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Sum mary

This thesis is concerned with the implem entation of object-oriented dynamic program m ing 

languages based on bytecode in terpretation. A new interpretive im plem entation architecture 

is proposed th a t meets the requirements of code and system portability, execution perfor

mance, sta tic  and dynamic memory efficiency as well as language interoperability.

T he different quality of the architecture compared to  other virtual machine approaches 

is related to  the key techniques developed within this work: (i) C embedded virtual machine 

code, (ii) indexed code threading, (iii) optim al virtual instruction ordering and (iv) quasi

inline m ethod caching. C embedded virtual machine code refers to the representation of 

bytecodes as constant C arrays th a t are located in sharable tex t segments after compilation. 

Interoperability, application start-up  and dynamic memory usage benefit from this represen

tation. Indexed code threading addresses the performance problem with virtual instruction 

m apping (i.e. loading, decoding and invoking) by using a fast threaded instruction transfer. 

Unlike with standard  code threading, virtual machine code remains com pact and executable 

also with a non-threaded virtual machine emulator. A further performance boost is achieved 

with optim al virtual instruction ordering. This technique helps to cluster the native code 

implementing virtual instructions so th a t native instruction cache performance is increased. 

Finally, the efficiency problem involved with dynamic method lookup is alleviated with an 

inline caching scheme th a t is applicable with constant bytecode vectors. The scheme exploits 

type locality similar to  polymorphic inline caching. However, dynamic memory is saved by 

avoiding redundant m ethod entries and by being adaptable to  generic function invocation 

which typically comes in waves with hot-spots on particular methods.

A realization of the architecture is presented in form of an im plem entation of the dynamic 

object-oriented language EuLisp. The im plem entation dem onstrates the  feasibility and effec

tiveness of the proposed architecture. The average performance increase with indexed code 

threading is 14% (P5) and 17% (MIPS). The average increase with optim al instruction or

dering in the indexed threaded interpreter is 2 1 % (P5) and 15% (M IPS). Sharable read-only 

da ta  is increased on average by a factor of two and finally, the miss ratio  with quasi-inline 

method caching is measured as 1.06%.
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C h apter 1

Introduction

The real world is a highly dynamic and complex system. This suggests using program m ing 

languages th a t  can handle dynamism and complexity in a natural and simple way: dynamic 

object-oriented languages. This thesis is concerned with the im plem entation of dynamic 

object-oriented program ming languages based on bytecode interpretation.

The ability to  handle dynamism and complexity naturally with dynamic object-oriented 

program m ing (or for short dynamic objects) is based on emphasizing execution dependencies 

as opposed to  emphasizing compilation dependencies in more sta tic  languages. The emphasis 

on compile-time dependencies in languages like C + +  is illustrated by the fact th a t changing 

a compilation unit generally requires recompilation of all dependent compilation units. Such 

sta tic  dependencies result from the efficient mapping from the object-oriented performance 

model to  the hardw are performance model. An implication of this mapping is th a t class and 

m ethod definitions may not change after compilation. The emphasis on execution dependen

cies in languages like CLOS is likewise illustrated with the ability to  change, add or remove 

class and m ethod definitions a t run-time. Dynamic and complex applications can benefit 

from such execution dependencies as recompilation can be avoided.

In a further step  toward dynamic dependencies, classes and m ethods are used to  imple

m ent the object system  itself so th a t a modification of these defining classes and m ethods 

results in a modification of the semantics of the object system. By doing so, the sem antics of 

the language can be customized for individual application domains [KdRB91]. Such reflective 

capabilities in dynam ic object-oriented languages is typically combined with dynam ic typing, 

au tom atic  m emory management and run-tim e linking [Nas92].

In con trast, s ta tic  object-oriented languages, like C + + , Eiffel or Haskell, do not support
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In t r o d u c t i o n

run-tim e control over the object system to th a t extent. These languages are designed w ith a 

clearer separation between compile-time and run-time. Classes, m ethods and functions are 

compile-time concepts and do not appear as run-tim e d a ta  objects.

1.1 W h y D yn am ic O bjects?

T he im portance of dynamic object-oriented languages is based on the fact th a t the  trend  

tow ards d istribution, symbolic com putation and evolutionary software development requires 

to d a y ’s applications to deal with a high degree of dynamism and complexity. The increased 

use of dynamic object technology with languages like Smalltalk, CLOS and (partly) Java in 

the  commercial environm ent reflects this im portance [Gro95, Sha95].

D istr ib u tio n  Infrastructures for distributed computing are now ubiquitous and ready 

to  be used by a new generation of applications based on distributed software com ponents and 

mobile code. Object-oriented program ming has long been acknowledged as advantageous for 

dealing with complexity inherent in distributed systems [NWM93]. However, popular object- 

oriented static  languages with their emphasis on compilation dependencies are not ideally 

suited for code mobility in heterogeneous com puter networks. In contrast, the com bination 

of dynam ic linking, autom atic memory m anagement, dynamic typing and m ulti-threading 

has a natural potential to  handle the intrinsic dynamic behaviour of d istributed system s, 

such as in the form of asynchronously arriving active objects [CJK95].

S ym b olic  C o m p u ta tio n  The second reason for an increased call on dynam ic com pu

tation  derives from applications which incorporate symbolic com putation. Today’s standard  

hardw are finally gives acceptable performance to knowledge-based systems. Typically, these 

system s process symbolic d a ta  rather than  numeric or other low level d a ta  (e.g. b it/ch a rac te r 

strings). Symbolic d a ta  is intrinsically abstract and irregular which can make sta tic  typing 

less precise as well as processor and memory consumption unpredictable. Dynamic typing and 

au tom atic memory m anagem ent are therefore desired features of knowledge representation 

languages.

E v o lu tio n a ry  Softw are D ev e lo p m en t It has been realized th a t sta tic  object-oriented 

languages cause versioning problems when components, which are used by other com po

nents, require modification. These languages normally use sta tic  type inform ation for effi

cient m ethod lookup based on indirection through a statically computed m ethod table. This 

approach compiles m ethod lookup into applications. Changing a class definition in a compila

tion unit thus forces recompilation of all dependent compilation units. This “fragile base class
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In t r o d u c t i o n

problem ” limits the  scalability of complex software systems and does not exist with m ethod 

lookup based on execution dependencies in dynamic object-oriented languages. Here, even a 

dynamic evolution of software is actually feasible for long-running (potentially d istributed) 

applications th a t cannot be simply stopped, modified and restarted  (e.g scheduling system s). 

Therefore, dynam ic object-oriented programming supports the custom ization and rapid modi

fication of applications according to individual or changing needs [LV97, Cor97, Phi97, DB97].

D istribution, symbolic com putation and evolutionary software development share a  de

m and for dynam ic flexibility provided with autom atic memory m anagem ent, introspection 

and dynamic linking— key features of dynamic object-oriented program ming [Nas92].

Research into integrating and coordinating human and autom ated problem solvers in 

large com puter and telecommunication networks is driven by the m etaphor of group in

teraction and social organization and is known as decentralized (or distributed) artificial 

intelligence (DAI) [Gas92j. DAI as a high-level form of distributed computing, is one of the 

most promising fu ture  application areas across the Internet and on company-wide in tranets. 

DAI is linked to  the three areas above—distribution, knowledge representation and software 

evolution. Dynam ic object-oriented programming is therefore suited for implementing DAI 

applications (see [Ham97, Way95, RNSP97] and others).

1.2 V irtu a l M achines

Compilation into native machine code and direct (or tree) in terpretation offer different trad e 

offs. Both im plem entation techniques are not optim al with regard to  a compound m easure 

including the size, speed and versatility of the corresponding executable program  representa

tion [Hoe74, DVC90]. A much better overall value can be achieved with bytecode in terp re ta

tion. Source code is here transform ed into semantically equivalent instructions (bytecodes) 

of a virtual machine. An interpreter program th a t emulates the virtual machine executes the 

virtual machine instructions.

The virtual machine (or bytecode) approach provides an architecture neutral and com

pact executable program  representation th a t enables code mobility in heterogeneous environ

ments [Gos95]. W ith  regard to  the application domain of high-level d istributed com puting 

identified in the  previous section, this approach is thus a reasonable im plem entation tech

nique for an dynam ic object-oriented language system and sets the general scope for th is 

thesis: dynam ic objects with virtual machines.
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1.3 P rob lem s w ith  In terpreted  D yn am ic O b jects

Bytecode in terpretation and the emphasis on run-tim e dependencies in dynam ic object- 

oriented languages are not w ithout disadvantages. Speed and space problems create a popu

lar stigm a: dynamic object-oriented applications executed on virtual machines are inefficient 

with regard to  execution time and dynamic memory consumption.

Dynamic object-oriented applications show reduced performance compared to  more sta tic  

languages due to  the higher overhead and higher frequency of dynamic m ethod lookup. Fur

therm ore, the lack of sta tic  type information, higher-order functionals (including continu

ations) and the capability to  extend a program at run-tim e by dynamic finking, eliminate 

precise control and d a ta  flow prediction which is necessary for standard  optim izations and a 

direct m ap onto the underlying hardware performance model.

The emphasis on run-tim e dependencies by means of dynamic linking (with potential 

run-tim e evaluation) as well as the use of classes and m ethods as first-class values require 

applications to  carry around much more code and d a ta  than  actually necessary [Shr96]. The 

detection of unused code (e.g. evaluator) and unused d a ta  (e.g. m etaobjects) is difficult and 

hinders the delivery of small executables.

Bytecode in terpretation is responsible for a further decrease in performance and increase 

in dynamic memory consumption. M apping (i.e. loading, decoding and invoking) of virtual 

machine instructions in the em ulator program decreases performance compared to  native 

compilation by a t least an order [DVC90].

The separation between execution on the bytecode level and execution on the native 

machine code level is also disadvantageous for dynamic memory footprints since v irtual m a

chine code is treated  by the operating system as d a ta  rather than sharable tex t, as with 

native compilation. O perating systems are therefore not able to share virtual machine code 

in memory among all the applications executing it concurrently. Such shareability can be 

of great im portance when several applications are started  by a user th a t is using a machine 

directly an d /o r by different users th a t are running applications over a network connection to  

a machine.
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I n t r o d u c t i o n

1.4  A n  A rch itectu re  for In terpreted  D yn am ic O b ject-O rien ted  

L anguages

Efficiency problems with dynamic objects can be addressed by restricting the dynamic char

acter of the source language and introducing means for enhanced sta tic  analysability, such as 

explicit typing, sealing of program parts, reducing reflective capabilities or imposing a closed 

program  assum ption with a im m utable set of bindings. The ideas put forward in this thesis 

are different from these approaches as it is a ttem pted  to  achieve efficiency without sacrificing 

the dynamic character of the source language. The dynamic aspect is regarded as the dis

tinctive feature of dynamic object-oriented programming. Instead of starting  a t the source 

code level, the  approach here is concerned firstly with the efficiency of the executable pro

gram  representation and derives from there a novel technique to alleviate the cost of dynamic 

m ethod lookup.

The contribution of the work presented here lies in the design of a new virtual machine 

architecture for dynamic object-oriented languages. The approach succeeds in improving ef

ficiency of object-oriented applications by combining four techniques: (i) C embedded virtual 

machine code, (ii) indexed code threading, (iii) optim al virtual instruction ordering and (iv) 

quasi-inline m ethod caching.

E m b ed d in g  V ir tu a l M ach in e C od e The architecture achieves m odest dynamic mem

ory consum ption with C embedded constant virtual machine code which is compiled into 

sharable native code (located in text segments) after C compilation. Such sharing results 

in small memory footprints since code is not duplicated but shared in memory by different 

processes (i.e. applications) executing it. Read-only code vectors further lead to optimized 

autom atic memory m anagem ent as they are not heap-allocated and therefore not considered 

(traced or copied) with autom atic memory management.

C embedded virtual machine code simplifies development of software th a t uses third 

party  software (or which is itself part of another software package) with interoperability on 

the C language level. Foreign addresses can be used directly within separate compilation 

units. Neither the  virtual machine, nor the run-tim e support code, need to  be extended 

for interoperability with foreign code. The representation of virtual machine code on the C 

language level does not compromise the architectural neutrality of the executable program  

representation. The architecture neutral bytecodes can be extracted from a generated C 

file or a functional object in order to be sent to  other virtual machines in a d istributed
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heterogeneous environm ent. The representation of virtual machine code on the C language 

level therefore combines the advantages of bytecode in terpretation and native compilation 

(or translation into C).

In d exed  C od e  T h read in g  The architecture reduces execution tim e of applications 

with optimized transfer between virtual machine instructions by using indexed code th read 

ing, a variation of code threading [Bel73]. In contrast to  standard  code threading, virtual 

machine code with indexed code threading is compact and portable in the sense th a t it can 

be linked to  a code threaded or switched version of a C-based interpreter. Average speed ups 

for this technique are measured as 14% and 17% on P5 and M IPS processors respectively.

O p tim al In stru ctio n  O rd ering  A nother performance improvement of 21% and 15% 

can be reported with optim al v irtual instruction orderings, again on P5 and M IPS respec

tively. C lustering the native code of virtual machine instructions th a t are likely to  be executed 

consecutively, increases the chances th a t the code is already in the native instruction cache. 

An approxim ation of such a clustering can be derived from profiling the dynamic invocation 

frequency of v irtual instructions. The native code of the virtual instruction called most will 

then be next in memory to the native code of the virtual instruction called second most etc. 

Particularly, for the small range of virtual instructions th a t typically dom inate applications, 

such an ordering results in much better native instruction cache performance than  the typical 

ad-hoc ordering. W ith the help of a tool developed within the context of this thesis, optim al 

orderings can easily be derived for any range of applications.

Q uasi-In line M eth o d  C ach ing  The cost of method lookup with dynamic objects 

is reduced with a flexible and successful inline caching technique, called quasi-inline m ethod 

caching. Similar to classical inline m ethod caching [DS84, HCU91], type locality with dynamic 

m ethod lookup is exploited to  achieve high method-cache hit rates. Quasi-inline m ethod 

caching, however, is particularly suited to  read-only virtual machine code. This technique 

is furtherm ore designed to adap t to  hot-spots common in dynamic object-oriented program s 

so th a t cache sizes can be smaller than  with other approaches. The average cache miss ratio 

accomplished with a realization of quasi-inline m ethod caching is around 1.06%.

Although each of the four techniques can be applied without the others in a bytecoded 

object system , they are not unrelated in the architecture. The combination of the tech

niques strives to continue the evolution of bytecode interpretation driven by the specific 

requirem ents of dynamic object-oriented programming, including efficiency, interoperability 

and portability.
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1.5 O utline

This docum ent is divided into two m ajor parts. P a rt I introduces dynamic object-oriented 

program ming languages with its distinctive characteristics (C hapter 2 ) and requirem ents 

(C hapter 3). Im portant issues for implementing these dynamic languages are identified and 

the approach taken within this thesis is distinguished from others.

P a rt II presents a new architecture for implementing dynamic object-oriented languages 

with virtual machines (C hapter 4). The techniques of C embedded virtual machine code, 

indexed code threading, optim al instruction ordering and quasi-inline m ethod caching are de

scribed. Furtherm ore, this part provides insight into the youtoo system , an im plem entation 

of the dynamic object-oriented programming language EuLisp (C hapter 5). The im plem enta

tion shows the feasibility and effectiveness of the proposed architecture. The empirical results 

collected with its realization are compared with other related work (C hapter 6 ). Finally, the 

thesis is concluded and summarized (C hapter 7).
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C h apter 2

D ynam ic Object-Oriented  

Program m ing

Sm alltalk, as the most influential object-oriented language, features classes and m ethods as 

dynam ic language constructs which can be created, inspected, modified and linked during run

time. Later, static  object-oriented languages, like C + +  and Eiffel, put much more stress on 

sta tic  dependencies and deliberately abandoned the dynamic character for be tter performance 

and earlier error detection.

This chapter introduces Sm alltalk and CLOS, two representative members of the family of 

dynamic object-oriented languages. Key concepts of dynamic object technology are reviewed, 

namely dynamic typing, autom atic memory m anagem ent, dynamic linking and reflection. 

Finally, a term inology is given th a t is used within the rest of this thesis.

2.1 S m allta lk

Historically, Sm alltalk [GR83, Gol95] is (after Simula) the second object-oriented language. 

The language is based on objects as a uniform representation of da ta . The structu re  and 

behaviour of a set of objects is defined by a class. An object is called an instance of a 

class if the class defines its structu re  and behaviour. The structural information in a class is 

used to create new instances. The behaviour of instances is defined in term s of operations 

called m ethods. An object executes a m ethod when it receives and recognizes a message. 

The execution of a m ethod can involve accessing the sta te  of the receiver object, invoking a 

primitive or sending a new message.
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Super- and subclass relationships among classes define a class hierarchy so th a t struc tu ra l 

and behavioural information can be shared along the hierarchy. A class can extend the 

structu ra l description of instances defined in its superclass. Likewise, the m ethods applicable 

to instances of a class (effective methods) are given by the m ethods directly defined a t the 

class (direct m ethods) and the effective m ethods of the superclass. The access of structu ral 

and behavioural descriptions defined in class C\ from a class C 2 which is a direct or indirect 

subclass of C i, is called inheritance. By sharing structural and behavioural information 

along the hierarchy, inheritance reduces the need to specify redundant information, simplifies 

modification and therefore facilitates software reuse [SB8 6 , Sny87, Wei97].

Message sending is different from procedure calling in statically-typed procedural lan

guages. The exact class of the object receiving a message may only be known at run-tim e 

because m ethods are applicable to  instances of subclasses of the class defining the m ethod. 

Thus, the appropriate  m ethod for a message being sent to an object has to  be determined 

dynam ically1. The dynamic binding process between messages and m ethods (late method 

binding) is specified by a m ethod lookup algorithm.

A Sm alltalk message is given by a message selector and a receiver object. Each class in 

the class hierarchy has a dictionary th a t maps message selectors to m ethods. The m ethod 

lookup for a message send is then as follows:

1. Search for the  message selector in the message dictionary of the receiver class. If the 

selector is found, return the corresponding method; otherwise go to  2 .

2. If the receiver class has no superclass go to 3; otherwise set the superclass to  be the 

receiver class and go to  1 .

3. The message is not understood by the receiver.

Although message dictionaries are normally implemented as hash tables [Kra83], selector 

collision and superclass chain traversal result in slow method lookup times.

2.2 Lisp

In its sem antics the  non-object-oriented part of Smalltalk is very similar to  Lisp, one of the 

first program m ing languages. Lisp, short for List Processor, was developed by John M cCarthy

1This fact is paraphrased later in the context of m ulti-methods (Section 2.3) into: The appropriate m ethod  

for a call site of a generic function has to be determined dynamically.
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in the late 1950s [McC59]. The idea was to express com putation by symbolic functions similar 

to  the lam bda calculus. The List Processor was defined as a Lisp function itself, called the 

evaluation function. To simplify the evaluation process, functions were represented as lists, 

the  basic Lisp d a ta  structure. This duality of d a ta  and program, together with a m ethod to 

extend the evaluation function made Lisp a program mable programming language [Fod91]—a 

reflective language.

Lisp is no longer a single language. W ith many different dialects, it has become a family 

of languages characterized by the following features:

D y n a m ic  T y p in g  Dynamic typing is best explained as the opposite to sta tic  typing. W ith 

sta tic  typing, type correctness is decidable a t compile-time. A language is dynamically- 

typed otherwise. For instance, ML is a statically-typed language because the correct 

invocation of functions with regard to the type system is decided statically. The type of 

any value can be determined during run-tim e of a dynamically-typed program  in order 

to  signal dynamic type violation and to  provide type predicates. In certain cases, type 

correctness can be partly decided as well for dynamically-typed languages.

C losu res Functions retain the lexical bindings in effect when created. A function can thus 

be regarded as code plus an environment. The environment can be (partly) shared with 

o ther functions th a t have been created within the same lexical scope.

C on tin u ation s The s ta te  of com putation can be captured in a functional object called a 

continuation. W hen the continuation is invoked, the sta te  of com putation is re-activated 

and execution resumes from the point where the continuation was created. New control 

structu res can be easily defined with continuations.

H igh er-O rd er F un ctionals Functions and continuations have first-class s ta tu s  in the sense 

th a t they can be dynamically created, passed as argum ents, returned from other func

tions, assigned to  variables or stored in d a ta  structures. Functionals are thus trea ted  

like any other value.

A u to m a tic  M em o ry  M an agem en t Unused storage is autom atically reclaimed (see also 

Section 2.4.3).

D yn am ic  L inking New code can be linked to  a running program  (see also Section 5.1.1). 

A lthough this feature is not always explicitly mentioned in Lisp language definitions,
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dynamic linking is typically provided with implem entations by a loading or evaluation 

mechanism.

M a c ro s  Lisp source code is w ritten in a  Lisp-like syntax so th a t normal Lisp functions can 

act as syntax  functions (i.e. macros) to  pre-process source code. Generally, macros can 

use the full language.

The m ost prom inent members of the Lisp family are Common Lisp [Ste84, Ste90, AI96] 

and Scheme [CE91, IEE91]. Common Lisp has successfully superseded a variety of Lisp 

dialects. For the  sake of backward com patibility to the replaced dialects, CommonLisp is 

known to  be “baroque” in its wealth of features. Scheme on the other hand is based on a few 

orthogonal concepts and minimalist in design. Close to  the lam bda calculus, Scheme allows 

for reasoning about its sem antics and potential language extensions. Unlike Common Lisp, 

Scheme has no modules and no object system  and is not suited for, nor aimed a t commercial 

software development.

The ability to  extend its syntax and its set of control structures gives Lisp the flexibility to 

host, or even change into, a new program m ing language [BKK+ 8 6 ]. The fact th a t an object- 

oriented paradigm  can be added to  Lisp by means of macros and some defining forms [Bra96, 

Que96], dem onstrates this flexibility and links up to the following section: the Common Lisp 

O bject System (CLOS).

2.3 T h e C om m on  Lisp O b ject S y stem

Common Lisp incorporates a variation on the Smalltalk approach to  object-oriented pro

gram m ing implem ented as the Common Lisp O bject System (CLOS) [AI96, BD G+ 8 8 b]. Like 

Smalltalk, this approach which is rooted in CommonLoops [BKK+ 8 6 ] and Flavors [M0 0 8 6 ], 

uses classes to  define the structure, creation and access of objects. However, the notion 

of message sending is replaced by generic function invocation. W ith generic functions, all 

argum ents are considered with dynamic m ethod lookup, in contrast to  the first argum ent 

(i.e. the  receiver object) only as with message sending. Dynamic method lookup based on 

one argum ent only is called single-method dispatch; dynamic method lookup based on more 

than one argum ent is referred to  as multi-method  dispatch.

M ethods in CLOS are not stored a t classes together with other m ethods defined for 

instances of the  sam e class, but a t generic functions together with other m ethods th a t may be 

selected as the  m ost specific m ethod for a  generic function invocation. Similar to  Smalltalk,
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th e  binding process between call sites of generic functions and m ethods is dynamic and 

specified by a m ethod lookup algorithm.

Generic function invocation is motivated by the fact th a t the notion of passing a message 

to  a single receiver is in many cases not adequate. For example, with single-methods an 

operation to  w rite d a ta  to  various stream s (e.g. file, socket connection, string) has to be im

plem ented w ith explicit discrimination on the type of either, the d a ta  or stream  argum ent, in 

each m ethod. Both objects could however be regarded as receivers of a write message. W ith 

m ulti-m ethods d a ta  and  stream  argum ent can be considered for m ethod dispatch. Commu

ta tive  arithm etic is another example which is unsuited to single-method dispatch.

M ulti-m ethod dispatch is sometimes described as a generalization of single-method dis

patch. This is however misleading, since single-method dispatch provides much better encap

sulation of d a ta  and code [CL94, DeM93, Cha92]. W ith generic functions, m ethods are not 

local to  a specific class so th a t instance variables always require accessor functions for reading 

and writing. Direct access to  instance variables from m ethods local to  a class combined with 

restricted public access is only possible with single-method dispatch. This approach therefore 

provides much be tte r support for encapsulation and information hiding.

The full m ethod lookup with generic functions and m ulti-m ethods involves normally the 

access and invocation of a discriminating function which in turn calls a m ethod lookup func

tion th a t returns a list of m ethods applicable (with regard to  their domain) to  the supplied ar

gum ents. The m ethod list is sorted by specificity (see Section 2.6). Hence, the first m ethod is 

the  most specific. Its associated m ethod function is finally applied to the argum ents. The rest 

of the m ethod list is saved in case the next method is later requested with c a ll -n e x t-m e th o d  

(which is the equivalent to su p e r  in other languages).

2.4  D y n a m ic  O b jects

Sm alltalk and CLOS have different approaches to object-oriented program ming. However, 

they share the  emphasis on execution dependency and clearly differ in th a t respect from 

object-oriented sta tic  languages. Compilation of these languages requires much more infor

m ation about program s and is thus not ideally suited to  productivity, but more targeted 

towards execution efficiency and implementational simplicity [Str93]. This difference is re

flected in the three key features of dynamic object technology (or short dynamic objects): 

dynamic linking, reflection and autom atic memory m anagement [Nas92].
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2 .4 .1  D y n a m ic  L in k in g

The popularity  of Lisp and Sm alltalk stem s from the comfortable and interactive develop

m ent environm ents th a t  have traditionally  accompanied these languages [Shr96]. Typical 

features of interactive development environments are profiling, tracing, stepping, inspection 

and dynam ic error handling with the option to resume com putation after a modification and, 

in some cases, graphical user interfaces.

The basic m ethod of interaction is through a read-eval-print loop2 th a t reads and evaluates 

s ta tem ents and finally prints the result of the  evaluated statem ent. Definitions (and redefini

tions) can be tested  im m ediately w ithout going through a time-consuming edit-compile-link- 

run cycle.

Such increm ental development is related to  dynamic linking, used in Lisp, Smalltalk and 

even C. In each case, the definition of bindings is not necessarily fixed a t run-tim e. New 

program  parts  can be linked into a system as they are needed. Tight memory restrictions or 

dynamic configurability are typical reasons to use dynamic linking.

However, there is a performance tradeoff incurred by dynamic linking. Beside the tim e it 

takes to  retrieve (from the local file system  or off a network) the binding value, a significant 

overhead has to  be accepted by the fact th a t the application is not closed. Interprocedural and 

global optim izations generally assume th a t  function bindings do not change after compilation.

2 .4 .2  R e f le c t io n

C om putational reflection is the ability of a program to access its structure  and s ta te  during 

execution [Smi84]. Reading access— in the sense th a t a program  observes and reasons about 

its struc tu re  and execution s ta te—is referred to  as introspection. Modification of a program ’s 

structu re  and execution s ta te  by a program  itself is called intercession. Both aspects of 

com putational reflection, introspection and intercession, are based on reification, the encoding 

of program and execution s ta te  as da ta .

Reflection in com putational system s is driven by demand for extended flexibility. Per

haps the simplest introspective operator is ty p e -o f  which is typically provided in dynamically 

typed program m ing languages. The operator returns a value th a t represents the type of its 

argum ent and therefore reveals already some insight into the representation of d a ta  during 

run-time. A bit more introspective information is necessary to write a generic walker to 

“walk” over a rb itra ry  d a ta  structu res including primitive and (possibly user defined) com

2Also known as top-level.
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pound d a ta  structures. A print function could use such a generic walker to visualize arb itrary  

d a ta  structu res in a  nested way. In this case, introspection can help to  find out about the 

length, type, struc tu re  and access of da ta  objects.

Intercession can be useful to handle evolving models. Some problem domains are in trin

sically dynam ic and cannot be correctly represented by a sta tic  model in a com putational 

system [KAJ93]. Suppose, we have a model of a heterogeneous network where nodes are 

represented as instances of different classes. Unpredictably, within the real world new nodes 

appear, which require to  be added as well to  the model. W ith regard to  a specific feature 

which these new nodes incorporate (but no other node had before), it may desirable repre

sent the nodes as instances of a new class. A dynamic reorganization of the class hierarchy 

is however only possible by modifying existing classes, i.e. by intercession.

In both, Sm alltalk and CLOS, classes and m ethods are first-class. However, only CLOS 

is m etacircular in the  sense th a t the object system itself is implemented in term s of objects, 

classes, and m ethods (reification). Since classes and m ethods are first-class values in the 

language, the struc tu re  and behaviour of the object system can be observed (inspection) and 

modified (intercession). The interface for inspection and intercession is generally known as 

a m etaobject protocol [Coi87, KdRB9l]. The essential idea of a m etaobject protocol is to 

enable language users to  adap t the semantics of the language to the particular needs of their 

applications.

M etaobject protocols can be regarded as an extension of the reflective features a t the core 

of the List Processor (see Section 2.2) in the object-oriented context. By doing so, behaviour 

in the language level can be reused in the application level, resulting in less development cost 

and—theoretically—less execution time. In practice, reflective capabilities tend to  be ineffi

cient due to the fact th a t  default semantics for object creation, slot access and m ethod lookup 

cannot be “hard-wired” into the system. Like higher-order functionals and dynamic typing, 

reflection aggravates d a ta  and control flow prediction and impedes m any optim izations.

2 .4 .3  A u to m a t ic  M e m o r y  M a n a g e m e n t

In principle, dynamically allocated memory should be deallocated when no longer in use in or

der to  avoid storage exhaustion. In practice, memory m anagement is tedious and error-prone. 

Dynamic object-oriented languages critically depend on complete reclam ation of unused ac

tivation records, closures and explicitly allocated application da ta  because of high (non-tail3)

3 A function call is in tail-position if its result determines the result of the function in which the call is located. 

The enclosing function returns with the result of the tail-call. Thus, the context of the function in which the
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function invocation frequency and the typical profile of dynamic problem domains. An au to 

m atic kind of memory m anagement is thus not only a standard  feature in pure Lisp system s 

but also a defining characteristic of dynamic object-oriented languages.

A utom atic memory management is generally known as dynamic memory allocation com

bined with autom atic reclam ation of storage th a t is no longer accessible by following pointers 

from program  variables [App91, Wil95]. A utom atic reclamation is also referred to  as garbage 

collection.

2.5 D ecen tra lized  A rtificia l In telligence

The Internet is constructed from open services built around a standard  communication fram e

work. Due to com puter mobility, varying network latency, bandwidth and connectivity there 

is an increasing dem and for off-line com putation. The idea is th a t program  modules are sent 

off as mobile software agents to run on remote machines and later return to report to  the 

user [GK94]. In order to  fulfil a task without user interaction, agents need to  have some 

degree of mobility, autonom y and determ ination. Furtherm ore it can be envisaged th a t par

ticular problems require cooperation with other agents. Software agents are studied in the 

field of decentralized artificial intelligence (DAI) which uses the m etaphor of group in ter

action and social organization to  integrate and coordinate human and autom ated problem 

solvers [Gas92].

Before agent-based systems became en vogue recently, related work has been done in 

the field of object-based concurrent systems [Hew77, AH87, W Y 8 8 ]. Typically, object-based 

concurrent applications rely significantly on flexible control of com putation a t run-tim e. Re

flective capabilities can provide such flexibility by means of metaobjects th a t model s truc tu ra l 

and behavioural aspects of objects. From the modelling aspect, the combination of object- 

oriented program m ing and reflection is therefore a natural one [Mae87j. Encapsulation, d a ta  

abstraction and increm ental extension provide a suitable “hook” for com putational reflection.

tail-call is located can be discarded/dism issed (i.e. removed from the context stack) just before the tail-call 

is performed. In the case of a recursive tail-call this has the important effect that tail-recursive functions 

(i.e. functions with tail-recursive calls) only need a constant amount of context stack. Iterative control 

structures can be simulated by tail-recursive functions with storage demand equivalent to true iteration. Tail- 

call optimization is a compulsory optimisation for im plementations of some Lisp dialects, including Scheme 

and EuLisp.
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2 .6  T erm inology

Throughout this thesis the general terminology and paradigm  of object-oriented Lisp sys

tem s [BKK +8 6 , Coi87, BD G+8 8 a, KdRB91, BKDP93] is followed. The defining term s are 

classes, generic functions and methods.

A class stores structural and behavioural information about a set of objects which are 

its instances. The class4 of any object can be dynamically determined and accessed. Super- 

and subclass relationships among the classes define a class hierarchy. If not stated  explicitly, 

a single superclass relationship per class (single inheritance) is assumed. A class hierarchy 

may look like this:

<object>
<character>
< c o lle c t io n >

<table>
<hash-tab le>

<sequence>
<character-sequence>

<string>
<vector>
< l is t >

<cons>
<null>

<mimber>
< flo a t>

<double>
<in teger>

<int>
<b ig in t>

< class>
< s im p le -c la ss>
< fu n c tio n -c la ss>

<method>
<simple-method>

< slo t>
< lo c a l - s lo t>

<function>
< sim p le-fu n ction >
< g en er ic -fu n ctio n >

< sim p le -g en er ic -fu n ctio n >
<name>

<symbol>
<keyword>

Procedures are generally called functions  even when they are not referentially transparen t 

(i.e. have side-effects). We refer to the source code position of a function call as function  call 

site. The dynam ic process of calling a function is called function invocation.

Simple functions are distinguished from generic functions. A simple function  is defined 

by a single function body and is applicable to argum ents of any type. Dynamic type checking

4There is no distinction between class and type.
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signals inappropriate  type usage. Types for argum ents and return values are not specified. A 

generic function  is defined in term s of m ethods which describe the behaviour of the generic 

function for different argum ent types. All argum ents are considered for m ethod selection 

(m ulti-m ethod dispatch).

Each m ethod is defined with a domain which specifies the applicability of the m ethod to 

supplied argum ents. A m ethod is applicable to  argum ents if the class of each argum ent is a 

subclass of the  corresponding domain class. A method with domain D \ is said to  be more 

specific than  a m ethod with domain D 2 if some domain class of D \ are subclasses of the 

corresponding dom ain classes in D 2 and if all remaining classes in D 2 are not subclasses of 

the rem aining corresponding classes in D \.

The process of selecting a list of applicable m ethods—sorted by specificity—for a generic 

function and supplied argum ents is called method lookup. M ethod lookup followed by the 

application of the  most specific method (i.e. the first element in the sorted m ethod list) to 

the supplied argum ents is called method dispatch.

The following example defines a generic function elem ent to  select the i-th element of an 

ordered collection (i.e. instance of class <sequence>). The simple function foo  calls elem ent; 

in tu rn  foo  itself is called with a vector, a string and a list object.

(d e fg e n e r ic  e lem en t (x i ) )

(defm ethod e lem en t ( (x  < s tr in g > )  ( i  < in te g e r> ))
( s t r i n g - r e f  x i ) )

(defm ethod e lem en t ( (x  < vecto r> ) ( i  < in te g e r> ))
( v e c t o r - r e f  x i ) )

(defm ethod e lem en t ((x  < l i s t> )  ( i  < in te g e r> ))
( i f  (= i  0)

(c a r  x)
(e lem en t (c d r  x) ( -  i  1) ) ) )

(d efu n  foo  (x)

(e lem en t x 1)
. . . )

(foo  # (a  b c ) )
(foo  "abc")
(foo  ’ (a  b c ) )

Since there is no possibility to distinguish in general between simple and generic func

tion call sites, like in (d efun  foo  (x y) (x y ) ) ,  the function invocation protocol handles 

both cases. Simple functions and m ethods retain the lexical bindings in effect when cre

ated. A single lexical environment for the evaluation of variables, operators and operands is
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C h apter 3

V irtual Machines and the  

Requirem ents of Dynam ic O bjects

As argued in the introduction, a m ajor application domain for dynamic object-oriented pro

gram m ing is distributed computing and in particular the field of decentralized artificial in

telligence. It is the  affinity to  this application domain, requiring code and thread  mobility, 

which makes v irtual machine code the most interesting program representation form at for 

dynamic object-oriented programming today [Gos95],

Much atten tion  has been devoted to  object-oriented language im plem entations based on 

virtual machines in the context of Smalltalk, Lisp and recently Java. However, interpretation 

and the high-level performance model of dynamic object-oriented program ming impose a 

significant efficiency overhead.

This chapter introduces the concept of virtual machines and identifies key problems, the 

cost of virtual instruction transfer and suboptim al dynamic memory economy. Furtherm ore, 

this chapter concerns the general purpose requirements of dynamic object-oriented languages 

th a t have to  be m et with a successful im plem entation. The general approach to  language 

im plem entation taken within this thesis is finally delimited from other approaches.

3.1 V irtu a l M achines

A program ming language is implemented on a hardware platform  if a source program  can 

be transform ed into a semantically equivalent executable representation and an executer (or
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evaluator) for this program representation exists1. A classification of programming language 

im plem entations can be based on the kind of executable program representation [DVC90]:

N a tiv e  M a c h in e  C ode  (N M C ) Source code is transformed into semantically equivalent 

native machine instructions, a representation th a t is directly executable on a real ma

chine.

V ir tu a l  M a c h in e  C ode  (V M C ) Source code is transformed into semantically equivalent 

instructions of a virtual machine. An interpreter program th a t emulates the virtual 

machine executes the virtual machine instructions.

S o u rc e  C o d e  (S C ) Source code is executed by an interpreter program directly without 

preceding transform ation.

The transform ation of a program unit from source code into executable code—for a real 

or virtual machine—is generally referred to as compilation; whereas the stepwise evaluation 

of code conforming to a semantics is called interpretation. Figure 3-1 illustrates the three 

principle implementation techniques.

compilation.

interpretation/executionVMC

NMC

Figure 3-1: Programming language implementation techniques

Execution of native machine code and interpretation of source code can be regarded as 

special cases of interpretation of virtual machine code. In the first case, the virtual machine is 

the native machine and no emulation is required; in the second case, the virtual machine code 

is the source code and no compilation is required. However, virtual machine code is typically 

an abstract syntax tree or in a bytecode form at (i.e. encoded in the the range [0..255]). This

1The special case of direct execution architectures with hardware support for high-level interpretation is 

not considered.
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work is not concerned with tree interpretation so th a t within the following, virtual machine 

instructions are thought of as bytecodes.

A nother popular route to  language im plem entation is via source code translation  into the 

C program m ing language and subsequent compilation with a standard  C compiler [Bar89, 

TLA92, DPS94, A tt94, SW95]. Despite some differences, C code translation is here regarded 

as compilation into native machine instructions which simply happens in two steps (see also 

Section 6.4).

Also unaddressed in Figure 3-1 is the fact th a t virtual machine instructions can be further 

compiled into native machine instructions [DS84, HAKN97]. Again, such a transform ation 

in two steps has advantages th a t  are discussed later (C hapter 6) but here regarded as compi

lation into native machine code. The three different im plem entation techniques— referred to  

as native com pilation, bytecode in terpretation and direct in terpretation respectively—offer 

different tradeoffs as discussed in the following three subsections.

3 .1 .1  S p e e d

Native machine code can be executed directly on a real machine as opposed to  virtual 

machine code which requires m apping (i.e. loading, decoding and invoking) of each exe

cuted virtual machine instruction in the em ulator program. Consequently, execution times 

of bytecoded applications are normally about ten times longer than  with native machine 

code [Deu73, Ert95, DS96]. Instruction m apping is necessary with native code too but the 

processor hardw are is able to  perform the m apping much faster and in parallel with instruc

tion execution. Direct in terpretation imposes an even bigger run-tim e penalty, as lexical and 

syntax analysis are performed dynamically and the incremental form of evaluation excludes 

standard  optim izations.

3 .1 .2  S p a c e

The instruction set of a real machine is designed as an interface between the machine hard

ware and the software envisaged to run on the machine. W ith native compilation this pre

defined interface is in some cases not ideally suited as target code (e.g. to  implem ent full 

continuations or closures). In contrast, the instruction set of a virtual machine is generally 

not predefined. The language implementor invents the virtual machine and can therefore 

design the instruction set specifically for the interpreted language, so th a t large savings 

in the space occupied by compiled code can be effected by a suitable designed instruction
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set [Deu73, Heh76, Gre84, Pit87, E E F +97]. Some standard  language operations (or even 

common operation sequences) are typically compiled into a single virtual machine instruc

tion (e.g. y=x+l or ( c a r  (c d r  (c d r  (c d r  x ) ) ) ) ) .

Such increase in the  semantic content of virtual instructions reduces the frequency of 

instruction m apping. Since more tim e is spent in the native code which implem ents the 

virtual instructions, smaller code vectors not only lead to  memory savings, but as well to 

execution speed up. The Reduce algebra system is reported to  run twice as fast for a particular 

application by increasing semantic instruction content [Nor93]. However, the im pact of bigger 

instructions on hardw are cache performance is difficult to  predict. On one hand, bigger virtual 

instructions can result in a higher hardware instruction cache miss ratio  [Ert95j. On the other 

hand, d a ta  cache hits are more likely with smaller code vectors.

The segments of an executable file (e.g. in ELF) fall into two basic categories. The text 

segment contains all read-only memory, typically native code and constant da ta , whereas 

the data segment is dedicated to  read/w rite  data. Modern virtual memory system s support 

sharing of read-only memory pages with shared objects2 (also known as shared libraries) 

in a general way [GLDW87]. Each process th a t uses a shared object usually generates a 

private memory copy of its entire d a ta  segment, as the d a ta  segment is m utable. The tex t 

segment, however, need to be loaded into main memory only once. An overriding goal when 

developing a shared object is to maximize the tex t segment and minimizing the d a ta  segment, 

thus optimizing the am ount of code being shared [Sun93].

While com pact in its explicit representation, virtual machine code is suboptim al with 

regard to  sharing of dynamic memory. W ith the virtual machine approach, the bytecoded 

application file (image) is normally loaded a t start-up . Although image files mainly contain 

read-only da ta , namely code vectors, their contents cannot easily be shared in memory by 

different processes executing the code vectors. Bytecode systems typically use one of the 

following choices to  load an application image:

• reading the image file and dynamically allocating the relevant d a ta  structures to  build 

the  functional objects,

• memory m apping the image file or

• undum ping a  complete virtual machine process.

2Shared objects are not related to objects in object-oriented programming.
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Reading the image file is clearly the most portable, but as well, a slow solution. A further 

draw back is th a t  bytecodes cannot be shared in memory by different processes executing 

it. Undum ping process images is difficult to  port, problem atic in the  presence of shared 

libraries and in general too heavy-weight. Memory m apping as well is difficult to  port to  

non-Unix platform s, bu t it can enable a quick start-up  and sharing of m apped memory 

pages by different processes executing it. The benefits of virtual memory m anagem ent can 

here lead to  significant savings in the consumption of dynamic memory (i.e. small memory 

footprints) [GLDW87, Sun93].

3 .1 .3  V e r s a t i l i t y

Beside perform ance and dynamic memory consumption, other characteristics have to be con

sidered with the different executable program  representations with regarded to  their general 

versatility.

Softw are D e v e lo p m e n t The emulation in the bytecode interpreter can be of im portance 

for interactive development environments. By controlling the s ta te  of com putation in 

the  virtual machine, support for debugging and inspection can be provided easily.

P o rta b ility  The custom  instruction set of virtual machines greatly simplifies the compilation 

process. The code generation phase of the bytecode compiler is portable since the 

peculiarities of different platform s (including the native instruction sets) are absorbed by 

the virtual machine em ulator program. In comparison to  native compilation, compiler 

complexity is further reduced by the fact th a t the target instruction set is tailored to  the 

source language. However, direct interpretation is still the simplest way to  implement 

a program m ing language. An interpreter can be directly inferred from a denotational 

definition of the language semantics [Cli84].

A rch itec tu ra l N e u tr a lity  Beside system portability, the portability  of the  executable pro

gram  representation is an im portant feature of direct and bytecode interpretation. 

Portability  of executable code is also known as architectural neutrality.

Infrastructures for distributed computing are now ubiquitous and ready to  be used by 

a new generation of applications based on mobile code (e.g. applets, mobile software 

agents or m ultim edia control inside of set-top boxes). A rchitectural neutrality  combined 

with code com pactness of language-derived virtual machine instruction sets has m ajor 

advantages for such applications. Code can be shipped unchanged to  an heterogeneous
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collection of machines and executed with identical semantics. D ata  transfer, however, 

requires marshalling in order to make the actual d a ta  representation transparen t be

tween different architectures.

Mobile code owes some of its success to  the popularity of the W orld-W ide Web, and is 

referred to  as applets, in the context of Java [GJS96]. Java supports implicit run-tim e 

linking of classes. If an application requires a class, which is not linked already, an 

exception is generated and handled by an appropriate class loader to retrieve the class 

from the file system or the network.

Code transfer with proprietary native machine code in heterogeneous environm ents can 

only be achieved when code is transform ed into an architecture neutral distribution 

form at (e.g. ANDF [BCD+91]) before shipping and transform ed from the distribution 

form at into the local native machine code after shipping. These transform ations are 

non-trivial and increase shipping time considerably.

An extension to  mobile code, required with mobile software agents, is thread migra

tion. Here, not only program code is shipped in a heterogeneous network but also the 

execution sta te , in order to resume execution a t different locations (i.e. machines).

The emulation of the virtual machine embraces the emulation of devices, e.g. printers 

and disks. This allows to control the m apping from virtual devices to  real devices and 

helps to  guarantee th a t transferred code does not abuse the local machine or compromise 

its security. Such security measures are more difficult to  implement with transfered 

native code.

In tero p era b ility  The need for single high-level language environments is questioned by a 

growing public reservoir of mainly C-based libraries. Functionality, like persistence, dis

tribution, concurrency, autom atic memory m anagement or graphical user interaction, 

can be used through application programming interfaces (API) of existing software 

packages on a wide range of platforms. Such functionality does not need to  be included 

per se into high-level languages. In fact, it is often desirable to switch to a  multi-lingual 

paradigm  when developing an application. It should therefore be possible th a t applica

tions are w ritten  in different, complementary languages, sharing d a ta  and (threads of) 

control. Such interoperability needs to be based on a simple and flexible foreign func

tion interface which is relatively straightforw ard with compilation into native machine 

code where foreign addresses can be directly embedded.
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Interoperability in the virtual machine approach, however, means a bytecoded function 

can be invoked from another language and likewise, an external function is callable 

from within a bytecode vector. The separation between execution on the bytecode level 

and execution on the native machine code level establishes a proprietary use of d a ta  

and control. A foreign address cannot directly be embedded into virtual machine code. 

Furtherm ore, the s ta te  of com putation in the virtual machine is defined in other term s 

(i.e. virtual registers, virtual stack, virtual program counter etc.) than  the s ta te  of 

com putation on the hardw are level, complicating the transparency of multiple threads 

of control.

Although a v irtual machine em ulator program can be extended to  embrace foreign code, 

this is not a  practical way to  interoperability. In general, it cannot be anticipated which 

foreign functions will be required by a potential application a t the tim e the virtual 

machine is installed. In any case, extending the virtual machine em ulator program  

statically  is not practical since the virtual machine may be used by different processes 

and should therefore not be customized to  an individual application.

Some system s (e.g. Self [ABC+ 96], Java [Wil97]) use the native run-tim e linker to  

extend the virtual machine dynamically with code from shared objects. This technique, 

however, can be difficult with legacy packages which are not compiled as shared objects.

The versatility of v irtual machine code is the key reason for a  large number of byte

code interpreted language implem entations (e.g. Pascal [NAJ+91], Smalltalk [Kra83, DS84], 

Oaklisp [PL91], Scheme 48 [KR94] and recently, Java [Gos95, LY96]).

3.2  R eq u irem en ts o f  D yn am ic O b jects

A successful language system  has to satisfy certain requirements in order to  foster the  distinc

tive features of the im plem ented language and as well to make them  practical. The following 

four requirem ents are focussed upon within this work:

1. performance,

2 . sta tic  and dynam ic memory efficiency,

3. system and code portability  and

4. interoperability.
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The previous section showed th a t by choosing bytecode in terpretation as the underlying 

execution model, portability  and static  memory efficiency (i.e. com pact code) is achieved. 

However, the remaining requirem ents cannot be easily satisfied. In fact, the following subsec

tions show th a t  the dynamic object-oriented approach introduces efficiency problems itself.

3 .2 .1  T h e  P e r fo r m a n c e  C o st  o f  E x e c u t io n  D e p e n d e n c ie s

The existence of code th a t  uniformly works for objects of a range of (sub)classes (i.e. inclusion 

polymorphism  [CW85]) in object-oriented languages makes it generally impossible to  deter

mine statically  which m ethod will be used a t a generic function call site. Exact argum ent 

classes cannot be determ ined until run-tim e because an object x can appear in place of an 

object y if x  is an instance of a  subclass of the class of y. The binding of generic function call 

sites to  the m ost specific applicable m ethods (i.e. the m ethod lookup) is therefore dynamic.

W ith dynam ic m ethod binding, effective optim izations, notably inlining, dead-code elimi

nation and constant propagation, cannot be performed. Code fragm entation, due to  encapsu

lation in object-oriented languages, results in high function invocation frequency and further 

aggravates the im pact of om itted optim izations [HCU91].

These problems apply to statically-typed and dynamically-typed object-oriented lan

guages equally. Statically-typed languages however, use sta tic  type inform ation to  compile 

the m ethod binding process (i.e. virtual function invocation in C + + ) as a dynam ic m ethod 

table lookup. Each instance carries a pointer to a class-specific m ethod table. Using the 

offset, th a t  is assigned to  each m ethod name statically, the most specific m ethod for a given 

object can be found in constant time.

The dynam ic features typical for dynamic object-oriented languages require a more flexi

ble technique to  speed up the m ethod lookup process. C hapter 2 introduced object-oriented 

languages with classes, m ethods and generic functions as first-class objects th a t  are used 

as building blocks of the  object system itself. By specializing the m etaobjects of an object 

system, the sem antics of the object system (e.g. inheritance) can be customized for an ap

plication. Typically, m etaobject protocols allow to  add, change and remove classes, m ethods 

and generic functions a t run-tim e.

A flexible and successful technique to  speed up the m ethod lookup in dynam ic object- 

oriented languages is memoization, also known as caching [Mic68, KS86]. This technique is 

based on the fact th a t results of side-effect-free functions can be saved and reused to  by

pass subsequent function applications with identical argum ents. M emoization can be applied
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to  the m ethod lookup function simply by saving the most specific m ethod which has been 

com puted for a generic function and the provided argum ent types. Such memoization of 

frequently used m ethods reduces the number of full method lookups during run-tim e and 

therefore can speed up generic function invocation significantly. Subsequent calls to  the 

generic function with argum ents of same classes can then reuse the cached m ethod.

The Sm alltalk definition [GR83] suggests a vector as a method cache with four consecutive 

locations for each method entry:

in it ia lizeM eth odC ache  
methodCacheSize <- 1024. 
methodCache <- Array new: methodCacheSize

findNewMethodlnClass: c la s s  
I hash I
hash <- ( ( (m essageSelector  bitAnd: c la s s )  bitAnd: 16rFF) b i t S h i f t :  2) + 1. 
(((methodCache at:  hash) = m essageSelector)  
and: [(methodCache at:  hash + 1) = c l a s s ] )  
i fT rue: [newMethod <- methodCache at:  hash + 2.

p r im it iv e ln d ex  <- methodCache at:  hash + 3] 
i f F a l s e :  [ s e l f  lookupMethodlnClass: c l a s s .

methodCache at:  hash put: m essageSelector .
methodCache at:  hash + 1 put: c la s s .
methodCache at:  hash + 2 put: newMethod.
methodCache at:  hash + 3 put: p r im it ive ln d ex ]

The f  indNewMethodlnClass routine a ttem pts to  retrieve an entry for m essageSe lec tor  

and c la s s  in the  methodCache. If an entry is available and the class value of the entry is 

identical with c la s s ,  the compiled m ethod is restored and assigned to  newMethod. Otherwise, 

lookupMethodlnClass performs a full m ethod lookup and the cache is updated with result. 

The hash index is computed with a bitAnd operation on the selector and the class object 

pointers and a second bitAnd to map the index into the range of the cache size3.

The CLOS specification [KdRB91] states th a t co m p u te-d iscr im in a tin g -fu n ction  is 

used to create the  discrim inating function of a generic function. When a generic function is 

invoked, its discrim inating function is then used to  determine and call the effective m ethod 

for the provided argum ents. Like message sending can be optimized with m ethod caching 

based on message selectors and receiver classes, the speed of generic function invocation can 

be increased by m ethod caching based on generic functions and argum ent classes. Kiczales et 

al [KdRB91] suggest the following m ethod caching scheme for CLOS:

(defmethod co m p u te-d iscr im in a tin g -fu n ction  ( ( g f  s ta n d a r d -g e n e r ic - fu n c t io n ) ) 
( l e t  ( (ca ch e  (m ake-hash-table : t e s t  # ’e q u a l) ) )

(lambda (&rest args)
( l e t *  ( ( e l s  (mapcar # ’c l a s s - o f  ( r e q u ir e d -p o r t io n -o f  a r g s ) ) )

3For cache sizes of 2n, the modulo operator can be replaced by the faster bitwise and-operator (i.e. b itA nd).
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(fun (gethash  e l s  cache n i l ) ) )
( i f  fun

( fu n c a l l  fun args)
( l e t *  ((meths (com p u te -ap p licab le-m eth od s-u s in g -c la sses  g f  e l s ) )  

(fun (com p u te-e ffec t ive -m eth od -fu n ction  g f  m eth s)))
( s e t f  (gethash  e l s  cache) fun)
( fu n c a l l  fun ar gs ) ) ) ) ) ) )

Two differences between the CLOS and Smalltalk approach are obvious: W ith generic 

functions, m ethods can be cached in a distributed fashion a t their corresponding generic 

functions (or as above in the environment of the associated discrim inating functions) rather 

than globally. Cache hit rates are thus expected to  be better and the m ethod cache can be 

updated more easily after, for instance, a method has been removed dynamically. On the 

other hand, several argum ent classes generally have to be considered with m ulti-m ethods to  

retrieve a stored m ethod which makes the hash function more expensive.

Improvements can be achieved with variations of the two techniques above [CPL83, FS83]. 

However, two quite different approaches are method caching with sta tic  method tables and 

inline m ethod caching.

Static m ethod tables are initialized statically so th a t the dynamic m ethod lookup can be 

realized in constant tim e by indexing into the table. V irtual function tables, used in Simula 

and C + +  are sta tic  m ethod tables th a t can be kept within class scopes due to  sta tic  type 

information available in these languages (as pointed out earlier in this subsection).

W ith message sending, static  method tables store m ethods globally. Typically a two- 

dimensional array is indexed with class and selector codes. Global m ethod tables can become 

very large and sparsely filled [AR92]. Various techniques [AR92, Dri93, DH95] help to  com

press sta tic  m ethod tables. Unfortunately, a dynamic memory overhead exists if applications 

have tem poral hot-spots. Furtherm ore, new class or m ethod definitions can cause tim e con

suming re-compression of the method tables. More complications arise with table indexing 

for m ulti-m ethods [AGS94].

Argum ent types a t a generic function call site change rarely. This means, even though 

functions are defined polymorphic, argum ent types of function applications within the defined 

body are constant in about 90% of the cases. This spatial locality of type usage can be 

observed in Sm alltalk [DS84] and Self [HCU91]. Caching of previously used m ethods directly 

a t a generic function call site in order to  exploit this type locality is called inline m ethod 

caching. This approach is much more appropriate for be applied with dynam ic objects.

As sta ted  earlier in Section 3.1.3, interoperability emerges with the trend to a multi-lingual 

development paradigm . A further argum ent for co-habitation between higher-level and lower-
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level languages is based on performance reasons. The opportunity  to  have tim e critical parts 

of a higher-level language application coded in a lower-level language with tight control over 

hardw are devices, can help to  overcome performance drawbacks w ithout switching entirely 

to  a  less flexible lower-level language.

3 .2 .2  T h e  M e m o r y  C o s t  o f  E x e c u t io n  D e p e n d e n c ie s

Traditionally, dynam ic object-oriented languages have emphasized incremental software de

velopm ent and rapid prototyping with the underlying idea th a t program ming equals cus

tom ization and extension of an interactive programming environment [BSS84]. The implica

tion is a blending of compile-time and run-tim e as well as the loss of a small core language. 

Both aspects make the delivery of small applications with m odest memory requirem ents dif

ficult. The ability to discard or change the source code definitions of classes and m ethods 

by means of a m etaobject protocol, as well as the general potential for run-tim e evaluation, 

force most applications to  carry around much more code than actually needed [Shr96j.

Further memory is required to  realize reflection with classes, m ethods and generic func

tions. In CLOS, a class object stores information about how to allocate and initialize in

stances; a m ethod object has links to generic functions, to the actual function object defining 

the m ethod behaviour and to  the classes defining its domain; finally, a generic function refers 

to the associated m ethod objects and to  the discrim inating function in order to  handle the 

full m ethod lookup.

3 .2 .3  S c r ip t in g

Scripting is a  way to  control and combine various applications and operating system  features 

by means of a relatively simple, interpreted program ming language— a so-called scripting 

language. Some popular scripting languages are Unix’s sh, Perl [WS91] and Tel [Ous94]. 

Scripting is included in this section because it raises in a practical context some of the 

requirem ents th a t  should be m et with an im plem entation of an dynamic object-oriented 

language.

Typically, scripting com m ands can be interactively entered into a shell or stored in a file 

th a t  can be passed to  the interpreter of the scripting language. A th ird  alternative provides 

the in terpreter as a library with a defined application program ming interface (API). The 

scripting language can then be used inside an application, either for special purpose compu

tations (for which the scripting language might be more suitable than the im plem entation
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language of the  application) or for the purpose of an extension language. Extension languages 

can raise the power of an application significantly by giving the user a means to  extend a 

software tool. For instance, Lisp is used as extension language with Emacs and AutoCA D.

The utility of a scripting language can be increased by a tight coupling between com

putation  within the scripting language and com putation external to  the scripting language. 

In p u t/o u tp u t redirection as well as sharing da ta  types are im portan t aspects of such tight 

coupling. In order to  s ta rt-u p  an external application from the operating system  level with 

param eters, a scripting language requires a t least the notion of character strings. However 

more desirable is support to  use the API of the external application on the im plem entation 

language level. In this case, the scripting language needs to share not only strings with the 

external application, but also other primitive da ta  types (like numbers, characters) and pos

sibly pointers to  handle arb itrary  compound d a ta  structures. A further step tow ards tigh t 

coupling between the scripting and external language comes with the possibility of controlling 

the input and o u tpu t of external application from within the scripting language (e.g. in Unix 

by redirecting s td i n  and s td o u t) .

For many reasons (object-oriented) dynamic languages could be regarded as ideal scripting 

languages. Dynam ic typing, autom atic memory m anagement and extensibility is provided 

with dynam ic languages . However, large application sizes, long sta rt-up  times and the gap 

between the program m ing language and the operating system makes OODLs im practical for 

scripting purposes. Although Perl, scsh [Shi97] and to some extent Tel have improved over 

standard  operating system  shells, program s w ritten in these systems do not scale well and are 

not well-suited for production work. If problems with interoperability, sta rt-up  and memory 

usage were overcome, scripting would benefit much from the scalable and well defined features 

of dynamic object-oriented languages.

3.3 C on clu sion

This chapter showed th a t compilation into native machine code and direct or tree in terp re ta

tion offer different tradeoffs. Both implementation techniques are not optim al with regard to  

a compound m easure including the size, speed and versatility of the corresponding executable 

program representation. A much better overall value can be achieved with bytecode interpre

tation. Source code is here transform ed into semantically equivalent instructions (bytecodes) 

of a virtual machine. An in terpreter program th a t emulates the virtual machine, executes 

the virtual machine instructions.
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The virtual machine approach is a t the heart of the im plem entation architecture developed 

in this thesis. While fruitful for code/system  portability and sta tic  memory usage, bytecode 

in terp reta tion  impairs performance, interoperability and dynamic memory usage. In the next 

chapter an architecture is described which specifically addresses these problem atic issues.
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C hapter 4

The Architecture

In this chapter, a novel virtual machine architecture for object-oriented dynamic program m ing 

languages is described. The architecture differs from other approaches by using the following 

techniques developed in the  context of this thesis:

• virtual machine code represented as constant C vectors,

• virtual instruction transfer with indexed code threading,

• native code clustering with optim al virtual instruction ordering in the em ulator and

• m ethod lookup using quasi-inline method caching.

A further integral part of the architecture is the use of a conservative memory m anagem ent 

system [BW88, Bar88],

As explained in C hapter 3, the contributions evolved with the architecture are particu

larly driven by the problem atic issues of performance, dynamic memory consumption and 

interoperability in the context of bytecode in terpretation and dynamic objects. This chapter 

is dedicated to  the description of these key contributions and their theoretical benefits. C hap

ter 5 follows with a description of the realization of the architecture and empirical results to  

support the cases made within this chapter.

4.1 E m b ed d in g  V irtu a l M achine In stru ction s

The architecture proposed here differs from the typical virtual machine approach by repre

senting virtual machine code as constant C arrays, i.e. c o n s t long  cv [] = { . . . } .  Such C 

embedded virtual machine code has several positive implications:
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S ta n d -A lo n e  E x ecu ta b les  Bytecoded modules hosted by . c files are compiled with a s tan 

dard C compiler and linked with the run-tim e support code (including the virtual 

machine em ulator) to  form a stand-alone executable program . The execution of the 

program  does not require a separate bytecode image file.

S ep a ra te  C om p ila tion  Bytecoded sources are compiled separately into object files. O bject 

files can be collected and managed in native libraries side-by-side with compiled foreign 

code. Such transparency is useful for embedding applications.

In tero p era b ility  Foreign addresses can be used directly from within the actual compilation 

unit (e.g. from a binding vector linked to a closure). Neither the virtual machine, nor 

the run-tim e support code, need to  be extended for interoperability with foreign code 

(see Section 3.1.3).

S h areab ility  V irtual machine code is located in sharable tex t segments of the final exe

cutable file since it is defined constant and does not contain any addresses in the raw 

bytecode vector1. Code vectors can thus be shared by all processes executing the ap

plication, resulting in small memory footprints. Im portan t saving are achieved when 

modules are compiled into shared objects. In this case, also processes of different ap

plications share virtual machine code in memory (see Section 3.1.3).

A u to m a tic  M em o ry  M an agem en t A further advantage with C embedded virtual ma

chine code is th a t bytecode vectors are not heap-allocated and therefore not considered 

(traced or copied) with garbage collection.

S ta r t-U p  A fast application s ta rt-up  can be crucial for some applications, for instance with 

scripting (see Section 3.2.3). C embedded code vectors represent a be tter alternative 

to  typical s ta rt-u p  solutions, like reading a bytecode file, explicitly memory mapping 

a bytecode hie or undumping an entire virtual machine process (see Section 3.1.2), 

because it is fast, being based on memory mapping, as portable as C and memory 

efficient on platform s supporting shared objects.

The representation of virtual machine code on the C language level does not compromise 

on the architectural neutrality  of the executable program representation. Although, repre

1 Virtual machine code that does include absolute addresses can be declared constant in C as well, for 

instance like c o n s t  lo n g  c v [ ]  = {0 x 2e4a561 f0 , (long)& tab+34, . . . } ; .  However, with standard linking, 

such code vectors end up in non-sharable read/w rite data segments.
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sented in C, the actual executable program representation form at is still v irtual machine 

code.

The perform ance of bytecoded program s will always remain a concern when compared 

with native machine code. V irtual machine code requires mapping (i.e. loading, decoding and 

invoking) of each executed virtual machine instruction in software and is therefore consid

erable slower th an  native machine code when executed (see Section 3.1). Two measures are 

typically taken to  accelerate virtual machines: increasing the sem antic content of instructions 

and code threaded  virtual instruction transfer.

W hile effective, increasing the semantic content is not further explored here since much 

work has been done in this field (see Section 3.1.2)2. Instead, (i) a new portable approach 

to  code threading  (i.e. indexed code threading) and (ii) the possibility of be tter hardw are 

cache coherency by optimizing the physical ordering of virtual instruction code in memory is 

investigated in depth. It is pointed out in Section 3 th a t system  portability is an im portan t 

requirem ent for language implementations. To establish portability of the v irtual machine 

em ulator and in order to  take C embedded bytecodes into account, the widely available and 

optimized C program m ing language is assumed for its im plem entation.

4.2  In d ex ed  C ode T hreading

A direct and reasonable efficient way to  implement a virtual machine is to  use a switch- 

sta tem ent. The actual instruction in the code vector (cv) pointed to by the program  counter 

(pc) is used to  branch to the instruction code. The following C-like code illustrates this 

technique:

ch a r cv [] = {47 , 11, . . .} ; 
c h a r  *pc = cv;

w h ile  (1) {
sw itc h  (*pc) {

ca se  0: . . .  pc++; b rea k ; 
ca se  1: . . .  pc++; b rea k ;

ca se  255: . . .  pc++; b re a k ;
>

>

Although standard  C compilers compile dense sw itch-statem ents into jum p tables, an 

overhead is involved with a table range te s t3, the table lookup as well as the jum p to the

2It is simply assumed that this issue is considered when applying the architecture.
3A range test can be avoided for some compilers if u n sign ed  char is used.
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instruction code and the loop jum p (see Figures A -l, A-4 and A-74). This overhead can be 

reduced by a technique called code threading [Bel73]. Instructions are here no longer encoded 

as values in the  range [0..255], but as addresses of the corresponding instructions. The result 

is th a t instructions are “threaded together like beads on a chain” [Kli81]. The in terp reter 

skeleton shows th a t  no loop around a switch-table is necessary since the dereferenced program  

counter can be used directly to jum p to the next instruction:

v o id  *cv [] = {& & instr47, & & in s tr l l ,  
v o id  **pc = cv ;

i n s t r l :  . . .  g o to  **(pc+ + ); 
i n s t r 2 :  . . .  g o to  **(pc+ + );

in s t r 2 5 5 :  . . .  g o to  **(pc+ + );

g o to  **pc;

Code threading can help to  reduce native code cycles necessary for v irtual instruction 

dispatch 3-4 tim es [Ert95] with an involved actual performance increase of up to  30% com

pared to  the classical switching technique [PK98]. The assembler code generated for the  code 

segments (see Figures A-2, A-5 and A-8) supports these measurem ents.

However three drawbacks are involved with code threading. F irst, common four-byte 

memory addressing leads to  four times larger code vectors. Second, code vectors m ust be 

declared in the same scope as the instruction labels and hence, not only represented in the 

im plem entation language of the virtual machine but also compiled a t the same time. Finally, 

only few (fast and portable) languages implem entations support first-class labels on which 

the performance increase is based5. If function addresses were used instead of label addresses, 

the function invocation overhead (in particular if not tail-call optimized) and the fact th a t 

virtual machine registers have to be defined globally would not be acceptable either [Ert95].

In order to  resolve some of the drawbacks accompanying code threading, indexed code 

threading is proposed as part of the architecture. Here, instructions are again encoded in the 

range of [0..255]. However the instruction codes are used to  access the instruction labels from 

a label table ( la b e ls )  which is computed at link time:

v o id  * l a b e l s [ ]  = { & & in s tr l, & & instr2 , . . . } ;  
c h a r  c v []  = {47, 11, . . . } ;  
c h a r *pc = cv;

i n s t r l :  . . .  g o to  * la b e ls [ * ( + + p c ) ] ; 
i n s t r 2 :  . . .  g o to  * l a b e l s [* (+ + p c )] ;

4The GNU C compiler gcc version 2.7.2.1 (P5) and version 2.7.2 (M IPS, SPARC) is used.
5 Clearly, assembler could be used to realize code code threading in a machine dependent way.
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i n s t r 2 5 5 :  . . .  g o to  * l a b e l s [* (+ + p c )] ; 

g o to  * l a b e l s [ * p c ] ;

Due to  an ex tra  level of indirection, the transfer between virtual machine instructions is 

slower than  with code threading, but still better than with a jum p table (see Figures A-3, 

A-6 and A-9). It is notable th a t the CISC code for the P5 processor needs three native 

instructions with both standard  and indexed code threading so th a t performance should be 

similar.

Beside the performance improvement over switching, the big advantage of indexed th read

ing is th a t the  executable program  representation (i.e. code vectors) is suitable w ith both, 

a v irtual machine em ulator based on switching or indexed threading. For instance, for an 

em ulator which is implemented in the C programming language this means, program s can 

be transform ed into bytecode vectors regardless of whether the virtual machine will be based 

on switching or threading. In fact, by using a compiler flag to  alter between switching and 

indexed threading when compiling the virtual machine, the portability of the em ulator is 

independent of the availability of a C compiler with first-class labels (e.g. gcc [Sta92]).

4.3  O p tim al In stru ction  O rdering

Typically, program s only access a relatively small portion of the available address space a t 

any fraction of tim e. M emory hierarchies in today ’s hardware architectures take advantage of 

such spatial and tem poral locality of da ta  and code references in order to  bridge the widening 

gap between processor speed and memory access time.

Clustering native code in the virtual machine em ulator which is likely to  be executed 

consecutively, increases the chances th a t the virtual instruction code is already in the native 

instruction cache. An approxim ation of such a clustering can be derived from profiling the 

invocation frequency of virtual instructions during the execution of an application. The native 

code of the v irtual instruction called most will then be next in memory to  the native code of 

the v irtual instruction called second most etc. Particularly, for the 50 virtual instructions th a t 

typically dom inate applications, such an ordering results in much better native instruction 

cache performance than  the typical ad-hoc ordering.

Such physical ordering of code in memory is applicable with C threaded code because the 

actual source code organization will be reflected in the machine program  and the (literally) 

“threaded” instruction transfer leads to good locality with native code in execution. The
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situation is different with C switched code. The switch branches retain their order in the  

machine program  too, bu t the jum p table range check and the additional loop jum p cause the 

native instruction pointer to  cover much more memory than  with threaded code (see tables 

in Appendix A). O ptim al instruction ordering with a switched in terpreter is therefore not 

expected to  show the same performance increase as with a threaded interpreter.

The practical problem arises now with the fact th a t the virtual machine cannot be re

compiled for each application but should be provided as a shared object. Consequently, an 

ordering cannot be customized  to address a specific execution profile. An acceptable solution 

is here to  average instruction frequencies of representative applications in order to  derive a 

(so called) optimal ordering. It tu rns out th a t the increase in the native instruction cache hit 

ratio with optim al ordering is nearly as good as with the custom ordering, since m ost v irtual 

instructions are in fact application independent, being concerned with the operation of the  

virtual machine itself (i.e. access of virtual registers and stack values).

A tool has been developed within the context of this thesis to aid deriving optim al v irtual 

instruction orderings. Section 5 introduces this tool and presents figures which show a speed 

improvements of 21% and 15% for the MIPS and P5 architectures respectively.

As hardw are caches continue to get larger there is an argum ent th a t a t some point the

entire virtual machine em ulator will fit into the instruction cache. The effect of v irtual in

struction clustering on instruction cache performance would then indeed become neglectable. 

However, as long the tradeoff between memory access time and its price exists, new levels 

in the memory hierarchy will emerge as soon as current level 1 cache technology becomes 

affordable in larger scale. W ith this tradeoff very likely to  continue in the future, there  will 

continue to  be a case for optim al ordering of virtual instruction code as described.

4.4  Q uasi-In line M eth o d  C aching

Up to  this point, the architecture is not restricted or specifically designed for dynam ic ob

jects. And although the architecture is concerned with reducing efficiency overheads and with 

enabling language interoperability in the context of bytecode in terpretation, there is still the 

high cost of dynam ic m ethod lookup th a t has to  be addressed explicitly.

One of the  most successful techniques to speed up dynamic m ethod lookup is m ethod

inline caching [DS84, HCU91] as described in Section 3.2.1. Unfortunately, this technique 

requires w ritable compiled code in order to  cache m ethods a t call sites locally. M utable code, 

however, stands in direct conflict to the approach of sharable virtual machine code which has
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to  be defined constant in order to be placed in tex t segments. Quasi-inline m ethod caching 

is a  technique to  make polymorphic inline caching [HCU91] applicable with read-only virtual 

machine code.

An im portan t obstacle with inline caching is the difficulty of cache flushing when cache 

entries may become invalid, e.g. after dynamic m ethod removal. Scanning the entire code 

of an application to  invalidate inline addresses is not acceptable. The problem is solved in 

Sm alltalk by using the m apping tables between virtual machine code and native machine code 

which are involved with the two executable program  representation form ats [DS84]. W ithout 

native code generation, inline m ethod caching is useless in the context of dynamic languages.

In an a ttem p t to  simplify the problem of cache flushing and keep virtual machine code in 

sharable tex t segments, it is now proposed to hold the method cache a t each generic function 

object (as showed in Section 3.2.1), however, instead of the actual domain, the virtual machine 

program  counter is used to  m ap into the cache. By using the program  counter, type locality 

is exploited in the same way as with classical polymorphic inline caching. Since the cache is 

not really inlined, the scheme is called quasi-inline m ethod caching.

Two more advantages th a t come with quasi-inline m ethod caching are worth mentioning. 

Firstly, com puting a hash index from a program counter can be realized much faster than 

com puting a hash index from the argum ent classes th a t are considered with a generic function 

invocation6. Quasi-inline m ethod caching is therefore suited for single- and m ulti-m ethod 

dispatch equally. Secondly, with a linear search hashing policy7 on collision, redundancy 

with classical inline caching can be avoided. Suppose, there are n generic function call sites 

th a t are all used with instances of identical classes. Classical inline caching requires n entries, 

one for each call site. In comparison, in the worst case quasi-inline m ethod caching fills all 

entries of the generic function cache, i.e for an initial cache size of four there is a maximum 

of four entries for the  100 call sites.

An im plem entation of an object-oriented dynamic language augmented with quasi-inline 

m ethod caching is in no way restricted in its flexibility and is very likely to  benefit in perfor

mance as cache misses can be reduced to  1.06% (see Section 5). The scheme saves dynamic 

memory by avoiding redundant m ethod entries and by being adaptable to  generic function

6Table B.2 shows empirical evidence that multi-argument dispatch is not a rarely used feature with multi

methods. Over 68% of all generic function calls in the OPS5 system  implemented in EuLisp [OP93] discriminate

on more than one argument.
7 For tables with a default size of four entries, more sophisticated collision handling is not necessary. Tables

are flushed when over 90% filled.
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invocation which typically comes in waves with hot-spots on particular m ethods. A fixed size 

hashing scheme associated with quasi-inline caching can here adap t to such tem poral and 

spatial locality as dynam ic m ethod lookup has to face.

4 .5  EuLisp

Assuming a “sufficiently sm art compiler” [SG93] the transform ation of object-oriented dy

namic source code into an efficient executable representation is in many cases actually 

possible—despite the high-level performance model. However, for complexity reasons the 

developm ent and m aintenance of such a compiler is difficult.

The goal of recent standardization efforts with object-based Lisp dialects was therefore 

to define a clean, commercial-quality Lisp dialect which would not be bound to  former Lisp 

trad ition  simply out of backward compatibility reasons but which would foster the original 

key idea of the List Processor in co-habitation with a dynamic object system [PCC+86].

Three of these languages are EuLisp [PNB93, PE92], ISLisp [Int97] and Dylan [Sha96j. 

A feature common to  these languages is a clear separation between the core language and 

language extensions (e.g. the  development environment) as well as a clear separation between 

compile-time and run-tim e of a  program . The rest of this section is dedicated to  EuLisp, the 

language of choice th roughout this thesis.

The distinguishing features of EuLisp are (i) the integration of the classical Lisp type 

system into a class hierarchy, (ii) the complementary abstraction facilities provided by the 

class and the module mechanism and (iii) support for concurrent execution (m ulti-threading). 

The object system is accompanied in level-1 of the language definition by a m etaobject 

protocol (M OP) to  enable reflective programming similar to  CLOS (see C hapter 2.3). The 

EuLisp M OP however, provides a better balance between the conflicting dem ands of efficiency, 

simplicity and extensibility [BKDP93].

The EuLisp language definition breaks with some Lisp traditions which were not beneficial 

for efficient language im plem entations. The introduction of strict module interfaces leads to  

more opportunities for compile-time optimizations. And the separation between a small core 

language and supporting libraries particularly helps to  overcome the problem of extracting a 

program from an interactive development environment. Applications are no longer required to  

carry around a lot more code than  actually needed. However, if necessary, runtim e evaluation 

can be supplied with a corresponding module library so th a t an efficiency penalty has to  be 

accepted only for functionality actually used.
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Although EuLisp (or a  language with similar characteristics) is from this point on regarded 

as integral p a rt of the architecture, this work does not investigate the relationship between 

efficiency and the EuLisp language design. The architecture described here is applicable in 

principle to  any object-oriented dynamic language and its success is not bound to  the EuLisp 

language design.

4 .6  C on servative G arbage C ollection

Common to all garbage collection techniques is the need to recognize pointers within allocated 

m emory during run-tim e of a program. Traditionally, compilers cooperate with autom atic 

m emory m anagem ent system s and provide information about the layout an d /o r location of 

pointers. However, such cooperative d a ta  representations complicate foreign-function inter

faces and thus interoperability, since foreign pointers th a t do not follow the tagging/boxing 

scheme cannot be handled by the garbage collector.

Conservative pointer finding techniques [BW88, Bar88] emerged with the desire to  add 

garbage collection to  the C programming language. Since C is statically typed and has 

therefore no need for run-tim e type information, autom atic deallocation introduces here the 

problem of identifying pointers in a conservative environment. G arbage collection based on 

conservative pointer finding trea ts  aligned bit patterns within a certain range as pointers. 

W ith this technique, integer values may in some cases mistaken as a pointer. However, 

empirical evidence shows th a t potential memory leaks, which may result from integer values 

accidently classified as pointers, are very rare [Boe93]. In any case, such an ambiguous 

pointer may not be relocated by the collector because a relocation would change its value so 

th a t conservative pointer finding can only be applied with a non-relocating garbage collection 

algorithm .

A non-relocating garbage collection scheme has m ajor advantages when pointers are 

passed to  a program  p art w ritten in other language. The external program  p art is free 

to store the pointer for later reuse, even when the garbage collector has gained control in 

between. O bject pointers thus don’t need to be protected against deallocation and relocation 

if passed outside the language im plem entation territory.

By adding a conservative collection scheme to the virtual machine architecture, the im

portan t aspect of interoperability is addressed, internal and external pointers can be mixed 

w ithout precaution. The fact th a t garbage collection can be easily added to  a system  by 

replacing the default allocation interface (i.e. mainly m a llo c O )  is responsible for the pop
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ularity of one particular conservative memory management system w ritten by Boehm and 

Weiser [BW88, Boe93]. Its popularity led to  robustness and availability on many platform s 

(even in the presence of pre-emptive m ulti-threading). The issue of multiple threads of control 

in conjunction with interoperability is addressed in Section 5.5.

4 .7  C onclusion

System portability, architectural neutrality of executable code, language interoperability, per

formance and memory efficiency are im portant requirements to  im plem entations of object- 

oriented dynam ic languages partly  derived from the typical application dom ains and partly  

linked to  the deficiencies of these languages (see C hapter 3). Figure 4-1 illustrates the  re

lationship between the key characteristics of the architecture proposed in this chapter and 

these requirements.

It was argued earlier, th a t with an emphasis on run-tim e dependencies, object-oriented 

dynamic languages have a natural potential to  handle dynamism in d istributed system s. To 

reinforce this key advantage the architecture is based on a virtual machine approach which 

provides code compactness and architectural neutrality, crucial features for code mobility in 

distributed systems. As a side effect, the virtual machine approach results in portability  of 

code generation since different hardware platform s do not need to  be considered.

V irtual machine code is slow compared to  native machine code. This penalty can be 

alleviated with code threading and optim al instruction ordering. The high cost of dynam ic 

method dispatch is reduced with quasi-inline m ethod caching.

By using a conservative garbage collection scheme and virtual machine code as s ta tic  C 

data, applications becomes easily interoperable with other program ming languages. F u rther

more, constant C embedded code vectors can be located in sharable tex t segments leading to  

modest memory footprints.
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architectural
neutrality

Figure 4-1: Design and requirements
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The M echanics of Dynam ic O bjects 

in youtoo

The architecture proposed in C hapter 4 is applied in you too1, an im plem entation of the  dy

namic object-oriented programming language EuLisp. EuLisp is a single-valued Lisp dialect 

with an integrated object system, a defined m etaobject protocol, a module system and a 

simple light-weight process mechanism.

This chapter presents youtoo and dem onstrates the feasibility and effectiveness of the 

proposed ideas, namely C embedded virtual machine code, indexed code threading, optim al 

virtual instruction ordering and quasi-inline m ethod caching.

5.1 T h e youtoo C om piler

In youtoo, the technique of embedding virtual machine instructions in C leads to  a corre

spondence between EuLisp modules and C files ( . c / .h ) .  Compiled modules can be collected 

in a library ( . a / . s o )  or immediately linked with the virtual machine (vm), the conservative 

memory m anagem ent package2 (mm) and the EuLisp standard  language library ( le v e l  1) into 

an executable file (see Figure 5-1). If necessary, additional foreign code (C, C-H-, Pascal, 

Fortran) can be linked in form of libraries or object hies. Dynamic linking (described in detail 

in Section 5.1.1) on the EuLisp-level allows the addition of new modules a t run-tim e.

:The name derives from the fact that youtoo is the second EuLisp reference im plementation. The system

is publicly available from f t p : / / f tp .m a th s .b a th .a c .u k /p u b /e u l is p /y o u to o .
2A conservative mark-and-sweep garbage collector implemented by Boehm and Weiser [BW88] is used.
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Figure 5-1: Compiling an application

The you too  compiler (see Figure 5-2) is a EuLisp program which takes a module name, 

reads the source code of the module and generates an abstract syntax tree (AST) in A- 

normal form (ANF). ANF is an interm ediate representation th a t captures the  essence of 

continuation-passing style (CPS) including the reductions normally followed after standard  

CPS transform ation [FSDF93]. W ith the exception of tail-call optim ization, you too  does 

not exploit the  optim ization opportunities th a t emerge after translation into ANF. As noted 

earlier, the work presented here is not concerned with typical compile-time optim izations.

After some analysis on the AST, the compiler generates abstract virtual machine code 

for the functions defined in the module and finally generates a C file ( .c )  and two interface 

files (. i  and . h ) .

The C file effectively defines virtual machine code as constant C vectors local to  the  unit of 

C compilation (i.e. s t a t i c  c o n s t long  cv [] = { . . . } )  and a module initialization function 

to initialize the  module on the C-level. The initialization includes the final initialization of 

statically defined Lisp literals. Initialization on the Lisp-level, i.e. execution of the top- 

level forms of each module s ta rts  after all modules are initialized on the C-level. A module 

binding vector is defined th a t holds defined module binding values and literals. The generated 

interface files map binding names of defined bindings in the module to  offsets in the module 

binding vector. The Lisp-level interface file (. i)  is used for separate compilation and dynamic 

linking of modules; the C level interface file (.h ) is not only used for separate compilation
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Figure 5-2: The youtoo compiler

but also with foreign in-calls.

Foreign function declarations in the source module result in a C stub  function in the . c 

file to  handle argum ent and result conversion between Lisp and C as specified in the  foreign 

function declaration. A pointer to the C stub function is stored in the module binding vector 

and is used by a specific virtual machine instruction to invoke the foreign function. Converters 

are provided for basic da ta  types and for handling addresses. If the requested C function is 

not linked to  an application by default, it can be passed to  the compiler as a  param eter. See 

Table B.5 for a list of available foreign-function converters.

Some s ta tic  Lisp objects can be represented as sta tic  C values and thus be tru ly  statically 

allocated. This is the  case for primitive values like characters, integers, doubles, strings, 

the em pty list as well as for composed values like vectors and lists th a t exclusively contain 

values which again can be represented as sta tic  C data . If an element of a s ta tic  (on the 

Lisp-level) vector or list cannot be represented as sta tic  C data , a t least the em pty d a ta  

s tructure  is statically  allocated (on the C-level) and filled in during C-level initialization of 

the module. Symbol and keyword literals cannot be defined constant as they need to  be 

interned, i.e. included into or accessed from the symbol/keyword table depending on the
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m odule topology in an application.

5 .1 .1  D y n a m i c  L in k in g

EuLisp is syntactically extendible with syntactic transform ation functions (macros) which 

may be applied during compile-time. Typically, the user can add new application-relevant 

m acros to  the standard  set of macros. Macros are defined in full EuLisp and potentially use 

defined functions and other defined macros. EuLisp’s strict separation between compile-time 

and run-tim e enforces the restriction th a t no module can appear in the transitive closure 

of its own compilation environment [DPS94]. This requirement induces the differentiation 

between syntax and lexical modules and frees a compiler to  resolve com pilation/execution 

dependencies within a compilation unit, in this case, a module. If a syntax module ml defines 

m acros which are used in another module m2 then ml has to  be compiled prior to  m2. In this 

way a compiler can avoid using either multiple compilation cycles or having an in terpreter as 

a constituent. Instead a compiler can be incrementally extended by dynamically linking the 

required previously compiled syntax modules.

Dynamic loading of code is implemented in youtoo  by scanning the C file to  find the 

relevant offsets to  the  s ta r t  of the array definitions and reading the contents of the arrays. This 

process is assisted by layout information hidden as C comments generated by the compiler. 

M acro expansion with syntax modules is based on such Lisp-level dynamic linking.

5 .1 .2  S o u r c e  C o d e  I n t e r p r e t a t io n

The youtoo  system  does not provide a direct interpreter (as described in Section 3.1) for Eu

Lisp. Instead, there is a  read-compile-execute-print-loop in place of the read-eval-print-loop 

normally provided with direct interpretation. Each expression to  be interpreted is com

piled into virtual machine code (using the same transform ation as in the compiler) and then 

immediately executed on the virtual machine em ulator (see Figure 5-3). After you too  is 

bootstrapped, i.e. compiled into a stand-alone application by itself, the virtual machine em

ulator is linked to  it anyway so th a t the execution of the compiled code in the in terpreter is 

straightforw ard. In fact, interpreter and compiler are the same program  called you too . If a 

file name is presented to  youtoo, like in

youtoo t e s t .e m  -1  l e v e l l

the corresponding module will be compiled and linked with the (shared) run-tim e libraries 

and perhaps with o ther im ported compiled modules into an executable file t e s t .  Invoking
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you too  w ithout any param eter (or param eter - i ) 3 s ta rts  up the pseudo read-eval-print loop 

and the following interaction can be envisaged:

EuLisp System  ’you too  0 .9 4 ’

[ u s e r ] : ( + 1 2 )
- 3
[ u s e r ] :  (d e fu n  f a c t  (x) ( i f  (< x 2) 1 (* x ( f a c t  ( -  x 1 ) ) ) ) )
- # < s im p le - fu n c t io n : f a c t>
[ u s e r ] : ( f a c t  100)
- 933262154439441526816992388562667004907159682643816214685929638952175999 
93229915608941463976156518286253697920827223758251185210916864000000000000 
000000000000
[ u s e r ] :

Evaluation of expressions and creation of new global bindings is performed in the  lexical 

and syntax  environm ents of the module named in the prom pt. By default this is the artificial 

u s e r  m odule which can be regarded as an alias for the EuLisp standard  language extended 

with functionality to  control the compiler. The interpreter provides more functionality, not 

described further here, common to  interactive programming environments.

read

parse

analyse

compile

optimise

execute

input

result

syntax
expression

abstract 
syntax tree 

in ANF

abstract 
virtual 

machine code

Figure 5-3: The youtoo  interpreter

5 .1 .3  E x a m p l e  1

The following example illustrates the way code vectors are actually embedded in C. The 

EuLisp module t e s t  defines the well-known factorial function in EuLisp:

in form ation  about compiler flags can be found in Figure B.4.
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(defmodule t e s t  
(import ( l e v e l l )  
export ( f a c t ) )

(defun f a c t  (x)
( i f  (< x 2)

1
(* ( f a c t  ( -  x 1)) x ) ) )  

) ; end of  module

The language levell bindings are imported and the defined lexical binding f a c t  is ex

ported. The bytecode compiler in youtoo translates the module into the following C code in 

file f a c t . c4:

# inc lud e  <eu l i sp .h>
# inc lud e  " tes t .h "

/*  Module b indings  with s i z e  3 * /  
vo id  * t e s t _ [3];

/*  I n i t i a l i z e  module t e s t  * /  
void  e u l . i n i t i a l i z e  m o d u l e . t e s t ()
{

e u l _ i n i t i a l i z e _ m o d u l e _ l e v e l l ( ) ;
{
/ *  BYTEVECTOR f a c t  a r i t y :  1 s i z e :  28 index: 2 nbindings:  1 * /
s t a t i c  cons t  long f ac t_b v [ ]  = { I ( a a , l b , 8 4 , l a ) , I ( l b , 4 4 , 0 4 , 8 3 ) , I ( 3 6 , 0 e , l c ,

2 c ) , I ( l b , 2 4 , 0 0 , 3 c ) , 1 ( 0 1 , l b , I f , 0 4 ) , 1 ( 1 6 , 2 2 , 0 2 , 4 5 ) , 1 ( 0 2 , 0 0 , 0 0 , 0 0 ) } ;  
s t a t i c  long f a c t . c o d e f ]  = { I N T ( 2 8 ) ,N I L , ( l o n g ) f a c t .b v } ; 
s t a t i c  long fact_bnds[ ]  = { I N T ( l ) ,N I L ,B ( t e s t _ ,2 ) } ;
s t a t i c  long f a c t [ ]  = {INT(6) ,NIL,NIL, I N T ( l ) , N I L ,N I L , ( lo n g ) f a c t . c o d e , (Ion  

g ) fa c t _ b n d s > ;

/*  BYTEVECTOR i n i t i a l i z e - t e s t  a r i t y :  0 s i z e :  20 index: 0 nbindings:  5 * /  
s t a t i c  const  long i n i t _ t e s t _ b v [ ]  = { 1 ( 8 7 , 2 5 , 0 1 , 2 4 ) , 1 ( 0 3 , 3 e , 0 7 , 2 4 ) , 1 ( 0 2 , 3  

c , 0 0 , 2 1 ) , 1 ( 0 1 , 2 3 , 0 4 , 2 a ) , 1 ( 8 6 , ac ,00 ,00 )> ;
s t a t i c  long i n i t . t e s t . c o d e [] = { INT(20) , NIL, ( l o n g ) i n i t . t e s t . b v ] - ; 
s t a t i c  long i n i t _ t e s t _ b n d s [] = { I N T (5 ) ,N I L ,B ( te s t_ , 0 ) , B ( t e s t _ , 1 ) , B ( l e v e l  

1_ , 0 ) , B ( l e v e l l . , 1 ) , B ( t e s t _ , 2 ) > ;
s t a t i c  long i n i t _ t e s t [ ]  = {INT(6) ,NIL,NIL, INT(0) , M I L ,N I L , ( l o n g ) in i t . t e s t  

. c o d e , ( l o n g ) i n i t . t e s t . b n d s } ;

/*  I n i t i a l i z a t i o n  of  lambda: f a c t  */  
e u l . s e t . s t r i n g . c l a s s ( f a c t . c o d e ) ; 
e u l . s e t . v e c t o r . c l a s s ( f a c t . b n d s ) ; 
e u l . s e t . l a m b d a . c l a s s ( f a c t ) ; 
eul_set_ lambda_name(fact , " f a c t " ) ;
/*  I n i t i a l i z a t i o n  of  lambda: i n i t i a l i z e - t e s t  */  
e u l . s e t . s t r i n g . c l a s s ( i n i t . t e s t . c o d e ) ; 
e u l . s e t . v e c t o r . c l a s s ( i n i t . t e s t . b n d s ) ; 
e u l _ s e t _ l a m b d a _ c l a s s ( i n i t _ t e s t ) ; 
e u l_se t_ lam b d a_n am e ( in i t_ te s t , " i n i t i a l i z e - t e s t " ) ;

/*  I n i t i a l i z e  module binding  vec tor  * /  
t e s t _ [ 0 ]  = i n i t . t e s t ;  
t e s t . f l ]  = NIL; 
t e s t .  [2] = f a c t ;

4 The code is slightly simplified to enhance readability.
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>
} / *  eof  * /

The following C macros are provided with e u l i s p .h :

#d e f in e  NIL 0
#d e f in e  B(m,i)  ( long)&m[i]

# i f d e f  LITTLE.ENDIAN
#d e f in e  I ( x l , x 2 , x 3 , x 4 )  0x##x4##x3##x2##xl  
# e l s e
#def ine  I ( x l , x 2 , x 3 , x 4 )  0x##xl##x2##x3##x4  
#endif

The I ( )  m acro reverses the four bytecodes constructing a long on little endian machines so 

th a t bytevectors can be safely cast to (char *) when interpreted. The INTO macro converts 

C integer representation into tagged Lisp integer representation cast to  long.  The resulting 

run-tim e representation of the Lisp closure f a c t  is a Lisp object with six slots.

Instance  #<s im ple - funct ion :  fact>  of  c l a s s  <s imple-function>  
name = f a c t  
a r i t y  = 1 
s e t t e r  = ()  
environment = ()
code = " \x0aa \x 01b\x084 \x01a \x 01b \x044 \x004 \x083 \x036 \x00e \x01c \x02c . .  
bindings = #(#<C: 0xl007B800>)

The code and binding slots are initialized statically with the Lisp string f oo.code (itself 

referring to  the constan t bytevector f  oo_bv) and the Lisp vector f  oo.bnds th a t holds bindings 

used from within the bytevector. In the example, the binding vector refers to  the factorial 

function in the same module. The remaining part of the closure is initialized with eul_set_-  

statem ents. The closure is finally stored in the module vector t e s t _  at index 25.

By avoiding inlined addresses in bytevectors directly, the virtual machine code has alm ost 

no unused padding space for alignment and most im portantly, is located in sharable read-only 

text segments, i.e. . rodata  in ELF (see also Section 5.5).

The interface file f a c t . h  defines the exported binding offset on the C level.

# i fn d e f  EUL.TEST.H 
#def ine  EUL.TEST.H

#include  < l e v e l l . h >

extern void  * t e s t _ [ ] ;
extern vo id  e u l . i n i t i a l i z e . m o d u l e . t e s t ( ) ;

/*  Local  module b indings  * /

5 At index 0 is the module initialization function (i.e. top-level forms) stored; at index 1 is NIL if the module 

initialization function has not yet been called.
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# d e f in e  e u l _ t e s t _ f a c t . b i n d i n g .  2 

# end i f  /*  eo f  */

The interface hie f a c t . i  contains the exported binding offset with additional information 

abou t local literals and function binding vectors which is used with separate compilation and 

dynam ic loading.

( d e f i n t e r f a c e  t e s t  
(import ( l e v e l l )  
bindings (

( f a c t  2 t e s t  f a c t  ( ) )
)
l o c a l - l i t e r a l s  (
)
lambda-bindings (

) ’ ”

)
)

5 .1 .4  E x a m p l e  2

Calling a foreign C function is similar to  calling the factorial function in the previous example. 

The main difference is th a t a stub-function is generated to  deal with argum ent and result 

conversion as specified by the def extern declaration in the source code. This stub  function 

can then be referred from a binding vector in the same way f a c t  is referred from fact .bnds  

in the previous example. A special virtual instruction is necessary to call the stub  function.

(de fe x ter n  a t o i  (<str in g>)  <int>)
(defun foo  (x) ( a t o i  x ) )

is compiled into the following bytevector:

/*  Foreign stub fu n c t io n s  */
s t a t i c  LispRef f f _ s t u b _ a t o i  (ARG(LispRef * , s r eg_va lu e _sp ) ) 
ARGDECL(LispRef * , sreg_value_sp)

LispRef G003, res ;

EUL_EXTERNAL_P0PVAL1(G003);
EUL_FF_RES_CONVERTO(res, atoi(EUL_FF_ARG_C0NVERT3(G003)) ) ;  
return  r e s ;

/*  I n i t i a l i z e  module t e s t  */  
void  eu l  i n i t i a l i z e _ m o d u l e _ t e s t ()

/*  BYTEVECTOR foo  a r i t y :  1 s i z e :  8 index: 2 nbindings:  1 */  
s t a t i c  const  long foo l_bv [ ]  = { I ( a a , 4 1 , 0 0 , 4 5 ) , 1 ( 0 1 , 0 0 , 0 0 , 0 0 ) } ;  
s t a t i c  long f oo l_c od e [ ]  = { I N T ( 8 ) ,N I L , ( lo n g ) f o o l_ b v } ; 
s t a t i c  long foo l_bnds[]  = { I N T ( l ) ,N I L ,B ( t e s t _ ,3 ) } ;
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s t a t i c  long f o o l [ ]  = {INT(EUL_LAMBDA_SIZE), NIL,NIL,INT(l) , NIL,NIL,( long)  
f o o l _ c o d e , ( l o n g ) f o o l _ b n d s } ;

t e s t _ [ 3 ]  = f f _ s t u b  a t o i ;
>

The foreign-function interface explained so far defines the means to  describe a C function’s

argum ents and return  type to EuLisp. However, it is also desirable to  call a  EuLisp function

from C and then to do m utually recursive calls between EuLisp and C. An in-call is realized

as a call to  the in terpret function of the virtual machine em ulator with the EuLisp function to

call as argum ent. The following example illustrates how the EuLisp function f a c t  in module

t e s t  can be invoked from C.

#inc lud e  <eu l i sp .h >

EUL_IMPORT(test)
EUL.DEFINTERN(fact, 1 , t e s t )

main()

i n t  res ;

EUL.INITIALIZEO ;
res  = e u l _ i n t _ a s _ c _ i n t ( f a c t ( c _ i n t _ a s _ e u l _ i n t ( 1 0 ) ) ) ; 
p r i n t f  ("f  ac t  (10)=‘/,d\n" , r e s )  ;

>

The include file e u l i s p . h  provides macros to access bindings of EuLisp modules as well 

as routines to convert between EuLisp and C data. The foreign function interface is similar 

to that described for Ilog Talk [DPS94] and is extended for other programming languages 

(e.g. Fortran and Pascal) under the Solaris operating systems where function calling follow 

same conventions. Further interoperability with C + +  is achieved with a C function wrapper 

and the extern  "C" declaration.

5.2 C ode M ob ility

Since the architecture realized with youtoo is designed to  support dynamic object-oriented 

languages with first-class functions and reflective capabilities, it is consistent to  provide read 

and write access to  the code slot of closures a t run-tim e. The bytecode vector of a closure 

object in youtoo  is naturally  represented as a Lisp string ( fa c t.c o d e  in Section 5.1.3) th a t 

can be freely accessed and for instance shipped unchanged to  a virtual machine process 

th a t runs on different machine. Its execution will have the same semantics regardless of the 

underlying hardw are. This shows th a t functions, although represented as C d a ta  structures, 

do not lose their architectural neutrality.
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Serialization of functional objects (i.e. simple/generic functions, continuations, threads), 

for instance for m igration between processes, can only be provided if the module name and its 

respective offset can be determ ined from the absolute C address used in the binding vectors 

of the closures on the bottom  of the  functional object (e.g. fac t_ b n d s in Section 5.1.3). 

These addresses generally point into the vector holding the bindings of a module (i.e. t e s t .  

in Section 5.1.3). W ith  serialization, the  binding vector a t the closure is unlinked from the 

current address space and anno tated  with the relevant information to  retrieve the binding 

in a different address space. The algorithm  to determine the module name and the binding 

vector offset from a binding reference is described in Figure 5-4.

module binding vectors 
module 1

binding reference

address space

module n

object

Figure 5-4: Resolving binding references fo r  code vector serialization. Step 1: module binding 

vectors o f all linked modules are ordered with regard to their location in m em ory (fragmenta

tion does not m atter). Step 2: find  the module binding vector into which the binding reference 

is pointing (e.g. with a linear search). Step 3: return the module name and subtract the start 

address o f the module binding vector from  the binding reference to obtain the offset.

5.3 D em o n stra tin g  P erform an ce

It is not claimed th a t  you too  is a high performance system. This is mainly due to  a lack 

of local compile-time optim izations th a t can be applied even in the presence of dynamism.
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However, youtoo  shows reasonable overall performance (see Table 5.1) which is mainly due 

to  the com bination of the  indexed variation of code threading, optim al instruction ordering 

and quasi-inline m ethod caching. Individual figures for these techniques are presented later 

in this section.

Program clisp 3.28 scheme 48 0.36 youtoo 0.93
arithO 67.50s 5.80 22.88s 1.96 11.63s 1
mem 15.61s 1.07 8.35s 0.57 14.52s 1
nfib 38.49s 2.47 220.74s 14.18 15.56s 1
rec 64.66s 2.29 49.14s 1.74 28.20s 1
tak 16.35s 1.05 34.44s 2.22 15.45s 1
takl 9.85s 0.71 51.69s 3.77 13.71s 1
vec 26.51s 2.89 19.08s 2.08 9.16s 1

Table 5.1: Comparison with other bytecode systems

It is very difficult to  perform a fair comparison of language im plem entations, so th a t 

Table 5.1 is not discussed in great detail. W orth noting is y o u to o ’s performance drop 

with a memory m anagem ent stressing benchmark. The cost of conservative garbage col

lection [Zor93] can here be observed.

The actual tim ing is provided by the Unix tim e function uniformly for all language 

im plem entations and benchm ark programs. The benchmark program s are briefly described 

in Table B.3. Execution tim es are recorded by timing benchmark program s twice, with 

and w ithout calling the en try  function. The difference in time reflects the raw execution 

tim e of the benchm ark and eliminates im plem entation differences in program  invocation th a t 

are not discussed here (e.g. initialization, program  loading, program  preprocessing or even 

com pilation). For b e tte r accuracy, the  average over ten execution times is taken into account.

Section 4 listed indexed code threading and optim al instruction ordering as key techniques 

th a t are included in the im plem entation architecture. The following subsections show the 

im pact of these techniques on the performance of youtoo  individually.

5 .3 .1  I n d e x e d  C o d e  T h r e a d in g

The im pact of indexed instruction transfer which was identified in Section 4.2 as a  practical 

variation of code threading is reported for youtoo  in Tables C .l, C.3 and C.3 in the Appendix 

and summ arized in Table 5.2.

The figures indicate th a t  on average about 15% execution time can be saved (in some 

cases even up to  29%). However, execution times of virtual machines cannot be improved
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P5
switched threaded

MIPS 
switched threaded

SPARC 
switched threaded

tak 1 0.86 1 0.78 1 0.98
arithO 1 0.85 1 0.88 1 0.99
a rith l 1 0.92 1 0.95 1 0.98

rec 1 0.87 1 0.77 1 0.97
takl 1 0.77 1 0.79 1 1.26

m eth 1 0.82 1 0.73 1 1.00
vec 1 0.71 1 0.81 1 0.99

hanoi 1 0.96 1 0.80 1 0.89
nfib 1 0.83 1 0.78 1 0.99
mem 1 0.99 1 1.00 1 1.01

0.86 0.83 1 1.01

Table 5.2: Threaded Instruction Dispatch (relative)

with indirect threading on the SPARC architecture (see also Section 5.3.3).

5 .3 .2  O p t i m a l  I n s t r u c t io n  O r d e r in g

Three different instruction orderings for the suite of 10 program s (listed in Table B.3) are 

applied in the  v irtual machine em ulator program. The first ordering is generated by a random  

generator6. The second ordering is derived from profiling information about the dynamic 

instruction frequency of the program  being measured and thus called custom ordering. W ith 

custom  ordering, the instruction executed most in the source tex t of the em ulator program  

is next to  the instruction being executed second most etc. Since it is not practical to  modify 

and recompile the em ulator for each program  to  execute, a third ordering is used, referred to 

as optim al. The optim al ordering reflects the custom orders of a set of program s and thus can 

be used in the  interpreter. Figures 5-5 and 5-6 illustrate the different instruction orderings for 

the  m eth benchm ark. The la tte r figure clearly shows th a t the instruction frequencies of m eth 

deviate slightly from the average instruction frequencies. Nevertheless, the optim al ordering 

is much closer to  the ideal custom ordering than  the initial random  ordering.

Tables C .l, C.3 and C.3 in the Appendix and Table 5.3 in this section show the absolute 

and relative effect of installing the random, custom and optim al instruction orders. The 

benefit is of the order of 20% on P5 and MIPS. The SPARC architecture however shows 

again no speed up for the  different orderings. The optim al ordering th a t resulted from the 

program s in Table B.3 are showed in Table C.4.

6The specific random order may have an impact on the execution time of one particular benchmark program. 

However, we have checked that the average execution time is independent of the actual random order.
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Figure 5-5: Random instruction ordering

oc<u
3cr<D

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

Optimal instruction ordering 
Custom instruction ordering

50 100 150
Instruction position

200 250

Figure 5-6: Optimal instruction ordering
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P5
rand custom optim al

MIPS 
rand custom optim al

SPARC 
rand custom optim al

arithO 1 0.72 0.72 1 0.60 0.70 1 1.00 0.97
a rith l 1 0.86 0.89 1 0.83 0.87 1 0.87 0.86
hanoi 1 0.78 0.81 1 0.74 0.63 1 0.98 0.95
mem 1 0.96 0.96 1 0.95 0.96 1 1.08 0.97
m eth 1 0.76 0.77 1 0.80 0.81 1 0.89 1.10
nfib 1 0.72 0.66 1 0.97 0.98 1 0.84 0.84
rec 1 0.94 0.97 1 0.97 0.98 1 1.00 0.99
tak 1 0.71 0.74 1 0.93 0.93 1 0.98 0.99
takl 1 0.77 0.77 1 0.93 0.94 1 0.99 1.27
vec 1 0.66 0.61 1 0.80 0.71 1 0.98 0.98

0.79 0.79 0.85 0.85 0.96 0.99

Table 5.3: Instruction ordering (relative)

5 .3 .3  T h e  S P A R C  O d d i t y

Neither indexed code threading nor optim al instruction ordering has significant (positive or 

negative) influence on the performance of youtoo on the SPARC architecture. This subsection 

a ttem p ts  to explain this oddity.

As the instruction cache size of the used SPARC machine is twice as large as the in

struction caches with the P5 and MIPS architectures (see Table B .l) , the SPARC cache 

performance profile is likely to  differ from the M IPS and P5 architectures. In order to  bring 

more light into the relationship between native code size and instruction cache performance 

Figure 5-7 illustrates the cumulative native code (text segment) size of the emulation function 

according to  the optim al ordering in Table C.4.

Figure 5-7 shows th a t the 19 most frequently invoked virtual machine instructions can be 

within the MIPS instruction cache (16K). For the P5 it can even be the 30 m ost frequently 

used instructions. The better results of optim al instruction ordering on P5 compared to  

M IPS can perhaps therefore be a ttribu ted  to  the compactness of the CISC instruction set. 

However, the first 29 most frequently invoked virtual instructions fit with their native code 

im plem entation as well into the native instruction cache of the SPARC processor (32K). 

Unfortunately, a simple explanation for the SPARC oddity can therefore not derived from 

Figure 5-7.

However, the hardw are information in Table B .l bares some uncertainty in the SPARC 

case. Shared memory machines usually have large level-2 caches, between 1 to  8 MB per 

processor [Sim97]. In case the SPARC specification which was available during the bench-
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Figure 5-7: Accumulative instruction size

marking is in this respect not accurate, instruction ordering can have only little im pact on 

the instruction cache performance because the entire virtual machine fits into the level-2 

instruction cache.

A further source of uncertainty is related to  the fact th a t hardware caches are shared by 

all the processes in execution. The benchmarking was deliberately performed a t tim es of low 

machine load to  reduce the influence of other concurrently running applications. B ut still a t 

these tim es the used SPARC machine was busy with other applications much more than  the 

P5 and M IPS machines. The SPARC oddity can have therefore here another reason.

For the sake of brevity, a  more sophisticated discussion on instruction caching is not 

included here.

5 .3 .4  Q u a s i - I n l in e  M e t h o d  C a c h in g

In order to  understand the effect of quasi-inline m ethod caching on the dynamic m ethod 

lookup in youtoo , several measures are displayed in Figure 5-8. The d a ta  in the figure is 

collected by profiling the OPS5 system (implemented in EuLisp [OP93]) when resolving a 

non-trivial rule set.

Figure 5-8 shows normal high method cache miss ratio during initialization (of the  EuLisp 

level-1 modules). However, when the OPS5 specific code is entered (after generic function
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Figure 5-8: Quasi Inline Method Caching

call 0), miss ratio  is already below 10% and from then on exponentially dropping down to 

1.06%. Application dependent code is regularly called now so th a t the m ethod caches fill 

up and the probe depth (i.e. the average number of steps necessary to  reach a valid entry in 

the cache) increases up to 1.11. Thus, most table entries are either in the initial or the very 

next cache entry. Average cache density around 0.5 indicate th a t caches are only half filled 

in general. The sparse filling is im portant to  keep the probe depth small. And in tu rn , a 

small probe depth is im portant to minimize the overhead of linear search in the  cache.

OPS5 is chosen to  dem onstrate the success of quasi-inline m ethod caching because of its 

abrup t change in behaviour after the R ETE network is constructed for the input rule set. 

This point is reached circa after 15000 generic function calls. The dynamic change can be 

observed as a fluctuation in the probe depth. However, the miss ratio  is hardly affected so 

th a t the dynam ic m ethod lookup continues to  benefit from the caching scheme. Similar cache 

hit ratios have been measured with other applications as well.

M easuring the  actual performance increase with m ethod caching in a  hybrid object- 

oriented language (i.e. with both, simple and generic functions) is difficult. A three fold 

speed up could be observed with some pure object-oriented benchmarks when the caching 

scheme changed from hashing on the actual argum ent classes (a la CLOS) to  hashing on the 

program  counter.
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5 .4  D em o n stra tin g  M em ory E fficiency

It is claimed in C hap ter 4 th a t  C embedded virtual machine code reduces sta tic  and dynam ic 

m emory usage.

M easurem ents w ith you too  presented in Table C.5 show th a t the average ratio  of the  size 

of read-only d a ta  to  read /w rite  da ta  changes from 1.32 to  0.29 when the c o n s t allocation 

qualifier is om itted  with the code vector definitions in the EuLisp standard  modules. In 

absolute term s, the to ta l size of the compiled EuLisp modules is 361296 bytes, of which read

only d a ta  is 104880 and read /w rite  d a ta  is 79248, with c o n s t declaration and 41568+142496 

bytes, respectively, w ithout. Sharable read-only da ta  is therefore increased by a factor of 

two.

Thanks to  shared objects, also the sta tic  memory usage is very good for applications 

of youtoo . An executable file— regardless of whether the hello-world program  or the  entire 

y ou too  system  compiled by itself—is generally less than 10K in size.

5 .5  D em o n stra tin g  In terop erab ility

Based on y o u to o ’s foreign function interface it was possible to enrich EuLisp with three basic 

functionalities provided by publicly available libraries:

• distribution by linking m pich7 an im plem entation of the Message Passing Interface (M PI),

• a graphical user interface with a binding to T c l/T k  and

• pre-emptive m ulti-threading with a link to POSIX kindred thread libraries.

All three of these libraries are being used in the development of a m ulti-agent system  

modelling the Spanish Fishm arket [RNSP97]. The rest of this section gives some details 

about the la tte r interface because it uncovered a t least all of the problems th a t  also occured 

with the other libraries.

M ulti-threading is a  powerful and structured way to  concurrent execution supported  by 

operating system s, libraries and high-level program ming languages. B ut so far th reads cannot 

be transparently  shared between multiple languages in one application.

The distribution of you too  includes ports to  three external thread libraries (Solaris, M IT 

and PPC R ) [KP98]. Thread transparency is achieved by running EuLisp functions on foreign

7See ftp://info.mcs.anl.gov/pub/mpi.
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th reads. F irst, an out-call from EuLisp to C creates a foreign thread with an initial C function 

th a t  then performs an in-call to  invoke the EuLisp function when the foreign thread is being 

s ta rted .

In detail, the out-call is made to a C function th a t takes an instance t h r  of the class 

< th read >  representing foreign threads in Lisp and argum ents for the initial Lisp closure. 

T he Lisp closure is stored with thread initialization in the fu n c t io n  slot of the instance 

(see Figure 5-9). The Lisp and C thread objects are linked with each other via the slot 

th r e a d -h a n d le  and thread specific d a ta  (TSD). Finally, the C thread calls the in terpreter 

entry  function with the closure and argum ents.

EuLisp’s th re a d -v a lu e  is implemented by a foreign C wrapper function th a t checks if 

the initial closure has returned already (i.e. foreign thread has term inated). In this case the 

slot r e tu r n - v a lu e  is no longer unbound, but set to  the corresponding return  value. If the 

initial closure has not yet returned (i.e. foreign thread is still running), C ’s function to  join a 

th read  will be called. After joining, the return value of the initial closure is accessible a t the 

Lisp thread  object. Figure 5-9 shows how the Lisp thread instance is linked with the corre

sponding C thread structure. A mutex is necessary to assure a thread-safe im plem entation 

of th re a d -v a lu e .

#<thread>
error-handlers
dynamic-variables
function
return-value
return-mutex
thread-handle

Lisp

lisp_call closure + args
thread
TSD

Figure 5-9: Thread representation

Yielding control in favour of another thread by means of th r e a d - r e s c h e d u le  can be 

directly m apped onto the corresponding foreign thread functions using the th re a d -h a n d le  

slot. Inverse pointers from C threads to EuLisp thread objects are kept as th read  specific 

d a ta . EuLisp’s c u r r e n t - th r e a d  returns such a backward pointer from the currently running 

C thread.
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So far, it has been explained how EuLisp threads are based on foreign threads. We still 

need to  show how threads in EuLisp and C can be synchronized in a transparen t way. EuLisp 

locks cannot be implemented with some of the foreign thread libraries (e.g. Solaris), because 

a m utex can only be unlocked by the thread th a t last locked the m utex (the m utex owner), 

bu t EuLisp locks are defined to be accessible by any part of the program , e.g. to  perm it 

producer/consum er style synchronization. Creating a binary semaphore in EuLisp results in 

the  creation of a foreign counting semaphore with count initialized to  1. EuLisp uses a boxed 

C pointer to  handle the semaphore. The class <lock> can be easily subclassed to  implement 

counting semaphores. The EuLisp functions lo c k  and un lock  are straight out-calls to  foreign 

sem aphore functions wait and signal.

The comparison in Table 5.4, based on a four-processor SPARC 4d architecture (SS100E, 

each 50MHz) running Solaris 2.5.1, shows the performance benefit of using foreign thread 

libraries compared to  y o u to o ’s built-in non-pre-emptive m ulti-threading with one-shot con

tinuations th a t operate on the stack architecture of the virtual machine.

foreign threads real user sys
padd 0m ll.595s 0m9.303s 0m7.940s
dphil 0m l9.033s 0m l6.512s 0m24.081s

built-in threads real user sys
padd 5m33.657s lm48.164s 0m34.949s
dphil 2m24.026s lm50.893s 0m30.571s

Table 5.4: Performance comparison

The timing is deliberately performed on a multiprocessor machine, which explains th a t 

the to ta l of the values printed for user and system time exceeds real tim e when using the 

foreign thread library. However, the sum of user and system time reveals th a t applications 

can also benefit on single-processor machines by running 2 to  8 times faster using foreign 

thread  libraries instead of built-in threading.

Safe memory (de)allocation in a pre-emptive m ulti-threaded run-tim e environm ent is as

sured by using a conservative memory m anagement system th a t is designed to  work with the 

thread  libraries in question [BW88, WDH89]. Futhrem ore it is worth mentioning th a t it is 

easy for the user to  switch between the co-operative, built-in threads and the foreign threads 

when writing a program . By im porting the f th r e a d  module and linking the corresponding 

library, the standard  classes < th read>  and <lock> are simply redefined so th a t program s can 

run unchanged for different thread implementations.
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5.6  C onclu sion

The most im portan t aspect of this chapter is th a t it dem onstrates the applicability and 

effectiveness of the in terpreter architecture proposed in C hapter 4. The realization of the 

architecture in form of the youtoo  system shows increase in performance, memory efficiency 

and ease of interoperability.

M any details which are further addressed in youtoo are not mentioned here in order to  

keep the  focus on the aspects related to the key elements of the architecture.
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R elated Work

This thesis is concerned with the im plem entation of object-oriented dynamic program m ing 

languages based on bytecode in terpretation. A new interpretive im plem entation architecture 

is proposed th a t meets the requirem ents of code and system portability, performance, sta tic  

and dynamic memory efficiency as well as language interoperability.

Much of the knowledge about bytecode interpretation th a t has accum ulated over the  years 

can be found in Debaere et al [DVC90]. And experiences in the object-oriented context are 

collected in [Kra83]. In this chapter it is tried to compare existing language system s and 

their individual techniques with the approach taken in the proposed architecture.

6.1 Sm alltalk-80

Sm alltalk technology today is in many aspects still defined by the Deutsch and Schiffman 

Smalltalk-80 system  [DS84]. This implem entation uses two executable program  representa

tions, virtual machine code and native machine code. A compiler, as part of the interactive 

development environm ent, dynamically generates on demand native code from virtual m a

chine code. The Smalltalk-80 system dem onstrates with this run-tim e translation th a t  it is 

possible to  implement a complete dynamic object-oriented program ming environm ent (in

cluding a window system) with m odest hardware resources.

The Smalltalk-80 system, although powerful for rapid prototyping, has m ajor disadvan

tages for the delivery of stand-alone applications. A Smalltalk application is typically bound 

to the development environment. This results from the dynamic character of the  Sm alltalk 

language (see also C hapter 3) but is also made worse by using run-tim e code generation. W ith

U n i v e r s i t y  Of B a t h 6 6 A n d r e a s  K i n d



R e l a t e d  W o r k

dynam ic code translation between different representations a compiler and a lot more classes 

than  actually  necessary have to  be linked to  applications. In fact, a Smalltalk-80 application 

is an increm entally modified version of the development environment [Gol84], Explicit con

figuration of stand-alone applications [Sri88] and various stripping techniques address this 

delivery problem with a lot of (user) effort. In contrast, applications with youtoo  allow to 

deploy small stand-alone executables thanks to  the technique of compiling EuLisp modules 

into C embedded virtual machine code and archiving compiled modules in native libraries.

Beside dynamic compilation on demand, inline method caching was first developed with 

Sm alltalk-80. The relation between inline m ethod caching and quasi-inline m ethod caching 

as proposed in the im plem entation architecture is discussed in the following section.

6 .2  S e lf

The Self system  [CUL89] is probably the most advanced experimental language im plem enta

tion in the  context of dynamic object-oriented programming. Self is similar to  the Smalltalk- 

80 system  but differs in its use of prototypes instead of classes and its use of messages instead 

of variables to  access state .

A t the  heart of the system is an optimizing native compiler th a t is designed to  reduce poly

morphism  and enable method inlining with techniques like, custom ization [CU89], message 

splitting [CU90], type inference [APS93] and polymorphic inline m ethod caching [HCU91]. 

The la tte r  technique has been described already in C hapter 4. Custom ization is a technique 

to  reduce polymorphism in Self by duplicating m ethods for more specific argum ents. Sim

ilarly to  m ethod inlining, the body can be optimized with regard to  the specific argum ent 

types [CU89, DCG95]. Splitting is similar to  custom ization but aimed to  reducing poly

morphism  in a single method by duplicating and re-arranging control paths [CU90]. Type 

inference is discussed later in this chapter.

The success of these techniques is very good when applied together and in an iterative 

m anner. In addition, profiling information is used to determine profitable areas of optim izaton 

and to  compile code with a bias toward common type cases (type feedback [HU94]). The 

techniques developed with Self emphasize the environment character of the Self system . Like 

w ith Smalltalk-80, the delivery of small executables is however difficult since compile-time and 

run-tim e are interleaved. Type inference and custom ization aggravate the delivery problem 

since the entire source code has to  be present in order to achieve the reported performance 

increase. Such a to ta l compilation furtherm ore precludes dynamic linking [HU94].
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The critique on the Self approach from the viewpoint of this thesis is th a t memory in

efficiency is simply unacceptable for “stand-alone” Self applications. Agesen et al [AU94] 

claim to have developed an autom ated application ex tractor for Self based on type inference. 

It is however unclear how well type inference, as well as custom ization, scale with larger 

applications. W ithout heuristics custom ization is likely to  result in code explosion and type 

inference typically requires very long compilation times. It seems therefore th a t m apping 

source modules with restrictive im port/export declarations onto C compilation units which 

can be subsequently archived in shared libraries, as described in this work, is be tter suited to  

produce stand-alone applications (or deliverable APIs) with m odest memory requirem ents. 

The speed of the Self system which comes close to C performance is however undisputed.

6.3  Slim  B inaries

C hapter 3 introduced source code and bytecode as architecture neutral program  representa

tions. A nother form at is used with Oberon [FK97]. The abstract syntax tree of an Oberon 

source module is encoded with a compression scheme based on LZW into a slim  binary. Slim 

binaries cannot be interpreted directly but have to  be compiled a t load-time. The advan

tage over bytecode is th a t the control-flow structu re  of the source module is captured in the 

representation. The resulting native code generated on-the-fly can therefore be much better 

optimized than  native code generated from bytecode.

The tree-based encoding technique applied with slim binaries requires a loading facility 

to  generate the final executable application from encoded modules. The loader is basically a 

fast native compiler with all its architecture dependence and development cost. The approach 

proposed in this thesis is different in this aspect. After generation of C embedded virtual 

machine code, the presented architecture joins the standard  route of software development 

and delivery of the underlying operating system (i.e. standard  C compiler, native linker, 

virtual memory m anagem ent).

6 .4  T ranslation  in to  C

C hapter 3 mentioned translation into the C program ming language as another popular route 

to  achieve a high-level language implem entation. There are two variations with C translation:

1. High-level code is compiled into C code th a t simulates a virtual machine.
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2 . High-level code is compiled into C code th a t uses C control structures.

Simulating a virtual machine involves generating C code and is therefore different from C 

embedded code vectors as the C language is here only used as a vehicle for d a ta  representation. 

The representation shares however the performance drawbacks of virtual machines.

The la tte r approach to C translation is applied in many systems [Bar89, TLA92, DPS94, 

Att94, SW95, Que96]. The approach supplies system portability and performance with s tan 

dard C compiler technology. However, some high-level language features (e.g. c a l l / c c ,  tail- 

call optim ization) are difficult to implement. A m ajor drawback for C translation is th a t  the 

executable program  representation is native code, an architecture dependent form at. The 

approach is therefore not well suited for the prospective application domain of high-level 

distributed com puting (see C hapter 3).

6.5 Java

Java is in many ways close to be a truly dynamic object-oriented language. Dynamic linking, 

autom atic memory m anagement and dynamic m ethod lookup th a t allows run-tim e class 

linking, place Java close to dynamic object-oriented programming. However, Java lacks 

general reflective capabilities. The class C la ss  cannot be subclassed and the language does 

not include a m etaobject protocol, like CLOS for instance.

Java’s interesting features from the perspective of this thesis are generic run-tim e class 

loading (the user can redefine a class loader) and bytecode verification based on Java’s 

monomorphic instruction set [LY96]. Beside the critique on unshared virtual machine code 

(discussed in C hapter 4) which is involved with class loading, it has to  be noted th a t the 

dynamic configurability is much more limited compared to  other language im plem entations, 

including youtoo . Java application can only be extended during run-tim e with new  classes. 

However, m ethods and classes cannot be modified or removed dynamically.

Application s ta rt-up  with Java is performed more or less in the traditional way by reading 

bytecode files. Interoperability, application sta rt-up  and dynamic memory usage benefit 

therefore much more from the C embedded virtual machine code representation.

U n i v e r s i t y  O f  B a t h 69 A n d r e a s  K i n d



R e l a t e d  W o r k

6 .6  O ther T echniques

6 .6 .1  T y p e  I n fe r e n c e

Generally, type inference is used to derive enough type information to  ensure safe run-tim e 

execution of a program . In order effectively to  optimize object-oriented languages, m ultiple 

levels in generic function call trees need to  be considered. Normally a (generic) function 

application call other (generic) functions, which might call again other (generic) functions 

and so on until a  primitive call is reached. Only few type inference approaches actually 

deliver type information for multiple levels of polymorphism. Two of these are generic type 

schemes [KF93] and labeled type variables [PC94]; the la tte r approach shows better results, 

as the analysis effort is focussed on promising program  parts only.

Some sta tic  analysis techniques (e.g. type inference) can help to diminish th is penalty  

but often reduce as well the dynamic character of the language by employing compile-time 

dependencies.

Much work is devoted to  reduce run-tim e type checks in Lisp system s [JW95, W C94, 

Hen92, Shi91a, SH87]. These approaches are typically focussed on global techniques to  opti

mize list processing. In an object-oriented context, list processing is less dom inant because 

objects can be used where before only lists were available. W ith the typical type inflation in 

object-oriented program ming run-tim e check/tag removal is superseded by the more general 

problem of a fast dynamic m ethod lookup.

Some flow analysis techniques are similar to  type inference in the a ttem p t to  trace 

polymorphism over multiple call tree levels. Both, 1CFA [Shi91b] and flow directed in

lining [JW96] disam biguate different function clones for different function call sites of the 

same function. Again, these techniques are targeted to  optim izations, like m ethod inlining, 

and work against the emphasis of few compile-time dependencies proclaimed in this thesis.

6 .6 .2  M e t h o d  L o o k u p  O p t im iz a t io n

W ith polymorphic inline m ethod caching [HCU91] the monomorphic caching scheme used 

with Smalltalk-80 [DS84] is augmented to  store a type case sta tem ent (in native code) in 

place of the full lookup call. The case statem ent reflects the previously com puted m ethods 

which have been used a t this call site and defaults to  the full m ethod lookup. It is argued in 

C hapter 4 already th a t quasi-inline method caching has advantages over the classical caching 

techniques as implemented in Smalltalk-80 and Self. Memory efficiency, cache flushing and
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the fact th a t compiled code should be sharable (i.e. read-only) cause severe problems with 

the classical inline schemes.

Quasi-inline caching, as described in Chapter 4, uses a hashing scheme which is based 

on the (virtual) program  counter. By doing so, type locality can be exploited although 

the cache is not really inlined but located a t the generic function. The advantage of this 

scheme is th a t  cache flushing and sharable virtual machine code is much simpler to realise. 

Furtherm ore, with a linear search hashing policy on collision, redundancy with classical inline 

caching can be avoided (see Section 4.4). While the  space overhead with polymorphic inline 

caching increases linear with compiled code (about 2 % [HCU91]), the space overhead with 

the quasi-inline technique increases only linear with the number of generic functions.

The cache miss ratio with polymorphic inline caching is reported by Holzle et al [HCU91] 

as being between 1% and 11% for a suite of five benchmarks. The miss ratio with quasi-inline 

m ethod caching is measured as 1.06% as well for several applications.

Driesen et al [DH95] present several dispatch techniques for statically- and dynamically 

typed languages in a common framework and discuss their cost on pipelined processors. 

The results are useful for native code generation and address multiple-inheritance. Dynamic 

method and class creation as well as memory consumption are however unaddressed.

An interesting approach to optimized m ethod dispatch is proposed by Queinnec [Que95]. 

Like quasi-inline m ethod caching, this technique is concerned to  preserve the dynam ic capa

bilities of dynamic object-oriented languages, e.g. run-tim e class/m ethod definition/removal. 

In contrast to  many other approaches, the technique performs m ethod dispatch based on deci

sion trees and uses an optimized subclass predicate. Although compact and fast, scalability— 

particularly with m ulti-m ethod dispatch—appears to  be a problem since the scheme does not 

adapt to  the typical hot-spots th a t appear with generic function invocation in object-oriented 

programming.

6 .6 .3  S t a c k  C a c h in g

An generic technique th a t delivers notable improvements for bytecode interpreters is stack 

caching [Ert95]. Dynamic stack caching requires multiple copies of the interpreter to  keep 

track of the s ta te  of the stack. W ith static stack caching the compiler keeps track of the stack 

state . These techniques speed-up instruction dispatch by adding significant complexity to  the 

interpreter or compiler and do not promise to be equally successful on different processors1.

JThe second issue partly applies as well to the proposed architecture.
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6 .6 .4  S e a l in g

Sealing (or freezing) is used with CMU Common Lisp [Me92] and Dylan [Sha96] to control 

the  dynam ism  of functions and classes. Not all parts of the object system need to  (or must) 

make use of the  potential dynam ism  and opportunities for incremental development. The 

idea is th a t  the  performance of these parts should not be compromised for flexibility they 

don’t embody.

If a  class is sealed it may not be subclassed further. And similarly, after sealing a generic 

function, no additional m ethods may be added. Sealing of dynamically created classes and 

generic functions is generally not supported since this declaration is aimed a t compile-time 

optim izations. Sealing enables a be tter starting  point for sta tic  analysis of separately compiled 

parts of a  dynamic object-oriented program . In some cases however it may be difficult to 

anticipate which classes could be subject to  future reuse.

6 .6 .5  M e t h o d  I n l in in g

Inlining is an effective technique to  improve execution efficiency by replacing a function call 

with the body of the called function. In this way, time for handling argum ents and allocating 

control fram es can be saved. For very small functions the function call overhead can even 

exceed the execution tim e spend in the function body. Generally, inlining enables ensuing 

optim izations. The inlined body can be optimized with respect to the context in the host 

function as well as the host function can be optimized with respect to  the inlined code. 

Function inlining is particularly  effective for program ming languages with a  high function 

invocation frequency.

Because of (i) high expense and frequency of generic function invocation arising with 

inheritance and encapsulation, (ii) difficulties with sta tic  m ethod binding and (iii) the effect 

on the success of ensuing optim izations, inlining of m ethods can be regarded as the key 

optim ization in object-oriented programming. Because of this, the following techniques are 

in one or another way aimed tow ards method inlining.
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Conclusions

This work strives for a language implem entation architecture th a t addresses the requirem ents 

of (bytecode) interpreted object-oriented dynamic programming (or short dynamic objects). 

To achieve efficiency and interoperability without restricting the distinctive flexibility of dy

namic objects, several new implem entation techniques are developed and tested, including 

embedded virtual machine code, indexed code threading, optimal instruction ordering and 

quasi-inline method caching.

C embedded virtual machine code refers to  the representation of bytecodes as constan t C 

arrays th a t are located in sharable tex t segments after compilation. Interoperability, appli

cation s ta rt-up  and dynamic memory usage benefit from this representation. Indexed code 

threading addresses the performance problem with virtual instruction mapping (i.e. loading, 

decoding and invoking) by using fast threaded instruction transfer. Unlike with standard  

code threading, virtual machine code remains com pact and can also be executed by a non

threaded virtual machine emulator. A further performance boost is achieved with optim al 

v irtual instruction ordering. This technique helps to cluster the native code im plem enting 

virtual instructions so th a t native instruction cache performance is increased. Finally, the  ef

ficiency problems involved with dynamic m ethod lookup are alleviated with an inline caching 

scheme th a t is applicable with constant bytecode vectors. The scheme exploits type locality 

similar to polymorphic inline caching. However, dynamic memory is saved by avoiding redun

dan t m ethod entries and by being adaptable to generic function invocation which typically 

comes in waves with hot-spots on particular m ethods.

W ith  indexed code threading and optim al instruction ordering, youtoo, an im plem enta

tion of the proposed architecture shows an average performance increase of about 2 0 % on the
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P5 and SPARC architectures. Embedded virtual machine code increases sharable read-only 

d a ta  by a factor of two. Virtual machine code can be shared in memory by different client 

applications executing it concurrently on the same machine, so th a t a t most one copy of a 

m odule’s virtual machine code exists in memory. Quasi-inline m ethod caching, finally, results 

with youtoo  in a m ethod lookup miss ratio of 1.06%.

The im plem entation architecture is realized in youtoo with single inheritance and m ulti 

method dispatch. Nonetheless, the techniques are of general applicability. Any object- 

oriented dynamic language, regardless if single/m ultiple d ispatch/inheritance, can benefit 

from quasi-inline m ethod caching (e.g. Smalltalk and CLOS). And embedded virtual machine 

code, indexed code threading and optim al virtual instruction ordering can help to  enhance 

the performance of any bytecoded language im plem entation.

W ith much focus on Java and its virtual machine approach recently, it would be in ter

esting to  see the im pact of applying some of the techniques to  an im plem entation of Java. 

Although Java owes its success to code mobility within the W orld-Wide Web [GJS96], more 

and more applications use Java as a general purpose programming language w ithout applets 

(and related classes). In this context, the architecture should be applicable also to  Java 

virtual machines.

Unaddressed in the proposed im plem entation architecture is the problem of m ethod cache 

access with pre-emptive m ulti-threading [KJ93]. In general, it has to  be ensured th a t  one 

thread does not modify a m ethod cache while another thread is reading it. The default 

thread im plem entation in youtoo is realized on the level of the virtual machine so th a t  

atomic read /w rite  access to cached methods can be assumed. W ith foreign threading th is 

assum ption does not hold any longer. A mechanism for locking m ethod tables is required.

The combination of dynamic object-oriented program ming and bytecode in terp reta tion  

is exciting because of the involved tradeoffs between efficiency and flexibility. In con trast 

to other approaches, this work tried to  balance these tradeoffs so th a t the distinguishing 

flexibility of object-oriented dynamic programming is not compromized. In sum m ary, it 

is believed th a t the architecture th a t is developed within this thesis can be regarded as a 

consistent continuation of the evolution of bytecode in terpretation driven by the specific 

requirem ents of dynamic object-oriented programming, including efficiency, interoperability 

and portability.
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A ppendix A

A ssem bler Code

A .l  V irtu a l In stru ctio n  Transfer on P 5

. L4:

. 1 2 6 2 : 

. L260:

movzbl (*/,eax) ,'/,edx 
crapl $255,'/,edx 
ja  . L4
jmp * .L262( ,'/,edx,4)

.lo n g  .L260

in c l  */,eax 
jmp . L4

# g e t in s tr u c t io n
# range check
# d e fa u lt  jump
# jump ta b le  lookup and jump to  n ext
# in s tr u c t io n

# jump ta b le

# increm ent pc
# loop jump

Figure A-l: Virtual instruction transfer with sw itch  on P5 (gcc - 02)

• L18:
movl ('/,edx) ,7,eax # g e t  la b e l  address
addl $ 4 ,’/,edx # increm ent pc
jmp *'/,eax # jump to  next in s tr u c t io n

Figure A-2: Virtual instruction transfer with code threading on P5  fjgcc -6 2 )

. L18:
in c l  '/.edx # increm ent pc
movzbl ('/,edx) ,'/,eax # g e t  la b e l  o f f s e t
jmp *-1024('/,ebp,'/,eax,4) # jump to  next in s tr u c t io n

Figure A-3: Virtual instruction transfer with indexed code threading on P5 (gcc - 0 2 )
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A s s e m b l e r  C o d e

A .2 V irtu a l In stru ction  Transfer on M IP S

$L4:
lb u  $ 3 ,0 ($ 4 )
#nop
s i t u  $ 2 ,$ 3 ,2 5 6

$L265:
beq $2,$0,$L 265  
s l l  $ 2 ,$ 3 ,2  
lw $ 2 ,$L262($2)
#nop
j $2

$L262:
.gpword $L260

$L260:
j $L4
addu $ 4 ,$ 4 ,1

Figure A-4: Virtual instruction

# g e t  in s tr u c t io n

# range check

# d e fa u lt  jump
# m u ltip ly  by 4
# jump ta b le  lookup

# jump to  next in s tr u c t io n

# jump ta b le

# loop jump
# increm ent pc

transfer with sw itch  on M IP S  fgcc -02,)

$L75:
lw $ 2 ,0 ($ 3 )  # g e t  la b e l  address
#nop
j $2 # jump to  next in s tr u c t io n
addu $ 3 ,$ 3 ,4  # increm ent pc

Figure A-5: Virtual instruction transfer with code threading on M IP S  (gcc -02,)

$L8:
addu $ 6 ,$ 6 ,1  
lbu  $ 2 ,0 ($ 6 )  
#nop
s l l  $ 2 ,$ 2 ,2  
addu $ 2 ,$ sp ,$ 2  
lw $ 2 ,8 ($ 2 )  
#nop
j $2

# increm ent pc
# put pc in  $2

# m ultipy by 4
# add la b e l  ta b le  o f f s e t
# g e t  in s tr u c t io n  address

# jump to  next in s tr u c t io n  

Figure A-6 : Virtual instruction transfer with indexed code threading on M IP S  (gcc  - 0 2 )
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A s s e m b l e r  C o d e

A .3 V irtu a l In stru ction  Transfer on SPA R C

.LL4:
ldub  C'/.oO] ,*/,g2 
cmp '/,g2 ,255

. LL265:
bgu .LL265 
nop
s l l  y,g2 , 2 , 7,g2 
Id [y.g2+'/.g3] , ’/,g2 
jmp */,g2 
nop

. LL262:
.word .LL260

. LL260:
b . LL4
add '/,o0,1 ,  '/,o0

Figure A-7: Virtual instruction

# g e t  in s tr u c t io n
# range check

# d e fa u lt  jump

# m u ltip ly  by 4
# jump ta b le  lookup
# jump to  next in s tr u c t io n

# jump ta b le

# loop jump
# increm ent pc

transfer with sw itch  on SP A R C  fgcc -0 2 )

. LL147:
Id [*/,g3] ,'/,g2 # g e t la b e l  address
jmp */,g2 # jump to  next in s tr u c t io n
add # increm ent pc

Figure A-8 : Virtual instruction transfer with code threading on SP A R C  (gcc -0 2 )

.LL9:
add '/,i0,1 ,'/,i0 # increm ent pc
ldub C'/.iO] ,'/,o0 # put pc in  '/,o0
s l l  '/,00,2,7,00 # m ultipy by 4
add */,fp, 7,oO, 7,oO # add la b e l  ta b le  o f f s e t
Id [7.00-1040] , ’/,oO # g e t in s tr u c t io n  address
jmp '/,oO # jump to  next in s tr u c t io n
nop

Figure A-9: Virtual instruction transfer with indexed code threading on SP A R C  (gcc -02^
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A ppendix B

Various Tables

Type Processor RAM D ata  Cache Instr Cache
P5 PC 150MHz P150 32M 16K+512K 16K

M IPS SGI Indy lOOMhz MIPS R4600 64M 16K 16K
SPARC SUN SS100E 4x50MHz SPARC 4d 192M 16K 32K

Table B .l: Architectures

arity dynamic ratio
1

2

3
> 3

0.315350
0.536946
0.105638
0.042066

Table B.2: Generic function arity ratio in O PS5 implemented in EuLisp

Program Stress
arithO integer arithm etic
a rith l float arithm etic
hanoi slot access
mem memory management
meth method invocation
nfib recursion, integer arithm etic
rec recursion
tak recursion, integer arithm etic
takl list processing, recursion
vec vector access

Table B.3: Benchmark programs
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V a r i o u s  T a b l e s

flag description
-h e lp show usage
-lo a c L p a th  <dir> add < dir>  to  load path
-c create C linkable module file only
- a r create C linkable library file
- 1  < lib> specify C linkable library
-L < dir> extent C linkable library load path
- f f f  < f i le > specify C foreign function file
- f f l  < lib> specify C foreign function library
-o  < f i le > destination file
- s c r i p t script mode
-no_gc garbage collection library not linked
-c c  <com piler> used C compiler
- I d  < lin k e r> used C linker
-ar_cmd <cmd> used C ar command
-ra n lib .c m d  <cmd> used C ranlib command
- c f l a g s  < flag> additional C compiler flag
- s t a t i c no shared libraries used
"g C debug info
- i force interpretation mode

Table B.4: youtoo flags (extract)

Lisp C
< c h a ra c te r> ch a r
< in t> i n t
<double> double
< s tr in g > c h a r *
b o o lean i n t
p t r v o id  *
< in t*> i n t  *
<double*> double  *
< s tr in g * > c h a r **

Table B.5: Foreign function converters
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A ppendix C

M easurem ents

P5
gcc random

threaded
custom optim al random

switched
custom optim al

arithO 9.61s 6.96s 6.96s 8.31s 8.43s 8 .2 2 s
a rith l 7.90s 6.78s 7.05s 8.30s 7.89s 7.66s
hanoi 6.24s 4.88s 5.08s 6.17s 5.85s 5.31s
mem 6.18s 5.95s 5.94s 6 .0 2 s 5.97s 5.99s
m eth 10.19s 7.78s 7.89s 9.87s 11.83s 9.58s
nfib 14.29s 1 0 .2 2 s 9.38s 11.44s 11.70s 11.29s
rec 19.04s 17.98s 18.40s 22.83s 2 1 .6 8 s 2 1 .1 1 s
tak 13.14s 9.38s 9.70s 11.35s 12.07s 11.30s
takl 10.30s 7.94s 7.94s 9.15s 9.78s 10.34s
vec 8.94s 5.93s 5.46s 6.76s 6.73s 7.72s

Table C .l: Instruction ordering and threaded dispatch on P5

M IPS
gcc random

threaded
custom optim al random

switched
custom optim al

arithO 16.58s 9.95s 11.63s 14.59s 13.11s 13.22s
a rith l 16.23s 13.50s 14.19s 14.91s 14.72s 14.97s
hanoi 12.97s 9.62s 8.16s 9.25s 9.15s 10.15s
mem 15.16s 14.40s 14.52s 14.50s 14.20s 14.45s
m eth 16.57s 13.29s 13.45s 18.40s 16.91s 18.49s
nfib 15.86s 15.43s 15.56s 20.91s 20.05s 19.96s
rec 28.84s 28.00s 28.20s 37.54s 36.27s 36.75s
tak 16.59s 15.50s 15.45s 20.26s 19.86s 19.93s
takl 14.66s 13.57s 13.71s 17.67s 16.90s 17.41s
vec 12.83s 10.23s 9.16s 11.45s 11.29s 11.34s

Table C .2 : Instruction ordering and threaded dispatch on M IP S
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M e a s u r e m e n t s

SPARC
gcc random

threaded
custom optimal random

switched
custom optim al

arithO 14.13s 14.14s 13.77s 14.00s 17.70s 13.93s
a rith l 15.67s 13.63s 13.43s 14.33s 16.69s 13.50s
hanoi 11.53s 11.30s 10.93s 11.70s 1 1 .8 6 s 1 1 .1 0 s
mem 13.20s 14.20s 12.80s 12.06s 13.23s 13.10s
meth 18.98s 16.86s 20.93s 19.00s 22.07s 16.57s
nfib 25.39s 21.33s 21.40s 29.73s 28.17s 21.30s
rec 40.53s 40.46s 40.03s 40.49s 50.17s 40.20s
tak 22.93s 22.53s 22.76s 45.43s 33.06s 25.29s
takl 20.57s 20.36s 26.17s 20.47s 25.83s 26.26s
vec 13.10s 12.90s 12.79s 12.89s 15.67s 12.56s

Table C.3: Instruction ordering and threaded dispatch on SP A R C

U n i v e r s i t y  O f  B a t h 93 A n d r e a s  K i n d



M e a s u r e m e n t s

code position invocation name
27 1 0.12647739 STACK_REFO
31 2 0.11775139 STACK_REF
28 3 0.09931751 STACKJIEF1
68 4 0.07262022 BRANCH_NIL_P0S
29 5 0.05743256 STACK_REF2
36 6 0.05520266 BINDING_REF
69 7 0.02998005 RETURN
60 8 0.02931382 CALL_0PERAT0R
26 9 0.02794180 FPIJLT
54 10 0.02538586 BRANCH.P0S
171 11 0.02368542 CHECK-ARGUMENTS2
61 12 0.02332673 TAIL_CALL_0PERAT0R
71 13 0.01895022 DISPLAY_REF
130 14 0.01887169 STATIC_REFO
18 15 0.01838423 NULLP
34 16 0.01729920 NOBBLE
67 17 0.01707753 CHECK_ARGUMENTS
17 18 0.01700065 THE.CDR
21 19 0.01443220 FPI_DIFFERENCE
2 20 0.01355292 PRIMITIVE-REF

72 21 0.01322283 SET_DISPLAY_REF
42 22 0.01243134 P0P1
131 23 0.01236767 STATIC_REF1
20 24 0.01143196 FPI.SUM
35 25 0.01110556 STATIC_REF
170 26 0.01089714 CHECK-ARGUMENTS1
132 27 0.01080677 STATIC_REF2
44 28 0.00994132 FPI_DEC
134 29 0.00851682 STATIC_REF_NIL
25 30 0.00837974 FPI_EQUAL
23 31 0.00753782 FPI.QUOTIENT
22 32 0.00753782 FPI.PRODUCT
45 33 0.00718992 FPI.ZER0P
16 34 0.00650257 THE.CAR

138 35 0.00589914 STATIC_FPI_BYTE_REF
3 36 0.00572763 SET_PRIMITIVE_REF

43 37 0.00375411 FPI.INC
70 38 0.00367226 ALLOC
59 39 0.00356534 MAKE_LAMBDA
38 40 0.00247272 STATIC _FPI_REF
80 41 0.00201856 EQ
107 42 0.00138637 INIQ
6 43 0.00109182 PRIMITIVE J5IZE

135 44 0.00104827 STATIC JIEF.T
4 45 0.00083096 PRIMITIVE.CLASS.0F

Table C.4: Optimal virtual instruction ordering with programs in Table B .3
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M e a s u r e m e n t s

M IP S /E L F with co n s t w ithout c o n s t
module file size .rodata .data ratio .rodata d a ta ratio
boot.o 10544 2656 2848 0.93 816 4704 0.17
b o o tl.o 15280 2864 3040 0.94 2080 3808 0.55
callback.o 3984 1248 944 1.32 736 1440 0.51
character.o 7760 2096 976 2.15 1424 1648 0.86
collect.o 6512 2288 1088 2.10 624 2752 0.23
compare.o 4096 1056 1040 1.02 272 1824 0.15
condition.o 5712 1552 1408 1.10 640 2320 0.28
convert.o 800 144 144 1.00 96 192 0.50
convert l.o 8608 3168 1952 1.62 960 4176 0.23
copy.o 3872 1168 912 1.28 384 1696 0.23
dynamic.o 3184 832 816 1.02 352 1296 0.27
event.o 1376 288 272 1.06 160 400 0.40
float.o 3152 960 560 1.71 336 1184 0.28
form at.o 3888 1360 800 1.70 368 1792 0.21
fpi.o 5328 1488 1136 1.31 576 2048 0.28
handler.o 15136 4560 1936 2.36 2544 3936 0.65
integer.o 2160 496 464 1.07 256 720 0.36
let-cc.o 1440 336 320 1.05 128 528 0.24
level l.o 1728 384 304 1.26 96 592 0.16
list.o 17424 4928 4656 1.06 1232 8336 0.15
lock.o 4048 1088 864 1.26 432 1520 0.28
mop-access.o 8672 3136 1952 1.61 1104 3984 0.28
mop-alloc.o 9728 3584 2112 1.70 1232 4464 0.28
mop-class, o 22160 4272 5888 0.73 2640 7520 0.35
mop-defcl.o 10112 2656 2720 0.98 912 4448 0.21
mop-gf.o 7408 2224 1808 1.23 832 3200 0.26
mop-init.o 5104 2880 576 5.00 400 3056 0.13
mop-inspect.o 3984 960 1056 0.91 384 1632 0.24
mop-key.o 1408 352 288 1.22 176 448 0.39
m op-m eth.o 7312 2688 1616 1.66 928 3376 0.27
mop-prim .o 1888 336 480 0.70 240 576 0.42
num ber.o 7760 2128 1824 1.17 592 3360 0.18
read.o 10352 3600 2448 1.47 912 5136 0.18
socket.o 8912 2304 2192 1.05 864 3632 0.24
stream .o 12416 4128 3120 1.32 960 6288 0.15
stream l.o 13616 4032 320 12.60 3872 496 7.81
stream 2.o 19968 5648 4736 1.19 2240 8144 0.28
stream 3.o 8640 3088 2112 1.46 752 4432 0.17
string.o 14912 4336 2672 1.62 2048 4944 0.41
symbol.o 4512 1184 1088 1.09 368 1904 0.19
table.o 11920 3824 2704 1.41 1216 5296 0.23
tab le l.o 10640 2976 2528 1.18 1152 4352 0.26
telos.o 976 208 160 1.30 96 272 0.35
thread.o 15824 4128 4016 1.03 1792 6352 0.28
vector.o 17040 5248 4352 1.21 1344 8272 0.16
to ta l 361296 104880 79248 1.32 41568 142496 0.29

Table C.5: Impact o f constant virtual machine code on EuLisp level-1 modules on M IP S
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