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SUMMARY

This thesis is concerned with the analysis of Inset Dielectric Guide (IDG) and its 

applications on microwave and millimetric leaky wave antennas. IDG, as a variation of 

Image Line, seems to offer better performance, easier manufacture and particular 

promise for antenna applications.

A rigorous six-component hybrid mode analysis by using the Transverse Resonance 

Diffraction method is reviewed briefly. Then LSE/LSM approximation is used in the 

examination of the dispersion characteristics for relatively deeper and shallower slots. 

The results show excellent agreement with the measured curves.

IDG as an open transmission medium includes in its spectrum a range of continuous 

modes. This thesis pays appropriate attention on the mode completeness and the 

orthonormalization of the discrete and continuous spectrum of the IDG in the LSE/LSM 

description. G reen’s function is derived in the form of eigenfunction expansion, which is 

an essential prerequisite to the analysis of discontinuity problems.

A variational expression for the equivalent circuit of the radiating dipole is derived 

and applied to the design of a 23-element vertically polarized array. The array is built 

and tested showing excellent performance.

EDG antennas are concluded to be o f practical importance due to their easier 

factoring, low cost and reasonably good performance. Further work is in progress.
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CHAPTER 1 

INTRODUCTION

1.1 Introduction

Millimeter wave techniques have evolved rapidly during the last decade. The 

advantages associated with the use of millimeter wavelengths arise from the 

compactness o f the antenna and electronic circuitry, the broad bandwidth and the 

propagation aspects. The small size of the electronic equipment enables radar and 

radiometry acquisition to be employed on small missiles or aircrafts and allows high 

spatial resolution to be obtained from an electronic package of small volume. The great 

bandwidth available at these frequencies can support high capacity point to point links 

and the channels can also be widely separated to prevent cross-channel interference. Of 

course, optical systems offer even higher resolution and wider band, but they are limited 

to fog, cloud and smoke free condition and have poor volume search capabilities. 

M illimeter wave systems operating in the propagation windows at 94, 140 and 220 GHz 

offer very significant advantages for high resolution all w eather operation. For 

communications, use is also made of high attenuation bands for security using line-of- 

sight transmission; 60 GHz is the commonly used frequency for such purposes.
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Although there are clearly many advantages to be obtained by using systems at 

millimeter wave frequencies, there at present is a paucity of commercially available 

systems. This is due, apart from the poor performance and high cost of solid state 

devices at these frequencies, which is out of the topic of this thesis, to that there is no 

preferred medium for designing and building circuits.

One might imagine that the circuitry and antenna required by these new millimeter 

wave systems could be developed by scaling down in size those at lower frequency. 

W hile this is indeed true for some millimeter wave systems, it is not generally the case 

due to tolerance problems and costly manufacture. It is recognized that for operating 

frequencies in excess of 90 GHz new circuit techniques must be developed.

Also where antennas are required to be conformal to a vehicle surface, millim eter 

wave reflector and horn antennas are often too bulky and expensive, particularly where 

some form of beam-scanning is required. For conformal applications, ideally, the 

receiver/transmitter circuitry needs to be integrated as far as possible with the antenna 

structure and current trends in antenna design have been considerably influenced by the 

advances in semiconductor diode and source devices.

For the above reasons the requirements for developing new circuit techniques and 

new classes of low profile substrate-based planar antennas for the use at m illimeter wave 

bands have been increasing during the last ten years and this in fact was the stimulus for 

the work presented in this thesis.

This introductory chapter intends to put this work into context and to give a synopsis 

of the following chapters. The first section introduces the motivation of the thesis. The 

next section outlines the generalities about dielectric lines and introduces Inset 

Dielectric Guide (IDG). The third section briefly discusses the feasibility of two types of 

arrays formed on LSE- and LSM-mode supporting IDG. This chapter concludes with an
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outline of the work presented in the remaining eight chapters.

1.2 Millimeter Wave Transmission Line and IDG

Considerable effort has been spent on the development of transmission media 

suitable for millimeter wave communications.

As operating frequency increases above 30 GHz, the cost of rectangular metal 

waveguide components increases because of tight fabrication tolerances, and the losses 

depend increasingly on surface finish. High circuit costs may in fact become the 

limiting factor to the ever increasing commercial development in millimeter wave 

technology. Thus, the ease of manufacture and capability for mass production is 

becoming as im portant a criteria as the circuit performance of such media.

The line losses also constitute an important param eter in the evaluation of a 

transmission line. Some standard microwave structures, like microstrip, finline, 

suspended stripline etc. reveal high losses and poor <2-factor (100 to 700 only) at 

millimeter frequencies, that makes them not suitable to form resonators for use in filters, 

oscillators and fine frequency discriminators. It was realized that for frequencies above 

100 GHz a dielectric guide would be required. The major advantage o f dielectric lines is 

their lower loss with values of less than 10-2 d£/wavelength and higher <2-factor of 

several thousands at lower millimeter frequencies.

The image line is a recognized low loss transmission media with unloaded ^-factor 

o f 2500, but its main disadvantage, besides manufacturing difficulties, is its radiation 

loss from all practical components. For further confining the field to the structure, the 

trapped image guide has been proposed [1], but it is even more difficult to make, 

especially for small guide dimensions. In order to overcome such manufacturing
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difficulties, IDG, shown in cross section in Fig. 1.1, has been proposed as a low cost 

alternative [2]. IDG, which is just a rectangular groove filled with dielectric material, 

has many of the advantages of the trapped image guide without its fabrication problems.

Standard grooves are easy to be formed on a metal sheet or they can be fabricated in 

a plastic mould, that can be subsequently spray-metallized.

Low melting point dielectric can be poured in the groove in liquid form, which is 

sufficient for many applications.

High quality dielectric slabs can be cut to a specified rectangular shape. Contact 

with the metal walls is not as critical as for image guide.

There is also a considerable problem in incorporating active devices in image line 

arising from the unwanted radiation. This could be significantly eased in IDG because of 

the better field confinement. An investigation of the implementation of an active device 

in IDG was given by Hedges [3].

Compared with the image guide three distinct advantages can be expected to arise 

from the use of the IDG structure:

1) simpler manufacture

2) lower radiation loss, especially from bends

3) easier embedding of active devices.

The IDG structure was analyzed, previously, by Zhou and Itoh [4], as an intermediate 

structure in the analysis of trapped image guide. That analysis used the effective 

dielectric constant (EDC) method and it gave useful and accurate approximate results for 

the fundamental mode.
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The 90° edge, however, imposes a singularity on the transverse fields, which is 

im portant for the accurate evaluation of field distributions and radiation properties.

Consideration was given to the above problem in the rigorous, full hybrid treatment 

by the method of Transverse Resonance Diffraction (TRD) [5]. The discrete spectrum 

was evaluated, together with propagation losses and Q-factors for the fundamental and a 

number of higher order discrete modes. Those results show that, away from cutoff, 

propagation losses are dielectric-dominated.

For IDG there are two useful regions of single mode operation. The first one is to 

operate with the H 01 mode in relatively deep slots. The second region is with the E n 

mode in shallow, broad slots. Moreover, for practical aspect ratios, the assumption of a 

single LSE or LSM potential gives a very good description, provided that the edge 

conditions are still accounted for in the field distribution over the slot aperture, which 

implies that the potential is intrinsically non-separable.

The IDG is an open waveguide and, consequently, its spectrum includes, besides one 

or a few discrete modes, a continuous range o f modes, which were not considered 

before. The excitation o f the latter takes place due to discontinuities, particularly when 

these are located close to the air-dielectric interface, such as metal posts (e.g. diodes) or 

radiating dipoles, if  the IDG is to be used as a leaky wave antenna. Therefore, with a 

view to analyzing practical components in IDG, it is necessary to obtain a complete 

spectral characterization, inclusive of the continuum.

In the course o f this thesis we are going to determine the orthonormalized discrete 

and continuous spectra. Then the eigenfunction expression o f the Green function for the 

IDG in the LSEILSM  description is derived. Finally, the results are used in the design of 

two differently polarized array antennas.
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1.3 The Feasibility of Arrays Formed on IDG

The growing interest in the use of millimeter wavelengths for radar and 

communication systems stems principally from military requirements. Conventional 

antenna technology utilizing reflectors and horns continues to feature but seems too 

bulky and expensive. Strenuous efforts are being made to devise new fabrication 

methods leading to further miniaturization, integration and cost saving.

Increasing attention has been paid to developing new classes o f low profile 

substrate-based planar antennas that can be flush-mounted on vehicles and missiles and 

can possibly allow some degree o f circuit integration together with additional means of 

electronic scanning by semiconductor implant or frequency sweeping.

A large number of different forms o f novel planar antenna structures for millim eter 

wavelengths have been invented. They can be broadly characterized as

1) purely dielectric guides and radiating elements,

2) metal radiating elements.

Dielectric waveguide, originally a promising solution for a very low-loss 

transmission medium, has turned out disappointing in regards to integration o f active 

devices, fabrication and tolerance to discontinuities. On the other hand, dielectric 

waveguide seems to offer promise for the realization of integrated leaky-wave antennas.

Purely dielectric arrays, which are particularly suitable for use at the upper 

millimeter band, have been derived from integrated optical techniques and have an 

intrinsic low loss. At present, however, they are not easy to manufacture, except possibly 

by thick film techniques and can not be made by simple etching processes as used for 

their metal counterparts.
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Microstrip patch antennas [6] obviously belong to the second class. They are cheap 

and easy to fabricate, but their poor Q- and polarization properties are well known, 

particularly above 90 GHz.

Recently, some very elaborate approaches employing dielectric guide configurations 

loaded by some metal disks or strips were reported for millimeter wave applications. 

For example, in 1982 Itoh proposed a trapped image guide leaky wave antenna [7]. In 

1985 Solbach developed a hybrid dielectric image-line antenna array, using double 

metal disks printed on the top o f the guide configuration [8]. We considered carefully 

these experiences.

The possibility of realising low-cost, easy to fabricate, relatively high-quality 

antennas of the leaky-wave type based on the IDG configuration has been the object of a 

feasibility study. It is easy to lay thin metal strips on the air dielectric interface, that act 

as dipole radiators. The principle of operation is as follows: for IDG operating in its 

fundamental LS£-mode the main component of the electric field is x-directed and is not 

far from its maximum value at the air-dielectric interface. Induced currents are therefore 

easily set up in the transverse strips without twisting of the field lines, as is the case in 

microstrip patch antennas and image line antennas. The strips in turn act as x-directed 

dipole radiators. By placing uniformly spaced metal strips on the surface o f the 

dielectric, a vertically polarized array is created, as shown in Fig. 1.2, which produces a 

fan beam at microwave or m illimeter wave frequency. For LSAf-mode supporting IDG, 

the main component of the electric field is z-directed and is maximum at the center of 

the interface, where the x-directed electric field is zero. Therefore, when a longitudinal 

strip is located at the center o f the guide, it acts as a z-directed dipole radiator and a 

horizontally polarized array can be formed by a series of strips, as shown in Fig. 1.3.

In view of these essential properties, this type of array has some potential 

advantages, namely,
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1) ease of manufacture,

2) low loss,

3) low mutual coupling,

4) negligible generation of cross-polarized field,

5) physically compatibility with conventional waveguide or coaxial feeds.

Two one-dimensional arrays were designed, fabricated and tested. The measured 

results are very encouraging indeed.

1.4 The Structure of the Thesis

This section briefly outlines the content of the thesis. This is an introductory chapter. 

The remainder of the work contains seven chapters. Chapter 2 is used to introduce some 

fundamental concepts and theory about linear arrays. The design of the array excitation 

for uniform distribution and Dolph-Chebyshev’s and Taylor’s distributions is discussed. 

The realization o f the actual aperture distribution is also given in this chapter.

Chapter 3 deals with the discrete spectrum. It gives a rigorous analysis of IDG, 

introduces an approach yielding an accurate transverse equivalent network for the 

fundamental mode using the method of transverse resonance diffraction (TRD). The loss 

characteristics o f IDG are discussed in the end of the chapter.

Chapter 4 is devoted to complete the characterization of the spectrum to include the 

continuum and verify their orthonormalization for the even LSE(TEy)-polarization, 

having Ey = 0 and Ex as the main electric field component. The scalar Green function is 

subsequently determined, which is a prerequisite for the solution of discontinuity 

problems. As an example o f the use of Green’s function, the radiation of a thin, single
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transverse dipole at the air-dielectric interface is analyzed. An analogous analysis for the 

odd LSM (TAf ̂ -polarization, having Hy = 0 and Ez as the main electric field component 

is given in Chapter 6.

Chapter 5 develops the equivalent network of a single transverse dipole for the LSE- 

case. The result is used in the design of a 23-element Taylor’s distribution array. The 

array was built and tested. The experimental results shown in this chapter are in 

excellent agreement with the theory.

The scattering parameters of a single longitudinal dipole on the air-dielectric 

interface are measured by means of the electric-probe technique and the HP network 

analyzer. The results are shown in Chapter 7.

A very primitively designed array is discussed. The measured result shows that this 

kind of construction holds promise for a good horizontally polarized array.

In conclusion, Chapter 8 summarizes the implication of this work for the study of 

the com plete spectrum of IDG and the realization o f this kind of leaky-wave antenna. 

Further research in this area is suggested.
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CHAPTER 2

THEORY OF LINEAR ARRAYS

2.1 Introduction

A single strip on IDG can radiate energy into space, but it is not possible to obtain 

the value of directivity or beamwidth required for many practical applications with a 

single strip. We require therefore antennas com posed of several strips, i.e. arrays.

The starting point of array theory is the superposition principle. Upon using this 

principle in the calculation of the far field pattern o f an array, we obtain the pattern 

multiplication principle. This states that the far field pattern of an antenna system 

composed of identical elements can be written as the product of two factors, namely, an 

element factor and an array factor (or space factor). The former is essentially the far 

field from a single element, which in our case will be discussed in Chapters 4 and 6. The 

present chapter will focus its attention on the latter factor, (dimensionless, scalar, and 

element-independent), which controls the features of radiation from the array. The array 

factor can be considered as the pattern o f a hypothetical array consisting of isotropic 

radiators.

In Sec.2.2, a particularly simple array, a uniform array, is discussed, which gives
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maximum directivity but a fixed maximum sidelobe level of -13.5 dB. The very useful 

concept of Schelkunoff’s unit circle representation is introduced in Sec.2.3. When 

sidelobes lower than those provided by uniform illumination are required, the aperture 

distribution needs to be tapered from the center to the ends. The two most used 

distributions for obtaining radiation patterns with narrow beamwidth and low sidelobes, 

D olph-Chebyshev’s and Taylor’s distributions, are discussed in Secs.2.4 and 2.5 

respectively. Sec.2.6 discusses the realization of the actual aperture distribution.

2.2 Uniformly Excited Array

Imagine a linear array consisting of N elements spaced equidistantly by d along the 

z-axis o f a rectangular coordinate system whose origin coincides with the first element, 

as shown in Fig.2.1.

Let the excitation amplitude of the m-th element be am and its phase m§ (where <J), the 

phase difference between an element and the next, is taken as a constant). Then the 

array factor can be defined as [1]

F  ( 0 )= £  (2 J )
m=0

where k 0 is the free space wavenumber, k 0 dcos 0 is the difference between the vector 

contributions o f successive elements, that is due to the differences in path length to the 

observation point.

Defining

\\f=kQ d  cos 0+<{> (2.2)

we can rewrite (2.1) as
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/r (V )=S1ame C/m',,) (2.3)

For an array with uniform current distribution (am=a) and linear phase progression, 

i.e. a uniform array, the finite series in (2.3) may be summed by the formula for a 

geometrical progression, yielding the expression:

By normalizing the amplitudes in such a way that a=l/N  and using Euler’s formulas 

in (2.4), we get:

(2.5) gives the normalized space factor of a uniform array. It indicates that for this 

kind o f array

a) the principal maximum I /  (\j/)| =1 occurs at 

\\f=k0 cos 0+<{>=O

or

b) the maxima of the sidelobes are obtained at

f  (\if)=ej(N~l)^ 2 sin^ V /2) 
J Y Nsin(\j//2)

or

sin(Nv|//2)
A/sin(\j//2)

(2.5)

N  Ymax _ 2p +1 
2 2

k p =±1,±2,...

or
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9 m a x = C 0 S  1 ( 2 -6 )k 0 d N

c) the function f  has its nulls at

N\\f0
— ^ — = p n  p=±l,±2,...

or

O o^os-'C -1-  (2.7)
k 0d N

W hen <f)=0, the array factor achieves its absolute maximum only in the direction normal 

to the array axis, 0=90°. This kind of array is known as ’broadside array’.

Usmg the change of variable 9=0max-o^=y-a > as shown in Fig.2.1, (2.7) indicates that 

for a broadside array the first pair of nulls occur at

0o=cos (— — —  )=cos \ ± — ) 
kod N Nd

or

_i
«0=sin (±— )=±- rNd L

provided N is large. Then the width of the main beam is

I I ^02 |a o l= 2 -^ -  (2.8)

71Let 2a i/2= 2 (y -0 i/2) denote the half-power beamwidth, this can be found by setting

sin— k 0 cos 01/2 sin—k 0 cos 01/2

l / ( w ) l  =   = 0 -7 0 7
siny^o  c°s 0 i/2 y ^ o  c°s 0 i/2

Hence
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— *0 cos 01/2=1.39 
2

or

a m  = sin_! 2.78 _ 2.78

Xo
2(Xi/2 = 0.88 (2.9)

where L=Nd  is the length of the array. From (2.5) and (2.6) we get the first sidelobe 

level:

SL =

. 37C sin—-  
2

Nsin 3k 
2N

~  0.212

In other words, the first sidelobe is about 13.5dB below the main lobe. This ratio is 

independent of N, as long as N is large enough for the approximation s\u(3kI2N)=3kI2N to 

hold. Thus it is not possible to reduce the sidelobe radiation relative to the main beam 

below \3.5dB no matter how many elements we put into the array, as long as the array is 

uniform.

2.3 Schelkunoff’s Unit Circle Representation

Defining

w=e

and setting aN_\ equal to one, (2.3) can be written as:

/  (w)=WN 1 + (a /̂_2^aN-l)wIW L ' + a Q/aN-\ - P N - l(w),N- 2 (2 .10)

(2.10) shows that the array factor of a uniformly spaced array of N elements can be 

expressed as an (N -l)th-order polynomial o f the complex variable w. It also implies that 

every (N -l)th-order polynomial can be associated with a linear array o f N  elements.
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The variable ,where y\f=k0 dcos0+<j) is a complex variable of unit magnitude.

Thus, as 0 varies between 0 and rc, <t>—/:0 d -  V -  $+£0 d and w varies along the unit circle 

in the range:

J(V -*o d) .  ^  y (<>+*0 <*)c zs >V ^ c

The range of w> along the unit circle corresponds to the ’visible’ region and it 

depends on the ratio d/X and <j>.

Let the roots of the polynomial PN_i (w) be w i , w2, • • • , then

/ ( w X w - w i)  (w -w 2)...(vv-w^_i) (2 . 11)

I /  (w) | = | W - W  J I | W  —W 2 I * ■ • I W - W N _] | (2.12)

The magnitude and phase angle of /  now have simple geometrical interpretations. 

For each value of 0, I /  I is proportional to the product of the length of the distances 

d\,  d 2, • • • dflj_i between each zero w j, w2, • • • and the point on the unit circle 

corresponding to the specified value of 0 and the phase angle of /  is equal to the sum of 

the phase angle of each factor in (2.11). To each root configuration corresponds one 

particular set of excitation coefficients. In general, the converse is not true. However, if 

all roots are on the unit circle, then there is a one-to-one correspondence between the

relative variation of I /  I and the root configuration.

For a uniform array of N  elements, the array factor (2.4) can be rewritten as:

/(w )=-
1 w v- l
N  w-1

By using de Moivre’s theorem in the numerator, we obtain the N - \  roots of /  (w)=0

wm=e‘2lmlN m = l,2 ,..JV -l (2.13)

The first root of wN- l ,  w=l,  is not a root o f /  (w)=0 because of cancellation with the 

denominator, w - \ .  In fact, w = 1 corresponds to the direction o f maximum radiation. The 

root positions are shown in Fig.2.2 for the case N= 5. The array factor is simply given by
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\ f ( w ) \ = j d i d 2 d 3 d A (2.14)

The circle in Fig.2.2 is known as Schelkunoff’s unit circle representation [2]. Its use 

in the synthesis of arrays will be discussed below:

From (2.14) and Fig.2.2 it is noted that, with w approximately halfway between the 

successive nulls wm and wm+1, the product of these distances gives the relative height of 

the m-th sidelobe. It follows that if these two roots are brought closer together, the height 

o f the sidelobe will be reduced. For broadside arrays, if the heights of all the sidelobes 

are to be reduced, the roots must cluster closer around - k , indicating that the mainbeam 

region on the unit circle (from to wN_i, anticlockwise) must be enlarged. In other 

words, the sidelobes are reduced at the expense o f broadening the main beam.

Suppose it is desired to produce a pattern in which all the sidelobes are at -20dB. 

This would require that the four roots of Fig.2.2 cluster close to -n.

This design problem can be solved graphically by trial and error. At present, the 

roots are at ±72° and ±144° and the sidelobe level is -13.5dB. Suppose the new position 

±87° and ±149° were tried. By drawing a unit circle with roots placed in these positions, 

the product o f the measured distances gives the first sidelobe at -18.5dB and the second 

at -21.3dB. This suggests that the roots w 2 and w 3 have been placed too close together, 

but that w j and vv4 m ight be just about right. After a few trials we find that, in order to 

obtain a pattern with -20dB sidelobe level, the proper root positions are at ±89° and 

±145.5°. Returning to (2.11), this can now be rewritten as

/  (w) = (yv-e-’155) (w-e;2'54) (w-e~^254) (\v-e~-i155)

= w 4+1.6w3 + 1.95w2+1.6w+l

If this polynom ial is compared with (2.10) it can be observed that the relative current 

distribution are in the ratio

1 : 1.6: 1.95: 1.6: 1
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Figure 2.2 Root positions on a Schelkunoff Unit Circle 
for a uniform array of 5 elem ents



This distribution is tapered symmetrically.

The following question naturally suggests itself. What are the location of zeros, and 

the current distributions for which the array will have

a) the narrowest mainlobe width for a given sidelobe level or

b) the lowest sidelobe level for a given mainlobe width?

These properties, of course, can be required from a linear equispaced array of any 

number of elements. The resulting current distribution is the one known as the Dolph- 

Chebyshev distribution.

2.4 Dolph-Chebyshev Array

A symmetrically tapered amplitude distribution is associated with a pattern having 

lower sidelobes then those o f a uniform array. Lowering the sidelobes broadens the 

beamwidth and reduces the excitation efficiency. The latter is defined as the ratio of its 

directivity to the directivity for uniform excitation. Some improvements in both 

beamwidth and efficiency are obtained by raising the further-out sidelobes. Intuitively, 

one might expect equal-level sidelobes to be optimum for a given sidelobe level. A 

method of accomplishing this for a half-wave spaced broadside array was invented by 

Dolph, who recognized that the Chebyshev polynomials are ideally suited: in the range 

from -1  to +1 a Chebyshev polynomial oscillates with unit amplitude, while outside this 

range its value increases monotonically. The Chebyshev polynomial can be expressed as

(- l^ c o sh  (Ware cosh I x I) 
Tn CO = i cos (Ware cos x) 

cosh (Aarc cosh x)

x < —1
U l < i
x > \

(2.15)

The first few polynomials are,
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T  0(x )= l

Ti(x) = x 

T 2 {x)  = 2 x 2 - 1  

T 3 (x )  = 4 x 3 - 3 x  

T 4 (x )  =  8 x 4 - 8 x 2 + 1

They are shown in Fig.2.3. Polynomials of higher degree can be obtained from the 

recurrence relationship Tn+](x)=2xTn(x)-Tn_1(x) or from the functional equation 

T„„(x)=Tm[Tn(x)]=Tn[Tm(x)]

Chebyshev’s polynomials have the following properties:

a) Tn ( x )  is a polynomial of Nth degree,

b) For N  even (odd) it contains even (odd) powers o f x only,

c) The polynom ial passes through the points (1, 1) and (—1,(—1 );V) and oscillates between 

the bounds ±1 in the interval Ixl < 1,

d) For N > \ the extrema are all in the interval I x  I < 1 and occur at

x -  cos (/?— ), p = l , 2 ,..jV -l (2.16)
N

e) For N > 0 the zeros are all in the interval I x I < 1 and occur at

x  = cos ( p =0,1,2,. . jV - 1  (2.17)
2 N

From the fundamental lemma of algebra, we can prove that among all polynomials 

of degree n which pass through two given points (x0,R) and (x2 ,0), x\ < x2 < x 0, where 

xi  is the largest zero of Tn(x), as shown in Fig.2.4, Tn(x) minimizes the largest absolute 

value in the interval IxI < 1. The opposite is also true: among all polynomials P„(x) of 

degree n, which pass through a given point (x 0,R) and which remain within the bounds 

±1 in the interval |xl < 1, the Chebyshev polynom ial Tn(x) minimizes the distances 

x 0- x 2 where x 2 is the largest zero of Pn{x). These optimum properties of Chebyshev’s
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Figure 2.3 The C h eb yshev  polynom ials  Tn (x ) for n =3.4.5



polynomial can be used in the design of optimum arrays.

As the starting point for the derivation of the Dolph-Chebyshev current distribution, 

we consider a symmetric excitation, i.e. excitation with \am\ - \ a N_m_i \ . It is then 

advantageous to let the midpoint o f the array coincide with z=0. By numbering the 

elements from the center to the ends and using the parity, the array factor may now be 

expressed in the following way,

we can see that function cos px can be expressed as a polynomial of degree p in cos*. 

Consequently, (2.18) can be written as

where d m are new coefficients. The degree of both polynomials is N - l .  If we simply set 

*=cos (y/2), the range o f x  is restricted to the interval between -1  and +1 as y  varies. In 

this interval Tn_i (x ) will oscillate between -1  and + 1. The result is an array factor of 

several lobes of the same level, and there will be no main lobe. In order to get a main

where * 0>1 is a parameter. Expressed in terms of the Chebyshev polynomial, the array

I 2m -1
2 £  I am I cos —y — y

m=1 even

a 0 + 2 £  I am I cos m y  #  0dd
(2.18)

From the trigonometric identity,

cos nx = cosnx -  C \ cos" 2x sin2* + C*cos'1-4* sin4* -  ....

nr „
£  a!m( cos ) N even

m=1
N odd

(2.19)

lobe, we set

* = * o  cos  (■“ ) (2.20)
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factor thus obtained is

/  (V) = Tn -i (*ocos ) (2 .21)

In order to illustrate how the transformation (2.20) works, we shall refer to a 

geometrical configuration shown in Fig.2.4. For a broadside array, \|/=0, if the element 

spacing d is Ao/2 , then, as 0 increases from 0 to tc, \|/=£o dcos0 varies from k through 0 to 

- k  and x=xq,cos (\|f/2) goes from 0 through xq to 0, as shown in Fig.2.4. In the rectangular 

coordinate system (x ,f)  and in the polar coordinate system (0 , / ) ,  the corresponding 

points move from A through B to C and A' through B' to C \  respectively, as shown in 

Figs.2.4 (a) and (b). The array factor / ( y )  obtained in this manner will have an absolute 

maximum R corresponding to a main lobe and extrema ±1 corresponding to sidelobes. 

The sidelobe level is l/R.

Now let us examine a broadside array with a fixed element number N of elements 

and spacing fc0 d. We first consider the case when the beamwidth 2oq between the first 

pair of nulls o f the pattern is specified.

The first null o f the pattern corresponds to the largest zero x ^ c o s  [7i/(2/V-2)] o f the 

Chebyshev polynomial TN_](x). This determines the parameter x 0 in the transformation 

of (2 .2 0 ).

(2.22) and (2.23) express the relationship between the prescribed beam width 2olq 

and the corresponding sidelobe level 1 /R, which, according to the optimum property o f

k0 d COS ( y  -  <Xo)

2

cos(te/(2/V -2 )) (2.22)
cos((k0 d sinao )/2)

W ith x 0 known, the sidelobe level follows R=Tn _i (x 0) or s incex0> l,

R = cosh ( ( N - 1) cosh lx$ ) (2.23)
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Figure 2.4 Geom etrical construction of array pattern  
for broadside D olph-C hebyshev  array w ith  d = \ (l/2



I

the Chebyshev polynomial, is as low as possible.

If, instead of the beam width, the sidelobe level MR is the required quantity, we must 

have

?n-i(*o  ) R > 1

The solution for this algebraic equation follows directly from (2.15)

The optimum beam width, which goes together with the specified sidelobe level, can 

be obtained by solving (2 .2 2 ) for Oq.

The maximum possible spacing is determined by the need to prevent x falling below 

- 1. This gives the maximum element spacing for a broadside array as,

which approaches one wavelength spacing for large arrays. From (2.19) we can see the 

space factor is just the discrete Fourier transform of the array excitation. Therefore, the 

excitation am may be obtained from the inverse relationship. Substituting the Chebyshev 

polynomial representation andfl=7}y-i(xo) we get

jc0 = cosh (
N - 1

cosh lR) (2.24)

arc cos ( - 1/xq)
(2.25)

K

2 (TV—l)/z
an = —  [ R + 2 £  TN_i ( x 0 cos

(N-1)/2 2nmn
N

(2.26)
m=1

(0<rc<(yv-i)/2)

for N= odd, and

(2.27)

( \ < n < N / 2 )

for N= even.

-2.12-



These formulas are valid for d > Xo/2 . Chebyshev’s distribution gives the optimum 

pattern, but when N  is large, for a practical R and a , the distribution tends toward large 

peaks at the array ends. Sometimes this is difficult to realize. Hence, Chebyshev’s 

distribution is not used in practice as often as Taylor’s n distribution: the latter offers 

more flexibility.

2.5 Taylor’s Array

Taylor’s array is based on the sampling of a continuous array. When the element 

spacing o f a discrete array, d, tends to zero, the array becomes continuous, as shown in 

Fig.2.5. The continuous uniform array factor can be derived by assuming an excitation

The array factor, i.e. the Fourier transform o f the excitation, is

1/2

F ( 0)=  J a ( z ) e jkoZCOsQ dz 
- 1/2

1/2

- 2 c 0 J cos (k0 z cos 0 -  (3z) dz 
0

- / / 2 < z  <1 / 2  

elsewhere (2.28)

sin-j(^o cos 0 -  p)

ko cos 0 -  p

By norm alizing and setting

u = -f-(cos 0 -  -£-) 
A, ko

(2.30)

we obtain
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Figure 2.5 G eom etry of a con tin uou s array.



/(0 )  = i!™E“ (2.31)
KU

Where 0O = cos-1 (p/&0) is the pointing angle of the main lobe, that corresponds to m=0. 

The array factor corresponding to the excitation

— j Bzc0 cosT e *  _ / / 2 < z < / / 2  

a <z> = 0  elsewhere (232)

IS

i a
F(0) = c0 J c o s ^ e '“ - W dz (2.33)

- i n *

1/2
f 7CZ=co J cos— cos (koz cos0 - $ z ) d z  

- / /  2 ^

_  21 COS7C u

~C° n l -  (2u f

0  =  COSTtM (2  3 4 )

1 -  (2m)2

The two patterns expressed by (2.31) and (2.34) are shown in Fig.2 .6 . The first pair 

of zeros of the tapered array is at u (u = ± k  for a uniform array), the first sidelobe

level is -23dB (-13.5dB for a uniform array). It can be seen again that the tapering of the 

excitation affects the positions of the zeros, and consequently affects the pattern (width 

of the main beam and the level of sidelobes).

The pattern o f (2.31) shows symmetrical sidelobes whose heights trail off as m-1, the 

closest pair o f sidelobes being 13.5^5 down. As 0 moves from 0 through 0O to k ,  u

moves from —(1—^-) through 0 to -^-(-1--^ -) . The number of sidelobes in the "visible" 
X k$ X k.Q

range o f u thus depends on the aperture length l/X. All of this is consistent with the

theory o f discrete linear array. W hat Taylor sought was to find a way o f depressing the n

innermost sidelobes on each side of the main beam to a common height while leaving
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KU

- 5- 1 0

Figure 2.6 The patterns of -~ KU and C0S"U 
b Ku 1 -  (2u)



alone all the sidelobes that are further-out. In order to satisfy both requirements, the 

nulls o f the new pattern are to occur at integer values of u for I u I > n. For I u I < n, the 

nulls will be needed at [3]

un = ±<5<A2 + ( n -  1/2)2 (2.35)

W here Vv42 ~ ( n ~  1/2)2 is the position of the «-th null of the continuous Chebyshev 

array,

A = —arc cosh/? = —In(R + V/?2 -  1 ) (2.36)
n k

and a  is a param eter given by

c  = n(A2 + ( n -  \I2)2T 112 (2.37)

The new pattern can be expressed by

i i d - A j )
/(« ) = sin,I“ "=1--------------  (2.38)

nu n - \
n ( l  - U :2In2)
/* =i

With a Taylor pattern, as defined by (2.35) and (2.38), it becomes a simple matter to 

find the corresponding aperture distribution from (2.29). Setting a (z) = li (z)e~J^z with 

h (z) represented by the Fourier series

* W =  c o s ^ y ^  (2.39)
m=0 1

//2 LfTlTLZ ^j(k0z cos0-(3z) ^

and substituting into (2.29) we find

1/2
f ( u ) =  Y ,B m J c o s - ^ e

m=0 -1/2 1

~ 0 lf  Irrniz Innz .
= J C0S )--- C0S ----

m=0 -1/2 1 1

From the orthonormalization
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in 2mnz 2mzz ,cos— ■— cos— ■— dz -
-112

We obtain

/ n=m=0
1/2 n=m±0
0 n*m

/  (m) = 5 J  Bm 

where

8m=l when m=0

5m=l/2 m =l,2 ,...

However, (2.38) indicates that

H O  - m 2/u2n) 
simtm n=l__________

Km «-i . .
J"IU - m  In )
n= 1

(2.40)

f ( m )  = =  0

when m>n. Hence, this Fourier series is truncated, and thus the continuous aperture 

distribution is given by

a(z) =
n-i 2m%z- ^ I / ( 0) + 2 5 : / ( m ) c o s ^ y ^ ]

1 m=1 1

a(z)  I = y  [f  (0 ) + 2 (m )c o s^ y ^ ]
1 m=1 1

(2.41)

I tilBy sampling the continuous aperture distribution at zn = - — + we

find the distribution for a discrete array of N  elements. The f(m) in (2.41) can be found 

from

/(m )  =

( ( H - W n 1 2
— n a - ^ r )

(n -  1 + m)\ (n -  1 - m ) \  n=i zn 
0

m < n

m > n

(2.42)
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An aperture distribution computed from (2.41) is shown in Fig.2.7. For comparison, 

the Dolph excitation for a 13 element discrete array is shown as well.

The half-power beamwidth for a Taylor contribution is [4]

2.6 Realization of the Aperture Distribution

After getting the aperture distribution, our next step is to realize it physically. 

The normalized conductance of the n-th element can be defined as:

where Prn and Pin are respectively the power radiated from and incident on the /i-th 

element. gn measures the radiation loss of n-th element. P^  can be written as: [5 ]

k=1

In (2.45), 5 is a parameter representing the loss o f a section of transmission line between 

two adjacent elements.

The power weight function of the wth elem ent is defined as:

(2.46)
m—\

(2.43)

(2.44)

(2.45)

Obviously

N
= i

Setting
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Figure 2.7 A comparison betw een  the t w o  aperture distributions.
(1 )  Chebyshev array d istr ibu tion , N =13.

(2 )  Taylor array d is tr ibu tion , n =4, N =23.



V - W n= P n  (2.47)

then the efficiency of the array, g, is given by

iA = (l-po/5^-1 V( X ) (2.48)
k=1

Where P o is the power dissipated into the load, which depends on the number of 

elements, the realizability of the element radiation loss, etc. Substituting (2.45) and

(2.47) into (2.44) we get

g .  = ^ / ( S - k l - z V t S 1-*)) (2.49)
k=1

Fig.2.8 shows a distribution of normalized conductance, in which 

P q = 0.17, n =4, N = 23, R = -20dB.

We are using this theory to realize an array on IDG. A relationship between 

normalized conductance and the dipole lengths is developed in Chapter 5. With the date 

given in Fig.2.8, a 23-element array is built. The experimental result is in excellent 

agreement with the theory.

-2.18-



2

0 2  ̂ 6 8 10 12 14 16 1 8 20 22 2 4
n

Figure 2.8 The d istr ibution  o f  the normalised conductance  
for a 2 3 -e le m en t  T aylor  array.
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CHAPTER 3

A RIGOROUS FULL HYBRID ANALYSIS OF 

INSET DIELECTRIC GUIDE

3.1 Introduction

The Inset Dielectric Guide (IDG) is an easy-to-fabricate alternative to the image line, 

less sensitive to loss by radiation at discontinuities. The IDG structure has been analyzed 

by Zhou and Itoh [1] as an intermediate structure in the analysis o f trapped image guide. 

They m ade an approximate analysis in which the wave equation is solved for region I 

and D using separation o f variables and the two solutions are fitted at the air-dielectric 

interface as shown in Fig.3.1. Regions in are ignored. It is a reasonable approximation 

for the fundamental mode, where the field is well confined to the dielectric. The 

singularity imposed on the field by the 90° metal edges, however, causes diffraction, 

which is im portant for the accurate evaluation o f the field distribution and propagation 

loss. A rigorous full hybrid analysis and a network modeling of IDG have been given by 

Rozzi and Hedges [2], which yield an accurate equivalent circuit for the discrete modes. 

This analysis considered mainly the even-mode solutions with respect to x. This chapter 

retraces the method and extends the analysis to odd parity.
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Figure3.1 Cross-section o f  IDG



In recent years, the spectral-domain approach developed by Itoh [3] has been 

preferred over the space-domain approach for the numerical solution of boundary value 

problems. In both approaches, the fields are derived from potential functions, which, 

along with the necessary boundary conditions, can be formulated into sets of integral 

equations that can be solved for the propagation constant.

In the space-domain approach, these integrals are solved directly by Galerkin’s 

method, the unknown functions being expanded by a suitable set o f basis functions. In 

the spectral-domain approach, the integral equations are transformed into the Fourier 

domain prior to solution by Galerkin’s method. The advantage of the latter method is 

that the integral equation is often easier to formulate, the Green functions often being 

found by inspection. However, the choice o f expansion sets required for solution in the 

Fourier domain is restricted by the requirement that they have simple Fourier 

transforms. Thus, functions that do not accurately model the edge conditions are 

sometimes used, which results in slow convergence rate.

The approach outlined in this chapter is a space-domain approach. Unlike the 

spectral-domain approach, there is no restriction on the choice of expansion functions. 

In fact, the functions used are particularly accurate in that they take into account the 

singularity imposed on the guide field by the 90° metal edges. The problem is 

form ulated so that only one set of basis functions is required, which results in a further 

increase in accuracy. As a result, the convergence is very rapid, and often only the first 

term o f the expansion is sufficient.
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I

3.2 Formulation of Admittance Operators

The coordinate system used in this analysis is shown, along with the guide structure, 

in Fig. 1.1. For each homogeneous region, we may write

where (3 is the z-directed propagation constant to be determined. For such a composite 

structure it is easier to solve for propagation in a direction perpendicular to the dielectric 

interface, i.e., the y-direction.

From the boundary conditions and Maxwell’s equations, integral equations for the 

transverse field components are set up. In order that they are solved on a computer, they 

are transformed by Galerkin’s technique into scalar equations. In this approach, the 

integral equations are transformed into the space spanned by the set o f functions used to 

discretize the unknown field components Ex and Ez. These functions are chosen to 

model as accurately as possible the field components so that few terms are needed for 

adequate convergence. This includes taking into account the diffraction o f the field due 

to the presence o f the 90° metal edges a tx = ± a /2 , y=0 . This diffraction due to the metal 

edges results in a hybrid mode structure. Thus a full six-field analysis is required. The 

six field components can be obtained from the superposition of LSE and LSM-modes. 

For propagation in the y direction, these appear to be y-directed TE and 7M-modes. 

Thus, the hybrid mode can be derived from y-directed electric and magnetic Hertzian 

vector potentials, Ue and n A.

These are o f the form

where y is the unit vector in the y direction. From the potentials, the fields are derived

erko = kl  + ky + p2 (3.1)

n e =y V e ( x , y ) e  j ^z 

n A=yv|/A(*,y)e~Jpz (3-2b)

(3.2a)
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by

E = -700110 Vxn,, +8r kl  Yle + V V • Tle (3.3a)

H = ./'(0£oer VxITe + er kl  n A + V V • n A (3.3b)

or, componentwise, suppressing the z-dependence e~j^z

Hy{x,y) = (er kl  + d]) y ACt,y) (3.4a)

Ey(x,y) = (er kl  +dy) \\fe(x,y) (3.4b)

Ex(x,y) = dx dy y e(x,y) + co po P Vh(x,y) (3.4c)

Ez{x,y) = - 7'p dy \fe(x,y) -  j copo dx y h(x,y) (3.4d)

Hx(x,y) = -co e p y e(x,y) + dx dy y h(x,y) (3.4e)

Hz(x,y) = j  co e dx \fe(x,y) -  dy y h(x,y) (3.4f)

The scalar \\fe(x,y) and ^ (x .y )  must be chosen to satisfy the correct boundary conditions 

for the field components and have dimensional consistency.

The IDG structure can be considered to be a dielectric-filled rectangular waveguide 

with one of the side wall removed. Hence, the field in the slot can be constructed from 

the superposition of discrete waveguide mode functions. In the air region, of course, a 

continuous spectrum is possible. The field in each region will thus have to be derived 

from separate sets of potential functions, which m ust be continuous across the interface 

between the two regions.

For convenience, from now on in this thesis all the quantities having dimension of 

length will be normalized in units of the width o f the guide, a, and all the wavenumber 

quantities will be normalized in units of 1/a. Therefore the coordinates of the metal 

edges are (±1/2 , 0).

The admittance operators are formulated from the transverse equivalent circuit. For 

propagation in the y direction, the slot appears as a short-circuited dielectric-filled 

parallel-plate waveguide radiating into free space. The potential functions are chosen as

-3 .4-



follow s.

In the slot region,

. . . . . . . . .  7” 1 ,^™ sq„(y+ h)
9 n o 1/9 ,

n J ((M l)2 + p2)1/2 COS ^/z

/ .  V" 1  ̂ N sin gn(y+h)
X,}> ?  j  ©Mo ( ( m i ) 2 + p2)1/2 ^  * sin </n/i

where the x-dependence for even-modes is

<J)hn(x) = 25„ cos 0i7u) §en(x) = 2sin ( m i x )

5„ = 1/V2 AZ — 0

5„ = 1 n =  2,4,6...

for odd-modes are

<^*00 = 2sin («7u:) <t>*nCO = 2cos ( m i x )  

n = 1,3,5,... 

and the conservation of wavenumber gives

Er̂ O =<72 + («7C)2 + p2 

In the air region,

Ve(x,y) = \dkx 1(kf  1 <t)e(x,kx) e  jkyy
0  J ® * 0  ( k l  +  P 2 ) 1 / 2

7 ^'(ik*) 1 _;tv
Va (x,y) = J dkx —.............    -■ ■ (*.*x) «

0

where

(J)/,(j:,kx) = V2/7C cos x §e(x,kx) = V2/tc sin

for even-m odes and



§h(x,kx) = V2/7C sin kxx §e(x>kx) = V2/tc c o s  kx (3.11)

for odd-modes. The conservation of wavenumber gives

kl =ky + kl + (32 (3.12)

The orthogonal sets §hn(x) and (j)h(x,kx) are normalized so that

1/2

I
0
J tyhnOt') dx — &nm (3.13a)

\§ h{x,kx) §h(x,kx) dx = 5 (kx - k x) (3.13b)
o

The amplitude functions are chosen for the sake of convenience and in order to give the 

unknown amplitudes v"n and In the dimensions of a voltage and current, respectively. 

This will become useful when circuit analogies are made.

By placing the potential functions (3.5) into (3.4), the field components in the slot 

can be found to be

sin qn(y+h)
Ex (x,y) = ^ E xn<̂hn(x) -----:------ —  (3.14a)

cos qn(y+h)
Ey (x,y) = '£ E yniben(x) ------------ 7—  (3.14b)

„ cos qnh

sin qn(y+h)
Ez (x,y) = ^ E z,tQen(x) -----:  —  (3.14c)

7  sin qnh

cos qn(y+h)
Hx {x,y) = ^ H xA en(x) ------------------------------------------------------------------------- (3.14d)

cos qnh

sin qn(y+h)
Hy (x,y) = 'Z Hyn$hn(x) -----:------7—  (3.14e)„ sin qnh

cos qn(y+h)
H2 (x,y) = Z H 2n<bhn(x) -----  (3.14f)

7  cos qnh

where the amplitudes are:
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Ezn =
l'n

± — —  qn(nK) tmqnh - j$ V n 
weo£r

1
(inn)2 + p2)1/2

In
E y n  = - j — ! L —  ((Ml)2 + (32)1/2

e 7„ =

Hxn =

coeo er 

In

(oeo£r
$qn\znqnh ± v ”nn

v:

1
((mi)2 + p2)1/2 

\
j l n$ ± j   (mi)qncotqnh

CDUo
1

((mi)2 + p2)1/2

2 , o2\l/2/7>n = - j  ((mi y  + pz)
©no

Hzn =
V"“ n

±/„(/»c) p ^ c o ^ A
COJio

1

(3.15a)

(3.15b)

(3.15c)

(3.15(1)

(3.15e)

(3.15f)
((ktc)2 + p2)172

It is noted that the difference of §en and <J)An between even- and odd-mode only causes 

the signs of the terms containing dx in (3.4) different. The upper and lower signs refer 

to the even- and odd-mode, respectively.

By rearranging (3.15) the amplitudes for the transverse electric fields Exn and Ez 

can be written as

EXn 1 ±JITI -VP'
r ■ qn , u i J tan qnh

(O £o£r 0 L

E zn_ ((mi)2 + p2)1/2 --j'P ±/17C_ 0 1 y'n_

If an angle 0 is defined such that

cos 0 = mi
((mi)2 + P2)1/2 

then (3.16) can be rewritten as

sin0 = i .
((/>7t)2 +  p 2 ) 1/2

Z H' 0 
0 1

(3.16)

(3.17)

(3.18)

where
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Z n = j
‘In

coeo er
tan qnh

= j  Z 0ntan qnh

and

T =n

±cos0 -jsinfl 

.-ysinfl ±cos0. 

Similarly we obtain

Hzn = T■* n 1 0 
o y :

where

Yn = - j  ~— cot qnh 
CO|Iq

= - j  YonCOt qnh

(3.18) and (3.21) can be combined to give

Hzn
H r, = Ti  pt Yn 0

0 y "
7^1■* n

An analogous expression for the air region is

~ h z{kx) 
hx (kx) = T(kx)

Yf{kx)
0

0
Y"{kx) T ~ \kx) ex(kx)

ez{kx)

where

(3.19)

(3.201

(3.21)

(3.22)

(3.23)

(3.24)

cos 0 =

Y \kx) =

{ k l  +  P 2 ) 1/2 

coeo

sin 0 =

Y ,\ k x) =

{k2x + p2)1/2

ky{kx)
(3.25)

ky{kx) ' "■ copo

The signs in (3.23) and (3.24) come from the different orientation o f the Poynting 

Vector, i.e., for the power flow into the slot region,
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1

P  down ~ Ex Hz Ez Hx 

for the air region

P u p E x Hz + Ez Hx

It is desired that the electric fields transverse to y be retained as the unknown quantities, 

whereas the two rem aining quantities transverse to y, i.e., Hz, Hx, be expressed in terms 

of the above two. A linear transformation can be written compactly by means of linear 

integral operators acting on the fields Ex(x, 0), Ez(x, 0) to give the field Hz(x, 0), namely

1/2

Hz(x, 0) = J y 11 (x,x?,y =y'=0) Ex( / , 0) dx'
o

1/2

+ J yi2(x,x',y=y'=0) Ez(x ,0) dx
1/2

J
0

= y n E x + y n E z (3.26)

and similarly for Hx(x, 0). Analogous expressions hold in the air region. Thus we obtain 

for each region integral equations of the type

and

Hz(x, 0“)
~ ~.s
y a y 12 Ex(x, O')

_-Hx(x, 0~)_ _y 21 yn_ Ez(x, 0")

- H z{x, 0+)
Ad
j  11 y 12 E M  0+)

_ Hx(x, 0+) yi\
/a a
yn_ E M  0+)_

(3-27)

(3.28)

where the superscripts s and a refer to the slot and air region, respectively.

To illustrate the formulation of the Green admittance operators consider the 

derivation of y n  in (3.27) defined as:

1/2

Hz{x, 0) = J y ii  (x,xf\y =y'=0) Ex(xf,0) dx 
o

From  (3.23) with Ezn set to zero,

Ez(x, 0)=0 (3.29)
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Hm =Exn(Y„ cos20 + F„” sin20) 

However from (3.14)

(3.30)

1/2

Exn = 1 ^xfr'.O) <!>/„, (*') dx

and so substituting (3.30) and (3.31) into (3.14f)

(3.31)

Hz fa  0) = X  1 Ex (Yn cos2 9 + Y'n sin2 0) §hn (.x) §hn ( / )
n 0

Comparing (3.32) and (3.29) gives

ysn fax') = X  ( ^ c o s 20 + Y"n sin20) §hn{x) <M*')
n

The other slot admittances are found in a similar manner to be 

/12  fax?) = ± j  £  (Yn -  7") sin 0 cos 0 §hn (x) §enfa)
n

y s2 \fa x ? ) =  - y s\2

y S22 fax') = E  (>"nSin20 + Y"n cos20) §en(x) §enfa)

(3.32)

(3.33a)

(3.33b)

(3.33c)

(3.33d)

In order that both unknowns can be expressed in terms of the same set of functions, 

we require that they display the same x-dependence. This will be so if, instead of 

Ezfa  0), the problem is formulated in terms o f dEz(x, 0)!dx. As an added bonus, proper 

convergence o f the admittance operators will also result from this transformation. Thus, 

by integration by parts of (3.27), we obtain

Hzfa  O')
1/2

-  J Hx(x, 0~)dx 
o

■ f t f t ' Exfa  (T)

. f t 1<N dEz(x, 0~)/dx
(3.34a)

-H zfa  0+)
oo

lH x(.x,0+)dx

Y u
* a
Y n Exfa  0+)

. f t
Ya*22_ dEzfa  0 +)/dx

(3.34b)

where
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^11-^11 Y 1 2- Jy 12

Y2\ = l y 21 dx Y22 = - j j>’22 dx dx'

i . e .

Ysn  (* ,/)  = £  (y^cos20 + Yn sin20) (^ (x )  6 ^ 0 0  (3.35a)
n

The other slot admittances are found in a similar m anner to be

Y \2  (X,x') = YiJ  (Y'n -  y«) Sin 0 cos 0 (— ) (j^CO $hn(/) (3.35b)
nn

Ys2 l (x,x') = Ysl2 (3.35c)

^22 (*>*') = E  (T„sin20 + Yn cos20) (— )2 <j)^(x) §hn(x') (3.35d)
- n n

In the air region, the admittances are

oo

Y\i (x,x') = \dkx{T{kx) cos20 + Y"(kx) sin20) §h(x>kx) §h(x >kx) (3.36a)
o

y?2 (*,*') = l l i  (*,*')
oo

=\dkxj  (r(kx) -  Y"(kx)) sin e cos e (-)-)  «n,(x,kxys>h(iY,kx) (3.36b)
0 **
oo

*22(*>*') = \dkx{T{kx) sin20 + Y"(kx) cos20) ( y - ) 2 <|>a(*,**) §h(x' M  (3.36c)
0 kx

where Yn' and Yn"  are the input admittances o f the slot seen by the nth order TM and TE 

modes, respectively, i.e.,

©l-to QnYn' = - j  cot (qnh) Y^' = - j --------cot (qnh)
qn capo

In the air region, Y'(kx) and Y"(kx) are the admittances o f the TM and TE plane waves:

niC l) = T TkT  r 'f e ) = l ^ rky(kj.) copo

This form ulation gives rise to the transverse equivalent circuit representation shown in 

Fig.3.2. The slot field is composed of an infinite number of TE and 77Vf-components. The 

scalar equations so obtained describe propagation in the y-direction. The resonant

-3.11-



e = l n h

V

V

r ,

3

y =0 y=0

Figure3.2  The transverse equivalent circuit representation for IDG .



frequencies of this equivalent network are those frequencies for which the total 

admittance, taken at any point in the circuit, vanishes. Thus, for a given value of k 0, the 

propagation constant p is found as that value that causes the total transverse admittance 

to vanish [4]-[7].

This approach is found to give fast convergence for the value of p. For most 

practical applications, a 2 by 2 or, at most, a 4 by 4 matrix is all that is required to be 

solved.

Bearing in mind that the admittance operators have been defined as functions of p 

for each region for power flow into each region from the interface, continuity of the 

magnetic fields at the interface (y = 0) will give an integral equation in the unknowns 

Ex(x, 0), Ez(x, 0), namely

r Ex(x, 0)
Y

dEz(x, 0)/dx

where

~ ~ s '‘a
Y = Y +Y . (3.38)

This is the dispersion equation for p.

3.3 Solution of the Integral Equation-Application of the Ritz-Galerkin Method

The Galerkin method is one of the fundamental mathematical methods for 

transforming a variational equation into a matrix equation. It will be used to solve the 

integral equation (3.37). The equation is discretized by means of the set used to expand 

the unknown Ex(x, 0) and E z(x, 0). The choice of a finite expanding set is crucial in 

achieving rapid convergence in the dispersion equation. If the choice satisfies the edge 

condition, the "scalar products" in (3.37) will converge rapidly and only a few terms will
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be needed. Thus we seek an orthogonal set of functions that can be weighted by a term 

that takes into account the effect of the 90° metal edge.

The behavior of the field vectors at the edge of a conducting wedge of internal angle 

(j), as illustrated in Fig.3.3, has been investigated by Collin [8]. It was concluded that in 

the vicinity o f r=0, where r is the radial distance from the edge, when r intends to zero, 

x- and y-directed components intend to infinity. The order of the singularity, a , depends

on the wedge angle (j>. When <f> = 0 the minimum allowed value of a  is -1/2. When

(j> = 7t/2, a  is -1/3. The z-directed components intend to zero. The order is r 1/2 and rm  for 

<|> = 0 and tc/2 respectively. Thus a weight function which expresses the behavior of Ex 

and has a continuous derivative is given by

W(x) = (1 + 2x)~m  (1 -  2 * r1/3 = (1 -  (2x)2)~113 (3.39)

From the general orthonormality condition of Gegenbauer polynomials

1 V -  1

— J —  J(1 -  «2)V' T C^(u) C »  du = 5™

for a weight function like (3.39), an obvious choice for the basis term is the Gegenbauer 

polynom ial C]^(x)  [9].

Thus we expand the unknown fields in terms of a weighted set of the Gegenbauer 

polynomials:

f m(x) = Cl?(2x) (3.40)

where m =0,2,4,... for the even modes and m = 1,3,5,... for the odd modes. Plots of the 

first three expansion terms for the even and odd cases across the slot are given in Fig.3.4.

So that Ex(x, 0) and E z(x, 0) are expanded as
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FigureS.3 Conducting wedge.



Figure3.4 Amplitude plots of the first three basis terms.



EI (x,0) = W ( x ) l , X mf m(x) (3.41a)
m

E t(x,0) = W(x) 'Z Zmf m(x) (3.41b)
m

where the coefficients Xm andZm are the as yet undetermined amplitudes.

W ith such a basis set, the expansion functions §hn(x ) and §h(x,kx) are expanded as 

<M *) = X  p mn fmi*) (3.42a)
m

<C *(*.*,) = E />„,(*,)/„(*) (3.42b)
m

where the inner products P ^  and Pm(kx), evaluated across the half slot, are defined as

Pmn = < W(x) fm(x), §hn(x) >

1/2

= 1 W(x) f m(x) §hn(x) dx (3.43a)
o

Pmttx) = < W (x)fm(x), §h{x,kx)>
oo

^ W /m W  <1>aWx) dx (3.43b)
o

The evaluation of P ^  and Pm(kx) is given in [2 Appendix I]. Here the advantage of 

changing Ex(x, 0) to Ez(x, 0) can be seen again. Because all the admittance operators are 

expressed with ty^Ct) and <j)h(x,kx), only one set o f inner products is needed.

U pon substituting the series expansions for the fields in (3.37) and carrying out the 

integration, we obtain the matrix equation

X
LZJ = 0 (3.44)

This equation has a nontrivial solution when

det IYI = 0 (3.45)

3.4 A Simplification for the Even Modes



(3.44) is a general equation. It is sufficient to solve for (3, although the field 

amplitudes Xm and Zm cannot be found directly. For the even modes a further 

simplification was carried out [3]. In order to recover a scalar transverse equivalent 

circuit and obtain the field amplitudes, it is convenient to consider the fundamental 

transverse propagating mode in the slot, seen as a parallel-plate waveguide terminated 

by a short circuit a ty  =-h. This is incident upon a discontinuity (the transition between 

the two regions) and thus excites the radiation modes in the air region and the higher 

order nonpropagating transverse modes in the slot. In this manner, the fundamental slot 

mode can be isolated in (3.37) and all the other contributions lumped together to give

removed. Also, the quantity Y denotes from now on in this section the total admittance 

with the fundamental term removed.

Upon discretization (3.46) becomes

H z q  <1>Ao ( * )
(3.46)

where Y = Y S + Ya, and Y s is the slot admittance operator with fundamental term

Po
0 (3.47)

Rearranging,

(3.48)

M ultiply both sides by P j , 0T

(3.49)

However, from (3.14a) and (3.41a),
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P j - X  = £ l0

and so

(3.50)

~E~X(
20

P&, O' r - l Po
0

-l
(3.51)

The normalized admittance of the fundamental slot mode looking from y = 0 toward the 

short circuit is

H20

'X0
= - j  cot q o h (3.52)

Equation (3.51) represents the admittance o f all the higher order slot modes and air 

waves as seen from the interface. At resonance the total admittance seen from both sides 

of the interface must total zero. Therefore the equation for resonance is

- j  cot <7o h + 1 
1 

o 1 
i

Yu Yi2
-l 1

O
1

_Y21 y22_ 0

-l
=  0 (3.53)

When N  basis terms are used, T^ becomes an N  by TV matrix, Y x2 becomes A’ by A/-1, Y 2] 

becomes N - 1 by N,  and Y 22 becomes N - 1 by N - 1. The overall admittance matrix 

becomes a square matrix of order (2/V-l).

The elements of the admittance matrices o f the slot region occurring in (3.53) can be 

found from (3.35a)-(3.35c) to be

i— =---- x- coth I qn I h
(I'll )bn = - j  'I trk l  -  P2 1 — T T —  ^  p "

n ' Qn I
(3.54)

and so on, where

£ = 0,2,4,... 

k = 0,2,4,... 

£ = 2,4,6,... 

k = 2,4,6,...

m = 0,2,4,... 

m = 2,4,6,... 

m = 0,2,4,... 

m = 2,4,6,...

for Tn 

for T 12 

for T2i 

for Y 22.
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Corresponding expressions are derived from (3.36a)-(3.36c) for the admittance matrices 

o f the air region. The apparent pole singularity at kx = 0  in (3.36b) and (3.36c) is in fact 

com pensated by a zero of Pm(kx) there.

3.5 Computed and Measured Results

The hybrid modes of IDG are designated HEnm or EHnm according to the relative 

dom inance o f the TE or TM-to-y components, respectively. The subscripts n,m refer to 

the num ber o f half-wave variations across the slot and down the slot. For ease of 

m anufacture and availability o f equipment, the experimental prototypes were made from 

slots with two different cross-sections, i.e. 1.016x1.524 cm for HE0] mode supporting 

IDG , and 2.286x1.016 cm for E H U mode, for transition into X-band rectangular 

waveguide.

H aving solved for p, the basis amplitudes X and Z can be found from (3.48) for the 

even modes. Thus, the mode amplitudes of the field components given in (3.14) can be 

found as

£ „ = p I - x

E = -
f  \  

_1_

\ qn J

cot qnh («jc)P l-X  + ; p ( — ) P i  Z 
nn

£ „ = ( — ) P j - Znn

Hxn = (nn)
cot qnh

Hyn =

P P j - X  + yX
e,ko -  (nit)2

(n n f
)PJn ' Z

C/pp; - x + p j - z)

1 C° tqnh-{ - jq l  PJ-X + PP^-Z)

(3.55a)

(3.55b)

(3.55c)

(3.55d)

(3.55e)

(3.55f)
copo qn

Sim ilar results can be found for the components in the air region. For most purposes, it
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is sufficient to consider the fundamental approximation only so that X 0 is the only finite 

amplitude term. The expressions (3.55) are then considerably reduced.

The dispersion characteristics of several IDG geometries were measured. The 

comparison between the measured and computed results are shown in Fig.3.5 and 

Fig.3.6 for the HE0x and E H n  mode supporting IDG guides, respectively. In Fig.3.7 the 

dispersion curves for the even modes above the cutoff o f the X-band IDG are plotted, 

using two-term expansions.

The field magnitude plots of the fundamental HE01 mode taken across a transverse 

section are given in Fig.3.8. The field plots show that the fundamental mode is 

essentially TE with respect to y with the components Ex, Hy Hz. In the slot these terms 

dominate, the TM components are only excited in order to satisfy the boundary 

conditions imposed by the 90° edge. Also evident from the plots is the singularity due to 

the edge. The z-directed components, as expected, are not affected by the edge and show 

no singular behavior.

The measured loss of the HE0j mode supporting guide is 0.353 dB/m at 10 GHz and 

the (2-factor is 2929.4 [2]
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FigureS.5 A comparison of com puted and measured dispersion curves 
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Figure3.7 Computed dispersion cu rves for the even modes 
of an x-band sample of IDG  up to 40 GHz .



Figure3.8 The field com pon en ts  o f  the fundam ental H E 01 mode  
plotted as the m agn itude v a lu e s  over  the transverse guide section.
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CHAPTER 4

MODE COMPLETENESS, NORMALIZATION  

AND G REEN’S FUNCTION OF LSE MODES IN IDG

4.1 Introduction

The guided modes we found in the last chapter are sufficient to describe any guided 

field distribution in the IDG, provided the guide is uniform. They are not sufficient, 

however, to describe radiation phenomena. The complete set of modes of an open 

waveguide includes a finite number of guided modes and a continuum of radiation 

modes. Excitation o f the latter takes place due to discontinuities, particularly, when 

these are located close to the air-dielectric interface. Therefore, with a view to analyzing 

practical components in IDG, it is necessary to obtain a complete spectral 

characterization, inclusive of the continuum. Once the complete spectrum is found, it is 

possible to construct the appropriate Green’s function of the guide for use in the 

treatment of discontinuity problems. A mathematical difficulty arises at this point in as 

much as the spectral components need to be orthonormalized over the guide cross- 

section.

This trivial task in classical waveguide becomes non-trivial and tedious already for
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guides of inhomogeneous, separable cross section, particularly if a continuum is 

involved.

In the IDG, the problem is essentially complicated by the inseparable nature of the 

two-dim ensional cross-section, containing diffraction edges (the metal comers) at the 

interface between two distinct regions (the slot and the air region). For the one

dim ensional separable case (e.g. the multilayer slab), an elegant method, based on the 

transverse equivalent circuit interpretation and the formal properties of the transverse 

G reen’s function, can be found in a textbook like [1].

A solution for the two-dimensional, nonseparable, open case such as the IDG was not 

reported before the work that led to this thesis.

The analysis in this chapter will be developed for the even LSE(TEy) polarization, 

having Ey = 0 and Ex as the main electric field component. We will deal first with the 

question o f the normalization of the discrete spectrum in the same representation of the 

singular field over the slot aperture and then derive the orthonormalized continuum. The 

scalar Green function is subsequently obtained and applied to the scattering of a thin 

transverse dipole at the air-dielectric interface.

4.2 The Normalized Spectrum of the Slab Waveguide

If the effect of the metal corners of the slot could be ignored, i.e. the side walls were 

infinitely far removed from each other, the IDG would reduce to a dielectric slab over a 

ground plane. This structure is particularly simple, and allow us to study the spectrum 

and radiation properties of dielectric waveguide. It is therefore instructive to retrace the 

procedure involved in determining the normalized complete spectrum of the grounded 

slab, illustrated in Fig.4.1. A good discussion can be found in [1], [2] and [3].
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(a) b)

Figure 4.1 The metal-backed dielectric slab w a v eg u id e  
and its transverse equivalent circuit .



4.2.1 Relationship Between Characteristic Green’s Function and Eigenvalue 

Problem

The general Sturm-Liouville differential operator L may be written as:

L f ( y )  = [-7-(p (y) - ^ - ) - q ( y )  + h w ( y ) ] f ( y )ay ay

For the Sturm-Liouville problem the characteristic Green function g(y,y'’,X) is 

defined by

L g(y,y'\X)  = - 5 (y - / )  y x < y ,y '< y 2 (4.1)

subject to the boundary conditions

(p - j -  + 0 -1,2 ) g(y,yr>^) = 0  y = y i , i  (4-2)dy

The param eter X is arbitrary but so restricted as to assure a unique solution of (4.1)

Fig.4.2 shows a network schematization of the characteristic Green function 

problem. The voltage and current on this transmission line satisfy the non-uniform 

transmission-line equations with the addition of a current source term i ( / )  = -5  (y -  / )

~d ky(y)Z(y') l ^  (43a)

- d ^ j p - = j k y ( y ) Y ( y ) V ( y , / ) - 5 ( y - f )  (4.3b)

where Z(y) = 1/T(y) = for the case of a TE mode was considered. ky(y) is the
ky(y)

propagation constant. The corresponding second-order differential equation for V (y ,/) 

has the form

d 1 d , ( , q  p2 N 
dy n'(y) dy n'(y) v  (y - / )  -  - j  © M- 8 (y -  / )  (4.4)
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where p '(y )= -^ ^ - ,  e'Cy) = — are assumed. Comparing (4.1) and (4.4) and setting 
Ik) £0

£'00 = £r» M-'Cy) =1 we get the identifications

p(y)  = w(y)  = 1 q(y) = - e rkl  p2 = -X

v  ( y . / ) = j  © no s(y.;y'; *0 (4.5)

and the boundary conditions in (4.2) are rephrased by (4.3a) and (4.5) in terms of

J_ = j_p_dgjdy_
V copog

Since the configuration in Fig.(4.2) can be viewed as a cavity, it is physically 

manifest that the voltage response g will be finite and well defined unless the choice of 

parameter X is such that resonance can exist. In another word, for a fixed andy \ 2 at 

X = Xm, the corresponding voltage or current will be infinite, i.e. resonances will exist. 

Since the resonant condition X = Xm implies the persistence o f a response even when the 

source is removed, the functional form of the resonant solution satisfies the 

homogeneous equation. Thus, information about the desired eigenvalues of the 

homogeneous equation is contained in the singularities o f the characteristic Green’s 

function g, and the problem  of determining all possible resonances is directly related to 

the complete investigation of the singularities of g(y,yf\ X) in the complex ?c-plane.

The characteristic G reen’s function can be expanded as

Consequently, the termination admittances V , and are

(4.7a)
V co p

V co p
(4.7b)

g (y,y'\ k) = 2  am (y\ X) \\fm (y) (4.8)
m

where \\fm is the eigenfunction o f the homogeneous equation, i.e.
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d ^YmOO /  \ 1 /  \  (A Q\—  P —   q VmCv) = -Xw \ \ fm (y) (4.9)
dy dy

Substituting (4.8), (4.9) into (4 .1), we obtain

'Zam ( k - \ m)w\\ fm(y) = - b ( y - y ' )  (4.10)
m

Multiplying both sides of (4.10) by y rt(y) and integrating over y yields

b b
Z 1 am (k -  ^m) W v„(y) Vn(y) dy = - 1 ¥« (y) 5 (y -  y') dy
m a a

Orthogonality gives

an {X -X n) = - y n(y') 

therefore

* ¥*,00 VmOO / / ( 1 1 ,

g ( y . y r . X )  = - £  ----r— r  (4.11)
m=l ^

This representation of giy,yf\ X) highlights the existence of singularities in the complex 

>.-plane at the eigenvalues Xm. If (4.11) is integrated in the complex X plane about a 

contour c inclosing all the singularities of g, then an application of Cauchy’s theorem 

yields the following formal relationship

dX
- 2 ^  X _ K

= £v„(y)y.,C>0 = 5 ( y , (4.12)
w (y)

In the above discussion it has been assumed that the dimensions yi  a n d y 2 are finite 

so that cavity resonances, which occur for discrete values of Xm, characterize simple pole 

singularities o f g. If one of the dimensions becomes infinite, the discrete resonances 

coalesce into a continuous spectrum; in this instance, g(y,y';>u) possesses a branch

point singularity giving rise to the necessity o f introducing a branch-cut in the complex 

A.-plane to ensure uniqueness of g.
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4.2.2 Construction of Green’s Function

(4.9) is an expression of G reen’s function as a series of eigenfunctions. We will now 

develop a non-series expression for Green’s function. From (4.1) it can be seen that at

y =y ', —  p  =°° when and only when g is continuous and p  is a unit step, as 
dy dy dy

shown in Fig.4.3. When y&y' g can be written in terms of two solutions of the 

homogeneous equation, V (y) and 7 ( y ) , satisfying the required boundary condition at 

y i  a n d y 2 > respectively.

L V ( y ) = 0  y < y '  (p 4 ~  + a , )  V (y) I = 0  (4.13a)
dy 1 y-yi

L y<y) = 0 y > y '  (p 4~  + a 2) V(y)  I = 0  (4.13b)
dy 1 y-y 2

The appropriate form of the solution is,

t w  U f y ) ^  : y <y
^ ' y , ' X ) = \ A V V m  : y > /

df?The constant A must be determined so as to satisfy the condition p — = -1 , i.e.
dy

A p (V (y')V'(y)-V(y')V '(y)) | w  = - l  

Hence

V(y<)Vcy>)
g(y,y'-,X) = ---------~ - r ~ 4̂*14^

- p w ( V  ,7)

where

y < = min (y,y') 

y> = max (y,yO

w(V $ )  = v 7 ' -  7  V ' (4.15)

w (Y ,7)  is called Wronskian determinant of V ,7. It contains X as a param eter and has
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its poles at X = Xm . Since V , are linearly independent, the value of w is non-zero.

Multiplying (4.11a) by\?, (4.11b) by V and subtracting the resulting equations gives

d d r f  j f  d d *7 d , \ c\V — p — V - V — p — V = — (pw)  = 0 
dy dy dy dy dy

i.e. the value of the denominator of (4.14) is constant for all value of y and can be

evaluated at any convenient point yo in the interval y\  <y  < y 2. Normalizing V(y) such

that V(yo) = 1, i.e.,

«- V (y)
V ( y 'y o ) = V M

^ (y ,yo )  = - ^ \
V(y0)

and recalling (4.7), the Green function in (4.14) can be rewritten as

V7 (y<,yo)^(y>.3 'o) i \g(y,y'\ X) = -------------= ------------- (4.16a)
ycopY(y0)

w h e re ^ y 0) denotes the sum of the admittances looking to the left and right of y 0.

% o )  = y (y o )+ ^ (y o )  = l = ^ -  + ^ $ ^ -  (4.16b)
V (y0) v ( y 0)

The poles of g(y,y'\ X) in the complex X plane occurring at X = Xm , which implies 

that the existence of a solution \\fm of the homogeneous equation coincides with the 

vanishing of the total admittance of the equivalent network model.

In (4.16) simple poles in the complex 7,-plane are situated at the zeros ofV (y0), Xm. 

The behavior of the denominator in the vicinity of a typical zero at Xm is given by the 

Taylor series expansion



where

a t ^ y o ^ - ^ C y o A ) !

From (4.12), (4.5), (4.16a) and (4.17), we obtain the following delta-function 

representation for the r£-m ode problem,

l i '( y ) 5 ( y - / )  = - T ~ $  g (y,3^; X.) dX = £  Ym(y) VmOO 
lKJc

1 jfy v  (y,y'\X)V(y,y'\X)  ^

271 j  c j  copô y  o » ̂ )

V  (y , y r \  Xm) \ ? ( y , y ' ;  Xm) \  r d \
~ 2 * l j \  T-rr

0 - ¥ ( y o , K )  2Kj‘ X ~ K

= £  V {y,yr' X̂ <y'y ' ’ Xm) V = j t  (4.18)
m copo-^r-^O'oAm)

H ence, the normalized mode functions \j/m(y) are given by:

F(y,y0;?tm) , A i m
Vm(y) = - J =  -  —  C4-1^)

VcOPo(^m)^(yoAm)

4.2.3 Normalized Mode Function for the Slab Guide

The problem of finding a complete orthonormal set o f functions has been reduced 

system atically to determining the solution of the corresponding inhomogeneous 

differential equation (4.1), completely investigating its singularities, and then inferring 

the desired representation by carrying out a contour integration in (4.12) about all the 

singularities o f the characteristic G reen’s function in the complex ^.-plane.

The normalized mode functions for the slab guide will now be investigated. If the 

expansion o f the field takes place in terms of the transverse wavenumber in the air
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region, ky, taken as an independent quantity, the wavenumber in the z-direction, p, is 

determined by:

$l = k l - k 1y (4.20)

The completeness of the TE spectrum of the slab guide can then be stated as:

oo

1 X 0 0  VjOO + \dky  v(y \ky) \jf(y'\ky) = 5(y - / )  (4.21)
5 o

where the summation is over the finite number o f surface waves, the integral over the 

continuum and the orthonormalization is such that

oo

\dy VftOO vj/r(y) = hsr (4.22a)
o
oo

Jv jOO V(y;*y) = °  (4.22b)
0

In order to satisfy the boundary condition on Ex ~  y, the two independent solutions 

of the transverse transmission line equation can be written as:

-  (423)
sin qh

where

q 2 = erk l  -  p2 = k] + (er -  1) k l  (4.24)

satisfying the boundary condition for y < 0 and

V(y) = e~jkyy y >0 (4.25)

such that V (y) = V̂ (y) = 1 aty =0. We have then:

V (y-,kh\?(y'-,kh
g = -  y-  yJ (4.26)

y co p o u ^ )

W here V i s  the total admittance of the transverse equivalent circuit of Fig.(4 .lb), 

given by
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co jio ky — jq cot qh 

By se ttin g ^  = 0, we obtain the eigenvalue equation for the TE-mode

(4.27)

tan qh = j — (4.27b)

It is noted, for future use, that, with the above choice of voltage amplitudes, 

represents the complex power of the transverse equivalent circuit.

It can also be seen that the occurrence o f a pole of g in the complex ky -plane at 

k y = k y S, say, coincides with the vanishing o f the total susceptance of the transverse 

equivalent network. It is then possible to make the identification

V ( y \ k 2ys)
Vs(y) = i--------

o
v

1/2
:y < 0 (4.28)

and similarly fo ry  > 0, yielding the well known expression for the 7E-surface wave of a 

grounded slab.

sin qs(y + h)
Vs(y) = As— — — 7—  3 ^ 0sin qsh

=Are y >0

(4.29a)

(4.29b)

with

\l/2

h + —
sin qsh

v Is '
ys + qscot qsh = 0 (4.30)

A substantially analogous procedure leads to the determination of the com ponent of 

the continuum \j/(y \ky). The only difference between the surface modes and the radiation 

modes is that we no longer require the fields to decay exponentially outside o f the slab. 

For the continuum it is not sufficient to allow ky of (4.25) to become real. Real values of
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ky result in traveling waves outside the slab. It is impossible to satisfy the boundary 

conditions with traveling waves. Standing waves are needed to satisfy the boundary 

value problem. Adding to it another traveling wave moving in the opposite direction 

provides us a standing wave.

Let us introduce in (4.27) the following quantity of convenience:

cot a  = —  cot qh (4.31)
ky

and substitute (4.31) in (4.26). The resulting expression for a component of the 

continuum corresponding to the value ky, 0 <ky < «  of the y-directed wavenumber is 

then

V(y;*y) = ^2/rc sin a  s*~ ^  y < 0  (4.32a)
3 sin qh

= V2/;c sin (ky-y + oc) y > 0 (4.32b)

which satisfy implicitly the orthonormalization condition (4.22). It is noted that the 

angle a  above represents in fact the phase shift a ray with propagation constant (£•>,,(3) 

undergoes upon impinging on the slab and reemerging from it.

4.2.4 The Range of the Guided and Radiation Modes

We have discovered that dielectric waveguides possess a discrete spectrum of guided 

modes and a continuous spectrum of radiation modes. We must, however, investigate the 

range o f possible eigenvalue (propagation constants) of the two sets of modes.

From (4.20) and (4.24), for discrete modes ky is imaginary, q is real. That limits the 

range o f (3 to the following interval
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kl  < p? < zrkl

Radiation modes are obtained for 0 <ky <°°. The range o f possible (3 values for the 

radiation modes is composed o f two parts. Corresponding to 0 < ky <k0, we obtain

0 < J3 < &o

This range o f p describes propagating radiation modes. Corresponding to k0 <ky < 

imaginary values of p are obtained.

Pr=-ilPrl  

0 < I pr I < °°

This range o f p corresponds to evanescent radiation modes.

The ranges o f the possible values of p for different modes are shown in Fig.(4.4a). 

The corresponding ranges on the Vplane ( -p 2-plane) and ^,-plane ( £2-plane ) are shown 

in Figs.(4.4b) and (4.4c), respectively, where X = X + kl = k l  -  p2 =ky .

The integration in (4.18) is represented diagrammatically in Fig.(4.4c). It may be 

seen that the contributions to the integral of the Green function arise from a finite 

number o f poles corresponding to discrete, "surface wave", modes, plus an integral 

along the branch cut, taking a more general form of equation (4.18)

g(y,y^; X)dX=  -5-ft 
27ij c w (y)

= Z  Vm(y) VmOO + J \|/(y;X)y(y;X)dX (4.33)
m branchcut

Having extracted the contribution of the discrete poles, there remains to evaluate the 

branch-line integral. This integral, lc say, may be written as:
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27i j

r 0 . . V
J + 1

oogJ° 0
v y

s O w  k) dX

, - J  0

— I (g C ' . - k 2o) - g ( k e - > 2K - k 2o) )dX
2kJ

, - j o

= - —Im J #(>•,/;£-&§)dX

= - —Im J kyg ( \ \ y \ k l  -  k l ) d k y
K n

Substituting (4.16a) into (4.34), we obtain

Ic = — \ky Re 
7t n

v  (y<-yo)^(y>>yo)

^ % o k 2y)
\

oo

= J \|/(y,^) \\f(y',ky) dky

d L

(4.34)

(4.35)

4.3 Normalization of the Discrete Spectrum of the IDG

We are now in a position to generalize the previous procedure to the two 

dimensional case such as IDG The unnormalized hybrid discrete modes were derived in 

[4] by means of the Transverse Resonance Diffraction method (TRD). We will now 

proceed to consider their normalization in such a manner that

(4.36)

For a relatively deep slot, we are using LSE description. As mentioned in Section 4.1, in 

this case Ey = 0. The fields then can be described by means of a magnetic Hertzian 

potential
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n* = y V /,e ‘jP2 (4 -37)

where y is the unit vector in the y-direction. From (4.37), the fields are given by

E = - j  to |io V x Uh (4.38a)

H = zrk20 FU + V V n* (4.38b)

or, componentwise, omitting the propagation factor e~^z

Hx = dxdy\\fh (4.39a)

Hy = (d^+erkl)\ \ fh (4.39b)

Hz = - j $ d y\\(h (4.39c)

Ex = cojio (3 y h (4.39d)

& ii o (4.39e)

Ez =-ycopo dx \\fh (4.39f)

The distribution of Ex at the interface > = 0  was expanded in terms of the even 

ordered Gegenbauer polynomials [5]

Cj,'6(2x)

orthogonal in the range 0 <x < ■— with respect to the weight function 

W ( x ) =  ( 1 - ( 2 x )2 )~113

which implicitly satisfies the edge condition at the 90° corners, thus ensuring rapid 

convergence. We had, namely, the expression:

2(M-1)
y s(x,0) = W(x) 2  Xm C "6(2x) (4.40)

m=0

The M -dimensional vector X resulted, within an undetermined constant, (its norm), from 

the application of the transverse resonance condition in the form o f a diffraction integral 

(TRD). Owing to the convergence properties of (4.40), in fact, often just a single term 

suffices. Now we seek to determine that constant so that the normalization condition

(4.36) is satisfied.
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The field at the interface can also be expressed in terms of the discrete Fourier 

components in the slot as

V ,(*.0)= (4.41)
n =0

where,

<J)„ = 5„ cos nnx 

where 50 = V2~ and 5„ = 2 when n > 0 and

1/2

I 0m 0n dx — 5 ^ .
0

By orthogonality over the slot, we have

2(Af-l)
£„ = z  Pm t Xm = PTn -X  (4.42)

m=0

with

1/2

P™, = 1 WOO Cji6(2x) M x )  dx (4.43)
0

5 n ( - l ) m/2 7C r ( m + j ) 7 m+i/6 («7C)

2 m ! r(l/6) (nn)116

as given in [4].

The field anywhere in the slot can therefore be expressed as

V*(*o0 = X  En 0*00 Xn(y) (4.44)
n =0

sinqn(y + h ) «,
where %n = ----- :------7— » d  = ^ 0  -  P -  («rc)sin <7„/i

The field at the interface can also be expressed in terms of the continuous Fourier 

components in the air region as
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\\fs(x, 0 )  =  J dkx E(kx)^2hz c o s  kx
o

From which

E(kx) = PT (kx) • X (4.45)

and the elements of the vector P are given by

1/2 ____

Pm(kx) = \ w ( x )  C "6 (2*) J lin  cos kxx dx (4.46)
o

Pmn

n% — kx as (4.43) is valid for any real n.

The field any where in the air region can then be expressed as:

% Ix,y ) =  \ d k ^ 2 m  cos kxx e jk,y PT(kx) ■ X (4.47)

It is noted explicitly that for a discrete mode, the value kjs =k% -  (3? is fixed by the 

transverse resonance condition [4]. As (4.47) is a Fourier expansion in kx, taken now as 

an independent variable, we must choose ky such as

kyS = V k(S — kx kts ^ kx

= -W  kl  -  ki

The amplitudes En,E(kx),Xm can be interpreted as voltages in the the equivalent 

network of Fig.4.5 as indicated. This network allows us to write by inspection the total 

transverse admittance matrix , as seen at the reference places of the interface, in the 

representation of (4.40). Looking into the slot region, this is elementwise:

G4k) y  km = - j  Z  COt 4nh Pkn Pmn (4.48a)
n

or in matrix form
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conoY = - j  ' £ q n cot qnh Pn P'
n

Similarly, looking into the air region,

(4.48b)

co|V ?= j  ky(kx) P(1^) • P7(*x) dkx (4.49)

It is now recalled that the normalization factor in the denominator of (4.16a) is ju st y'copo 

times the complex power for unit voltage at the reference plane y = 0 in the one-port 

situation o f Fig.(4.1b)

In the multiport situation of Fig.(4.5), where the voltage at the reference plane are 

expressed by the vector X, the equivalent is given by the scalar

(4.50)p  = ;cd Mo X7 • Y • X = G)|ioXr B X 

where

V = Y  + V  =

By partial differentiation with respect to ky at ky = k2s we obtain the actual normalization 

factor of the discrete modes

n  = -2 e .
'  dk2y

*2 =copo X7 dB
Sky

fc2 -X
'■ys

(4.51)

OO 1 •

X  — {qnh cosec2 qnh -  cot qnh)Bn • P 7 - j )  -y ^ P (kx) ■ PT(kx)
n=0 <ln

Upon use o f (4.43), (4.47) it is straightforward to check by direct quadrature that the 

above expression just equals

Ns = £  El  S t  H I.  cot qnh) + J d f c ^ o y - ^ -  (-jky) (4.52)
n uky 0 vky

= \ \ v s ( x , y ) d x d y
s

where it is noted that the derivative o f the susceptance for the n-th or kx -Fourier 

component is, in fact, identical to the integral o f the square of the y-dependence.
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In conclusion, if the as yet unspecified norm of X is chosen so that Ns = 1 in (4.51), 

the orthonormalized distribution of the discrete mode is given by (4.43) fory< 0  and by 

(4.47) fory  >0.

4.4 Determination of the Orthonormalized Continuous Spectrum of the IDG

Unlike the discrete spectrum, derived previously in [4] within a normalization 

constant, Ns, which could always be determined by direct quadrature, the continuum was 

not reported before [6] was published. It constitutes, in fact, an example of a two- 

dimensional, non-separable problem which can not be reduced to a uniform spectral 

domain description because o f the change of cross-section at the interface.

As the cross-section is two-dimensional, it is apparent that an expansion of the 

continuum can be written in terms of two independent wavenumbers, the third being 

fixed by the wave equation. We choose (kx,ky) = k , as the two independent quantities 

and, correspondingly, develop the field in the air region in terms o f partial waves of the 

type

V2/71 cos kxx V2/7t sin (ky y + a) (4.53)

which highlights the correspondence with the slab case as kx —> 0. It is noted, however, 

that the ’phase shift’ a , is now a function of both kx and ky because of the 

nonseparability caused by the presence of the comers.

We require that the components of the continuum satisfy the orthogonality 

conditions:
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J j v ( * , . y ; * * . ky) \\f(x,y; kx\  ky')dxdy =  h  (kx -  kx ) • §  (ky -  ky )
s

®5(k, -k/ )  (4.54)

In the treatment of the discrete spectrum, we found it convenient to expand the field at 

the interface in terms of discrete basis functions individually satisfying the edge 

conditions at the metal corners. This is not required of individual components of the 

continuum, but only of the total field. Therefore in consideration of the partial waves 

expression (4.54) we now find it convenient to expand the field at the interface directly 

in terms of the x-dependence of the partial waves, i.e. a continuum in kx. This fact 

imposes a generalization to the concept of the discrete transverse admittance matrix Y 

we met in the previous section as follows.

The transverse equivalent circuit appropriate to the new situation is shown in Fig.4.6. 

The discontinuous interface acts as an ideal transformer coupling slot components with a 

different wavenumber nn  and partial waves in air with different wavenumber kx.

Consider an outward traveling partial wave in the air region with wavenumber k, and 

Fourier amplitude E(k,):

\?(x,y; k,) = £ (k f)V2/rc cos kxx e~jkyy (4.55)

correspondingly, there exists a standing wave in the slot expressible as

V (x,y; k,) = £  Qn(kx) $„(*)&,00 (4.56)
n=0,2,...

the scalar continuity condition is replaced by

V7(^.0;k,)=V(j:,0;k,) (4.57)

which allows the coefficients Qn in (4.56) to be determined by orthogonality of the <J)„'s 

over the slot:
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Qn(kx) = 6, (-1 f a sin , ;  E(k,) (4.58)
2 kx -  (rni f

Also from the equivalent circuit o f Fig.4.6, the susceptance looking into the slot, as seen 

from reference planes at y = 0+ is given by the parallel combination of the transverse 

transmission lines, corresponding to the various value o f n in the slot, terminated by a 

short circuit at y = - h, as seen via the transformer Q, namely

(BHo B (kx,kx') = - Z  qncot qnh Qn(kx) Qn(kx') (4.59)
n

In the air region, two different components k x  and k x  do not couple and a component (a 

ray) with y-directed wavenumber k y  propagates in the positive y-direction with a 

characteristic admittance £y/(D|Uo. These facts imply that the admittance is a delta 

function o f k x  with amplitude k y ,  namely

como ~3(kx,kx') = - k y h(kx -  k / )  (4.60)
1

Let B(kx,kx') = B + B . If £(k,) is set equal to unity in (4.55) the complex power (times 

-ycopo) corresponding to the component k, = (kx,ky) is then given by

oo
p ( k,) =  (OHo £(k,) \ B ( k „ k s ' )  E ( k x ’ , k y )  d k /

0
OO

=®Ho lB(kx,k,’)dkx' (4.61)
0

Hence, from (4.59) and (4.60)

P = y  ky -  E  qn cot qnh ^ 2  8n Qn{kx) (4.62)

as

\Qnikx) dkx =4Td2 8n
o

It is again useful to define quantity of convenience a ( k x , k y )  such that
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/ n

using (4.63) in (4.26), we have then

(4.63)

= \j/(x,y; k,) \|/(* ',/; k,) (4.64)

from which the components of the continuum can be identified as

\|f(x,y ; k,) = V2/7C sin oc(k,) £  Qn(kx) <J>n(x) %„(y) : y < 0
n

(4.65)

It can be checked by direct integration that the orthonormalization condition (4.54) over 

the cross-section is indeed satisfied by (4.65) (See Appendix 4.1).

4.5 T he G reen  Function of the IDG

Having constructed the complete, orthonormalized spectrum of the IDG for Ex 

polarization, we are now in a position to formulate its scalar G reen’s function. The latter 

is a prerequisite for the solution of discontinuity problems.

The scalar Green’s function G ( r - r ')  is the solution of the inhomogeneous wave 

equation with a delta function source located at r', namely

with the boundary conditions appropriate to Ex. This should not be confused with the 

two dim ensional g used in section 4.2, which refers to the transverse wave equation, in 

the process of determining the spectrum of the guide.

V2G + z rkl  G = 5 (r -  r') (4.66)
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In as much as the normalized mode spectrum is now known, the Green function, 

solution of (4.66) is found by the classical method of expansion in eigen modes [7], right 

and left of the source function (z < z and z > z ) .

By imposing the continuity of G at the source point z =  z and by condition that its 

derivative be discontinuous there by the unit step, we recover the classical expression for 

the eigenmode expansion of the Green function valid at each side of the source point:

G(r.r') = v , (* ',/)  r ' 13,12*2' 1 (4.67)
s 2J Ps

the summation being over the spectrum. Referring in particular, to a waveguide with a 

single bound mode and making explicit the contribution of the continuum, (4.67) can be 

rewritten as

G (r,r') = y,(*,y) y , (* ',/)  e ;pjlz z/|
W s

oo oo ’ JJ | 2 —£ / |
+ \ d k x \d k y 6- k /) V(x',y'\  kf) (4.68)

2 7Po o

where (3 = •

The evaluation of the double integral in the wavenumber space is conveniently 

carried out by trigonometric transformations, as illustrated in Fig.4.7. These are

(3 = &o cos r) (4.69a)

k,= k 0 sin r| (4.69b)

kx= kt cos 0 (4.69c)

^ = ^ s i n 0  (4.69d)

owing to (4.69), we have

dkx dkv k,dk, dQ 
— — -^  = ------  —  = k,dr\ d$

Regarding the path of integration in the r| and 0 planes, in as much as we have chosen
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Figure 4.7 Trigonometric decom position  o f  the w avenum ber.



expansions in terms of kx,ky real and such that 0 < kx,ky < 0 is a real angle

0 < 9 < —
2

The integration in the complex p-plane, however, runs over the real interval

0 < R e p  < y ,  1m p = 0 

and then over the imaginary interval:

Re r| = y , 0 < Im p < °°

If the non-radiative continuum, corresponding to kt > k {) is neglected, then so is the 

contribution of the latter interval and p is a real angle

o s n < f

The above trigonometric transformation is in fact a preliminary to the evaluation of the 

far field radiated by a dipole.

4.6 Scattering by a Small, Thin,  Transverse Dipole on the A ir-D ielectric Interface.

The transverse electric field at the air-dielectric interface y = 0, is near its maximum 

value. The interface also constitutes the most accessible plane o f the guide. This is 

therefore an ideal location for a source, such as a dipole, placed across the slot aperture 

or for a discontinuity, such as a metal strip or disk, with a view to realising circuit 

elements or a leaky wave antenna. As an example of application of the Green 

function(4.68) we shall therefore consider the scattering by a small, thin transverse 

current element, representing an independent source of an induced one, located at z = 0, 

sufficiently thin and small to be representable as
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J{x,z) = / 0 5 (z) 0<  Ul <1/2

= 0 //2 < IjcI (4.70)

with constant J 0. The scalar G reen’s function (4.68) is that pertaining to an x-directed 

electric field distribution assumed as the source of the e.m. field. If the source term is 

constituted by an x-directed electric current J, then the electric field Ex is related to G 

through the x-component of the vector potential A, given by

i a
Ax{r) = -  |io j  G(r;x' ,0,0)J(xf)dxf (4.71)

-in

and the resulting scattered field is 

Esx = - j  co Ax +  ----- ! Ax (4.72)
J (0 P o£ r£o  dx

112 32
= jo>Ho 1(1 + — y  4 t ) (4.73)

-112 M  0 °x
f

nJ2 jU 2/ \ i w ̂  Jw
— lz 1 + J dT[ j d$ kQ sin p \fr(^,y; p,0) D(p,0) e~jk° cos711 

P* o o

where

i _  J !
£rkl  dx‘

\j/f = (1 + — y  —y )  V, (4.74a)

1 52y (x ,y ;p ,0 ) = (l + ---- - —y )\|/(x ,y ;p ,0 ) (4.74b)
£r&0 °x

which can be evaluated directly from (4.44), (4.47) and (4.65) according as y < 0 (slot 

region, where £r = 2.08) o ry  > 0 (air region, where er = 1).

In (4.73) we have

1,2
Ds = 2 J d x 'y ^ .O )  = X0 /(l + (2-)2) (4.75)

0 i

using the expansion (4.40) with a single term, and
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£>(71,0) = 2 j \j/Cv\O;ti,0) dx
o

IcqI
sin (sin r\ cos 0 ——)

(4.76)
K k q sin Ti cos 0

where

£  Vtc/2" 8„ <2* qn cot qnh

(k0 sin 71 cos 0 )2 -  (nn)2

k0 sin r| cos 0

(4.77b)

(4.77a)

(4.77c)

In spite of its apparent complexity, the double integral (4.73) is in fact amenable to 

straightforward numerical integration. M oreover the trigonometric form of the integrand 

lends itself naturally to the evaluation of the far field by the saddle point method.

4.7 Far Field Pattern of the Dipole. Excitation of the Fundamental Mode.

The evaluation of the far field is effected by going over to cylindrical coordinates in 

the radiation integral in (4.73), as shown in Fig.4.8:

x = R cos y 

y = R sin y

Upon using the symmetry of the integrand with respect to 0, the radiation integration in 

(4.73) can be rewritten as

so that

kx x  + ky y = kG Rs'm r) cos (0 -  y) (4.78)
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;co[io
471

nJ2 tc/2

J 0 \  dr | J d0 &0 sin r\ (1 -  sin2r( cos20) D(r|,0)
0  —71

■ e ~Ja • c ~jk° Rsm n cos (e “ Y) ^  7 9 ^

there is no pole in the integrand, so that when k o £ » l ,  by using the saddle point method 

(see Appendix 4.2) we obtain

E i  = -
. 9  r \  /  ^  \  - i a ( n J 2  y )  ~ j^ o  R sin y D(— , y) e '>e

2 R 2

the radiation pattern is then given by

/ ( Y) =
F*(Y)
£*(tt/2)

= sin y D (ti/2, y) 
D  (tc/2, 7t/2)

From (4.76) and (4.77), we deduce

k0l
sin (— cos y)

£>(7i/2, y )  = — sin a(7i/2, y ) ---------------------
n k o cos y

D (tc/2, ti/2) = —
7C

hence, the resulting radiation pattern is:

/ ( Y) -

V
—  sin y £>(7t/2, y )  
21

(4.80)

(4.81)

(4.82a)

(4.82b)

(4.83)

showing the influence of the IDG geometry on the radiation pattern while sin2 y 

represents the usual pattern of a dipole in an infinite space. The radiation pattern is 

plotted in Fig.4.9 for various value of k0l, 11 a.

The dipole also excites a forward- and a backward- traveling wave in the 

fundamental mode, whose amplitude is determined by multiplying (4.73) by \\fs and 

integrating over s. This is
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A t  = A s = - ^ L  j Q dx dy (4.84)
Pi- i

cono , Ds 
“  2  0  f c

where we have neglected weak overlapping terms of \jrs with \j/ (radiation resistance ) 

02
and — — \|/5 (coupling different Fourier components in the slot). 

dx

In the above / 0 may be the amplitude of an independent source, say a dipole, or that of 

an induced one, say the current induced on a metal strip by the fundamental mode \j/4. 

itself, incident with unit amplitude. In the latter c a s e , /0 is determined rigorously by the 

condition that the total field on the metal strip vanishes.

Within the scope of small dipole approximation adopted in this section J q =Hzs and 

again neglecting second derivatives with respect of x, i.e. by assuming the propagating 

mode to be pure TE rather than LSE and separable, and only retaining the contribution of 

the slot region, we further obtain

J o = ——  Z  cot qnh P l n (4.85)
n

Hence by substituting the above approximate amplitude in (4.84), we can identify A~ 

with the reflection coefficient r  of the metal strip, i.e.

£<?/» cot qnh P ln
r  = A- = ---------— ---------- l (1 + (//3) ) (4.86)

Pj

which is valid for thin strips l /a < 1. When two identical dipoles are located a quarter 

wavelength apart, cancellation of the overall reflection coefficient occurs. This effect is 

illustrated in F ig.4.10, showing the magnitude of the reflection coefficient versus 

frequency for various dipole lengths, computed from (4.86) by elementary network 

analysis. The spacing between the two dipoles (0.6 cm) is such that f 0 =9.875GHz 

corresponds to a quarter wavelength in the guide.
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A p p e n d i x  4 . 1  D i r e c t  C h e c k  o n  O r t h o n o r m a l i t y  o f  t h e  C o n t i n u u m

We want to verify the condition

JJdr dy \|/(x,y ;kz) ;k /) = 5 (k, — k,') 

is satisfied by direct integration.

Define by !\ the integral over the slot cross-section. This is given by 

1/2 0

I \ =  \  dx \ d y %  Qn{kx) Qn(kx') sin a  sin a '

2 sin<7„(y+/z) s m q n' ( y + h )
Qn(x) ( x ) --------- :------ ---------- ■ „  T . —

k sin q nh sin<7„ h

where

a ' = a (kz ',ky' ) ; q \  = (er -  1) k20 - k 2 ~ ( n  n f  

By orthogonality of the and integration over y, we have

/i=z Q n ( k x )  Q n ( k x ' )  ■ -

sina sina' 1
sm  qnh sin qn'h  k

1 sin (qn -  qn') h sin (qn + qn') h ^

Qn Qn

2 sin a  sin a '

Qn Qn

n k f - k t  

In the air region, we have

2  ̂—  Z  Q n ( k x )  Q n ( k x  ) (</„' cot qn'h -  qn cot qnh)

oo oo

12 = \dkx \dky— cos kxx cos kx x — sin(^y + a) sin ( k' y + a ') 
0 0 K K

= 5 ( ^ - 0 5 0k y  -  k y ' )  -  —

sin ( a  -  a ')  sin (a  + a ')
ky + kyIf   If 'v Ky Ky

= 5 ( k x -  k x )  

Satisfaction of (A4.1) implies

f  \
* 2  sin a  sin a ' . , , . .5 ( k y - k y ) ~ ------ J-j--- - -;2- - ( k y  COt O. -  k y  cot a)

TC kly - k y
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/ ,  + / 2 = 5 -  kx') 5 (ky -  ky') (A4.5)

If the second term in (A4.4) equals / ], this is indeed the case. It is now verifiable that 

(A4.5) holds provided a  is chosen such that

ky cot a  5 (kx -  kx') = Y.Qn(kx) Qn(kx ) qn cot qnh (A4.6)
n

Integrating with respect to kx from 0 to °o, we recover

k y  cot a  = Qn(kx) qn cot qnh (A4.7)
n

which is just our definition (4.63) of a.
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A p p e n d i x  4 . 2  T h e  E v a l u a t i o n  o f  ( 4 . 7 9 )  b y  U s i n g  t h e  S a d d l e  P o i n t  M e t h o d  ( S P M )

The SPM is applicable, in general, to the integrals of the form:

b 2
f  (Z)= \ g ( t ) c zhU)dt (A4.8)

b\

where z is large and positive. The result of (A4.8) by using the SPM is:

f  (z)~ i\l2x/a z g ( t0) e (A4.9)

where

h'(t 0) = Q (A4.10)

h"(t0) = a e jO° (A 4 .ll)

There is no pole in the integrand of (4.79), moreover, k Q R is large and positive. 

Therefore, we can use the SPM to evaluate the double integral. If we use the SPM over 

0 first with r| as a parameter and then use it overr|, we find:

0O -  Y (A4.12)

r|o-TC/2 (A4.13)

Substituting (A4.12), (A4.13) and the corresponding coefficiency into (4.79) yields 

(4.80).
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CHAPTER 5

EQUIVALENT NETWORK OF TRANSVERSE DIPOLE ON IDG 

APPLICATION TO LINEAR ARRAY

5.1 Introduction

Inset dielectric guide (IDG) is an alternative to Image Line, retaining most o f its 

advantages without its main disadvantages. In particular, it is possible to realize low-cost 

leaky wave antennas with very pure polarization properties in IDG by laying thin metal 

strips (dipoles) on the air-dielectric interface.

The scattering properties of a single thin metal strip were analyzed in the previous 

chapter where the edge singularities were taken into proper account. In this chapter, a 

variational expression for the equivalent circuit of the radiating dipole will be derived 

and this information will be applied to the design of a tapered linear array by network 

methods. The array was built and tested and its performance was in excellent agreement 

with the theory.

-5.1 -



5.2 Feasibility of IDG Leaky-Wave Antenna

This work was inspired by the previous successful realization o f integrated leaky 

wave antennas constructed on a dielectric waveguide [l]-[5].

The possibility of realising low-cost, easy to fabricate, relatively high-quality 

antennas of the leaky-wave type based on the IDG configuration was the object of a 

feasibility study in [6]. It is very easy to lay thin, transverse metal strips on the air- 

dielectric interface, as shown in Fig.5.1, which act as dipole radiators. The operation 

principle is as follows: in the fundamental mode the main com ponent of the electric 

field is x-directed and is not far from the maximum at the air-dielectric interface. 

Induced currents are therefore easily set up in the strips without twisting of the field 

lines, as is the case in microstrip patch antennas and image line antennas, operating in 

the fundamental LSM-mode. The strips in turn act as x-directed dipole radiators.

In order to verify feasibility, a 12-element linear array was coarsely designed and 

tested. As shown in Fig.5.1, the reflection due to the dipoles in the feed waveguide can 

be reduced by pairing two dipoles at a quarter wavelength apart, so as to achieve 

negative interference of the reflected wave, as shown in the theoretical curve of Fig.4.10 

for a single pair of dipoles.

Constructive interference (array effect) is obtained by spacing each pair a guided 

wavelength apart. This is in accordance with well known design principles in the 

literature.

The launcher is matched by tapering the dielectric into the IDG, as shown in Fig.5.1. 

To achieve an approximate uniform amplitude distribution the lengths o f the dipoles are 

tapered. To a smaller extent, the widths of the dipoles can also be adjusted.

Experiment took place, taking advantage of a H ewlett-Packard automated
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microwave network analyzer capable o f operating up to 26.5 GHz, as well as a full size 

anechoic chamber. For ease of manufacturing and measurement, we built a prototype at 

x-band (10 GHz).

The swept frequency reflection and transmission measurements were carried out on 

a Hewlett-Packard automated microwave network analyzer. The reflection is shown in 

Fig.5.2a. In Fig.5.2b, the transmission coefficient of the array (lower trace) is compared 

with that o f the same length of IDG without dipole (upper trace). It can be seen that, at 

midband, the difference between the two traces is at least 10 dB. The measured patterns 

for the main polarization is shown in Fig.5.3 (upper trace). For a 9 \ q long array, a half 

power beamwidth of about 7° is achieved, which compares very favorable with the 

performance o f a slotted waveguide antenna of the same length. The highest sidelobe 

level o f (-12.7 dB) is close to the theoretical value o f -13.5 dB for an in-phase array of 

uniform amplitude.

The lower trace in Fig.5.3 shows the cross-polarization. It can be seen that cross

polarization component is at least 23 dB lower than main lobe level.

For any open structure, the discontinuity occurring at the junction of the close guide 

(launcher) and the open guide (under test) excites higher order modes and causes 

reflection into the close guide and radiation into the space. Radiation from the launcher 

usually affects the pattern seriously. However, in this case, the discontinuity is relatively 

weak, and the effect of the launcher on the pattern is relatively small, as can be seen 

from the difference between LHS and RHS radiation pattern. This is because the field 

distribution o f the fundamental mode in IDG is similar to that in rectangular waveguide.

This experiment showed that the metal strip IDG antenna offers promise as a low- 

cost, high quality microwave, millimeter wave antenna with good match and pure 

polarization properties.
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5.3 Equivalent Network of a Thin Transverse Dipole

A fter this successful feasibility study, we were motivated to derive the equivalent 

network o f the discontinuity introduced by the dipole so as to realize a rigorously 

designed aperture distribution of a linear array. We will describe the discontinuity by a 

lum ped element on an equivalent transmission line circuit which gives rise to a reflected 

and a transm itted wave of amplitudes r  and T respectively. Since for a monomode 

propagating waveguide we are only interested on the effect produced on the surface 

m ode, the detailed nature of the diffraction field around the discontinuity is not required 

at this stage.

F ig.5.4a illustrates a metal strip of length 1 and centered at x=0. The strip is assumed 

to be perfectly conducting and of negligible thickness in the y and z directions. The 

solution to this problem will be formulated in terms of a variational expression 

involving the current on the strip. Since the strip is thin, and for a TEy polarized 

m onom ode propagating guide Hx is negligible, the current is directed along the x axis 

only. The scattered field in the guide may be evaluated in terms of the currents on the 

strip by using the Green function given in Chapter 4. The scattered field is thus given by

From the distribution of Ex, we know that the second derivative of G is negligible, if 

the strip is not very long. The total field Ex in the guide is the sum of the incident and 

scattered field and must vanish on the perfectly conducting strip. The resulting integral 

equation for the current distribution J{x) is therefore:

)G(x,xf)J(xf) (5.1)

E lx + Esx = y s(x, 0)
1/2

+ )copo J dx'G(x, xf)J(xf) = 0 on strip
-in

(5.2)
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For a monomode guide at y = /  = 0 (air-dielectric interface) and for z = z -  0, (thin

dipole), the following simplified form is valid

G (x,x') = y'copo ('2 ^ _ V*(*’ °) VjC^.O)

oo oo

+\dkx \ d k y - ^ r  \\f(x, 0) \ |/ ( / ,0 ) ) (5.3)
o o 4/P

where tj/jCt.y) denotes the normalized distribution of the discrete IDG mode with 

propagation constant p5, \j/(;t,y) that o f a continuous component with wave numbers 

kx, ky in the x, y direction respectively.

The reflected dominant mode is given by 

copo lf- ^ Y , ( x , 0 )  J dx'ys(xI,0)J(x') = r v s(x,0) (5.4)
- 1/2

Substituting the Green function and (5.4) into (5.2) we obtain:

oo oo 1 / 2

(1 + r)\\fs(x, 0) = -j(0\iojdkx ldky~ —\\f(x, 0) J dx'\\f(x',0) J ( / )  (5.5)
o o 4/P -1/2

Multiplying both sides of (5.5) by J (*), integrating over strip and dividing both sides by

1/2

( J dx \\fs(x, 0)J{x)  )2 we get
- 1/2

oo oo 1/2

\dkx ldky- \ - (  J dx Y(x, 0)/(x) )2
1 + T o o  ZJ P -U2

=  --------------7/2--------------------------------------------- ( 5 *6 )

J dx \j/*(x, 0) J{x)  ( j  dx y s(x, 0)J(x)  )2
- 1/2 - 1/2

l?  2P,
Rewriting (5.4) as J dx \j/j(x, 0) J(x) = T  and substituting into (5.6) yields

- 1/2

OO oo 1/2

\dkx j d k y - ^ i  J dx vj/(x, 0) J{x)  )2 
1 +  T  . o  o  o  4 / P  -ii2

^ 2 T  ,
(J d x y s(x,Q)J(x))2
-i a

1 + 1 .0 u u - j r  - in / t .

Z  = — ^ r  = J $ s ------------ Ta-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -  ( 5 J )
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This expression of the shunt impedance Z is readily shown to be stationary.

At the edge of an infinitely thin perfectly conducting strip (x = ± //2 ), the tangential 

magnetic field (Hz) and hence the normal current density (Jx) vanishes as r 1/2, where r is 

the radial distance from the edges x=±l l2.  Hence we may set:

J(x) = J 0 Vl—(2x//)2

This single term, in fact, is sufficient unless the strip end comes close to the 90° metal 

com er of the guide or other strong interaction effects are present.

For the sake of convenience, we set

i a
U = J dx y(x, 0) J (x)

-i a
i a

Us = J dx y s(x, 0)J(x)
-ia

Then (5.7) becomes

oo oo

\dkx jdky^ U 2
"7 • (3 ® ®
Z = j  & --------

7 2yp

u]

By going over to cylindrical coordinates

z  = ps

71/2 oo I

|  d d  j d k , - ^ u 2 
0 o P

U*

It is noted that for kt<ko, (3 is real, corresponding to the propagating continuous 

modes. This contribution gives rise to radiation and is represented by the real part of Z. 

For kt>k0, p is pure imaginary, corresponding to non-propagating continuous modes. 

Their contribution is purely reactive, i.e. power storage (mainly inductive) in the 

neighborhood of the strip, and is represented by the imaginary part of Z.
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Introducing the additional change of variable

kt = &o sin r j ; (3 = ko cos rj

the two contributions are conveniently separated out as

71/2 71/2

J dQ J dr\ sinr| t / 2(0,r|)
r ,  ,  0  0  / C O  \R = —  k0 ------------------   (5.8a;

2 U%

71/2 71/2+/'oo

Jd0 J d r |s in r | t / 2(e,r|)

^  = ~ 2-----------------  (5.8b)
2 u ls

the two regions on kr plane and the route of the integral over r\ are shown in Fig.5.5.

Using the expression for y  and \\fs in (4.65) and (4.41), integrating by pans and 

canceling the common factor o f U and Us, we recover:

kxl
U2 J  i(— )

U = J dx 0)J(x)  = -s in  a —  -----
-in

k0l
J  j (—̂— cos 0 sinrj)

=-sin a —  --------— ---------
ko cos 0 sin rj

and

1/2 I
Us = J d x y s(x,0)J(x)  = - I £ x » 8 ,—

-1/2 n nK 2

The angular integrals (5.8) are easy to evaluate numerically. The value of the dipole 

resistance R and reactance X , normalized to the characteristic impedance of the

oopo
fundamental IDG mode Z0 = - r — , are given in Fig.5.6 vs. the normalized dipole length

Ky

/ la, for different values of frequency.

It is noted th a ttf/Z 0 is fairly insensitive to dipole length. X /Z0 decreases with I la, as
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R / Z 0
XI  O ' 1

f = l l  GHz

10 .5

10

x/z1

1

f = l l  GHz
=  10.5  
-  10 
"  9 .5

xio

Figure 5.6 Normalised resistance and reactance 
of a single transverse dipole on IDG



it should, since the shunt discontinuity increases with dipole length.

5.4 A rray  Design

The above theory can be applied to the design of a one-dimensional array of dipoles 

in order to realize a leaky-wave antenna, as shown in Fig.5.1.

The phase shift associated with the shunt reactance, however, must be corrected for. 

The circuit between reference planes A -A '  in Fig.5.7 represents a pair of dipoles 

separated by a line length 0!.

The reflection coefficient Tp of the pair is given by

r p ~ n \  + T2 e~2jQl) (5.9)

where T, T are the reflection, transmission coefficient of a single strip:

r =  — T = — ; Y = \IZ = G - j B \  (B>0)
2+Y 2+Y J

Perfect matching cannot actually be achieved by just varying 0! due to the presence of 

losses. A minimum of I Tp I, however, is achieved when 0! is chosen so that

8, = i t a n ’ 1 (5.10)
2 4G + 4 - B

The value of 0j in degrees as a function of Ha is given in Fig.5.8.

W hen (5.10) is satisfied, the residual reflection of the pair, \ r p \ is less than 7.10-3 for 

I la < 0.8 over the band.

Moreover, the radiation loss o f the pair, which is an im portant param eter in the array 

design, is given by
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5.7 Equivalent network o f  a pair o f  dipoles.



where Tp is defined in (5.9) and

Tp = T2 e~jQl 

ITp I vs. I la is given in Fig.5.9.

Constructive interference ( array effect) is obtained by spacing each pair a guided 

wavelength apart (nominally). This is in accordance with well known design principles 

in the literature.

The actual spacing 02 between two successive pair has to be corrected for the phase 

shift associated to Tp. The circuit between reference planes B and B' o f Fig.(5.7) 

represents a pair of dipoles between two lengths o f transmission line 02/2. In order for 

the array effect to take place, the spacing 02 must be such that

02 = 2tt -  0! -  2arg T (5.12)

The resulting value 02 are plotted in Fig.5.10 associated with I la.

5.5 Design Example, Experimental Verification

In order to demonstrate the application o f the above theory, we designed a 

23-element array, based on a Taylor distribution, to operate at / 0 = 10 GHz. The design 

goal was to obtain a 4°-wide main lobe at the 3 dB points with sidelobes lower than 

-20  dB. The guide dimension were ^ = 10.16 mm, h = 15.24 mm. The dielectric used was 

teflon (er=2.08), which is easy to machine, although use of a denser dielectric may be 

profitable with a view to reducing the antennas’ width and depth.

As discussed in Chapter 2, in order to synthesize such a far field pattern, the 

radiation loss distribution of the array elements, each being a pair of dipoles as described
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in the previous section, is as given in table 5.1.

We kept all the strip widths as 2mm, whilst the lengths Ha were chosen according to 

Fig.5.9, so as to realize the above distribution. The resulting dipole lengths are also 

given in table 5.1.

For each dipole length, using Fig.5.8 we can derive the electrical distance between 

the two identical dipoles of the same pair. This can be converted to physical distances 

using the fact that = 23.66mm. Also, using Fig.5.10, the distances between successive

pair can be found (see table 5.1).

W ithout precision fabrication facilities, it was difficult to realize the spacings accurately. 

The overall array length, however, could be accurately controlled and small deviations 

were expected to compensate each other. The overall length o f the array was 500mm. 

The antenna was terminated with a piece of absorbing material. Excitation takes place at 

one end from a waveguide transition, as shown in detail in Fig.5.1. The resulting array 

was built and its photograph is shown in Fig. 1.2.

The scattering parameters were tested on the network analyzer. The antenna 

features, as predicted, good broadband match and radiation efficiency, as shown in 

F ig .5 .11.

The radiation pattern, measured in a test range, is plotted in F ig .5 .13 and the test 

diagram  is shown in F ig .5 .12. The main lobe is indeed less than 4°-wide at the -3 dB 

points, and the sidelobes less than -21 dB overall. Finally, in F ig .5 .14 the radiation 

pattern in the orthogonal plane (x-y) is also shown, for the completeness sake, and 

com pared with the computed characteristics of a single dipole given in Chapter 4.

In this chapter we have derived the equivalent network o f thin radiating transverse 

dipoles in LSE-polarized Inset Dielectric Guide. The information is presented in a form
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easy to use in synthesis and its application to the design of a 23-element linear array is 

demonstrated. The array was built and tested, showing excellent performance in 

agreement with the theoretical prediction. It is felt that IDG antennas show good promise 

for high-performance, low-cost millimetric applications.
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Array Parameters
x  L,oJ l a 0, 0o R/ Z„ x / z 0

1 0.020 0.23 92.8 272.8 0.860 10.0
2 0.020 0.23 92.8 272.8 0.860 10.0
3 0.021 0.24 92.8 272.8 0.855 9.9

4 0.023 0.26 92.9 272.9 0.850 9.6
5 0.026 0.29 93.1 273.1 0.850 9.0
6 0.033 0.35 93.5 273.5 0.837 8.1
7 0.042 0.43 94.0 274.0 0.825 7.0
8 0.053 0.51 94.5 274.6 0.807 6.1
9 0.064 0.58 95.0 275.0 0.790 5.6

10 0.074 0.64 95.5 275.4 0.775 5.1
11 0.083 0.69 95.8 275.8 0.760 4.6
12 0.092 0.73 96.2 276.2 0.745 4.4
13 0.101 0.76 96.5 276.5 0.732 4.2
14 0.108 0.80 96.8 276.8 0.718 4.0
15 0.112 0.81 96.9 276.9 0.710 3.9
16 0.112 0.81 96.9 276.9 0.710 3.9
17 0.104 0.78 96.6 276.6 0.725 4.1
18 0.094 0.74 96.3 276.3 0.740 4.4
19 0.087 0.70 95.9 275.9 0.755 4.6
20 0.084 0.69 95.8 275.8 0.759 4.6
21 i 0.086 0.70 95.9 275.9 0.755 4.6
22 0.094 0.74 96.3 276.3 0.740 4.4
23 0.104 0.78 96.6 276.6 0.725 4.1

Table 5.1

Parameters for a 23 Element Taylor Array 

Number of equal level sidelobes n = 4 

sidelobe level SL = —20 dB 

power approaching to the load P u -  179i
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Figure 5.11 Reflection and transmission coefficient 
of a 23-element Taylor array.
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Figure 5.13 Far field pattern of a 23-element  
Taylor array, (yz-plane)



Figure 5.14 Far field pattern of a 23-element 
Taylor array (xy-p lane) compared with  
the computed pattern of a single dipole.
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CHAPTER 6

LSM CASE OF IDG, MODE COMPLETENESS, 

NORMALIZATION AND GREEN’S FUNCTION.

6.1 A n A nalysis of the Dispersion C h arac teris tics

6.1.1 E xpression of Field Com ponents

There are two useful manners of single mode operation for IDG. The first one, as has 

been discussed, is to operate in the / / 0i mode in relatively deep slots. The field 

distribution in this mode is very similar to that in one half of a conventional rectangular 

waveguide, operating in its lowest / / 10 mode. The second manner of single mode 

operation is in the E n  mode in shallow, broad slots (a>h). In this mode the field 

distribution is similar to that of an image guide and the LSM approximation is suitable. 

In the LSM approximation, there is no //-com ponent perpendicular to the dielectric 

interface. The fields can be described by means of a y-oriented electric Hertzian 

potential:

n e = y y , < r ^  (6.1)

where y is the unit vector in the y-direction. From (6.1), the fields are given by
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E = V V -nc+erfc§ Ue (6.2a)

H = j  co eo£r V xnc (6.2b)

or, componentwise, omitting the propagation factor e~^z

Ex -  dxdy\ye (6.3a)

Ey = @l+Zrkl)ye (6.3b)

Ez = - j $ d yy e (6.3c)

/ /x =-co£o£rp \\fe (6.3d)

Hy = 0 (6.3e)

/ / z =;coeo£rax vj/e (6.30

The x-dependence of \\re in the slot is chosen as

<t)*C0 = 2cos mix n= 1,3,5,... (6.4)

so as to give the normalization

1/2

J i W t W  = l
o

In order to get a convergent dispersion equation, we choose Ex as the main field

component and derive all else from it. Let us consider the slot region first. If we set

sin qn(y+h)
Ex = E  E*n 2 sin n n x  :------ —  (6.5)

«=i.3.... sm qnh

i.e.

cos qn(y+h)v e(*>;y)= E  / ( O i W — :— -—  (6.6)
n=l,3,... Sin 4nh

then according to (6.3) the Hz component is given by 

Hz —

1 cos qn(y+h)
= - / co£n£r y  E ^ l s m m u c ------------ ;-----—  (6.7)

n=u,... In Smqnh
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For each slot component n, we define an input admittance of the slot as seen from 

the interface as follows:

Hz - j  CO£o£r
Yn = —  = ----------- cot qnh (6.8)

Ex Rn

Under normal operating conditions, q2 > 0, whereas q \ ts,... < 0- Hence, for n > 1,

iW£o£r | |
Yn = —i— |— coth I qn I h

\qn I

For the air region, we define the x-dependence of \\te analogously to (6.4), with a 

continuous expression in terms of the wavenumber kx:

§(x,kx) = V2/7t cos kxx  (6.9)

The field components are then given by:

00

Ex (x,y) = \ex(Jkx) V2/71 sin e~jk>y dkx (6.10)

Hz (x>y) = jwzo!cx(kx)^2/n sin kxx — — e }kyy dkx (6-11)
0 “A

For each component kx, an admittance is defined as:

Hz Coen

< 6 m

Hence, for a bound mode, kQ < $s < ^ & k 0, 

k]{kx) = kl  - f i 2 - k 2 < 0

ky(kx) =

coeo
Y(kx) = j-

ky{kx)I

The signs in (6.8) and (6.12) are consistent with positive power flow into each region 

from the interface.
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6.1.2 Resonant Condition

At each side o f the interface y = 0, the transverse field components may be linked by 

an admittance operator

Hz(x,0) = YsEx(x?,0) (6.13)

-H z(x, 0) = Y°Ex{yf,0) (6.14)
A ̂  A ̂

where the integral operators Y , Y , are defined such that

Hz(x, 0) = YS Ex(x?,0)

1/2

= J Ys(x,x';y=y'=0) Extf,Q>) dx! (6.15)
o

A S
The quantity Ys denotes the kernel of the integral operator Y and similarly for Ya .

Due to the continuity of the tangential components across the interface, (6.13) and 

(6.14) can be added to give

{Ys+Y°)Ex{x, 0) = 0 

1/2

J dxf(Ys(x,jY\ y =y'=0) + Ya(x,x!\ y = /=0)) Ex{xf,0) = 0 (6.16)
o

The explicit form of the admittance operators can be derived as follows. At y=0", 

from (6.5)

Ex(x, 0) = 2  n 2 sin mix
n=1,3,...

hence

1/2

Exn = J Ex(x, 0)2 sin mix dx (6.17)
o

Substituting (6.8) and (6.17) into (6.7) gives
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1/2
Hz(x, 0)=  J £  Yn 2 sin nnx 2sin/i7u: Ex(/ ,0 )dx '  (6.18)

0 n=l,3t...

Comparing (6.18) with (6.15) gives

Ys = £  y„2sin«7Lc 2sinn7cc (6.19)
n= • ,3,...

The admittance operator for the air region is found similarly.

oo

Ya = \ y (/cx) ^2/k sin kxx  V2/tc sin kxx ' dkx (6.20)
o

6.1.3 Ritz-Galerkin Formulation

The integral equation (6.16) may be solved by the Galerkin method. In order to 

achieve rapid convergence, the boundary condition at the 90° edge W(x) = (l-(2*)2)-1 3 is 

chosen as the weight function. This choice, in turn, leads naturally to the set of 

G egenbauer polynomials Ci!6(2x), m - 1,3,..., which are orthogonal with respect to the 

weight function W. The order 1/6 is such th a t:

1/2

J (M 2*)2)-1'3 c'*(2x) c l ,6(2x)dx = 6 ^  (6.21)
NmN„ 0

where Nm is the normalization factor of the m-th polynomial. We can now expand all of 

the quantities appearing in the integral equation (6.16) in terms of a finite number 

of the above functions, namely

M
EAx.0) = W £  XmC l«  (6.22)

m=l,3f...

M
2 sin nnx = £  PmnCm6 (6.23)

#n=l,3t...

>l2/Ksinkxx =  £  Pm{kx)C]^ (6.24)
m=l,3,...

In (6.22), Xm is the unknown m-th amplitude factor. The coefficients in (6.23) and
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(6.24) are given by:

1/2

Pmn = \  w  Cm6 2 sin m ix  d x  (6.25)
0

oo

Pmttx) = \ w  Ci;6 V2Ik sin kxx  dx  (6.26)
o

where m and n are odd. These expressions are very similar to those for the USE case.

By substituting (6.22) to (6.24) into the integral equation (6.16), we can recast the 

latter as standard matrix equation of order

Y • X = (Y^+Y*) • X = 0 (6.27)

From (6.22) to (6.24), the matrices Ys,a corresponding to the operators Ys,a are given, 

componentwise by :

(YS)km -  £  YnPknPm  (6.28)
n=l,3,...

OO

(Y“)ta = W , )  PklK) PmiK) dk, (6.29)
0

Nontrivial solutions of (6.16) are obtained by setting

det Y (p) = 0 (6.30)

which is the dispersion equation for the discrete modes of the guide. At a root (3̂ , the 

corresponding null eigenvectors of Y, X(pj), give the relative amplitudes of the discrete 

modes aty  =0, according to (6.22), from which all remaining components everywhere in 

the guide can be derived via (6.3).

6.1.4 Computed and Measured Results

Two X-band samples o f IDG were available for measurement. The dimensions of 

the guide are the same as standard X-band waveguide, i.e., a=2.286 cm, h=1.016 cm,
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and the relative dielectric constant of the filling material, PTFE, is er = 2.08. Comparison 

between the measured and computed values o f Xo/Xg is given in Fig.6.1, where three 

basis terms were used. The coefficients o f the eigenvector, X m, are given in Table 6.1. It 

can be seen that the convergence property of (6.22) is very good; two term expansion is 

sufficient. The field magnitude plots of E n  mode are given in Fig.6.2.

6.1.5 Normalization of the Discrete Modes

The amplitudes X m of the eigenvector of (6.16) give the relative amplitudes of the 

basis components. To get a proper amplitude ratio between discrete and continuous 

modes, the mode function needs to be normalized. The normalization condition for 

discrete modes can be written as:

where \|/y can be any field component, and the constant A  is to be found so as to satisfy 

the condition (6.31). Since we are using G reen’s function expressed with normalized 

mode functions to analyze the scattered field of a longitudinal dipole, it is convenient to 

choose the expressions fo r£ z as mode functions:

J J dxdty A 2 \\f^ = 1 (6.31)
section

sinqn(y+ h)
-------------  in slot
sin qnh

(6.32)

\|/*2 = - j  (3? \dkx ex(kx)-^-^2 /K  cos kxx  e ^  y in air
n Xr

(6.33)

so that the normalization condition becomes

1/2 0

(6.34)

and
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F igure 6.1 A comparison of computed and measured dispersion curves  
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The normalised coefficients of eigenfunction

frequency X0/Xg * 3 * 5

9.0 1.0448 1 . 0 0 0 0 -0.8021 -0.0104

9.5 1.0867 1 . 0 0 0 0 -0.8032 -0.0095

10.0 1.1225 1 . 0 0 0 0 -0.8069 -0.0093

10.5 1.1531 1 . 0 0 0 0 -0.8117 -0.0095

11.0 1.1794 1 . 0 0 0 0 -0.8170 -0.0098

11.5 1.2022 1 . 0 0 0 0 -0.8226 -0.0103

12.0 1.2221 1 . 0 0 0 0 -0.8282 -0.0109

12.5 1.2396 1 . 0 0 0 0 -0.8337 -0.0116

13.0 1.2550 1 . 0 0 0 0 -0.8393 -0.0124

Table 6.1

Computed Eigenvalue and Coefficients of Eigenvector



Figure 6.2 The field m agnitude p lots of E n mode 
over the transverse guide section.



1

' l=-p? I
n=l,3t...

f y  p  x  v1 mn-̂ m
m=1,3,...

M l
\

2sin 2q nh 2 <7„tan <7„/z

- P ?  \dkz

I  Pm(kx)Xm y-
m=1,3,... 1

21^1

(6.35)

(6.36)

/

The com puted result is .4 = j 4.424912.

6.2 The Continuous LSM Spectrum, Mode Completeness, Green’s Function.

Besides the discrete modes discussed before, the/DG being an open two-dimensional 

structure, its complete spectrum contains a continuous part. Each (Ez) component of the 

continuum is a phase-shifted plane wave in the air region of the type

\\f2 (x,y; kx ,ky) = V2/tc* cos kxx 421% sin (kyy + a) (6.37)

where the phase-shift a  is a function o f both kx and ky due to the nonseparable nature of 

the problem.

It is noted that now kx ,ky are taken as the independent variables of the expansion.

In the slot region, the Ez field can be expressed as

,  sin <7„(y+/i)
^f\{x,y\kx,kS)-  T  an 2 cos m ix  V2/tc -----:------  —  (6.38)

n=\,3,... sm qnh

where

q\  = (er- l)£ §  - { m i )1 + k2x + lc* (6.39)

It is the purpose of this section to derive the amplitudes and the phase-shift a  in such a 

way that the orthonormalization condition

J J Vf{x,y\kx,ky)yif{x,y\kx,ky) dx dy =h(Jkx - k x ) h ( k y - k y )  (6.40)
section

is satisfied.
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This process has been carried out in detail, from first principles, in Appendix 4.1 for 

the LSE case and since it is here substantially analogous, its steps are retraced briefly. 

Continuity of (6.37) and (6.38) a ty= 0  imposes the condition

(*n — Qn(kx ) sin a  (6.41)

where

1/2

Qn(kx) = 1 <!>«(*) <K*.*x) dx  
0

kx
J — n +1 flK COS —

= ( - 1 ) ^  -= --------V
^  k2x -  {mi)2

Qn(kx) is interpreted as the ’ideal transformer box’ from the airwaves (6.37) to the ’slot 

m odes’ (6.38) at the interface y =0, as shown in Fig.(4.5). Two air waves such as (6.37), 

corresponding to different wavenumbers k, = (kz ,ky), do not couple in the air region. The 

discontinuous interface y =0 , however, couples different values of kx. The phase shift a  

describes the composite effect on an air wave of the presence of the slot, i.e. diffraction 

at the interface and multiple reflection in the slot. In circuit terms, the impedance o f the 

slot, as seen by the above air wave at the interface, including the scattering into other 

airwaves, is given by:

oo

S  <InCOt Qnh Qn{kx) jd k x Q n{kx)
n=1,3,... 0

= E  <ln cot qnh Qn(kx) V2~n =ky cot a
n = 1,3,...

This expression for a  does not converge when n tends to infinity. However, from (6.37) 

and (6.38) the expressions for Ex can be written as

r  3 V ^  nn ~ . r— sin qH(y+h) .
Ex = 9r = Yfln 2 sin rmx \2 Ik -------------—  in slot

- j  P „ sm qnh

=-|j- V2/t1 sin kxx  V2/7C sin (ky y + a) in air 

The continuity o f Ex aty=0 yields
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an = G„(*x)sina

kx
2^2 ^  kl  C0ST

Qn(kx) = - 7 = - ( - l ) -------- =---------7
nK kl  -  (ktc)2

From the normalization condition of Ez we obtain

% c  -  kx )kycosa = 2 <2n(£x) Qn(kx')qncot qnh (6.42)

Dividing both sides of (6.42) by k2 and integrating over kx' we find

kx kx —j — qn cotqnh
cota = 4 —  co s— Y ( - l )  -------------------- x- (6.43)

A, 2 "  { n n ) \ k 2x - { n % ) 2)

It is possible to check from first principles, or from direct integration, that with the

above choice of 0£=a( k,), the orthonormalization (6.40) holds and, moreover, that

continuum is orthogonal to the discrete spectrum derived in the previous section. Hence

we have established the complete LSM-spectrum of the IDG, which satisfies the

completeness relationship

00 00

EVsfoy) V s t f J )  + \dkx \dky \\f(x,y; k,) k,)
s 0 0

=b(x -  x') b(y -  y') (6.44)

As mentioned in Chapter 4, as long as the normalized mode spectrum is known, the 

G reen function can be written like (4.68).

6.3 Scattering by a Longitudinal Dipole on the Air-Dielectric Interface.

The longitudinal electric field at the air-dielectric interface, > =0, is at its maximum 

value. The interface also constitutes the most accessible plane of the guide. This is 

therefore an ideal location for a source, such as a dipole, placed across the slot aperture 

or for a discontinuity, such as a metal strip or disk, with a view to realising circuit 

elements or a leaky wave antenna. Having derived the Green function we shall therefore
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consider the scattering by a thin longitudinal current element, representing an 

independent source or an induced one, located at the origin, sufficiently thin to be 

representable as

JCx,z) = a / 0 ^zO) 

where J 0 is a constant a n d /z(z') can be written as

Jz(z) = Vl-(2z//)2 e~3lZ (6.45)

The scalar Green function (6.47) is that pertaining to a z-directed electric field 

distribution assumed as the source of the electro-magnetic field. If the source term is 

constituted by a z-directed electric current J, then the electric field Ez is related to G 

through the z-component of the vector potential Az, given by

in
i4,(r) = -Uo J d2' G ( 0 ,y ,z;0 ,0 , z ' )U z ' )

-in

and the resulting scattered field in the air region is

r * _  —  . 1 ^  ,E z — j(oAz + _ Az
jcopoeo dz2

in
= ycono J dz (1 + - L j L . )  G Jo Jt V )  (6.46)

-1,2 kt dz

The coordinate system is shown in Fig.(6.3b). Ignoring the contribution from the 

surface mode and the evanescent radiation modes to the scattered far field we get

V*0 -  *X *0
Ef=ycopo70 j  dky \dkx —^r-y(0,y) y(0,0) 

o o zJr

in 2
J d z -  (1 + 4 - ^ r )  7 ,0 0  (6.47)

rfZ' (1 + ^ /-in ko dz

w here \\f is the normalized mode function for Ez o f the continuous spectrum in the air 

region.

A m ethod can be used here which is analogous to that used in the LSE case. To
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evaluate the far field pattern in yz-plane at x  = 0, we define r| and 0 as shown in 

Fig.(6.3a). From the wavenumber conservation kl+k.y + $2 =kl,  we have 

dkx = -  {$lkx) d\3, and then

V*0 - ** *o M0 - P2 *0
J = -  J dtyJdPj-
0 0 P 0 0

= - J d r |  Jd0 /^ ,z (6.48)
ti/2 71/2

Jrfn  1
0 0

From Fig.(6.3b) for the region 0 < y  < nil, assuming R large, then z > / /2 > z'. Hence, in 

the G reen’s function, we may set

e - j $ \ z - Z ' \  = e - J $ 2  e f t z ’ ( 6  4 9 )

Then

'F(jc,y,z) = y(*,y) e~;pz 
'i'(x',y',z') = y ( x ' y ) e W

71/2 71/2

Es2(0,y,z) = ——— Jdri j d0 sinr| T(0,y,z)Dr (6.50)
2 o o

where

in
DrC n,e)=  J ( f c 'm O .z V o ^ O O  (6.51)

-in

>P(n,e)= (l + i ^ ) ' f ( O . J . Oko oz

= (1 -s in 2r| cos20) 4^0,y,z) (6.52)

Substituting (6.37) and (6.45) into (6.51) gives 

in
£>r0l,0)= J dz'Hn s in a /0Vl -  (2z7/)2 e~}<S>s" p)z'

-in

After making use of the parity o f the integrand, integrating by parts and changing the 

variable, Dr becomes
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fc-p
J d ^ - n

Dr(x], 0) = / 0 / sina — t — - ------  (6.53)

2

Now the double integral in (6.50) can be evaluated directly by numerical integration. 

Furthermore, the trigonometric form of the integrand leads itself naturally to the 

evaluation o f the far field by the saddle point method. From (6.43), it can be seen that a  

is an odd function of 0 , therefore, the integrand in (6.50) is an even function of 0 , that is 

sin(^y + a) sina. From the parity, we obtain

n /2  . ti/2

J dQ s in ^ y  + a) sina = j- J rf0 e’j(i,> + a) sina
0  2  - 7 t / 2

so that El can be written as

71/2 71/2

E\ = ---------- \  dx\ J dQ k0 sinri(l -  sin2rj cos20)
2  0  - t i /2

1 _ ±  e + ^  + Dr (6 54)
K 2

Going over to cylindrical coordinates as shown in Fig.(6.3b):

z = R cos 7 

y = R sin 7 

so that

(3z + kyy =ko R sinr) cos(0 -  7 ) 

the relative value of Esz can be rewritten as

_  • j  .71/2 7t/2

Esz = ----------- — \  dx| J dQ sinrj (1 -  sin2r) cos20)
2 k  0 -71/2

D r e - j a e - j R ^ s m c o s ( Q - y )  ( 6 5 5 )

By making use of the saddle point m ethod (see appendix 4.2) we deduce
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- j k 0R

E\ = -co M o  I — o— si° 2 y D r(n/2, y)  e~ja{T’2' y) (6.56)
R

The radiation patterns are plotted in Fig.(6.4) for various values of dipole length and 

frequency and are com pared with that of an isolated dipole in free space, i.e. sin2 y . It 

can be seen that the pattern is not sensitive either to dipole length or frequency.
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CHAPTER 7

EQUIVALENT NETWORK OF A SINGLE LONGITUDINAL DIPOLE,

ARRAY DESIGN AND TEST.

7.1 Introduction

The array composed of transverse strips on IDG operating in the LSE mode, as 

discussed in Chapter 5, offers a fan beam at microwave or millimeter wave frequency. It 

radiates a vertically polarized wave. Consider this kind of wave incident on a plane 

boundary separating two nonmagnetic isotropic media with dielectric constant Ej and e2. 

There is an incident angle 0*, called the Brewster angle,[l]

0£, =tan- 1Ve2/£i (7.1)

at which there is no reflected power. If reflected power is used as signal, the region 

around the Brewster angle will become a blind region. For horizontally polarized 

waves, there is no Brewster angle. That makes it preferable in some applications.

Longitudinal dipoles on IDG supporting an LSM mode can constitute an array with a 

very pure horizontal polarization. From the field distributions shown in Fig.(6.2) we can 

see that the maximum of Hx and the zero of Hz are at the center of the air-dielectric 

interface. Therefore if a longitudinal metallic strip is located near the center of the guide
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as shown in Fiq.6.3b, a z-directed current will be induced efficiently, and the x-directed 

current will be negligible. As shown in Fiq.6.3b, the center of the strip is at (x0 ,0 ,0), and 

the width and length of the strip are w and 1 respectively.

The current distribution can be written as 

L z(x,z) = z I z(x)Jz(z)

where z is the unit vector in the z direction. Iz(x) and J2(z) are proportional to the 

distributions of Hx in the x and z directions respectively.

wAt the edge of the strip, x = ± — , Hx being transverse to the edge, is singular to the

order -1/2. At z =± //2 , Hx , being parallel to the edge, has a zero of the order 1/2. The 

absolute value of the current is not important. Therefore the current distributions can be 

written as

/,(*) = , L =  (7.2)
v l-(2  x/w)

Jz(z) = Vl- ( 2 z/l)2 e~3sZ (7.3)

7.2 Equivalent n  Network for a Longitudinal Dipole

Compared with the equivalent network of a transverse dipole in the LSE case, a 

simple shunt admittance, the equivalent network of a longitudinal dipole in the LSM case 

is more complicated because of the distribution of the current along the z-axis. An 

equivalent n  circuit for a symmetrical two port network satisfying reciprocity is used as 

shown in Fig.7.1. Its Y parameters can be written in matrix form as:

(7.4)

We shall use "even/odd" mode analysis by placing a magnetic/electric wall on the 

plane of symmetry z=0. For an even current distribution Jze{z), V1=V2. Hence, from
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(7.4) we obtain:

Ye = Y \ \ + Y n (7.5)

For an odd current distribution Jzo(z), V j = - V 2, then

F0 = F n - F i2 (7.6)

If  we can obtain Y (or the reflection coefficient T) for the even and odd cases 

respectively, then Y u  and Y u  can be found from (7.5) and (7.6) as:

F n  =

Y u  =

Y +Y1 e ~ 1 o

Y - Y1 e 1 o

(7.7)

(7.8)

For the n  network shown in Fig.7.1, the ABCD parameters can be deduced directly 

by Kirchoff’s laws. The result is

^  B
.C D.

li 1

Y \ 2

li ~ 1 i:Yh  -  y?

12

^12 
Y n
Y \2

(7.9)

and the expressions for the reflection and transmission coefficients o f the dipole are

r =

r  =

12

A + B - C - D  
A + B + C + D

2 ____________________
A + B  + C + D  - 2 Y \ \ - \ - Y \ x + Y\2

2 Y 12

(7.10)

(7.11)

7.3 The Analysis of the Network Parameters

The amplitude of the reflected fundamental mode for z <-/12 is given by

-7.3-



1/2 +w/2 OLLn
|  dz' j  d x ' ^ ( \ - - ^ ) \ V s(x .y )V s(x ' ,0 )e -m ! '-‘)Jl (z')lt (x')

-i/2 -w/2 2Ps erk0

=r(z) \|fs(x,y) e~J^sZ = T 0 y*(x,y) 6;PfZ (7.12)

where the reflection coefficient r 0 =T(z) e;2p' z is defined by this equation. It can be

imagined as the reflection caused by a hypothetical discontinuity located at z = 0 .

From (7.12)

ft)U n R2 +w/2 1/2
r o = • 4 r - ( l — ~ 5") 1 d x ' v , ( J ,0 ) h ( x ’) \  dz’ e ' ^ ' u z ' )  (7.13)

tPs £rko -w/2 -1/2

On the dipole, the total tangent electric field E z must be zero, i.e.

E z(x, 0,z) + E sz(x, 0,z) = 0 (7.14)

The above equation can be rewritten as

\\fs(x, 0)e~J^sZ

'Y|i_ ^ ^ ^ 2  ^ 2  -^2+-£- 1 d x ' \ v s(x,0)M?s{xf,0)lz(x') J dz '  (1 + - ! - - ^ - )  e~Ĵ z'z'lJz{z )
2P* -w/2 -1/2 k() ° z

oo oo    +w/2
+ldkx K ^ L  J dx’ v (x , 0; k,) v ( / , 0 ;  k,) lz(.xf)

o o 2H - w / 2

1/2

1
- 1/2

1 A2
J dz'  (1 + 4 - ^ - )  JAz‘) = 0 (7.15)

ko dz2

where \\fs and \\f are the mode functions for discrete and continuous modes. \|/ is 

evaluated fo ry> 0 , hence er = 1. A ty= 0 , they are given as follows:

7  ex{kx) ,—
Yj(*. 0) = j $ s J dkx—-—  v2/7c cos kxx 

o kx

V (x, 0) = V2/tc cos kxx ^2/k sin a

and
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Multiplying (7.15) by Jz{z) and Iz{x) and integrating wrt. z and x, we obtain

+wl 2- J dxx\fs(x,0) Iz(x) J dz e~j ^sZJz(z)
-w /2

1/2
J

- 1/2

copo
2 P,

+w/2

J d xys(x,0)Iz(x)
-w /2

1/2 II2 -,2
|  dz I  dz' (1 + 4 - T T >  e ' * ' 2" ' ' 1 d2(z) J.Jz’) 

k.Q az-II2 -1/2

oo oo

\dkx \dky 
o o

(opo
2(3

+w/2

J dxxj/Ot, 0 ) / z(x)
—w/2

//2 1/2 2
J dz J dz' (1 + 4 - ^ - )  e - ^ - zA Jt (z)JAz’)

—/ /2 -1/2 ko dzz
(7.16)

D ividing both sides of (7.16) by the square of its left hand side and substituting from 

(7.13), gives

P? 1
2 p, e ^ r

112 112 32
\  dz j dz’ (1 + - L J L - )  j ^ j ^ z')

®Po -1/2 -1/2 dz
'V2P. 1/2

|  d z e - ^ zJ:(z)
-112

(OPo
2(3

oo oo

r \dkx \dky 
o o

1/2 1/2 
J dz \

-1/2 -I!2

+w/2

J dx\f(x, 0) Iz(x)
-w /2

J d z !  dz’ (1 + 4 - V T )  e - 'pl2-H  U z ) U 2 ’)
ko az

"\2+wf2 V

-i a
} dxys(x,0)Iz(x)

•w/2

We can rearrange (7.17) in the following sequence.

1/2

J dze~J^sZJz(z)

(7.17)



CDUo
a) Cancel the common factor ——

b) Define

i , ,  p

sc = 17
+w/2

sx = J dx\\fs(x, 0) Iz(x)
-w /2

+w/2

cx(kt) = J dx\\f(x,0)Iz(x)
-w/2

1/2

sz= J dz e~^sZJz(z)
- 1/2

c) Use the change o f variables

P = &0cosr| 

kt = £0sinr| 

kx = ktco s0 

ky =kt sin0 

as shown in Fig.6.3a to obtain

oo oo 71/2

\ d k x \ d k y ±T= J d o j k . d k ,  1
0 o P 0 o P

71/2 71/2 7C/2 iU2 + j
= \ d B  j d r \ k t + \ d d  J dr\ k, (7.18)

0 0 0 r.2

d) Use the change of variable jr \ : + y  = rl the second double integral, the latter 

becoming

n /2  71/2 + j  oo ti /2  oo

J J dr| = j  j  dB \dr\i k,
0  n /2  0 0

and sin ri = ch , and cos r\ =-jsh  .

Taking into account a) - d), (7.17) can be rewritten as
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Ill 111 -,9
1 1 f j f j ' / i  \ -jPJz-Z'l r / \ j ( '\

-  -sc —  =  — T- J d z  J dz  ( l  +  7 T T T ) e  d z ( z ) / z ( z )
r  P,5ZZ_//2 -U2 ko dz

n i l  ml

+ — y — i  \  d d \  dT[ktcx2(kt)
S X  SZ 0 0
i n  i n  2

j  & I dz' (1 + ~ 2 ~ t )  e - ^ l’- !' h , ( z ) M z ' )
- i n  - i n  k 0 dz

mi
~ J d G j d r i !  k, c x 2(k , )+ J 2 2

.w r  s z ^  o o

m  i n  2

j  dz J dz' (1 + 4 - v t )  e-j|3U-2' lJ,! (z)dz(z')
- i n  - i n  k Q dz

(7-19)

In (7.19) sc is a constant for a given frequency. The integrals sx, cx(kt) and sz can be 

done analytically. It is obvious that the first term in the right hand side of (7.19) is the 

contribution from the guided mode, the second from the propagating radiation modes 

and the third from the evanescent radiation modes.

It was mentioned that the commonly em ployed solenoidal eigenfunction expansion 

o f the G reen’s function is incomplete within the region containing an arbitrarily oriented 

electric current point source. An explicit delta function term is required for making that 

expansion complete in the source region. Tai[2], Collin[3], Johnson[4] and Yaghjian[5J 

found that a complete set of the eigenfunction expansion should include the irrotational 

(or longitudinal) eigenfunctions in addition to the commonly used solenoidal 

eigenfunctions. By using different methods, they got different forms of results for 

different constructions. With our case as an example, we can explain the appearance of 

the 8 function in a simpler way, without using the dyadic form of Green’s function. On a 

longitudinal dipole the current is in the propagating direction. Therefore the

— -  g-y'PI* -z'l term is involved in the evaluation o f the scattered z-directed electric field. 
d z 2

The first derivative of e ~ ^ z ~2'̂  can be written as:
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—  = - j p  ( T ( z - z ' ) - T  ( z - z ) ) e - * U -*'1
dz

(7.20)

where

1 z >0
r « = { o  z <0

From the application of distribution theory [6], we obtain the second derivative as:

= _ 2 j p 5 ( z - z ' ) - p 2 e - ^ u - A
dz

(7 .21 )

From (7.21), it can be seen that when, and only when, a z-directed current exists, an 

explicit delta function appears in the expression of the electric field, because of the 

discontinuity of the derivative of the G reen’s function at the source point. Substituting 

(7.21) into (7.19) we obtain:

1 1- s c  —  = —
r  sz*

m
\  d z j \ ( z )

sc I dz j  dz' e ^ ’ U- z' lJz( z )J 2( z ' h j  j-----
-1/2 -1/2 *0

1/2 1/2

V
71/2 71/2

+ I dd I dri cx2(kt)2 2 SX SZ o 0

f  \
1/2 1/2 II2

y £ 0 sin3rj J dz J dz' e ~ ^ z~z'̂  Jz{z) Jz{ z ) - 7sin rjcos r| J dz J 2{z)
-1/2 -1/2

71/2

- 1/2

—-  J d%\dr[x cx2(kt)7 2 2sx* sz* 0 0
f  ^

1/2 1/2 1/2

-^-ko ch3r\ J dz J dz' e-;^ z-z^ / z(z),/z( z ') - ls,/ir| c/zr| J dz J 2(z)
-1/2 -1/2 - 1/2

(7.22)

In (7.22) the product of / Z(z) and / Z(z') is always real. For the surface modes and the 

propagating radiation continuum, f>s or (3 are real, therefore e~J^ z ~z'  ̂ Jz{z)Jz{z) splits 

into real and imaginary parts. For the evanescent radiation continuum, it is pure real.

From (7.3) Jze(z) a n d /zo(z) can be written as:
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7ze(z) = V l-(2z / /)2 (- jsm$sz) (7.23a)

Jzo(z) = V l- (2 z/l)2 cosfcz (7.23b)

Substituting (7.23) into (7.22) yields T£ and TOJ consequently Ye and Y0. By using

(7.5) through (7.8), we obtain r  and T. The radiation loss Lrad is given by:

Lrad = l -  I r l 2 -  I r l 2

and the phase shift o f T is

8r=:an-. iswevi
1 real(T)

It is not easy to get entirely satisfactory results for the quadratures in (7.22) because 

o f the singularity of the integrands at the source point. Some further work needs to be 

done.

7.4 The Measurement of the Scattering Parameters of a Single Dipole on IDG

Electric-field probes are shown to be well-suited for direct standing wave 

measurements on dielectric guides. The results from the measurements of the guided 

wavelength and the field distribution have proven the movable electric-field probe to be 

a simple and reliable measuring technique for dielectric guides [7],[8]. Furthermore, the 

use o f the probe was extended to the measurement o f VSWR on dielectric guides in order 

to investigate the attenuation constants of the lines and to determine the effects of line 

discontinuities in the dielectric guides [9]. We have used this technique to determine the 

wavelength of IDG. Now we describe the experiments for the determination of the 

reflections from matched IDG terminations and from a thin longitudinal dipole on IDG.

The experimental setup is shown in Fig.7.2, where the two-stub tuner is used to 

enhance the sensitivity o f the probe. The whole probe, including the tuner and the 

detector, is mounted on a vernier mechanism to ensure the probe moves along the line
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Figure 7.2 The experimental setup for the measurements of the reflection 
from a longitudinal dipole on IDG.



smoothly. This is very important because o f the fact that the fields of the guided wave of 

the IDG decay exponentially with the distance from the line, so that the measured 

voltage o f the field decreases with increasing distance from the line. The modulated 

wave incident from the launcher propagates along the IDG and is dissipated at the 

m atched termination or is terminated by a second transition in place of the matched load. 

In either case, the wave is reflected partially at the termination and the resulting standing 

wave pattern on the IDG can be observed by means o f the electric-field probe. The 

m atched load was made of a piece of tapered absorbing material. Its VSWR was 

measured to be about 1.05 at 10 GHz. W hen a metal strip is placed on the top of the IDG, 

the incident wave is scattered. One part of the incident guided wave is reflected in the 

form o f a guided wave, resulting in the standing wave pattern between the mode 

launcher and the strip. Another part o f the wave is radiated, resulting in the 

nonuniform ity of the field pattern near the strip. The third part of the wave is 

transm itted to the matched load at the end of the IDG.

In this kind o f experiment, difficulties arise from a) nonuniformities o f the lines, and

b) the radiation field due to the mode launcher. For the IDG case, the first factor is not 

serious, but the second must be considered carefully.

The IDG E n  mode field distribution is very different from that of metal rectangular 

waveguide. Hence, if  they are connected together directly, the discontinuity at the 

junction will cause strong radiation, particularly for the E u mode. In order to improve 

the transition, an E-plane flared horn is used between the waveguide and the IDG, as 

shown in Fig.7.2. The advantage of using the horn is illustrated in Fig.7.3. The lower 

trace shows the S n  of the configuration in Fig.7.2; the upper trace that without horn. 

W ith this experimental setup, the VSWR o f a metal strip (width 2 mm, length 1.1 mm) 

was m easured to be about 1.35.
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A network analyzer is used to measure the S2i of a strip. The absolute value o f the 

transmission coefficient of the dipole can be determined by comparing the S2] o f the 

configuration with and without the strip on the top of the IDG. The measured results 

show that the absolute value of S21 is about 1 dB.

7.5 Array Design and Testing.

From the field distribution, we found that if  we use a coaxial probe to excite the 

guide, the mode transition would be m ore natural. Furthermore, the feed point can be 

set at the center of the array, which reduces the full length of the array and makes the 

structure symmetrical. With these ideas in mind, we built a 15-element array with all the 

strips of the same dimensions (2 mm wide, 11 mm long), as shown in Fig. 1.3. The ends 

of the array were loaded with absorbing material. Because the impedance of IDG is 

higher than that o f coaxial line, the coaxial probe was placed 2 mm offset. To get a 

stronger coupling the distances between the probe and its adjacent elements were set to 

XgI8 and 3 ^ /8 , respectively. In order to com pensate for the phase shift of each strip, the 

length of the strips was chosen to be 11 mm, and the spacing between two adjacent 

elements was 13 mm, i.e. half a guided wavelength.

The reflection coefficient of the array was measured with the HP 8510 vector 

network analyzer. The result shown in Fig.7.4 represents a good match over a fairly 

broad band. Trace 1 is the result when the array was terminated with absorbing material, 

trace 2 is the result when the array was term inated with short circuits. The closeness of 

these two curves shows that the radiation from the dipoles is very strong, therefore not 

much power reaches the terminals. The radiation pattern was tested in a full size 

anechoic cham ber shown in Fig.7.5. For an array of 11.5Xo length, with a tapered 

current distribution, without any special design, a half power beam width of T  represents 

a very good result, probably because o f the element directivity. The sidelobe level is

-7.11 -



S n  & M log MAG 
REF 0.0 dB

10.0 dB/

START 9.000000000 GHz 
STOP 11.000000000 GHz

Figure7.4 The reflection coefficient of a 15-element array of Fig. 1.3.
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Figure7.5 The far field pattern of a 15-element array of Fig. 1.3.



more than 15 dB lower than the mainlobe level. The results seem to indicate that if we 

were able to obtain the equivalent network for a single longitudinal dipole and use it to 

realize a proper current distribution by controlling the dimensions and positions of the 

strips, an even better performance could be expected.
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CHAPTER 8

CONCLUSION

The objective of this concluding chapter is to bring together the work of the previous 

seven chapters. A discussion of the results and their significance will enable suggestions 

to be made for the further work in this area.

8.1 Discussion of the Work Presented in This Thesis

The work presented in this thesis has been concerned with the analysis of Inset 

Dielectric Guide (IDG) and its application in microwave and m illim eter wave antennas.

The practical importance of millimetric wave was discussed in the beginning of this 

thesis. It is apparent that the choice of a particular structure for a certain application is 

the result of an engineering compromise between several factors. IDG was introduced as 

a practical evolution from image line with the potential for easier manufacture and 

improved performance.

A rigorous method of analysis for IDG, which was developed by Rozzi and Hedges, 

was discussed in Chapter 3 and extended to the odd mode case. This method is based on
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the Transverse Resonance Diffraction (TRD) approach. It involved the derivation of the 

field components from a transverse equivalent circuit model. The resonance of this 

circuit then gave a set o f coupled integral equations in the electric field components 

transverse to y. These were then solved by G alerkin’s method using a basis set that 

accurately modelled the electric field variation across the interface. The choice of basis 

function in the formulation of the dispersion equation was demonstrated to be accurate 

by the fast convergence of the solution and the accuracy of the computed results.

The nature of the field was dependent on the geometry of the guide, i.e. for a guide 

with hla > 1, the fundamental hybrid mode was essentially LSE0]; for h/a < 1, the 

hybrid mode can be expected to be LSMn . The calculated dispersion curves based on 

LSE/LSM approximation showed excellent agreement with the measured results.

As an open waveguide, the spectrum of IDG, besides the discrete modes, includes a 

continuous range of modes. Once the complete spectrum is found, an appropriate 

G reen’s function of the guide can be constructed, which is commonly used in the 

analysis of discontinuity and radiation problem. Completing the characterization of the 

spectrum of IDG so as to include the continuum was one o f the major aims of this work. 

The mathematical difficulty in the normalization of the continuum arises from the 

nonseparable nature of the two-dimensional cross section. The solution for this case had 

not been reported before this work started.

The complete spectrum was used to form the Green function, whereby the far field 

pattern of a single dipole could be evaluated.

This theory was successfully used in Chapter 5 to discover the equivalent network 

of a transverse dipole on the top of LS£-polarized IDG. A 23-element, 50 cm long array 

was designed and tested. The far field pattern and the other antenna characteristics 

demonstrate that the performance of the IDG antenna is superior to that of a traditional
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slotted waveguide array of the same dim ension, and its ease of manufacture is obvious, 

which is an important factor for the application at millimetric wave band. A coarse 

design and test of a 15-element array (in LSM-polarization) verified the feasibility of a 

horizontally polarized array with longitudinal dipoles.

We believe this thesis has dem onstrated that IDG as an open, nonseparable two- 

dim ensional structure possesses value for both theoretical research and practical 

application.

8.2 Suggestion for the Further Work in This Area

The investigation of IDG as a practically useful millimetric transmission medium is 

by no means complete. Further work is suggested as follows:

1) Investigate the equivalent network for a longitudinal dipole. Design and test 

horizontally polarized arrays.

The current on a longitudinal dipole is in the propagating direction. Therefore a

—  e -jp\z-z' \ term js involved in the evaluation o f the scattered Ez. The discontinuity 
dz

of the derivative of e ~ ^ z at the source point results in a delta function in the second 

derivative of e~ ^ z~z/ .̂ This makes accurate quadrature not easy and some appropriate 

techniques and skill are still needed.

2) D esign o f circularly polarized arrays.

As the nature of the field depends on the geometry of the guide, for a certain 

dim ension, a truly hybrid mode can exist. W ith properly arranged longitudinal and 

transverse dipoles, or some cross elem ents, a circularly polarized antenna can be 

constructed.

-8 .3-



3) Realize two-dimensional arrays.

A very important feature of the IDG antenna is the virtual decoupling of the near 

field between parallel arrays. Coupling via surface waves on the substrate, which is a 

real problem in m icrostrip and image line antennas, is prevented here by the metal side 

walls of the guide. Therefore the IDG configuration is ideally suited to the realization of 

two-dimensional arrays.

4) Improve the mode launcher.

In order to realize a two-dimensional array as mentioned before, proper feed 

circuitry is necessary. The parallel arrays can be excited by slots on the narrow wall of a 

standard waveguide, but there may be better ways. For circularly polarized arrays, 

excitation from the end o f the array might be necessary. The mode launcher, i.e. the 

transducer between the rectangular waveguide and the LSM-polarized IDG, needs to be 

improved further.

5) Extend the technique used in the normalization of the continuum of IDG to the other 

open structures.

6 ) Use IDG as transmission media to realize some passive components and active 

devices, such as filter, coupler, detector, mixer and so on.

8.3 Conclusion

It has become a universally recognized fact that the open dielectric waveguides are 

o f direct importance to the areas of integrated optics, m illim eter-wave integrated circuits 

and flat (or planar) antennas. For use above 100 GFIz, popular structures like microstrip 

and finline can no longer be used. Image line has shown its disadvantage in being 

difficult to control radiation wherever a discontinuity appears. The work presented in
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this thesis demonstrates that IDG, as a more practical variant of image line, has shown all 

the advantages of dielectric guides such as low metallic loss, ease of fabrication, low 

cost and good performance, without the disadvantages of some other guides. 

Furthermore it seems to offer particular promise for the flat antenna applications 

including high gain, high aperture efficiency and low loss. The need to continue work in 

this area is evident.
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