summation is simply the Fourier series representation of the waveform in

terms of Fourier components, where pn represents the amplitude of the n4 harmonic 
and (|)n its phase.

Because P(t) is complex, P2{t) is obtained by multiplying it by its complex conjugate 
P*(t). This then gives

P2(t) = X n 'Lmpnpmei(mte-i(»nt, 3.9

where m is used to distinguish P{t) from its complex conjugate. The intensity can

now be expressed as,

/  = 3.10
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If m * n  then the integrand goes to zero because a complex function and its 

conjugate are orthogonal. If m=n then the integrand goes to 1, and we have,

3.11

So by summing the squares of the harmonic pressures in the wave the intensity, 

on-axis, can be inferred. The summation described in equation 3.11 is known as the 

pressure squared integral and was incorporated into the numerical model. Given that 

the intensity in an ultrasonic beam can be determined, by considering the pressure 

squared integral, the enhancement of attenuation due to nonlinear propagation can be 

calculated using the following argument.

The attenuation of a plane progressive wave is defined as:

where // is the intensity at a distance z, a / is the attenuation coefficient (expressed in 
Nepers per unit distance) and (7/)0 is the intensity at the source. The subscript /

denotes a wave propagating under linear conditions. A similar expression can be 

obtained for a wave propagating under nonlinear conditions:

where the subscript nl denotes a contribution from nonlinear propagation, and a „/ 

represents the contribution from the additional attenuation coefficient due to

nonlinear propagation effects.

3.12

Inl =  (In l)o e -2^ " ‘)Zy 3.13
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Normalising both equations (3.12 and 3.13) by their respective source intensities and 

rearranging one obtains the following equation:

From equation 3.14 one can see that the additional attenuation due to nonlinear 

propagation can be determined by knowledge of the intensity in the nonlinear and 

linear ultrasonic field. This procedure is attractive because by considering the ratio of 

axial variation of energy in the two beams, one can cancel out variations in the energy 

due to the diffractive effects of a finite sized source. It should be noted that in the 

results presented below the intensity has been replaced by the pressure squared 

integral (PSI).

3.3.1.2 Starritt's measurements of PSI

Starritt (1990) measured enhanced streaming from medical ultrasound transducers. 

In order to investigate the source of the high streaming velocities measurements of 

the PSI in the ultrasonic beam were also measured. These measurements were made 

with a 19 mm diameter single element circular transducer with moderate gain 

operating at a centre frequency of 3.5 MHz. It was driven with a short tone burst at 

a pressure of 0.03 MPa and at 0.39 MPa. These two source pressure conditions 

determined the linear and nonlinear ultrasonic beams.

3.14
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The detection system used was the Ultrasound Beam Calibrator (BECA, Preston 

1988) which consisted of a detector, amplifier and digitiser, with subsequent analysis 

of the recorded waveforms being performed by commercial software. The detector 

used was a 21 element PVdF bilaminar membrane hydrophone, each element having 

an active diameter of 0.5 mm. Part of the attractiveness of the whole acquisition 

system was that each element could be accessed simultaneously so facilitating 

alignment of the ultrasonic beam and that the amplifier stage was designed such that 

the hydrophone sensitivity was flat from 1 MHz to 15 MHz. In addition the software 

allowed the determination of the PSI of the waveform. The results of these 

measurements will be presented in the next section.

3.3.13 Modelling the ultrasonic field.

The numerical implementation of the KZK equation requires certain input parameters

that relate to the source and the medium of propagation. This information is fed into 

the model via four parameters, T, A, G, m which are described below.

(a) T, the Goldberg constant, represents the ratio of nonlinearity to attenuation and is 

expressed as:

where P is the parameter of nonlinearity and £ is the acoustic Mach number. The 
nonlinearity parameter, P is given by equation 1.7.

For water at room temperature P is equal to 3.5. The acoustic Mach number £ is the 

ratio of particle velocity to sound velocity and can be expressed as:
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e = (-* % ! 3.16VPocS J
For water the density is 1000 kg m'3 and the sound velocity is 1486 ms'1, at room 

temperature.

a  is the attenuation of the fundamental frequency component and is expressed as:

a  = a  o f1, 3.17

where a 0 is the attenuation coefficient at 1 MHz and m is the frequency dependence

of attenuation. For water the attenuation coefficient is 0.025 Np m'1 MHz'2 at room

temperature.

(b) A represents the ratio of diffraction to nonlinearity and is given by

_  ( 2Ro\ 3.18

The denominator is the plane wave shock distance. R0 is the Rayleigh distance and is 

expressed as

**=(¥)- 3.19

where a is the source radius (9.5 mm for these simulations). The Rayleigh distance 

describes the diffractive field of the transducer.

(c) The third parameter is G, the focusing gain of the source and is expressed as:

G = ^ ,  3.20
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where D is the focal length. With most medical ultrasonic transducers the focusing is 

achieved by having a curved transducer surface as opposed to a plane surface with a 

detachable lens and in general only nominal values are given for the focal length or 

the gain. The value quoted by Starritt was 4.0.

(d) The fourth term is the frequency dependence of attenuation index m. The 

original numerical implementation of the model took the valye of m to be 2.0, so

simulating attenuation in water. In order to accomodate a non-squared law

frequency dependence of attenuation, as is often observed in biological fluids (see

Chapters 4 and 6), the model was altered to allow the frequency dependence of

attenuation index to be input as a variable.

The values quoted above were input into the model to yield pressure distributions for 

the two source pressure conditions. These were compared with measurements made 

by Starritt (1990) in order to check that the input parameters represented the 

transducer accurately. It was, however, found that there were two major differences 

between the experimental and theoretical results.

Firstly the axial positions of the minima and maxima did not agree with those 

observed experimentally. For example the last axial minima occurred at 69 mm 

theoretically whereas it was at 52.5 mm experimentally. Secondly, pressure values at 

the last axial maxima did not agree.

The most likely cause for the discrepancy between experiment and theory was in the 

values chosen for the transducer radius and the focusing gain. Using Starritt's value
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for the last axial minima, an 'independent' value for G was calculated using the 

standard relationship between the axial positions of minima, , in the diffractive 

field and focal length (see for example Lucas & Muir 1982):

For the last axial minimum the value of n in equation 3.21 is one. Substituting for 

in equation 3.21 gave a value for the focal length which was in turn used in equation 

3.20 to give a value of 6.5 for the focusing gain. The model was rerun and found to 

produce a much better match between experiment and theory. The axial variation of 

the first three harmonics for the two source pressure conditions (0.39 MPa and 0.03 

MPa) are illustrated in figures 3.1 and 3.2.

There are two features worth noting from the theoretical results. Firstly one can 

confirm that with the high drive case, condition 'A' (0.39 MPa), there is a large 

degree of nonlinear distortion in and beyond the focal region. For example in the 

region of the focus the second harmonic is approximately 6.0 dB below the value of 

the fundamental implying the formation of a mature shock wave. On the other hand 

the second harmonic level for condition 'B' (0.03 MPa) is approximately 20 dB down 

from the fundamental in the region of the focus, implying more linear propagation. 

Secondly it is interesting to note that the harmonics illustrated (for condition 'A') in 

figure 3.1 peak slightly later than the fundamental. This will be referred to 

subsequently.

3.21
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Figure 3.1. The axial variation of the normalised pressure for the first three 
harmonics for condition 'A' (0.39 MPa). Theory.
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Figure 3.2. The axial variation of the normalised pressure of the first three harmonics 
for condition 'B' (0.03 MPa). Theory.
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Figure 3.3 illustrates the axial variation of the PSI for the two source pressure 

conditions. Both results are normalised to the PSI at the source. As can be seen the 

PSI in the nonlinear beam ('A'), after the last axial minimum, is less than that in the 

linear beam. Given the arguments presented above concerning the relation between 

the PSI and the intensity in the beam it seems plausible to conclude that there is 

relatively less energy present in the nonlinear beam. This is presumably due to the 

enhancement of attenuation resulting from the higher attenuation of nonlinearly 

generated harmonics.
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Figure 3.3. Axial variation of the normalised PSI for conditions A ' and 'B'. Theory.

The enhancement of attenuation, due to nonlinear propagation, can be calculated by 

plotting the ratio of PSI for condition 'A' with respect to the PSI with condition ’B'. 

Figures 3.4 and 3.5 illustrate the axial variation of the PSI ratio. The first result is 

obtained from theoretical simulations whereas the second result is taken from the 

experiments performed by Starritt (1990). It should be noted that the experimental
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results are not normalised to the source PSI as this was not done originally. Both the 

results illustrate a similar variation in the PSI ratio, however the theoretical result in 

figure 3.4 will be used to comment on the behaviour of the variation in the PSI ratio.

From figure 3.4 it can be seen that there are three regions in which different 

behaviour can be identified. These are from the source to approximately 6 cm, from 

6 cm to 10 cm and from 10 cm to 17 cm.

The first region represents the very near-field (pre-focal region) of the ultrasonic 

beam where the PSI ratio is predominantly unity. Here nonlinearity has not had time 

to build up (in part due to the rapid oscillations of the fundamental) so almost all the 

energy is confined to the fundamental for both drive cases. Within this region there 

are however a few points where the PSI ratio rises sharply. These points correspond 

to a minima in the field of the fundamental. For condition 'A' a small amount of 

second harmonic is present resulting in a finite non zero value for the PSI. The result 

is that the PSI ratio rises to a large value.

In the second region the PSI falls below unity, implying that more energy has been 

lost from the nonlinear beam CA'). The physical reason for this is as follows. In the 

region of the focus, energy is transferred to the harmonics. The attenuation of the 

harmonics is proportional to frequency squared and therefore energy is lost from the 

wave at a faster rate than would be expected from an undistorted wave.
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Figure 3.4. Theory. Axial variation of the pressure squared integral ratio of 
condition 'A' (nonlinear beam) to condition 'B' (linear beam). The result is normalised 
to the pressure squared integral at the source.
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Figure 3.5. Experiment. Axial variation of the pressure squared integral ratio of 
condition 'A' (nonlinear beam) to condition 'B' (linear beam). The experimental 
result are taken from Starritt (1990) and are not normalised.
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The second region also contains a peak in the region of 8 cm from the source. The 

peak implies that energy in the nonlinear beam is again building up so reducing the 

enhanced loss of energy for a short distance. An explanation for this behaviour can 

be found with reference to figure 3.1. Here it can be seen that a significant 

proportion of energy is present in the harmonics, generated by nonlinear propagation, 

which are not as strongly diffracted as the fundamental and so focus beyond the 

maximum of the fundamental.

The third region represents the post focal region. In this region the rate of energy 

loss due to nonlinear effects decreases, as the fundamental has lost a significant 

proportion of its amplitude as a result of nonlinear effects, and the PSI ratio reaches a 

plateau.

The enhanced attenuation in the post focal region (8cm to 10 cm) can be calculated,

using the arguments used to obtain equation 3.14, from the gradient of figures 3.4 

and 3.5. The theoretical results yield a value of 0.96 dB cm'1 (a „/ in equation 3.14) 

for the additional attenuation coefficient. For a linear wave the attenuation at 3.5

MHz is 0.027 dB cm'1. This corresponds to an enhancement of energy loss by a

factor of 36. The experimental results indicate a value of 1.1 dB cm'1 for the

enhanced attenuation. The experimental and theoretical results show reasonably

good agreement. Furthermore the enhanced attenuation indicates that on-axis 97%

of the total attenuation is due to generation and attenuation of harmonics. The

theoretical results also illustrate that after sufficient propagation the nonlinear wave

has lost 45% of its intensity on-axis while the experimental results indicate a higher

loss, in the region of 60%.
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3.3.1.4 PSI and enhanced attenuation measurements with a 5 MHz transducer

Additional measurements of the enhanced attenuation from a 5 MHz single element 

circular transducer were also made. The radius of the transducer was 6.5 mm and its 

focusing gain was again determined by locating the last axial minimum. Using this 

method the gain was calculated to be approximately 4.5.

The arrangement used to detect and capture the acoustic waveform was similar to 

that used by Starritt in that the BECA detection and amplification system were used. 

However after the amplification stage the signals were captured and stored on a 

Lecroy 9310 storage oscilloscope (described in chapter 5). This allowed the 

subsequent analysis of the waveforms to be made independently. For example the 

PSI over one cycle rather than the whole waveform was determined. It was thought 

that this would provide more accurate results as measurements over the whole 

waveform assume that each cycle is distorted by the same amount A comparison of 

the results for the cycle and pulse PSI's are not presented here (the PSI results over 

one cycle are presented) , however it was found that both methods gave similar 

results.

Measurements of the axial PSI were made for four source pressure levels, 0.565 

MPa, 0.428 MPa, 0.35 MPa and 0.02 MPa representing fields with different degrees 

of distortion. Measurements of the source pressure were made with a 0.5 mm 

diameter PVdF bilaminar membrane hydrophone and with a power balance.
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The ratio of square root of the PSI for the three highest drive levels with respect to 

the lowest drive level are illustrated in figure 3.6. Plotting the logarithm of the 

square root of the PSI ratio is equivalent to plotting the PSI provided one removes 

the factor of a half from equation 3.14. Once again there is reasonably good 

agreement between experiment and theory. The enhanced attenuation in the region 

just beyond the focus (60 mm to 70 mm) was calculated for the three drive levels in a 

similar manner to before and the results are tabulated in figure 3.7. As can be seen 

the enhancement in attenuation for the highest drive level case is approximately 30.

Although the agreement between experiment and theory for both transducers is 

reasonable there are some possible sources of discrepancy that can be identified. 

These are related to the hydrophone used in the experimental arrangement and are 

listed below:

(i) The finite bandwidth of the hydrophone (1 MHz to 25 MHz) will result in energy 

present in the higher harmonics (i.e. above 25 MHz) not being detected. 

Consequently it will appear that there is less energy in the nonlinear beams. When 

calculating the enhanced attenuation this error will tend to produce overestimates for 

the values of attenuation.

(ii) The finite hydrophone size will result in spatial averaging of the PSI distribution. 

The problem will become increasingly significant for nonlinear beams where there is 

appreciable energy in the higher harmonics (which are concentrated near the axis) 

and also as one increases the fundamental frequency of operation. The effect of
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hydrophone averaging was incorporated into the model and it was found that for the 

3.5 MHz transducer the PSI was reduced by about 10% for nonlinear beams with a 

0.5 mm diameter hydrophone. Again this apparent reduction in PSI for nonlinear 

beams tends to increase the calculated value of enhanced attenuation.

From the experimental and theoretical results presented it seems plausible that 

enhanced streaming may result from enhanced attenuation in the focal and post-focal 

region of medical transducers. In addition to this the enhancement by a factor of 

approximately 30 in the attenuation of water due to nonlinear generation and 

attenuation makes the total attenuation comparable with that of some soft tissue.

These results also show the potential of the numerical model for obtaining derived 

parameters, such as PSI and enhanced attenuation, in nonlinear fields. In addition the 

results also demonstrate that an accurate knowledge of transducer parameters (such 

as radius and gain) is required in order to obtain good agreement between 

experimental and theoretical results.
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Figure 3.6. Axial variation of the ratio of the square root of the pressure squared 
integral for three source pressures, 0.565 MPa,0.43 MPa, 0.35 MPa (0dB,2dB and 
5dB) with respect to a source pressure of 0.02 MPa for a 5 MHz focused 
transducer. Solid lines correspond to theoretical predictions.

Source pressure 
/MPa

Theory. 
Enhanced 

attenuation dBcm'1.

Experiment. 
Enhanced 

attenuation. 
dB cm 1 (+/-) 1 S.E.

Enhancement
factor.

0.565 1.67 1.3+/-0.1 31

0.428 1.34 1.25 +/- 0.08 24

0.35 1.0 1.1 +/-0.14 19

Figure 3.7. Tabulated values for the measured and predicted enhanced attenuation 
from the 5 MHz transducer in water.
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4.0 REVIEW OF LITERATURE ON THE 
MEASUREMENT OF ACOUSTIC 

PARAMETERS

This chapter reviews the methods that have been used to measure the attenuation, 

absorption, sound velocity and nonlinearity parameter of soft tissues and biological 

fluids and indicates the type of results that are produced. In addition to the large 

volume of data available in the literature some very useful reviews have been 

published, for example Goss et al (1978), Goss et al (1980), Hill (1986) and Duck 

(1990).

Before discussing the literature it is worth noting that some of the earlier work does 

not distinguish between measurement of attenuation and absorption. For 

inhomogeneous media, such as soft tissue, absoiption is the conversion of ultrasonic 

energy into heat whereas attenuation includes losses due to scattering. For 

homogeneous media (e.g. water and biological fluids) the two quantities are identical. 

Further to this attenuation measurements are generally made in a diffractive sound 

field and so require an understanding of the spatial variation of the sound pressure 

field. Early work on estimating the attenuation in a medium sometimes ignored this 

aspect. Diffraction loss leads to an error in attenuation measurements, but can be 

minimised experimentally or corrected for theoretically.
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4.1 Methods of measurement

4.1.1 Attenuation

There are a number of ways of classifying the method of measurement. An initial 

classification can made by considering narrowband and broadband techniques (see for 

example Bamber ( in: Hill, 1986 Chapter 4).

In narrowband techniques the transmitted signal is assumed to be of sufficient 

duration (defined by the number of cycles) such that it can be assumed to be at a 

single frequency. Within this classification there exist fixed-path and variable-path 

methods. With variable path methods the change in the amplitude of the received 

signal as a function of the range of the receiver yields an absolute value for the 

attenuation coefficient However the method needs to take account of diffraction 

loss and can require significant corrections to the data in the low megahertz 

frequency range. Pellam & Galt (1946) used this technique at 15 MHz with a long 

toneburst to obtain attenuation results with an accuracy of 5%. If high frequencies 

are employed then diffraction errors can be neglected. Eggars et al (1981) devised 

an ultrasonic absorption cell for measurements with very small fluid volumes 

(millilitres) for the frequency range 15 MHz to 150 MHz. They suggest that if the 

errors in electronic calibration, transducer alignment and distance measurements are 

minimised then an accuracy of +/- 0.5 % is possible. The major limitation of this 

method is that it is not suitable for solid tissues.
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Fixed path measurements include the substitution (Schwan & Carstensen 1952) and 

insertion (Kremkau 1981) methods. In both cases diffraction corrections are often 

neglected and transducer alignment is not so crucial. Whether the assumptions on 

diffraction corrections and alignment are correct depend to some extent on the 

geometry of the experiment. Thick samples with sound velocities significantly 

different from the reference medium (for example greater than 10%) will alter the 

ultrasonic field leading to a contribution in signal change from diffractive effects. 

With the substitution method the distance between the source and receiver is fixed 

but the path length in the sample and reference medium is altered. Because a 

reference medium is used the attenuation coefficient is relative. Normally relatively 

large sample volumes are required (one to four litres) and again the sample generally 

needs to be a fluid. Pauly and Schwan (1971) did measure the attenuation coefficient 

of liver with this method, by mincing the tissue and assuming that this had no effect 

on the propagation of sound through i t  With the insertion method again a reference 

medium is used but this time the attenuation coefficient is determined from the signal 

received with and without the sample. The method is well suited to solid samples 

however errors result due to reflections at the specimen faces and non-parallel cutting 

of the sample slabs. The accuracy is therefore in the region of +/-10%.

Finally there are also narrowband techniques that employ continuous wave methods 

and make use of resonances. One of these is the ultrasonic interferometer. Here the 

variation in strength of a resonance with path length or frequency can be used to 

measure the attenuation coefficient Diffraction corrections and side-wall reflections 

cause errors and a test liquid is required for calibration. However the method can be



useful if only small volumes of the sample is available. Eggars & Funck (1973) 

measured the attenuation coefficient in aqueous solutions of 1 ml volume over a 

frequency range of 0.5 MHz to 50 MHz.

Broadband techniques have recently become popular due to the advances in signal 

processing. They have the advantage that the attenuation coefficient can be 

measured over a wide frequency range using a single pair of transducers. The normal 

procedure is to use the insertion method. The transmitted pulse is very short (one or 

two cycles) and on reception is Fourier transformed to give the spectrum of the 

pulse. The change in amplitude at each frequency component when the sample is 

inserted is used to calculate the attenuation coefficient as a function of frequency. 

Papadakis et al (1973) used broadband techniques in pulse-echo mode. In order to 

eliminate errors due to transducer reverberation a buffer rod was used to obtain a 

train of echoes from the specimen. Their analysis also considered diffraction 

correction procedures using standard curves.

Some of the differences between broadband and narrowband techniques have been 

mentioned above. Another important difference is the receiver used. With 

narrowband methods a phase sensitive or phase insensitive receiver can be used. 

When dealing with inhomogeneous media the former will introduce phase 

cancellation errors. Marcus & Carstensen (1975) investigated errors in attenuation 

measurements resulting from phase cancellation for muscle tissue (with a fat 

inclusion). They showed that using a phase sensitive receiver resulted in the 

attenuation being overestimated by approximately four times. The explanation
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offered was based on distortion of the phase front due to inhomogeneities. With 

broadband measurements, because of spectral processing, phase sensitive detectors 

are required to store all the r.f. information. Although phase cancellation can be 

recognised through signal processing and dealt with by averaging and curve fitting, 

these processes will themselves degrade the original information.

The subject of phase cancellation has been dealt with by Bamber (1979). He showed 

that the effect was due to either variations in the path length or sound velocity within 

a medium. He derived an expression that depended on the above two and the relative 

area of the receiver in each inhomogeneity. His results illustrated that the effect was 

a significant problem which increased with sound frequency. Parker (1983) also 

looked at the problem over the frequency range 1-6 MHz in liver tissue. The results 

acknowledge the problem of phase cancellation but do suggest that careful 

experimental procedure (e.g. small receivers, alignment and multiple measurements) 

can reduce the error. For fluids phase cancellation is not a problem as the medium 

can be thought of as homogeneous.

4.1.2 Absorption.

Probably the most widely used technique is the use of a thermocouple to measure 

temperature rises. The rate of rise of temperature (for approximately one second) is 

linear and can be attributed to absorption. The gradient of the linear slope gives the 

absorption coefficient provided density, specific heat and intensity are known. The 

technique has been used by Fry & Fry (1954). The method has three limitations.
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Firstly it assumes that the propagation is of a plane wave nature and secondly it 

requires that the thermocouple is small in comparison to the wavelength of sound. 

Because of this there is a high frequency limit to its applicability, of approximately 7 

MHz. Thirdly a knowledge of viscous heating, due to motion of the thermocouple 

wires in the ultrasonic field is also required. Fry & Fry (1954) however demonstrated 

that the temperature rise with time can be separated into regions representing viscous 

heating and those from absorption. In addition they demonstrated that, within 

experimental error, thermocouple methods and radiation pressure methods give 

similar results. Dunn (1962) and Dunn & Breyer (1962) used this technique for 

measurement of absorption coefficients in tissue (at 1 MHz) and standard oils (in the 

frequency range 3-100 MHz) and found good agreement with other workers. 

Frizzell et al (1979) made attenuation measurements (using a radiation pressure 

receiver) and absorption measurements (using a thermocouple method) in vitro and 

in vivo over the frequency range 0.5-10 MHz. Their main findings were that the 

presence of gas bubbles can effect attenuation measurements (due to scattering of the 

sound wave off the bubble) but that for absoiption measurements much better 

agreement between in vitro and in vivo measurements could be obtained. In general 

they suggest storage of tissue at low temperatures to dissolve any bubbles present.

4.1.3 Sound velocity.

Many of the methods employed are similar to the attenuation measurements, so only 

a brief review will be given. It should be noted that when considering pulse methods 

a distinction needs to be made between phase and group velocity. In a pulse several
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frequencies are present which potentially travel at different velocities (that are 

medium dependent) and so cause dispersion of the wave. In biological tissues 

dispersion is small, typically there is a 0.7% variation in velocity over the frequency 

range 1 MHz to 10 MHz.

By far the most common method is based on pulse transit times and is in essence a 

time of flight technique. This was first used by Pellam & Galt (1946) for organic 

liquids with quoted errors of the order of 0.05%. The measurement of travel time 

can be made using a calibrated timebase on an oscilloscope. Ludwig (1950) 

employed such a method to give an accuracy of the order of 3%. Most problems

with pulse techniques are due to the difficulty in timing the beginning of the pulse due 

to an absence of a sharp leading edge. With the advancement in electronic gating 

techniques and signal capture, travel times can be measured to better than 1%.

4.1.4 Nonlinearity parameter.

Measurements of nonlinearity falls into two main categories, thermodynamic methods 

and finite amplitude methods. The thermodynamic method involves monitoring the 

changes in sound velocity as a function of changes in hydrostatic pressure (at 

constant temperature) or changes in temperature (at constant pressure). With 

additional data on the density, infinitesimal sound velocity, specific heat at constant 

pressure and coefficient of thermal expansion, for the medium of interest, the value of 

B/A can be determined. The thermodynamic method (Sehgal et al 1984) is accurate 

(+/- 3% for liquids) due to the precision with which transit times and pressure
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changes (10 MPa to 20 MPa) can be detected. However the method is only 

applicable in vitro and often results in irreversible changes occurring to the medium 

of interest.

The finite amplitude method involves estimating the nonlinearity parameter from 

waveform distortion, for example, Beyer (1960) measured waveform steepening at a 

known distance from the source. Alternatively waveform distortion can be measured 

by observing the growth of harmonics. Alder et al (1962) showed that the second 

harmonic pressure amplitude was given by:

P2(z) = f> ? (0 )^ ? f (2 )e x p [ - ( a l + f ) z ] ,  4.1

where z is the distance from the source, P2(z) is the second harmonic pressure 

amplitude, P/O) is the source pressure amplitude and a i  and 0C2 are the attenuation 

coefficients of the first and second harmonic. F(z) is a diffraction correction term

applied to the source geometry.

This method requires a knowledge of the attenuation coefficients of the fundamental 

and second harmonic and also of the effect of diffraction correction. The derivation 

they used assumes the wave amplitude is not too large, that harmonics do not interact 

and that the medium absorbs energy with a linear frequency dependence. For 

biological media the assumption of a linear frequency dependence is tenuous. Law et 

al (1985) measured the pressure of the second harmonic as a function of distance 

from the source, in the near-field. He then extrapolated back to the source and so

70



avoided measuring the attenuation coefficients and diffraction correction. His 

method is suitable for liquids, giving an accuracy of about +/-10%.

4.2 Measured acoustic parameters

There is a large amount of variability in the published values of attenuation (or 

absorption). There are probably three reasons for this. Firstly, as described above, a 

large number of experimental methods exist in making such measurements, each of 

which has its advantages and disadvantages in terms of accuracy and reproducibility.

Secondly, the condition under which measurements are made is thought to be of 

crucial importance, especially for biological media. Factors such as temperature, 

tissue composition, tissue pathology, changes due to death, pH, the presence of gas 

bubbles and acoustic source parameters can all affect the measurement and have 

generally been poorly documented in the literature. Hence variations in these values 

between different measurement procedures will undoubtedly cause differences in 

measurement values. As discussed, Frizzell at al (1979) demonstrated the effect of 

gas inclusions. Bamber et al (1977) presented results for a number of tissue types 

over a period of 120 hours after excision. They however suggest that backscatter 

measurements are more likely to be susceptible to the state of tissue than attenuation 

measurements (provided gas bubbles are removed). Several workers have described 

ways to overcome the problem of bubble removal. Parker (1983), for example, 

pressurised the tissue samples under investigation and gained some success.
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In addition nonlinear propagation can also have an effect on the measurements. This 

type of propagation was only recognised as significant for medical ultrasonic fields 

after 1980 (Carstensen et al 1980, Muir & Carstensen 1980). Measurements made 

before this time were often performed using high amplitude pulses (in order to obtain 

a good signal to noise ratio) and so subject to errors. An assessment of the 

magnitude of the errors resulting from nonlinear distortion of the wave is not trivial 

as they are dependent on the measurement procedure. For example Carstensen et al

(1982) demonstrated an overestimation of absorption coefficient and attributed this 

to the generation of harmonics which were subsequently absorbed at a faster rate 

than the fundamental. Zeqiri (1992), however, demonstrated that attenuation 

measurements made by the narrowband insertion technique can underestimate the 

attenuation coefficient. With this method the experimental attenuation is compared 

with that of a reference medium, which is normally water. The transfer of energy 

into harmonics as a result of nonlinear distortion can result in the attenuation of the 

reference medium being increased. This is especially true if the receiver is 

narrowband and does not detect the harmonics. Hence the use of the linear 

attenuation coefficient of water in the calculation of the attenuation of the medium of 

interest, rather than the true attenuation, can give rise to an underestimate of the 

attenuation in the medium.

Thirdly, when considering biological media one has to be aware that in such complex 

dynamic systems there is always bound to be some variability as no two samples can 

be expected to be the same.

72



A very brief review of measurements on sound velocity, attenuation and its 

frequency dependence and the nonlinearity parameter will now be given.

4.2.1 Sound velocity

The velocity of sound in biological media can be broadly classed into four tissue 

types. These are biological fluid, soft tissue, lung and bone. The velocity in lung is 

generally less than that in water, for example Dunn (1986) measured values ranging 

from 600 ms'1 to 1100 ms'1 in the frequency range 1-5 MHz. The method initially 

determined the reflection coefficient of the lung and then derived a value for the 

sound velocity, and attributed the results to the large gas content.

Bone has the highest sound velocity of all the biological media. In addition there is a 

significant dispersion in bone. Yoon & Katz (1979) measured velocities in dried 

cortical bone and found the dispersion to be of the order of 15 ms'1 over the 

frequency range 2-10 MHz. In general the velocity is found to be in the region of 

3500 m s1, for example Greenfield et al (1981) measured an in vivo value of 3311 +/- 

307 ms'1 in cortical bone using a pulse-echo technique.

The velocity in soft tissue is reported to be similar to water but a few percent higher, 

the only exception being fat, where it is slightly lower. Errabolu (1988) measured a 

value of 1427 ms'1 in human and animal fat. Kossoff et al (1973) made in vivo 

measurements in human breast and found values in the region of 1450 ms'1 The 

method was a comparative one and based on measuring travel times in equivalent

73



path lengths of breast and water. In addition corrections were applied for various 

tissue layers in the propagation path. Soft tissues generally exhibit values in the 

region of 1580 ms'1. For example Rajogopalan et al (1979) measured the velocity in 

a range of human tissue (e.g. liver, muscle and kidney) to between 1550 ms'1 and 

1580 m s1 . The results were presented over a 20° C to 40° C temperature range 

illustrating an increase of the order of a few percent. Law et al (1985) measured a 

value of 1566 ms'1 in skeletal muscle.

The dependence of sound velocity in soft tissue is attributed to the protein and water 

content. Dunn (1976) and O'Brien (1977) demonstrated that an increase in protein 

content correlates directly to an increase in sound velocity, this is particularly true for 

the case of collagen. Kremkau et al (1981) found the velocity in brain white matter 

to be greater than that in brain grey matter by about 6 ms'1 and offered an 

explanation based on the water content of the two tissue types. Other structural 

factors also play a role in the sound velocity; in particular there is thought to be some 

directional dependence due to the anisotropic nature of muscle although this has not 

been consistently shown. Ludwig (1950) found that measurements made along and 

perpendicular to the fibres made little difference to the sound velocity; however Mols 

& Breddels (1982) reported higher sound speeds for measurements along the fibres.

Also apparent from the literature is that in biological fluids the velocity of sound is 

slightly lower than that in soft tissues. For example Povall et al (1984) measured a 

value of 1534 +/- 3 ms'1 in amniotic fluid at physiological temperature at 2 MHz 

using a time of flight technique. In addition they also report that the state of the fluid
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prior to the measurement (frozen or refrigerated) was not significant to the result. 

Carstensen & Schwan (1959b) measured a value in the region of 1530 ms'1 in 

albumin solutions, with the velocity increasing with the protein concentration in the 

solution. There is thought to be little frequency dependence (dispersion) of sound 

velocity in biological fluids, Choi et al (1990) illustrated results in Bovine serum 

albumin over the frequency range 3 MHz to 1 GHz and reported that dispersion over 

this frequency range was of the order of 2 ms'1.

4.2.2 Attenuation

Here again results can be divided into those that measure lung, biological fluids, soft 

tissue and bone. Lung and bone will not be considered here except to say that in 

both the attenuation is much higher than in soft tissue. Generally values in the region 

of 20 to 30 dB cm'1 are reported. For example Fry & Barger (1978) measured the 

attenuation of human skull bone to be 22 dB cm*1 at physiological temperature and 

Dussik et al (1958) reported the attenuation of human lung to be 30 dB cm'1.

For soft tissue and biological fluids the situation is the literature is generally 

composed of measurements made at a particular frequency and those that encompass 

a wider frequency range so giving information on the frequency dependence of 

attenuation. It is common practice to express the attenuation (or absorption) in the 

form

a = a0f m> 4.2
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where a  is the attenuation in dB cm’1 , a 0 is the attenuation coefficient in dB cm'1 

MHz'” and /  is the frequency in MHz. Most workers report that the values of the

attenuation coefficient and m are determined by linearising equation 4.2 with a

logarithmic transform to give:

lna  = ln a* + /n ln /, 4.3

and then determining the straight line of best fit Although this linear1 method seems 

at first sight to be correct it can introduce a systematic error in the estimation of the 

attenuation coefficient and its frequency dependence (m). The reason being that 

transforming the data and applying a straight line fit assumes that all the data points 

have the same random error. In reality measurements at the higher frequency end of 

the dataset will generally be more accurate. This may be especially true for materials 

that intrinsically have a low attenuation which is hard to measure accurately.

For example one can consider the measurements of Zana & Lang (1974) on the

attenuation in amniotic fluid. From their data one can apply both nonlinear (equation

4.2) and linear (equation 4.3) fitting procedures to illustrate the effect. The two

results produce the following relationships for the frequency dependence of 

attenuation (a  is expressed in dB cm 1):

nonlinear fit: a  = 0.0075/1*58 
linear fit: a  = 0.014/13

The curves and the original data are illustrated in figure 4.1. As can be seen the 

nonlinear fit produces a better representation of the data. It should be pointed out
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that Zana & Lang did not apply any functional relationship themselves, however 

other workers have done so and it may be that their results require re-assessment.
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Figure 4.1. Illustration of the influence of curve the fitting procedure employed on 
the determination of the attenuation coefficient and its frequency dependence. 
Experimental data from Zana & Lang (1974).

In general there is not much data available for biological fluids. The measurements of 

Zana & Lang (1974) are the only ones to date reported for amniotic fluid, 

presumably due to its lack of availability. Narayana et al (1984) measured the 

frequency dependence of attenuation in cyst fluid, pus, bile and human blood using a 

pulse technique. The centre frequency used was 4.8 MHz giving a frequency
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bandwidth from 2.8 to 6.8 MHz. Their results were at room temperature and 

reported values of:

cyst fluid: attenuation coefficient = 0.05-0.072 f ^ '^ d B  cm-1. 

pus: attenuation coefficient = 0.2-0.3 fl,11"1,16dB cm-1. 

bile: attenuation coefficient = 0.013-0.031 f1-28*1-34 dB cm-1. 

blood (human): attenuation coefficient = 0.12-0.16 f119"1 ̂ dB cm-1.

Lang et al (1978) measured the frequency dependence of attenuation in cyst fluid 

and human blood plasma. They obtained the following values:

cyst fluid: attenuation coefficient = 0.076 f142 dB cm-1. 

blood plasma (human): coefficient = 0.057 f141 dB cm-1.

over a frequency range of 1.7 to 15 MHz where f is in MHz. Carstensen & Schwan 

(1959) measured the attenuation in human blood and human blood plasma at 1 MHz, 

their results are in good agreement with the results of Narayana et al (1984) and 

Lang et al (1978) Measurements in other fluids such as amino acid solutions and 

haemoglobin solutions (Kremkau & Carstensen 1973) generally give results in a 

similar range.

Overall one can say that, from the few measurements available, the attenuation 

coefficient in these biological fluids is between 0.001 and 0.1 dB cm'1 with a 

frequency dependence in the range 1.1 to 1.5. Furthermore the exact dependence 

seems to be linked to the concentration of macromolecules in the solution.
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The situation with soft tissue is more complicated because the variability of the 

attenuation coefficient makes generalisations much harder and also because the 

distinction between attenuation and absorption is often not made. The variability is in 

part due to the reasons given previously (on tissue state, tissue type and measurement 

procedure) and in part due to the scattering contribution to the total attenuation. For 

example Nassiri & Hill (1986) considered the contribution due to scattering in muscle 

and blood over the frequency range 4 to 7 MHz. They found that in blood it 

contributed 0.3 % of the total attenuation but that in muscle it rose to 17%. In 

addition to this many measurements of the attenuation coefficient quoted in the 

literature assume a linear frequency dependence (m = 1). On the other hand 

measurements of the absorption coefficient generally determine the attenuation 

coefficient and its frequency dependence from the data, here though the normal 

procedure is to transform equation 4.2. Very useful reviews of the literature are 

given by Goss et al (1979), Hill (1986) and Duck (1990) and in general the 

attenuation coefficient can vary from 0.1 to 3 dB cm'1 with a frequency dependence 

from 1.0 to 1.5.

(c) Nonlinearity parameter

The value of the nonlinearity parameter has not been measured extensively for 

biological media. Measurements in biological fluids generally give a value in the 

region of 6, for example for bile and urine (Sun Yongchen et al 1985) and human 

blood (Gong et al 1989). Soft tissues generally have values in the region of 6 to 9 

depending on the protein content. Sehgal et al (1986), using the thermodynamic
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method, investigated the effect of tissue state on the nonlinearity parameter and 

found some distinction between normal and malignant tissue. Sun Yongchen et al 

(1986) also reported similar results using a comparative method with water as the 

reference medium. The inclusion of fat in soft tissue generally has the effect of 

increasing the nonlinearity parameter significantly. For example Law et al (1985) 

reported values in the region of 12 when fat was present, while Sehgal et al (1984) 

reported values of 9.6 for human breast fat. This wide range, as a result of tissue 

composition, makes the nonlinearity parameter an interesting prospect for tissue 

characterisation. In an attempt to formalise the correlation with tissue composition, 

Apfel (1983) presents formulae for the nonlinearity parameter which are dependent 

on the percentage of various types of tissue in a mixture.
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5.0 EXPERIMENTAL CONFIGURATION 
AND MEASUREMENT

5.1 General

This chapter gives the basic rationale behind the design of the experimental facility 

used to measure attenuation and nonlinear propagation. There then follows a 

description of the apparatus and the methods used to measure the axial nonlinear 

pressure distribution, the frequency dependence of attenuation and sound velocity in 

the fluids of interest.

As stated in the introductory chapter the main aim of this work was to compare 

experimentally measured pressure distributions, in biological fluids, with theoretically 

simulated pressure distributions. Chapter 4 revealed, in a review of published data 

on ultrasonic measurements in biological media, that there was a gap in the literature 

on measurements of parameters such as the frequency dependence of attenuation in 

biological fluids. In addition Chapter 3 illustrated that, in order to theoretically 

predict ultrasonic nonlinear propagation a knowledge of the frequency dependence of 

attenuation in the fluid of interest is also essential.

The main considerations, underlying the design of the experimental rig were, 

therefore, that it should enable both the axial pressure distribution and the frequency 

dependence of attenuation in a biological fluid to be measured. In principle the 

frequency dependence of attenuation can be determined in at least two ways, the
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variable path length (Schwan & Carstensen, 1952) method and the substitution 

method (Kremkau et al 1981). For this work the variable path length method was 

chosen as it enabled both this measurement and the axial pressure distribution 

measurement to be performed without changes of fluid or major alterations to the rig. 

So allowing both measurements to be performed on the same sample of fluid without 

a significant time lag between measurements.

Measurements of the frequency dependence of attenuation and sound velocity were 

made on Dow Coming 350 silicone fluid, Human Albumin (4.5% and 20%) 

solutions, urine and amniotic fluid. Axial nonlinear pressure distributions were 

determined for the 4.5% Human Albumin solution, urine and amniotic fluid.

5.2 Experimental design and measurement procedures

5.2.1 Rationale

In order to perform the measurements outlined above three physical considerations 

needed to be taken into account. These factors, discussed in detail below, are:

(a) the volume of biological fluid available;

(b) the physical size of the transducer,

(c) the physical size of the hydrophone.

(a) Given that very large volumes of biological fluid were not available ( e.g. 10’s of 

litres), the standard ultrasonic test tank method of mapping the ultrasonic pressure
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field (for example Baker et al 1988) was not realistic. This then required the 

containment of available fluid within a variable length chamber. Ideally both the 

transducer and hydrophone would be immersed in the fluid, however this results in 

several problems. Firstly adjustment of either device while inside a fluid tight 

container, would have been difficult (in terms of preventing fluid leakage) so causing 

severe problems in alignment. Secondly, the attenuation measurements required a 

different source and receiver so interchangeability between transducers and 

hydrophones was important Finally, mounting the hydrophone inside the fluid would 

have been awkward due to its size. It was therefore decided to contain the fluid 

within a vessel with acoustically transparent mylar windows and to mount the 

transducer and hydrophone separately. A water path was used to acoustically couple 

the fluid with the transducer and hydrophone.

The physical dimensions of the variable length chamber were therefore governed by 

the size of the transducer and hydrophone as well as the volume of fluid available. 

For the fluids considered (amniotic fluid, Human Albumin solutions, urine and Dow 

Coming) volumes of the order of one to one and a half litres were available.

(b) The transducer used to generate the ultrasonic field for the nonlinear 

measurements was a circular single element Acuscan immersion transducer operating 

at 2.25 MHz, with a physical diameter of 44 mm (the active element diameter was 

nominally 38 mm). A single element transducer was used because of its well 

characterised (experimentally and theoretically) pressure field pattern (Baker et al 

1988, Christopher & Parker 1991). The physical diameter of the transducer placed a

83



minimum diameter for the fluid chamber. The chamber needed to be larger than this 

so as to allow the whole irradiating field to enter it and also to minimise reflections 

(due to beam spreading) from its sides from interfering with the direct signal. 

Smaller 2.25 MHz transducers are available, however as the radius is reduced the 

power transmitted (for the same acoustic pressure) also decreases which results in 

less nonlinear generation. An alternative to this is to use a higher frequency of 

operation. However, as the frequency increases other problems become apparent 

With a 5 MHz transducer the fourth harmonic would be at 20 MHz. This reaches the 

normal calibration limit of standard bilaminar membrane hydrophones (NPL 1994) 

with calibration information at higher frequencies being less accurate and more 

difficult to obtain. At high resonant frequencies the transmission properties of the 

mylar end windows (see section 5.3.5) also become important Finally higher 

frequencies of operation also result in alignment problems and accentuate the spatial 

averaging effects of the hydrophone.

(c) The type of receiver also places limits on the general size of the rig. In order to 

map the pressure distribution an ultrasonic receiver requires the following properties:

(i) its active area should be small with respect to the wavelength;

(ii) it should be broadband;

(iii) it needs to be temporally stable.

This generally limits the detector to a PVdF hydrophone. Of these there are two 

main types, membrane and needle hydrophones. A more detailed description of the 

type of hydrophone will be given later (section 5.3.2), here it is suffice to say that a
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membrane hydrophone was used. The physical size of these devices is nominally 150 

mm in diameter while the active area is much smaller, typically 0.5 mm diameter.

5.2.2 Experimental rig

Given the above basic requirements, a description of the rig will now be given. 

Figure 5.1 shows a schematic representation of the arrangements used for the 

measurement of the frequancy dependence of attenuation and the axial nonlinear 

pressure distribution.

Cr

□J
hydrophone
fixed

bellows 
moveable

Fluid measurements

r 15 MHz 
transducer

hydrophone 
attached 
to bellows

i 2.25 Mhz 
transducer 
+ lens

< — ►

Nonlinear field measrements.

Figure 5.1 Schematic of the experimental arrangements used for fluid measurements 
and nonlinear field measurements.

As can be seen from Figure 5.1, the hydrophone is attached separately and fixed for 

the frequency dependent measurements. For the nonlinear pressure distribution 

measurements it is fixed onto the bellows and moves with it.
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Figure 5.2 illustrates a more detailed experimental configuration while Figure 5.3 

illustrates one end-piece and its attachment to a polyurethane bellows and Figure 5.4 

is a schematic of the electronic set-up.

The rig, shown in Figure 5.2, consisted of an inner and outer water tanks A and B. 

The outer tank contained tap water and the inner one distilled water. The outer tank, 

containing a heater, water pump and thermocouple, provided a stable temperature 

controllable environment for the inner tank. The fluid tight chamber, placed in the 

inner tank, consisted of three perspex end-pieces, four brass rods and a variable 

length polyurethane bellows. The end-pieces H and I  together with the bellows 

formed the fluid tight vessel, with end-piece J  acting as an extra support for the 

arrangement. End-pieces H and J  were located and fixed to the inner tank and also 

to the four brass rods, this left end-piece /  to move freely along the length of the rods 

thereby allowing for a variable length fluid vessel.
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Figure 5.2 Schematic illustration of the experimental facility employed to measure the 
nonlinear pressure distributions and the frequency dependence of attenuation in the 
biological fluids. A key to the labels is listed below.

A-Inner tank. 15-Outer tank. D-Polystyrene support. E-Aluminium base plate 
F/G-Aluminium support. //-Fixed perspex end-piece (transducer end). /-Moveable 
perpsex end-piece (0.5 mm hydrophone mounted here for nonlinear measurements) 
/-Fixed perspex end-piece. K-Variable length polyurethane bellows. L/M-3/8" brass 
rod (two of four). //-Frame for mounting translation stage and holders. O-Uni-slide 
translation stage. P-Holder for end-piece /. 0-Holder for transducer (four degrees 
of freedom). R-Holder for 4 mm hydrophone (attenuation measurements). 5-Holder 
for moveable end-piece. 7-Heater. U- Water pump.
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An Aluminium frame N  was placed over the two tanks. This frame was a support 

for the translation stage O which consisted of a Time and Precision uni-slide. The 

moveable end-piece, /, of the bellows was connected to the slide of the translation 

stage by a holder S and a vertical brass rod. Additional fixed holders P and Q were 

used to support rigid stainless steel rods which in turn screwed into the perspex 

end-piece H  and a transducer mount An optional holder R was also fixed onto the 

translation stage. This was for separate mounting of a hydrophone and was used for 

the attenuation measurements. With such an assembly the whole rig formed a rigid 

structure. Although the chamber had only one degree of freedom (due to its rigidity) 

the transducer mount had four degrees of freedom which allowed for satisfactory 

alignment of the ultrasonic field.

5.2.3 Fluid containment

Figure 5.3 illustrates the method of fluid containment in more detail. The 

containment was provided for by five pieces:

(i) The polyurethane bellows with flanged ends;

(ii) Perspex end-pieces ( H or /) ;

(iii) Two Aluminium rings;

(iv) A 23 p.m mylar window;

(v) Fluid inlet/outlet holes.
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The polyurethane bellows was moulded from clear polythene, supplied and

manufactured by Beakbane Ltd, (Beakbane, 1994), with a minimum length of 50 mm

and, on extension, a maximum length of 300 mm. The flanged portion of the

bellows, with the aid of an 'o'-ring and an Aluminium ring, was located against the 

inner side of the end-piece. A 23pm mylar window was stretched over the outer side 

of the end-piece and again located with an 'o'-ring and another Aluminium ring. A set

of six screws were threaded through both Aluminium rings enabling the two rings to

be brought together. This tightened the mylar window and the flanged portion of the

bellows so ensuring a fluid tight arrangement.

A BA screws 
to sea l window 
and bellows

fluid inlet [3/8'“J and 
outlet

3/8" brass  rod 

Aluminium disc

o -rings
Mylar 

j window 
j (23uM)

Aluminium 
disc polyurethane bellows

] p.t.f.e bushes

perspex  endpiece

Figure 5.3 Schematic illustrating one end-piece and the method employed for fluid 
containment.
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An identical arrangement at the other end-piece allowed for a fluid tight chamber. 

The advantage of achieving fluid containment via ’o'-rings and screws was that the 

chamber could be dismantled easily, this was necessary because easy disposal of the 

biological fluids and cleaning of the chamber were important for safety reasons.

Both end-pieces had 9.5 mm holes bored through them from the top, into the fluid 

chamber. This provided an inlet and outlet for fluid and air from the chamber. The 

fluid inlet at the transducer end-piece was connected to a fluid reservoir (3/4 litre 

volume). The reservoir had an outer jacket through which water from the outer tank 

flowed through via the water pump, maintaining all the fluid at the same temperature.

5.2.4 Electronic apparatus

Figure 5.4 illustrates the electronic arrangement used for generating and detecting 

the acoustic field. The function generator (Wavetek model 151) defined the 

frequency of operation and pulsing mode. In general a single cycle pulse (centred at 

15 MHz) was used for the attenuation measurements. A tone burst centred at 2.25 

MHz and of approximately eight cycles was used for the nonlinear axial pressure 

distribution measurements. After passing through a variable attenuator (maximum 

of 100 dB attenuation) the signal was amplified with a broadband (0.3 MHz to 35 

MHz, 55 dB gain, model A150) ENI amplifier. The output of the amplifier excited a 

piezoelectric transducer to produce the ultrasonic field. The signal received by the 

hydrophone was passed through a buffer amplifier and captured with a Lecroy 9310 

digital storage oscilloscope which was triggered from the function generator.
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Figure 5.4 Schematic of the electronic arrangement used for movement of the stepper 
motor and the transmit and receive stages of the transducer and hydrophone.

The oscilloscope used a 100 megasamples per second sampling rate and contained an 

I.B.M. compatible floppy disk drive for storage of the waveforms. This facilitated 

easy transfer of data to a P.C. for subsequent processing. The Uni-slide translation 

stage was controlled by a P.C. via an IEEE bus interface.

5.2.5 Measurement procedure

The samples of amniotic fluid and urine used in the measurements were obtained as 

pooled samples. The amniotic fluid was taken from approximately forty patients 

undergoing the clinical procedure of amniocentesis, carried out at Odstock Hospital, 

Salisbury. The urine came from twelve female volunteers in the Wolfson centre at 

the Royal United Hospital, Bath. The two Human Albumin solutions (under the 

trade name of Zenalb 4.5% and 20% solutions) were purchased from BioProducts
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Laboratory, Elstree. The general procedure with all these measurements was similar, 

with the fluid under investigation being stored in a stable condition prior to the 

measurement. For urine and amniotic fluid this entailed freezing of the fluid, for the 

Human Albumin solutions storage at temperatures below twenty five degrees 

centigrade was adequate provided the solutions were under sealed conditions. For all 

the measurements the fluid was allowed to settle in the chamber for approximately 

three hours. This enabled it to reach the desired temperature and helped to dissolve 

any air bubbles that may have been present Previous workers (Frizzell et al 1979, 

Bamber et al 1977) have reported that longer times (of the order of 24 hours) are 

necessary for the removal of bubbles. However this length of time was not available 

if the measurements performed were to have a useful bearing on the behaviour of the 

fluid in-vivo. In addition the function generator and ENI power amplifier required a 

similar time to stabilise. In general the measurements were performed at room 

temperature (25 °C) and at physiological temperature (37°C).

Three basic types of measurement were made with the apparatus. These were:

(i) Measurement of acoustic velocity;

(ii) Measurement of the frequency dependent attenuation;

(iii) Measurement of axial nonlinear pressure distribution.

A description of these three measurements is given below. The axial pressure 

distribution measurements are discussed first as they incorporate the majority of 

features used in the experimental arrangement.
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5.3 Measurement of the axial pressure distribution

For this measurement a long polyurethane bellows was used, which had a minimum 

length of 65 mm and a maximum length of 300 mm. The measurements were 

performed with a relatively large transducer with a suitable degree of focusing 

provided by a perspex lens. The signal was detected with a PVdF bilaminar 

membrane hydrophone attached behind the end-piece I  (see figure 5.1) with a 2 mm 

water gap between the end-piece and the hydrophone.

5.3.1 Lens

As described earlier a 2.25 MHz transducer (38 mm active diameter) was used to 

generate the acoustic field. With such a transducer the last axial maximum occurs at 

approximately 540 mm. This implies that nonlinear measurements with the above 

bellows would only be restricted to the pre-focal region where harmonic generation 

is not prevalent. In order to investigate harmonic generation an acoustic lens was 

used to produce a focused field. This brought forward the diffractive field and 

allowed a significant amount of harmonic generation to occur in the region of the last 

axial maximum.

The plano-concave perspex lens was attached directly to the front of the transducer 

via a commercial coupling gel (Sonotrace, Diagnostic Sonar Ltd). The concave 

surface of the lens was machined using a lathe to a suitable radius of curvature to
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give the required focal length as calculated by the thin lens formula (Papoulis, 1981). 

This relates the radii of curvature (Rj and RJ of the lens to the focal plane (D) by:

For a plano-concave lens one of the radii of curvature is infinite. The refractive 

index, n, is the ratio of sound velocity in water to that in perspex. At room 

temperature (T = 25° C) the velocity in water is 1498 m ^s. The velocity in the 

perspex lens was also measured and found to be 2727 ms'1. Equation 5.1 may be 

rearranged to give:

where cm and cp are the are the velocities in the medium of propagation and the 

perspex respectively. This then gives a relation between the radius of curvature of 

the lens and the focal length. For these measurements, given the measurement range 

of the bellows, a focal length in the region of 140 mm was chosen. With this focal 

length measurements could be performed from the penultimate axial maximum to 

well past the last axial maximum. In addition alignment of the transducer would be 

possible with the last and penultimate maxima being used as reference positions.

The radius of curvature of the lens was machined to be 64 mm to give a focal length

of 141 mm in water at room temperature, according to equation 5.2. An independent

check on the radius of curvature of the lens was made using a spherometer which 

showed that Rj was 63.9 mm ± 0.4 mm.

5.1

5.2
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As explained earlier, it was decided to place the transducer outside the bellows 

chamber. This then meant that the actual path for acoustic waves, from the 

transducer, would be through a short water path (approximately 5 mm) and then into 

the fluid under investigation. This propagation through a two layer medium has the 

effect of modifying the direction of acoustic rays, due to refraction at the interface, 

which in turn modifies the focal length of the system. The magnitude of this change 

can be estimated, by considering a simple ray approach to the problem, as shown in 

figure 5.5.

Transducer with lens water

y t .

• 1
1 focal point acoustic axis

D, focal length

Figure 5.5a Focusing of a general ray in one medium propagation.

Transducer with lens

modified focal point

acoustic

water

D', modified focal length axis

fluid
Figure 5.5b Focusing of a general ray in two media.

Figure 5.5 Diagram illustrating the change in focal length due to propagation 
through a two media.
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Figure 5.5a illustrates one medium propagation. The lens is attached at the

transducer face. The transducer radius is a, the focal length is D and y  is the radial

distance of a general ray from the acoustic axis. The angle a ray makes from the

edge of the lens through to the focal point is 0 i. It follows that

tan0i = . 5.3

Figure 5.5b illustrates the corresponding situation for two media propagation where

the first medium is water and the second is the fluid under consideration. Here a

general ray is refracted at the interface and arrives at the focal point £>', at an angle 

02, to the acoustic axis. From Snells law of refraction we have:

sin02 = (77)sin0i . 5.4

Here vy and v2 are the acoustic velocities in water and the fluid respectively. Now if 

the angles subtended are small (0.3 radians for example), then 0i « sin 0i * tan0i. 

In this case equation 5.4 becomes:

02 »< £ )[§ ] 5.5
and

D '= (£)£). 5.6

For the biological fluids considered in this work, the percentage change in velocity, 

with respect to water, is of the order of two to three percent, implying that the

change in focal distance is also of this magnitude.

The addition of a lens in front of the transducer has two effects on the excitation at 

the source. Firstly it reduces the amplitude of the pressure wave emanating from the
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source as the attenuation in perspex is approximately 1 dB cm'1 (Kaye & Laby 

1986). The effect of this reduction is considered in Chapter 7. Secondly, because 

focusing is achieved by changing the lens thickness across the face of the transducer, 

waves passing through the edge of the lens travel through more perspex than those 

arriving from the centre. The effect of this aperture shading across the 

transducer/lens assembly was modelled theoretically using the finite difference model 

however it was found that it had little effect to the structure of the ultrasonic field 

produced.

5.5.2 Hydrophone and hydrophone calibration

A 0.5 mm diameter PVdF bilaminar membrane hydrophone (manufactured at GEC 

Marconi) was used to map the axial pressure distribution. This is the standard 

detector for such measurements and has been recommended by the AIUM/NEMA

(1983). The advantages of this type of device are:

(i) It is mechanically stable.

(ii) The impedance of the device (PVdF) is similar to that of water. This reduces any 

perturbations to the ultrasonic field caused by an impedance mismatch.

(iii) Although the active area of the hydrophone is small the hydrophone itself is 

approximately 150 mm in diameter due to the method of mounting the active area. 

The majority of this area is made from PVdF which again reduces any perturbations
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to the ultrasonic field. This feature of the membrane hydrophones gives them an 

added advantage when compared to PVdF needle hydrophones. These latter devices 

have a backing material which causes them to be directional, therefore making 

alignment of the device a problem.

(iv) PVdF membrane hydrophones are also broadband (up to 30 MHz), and can be 

calibrated by the National Physical Laboratory up to 20 MHz. This is advantageous 

for nonlinear measurements, where harmonic generation results in energy being 

present at these high frequencies.

The active area of the hydrophone used was 0.5 mm in diameter. The choice of active

area is a trade off between sensitivity, spatial averaging effects and directionality.

The sensitivities of a 4 mm bilaminar device and a 1 mm bilaminar device, relative to 

1 V p. Pa'1 , are -230 dB and -260 dB respectively (Preston et al 1983). Because the 

fluids used in this work are thought to have attenuation values that are intermediate

between water and soft tissue, problems of signal to noise ratio were thought not to

be so important. This is further alleviated by the use of a standard buffer amplifier on

the output of the hydrophone. The advantages of using a smaller hydrophone are

that it is far less directional (so reducing alignment problems) and also that spatial

averaging effects are less significant. The IEC recommendations (IEC 1991) on

spatial averaging effects, when mapping the ultrasonic field, also support this. They

derive a maximum permissible hydrophone size based on transducer radius and

frequency of operation. They recommend that the maximum hydrophone radius b ^

is
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5.7

For a 19 mm radius transducer operating at 2.25 MHz and at an axial distance of 80 

mm, the value of b ^  is 0.36 mm. This is slightly larger than that employed in the 

measurements. As the value of / increases so the value of b ^  increases, so 

decreasing the effect of spatial averaging. It should be noted that spatial averaging 

effects become more important for the higher harmonics.

The calibration of the 0.5 mm PVdF membrane hydrophone was performed at the 

NPL by intercomparison with a primary standard hydrophone. Figure 5.6 illustrates 

the results of the NPL calibration for the frequency range 1 MHz to 20 MHz (note 

that this is the end of cable open circuit sensitivity). The general behaviour of the 

hydrophone was fairly typical of these devices, the sensitivity being fairly flat then 

rising to a broad resonance and finally falling off fairly rapidly (the rapid fall off is not 

illustrated as the calibration is only up to 20 MHz). The uncertainties associated with 

these values are typically 7 % up to 8  MHz and rising to 12 % from 17 MHz to 20 

MHz. Normally the resonance occurs around 25 MHz. With this particular device it 

is however closer to 20 MHz.

The frequency response of membrane hydrophones has been modelled by Bacon 

(1982). The method considers the voltage across the active element (as a function 

of the piezoelectric constants of PVdF and the thickness of the active element) given 

a mean pressure at the element. The sensitivity (S) can be expressed as:
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e(exp (-yen? 2«p (/0»
Tisin (8)

)• 5.8

where

0 = ( S ) .7 |= ( i f e  ).**  = ( & ) . 5.9a,b,c.

Here x  is the film thickness, k is the wavenumber and Z is the ratio of the acoustic

impedance of water to that of the film. The acoustic impedance of a medium is

simply the product of the acoustic velocity and density for the medium. For the 

piezoelectric film p is 1780 Kg m *3 and its velocity is 2400 m s*1. Given the above 

parameters one can compare the theoretical sensitivity with that measured

experimentally. For the above hydrophone it was found that (Figure 5.6) a film

thickness of sixty micrometers gave the closest agreement with theory. This thickness

is approximately 2 0 % higher than that normally used (fifty micrometers), but explains

the resonance at approximately 20 MHz.

In order to increase the signal to noise ratio, the output of the hydrophone was fed 

into a buffer amplifier before connection to the oscilloscope. This required the 

hydrophone to be re-calibrated, in order to take account of the frequency response of 

the amplifier and the effects of the oscilloscope and amplifier on the device. The 

hydrophone was not calibrated from first principles but a relative calibration was 

performed in the modes of operation, i.e. with and without the buffer amplifier. The 

transducer was driven at a relatively high voltage (200 V peak to peak). The 

received waveform was therefore appreciably distorted and contained energy at a 

wide range of harmonic frequencies which allowed the calibration to be performed 

over the frequency range of 2.25 MHz to 20 MHz.
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In each case the transducer was driven with a toneburst and the received signal was 

recorded. A single cycle was extracted and an FFT applied to it to give a spectral 

level at each harmonic present (frequencies up to 20 MHz are considered). The 

measurement made with the hydrophone connected to the oscilloscope had to be 

corrected for the loading effect of the hydrophone. The loaded sensitivity of the 

hydrophone depends on the impedance of the hydrophone and the electrical load of 

the oscilloscope (in this case).

If it is assumed that the impedance of the hydrophone and the load are mainly 

capacitative then a simple expression results and the loaded end of cable sensitivity 

M, is given by

Here M c is the open circuit end-of-cable sensitivity, C is the capacitance of the 

hydrophone and C j is the capacitance of the load. For the Lecroy 9310 oscilloscope 

Cj is 15pF, for the hydrophone C is 103pF and the loading effect reduces the open 

circuit end-of-cable sensitivities (Mc) by 13%.

Once the loaded sensitivity of the hydrophone had been calculated it was possible to 

calibrate the acoustic wavefield. An identical measurement of the waveform was 

taken with the buffer amplifier attached. Fourier analysis of this signal yielded 

another set of voltage values as a function of frequency. As the acoustic pressures of 

the wavefield were known, these values enabled the overall sensitivity of the 

hydrophone/amplifier/oscilloscope (detection) system to be obtained.

5.10
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Figure 5.6 illustrates the new calibration of the detection system. As can be seen the 

addition of the buffer amplifier increased the sensitivity by approximately 23 dB. 

The general dependence of sensitivity with frequency was not, however, altered. It 

should be noted that the experimental results are the average of five independent 

measurements. The figure also illustrates the sensitivity at physiological temperature 

(37°C). These results were inferred with data given from the NPL (1994) concerning 

the variation of sensitivity with temperature. In general, for a 0.5 mm bilaminar 

hydrophone the sensitivity increases by 0.1 % per degree Celsius at 2 MHz and rises

to 0.4 % per degree Celsius at 10 MHz.

axa x
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Figure 5.6 Sensitivity of 0.5 mm bilaminar PVdF membrane hydrophone as a 
function of frequency.

This method of calibration does not require knowledge of the impedance of the buffer 

amplifier stage because in effect the buffer amplifier and the oscilloscope are a taken
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as one unit. The calibration is however only valid for the particular amplifier and 

oscilloscope used.

5.3.3 Alignment

Since the bellows and the hydrophone were connected to the translation stage, the 

transducer was aligned to be parallel to the stage axis. In general alignment was 

achieved by considering various special points in the axial field. These were the 

penultimate maximum, the last minimum and the last maximum (any maxima and 

minima present beyond the focal plane are not included in the definition of maxima or 

minima). The method of alignment was an iterative process whereby the rotation and 

tilt of the transducer were altered to find the acoustic axis. In general a further 

check of the alignment was also made in the far-field. This was useful because for 

such strongly focused sources the minima and maxima were very close together (in 

the axial direction) so a slight misalignment may not have been apparent In addition 

it should be pointed out that the transducer alignment was achieved manually.

5.3.4 Transducer output

For the measurement of the axial pressure field, the transducer was driven with a 

short toneburst of eight cycles at its resonant frequency with a pulse repetition rate 

of approximately lKHz. The voltage applied to the transducer was varied from 8  

volts peak to peak ( corresponding to P0 of 0.007 MPa), for linear propagation to 

240 volts peak to peak (0.224 MPa) for nonlinear propagation. A longer
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toneburst would have been desirable as this would have allowed the transducer and

amplifier to reach a more stable output. This, however, was not possible because of

reflections between the hydrophone and mylar window which interfered with the

direct signal for longer pulses. It should be noted that this reflected signal only

manifested itself at high drive levels where there was significant energy present in the

higher harmonics. This is illustrated in Figure 5.7 which shows a typical signal

received on the hydrophone, after passing through a fluid path, when the transducer

is driven at a higher drive level. As can be seen the first pulse is simply distorted (as

a result of nonlinear propagation), but in the latter lower amplitude pulse only the

higher frequency components are observed. Fourier analysis of the reflected signal

revealed that it contained energy in the frequency range 5 MHz to 10 MHz. Preston

et al (1983) have measured the transmission properties of bilaminar PVdF

hydrophones. They found that although the membrane had a high transmission

coefficient, the amplitude reflection coefficient was nevertheless significant For a 

membrane thickness of 50(1 m the amplitude reflection coefficient was found to be 

approximately 0.7 in the frequency range 5 MHz to 9 MHz.
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Figure 5.7 Typical waveform captured for the axial nonlinear pressure distribution 
measurement. The second pulse results from a multiple reflection between the 
hydrophone and mylar window.

5.3.5 M ylar end windows

As described , mylar end windows (with a nominal thickness of 23|Im) were used as 

part of the fluid containment chamber. The transmission properties of these end

windows were important for the nonlinear measurements where actual voltages and

pressures were measured and then compared with theoretical predictions.

The transmission of the end windows was measured as a function of frequency by the 

standard substitution method. A broadband transducer (radius 6.35 mm) with a 

frequency of 15 MHz was used to produce a single cycle pulse in water which was 

detected by a 4 mm diameter bilaminar PVdF membrane hydrophone. The distance
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between the transducer and hydrophone was kept to a minimum (approximately 1 0 0  

mm) in order to minimise any nonlinear propagation in the water path, and also kept 

constant The use of a fixed transducer to hydrophone distance and the use of a large 

area hydrophone minimised any correction that may have been necessary due to a 

change in the diffractive field, as discussed in Chapter 2.

The mylar was stretched across a perspex end-piece in an identical manner to that 

used for fluid containment. Waveforms were captured with and without a single 

sheet of mylar film in the propagation path. The amplitude transmission properties 

were determined from examining the frequency content of the two waveforms, by 

applying a fast Fourier transform to both the pulses. The frequency dependent 

transmission loss Tm (f) was expressed in dB's using

Here Vm (f) was the voltage at frequency /  with the mylar present in the water path 

and Vw (f) is the voltage at frequency/ with only the water path.

Figure 5.8 illustrates the experimental results over the frequency range 2 MHz to 20 

MHz. As can be seen the transmission loss is low over the whole frequency range of 

interest. At 11 MHz it is about 1 dB, this corresponds to the fifth harmonic for a 

waveform originally centred at 2.25 MHz. From 8  MHz to 20 MHz the loss 

increases with frequency, reaching a maximum of 2 dB at 20 MHz.

5.11
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Figure 5.8 Transmission loss for a mylar window as a function of frequency, 
comparison between experiment and theory.

The acoustic transmission through the mylar can also be modelled by considering it 

as propagation through a fluid loaded plate at normal incidence (Kinsler 1962). In 

this case the transmission loss is expressed as

4Z|Z2

1/2

5.12
(2 Z ,  ) 2c o s2( * 2/ 2) + ( z 2 + ( | ^  ) )  s in 2 ( * 2/2)

where Zl and Z2 are the impedances of water and mylar respectively, ki -  ^  j  is

the wavenumber in mylar, l2 is the thickness of mylar and A.2 is the wavelength in 

mylar. The velocity in mylar is 2540 m s'1 (Zeqiri 1995) and its density is 1.1 kg m‘3

(Kensulat 1994).
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Using these values a theoretical transmission loss curve was calculated and is also

shown in Figure 5.8. As can be seen the general behaviour of the curve is similar to

that obtained experimentally, especially at the low frequency end. There are,

however, differences between the experiment and theory above 10 MHz, with the

theory consistently giving a higher loss, the maximum difference being 0,5 dB at 20

MHz. This disagreement could be due to a number of factors. For example as the

frequency increases so the orientation (the angle at which the mylar window

intersects the acoustic beam) of the mylar window with the transducer and

hydrophone becomes more critical. In general, for small angles of non-normal

incidence the transmission loss decreases (Humphrey & Berktay 1985), as observed 

experimentally. Alternatively, if the thickness of the mylar is reduced to 20pm (a 

reduction of 13 %) then the theoretical transmission loss decreases. This is also

illustrated in figure 5.8, the agreement between experiment and theory being good,

with only a 0.25 dB difference at 20 MHz. The quoted error for the mylar thickness 

is +/- 2pm. (Kensulat 1994).

For the frequencies of interest in this work the differences are small, when compared 

to other errors (such as the calibration of hydrophone and transducer output) and it 

is reasonable to say that the effect of the mylar windows is well characterised.

5.3.6 Processing

Measurements of the axial pressure distribution were made from the penultimate axial 

maximum well past the focal plane, approximately 300 mm from the transducer. At 

each axial position the waveform detected by the hydrophone was captured and
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recorded as a binary data file on an IBM compatible floppy disc (fitted to the 

oscilloscope). This data was then downloaded to a P.C. where it was converted into 

ASCII form. Further processing then involved picking a single cycle from each 

waveform and Fourier analysing it. This yielded the harmonic components 

(converted to harmonic pressures) which were subsequently plotted as a function of 

axial distance to give the axial nonlinear pressure distribution for the fluid of interest

5.4 Frequency dependent attenuation

5.4.1 General

A variable path length method, originally devised by Schwan & Carstensen (1952) 

was used to measure the frequency dependence of attenuation. With this method the 

physical distance between the transducer and hydrophone is kept constant, but the 

path length of test fluid and reference fluid is altered. The method used differs 

slightly from that used by Schwan and Carstensen (1952) in that there were actually 

two water paths; one between the transducer and test fluid (of 15 mm in length) and 

the other between the test fluid and the hydrophone. However because the length of 

the first water path was constant, as the fluid path length was altered it had no 

bearing on the analysis of the results.

The experimental configuration for this measurement was as follows. The transducer 

was mounted on holder Q (see figure 5.1), as with the nonlinear measurements, but 

the hydrophone was now mounted on holder R. This was fixed and only the fluid

109



path length was altered by movement of the translation stage. The distance between 

the transducer and hydrophone was approximately 300 mm. The fluid path length 

was in general varied by 100 mm to 150 mm, with a minimum path length of at least 

100 mm. Measurements were performed with steps in the fluid path length from 2 

mm to 10 mm. Low frequency attenuation measurements involved steps of 10 mm 

changes in fluid length, whereas the high frequency measurements (where the 

attenuation was greater) were calculated using 2 mm steps. Typically each 

measurement of attenuation used ten steps in fluid path length, to increase the 

statistical precision of the results.

For the measurements reported here the reference fluid was distilled water and the 

test fluids were Dow Coming 200/350 silicone fluid, amniotic fluid, urine and 

Human Albumin (4.5 % and 20 % solutions). Again measurements were performed 

at both room temperature and physiological temperature.

5.4.2 Transducer

A 13 mm diameter transducer with a centre frequency of 15 MHz was used for these 

measurements. This gave a usable frequency range of 5 MHz to 25 MHz for the 

measurement of attenuation. The transducer was mounted in a similar manner to the 

axial pressure distribution measurements, however no focusing was employed here. 

The transducer was driven with a single cycle pulse, this allowed for broadband 

measurements to be made, of low amplitude. Typically the voltage at the transducer 

face was between 10 volts peak to peak and 30 volts peak to peak, so ensuring that
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there was minimal nonlinear generation in the water and fluid paths. Zeqiri (1992) 

has pointed out the importance of avoiding nonlinear effects since attenuation values 

can otherwise be in error by as much as 50 %, depending on the actual attenuation of 

the fluid and the degree of nonlinear propagation.

5.4.3 Hydrophone

A 4 mm diameter PVdF bilaminar membrane hydrophone was used for this 

measurement A PVdF device was used primarily because of its wide bandwidth with 

a fairly constant sensitivity over the frequency range 1 MHz to 20 MHz. The actual 

sensitivity was however not required, as the measurements were based on relative 

changes as a function of fluid path length. This was advantageous as calibration of 

such a large diameter hydrophone is not straight forward. The use of a large 

diameter hydrophone also reduced errors in the attenuation measurements due to 

diffraction loss (see chapter 2 section 2.1.3). The output from the hydrophone was 

fed into a buffer amplifier and then captured by the oscilloscope for storage. Because 

of the high sensitivity of a 4 mm hydrophone it was necessary to ensure that the 

input to the buffer amplifier did not exceed 350 mV. Above this value the device 

ceased to operate linearly.

5.4.4 Processing

The results consisted of a series of waveforms captured over a range of fluid path 

lengths. Each waveform was Fourier analysed to give the pulse spectrum and hence
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the change in each frequency component with propagation distance. This data was 

then corrected, in order to take account of the attenuation of the signal due to the 

water path replaced by the fluid path and also to take into account diffraction effects. 

The two corrections are discussed below.

(i) Water correction

hydrophone L rtransducer

dz 4 - /

Figure 5.9 Schematic illustrating the arrangement for the frequency dependent 
measurements.

Consider the arrangement shown in Figure 5.9. For this analysis we will consider a

single frequency, a similar analysis can be applied to all the frequency components in

the pulse. The distance Z, between the transducer and the hydrophone, is constant. 

The fluid path length, zf , increases by 8z from a minimum value zfimin). The signal 

received at the hydrophone, V} , for the minimum fluid path length can be expressed

as:

V\ — v oe~â z*mkl)) e~ctŵ2w{m̂ , 5.13

where V0 is the signal that would be obtained for no attenuation and zMmax) is the

maximum water path, and is (Z - zfimin)). The attenuation coefficient in the fluid and 

water are a /  and a w (Nepers cm'1) respectively.
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Now, as the fluid path length is increased by 8 z the signal received decreases and can 

be expressed as:

V2 = V0e~â  min >+Sz) e-a.w{zw{mMX)-^z)' 5.14

The attenuation coefficient a /  of the fluid can then be expressed by taking the ratio 

of equations 5.13 and 5.14, as

Equation 5.15 is similar to that describing the attenuation of a monochromatic wave,

correct the raw data for the attenuation of the replaced water path.

(ii) Diffraction correction

In general the acoustic velocity, in the fluid of interest, is not the same as that in 

water. This then implies that changes in the propagation path of water and fluid will 

result in changes in the diffractive field of the transducer. In effect the observation 

position will 'move' through the diffractive field. A change in the magnitude of the 

received signal, due to this diffraction error, can be allowed for if the diffractive field 

of the transducer and the acoustic velocity in the medium are known.

The diffractive field of a given transducer and hydrophone configuration in a single 

medium, can be calculated theoretically as discussed in Chapter 2 section 2.13. The

5.15

that has travelled a distance 8 z, but includes a second factor on the right hand side to
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method (Beissner 1981) can be extended to include propagation in more than one 

medium, by introducing a modified s parameter, s', where s' is given by:

where zw and z/ are the propagation paths in the water and medium respectively and 

Z is the distance between transducer and hydrophone.

Changes in s' as a result of changes in zw and zf  can be calculated from the above

amplitude in the diffractive field (from Beissners expression). A correction to the 

amplitude of the received signal, at the hydrophone, can then be applied to obtain the 

’true' attenuation coefficient of the medium. Figure 5.10 illustrates the variation in 

pressure amplitude for a 4 mm diameter receiver. The values of s' are associated 

with a source of 13 mm diameter, operating in the frequency range 1 MHz to 25 

MHz with variable water and fluid path lengths as used in the experimental 

arrangement. Since the fluids considered have similar velocities to water, changes in 

the value of s' are small, and the subsequent diffraction corrections applied to the 

original signal are of the order of a few percent. It should be noted that because the 

diffractive field of a transducer is complex, and can change quite rapidly with axial 

distance, there are regions in the field where the changes in amplitude can be 

significant

5.16

expression. These changes in s' can then be used to determine the change in signal
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Figure 5.10 Axial variation of the pressure amplitude for a 4 mm diameter receiver 
and a 13 mm diameter transmitter for a range of s' values.

The problem is however minimised by using a large diameter hydrophone and 

choosing a range where the diffraction term is slowly varying. A QuickBasic 

program was written to perform the necessary processing, taking into account water 

attenuation and the diffraction correction.

(iii) Processing methods

The corrected data consisted of a series of signal amplitudes as a function of 

propagation distance (in the fluid) for each frequency component in the signal. In 

general the attenuation due to the fluid can be expressed as:
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K ) = ^ 5.17

where the attenuation coefficient is in Nepers per centimetre. The attenuation 

coefficient is generally determined by transforming the data to a linear equation of the 

form:

The attenuation coefficient can then be calculated by linear regression of the signal

amplitude versus propagation distance data. The above transformation is

mathematically rigorous, but when dealing with real data, it may not yield the most

accurate estimates for the attenuation coefficient. The reason for this is as follows.

Each experimental measurement has associated with it an intrinsic random error

which will be proportionally more for smaller signal magnitudes. It follows from this 

that the error in the value of V\ will be smaller than that associated with the error in 

the value of V (a smaller amplitude) , the signal amplitude after propagation through

a greater fluid path. Now, transforming equation 5.17 into equation 5.18 and

applying a simple linear regression to the data will intrinsically apply an equal

weighting to all the data. In reality the data points should have unequal weightings

associated with them, the larger the signal detected the larger the weighting applied

to it.

An alternative approach is to apply a nonlinear regression, of the form describing 

equation 5.18, to the data and so taking into account the 'importance' of each point 

The results presented in chapter 7 will illustrate this point. It should, however, be

5.18
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pointed out that the significance of this effect is in general not large as signal levels 

would have to fall appreciably before the error due to noise becomes significant

Once the attenuation coefficient has been found as a function of frequency, the

frequency dependence of attenuation of the fluid can be determined. It is common to

fit the data in the following form:

a  = a 0f n. 5.19

Here a 0 is the attenuation coefficient and is defined in dB cm 1 MHz’1” , where m is 

the frequency dependent index. Again it is common, in the literature, to transform

the data into a linear equation (using a logarithmic transform) and determine the 

values of a 0 and m from the intercept and gradient of the regression line. However, 

here again strictly speaking a nonlinear regression should be applied (a power law

form) because the high frequency measurements are more accurate than those at a

lower frequency. As above, the effects of the two types of processing will be

discussed in Chapter 7.

5.5 Measurement of sound velocity

This measurement was performed at the same time as the axial nonlinear pressure 

distribution measurement and was based on the time of flight technique. Essentially 

the time of arrival of a short toneburst was measured as a function of the change in 

fluid path length for low amplitude pulses. The change in fluid path length was 

determined by and under the control of the translation stage. The pulse, itself, 

consisted of approximately 8  cycles centred on 2.25 MHz, emanating from the 38
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mm transducer. It was detected with the 0.5 mm bilaminar PVdF membrane 

hydrophone and captured using the delayed timebase on the LeCroy 9310 

oscilloscope. The time of arrival of the pulse was determined by selecting a cycle in 

the pulse and measuring the temporal position of its zero-crossing by interpolation.

For this measurement the sampling rate of the oscilloscope was set to 100 

megasamples per second, and when operated with a timebase of 1 |xs, gave a 

temporal resolution of 10 ns. This, together with the high precision of the translation

stage (better than 0 .1  mm), resulted in very low random uncertainties for the velocity

measurements. In addition it should be pointed out that changes in the fluid path

length were in the post focal plane region where diffraction effects cause a negligible

change to the pulse shape.
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6.0 RESULTS (I)-FLUID 
CHARACTERISTICS

6.1 Outline

The previous chapter described the measurement rig and the methods employed to 

make the desired measurements. In this chapter results for the sound velocity and the 

frequency dependence of attenuation for Dow Coming 200/350 silicone fluid, 

amniotic fluid, urine and the Human Albumin solutions will be presented. The 

chapter consists of the following sections:

(i) Velocity of sound measurements;

(ii) Frequency dependence of attenuation measurements.

The results are presented in this order because the sound velocity results are used in 

the attenuation measurement procedure to correct for diffraction loss.

6.2 Sound Velocity

Figure 6.1 illustrates the variation in time of arrival of a short toneburst as a function 

of the relative distance travelled, through the fluid, by the pulse. Four sets of data are 

illustrated, for amniotic fluid, urine and the 4.5% and 20% Human Albumin solutions. 

Simple linear regression of the data gives the velocity of sound in the fluid as the 

gradient of the line fitted by linear regression. The results for the four fluids are 

tabulated in Figure 6.2, at both room temperature and at physiological temperature.
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Figure 6.1. Determination of the sound velocity in the four biological fluids.
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The good accuracy (better than 1 %) of the results is due to the number of data 

points (at least 15 measurements) for each fluid. Included in the table is a 

comparison of the velocity of sound in water, measured as part of this work, with 

published values from the literature.

Physiological temperature 
T=37°C

Room temperature 
T=25°C

Fluid velocity (m s'1) one S.E.(m s'1) velocity (m s'1) one S.E.(m s'1)
Amniotic fluid 1541.1 1.3 1519.5 1.7
Urine 1551.3 1.3 1520.5 0 . 8

4.5% Human 
Albumin

1547.3 1 .0 1522.1 3.6

20% Human 
Albumin

- -
1580.3 1 .0

Water
(measured)

- -
1495.5 1 .0

Water
(published)

1520
-

1498
-

Figure 6.2. Tabulated values of the measured sound velocity and its standard error at 
room temperature and physiological temperature for the four biological fluids.

6.2.1 Discussion of measured velocities

It was not the purpose of this study to investigate, in detail, the velocity of sound in 

biological fluids. Rather the measurements were required more as an input parameter 

for the nonlinear propagation model and for diffraction correction purposes in the 

attenuation measurements. To this end there is not much detailed comment on the 

results. However the following general points can be stated and provide support for 

other work found in the literature.
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As expected the velocity of sound in all four fluids is similar to that in water. In 

general the velocity is approximately 2 % higher, rising to 4 % for the 20 % Human 

Albumin solution. The similarity with water is not surprising, considering the large 

water content in these fluids (80 % and higher), and is also reflected by other 

published work in the literature (Goss et al 1978). Indeed the 20 % and 4.5 % 

Human Albumin solutions support previous work in the literature (Dunn & O'Brien 

1976, Goss et al 1980) that states that sound velocity is related to protein content, 

with the velocity increasing as the protein concentration is increased. Although the 

variation of sound velocity with temperature has not been measured in a systematic 

manner the percentage increase from room temperature to physiological temperature 

(approximately 2  % ) is also in accordance with published work on biological fluids 

(Povall et al 1984). It should be noted that measurements at room temperature 

encompass a temperature range of 22°C to 25°C.

6.3 Frequency dependence of attenuation

6.3.1 General

This section presents results of the frequency dependence of attenuation for Dow 

Coming 200/350 silicone fluid, 4.5 % and 20 % Human Albumin solutions, amniotic 

fluid and urine. The results for each fluid are presented and where appropriate the 

following points will be illustrated:

(i) Corrections for diffraction effects;

(ii) Corrections for attenuation in the water path;
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(iii) Curve fitting procedures employed in order to obtain the attenuation and its 

frequency dependence. It should be stressed, in order to avoid confusion, that there 

are two separate occasions where curve fitting is used. Firstly it is used with 

voltage-range data to determine attenuation at a given frequency. Secondly, it is 

employed to obtain a functional relationship between attenuation and frequency.

6.3.2 Dow Corning (200/350) Silicone fluid

Measurements in Dow Coming 200/350 silicone fluid were made because it is often 

quoted as a reference fluid (Zeqiri, 1995) for attenuation measurements as a result of 

its stable acoustic properties. In the measurements a single cycle pulse, centred at 7 

MHz was used. The signal was detected using a 4 mm diameter bilaminar Pvdf 

membrane hydrophone (as with all the other fluids) so as to minimise diffraction 

correction effects. The minimum and maximum fluid path lengths were 50 mm and 

70 mm respectively. This together with a relatively small drive voltage at the 

transducer face, and a short water path of approximately 1 0 0  mm, eliminated the 

possibility of any nonlinear distortion in the pulse that may have influenced the 

determination of the attenuation (Zeqiri 1992). The measurement was made at 25 0 

C. Figures 6.3 and 6.4 illustrate the results of the attenuation, in dB cm 1, for the 

frequency range 1 MHz to 10 MHz. Above and below this frequency range the 

signal level was close to the noise floor.
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Figure 6.3 illustrates the effect of applying a diffraction correction to the raw data 

and shows attenuation data with and without the correction applied. The difference 

in sound velocity between water (1498 m s'1) and Dow Coming (1013 ms'1) is 

approximately 30 % and, as can be seen, can result in significant differences to the 

measured value of the attenuation coefficient. In general at low frequencies, 1.5 

MHz to 3 MHz, the correction can increase the attenuation coefficient from 30% to 

15%, conversely at the higher frequency end correcting for diffraction effects reduces 

the attenuation coefficient by approximately 6 %. Although corrections for diffraction 

effects do to some extent depend on the geometry of the measurement procedure, 

these results indicate that appreciation of diffraction corrections are necessary when 

making high accuracy attenuation measurements.

Figure 6.4 illustrates the effect of correcting for the water path that is replaced by the 

fluid path (a maximum of 20 mm). As can be seen the effect of correcting for the 

attenuation in water is less significant. It results in a correction which rises from 2% 

to 4% at the higher frequencies. This is of course due to the low attenuation of 

water ( 0.0025 dB cm 1 MHz'2) compared with the silicone fluid.
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Figure 6.3. Frequency dependence of attenuation in Dow Coming 350/200 silicone 
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Figure 6.5 illustrates the effect of the type of processing applied to the measurements 

of attenuation, in both cases water and diffraction corrections have been applied to 

the raw data. The two data sets (ignore for the moment the curve of best fit, this is 

discussed on page 128) represent two different methods for determining the value of 

the attenuation coefficient (dB cm 1). With data set (o) the attenuation was 

calculated at each frequency from the range data by using equation 5.18 whereas with 

data set (x) the attenuation was calculated by applying a nonlinear algorithm to fit 

equation 5.17. The algorithm determines the curve of best fit by minimising both the 

constant in front of the exponent and the attenuation coefficient, which appears in the 

exponent As can be seen there is little difference between the two processing 

methods at low and intermediate frequencies. The situation at the high frequency end 

( 8  MHz and above) is however different, with the nonlinear curve-fitting algorithm 

giving more consistent estimates of the attenuation coefficient. The reason for this 

has been discussed in Chapter 5, and is due to the fact that at high frequencies, where 

the attenuation coefficient is large, the errors associated with individual measurement 

points ( on a signal level versus fluid path length plot) are not equal. For example at 

10 MHz, over a 20 mm fluid path, the signal level drops by about 13 dB. The signal 

after propagating through the maximum fluid path, is therefore much closer to the 

noise floor and will, therefore, have a larger relative error associated with it. These 

measurements should therefore be given a low weighting when estimating the 

attenuation.
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As mentioned in Chapter 5 it is common to express the variation of attenuation with

frequency in a functional form of the type described in equation 5.19. This again can

be achieved in two ways. The original equation can be transformed (log transform) 

and the two constants (a 0 and m) determined from a straight line fit, or again a 

nonlinear regression of the form given by the original equation can be applied, to find

a curve that minimises the sum of the squares of the errors from the data. Both types

of processing were performed on the corrected attenuation data, and it was found

that similar values of two constants were obtained, within experimental error. The

reason for this can be found by inspecting the data in Figure 6.5. As can be seen the

error associated with each measurement of attenuation is small, especially at the low

frequency end. In general nonlinear power law curve fitting is sensitive to data at this

end of the frequency spectrum, whereas logarithm transformed data applies equal

weighting to these points. If however, as is the case, the data here has a high

precision then there is little difference between the two types of fitting procedure.

The best curve fit is also illustrated in Figure 6.5 (applied to dataset 'x'), and gives 

the following relationship for the attenuation coefficient as a function of frequency:

a  = 0.137/1-7210 01 (dB cm 1). 6 .1

The standard error in the attenuation coefficient at 1 MHz is 0.002 dB cm'1 MHz'1.

A sample of the fluid used in these measurements, was sent to the NPL for direct 

comparison and assessment of the measurement rig. Figure 6 . 6  illustrates two results 

for the attenuation over the frequency range of interest. The results correspond to
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measurements made in this study and measurements made at the NPL with the same 

fluid batch. It should be noted that the NPL error bars illustrated for the NPL data 

points include systematic errors, the measurements made in this study give only the 

random errors. As can be seen the agreement is in general very good, the results all 

being within two standard errors (95 % confidence limits) over the whole frequency 

range. It should however be noted that from 4.5 MHz to 6.5 MHz the NPL results 

and the results presented here do seem to show a systematic difference. The reason 

for the difference is unclear, but it does seem that the NPL measurements, over this 

frequency range, deviate from the rest of the data points, given a power law 

relationship for the frequency dependence of attenuation. Despite this difference it 

would seem satisfactory to conclude that the measurement procedure employed here 

was reliable.

6.3.3 Biological fluids

Measurements of the frequency dependence of attenuation for the four biological 

fluids considered in this work were made using a single cycle pulse, centred at 15 

MHz and, as with the silicone fluid, a 4 mm diameter PVdF bilaminar hydrophone 

was used for detection. In general the minimum fluid path length for the 

measurements was 130 mm increasing to 230 mm, the distance between transducer 

and hydrophone being approximately 300 mm. Corrections for diffraction losses 

were made to the results, however these are not illustrated as the correction is small 

(of the order of 1 %) due to the similar velocities of sound in these fluids compared 

with water. In addition nonlinear curve fitting procedures were employed to
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determine the attenuation and its frequency dependence (using equations 5.17 and 

5.19).

(i) Amniotic fluid

Figure 6.7 illustrates the variation of attenuation with frequency, from 5 MHz to 25 

MHz, for amniotic fluid at both room temperature and at physiological temperature. 

Both these results were processed using equation 5.17 and its logarithmic transform, 

however no significant difference between the results was found. The maximum 

difference, found above 20 MHz, was approximately 2 %. At these frequencies the 

attenuation is about 1 dB cm 1, so over a change in fluid path length of 100 mm the 

drop in signal level is of the order of 10 dB. Given an initially small signal level at 

these high frequencies it seems plausible that some of the measurement points 

approach the noise floor.

Figure 6 . 8  tabulates the form of the frequency dependence of attenuation for amniotic 

fluid at both temperatures. Results are given for data processed by nonlinear 

regression, although linear transformation of the data gives similar values. The 

nonlinear curve fits, at both temperatures, represent the measured data well (see 

figures 6.9a and 6.9b for results at physiological temperature). However the values 

determined for the constants are puzzling. With the functional form given the 

attenuation at 1 MHz would be greater at 37 °C than at 25° C. It is generally thought 

that an increase in temperature should decrease the value of the attenuation 

coefficient, but leave the value of m unaltered. There is no obvious explanation,
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although it does seem that the measurements at 37°C are not as accurate as those at 

room temperature, partly due to the decrease in the overall attenuation. It should 

also be pointed out that such differences, at low frequencies, have little bearing on 

the outcome of the prediction of the axial nonlinear pressure distributions, presented 

later.
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Figure 6.7. The frequency dependence of attenuation in amniotic fluid at room 
temperature and physiological temperature.

Temperature T=25°C T=37°C

Fluid a 0 + / -oneS.E. m +/- one S.E. a 0 +1-oneS.E. m +/- one S.E.
Dow Coming 
350 silicone fl.

0.137 
+/- 0.002

1.72 
+/- 0.01

Amniotic fluid 0.0041 
+/- 0.0001

1.81 
+/- 0.01

0.0053
+/- 0.0002

1.65 
+/- 0.01

Urine 0.008
+/- 0.0001

1.62 
+/- 0.01

0.0047 
+/- 0.0002

1.67 
+/- 0.01

4.5% Human 
Albumin

0.0347 
+/- 0.0005

1.43 
+/- 0.01

0.019 
+/- 0.0004

1.57 
+/- 0.01

20% Human 
Albumin

0.167 
+/- 0.003

1.27
+/-0.01

Figure 6.8. Tabulated values of the functional relationship between attenuation and 
frequency. The curve fitting was performed by using nonlinear regression of the 
data.
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Referring back to Figure 6.7 it can be seen that the attenuation in amniotic fluid is 

small, e.g. at 5 MHz it is 0.08 dB cm 1 (at room temperature). The corresponding 

attenuation in water is 0.048 dB cm'1. Given the similar values for attenuation it 

seems likely that corrections due to the water path, replaced by fluid path during the 

measurements, will be significant. Figure 6.10 illustrates this by comparing 

attenuation measurements for amniotic fluid with and without corrections for the 

water path, at physiological temperature. The result shows that the measured 

attenuation is now reduced by a factor of approximately three at 5 MHz, and rises to 

a factor of four at 16 MHz. This also implies that the results are sensitive to an 

accurate correction for water attenuation. It is interesting to note that in the 

literature there are very few references to the measurement of attenuation in water, 

the one most often quoted is Pinkerton (1947).
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(ii) Urine

Figure 6.11 illustrates the frequency dependence of attenuation for urine at 22° C and 

37°C. The results, as with amniotic fluid, show relatively small random errors and 

have absolute values in the same region. The processing method, for obtaining the 

attenuation, is again not critical.

Figure 6 . 8  tabulates the functional form obtained for the frequency dependence. In 

general the behaviour as a function of temperature is clearer to see, the attenuation 

coefficient increases as the temperature decreases. The situation with the frequency 

index m is again not so clear. For urine the value of m increases slightly as the 

temperature increases, but the two values are within 2  standard errors of each other.

134



water corr. 
no water corr,0.9

0.8

0.7

B
0.3

0.2

0.1

4 6  8  10 12 14 16 18 20 22 24 26

frequency /M H z

Figure 6.10. Illustration of the effect of correcting for the water path for the 
attenuation measurements in amniotic fluid.
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Figure 6.11. The frequency dependence of attenuation for urine.
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(iii) 4 5  % Human albumin solution

Figure 6.12 illustrates the frequency dependence of attenuation at 25°C and 37°C for 

4.5% Human Albumin solution. The results at 25 °C were obtained using a 

transducer driven at 10 MHz resulting in a smaller frequency bandwidth for those 

measurements. The results have had both a diffraction correction and water path 

corrections applied. In general the attenuation is larger than for both amniotic fluid 

and urine, for example at 5 MHz the attenuation is greater by a factor of five and at 

15 MHz by a factor of three. The functional form of the frequency dependence of 

attenuation is tabulated in Figure 6 .8 . The influence of the type of curve fitting 

procedure employed to obtain the frequency fit is clearer to see with these results. 

Consider the results at room temperature. If the whole data set is taken ( from 1.6 

MHz to 15 MHz) then the results of the linear and nonlinear fits are as follows 

(expressed in dB cm'1):

linear f it: a  = 0.024/1-6 
power law fit: .a  = 0.034/1-44.

Taking a smaller, more accurate range of the data ( 2.4 MHz to 12 MHz ) results in

the following fits:

linear fit: a = 0.036/1-42 
power law fit: a  = 0.035/1-43.
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Figure 6.12. The frequency dependence of attenuation for 4.5% Human Albumin 
solution at room temperature and physiological temperature.
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Figure 6.13. Illustration of the difference between linear and nonlinear curve fitting 
procedures employed in determining the form of the frequency dependence of 
attenuation.
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As can be seen the power law fit is very much less susceptible to 'rogue points' in the 

data. Figure 6.13 illustrates the two curve fits (obtained from the whole data set), 

together with the original data. It is not immediately apparent that the power law fit 

represents the data better, however on close inspection one can see that at the low 

frequency end it is closer to the data points. At the high frequency end the linear fit 

does seem better but one has to remember the much larger errors associated with 

these data points. At physiological temperature, a similar behaviour to the two other 

body fluids is observed. The value of the attenuation coefficient decreases, as 

expected, but again the value of m increases.

The effect of attenuation due to the water path, replaced by the fluid path, is similar 

in form to that for the other two body fluids. The magnitude of the correction is 

however reduced. For example at 15 MHz the correction for 4.5% human albumin is 

approximately 2 0 %, for amniotic fluid at the same frequency the correction was in 

the region of 80%.

(iv) 20 % Human Albumin solution

Figure 6.14 illustrates the frequency dependence of attenuation for 20 % human 

Albumin solution from 1 MHz to 14 MHz at physiological temperature. The data 

presented has been corrected for diffraction effects and attenuation due to the water 

path. In both cases the corrections are small; the diffraction correction is negligible 

and the water path correction increases the attenuation by a maximum of 6  % at 14 

MHz. The results show that with this fluid the attenuation, at 5 MHz, is five times
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that for 4.5 % human albumin and 20 times that for amniotic fluid. The functional 

form of the frequency dependence of attenuation is given in Figure 6 .8 . If the whole 

data set is taken then we obtain (expressed in dB cm'1):

linear fit: a  = 0 .1 2 2 / M 1 

power law fit: a  = 0.167/1-27.

Disregarding the first data point, the two processing methods give:

linear fit: a  = 0.175/1-24 
power law fit: a  = 0.167/1-27.

As can be seen again the power law fit represents the data much better, without 

having selectively ignored outlying data points.
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6.3.4 General comments

(i) The results illustrate that there is a relationship between the attenuation and the 

protein concentration for the four biological fluids. Figure 6.15 illustrates the 

variation of attenuation with frequency for the four body fluids at physiological 

temperature. For amniotic fluid and urine, the measured attenuation is similar to that 

obtained in water. At 5 MHz the attenuation in both these fluids is about twice that 

in water ( 0.075 dB cm'1 compared to 0.035 dB cm'1 ). For the 4.5 % human 

albumin solution the attenuation at 5 MHz is 0.25 dB cm'1 and for the 20 % human 

albumin solution it is 1.3 dB cm'1. The result shows that as the protein concentration 

increases it begins to dominate the attenuating behaviour of the medium, due to the 

increase in the value of the attenuation coefficient

(ii) Related to this is the observation that as the protein concentration increases the 

value of the frequency index m decreases. In amniotic fluid it has a value close to 

1.7, whereas in the 20 % human Albumin solution it is closer to 1.3. The reason for 

this is again due to the water content in these solutions, and its contribution to the 

total attenuation in the fluid. For amniotic fluid and urine, water is the major 

component, the attenuation is dominated by it, and so the value of m is close to 2 . 

As the protein concentration increases the contribution, to the attenuation, from 

water decreases and so the value of m departs from 2  and begins to approach 1 .

An interesting consequence, for all fluids, is that as the frequency increases the 

attenuation due to water becomes more dominant due to its squared law dependence.
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For example at 50 MHz the attenuation in water is 3.5 dB cm'1 , the attenuation in 

amniotic fluid (using extrapolation of the relationship given in Figure 6 .8 ) would be 

3.4 dB cm'1. Presumably if measurements in amniotic fluid or urine were made at 

higher frequencies the value of m would approach 2. The situation, in principle, is 

the same for the 2 0  % human albumin solution, however one would have to consider 

frequencies of hundreds of megahertz before this happened.

This behaviour of the value of the attenuation coefficient and the frequency index, is 

reflected in the literature. Measurements on biological fluids (Zana & Lang 1974, 

Lang et al 1978) and macromolecule solutions (Kremkau & Carstensen 1971) 

indicate that the attenuation coefficient is low and that m is close to 2. At the other 

end of the spectrum, measurements on tissue generally report high values for the 

attenuation coefficient and a near linear frequency dependence.

(iii) The measurement procedure employed with these measurements involves 

propagation of the acoustic pulse through a relatively large fluid/water path length, 

up to 300 mm. Employing such a method allows a relatively large fluid path length 

to be used and also enables measurements to be made for a number of path lengths 

(typically fifteen measurements). This is advantageous because it reduces the random 

uncertainty in the measurements considerably, as is evident from all the results. For 

example if the random uncertainty of the measurements is taken as two standard 

errors then the percentage change in the estimated value of the attenuation would be 

of the order of 2 % to 3%.
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Although this procedure reduces the random uncertainties, it can however be subject 

to a systematic error. If the propagation path of the pulse is large, there is a 

possibility that nonlinear distortion of the pulse can become significant. This can be 

either due to the low attenuation of the fluid and/or the propagation through the 

water path. An analysis of the nonlinear effects is not trivial as one has to consider 

the effects of nonlinear pulse propagation and also the frequency response of the 

receiving hydrophone. For example a percentage loss in signal amplitude at the 

fundamental frequency will not automatically appear as the same percentage increase 

in signal amplitude at the harmonic frequency.

The general effect, on the estimation of the attenuation, of such pulse distortion can 

however be deduced qualitatively. Consider the 5 MHz component of the pulse. As 

this becomes distorted, due to nonlinear propagation, two effects occur. Firstly, 

there will be a reduction in the magnitude of the 5 MHz component. This will result 

in an overestimate of attenuation at 5 MHz, as part of the reduction in signal level 

will be due to energy being lost to the harmonics and not due to attenuation.

Secondly, the distortion will introduce energy at the second harmonic level ( at 10 

MHz) which will in turn result in an underestimate of the attenuation at this 

frequency. Figure 6.16 illustrates the point, the results are for 4.5 % Human Albumin 

solution at physiological temperature. The two sets of data represent results obtained 

by using a small voltage, tens of volts, and a high voltage, of approximately one 

hundred volts, at the transducer face. As can be seen the attenuation at both the 

lower and intermediate frequencies are in error by about 30 %, the lower frequencies



being overestimated. The magnitude of the error introduced by using nonlinear 

pulses is to some extent governed by the attenuation of the fluid for this measurement 

system. For fluids such as urine, amniotic fluid and 20 % Human Albumin solution 

the error was found to be relatively small, less than 10%. For the low loss fluids 

(amniotic fluid and urine) the reason behind this is that the initial pulse ( i.e. with the 

minimum fluid path length ) is itself quite distorted and the extent of its distortion 

does not alter much over the change in fluid path length. This is because of the 

attenuation in water is of the same magnitude as that in the fluid. For 20% Human 

Albumin the situation is different. Here the large attenuation of the fluid does not 

permit high amplitude pulses to distort Indeed after travelling through a minimum 

fluid path of 100 mm the 5 MHz component of a pulse, emanating from the 

transducer, is attenuated by approximately 14 dB before it enters the water path.

(iv) The results presented in this chapter illustrated the frequency dependence of 

attenuation of four biological fluids. In general these fluids can be thought of a 

macromolecule (mainly protein structures) in solution. The measured attenuation 

then becomes the sum of the attenuation due to the macromolecule and the 

attenuation due to the water content. One can determine the contribution to the 

frequency dependence of attenuation of the macromolecule by simply subtracting the 

attenuation due to water (this assumes that the attenuation due to water and 

macromolecule are additive and that there is no contribution due to mixing of the 

two). In addition if the attenuation is calculated per cycle it possible to see if any 

relaxation peaks in the frequency dependence of attenuation exist Figure 6.17 

illustrates results for amniotic fluid. As can be seen there does seem to be a roll-off
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in the curve as one approaches the high frequency end of the curve. Unfortunately 

the experimental data reaches the noise floor after this, however it does seem that 

there may be broad resonance peak above 20 MHz. Similar results were obtained 

for the higher concentration Human Albumin solutions (by subtracting the 

appropriate percentage contribution from water), Unfortunately one requires much 

wider bandwidth results to encompass the whole resonance peak.

(v) A number of sets of measurements of the frequency dependence of attenuation 

were made for the two Human Albumin solutions. Although the results are not 

presented here, for brevity, they illustrated two points.

Firstly, different batches of fluid illustrated remarkably similar values for the 

measured attenuation. Secondly, the fluids were stable in terms of their acoustic 

properties (velocity and attenuation) for over twenty four hours. This together with 

the general availability of the fluid and the dependence of attenuation on protein 

content may make this fluid a useful tissue mimic. A wide range of tissue 

attenuation's, ranging from low loss fluids to soft tissue, could in principle be 

mimicked.
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Figure 6.16 The effect of nonlinear propagation of the measurement of the frequency 
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7.0 RESULTS (II)-NONLINEAR 
PROPAGATION

7.1 Outline

In Chapter 3 it was stated that the main aim of this research project was to compare 

experimentally determined nonlinear pressure distributions in biological fluids with 

those predicted theoretically. We also saw that in order to predict these pressure 

distributions certain input parameters were required for the theoretical model. These 

parameters can, in general, be divided into two categories, those relating to the 

source of sound generation and those relating to the medium of sound propagation.

In the last chapter results were presented for the sound velocity and frequency 

dependence of attenuation in four biological fluids. These formed two of the medium 

input parameters required by the model for predictions (some results for the medium 

nonlinearity parameter (B/A are presented in Appendix A). In this chapter we will 

present experimental results of the axial nonlinear pressure distributions in the 

biological fluids considered and then compare them with predictions made with the 

model, using the input parameters determined in the previous chapter. Also presented 

in the chapter are details of the various source parameters that were required for 

the modelling. The chapter firstly describes the experimental nonlinear pressure 

distributions observed and then goes on to give a comparison between the 

experimental and theoretical simulations.
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7.2 Experimental results

This section presents results of the measured axial nonlinear pressure distribution for 

three biological fluids, amniotic fluid, urine and 4.5 % Human Albumin solution. 

Unfortunately due to lack of resources further measurements on the 20% Human 

Albumin solution could not be made. Measurements were made at both room 

temperature and physiological temperature (37° C) using a 38 mm diameter single 

element transducer operating at a frequency of 2.25 MHz. Focusing was achieved 

via a plano-concave perspex lens with a radius of curvature of 63.95 mm, giving a 

focal gain of approximately 12 in water at room temperature. The transducer was 

operated with short tonebursts of approximately eight cycles, the pulse repetition 

rate being 1 kHz. In general the transducer was driven under various drive 

conditions ranging from 0.007 MPa to 0.224 MPa at the transducer face in order to 

allow both linear and nonlinear measurements to be made. Experimental results are 

presented from the penultimate axial maximum to well past the focal plane. A 0.5 

mm bilaminar Pvdf membrane hydrophone with a buffer amplifier was used for 

detection of the signal, which was subsequently captured with a Lecroy 9310 digital 

oscilloscope for processing. Harmonic amplitudes were determined by isolating a 

single cycle from the pulse and then applying fast fourier transform techniques to the 

desired cycle.

Because of the large volume of data not all the results will be presented in graphical 

form. In general the salient points from each of the presented graphs will be 

mentioned and discussed.
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7.2.1 Linear measurements

Figure 7.1 and figure 7.2 illustrate the axial variation of the fundamental for amniotic 

fluid and urine at room temperature and physiological temperature. The source 

pressure for the amniotic fluid and urine measurements was 0.0077 MPa and 0.007 

MPa respectively. In both cases the value of the second harmonic was more than 30 

dB below the fundamental (in the region of the focus) implying that for these 

measurements nonlinear propagation was not significant The following general 

points can be made:

(i) At both temperatures the variation of the axial field is in accordance with that 

expected from a single element circular transducer. Relatively rapid variations in the 

pressure occur from the penultimate maximum through to the final maximum. 

Beyond the last maximum the pressure drops off more slowly as the phase changes in 

the fundamental are not so rapid.

(ii) The axial position of the last minimum has increased a small amount 

(approximately 5 mm) from about 95 mm for the room temperature results to 100 

mm for the physiological temperature results. The situation for the last axial 

maximum is even more noticeable. At room temperature it is at about 14 cm 

whereas at 37°C it is closer to 15 cm from the source for all three fluids. In addition 

to this the pressure at the last axial maximum has reduced by approximately 15 % as 

the temperature is increased from room temperature to 37°C. The result is at first 

sight a little surprising as the increase in temperature results in an increase in sound
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velocity (for example see Figure 6.2) which would tend to bring the diffractive field

closer to the source by reducing the Rayleigh distance.
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Figure 7.1. Experimental determination of the axial variation of the fundamental in 
amniotic fluid under low drive conditions.

However the increase in temperature also modifies the gain of the transducer. 

Equation 3.2 expresses the gain in terms of the Rayleigh distance and the focal 

length. As stated the Rayleigh distance decreases, however the focal length also 

changes due to the change in sound velocity in the perspex lens and the fluid under 

investigation. The effect of these changes is to reduce the overall gain of the lens 

system with an increase in temperature. The observed change in the axial pressure 

distribution with temperature can in part explain the reduction in gain. The change in 

the value of the pressure at the last axial maximum is also likely to be influenced by 

the change in sensitivity of the hydrophone with temperature, which can only be 

inferred from NPL data.
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Figure 7.2. Experimental determination of the axial variation of the fundamental in 
urine under low drive conditions.

(iii) In general the behaviour of the axial variation in pressure seems to indicate a 

change in the diffractive field with a change in temperature. This change with 

temperature cannot easily be attributed to the fluid as it occurs for all three fluids.

Also supporting this is the observation that similar behaviour can be found in the 

variation of the second harmonic. Figure 7.3 illustrates the point. It shows the 

second harmonic amplitude in amniotic fluid, at both temperatures, for measurements 

made with a source pressure of 0.137 MPa. As can be seen, an increase in 

temperature has more marked effects here, the reduction in the maximum pressure is 

now of the order of 20% and the shift in the position of this pressure peak is from 14
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cm to 16 cm. An explanation for the observed behaviour will be given later in 

section 7.3.2.
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Figure 7.3. Experimental plot of the axial variation of the second harmonic in 
amniotic fluid at room temperature and physiological temperature, source pressure is 
0.137 MPa.

7.2.2 Nonlinear measurements
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Figures 7.4, 7.5 and 7.6 illustrate results of the axial variation of the fundamental and 

first four harmonics in amniotic fluid, at physiological temperature. The y-axis plots 

the measured pressure and the x-axis is the axial distance from the transducer. The 

three graphs represent different degrees of nonlinear propagation, as determined by 

the source pressure. The source pressure for the three graphs were 0.077 MPa, 

0.137 MPa and 0.244 MPa respectively.
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Each increase in source pressure corresponds to an increase in drive level of 5 dB. 

The increase in the maximum pressure of the fundamental does not, however, 

correspond to this. The first measured increase is approximately 4.3 dB and the 

second increase is 3.7 dB. This removal of energy from the fundamental, due to 

nonlinear propagation, to the harmonics is evident from the graphs. As can be seen 

there is a progressive increase (approximately 6  dB on each occasion) in the value of 

the second harmonic as the drive pressure increases. This process is also observed 

for the other three harmonics. For example the fifth harmonic level, for a source 

pressure of 0.077 MPa, is only about 0.02 MPa ( in the region of the focus ) whereas 

with a source pressure of 0.244 MPa the fifth harmonic reaches pressures of about 

0.3 MPa in the same axial region. This increase in the importance of nonlinear 

processes is illustrated in figure 7.7 which shows the ratio of second harmonic to 

fundamental in the region of the focus as a function of source pressure. Although 

only four points are plotted the general effect can be inferred. At low drive levels 

the increase in the second harmonic is fairly rapid; however as the source pressure 

increases further (at still relatively small levels compared to the output of many 

diagnostic transducers) the rate of increase in second harmonic level reduces and 

seems to reach a plateau. The value of the second harmonic, is approximately 5 dB 

down relative to the fundamental, at a source pressure of 0.244 MPa. The result 

indicates very clearly that nonlinear distortion is easily achieved in amniotic fluid. 

This value, of 5 dB, exceeds that expected from a plane wave that has undergone full 

distortion and reached a mature shock. The higher than expected value is due to the 

high degree of focusing and the difference in the diffraction effects for the 

fundamental and second harmonic.
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Figure 7.5. Experimental plot of the axial variation of the fundamental and first four 
harmonics in amniotic fluid, source pressure is 0.137 MPa.

154



1.8

1 . 6

1.4

c* 1.2 fX,
^  1
0
1 0.8 
0>
*  0.6

0.4

0.2

0

°o
! T=37 1stoo • 2ndoo

3rd
0

r\ * 4thV
1 o -  5th

O o
7 oQ

♦'♦A 0
 ̂ %

O ° O 0 0 o
- 0 o

cftxb 0 oo□□□oo-1—L ° r>r o □ ♦A ° 0 %c
V«*« x ‘ °

L . D x x * . Da*  * * " x j .
. V  '  n«

.................. tejfaw.* . -i—x., .. ._i_. . * * » * « «  _J_L_l_L .J_1_
0 10 15 20 25

distance /cm

30

Figure 7.6. Experimental plot of the axial variation of the fundamental and first four 
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The large extent of harmonic generation and propagation is presumably due to the 

low attenuation in amniotic fluid, as once the harmonics are generated they are not 

attenuated significantly but are allowed to propagate.

Figures 7.4, 7.5 and 7.6 also illustrate the change in the nature of the ultrasonic field 

as the drive pressure is increased. In particular the position at which the harmonics 

peak is altered. The situation is clearest with the fifth harmonic, at a source pressure 

of 0.077 MPa the fifth harmonic reaches a maximum value at approximately 16.5 cm, 

whereas at a source pressure of 0.244 MPa the maximum is reached at a position of 

about 15 cm from the source. This tightening of the axial beam profile, for all the 

harmonics, is expected and follows that determined by other workers (Baker et al 

1988) for measurements made in water. It should be pointed out that similar results 

were obtained in urine, the attenuation and sound velocity being similar.

The effect of attenuation on the production and propagation of distorted waves is 

however not so easy to see from these set of measurements. The reason for this is 

two fold:

(i) Although measurements were made in amniotic fluid and 4.5% Human Albumin 

solution, where the attenuations differ by a factor of four at the fundamental 

frequency, the values of attenuation are so low ( 0.017 dB cm'1 and 0.1 dB cm' 1 

respectively) that changes in the ultrasonic field over distances of 15 cm produce 

little change to the signal level.
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(ii) One can consider a higher harmonic, for example the fifth harmonic in amniotic 

fluid has an attenuation of 0.3 dB cm'1 whereas for 4.5% Human Albumin the 

attenuation is 1.1 dB cm'1. The propagation and attenuation of this harmonic should 

allow for a comparison of the two fluids, under the same initial conditions of 

propagation. Figure 7.8 illustrates the variation of the fifth harmonic for both fluids, 

with a source pressure of 0.137 MPa at the source. As can be seen the value of the 

fifth harmonic, for 4.5% Human Albumin solution, at 25 cm from the source is 

reduced by approximately 3 dB from that measured in amniotic fluid. Athough it 

might appear that this is due to the larger, and measurable, attenuation in 4.5% 

Human Albumin, one has to be careful. Although the transducer and lens for the two 

measurements were identical, the difference in sound velocity between the two fluids 

results in a different gain for the lens system, so it not necessarily correct to compare 

the results. Further to this, the measurements presented here are with a highly 

focusing beam (this was desirable so as to make measurements into the far field and 

to avoid reflections from the sides of the bellows) where the changes in the harmonic 

magnitudes with axial distance are influenced by diffraction effects. In addition to 

this the curves in Figure 7.8 assume that both measurements were made on the 

acoustic axis, for example the difference between the values of the fifth harmonic, in 

the far field, may have been due to a misalignment problem with one of the 

measurements. Overall Figure 7.8 illustrates that if the source pressure level is high 

enough then nonlinear effects dominate over attenuation.

In general the results show that the measurements have a dynamic range of about 80 

dB, for example pressure levels of the order of 0.1 KPa can be detected for the fifth
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harmonic. The maximum pressures measured for the fundamental, in the region of 

the focus, approach 2 MPa for very high drive results ( not illustrated for brevity).
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Figure 7.8. Experimental plot of the axial variation of the fifth harmonic in amniotic 
fluid and 4.5% Human Albumin.

Fluid Measured source pressure at T=25°C with 0.5 mm bilaminar 
hydrophone (MPa)

Amniotic
fluid

0.0077 - 0.077 0.137 0.244

Urine 0.0069 0.069 0.122 0.217
4.5% Human 
Albumin soln

0.0077 - - 0.137 0.244

Figure 7.9 Tabulated values for the various source pressures used in the three 
biological solutions at room temperature.
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7.3 Comparison between experiment and theory

In the previous section experimental results of the axial pressure distribution for the 

biological fluids were presented for various degrees of nonlinear propagation. In this 

section a comparison between experimental and theoretical distributions will be 

made. The results presented in this section were selected to illustrate as many useful 

features as possible and also include results not illustrated previously. Although the 

parameters required in the model have been discussed previously, it was thought that 

it would be useful to reiterate them here.

7.3.1 Model input parameters

The input parameters for the model fall into two categories, those relating to the 

medium of propagation and those relating to the source conditions.

(i) Medium parameters

The medium parameters that the model requires are:

(i) The sound velocity;

(ii) The frequency dependence of attenuation;

(iii) The medium density;

(iv) The nonlinearity parameter.
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The first two of these were measured accurately and the results presented in chapter 

6 ; refer to the tabulated results in Figures 6.2 and 6 .8 . These values will be used in 

all of the modelling work.

For amniotic fluid and urine the density was taken to be the same as that of water, 

1000 kg m*3. This was thought to be reasonable based on their large water content. 

The densities of the 4.5% Human Albumin solution was obtained from BPL, the 

suppliers of the solutions. For the 4.5% solution the density was 1019 kg m'3.

The nonlinearity parameter, B/A, for the fluids was also chosen to have the same 

value as water (5.5 at room temperature and 5.66 at physiological temperature). It 

was originally intended to measure BIA as well using the experimental facility. 

Appendix A describes how the parameter could be measured for the fluids considered 

in this study; however, as explained there, the measurements highlighted some 

problems with the measurement procedure. These will not be discussed here, but the 

reader is referred to the appendix. For this reason it was necessary to use existing 

values for the nonlinearity parameter for water. There is some justification in using 

the value for water. Since the nonlinearity parameter for a medium depends on the 

bulk properties of the medium. It would be reasonable to assume that the 

nonlinearity parameter in these fluids is not more than 10% to 15% different from 

that of water. The literature also supports this, measurements made by Sun 

Yongchen (1985,1986) and Everbach (1989) report that (BIA) for urine is 6.14, for 

bile (pig) is 6.0 and for blood plasma (cow) is 5.74.
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The effect of changes of the order of 10% in BIA on the simulated axial pressure 

distribution will be illustrated to show the influence of this parameter on the results.

(ii) Transducer parameters

The transducer parameters required are:

(i) Source pressure;

(ii) Transducer radius;

(iii) Focusing gain.

(i) The source pressures used for the measurements described in this chapter arc 

tabulated in figure 7.9. The measurement of source pressure was determined by two 

techniques, direct measurement near the transducer face using a bilaminar PVdF 

hydrophone and measurement with a power balance.

The hydrophone measurement was performed with the 0.5 mm bilaminar 

hydrophone, calibrated at the NPL. In general the hydrophone was placed 

approximately 5 mm from the transducer and centred on the transducer with the 

measurements being made in water. Measurements closer to the transducer resulted 

in problems due to interference of the direct signal with those reflected between the 

transducer and the hydrophone.

The measurements with the power balance (Perkins 1989) were performed by 

aligning the transducer with the central axis of the power balance. In general for the
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high source pressure measurements the transducer was driven in pulsed mode (so as 

to avoid overheating of the amplifier), whereas for the low source pressure 

measurements the transducer was driven continuously. In both cases the source 

pressure was determined from the measurement of the output power and timing 

measurements of the pulsing regime.

For continuous wave excitation, the source pressure Pa is related to the measured 

power by:

where P is the measured power, p0 is the density of water, c0 is the velocity of 

sound in water and a is the transducer radius.

In general the agreement between the two sets of measurements was within 10%. 

For example with the same source condition settings the hydrophone measurement 

gave a source pressure of 0.28 MPa while the power balance gave a measurement of 

0.26 MPa. The hydrophone measurements were used in the modelling work.

Measurements of the source pressure, by the hydrophone technique, were also made 

with the addition of a perspex lens in front of the transducer. These results showed 

that the measured source pressure was significantly reduced; for example under the 

same condition the source pressure was reduced from 0.28 MPa to 0.224 MPa. This 

was thought to be due to the relatively high attenuation coefficient of perspex (often

7.1
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quoted as 1 dB cm 1). In addition there is also an impedance mismatch at the 

transducer/lens interface and the lens/water interface, which results in reduced 

transmission of power through the lens into the water.

In order to check the attenuation of the perspex, measurements were made by the 

comparison method. Using this method the attenuation, as opposed to the insertion 

loss (which includes loss of signal due to reflections at the interface) was measured at 

a frequency of 2.25 MHz The results of the attenuation per mm as a function of 

temperature are presented in figure 7.10. As can be seen the attenuation does not 

vary greatly from physiological temperature to room temperature, but is on average 

0.36 dB mm'1 . For the lens used in the measurements presented in the previous 

section, the thickness at its centre was 4.4 mm. This gives a total attenuation of 

approximately 1.6 dB. The consequent reduction in signal level that would be 

expected due to the addition of a lens is in agreement with that observed for the 

source pressure measurements.

(ii) The nominal value of the transducer radius, quoted by the manufacturers 

(Panametrics ) was 19 mm. In order to check the actual transducer radius, the 0.5 

mm bilaminar hydrophone was used to scan across the transducer. The hydrophone
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Figure 7.10. Experiemntal plot of the measured attenuation in perspex as a function 
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Figure 7.11. Experimental plot of the measured pressure across the transducer face, 
at an axial distance of 5 mm from the transducer.
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was again placed at an axial distance of 5 mm from the transducer and the resulting 

pressure field is illustrated in figure 7.11. The graph illustrates two points.

Firstly, using a 6  dB drop in pressure as the basis for determining the transducer 

radius, it can be seen that the effective radius is 18.5 mm. This corresponds to a 3% 

reduction on the expected value. The normal value of 19 mm was initially used for 

the simulations presented later, however the influence of the transducer radius on the 

pressure distribution due to changes in the transducer radius will also be considered.

Secondly, figure 7.11 also illustrates that the pressure across the transducer face is 

not constant. There is a 6% variation around the mean value. This deviation can 

become more significant if one considers that as one approaches the edge of the 

transducer, the fraction of the total power, from the transducer, increases as the 

elemental area increases. Again the effect of changes in the source pressure on the 

simulation results will be discussed later.

(iii) As described in chapter 5, equation 5.2, the focusing gain of the system can be

determined by knowledge of the radius of curvature of the perspex lens and the

velocity of velocity in perspex and the fluid. The velocity of sound in perspex was

measured at room temperature and physiological temperature for this purpose. The 

speeds were 2727 ms'1 and 2687 ms'1 respectively, with a standard error of ± 10 m 

s'1. The results for the focusing gain are tabulated in figure 7.12.

165



Medium room temperature physiological temperature
Amniotic fluid 1 1 . 6 10.5
Urine 1 1 . 6 1 0 .8

4.5% Human Albumin 1 1 .8 1 1 . 2

Figure 7.12. Tabulated values of the focusing gain in the three biological fluids.

7.5.2 Linear field comparison

Having described the various input parameters initially chosen for the modelling, we 

shall now consider the comparison between experimental and theoretical results. 

Firstly a comparison for linear measurements (where the source pressure is low 

enough to minimise any nonlinear effects) will be presented and then, on the basis of 

the agreement obtained nonlinear pressure distributions will be compared. In all the 

graphs presented the experimental results are illustrated as points and the theory as 

solid lines.

Figures 7.13 and 7.14 illustrate the axial variation of the fundamental in amniotic 

fluid at room temperature and physiological temperature. Figures 7.15 and 7.16 are 

the corresponding results in 4.5% Human Albumin solution. In both cases the 

agreement between experiment and theory is reasonable. For example the

positioning of features such as the penultimate maximum, last axial minimum and the 

last axial maximum are good. It is however noticeable that in both cases the 

discrepancy in the position of these features increases as the temperature is increased. 

For example the last axial maximum is found to be about 1 cm further away, from the 

source, in the experimental measurements at physiological temperature. The other
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disagreement between experiment and theory lies in the values of the measured and 

predicted pressures at the penultimate and last axial maxima.
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Figure 7.13. Comparison between experiment and theory for the axial variation of 
the fundamental in amniotic fluid, at T=25°C, source pressure is 0.0137 MPa.
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Figure 7.14. Comparison between experiment and theory for the axial variation of
the fundamental in amniotic fluid, at T=37°C, source pressure is 0.0137 MPa.
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Figure 7.15. Comparison between experiment and theory for the axial variation of 
the fundamental in 4.5% Human Albumin, atT=25°C, source pressure is 0.0137 
MPa.
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Figure 7.16. Comparison between experiment and theory for the axial variation of 
the fundamental in 4.5% Human Albumin, at T=37°C, source pressure is 0.0077 
MPa.
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Here again the discrepancy increases with temperature, with the predicted pressures 

being consistently higher. In amniotic fluid the difference rises from 10% at room 

temperature to 16% at physiological temperature. The situation in 4.5% Human 

Albumin is not so bad. The room temperature results, at the last maximum, are 

similar but at physiological temperature the difference is about 10%. The predicted 

pressure at the penultimate maximum in all four results is greater by approximately 

15%.

It may appear at first sight that the discrepancy between experiment and theory is due 

to the value of source pressure used in the predictions. The possible error in this 

parameter is 10%, as discussed in the previous section. However the difference 

between experiment and theory cannot immediately be explained by such an 

argument, for three reasons.

Firstly, a reduction in the source pressure by say 10% would bring the pressure 

amplitudes into line at the penultimate and final maxima but it would also have the 

effect of reducing the predicted pressures everywhere else in the field. This would 

manifest itself very clearly in the post focal region. With the present results the 

theoretical predictions are either similar to or less than the experimental values in this 

region. A reduction in source pressure (for these linear propagation results) would 

make the comparison between experiment and theory much worse in the far field. In 

particular it is harder to imagine a situation where one can measure a higher pressure 

than that predicted, on-axis, without there being a significant inaccuracy in one of the 

input parameters. The converse of this is more likely, misalignment of the transducer
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and hydrophone can result in the off-axis pressure being measured which will in 

general be less than that on-axis.

Secondly, reducing the source pressure will not alter the shape of the axial 

distribution. We saw in the previous section (Figures 7.1 and 7.2) that an increase in 

temperature seems to produce a broadening of the axial pressure distribution. In the 

simulations presented here (figures 7.13, 7.14, 7.15, 7.16) the pressure distributions 

are similar at both temperatures.

In addition to this there is also the possibility that the transducer and hydrophone 

were misaligned. Misalignment however would tend to cause the axial harmonic 

variation in the experimental results to peak earlier rather than later as is seen in the 

above figures.

The difference between experiment and theory at both temperatures seems to imply a 

cause that is related to the diffractive field of the transducer. Ward et al (1995) has 

demonstrated that phase variations across the face of transducers such as these can 

cause significant departures to the expected axial pressure distribution from perfect 

piston behaviour.

As a result of these observations the phase across the 2.25 MHz diagnostic sonar 

transducer was measured. The measurement was performed by scanning the 0.5 mm 

bilaminar PVdF membrane hydrophone across the transducer at an axial distance of 5 

mm. Figures 7.17 and 7.18 illustrate the phase variation across the transducer at
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both temperatures of interest. The x-axis represents the radial distance across the 

transducer, the 20 mm point being close to the centre of the transducer. The y-axis is 

the absolute phase of a chosen cycle from a toneburst of eight cycles. The absolute 

phase was determined by measuring the time of arrival at the hydrophone. As can be 

seen the phase across the transducer is not constant, and shows a marked deviation 

from plane piston behaviour.
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Figure 7.17. Phase distribution across the face of the 38 mm transducer at room 
temperature T=25°C. Experimental data and gaussian fit.
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Figure 7.18. Phase distribution across the face of the 38 mm transducer at 
physiological temperature T=37°C. Experimental data and gaussian fit.

At room temperature the centre of the transducer is roughly 0.7 radians ahead of the 

edge. This phase advance increases to 1.2 radians at physiological temperature. As 

can be seen the phase distribution across the transducer is fairly symmetric. This is 

fortuitous for two reasons.

Firstly it allows the variation to be fitted by a relatively simple function. The figures 

both show a gaussian fit to the experimental data. As can be seen the fitted 

representation of the phase variation in is reasonable in both cases.

Secondly it allows such a phase variation to be applied, in the model, at the

transducer. If the phase behaviour had been unsymmetric then its implementation
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would have caused problems as the governing equations of the model rely on circular 

symmetry.

The gaussian phase distribution was implemented into the model with the other input 

parameters unaltered. The corresponding results for linear propagation are presented 

in figures 7.19, 7.20, 7.21 and 7.22. As can be seen in all four cases the agreement 

between experiment and theory is much improved. The following three points are 

apparent:

(i) The positioning of the maxima and minimum are in better agreement at both 

temperatures;

(ii) The predicted and measured pressures are much closer,

(iii) The broadening in the axial diffractive field that is observed experimentally with 

temperature is also followed in the theoretical predictions.

Similar results to those shown were obtained with urine.
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Figure 7.19. Comparison between experiment and modified theory for the axial 
variation of the fundamental in amniotic fluid, at T=25°C, source pressure is 0.0137 
MPa. Gaussian phase distribution across transducer face.
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Figure 7.20. Comparison between experiment and modified theory for the axial
variation of the fundamental in amniotic fluid, at T=37°C, source pressure is 0.0137
MPa. Gaussian phase distribution across transducer face.
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Figure 7.21. Comparison between experiment and modified theory for the axial 
variation of the fundamental in 4.5% Human albumin, at T=25°C, source pressure is 
0.0137 MPa. Gaussian phase distribution across transducer face.
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Figure 7.22. Comparison between experiment and modified theory for the axial
variation of the fundamental in 4.5% Human albumin, at T=37°C source pressure is
0.0077 MPa. Gaussian phase distribution across transducer face.
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7.3.3 Nonlinear f ie ld  comparison

Given the good agreement between experiment and theory for linear propagation, the 

prediction of nonlinear pressure distributions can now be considered.

Figures 7.23, 7.24 and 7.25 are a comparison between experiment and theory for 

nonlinear propagation in urine at room temperature. The degree of nonlinearity is 

determined by the source pressure and is given in the figure captions. The pressure 

of each harmonic in the field is illustrated on a logarithmic scale so as to present the 

results clearly.

In general the results show very good agreement between experiment and theory for 

the first five harmonics. Both the axial variation and the absolute amplitude of the 

first five harmonics are well predicted. There is some disagreement for the highest 

drive level (0.217 MPa), with the theory predicting higher pressure values on axis.

It should be noted that the disagreement increases with harmonic number. For 

example near the focus the fundamental is overestimated by 12% and the 5th 

harmonic by 30%. This disagreement in the fundamental and the harmonics can in 

part be explained by a combination of the following factors:

(i) There is an 7% to 8 % (NPL 1994) uncertainty in the hydrophone calibration of 

the 0.5 mm hydrophone in the frequency range 2 MHz to 12 MHz. This uncertainty 

will affect the measured value of the fundamental and the first four harmonics.
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(ii) The transmission properties of the mylar end windows becomes significant at 10 

MHz and higher, the loss at these frequencies is of the order of 1 dB (10%). It 

should be noted that correction for this loss has not been made to the experimental 

results.

(iii) The error in the source pressure is also of the order of 10%.

(iv) Increasing the drive level results in tighter focusing of the harmonics in the region 

of the focus. This makes the alignment of transducer and hydrophone more critical, a 

slight misalignment will result in a decrease in the measured on-axis pressure.

(v) The averaging effect of the 0.5 mm diameter hydrophone will begin to cause 

significant spatial averaging effects for the higher harmonics.
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Figure 7.23. Comparison between experiment and theory for the axial variation of the
fundamental and first four harmonics in urine at room temperature, source pressure is
0.069 MPa.
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Figure 7.24. Comparison between experiment and theory for the axial variation of the 
fundamental and first four harmonics in urine at room temperature, source pressure is 
0.122 MPa.
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Figure 7.25. comparison between experiment and theory for the axial variation of the
fundamental and first four harmonics in urine at room temperature, source pressure is
0.217 MPa.
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Alignment of the transducer and hydrophone, as stated, can be an important factor in 

the measurement of the axial pressure distribution. Figures 7.26 and 7.27 illustrate 

comparable results, at physiological temperature, in amniotic fluid and 4.5% Human 

Albumin for a source pressure level of 0.137 MPa. As can be seen the agreement in 

the build-up and fall off in the harmonics is reasonable. However the actual pressure 

amplitudes predicted are higher than those measured experimentally. The situation is 

worst for amniotic fluid, here the predicted 5th harmonic amplitude in the region of 

the focus is about 50% higher than that measured experimentally. The suggested 

cause for this difference is due to misalignment of the transducer and hydrophone.
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Figure 7.26. Comparison between experiment and theory for the axial variation of the 
fundamental and first four harmonics in amniotic fluid at T=37°C source pressure is 
0.137 MPa.
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Figure 7.27. Comparison between experiment and theory for the axial variation of the 
fundamental and first four harmonics in 4.5% Human albumin at T=37°C source 
pressure is 0.137 MPa.

The reason is as follows. One of the consequences of a non planar phase distribution 

across the transducer is that the last axial minimum, of the fundamental, does not 

remain a minimum. If one refers back to figures 7.19, 7.20, 7.21 and 7.22 it can be 

seen that in the simulations results the pressure at the last minimum does not drop 

down to zero. In fact what happens is that at this axial position sharp minima exist 

on either side (radially) of the expected minimum. In aligning the transducer and 

hydrophone it is common to use the last minimum as a reference point as it is 

normally a very well defined position in the field. With non perfect piston behaviour 

this can result in a misalignment as one of the off-axis minima may be chosen. The 

situation will become more pronounced with the higher harmonics as they are 

focused more tightly. The non uniform phase distribution across the transducer was
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however not apparent at the time of the amniotic fluid measurements and it is likely 

that one of the off-axis minima was chosen during the alignment procedure.

Measurements performed in urine support the above argument (the phase behaviour 

of the transducer was known for this measurement). Figure 7.28 illustrates the axial 

variation of the first five harmonics in urine at physiological temperature. In 

particular one can consider the axial variation of the second harmonic. With a planar 

phase distribution across the transducer the second harmonic shows a double peaked 

behaviour (Baker 1988) in the region of the last minima of the fundamental. The 

theoretical results illustrated in figures 7.28,7.26 and 7.27 all indicate that the second 

peak does not drop down to a trough but rather a shoulder appears in the axial 

variation of the second harmonic. The experimental results in figure 7.28 (urine) 

also show a shoulder, supporting the view that with this measurement the transducer 

and hydrophone were better aligned. The reason for this behaviour in the second 

harmonic is likely to be due to the fact that it follows the behaviour of the 

fundamental. Since the fundamental does not fall to a null there is not a rapid phase 

inversion at the last minimum and this is reflected in the presence of a shoulder, 

rather than a null, in the second harmonic.
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Figure 7.28. Experimental and theoretical axial variation of the fundamental and first 
four harmonics in urine at physiological temperature, source pressure is 0.122 MPa.

In addition to this the results illustrated in Figure 7.24 can be compared with those in 

Figure 7.28. Both measurements were made in urine with the same focusing lens and 

source pressure, the former were at room temperature and the latter at physiological 

temperature. As can be seen one of the differences between them is the much 

sharper focusing of all the harmonics at room temperature. This occurs for two 

reasons. Firstly the change in temperature results in a lower gain for the 

physiological temperature measurements (see Table 7.12) due to the change of sound 

velocity in the fluid and the perspex lens. Secondly, as has been discussed, the phase 

delay from the edge of the transducer increases with increasing temperature resulting 

in a reduction in the effective gain.
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The other feature of the two results (comparing Figures 7.24 and 7.28) is the better 

agreement between experiment and theory for the room temperature results. This 

was in general found with all the fluids. It seems likely that the change in 

temperature will bring about other changes, apart from the phase behaviour of the 

transducer, in the experimental measurements. For example:

(i) The source pressure at the transducer may be altered. Some measurements of 

source pressure at physiological temperature were performed and seemed to indicate 

an increase of a few percent. However whether these changes were due to a change 

in the output of the transducer or due to changes in the sensitivity of the hydrophone 

(given the significant calibration errors and the extrapolation from room temperature 

calibration to physiological temperature, NPL 1994) is not clear.

(ii) The transmission properties of the mylar end-windows may also have altered with 

the increase in temperature. If one assumes that the velocity of sound in mylar 

decreases with increasing temperature (as is the case for perspex) then it would be 

usual for the transmission loss to increase. This would have the effect of reducing 

the effective source pressure that enters the fluid.

In summary, the results presented in Figures 7.23 to 7.28 represent the main results 

in this thesis and they show very good agreement between experimental 

measurements and theoretical predictions for the three biological fluids studied.
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7.4 The influence of input parameters

In the last section it was shown that good agreement between experiment and theory 

was achieved for the nonlinear pressure distributions in amniotic fluid, urine and 

4.5% Human Albumin solution. Given the extent of agreement, it is possible to use 

the model to consider the influence of various input parameters on the resultant 

simulated pressure distributions. The parameters considered are the attenuation and 

nonlinearity parameter of the fluid and the pressure and effective radius of the source.

Figure 7.29 illustrates the percentage change in the predicted axial pressure of the 

fundamental and fifth harmonics as a result of a reduction in source pressure from 

0.137 MPa to 0.122 MPa (approximately 10%). The solid lines represent results for 

amniotic fluid, the dashed lines are for 4.5% Human Albumin solution. The 

reduction in the fundamental for both fluids is approximately 10%. In addition to this 

there is some structure in the precise variation with axial distance. For example in 

the region of the focus the reduction is not as great. This is due to a reduction in 

harmonic generation, as a result of the lower source pressure, and therefore a 

decrease in the loss of energy from the fundamental. For the 4.5% Human Albumin 

solution the drop in fundamental pressure increases after about 17 cm. The reason 

for this is not immediately obvious but could be due to the fact that at the higher 

drive level some energy is returned to the fundamental from the interaction of higher 

harmonics. For the lower drive level these harmonics may not be produced and so
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cannot return energy back to the fundamental.
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Figure 7.29. The effect of a 10% reduction in the source pressure on the axial 
variation of the fundamental and fifth harmonics; theory.

The situation for the fifth harmonic is different. The curves can be split into two 

parts, the pre-focal and post-focal region. In the pre-focal region the 5th harmonic 

starts of about 40% lower, for a reduction of 10% in the source pressure, for both 

fluids and then rises fairly rapidly into the focal region. In the post-focal region both 

curves plateau out with the level in amniotic fluid reaching a stable value of 20% 

lower (with respect to the original source pressure simulations). In the 4.5% Human 

Albumin solution the fifth harmonic is lower by approximately 35% and here there 

does seem to be a further change with propagation distance. One can get an 

understanding as to why the fifth harmonic decreases by these amounts by 

considering plane wave analysis.
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In Chapter 2 reference was made to two solutions for finite amplitude propagation: 

the Fubini solution (for low levels of nonlinearity and weak distortion) and the Fay 

solution (for high levels of nonlinearity and strong shocks). Using the Fubini 

solution, the pressure amplitude can be expressed as follows:

( £ ) - 0 M t ) -  7 -2

For very low levels of nonlinearity and very close to the source the Bessel function 

can be expanded to include only the first term. This then gives:

M-Kfey- ? -3

This reduces to the following:

p ~ p ° { f T -  i a

The shock distance, Id, can be expressed in terms of the source pressure and (see for 

example equation 1.8, in Chapter 1) we get:

?-5

This implies that close to the source and for low levels of nonlinearity, a 10% change 

in the source pressure will result in approximately a 50% change in the level of the 

fifth harmonic ( since n=5).
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In contrast the Fay solution for highly distorted waves ( for example a=3) states that 

the amplitude of a harmonic is inversely proportional to its harmonic number (i.e.

1 In). Here a 10% change in the source pressure will result in a 10% change in the

level of the fifth harmonic.

One can see that in the pre-focal region the Fubini solution gives an indication as to 

the magnitude of behaviour shown in Figure 7.29. In the post-focal region the 

behaviour of the fifth harmonic falls in between the Fay and Fubini solutions. It is 

also apparent that the result in amniotic fluid is closer to the Fay solution than the 

result in the 4.5% Human Albumin solution. This is presumably due to the lower 

attenuation in amniotic fluid (approximately 0.3 dB cm'1) so allowing a harder shock 

to form. Also supporting this is that the percentage change in amniotic fluid is much 

more stable from 20 cm to 30 cm. In the 4.5% Human Albumin solution the 

attenuation of the fifth harmonic is approximately 1 dB cm'1 and here variations in 

the percentage change are more influenced by attenuation processes.

Figure 7.30 illustrates results for a 10% reduction in the nonlinearity parameter. As 

can be seen for both fluids and both harmonics the behaviour is similar to that 

obtained with a 10% reduction in source pressure. The main differences here are in 

the magnitude of the changes. In the pre-focal region, where harmonic generation is 

beginning to occur, a reduction in the value of the nonlinearity parameter results in a 

higher pressure for the fundamental in both fluids as less energy is lost to the 

harmonics. However in the post-focal region the energy in the fundamental again 

begins to reduce.
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Figure 7.30. The effect of a 10% reduction in the nonlinearity parameter on the axial 
variation of the fundamental and fifth harmonic; theory.

The situation is clearer to see with the 4.5% Human Albumin solution. Harmonic 

generation and attenuation results in a more significant loss of energy from the 

fundamental. It is only after 28 cm that the energy in the fundamental is lower for the 

lower nonlinearity parameter simulations.

The situation for the fifth harmonic is again similar to the results obtained with a 

reduction in source pressure, the magnitude of the effects are not however so 

pronounced. In the Fubini solution the pressure amplitude of a harmonics is less 

influenced by the nonlinearity parameter than the source pressure.

It should be stressed that neither the Fay nor the Fubini solutions cannot give a 

complete understanding of the processes taking place as they are not fully applicable
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in the region 1 .5 < a < 3 , which is the case for the simulations and experiments 

discussed here. They do however give an order of magnitude estimate of the

behaviour of harmonic propagation in such situations.

Figure 7.31 illustrates the effect of increasing the attenuation coefficient by 10%. In 

amniotic fluid the magnitude of the fundamental is hardly altered, due to its initially 

low attenuation. In the 4.5% Human Albumin solution one can see a general 

reduction in fundamental amplitude with distance of a few percent.

The behaviour of the fifth harmonic is similar for the two fluids, the differences being 

in the magnitude of the change and the presence of a trough in the focal region for 

the lower loss fluid. The magnitude of the change for amniotic fluid is a few percent 

close to the transducer rising to approximately 10% at about 30 cm. In the 4.5% 

Human Albumin solution the percentage change is roughly doubled. The decrease 

in the value of the pressure for both harmonics and both fluids is expected. The exact 

variation however is a complex process that involves the extent to which nonlinear 

propagation is occurring. For example increasing the attenuation coefficient could 

increase the pressure of a harmonic by reducing the effect of nonlinear propagation 

and therefore loss of energy from the harmonic.
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Figure 7.31. The effect of a 10% increase in the attenuation on the axial variation of 
the fundamental and fifth harmonics; theory.

Figure 7.32 illustrates the effect of reducing the transducer radius from 19 mm to 

18.5 mm, for the case of amniotic fluid and a source pressure of 0.137 MPa. With 

this graph the axial variation of harmonic pressure amplitude is plotted rather than the 

percentage difference as it is more meaningful. As can be seen a reduction in 

transducer radius has a number of effects. The diffractive field of the fundamental is 

altered, with the minima appearing closer to the transducer, the pressure in the focal 

region is reduced and the pressure variation in the post-focal region is not so rapid. 

The effects for the fifth harmonic are much smaller, the main observation being that 

the pressure at its focus is reduced.
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Figure 7.32. The effect, on the axial field of the fundamental and fifth harmonics, of 
a 0.5 mm decrease in transducer radius; theory.

The purpose of considering changes in the input parameters to the model was to 

investigate how these parameters may have influenced the agreement between 

experiment and theory considered earlier. From the above discussion it seems that an 

accurate knowledge of the source pressure is probably the most important factor, 

especially for determining the pressure of the higher harmonics. The nonlinearity 

parameter has also been shown to be significant. The attenuation coefficient has less 

influence on these results. This is however not a general observation. The source 

pressures and focusing gains used in the simulations and experiments were such that, 

due to the low attenuations in the fluids, nonlinear effects dominated. If lower source 

pressures and gains were employed then changes in the harmonic levels due to 

changes in attenuation would become much more significant In addition, if the
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attenuation coefficient was higher (for example similar to soft tissue) then even with 

the source conditions used here the relative importance of attenuation and nonlinear 

effects would be evident.
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8.0 SUMMARY AND CONCLUSIONS

8.1 General

The finite amplitude distortion of acoustic pulses from medical transducers, after 

passing through body tissues, has been demonstrated previously (Starritt et al 1985, 

1986). However as the measurement of acoustic fields in-vivo is not at present 

possible, an alternative approach is to try to mathematically model these fields. At 

present the results of mathematical models, used for predicting nonlinear acoustic 

fields, have only been verified in water (Baker et al 1987, 1988) . The aim of this 

thesis was to study the nonlinear propagation of ultrasound through biological fluids 

in order to extend the range of conditions under which the numerical model had been 

verified, and hence facilitate the modelling of fields in-vivo.

This thesis has presented experimental and theoretical results for the axial nonlinear 

pressure distributions in three biological fluids, amniotic fluid, 4.5% Human Albumin 

and urine at both room temperature and physiological temperature. The acoustic 

fields were generated with a 2.25 MHz (38 mm diameter) single element circular 

transducer with focusing achieved by the addition of a perspex lens: the focusing gain 

being approximately 12.0 in water. The experimental results presented in Chapter 7 

(figures 7.1 to 7.8) illustrate that for all three fluids nonlinear distortion of the 

waveform is achievable for source pressures below 0.25 MPa. Indeed the level of
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second harmonic, in the region of the focus and beyond, reaches levels of 6  dB below 

the fundamental, indicating that mature shocks have formed

The model used, to theoretically predict the above acoustic fields, is a numerical 

solution (Aanonsen et al 1984) to the KZK equation (Kuznetsov 1971) and takes 

account of attenuation, diffraction and nonlinear propagation. A comparison of the 

experimental and theoretical results (Chapter 7, figures 7.23 to 7.28) show that very 

good agreement is obtainable. In general the results demonstrate that models based 

on the KZK equation can be used to determine nonlinear pressure fields in biological 

fluids (and possibly any homogeneous medium) for circular transducers operating at 

medical frequencies and pressures.

In order to perform the calculations the model required input parameters relating to 

the source and medium of propagation. In Chapter 6  broadband (5 MHz to 25 MHz) 

results were presented for the frequency dependence of attenuation in amniotic fluid, 

4.5% and 20% Human Albumin solutions and urine at room temperature and 

physiological temperature. These results provide unique data for the literature on 

acoustic properties in biological fluids. They also reinforce conclusions drawn by 

other workers on the relative effects of water and protein concentration on the 

subsequent attenuation properties of a material. In addition it is noted that curve 

fitting procedures previously employed to obtain a functional relationship between 

frequency and attenuation may result in systematic errors.
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Another medium parameter considered was the nonlinearity parameter (BIA). The 

results presented in appendix A illustrate the difficulty in making accurate 

measurements of this quantity. The two main problems associated with the method 

used were hydrophone calibration uncertainty at the fundamental and second 

harmonic and the avoidance of diffraction effects resulting from the use of a finite 

size source and receiver. It was found that (BIA) could only measured with an 

accuracy of +/-15%.

The results presented in Chapter 7 also demonstrated that an accurate knowledge of 

the source parameters is important in predicting pressure distributions. In particular 

it was shown that (figures 7.13 to 7.22) nonplanar phase variations across the source 

have subtle effects on the structure of the ultrasonic diffractive field: a gaussian 

phase distribution across the source can modify the overall gain of the transducer.

8.2 Enhanced attenuation

As a result of this work it is now possible to estimate the enhanced attenuation (see 

Chapter 3) that will occur in the fluids measured in Chapter 7. Simulations were 

performed for a 3.5 MHz (19 mm diameter) single element transducer with a gain of 

6.0 and source pressures of 0.03 MPa and 0.2 MPa. Figure 8.1 tabulates the 

simulated results for the enhanced attenuation in the region of the focus.
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Medium Enhanced 
attenuation 
(dB cm'1)

Linear 
attenuation 
(dB cm'1)

Total
attenuation 
(dB cm'1)

Water 0.29 (xl7) 0.017 0.3
Amniotic fluid 0.23 (x6 ) 0.042 0.27
4.5% Human
Albumin
solution

0.16 (xl.2 ) 0.14 0.3

20% Human
Albumin
solution

0 . 0 2  (x0 .0 2 ) 0.85 0.87

Figure 8.1 Tabulated values of the predicted enhancement of attenuation in the region 
of the transducer focus.

These results illustrate that there is a dramatic increase in the enhancement of 

attenuation as one goes from 20% Human Albumin solution to low loss fluids such as 

water and amniotic fluid. These results were obtained using reasonable values of 

source pressure and focusing gain; higher pressures and gains will undoubtedly 

increase the value of the total attenuation, especially in low loss fluids. For example 

the results presented in Chapter 3, for a source pressure of 0.39 MPa and a focusing 

gain of 6.5, produced a total attenuation of 1 dB cm'1 in the region of the transducer 

focus. Similar results are obtained in simulations with amniotic fluid and urine.

The simulations, discussed above, may have significance in obstetric scanning. At 

present there is some debate as to whether enhanced streaming can cause 

perturbation of cell adhesion in first trimester scanning. In obstetric scanning, if one 

assumes a source pressure of 0.5 MPa (a reasonable estimate) and an overlying 

tissue thickness of 2  cm then the pressure of the wave entering the amniotic fluid path 

could be as high as 0.3 MPa (assuming an attenuation coefficient of 0.5 dBcm^MHz'1
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at 3.5 MHz for the overlying tissue). Hence with the inclusion of focusing it is likely 

that acoustic pulses will become highly distorted during passage through the fluid 

path. It should be noted that the above argument assumes no loss of energy or 

wavefront disruption due to scattering.

It should also be stressed that given the very short pulse lengths and dwell times, 

used in clinical applications, the above effects are likely not to produce prolonged 

temperature rises or streaming effects. An area of more concern is the increased use 

of Doppler techniques, for example in foetal heart rate monitoring; which use much 

longer pulses.

In addition to the discussion above, the ability to predict parameters such as 

enhanced attenuation has usefulness in other areas:

(i) One of the problems encountered with models that predict temperature rises is the 

lack of input data, in particular the attenuation coefficient of the medium or media of 

propagation. Added to this there is also the question as to whether such parameters 

can be treated as constants. As demonstrated in this thesis, the value of the 

attenuation coefficient is dependent on the degree of nonlinear distortion present in 

the acoustic beam. More accurate models for calculating temperature elevation can 

be produced by taking account of nonlinear effects on the subsequent energy loss 

from the acoustic beam.
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(ii) It is common practice to estimate in situ exposure by measuring the maximum 

pressure, from an ultrasound scanner, in water and then de-rating this value with an 

average attenuation coefficient for tissue (often 0.5 dB cm'1 MHz'1). This method 

however assumes negligible attenuation of the sound beam in water. As has been 

demonstrated there can be an appreciable amount of nonlinear distortion, resulting in 

loss of energy, in water based measurements. The method is also dependent on 

whether one measures the peak positive or peak negative pressure of the nonlinearly 

distorted acoustic pulse. An alternative method is to consider intensity or PSI. The 

results presented have shown that this quantity can be modelled accurately including 

the loss of energy due to nonlinear propagation. Hence intensity and source pressure 

measurements in water can be corrected for losses due to nonlinear propagation 

using the results of numerical modelling. These values can then be correctly de-rated 

using attenuation coefficients for tissue.

Some theoretically determined values of the loss resulting from a 5 MHz transducer 

with a diameter of 6.5 mm and a focusing gain of 4.45 are presented as a function of 

source pressures in figure 8.2. By way of example consider a source pressure of 0.65 

MPa from figure 8.2. The loss in intensity, in the focal region, due to nonlinear 

effects is 3.1 dB. The PSI in this region (5.29 MPa MPa s) is corrected with this loss 

to give a value (7.56 MPa MPa s) resulting from linear propagation. This new value 

can then be de-rated with a chosen attenuation in tissue.
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Source pressure (MPa) PSI at focus 
(1012 Pa2 s)

loss (dB)

1 .0 6.4 -6 . 0

0.85 6 . 0 -4.9
0.75 5.7 -4.0
0.65 5.3 -3.1
0.57 4.9 -2 . 2

0.49 4.5 -1.3
0.43 4.0 -0.7
0.4 3.6 -0.3

Figure 8.2 Theoretical values for the loss due to nonlinear propagation for a 5 MHz, 
13 mm diameter transducer with a focusing gain of 4.45 operated at various source 
pressures.

On this basis it should be possible to produce a set of tabulated values, through 

numerical modelling (assuming a simplified source geometry), for common 

commercial scanner settings, which could be available for general use in estimating in 

situ exposure more accurately.

8.3 Future work

Given that a versatile experimental rig has been constructed, there is a wide variety of 

work that can be undertaken in characterising the frequency dependence of 

attenuation and nonlinear pressure distributions for other biological fluids:

(i) The frequency dependence of attenuation with protein concentration in the 

Human Albumin solutions provides an interesting possibility for making standard 

solutions to cover a whole range of attenuation coefficients (the 20% Human
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Albumin solution has an attenuation coefficient similar to that at the lower end of the 

range for soft tissue) and frequency dependencies.

In addition, the importance of these quantities in producing various degrees of 

nonlinear distortion, can be investigated both experimentally and theoretically to 

validate the mathematical model over a wider range.

(ii) The inclusion of scattering centres (for example graphite, as employed in 

commercial phantoms) in the Human Albumin solutions would also provide for more 

realistic tissue mimics and allow the effects of absorption and scattering to be 

separated and understood in a rigorous manner.

(iii) There is also the possibility of mimicking important clinical situations, for 

example obstetric scanning. A simple arrangement which incorporates real tissue (or 

a suitable substitute) in front off and/or behind an amniotic fluid path could provide 

better estimates of the measured pressure distributions and temperature rises that 

may occur in vivo.

(iv) More work is required in the accurate determination of the nonlinearity 

parameter, BIA. Diffraction corrections can be minimised by the use of large area 

receivers, but unless calibration information is improved measurements will still have 

an appreciable uncertainty.
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Theoretically there is also scope for future work in adapting and improving 

mathematical models:

(i) Probably the most important consideration absent from the present model is that 

of the scattering of the ultrasound wave in an inhomogeneous medium, such as soft 

tissue. Models based on the KZK equation cannot, at present, incorporate this in a 

rigorous manner and much work still needs to be done in this area.

(ii) The usefulness of the model in determining derived parameters, such as the 

enhanced attenuation has been demonstrated. This work can be extended to consider 

theoretical determination of temperature rises given that calculation of intensities is 

possible, either by adapting the existing model or applying its results to present 

models based on the bio-heat equation.

(iii) Knowledge of the pressure distribution in the whole ultrasonic field allows for 

the possibility of using this information as a starting point in a hydrodynamic model 

to predict enhanced streaming resulting from enhanced attenuation.

In addition the significant degree of nonlinear distortion, particularly in amniotic fluid 

and urine, provides further impetus to investigate the use of nonlinearly generated 

harmonics for improving the resolution of ultrasonic images in certain clinical areas.
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APPENDIX A: MEASUREMENT OF B/A

A l.l General

In Chapter 1 reference was made to a number of the input parameters required to 

theoretically predict the experimentally measured nonlinear pressure distributions. 

One of these was the nonlinearity parameter BIA. In Chapter 7 it was shown that 

using a value of BIA for water gave good agreement, between experiment and theory, 

for the axial nonlinear pressure distributions in the biological fluids under 

investigation. It was also argued that this was a reasonable assumption to make. The 

literature on the measurement of BIA for biological fluids indicated that the value of 

this parameter ranged from 5 to 6 , representing a maximum difference of 20% from 

that of water.

Measurements of B/A for the fluids studied in this thesis were also attempted. The 

method employed is commonly described as the finite amplitude method and follows 

that used by Law et al (1981). In this appendix the method used will be outlined and 

discussed. Following this, a description of the experimental measurements of B/A for 

the fluids considered in this thesis will be given. Finally the results obtained will be 

discussed in relation to their accuracy and the problems associated with the 

measurement.
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A1.2 Finite amplitude method

Al.2.1 Theory

The finite amplitude method of determining B/A involves measurement the source 

pressure and the growth of the second harmonic as a function of the propagation 

distance from the source. If measurements are made in the near-field of the source, 

where diffraction effects are negligible, plane wave analysis can be applied. Using the 

Fubini solution for plane wave propagation (Alder & Heidmann 1962, Law et al 

1981) the second harmonic can be expressed as:

where z is the axial distance from the source, P2(z) is the magnitude of the second 

harmonic, P/0) is the source pressure and /  is the fundamental frequency of 

propagation. Using equation A 1.1 B/A can be determined by plotting measured 

values of P2(z), expressed in the form of the term on the left hand side of equation 

A l.l, against the propagation distance z and extrapolating back to z=0 . The 

intercept is equal to the right hand side of equation A l.l and given that values for the 

sound velocity, density and frequency of propagation are known a value for B/A can 

be calculated. Apart from the assumption of plane wave propagation the above 

method is strictly only applicable for lossless media, as attenuation of the fundamental 

or second harmonic have not been taken into account. However Law et al (1981)

A l.l

203



suggest that for small source pressures and close to the source the above expression 

is also valid for attenuating media.

The effect of including attenuation has been studied by Cobb (1983). The approach 

taken is based on a perturbation solution, obtained by Ingenito & Williams (1971), 

and is described below. Ingenito and Williams (1971) derived an expression for the 

second harmonic velocity potential based on cylindrical coordinates. The geometry 

associated with their situation is illustrated in Figure A l.l. A piston source emits a 

perfectly collimated beam at the fundamental frequency. The distance between the 

plane at which the second harmonic is generated and the observation plane is given 

by s.

source
(Po)

secondary
source

O
— •
observation
point

— ►

Figure A l.l Schematic illustrating the geometry used to determine an expression for 
the second harmonic at point O.

The expression obtained for the second harmonic velocity potential, <|>2 , is given by:

ll)2(r ’Z) =  ( ^ ) / o eifa[ <l, l ( ,'’Z - f ) ]  dS’ A L 2

where <|>i is the velocity potential for the fundamental. Cobb (1983) extended the 

above expression to include the effects of attenuation of the fundamental and second

harmonic. The introduction of attenuation was done in an ad hoc manner based on
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the assumption that only waves travelling in the z direction would be attenuated given 

that the beam was perfectly collimated. Cobb's expression is given below:

tefr.z) = ( v ) lo  ) ] A1.3

where e~°-2S accounts for the attenuation of the second harmonic from the generation 
plane to the observation plane and e(-2ai <*-*)) accounts for the attenuation of the

fundamental from the source to the generation plane. Using standard relationships 

between the pressure and the velocity potential, the pressure of the second harmonic 

was then expressed as:

A 1 -4

Note that the constant, in front of the integral, in equation A1.3 has been expressed 

in terms of the medium nonlinearity parameter in equation A 1.4.

The attenuation of the second harmonic can be expressed in general form by the 

expression:

0C2 = oti A, A1.5

where h - 2 m and m takes values from 1 to 2. For m=l we have a linear frequency 

dependence of attenuation, for m= 2  we have a squared law dependence and for

values in between correspond to the dependence normally associated with biological

fluids. Substituting this into equation A 1.4 we obtain:
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( h * 2) ■

A1.6

In order to check the validity of Law's assumption on attenuation, equation A 1.5 was 

evaluated for a range of values of the attenuation coefficient and its frequency 

dependence. Figure A 1.2 illustrates the results for an attenuation coefficient of 0.03 

dB cm'1 MHz1 and a frequency dependence of 1.4, similar to the 4.5% Human 

Albumin solution. Values for the density (1000 kg m'3), sound velocity (1500 m s'1) 

and nonlinearity parameter (5.0) were taken to be the same as water for 

convenience. Note that in Figure A 1.2 the logarithm of equation A l.l has been 

plotted, so allowing extrapolation to the intercept using a straight line fit. Regression 

of the data and calculation of the intercept gives a value of 4.96 for B/A. This 

confirms the observation made by Law that extrapolation back to z=0, for attenuating 

media, (with attenuation coefficients in the region given above) is valid in the 

determination of B/A.
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Figure A 1.2 Theoretically simulated data for the variation of the second harmonic 
using equation A l.l , the acoustic parameters relate to 4.5% Human Albumin 
solution, B/A was input as 5.0.

A 1.2.2 Experiment

Measurement of the nonlinearity parameter was made with a similar arrangement to 

that used for measuring the axial nonlinear pressure distribution, described in Chapter 

5. The 2.25 MHz transducer, with no lens attached, was used as the sound source 

and the 0.5 mm bilaminar PVdF hydrophone was used to measure the growth of the 

second harmonic with distance. It was necessary to use this calibrated hydrophone as 

the absolute pressure of the second harmonic and source pressure were required to 

calculate the nonlinearity parameter. A smaller polyurethane bellows was used for
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fluid containment in order to get closer to the transducer and avoid diffraction effects 

due to edge wave interference.

The measurements were made from 30 mm to 45 mm from the source with a pulse of 

approximately eight cycles. The source pressure was determined both with a power 

balance and the 0.5 mm PVdF hydrophone and set to be 0.26 MPa. The fifth cycle in 

the pulse was used to analyse the fundamental and second harmonic components in 

the waveform. Below are presented some results for the determination of B/A in 

amniotic fluid and 4.5% Human Albumin solution.

A 1.2.3 Results

Figure A 1.3 illustrates the axial variation of the second harmonic with propagation 

distance, the graph is plotted in accordance to equation A l.l. The x-axis represents 

the axial distance from the source and the y-axis represents the magnitude of the 

logarithm of the second harmonic divided by the source pressure and axial distance of 

the measurement point. The two sets of data show the results for amniotic fluid and 

4.5% Human Albumin solution at room temperature. As can be seen the variation in 

the second harmonic, with axial distance, is in accordance with that expected from 

other workers (Law et al 1981). Also illustrated in Figure A 1.3 are the lines of best 

fit for the two sets of results. Determination of the intercept (I) was used to calculate 

the value of B/A and gave results of:

BIA=4.5 for Amniotic fluid;

BlA-5.7 for 4.5% Human Albumin solution.
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Figure A 1.3 Plot of the second harmonic versus axial distance, in accordance with 
equation A l.l , illustrating the determination of the nonlinearity parameter.

As can be seen the two results yield values of B/A that are roughly (within 15% of 

the value quoted for water) in accordance with those expected for the two fluids. 

However the accuracy of these measurements needs to be considered.

(a) The standard error of the regression lines is relatively small (+/- 0.02), this 

represents a less than 1 % change in the intercept. However if the upper and lower 

bound values for the intercept are used in equation A l.l then the overall change in 

the value of B/A is approximately 3%. This represents one aspect of the finite 

amplitude method of determination of B/A: the results are very sensitive to the value 

of the intercept due to the exponential nature of the relationship in equation A 1.2. A 

1% change in the value of the intercept can lead to a 10% change in the value of B/A.
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(b) This highlights a problem with the experimental arrangement used to measure 

B/A. Due to the physical limitations associated with having a fluid tight but variable 

length chamber, the minimum distance to the source was 30 mm. Measurements 

made closer to the source would have given a more accurate estimation of the value 

of the intercept

(c) Probably the most significant error associated with the finite amplitude method is 

in the calibration of the hydrophone at the fundamental and second harmonic 

frequencies. The error, quoted in the NPL calibration document at each frequency is 

approximately 7%. Taking into account that the results are dependent on the square 

of the source pressure the uncertainty in this quantity becomes approximately 14%. 

Combining the uncertainties at the two frequencies one obtains upper and lower limit 

values for B/A in 4.5% Human Albumin solution, for example, of 6.4 and 5.0. It 

should however be noted that part of the quoted hydrophone sensitivity error will be 

due to systematic errors in the calibration procedure that are similar at both 

frequencies. The effect of this will be to reduce the overall uncertainty and may well 

result in the total uncertainty being smaller for the measured vales of B/A.

Given the limitations of the calibration for the source pressure and second harmonic 

and the limitations of the experimental method employed it seems justified to use the 

B/A for water in the analysis in Chapter 7.
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ABSTRACT

Experimental work has demonstrated that nonlinear propagation results in both 
enhanced streaming and enhanced absorption in the nearfield of focussed diagnostic trans­
ducers'. This situation has been investigated theoretically using a finite difference model 
based on the KZK equation. This has enabled the pressure squared integral (PS J.) to be 
calculated on axis for a diagnostic transducer in water. The transducer had a nominal radius 
of 9.5mm, a moderate gain and was driven at 3 J  MHz with the source pressure ranging from
0.03 MPa to 039 MPa. The axial variation of P.S J. shows significant departures from those 
expected on the basis of linear propagation, with a significant reduction beyond the focus for 
high drive levels. The attenuation in a region just beyond the focal plane is 0.96 dB cm 1 at 
the highest drive level. For a linear wave the attenuation would be 0.027 dB cm*1. The 
enhancement of energy loss by a factor of 36 indicates that on axis 97% of the total absorption 
is due to the generation and attenuation of harmonics. The results are shown to be in reasonably 
good agreement with those obtained experimentally.

1. Introduction
The enhanced streaming observed in pulsed diagnostic fields1 has been attributed to 

the influence of nonlinear propagation and the enhanced absorption resulting from the 
attenuation of harmonics. The aim of this work is to investigate the use of a finite difference 
model to predict this enhanced absorption and compare the results obtained with those 
observed experimentally.

2. Theory
The model used in these calculations is based on a finite difference solution2 of the 

KZK parabolic approximation to the nonlinear wave equation. It accounts for the attenuation 
and diffraction of all the harmonics, nonlinearity and focussing. Baker et aP have shown 
that theoretical predictions of the harmonic pressure distributions agree well with experi­
mental measurements for medical ultrasound transducers with circular geometries.
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In order to determine the enhanced absorption, due to nonlinear propagation and 
harmonic attenuation, the model has been adapted to calculate the pressure squared integral 
(P.S.I.), a quantity closely related to intensity. Intensity is defined as I=p.v, where p is the 
acoustic pressure and v is the panicle velocity, with both I and v being vector quantities. 
For an infinite plane progressive wave the pressure and panicle velocity are in phase and 
the intensity at any point in the field then becomes proponional to p:. Propagation from a 
piston source, however, produces a diffractive field where the pressure and panicle velocity 
cannot be assumed to be in phase. However for ranges significantly greater than the 
transducer radius the difference is small and quasi-plane wave propagation results. In
addition if one is only concerned with on-axis variations then the radial components of
panicle velocity are zero and only the axial component remains. Given quasi-plane wave 
propagation the intensity, on axis, can be assumed to be proponional to p:. The validity of 
this assumption has been studied by Mair?/#/4.

For a plane wave, the time average intensity is given by

/ = 7 “  I V ( / W /  <•</•( 1 )

where x is the fundamental period of the wave, c is the velocity of sound, p.. is the fluid
density and P(t) is the complex acoustic pressure. For a distoned sine wave P(t> may be 
written as a summation over its harmonic components

ru)= X p.t>~V'V) <•<,.(2)
(* * I)

where and (j), are the amplitude and phase of the n**' harmonic respectively. In this case 
(eq. 1 ) the intensity can be shown to reduce to

(P„C) I
So by summing the squares of the harmonic component amplitudes, the intensity, on axis, 
can be inferred. The integral pan of eq.(l) is known as the pressure squared integral (P.S.I.).

3. Experimental determination of the enhanced absorption
The theoretical predictions of this paper are compared with the existing determinations 

of enhanced absorption made by Starritt'. These experimental measurements of P.S.I. were 
made on the field of a 9.5mm radius circular transducer with a focussing gain of 6.5 driven 
at 3.5 MHz. The field was measured with a 0.5mm diameter bilaminar p.v.d.f. membrane 
hydrophone in water. The P.S.I. was determined by digitizing the detected waveform and 
calculating the time integral of the square of the instantaneous pressure. In order to determine 
the enhanced absorption the P.S.I. was calculated for two drive levels, one (beam ’A’) when 
propagation was nonlinear and the other (beam ’B’) when the propagation was essentially 
linear. Case ’A’ corresponded to a source pressure of 0.39 MPa and case 'B ’ to a source 
pressure of 0.03 MPa. Comparing the ratio of the P.S.I.s for the two cases compensated for 
diffraction and linear attenuation. Hence changes in the P.S.I. ratio with distance gave a 
measure of the extra attenuation occurring due to nonlinear propagation.
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4. Simulations
In order to make a quantitative comparison the initial conditions in the simulations 

were chosen to model the experimental measurements. Initially the axial pressure dis­
tribution was obtained for the low drive case (linearbeam *B*) and was compared with the 
experimental pressure distribution to determine whether the source parameters were defining 
the ultrasonic field accurately. A reasonable agreement was obtained by using a focal gain 
of 6.5 and a transducer radius of 9.5mm.

Figs. 1 and 2 illustrate the axial variation of the first three harmonics for the nonlinear 
(beam *A’) and linear cases (beam fB’). The figure illustrates that the low drive case is 
indeed approximated to a linear beam with the second harmonic 20dB down on the fun­
damental in the region of the focus. By comparison the high drive case is highly shocked 
with the second harmonic 5.7dB below the fundamental near the focus.

5. Results and Discussion
In order to predict the enhanced absorption theoretically, the calculation of P.S.I. was 

incorporated into the model for points on axis. Fig. 3 illustrates the axial variation of P.S.I. 
for the two drive cases ('A ' and *B*). It should be noted that the theoretical graphs are 
normalised to the P.S.I. at the transducer face. As can be seen in a region from 6cm to 17cm 
the normalised P.S.I. for the high drive case (beam 'A*) is lower than the linear case. This 
implies that the axial intensity in the nonlinear beam is lower, due to the enhanced absorption 
resulting from harmonic generation and absorption. The extent to which the energy is 
transferred to the harmonics can be seen from fig. 4. This illustrates the axial variation of 
the partial P.S.I. for the nonlinear beam. Curve 1 is the contribution, to the total P.S.I., from 
only the fundamental frequency, and curve 2 is the contribution summed over the first ten 
harmonics. A comparison of fig. 3 and fig. 4 reveals that, near the last axial maximum, 
about 10% of the axial intensity is contained within the 11th and higher harmonics. Fig. 4 
also indicates that the maximum intensity does not coincide with the position of the last 
axial maximum of the fundamental. The reason for this is that the harmonics, generated by 
nonlinear propagation, are not as strongly diffracted as the fundamental and so focus beyond 
the maximum of the fundamental.

Enhanced absorption, due to nonlinear propagation, can be calculated by comparing 
the P.S.I. in the high drive case to the low drive case. Fig. 5 illustrates the ratio of beam * A’ 
P.S.I. to beam ’B* P.S.I. on axis. Fig. 6 is a graph of the experimentally observed P.S.I. 
ratio for the two beams. As can be seen the general behaviour of the curves in both figures 
are similar. It should be noted that both results have been normalised to the source P.S.I. 
The behaviour of the P.S.I. ratio can be explained by considering three different regions in 
fig. 5.

The first region extends from the transducer up to 6cm. This represents the nearfield 
of the ultrasonic field. Here the P.S.I. ratio is unity except for some sharp rises. In this 
region nonlinear effects have not had time to build up, due to the rapid oscillations in the 
field of the fundamental, so almost all the energy is confined to the first harmonic in both 
cases. The sharp rises within this region correspond with the minima in the field of the
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fundamental. At these places a small amount of second harmonic is present in the nonlinear 
beam while there is no second harmonic is the linear beam. The result is that the P.S.I. ratio 
rises to a large value.

The second region extends from 6cm to 10cm. Here the P.S.I. ratio falls below unity 
implying that more energy is present in the linear beam. The physical reason for this is as 
follows. In the region of the focus energy is transferred to the harmonics in the nonlinear 
beam. The attenuation of the harmonics is proportional to frequency squared and therefore 
energy is lost from the wave at a faster rate than would be expected from an undistorted 
waveform. There is also a peak present near 8cm, implying that the axial intensity in the 
nonlinear beam is building up over a short region. This peak is due to the focussing of the 
harmonics described above.

The third region extends from 10cm to 17cm. This is the post focal region where the 
harmonics are governed by attenuation and nonlinear propagation, diffraction effects being 
less important. In this region the rate of loss due to nonlinear effects decreases and the P.S.I. 
ratio reaches a plateau. By this point the fundamental has lost a significant proportion of 
its amplitude as a result or nonlinear effects.

The enhanced absorption in the post focal region (8cm to 10cm) can be calculated from 
the gradient of fig. 5. If the attenuation is assumed to depend on a single attenuation 
coefficient ô -, then the intensity can be expressed as

/„ = /„<’' J°r\  <.'<7(4)

Over a 1 cm region, this yields a value for Or of 0.96 dB cm 1. For a 1 inear wave the attenuation 
at 3.5 MHz gives a„ as 0.027 dB cm 1. This corresponds to an enhancement of energy loss
by a factor of 36. The experimental results indicate an enhanced absorption of 1.1 dB cm 1. 
The two results show reasonably good agreement. Furthermore the enhanced absoiption 
indicates that, on axis, 97% of the total absorption is due to generation and attenuation of 
harmonics. Fig. 5 also illustrates that after sufficient propagation the nonlinear wave has 
lost 45% of its intensity on axis while the experimentally observed loss is higher at about 
60%. This difference may be due to the limited frequency response of the receiving system.

Work in this area is still in progress with experiments having been performed using a 
5MHz diagnostic transducer with a focal gain of approximately 6.0. Both experiment and 
theory indicate an enhanced absorption of 1.75 dB cm'1 in the post focal region, approxi­
mately 34 times the normal linear attenuation.

6. Conclusions
These calculations indicate that models based on the KZK equation can be used to 

accurately predict enhanced attenuation. The values observed in the post focal region of 
diagnostic transducers can reach values of 0.96 dB cm'1 in water at 3.5 MHz and 1.75 dB 
cm'1 at 5 MHz, i.e. typically 35 times the linear attenuation coefficient.
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ABSTRACT

Experimental work has demonstrated that nonlinear propagation results in both 
enhanced streaming and enhanced absorption in the nearfield of focussed diagnostic trans­
ducers'. This situation has been investigated theoretically using a finite difference model 
based on the KZK equation. This has enabled the pressure squared integral (P.S.I.) to be 
calculated on axis for a diagnostic transducer in water. The transducer had a nominal radius 
of 9.5mm, a moderate gain and was driven at 3.5 MHz with the source pressure ranging from
0.03 MPa to 0.39 MPa. The axial variation of P.S.I. shows significant departures from those 
expected on the basis of linear propagation, with a significant reduction beyond the focus for 
high drive levels. The attenuation in a region just beyond the focal plane is 0.96 dB cm'1 at 
the highest drive level. For a linear wave the attenuation would be 0.027 dB cm'1. The 
enhancement of energy loss by a factor of 36 indicates that on axis 97% of the total absorption 
is due to the generation and attenuation of harmonics. The results are shown to be in reasonably 
good agreement with those obtained experimentally.

1. Introduction

The enhanced streaming observed in pulsed diagnostic fields1 has been attributed to 
the influence of nonlinear propagation and the enhanced absorption resulting from the 
attenuation of harmonics. The aim of this work is to investigate the use of a finite difference 
model to predict this enhanced absorption and compare the results obtained with those 
observed experimentally.

2. Theory

The model used in these calculations is based on a finite difference solution2 of the 
KZK parabolic approximation to the nonlinear wave equation. It accounts for the attenuation 
and diffraction of all the harmonics, nonlinearity and focussing. Baker et al3 have shown 
that theoretical predictions of the harmonic pressure distributions agree well with experi­
mental measurements for medical ultrasound transducers with circular geometries.
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In order to determine the enhanced absorption, due to nonlinear propagation and 
harmonic attenuation, the model has been adapted to calculate the pressure squared integral 
(P.S.I.), a quantity closely related to intensity. Intensity is defined as I=p.v, where p is the 
acoustic pressure and v is the particle velocity, with both I and v being vector quantities. 
For an infinite plane progressive wave the pressure and particle velocity are in phase and 
the intensity at any point in the field then becomes proportional to p2. Propagation from a 
piston source, however, produces a diffractive field where the pressure and particle velocity 
cannot be assumed to be in phase. However for ranges significantly greater than the 
transducer radius the difference is small and quasi-plane wave propagation results. In 
addition if one is only concerned with on-axis variations then the radial components of 
particle velocity are zero and only the axial component remains. Given quasi-plane wave 
propagation the intensity, on axis, can be assumed to be proportional to p2. The validity of 
this assumption has been studied by Mair et at*.

For a plane wave, the time average intensity is given by

where x is the fundamental period of the wave, c is the velocity of sound, p„ is the fluid 
density and P(t) is the complex acoustic pressure. For a distorted sine wave P(t) may be 
written as a summation over its harmonic components

(* = 0
where p n and <J)„ are the amplitude and phase of the nu' harmonic respectively. In this case 
(eq.l) the intensity can be shown to reduce to

So by summing the squares of the harmonic component amplitudes, the intensity, on axis, 
can be inferred. The integral part of eq.(l) is known as the pressure squared integral (P.S.I.).

3. Experimental determination of the enhanced absorption

The theoretical predictions of this paper are compared with the existing determinations 
of enhanced absorption made by Starritt5. These experimental measurements of P.S.I. were 
made on the field of a 9.5mm radius circular transducer with a focussing gain of 6.5 driven 
at 3.5 MHz. The field was measured with a 0.5mm diameter bilaminar p.v.d.f. membrane 
hydrophone in water. The P.S.I. was determined by digitizing the detected waveform and 
calculating the time integral of the square of the i nstantaneous pressure. In order to determine 
the enhanced absorption the P.S.I. was calculated for two drive levels, one (beam ’A’) when 
propagation was nonlinear and the other (beam ’B’) when the propagation was essentially 
linear. Case ’A ’ corresponded to a source pressure of 0.39 MPa and case ’B’ to a source 
pressure of 0.03 MPa. Comparing the ratio of the P.S.I.s for the two cases compensated for 
diffraction and linear attenuation. Hence changes in the P.S.I. ratio with distance gave a 
measure of the extra attenuation occurring due to nonlinear propagation.

eq.(l)
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4. Simulations
In order to make a quantitative comparison the initial conditions in the simulations 

were chosen to model the experimental measurements. Initially the axial pressure dis­
tribution was obtained for the low drive case (linear beam ’B ’) and was compared with the 
experimental pressure distribution to determine whether the source parameters were defining 
the ultrasonic field accurately. A reasonable agreement was obtained by using a focal gain 
of 6.5 and a transducer radius of 9.5mm.

Figs. 1 and 2 illustrate the axial variation of the first three harmonics for the nonlinear 
(beam ’A’) and linear cases (beam ’B’). The figure illustrates that the low drive case is 
indeed approximated to a linear beam with the second harmonic 20dB down on the fun­
damental in the region of the focus. By comparison the high drive case is highly shocked 
with the second harmonic 5.7dB below the fundamental near the focus.

5. Results and Discussion
In order to predict the enhanced absorption theoretically, the calculation of P.S.I. was 

incorporated into the model for points on axis. Fig. 3 illustrates the axial variation of P.S.I. 
for the two drive cases (’A’ and ’B’). It should be noted that the theoretical graphs are 
normalised to the P.S.I. at the transducer face. As can be seen in a region from 6cm to 17cm 
the normalised P.S.I. for the high drive case (beam ’A ’) is lower than the linear case. This 
implies that the axial intensity in the nonlinear beam is lower, due to the enhanced absorption 
resulting from harmonic generation and absorption. The extent to which the energy is 
transferred to the harmonics can be seen from fig. 4. This illustrates the axial variation of 
the partial P.S.I. for the nonlinear beam. Curve 1 is the contribution, to the total P.S.I., from 
only the fundamental frequency, and curve 2 is the contribution summed over the first ten 
harmonics. A comparison of fig. 3 and fig. 4 reveals that, near the last axial maximum, 
about 10% of the axial intensity is contained within the 11* and higher harmonics. Fig. 4 
also indicates that the maximum intensity does not coincide with the position of the last 
axial maximum of the fundamental. The reason for this is that the harmonics, generated by 
nonlinear propagation, are not as strongly diffracted as the fundamental and so focus beyond 
the maximum of the fundamental.

Enhanced absorption, due to nonlinear propagation, can be calculated by comparing 
the P.S.I. in the high drive case to the low drive case. Fig. 5 illustrates the ratio of beam ’A’ 
P.S.I. to beam ’B’ P.S.I. on axis. Fig. 6 is a graph of the experimentally observed P.S.I. 
ratio for the two beams. As can be seen the general behaviour of the curves in both figures 
are similar. It should be noted that both results have been normalised to the source P.S.I. 
The behaviour of the P.S.I. ratio can be explained by considering three different regions in 
fig. 5.

The first region extends from the transducer up to 6cm. This represents the nearfield 
of the ultrasonic field. Here the P.S.I. ratio is unity except for some sharp rises. In this 
region nonlinear effects have not had time to build up, due to the rapid oscillations in the 
field of the fundamental, so almost all the energy is confined to the first harmonic in both 
cases. The sharp rises within this region correspond with the minima in the field of the
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Fig. 1. Axial variation of harmonic pressure amplitudes for beam A’; 1st (— ). 2nd (- - -) and 3rd (■■•) 
harmonic.

8
7

■§ a > 6
W 3  5

1  £ 4 E CD 3  
o  C L  p  
c=  ^  

1 
0

5 15 200 10
axial range /cm

Fig. 2. Axial variation of harmonic pressure amplitudes for beam 'B ': 1st (— ). 2nd (- - -) and 3rd (•••) 
harmonic.
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Fig. 3. Normalised axial variation of total P.S.I. for the two beams: beam B‘ (— ) and beam 'A ' (- - -).
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Fig. 4. Axial variation of partial P.S.I. for beam ’A’; P.S.I. of 1st harmonic (— ) and P.S.I. summed over 
first 10 harmonics (- - -)■
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fundamental. At these places a small amount of second harmonic is present in the nonlinear 
beam while there is no second harmonic is the linear beam. The result is that the P.S.I. ratio 
rises to a large value.

The second region extends from 6cm to 10cm. Here the P.S.I. ratio falls below unity 
implying that more energy is present in the linear beam. The physical reason for this is as 
follows. In the region of the focus energy is transferred to the harmonics in the nonlinear 
beam. The attenuation of the harmonics is proportional to frequency squared and therefore 
energy is lost from the wave at a faster rate than would be expected from an undistorted 
waveform. There is also a peak present near 8cm, implying that the axial intensity in the 
nonlinear beam is building up over a short region. This peak is due to the focussing of the 
harmonics described above.

The third region extends from 10cm to 17cm. This is the post focal region where the 
harmonics are governed by attenuation and nonlinear propagation, diffraction effects being 
less important. In this region the rate of loss due to nonlinear effects decreases and the P.S.I. 
ratio reaches a plateau. By this point the fundamental has lost a significant proportion of 
its amplitude as a result or nonlinear effects.

The enhanced absorption in the post focal region (8cm to 10cm) can be calculated from 
the gradient of fig. 5. If the attenuation is assumed to depend on a single attenuation 
coefficient otj-, then the intensity can be expressed as

/, = /„<? ■'V. eq.(A)
Over a 1 cm region, this yields a value for of 0.96 dB cm 1. For a 1 inear wave the attenuation 

at 3.5 MHz gives a„ as 0.027 dB cm '1. This corresponds to an enhancement of energy loss 
by a factor of 36. The experimental results indicate an enhanced absorption of 1.1 dB cm '1. 
The two results show reasonably good agreement. Furthermore the enhanced absorption 
indicates that, on axis, 97% of the total absorption is due to generation and attenuation of 
harmonics. Fig. 5 also illustrates that after sufficient propagation the nonlinear wave has 
lost 45% of its intensity on axis while the experimentally observed loss is higher at about 
60%. This difference may be due to the limited frequency response of the receiving system.

Work in this area is still in progress with experiments having been performed using a 
5MHz diagnostic transducer with a focal gain of approximately 6.0. Both experiment and 
theory indicate an enhanced absorption of 1.75 dB cm '1 in the post focal region, approxi­
mately 34 times the normal linear attenuation.

6. Conclusions

These calculations indicate that models based on the KZK equation can be used to 
accurately predict enhanced attenuation. The values observed in the post focal region of 
diagnostic transducers can reach values of 0.96 dB cm '1 in water at 3.5 MHz and 1.75 dB 
cm 1 at 5 MHz, i.e. typically 35 times the linear attenuation coefficient.
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Fig. 5. Axial variation of PSI ratio (theory) of beam ’A’ to beam ’B’ (normalised).
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