

University of Bath

PHD

An architecture for interpreted dynamic object-oriented languages

Kind, Andreas

Award date:
1998

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

An Architecture for Interpreted
Dynam ic Object-Oriented

Languages

subm itted by

A ndreas K ind

for the degree of P h .D

of the U n iv ers ity o f B ath

1998

C opyright

A ttention is drawn to the fact th a t copyright of this thesis rests with its author. This copy

of the thesis has been supplied on the condition th a t anyone who consults it is understood

to recognise th a t its copyright rests with its author and th a t no quotation from the thesis

and no information derived from it may be published without the prior written consent of

the author.

This thesis may be made available for consultation within the University Library and may

be photocopied or leqt to other libraries for the purposes of consultation.

Signature of A uthor A n d r e a s K in d

UMI Number: U106735

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com plete manuscript
and there are missing pages, th ese will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U106735
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Sum mary

This thesis is concerned with the implem entation of object-oriented dynamic program m ing

languages based on bytecode in terpretation. A new interpretive im plem entation architecture

is proposed th a t meets the requirements of code and system portability, execution perfor

mance, sta tic and dynamic memory efficiency as well as language interoperability.

T he different quality of the architecture compared to other virtual machine approaches

is related to the key techniques developed within this work: (i) C embedded virtual machine

code, (ii) indexed code threading, (iii) optim al virtual instruction ordering and (iv) quasi

inline m ethod caching. C embedded virtual machine code refers to the representation of

bytecodes as constant C arrays th a t are located in sharable tex t segments after compilation.

Interoperability, application start-up and dynamic memory usage benefit from this represen

tation. Indexed code threading addresses the performance problem with virtual instruction

m apping (i.e. loading, decoding and invoking) by using a fast threaded instruction transfer.

Unlike with standard code threading, virtual machine code remains com pact and executable

also with a non-threaded virtual machine emulator. A further performance boost is achieved

with optim al virtual instruction ordering. This technique helps to cluster the native code

implementing virtual instructions so th a t native instruction cache performance is increased.

Finally, the efficiency problem involved with dynamic method lookup is alleviated with an

inline caching scheme th a t is applicable with constant bytecode vectors. The scheme exploits

type locality similar to polymorphic inline caching. However, dynamic memory is saved by

avoiding redundant m ethod entries and by being adaptable to generic function invocation

which typically comes in waves with hot-spots on particular methods.

A realization of the architecture is presented in form of an im plem entation of the dynamic

object-oriented language EuLisp. The im plem entation dem onstrates the feasibility and effec

tiveness of the proposed architecture. The average performance increase with indexed code

threading is 14% (P5) and 17% (MIPS). The average increase with optim al instruction or

dering in the indexed threaded interpreter is 2 1 % (P5) and 15% (M IPS). Sharable read-only

da ta is increased on average by a factor of two and finally, the miss ratio with quasi-inline

method caching is measured as 1.06%.

U n i v e r s i t y O f B a t h i A n d r e a s K i n d

Acknowledgements

Thanks go to my supervisor, Julian Padget, for giving me the great opportunity to s ta r t and

finish this work. He initiated many aspects in this thesis and provided regular input and

help.

I am most grateful for discussions with Russell Bradford, Rob Simmonds, Simon M errall,

Duncan Batey, Luc M oreau, David DeRoure and Guiseppe A ttardi.

I would like to thank Horst Friedrich, Ingo Mohr, M alte Forkel and H ans-O tto Leilich for

teaching me some basics.

Finally, special thanks to Josephine, Paulina and M ira for giving me a reason.

U n i v e r s i t y O f B a t h ii A n d r e a s K i n d

Contents

I 2

1 In tro d u ctio n 3

1.1 W hy Dynamic O b j e c t s ? .. 4

1.2 V irtual M a c h in e s .. 5

1.3 Problem s with Interpreted Dynamic O b je c ts ... 6

1.4 An A rchitecture for Interpreted Dynamic Object-Oriented Languages 7

1.5 Outline ... 9

2 D y n a m ic O b ject-O rien ted P rogram m in g 10

2 .1 Smalltalk ... 10

2.2 L i s p .. 11

2.3 The Common Lisp Object System .. 13

2.4 Dynamic O b je c ts .. 14

2.4.1 Dynamic L in k in g .. 15

2.4.2 R e fle c tio n ... 15

2.4.3 A utom atic Memory M a n ag e m en t... 16

2.5 Decentralized Artificial In te llig en ce .. 17

2.6 T erm inology .. 18

3 V ir tu a l M ach in es and th e R eq u irem en ts o f D yn am ic O b jects 21

3.1 V irtual M a c h in e s ... 21

3.1.1 S p e e d .. 23

3.1.2 S p a c e .. 23

3.1.3 V e rsa tility ... 25

3.2 Requirem ents of Dynamic O b j e c t s ... 27

3.2.1 The Performance Cost of Execution D e p e n d e n c ie s 28

3.2.2 The M emory Cost of Execution D ependencies.. 31

3.2.3 Scripting ... 31

U n i v e r s i t y O f B a t h i ii A n d r e a s K i n d

C o n t e n t s

3.3 Conclusion ... 32

II 3 4

4 T h e A rch itec tu re 35

4.1 Em bedding V irtual Machine In stru c tio n s... 35

4.2 Indexed Code T h re a d in g .. 37

4.3 O ptim al Instruction O rd e r in g ... 39

4.4 Quasi-Inline M ethod C a c h in g ... 40

4.5 E u L is p .. 42

4.6 Conservative Garbage C o l le c t io n ... 43

4.7 Conclusion ... 44

5 T h e M ech an ics o f D yn am ic O b jects in youtoo 46

5.1 The youtoo Compiler ... 46

5.1.1 Dynam ic L in k in g .. 49

5.1.2 Source Code I n te r p re ta t io n ... 49

5.1.3 Exam ple 1 ... 50

5.1.4 Exam ple 2 ... 53

5.2 Code M o b ility .. 54

5.3 D em onstrating P e rfo rm an ce .. 55

5.3.1 Indexed Code T h read in g .. 56

5.3.2 O ptim al Instruction O rd e r in g .. 57

5.3.3 The SPARC O d d i t y ... 59

5.3.4 Quasi-Inline M ethod C a c h in g .. 60

5.4 D em onstrating Memory Efficiency ... 62

5.5 D em onstrating In te ro p e ra b il ity .. 62

5.6 Conclusion ... 65

6 R e la ted W ork 66

6 .1 S m allta lk -80 ... 6 6

6 .2 S e lf .. 67

6.3 Slim B in a r i e s ... 6 8

6.4 Translation into C ... 68

6.5 J a v a .. 69

U n i v e r s i t y O f B a t h i v A n d r e a s K i n d

C o n t e n t s

6 .6 O ther T echn iques... 70

6.6.1 Type In fe r e n c e .. 70

6.6.2 M ethod Lookup O p tim iza tio n ... 70

6.6.3 Stack Caching .. 71

6.6.4 Sealing ... 72

6.6.5 M ethod Inlining ... 72

7 C on clu sion s 73

A A ssem b ler C od e 87

A .l V irtual Instruction Transfer on P 5 ... 87

A .2 V irtual Instruction Transfer on M IPS .. 8 8

A .3 V irtual Instruction Transfer on SPARC ... 89

B V arious T ables 90

C M ea su rem en ts 92

U n i v e r s i t y O f B a t h 1 A n d r e a s K i n d

Part I

U n i v e r s i t y O f B a t h 2 A n d r e a s K i n d

C h apter 1

Introduction

The real world is a highly dynamic and complex system. This suggests using program m ing

languages th a t can handle dynamism and complexity in a natural and simple way: dynamic

object-oriented languages. This thesis is concerned with the im plem entation of dynamic

object-oriented program ming languages based on bytecode interpretation.

The ability to handle dynamism and complexity naturally with dynamic object-oriented

program m ing (or for short dynamic objects) is based on emphasizing execution dependencies

as opposed to emphasizing compilation dependencies in more sta tic languages. The emphasis

on compile-time dependencies in languages like C + + is illustrated by the fact th a t changing

a compilation unit generally requires recompilation of all dependent compilation units. Such

sta tic dependencies result from the efficient mapping from the object-oriented performance

model to the hardw are performance model. An implication of this mapping is th a t class and

m ethod definitions may not change after compilation. The emphasis on execution dependen

cies in languages like CLOS is likewise illustrated with the ability to change, add or remove

class and m ethod definitions a t run-time. Dynamic and complex applications can benefit

from such execution dependencies as recompilation can be avoided.

In a further step toward dynamic dependencies, classes and m ethods are used to imple

m ent the object system itself so th a t a modification of these defining classes and m ethods

results in a modification of the semantics of the object system. By doing so, the sem antics of

the language can be customized for individual application domains [KdRB91]. Such reflective

capabilities in dynam ic object-oriented languages is typically combined with dynam ic typing,

au tom atic m emory management and run-tim e linking [Nas92].

In con trast, s ta tic object-oriented languages, like C + + , Eiffel or Haskell, do not support

U n i v e r s i t y O f B a t h 3 A n d r e a s K i n d

In t r o d u c t i o n

run-tim e control over the object system to th a t extent. These languages are designed w ith a

clearer separation between compile-time and run-time. Classes, m ethods and functions are

compile-time concepts and do not appear as run-tim e d a ta objects.

1.1 W h y D yn am ic O bjects?

T he im portance of dynamic object-oriented languages is based on the fact th a t the trend

tow ards d istribution, symbolic com putation and evolutionary software development requires

to d a y ’s applications to deal with a high degree of dynamism and complexity. The increased

use of dynamic object technology with languages like Smalltalk, CLOS and (partly) Java in

the commercial environm ent reflects this im portance [Gro95, Sha95].

D istr ib u tio n Infrastructures for distributed computing are now ubiquitous and ready

to be used by a new generation of applications based on distributed software com ponents and

mobile code. Object-oriented program ming has long been acknowledged as advantageous for

dealing with complexity inherent in distributed systems [NWM93]. However, popular object-

oriented static languages with their emphasis on compilation dependencies are not ideally

suited for code mobility in heterogeneous com puter networks. In contrast, the com bination

of dynam ic linking, autom atic memory m anagement, dynamic typing and m ulti-threading

has a natural potential to handle the intrinsic dynamic behaviour of d istributed system s,

such as in the form of asynchronously arriving active objects [CJK95].

S ym b olic C o m p u ta tio n The second reason for an increased call on dynam ic com pu

tation derives from applications which incorporate symbolic com putation. Today’s standard

hardw are finally gives acceptable performance to knowledge-based systems. Typically, these

system s process symbolic d a ta rather than numeric or other low level d a ta (e.g. b it/ch a rac te r

strings). Symbolic d a ta is intrinsically abstract and irregular which can make sta tic typing

less precise as well as processor and memory consumption unpredictable. Dynamic typing and

au tom atic memory m anagem ent are therefore desired features of knowledge representation

languages.

E v o lu tio n a ry Softw are D ev e lo p m en t It has been realized th a t sta tic object-oriented

languages cause versioning problems when components, which are used by other com po

nents, require modification. These languages normally use sta tic type inform ation for effi

cient m ethod lookup based on indirection through a statically computed m ethod table. This

approach compiles m ethod lookup into applications. Changing a class definition in a compila

tion unit thus forces recompilation of all dependent compilation units. This “fragile base class

U n i v e r s i t y O f B a t h 4 A n d r e a s K i n d

In t r o d u c t i o n

problem ” limits the scalability of complex software systems and does not exist with m ethod

lookup based on execution dependencies in dynamic object-oriented languages. Here, even a

dynamic evolution of software is actually feasible for long-running (potentially d istributed)

applications th a t cannot be simply stopped, modified and restarted (e.g scheduling system s).

Therefore, dynam ic object-oriented programming supports the custom ization and rapid modi

fication of applications according to individual or changing needs [LV97, Cor97, Phi97, DB97].

D istribution, symbolic com putation and evolutionary software development share a de

m and for dynam ic flexibility provided with autom atic memory m anagem ent, introspection

and dynamic linking— key features of dynamic object-oriented program ming [Nas92].

Research into integrating and coordinating human and autom ated problem solvers in

large com puter and telecommunication networks is driven by the m etaphor of group in

teraction and social organization and is known as decentralized (or distributed) artificial

intelligence (DAI) [Gas92j. DAI as a high-level form of distributed computing, is one of the

most promising fu ture application areas across the Internet and on company-wide in tranets.

DAI is linked to the three areas above—distribution, knowledge representation and software

evolution. Dynam ic object-oriented programming is therefore suited for implementing DAI

applications (see [Ham97, Way95, RNSP97] and others).

1.2 V irtu a l M achines

Compilation into native machine code and direct (or tree) in terpretation offer different trad e

offs. Both im plem entation techniques are not optim al with regard to a compound m easure

including the size, speed and versatility of the corresponding executable program representa

tion [Hoe74, DVC90]. A much better overall value can be achieved with bytecode in terp re ta

tion. Source code is here transform ed into semantically equivalent instructions (bytecodes)

of a virtual machine. An interpreter program th a t emulates the virtual machine executes the

virtual machine instructions.

The virtual machine (or bytecode) approach provides an architecture neutral and com

pact executable program representation th a t enables code mobility in heterogeneous environ

ments [Gos95]. W ith regard to the application domain of high-level d istributed com puting

identified in the previous section, this approach is thus a reasonable im plem entation tech

nique for an dynam ic object-oriented language system and sets the general scope for th is

thesis: dynam ic objects with virtual machines.

U n i v e r s i t y O f B a t h 5 A n d r e a s K i n d

In t r o d u c t i o n

1.3 P rob lem s w ith In terpreted D yn am ic O b jects

Bytecode in terpretation and the emphasis on run-tim e dependencies in dynam ic object-

oriented languages are not w ithout disadvantages. Speed and space problems create a popu

lar stigm a: dynamic object-oriented applications executed on virtual machines are inefficient

with regard to execution time and dynamic memory consumption.

Dynamic object-oriented applications show reduced performance compared to more sta tic

languages due to the higher overhead and higher frequency of dynamic m ethod lookup. Fur

therm ore, the lack of sta tic type information, higher-order functionals (including continu

ations) and the capability to extend a program at run-tim e by dynamic finking, eliminate

precise control and d a ta flow prediction which is necessary for standard optim izations and a

direct m ap onto the underlying hardware performance model.

The emphasis on run-tim e dependencies by means of dynamic linking (with potential

run-tim e evaluation) as well as the use of classes and m ethods as first-class values require

applications to carry around much more code and d a ta than actually necessary [Shr96]. The

detection of unused code (e.g. evaluator) and unused d a ta (e.g. m etaobjects) is difficult and

hinders the delivery of small executables.

Bytecode in terpretation is responsible for a further decrease in performance and increase

in dynamic memory consumption. M apping (i.e. loading, decoding and invoking) of virtual

machine instructions in the em ulator program decreases performance compared to native

compilation by a t least an order [DVC90].

The separation between execution on the bytecode level and execution on the native

machine code level is also disadvantageous for dynamic memory footprints since v irtual m a

chine code is treated by the operating system as d a ta rather than sharable tex t, as with

native compilation. O perating systems are therefore not able to share virtual machine code

in memory among all the applications executing it concurrently. Such shareability can be

of great im portance when several applications are started by a user th a t is using a machine

directly an d /o r by different users th a t are running applications over a network connection to

a machine.

U n i v e r s i t y O f B a t h 6 A n d r e a s K i n d

I n t r o d u c t i o n

1.4 A n A rch itectu re for In terpreted D yn am ic O b ject-O rien ted

L anguages

Efficiency problems with dynamic objects can be addressed by restricting the dynamic char

acter of the source language and introducing means for enhanced sta tic analysability, such as

explicit typing, sealing of program parts, reducing reflective capabilities or imposing a closed

program assum ption with a im m utable set of bindings. The ideas put forward in this thesis

are different from these approaches as it is a ttem pted to achieve efficiency without sacrificing

the dynamic character of the source language. The dynamic aspect is regarded as the dis

tinctive feature of dynamic object-oriented programming. Instead of starting a t the source

code level, the approach here is concerned firstly with the efficiency of the executable pro

gram representation and derives from there a novel technique to alleviate the cost of dynamic

m ethod lookup.

The contribution of the work presented here lies in the design of a new virtual machine

architecture for dynamic object-oriented languages. The approach succeeds in improving ef

ficiency of object-oriented applications by combining four techniques: (i) C embedded virtual

machine code, (ii) indexed code threading, (iii) optim al virtual instruction ordering and (iv)

quasi-inline m ethod caching.

E m b ed d in g V ir tu a l M ach in e C od e The architecture achieves m odest dynamic mem

ory consum ption with C embedded constant virtual machine code which is compiled into

sharable native code (located in text segments) after C compilation. Such sharing results

in small memory footprints since code is not duplicated but shared in memory by different

processes (i.e. applications) executing it. Read-only code vectors further lead to optimized

autom atic memory m anagem ent as they are not heap-allocated and therefore not considered

(traced or copied) with autom atic memory management.

C embedded virtual machine code simplifies development of software th a t uses third

party software (or which is itself part of another software package) with interoperability on

the C language level. Foreign addresses can be used directly within separate compilation

units. Neither the virtual machine, nor the run-tim e support code, need to be extended

for interoperability with foreign code. The representation of virtual machine code on the C

language level does not compromise the architectural neutrality of the executable program

representation. The architecture neutral bytecodes can be extracted from a generated C

file or a functional object in order to be sent to other virtual machines in a d istributed

U n i v e r s i t y O f B a t h 7 A n d r e a s K i n d

In t r o d u c t i o n

heterogeneous environm ent. The representation of virtual machine code on the C language

level therefore combines the advantages of bytecode in terpretation and native compilation

(or translation into C).

In d exed C od e T h read in g The architecture reduces execution tim e of applications

with optimized transfer between virtual machine instructions by using indexed code th read

ing, a variation of code threading [Bel73]. In contrast to standard code threading, virtual

machine code with indexed code threading is compact and portable in the sense th a t it can

be linked to a code threaded or switched version of a C-based interpreter. Average speed ups

for this technique are measured as 14% and 17% on P5 and M IPS processors respectively.

O p tim al In stru ctio n O rd ering A nother performance improvement of 21% and 15%

can be reported with optim al v irtual instruction orderings, again on P5 and M IPS respec

tively. C lustering the native code of virtual machine instructions th a t are likely to be executed

consecutively, increases the chances th a t the code is already in the native instruction cache.

An approxim ation of such a clustering can be derived from profiling the dynamic invocation

frequency of v irtual instructions. The native code of the virtual instruction called most will

then be next in memory to the native code of the virtual instruction called second most etc.

Particularly, for the small range of virtual instructions th a t typically dom inate applications,

such an ordering results in much better native instruction cache performance than the typical

ad-hoc ordering. W ith the help of a tool developed within the context of this thesis, optim al

orderings can easily be derived for any range of applications.

Q uasi-In line M eth o d C ach ing The cost of method lookup with dynamic objects

is reduced with a flexible and successful inline caching technique, called quasi-inline m ethod

caching. Similar to classical inline m ethod caching [DS84, HCU91], type locality with dynamic

m ethod lookup is exploited to achieve high method-cache hit rates. Quasi-inline m ethod

caching, however, is particularly suited to read-only virtual machine code. This technique

is furtherm ore designed to adap t to hot-spots common in dynamic object-oriented program s

so th a t cache sizes can be smaller than with other approaches. The average cache miss ratio

accomplished with a realization of quasi-inline m ethod caching is around 1.06%.

Although each of the four techniques can be applied without the others in a bytecoded

object system , they are not unrelated in the architecture. The combination of the tech

niques strives to continue the evolution of bytecode interpretation driven by the specific

requirem ents of dynamic object-oriented programming, including efficiency, interoperability

and portability.

U n i v e r s i t y O f B a t h 8 A n d r e a s K i n d

In t r o d u c t i o n

1.5 O utline

This docum ent is divided into two m ajor parts. P a rt I introduces dynamic object-oriented

program ming languages with its distinctive characteristics (C hapter 2) and requirem ents

(C hapter 3). Im portant issues for implementing these dynamic languages are identified and

the approach taken within this thesis is distinguished from others.

P a rt II presents a new architecture for implementing dynamic object-oriented languages

with virtual machines (C hapter 4). The techniques of C embedded virtual machine code,

indexed code threading, optim al instruction ordering and quasi-inline m ethod caching are de

scribed. Furtherm ore, this part provides insight into the youtoo system , an im plem entation

of the dynamic object-oriented programming language EuLisp (C hapter 5). The im plem enta

tion shows the feasibility and effectiveness of the proposed architecture. The empirical results

collected with its realization are compared with other related work (C hapter 6). Finally, the

thesis is concluded and summarized (C hapter 7).

U n i v e r s i t y O f B a t h 9 A n d r e a s K i n d

C h apter 2

D ynam ic Object-Oriented

Program m ing

Sm alltalk, as the most influential object-oriented language, features classes and m ethods as

dynam ic language constructs which can be created, inspected, modified and linked during run

time. Later, static object-oriented languages, like C + + and Eiffel, put much more stress on

sta tic dependencies and deliberately abandoned the dynamic character for be tter performance

and earlier error detection.

This chapter introduces Sm alltalk and CLOS, two representative members of the family of

dynamic object-oriented languages. Key concepts of dynamic object technology are reviewed,

namely dynamic typing, autom atic memory m anagem ent, dynamic linking and reflection.

Finally, a term inology is given th a t is used within the rest of this thesis.

2.1 S m allta lk

Historically, Sm alltalk [GR83, Gol95] is (after Simula) the second object-oriented language.

The language is based on objects as a uniform representation of da ta . The structu re and

behaviour of a set of objects is defined by a class. An object is called an instance of a

class if the class defines its structu re and behaviour. The structural information in a class is

used to create new instances. The behaviour of instances is defined in term s of operations

called m ethods. An object executes a m ethod when it receives and recognizes a message.

The execution of a m ethod can involve accessing the sta te of the receiver object, invoking a

primitive or sending a new message.

U n i v e r s i t y O f B a t h 10 A n d r e a s K i n d

D y n a m i c O b j e c t - O r i e n t e d P r o g r a m m i n g

Super- and subclass relationships among classes define a class hierarchy so th a t struc tu ra l

and behavioural information can be shared along the hierarchy. A class can extend the

structu ra l description of instances defined in its superclass. Likewise, the m ethods applicable

to instances of a class (effective methods) are given by the m ethods directly defined a t the

class (direct m ethods) and the effective m ethods of the superclass. The access of structu ral

and behavioural descriptions defined in class C\ from a class C 2 which is a direct or indirect

subclass of C i, is called inheritance. By sharing structural and behavioural information

along the hierarchy, inheritance reduces the need to specify redundant information, simplifies

modification and therefore facilitates software reuse [SB8 6 , Sny87, Wei97].

Message sending is different from procedure calling in statically-typed procedural lan

guages. The exact class of the object receiving a message may only be known at run-tim e

because m ethods are applicable to instances of subclasses of the class defining the m ethod.

Thus, the appropriate m ethod for a message being sent to an object has to be determined

dynam ically1. The dynamic binding process between messages and m ethods (late method

binding) is specified by a m ethod lookup algorithm.

A Sm alltalk message is given by a message selector and a receiver object. Each class in

the class hierarchy has a dictionary th a t maps message selectors to m ethods. The m ethod

lookup for a message send is then as follows:

1. Search for the message selector in the message dictionary of the receiver class. If the

selector is found, return the corresponding method; otherwise go to 2 .

2. If the receiver class has no superclass go to 3; otherwise set the superclass to be the

receiver class and go to 1 .

3. The message is not understood by the receiver.

Although message dictionaries are normally implemented as hash tables [Kra83], selector

collision and superclass chain traversal result in slow method lookup times.

2.2 Lisp

In its sem antics the non-object-oriented part of Smalltalk is very similar to Lisp, one of the

first program m ing languages. Lisp, short for List Processor, was developed by John M cCarthy

1This fact is paraphrased later in the context of m ulti-methods (Section 2.3) into: The appropriate m ethod

for a call site of a generic function has to be determined dynamically.

U n i v e r s i t y O f B a t h 11 A n d r e a s K i n d

D y n a m i c O b j e c t - O r i e n t e d P r o g r a m m i n g

in the late 1950s [McC59]. The idea was to express com putation by symbolic functions similar

to the lam bda calculus. The List Processor was defined as a Lisp function itself, called the

evaluation function. To simplify the evaluation process, functions were represented as lists,

the basic Lisp d a ta structure. This duality of d a ta and program, together with a m ethod to

extend the evaluation function made Lisp a program mable programming language [Fod91]—a

reflective language.

Lisp is no longer a single language. W ith many different dialects, it has become a family

of languages characterized by the following features:

D y n a m ic T y p in g Dynamic typing is best explained as the opposite to sta tic typing. W ith

sta tic typing, type correctness is decidable a t compile-time. A language is dynamically-

typed otherwise. For instance, ML is a statically-typed language because the correct

invocation of functions with regard to the type system is decided statically. The type of

any value can be determined during run-tim e of a dynamically-typed program in order

to signal dynamic type violation and to provide type predicates. In certain cases, type

correctness can be partly decided as well for dynamically-typed languages.

C losu res Functions retain the lexical bindings in effect when created. A function can thus

be regarded as code plus an environment. The environment can be (partly) shared with

o ther functions th a t have been created within the same lexical scope.

C on tin u ation s The s ta te of com putation can be captured in a functional object called a

continuation. W hen the continuation is invoked, the sta te of com putation is re-activated

and execution resumes from the point where the continuation was created. New control

structu res can be easily defined with continuations.

H igh er-O rd er F un ctionals Functions and continuations have first-class s ta tu s in the sense

th a t they can be dynamically created, passed as argum ents, returned from other func

tions, assigned to variables or stored in d a ta structures. Functionals are thus trea ted

like any other value.

A u to m a tic M em o ry M an agem en t Unused storage is autom atically reclaimed (see also

Section 2.4.3).

D yn am ic L inking New code can be linked to a running program (see also Section 5.1.1).

A lthough this feature is not always explicitly mentioned in Lisp language definitions,

U n i v e r s i t y O f B a t h 12 A n d r e a s K i n d

D y n a m i c O b j e c t - O r i e n t e d P r o g r a m m i n g

dynamic linking is typically provided with implem entations by a loading or evaluation

mechanism.

M a c ro s Lisp source code is w ritten in a Lisp-like syntax so th a t normal Lisp functions can

act as syntax functions (i.e. macros) to pre-process source code. Generally, macros can

use the full language.

The m ost prom inent members of the Lisp family are Common Lisp [Ste84, Ste90, AI96]

and Scheme [CE91, IEE91]. Common Lisp has successfully superseded a variety of Lisp

dialects. For the sake of backward com patibility to the replaced dialects, CommonLisp is

known to be “baroque” in its wealth of features. Scheme on the other hand is based on a few

orthogonal concepts and minimalist in design. Close to the lam bda calculus, Scheme allows

for reasoning about its sem antics and potential language extensions. Unlike Common Lisp,

Scheme has no modules and no object system and is not suited for, nor aimed a t commercial

software development.

The ability to extend its syntax and its set of control structures gives Lisp the flexibility to

host, or even change into, a new program m ing language [BKK+ 8 6]. The fact th a t an object-

oriented paradigm can be added to Lisp by means of macros and some defining forms [Bra96,

Que96], dem onstrates this flexibility and links up to the following section: the Common Lisp

O bject System (CLOS).

2.3 T h e C om m on Lisp O b ject S y stem

Common Lisp incorporates a variation on the Smalltalk approach to object-oriented pro

gram m ing implem ented as the Common Lisp O bject System (CLOS) [AI96, BD G+ 8 8 b]. Like

Smalltalk, this approach which is rooted in CommonLoops [BKK+ 8 6] and Flavors [M0 0 8 6],

uses classes to define the structure, creation and access of objects. However, the notion

of message sending is replaced by generic function invocation. W ith generic functions, all

argum ents are considered with dynamic m ethod lookup, in contrast to the first argum ent

(i.e. the receiver object) only as with message sending. Dynamic method lookup based on

one argum ent only is called single-method dispatch; dynamic method lookup based on more

than one argum ent is referred to as multi-method dispatch.

M ethods in CLOS are not stored a t classes together with other m ethods defined for

instances of the sam e class, but a t generic functions together with other m ethods th a t may be

selected as the m ost specific m ethod for a generic function invocation. Similar to Smalltalk,

U n i v e r s i t y O f B a t h 13 A n d r e a s K i n d

D y n a m i c O b j e c t - O r i e n t e d P r o g r a m m i n g

th e binding process between call sites of generic functions and m ethods is dynamic and

specified by a m ethod lookup algorithm.

Generic function invocation is motivated by the fact th a t the notion of passing a message

to a single receiver is in many cases not adequate. For example, with single-methods an

operation to w rite d a ta to various stream s (e.g. file, socket connection, string) has to be im

plem ented w ith explicit discrimination on the type of either, the d a ta or stream argum ent, in

each m ethod. Both objects could however be regarded as receivers of a write message. W ith

m ulti-m ethods d a ta and stream argum ent can be considered for m ethod dispatch. Commu

ta tive arithm etic is another example which is unsuited to single-method dispatch.

M ulti-m ethod dispatch is sometimes described as a generalization of single-method dis

patch. This is however misleading, since single-method dispatch provides much better encap

sulation of d a ta and code [CL94, DeM93, Cha92]. W ith generic functions, m ethods are not

local to a specific class so th a t instance variables always require accessor functions for reading

and writing. Direct access to instance variables from m ethods local to a class combined with

restricted public access is only possible with single-method dispatch. This approach therefore

provides much be tte r support for encapsulation and information hiding.

The full m ethod lookup with generic functions and m ulti-m ethods involves normally the

access and invocation of a discriminating function which in turn calls a m ethod lookup func

tion th a t returns a list of m ethods applicable (with regard to their domain) to the supplied ar

gum ents. The m ethod list is sorted by specificity (see Section 2.6). Hence, the first m ethod is

the most specific. Its associated m ethod function is finally applied to the argum ents. The rest

of the m ethod list is saved in case the next method is later requested with c a ll -n e x t-m e th o d

(which is the equivalent to su p e r in other languages).

2.4 D y n a m ic O b jects

Sm alltalk and CLOS have different approaches to object-oriented program ming. However,

they share the emphasis on execution dependency and clearly differ in th a t respect from

object-oriented sta tic languages. Compilation of these languages requires much more infor

m ation about program s and is thus not ideally suited to productivity, but more targeted

towards execution efficiency and implementational simplicity [Str93]. This difference is re

flected in the three key features of dynamic object technology (or short dynamic objects):

dynamic linking, reflection and autom atic memory m anagement [Nas92].

U n i v e r s i t y O f B a t h 14 A n d r e a s K i n d

D y n a m i c O b j e c t - O r i e n t e d P r o g r a m m i n g

2 .4 .1 D y n a m ic L in k in g

The popularity of Lisp and Sm alltalk stem s from the comfortable and interactive develop

m ent environm ents th a t have traditionally accompanied these languages [Shr96]. Typical

features of interactive development environments are profiling, tracing, stepping, inspection

and dynam ic error handling with the option to resume com putation after a modification and,

in some cases, graphical user interfaces.

The basic m ethod of interaction is through a read-eval-print loop2 th a t reads and evaluates

s ta tem ents and finally prints the result of the evaluated statem ent. Definitions (and redefini

tions) can be tested im m ediately w ithout going through a time-consuming edit-compile-link-

run cycle.

Such increm ental development is related to dynamic linking, used in Lisp, Smalltalk and

even C. In each case, the definition of bindings is not necessarily fixed a t run-tim e. New

program parts can be linked into a system as they are needed. Tight memory restrictions or

dynamic configurability are typical reasons to use dynamic linking.

However, there is a performance tradeoff incurred by dynamic linking. Beside the tim e it

takes to retrieve (from the local file system or off a network) the binding value, a significant

overhead has to be accepted by the fact th a t the application is not closed. Interprocedural and

global optim izations generally assume th a t function bindings do not change after compilation.

2 .4 .2 R e f le c t io n

C om putational reflection is the ability of a program to access its structure and s ta te during

execution [Smi84]. Reading access— in the sense th a t a program observes and reasons about

its struc tu re and execution s ta te—is referred to as introspection. Modification of a program ’s

structu re and execution s ta te by a program itself is called intercession. Both aspects of

com putational reflection, introspection and intercession, are based on reification, the encoding

of program and execution s ta te as da ta .

Reflection in com putational system s is driven by demand for extended flexibility. Per

haps the simplest introspective operator is ty p e -o f which is typically provided in dynamically

typed program m ing languages. The operator returns a value th a t represents the type of its

argum ent and therefore reveals already some insight into the representation of d a ta during

run-time. A bit more introspective information is necessary to write a generic walker to

“walk” over a rb itra ry d a ta structu res including primitive and (possibly user defined) com

2Also known as top-level.

U n i v e r s i t y O f B a t h 15 A n d r e a s K i n d

D y n a m i c O b j e c t - O r i e n t e d P r o g r a m m i n g

pound d a ta structures. A print function could use such a generic walker to visualize arb itrary

d a ta structu res in a nested way. In this case, introspection can help to find out about the

length, type, struc tu re and access of da ta objects.

Intercession can be useful to handle evolving models. Some problem domains are in trin

sically dynam ic and cannot be correctly represented by a sta tic model in a com putational

system [KAJ93]. Suppose, we have a model of a heterogeneous network where nodes are

represented as instances of different classes. Unpredictably, within the real world new nodes

appear, which require to be added as well to the model. W ith regard to a specific feature

which these new nodes incorporate (but no other node had before), it may desirable repre

sent the nodes as instances of a new class. A dynamic reorganization of the class hierarchy

is however only possible by modifying existing classes, i.e. by intercession.

In both, Sm alltalk and CLOS, classes and m ethods are first-class. However, only CLOS

is m etacircular in the sense th a t the object system itself is implemented in term s of objects,

classes, and m ethods (reification). Since classes and m ethods are first-class values in the

language, the struc tu re and behaviour of the object system can be observed (inspection) and

modified (intercession). The interface for inspection and intercession is generally known as

a m etaobject protocol [Coi87, KdRB9l]. The essential idea of a m etaobject protocol is to

enable language users to adap t the semantics of the language to the particular needs of their

applications.

M etaobject protocols can be regarded as an extension of the reflective features a t the core

of the List Processor (see Section 2.2) in the object-oriented context. By doing so, behaviour

in the language level can be reused in the application level, resulting in less development cost

and—theoretically—less execution time. In practice, reflective capabilities tend to be ineffi

cient due to the fact th a t default semantics for object creation, slot access and m ethod lookup

cannot be “hard-wired” into the system. Like higher-order functionals and dynamic typing,

reflection aggravates d a ta and control flow prediction and impedes m any optim izations.

2 .4 .3 A u to m a t ic M e m o r y M a n a g e m e n t

In principle, dynamically allocated memory should be deallocated when no longer in use in or

der to avoid storage exhaustion. In practice, memory m anagement is tedious and error-prone.

Dynamic object-oriented languages critically depend on complete reclam ation of unused ac

tivation records, closures and explicitly allocated application da ta because of high (non-tail3)

3 A function call is in tail-position if its result determines the result of the function in which the call is located.

The enclosing function returns with the result of the tail-call. Thus, the context of the function in which the

U n i v e r s i t y O f B a t h 16 A n d r e a s K i n d

D y n a m i c O b j e c t - O r i e n t e d P r o g r a m m i n g

function invocation frequency and the typical profile of dynamic problem domains. An au to

m atic kind of memory m anagement is thus not only a standard feature in pure Lisp system s

but also a defining characteristic of dynamic object-oriented languages.

A utom atic memory management is generally known as dynamic memory allocation com

bined with autom atic reclam ation of storage th a t is no longer accessible by following pointers

from program variables [App91, Wil95]. A utom atic reclamation is also referred to as garbage

collection.

2.5 D ecen tra lized A rtificia l In telligence

The Internet is constructed from open services built around a standard communication fram e

work. Due to com puter mobility, varying network latency, bandwidth and connectivity there

is an increasing dem and for off-line com putation. The idea is th a t program modules are sent

off as mobile software agents to run on remote machines and later return to report to the

user [GK94]. In order to fulfil a task without user interaction, agents need to have some

degree of mobility, autonom y and determ ination. Furtherm ore it can be envisaged th a t par

ticular problems require cooperation with other agents. Software agents are studied in the

field of decentralized artificial intelligence (DAI) which uses the m etaphor of group in ter

action and social organization to integrate and coordinate human and autom ated problem

solvers [Gas92].

Before agent-based systems became en vogue recently, related work has been done in

the field of object-based concurrent systems [Hew77, AH87, W Y 8 8]. Typically, object-based

concurrent applications rely significantly on flexible control of com putation a t run-tim e. Re

flective capabilities can provide such flexibility by means of metaobjects th a t model s truc tu ra l

and behavioural aspects of objects. From the modelling aspect, the combination of object-

oriented program m ing and reflection is therefore a natural one [Mae87j. Encapsulation, d a ta

abstraction and increm ental extension provide a suitable “hook” for com putational reflection.

tail-call is located can be discarded/dism issed (i.e. removed from the context stack) just before the tail-call

is performed. In the case of a recursive tail-call this has the important effect that tail-recursive functions

(i.e. functions with tail-recursive calls) only need a constant amount of context stack. Iterative control

structures can be simulated by tail-recursive functions with storage demand equivalent to true iteration. Tail-

call optimization is a compulsory optimisation for im plementations of some Lisp dialects, including Scheme

and EuLisp.

U n i v e r s i t y O f B a t h 17 A n d r e a s K i n d

D y n a m i c O b j e c t - O r i e n t e d P r o g r a m m i n g

2 .6 T erm inology

Throughout this thesis the general terminology and paradigm of object-oriented Lisp sys

tem s [BKK +8 6 , Coi87, BD G+8 8 a, KdRB91, BKDP93] is followed. The defining term s are

classes, generic functions and methods.

A class stores structural and behavioural information about a set of objects which are

its instances. The class4 of any object can be dynamically determined and accessed. Super-

and subclass relationships among the classes define a class hierarchy. If not stated explicitly,

a single superclass relationship per class (single inheritance) is assumed. A class hierarchy

may look like this:

<object>
<character>
< c o lle c t io n >

<table>
<hash-tab le>

<sequence>
<character-sequence>

<string>
<vector>
< l is t >

<cons>
<null>

<mimber>
< flo a t>

<double>
<in teger>

<int>
<b ig in t>

< class>
< s im p le -c la ss>
< fu n c tio n -c la ss>

<method>
<simple-method>

< slo t>
< lo c a l - s lo t>

<function>
< sim p le-fu n ction >
< g en er ic -fu n ctio n >

< sim p le -g en er ic -fu n ctio n >
<name>

<symbol>
<keyword>

Procedures are generally called functions even when they are not referentially transparen t

(i.e. have side-effects). We refer to the source code position of a function call as function call

site. The dynam ic process of calling a function is called function invocation.

Simple functions are distinguished from generic functions. A simple function is defined

by a single function body and is applicable to argum ents of any type. Dynamic type checking

4There is no distinction between class and type.

U n i v e r s i t y O f B a t h 18 A n d r e a s K i n d

D y n a m i c O b j e c t - O r i e n t e d P r o g r a m m i n g

signals inappropriate type usage. Types for argum ents and return values are not specified. A

generic function is defined in term s of m ethods which describe the behaviour of the generic

function for different argum ent types. All argum ents are considered for m ethod selection

(m ulti-m ethod dispatch).

Each m ethod is defined with a domain which specifies the applicability of the m ethod to

supplied argum ents. A m ethod is applicable to argum ents if the class of each argum ent is a

subclass of the corresponding domain class. A method with domain D \ is said to be more

specific than a m ethod with domain D 2 if some domain class of D \ are subclasses of the

corresponding dom ain classes in D 2 and if all remaining classes in D 2 are not subclasses of

the rem aining corresponding classes in D \.

The process of selecting a list of applicable m ethods—sorted by specificity—for a generic

function and supplied argum ents is called method lookup. M ethod lookup followed by the

application of the most specific method (i.e. the first element in the sorted m ethod list) to

the supplied argum ents is called method dispatch.

The following example defines a generic function elem ent to select the i-th element of an

ordered collection (i.e. instance of class <sequence>). The simple function foo calls elem ent;

in tu rn foo itself is called with a vector, a string and a list object.

(d e fg e n e r ic e lem en t (x i))

(defm ethod e lem en t ((x < s tr in g >) (i < in te g e r>))
(s t r i n g - r e f x i))

(defm ethod e lem en t ((x < vecto r>) (i < in te g e r>))
(v e c t o r - r e f x i))

(defm ethod e lem en t ((x < l i s t>) (i < in te g e r>))
(i f (= i 0)

(c a r x)
(e lem en t (c d r x) (- i 1))))

(d efu n foo (x)

(e lem en t x 1)
. . .)

(foo # (a b c))
(foo "abc")
(foo ’ (a b c))

Since there is no possibility to distinguish in general between simple and generic func

tion call sites, like in (d efun foo (x y) (x y)) , the function invocation protocol handles

both cases. Simple functions and m ethods retain the lexical bindings in effect when cre

ated. A single lexical environment for the evaluation of variables, operators and operands is

U n i v e r s i t y O f B a t h 19 A n d r e a s K i n d

assum ed (i.e. Lisp-1).

D y n a m i c O b j e c t - O r i e n t e d P r o g r a m m i n g

U n i v e r s i t y O f B a t h 20 A n d r e a s K i n d

C h apter 3

V irtual Machines and the

Requirem ents of Dynam ic O bjects

As argued in the introduction, a m ajor application domain for dynamic object-oriented pro

gram m ing is distributed computing and in particular the field of decentralized artificial in

telligence. It is the affinity to this application domain, requiring code and thread mobility,

which makes v irtual machine code the most interesting program representation form at for

dynamic object-oriented programming today [Gos95],

Much atten tion has been devoted to object-oriented language im plem entations based on

virtual machines in the context of Smalltalk, Lisp and recently Java. However, interpretation

and the high-level performance model of dynamic object-oriented program ming impose a

significant efficiency overhead.

This chapter introduces the concept of virtual machines and identifies key problems, the

cost of virtual instruction transfer and suboptim al dynamic memory economy. Furtherm ore,

this chapter concerns the general purpose requirements of dynamic object-oriented languages

th a t have to be m et with a successful im plem entation. The general approach to language

im plem entation taken within this thesis is finally delimited from other approaches.

3.1 V irtu a l M achines

A program ming language is implemented on a hardware platform if a source program can

be transform ed into a semantically equivalent executable representation and an executer (or

U n i v e r s i t y O f B a t h 21 A n d r e a s K i n d

V i r t u a l M a c h i n e s a n d t h e R e q u i r e m e n t s o f D y n a m i c O b j e c t s

evaluator) for this program representation exists1. A classification of programming language

im plem entations can be based on the kind of executable program representation [DVC90]:

N a tiv e M a c h in e C ode (N M C) Source code is transformed into semantically equivalent

native machine instructions, a representation th a t is directly executable on a real ma

chine.

V ir tu a l M a c h in e C ode (V M C) Source code is transformed into semantically equivalent

instructions of a virtual machine. An interpreter program th a t emulates the virtual

machine executes the virtual machine instructions.

S o u rc e C o d e (S C) Source code is executed by an interpreter program directly without

preceding transform ation.

The transform ation of a program unit from source code into executable code—for a real

or virtual machine—is generally referred to as compilation; whereas the stepwise evaluation

of code conforming to a semantics is called interpretation. Figure 3-1 illustrates the three

principle implementation techniques.

compilation.

interpretation/executionVMC

NMC

Figure 3-1: Programming language implementation techniques

Execution of native machine code and interpretation of source code can be regarded as

special cases of interpretation of virtual machine code. In the first case, the virtual machine is

the native machine and no emulation is required; in the second case, the virtual machine code

is the source code and no compilation is required. However, virtual machine code is typically

an abstract syntax tree or in a bytecode form at (i.e. encoded in the the range [0..255]). This

1The special case of direct execution architectures with hardware support for high-level interpretation is

not considered.

U n i v e r s i t y O f B a t h 2 2 A n d r e a s K i n d

V i r t u a l M a c h i n e s a n d t h e R e q u i r e m e n t s o f D y n a m i c O b j e c t s

work is not concerned with tree interpretation so th a t within the following, virtual machine

instructions are thought of as bytecodes.

A nother popular route to language im plem entation is via source code translation into the

C program m ing language and subsequent compilation with a standard C compiler [Bar89,

TLA92, DPS94, A tt94, SW95]. Despite some differences, C code translation is here regarded

as compilation into native machine instructions which simply happens in two steps (see also

Section 6.4).

Also unaddressed in Figure 3-1 is the fact th a t virtual machine instructions can be further

compiled into native machine instructions [DS84, HAKN97]. Again, such a transform ation

in two steps has advantages th a t are discussed later (C hapter 6) but here regarded as compi

lation into native machine code. The three different im plem entation techniques— referred to

as native com pilation, bytecode in terpretation and direct in terpretation respectively—offer

different tradeoffs as discussed in the following three subsections.

3 .1 .1 S p e e d

Native machine code can be executed directly on a real machine as opposed to virtual

machine code which requires m apping (i.e. loading, decoding and invoking) of each exe

cuted virtual machine instruction in the em ulator program. Consequently, execution times

of bytecoded applications are normally about ten times longer than with native machine

code [Deu73, Ert95, DS96]. Instruction m apping is necessary with native code too but the

processor hardw are is able to perform the m apping much faster and in parallel with instruc

tion execution. Direct in terpretation imposes an even bigger run-tim e penalty, as lexical and

syntax analysis are performed dynamically and the incremental form of evaluation excludes

standard optim izations.

3 .1 .2 S p a c e

The instruction set of a real machine is designed as an interface between the machine hard

ware and the software envisaged to run on the machine. W ith native compilation this pre

defined interface is in some cases not ideally suited as target code (e.g. to implem ent full

continuations or closures). In contrast, the instruction set of a virtual machine is generally

not predefined. The language implementor invents the virtual machine and can therefore

design the instruction set specifically for the interpreted language, so th a t large savings

in the space occupied by compiled code can be effected by a suitable designed instruction

U n i v e r s i t y O f B a t h 23 A n d r e a s K i n d

V i r t u a l M a c h i n e s a n d t h e R e q u i r e m e n t s o f D y n a m i c O b j e c t s

set [Deu73, Heh76, Gre84, Pit87, E E F +97]. Some standard language operations (or even

common operation sequences) are typically compiled into a single virtual machine instruc

tion (e.g. y=x+l or (c a r (c d r (c d r (c d r x))))) .

Such increase in the semantic content of virtual instructions reduces the frequency of

instruction m apping. Since more tim e is spent in the native code which implem ents the

virtual instructions, smaller code vectors not only lead to memory savings, but as well to

execution speed up. The Reduce algebra system is reported to run twice as fast for a particular

application by increasing semantic instruction content [Nor93]. However, the im pact of bigger

instructions on hardw are cache performance is difficult to predict. On one hand, bigger virtual

instructions can result in a higher hardware instruction cache miss ratio [Ert95j. On the other

hand, d a ta cache hits are more likely with smaller code vectors.

The segments of an executable file (e.g. in ELF) fall into two basic categories. The text

segment contains all read-only memory, typically native code and constant da ta , whereas

the data segment is dedicated to read/w rite data. Modern virtual memory system s support

sharing of read-only memory pages with shared objects2 (also known as shared libraries)

in a general way [GLDW87]. Each process th a t uses a shared object usually generates a

private memory copy of its entire d a ta segment, as the d a ta segment is m utable. The tex t

segment, however, need to be loaded into main memory only once. An overriding goal when

developing a shared object is to maximize the tex t segment and minimizing the d a ta segment,

thus optimizing the am ount of code being shared [Sun93].

While com pact in its explicit representation, virtual machine code is suboptim al with

regard to sharing of dynamic memory. W ith the virtual machine approach, the bytecoded

application file (image) is normally loaded a t start-up . Although image files mainly contain

read-only da ta , namely code vectors, their contents cannot easily be shared in memory by

different processes executing the code vectors. Bytecode systems typically use one of the

following choices to load an application image:

• reading the image file and dynamically allocating the relevant d a ta structures to build

the functional objects,

• memory m apping the image file or

• undum ping a complete virtual machine process.

2Shared objects are not related to objects in object-oriented programming.

U n i v e r s i t y O f B a t h 24 A n d r e a s K i n d

V i r t u a l M a c h i n e s a n d t h e R e q u i r e m e n t s o f D y n a m i c O b j e c t s

Reading the image file is clearly the most portable, but as well, a slow solution. A further

draw back is th a t bytecodes cannot be shared in memory by different processes executing

it. Undum ping process images is difficult to port, problem atic in the presence of shared

libraries and in general too heavy-weight. Memory m apping as well is difficult to port to

non-Unix platform s, bu t it can enable a quick start-up and sharing of m apped memory

pages by different processes executing it. The benefits of virtual memory m anagem ent can

here lead to significant savings in the consumption of dynamic memory (i.e. small memory

footprints) [GLDW87, Sun93].

3 .1 .3 V e r s a t i l i t y

Beside perform ance and dynamic memory consumption, other characteristics have to be con

sidered with the different executable program representations with regarded to their general

versatility.

Softw are D e v e lo p m e n t The emulation in the bytecode interpreter can be of im portance

for interactive development environments. By controlling the s ta te of com putation in

the virtual machine, support for debugging and inspection can be provided easily.

P o rta b ility The custom instruction set of virtual machines greatly simplifies the compilation

process. The code generation phase of the bytecode compiler is portable since the

peculiarities of different platform s (including the native instruction sets) are absorbed by

the virtual machine em ulator program. In comparison to native compilation, compiler

complexity is further reduced by the fact th a t the target instruction set is tailored to the

source language. However, direct interpretation is still the simplest way to implement

a program m ing language. An interpreter can be directly inferred from a denotational

definition of the language semantics [Cli84].

A rch itec tu ra l N e u tr a lity Beside system portability, the portability of the executable pro

gram representation is an im portant feature of direct and bytecode interpretation.

Portability of executable code is also known as architectural neutrality.

Infrastructures for distributed computing are now ubiquitous and ready to be used by

a new generation of applications based on mobile code (e.g. applets, mobile software

agents or m ultim edia control inside of set-top boxes). A rchitectural neutrality combined

with code com pactness of language-derived virtual machine instruction sets has m ajor

advantages for such applications. Code can be shipped unchanged to an heterogeneous

U n i v e r s i t y O f B a t h 25 A n d r e a s K i n d

V i r t u a l M a c h i n e s a n d t h e R e q u i r e m e n t s o f D y n a m i c O b j e c t s

collection of machines and executed with identical semantics. D ata transfer, however,

requires marshalling in order to make the actual d a ta representation transparen t be

tween different architectures.

Mobile code owes some of its success to the popularity of the W orld-W ide Web, and is

referred to as applets, in the context of Java [GJS96]. Java supports implicit run-tim e

linking of classes. If an application requires a class, which is not linked already, an

exception is generated and handled by an appropriate class loader to retrieve the class

from the file system or the network.

Code transfer with proprietary native machine code in heterogeneous environm ents can

only be achieved when code is transform ed into an architecture neutral distribution

form at (e.g. ANDF [BCD+91]) before shipping and transform ed from the distribution

form at into the local native machine code after shipping. These transform ations are

non-trivial and increase shipping time considerably.

An extension to mobile code, required with mobile software agents, is thread migra

tion. Here, not only program code is shipped in a heterogeneous network but also the

execution sta te , in order to resume execution a t different locations (i.e. machines).

The emulation of the virtual machine embraces the emulation of devices, e.g. printers

and disks. This allows to control the m apping from virtual devices to real devices and

helps to guarantee th a t transferred code does not abuse the local machine or compromise

its security. Such security measures are more difficult to implement with transfered

native code.

In tero p era b ility The need for single high-level language environments is questioned by a

growing public reservoir of mainly C-based libraries. Functionality, like persistence, dis

tribution, concurrency, autom atic memory m anagement or graphical user interaction,

can be used through application programming interfaces (API) of existing software

packages on a wide range of platforms. Such functionality does not need to be included

per se into high-level languages. In fact, it is often desirable to switch to a multi-lingual

paradigm when developing an application. It should therefore be possible th a t applica

tions are w ritten in different, complementary languages, sharing d a ta and (threads of)

control. Such interoperability needs to be based on a simple and flexible foreign func

tion interface which is relatively straightforw ard with compilation into native machine

code where foreign addresses can be directly embedded.

U n i v e r s i t y O f B a t h 26 A n d r e a s K i n d

V i r t u a l M a c h i n e s a n d t h e R e q u i r e m e n t s o f D y n a m i c O b j e c t s

Interoperability in the virtual machine approach, however, means a bytecoded function

can be invoked from another language and likewise, an external function is callable

from within a bytecode vector. The separation between execution on the bytecode level

and execution on the native machine code level establishes a proprietary use of d a ta

and control. A foreign address cannot directly be embedded into virtual machine code.

Furtherm ore, the s ta te of com putation in the virtual machine is defined in other term s

(i.e. virtual registers, virtual stack, virtual program counter etc.) than the s ta te of

com putation on the hardw are level, complicating the transparency of multiple threads

of control.

Although a v irtual machine em ulator program can be extended to embrace foreign code,

this is not a practical way to interoperability. In general, it cannot be anticipated which

foreign functions will be required by a potential application a t the tim e the virtual

machine is installed. In any case, extending the virtual machine em ulator program

statically is not practical since the virtual machine may be used by different processes

and should therefore not be customized to an individual application.

Some system s (e.g. Self [ABC+ 96], Java [Wil97]) use the native run-tim e linker to

extend the virtual machine dynamically with code from shared objects. This technique,

however, can be difficult with legacy packages which are not compiled as shared objects.

The versatility of v irtual machine code is the key reason for a large number of byte

code interpreted language implem entations (e.g. Pascal [NAJ+91], Smalltalk [Kra83, DS84],

Oaklisp [PL91], Scheme 48 [KR94] and recently, Java [Gos95, LY96]).

3.2 R eq u irem en ts o f D yn am ic O b jects

A successful language system has to satisfy certain requirements in order to foster the distinc

tive features of the im plem ented language and as well to make them practical. The following

four requirem ents are focussed upon within this work:

1. performance,

2 . sta tic and dynam ic memory efficiency,

3. system and code portability and

4. interoperability.

U n i v e r s i t y O f B a t h 27 A n d r e a s K i n d

V i r t u a l M a c h i n e s a n d t h e R e q u i r e m e n t s o f D y n a m i c O b j e c t s

The previous section showed th a t by choosing bytecode in terpretation as the underlying

execution model, portability and static memory efficiency (i.e. com pact code) is achieved.

However, the remaining requirem ents cannot be easily satisfied. In fact, the following subsec

tions show th a t the dynamic object-oriented approach introduces efficiency problems itself.

3 .2 .1 T h e P e r fo r m a n c e C o st o f E x e c u t io n D e p e n d e n c ie s

The existence of code th a t uniformly works for objects of a range of (sub)classes (i.e. inclusion

polymorphism [CW85]) in object-oriented languages makes it generally impossible to deter

mine statically which m ethod will be used a t a generic function call site. Exact argum ent

classes cannot be determ ined until run-tim e because an object x can appear in place of an

object y if x is an instance of a subclass of the class of y. The binding of generic function call

sites to the m ost specific applicable m ethods (i.e. the m ethod lookup) is therefore dynamic.

W ith dynam ic m ethod binding, effective optim izations, notably inlining, dead-code elimi

nation and constant propagation, cannot be performed. Code fragm entation, due to encapsu

lation in object-oriented languages, results in high function invocation frequency and further

aggravates the im pact of om itted optim izations [HCU91].

These problems apply to statically-typed and dynamically-typed object-oriented lan

guages equally. Statically-typed languages however, use sta tic type inform ation to compile

the m ethod binding process (i.e. virtual function invocation in C + +) as a dynam ic m ethod

table lookup. Each instance carries a pointer to a class-specific m ethod table. Using the

offset, th a t is assigned to each m ethod name statically, the most specific m ethod for a given

object can be found in constant time.

The dynam ic features typical for dynamic object-oriented languages require a more flexi

ble technique to speed up the m ethod lookup process. C hapter 2 introduced object-oriented

languages with classes, m ethods and generic functions as first-class objects th a t are used

as building blocks of the object system itself. By specializing the m etaobjects of an object

system, the sem antics of the object system (e.g. inheritance) can be customized for an ap

plication. Typically, m etaobject protocols allow to add, change and remove classes, m ethods

and generic functions a t run-tim e.

A flexible and successful technique to speed up the m ethod lookup in dynam ic object-

oriented languages is memoization, also known as caching [Mic68, KS86]. This technique is

based on the fact th a t results of side-effect-free functions can be saved and reused to by

pass subsequent function applications with identical argum ents. M emoization can be applied

U n i v e r s i t y O f B a t h 28 A n d r e a s K i n d

V i r t u a l M a c h i n e s a n d t h e R e q u i r e m e n t s o f D y n a m i c O b j e c t s

to the m ethod lookup function simply by saving the most specific m ethod which has been

com puted for a generic function and the provided argum ent types. Such memoization of

frequently used m ethods reduces the number of full method lookups during run-tim e and

therefore can speed up generic function invocation significantly. Subsequent calls to the

generic function with argum ents of same classes can then reuse the cached m ethod.

The Sm alltalk definition [GR83] suggests a vector as a method cache with four consecutive

locations for each method entry:

in it ia lizeM eth odC ache
methodCacheSize <- 1024.
methodCache <- Array new: methodCacheSize

findNewMethodlnClass: c la s s
I hash I
hash <- (((m essageSelector bitAnd: c la s s) bitAnd: 16rFF) b i t S h i f t : 2) + 1.
(((methodCache at: hash) = m essageSelector)
and: [(methodCache at: hash + 1) = c l a s s])
i fT rue: [newMethod <- methodCache at: hash + 2.

p r im it iv e ln d ex <- methodCache at: hash + 3]
i f F a l s e : [s e l f lookupMethodlnClass: c l a s s .

methodCache at: hash put: m essageSelector .
methodCache at: hash + 1 put: c la s s .
methodCache at: hash + 2 put: newMethod.
methodCache at: hash + 3 put: p r im it ive ln d ex]

The f indNewMethodlnClass routine a ttem pts to retrieve an entry for m essageSe lec tor

and c la s s in the methodCache. If an entry is available and the class value of the entry is

identical with c la s s , the compiled m ethod is restored and assigned to newMethod. Otherwise,

lookupMethodlnClass performs a full m ethod lookup and the cache is updated with result.

The hash index is computed with a bitAnd operation on the selector and the class object

pointers and a second bitAnd to map the index into the range of the cache size3.

The CLOS specification [KdRB91] states th a t co m p u te-d iscr im in a tin g -fu n ction is

used to create the discrim inating function of a generic function. When a generic function is

invoked, its discrim inating function is then used to determine and call the effective m ethod

for the provided argum ents. Like message sending can be optimized with m ethod caching

based on message selectors and receiver classes, the speed of generic function invocation can

be increased by m ethod caching based on generic functions and argum ent classes. Kiczales et

al [KdRB91] suggest the following m ethod caching scheme for CLOS:

(defmethod co m p u te-d iscr im in a tin g -fu n ction ((g f s ta n d a r d -g e n e r ic - fu n c t io n))
(l e t ((ca ch e (m ake-hash-table : t e s t # ’e q u a l)))

(lambda (&rest args)
(l e t * ((e l s (mapcar # ’c l a s s - o f (r e q u ir e d -p o r t io n -o f a r g s)))

3For cache sizes of 2n, the modulo operator can be replaced by the faster bitwise and-operator (i.e. b itA nd).

U n i v e r s i t y O f B a t h 29 A n d r e a s K i n d

V i r t u a l M a c h i n e s a n d t h e R e q u i r e m e n t s o f D y n a m i c O b j e c t s

(fun (gethash e l s cache n i l)))
(i f fun

(fu n c a l l fun args)
(l e t * ((meths (com p u te -ap p licab le-m eth od s-u s in g -c la sses g f e l s))

(fun (com p u te-e ffec t ive -m eth od -fu n ction g f m eth s)))
(s e t f (gethash e l s cache) fun)
(fu n c a l l fun ar gs)))))))

Two differences between the CLOS and Smalltalk approach are obvious: W ith generic

functions, m ethods can be cached in a distributed fashion a t their corresponding generic

functions (or as above in the environment of the associated discrim inating functions) rather

than globally. Cache hit rates are thus expected to be better and the m ethod cache can be

updated more easily after, for instance, a method has been removed dynamically. On the

other hand, several argum ent classes generally have to be considered with m ulti-m ethods to

retrieve a stored m ethod which makes the hash function more expensive.

Improvements can be achieved with variations of the two techniques above [CPL83, FS83].

However, two quite different approaches are method caching with sta tic method tables and

inline m ethod caching.

Static m ethod tables are initialized statically so th a t the dynamic m ethod lookup can be

realized in constant tim e by indexing into the table. V irtual function tables, used in Simula

and C + + are sta tic m ethod tables th a t can be kept within class scopes due to sta tic type

information available in these languages (as pointed out earlier in this subsection).

W ith message sending, static method tables store m ethods globally. Typically a two-

dimensional array is indexed with class and selector codes. Global m ethod tables can become

very large and sparsely filled [AR92]. Various techniques [AR92, Dri93, DH95] help to com

press sta tic m ethod tables. Unfortunately, a dynamic memory overhead exists if applications

have tem poral hot-spots. Furtherm ore, new class or m ethod definitions can cause tim e con

suming re-compression of the method tables. More complications arise with table indexing

for m ulti-m ethods [AGS94].

Argum ent types a t a generic function call site change rarely. This means, even though

functions are defined polymorphic, argum ent types of function applications within the defined

body are constant in about 90% of the cases. This spatial locality of type usage can be

observed in Sm alltalk [DS84] and Self [HCU91]. Caching of previously used m ethods directly

a t a generic function call site in order to exploit this type locality is called inline m ethod

caching. This approach is much more appropriate for be applied with dynam ic objects.

As sta ted earlier in Section 3.1.3, interoperability emerges with the trend to a multi-lingual

development paradigm . A further argum ent for co-habitation between higher-level and lower-

U n i v e r s i t y O f B a t h 30 A n d r e a s K i n d

V i r t u a l M a c h i n e s a n d t h e R e q u i r e m e n t s o f D y n a m i c O b j e c t s

level languages is based on performance reasons. The opportunity to have tim e critical parts

of a higher-level language application coded in a lower-level language with tight control over

hardw are devices, can help to overcome performance drawbacks w ithout switching entirely

to a less flexible lower-level language.

3 .2 .2 T h e M e m o r y C o s t o f E x e c u t io n D e p e n d e n c ie s

Traditionally, dynam ic object-oriented languages have emphasized incremental software de

velopm ent and rapid prototyping with the underlying idea th a t program ming equals cus

tom ization and extension of an interactive programming environment [BSS84]. The implica

tion is a blending of compile-time and run-tim e as well as the loss of a small core language.

Both aspects make the delivery of small applications with m odest memory requirem ents dif

ficult. The ability to discard or change the source code definitions of classes and m ethods

by means of a m etaobject protocol, as well as the general potential for run-tim e evaluation,

force most applications to carry around much more code than actually needed [Shr96j.

Further memory is required to realize reflection with classes, m ethods and generic func

tions. In CLOS, a class object stores information about how to allocate and initialize in

stances; a m ethod object has links to generic functions, to the actual function object defining

the m ethod behaviour and to the classes defining its domain; finally, a generic function refers

to the associated m ethod objects and to the discrim inating function in order to handle the

full m ethod lookup.

3 .2 .3 S c r ip t in g

Scripting is a way to control and combine various applications and operating system features

by means of a relatively simple, interpreted program ming language— a so-called scripting

language. Some popular scripting languages are Unix’s sh, Perl [WS91] and Tel [Ous94].

Scripting is included in this section because it raises in a practical context some of the

requirem ents th a t should be m et with an im plem entation of an dynamic object-oriented

language.

Typically, scripting com m ands can be interactively entered into a shell or stored in a file

th a t can be passed to the interpreter of the scripting language. A th ird alternative provides

the in terpreter as a library with a defined application program ming interface (API). The

scripting language can then be used inside an application, either for special purpose compu

tations (for which the scripting language might be more suitable than the im plem entation

U n i v e r s i t y O f B a t h 31 A n d r e a s K i n d

V i r t u a l M a c h i n e s a n d t h e R e q u i r e m e n t s o f D y n a m i c O b j e c t s

language of the application) or for the purpose of an extension language. Extension languages

can raise the power of an application significantly by giving the user a means to extend a

software tool. For instance, Lisp is used as extension language with Emacs and AutoCA D.

The utility of a scripting language can be increased by a tight coupling between com

putation within the scripting language and com putation external to the scripting language.

In p u t/o u tp u t redirection as well as sharing da ta types are im portan t aspects of such tight

coupling. In order to s ta rt-u p an external application from the operating system level with

param eters, a scripting language requires a t least the notion of character strings. However

more desirable is support to use the API of the external application on the im plem entation

language level. In this case, the scripting language needs to share not only strings with the

external application, but also other primitive da ta types (like numbers, characters) and pos

sibly pointers to handle arb itrary compound d a ta structures. A further step tow ards tigh t

coupling between the scripting and external language comes with the possibility of controlling

the input and o u tpu t of external application from within the scripting language (e.g. in Unix

by redirecting s td i n and s td o u t) .

For many reasons (object-oriented) dynamic languages could be regarded as ideal scripting

languages. Dynam ic typing, autom atic memory m anagement and extensibility is provided

with dynam ic languages . However, large application sizes, long sta rt-up times and the gap

between the program m ing language and the operating system makes OODLs im practical for

scripting purposes. Although Perl, scsh [Shi97] and to some extent Tel have improved over

standard operating system shells, program s w ritten in these systems do not scale well and are

not well-suited for production work. If problems with interoperability, sta rt-up and memory

usage were overcome, scripting would benefit much from the scalable and well defined features

of dynamic object-oriented languages.

3.3 C on clu sion

This chapter showed th a t compilation into native machine code and direct or tree in terp re ta

tion offer different tradeoffs. Both implementation techniques are not optim al with regard to

a compound m easure including the size, speed and versatility of the corresponding executable

program representation. A much better overall value can be achieved with bytecode interpre

tation. Source code is here transform ed into semantically equivalent instructions (bytecodes)

of a virtual machine. An in terpreter program th a t emulates the virtual machine, executes

the virtual machine instructions.

U n i v e r s i t y O f B a t h 32 A n d r e a s K i n d

V i r t u a l M a c h i n e s a n d t h e R e q u i r e m e n t s o f D y n a m i c O b j e c t s

The virtual machine approach is a t the heart of the im plem entation architecture developed

in this thesis. While fruitful for code/system portability and sta tic memory usage, bytecode

in terp reta tion impairs performance, interoperability and dynamic memory usage. In the next

chapter an architecture is described which specifically addresses these problem atic issues.

U n i v e r s i t y O f B a t h 33 A n d r e a s K i n d

Part II

U n i v e r s i t y O f B a t h 34 A n d r e a s K i n d

C hapter 4

The Architecture

In this chapter, a novel virtual machine architecture for object-oriented dynamic program m ing

languages is described. The architecture differs from other approaches by using the following

techniques developed in the context of this thesis:

• virtual machine code represented as constant C vectors,

• virtual instruction transfer with indexed code threading,

• native code clustering with optim al virtual instruction ordering in the em ulator and

• m ethod lookup using quasi-inline method caching.

A further integral part of the architecture is the use of a conservative memory m anagem ent

system [BW88, Bar88],

As explained in C hapter 3, the contributions evolved with the architecture are particu

larly driven by the problem atic issues of performance, dynamic memory consumption and

interoperability in the context of bytecode in terpretation and dynamic objects. This chapter

is dedicated to the description of these key contributions and their theoretical benefits. C hap

ter 5 follows with a description of the realization of the architecture and empirical results to

support the cases made within this chapter.

4.1 E m b ed d in g V irtu a l M achine In stru ction s

The architecture proposed here differs from the typical virtual machine approach by repre

senting virtual machine code as constant C arrays, i.e. c o n s t long cv [] = { . . . } . Such C

embedded virtual machine code has several positive implications:

U n i v e r s i t y O f B a t h 35 A n d r e a s K i n d

T h e A r c h i t e c t u r e

S ta n d -A lo n e E x ecu ta b les Bytecoded modules hosted by . c files are compiled with a s tan

dard C compiler and linked with the run-tim e support code (including the virtual

machine em ulator) to form a stand-alone executable program . The execution of the

program does not require a separate bytecode image file.

S ep a ra te C om p ila tion Bytecoded sources are compiled separately into object files. O bject

files can be collected and managed in native libraries side-by-side with compiled foreign

code. Such transparency is useful for embedding applications.

In tero p era b ility Foreign addresses can be used directly from within the actual compilation

unit (e.g. from a binding vector linked to a closure). Neither the virtual machine, nor

the run-tim e support code, need to be extended for interoperability with foreign code

(see Section 3.1.3).

S h areab ility V irtual machine code is located in sharable tex t segments of the final exe

cutable file since it is defined constant and does not contain any addresses in the raw

bytecode vector1. Code vectors can thus be shared by all processes executing the ap

plication, resulting in small memory footprints. Im portan t saving are achieved when

modules are compiled into shared objects. In this case, also processes of different ap

plications share virtual machine code in memory (see Section 3.1.3).

A u to m a tic M em o ry M an agem en t A further advantage with C embedded virtual ma

chine code is th a t bytecode vectors are not heap-allocated and therefore not considered

(traced or copied) with garbage collection.

S ta r t-U p A fast application s ta rt-up can be crucial for some applications, for instance with

scripting (see Section 3.2.3). C embedded code vectors represent a be tter alternative

to typical s ta rt-u p solutions, like reading a bytecode file, explicitly memory mapping

a bytecode hie or undumping an entire virtual machine process (see Section 3.1.2),

because it is fast, being based on memory mapping, as portable as C and memory

efficient on platform s supporting shared objects.

The representation of virtual machine code on the C language level does not compromise

on the architectural neutrality of the executable program representation. Although, repre

1 Virtual machine code that does include absolute addresses can be declared constant in C as well, for

instance like c o n s t lo n g c v [] = {0 x 2e4a561 f0 , (long)& tab+34, . . . } ; . However, with standard linking,

such code vectors end up in non-sharable read/w rite data segments.

U n i v e r s i t y O f B a t h 36 A n d r e a s K i n d

T h e A r c h i t e c t u r e

sented in C, the actual executable program representation form at is still v irtual machine

code.

The perform ance of bytecoded program s will always remain a concern when compared

with native machine code. V irtual machine code requires mapping (i.e. loading, decoding and

invoking) of each executed virtual machine instruction in software and is therefore consid

erable slower th an native machine code when executed (see Section 3.1). Two measures are

typically taken to accelerate virtual machines: increasing the sem antic content of instructions

and code threaded virtual instruction transfer.

W hile effective, increasing the semantic content is not further explored here since much

work has been done in this field (see Section 3.1.2)2. Instead, (i) a new portable approach

to code threading (i.e. indexed code threading) and (ii) the possibility of be tter hardw are

cache coherency by optimizing the physical ordering of virtual instruction code in memory is

investigated in depth. It is pointed out in Section 3 th a t system portability is an im portan t

requirem ent for language implementations. To establish portability of the v irtual machine

em ulator and in order to take C embedded bytecodes into account, the widely available and

optimized C program m ing language is assumed for its im plem entation.

4.2 In d ex ed C ode T hreading

A direct and reasonable efficient way to implement a virtual machine is to use a switch-

sta tem ent. The actual instruction in the code vector (cv) pointed to by the program counter

(pc) is used to branch to the instruction code. The following C-like code illustrates this

technique:

ch a r cv [] = {47 , 11, . . .} ;
c h a r *pc = cv;

w h ile (1) {
sw itc h (*pc) {

ca se 0: . . . pc++; b rea k ;
ca se 1: . . . pc++; b rea k ;

ca se 255: . . . pc++; b re a k ;
>

>

Although standard C compilers compile dense sw itch-statem ents into jum p tables, an

overhead is involved with a table range te s t3, the table lookup as well as the jum p to the

2It is simply assumed that this issue is considered when applying the architecture.
3A range test can be avoided for some compilers if u n sign ed char is used.

U n i v e r s i t y O f B a t h 37 A n d r e a s K i n d

T h e A r c h i t e c t u r e

instruction code and the loop jum p (see Figures A -l, A-4 and A-74). This overhead can be

reduced by a technique called code threading [Bel73]. Instructions are here no longer encoded

as values in the range [0..255], but as addresses of the corresponding instructions. The result

is th a t instructions are “threaded together like beads on a chain” [Kli81]. The in terp reter

skeleton shows th a t no loop around a switch-table is necessary since the dereferenced program

counter can be used directly to jum p to the next instruction:

v o id *cv [] = {& & instr47, & & in s tr l l ,
v o id **pc = cv ;

i n s t r l : . . . g o to **(pc+ +);
i n s t r 2 : . . . g o to **(pc+ +);

in s t r 2 5 5 : . . . g o to **(pc+ +);

g o to **pc;

Code threading can help to reduce native code cycles necessary for v irtual instruction

dispatch 3-4 tim es [Ert95] with an involved actual performance increase of up to 30% com

pared to the classical switching technique [PK98]. The assembler code generated for the code

segments (see Figures A-2, A-5 and A-8) supports these measurem ents.

However three drawbacks are involved with code threading. F irst, common four-byte

memory addressing leads to four times larger code vectors. Second, code vectors m ust be

declared in the same scope as the instruction labels and hence, not only represented in the

im plem entation language of the virtual machine but also compiled a t the same time. Finally,

only few (fast and portable) languages implem entations support first-class labels on which

the performance increase is based5. If function addresses were used instead of label addresses,

the function invocation overhead (in particular if not tail-call optimized) and the fact th a t

virtual machine registers have to be defined globally would not be acceptable either [Ert95].

In order to resolve some of the drawbacks accompanying code threading, indexed code

threading is proposed as part of the architecture. Here, instructions are again encoded in the

range of [0..255]. However the instruction codes are used to access the instruction labels from

a label table (la b e ls) which is computed at link time:

v o id * l a b e l s [] = { & & in s tr l, & & instr2 , . . . } ;
c h a r c v [] = {47, 11, . . . } ;
c h a r *pc = cv;

i n s t r l : . . . g o to * la b e ls [* (+ + p c)] ;
i n s t r 2 : . . . g o to * l a b e l s [* (+ + p c)] ;

4The GNU C compiler gcc version 2.7.2.1 (P5) and version 2.7.2 (M IPS, SPARC) is used.
5 Clearly, assembler could be used to realize code code threading in a machine dependent way.

U n i v e r s i t y O f B a t h 38 A n d r e a s K i n d

T h e A r c h i t e c t u r e

i n s t r 2 5 5 : . . . g o to * l a b e l s [* (+ + p c)] ;

g o to * l a b e l s [* p c] ;

Due to an ex tra level of indirection, the transfer between virtual machine instructions is

slower than with code threading, but still better than with a jum p table (see Figures A-3,

A-6 and A-9). It is notable th a t the CISC code for the P5 processor needs three native

instructions with both standard and indexed code threading so th a t performance should be

similar.

Beside the performance improvement over switching, the big advantage of indexed th read

ing is th a t the executable program representation (i.e. code vectors) is suitable w ith both,

a v irtual machine em ulator based on switching or indexed threading. For instance, for an

em ulator which is implemented in the C programming language this means, program s can

be transform ed into bytecode vectors regardless of whether the virtual machine will be based

on switching or threading. In fact, by using a compiler flag to alter between switching and

indexed threading when compiling the virtual machine, the portability of the em ulator is

independent of the availability of a C compiler with first-class labels (e.g. gcc [Sta92]).

4.3 O p tim al In stru ction O rdering

Typically, program s only access a relatively small portion of the available address space a t

any fraction of tim e. M emory hierarchies in today ’s hardware architectures take advantage of

such spatial and tem poral locality of da ta and code references in order to bridge the widening

gap between processor speed and memory access time.

Clustering native code in the virtual machine em ulator which is likely to be executed

consecutively, increases the chances th a t the virtual instruction code is already in the native

instruction cache. An approxim ation of such a clustering can be derived from profiling the

invocation frequency of virtual instructions during the execution of an application. The native

code of the v irtual instruction called most will then be next in memory to the native code of

the v irtual instruction called second most etc. Particularly, for the 50 virtual instructions th a t

typically dom inate applications, such an ordering results in much better native instruction

cache performance than the typical ad-hoc ordering.

Such physical ordering of code in memory is applicable with C threaded code because the

actual source code organization will be reflected in the machine program and the (literally)

“threaded” instruction transfer leads to good locality with native code in execution. The

U n i v e r s i t y O f B a t h 39 A n d r e a s K i n d

T h e A r c h i t e c t u r e

situation is different with C switched code. The switch branches retain their order in the

machine program too, bu t the jum p table range check and the additional loop jum p cause the

native instruction pointer to cover much more memory than with threaded code (see tables

in Appendix A). O ptim al instruction ordering with a switched in terpreter is therefore not

expected to show the same performance increase as with a threaded interpreter.

The practical problem arises now with the fact th a t the virtual machine cannot be re

compiled for each application but should be provided as a shared object. Consequently, an

ordering cannot be customized to address a specific execution profile. An acceptable solution

is here to average instruction frequencies of representative applications in order to derive a

(so called) optimal ordering. It tu rns out th a t the increase in the native instruction cache hit

ratio with optim al ordering is nearly as good as with the custom ordering, since m ost v irtual

instructions are in fact application independent, being concerned with the operation of the

virtual machine itself (i.e. access of virtual registers and stack values).

A tool has been developed within the context of this thesis to aid deriving optim al v irtual

instruction orderings. Section 5 introduces this tool and presents figures which show a speed

improvements of 21% and 15% for the MIPS and P5 architectures respectively.

As hardw are caches continue to get larger there is an argum ent th a t a t some point the

entire virtual machine em ulator will fit into the instruction cache. The effect of v irtual in

struction clustering on instruction cache performance would then indeed become neglectable.

However, as long the tradeoff between memory access time and its price exists, new levels

in the memory hierarchy will emerge as soon as current level 1 cache technology becomes

affordable in larger scale. W ith this tradeoff very likely to continue in the future, there will

continue to be a case for optim al ordering of virtual instruction code as described.

4.4 Q uasi-In line M eth o d C aching

Up to this point, the architecture is not restricted or specifically designed for dynam ic ob

jects. And although the architecture is concerned with reducing efficiency overheads and with

enabling language interoperability in the context of bytecode in terpretation, there is still the

high cost of dynam ic m ethod lookup th a t has to be addressed explicitly.

One of the most successful techniques to speed up dynamic m ethod lookup is m ethod

inline caching [DS84, HCU91] as described in Section 3.2.1. Unfortunately, this technique

requires w ritable compiled code in order to cache m ethods a t call sites locally. M utable code,

however, stands in direct conflict to the approach of sharable virtual machine code which has

U n i v e r s i t y O f B a t h 40 A n d r e a s K i n d

T h e A r c h i t e c t u r e

to be defined constant in order to be placed in tex t segments. Quasi-inline m ethod caching

is a technique to make polymorphic inline caching [HCU91] applicable with read-only virtual

machine code.

An im portan t obstacle with inline caching is the difficulty of cache flushing when cache

entries may become invalid, e.g. after dynamic m ethod removal. Scanning the entire code

of an application to invalidate inline addresses is not acceptable. The problem is solved in

Sm alltalk by using the m apping tables between virtual machine code and native machine code

which are involved with the two executable program representation form ats [DS84]. W ithout

native code generation, inline m ethod caching is useless in the context of dynamic languages.

In an a ttem p t to simplify the problem of cache flushing and keep virtual machine code in

sharable tex t segments, it is now proposed to hold the method cache a t each generic function

object (as showed in Section 3.2.1), however, instead of the actual domain, the virtual machine

program counter is used to m ap into the cache. By using the program counter, type locality

is exploited in the same way as with classical polymorphic inline caching. Since the cache is

not really inlined, the scheme is called quasi-inline m ethod caching.

Two more advantages th a t come with quasi-inline m ethod caching are worth mentioning.

Firstly, com puting a hash index from a program counter can be realized much faster than

com puting a hash index from the argum ent classes th a t are considered with a generic function

invocation6. Quasi-inline m ethod caching is therefore suited for single- and m ulti-m ethod

dispatch equally. Secondly, with a linear search hashing policy7 on collision, redundancy

with classical inline caching can be avoided. Suppose, there are n generic function call sites

th a t are all used with instances of identical classes. Classical inline caching requires n entries,

one for each call site. In comparison, in the worst case quasi-inline m ethod caching fills all

entries of the generic function cache, i.e for an initial cache size of four there is a maximum

of four entries for the 100 call sites.

An im plem entation of an object-oriented dynamic language augmented with quasi-inline

m ethod caching is in no way restricted in its flexibility and is very likely to benefit in perfor

mance as cache misses can be reduced to 1.06% (see Section 5). The scheme saves dynamic

memory by avoiding redundant m ethod entries and by being adaptable to generic function

6Table B.2 shows empirical evidence that multi-argument dispatch is not a rarely used feature with multi

methods. Over 68% of all generic function calls in the OPS5 system implemented in EuLisp [OP93] discriminate

on more than one argument.
7 For tables with a default size of four entries, more sophisticated collision handling is not necessary. Tables

are flushed when over 90% filled.

U n i v e r s i t y O f B a t h 41 A n d r e a s K i n d

T h e A r c h i t e c t u r e

invocation which typically comes in waves with hot-spots on particular m ethods. A fixed size

hashing scheme associated with quasi-inline caching can here adap t to such tem poral and

spatial locality as dynam ic m ethod lookup has to face.

4 .5 EuLisp

Assuming a “sufficiently sm art compiler” [SG93] the transform ation of object-oriented dy

namic source code into an efficient executable representation is in many cases actually

possible—despite the high-level performance model. However, for complexity reasons the

developm ent and m aintenance of such a compiler is difficult.

The goal of recent standardization efforts with object-based Lisp dialects was therefore

to define a clean, commercial-quality Lisp dialect which would not be bound to former Lisp

trad ition simply out of backward compatibility reasons but which would foster the original

key idea of the List Processor in co-habitation with a dynamic object system [PCC+86].

Three of these languages are EuLisp [PNB93, PE92], ISLisp [Int97] and Dylan [Sha96j.

A feature common to these languages is a clear separation between the core language and

language extensions (e.g. the development environment) as well as a clear separation between

compile-time and run-tim e of a program . The rest of this section is dedicated to EuLisp, the

language of choice th roughout this thesis.

The distinguishing features of EuLisp are (i) the integration of the classical Lisp type

system into a class hierarchy, (ii) the complementary abstraction facilities provided by the

class and the module mechanism and (iii) support for concurrent execution (m ulti-threading).

The object system is accompanied in level-1 of the language definition by a m etaobject

protocol (M OP) to enable reflective programming similar to CLOS (see C hapter 2.3). The

EuLisp M OP however, provides a better balance between the conflicting dem ands of efficiency,

simplicity and extensibility [BKDP93].

The EuLisp language definition breaks with some Lisp traditions which were not beneficial

for efficient language im plem entations. The introduction of strict module interfaces leads to

more opportunities for compile-time optimizations. And the separation between a small core

language and supporting libraries particularly helps to overcome the problem of extracting a

program from an interactive development environment. Applications are no longer required to

carry around a lot more code than actually needed. However, if necessary, runtim e evaluation

can be supplied with a corresponding module library so th a t an efficiency penalty has to be

accepted only for functionality actually used.

U n i v e r s i t y O f B a t h 42 A n d r e a s K i n d

T h e A r c h i t e c t u r e

Although EuLisp (or a language with similar characteristics) is from this point on regarded

as integral p a rt of the architecture, this work does not investigate the relationship between

efficiency and the EuLisp language design. The architecture described here is applicable in

principle to any object-oriented dynamic language and its success is not bound to the EuLisp

language design.

4 .6 C on servative G arbage C ollection

Common to all garbage collection techniques is the need to recognize pointers within allocated

m emory during run-tim e of a program. Traditionally, compilers cooperate with autom atic

m emory m anagem ent system s and provide information about the layout an d /o r location of

pointers. However, such cooperative d a ta representations complicate foreign-function inter

faces and thus interoperability, since foreign pointers th a t do not follow the tagging/boxing

scheme cannot be handled by the garbage collector.

Conservative pointer finding techniques [BW88, Bar88] emerged with the desire to add

garbage collection to the C programming language. Since C is statically typed and has

therefore no need for run-tim e type information, autom atic deallocation introduces here the

problem of identifying pointers in a conservative environment. G arbage collection based on

conservative pointer finding trea ts aligned bit patterns within a certain range as pointers.

W ith this technique, integer values may in some cases mistaken as a pointer. However,

empirical evidence shows th a t potential memory leaks, which may result from integer values

accidently classified as pointers, are very rare [Boe93]. In any case, such an ambiguous

pointer may not be relocated by the collector because a relocation would change its value so

th a t conservative pointer finding can only be applied with a non-relocating garbage collection

algorithm .

A non-relocating garbage collection scheme has m ajor advantages when pointers are

passed to a program p art w ritten in other language. The external program p art is free

to store the pointer for later reuse, even when the garbage collector has gained control in

between. O bject pointers thus don’t need to be protected against deallocation and relocation

if passed outside the language im plem entation territory.

By adding a conservative collection scheme to the virtual machine architecture, the im

portan t aspect of interoperability is addressed, internal and external pointers can be mixed

w ithout precaution. The fact th a t garbage collection can be easily added to a system by

replacing the default allocation interface (i.e. mainly m a llo c O) is responsible for the pop

U n i v e r s i t y O f B a t h 43 A n d r e a s K i n d

T h e A r c h i t e c t u r e

ularity of one particular conservative memory management system w ritten by Boehm and

Weiser [BW88, Boe93]. Its popularity led to robustness and availability on many platform s

(even in the presence of pre-emptive m ulti-threading). The issue of multiple threads of control

in conjunction with interoperability is addressed in Section 5.5.

4 .7 C onclusion

System portability, architectural neutrality of executable code, language interoperability, per

formance and memory efficiency are im portant requirements to im plem entations of object-

oriented dynam ic languages partly derived from the typical application dom ains and partly

linked to the deficiencies of these languages (see C hapter 3). Figure 4-1 illustrates the re

lationship between the key characteristics of the architecture proposed in this chapter and

these requirements.

It was argued earlier, th a t with an emphasis on run-tim e dependencies, object-oriented

dynamic languages have a natural potential to handle dynamism in d istributed system s. To

reinforce this key advantage the architecture is based on a virtual machine approach which

provides code compactness and architectural neutrality, crucial features for code mobility in

distributed systems. As a side effect, the virtual machine approach results in portability of

code generation since different hardware platform s do not need to be considered.

V irtual machine code is slow compared to native machine code. This penalty can be

alleviated with code threading and optim al instruction ordering. The high cost of dynam ic

method dispatch is reduced with quasi-inline m ethod caching.

By using a conservative garbage collection scheme and virtual machine code as s ta tic C

data, applications becomes easily interoperable with other program ming languages. F u rther

more, constant C embedded code vectors can be located in sharable tex t segments leading to

modest memory footprints.

U n i v e r s i t y O f B a t h 44 A n d r e a s K i n d

T h e A r c h i t e c t u r e

architectural
neutrality

Figure 4-1: Design and requirements

U n i v e r s i t y O f B a t h 45 A n d r e a s K i n d

C h ap ter 5

The M echanics of Dynam ic O bjects

in youtoo

The architecture proposed in C hapter 4 is applied in you too1, an im plem entation of the dy

namic object-oriented programming language EuLisp. EuLisp is a single-valued Lisp dialect

with an integrated object system, a defined m etaobject protocol, a module system and a

simple light-weight process mechanism.

This chapter presents youtoo and dem onstrates the feasibility and effectiveness of the

proposed ideas, namely C embedded virtual machine code, indexed code threading, optim al

virtual instruction ordering and quasi-inline m ethod caching.

5.1 T h e youtoo C om piler

In youtoo, the technique of embedding virtual machine instructions in C leads to a corre

spondence between EuLisp modules and C files (. c / .h) . Compiled modules can be collected

in a library (. a / . s o) or immediately linked with the virtual machine (vm), the conservative

memory m anagem ent package2 (mm) and the EuLisp standard language library (le v e l 1) into

an executable file (see Figure 5-1). If necessary, additional foreign code (C, C-H-, Pascal,

Fortran) can be linked in form of libraries or object hies. Dynamic linking (described in detail

in Section 5.1.1) on the EuLisp-level allows the addition of new modules a t run-tim e.

:The name derives from the fact that youtoo is the second EuLisp reference im plementation. The system

is publicly available from f t p : / / f tp .m a th s .b a th .a c .u k /p u b /e u l is p /y o u to o .
2A conservative mark-and-sweep garbage collector implemented by Boehm and Weiser [BW88] is used.

U n i v e r s i t y O f B a t h 46 A n d r e a s K i n d

ftp://ftp.maths.bath.ac.uk/pub/eulisp/youtoo

T h e M e c h a n i c s o f D y n a m i c O b j e c t s i n y o u t o o

Figure 5-1: Compiling an application

The you too compiler (see Figure 5-2) is a EuLisp program which takes a module name,

reads the source code of the module and generates an abstract syntax tree (AST) in A-

normal form (ANF). ANF is an interm ediate representation th a t captures the essence of

continuation-passing style (CPS) including the reductions normally followed after standard

CPS transform ation [FSDF93]. W ith the exception of tail-call optim ization, you too does

not exploit the optim ization opportunities th a t emerge after translation into ANF. As noted

earlier, the work presented here is not concerned with typical compile-time optim izations.

After some analysis on the AST, the compiler generates abstract virtual machine code

for the functions defined in the module and finally generates a C file (.c) and two interface

files (. i and . h) .

The C file effectively defines virtual machine code as constant C vectors local to the unit of

C compilation (i.e. s t a t i c c o n s t long cv [] = { . . . }) and a module initialization function

to initialize the module on the C-level. The initialization includes the final initialization of

statically defined Lisp literals. Initialization on the Lisp-level, i.e. execution of the top-

level forms of each module s ta rts after all modules are initialized on the C-level. A module

binding vector is defined th a t holds defined module binding values and literals. The generated

interface files map binding names of defined bindings in the module to offsets in the module

binding vector. The Lisp-level interface file (. i) is used for separate compilation and dynamic

linking of modules; the C level interface file (.h) is not only used for separate compilation

U n i v e r s i t y Of B a t h 47 A n d r e a s K i n d

T h e M e c h a n i c s o f D y n a m i c O b j e c t s i n y o u t o o

read

parse

analyse

compile

optimise

generate

cc

Id -lvm -1mm -llevellId -Gar

. em

.c

. so a. out.a

.o

.h

syntax
expression

abstract
virtual

machine code

abstract
syntax tree

in ANF

Figure 5-2: The youtoo compiler

but also with foreign in-calls.

Foreign function declarations in the source module result in a C stub function in the . c

file to handle argum ent and result conversion between Lisp and C as specified in the foreign

function declaration. A pointer to the C stub function is stored in the module binding vector

and is used by a specific virtual machine instruction to invoke the foreign function. Converters

are provided for basic da ta types and for handling addresses. If the requested C function is

not linked to an application by default, it can be passed to the compiler as a param eter. See

Table B.5 for a list of available foreign-function converters.

Some s ta tic Lisp objects can be represented as sta tic C values and thus be tru ly statically

allocated. This is the case for primitive values like characters, integers, doubles, strings,

the em pty list as well as for composed values like vectors and lists th a t exclusively contain

values which again can be represented as sta tic C data . If an element of a s ta tic (on the

Lisp-level) vector or list cannot be represented as sta tic C data , a t least the em pty d a ta

s tructure is statically allocated (on the C-level) and filled in during C-level initialization of

the module. Symbol and keyword literals cannot be defined constant as they need to be

interned, i.e. included into or accessed from the symbol/keyword table depending on the

U n i v e r s i t y O f B a t h 48 A n d r e a s K i n d

T h e M e c h a n i c s o f D y n a m i c O b j e c t s i n y o u t o o

m odule topology in an application.

5 .1 .1 D y n a m i c L in k in g

EuLisp is syntactically extendible with syntactic transform ation functions (macros) which

may be applied during compile-time. Typically, the user can add new application-relevant

m acros to the standard set of macros. Macros are defined in full EuLisp and potentially use

defined functions and other defined macros. EuLisp’s strict separation between compile-time

and run-tim e enforces the restriction th a t no module can appear in the transitive closure

of its own compilation environment [DPS94]. This requirement induces the differentiation

between syntax and lexical modules and frees a compiler to resolve com pilation/execution

dependencies within a compilation unit, in this case, a module. If a syntax module ml defines

m acros which are used in another module m2 then ml has to be compiled prior to m2. In this

way a compiler can avoid using either multiple compilation cycles or having an in terpreter as

a constituent. Instead a compiler can be incrementally extended by dynamically linking the

required previously compiled syntax modules.

Dynamic loading of code is implemented in youtoo by scanning the C file to find the

relevant offsets to the s ta r t of the array definitions and reading the contents of the arrays. This

process is assisted by layout information hidden as C comments generated by the compiler.

M acro expansion with syntax modules is based on such Lisp-level dynamic linking.

5 .1 .2 S o u r c e C o d e I n t e r p r e t a t io n

The youtoo system does not provide a direct interpreter (as described in Section 3.1) for Eu

Lisp. Instead, there is a read-compile-execute-print-loop in place of the read-eval-print-loop

normally provided with direct interpretation. Each expression to be interpreted is com

piled into virtual machine code (using the same transform ation as in the compiler) and then

immediately executed on the virtual machine em ulator (see Figure 5-3). After you too is

bootstrapped, i.e. compiled into a stand-alone application by itself, the virtual machine em

ulator is linked to it anyway so th a t the execution of the compiled code in the in terpreter is

straightforw ard. In fact, interpreter and compiler are the same program called you too . If a

file name is presented to youtoo, like in

youtoo t e s t .e m -1 l e v e l l

the corresponding module will be compiled and linked with the (shared) run-tim e libraries

and perhaps with o ther im ported compiled modules into an executable file t e s t . Invoking

U n i v e r s i t y O f B a t h 49 A n d r e a s K i n d

T h e M e c h a n i c s o f D y n a m i c O b j e c t s i n y o u t o o

you too w ithout any param eter (or param eter - i) 3 s ta rts up the pseudo read-eval-print loop

and the following interaction can be envisaged:

EuLisp System ’you too 0 .9 4 ’

[u s e r] : (+ 1 2)
- 3
[u s e r] : (d e fu n f a c t (x) (i f (< x 2) 1 (* x (f a c t (- x 1)))))
- # < s im p le - fu n c t io n : f a c t>
[u s e r] : (f a c t 100)
- 933262154439441526816992388562667004907159682643816214685929638952175999
93229915608941463976156518286253697920827223758251185210916864000000000000
000000000000
[u s e r] :

Evaluation of expressions and creation of new global bindings is performed in the lexical

and syntax environm ents of the module named in the prom pt. By default this is the artificial

u s e r m odule which can be regarded as an alias for the EuLisp standard language extended

with functionality to control the compiler. The interpreter provides more functionality, not

described further here, common to interactive programming environments.

read

parse

analyse

compile

optimise

execute

input

result

syntax
expression

abstract
syntax tree

in ANF

abstract
virtual

machine code

Figure 5-3: The youtoo interpreter

5 .1 .3 E x a m p l e 1

The following example illustrates the way code vectors are actually embedded in C. The

EuLisp module t e s t defines the well-known factorial function in EuLisp:

in form ation about compiler flags can be found in Figure B.4.

U n i v e r s i t y O f B a t h 50 A n d r e a s K i n d

T h e M e c h a n i c s o f D y n a m i c O b j e c t s i n y o u t o o

(defmodule t e s t
(import (l e v e l l)
export (f a c t))

(defun f a c t (x)
(i f (< x 2)

1
(* (f a c t (- x 1)) x)))

) ; end of module

The language levell bindings are imported and the defined lexical binding f a c t is ex

ported. The bytecode compiler in youtoo translates the module into the following C code in

file f a c t . c4:

inc lud e <eu l i sp .h>
inc lud e " tes t .h "

/* Module b indings with s i z e 3 * /
vo id * t e s t _ [3];

/* I n i t i a l i z e module t e s t * /
void e u l . i n i t i a l i z e m o d u l e . t e s t ()
{

e u l _ i n i t i a l i z e _ m o d u l e _ l e v e l l () ;
{
/ * BYTEVECTOR f a c t a r i t y : 1 s i z e : 28 index: 2 nbindings: 1 * /
s t a t i c cons t long f ac t_b v [] = { I (a a , l b , 8 4 , l a) , I (l b , 4 4 , 0 4 , 8 3) , I (3 6 , 0 e , l c ,

2 c) , I (l b , 2 4 , 0 0 , 3 c) , 1 (0 1 , l b , I f , 0 4) , 1 (1 6 , 2 2 , 0 2 , 4 5) , 1 (0 2 , 0 0 , 0 0 , 0 0) } ;
s t a t i c long f a c t . c o d e f] = { I N T (2 8) ,N I L , (l o n g) f a c t .b v } ;
s t a t i c long fact_bnds[] = { I N T (l) ,N I L ,B (t e s t _ ,2) } ;
s t a t i c long f a c t [] = {INT(6) ,NIL,NIL, I N T (l) , N I L ,N I L , (lo n g) f a c t . c o d e , (Ion

g) fa c t _ b n d s > ;

/* BYTEVECTOR i n i t i a l i z e - t e s t a r i t y : 0 s i z e : 20 index: 0 nbindings: 5 * /
s t a t i c const long i n i t _ t e s t _ b v [] = { 1 (8 7 , 2 5 , 0 1 , 2 4) , 1 (0 3 , 3 e , 0 7 , 2 4) , 1 (0 2 , 3

c , 0 0 , 2 1) , 1 (0 1 , 2 3 , 0 4 , 2 a) , 1 (8 6 , ac ,00 ,00)> ;
s t a t i c long i n i t . t e s t . c o d e [] = { INT(20) , NIL, (l o n g) i n i t . t e s t . b v] - ;
s t a t i c long i n i t _ t e s t _ b n d s [] = { I N T (5) ,N I L ,B (te s t_ , 0) , B (t e s t _ , 1) , B (l e v e l

1_ , 0) , B (l e v e l l . , 1) , B (t e s t _ , 2) > ;
s t a t i c long i n i t _ t e s t [] = {INT(6) ,NIL,NIL, INT(0) , M I L ,N I L , (l o n g) in i t . t e s t

. c o d e , (l o n g) i n i t . t e s t . b n d s } ;

/* I n i t i a l i z a t i o n of lambda: f a c t */
e u l . s e t . s t r i n g . c l a s s (f a c t . c o d e) ;
e u l . s e t . v e c t o r . c l a s s (f a c t . b n d s) ;
e u l . s e t . l a m b d a . c l a s s (f a c t) ;
eul_set_ lambda_name(fact , " f a c t ") ;
/* I n i t i a l i z a t i o n of lambda: i n i t i a l i z e - t e s t */
e u l . s e t . s t r i n g . c l a s s (i n i t . t e s t . c o d e) ;
e u l . s e t . v e c t o r . c l a s s (i n i t . t e s t . b n d s) ;
e u l _ s e t _ l a m b d a _ c l a s s (i n i t _ t e s t) ;
e u l_se t_ lam b d a_n am e (in i t_ te s t , " i n i t i a l i z e - t e s t ") ;

/* I n i t i a l i z e module binding vec tor * /
t e s t _ [0] = i n i t . t e s t ;
t e s t . f l] = NIL;
t e s t . [2] = f a c t ;

4 The code is slightly simplified to enhance readability.

U n i v e r s i t y O f B a t h 51 A n d r e a s K i n d

T h e M e c h a n i c s o f D y n a m i c O b j e c t s in y o u t o o

>
} / * eof * /

The following C macros are provided with e u l i s p .h :

#d e f in e NIL 0
#d e f in e B(m,i) (long)&m[i]

i f d e f LITTLE.ENDIAN
#d e f in e I (x l , x 2 , x 3 , x 4) 0x##x4##x3##x2##xl
e l s e
#def ine I (x l , x 2 , x 3 , x 4) 0x##xl##x2##x3##x4
#endif

The I () m acro reverses the four bytecodes constructing a long on little endian machines so

th a t bytevectors can be safely cast to (char *) when interpreted. The INTO macro converts

C integer representation into tagged Lisp integer representation cast to long. The resulting

run-tim e representation of the Lisp closure f a c t is a Lisp object with six slots.

Instance #<s im ple - funct ion : fact> of c l a s s <s imple-function>
name = f a c t
a r i t y = 1
s e t t e r = ()
environment = ()
code = " \x0aa \x 01b\x084 \x01a \x 01b \x044 \x004 \x083 \x036 \x00e \x01c \x02c . .
bindings = #(#<C: 0xl007B800>)

The code and binding slots are initialized statically with the Lisp string f oo.code (itself

referring to the constan t bytevector f oo_bv) and the Lisp vector f oo.bnds th a t holds bindings

used from within the bytevector. In the example, the binding vector refers to the factorial

function in the same module. The remaining part of the closure is initialized with eul_set_-

statem ents. The closure is finally stored in the module vector t e s t _ at index 25.

By avoiding inlined addresses in bytevectors directly, the virtual machine code has alm ost

no unused padding space for alignment and most im portantly, is located in sharable read-only

text segments, i.e. . rodata in ELF (see also Section 5.5).

The interface file f a c t . h defines the exported binding offset on the C level.

i fn d e f EUL.TEST.H
#def ine EUL.TEST.H

#include < l e v e l l . h >

extern void * t e s t _ [] ;
extern vo id e u l . i n i t i a l i z e . m o d u l e . t e s t () ;

/* Local module b indings * /

5 At index 0 is the module initialization function (i.e. top-level forms) stored; at index 1 is NIL if the module

initialization function has not yet been called.

U n i v e r s i t y O f B a t h 52 A n d r e a s K i n d

T h e M e c h a n i c s o f D y n a m i c O b j e c t s in y o u t o o

d e f in e e u l _ t e s t _ f a c t . b i n d i n g . 2

end i f /* eo f */

The interface hie f a c t . i contains the exported binding offset with additional information

abou t local literals and function binding vectors which is used with separate compilation and

dynam ic loading.

(d e f i n t e r f a c e t e s t
(import (l e v e l l)
bindings (

(f a c t 2 t e s t f a c t ())
)
l o c a l - l i t e r a l s (
)
lambda-bindings (

) ’ ”

)
)

5 .1 .4 E x a m p l e 2

Calling a foreign C function is similar to calling the factorial function in the previous example.

The main difference is th a t a stub-function is generated to deal with argum ent and result

conversion as specified by the def extern declaration in the source code. This stub function

can then be referred from a binding vector in the same way f a c t is referred from fact .bnds

in the previous example. A special virtual instruction is necessary to call the stub function.

(de fe x ter n a t o i (<str in g>) <int>)
(defun foo (x) (a t o i x))

is compiled into the following bytevector:

/* Foreign stub fu n c t io n s */
s t a t i c LispRef f f _ s t u b _ a t o i (ARG(LispRef * , s r eg_va lu e _sp))
ARGDECL(LispRef * , sreg_value_sp)

LispRef G003, res ;

EUL_EXTERNAL_P0PVAL1(G003);
EUL_FF_RES_CONVERTO(res, atoi(EUL_FF_ARG_C0NVERT3(G003))) ;
return r e s ;

/* I n i t i a l i z e module t e s t */
void eu l i n i t i a l i z e _ m o d u l e _ t e s t ()

/* BYTEVECTOR foo a r i t y : 1 s i z e : 8 index: 2 nbindings: 1 */
s t a t i c const long foo l_bv [] = { I (a a , 4 1 , 0 0 , 4 5) , 1 (0 1 , 0 0 , 0 0 , 0 0) } ;
s t a t i c long f oo l_c od e [] = { I N T (8) ,N I L , (lo n g) f o o l_ b v } ;
s t a t i c long foo l_bnds[] = { I N T (l) ,N I L ,B (t e s t _ ,3) } ;

U n i v e r s i t y O f B a t h 53 A n d r e a s K i n d

T h e M e c h a n i c s o f D y n a m i c O b j e c t s in y o u t o o

s t a t i c long f o o l [] = {INT(EUL_LAMBDA_SIZE), NIL,NIL,INT(l) , NIL,NIL,(long)
f o o l _ c o d e , (l o n g) f o o l _ b n d s } ;

t e s t _ [3] = f f _ s t u b a t o i ;
>

The foreign-function interface explained so far defines the means to describe a C function’s

argum ents and return type to EuLisp. However, it is also desirable to call a EuLisp function

from C and then to do m utually recursive calls between EuLisp and C. An in-call is realized

as a call to the in terpret function of the virtual machine em ulator with the EuLisp function to

call as argum ent. The following example illustrates how the EuLisp function f a c t in module

t e s t can be invoked from C.

#inc lud e <eu l i sp .h >

EUL_IMPORT(test)
EUL.DEFINTERN(fact, 1 , t e s t)

main()

i n t res ;

EUL.INITIALIZEO ;
res = e u l _ i n t _ a s _ c _ i n t (f a c t (c _ i n t _ a s _ e u l _ i n t (1 0))) ;
p r i n t f ("f ac t (10)=‘/,d\n" , r e s) ;

>

The include file e u l i s p . h provides macros to access bindings of EuLisp modules as well

as routines to convert between EuLisp and C data. The foreign function interface is similar

to that described for Ilog Talk [DPS94] and is extended for other programming languages

(e.g. Fortran and Pascal) under the Solaris operating systems where function calling follow

same conventions. Further interoperability with C + + is achieved with a C function wrapper

and the extern "C" declaration.

5.2 C ode M ob ility

Since the architecture realized with youtoo is designed to support dynamic object-oriented

languages with first-class functions and reflective capabilities, it is consistent to provide read

and write access to the code slot of closures a t run-tim e. The bytecode vector of a closure

object in youtoo is naturally represented as a Lisp string (fa c t.c o d e in Section 5.1.3) th a t

can be freely accessed and for instance shipped unchanged to a virtual machine process

th a t runs on different machine. Its execution will have the same semantics regardless of the

underlying hardw are. This shows th a t functions, although represented as C d a ta structures,

do not lose their architectural neutrality.

U n i v e r s i t y O f B a t h 54 A n d r e a s K i n d

T h e M e c h a n i c s o f D y n a m i c O b j e c t s in y o u t o o

Serialization of functional objects (i.e. simple/generic functions, continuations, threads),

for instance for m igration between processes, can only be provided if the module name and its

respective offset can be determ ined from the absolute C address used in the binding vectors

of the closures on the bottom of the functional object (e.g. fac t_ b n d s in Section 5.1.3).

These addresses generally point into the vector holding the bindings of a module (i.e. t e s t .

in Section 5.1.3). W ith serialization, the binding vector a t the closure is unlinked from the

current address space and anno tated with the relevant information to retrieve the binding

in a different address space. The algorithm to determine the module name and the binding

vector offset from a binding reference is described in Figure 5-4.

module binding vectors
module 1

binding reference

address space

module n

object

Figure 5-4: Resolving binding references fo r code vector serialization. Step 1: module binding

vectors o f all linked modules are ordered with regard to their location in m em ory (fragmenta

tion does not m atter). Step 2: find the module binding vector into which the binding reference

is pointing (e.g. with a linear search). Step 3: return the module name and subtract the start

address o f the module binding vector from the binding reference to obtain the offset.

5.3 D em o n stra tin g P erform an ce

It is not claimed th a t you too is a high performance system. This is mainly due to a lack

of local compile-time optim izations th a t can be applied even in the presence of dynamism.

U n i v e r s i t y O f B a t h 55 A n d r e a s K i n d

T h e M e c h a n i c s o f D y n a m i c O b j e c t s in y o u t o o

However, youtoo shows reasonable overall performance (see Table 5.1) which is mainly due

to the com bination of the indexed variation of code threading, optim al instruction ordering

and quasi-inline m ethod caching. Individual figures for these techniques are presented later

in this section.

Program clisp 3.28 scheme 48 0.36 youtoo 0.93
arithO 67.50s 5.80 22.88s 1.96 11.63s 1
mem 15.61s 1.07 8.35s 0.57 14.52s 1
nfib 38.49s 2.47 220.74s 14.18 15.56s 1
rec 64.66s 2.29 49.14s 1.74 28.20s 1
tak 16.35s 1.05 34.44s 2.22 15.45s 1
takl 9.85s 0.71 51.69s 3.77 13.71s 1
vec 26.51s 2.89 19.08s 2.08 9.16s 1

Table 5.1: Comparison with other bytecode systems

It is very difficult to perform a fair comparison of language im plem entations, so th a t

Table 5.1 is not discussed in great detail. W orth noting is y o u to o ’s performance drop

with a memory m anagem ent stressing benchmark. The cost of conservative garbage col

lection [Zor93] can here be observed.

The actual tim ing is provided by the Unix tim e function uniformly for all language

im plem entations and benchm ark programs. The benchmark program s are briefly described

in Table B.3. Execution tim es are recorded by timing benchmark program s twice, with

and w ithout calling the en try function. The difference in time reflects the raw execution

tim e of the benchm ark and eliminates im plem entation differences in program invocation th a t

are not discussed here (e.g. initialization, program loading, program preprocessing or even

com pilation). For b e tte r accuracy, the average over ten execution times is taken into account.

Section 4 listed indexed code threading and optim al instruction ordering as key techniques

th a t are included in the im plem entation architecture. The following subsections show the

im pact of these techniques on the performance of youtoo individually.

5 .3 .1 I n d e x e d C o d e T h r e a d in g

The im pact of indexed instruction transfer which was identified in Section 4.2 as a practical

variation of code threading is reported for youtoo in Tables C .l, C.3 and C.3 in the Appendix

and summ arized in Table 5.2.

The figures indicate th a t on average about 15% execution time can be saved (in some

cases even up to 29%). However, execution times of virtual machines cannot be improved

U n i v e r s i t y O f B a t h 56 A n d r e a s K i n d

T h e M e c h a n i c s o f D y n a m i c O b j e c t s in y o u t o o

P5
switched threaded

MIPS
switched threaded

SPARC
switched threaded

tak 1 0.86 1 0.78 1 0.98
arithO 1 0.85 1 0.88 1 0.99
a rith l 1 0.92 1 0.95 1 0.98

rec 1 0.87 1 0.77 1 0.97
takl 1 0.77 1 0.79 1 1.26

m eth 1 0.82 1 0.73 1 1.00
vec 1 0.71 1 0.81 1 0.99

hanoi 1 0.96 1 0.80 1 0.89
nfib 1 0.83 1 0.78 1 0.99
mem 1 0.99 1 1.00 1 1.01

0.86 0.83 1 1.01

Table 5.2: Threaded Instruction Dispatch (relative)

with indirect threading on the SPARC architecture (see also Section 5.3.3).

5 .3 .2 O p t i m a l I n s t r u c t io n O r d e r in g

Three different instruction orderings for the suite of 10 program s (listed in Table B.3) are

applied in the v irtual machine em ulator program. The first ordering is generated by a random

generator6. The second ordering is derived from profiling information about the dynamic

instruction frequency of the program being measured and thus called custom ordering. W ith

custom ordering, the instruction executed most in the source tex t of the em ulator program

is next to the instruction being executed second most etc. Since it is not practical to modify

and recompile the em ulator for each program to execute, a third ordering is used, referred to

as optim al. The optim al ordering reflects the custom orders of a set of program s and thus can

be used in the interpreter. Figures 5-5 and 5-6 illustrate the different instruction orderings for

the m eth benchm ark. The la tte r figure clearly shows th a t the instruction frequencies of m eth

deviate slightly from the average instruction frequencies. Nevertheless, the optim al ordering

is much closer to the ideal custom ordering than the initial random ordering.

Tables C .l, C.3 and C.3 in the Appendix and Table 5.3 in this section show the absolute

and relative effect of installing the random, custom and optim al instruction orders. The

benefit is of the order of 20% on P5 and MIPS. The SPARC architecture however shows

again no speed up for the different orderings. The optim al ordering th a t resulted from the

program s in Table B.3 are showed in Table C.4.

6The specific random order may have an impact on the execution time of one particular benchmark program.

However, we have checked that the average execution time is independent of the actual random order.

U n i v e r s i t y O f B a t h 57 A n d r e a s K i n d

T h e M e c h a n i c s o f D y n a m i c O b j e c t s in y o u t o o

£
ocD3CT1<U

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

Random instruction ordering
Custom instruction ordering

50 100 150
Instruction position

200 250

Figure 5-5: Random instruction ordering

oc<u
3cr<D

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

Optimal instruction ordering
Custom instruction ordering

50 100 150
Instruction position

200 250

Figure 5-6: Optimal instruction ordering

U n i v e r s i t y O f B a t h 58 A n d r e a s K i n d

T h e M e c h a n i c s o f D y n a m i c O b j e c t s in y o u t o o

P5
rand custom optim al

MIPS
rand custom optim al

SPARC
rand custom optim al

arithO 1 0.72 0.72 1 0.60 0.70 1 1.00 0.97
a rith l 1 0.86 0.89 1 0.83 0.87 1 0.87 0.86
hanoi 1 0.78 0.81 1 0.74 0.63 1 0.98 0.95
mem 1 0.96 0.96 1 0.95 0.96 1 1.08 0.97
m eth 1 0.76 0.77 1 0.80 0.81 1 0.89 1.10
nfib 1 0.72 0.66 1 0.97 0.98 1 0.84 0.84
rec 1 0.94 0.97 1 0.97 0.98 1 1.00 0.99
tak 1 0.71 0.74 1 0.93 0.93 1 0.98 0.99
takl 1 0.77 0.77 1 0.93 0.94 1 0.99 1.27
vec 1 0.66 0.61 1 0.80 0.71 1 0.98 0.98

0.79 0.79 0.85 0.85 0.96 0.99

Table 5.3: Instruction ordering (relative)

5 .3 .3 T h e S P A R C O d d i t y

Neither indexed code threading nor optim al instruction ordering has significant (positive or

negative) influence on the performance of youtoo on the SPARC architecture. This subsection

a ttem p ts to explain this oddity.

As the instruction cache size of the used SPARC machine is twice as large as the in

struction caches with the P5 and MIPS architectures (see Table B .l) , the SPARC cache

performance profile is likely to differ from the M IPS and P5 architectures. In order to bring

more light into the relationship between native code size and instruction cache performance

Figure 5-7 illustrates the cumulative native code (text segment) size of the emulation function

according to the optim al ordering in Table C.4.

Figure 5-7 shows th a t the 19 most frequently invoked virtual machine instructions can be

within the MIPS instruction cache (16K). For the P5 it can even be the 30 m ost frequently

used instructions. The better results of optim al instruction ordering on P5 compared to

M IPS can perhaps therefore be a ttribu ted to the compactness of the CISC instruction set.

However, the first 29 most frequently invoked virtual instructions fit with their native code

im plem entation as well into the native instruction cache of the SPARC processor (32K).

Unfortunately, a simple explanation for the SPARC oddity can therefore not derived from

Figure 5-7.

However, the hardw are information in Table B .l bares some uncertainty in the SPARC

case. Shared memory machines usually have large level-2 caches, between 1 to 8 MB per

processor [Sim97]. In case the SPARC specification which was available during the bench-

U n i v e r s i t y O f B a t h 59 A n d r e a s K i n d

T h e M e c h a n i c s o f D y n a m i c O b j e c t s i n y o u t o o

120000
MIPS

SPARC
16K Instruction'Cache
32K Instruction Cache

100000

80000
- t- jG<D
B
t>0<DC/)4—>XCD4—»

60000

40000o
<oN

00

20000

80 1000 20 40 60 120
Instruction position

Figure 5-7: Accumulative instruction size

marking is in this respect not accurate, instruction ordering can have only little im pact on

the instruction cache performance because the entire virtual machine fits into the level-2

instruction cache.

A further source of uncertainty is related to the fact th a t hardware caches are shared by

all the processes in execution. The benchmarking was deliberately performed a t tim es of low

machine load to reduce the influence of other concurrently running applications. B ut still a t

these tim es the used SPARC machine was busy with other applications much more than the

P5 and M IPS machines. The SPARC oddity can have therefore here another reason.

For the sake of brevity, a more sophisticated discussion on instruction caching is not

included here.

5 .3 .4 Q u a s i - I n l in e M e t h o d C a c h in g

In order to understand the effect of quasi-inline m ethod caching on the dynamic m ethod

lookup in youtoo , several measures are displayed in Figure 5-8. The d a ta in the figure is

collected by profiling the OPS5 system (implemented in EuLisp [OP93]) when resolving a

non-trivial rule set.

Figure 5-8 shows normal high method cache miss ratio during initialization (of the EuLisp

level-1 modules). However, when the OPS5 specific code is entered (after generic function

U n i v e r s i t y O f B a t h 60 A n d r e a s K i n d

T h e M e c h a n i c s o f D y n a m i c O b j e c t s i n y o u t o o

1.2

Density -—
Probe depth1

0.8

0.6

0.4

0.2

0
0 5000 10000 15000 20000

Generic function calls

Figure 5-8: Quasi Inline Method Caching

call 0), miss ratio is already below 10% and from then on exponentially dropping down to

1.06%. Application dependent code is regularly called now so th a t the m ethod caches fill

up and the probe depth (i.e. the average number of steps necessary to reach a valid entry in

the cache) increases up to 1.11. Thus, most table entries are either in the initial or the very

next cache entry. Average cache density around 0.5 indicate th a t caches are only half filled

in general. The sparse filling is im portant to keep the probe depth small. And in tu rn , a

small probe depth is im portant to minimize the overhead of linear search in the cache.

OPS5 is chosen to dem onstrate the success of quasi-inline m ethod caching because of its

abrup t change in behaviour after the R ETE network is constructed for the input rule set.

This point is reached circa after 15000 generic function calls. The dynamic change can be

observed as a fluctuation in the probe depth. However, the miss ratio is hardly affected so

th a t the dynam ic m ethod lookup continues to benefit from the caching scheme. Similar cache

hit ratios have been measured with other applications as well.

M easuring the actual performance increase with m ethod caching in a hybrid object-

oriented language (i.e. with both, simple and generic functions) is difficult. A three fold

speed up could be observed with some pure object-oriented benchmarks when the caching

scheme changed from hashing on the actual argum ent classes (a la CLOS) to hashing on the

program counter.

U n i v e r s i t y O f B a t h 61 A n d r e a s K i n d

T h e M e c h a n i c s o f D y n a m i c O b j e c t s i n y o u t o o

5 .4 D em o n stra tin g M em ory E fficiency

It is claimed in C hap ter 4 th a t C embedded virtual machine code reduces sta tic and dynam ic

m emory usage.

M easurem ents w ith you too presented in Table C.5 show th a t the average ratio of the size

of read-only d a ta to read /w rite da ta changes from 1.32 to 0.29 when the c o n s t allocation

qualifier is om itted with the code vector definitions in the EuLisp standard modules. In

absolute term s, the to ta l size of the compiled EuLisp modules is 361296 bytes, of which read

only d a ta is 104880 and read /w rite d a ta is 79248, with c o n s t declaration and 41568+142496

bytes, respectively, w ithout. Sharable read-only da ta is therefore increased by a factor of

two.

Thanks to shared objects, also the sta tic memory usage is very good for applications

of youtoo . An executable file— regardless of whether the hello-world program or the entire

y ou too system compiled by itself—is generally less than 10K in size.

5 .5 D em o n stra tin g In terop erab ility

Based on y o u to o ’s foreign function interface it was possible to enrich EuLisp with three basic

functionalities provided by publicly available libraries:

• distribution by linking m pich7 an im plem entation of the Message Passing Interface (M PI),

• a graphical user interface with a binding to T c l/T k and

• pre-emptive m ulti-threading with a link to POSIX kindred thread libraries.

All three of these libraries are being used in the development of a m ulti-agent system

modelling the Spanish Fishm arket [RNSP97]. The rest of this section gives some details

about the la tte r interface because it uncovered a t least all of the problems th a t also occured

with the other libraries.

M ulti-threading is a powerful and structured way to concurrent execution supported by

operating system s, libraries and high-level program ming languages. B ut so far th reads cannot

be transparently shared between multiple languages in one application.

The distribution of you too includes ports to three external thread libraries (Solaris, M IT

and PPC R) [KP98]. Thread transparency is achieved by running EuLisp functions on foreign

7See ftp://info.mcs.anl.gov/pub/mpi.

U n i v e r s i t y O f B a t h 62 A n d r e a s K i n d

ftp://info.mcs.anl.gov/pub/mpi

T h e M e c h a n i c s o f D y n a m i c O b j e c t s i n y o u t o o

th reads. F irst, an out-call from EuLisp to C creates a foreign thread with an initial C function

th a t then performs an in-call to invoke the EuLisp function when the foreign thread is being

s ta rted .

In detail, the out-call is made to a C function th a t takes an instance t h r of the class

< th read > representing foreign threads in Lisp and argum ents for the initial Lisp closure.

T he Lisp closure is stored with thread initialization in the fu n c t io n slot of the instance

(see Figure 5-9). The Lisp and C thread objects are linked with each other via the slot

th r e a d -h a n d le and thread specific d a ta (TSD). Finally, the C thread calls the in terpreter

entry function with the closure and argum ents.

EuLisp’s th re a d -v a lu e is implemented by a foreign C wrapper function th a t checks if

the initial closure has returned already (i.e. foreign thread has term inated). In this case the

slot r e tu r n - v a lu e is no longer unbound, but set to the corresponding return value. If the

initial closure has not yet returned (i.e. foreign thread is still running), C ’s function to join a

th read will be called. After joining, the return value of the initial closure is accessible a t the

Lisp thread object. Figure 5-9 shows how the Lisp thread instance is linked with the corre

sponding C thread structure. A mutex is necessary to assure a thread-safe im plem entation

of th re a d -v a lu e .

#<thread>
error-handlers
dynamic-variables
function
return-value
return-mutex
thread-handle

Lisp

lisp_call closure + args
thread
TSD

Figure 5-9: Thread representation

Yielding control in favour of another thread by means of th r e a d - r e s c h e d u le can be

directly m apped onto the corresponding foreign thread functions using the th re a d -h a n d le

slot. Inverse pointers from C threads to EuLisp thread objects are kept as th read specific

d a ta . EuLisp’s c u r r e n t - th r e a d returns such a backward pointer from the currently running

C thread.

U n i v e r s i t y O f B a t h 63 A n d r e a s K i n d

T h e M e c h a n i c s o f D y n a m i c O b j e c t s in y o u t o o

So far, it has been explained how EuLisp threads are based on foreign threads. We still

need to show how threads in EuLisp and C can be synchronized in a transparen t way. EuLisp

locks cannot be implemented with some of the foreign thread libraries (e.g. Solaris), because

a m utex can only be unlocked by the thread th a t last locked the m utex (the m utex owner),

bu t EuLisp locks are defined to be accessible by any part of the program , e.g. to perm it

producer/consum er style synchronization. Creating a binary semaphore in EuLisp results in

the creation of a foreign counting semaphore with count initialized to 1. EuLisp uses a boxed

C pointer to handle the semaphore. The class <lock> can be easily subclassed to implement

counting semaphores. The EuLisp functions lo c k and un lock are straight out-calls to foreign

sem aphore functions wait and signal.

The comparison in Table 5.4, based on a four-processor SPARC 4d architecture (SS100E,

each 50MHz) running Solaris 2.5.1, shows the performance benefit of using foreign thread

libraries compared to y o u to o ’s built-in non-pre-emptive m ulti-threading with one-shot con

tinuations th a t operate on the stack architecture of the virtual machine.

foreign threads real user sys
padd 0m ll.595s 0m9.303s 0m7.940s
dphil 0m l9.033s 0m l6.512s 0m24.081s

built-in threads real user sys
padd 5m33.657s lm48.164s 0m34.949s
dphil 2m24.026s lm50.893s 0m30.571s

Table 5.4: Performance comparison

The timing is deliberately performed on a multiprocessor machine, which explains th a t

the to ta l of the values printed for user and system time exceeds real tim e when using the

foreign thread library. However, the sum of user and system time reveals th a t applications

can also benefit on single-processor machines by running 2 to 8 times faster using foreign

thread libraries instead of built-in threading.

Safe memory (de)allocation in a pre-emptive m ulti-threaded run-tim e environm ent is as

sured by using a conservative memory m anagement system th a t is designed to work with the

thread libraries in question [BW88, WDH89]. Futhrem ore it is worth mentioning th a t it is

easy for the user to switch between the co-operative, built-in threads and the foreign threads

when writing a program . By im porting the f th r e a d module and linking the corresponding

library, the standard classes < th read> and <lock> are simply redefined so th a t program s can

run unchanged for different thread implementations.

U n i v e r s i t y Of B a t h 64 A n d r e a s K i n d

T h e M e c h a n i c s o f D y n a m i c O b j e c t s i n y o u t o o

5.6 C onclu sion

The most im portan t aspect of this chapter is th a t it dem onstrates the applicability and

effectiveness of the in terpreter architecture proposed in C hapter 4. The realization of the

architecture in form of the youtoo system shows increase in performance, memory efficiency

and ease of interoperability.

M any details which are further addressed in youtoo are not mentioned here in order to

keep the focus on the aspects related to the key elements of the architecture.

U n i v e r s i t y O f B a t h 65 A n d r e a s K i n d

C h apter 6

R elated Work

This thesis is concerned with the im plem entation of object-oriented dynamic program m ing

languages based on bytecode in terpretation. A new interpretive im plem entation architecture

is proposed th a t meets the requirem ents of code and system portability, performance, sta tic

and dynamic memory efficiency as well as language interoperability.

Much of the knowledge about bytecode interpretation th a t has accum ulated over the years

can be found in Debaere et al [DVC90]. And experiences in the object-oriented context are

collected in [Kra83]. In this chapter it is tried to compare existing language system s and

their individual techniques with the approach taken in the proposed architecture.

6.1 Sm alltalk-80

Sm alltalk technology today is in many aspects still defined by the Deutsch and Schiffman

Smalltalk-80 system [DS84]. This implem entation uses two executable program representa

tions, virtual machine code and native machine code. A compiler, as part of the interactive

development environm ent, dynamically generates on demand native code from virtual m a

chine code. The Smalltalk-80 system dem onstrates with this run-tim e translation th a t it is

possible to implement a complete dynamic object-oriented program ming environm ent (in

cluding a window system) with m odest hardware resources.

The Smalltalk-80 system, although powerful for rapid prototyping, has m ajor disadvan

tages for the delivery of stand-alone applications. A Smalltalk application is typically bound

to the development environment. This results from the dynamic character of the Sm alltalk

language (see also C hapter 3) but is also made worse by using run-tim e code generation. W ith

U n i v e r s i t y Of B a t h 6 6 A n d r e a s K i n d

R e l a t e d W o r k

dynam ic code translation between different representations a compiler and a lot more classes

than actually necessary have to be linked to applications. In fact, a Smalltalk-80 application

is an increm entally modified version of the development environment [Gol84], Explicit con

figuration of stand-alone applications [Sri88] and various stripping techniques address this

delivery problem with a lot of (user) effort. In contrast, applications with youtoo allow to

deploy small stand-alone executables thanks to the technique of compiling EuLisp modules

into C embedded virtual machine code and archiving compiled modules in native libraries.

Beside dynamic compilation on demand, inline method caching was first developed with

Sm alltalk-80. The relation between inline m ethod caching and quasi-inline m ethod caching

as proposed in the im plem entation architecture is discussed in the following section.

6 .2 S e lf

The Self system [CUL89] is probably the most advanced experimental language im plem enta

tion in the context of dynamic object-oriented programming. Self is similar to the Smalltalk-

80 system but differs in its use of prototypes instead of classes and its use of messages instead

of variables to access state .

A t the heart of the system is an optimizing native compiler th a t is designed to reduce poly

morphism and enable method inlining with techniques like, custom ization [CU89], message

splitting [CU90], type inference [APS93] and polymorphic inline m ethod caching [HCU91].

The la tte r technique has been described already in C hapter 4. Custom ization is a technique

to reduce polymorphism in Self by duplicating m ethods for more specific argum ents. Sim

ilarly to m ethod inlining, the body can be optimized with regard to the specific argum ent

types [CU89, DCG95]. Splitting is similar to custom ization but aimed to reducing poly

morphism in a single method by duplicating and re-arranging control paths [CU90]. Type

inference is discussed later in this chapter.

The success of these techniques is very good when applied together and in an iterative

m anner. In addition, profiling information is used to determine profitable areas of optim izaton

and to compile code with a bias toward common type cases (type feedback [HU94]). The

techniques developed with Self emphasize the environment character of the Self system . Like

w ith Smalltalk-80, the delivery of small executables is however difficult since compile-time and

run-tim e are interleaved. Type inference and custom ization aggravate the delivery problem

since the entire source code has to be present in order to achieve the reported performance

increase. Such a to ta l compilation furtherm ore precludes dynamic linking [HU94].

U n i v e r s i t y O f B a t h 67 A n d r e a s K i n d

R e l a t e d W o r k

The critique on the Self approach from the viewpoint of this thesis is th a t memory in

efficiency is simply unacceptable for “stand-alone” Self applications. Agesen et al [AU94]

claim to have developed an autom ated application ex tractor for Self based on type inference.

It is however unclear how well type inference, as well as custom ization, scale with larger

applications. W ithout heuristics custom ization is likely to result in code explosion and type

inference typically requires very long compilation times. It seems therefore th a t m apping

source modules with restrictive im port/export declarations onto C compilation units which

can be subsequently archived in shared libraries, as described in this work, is be tter suited to

produce stand-alone applications (or deliverable APIs) with m odest memory requirem ents.

The speed of the Self system which comes close to C performance is however undisputed.

6.3 Slim B inaries

C hapter 3 introduced source code and bytecode as architecture neutral program representa

tions. A nother form at is used with Oberon [FK97]. The abstract syntax tree of an Oberon

source module is encoded with a compression scheme based on LZW into a slim binary. Slim

binaries cannot be interpreted directly but have to be compiled a t load-time. The advan

tage over bytecode is th a t the control-flow structu re of the source module is captured in the

representation. The resulting native code generated on-the-fly can therefore be much better

optimized than native code generated from bytecode.

The tree-based encoding technique applied with slim binaries requires a loading facility

to generate the final executable application from encoded modules. The loader is basically a

fast native compiler with all its architecture dependence and development cost. The approach

proposed in this thesis is different in this aspect. After generation of C embedded virtual

machine code, the presented architecture joins the standard route of software development

and delivery of the underlying operating system (i.e. standard C compiler, native linker,

virtual memory m anagem ent).

6 .4 T ranslation in to C

C hapter 3 mentioned translation into the C program ming language as another popular route

to achieve a high-level language implem entation. There are two variations with C translation:

1. High-level code is compiled into C code th a t simulates a virtual machine.

U n i v e r s i t y O f B a t h 6 8 A n d r e a s K i n d

R e l a t e d W o r k

2 . High-level code is compiled into C code th a t uses C control structures.

Simulating a virtual machine involves generating C code and is therefore different from C

embedded code vectors as the C language is here only used as a vehicle for d a ta representation.

The representation shares however the performance drawbacks of virtual machines.

The la tte r approach to C translation is applied in many systems [Bar89, TLA92, DPS94,

Att94, SW95, Que96]. The approach supplies system portability and performance with s tan

dard C compiler technology. However, some high-level language features (e.g. c a l l / c c , tail-

call optim ization) are difficult to implement. A m ajor drawback for C translation is th a t the

executable program representation is native code, an architecture dependent form at. The

approach is therefore not well suited for the prospective application domain of high-level

distributed com puting (see C hapter 3).

6.5 Java

Java is in many ways close to be a truly dynamic object-oriented language. Dynamic linking,

autom atic memory m anagement and dynamic m ethod lookup th a t allows run-tim e class

linking, place Java close to dynamic object-oriented programming. However, Java lacks

general reflective capabilities. The class C la ss cannot be subclassed and the language does

not include a m etaobject protocol, like CLOS for instance.

Java’s interesting features from the perspective of this thesis are generic run-tim e class

loading (the user can redefine a class loader) and bytecode verification based on Java’s

monomorphic instruction set [LY96]. Beside the critique on unshared virtual machine code

(discussed in C hapter 4) which is involved with class loading, it has to be noted th a t the

dynamic configurability is much more limited compared to other language im plem entations,

including youtoo . Java application can only be extended during run-tim e with new classes.

However, m ethods and classes cannot be modified or removed dynamically.

Application s ta rt-up with Java is performed more or less in the traditional way by reading

bytecode files. Interoperability, application sta rt-up and dynamic memory usage benefit

therefore much more from the C embedded virtual machine code representation.

U n i v e r s i t y O f B a t h 69 A n d r e a s K i n d

R e l a t e d W o r k

6 .6 O ther T echniques

6 .6 .1 T y p e I n fe r e n c e

Generally, type inference is used to derive enough type information to ensure safe run-tim e

execution of a program . In order effectively to optimize object-oriented languages, m ultiple

levels in generic function call trees need to be considered. Normally a (generic) function

application call other (generic) functions, which might call again other (generic) functions

and so on until a primitive call is reached. Only few type inference approaches actually

deliver type information for multiple levels of polymorphism. Two of these are generic type

schemes [KF93] and labeled type variables [PC94]; the la tte r approach shows better results,

as the analysis effort is focussed on promising program parts only.

Some sta tic analysis techniques (e.g. type inference) can help to diminish th is penalty

but often reduce as well the dynamic character of the language by employing compile-time

dependencies.

Much work is devoted to reduce run-tim e type checks in Lisp system s [JW95, W C94,

Hen92, Shi91a, SH87]. These approaches are typically focussed on global techniques to opti

mize list processing. In an object-oriented context, list processing is less dom inant because

objects can be used where before only lists were available. W ith the typical type inflation in

object-oriented program ming run-tim e check/tag removal is superseded by the more general

problem of a fast dynamic m ethod lookup.

Some flow analysis techniques are similar to type inference in the a ttem p t to trace

polymorphism over multiple call tree levels. Both, 1CFA [Shi91b] and flow directed in

lining [JW96] disam biguate different function clones for different function call sites of the

same function. Again, these techniques are targeted to optim izations, like m ethod inlining,

and work against the emphasis of few compile-time dependencies proclaimed in this thesis.

6 .6 .2 M e t h o d L o o k u p O p t im iz a t io n

W ith polymorphic inline m ethod caching [HCU91] the monomorphic caching scheme used

with Smalltalk-80 [DS84] is augmented to store a type case sta tem ent (in native code) in

place of the full lookup call. The case statem ent reflects the previously com puted m ethods

which have been used a t this call site and defaults to the full m ethod lookup. It is argued in

C hapter 4 already th a t quasi-inline method caching has advantages over the classical caching

techniques as implemented in Smalltalk-80 and Self. Memory efficiency, cache flushing and

U n i v e r s i t y O f B a t h 70 A n d r e a s K i n d

R e l a t e d W o r k

the fact th a t compiled code should be sharable (i.e. read-only) cause severe problems with

the classical inline schemes.

Quasi-inline caching, as described in Chapter 4, uses a hashing scheme which is based

on the (virtual) program counter. By doing so, type locality can be exploited although

the cache is not really inlined but located a t the generic function. The advantage of this

scheme is th a t cache flushing and sharable virtual machine code is much simpler to realise.

Furtherm ore, with a linear search hashing policy on collision, redundancy with classical inline

caching can be avoided (see Section 4.4). While the space overhead with polymorphic inline

caching increases linear with compiled code (about 2 % [HCU91]), the space overhead with

the quasi-inline technique increases only linear with the number of generic functions.

The cache miss ratio with polymorphic inline caching is reported by Holzle et al [HCU91]

as being between 1% and 11% for a suite of five benchmarks. The miss ratio with quasi-inline

m ethod caching is measured as 1.06% as well for several applications.

Driesen et al [DH95] present several dispatch techniques for statically- and dynamically

typed languages in a common framework and discuss their cost on pipelined processors.

The results are useful for native code generation and address multiple-inheritance. Dynamic

method and class creation as well as memory consumption are however unaddressed.

An interesting approach to optimized m ethod dispatch is proposed by Queinnec [Que95].

Like quasi-inline m ethod caching, this technique is concerned to preserve the dynam ic capa

bilities of dynamic object-oriented languages, e.g. run-tim e class/m ethod definition/removal.

In contrast to many other approaches, the technique performs m ethod dispatch based on deci

sion trees and uses an optimized subclass predicate. Although compact and fast, scalability—

particularly with m ulti-m ethod dispatch—appears to be a problem since the scheme does not

adapt to the typical hot-spots th a t appear with generic function invocation in object-oriented

programming.

6 .6 .3 S t a c k C a c h in g

An generic technique th a t delivers notable improvements for bytecode interpreters is stack

caching [Ert95]. Dynamic stack caching requires multiple copies of the interpreter to keep

track of the s ta te of the stack. W ith static stack caching the compiler keeps track of the stack

state . These techniques speed-up instruction dispatch by adding significant complexity to the

interpreter or compiler and do not promise to be equally successful on different processors1.

JThe second issue partly applies as well to the proposed architecture.

U n i v e r s i t y O f B a t h 71 A n d r e a s K i n d

R e l a t e d W o r k

6 .6 .4 S e a l in g

Sealing (or freezing) is used with CMU Common Lisp [Me92] and Dylan [Sha96] to control

the dynam ism of functions and classes. Not all parts of the object system need to (or must)

make use of the potential dynam ism and opportunities for incremental development. The

idea is th a t the performance of these parts should not be compromised for flexibility they

don’t embody.

If a class is sealed it may not be subclassed further. And similarly, after sealing a generic

function, no additional m ethods may be added. Sealing of dynamically created classes and

generic functions is generally not supported since this declaration is aimed a t compile-time

optim izations. Sealing enables a be tter starting point for sta tic analysis of separately compiled

parts of a dynamic object-oriented program . In some cases however it may be difficult to

anticipate which classes could be subject to future reuse.

6 .6 .5 M e t h o d I n l in in g

Inlining is an effective technique to improve execution efficiency by replacing a function call

with the body of the called function. In this way, time for handling argum ents and allocating

control fram es can be saved. For very small functions the function call overhead can even

exceed the execution tim e spend in the function body. Generally, inlining enables ensuing

optim izations. The inlined body can be optimized with respect to the context in the host

function as well as the host function can be optimized with respect to the inlined code.

Function inlining is particularly effective for program ming languages with a high function

invocation frequency.

Because of (i) high expense and frequency of generic function invocation arising with

inheritance and encapsulation, (ii) difficulties with sta tic m ethod binding and (iii) the effect

on the success of ensuing optim izations, inlining of m ethods can be regarded as the key

optim ization in object-oriented programming. Because of this, the following techniques are

in one or another way aimed tow ards method inlining.

U n i v e r s i t y O f B a t h 72 A n d r e a s K i n d

C hapter 7

Conclusions

This work strives for a language implem entation architecture th a t addresses the requirem ents

of (bytecode) interpreted object-oriented dynamic programming (or short dynamic objects).

To achieve efficiency and interoperability without restricting the distinctive flexibility of dy

namic objects, several new implem entation techniques are developed and tested, including

embedded virtual machine code, indexed code threading, optimal instruction ordering and

quasi-inline method caching.

C embedded virtual machine code refers to the representation of bytecodes as constan t C

arrays th a t are located in sharable tex t segments after compilation. Interoperability, appli

cation s ta rt-up and dynamic memory usage benefit from this representation. Indexed code

threading addresses the performance problem with virtual instruction mapping (i.e. loading,

decoding and invoking) by using fast threaded instruction transfer. Unlike with standard

code threading, virtual machine code remains com pact and can also be executed by a non

threaded virtual machine emulator. A further performance boost is achieved with optim al

v irtual instruction ordering. This technique helps to cluster the native code im plem enting

virtual instructions so th a t native instruction cache performance is increased. Finally, the ef

ficiency problems involved with dynamic m ethod lookup are alleviated with an inline caching

scheme th a t is applicable with constant bytecode vectors. The scheme exploits type locality

similar to polymorphic inline caching. However, dynamic memory is saved by avoiding redun

dan t m ethod entries and by being adaptable to generic function invocation which typically

comes in waves with hot-spots on particular m ethods.

W ith indexed code threading and optim al instruction ordering, youtoo, an im plem enta

tion of the proposed architecture shows an average performance increase of about 2 0 % on the

U n i v e r s i t y O f B a t h 73 A n d r e a s K i n d

B i b l i o g r a p h y

P5 and SPARC architectures. Embedded virtual machine code increases sharable read-only

d a ta by a factor of two. Virtual machine code can be shared in memory by different client

applications executing it concurrently on the same machine, so th a t a t most one copy of a

m odule’s virtual machine code exists in memory. Quasi-inline m ethod caching, finally, results

with youtoo in a m ethod lookup miss ratio of 1.06%.

The im plem entation architecture is realized in youtoo with single inheritance and m ulti

method dispatch. Nonetheless, the techniques are of general applicability. Any object-

oriented dynamic language, regardless if single/m ultiple d ispatch/inheritance, can benefit

from quasi-inline m ethod caching (e.g. Smalltalk and CLOS). And embedded virtual machine

code, indexed code threading and optim al virtual instruction ordering can help to enhance

the performance of any bytecoded language im plem entation.

W ith much focus on Java and its virtual machine approach recently, it would be in ter

esting to see the im pact of applying some of the techniques to an im plem entation of Java.

Although Java owes its success to code mobility within the W orld-Wide Web [GJS96], more

and more applications use Java as a general purpose programming language w ithout applets

(and related classes). In this context, the architecture should be applicable also to Java

virtual machines.

Unaddressed in the proposed im plem entation architecture is the problem of m ethod cache

access with pre-emptive m ulti-threading [KJ93]. In general, it has to be ensured th a t one

thread does not modify a m ethod cache while another thread is reading it. The default

thread im plem entation in youtoo is realized on the level of the virtual machine so th a t

atomic read /w rite access to cached methods can be assumed. W ith foreign threading th is

assum ption does not hold any longer. A mechanism for locking m ethod tables is required.

The combination of dynamic object-oriented program ming and bytecode in terp reta tion

is exciting because of the involved tradeoffs between efficiency and flexibility. In con trast

to other approaches, this work tried to balance these tradeoffs so th a t the distinguishing

flexibility of object-oriented dynamic programming is not compromized. In sum m ary, it

is believed th a t the architecture th a t is developed within this thesis can be regarded as a

consistent continuation of the evolution of bytecode in terpretation driven by the specific

requirem ents of dynamic object-oriented programming, including efficiency, interoperability

and portability.

U n i v e r s i t y O f B a t h 74 A n d r e a s K i n d

Bibliography

[ABC+96]

[AGS94]

[AH87]

[AI96]

[App91]

[APS93]

[AR92]

0 . Agesen, L. Bak, C. Cham bers, B.-W. Chang, U. Holzle, J. Maloney, R. B.

Sm ith, and M. Wolczko. The SE LF 4-0 Programmer’s Reference M anual, 1996.

E. Amiel, O. Gruber, and E. Simon. Optimizing m ulti-m ethod dispatch using

compressed dispatch tables. In Proceedings o f the Conference on Object-Oriented

System s, Languages, and Applications, volume 29(10) of A C M S IG P L A N N O

TICES, pages 244-258, 1994.

G. Agha and C. Hewitt. Actors: A conceptual foundation for concurrent object-

oriented programming. In B. Shriver and P. Wegner, editors, Research Directions

in Object-Oriented Programming, pages 49-74. M IT Press, 1987.

American National S tandards Institu te and Information Technology Industry

Council. Am erican National Standard fo r Inform ation Technology: programming

language — Common LISP. American National S tandards Institu te, 1996.

A. W . Appel. Garbage collection. In Peter Lee, editor, Topics in Advanced

Language Im plem entation , pages 89-100. M IT Press, Cambridge, M assachusetts,

1991.

O. Agesen, J. Palsberg, and M. I. Schwartzbach. Type Inference SELF: Analysis

of O bjects with Dynamic and M ultiple Inheritance. In 0 . N ierstrasz, editor,

European Conference on Object-Oriented Programming (ECO OP), LNCS 707,

pages 247-267. Springer, July 1993.

P. Andre and J.-C . Royer. Optimizing m ethod search with lookup caches and

incremental coloring. In Proceedings o f the A C M Conference on Object-Oriented

Programming Systems, Languages, and Applications, pages 110-126, October

1992. Also available as SIGPLAN Notices, 27(10), 1992.

U n i v e r s i t y O f B a t h 75 A n d r e a s K i n d

B i b l i o g r a p h y

[Att94] G. A ttard i. The embeddable Common Lisp. In Proceedings o f the Lisp Users

and Vendor Conference, Berkeley, California, August 1994.

[AU94] O. Agesen and D. Ungar. Sifting out the gold. In Proceedings o f the Conference

on Object-Oriented System s, Languages, and Applications, pages 355-370. ACM,

1994.

[Bar8 8] J. F. B artle tt. Com pacting garbage collection with ambiguous roots. Technical

R eport 8 8 / 2 , Digital Equipment Corporation W estern Research Laboratory, Palo

Alto, February 1988.

[Bar89] J. F . B artle tt. Scheme->C a Portable Scheme to C Compiler. Technical Report

89/1 , DEC W estern Research Laoratory, 1989.

[BCD+91] M. E. Benitez, P. Chan, J. Davidson, A. Holler, S. Meloy, and V. Santhanam .

ANDF: Finally an UNCOL after 30 years. Technical Report CS-91-05, University

of Virginia, March 1991.

[BDG+ 8 8 a] D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel, S. E. Keene, G. Kicsales, and

D. A. Moon. Common L ISP object system specification X3J13 Document 88-

002R. SIGPLAN Notices, 23(9). 1988.

[BDG+ 8 8 b] D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel, S. E. Keene, G. Kiczales, and

D. A. Moon. Common LISP object system specification X3J13 docum ent 8 8 -

002R. A C M S IG P L A N Notices, 23, 1988. Special Issue, Septem ber 1988.

[Bel73] J. R. Bell. Threaded code. Communications o f the A C M , 16(6):370-372, 1973.

[BKDP93] H. B retthauer, J . Kopp, H. Davis, and K. Playford. Balancing the EuLisp

m etaobject protocol. Lisp and Symbolic Com putation , 6(1/2): 119—138, August

1993.

[BKK+ 8 6] D. G. Bobrow, K. Kahn, G. Kiczales, L. M asinter, M. Stefik, and F. Zdybel.

CommonLoops, merging Common Lisp and object-oriented program ming. In

Proceedings o f the A C M Conference on Object-Oriented Programming Systems,

Languages, and Applications, pages 17-29, October 1986. Also available as SIG

PLAN Notices 21(11), November 1986.

U n i v e r s i t y O f B a t h 76 A n d r e a s K i n d

B i b l i o g r a p h y

[Boe93]

[Bra96]

[BSS84]

[BW 8 8]

[CE91]

[Cha92]

[CJK95]

[CL94]

[Cli84]

[Coi87]

[Cor97]

H .-J. Boehm. Space efficient conservative garbage collection. In Proceedings o f

S IG P L A N ’93 Conference on Programming Languages Design and Im plem enta

tion , volume 28(6) of A C M S IG P L A N Notices, pages 197-206, 1993.

R. J . Bradford. An im plem entation of Telos in Common Lisp. Object Oriented

System s , 3:31-49, 1996.

D. R. Barstow, H. E. Shrobe, and E. Sandewell. Interactive Programming E nvi

ronments. McGraw-Hill, New York, 1984.

H .-J. Boehm and M. Weiser. Garbage collection in an uncooperative environ

m ent. Software— Practice and Experience, 18(9):807—820, 1988.

W. Clinger and J. Rees (Editors). Revised4 report on the algorithm ic language

scheme. Available from f tp : / /n e x u s .y o r k u .c a /p u b /s c h e m e , November 1991.

C. Cham bers. Object-oriented m ulti-m ethods in Cecil. In EC O O P ’92, European

Conference on Object-Oriented Programming, volume 615 of Lecture Notes in

Computer Science , pages 33-56. Springer-Verlag, 1992.

H. Cejtin, S. Jagannathan , and R. Kelsey. Higher-order d istributed objects.

A C M Transactions on Programming Languages and System s , 17(5):704-739,

1995.

C. Cham bers and G. T. Leavens. Typechecking and modules for m ulti-m ethods.

In Object-Oriented Programming Systems, Languages, and Applications, pages

1-15, October 1994. Also available as SIGPLAN Notices 29(10).

W . Clinger. The Scheme 311 compiler: An exercise in denotational semantics.

In Conference Record o f the 1984 A C M Symposium on Lisp and Functional

Programming, pages 356-364, August 1984.

P. Cointe. Metaclasses are first class: the objvlisp model. In Proceedings o f the

Conference on Object-Oriented Programming Systems, Languages, and Applica

tions (O O P SLA), volume 22, pages 156-167. ACM Press, December 1987.

D. D. Corkill. Countdown to success: Dynamic objects, GBB, and

RADARSAT 1. Communications o f the A C M , 40(5):48-58, May 1997.

U n i v e r s i t y O f B a t h 77 A n d r e a s K i n d

ftp://nexus.yorku.ca/pub/scheme

B i b l i o g r a p h y

[CPL83]

[CU89]

[CU90]

[CUL89]

[CW85]

[DB97]

[DCG95]

[DeM93]

[Deu73]

[DH95]

T. J . Conroy and E. Pelegri-Llopart. An assessment of m ethod-lookup caches

for Smalltalk-80 implementations. In in [Kra83], pages 239-247. 1983.

Craig Cham bers and David Ungar. Customization: optimizing compiler tech

nology for SELF, a dynamically-typed object-oriented program ming language.

In Proceedings o f the A C M SIG P L A N ’89 Conference on Programming Lan

guage Design and Im plem entation, volume 24, pages 146-160, Portland , OR,

June 1989.

C. Cham bers and D. Ungar. Iterative type analysis and extended message split

ting: optimizing dynamically-typed object-oriented programs. In Proceedings o f

the S IG P L A N ’90 Conference on Programming Language Design and Im plem en

tation, pages 150-164, June 1990.

C. Cham bers, D. Ungar, and E. Lee. An efficient im plem entation of SELF a

dynam ically-typed object-oriented language based on prototypes. A C M S IG

P L A N Notices, 24(10):49-70, October 1989.

Luca Cardelli and Peter Wegner. On Understanding Types, D a ta A bstraction,

and Polymorphism. Computing Surveys, 17(4):471-522, December 1985.

B. Davies and V. Bryan Davies. Patching onto the Web: Common Lisp hyper

media for the In tranet. Communications o f the ACM , 40(5):66-69, M ay 1997.

J. Dean, C. Chambers, and D. Grove. Selective specialization for object-oriented

languages. A C M S IG P L A N Notices, 30(6):93-102, 1995.

L. G. DeMichiel. CLOS and C + + . In A. Paepcke, editor, Object-Oriented

Programming: the CLO S Perspective, chapter 7, pages 157-180. M IT Press,

Cam bridge, Mass., 1993.

L. P. Deutsch. A LISP machine with very com pact programs. In Nils J . Nils

son, editor, Proceedings o f the 3rd International Joint Conference on Artificia l

Intelligence, Standford, CA, August 1973.

K. Driesen and U. Holzle. Minimizing row dispacement dispatch tables. In

Proceedings o f the A C M O O P SL A ’95 Conference, pages 141-155, 1995.

U n i v e r s i t y Of B a t h 78 A n d r e a s K i n d

B i b l i o g r a p h y

[DPS94]

[Dri93]

[DS84]

[DS96]

[DVC90]

[EEF+97]

[Ert95]

[FK97]

[Fod91]

[FS83]

[FSDF93]

[Gas92]

[GJS96]

H. E. Davis, P. Parquier, and N. Seniak. Sweet Harmony: The T A L K /C + + Con

nection. In Proceedings o f the Conference on Lisp and Functional Programming.

ACM Press, New York, 1994.

Karel Driesen. Selector table indexing & sparse arrays. In Proceedings o f the

A C M O O P SL A ’93 Conference, 1993.

P. Deutsch and A. M. Schiffman. Efficient im plem entation of the Smalltalk-

80 system . In Conference Record of the Eleventh A nnual A C M Symposium on

Principles o f Programming Languages, pages 297-302, January 1984.

R. V. D ragan and L. Seltzer. Java speed trials. P C M agazine, 15(10), October

1996.

E. H. Debaere and J. M. Van Cam penhout. Interpretation and Instruction Path

Coprocessing. The M IT Press, 1990.

J. E rnst, W. Evans, Ch. W. Fraser, S. Lucco, and T. A. Proebsting. Code com

pression. In Proceedings o f the A C M S IG P L A N ’91 Conference on Programming

Language Design and Im plem entation , pages 358-365, June 15-18, 1997.

M. A. Ertl. Stack caching for interpreters. In S IG P L A N ’95 Conference on

Programming Language Design and Im plem entation , pages 315-327, 1995.

M. Franz and Th. Kistler. Slim binaries. Communications o f the A C M ,

40(12):87-94, December 1997.

J. Foderaro. LISP: Introduction. Communications o f the A C M , 34(9):27-27,

Septem ber 1991.

J. R. Falcone and J. R. Stinger. The Smalltalk-80 im plem entation a t H ew lett-

Packard. In Glenn Krasner, editor, Smalltalk-80: B its o f History, Words o f

Advice , pages 79-112. Addison-Wesley, 1983.

C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of compiling

with continuations. A C M S IG P L A N Notices, 28(6):237-247, 1993.

L. Gasser. A n Overview o f DAI, pages 9-30. Kluwer Academic Publishers, 1992.

J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-

Wesley, 1996.

U n i v e r s i t y O f B a t h 79 A n d r e a s K i n d

B i b l i o g r a p h y

[GK94]

[GLDW87]

[Gol84]

[Gol95]

[Gos95]

[GR83]

[Gre84]

[Gro95]

[HAKN97]

[Ham97]

[HCU91]

[Heh76]

[Hen92]

M. R. Genesereth and S. P. Ketchpel. Software agents. Communications o f the

A C M , 37(7):49—53, July 1994.

R. A. Gingell, M. Lee, X. T. Dang, and M. S. Weeks. Shared libraries in SunOS.

In USENIX Association, editor, Proceedings o f the Sum m er 1987 U SE N IX Con

ference: June 8-12, 1987, Phoenix, Arizona, USA , pages 131-145, Berkeley, CA,

USA, 1987. USENIX.

A. Goldberg. The influence of an object-oriented language on the program ming

environm ent. In D. R. Barstow, H. E. Shrobe, and E. Sandewall, editors, In ter

active Programming Environm ents , pages 141-174. McGraw-Hill, 1984.

A. Goldberg. W hy Smalltalk? Communications o f the A C M , 38(10):105-107,

October 1995.

J. Gosling. Java interm ediate bytecodes. A C M S IG P L A N Notices, 30(3): 111—

118, M arch 1995.

A. Goldberg and D. Robson. Smalltalk-80: The Language and its Im plem enta

tion. Addison-Wesley, 1983.

R. G reenblatt. The LISP machine. In D. R. Barstow, H. E. Shrobe, and E. Sande

wall, editors, Interactive Programming Environments. McGraw-Hill, 1984.

G artner Group. Research note on LISP, July 1995.

J. Hummel, A. Azevedo, D. Kolson, and A. Nicolau. A nnotating the java byte

codes in support of optim ization. 1997.

S. Ham ilton. New products: Agent-based distributed com puting in Java: Voy

ager agents. Computer, 30(5):97—98, May 1997.

U. Holzle, C. Cham bers, and D. Ungar. Optimizing dynamically-typed object-

oriented program ming languages with polymorphic inline caches. In EC O O P ’91

Conference Proceedings. Springer Verlag LNCS 512, 1991.

E. C. R. Hehner. Com puter design to minimize memory requirem ents. Computer,

9 (8):65-70, August 1976.

Fritz Henglein. Global tagging optim ization by type inference. In Conference on

Lisp and Functional Programming , pages 205-215. ACM, 1992.

U n i v e r s i t y O f B a t h 80 A n d r e a s K i n d

B i b l i o g r a p h y

[Hew77]

[Hoe74]

[HU 94]

[IEE91]

[Int97]

[JW95]

[JW96]

[KAJ93]

[KdRB91]

[KF93]

[KJ93]

C. Hewitt. Viewing control structures as patterns of passing messages. Artificial

Intelligence , (8):323-364, 1977.

L. W . Hoevel. ‘Ideal’ directly executable languages: An analytical argum ent for

em ulation. IE E E Transactions on Computers, 23(8):759-767, 1974.

U. Holzle and D. Ungar. Optimizing dynamically-dispatched calls with run-tim e

type feedback. In S IG P L A N ’94, Orlando, pages 326-336. ACM, 1994.

IEEE Com puter Society, New York. IE E E Standard fo r the Scheme Program

ming Language, IEEE standard 1178-1990 edition, 1991.

International S tandards Organization. Inform ation Technology— Programming

languages, their environments and system software interfaces— Programming

language ISLISP . International S tandards Organization, 1997.

S. Jagannathan and A. W right. Effective flow analysis for avoiding run-tim e

checks. In Proceedings o f the Second International Static Analysis Sym posium ,

volume 983 of LN C S , pages 207-224. Springer-Verlag, 1995.

S. Jagannathan and A. K. W right. Flow-directed inlining. In Proceedings o f the

A C M S IG P L A N ’96 Conference on Programming Language Design and Imple

m entation , pages 193-205, May 1996.

G. Kiczales, J. M. Ashley, and L. H. Rodriguez Jr. M etaobject protocols: W hy we

w ant them and what else. In A. Paepcke, editor, Object-Oriented Programming:

the C LO S Perspective, chapter 14, pages 101-118. M IT Press, Cambridge, Mass.,

1993.

G. Kiczales, J. des Rivieres, and D. Bobrow. The A rt o f the Metaobject Protocol

M IT Press, Cambridge, M assachusetts, 1991.

A. Kind and H. Friedrich. A practical approach to type inference for EuLisp.

Lisp and Symbolic Computation , 6(1/2): 159—176, 1993.

G. Kiczales and L. H. Rodriguez Jr. Efficient method dispatch in PCL. In

A. Paepcke, editor, Object-Oriented Programming: the C LO S Perspective , chap

ter 14, pages 335-348. M IT Press, Cambridge, Mass., 1993.

U n i v e r s i t y O f B a t h 81 A n d r e a s K i n d

B i b l i o g r a p h y

[Kli81]

[KP98]

[KR94]

[Kra83]

[KS8 6]

[LV97]

[LY96]

[Mae87]

[McC59]

[Me92]

[Mic6 8]

[M0 0 8 6]

[NAJ+91]

P. Klint. In terpreta tion techniques. Software— Practice and Experience ,

11(9) :963—973, Septem ber 1981.

A. Kind and J. Padget. Multi-lingual threading. In Euromicro Workshop on

Parallel and Distributed Processing, Madrid, pages 431-437. IEEE Com puter

Society, 1998.

R. Kelsey and J. Rees. A tractable Scheme im plem entation. Lisp and Symbolic

Computation , 7(2):315-335, 1994.

G. Krasner, editor. Smalltalk-80: B its o f History, Words o f Advice. Addison-

Wesley, Reading, 1983.

R. M. Keller and M. R. Sleep. Applicative caching. A C M Transactions on

Programming Languages and System s , 8(1):88—108, 1986.

R. Laddaga and J . Veitch. Dynamic object technology. Communications o f the

A C M , 40(5):36—38, May 1997.

T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-

Wesley, 1996.

P. Maes. Concepts and experiments in com putational reflection. In Proceedings

o f the Conference on Object-Oriented Programming Systems, Languages, and

Applications (O O P SLA), pages 147-155. ACM Press, December 1987.

J. M cCarthy. Program s in LISP. Report A. I. M EMO 12, M .I.T ., RLE and M IT

C om putation Center, Cambridge, M assachusetts, May 1959.

R. A. M acLachlan (editor). CM U Common Lisp User’s Manual. D epartm ent of

C om puter Science, Carnegie-Mellon University, July 92.

D. Michie. Memo functions and machine learning. Nature, 218:19-22, Apr 1968.

D. A. Moon. Object-oriented program ming with Flavors. A C M S IG P L A N No

tices, 21(11) :1—8 , November 1986. OOPSLA ’8 6 Conference Proceedings, Nor

man Meyrowitz (editor), September 1986, Portland, Oregon.

K. V. Nori, U. A m m ann, K. Jensen, H. H. Nageli, and C. Jacobi. Pascal-P

implemenation notes. In D. W. Barron, editor, Pascal— The Language and its

Im plem entation , pages 125-170. Wiley & Sons, Ltd., 1991.

U n i v e r s i t y O f B a t h 82 A n d r e a s K i n d

B i b l i o g r a p h y

[Nas92]

[Nor93]

[NWM93]

[OP93]

[Ous94]

[PC94]

[PC C +8 6]

[PE92]

[Phi97]

[Pit87]

[PK98]

I. Nassi. in: Dylan— A n Object-Oriented Dymanic Language. Apple C om puter,

1992.

A. C. Norman. Com pact delivery support for REDUCE. Lecture Notes in Com

puter Science , 722:331, 1993.

J. R. Nicol, C. Th. Wilkes, and F. A. M anola. O bject orientation in heteroge

neous d istributed computing systems. Computer, 26(6):57-67, June 1993.

M. H. Odeh and J. A. Padget. Object-oriented execution of OPS5 production

system s. In Proceedings o f the Conference on Object-Oriented Programming Sys

tems,, Languages and Applications, pages 178-190. ACM, 1993.

J. K. O usterhout. Tel and the Tk Toolkit. Addison Wesley, Reading M as

sachusetts, 4 edition, 1994.

J. Plevyak and A. A. Chien. Precise concrete type inference for object-oriented

languages. A C M SIG P L A N Notices, 29(10):324—340, 1994.

J. Padget, J. Chailloux, Th. Christaller, R. deM antaras, J. D alton, M. Devin,

J. F. Fitch, T. Krummnack, E. Neidl, E. Papon, S. Pope, Ch. Queinnec, L. Steels,

and H. Stoyan. D esiderata for the standardization of LISP. In Proceedings o f the

A C M Conference on L ISP and Functional Programming, pages 54-66, August

1986.

J. Padget and G. Nuyens (Eds.). The EuLisp Definition. Version 0.99; available

from f t p : / / f t p .m a t h s .b a th .a c .u k , 1992.

R. E. Phillips. Dynamic objects for engineering autom ation. Com munications

o f the A C M , 40(5):59—65, May 1997.

T. P ittm an . Two-level hyprid in terp re ter/na tive code execution for combined

space-time program efficiency. In Proceedings S IG P L A N ’87 Symposium on In

terpreters and Interpretive Techniques, pages 150-152. ACM, June 1987. Also

available as SIGPLAN Notices 22(7) July 1987.

J. Padget and A. Kind. A tunable architecture for delivering in terpreted pro

grams. In S.A. Cerri and C. Queinnec, editors, Actes de JF L A 98— Journees

Francophones des Langages Applicatifs, number 17 in Collection D idactique,

pages 117-139. INRIA, 1998.

U n i v e r s i t y O f B a t h 83 A n d r e a s K i n d

ftp://ftp.maths.bath.ac.uk

B i b l i o g r a p h y

[PL91]

[PNB93]

[Que95]

[Que96]

[RNSP97]

[SB8 6]

[SG93]

[SH87]

[Sha95]

[Sha96]

[Shi91a]

[Shi91b]

B. A. Pearlm utter and K. J. Lang. The im plem entation of Oaklisp. In P. Lee, ed

itor, Topics in Advanced Language Implementation. The M IT Press, Cam bridge,

1991.

J . Padget, G. Nuyens, and H. B retthauer. An overview of EuLisp. Lisp and

Symbolic Com putation , 6 (1 /2):9—98, August 1993.

Ch. Queinnec. Fast and compact dispatching for dynamic object-oriented lan

guages. Technical Report 10, Ecole Polytechnique, Project ICSLA, 1995.

Ch. Queinnec. Lisp In Sm all Pieces. Cambridge University Press, Cam bridge,

UK, 1996.

J . A. Rodriguez, P. Noriega, C. Sierra, and J. A. Padget. FM 96.5 A Java-based

Electronic Auction House. In Second International Conference on The Practical

Application o f Intelligent Agents and M ulti-Agent Technology: P A A M ’97, 1997.

M. Stefik and D. G. Bobrow. O bject oriented programming: Themes and vari

ations. The A l Magazine, 6(4):40-62, 1986.

G. L. Steele, Jr. and R. P. Gabriel. The evolution of lisp. In History o f Pro

gramming Languages Conference, volume 28, pages 231-270, M arch 1993.

P. Steenkiste and J. Hennessy. Tags and type checking in Lisp: Hardw are and

software approaches. In Conference on Architectural Support fo r Programming

Languages and Operating System s (A SP L O S), October 1987.

Y.-P. Shan. Introduction: Smalltalk on the rise. Communications o f the A C M ,

38(10):102-104, October 1995.

A. L. M. Shalit. Dylan Reference Manual. Addison-Wesley, 1996.

O. Shivers. Data-flow analysis and type recovery in Scheme. In P. Lee, editor,

Topics in Advanced Language Im plem entation , chapter 3, pages 47-87. The M IT

Press, 1991.

O. G. Shivers. Control-Flow Analysis o f Higher-Order Languages or Taming

Lambda. PhD thesis, Carnige-Mellon Univeristy, May 1991.

U n i v e r s i t y O f B a t h 84 A n d r e a s K i n d

B i b l i o g r a p h y

[Shi97]

[Shr96]

[Sim97]

[Smi84]

[Sny87]

[Sri8 8]

[Sta92]

[Ste84]

[Ste90]

[Str93]

[Sun93]

[SW95]

O. Shivers. A utom atic m anagement of operating-system resources. In Pro

ceedings o f the 1997 A C M S IG P L A N International Conference on Functional

Programming, pages 274-279, 9-11 June 1997.

H. Shrobe. W hy the Al community still needs Lisp. IE E E Expert Online ,

February 1996.

R. Simmonds. Personal communication. 1997.

B. C. Smith. Reflection and semantics in Lisp. In Conference Record o f the

Eleventh A nnual A C M Symposium on Principles o f Programming Languages,

pages 23-35. ACM, January 1984.

A. Snyder. Inheritance and the development of encapsulated software compo

nents. In B. Shriver and P. Wegner, editors, Research Directions in Object-

Oriented Programming. M IT Press, 1987.

S. Sridhar. Configuring stand-alone Smalltalk-80 applications. In Proceedings o f

the Conference on Object-Oriented Programming System s, Languages and A p

plications, pages 95-104, November 1988. Also published as ACM SIGPLAN

Notices, 23(11).

R. M. Stallm an. Using and Porting GNU CC. Free Software Foundation, Inc.,

December 1992.

G. L. Steele, Jr. Common Lisp: The Language. Digital Press, first edition, 1984.

G. L. Steele Jr. Common Lisp: The Language. Digital Press and Prentice-Hall,

second edition, 1990.

B. S troustrup. A history of C + + : 1979-1991. In A C M S IG P L A N H O PL-II. 2nd

A C M S IG P L A N History o f Programming Languages Conference (Preprints),

volume 28, pages 271-297. ACM Press, M arch 1993.

SunSoft. SunO S 5.3 Linker and Libraries M anual, 1993.

M. Serrano and P. Weis. Bigloo: a portable and optimizing compiler for strict

functional languages. Lecture Notes in Computer Science , 983:366, 1995.

U n i v e r s i t y O f B a t h 85 A n d r e a s K i n d

B i b l i o g r a p h y

[TLA92]

[Way95]

[WC94]

[WDH89]

[Wei 9 7]

[Wil95]

[Wil97]

[WS91]

[WY8 8]

[Zor93]

D. Tarditi, P. Lee, and A. Acharya. No assembly required: compiling standard

ML to C. A C M Letters on Programming Languages and System s , 1(2):161—177,

June 1992.

P. W ayner. Agents Unleashed: A Public Domain Look at Agent Technology.

Academic Press: London, 1995.

A. K. W right and R. Cartw right. A practical soft type system for Scheme. In

Proceedings o f the A C M Symposium on Lisp and Functional Programming, pages

250-262, 1994.

M. Weiser, A. Demers, and C. Hauser. The portable common runtim e approach

to interoperability. In Proceedings o f the A C M Symposium on Operating System s

Principles, pages 114-122, December 1989. Also published in ACM O perating

Systems Review 23(5).

K. Weihe. Reuse of algorithms: Still a challenge to object-oriented program m ing.

In Proceedings o f the Conference on Object-Oriented Programming System s, Lan

guages, and Applications (O O PSLA), pages 34-48. ACM Press, O ctober 1997.

P. R. Wilson. G arbage collection. Computing Surveys, 1995.

A. Wilson. The Java Native M ethod Interface and Windows. Dr. Dobb’s Journal

o f Software Tools, 22(8):46-50, August 1997.

L. Wall and R. L. Schwartz. Programming Perl. O ’Reilly Associates, Inc., 1991.

T. W atanabe and A. Yonezawa. Reflection in an Object-Oriented C oncurrent

Language. In Proceedings o f the OOPSLA ’88 Conference on Object-oriented

Programming Systems, Languages and Applications, pages 306-315, November

1988. Published as ACM SIGPLAN Notices, volume 23, num ber 11.

B. G. Zorn. The measured cost of conservative garbage collection. Software-—

Practice and Experience, 23(7):733-756, July 1993.

U n i v e r s i t y O f B a t h 86 A n d r e a s K i n d

A ppendix A

A ssem bler Code

A .l V irtu a l In stru ctio n Transfer on P 5

. L4:

. 1 2 6 2 :

. L260:

movzbl (*/,eax) ,'/,edx
crapl $255,'/,edx
ja . L4
jmp * .L262(,'/,edx,4)

.lo n g .L260

in c l */,eax
jmp . L4

g e t in s tr u c t io n
range check
d e fa u lt jump
jump ta b le lookup and jump to n ext
in s tr u c t io n

jump ta b le

increm ent pc
loop jump

Figure A-l: Virtual instruction transfer with sw itch on P5 (gcc - 02)

• L18:
movl ('/,edx) ,7,eax # g e t la b e l address
addl $ 4 ,’/,edx # increm ent pc
jmp *'/,eax # jump to next in s tr u c t io n

Figure A-2: Virtual instruction transfer with code threading on P5 fjgcc -6 2)

. L18:
in c l '/.edx # increm ent pc
movzbl ('/,edx) ,'/,eax # g e t la b e l o f f s e t
jmp *-1024('/,ebp,'/,eax,4) # jump to next in s tr u c t io n

Figure A-3: Virtual instruction transfer with indexed code threading on P5 (gcc - 0 2)

U n i v e r s i t y O f B a t h 87 A n d r e a s K i n d

A s s e m b l e r C o d e

A .2 V irtu a l In stru ction Transfer on M IP S

$L4:
lb u $ 3 ,0 ($ 4)
#nop
s i t u $ 2 ,$ 3 ,2 5 6

$L265:
beq $2,$0,$L 265
s l l $ 2 ,$ 3 ,2
lw $ 2 ,$L262($2)
#nop
j $2

$L262:
.gpword $L260

$L260:
j $L4
addu $ 4 ,$ 4 ,1

Figure A-4: Virtual instruction

g e t in s tr u c t io n

range check

d e fa u lt jump
m u ltip ly by 4
jump ta b le lookup

jump to next in s tr u c t io n

jump ta b le

loop jump
increm ent pc

transfer with sw itch on M IP S fgcc -02,)

$L75:
lw $ 2 ,0 ($ 3) # g e t la b e l address
#nop
j $2 # jump to next in s tr u c t io n
addu $ 3 ,$ 3 ,4 # increm ent pc

Figure A-5: Virtual instruction transfer with code threading on M IP S (gcc -02,)

$L8:
addu $ 6 ,$ 6 ,1
lbu $ 2 ,0 ($ 6)
#nop
s l l $ 2 ,$ 2 ,2
addu $ 2 ,$ sp ,$ 2
lw $ 2 ,8 ($ 2)
#nop
j $2

increm ent pc
put pc in $2

m ultipy by 4
add la b e l ta b le o f f s e t
g e t in s tr u c t io n address

jump to next in s tr u c t io n

Figure A-6 : Virtual instruction transfer with indexed code threading on M IP S (gcc - 0 2)

U n i v e r s i t y O f B a t h 88 A n d r e a s K i n d

A s s e m b l e r C o d e

A .3 V irtu a l In stru ction Transfer on SPA R C

.LL4:
ldub C'/.oO] ,*/,g2
cmp '/,g2 ,255

. LL265:
bgu .LL265
nop
s l l y,g2 , 2 , 7,g2
Id [y.g2+'/.g3] , ’/,g2
jmp */,g2
nop

. LL262:
.word .LL260

. LL260:
b . LL4
add '/,o0,1 , '/,o0

Figure A-7: Virtual instruction

g e t in s tr u c t io n
range check

d e fa u lt jump

m u ltip ly by 4
jump ta b le lookup
jump to next in s tr u c t io n

jump ta b le

loop jump
increm ent pc

transfer with sw itch on SP A R C fgcc -0 2)

. LL147:
Id [*/,g3] ,'/,g2 # g e t la b e l address
jmp */,g2 # jump to next in s tr u c t io n
add # increm ent pc

Figure A-8 : Virtual instruction transfer with code threading on SP A R C (gcc -0 2)

.LL9:
add '/,i0,1 ,'/,i0 # increm ent pc
ldub C'/.iO] ,'/,o0 # put pc in '/,o0
s l l '/,00,2,7,00 # m ultipy by 4
add */,fp, 7,oO, 7,oO # add la b e l ta b le o f f s e t
Id [7.00-1040] , ’/,oO # g e t in s tr u c t io n address
jmp '/,oO # jump to next in s tr u c t io n
nop

Figure A-9: Virtual instruction transfer with indexed code threading on SP A R C (gcc -02^

U n i v e r s i t y O f B a t h 89 A n d r e a s K i n d

A ppendix B

Various Tables

Type Processor RAM D ata Cache Instr Cache
P5 PC 150MHz P150 32M 16K+512K 16K

M IPS SGI Indy lOOMhz MIPS R4600 64M 16K 16K
SPARC SUN SS100E 4x50MHz SPARC 4d 192M 16K 32K

Table B .l: Architectures

arity dynamic ratio
1

2

3
> 3

0.315350
0.536946
0.105638
0.042066

Table B.2: Generic function arity ratio in O PS5 implemented in EuLisp

Program Stress
arithO integer arithm etic
a rith l float arithm etic
hanoi slot access
mem memory management
meth method invocation
nfib recursion, integer arithm etic
rec recursion
tak recursion, integer arithm etic
takl list processing, recursion
vec vector access

Table B.3: Benchmark programs

U n i v e r s i t y O f B a t h 90 A n d r e a s K i n d

V a r i o u s T a b l e s

flag description
-h e lp show usage
-lo a c L p a th <dir> add < dir> to load path
-c create C linkable module file only
- a r create C linkable library file
- 1 < lib> specify C linkable library
-L < dir> extent C linkable library load path
- f f f < f i le > specify C foreign function file
- f f l < lib> specify C foreign function library
-o < f i le > destination file
- s c r i p t script mode
-no_gc garbage collection library not linked
-c c <com piler> used C compiler
- I d < lin k e r> used C linker
-ar_cmd <cmd> used C ar command
-ra n lib .c m d <cmd> used C ranlib command
- c f l a g s < flag> additional C compiler flag
- s t a t i c no shared libraries used
"g C debug info
- i force interpretation mode

Table B.4: youtoo flags (extract)

Lisp C
< c h a ra c te r> ch a r
< in t> i n t
<double> double
< s tr in g > c h a r *
b o o lean i n t
p t r v o id *
< in t*> i n t *
<double*> double *
< s tr in g * > c h a r **

Table B.5: Foreign function converters

U n i v e r s i t y O f B a t h 91 A n d r e a s K i n d

A ppendix C

M easurem ents

P5
gcc random

threaded
custom optim al random

switched
custom optim al

arithO 9.61s 6.96s 6.96s 8.31s 8.43s 8 .2 2 s
a rith l 7.90s 6.78s 7.05s 8.30s 7.89s 7.66s
hanoi 6.24s 4.88s 5.08s 6.17s 5.85s 5.31s
mem 6.18s 5.95s 5.94s 6 .0 2 s 5.97s 5.99s
m eth 10.19s 7.78s 7.89s 9.87s 11.83s 9.58s
nfib 14.29s 1 0 .2 2 s 9.38s 11.44s 11.70s 11.29s
rec 19.04s 17.98s 18.40s 22.83s 2 1 .6 8 s 2 1 .1 1 s
tak 13.14s 9.38s 9.70s 11.35s 12.07s 11.30s
takl 10.30s 7.94s 7.94s 9.15s 9.78s 10.34s
vec 8.94s 5.93s 5.46s 6.76s 6.73s 7.72s

Table C .l: Instruction ordering and threaded dispatch on P5

M IPS
gcc random

threaded
custom optim al random

switched
custom optim al

arithO 16.58s 9.95s 11.63s 14.59s 13.11s 13.22s
a rith l 16.23s 13.50s 14.19s 14.91s 14.72s 14.97s
hanoi 12.97s 9.62s 8.16s 9.25s 9.15s 10.15s
mem 15.16s 14.40s 14.52s 14.50s 14.20s 14.45s
m eth 16.57s 13.29s 13.45s 18.40s 16.91s 18.49s
nfib 15.86s 15.43s 15.56s 20.91s 20.05s 19.96s
rec 28.84s 28.00s 28.20s 37.54s 36.27s 36.75s
tak 16.59s 15.50s 15.45s 20.26s 19.86s 19.93s
takl 14.66s 13.57s 13.71s 17.67s 16.90s 17.41s
vec 12.83s 10.23s 9.16s 11.45s 11.29s 11.34s

Table C .2 : Instruction ordering and threaded dispatch on M IP S

U n i v e r s i t y O f B a t h 92 A n d r e a s K i n d

M e a s u r e m e n t s

SPARC
gcc random

threaded
custom optimal random

switched
custom optim al

arithO 14.13s 14.14s 13.77s 14.00s 17.70s 13.93s
a rith l 15.67s 13.63s 13.43s 14.33s 16.69s 13.50s
hanoi 11.53s 11.30s 10.93s 11.70s 1 1 .8 6 s 1 1 .1 0 s
mem 13.20s 14.20s 12.80s 12.06s 13.23s 13.10s
meth 18.98s 16.86s 20.93s 19.00s 22.07s 16.57s
nfib 25.39s 21.33s 21.40s 29.73s 28.17s 21.30s
rec 40.53s 40.46s 40.03s 40.49s 50.17s 40.20s
tak 22.93s 22.53s 22.76s 45.43s 33.06s 25.29s
takl 20.57s 20.36s 26.17s 20.47s 25.83s 26.26s
vec 13.10s 12.90s 12.79s 12.89s 15.67s 12.56s

Table C.3: Instruction ordering and threaded dispatch on SP A R C

U n i v e r s i t y O f B a t h 93 A n d r e a s K i n d

M e a s u r e m e n t s

code position invocation name
27 1 0.12647739 STACK_REFO
31 2 0.11775139 STACK_REF
28 3 0.09931751 STACKJIEF1
68 4 0.07262022 BRANCH_NIL_P0S
29 5 0.05743256 STACK_REF2
36 6 0.05520266 BINDING_REF
69 7 0.02998005 RETURN
60 8 0.02931382 CALL_0PERAT0R
26 9 0.02794180 FPIJLT
54 10 0.02538586 BRANCH.P0S
171 11 0.02368542 CHECK-ARGUMENTS2
61 12 0.02332673 TAIL_CALL_0PERAT0R
71 13 0.01895022 DISPLAY_REF
130 14 0.01887169 STATIC_REFO
18 15 0.01838423 NULLP
34 16 0.01729920 NOBBLE
67 17 0.01707753 CHECK_ARGUMENTS
17 18 0.01700065 THE.CDR
21 19 0.01443220 FPI_DIFFERENCE
2 20 0.01355292 PRIMITIVE-REF

72 21 0.01322283 SET_DISPLAY_REF
42 22 0.01243134 P0P1
131 23 0.01236767 STATIC_REF1
20 24 0.01143196 FPI.SUM
35 25 0.01110556 STATIC_REF
170 26 0.01089714 CHECK-ARGUMENTS1
132 27 0.01080677 STATIC_REF2
44 28 0.00994132 FPI_DEC
134 29 0.00851682 STATIC_REF_NIL
25 30 0.00837974 FPI_EQUAL
23 31 0.00753782 FPI.QUOTIENT
22 32 0.00753782 FPI.PRODUCT
45 33 0.00718992 FPI.ZER0P
16 34 0.00650257 THE.CAR

138 35 0.00589914 STATIC_FPI_BYTE_REF
3 36 0.00572763 SET_PRIMITIVE_REF

43 37 0.00375411 FPI.INC
70 38 0.00367226 ALLOC
59 39 0.00356534 MAKE_LAMBDA
38 40 0.00247272 STATIC _FPI_REF
80 41 0.00201856 EQ
107 42 0.00138637 INIQ
6 43 0.00109182 PRIMITIVE J5IZE

135 44 0.00104827 STATIC JIEF.T
4 45 0.00083096 PRIMITIVE.CLASS.0F

Table C.4: Optimal virtual instruction ordering with programs in Table B .3

U n i v e r s i t y O f B a t h 94 A n d r e a s K i n d

M e a s u r e m e n t s

M IP S /E L F with co n s t w ithout c o n s t
module file size .rodata .data ratio .rodata d a ta ratio
boot.o 10544 2656 2848 0.93 816 4704 0.17
b o o tl.o 15280 2864 3040 0.94 2080 3808 0.55
callback.o 3984 1248 944 1.32 736 1440 0.51
character.o 7760 2096 976 2.15 1424 1648 0.86
collect.o 6512 2288 1088 2.10 624 2752 0.23
compare.o 4096 1056 1040 1.02 272 1824 0.15
condition.o 5712 1552 1408 1.10 640 2320 0.28
convert.o 800 144 144 1.00 96 192 0.50
convert l.o 8608 3168 1952 1.62 960 4176 0.23
copy.o 3872 1168 912 1.28 384 1696 0.23
dynamic.o 3184 832 816 1.02 352 1296 0.27
event.o 1376 288 272 1.06 160 400 0.40
float.o 3152 960 560 1.71 336 1184 0.28
form at.o 3888 1360 800 1.70 368 1792 0.21
fpi.o 5328 1488 1136 1.31 576 2048 0.28
handler.o 15136 4560 1936 2.36 2544 3936 0.65
integer.o 2160 496 464 1.07 256 720 0.36
let-cc.o 1440 336 320 1.05 128 528 0.24
level l.o 1728 384 304 1.26 96 592 0.16
list.o 17424 4928 4656 1.06 1232 8336 0.15
lock.o 4048 1088 864 1.26 432 1520 0.28
mop-access.o 8672 3136 1952 1.61 1104 3984 0.28
mop-alloc.o 9728 3584 2112 1.70 1232 4464 0.28
mop-class, o 22160 4272 5888 0.73 2640 7520 0.35
mop-defcl.o 10112 2656 2720 0.98 912 4448 0.21
mop-gf.o 7408 2224 1808 1.23 832 3200 0.26
mop-init.o 5104 2880 576 5.00 400 3056 0.13
mop-inspect.o 3984 960 1056 0.91 384 1632 0.24
mop-key.o 1408 352 288 1.22 176 448 0.39
m op-m eth.o 7312 2688 1616 1.66 928 3376 0.27
mop-prim .o 1888 336 480 0.70 240 576 0.42
num ber.o 7760 2128 1824 1.17 592 3360 0.18
read.o 10352 3600 2448 1.47 912 5136 0.18
socket.o 8912 2304 2192 1.05 864 3632 0.24
stream .o 12416 4128 3120 1.32 960 6288 0.15
stream l.o 13616 4032 320 12.60 3872 496 7.81
stream 2.o 19968 5648 4736 1.19 2240 8144 0.28
stream 3.o 8640 3088 2112 1.46 752 4432 0.17
string.o 14912 4336 2672 1.62 2048 4944 0.41
symbol.o 4512 1184 1088 1.09 368 1904 0.19
table.o 11920 3824 2704 1.41 1216 5296 0.23
tab le l.o 10640 2976 2528 1.18 1152 4352 0.26
telos.o 976 208 160 1.30 96 272 0.35
thread.o 15824 4128 4016 1.03 1792 6352 0.28
vector.o 17040 5248 4352 1.21 1344 8272 0.16
to ta l 361296 104880 79248 1.32 41568 142496 0.29

Table C.5: Impact o f constant virtual machine code on EuLisp level-1 modules on M IP S

U n i v e r s i t y O f B a t h 95 A n d r e a s K i n d

