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Summary

Local regularity theory, and local and global bifurcation theory is given for 
solutions of a generalisation of the Babenko equation for Stokes waves.
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God demonstrates his own love for us in this: 
While we were still sinners, Christ died for us.

Romans 8:5
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Chapter 1

Introduction

1.1 Summary of results

This thesis is an investigation of solutions w in the “27r-periodic Sobolev space” 
of the equation

f (w )(  1 +  Cw') +  C(f(w)w')  =  c, (1.1)

where /  G C°(J)  for some J  C R, C is the “27r-periodic Hilbert Transform” , 
defined on 27r-periodic real-valued Lebesgue-integrable functions, and c is a real 
constant.

Interest in (1.1) arises because the equation

Cw1 = X(w +  wCw1 +  C(ww')), (1.2)

given by taking f (x )  =  1 — 2Xx (where A G R) and c =  1 in (1.1), is the Babenko 
equation (see [2]) satisfied by a “Stokes wave” of wavelength A, propagating with 
constant speed v in a uniform gravitational field g , where the “Froude number” 
is 1/A =  2'kv2/gA  .

A Stokes wave is a steady periodic irrotational water wave on an infinitely 
deep incompressible fluid, with zero surface tension and viscosity in a uniform 
gravitational field. Physical considerations show that Stokes waves are described
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by solutions of the free boundary problem

A ip =  0 in Q,
^ ( x ^ ^ x ) )  =  0 for all x  G R,

W (z ,y )  -» (0,1) as ?/ —>> —oo, (1.3)
ip(x+ 2ir,y) = ip(x,y) for all (x, y) G Q,,

^\Vip(x, u(x))\2 4- Xu(x) = \  for all x  G R,

where the domain Q (the region below the surface S  = {(x,u(x))\x  G R} of the 
wave) and the “stream function” ^  are unknown. The final equation in (1.3) 
expresses that atmospheric pressure is constant on <S, and has been shown [6] to 
be equivalent (after a conformal transformation) to the following condition

(1 — 2Aw){w'2 4- (1 4- Cw')2} = 1 almost everywhere,

which gives rise to a Stokes wave with profile {(—{x + Cw{x)), w(x))\x G R}. We 
shall call this condition, along with the more general condition

f (w){w '2 4- (1 4- Cw')2} =  c almost everywhere

for solutions of (1.1), the Bernoulli condition. Each smooth solution of (1.2) 
such that x  i-> {—(x 4- Cw(x)),w(x)) is injective on R satisfies the Bernoulli 
condition, and so describes a Stokes wave.

In [18] (see also [4], [17] and [19]) it is shown, using “Riemann-Hilbert theory” , 
a bootstrapping argument and “Lewy’s theorem” that solutions w G of (1.2) 
are real-analytic on {t G [—7r, 7t ) | 1  — 2Aw(t) /  0}. In Chapter 2 we generalise this 
result. We give local regularity results for solutions w G in the case where 
/  is in the “Holder class” C k^  on part of the range of w, and Cw' is “locally 
Lebesgue integrable” on an open set. We also give a regularity result in the 
case where /  is real-analytic on part of the range of w and w satisfies the same 
hypotheses. The conclusions found in the latter case are not as strong as those 
found in the above-mentioned papers unless f  is nowhere zero or w satisfies the 
Bernoulli condition.

Considerable work has been done ([17],[18] and [19]) to show that solutions
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w G °f (1-2) such that 1—2Aw{t) >  0 almost everywhere satisfy the Bernoulli 
condition under very weak additional hypotheses. In Chapter 2 we also generalise 
some of this work. We give conditions for a solution w , in the “Hardy space” 

of (1.1) to satisfy the Bernoulli condition.
In [4] (see also [5] and [6]) it is shown, using the theory of “Crandall-Rabinowitz 

transversality” , that for each n G N, a unique real-analytic curve of even nontriv­
ial solutions (A,w) G R x of (1.2) of “fundamental period” 27r/n “bifurcates” 
from the line R x {0} of trivial solutions at (n, 0) [note that (0, k) is a solution 
for each constant function k]. Each such bifurcation is a “subcritical pitchfork 
bifurcation”. In chapter 3 we generalise this result. We study the equation

/(A, w )(l +  Cw') +  C (/( A, w)w') =  /(A, 0), (1.4)

where /  : I  x J  —> R (I  and J  open intervals in R) [note that for all A G / ,  
(A,0) is a solution of (1.4)]. We find a necessary condition for (A*,0) to be a 
“bifurcation point” , and three sets of sufficient conditions. The first of these sets 
of sufficient conditions, which uses the theory of “eigenvalue crossing numbers” , 
is very general, but provides no information about the behaviour of the set of 
nontrivial solutions of (1.4) near to a bifurcation point.

The second set of conditions is a special case of the first and uses Crandall- 
Rabinowitz transversality. In this case we find that a unique curve of solutions 
bifurcates from (A*,0). Sufficient conditions are given in this case for solutions 
on the bifurcating curve to have fundamental period 2tt/ n or to be constant 
functions; and also for the curve to be a “supercritical or subcritical pitchfork” 
or to be “transcritical” .

The third set of conditions is not included in the first. It is found by calcu­
lating the Taylor series of a function involved in the “bifurcation equation” of 
(1.4). In this case we find that two C 1 curves of nontrivial solutions of (1.4) to 
bifurcate from I  x {0} at (A*,0).

In [5] (see also [6]) it is shown, using the “global analytic bifurcation theorem” , 
that bifurcating curves of solutions of (1.2) may be continued globally. In Chapter 
4 we generalise this. We give sufficient conditions on a real-analytic function /  
for a bifurcating curve of solutions of (1.4) to be continued globally. The global 
analytic bifurcation theorem gives three possibilities for the global continuation of
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an analytic curve of solutions of (1.4): either it continues until it reaches a point 
(A, w) where /(A, w(t)) = 0 for some t G 5 1, or it contains a sequence divergent in 
R x to oo, or it forms a closed loop. We give conditions sufficient to prevent 
the first two of these, and thereby ensure that the bifurcating curve forms a closed 
loop.

In the rest of this chapter, we introduce some well-known concepts and results 
which are used in the sequel.

1.2 N otation

The interior of a set E  will be denoted E°, its closure E  and its boundary  
dE.  The zero set or null space of a function /  will be denoted M { f)  and its 
range 7Z(f).  If E  is a subset of the domain of /  then f ( E )  will denote the image 
of E  under / ,  and if J  C 7£(/) then J~l {J) will denote the inverse image of J  
under / .

If <j> € C k(U) where U C Rn , then we write, for suitable ij G N U {0}

0 ( » i ^  . . . ^ _ ^ ^ x  Xny
dx\' ox1*

We shall usually identify the interval [—7r, i t )  with the unit circle S 1 C R2, and 
identify 27r-periodic functions with maps on S 1. This is justified by the bijection 
1 1->- (cos£, sin£).

The open unit disc in C will be denoted V.  If I  C S1 (= [—7r, 7t)) then we 
write I* =  {elt|£ e  1} C dV.

1.3 Function spaces, Holder continuity, 

inequalities and the Faa-de Bruno formula

In this section we review some basic facts about function spaces (in particular 
Lp spaces and spaces of Holder continuous functions), inequalities involving LP 
functions and formulae for derivatives of composite functions.
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D efinition 1.1. For p G (0,oo) and I  C R , the Lebesgue space 1/(1)  is the 

space of real-valued Lebesgue measurable functions u on I  such that

\*u(x)\p da: I < 00.

The 27r-periodic Lebesgue space L^r is the space of real-valued 27r-periodic 

functions u such that ||u||p := ||w||lp(51) < 00.

L°°(I) is the space of real-valued functions u on I  such that

IM|l°o(/) =  esssup{|tt(a:)||a: G 1} < 00;

and Lgj. is defined to be the space of real-valued 27r-periodic functions u such 

that 111100 *=  H^IIl00̂ *) ^  00.

The spaces L 2(I) are Hilbert spaces with the inner product

(u,v)2 = J u ( x ) v ( x )  dx.

The local Lebesgue space Lpoc(I ) is the space of real-valued functions u on I

such that u G 1/(1)  for each compact I  C I.  ■

On a bounded set / ,  if p,q G [l,oo] with p < q then Lq(I) C 1/(1).  In
particular, L2n C L 2n.

The following inequalities deal with functions in 1 /  spaces.
H ardy’s inequality states that if /  G 1 / (0 ,00) (1 < p < 00) and F  : 

(0 , 00) ^  R is given by

F{x) =  -  r  /(<) Cit, (1.5)
X Jo

then F  G 17(0,00) also and | | F | | L P ( 0 )o o )  < ^tII/||lp(o,oo)- See [16] for a proof.
The H ardy-L ittlew ood-Sobolev inequality in one dimension states that 

if /  G IZ(R) with p > 1, and 0 < A < 1 then the map B  : R —> R given by

B (x) = [  f ( y ) \ x - y \  x dy
J  R

5
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is in Lr(R) (where 1/ r  =  1/p+A  — 1 if 1/p+A  —1 > 0 and r =  oo if 1/p + A —1 < 0) 
with ||B||£r(R) < CH/IIlp^) for some constant C, independent of / .  See [14] for 
a proof.

D efin ition  1.2. The Sobolev space W k,p(I) (where k G N and p G [1, oo]) 

is the space of real-valued functions on I  which, along with their first k weak 

derivatives, are in IP {I). Each W k,p(I) is a Banach space under the norm

A nonconstant function u : E  — R has fundam ental period p > 0 if u is 
p-periodic, and for all 0 < q < p, u is not ^-periodic.

We shall frequently have to take derivatives of compositions of functions. We 
give first a version of the chain rule for the composition of a C 1 function with 
a Sobolev function. If w G W 1,P(I) and /  G C l (1l(w)), then /  o w is weakly 
differentiable and

max

The spaces W k,2(I) are Hilbert spaces with the inner product

The 27r-periodic Sobolev spaces and the local Sobolev spaces W^f(I)

are defined analogously to the spaces Lpn and Lpoc(I) respectively.

( /  o w)' = f '(w)w'  G LP(I). (1.7)

See [14] for a proof.
If E  is an open interval in R, ^  £ Cn(E) and <p G Cn(^ (^ ))  then the nth 

derivative of p  o ^  is given by the Faa-de B ru n o  fo rm ula  [3]



(where denotes the sum over non-negative integers i i , . . .  ,zm (for any m  G
{ 0 , . . . ,  n}) satisfying ii-\ b m im = n). A more general version of this may be
found in [6] and in [8].

D efin ition  1.3. Let I  be an open subset of Rn . We define the space C k(I) 

(k G N U {0}) to be the set of all functions u G C k(I) such that all partial 

derivatives of u of order less than or equal to k are bounded and uniformly 

continuous on I.

If u G C k(I) then all partial derivatives of u of order less than or equal to k 

have unique bounded continuous extensions to I.

The set Ck,a(I) (where k G N U {0} and a  G (0,1]) comprises functions 

u G C k(I) such that for all x , y  G I  and for any m  =  (m i,. . . ,  m n) G (N U {0 })n 

with nij < k,

| !X(m 1,...,mB) ( a.) _  M(m 1,...,mn ) ^ |  <  _  y |a  ^

for some constants Cm, independent of x  and y. We define also C k,a(I) = C k,a(I). 

If u G C k,a(I) then we say that u ^  is H o lder con tinuous w ith  ex p o n en t

a.

Note that if u satisfies (1.9) on I  then each partial derivative of u of order 

less than or equal to k has a unique C° extension to / ,  and satisfies (1.9) on I. 

If I  is bounded then C0,a(I) is a Banach space under the norm

IMIc°.«(/) =  IMIl°°(7) +  sup  ( i-10)
x , y £ l  \x  V |

The spaces and C ^ ( I )  are defined analogously to the spaces L and 

Lfoc(/), respectively.

On a bounded set / ,  if a,/3 G (0,1] with a > (3 then C 0,a(I ) C C0,/3(I). 

If I  is convex and bounded (or is a finite union of convex bounded sets) then 

C l {I) C C0,1(I) (proof via the mean-value theorem); otherwise we have only



that C \ I )  C C ^ ( I ) . ■

If p >  1, then is compactly embedded in C for each (3 < 1 — 1 /p  
(A subspace A  of a Banach space Y  is com pactly em bedded in Y  if the map 
i : X  —»• Y  given by l ( x ) = x  for all x  G X  is compact; see Section 1.5), and is 
continuously embedded in

If w G a simple argument using Holder’s inequality and the periodicity 
of w shows that the am plitude of w , Arnp(w) =  supX!/e(si \w(x) — w(y)\ satisfies

(27r)1~ 1/pAmp(w) < -----H^ii^ (i.n)

so that ||iy||oo < (27r)1_1/pIMIwliP-
The following theorem deals with the Holder continuity of products, quotients 

and compositions of Holder continuous functions on bounded sets in R. It is 
easily proved using the Faa-de Bruno formula (1.8), Leibniz’ rule and the above 
definition of C k'a(I).

Theorem  1.4. Let n  G N u{0}, a , /3 G (0,1] and let E  C R be bounded. Suppose 

ip G C n’Q(£) and ip G C n^(E) .  Then

(i) pip e  C n’min(a'ft(E).

(ii) I f  ip is bounded away from 0 then p/ip G Cn,mm̂ a' ^  (E ) .

Suppose now that xp G Cn,a(E) and p  G Cn,/3(xp(E)).

(in) I f  n = 0 then p(ip) G C 0,a/3(E).

(iv) I f  n G N then p(ip) G Cn,min̂ a^  (E) .

The following lemma deals with the Holder continuity up to the boundary of
a solution u G C2(r2) (Cl a domain in Rn) of a strictly elliptic equation Lu = f
(a second order differential operator

n n n

i=E E  aij(x)Dij + '^2/ bi (x)Di +  c(x) (1.12)
i = l  j = 1 i = l

8



is s tr ic tly  e llip tic  on Q, if the eigenvalues of the matrices (aij(x)) are strictly 
positive and uniformly bounded away from 0 on £1).

Lemma 1.5. Let Q, be a domain in Rn with a boundary portion T  which is an 

open subset of an n — 1 -dimensional hyperplane in Rn ; let L, given by (1.12) 

be strictly elliptic on Q; and suppose that a{j,bi,c,f  G C 0,Q(n) for all i and j .  

Suppose u G C°(£l) nC '2(r2) satisfies Lu =  /  and is such that o n T ,  u = 4>, where

<t> G C 2'a{U). Then u G U T).

A proof is to be found (with much weaker hypotheses on T)  in [9].

1.4 Complex analysis: the Hilbert transform and 

Hardy spaces

In this section we review some standard and some less well-known facts about 
complex analysis, which will be used in Chapter 2.

If U : V  —y C then we define, for r  G (0,1), Ur : S 1 —> R by Ur(t) = U(relt). 
Where the limit exists we define also U*(t) = l im ^ i  Ur(t).

D efin ition  1 .6 . The 27r-periodic H ilb e rt tra n sfo rm  Cw of a function w G L\.K 

is defined as follows. The function F  : V  —> C given by

F(z) = i  L i ^ z w{t) dt (L13)
is holomorphic on V  (see [16] §11.6). Let F  =  U +  iV  [U is the Poisson Integral 

of w]. Then F(0) =  ^  f * ww(t) dt. For almost every t G S 1, U*(t) and V*(t) 

exist (see [12]), and U*(t) = w(t). Cw(t) is defined, for almost every t by

Cw(t) = V*{t) (1.14)

[note that F(0) =  0 , so f * n Cw(t) d£ =  0]. In practice, Cw(t) is found, for almost

9



every t , either from the Cauchy principal value integral

Cw{t )  =  i L

w(y)
tan t-^L=7 d2/>

a simple consequence of (1.13-1.14), or (in the case w G L by linearity and a 

density argument on the Fourier coefficients of w: for n G N and m  G N U {0},

C(sinnt) =  — cos nt, C(cosmt) = sin mt.

m

The theorems of M.Riesz and of Privalov give information about the Hilbert 
transform of L ^  (p > 1) functions and C 0,a (a < 1) functions respectively.

Theorem  1.7. (M. Riesz, Privalov)

(A) C is a bounded linear operator from L i n t o  itself for all p G (l,oo). For 

u G 1 4 ,  ||Cu||2 <  ||w||2.

(B) C is a bounded linear operator from into itself for all a  G (0,1).

The local versions of the theorems of M.Riesz and Privalov given below, will 
be of great importance in Chapter 2. Proofs are to be found in Appendix A.

Theorem  1.8. Let u G L \K and E  C S 1

(1) I f u  G Lp(E ) where p G (l,oo) and E  C 5 1, then Cu G L\oc(E°).

(2) I f  u G C n,a(E), where a  G (0,1) and n  G NU {0}, then Cu G C ^ ( E ° ) .

Neither of these theorems provides any information about the 27r-periodic 
Hilbert transform of a general L\^ -function: indeed C does not map L \K into 
itself. However

Theorem  1.9. (Kolmogorov) I f u E  then Cu G 

See [12], chapter V, section C, theorem 5° for a proof.
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D efinition 1.10. The R eal Hardy Space H r is the set of functions u e  Ll„

such that Cu G L\.n. It is a Banach space under the norm IMI^i =  |M |i +  ||C^||i-

H r 1 is the set of functions u G H r such that u ' G H r. It is a Banach space under

the norm IM L m =  IMIt/i +  ®II 11 Hr II R 11 11 ^R

If u G Z/27T and Cu > f  G L\n then u G H r. See [19] for a proof.
The following properties of H r  and H r 1 may be found in [22]. If u, v G 'H r1, 

then / 7T /*7T
u(x)Cv'(x) dx = v(x)Cu'(x) d x . (1-15)

-7T J —7T

If u G H r then u(z) =  A- w(j/) dy -  C2u(x).

D efinition 1.11. For p G (0, oo], the Hardy Class HJ. is defined to be the set

of all holomorphic functions on U o n V  such that

ll^llw? =  lin}|||Ur|||p =  sup |l|C/r|||p < OO,
r~+1 re(0,l)

■

The space Log comprises functions u : S 1 —> C such that log|u| G L\,Jr. If 
u G Log then u ^  0 almost everywhere.

HJ- has the following properties:

(i) For any F  G HJ-, F*(t) is well defined for almost every t G S'1. Also 
|F*| G with |||F*|||p =  | |F | |^ ;  and if F  ±  0 then F* G Log.

(ii) If F  G then F  is the Cauchy integral and the Poisson integral of F* on
S 1.

Further, we have

Theorem  1.12. (Smirnov) I f  F  G H£ for some p > 0 and |F*| G /o r some 

q > p then F  G H J.

Note the following consequence of the definitions of H£ (Definition 1.11) and 
C (Definition 1.6): \u + iCu\ G L^  (p G (0, oo]) if and only if u-\-iCu = F*, where

11



F  e  U vc and F (0) =  . u(t) dt. This observation, together together with the
Theorems of M. Riesz (Theorem 1.7 (A)) and Kolmogorov (Theorem 1.10) leads 
to the following further properties of LL£.

(iii) u E L\n if and only if u +  iCu = F* for some F  E C\p<iH^  with F ( 0) =

d*-

(iv) w E ^  if and only if u + iCu = F* for some H  E with F(0) =  

£ £ > ( * ) d t

(v) u E Z/2tt (p ^ (0» °°)) ^  an(i only if u +  iCu =  F* for some F  E H£ with

F (°) =  s J - V W  d t-

For u E Log, an o u te r  fu n ctio n  0(w) : —»■ C is defined by

0 (« ) ( z )  =  exP |  —  J  e iy_ 2 lQg|«(j/)| & y \ -  (1.16)

(1.13) and (1.16) give that the boundary data of 0(u)  is given by

(0(u))*(x) =  |w ( a r ) | e <c(loglu l)(*) ( 1 . 1 7 )

Outer functions have the following properties:

(a) 0(u)  is holomorphic and has no zeros on V.

(b) For u i ,u 2 E Log, 0 ( u iu 2) = 0 { u \ ) 0 ( u 2).

(c) If u E Log and p E (0, oo], then |it| E Lpn if and only if 0(u)  E “HJ.

(d) For U e U pc ( p e  (0, oo]), \U{z)\ < \0(U*)(z)\ for all z E P .

The following theorem of Lewy ([13], [20]) is an important extension theorem for 
holomorphic functions on a half disc.

T h e o rem  1.13. (Lewy) Suppose that F  = U + iV  is holomorphic on Dr =

{x + iy E C|a;2 +  y2 < r, y < 0} and U, V  E C l (Dr). Suppose also that for

\x\ < r,

Uy(x, 0) =  A(x,  U(x,0) ,V(x ,0) ,Ux(x,Q)),

12



where A  is a complex-valued analytic function of all its arguments in a neighbour­

hood o /(0 ,1/(0,0), F (0 ,0), Ux(0,0)) € C4, which is real-valued when its arguments 

are.

Then there exists a disc D, centred at 0, and a holomorphic function U + iV  : 

D  —y C such that on Dr D D,

U + iV  = U + iV.

1.5 Operators, Frechet differentiation and ana- 

lyticity

In this section we review some facts about operators, Frechet differentiability and 
analyticity, which are needed mainly in Chapters 3 and 4. We follow [6].

Let X  and Y  be Banach spaces over R, and U an open subset of X .

D efinition 1.14. A map F  : U —>■ Y  is said to be Frechet differentiable at

f  G U if and only if there exists A e  £ (X ,  Y )  such that

\\F(S +  h ) - F ( t ) - A h \ \ r „
wr-,0 \\h\\x

In this case we say tha t A  is the Frechet derivative o f F  at £ and write, for 

h e X ,  Ah = dF(£)h.

If d F  is Frechet differentiable at f  e U then we write, d(dF)(f) =  d2F (f). 

d2F(£) is called the second Frechet derivative o f F  at f. In the same way 

we may define, for suitable F  and for k e  N, the k t h Frechet derivative o f F  

at e, dkF(Z).

dkF  is a map from U into C(X, C ( X , . . . ,  £{X,  Y ) . . . ) ,  which may be iden­

tified with Ck(X, Y) ,  the set of symmetric, A;-linear forms on X .  We write the 

image of (ari,. . . ,  x n) e  X n under dkF(£) as dfcF( f ) [x i , . . . ,  xn]. If dkF  is contin­

uous on U then we say that F  is k-times continuously [Frechet] differentiable on

13



U and write F  G C k(U,Y).

If F  is a suitable function from an open subset U of X i  x • • • x X n into 

Yy where X i , . . . ,  X n are Banach spaces over R, then we may form the p a r tia l 

F rechet derivatives <91,0,- ,0F( £ i , . . . ,  £n) , . . . ,  d°'“,0,1F(£i , . . . ,  £n) and higher or­

der derivatives. F  G C k(U, Y)  if and only if each of its partial derivatives of order 

less than or equal to k is continuous; if F  G C l {U, Y)  then

n
d F f a , . . .  ,?„)[(x1........ *„)] =  ^ 3 ° ... Od.”... °F(Zl t ..

1= 1

If F  is A;-times differentiable at £ then the order in which the mixed partial 

derivatives are taken is inconsequential. In this case we write

9il'° 0 • • • 9° "'‘“F f e ,  • ■ •, ■£„)•

See [6] §3 for further details. ■

D efin ition  1.15. A map F  : U —> Y  is com pact if for every bounded sequence 

(xn) in £/, (F(xn)) has a convergent subsequence.

A bounded linear operator A  G C (X ,Y )  is F redho lm  if dim(A/’(A)) and 

codim(7£(A)) are finite. The index  of A  is then dim(A/"(A)) — codim(7£(A)). ■

Clearly any linear homeomorphism is Fredholm with index 0. More generally, 
if A  G C (X , Y)  can be written as the sum of a compact linear operator and a 
linear homeomorphism then A  is Fredholm with index 0 .

If F  is compact from U to Y  then for r G t / ,  dF(x)  is compact from X  to Y.

D efin ition  1.16. If F  G Cn(U,Y) (n G N U {0}) and f, x  G U then

-  E hdhF{xM = (idS )
k=0

where Rn(£,x)  is the nth order T aylor series rem a in d e r of F  about x  at £.
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If F  G C°°(U, Y)  then, whether it converges or not, the fo rm al Taylor series 

of F  about x  G U and at f  G U is

00 1
Y  x],
k=0

■
Taylor’s theorem  states that if F  G C n+1((7, Y)  then 

||£ _  r ||n+1
Il-Rn(£.a0l|y <  , sup ||dn+1F ( ( l  -  t ) i  + t £ ) | |£»+i(jc,r). (1.19)

(n +  lj! o<t<i

If X  — R and /  G C n(U, R) then we have the following result (see [7]):

*»(£, *) =  / V  -  -  t)x +  t o  -  /<»>(*)] i t .  (1.20)

D efinition 1.17. F  is real-analytic at x  if, for all f  G U with ||£ — x\\x suffi­

ciently small,
oo

~ x > • • •, f  ~  x], (L21)
fc=0

for some G Ck(X, Y)  such that

sup r k\\mk\\Ck(X,Y) = M  < oo (1.22)
fcGNU{0}

for some r > 0 .

If F  is defined by (1.21) and (1.22) holds then F  is real-analytic at each point 
of Ux =  {£ G -  x ||x  < r}. We have that F  G C°°(UX,Y )  with

m k =  -^dfcF(:r).
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Also, for k G N, dkF  is analytic on Ux, and for some constants C > 1 and R  < 1,

iidfcF(e)n£, (x,y) <  4 (1.23)

for all k G N U {0} and all £ G U such th a t ||£ — x ||x  <  r /2 .
If F  is real-analytic on £/ and G : F(U ) —>■ Z (Z a Banach space) is real- 

analytic, then F  o G is real-analytic on F(U).
Let V  C Y  be open. The chain  ru le  states that if F  : U —>• V  and G : V  —> Z  

are such tha t dF(x)  and dGf(F(o:)) exist then d(G o F)(x)  exists and

If X  is a Hilbert space, then a functional ip G C2(U), where U is an open 
neighbourhood of f  G X ,  is said to have a n o n d eg en era te  c ritica l p o in t at 
f  if d</?(£) =  0 and dV(£)[w,u] =  (Lu ,v )x  for some invertible linear operator 
L  : X  —> X .  In this case we have the following theorem, which will be used at 
the end of Chapter 3. See [10] and [15] for a proof.

T h eo rem  1.18. (Morse lemma) Let X  be a Hilbert space, and suppose ip G 

C k(U) (where U is an open neighbourhood of 0 and k > 3) has a nondegenerate 

critical point at 0 . Then there exists an open neighbourhood A of 0 and a local 

C k~2 diffeomorphism (a C k~2-function with C k~2-inverse) T : A  —> U such that

I f  p  is real-analytic, then so too is T.

1.6 Local bifurcation theory

Bifurcation theory deals with the structure of the solution set of an equation

d (G o f)(O ft =  dG (f(0)[dF(f)fc].

T(0) =  0 and

ip( r(u)) = ¥>(0) + id V ( 0)[«,u].

F(  A, x) = 0 (1.24)
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where F  : U —> Y  (U an open neighbourhood of a point (A*,0) in R x X)  
is such that F(A, 0) =  0 for all A. We seek to find points (A*,0) G R x X  
at which nontrivial solutions (A,x) “bifurcate” from the line {(A, 0)|A G M} of 
trivial solutions. We follow [1] and [6].

D efinition 1.19. (A*,0) is a bifurcation point on the line of trivial solutions 

of (1.24) if and only if it is in the closure of {(A, x) G R x (X  \  {0})|F(A, x) =  0} 

in R  x X .  ■

Using the implicit function theorem, it is easy to find a necessary condition 
for a point (A*,0) to be a bifurcation point:

Lem m a 1.20. (a necessary condition) Suppose F  G C l (U,Y). I f d 0,1F (A*,0) is 

a homeomorphism then (A*,0) is not a bifurcation point of (1.24).

The proof is a simple application of the implicit function theorem.
The following theorem gives a sufficient condition for a point (A*,0) to be a 

bifurcation point of (1.24) in the case X  C Y.  It uses the notion of a crossing 
number, defined as follows.

Suppose that for some A* G R such that (A*,0) G U, the linear operator 
d0,1F(A*,0) : X  —> Y  has an isolated eigenvalue 0 with finite [algebraic] multi­
plicity. Let, for A in a neighbourhood of A*, <r(A) be the sum of the algebraic 
multiplicities of the negative eigenvalues of d0,1F(A,0) which converge to 0 as 
A —» A* (this is finite since all eigenvalues of d0,1F(A ,0) which converge to 0 as 
A —> A* are perturbations of the eigenvalue 0 of d0,1F(A*, 0)). The crossing 
number, if it exists, of d0,1F(A ,0) at A* is then given by

x(d0,1F(A, 0), A*) =  lim A* — fi) — <r(A* +  p).
n\o

Theorem  1.21. Suppose X  C Y ,  and F  G C,1(U, Y),  where U is a neighbour­

hood of (A*,0) G R x X ,  is such that F(A, 0) =  0 for all A. Suppose also that 

<90,1F(A*,0) is a Fredholm operator with index 0, and has an isolated eigenvalue 

0 of finite algebraic multiplicity n G N (so is not a homeomorphism).

I f  x(d0,1F ( A,0),A*) exists and is odd, then (A*,0) is a bifurcation point of 

(1.24).
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A proof is to be found in [11].
If F  is sufficiently regular at (A*, 0), and d0,1F ( A*, 0) is Fredholm with index 0 

and has one-dimensional null space, then the following condition on d 1,1F (A*,0) 
is sufficient to show tha t a curve of nontrivial solutions bifurcates from the line 
of trivial solutions at (A*,0).

Theorem  1.22. (Crandall-Rabinowitz transversality) Suppose F  G C k(U,Y)  

(k > 2) is such that d0,1F (A*,0) is a Fredholm operator with index 0, with 

J\f(d0,lF ( A*,0)) =  span{u*} for some v* G X  \  {0}. I f  the transversality  

condition,

d u F(A*,0)[l,u*] i  H (d ^ l F{A*,0)),

holds then a unique C k~l curve 53 of solutions of (1.24) bifurcates from (A*,0). 

I f  F  is real-analytic, then so too is 05.

The first step in the proof of Theorem 1.22 is the reduction of the problem to 
a finite-dimensional one. This is achieved via the Lyapunov-Schmidt reduction, 
which applies in a wider setting than that of Theorem 1.22:

Lemma 1.23. (Lyapunov-Schmidt reduction) Suppose F  G C k(U, Y) is such that 

d0,1F ( A*,0) is a Fredholm operator with J\f(d0,1F(X*, 0)) ^  {0} (so d0,1F (A*,0) 

is not a homeomorphism). Suppose also that X  = J\f(d0,1F (A*,0)) © W  and 

Y  = 7£(d0)1F(A*, 0)) © Z.

We write, f o r x  G X ,  x  =  x x + x w ,  where x ^  € J\f(d°'1F ( A*,0)) andxw  G W.  

I f  P  is the projection operator from Y  onto Z  withJ\f(P) = IZ(d0,1F(X*,0)), then 

there exist neighbourhoods A of X* in R, J\f ofO in M (d0,1F(X*,0)) and W  of 0 

in W, and a map 7  G C k( A x M, W) such that in A x  (A/"® W), F(  A, x) =  0 i f  

and only if  Xw =  7 (A, x ^ )  and the bifurcation equation

P F (X ,x n +  y(X,xN)) =  0 (1-25)

holds. The map 7  satisfies 7 (A,0) =  0 for all X, and <90,17 (A*,0) =  0. I f  F  is 

real-analytic then so too is 7 .
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There follows a sketch of the remainder of the proof of Theorem 1.22.
If d0,1F(A*, 0) satisfies Theorem 1.22 then codim(7£(<90,1F(A*, 0))) =  1 and for 

some functional 'ifj £ Y*> 'JZ(d0,1F(X*, 0)) =  {y G Y\ip(y) =  0}. (1.25) becomes, 
setting fj, = A — A*,

t) := A* +  /i, tv* +  7 (A* +  fi, tv*))) =  0 . (1.26)

Equation (1.26) is solved in a neighbourhood of (0,0) by applying the implicit 
function theorem to the equation h(/q t) = 0 , where h is a C k~l (or real-analytic) 
function given by

/?GM)
M/M) =  <

which is equivalent, for t =£ 0 , to /3(n,t) =  0 . h(fj,,t) =  0 is solved by a unique 
C k~l (or real-analytic) function /i on a neighbourhood (—e,e) of 0 such that 
>la(0) =  0; the set of nontrivial solutions of (1.24) is given, in a neighbourhood of 
(A*,0) as {B(t)\t G (—£,£) \  {0}}, where B is a C k~l (or real-analytic) function 
from (—£,£) to U given by

B(t) = (A* +  fi{t),tv* + q(A* +  n(t),tv*)) =  (A(i), W(t)).  (1.28)

The behaviour of the function \x at 0 determines the behaviour of the curve 
of nontrivial solutions near zero: let m  denote the lowest order derivative of /i 
which is nonzero at 0 (if such exists). The curve is said to be:

supercritical if m  is even and ii^rn\ 0) > 0 (in this case, all solutions (A, x) 
on 55 in a neighbourhood of (A*, 0) are such that A > A*);

subcritical if m is even and 0) < 0 (in this case, all solutions (A, a;) 
on 55 in a neighbourhood of (A*, 0) are such that A < A*);

transcritical if m  is odd (in this case there are solutions (Ai,Xi) and 
(A2,£ 2) in every neighbourhood of (A*,0) on 55 such that Ai <  A* < A2).

The lowest order derivative of /a, nonzero at 0 is found by the following result, 
which is proved by a simple induction argument.
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transcritical supercriticalsubcritical

Figure 1-1: Diagram of types of bifurcations; the vertical axis is for illustration

T h eo rem  1.24. I f  F  G C'n+1(C/, Y) and fi(0) =  • • • =  pfn ^(0) =  0 then

»(0) =«(")(o) =  -  ^ . > ( 0 . 0 )  ,,, 
^ W  (n +  l ^ d .D ^ O ) '

1.7 Global analytic bifurcation

In global analytic bifurcation theory, we attem pt to continue analytic curves of 
solutions of (1.24) globally, in the case where F  : U Y  is real-analytic. The 
abstract theorem which is the basis for Chapter 4 is below. We follow [6]:

Theorem  1.25. (Global analytic bifurcation theorem) Suppose F  : U —»• Y  is 

real-analytic on U, and let B : (—£,e) —> U (e > 0) be a real-analytic curve of 

solutions of F ( \ ,  x) =  0. Let Q3+ =  {B(t)\t G [0, e)}, and let B(t) = (A(t) ,W(t)).  

Suppose also that

I  d0,1F (A, x) is Fredholm with index 0 for all (A, x) G U for which F ( A, x) = 0. 

II  e is sufficiently small that

(a) dW (t) l  7  ̂ 0 for all t G (—e,e).

(b) A' ^  0 on (—£,£).

I l l  Closed bounded sets of solutions of F ( \ , x )  = 0 are compact in I x l .  

Then there exists a continuous locally injective extension ® of such that
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i <8 =  € [0 , oo)}, where B : [0, oo) —Y U.

ii F(B(t)) =  0 for all t > 0 .

Hi The set {£ > 0\J\f(d0,1F(B(t)))  /  {0}} has no accumulation points.

iv For each t* > 0 there exists 6* 6 (0, t*) and a* : (—<5*, 5*) —» E  x X  such 

that a* is real-analytic and

{B(t)\\t -  t*| < 6*} =  K W H * -  t*| < 5*}.

v One of the following occurs:

a ||# W ||rx x  oo as t Y oo.

b B{t) approaches dU as t —» oo.

c is a closed loop: i.e. for some T  > 0, 25 =  {B{t)\t £ [0 , T]}, w/iere 

B(T) = B(0) = (A*,0).
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Chapter 2 

R egularity Theory

In this chapter we give local regularity results for solutions w £ W ^  of (1.1). 
The main result is the following:

T h eo rem  2.1. Let f  £ C°(J) (where J  C R), and c £ R. Let also J  be 

an open subset of J,  and let w £ W^  be a solution of (1.1) such that Cw' £

(I) I f  f  £ C n,/3( J  \ J \ f ( f ) ) ,  where (5 £ (0,1] and n  £ NU {0}, then

w £ C ^ 1,a(w~1( J) \  Af(f(w))) for all a  £ (0, (5) (2.1)

if  n  £ {0 , 1} or (3 = and

w € C Z +c^ ( w - \ j ) \ M ( f ( w ) ) )  (2.2)

i f  n £ N \  {1} and (3 < 1.

(7/) / / /  is real-analytic on J \ J \ f ( f )  then w is real-analytic on w~l (J) \A f ( Z ) ,  

where

Z  =  f (w ){w 12 +  (1 +  Cw')2}. (2.3)
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[Note that as w is continuous (being in W ^ )  and J  is open, w- 1(J) is open 
also; and since f (w)  is continuous, Af(f(w))  is closed. Hence w_1(J) \J \ f ( f (w))  
is open.]

This is proved in the first instance via Riemann-Hilbert theory (Section 2.1), 
which considers problems of the form <£* =  a4/*, where a : S 1 —> C is a given 
function and the holomorphic functions $  and on V  are to be found. It 
allows us to infer that Z  is real-analytic on w~l (J) \A f ( f (w ) ) ,  and hence that 
w' G \A f{ f (w ) ) ) .  In Section 2.2, an induction argument involving
an operator T  on gives the first part of the result. In Section 2.3, further
consideration of Riemann Hilbert theory, together with an application of Lewy’s 
theorem (Theorem 1.13), gives the second part.

It should be noted that this result is extremely general: we shall show that it 
covers solutions w G of (1.1) under each of the following conditions:

(A) w G Wfoj!(w- 1(J) \J \ f ( f (w)))  for some p > 1.

(B) w e n 1̂ 1.

(C) /  is monotone on 7Z(w).

In particular, it covers solutions w G of the Stokes wave equation (1.2). 
Using a separate argument, we also show in Section 2.3 that under the hypotheses 
of Theorem 2.1 (II), w is real-analytic on w~l {J) \A f( f{w) f '{w)) .  Together with 
Theorem 2.1 (II), this indicates that it is likely that under the same hypotheses, 
w is real-analytic on w~l (J) \  Af (f (w)) \  however we are at present unable to 
prove this.

In the theory of Stokes waves, the case where Z  =  c, the Bernoulli condition, 
is of great importance; for solutions of (1.2) which satisfy the Bernoulli condition 
describe a Stokes wave. In the present context, this condition (together with the 
condition c ^  0 and the hypotheses of Theorem 2.1 (II)) gives us that w is real- 
analytic on ry_1(J) \ J \ f ( f ( w )); and ensures that f (w )  has the same sign almost 
everywhere. The latter fact will be of importance in Chapter 4. In Section 2.4 
we give, in case (B), sufficient conditions for the Bernoulli condition to hold and 
a necessary and sufficient condition for w to be [everywhere] real-analytic.
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2.1 Riemann-Hilbert theory

In this section we show that (1.1) reduces to a Riemann-Hilbert problem of the 
form U* = f(w)W*  where U,W  G an<̂  show that each solution w G
of (1.1) such that Cw' G L ^ ^ I )  (where I  C S 1 is open) is in W ^ ( I \ J \ f ( f ( w ) ) ) .  
We begin with the following generalisation of Carleman’s theorem ([12], p.64), to 
be found in [18].

Theorem  2.2. Let I  C S 1 be open, and let 4>, G (for some p > 0) satisfy 

\J/* =  <£* almost everywhere on I. I f  |4>*|, |^*| G L\oc(I) then has a bounded 

analytic extension 4  : I* U (C \  dV) —> C given by 4(^) =  ^ ( l / z )  (\z\ > 1); and 

similarly for 4L In particular, is real-analytic on I; and if  I  = S 1 then 4>

and 4/ are constant functions.

An immediate consequence of Theorem 2.2 is 

Theorem  2.3. Let f  G C°(J) and c GR.  Let w G W21̂.1 be a solution of (1.1).

(1) I f  c 7̂  0 then f ( w ( t ) ) ^  0 almost everywhere. I f  c = 0 then either f (w )  = 0 

or f(w(t))  ^  0 almost everywhere.

(2) I f  Cw1 G L l c(I) for some open /  C 5 1 then Z ,  given by (2.3), is real- 

analytic on I  \J \ f ( f (w)) .

Proof. Let u =  f (w)w'  G L\v . Then by property (iii) of Hardy spaces, we 

have that for some U ,W  G C\p<{Hpc with W(0) =  i, W* = w' +  i( 1 +  Cw') and 

U* =  u +  i(—c +  Cu). We have

1/ (0) = - i c + ^  J  ^</>(w(t)) dt =  ic,

where 0 is a primitive of / .  (1.1) becomes the Riemann-Hilbert problem

U* =  f(w)w' — i f (w ) ( l  +  Cw') = f(w)W*.  (2.4)
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(1) Suppose c /  0. Then U ^  0 ^  W,  so \U*\, \ W*\ G Log by property (i) 

of Hence log |/(u /)| =  log|I/*| — log|VF*| G L\^\ so f(w(t))  /  0 for almost 

every t.

Suppose c = 0 and f (w )  ^  0. Since W  G r\p<\Hpc \  {0}, \W*\ G Log; so 

W*(t) 7  ̂ 0 almost everywhere. Now f (w(t))  /  0 on a set of positive measure 

(since f (w )  is a continuous, nonzero function); so U* ^  0 by (2.4). Hence, as with 

W*, U*(t) 7  ̂ 0 almost everywhere. Hence as above, f (w )  G Log and f(w(t))  ^  0 

almost everywhere.

(2) If f (w)  = 0 then the result is trivial. Otherwise by (1), f (w)  G Log 

Suppose Cw' G L\oc(I). Let a = sign( f(w))  and H  = OyJ\f(w)\.  Then by 

property (b) of outer functions, \H*\2 =  \f(w)\, and

J )  =cr(HW)'.

f (w )  G L so by property (c) of outer functions, H  G 'Hq Since W  G C\P<iH pc , 

we have by applying Holder’s inequality to the functions HrWr , and by the defi­

nition of the spaces (Definition 1.11) that H W  G Dp<i H q

Since \H*\ G L and |W*| G n p<iL 27rn L 11oc(/) , we have by Holder’s inequality 

that H*W* G DpciL^  n  Lloc(I).

By properties (d), (c) and (b) of outer functions,

V(z)
H(z)

< 0 {W){z)
H(z) *> (£)<•> =  \G(H*W*)(z)\, (2.5)

so U /H  G n p<i ^  also with \(U/H)*\ G L l c(I).

Now f (w )  is continuous, since /  G C°(J) and w G W ^ 1’, so the sets S + := 

{£ G I \f (w(t))  > 0} and S~ := {£ G I \f (w(t))  < 0} are open. On S +, we have

(U/H)* = (HW)*, so by Theorem 2 .2, U /H  and H W  have analytic extensions
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to (S +)* U (C \  dT>), and

( L )  ( H w y  = u , w "  = f { w ) \ w \2 = z

is real-analytic on S +. Similarly Z  is real-analytic on S~.  The result follows. □  

Corollary 2.4. Suppose f , c  and w are as in Theorem 2.3. Then w G \

Proof. By Theorem 2.3, Z  =  f (w ){w '2 +  (1 +  Cw'2)} is real-analytic on I  \  

Af(f(w)).  Hence Z / f ( w )  G L™C(I \  Af ( f  (w))). Since w'2 and (1 + Cw')2 are 

nonnegative, it follows that w'2, and hence w', is in i g ,c ( / W ( / H ) ) a l s o .  □

2.2 The operator T :  Holder continuity

In this section we give an inductive proof of the first part of Theorem 2.1, with 
base cases n = 0 (Theorem 2.6) and n  =  1 (Theorem 2.9). The inductive step 
follows at the end of the section. We define first the operator T.

Let /  G C°(J)  where J c K .  We define, for u G with 7Z(u) C J ,

r(v)(*)  =  f M W A x )  ~  C ( « 7 ( « ) ) ( * )  =  ^  / _ "  u>(y) Ay.

(2 .6)
Note that F(u)  is defined only as a Cauchy principal value integral, being the 
difference of two such integrals. Note also that T  commutes with translations, in 
the following sense: for r  G M, let uT G W ^  be a translation of u:

uT(x) = u{x +  t) .

Then ^ { u ^ i x )  =  Jr(u)(x +  r). This follows from (2.6) since C commutes with 
translations also. In particular, F(u)  is 27r-periodic.

In the case where /  G C°(J)  D C 0,/3(J) (see Theorem 2.1 for notation) and u 
satisfies condition (A) above, it can be shown that F(u)  G L\oc{u~l {J)) for some 
q > p. Further, using a bootstrapping argument involving T , it can be shown,
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without using Riemann-Hilbert Theory, that if /  G C°(J) C\C0,l3( J \J \ f ( f ) )  and w 
satisfies condition (A) and is a solution of (1.1) then w G C ^ ( w ~ 1(J)\J \f ( f (w)))  
for all a  G (0,1). This argument is presented in Appendix B.

We present first an alternative expression for F(u).  We have

F(u)(x)  = 1 r
2

i  r
J-*

* { / ( “ (*)) - f ( u(y) ) }u'(y) dy

1 5  { f ( uix ))u(y) -  4>{u{y))}
27T 

1

tan ^
dy

- s / tan
dy,

(2.7)

where (j> is a primitive of / .  Now u G so for almost every x  G S 1, u has 
a classical derivative at a;. For such x  we have by the chain rule (1.7) that as 
y —> x,

d)(u(x)) — d>(u(u)) -I- Iu(u) — u(x) 1 f(u(x))
0 ;x - y

so we may integrate (2.7) by parts: for almost every x,

T{u){x)
^  /  p X - £  p X + 7 T \

- ^ ( L +L ) tan ^
dy

=  —  lim
27r e—>o

f{u(x))  (u(y) -  u(x)) -  (</>(u(y)) -  </>(u(x)))
tan

+ f{u(x)) (u(y) -  u(x)) -  (</>(u(y)) -  <f>(u(x)))
t a n ^

X + 7 T

x+e

f(u(x))  ('u(y) -  u(x)) -  i<t>(u{y)) -  </>(u(x)))J  /  f i X — E  /» X + 7 T \

2 \Jx—7r Jx+e J 2

1 r  (p(u{x)) -  4>(u(y)) +  (u(y) -  u{x))f{u{x))

i n 2
dy

4tt J_n —  2

= __1_ G(u(x) ,u{x -  y))
47t 7 ,^  sin2 1

sin2 ^  

dy,

dy

(2 .8)
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where G : J 2 -» R is given by

G ( s , f )  =  </>{s) -  <p{t) +  (t -  s ) / ( s ) .

We introduce next some notation. Suppose E\  C 5 1 and i?2 is a compact segment 
of E{. We define the following

8{Eu E 2) = \ 1[ Ei = S l
\  | di st (E2,dE1) El ? S l ,

and
S (E U E 2) = {<p + i P €  5 V  € E2, W  <  5} (2.10)

[note that if E\  =  5 1 then ^{Ei^Ef)  = S 1 also]. We define finally a smooth 

function ^EltE2 : S 1 [0> 1] such that €eue2 =  1 on S ( E i ,E 2) an<3 €ei,e2 =  0 on 
S ^ E ^

We now begin the proof of Theorem 2.1 (I), and start with the case n = 0.

L em m a 2.5. (generalisation of lemma 3.5 in [4]) Suppose f  E C°(J) nC '0,/3(J), 

where J,  J  and (3 are as in Theorem 2.1. I f  u E H C0,a(E), where a  E 

( 1̂ 5 , l ) ,  E  C u - \ J )  andH{u)  C J, then E(u)  e  C10o'cq(1'hs)~1(.E°).

Proof. Choose a compact segment E  of E°. Since E  is compact, it will suffice 

to show that for each x  E E, E(u)  is C0’0̂ 14"^-1 in a neighbourhood of x. For 

almost every t E S 1 we have that,

™ « >  -  - i  { / ‘ + / J  *  -  - ± m ) + S («», (S.u )

say, where 8 = 8(E ,E)  (as given in (2.9)) and X  = S 1 \  [—8, <$]. Note that if 

E  = 5 1, then X  = 0 and 5  =  0. We shall consider the regularity of D  and 5  

separately.
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Let \h\ < Then

\D(x + h) — D(x)\ = J

r\h\

-W

+

^  \G (u(x+h) ,u (x+h-y) ) \  | \G(u{x)i u (x -y ) ) \

J r

|G ( u ( x + h ) ,u ( x + h -y ) ) - G ( u (x ) ,  u (x -y ) ) \
• 2  v

(2 .12)

where T  =  [— \  [— |/i|, |/i|]. We consider each of these integrals in turn.

By the mean value theorem, for all x  G E  and \y\ < \h\, there exists f  G

(by Theorem 1.4 (iii), since /  6 C 0,̂ ( j )  and u is C 0,a on [x,x — y\ C [x— |/i|,rr +  

|/i|] C [x — J,a: +  5] C E ). Similarly, if \y\ < \h\, then \G(u(x + h), u(x + h — y))| < 

C\y\a(i+P) for some constant C , independent of x, y and h (we denote all such 

constants C in this proof), since u is C 0,a on [x+h, x + h —y\ C [x—2\h\, z+2|/i|] C 

[x — 6,x  + 8] C E. It follows that

< C f  1 \y\a(1+p)~2 dy < C\h\a{1+f3)~l . (2.13)
J - \ h \

In order to bound the second integral in (2.12), we rearrange K (x ,h ,y )  :=

[u(x — y), u(x)] such that <j)(u(x)) — 4>{u{x — y)) = f(£){u(x) — u(x — y)}. Hence 

for some constant C  independent of x  and y ,

\G{u{x),u(x -  y))\ = |/(£) -  f(u(x))\\u(x) -  u(x -  y)\ < C\y\a{1+/3),

|h| \G{u(x + h),u(x  + h - y ) ) \  \G (u {x ) ,u (x -y ) ) \
• 2 v +  ' 2 k ay
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G(u(x  +  h),u(x + h — y)) — G(u(x), u{x — y )):

K(x,  h, y) =  {(j){u(x +  /i)) -  0(w(o:))} -  {cf>(u(x +  h -  y)) -  (p(u{x -  y))}

+{[u(x + h - y )  -  u(x  +  h)] -  [u(x — y) — u(x)]}f(u(x  +  h)) 

+{u(x - y ) -  u(x)}{f{u{x  +  h)) -  f(u(x))} .  (2.14)

By the mean value theorem (applied to </>) and the intermediate value theorem 

(applied to u),

</>(u(x +  h)) — <j>{u(x)) =  f(u(to)){u(x + h ) —u(x)}  

<f>(u{x+h-y))-<l>(u(x-y)) = f ( u ( t i ) ) { u ( x + h - y ) - u ( x - y ) }

for some to £ [x, x  +  h] and t\ G [x — y, x  +  h — y}. It follows that

K {x ,h ,y )  = {[u{x + h ) - u { x ) ] - [ u ( x  + h - y ) - u { x - y ) ] } f { u ( t 0))

+{u(x + h — y) — u(x  — y)}{ f (u{ t0)) -  f{u(ti ))}

+{[u(x +  h -  y) -  u(x  +  h)] -  [u(x -  y) -  u(x)]}f(u(x  +  h)) 

+{u(x - y ) -  u (x )}{ f (u (x  4- h)) -  f (u(x))}

= { [ u ( x + h ) - u ( x + h - y ) ] - [ u ( x ) - u ( x - y ) ] } { f ( u ( t 0) ) - f ( u ( x + h ) ) }  

+{u{x + h — y) — u(x — y)}{f{u{t0)) -  / (u (O )}

+{u{x - y ) -  u{x)}{ f{u{x  +  h)) -  f{u{x))}.

Suppose y E Y .  Then by Theorem 1.4 (iii),

| [u(x + h) - u ( x  + h -  y)] -  [u(x) -  u(x -  y)]\\f(u(tQ)) -  f (u ( x  + h))\ 

< C \y \a\t0 - x - h \af3 < C \y \a\h\a/3,
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since /  G C0,(3( j ) ,  u is C 0,a on [x — 6 — \h\,x + 5+  |h|] C E  and \t0 — x — h\ < \h\. 

Similarly,

|u(x + h — y) — u(x — y)\ \f(u( t0)) -  f {u{ t i))| < C\h\a\t0 -  ti \aP < C |y |a/3|/i|a , 

since for y E Y ,  \to — ti\ < \h\ +  \y\ < 2 |y|; and

|u(x - y ) ~  u{x)\\f{u{x  +  h)) -  f(u(x))\  < C\y\a\h\aP. (2.15) 

It follows that |K(x,  h,y)\ < C |y |a^ |/i|a +  C |y |a |h |a/?, so

f  I f  d y  <  C \h\° f  M ! L d y  +  C\hV* [  - l ^ d y
J y  sin \  Jy  sin \  J Y sm* \

<  C\h\° J  | t / | ^ - 2 dy + C\h \a>3 f  Iy\a~2 dy,

since for y G Y,  | sin | |  > ^ |y | .  Hence

=  C\h\a {Ifif13- 1 -  <5“ '3- 1 }  +  C\h\â  -  <5Q _1}

as required. This establishes the regularity of D .

Now for t G S'1,

5 (0  =  {4>(u(t)) -  « (0 /(u (0 )}  [
J X

dy
x  sm2 \

u - y )  * f  (l)(u (t -  y ))+ f H t ) ) [ ^ d y - f  
J x  sin * Jxix  sin" |  j x  sin2 f

dy

— S\(t) + S2(t) + S$(t), (2.16)

say. Since y !-»• sin2 |  is bounded away from 0 on X , y i-> cosec2 f  is smooth on
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X .  Since /  G C 0,/3( j )  and u € C 0,a(E), it follows from Theorem 1.4 (i) and (iii) 

that Si G C 0,aP(E).

By Theorem 1.4 (iii), the function multiplying the integral in S2 is C0,â (E).  

We show tha t the integral is C^:

f  d y  = \ - U ( t - y ) c o s e c 2^ l  +  f  U(t -  ?/)-^-cosec2|  dy,  (2.17)
J x  sin § L 2U J x  d y  2

where U(t) = Jqu(s) ds (note that X  = (8,2tt — 8)). Since u G C 

U G C\,r, so as y cosec21 is smooth on X ,  both terms on the right hand side of 

(2.17) are C^,., as required. Hence by Theorem 1.4 (i), 52 G C 0,a/3(E). Similarly,

Since for all a, (5 < 1, a/3 > a ( l  + (3) — 1, we have that S  G C'0,a 1̂+̂ _1(^), 

as required. □

T h eo rem  2.6. Suppose f  G C°(J)  fl C 0,/?(J  \ A f { f ) ) ,  where J, J  and {3 are as 

in Theorem 2.1, and c G R. I f  w is as in Theorem 2.1 then w G C ^ ( w ~ l (J) \  

AI( f (w)))  for each a  G (0,/?).

Proof. Let E 4 be a compact segment of w~1(j) \J \ f ( f (w))  and let, for i G {1,2,3}, 

Ei be a compact segment of w~l (J) \ J\ f ( f (w))  such that E{+1 C E°. We show 

that w G C l'a{E±) for each a  G (0, (3).

Since w satisfies (1.1),

f {w)  -  T(w)  = f (w)  -  f (w)Cw'+ C(f(w)w')

— f {w) ( l  +  Cw1) +  C(f(w)w' ) — 2f(w)Cwr 

= c - 2f{w)Cw'. (2.18)

Since f (w)  is continuous (since w G W21̂1 C C it is bounded away from 0 on
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Ei.  Hence by (2.18) we have that for almost every x  G £ 1,

(219>
By Corollary 2.4 and Holder’s inequality, w G W 1,0°(Ei)  C  C0,1(Ei). Since 

E i  C  w~1(J\J\ f ( f (w)) ) ,  we have by Lemma 2.5 that E(w)  G C 0,Q 1̂+/3)_ 1 ( £ ,2) for 

each a  G ( 0 ,1 ) :  i.e. E ( w )  G C 0,a(£ ,2) for each a  G (0 ,/? ) .

Theorem 1.4 (iii) now yields f ( w )  G C0,P(E2). Since f ( w )  is bounded away 

from 0 on £ 2, we may apply Theorem 1.4 (ii) to (2.19), to conclude that Cw' G 

C°'a(E2) for each a  G (0 ,/? ) .  Now

Cw' =  C(£w') +  C((l -  £)w’), (2.20)

where £ =  £e2,e3 is as given below (2.10). By the proof of Theorem 1.8, C(( 1 — 

£)w') is smooth on £ 3, so C(ftt/) G C 0,a(£ 3) for each a  G (0,/?). Now w' G 

L°°(£i), so fu / G It follows by the theorem of M. Riesz (Theorem 1.7) that 

C(£w') G Z/27I-, and hence by Theorem 1.8 (2) that £u/ = £(t)w'(t) d t —

C2{£w') G C0,a(£ 4) for each a  G (0,/?). The result follows since on £ 4, w' =  

£11/. □

That Lemma 2.5 holds only when a  < 1 is somewhat unsatisfactory, since 
it weakens the conclusions of Theorem 2.6 (and Theorem 2.1). However, as the 
following example shows, Lemma 2.5 is best possible.

E xam ple  2.7. Let /  : M —>■ R be given by f ( x )  = \x\P, where (5 G (0,1]; and 

let u : S 1 —> R be given by u(x) = \x\. Then /  G C0,̂ (R) and u G Let

0 <  h < §. By (2.11-2.13),

r(u) (h)  -  ^ (« ) (0) =  h  -  L  [  K ^ '  y) dy,
47r Jy  sin |

where T  =  S 1 \  [—h, h], K ( 0,h,y)  is given by (2.14) and \Iq\ < ChP for some

33



constant C, independent of h (we denote all such constants C  in this example). 

Now

L W '-  {(/r*jO-- G C * n -
We examine first the size of I\. By (2.14-2.15) we have that for y € T,

\ K { 0 , h , y ) \ < C \ y f h  +  C \ y \ ^

for some constant C , independent of h and y [note that (2.14-2.15) hold for all 

a , /3 E [0 , 1]]; so we have that

IAI < C ( f  ’ + j f  )  \ y f - 2h +  \y\~l h^ dy < C h 13 l o g <  C b P .

Next we evaluate I2 . We have, for x > 0, 4>{x) =  f ^ t 13 dt =  s o

K { 0 , h , y )  = ^ ^ { |y l /3+1 -  \ h - y \ H 1 } +  \ h - y \ h 0 -

so that

- ( / ' + I\ J h - 7T Jh

= fJh

~h r ~ h\  3ir{|ylm  - 1* -  2 /r1} + |fc -  2/1̂  -  «§t^ +1
W L m  ' *' . 2 /  g+r dysm §

^ I { 2 y /3+1 -  (y -  h y +1 -  {y +  / i ) ^ 1} +  2yh? -  ^ ; ^ +1

y 2
dy

for some K,(h) € [4,7r2], since for ?/ € S 1, ^  < | sin | |  < Let t = J. Then 

/ 2 =  K{h)h^£

= K{h)h^ j  -  j -— (<^(l/f) +  < M -lA )) -  ^  dt, (2 .21)

where </>i(s) is the 0th order Taylor series remainder of the function s i-* ( l+ s )/3+1
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about 0 . We have by (1.19) that |0i(s)| =  0 ( |s |)  as s —> 0 . It follows that each 

term on the right-hand side of (2.21) except

- - 1 ,
dtn(h)h$ |

is dominated by Cn{h)hP. The latter term equals

2K,(h)hf} log ^  — 1  ̂ .

Hence if 0 < h < |  then T{u)(h) — u )(0) =  Rh +  K(h)h^log ( j  — l) ,  where 

lilfri < CK(h)hP and k(Ii ) is bounded and bounded away from 0 as h —> 0 . Since,

as h —> 0, log ( |  — l)  —>• oo, it follows that F(u)  0  C27r0,/3
27r '

This concludes the case n = 0. In the case n =  1 we have

L em m a 2.8. (generalisation of lemma 3.6 in [4]) Suppose f  G C °(J)

w /ie re  J, J  and (3 are as in Theorem 2.1. I f u E  f l C 1,a(E), with a  G (0 ,1 ] ,

E  C  u - 1 ( J )  and 7Z(u) C  J, then u) G C ^ ec{E°) for each £ G (0 , m in { o ;, /?} ).

Proof Choose a compact segment, E  of E° and let 5, .D and 5  be as in the proof 

of Lemma 2.5. Since E  is compact, it will suffice to show that for each x  G E, D 

and S  are sufficiently regular in a neighbourhood of x; since T  commutes with 

translations, it will suffice to consider the case x  =  0 G E.

We show first that D  is differentiable in a neighbourhood of 0, and that

// x f 5 ai;G{u (k),u(k — y)) . .D '(k )=  /  9k K V ’ v —  d y  (2 .2 2
J _ S  sm" I

for all k in a neighbourhood of 0 (we show that the integrand on the right-hand 

side of (2.22) is in L l {—6, (5) in the course of the proof). It will suffice to show
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that for all h and A; in a neighbourhood of 0,

D(k + h ) ~  D(k) - h  J
f r G { u { k ) , u { k - y ) )

sin / dy

G(u(k-\-h), u (k+h — y)) — G(u(k),u(k — y)) — hjkG(u(k), u(k — y ))
sin2 \

dy

< C |/i|1+min̂ > |  lo g ic a l , (2.23)

where C  is a constant independent of k, y and h (we denote all such constants 

C  in this proof). Note that (together with the uniform boundedness of D' in a 

neighbourhood of 0), this will in fact prove that for all e G (0, min{a, /?}), D  is 

C 1,£ in a neighbourhood of 0 , since for ki and k2 in a neighbourhood of 0 we shall 

then have

\D,(k1) - D ,(k2) | 
\ h  -  k2\e

<
\ki -  k-2

D'{k i)
D(ki) -  D(k2)

\ki -  h

ki -  k2 
D(k2) -  D ( h )

k2 -  ki
-  D'(k2)

< C\ki — A:2|miri{a,/3}_e| log \C'(ki — k2)\ \ -> 0 (2.24)

for some constant C, independent of ki and k2, as ki — k2 —> 0 . 

Let \h\, \k\ < min{l, |}  and Y  =  [—(5, (5] \  [— \h\, |/i|]. Then

/
s G(u{k+h), u ( k + h —y)) — G(u(k), u ( k —y)) — h-j^G(u(k), u{k—y ))

<

- 8

I
sin

dy

\ G ( u ( k + h ) ,u (k + h - y ) ) - G ( u (k ) ,u ( k - y ) ) -h £ r G ( u (k ) ,u ( k - y ) ) \
sin2 y_ dy

f\h\

+L
+ |/l | j _

\G(u(k +  h),u(k + h — y ) ) — G(u(k ), u(k — ?/))|
sin2 y_ dy

W \-§rG(u(k),u(k -  y))\

1*1 sin
dy. (2.25)

Consider the third term on the right-hand side of (2.25).
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If \y\ < 8, then [k , k  — y] C [—|£ , §<5] C E , so by the mean value theorem, 

we have that for some f  G [?/(&),u(k  — y)],  f ( u ( k ) )  — f ( u ( k  — y))  = f ' {C, ){u{k) — 

u(k  — y ) } .  Hence if \y\ < 8, then

A G ( u ( k ) , u { k - y ))

= {/(«(fc)) -  /(«(fe -  !/))}«'(* -  2/) + {«(fc -  2/) -  u( k) } f ' ( u ( k ) ) u ' ( k )

=  { / ' ( C )« '(*  -  2/) -  / ' ( « ( f c ) ) « ' ( f e ) } { “ (* )  -  « ( *  -  2/)} 

=  { / ' ( C ) K ( f c  -  2/) -  « ' (* ) ]  +  [ / '(C ) -  / ' ( « ( f c ) ) K ( * ) } { « ( f c )  -  « ( *  -  !/)}>

(2.26)

so by Theorem 1.4 (iii),

-j^G(u(k),u(k -  y)) < l/'(C)ll«'(fc -  y) -  u\k) \\u(k) -  u(k -  y)\

+ \ f l(0 - f ( u ( k ) ) \ \ u ' ( k ) \ \ u ( k ) - u ( k - y ) \

< c M { |y r + |y n  <

for all y with \y\ < 8. Hence

r 1 dkG ( u ( k ) M k  y))\ ^ r |2/|m inM }_ 1 =  c |/ i | i+min{a)/3})
J-\h\ S in  I  J-\h\

(2.27)

since for y G [— |h|, |/i|], | s i n | |  > ^ \y \ .  A similar calculation shows that the 

integrand on the right-hand side of (2.22) is in L l {—<5,8).

For fixed y G [—8, £], k i->- G(u(k) ,u(k  — y)) is clearly continuously differ­

entiable on [—£,<5]. Let <&y(k) =  G(u(k) ,u(k  — y)). Then by the mean value 

theorem,



for some ky^  £ [k,k + h]. It follows, via the same argument as above, that 

f W \G(u{k + h) ,u(k + h -  y)) -  G(u(k), u{k -  y ))| ^  <  C |ft|1+millK/,}
J-\h\ sin2 f

also.

Consider the first term on the right hand side of (2.25). By (2.28) we have 

that for y G Y

r\
G(u(k +  h),u(k + h - y ) )  -  G(u(k) ,u(k  -  y)) -  h — G(u(k), u(k -  y))

ok

= h { ^ G { u { k ) ,u { k  -  y)) ~  4 r G ( u { k ) , u { k  -  y))  
ky,h d k

= h{[f(u{kyth)) -  f(u(k))] -  [f{u(ky}h -  y)) -  f {u(k  -  y))]}u'(ky}h -  y)

+ { f ( u (k)) -  f ( u (k -  y ) ) } { u \K h  - y ) -  u \ k  -  y)}

+{W(ky,h - y ) ~  u{k -  y)] -  [u{ky>h) -  u(k)]}f'{u{ky>h))u'(kyth)

+{u(k - y ) -  u{k)}{f '{u{kyth))u'{ky}h) -  /'(u(/c))u '(&)};

we bound each of these terms in turn. For | / G h ,

| { / W U )  -  /(« (£))}  -  -  y )) -  f {u (k  -  ' % th - y)|

<  II“ 'IIl°°(E) I  ! / '(“ (< +  ky,h))u'(t + ky,h) -  f ' (u( t  + k))u'(t +  A:)| dt
J-y

< C \h \m'n^ \ y \

by Theorem 1.4 (iv), since /  G C 1,/3(J) and u is C 1,a on [—\y\ — \h\ — |fc|, \y\ +  

\h\ +  \k\] C [—y ,  y] C E. By Theorem 1.4 (iii), for y € Y,

|f (u{k))  -  f ( u( k  -  y))\\u\kyih - y ) -  u'{k -  y)\ < C\y\\ky>h -  k\a < C\h\a \y\,
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since u is C1,a on [—|j/| — |ft| — |fc|, |j/| +  \h\ + |fc|] C [—y ,  y ] C E,  and similarly

|{«(fcy,h -  y) ~  u(k -  j/)} -  {u(kyih) -  u(k)}\\f '(u(ky:k))u'(kyih)\

< C  J  \u'(t +  kyth) — u'(t +  k)\ dt 

< C \ k yl - k \ ° \ y \ < C \ h \ a\y \.

Finally, by Theorem 1.4 (iv), for y € Y ,

|u (k -  y) -  « ( * ) | | / ' ( t i ( ^ ) K ( W  -  }'{u(k))u'(k)| <  C\ky,h -  k r n{a'^\y\

< c \ h r ^ - % \ .

It follows that

f  \G {u (k+ h) ,u (k+ h-y ) ) -G (u{k ) ,u {k -y ) ) -h§ j ;G {u{k) ,u {k -y ) ) \
/  ----------------------------------------- r-2 »--------------   dyJy  c i n  1

<

ry sin
7TC \h ll+min{a,/3} f  _M  f  < C71/i11+min{Q:̂ >log

J y  sin % J Y \y\ 2 h

so for all h and A; in a neighbourhood of 0 we have that

/ s d_
mwj-G(u(k),u(k — y))

,2 2
dy

< c \h \1+min̂ p} +  C |h |1+min{Q’/3}log 4  <  C |h |1+min{a)/3}| log \Ch\\.
2 h

(2.23) is thus proved; and the required Holder continuity follows since D1 is 

uniformly bounded in a neighbourhood of 0, as may be seen from (2.26-2.27).

We now consider the regularity of S. As in the proof of Lemma 2.5, S(t)  is 

given by (2.16); by similar arguments to those used in the same proof, Si and 

the function multiplying the integral in S2 are in C 1,Tnm̂a,^ ( E ) .  We show that 

the integral in S2 is in C 2(E ):
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Since X  = S 1 \  [—(5, <5] =  (<5,2ir — <5), we have that for x G 5 1

*x—2ir+5

( y  =  - lfx  sin f

where

/  “ sin2 ^  dy = ~  I  ^ r ^ t d t  = - F ( x - 6, x - 2Tr + S,x),J x  sin o j x —s sin o

i ,q , r )=  j u(t)i 
J p

F(p,q,r)  = I u(t) cosec2 dt.

Let 7T(x) =  (x -  <5, x -  27r +  5, x) =  {Ki(x), K 2{x), K 3(x)). Then f x  $ dy 

—F(K(x) ) .  For x G E,

d f u ( x - y )  f  dF d K x dF d K 2 dF d K 3 \
dx J x  sin2 |  V ~  \ d K ,  dx + d K 2 dx + d K 3 dx J

/  rs 2 S ,  r „  X 2 2tT — <S f * - * ™  9=  idx — djcosec ul x  +  0 —---- 27r)cosec------- / n m —  cosec
V ' 2  2 Jx-s dx

5 , , _ , o2tt-<5 , . d , x - t  ,
2~~
(2.29)

Now for x G i£, u is C 1,Q in neighbourhoods of x — <5 and x — 27r +  5] so the first 

two terms on the right-hand side of (2.29) are in C 1,a(E). The third term is

— f  cosec2^ dt =  f  u(x — y)cosec2 -̂ cot ^  dy;
J x - 5  ox 2 Jx  2 2

so by an argument similar to (2.17) and the remarks following, it is in C ^ .  It 

follows that the derivative with respect to x of the integral in S2 is C l ( E ), so the 

integral itself is C 2(E).  Hence, by Theorem 1.4 (iv), 52 G (E) .

By a similar argument, S3 € C 1,min̂ a'^ (E) .

It follows finally tha t 5  G and in particular, 5  is <7 1>min{Q!</3}

in a neighbourhood of 0 ; together with the regularity of D , this establishes the 

lemma. □

T h eo rem  2.9. (generalisation of theorem 3.7 in [4]) Suppose f  G C 0( J ) n C1,f3( J \  

■A/"(/))> where J,  J  and (3 are as in Theorem 2.1; and c G l .  I fw  is as in Theorem 

2.1 then w € C f^ (w ~ 1(J) \  Af {f{w))) for each a  G (0,/?).
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Proof. Let E \ , . . .  ,E± be as in the proof of Theorem 2.6. We show that w G 

C2'a(E±) for each a  G (0,/3).

By Theorem 2.6, w G C 1,a(Ei) for each a  G (0,1), since /  G C0,1(J) and 

Ei  C w~x(J \  Af ( f  (w))). Hence by Lemma 2.8, for each a  G (0,1) and each

By Theorem 1.4 (iv), f(w)  G C 1,a(E2) for each a  G (0,(3). Since f (w )  is 

bounded away from 0 on E2, we may apply Theorem 1.4 (ii) to (2.19), yield­

ing Cw' G C 1,a(E2) for each a  G (0,/?). Now Cw' is given by (2.20), where 

f  =  € e 2, e 3 i s  as given below (2.10). As in the proof of Theorem 2.6 we have 

that for each a  G (0,/3), C(£w') G C 1,a(E3) D L\n. Hence by Theorem 1.8 (2), 

fu / = £(t)w’(t) d t — C2(^w') G C l'a(E±) for each a  G (0,(3). The result

follows since on E±, w‘ =  £u/. □

That, under the hypotheses of Lemma 2.8, we may conclude only E(u)  G 

Cfol(E°) for each e < m inja, (3} rather than E(u)  G [s somewhat
unsatisfactory, since it weakens the conclusions of Theorem 2.9 (and Theorem 
2.1). However, as the following example shows, Lemma 2.8 is best possible.

E xam ple  2 .10 . Let /  : R —» R be given by f (x )  =  2x and let u : S 1 —> R be 

given by

where 0 < a < 1. Then /  G C 1,1(R) (trivially) and u G C]£.  It follows from 

Lemma 2.8 that E(u)  is differentiable and (2.22) holds. Let 0 < x < | .  Lemma 

3.6 in [4] shows that

where K  = S l \  [—2x, 2x] and \Iq\ < C xa for some constant C, independent of x.

e G (0, min{o!,/?}), T(w)  G C 1,£(E2): i.e. for each a  G (0,(3), T(w)  G C l'a(E2).

“ (* )=  r z r d ^ r  ~  ,r“)a  -f 1

=  Io+C [  
JK
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Now

f  [u'{x) -  u’(x -  y)][u(x) -  u{x -  y)\ -  [u'(0) -  u '(-!/)][“ (0) -  “ ( - 2/)]
I • 2 yJ k  Qin Rsin

— 7r J  7r — x  /  2

+  (  ’+ r * )  .^ - ^ - ^ - • " (V(x ) - u { x - y ) )  dy
\ J  X  —  7T J2 x  /  S m  2

[upr) -  u(x  -  y)) -  {u{0) -  u{-y))][u’(0) -  u \ - y ) \  
fk sin5 2+  /  — -— — — v vV 2 y * *//JL  ---------- ^  &y

J k  siri R
= I\ +  I2 +  -̂ 3-

We investigate first the size of / 3. We have that for some constant C, independent 

of x  and y,

|(itOr) -  u{x -  y)) -  (u(0) -  u(-y) ) \  =  u \ t  +  x) -  u'(t) dt < C xa\y\,

since v! G Hence

|/3| < Ca:a [  M*"1 dy < CV 
J k

Next, we examine the size of I\.

X  — 7T /»7T

|A| <  Cx“ I I + 1  ) r i < C x a \ o g - ? — < C x a,
\ y _ »  A - * /  |y| TT-a:

since u' G C ^a , u G C and |log (^z^ ) | < log ( |) .  Finally, we evaluate
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I*.

"7r x (x a  — ( y  — x ) a  +  y a ) ( x a + 1  +  ( y  — x ) a + 1  — i r a y )  

hx (a +  1) sin2 \
I2 = f  ^  ̂ ^ -------- '—1L d y

J2x

( x a  — ( y  +  x ) a  +  y a ) ( x a + l  — ( y  +  a:)a+1 — 7ray)
(a +  1) sin2 |

d y .

-7T x _  (y _  x)a +  yQ)(a:a+1 +  ( y  — x ) a + 1  — tta y )
=  f  m  v * — 11—  M ~ - - — — — — -----------------------— -  d y

J2x y 2
( x a  — ( y  +  a:)Q + ya)(xQ+1 — ( y  + z)a+1 — i r a y )

H 5 cl?/)yl

for some k ( x ) G , since for ?/ G 5 1, ^  < | sin | |  < Let t  = J. Then

/ 2 =  fi(x) j  {(1 -  (t -  1)Q 4- tQ)(xa +  (J -  l ) a+1o;a -  irat)

+  (1 — (t +  l ) a +  ta)(xa — (t +  l ) a+1z a — 7Ta^)} d£
/•x-1 1

=  K,(x)xa I  — { ( l - t a[l+<pi(-l/ t)]+ta){xa+ ta+1[l+<p2( - l / t ) ] x a - i r at)

+  (1 -  ta [l +  <Pi(l/t)] +  ta)(xa — ta+1[ 1 +  (p2{l / t ) \xa — 7Tat)} d t ,

where </?i(s) and (p2(s) are the Oth order Taylor series remainders of the functions 

s 4  (1 +  s)a and s i-» (1 +  s)Q+1 about 0 respectively. We have by (1.19) that 

|</?i(s)| =  0 ( |s |)  as s —y 0. Hence

f x - 1
= K , ( x ) x a  J  2x a t ~ 2 +  [ i p2 { — \  A) — ^ ( lA )]^ -1®01 — 27rQr

• * -ix _
r  . ~ f  ~ \  |  r> ~ .<*-/.—2  , / i  /-/.M-ac* — ± „ ol*2 ~

+  ( p i { l / t ) ] t a ~ 2 x a  -  [ p i ( - l / t )  -  i p i { l / t ) ) t 2oL~ l x a

- [ ( f i { - l / t ) ( p 2 { - l / t )  -  V i ( l / t ) i p 2 { l / t ) ] t 2 a  1 x a

- \ - [ ( f i ( — l / t )  +  i f i ( l / t ) ] T T a t a ~ 2 d t .  (2.30)

Each term on the right-hand side of (2.30) except

r l ~ l
K ( x ) x a  j  -2 tTa t ~ l
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is dominated by CK,(x)xa. The latter term equals

2K(x)x“ log ( £ ~ ) .

Hence if 0 < x  < |  then (E(u))'(x) — (^r(u))/(0) =  Rx +  2K,(x)xa \og — |) ,  

where |i?x| < C|a;|a and /c(:r) is bounded and bounded away from 0 as x —¥ 0 . 

Since, as x  —>• 0 , log — | )  —► oo, it follows that u) 0 C ^ .  ■

This concludes the case n = 1. Before we can prove the inductive step in the 
proof of Theorem 2.1 (I), we require the following two lemmas:

L em m a 2.11. Suppose f  G C°(J))  ft C n^(J )  where n G N and (3, J  and J  are 

as in Theorem 2.1. I f  u G C)Cn'a(E) with a  G (0,1], E  C u~l (J) and 

7Z(u) C J, then F(u) is (n — 1)-times differentiable on E ° , and for x in each 

compact segment, E  of E°,

(E(u)){n~l\ x )  = f(u{x))C{£u(n))(x) -  C (f (u)£u{n)) (:r) +  R n_i(u){x),

where f  is a smooth function on S 1 and Rn-i{u)  G C 1,mm̂ a^ ( E ) .

Proof Let E  be a compact segment of E°, and let E  =  S (E ,E )  be as given in 

(2.10). Note that E  C E°. Let also £ =  £EE be as given below (2.10). Then we 

have

E(u)  =  f{u)Cu' — C{f{u)u')

= f(u)C(£uf) -  C ( f (u )& )  +  f(u)C(( 1 -  Ou1) -  C(f(u)(  1 -  flu ')-

By the proof of Theorem 1.8, C(( 1 — £)?/) and C(f(u)(  1 — £)u') are smooth on E. 

We consider

m , u )  := f (u )C ( tu ’)-C(f(u){;u ') .

Note that f(u)£u',£u' G so in differentiating 7-L(£,u) n — 1 times, we may
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interchange the operators C and differentiation. By Leibniz’ rule and the Faa-de 

Bruno formula (1.8), we have that on E ,

=  f (u)Cvt-n- 1) -  C (f(u)v(n~1'>)
n —1 71 — 1

n —1

+E
k=1

n  — 1

, (2.31)

where v =  fu #. All the terms on the right-hand side of (2.31) except f(u)Cv^n~^ — 

C(f  (rt)f/n-b )  involve only derivatives of /  of order less than or equal to n — 1 and 

derivatives of u of order less than or equal to n — 1; so Theorem 1.8 (2), together 

with Theorem 1.4 (iii) and (iv) shows that their sum is in C 1,min̂ a,^ ( E ) .

Now by Leibniz’ rule,

v (2.32)

and all terms on the right-hand side of (2.32) except £u ^  involve only derivatives 

of u of order less than or equal to n — 1, so are in C 1,a(E). It follows that all 

terms except

f (u)C  (f«W ) -  C (/(«)£«<">) 

in the n — 1th derivative of E{u)  are in (E) , as required. □

L em m a 2.12. Suppose a £ W\£  D C2,a(E), where a  £ (0,1] and E  C S 1; and
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b G L l v  G{a,b), given by

,w \ , \ nL( \ nt l\ ( \ 1 r  i a ( X )  -  a ( y ) } b(y)  J..Q{a, b){x) = a(x)Cb(x) -  C(ab){x) = —  J   t a n ^  dy’

is in C ^ { E ° ) .

Proof. Choose a compact segment E  of E°, let 5 = S(E , E)  and E  = £ ( E , E)  be 

as in (2.9-2.10), and let y G S 1 be fixed. Let

A f a  v) =  ’ tan
2a'(y) a: =  y

We shall show that A(-,y) G C'1,a(.E).

If y £ S 1\ E ,  then clearly A{’,y)  G C 2,a(E), by Theorem 1.4 (ii). Otherwise, 

A(-,y)  G C 2’a(E\[y-%,  ?/+§]) by Theorem 1.4 (ii). If y G and x G [y —f , 2/H-f], 

then

A(x, y) =  (a(x) -  a(y)}B(x, y) + 2 f  a'(y +  t[x -  y]) dt,
Jo

where r 1 2--------------------------X 9= v
b (x , y) =  < t an ^ — y

[ 0 X =  y.

This follows since if x = y then a'(y + t[x — y]) dt =  a’(y), whilst if x ^  y, then

f 1 // r , 1 f 1 d / r i\ i a(x ) ~  a(y)/ a (y + t[x -  y]) dt =  - — -  / — a(y +  f[x -  y]) dt =  — - — - — .
Jo x  ~  y Jo dt x  — y

B( ' , y)  is infinitely differentiable on [y — f , y 4- f ], and it follows from the Holder2’* 1 2

continuity of a" that A(',y)  G C 1,a([y — f ,y  +  §]); so A(-,y)  G C 1,a(E), as

required.

Since for each y G 5 1, A(-,y) G C 1,a(E), it follows that A{-,y) G C lyCt(E) 

uniformly in y.
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We now show that Q(a,b) is differentiable on E , and that for x  G E,

(Q{a,b))'(x) = 7̂  J A {h0)(x,y)b(y) dy. (2.33)

For fixed x  G E  and for \h\ < 5, we have

G{a,b){x + h) -  G{a,b){x) -  j  A {1>0)(x,y)b(y) dy 

= J {A{x + h , y ) ~  A(x, y) -  hA^ '0)(x, y)}b{y) dy.

Now by the mean value theorem, for each x  G E  and y G S'1, A(x  +  h, y) — 

A (x , y) = hA^1,0)(xy,h, y)  for some x y>h G [x, x  +  h\. It follows that

\A(x + h , y ) - A ( x , y ) - h A {1’0)(x,y)\ =  \h\\A{1'0){xy,h, y) -  A(1,0)(:r, y)\ < C\h\1+a,

for some constant C, independent of x , y and h\ and (2.33) follows, as required. 

That G(a, b) G C l,a(E) may now be seen from a calculation similar to (2.24). □

C o ro lla ry  2 .13. Suppose f  G C °(J ) D Cn,f3(J), where n  G N \  {1} and (3, J  and 

j  are as in Theorem 2.1. I f u  G W^  C\Cn'a(E) with a  G (0,1], E  C u~l {J) and 

H(u)  C J  then F(u)  €

Proof. Let E  be a compact segment of E°. By Lemma 2.11, it will suffice to show 

that 7/n-i($ , u) := f  (u)C(^u^)  — C ( f (u ) ^ u ^ )  G C 1,mm̂ a' ^ ( E ) , where f  is as in 

Lemma 2.11. This follows from Lemma 2.12, since f (u )  G Cn,mm â,/3̂ (E) (by 

Theorem 1.4 (iv)), G L\^ (trivially) and 'Hn_ i(f,u ) =  G { f { u ) ^ u ^ ) .  □

Proof of Theorem 2.1 (I). The cases n = 0 and n = 1 are proved in Theorems 2.6 

and 2.9 respectively. Assume that (2.1) holds if n = m  G N; we show that (2.2) 
holds if (3 < 1 and n = m  +  1, and that (2.1) holds if (3 =  1 and n = m  +  1.

Let /  G Crm+1,/3(J  \ A f ( f ) ) ,  let w G be a solution of (1.1) such that 
Cw' G L ^ w -1^ )  \  J\f(f(w))) and let E i , . . . ,  E± be as in the proof of Theorem
2.6.
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Let first (3 < 1. We show that w G C m+2,/3(£ l4). By hypothesis, w G 

Cm+1'a(Ei) for all a  G (0,1), since /  G C™’1 ( j  \  AT(f)) and Ei  C \
Af(f(w)).  Hence by Corollary 2.13, F(w)  G Cm+1̂ ( E 2). Also f(w)  G Cm+1̂ ( E 2) 
by Theorem 1.4 (iv), since /  G Cm+1,/3(J  \  A/*(/)), w G Cm+1,̂ (£ ,2) and E 2 C

Since f (w)  is bounded away from 0 on E 2, we may apply Theorem 1.4 (ii) 
to (2.19), and conclude that Cw' G C m+1,P(E2). Now Cw' is given by (2.20), 
where f  =  £ e 2,e 3 i s  as given below (2.10). As in the proof of Theorem 2.6 
we have that C(£w') G C'm+1,̂ (E3) D L \n. Hence by Theorem 1.8 (2) , £w' =
2^ dt — C2(£w') G C m+l'P(E±). Hence u; G C m+2,/3(E,4 ), since on £ 4 ,
u /  =  £ 1 1 /.

In the case (3 =  1, let a  G (0,1). We show that w G C m+2,a(i?4). As before, 
by hypothesis, w G Crn+1,a(Ei). Hence, similarly to above, F{w)  G C m+1,a(E2) 
and f (w )  G Cm+1,a(E2).

We apply again Theorem 1.4 (ii) to (2.19), and conclude that Cw' G Cm+1,a(E2)] 
and as above fu / G C m+1,a(E4). Hence w G Cm+2,a(£ l4), since on E±, w' = £u/.

The theorem now follows by induction. □

2.3 Real-analy t icity

In this section we present a proof of the second part of Theorem 2.1, and also 
show that the hypotheses of Theorem 2.1 are satisfied by solutions w G if 
any of the conditions (A)-(C) are satisfied.

Proof of Theorem 2.1 (II). If w' = 0 then the result is trivial, so we may 
assume that w'(t) /  0 on a set of positive measure.

Let E 2 be a compact segment of u;_1(«7) \J \ f (Z ) ,  and let E\  be a compact 
segment of w~l (J) \ A f ( Z )  such that E 2 C E{. We show that w is real-analytic 
on E 2. Let IZ : {x  +  iy G C\y < 0} —> C be given by

n ( x  +  i y )  = F { e ~ i x + y ),  (2.34)

where F  : V  —>■ C is given by (1.13). Then IZ = U + iV is holomorphic and as 
y /*  0, lZ{x +  iy) —»■ w(x) — iCw(x) pointwise almost everywhere. By Theorem 
2.9, w , Cw G C 2,a(Ei) for each a  G (0,1). Hence by Lemma 1.5, W, VG C ^ ( { x  +
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iy G C\x G E \ , y  < 0}) (note that U and V satisfy the strictly elliptic equation 
Au =  0). Hence for x  G E\,

Ux(x, y) -)> w'(x), Uy(x, y) -¥ {Cw)'{x). (2.35)

as y / 0 .  It follows that for x  G Ei, 7Z'(x +  iy) —» w'(x) — i(Cw)'(x) as y /*  0. 
Now by Theorem 2.1 (I), w' G C 2,a(Ei), so by Theorem 1.8 (1), Cw' G C 2,a(E2). 
By the same argument as above, there exists a holomorphic function 7£ =  U +  V
on {x + iy £ C\y < 0}, with C2,a extension wf — iCw' to E 2.

Now for y < 0, U(x +  iy) =  ^  f ^ P e- y(x — t)w(t) d w h e r e  for r  < 1 and
t ,9  G 5 1, Pr{0 — t) is the Po isson  kernel,

Note that jftPr{9 ~ t )  = —-§qPt {0 — t). By integrating by parts we obtain

It follows that 7V  and I t  are holomorphic functions on the open lower half-plane 
with equal real parts, so must differ by an imaginary constant. In particular, Cw' 
and (Cw)7 differ by a constant on E 2.

Since f{w)  and Z  are bounded away from 0 on E 2, f  is real-analytic on w(E2) 
and Z  is real-analytic on E 2,

gives Uy as an analytic function of t , U and Ux on E 2 \  J\f(l +  Cw1)-, and by 
Lewy’s theorem (Theorem 1.13), P  extends to an analytic function on a ball

on E 2 \  Af(l  +  Cw1).
A similar argument, using a different function P  on the lower half-plane and

Pr(0 — t ) =  Re
1 — 2r  cos(0 — t) +  r 2'

1 — r 2

gives (Cw)f as an analytic function of t, w and w' on E 2 \  J\f{l +  Cw'): i.e. it

centred at each point of E2 \ M ( 1  +  Cw'). Hence in particular w is real-analytic
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the formula

=  T i l t )  - 11

shows that w is real-analytic on E2 \  J\f(w'). Since on E 2, w'2 +  (1 +  Cw')2 ^  0 , 
we have that w is real-analytic on E 2. □

T h e o rem  2.14. Suppose f , c  and w satisfy the hypotheses of Theorem 2.1 (II). 

Then w is real-analytic on w~l {J) \ J \ f ( f (w ) f (w ) ) .

Proof. If f (w)  = 0 then the result is trivial; so assume f (w )  ^  0. By the proof of 

Theorem 2.3 (2), $  := H W  (where H  = 0(y / \ f (w ) \ )  and W  G rV <i^c suc^ 

that W* = w' +  i{ 1 +  Cw')) has an analytic extension to (w~l {J) \  Af(f(w)))*  U 

(C \  dV).  It follows by (1.17) that on S 1 \J \ f ( f (w)) ,

" ' ■ ' ( t )  "  o ( v T O i ) ' "  <2-36)

Let g = log y/\f(w)\.  Then by (2.36) we have

w' =  —(Re4>* cos (Cg) +  Im4>* sin(Cp)). 
e9

Now g' =  f (w )w ' / (2 f (w ) ) ,  so

9' = 2 C0Ŝ  +  sin( ^ ) ) ,

where a — sign{f(w))  is constant (± 1) on each compact segment of S l \A f( f (w)) .  

Finally, if f '(w(t))  /  0 then in a neighbourhood of w(t), f  has a local analytic 

inverse, f~*ty Hence in a neighbourhood of t , w(s) = f ^ f a e 29̂ ) -  It follows 

that in a neighbourhood of t ,

f ' ( f - } J a e 29̂ ) )
g'is ) = -----Ŵ e39(s)------- (Re$*(s) cos(Cg(s)) +  Im$*(s) sin(Cp(s))). (2.37)
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Let t G w- 1(J) \  Af ( f  (w) f  (w)), and let E i , E 2 and £ 3  be compact segments of 

\ A f ( f ( w ) f ( w ) )  such that t G £ 3 ,  (2.37) holds for all t G £ 3 ,  £ 3  C ££ 

and £ 2 C £ j \  We show that w is real-analytic on £ 3 .

By Theorem 2.9, w G C'2,a(£ i), so by Theorem 1.4 (iv), g G C'2,a(£ i) (note 

that /  7̂  0 on w (£i), so on f (w)(Ei) ,  t 1-* |i| is smooth; and on \ f(w)\(Ei),  log 

is smooth). Now f (w )  G Log (see the proof of Theorem 2.3), so g G L\v\ hence 

by Theorem 1.8 (2), Cg G C 2,Q(£ 2).

A similar argument to the one in (2.34-2.35) shows that there exists a function 

7Z = U + iV, holomorphic on the open lower half plane in C, with boundary data 

g — iCg on R. As in the proof of Theorem 2.1 (II), Lemma 1.5 now shows that 

W,V G C?£{{x  +  iy G C|x G E2,y  < 0}), whence by Lewy’s theorem (Theorem 

1.13) and (2.37), IZ extends to an analytic function in a ball about every point 

in £ 3; and in particular g, Cg are real-analytic on £ 3 .

Now for t G £ 3 , w(s) = f~^((re29̂ )  for all 5  in a neighbourhood of t , so w is 

real analytic on £ 3  also. We have shown that for each t G w~1( J ) \ A f ( f  (w)f'(w)),  

there is a neighbourhood of t on which w is real-analytic. Hence w is real-analytic 

on w~l (J) \J \ f ( f (w) f ' (w)) ,  as required. □

C o ro lla ry  2.15. I f  f ,  c and w satisfy the hypotheses of Theorem 2.1 (II) and 

f ^ O o n  IZ(w) then w is real-analytic on w~l (J) \  Af (f (w)) .

We now show that the hypotheses of Theorem 2.1 are satisfied by solutions 
w G W2n of (1.1) in cases (A)-(C).

In case (A), w G W^Qf(u ;_1(J)) for some p > 1, so by Theorem 1.8 (1), 
Cw' G Lfoc(u;- 1(J)) C L io^i/T ^J)). In case (B), w G so Cw' G L\^. For 
case (C) we have the following:

L em m a 2.16. Let u G W^ 1 withIZ(u) C J . I f  f  G C°(J ) is monotone increasing 

on 1Z(u) then for almost all x  G 5 1, E(u)(x)  > 0 .  I f  f  is monotone decreasing 

on 7Z(u) then T(u)(x)  < 0 almost everywhere.
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Proof. Let x, y G S l . By the mean value theorem, 4>{u{x)) — <f>(u(x — y)) = 

f i x ) { u ix ) — u ix ~  y)} f°r some x  € {u(x), u{x — y)). Hence G{u{x), u(x — y)) = 

{ f i x )  ~  f i u ix ))}{u ix ) ~  u ix ~  v)}- Suppose /  is monotone decreasing. Then 

f i x )  ~  f i u ix )) has the same sign as uix) — u{x — y), so G(u{x), u{x — y)) > 0 . 

Hence by (2 .8), !F{u){x) < 0 almost everywhere. Similarly if /  is monotone 

increasing. □

Corollary 2.17. Suppose f  € C°{J). I f  w G W ^  is a solution of (1.1) such 

that f  is monotone on IZ{w) then Cw' € L11oc(5 1 \J \ f ( f (w))) .

Proof. Since w satisfies (1.1), f iw )  +  Fiw) = c — 2C(f(w)w').  Hence by Lemma 

2.16, C{f{w)w') is either bounded above or below. Hence by the remark following 

Definition 1.10, C{f{w)w') G L\n. Hence T{w)  G so by (2.18), Cw' G 

Aoc('^1 \  N i f i w ) ) ) ,  as required. □

2.4 The Bernoulli condition

In this section we investigate the case where Z  = c. This case is important here 
because of the following corollary to Theorem 2.1 (II)

Corollary 2.18. Suppose f  and w satisfy the hypotheses of Theorem 2.1 (II), 

and c G E \ { 0 ) .  I f Z  = c on w 1{J) \  Af{f{w)) then w is real-analytic on 

w - ' i ^ X A f i f i w ) ) .

Proof. By Theorem 2.1 (II), w is real-analytic on u>_1(J) \  AfiZ) .  On w~l (J) \  

Afi f iw)) ,  Z  =  c ^ O . The result follows. □

We now consider which solutions w G TL̂ 1 of (1.1) satisfy Z  = c. The basic 
result is the following:

Theorem  2.19. Let f  G C°{J) and c G i  Suppose w G satisfies (1.1). I f
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c t^O then the following are equivalent.

(a) f (w ( t ) ) /c  > 0 almost everywhere, {(5) Z{t) =  c almost everywhere,

(7 ) Z  E L \ . (<5) Z  is bounded above (or below).

I f  c =  0 then (P)-(S) are equivalent, and are implied by 

(a/) f (w(t)) has the same sign almost everyvjhere.

Note that in this case, (/3) is equivalent to f (w(t)) = 0 almost everywhere.

We include a proof for completeness, although the result is a corollary of 
theorem 2.1 in [17].

Proof. By the proof of Theorem 2.3, (1.1) becomes the Riemann-Hilbert problem 

(2.4). In the case w E H ^ 1, we have that \W*\ = \w' +  i{ 1 +  Cw')\ E L\n, so 

W  E Also, \U*\ = |/(iu)||W *| E so U E by Smirnov’s theorem 

(Theorem 1.12).

Suppose that c / 0  and (a) holds, or that c = 0 and (a:7) holds. Then, using 

the notation of the proof of Theorem 2.3, either S +, or S~ has zero measure. 

Suppose, without loss of generality that S~ has measure zero. Then (U /H )* =  

(HW)* almost everywhere on S 1 and (U /H )* , (H W )* E L\n (see the proof of 

Theorem 2.3 for notation). Hence by Theorem 2.2, U /H  and H W  have bounded 

analytic extensions to C, so are constant. Hence Z  = U*W* = (U/ H)*{HW)* 

is constant. Since W (0) — i and (7(0) =  —ic, we have that Z(t)  = c almost 

everywhere: i.e. (/3) holds.

Clearly (/?) => (a) if c ^  0 ; and in all cases {(5) => (7 ) and {(5) (<5). Suppose

(7 ) holds. By (2.4),

U*{t)2 = f(w{t))2W*(t)2 (2.38)

Let H  — G(f(w)),  and for z E

= T F T *  =  H { z ) W { z f .H\z)
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Now |G?*(£)| =  \ f(w(t))\\W*(t)\2 =  \Z(t)\, so G G Hq. Also, similarly to (2.5), 

\F(z)\ < \0(G*){z )h so F  € M}*. By (2.38) and (1.17), we have that for t G S l ,

F*(t) =  ^ ^  =  H*(t)W*(t)2 = G*(t).
H*(t) \H*(t)\2

Hence by Theorem 2.2, F  and G have bounded analytic extensions to C, so are 

constant. In particular, (U W )2 = F G , and hence UW,  is constant, so Z  is almost 

everywhere constant on S 1. As above we have Z(t)  = c almost everywhere: i.e. 

(/3) holds.

Suppose (£) holds, and suppose that Z(t)  > d for some d G R  Then $*(t) > 

1, where, $  =  U W  — d +  1 G Let

F  =  — G = O t V ¥ ) .  
o ( V ¥ )  K ’

Then for t G S'1, F*(t) = G*(t), and F  and G are in 7 ^ , since G is; so as above F  

and G are constant. Hence U W  is constant, so Z  is almost everywhere constant 

on 5 1. If Z  < d, then a similar argument shows that the function d — UW  +  1 is 

constant, and hence that Z  is almost everywhere constant. As before, we must 

have Z(t)  = c almost everywhere: i.e. (/3) holds.

If c =  0 and (j5) holds, then f  (w(t)){w' (t)2 +  (1 +  Cw'(t))2} =  0 almost 

everywhere. Since w'(t)2 +  (1 + Cw'{t))2 /  0 almost everywhere (see the proof of 

Theorem 2.3 (1)), we must have f(w(t))  = 0  almost everywhere. □

The final result in this chapter relies on the following result from [17]

Lem m a 2.20. Suppose a G C \  {0} with a(to) = 0 for some to G S 1; and 

G (p > 1). I f  p >  2 /a  then the equation ^ * =  a$* has no nonconstant 

solutions.

Theorem  2.21. (generalisation of theorem 1.7 (a) and (b) in [17])
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(a) Let f  G C°'P(J), where (3 G [0,1] [C°'°(J) := C°(J)] and J  C R is open,
! M

and c G l  Le£ w G B/2̂ 1+/3 a solution of (1.1). I f  c ^  0 then (a) - (ft) 

in Theorem 2.19 hold. I f  c = 0 then (j3) - (ft,) hold.

(b) Let f  : J  —> R 6e real-analytic, and c G R \{0} . I fw  G T̂ ’1 25 a solution of 

(1.1) then the following are equivalent: (i) w G fa) w real-analytic, 

(Hi) f (w ) / c  > 0 everywhere.

Proof, (a) By Theorem 2.19, we need only show that (7 ) holds. If /  G C°(J)  
1 2and w G W27j. 5 this follows easily from Holder’s inequality and the theorem of 

M. Riesz (Theorem 1.7). Otherwise, by Lemma B .l, we have that P(w)  G L2J^. 

Now since P(w) — c — f (w)  — 2C(f(w)w') =  2f(w)Cw'  4- f (w )  — c, and since 

f{w)  G L2J, we have that C(f(w)w'), f(w)Cw'  G L2̂ .  Hence by the theorem of 

M. Riesz (Theorem 1.7) and by Holder’s inequality, Z  G L27r, as required.

(b) Suppose (iii) holds. Then by Theorem 2.19, (a) - (7 ) hold, and w is 

real-analytic everywhere by Corollary 2.18. Hence (iii)=j>(ii)=>(i).

Suppose (i) holds. Then f (w)  G C2̂ 3 by Theorem 1.4 (iii) and Holder’s 

inequality. Now W  G so as U* =  f ( w ) W *, U G Hence by Lemma 2.20, 

either U* and W* are constant (in which case w is constant and (i)-(iii) hold 

since f (w)  =  c ^  0) or f (w )  is nowhere 0. By part (a), Z  =  c, so f (w ) / c  > 0 

everywhere: i.e. (iii) holds. □
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Chapter 3

Local Bifurcation Theory

In this chapter and the next, we consider one-parameter families of functions 
/(A, •) where A E R; and find bifurcation points (A*,0) G l x  of (1.4). We 
begin with some notation.

Let I  and J  be open intervals in R with 0 E J, and /  E C°(I  x J). We define 
F  : I  x  T  -> Z 4  (where T  =  {w E W ^ \H { w )  C J}) by

F ( A, w) =  /(A, w)(l  +  Cw1) +  C(/(A, w)w') -  /(A, 0). (3.1)

Equation (1.4) then becomes F ( \ ,w )  = 0 .
In Section 3.1 we give sufficient conditions on /  for F  to be in C k(I  x T .J& ) 

and for F  to be real-analytic; and also give a sufficient condition for d°’lF ( A, 0) to 
be Fredholm with index 0. Both of these conditions will be used in the following 
sections. We also observe that a necessary condition for (A*, 0) to be a bifurcation 
point of (1.4) is that the function q : I  —> R given by

/<W>(A,0)
9(a) =  " ^ o T  (3'2)

takes a value in N U {0} at A*.
In Section 3.2 we apply Theorem 1.21 to (1.4) and find that a sufficient con­

dition for (A*, 0) to be a bifurcation point is that f  E C 1 (I x  J), q(A*) E NU {0} 
and (X — X*)(q(X) — q(X*)) has the same sign on I  \  {A*}. This hypothesis is very
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weak, but the conclusion (only that (A*,0) is a bifurcation point) is weak also.
In Section 3.3 we apply Theorem 1.22 to (1.4) and find that under the stronger 

hypotheses /  G C k (k > 2), q(X*) G N U {0} and q'{A*) ^  0, a Cr/c-1-curve of 
solutions bifurcates from (A*,0). We are also able to give information about the 
behaviour of this curve in a neighbourhood of (A*,0).

Finally, in Section 3.4 we find, by applying the Morse lemma (Lemma 1.18) to 
the bifurcation equation (1.25), a sufficient condition for (A*, 0) to be a bifurcation 
point of (1.4) where q has a strict local turning point at A*. In this case we find 
that two distinct C 1 branches of nontrivial solutions of (1.4) bifurcate from (A*, 0). 
In so-doing, we show that the sufficient condition found in Section 3.2 is not a 
necessary condition.

3.1 Preliminaries

We address first the Frechet differentiability of F.

L em m a 3.1. Let I  and J  be open intervals in R with 0 G J. I f  f  G C k(I  x J) 

(k G N/ then F  G C k(I  x T , ! ^ ) .  I f  f  real-analytic from I  x J  to R then F  

is real-analytic from I  x T  to L\^.

Proof. By Theorems C .l and C.2, if /  G C k(I  x J, R) then F  G C k(I x T , L ^ ). 

Hence we need only show that if /  is real-analytic, then so too is F.

We show first that the map (A,w) f (X ,w)  is real-analytic from I  x  T  to 

C27,-. Let Ao € /  and w0 G T, and let S =  min{dist(A, dl),  dist(7£(t<;), dJ)}  and 

M  = {a +  b G R2|a G {A0} x 7Z(wq), |6| < <5/4}. By (1.23) there exist C > 1 and 

R  G (0,1) such that for all n G N and all (A, y) G M,

||dn/(A ,2/)||£»(R2>R) <

Let (A,w) G R x W with ||(A — Ao,w — Wo)||rxw21>2 ^  ^/4. Then A G I  since 

|A — Aq| < <5/4 and w G T since ||iy — u>o||oo <  \/2ir\\w — w q \ \ w i ,2 < S. Let also
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t G S \  N  G N  and 

N 1
f N(\ ,  w(t)) = V '  — d n / ( A 0 , Wo ( t ) ) [ ( A —A0 , w {t ) -w0(t)) , . . . ,  ( A - A 0 , w ( t ) - w 0 (*) ) ] .  

n\
n = 0

By Taylor’s theorem (1.19),

lff\ f (\ ,„M1I - |(A-Ao,u>(t)-t«i)(t))r+I\ f ( \ ,w( t ) )  -  f N(\,w{t))\  < - - - - - - - - - - - (AT +  lji-----------

x sup \\dN+1f ( ( l - s ) ( \o ,Wo( t ) )  + s( \ ,w ( t ) ) ) \ \CN+i(E?,R)' 
ae[ 0,1]

Now for s G [0,1] and t G S 1 we have th a t ((1—s ) A o + s A ,  (1—s)wo(t)+sw(t))  G M , 

so if | |( A0 — A, wo — w) IIirxw1’2 <  min{i?, 5 /4} then2tt

, , , ,  IA, f n  f .w  .  C(N + l ) \ \ ( X - X o , w ( t ) - w 0m N+1

<

Rlf+1( N + 1)1 
C(|A -  A0| +  ||w -  ^ 0|U )W+1

r n + i

so (/jv(A,to)) -> /(A , to) in Cj*.

If we define a family of symmetric n-linear forms mn € r ( l x  by

m„((A1) to ,) ,. . . ,  (A„, wn)){t) =  —:dn/(Ao,to0(f))[(Ai, to i(f)),. . . ,  (A„, to„(f))]
n\

(recall that dn/(A 0, w o ( t ) )  G £ n(R2,R)), then for t G S 1

m n((A -  A0, w -  w0), . . . ,  (A -  \ 0,w  -  w0))(t)

=  —:dn/(A 0, w0{t))[{A -A0, w(£) -  w0(£)),. . . ,  (A-A0, w(*) - w 0(£))]; 
n\

so by (1.21), (A,w) t-> f ( \ , w )  is real-analytic from I  x  T  to C ^ , as required.

By a similar (and simpler) argument, the map (A, w) i-» /(A, 0) is real-analytic 

from I  x  T  to C ^ .

Now the operator P  : C ^  x  L \v —>• L27r giyen by ^ ( wj v) =  uv is real-analytic,
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since it equals its [three-term] Taylor series about each point. Since the maps 

w i—v Cw' and w i-> w' are real-analytic from to (being linear) it follows 

that the maps (A, w) i-» /(A, w)(l+Cw')  and (A, w) i->- /(A, w)w' are compositions 

of real-analytic maps, hence are real-analytic from I  x  T  to L (see Section 1.5). 

Finally since C is linear, the map w i-* C(f( \ ,w)w ')  is real-analytic from W^ 2 to 

L ^ . The result follows. □

From now on we restrict our attention to even solutions of (1.4), in order to 
apply Theorem 1.21 and Theorem 1.22. Let

Z q = {w G Lln\w is even} Z\  =  {w G W ^ \ w  is even},

have the subset norms of W and L%n respectively. We consider F  as a map 
from I  x (T D Z{) to Z q.

L em m a 3.2. Suppose f  G C l {J) is such that /(0 ) 7̂  0. I f  F  : T  D Z\ —)> Z q is 

given by

F(w) = f (w )(  1 +  Cw1) +  C(f(w)w')  -  / ( 0) (3.3)

then dF(0) is Fredholm with index 0.

Proof. By Lemma 3.1, F  G C 1(T D Z\, Z q), and by Corollary C.3,

dF(0)h = h f {  0) +  2f{0)Cti. (3.4)

By the Theorem of M. Riesz (Theorem 1.7), dF(0) is a bounded linear operator.

Suppose first that — / ' ( 0) / 2/ ( 0) ^ NU {0}. Then dF(Q)h =  0 if and only if

h = 0 [note that the set of eigenvalues of the map h Ch1 is N U {0}], so dF(0)

is injective. Also, for n G N U {0},

d F (0)
$

=  (3.5)
L /'(0) +  2n / ( 0)J

where <J>n(x) =  cos nx,  so d F (0) maps onto a total subset of Z0 [a set with span
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dense in Z0\, and it follows from an argument involving Parseval’s equation and 

the comparison test that d F (0) is surjective. The result follows

Now suppose that —/ /(0)/2 /(0) =  k G N U {0}. Then dF(0)h =  0 if and 

only if h G span{4>fc}, so Af(dF(Q)) =  span{<I>fc}. Also, (3.5) holds for all n G 

N U {0} \  {k }, but for all w G Zi, dF(0)w /  Hence dF(0) maps onto a total 

subset of {w G Z 0\ (w,<&k)2 =  0}- Hence by an argument involving Parseval’s 

equation and the comparison test, 7£(dF(0)) =  {w G ZQ\ (w , <&k)2 = 0}-

The result follows. □

Finally in this section we give a necessary condition for (A*, 0) to be a bifur­
cation point of (1.4).

Lem m a 3.3. Let I  and J  be open intervals in R with 0 G J, and f  G C l (I  x J). 

I f  f { A*,0) 7  ̂ 0 and q* =  #(A*) ^ N il  {0} (where q is as given in (3.2)) then 

(A*,0) is not a bifurcation point of (1-4)-

Proof. By the proof of Lemma 3.2, d0,1F(A*, 0) is a bijective, bounded linear op­

erator. Hence by the bounded inverse theorem, d0,1F(A*, 0) is a homeomorphism 

and (A*,0) is not a bifurcation point of (1.4) by Lemma 1.20. □

3.2 Odd eigenvalue crossing number bifurcation

The following theorem shows, using the concept of eigenvalue crossing numbers 
defined in Section 1.6, that a large class of points (A,0) not excluded by Lemma
3.3 are bifurcation points of (1.4). As in the previous section, we restrict our 
attention to finding even solutions of (1.4): this ensures that all the eigenvalues 
of <90,1F(A*,0) are simple.

Theorem  3.4. Let X* G R and let I  x J  be a neighbourhood of (A*,0) in R2. 

Suppose f  G C 1 (I x J) is bounded away from 0. I f  q* G N U {0} and one of the
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following holds:

(VA € I  \  {A*})(A — A*)(g(A) — g*) >  0 

(VA e  /  \  {A*})(A -  A*)(9(A) -  ?*) < 0

(3.6)

(3.7)

then (A*,0) is a bifurcation point of (1-4)-

Proof By Corollary C.3,

d°^F{ A*, 0)h = h / (0,1)(A*, 0) +  2/(A*, 0)Cti. (3.8)

By Theorem 3.1, F  G C l {I x  T, L^.) because /  G C 1 ( /  x  J). By Lemma 3.2, 

d0,1F (A, 0) is Fredholm with index 0 for all A G I.

We find, for A G / ,  the eigenvalues of d0,1F ( A, 0). By (3.8), p is an eigenvalue 

of d0,1F(A, 0) if and only if

i.e. if and only if p = pn{A) =  /^0,1̂ (A, 0) +  2n/(A, 0) for some n e  N U {0}. In 

particular, dim(Af(d0,1F(X*, 0))) =  1 and 0 is an isolated [simple] eigenvalue of 

d0,1F (A*,0). The eigenspace corresponding to pn(A) is span{$n}.

Since /  G C l (I  x J), we have that as A —>■ A*, //n(A) / ^ ’̂ (A*,0) +

2n/(A*,0). It follows that the only eigenvalue of d0,1F(A,0) which converges to 

0 as A -> A* is p q*(A) =  2/(A ,0)(g* — ^(A)).

If /  > 0 on I  x J  then pq* < 0 if and only if q* < q{A), so the number of 

negative eigenvalues of d0,1F (A, 0) which converge to 0 as A X* is given by
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It follows that

ni ( — 1 if (3.6) holds
x(d  F ( \ ,  0), A*) =  <

[ 1 if (3.7) holds;

and similarly x(d0,1.F(A, 0), A*) =  ±1 if /  < 0 on I  x J . In all cases the crossing 

number is odd; so by Theorem 1.21, (A*,0) is a bifurcation point of (1.4), as 

required. □

R em ark s  3.5. (a) If q* G N U {0}, it follows that /(A*,0) ^  0, so by the

continuity of /  there exists a neighbourhood I  x J  of (A*,0) such that /  is 

bounded away from 0 on I  x  J. The same remark holds for Theorems 3.7 

and 3.13 also.

(b) The conditions given in (3.6-3.7) each ensure that q(A) — q* changes sign as 

A passes A*.

■
E x am p le  3.6. Let /  : R2 —y R be given by

/(A, y) =  1 - y { y  + 2)(l  + \ 3).

Then / ( A,0) =  1 for all A. Also we have that f ( ° ' ^ ( \ , y )  =  —2(1 +  y)( 1 +  A3), 

so that / ( 0,1)(A,0) =  —2(1 +  A3) and q(A) =  1 +  A3. Hence q(0) =  1 and for all 

A ^  0,

{q(A) -  q{0))(A -  0) =  A4 > 0 ; 

so (0,0) is a bifurcation point of (1.4). ■

3.3 Crandall-Rabinowitz transversality

If we have better regularity information about /  and a stronger condition on the 
behaviour of q then we are able to say more about the solution set of (1.4) near
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(A*,0): namely

T h e o rem  3.7. Let A* E R and let I  x J  be a neighbourhood of (A*,0) in R2. 

Suppose f  E C k(I  x J) where k > 2. I f  q* E N U {0} and q'(A*) ^  0 then a 

unique C k~1-curve 05 of nontrivial even solutions of (1-4) bifurcates from the line 

I  x {0} C l x  W^ 2 of trivial solutions at (A*, 0).

I f  q* E N then all solutions on 05 in a punctured neighbourhood of (A*, 0) have 

fundamental period 2ir/q*; i f  q* = 0 then all solutions on 05 in a neighbourhood 

of (A*, 0) are constant functions.

I f  f  is real-analytic then so is 05.

Proof We show that <9o,1F(A*,0) satisfies the hypotheses of Theorem 1.22.

Note first that by Lemma 3.1, F  E C k(I  x T , L2tt) because /  E C k(I x J); 

and that if /  is real-analytic, then so too is F.

By the proof of Lemma 3.2, we have that J\f(d0,1F (A*,0)) =  span{$g*} and 

7Z(d0,1F(\*,  0)) =  {w E ZQ\ {w} $ q*)2 — 0}> so d^i'XA*, 0) is Fredholm with 

index 0, and has a one-dimensional null space.

Now for all A for which /(A, 0) /  0,

9 (A) = ------------------------ 2 7 ( w -------------------------’ ( }

so by (C.7),

d1’1F(A*, 0)[<Jy, 1]

/ ( w ) ( a ’ , o )  -  7 f f ^ (A-,o) ^7Z(doaF(X*,0)),(3.10)

since q'(X*) ^  0 . Hence d0,1F(A*,0) satisfies the hypotheses of Theorem 1.22, 

and we conclude that a unique curve 05 of even solutions of (1.4) bifurcates from 

the line of trivial solutions at (A*,0), as required. The regularity of 05 follows 

from the same theorem and from Lemma 3.1
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05 is given by (1.28) as {B(t)\t G (—£,£)} (for some e > 0), where B G 

C k~l ((—e,e), I  x (T fl Z\)) (B is real-analytic if /  is) is given by

B(t) — (A* +  -f 7(^* "b (3-11)

In order to prove the periodicity claim for solutions in 05, we define Z0)9* and 

Z \ tq* as follows: if q* G N then

Zo,q* — G Zfl

Z\,q* ~  \lD € Z\

w is ^--periodic |

w is — -periodic 1 , 
q* J

with the subspace norms of W^ 2 and L\v respectively. Otherwise Z0)9* and Z \ tq* 

are the set of constant functions on R

We regard F  as a map from I  x (T fl Z \ tq*) to Z0)9* and find as before that 

d0,1F ( A*,0) is a Fredholm operator with index 0 and has null space span{$9*}; 

and that the transversality condition (3.10) holds. Hence a unique C k~l (or real- 

analytic) curve of solutions (A, w) G R x Z \ tq* bifurcates from the line of trivial 

solutions at (A*,0). Since the bifurcating curve 05 found above is unique, it must 

therefore, in a neighbourhood of (A*,0), lie in R x Z i>q*.

If q* 7̂  0 then (3.11) shows that in a punctured neighbourhood of (A*,0), 

all solutions on 05 are nonconstant, since 7 maps into 7l(d0,1F(\*,  0)) =  {u G 

Zo,q* | (it, 3 v )2 =  0}- Hence in a punctured neighbourhood of (A*, 0), all solutions 

on 05 have fundamental period 27r/q*. □

In the case where /  and A* satisfy Theorem 3.7, we shall say that the bifur­
cation and the bifurcation point (A*,0) are of C ran d a ll-R ab in o w itz  type .

The bifurcation equation (1.26) is given by

(Ufa t) = ($ q*, F(  A* +  /i, t$q* +  7 (A* +  //, t$ q*)))2 = 0 (3.12)
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in a neighbourhood of (0, 0) in R2.
We next examine the behaviour of 95 near (A*,0). The cases q* =  0 and 

q* ^  0 are treated separately.

T h eo rem  3.8. Suppose f  and X* satisfy Theorem 3.7 and q* ^  0. Then 95, 

given by (3.11), is not transcritical.

Proof. Suppose (A, w) is a nontrivial solution on 95. By (3.11), w = t $ q* +  7 (A* +  

l i ( t ) , t$q*) for some t ^  0, so w cannot be 7r/^*-periodic as its Fourier series 

contains a nonzero multiple of $ q* (recall that 7 maps into IZ(d0,1F(X*, 0)) =  

{u e  ZQ\ (u, $ q*)2 =  0}).

Now the function wq* 6 W 2̂ 2 given by wq*(x) =  w(x — 7r /  q*) is even, since for 

x  € R, wq*(—x) = w(—x — 7r/q*) =  w(x  +  n/q*) =  w(x — ir/q*) = wq*(x). Also, 

as with T , F ( A, ■) is translation equivariant; so for all x

F (A, wq*)(x) = 0 =  F (A, w) ^ x - ^ j  .

Hence if (A,w) is a nontrivial even solution of (1.4) then (A,wq*) is a distinct,

nontrivial even solution. Hence 95 cannot be transcritical. □

In fact Theorem 1.24 gives sufficient conditions for 95 to be supercritical or 
subcritical.

T h eo rem  3.9. Suppose f  G C 3(I  x J) and X* satisfy Theorem 3.8. I f  

B(X*)/(q'(X*)f(X*, 0)) > 0 where

„ n  V o .3W \ m , / <0'2)(A,0)2 /<«>(A,0)/<"'1>(a , o) /(W)(A,0)»
B ( A) -  - r  (A, 0) +  4/(0,1)(A)0)---------------------  +  2/(A; 0)2-. (3-13)

then 95 is supercritical. I f  B(X*)/(q'(X*)f(X*,0)) < 0 then 95 is subcritical. 

Proof. Since by Theorem 3.8, p'(Q) = 0, we have by Theorem 1.24 that

»"(0) -  (3 14)
S / ^ O . O ) ’ 1 j
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where (3 is given by (3.12). The calculations in Appendix C show that /5̂ 0,3̂  (0 , 0) =  

and

/*1'1>(0,0) =  7r ( /< W>(A*,0) -  / ( 1,0>(A) y ° ’1>(A,,Q))  =  -27r</(A*)/(A*,0), 

so that
B{ A*)

^ (0) 2g'(A*)/(A*,0)

[note that f t 1,1) (0,0) ^  0 by hypothesis (see (3.9))]. The result now follows from 

the remarks in Section 1.6 . □

Exam ple 3.10. Let /  : R2 —> E be given by

/(A, y) =  1 — 2/(2 +  2/2) (3 — 2A2).

Then /(A, 0) =  1 for all A. We also have that for all A and y , f^0,1̂ (X,y) = 

— (2 +  3y2)(3 — 2A2), so that /^0,1̂ (A,0) =  —2(3 — 2A2) and q(A) =  3 — 2A2. We 

show that (1.4) has bifurcation points of Crandall-Rabinowitz type at ±1. We 

have g (± l) =  1 and for all A, q'(\) =  —4A, so q'(± 1) =  =f4. Hence by Theorem

3.7, real-analytic curves of even nonconstant solutions of (1.4) with fundamental 

period 27t bifurcate from (± 1, 0).

Now for all A and y , /^0,2̂ (A, y) = —6y(3 —2A2) and / ^ ( A ,  y) = —6(3 —2A2). 

It follows that / ( 0,1)(± 1, 0) =  —2, /(° ,2)(± 1, 0) =  0 and /(° ,3)(±1,0) =  —6; so 

jB(±1) =  —11/2. Hence

B M  _ - l l / 2 > 0 )
g '( l ) /( l ,0 )  - 4

so by Theorem 3.9, the curve bifurcating from (1,0) is supercritical; and similarly 

the curve bifurcating from (—1, 0) is subcritical. ■

In the case where B(X*) =  0, further calculation (of the fifth order Taylor 
polynomial of (3) and correspondingly stronger regularity conditions on /  will
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give sufficient conditions for sub- and super- criticality of 25.
If q* = 0, transcritical bifurcating curves are possible.

Theorem  3.11. Suppose that f  G C k(I  x J) (k > 2) and X* satisfy Theo­

rem 3.7 and are such that q* =  0. Suppose that for all n  G {1 ,...,&  — 1} 

/(° ,n)(A*,0) =  0, and /(°>fc)(A*,0) ^  0. I f  k is even then 05 is transcritical. If  

k is odd then 05 is supercritical i f  (A*, 0) / /^ 1,1̂ (A*, 0) < 0 and subcritical if

y(°A) (a*} o)/ / t 1,1) (A*, 0) > 0 .

Proof. If q* =  0 then, by Theorem 3.7 the solutions on 05 in a neighbourhood of 

(A*,0) are constant functions. We shall denote such functions by the values they 

take. We have

Considering F  as a map from the space of constant functions into itself, we find 

that the map 7 given in (3.11) has range {0}, so t) = ($ 0, F(X* -I- /i, =

27t{/(A* + p,t)  — /(A* +  p, 0)}. It follows that for all m  G N U {0} and n G N 

with m  +  n < k,

E xam ple  3.12. As seen in (3.15), the constant solutions (A,c) of (1.4) are those

F(A,c) =  /(A ,c ) - / (A ,0 ) . (3.15)

/3(m . " ) (0, 0) =  27r / < m -n > ( A * ,0)

Hence by Theorem 1.24, 0) =  0 for all n  € { 0 , . . . ,  k — 2} and

The theorem follows from the remarks above Theorem 1.24. □

for which /(A ,c) =  / ( A,0). It is thus easy to provide examples of supercritical, 

subcritical and transcritical bifurcations of Crandall-Rabinowitz type.

1. If /  : R2 —» R is given by

/(A, y) = 1 +  y(y -  A) 

67



then / ( A,0) =  1 and /^0,1̂ (A, 0) =  —A for all A. Hence (1.4) has a bifur­

cation point of constant solutions at (0 , 0). We also have /^°’2̂ (0, 0) =  2, 

so the bifurcation is transcritical. [The set of constant solutions of (1.4) is 

{(A, 0), (A, A)|A G R}.]

2. If /  : R2 —* R is given by

/(A ,y) =  y3 +  ( 1 - A 2)y +  1

then for all A, / ( A,0) =  1 and / ( 0,1)(A,0) =  1 — A2. Hence (1.4) has 

bifurcation points of constant solutions at (—1,0) and at (1,0). We also 

have that /^0,2̂ (A,0) =  0 , / ^ ’̂ (A, 0) =  —2A and / ( 0,3)(A, 0) =  6. Hence the 

bifurcation at (—1, 0) is subcritical, whilst the one at (1, 0) is supercritical. 

[The set of constant solutions of (1.4) is {(A, 0) | A G R}u{(A, ± \/A 2 — 1) | A G 

R \ ( - l , l ) } . ]

3.4 Crossing number 0 : double bifurcation

Theorem 3.4 shows that a sufficient condition for (A*, 0) to be a bifurcation point 
is that the product (q{\) — q*)(X — A*) has one sign in a punctured neighbourhood 
of A*. The following theorem shows that this condition is not necessary. We 
investigate a particular case where /  G C4(I  x  J) and A* satisfy q* G N and 
q'(A*) =  0 by calculating the Taylor series of the bifurcation equation (3.12).

T h eo rem  3.13. Suppose f  G C k(I  x  J), where k > 4. I f  q* G N, q'(A*) =  0 

and f( \* ,0)q"( \*) /B( \*)  > 0, where B  is given by (3.13), then two distinct C k~3 

curves, Q5i and 0$2, of nonconstant even solutions of (1.4) bifurcate from the line 

of trivial solutions at (A*,0).

All solutions on and $$2 in a punctured neighbourhood of (A*,0) have 

fundamental period 2ir/q*.
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I f  f  is real-analytic, then so too are Q3i and *82 - 

Proof. If /  and A* satisfy the hypotheses of the theorem then by (3.9),

then the C k (or real-analytic) function (3, given by (3.12), has Taylor series

about (0 ,0), where B  is given by (3.13) and p' =  0(\p?\ +  \p2t\ +  \pt2\ +  \t3\) (see

h given by (1.27) has Taylor series h(p,t)  =  | ( —/(A*, 0)q"(X*)p2 +  B{\*)t2 -1- p') 

about (0 , 0).

Provided the coefficients of p? and t2 are nonzero, (0 ,0) is a nondegenerate 

critical point (see Section 1.5) of h. Clearly this holds if /(A*, 0)q"(X*)/B(X*) > 0.

Hence, if /  and A* satisfy the hypotheses of the theorem, then by the Morse 

lemma (Lemma 1.18), there exists a local C k~z (or real-analytic) diffeomorphism 

T on a neighbourhood of (0 , 0) such that /i(T(i/, t) )  =  ^ ( —2f(X*,0)q,/(X*)u2 +  

B(X*)r2). It follows that h ( r ( v ,  r)) =  0 if and only if

/ (A*, 0)/(°’1>(A*, 0) -  /^2'1>(A, ,0)/(A*,0)}
2/(A*,0)3 

(A>, 0) { f W  (A>, 0)/<°A) (A*, 0) -  / t 1-1) (A*, 0)/(A*, 0)} 
2/(A *,0)3 

y(2.Q)(A*, Q)/(°-1)(A*, 0) — / P '1>(A*,0)/(A*,0) 
2/(A *,0)2

A long calculation (see Appendix C) shows that if q* G N and q'{X*) =  0,

7rf
P M  = j ( - 2 f ( \ ' , 0 ) q " ( \ ’ )lS + B ( \ ' ) f  + p') (3.16)

the remarks following (C.10)). It follows that the C k 1 (or real-analytic) function

(3.17)
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so h(n, t) = 0 (and equivalently, for t ^  0 , t) = 0) if and only if

(/i, t)  =  r
2/(A*,0)g"(A«)

B{ A*) ,T
(3.18)

i.e. if and only if (fi, t) lies on one of two C k 3 (or real-analytic) curves.

Since f ( \* ,0 )q ,f( \*) /B(\*)  ^  0, it follows from (3.16) that the curves found 

in (3.18) must, at (0,0), be tangent to the (distinct) lines given in (3.17); so the 

curves must be distinct.

The curves given in (3.18) define, on a neighbourhood (—e,e), functions 

{ii and fj>2 of t. The Lyapunov-Schmidt reduction (Lemma 1.23) then shows 

that the nontrivial solutions of (1.4) are given, in a neighbourhood of (A*,0) as

i.e. the nontrivial solutions of (1.4) are given, in a neighbourhood of (A*,0), by

solutions on 931 and 932 in a punctured neighbourhood of (A*, 0) are nonconstant

R em a rk  3.14. By the proof of Theorem 3.8, if (A, w) € Q3i then (A, wq*) E 032- 

■

In the case where /  and A* satisfy Theorem 3.13, we shall call the bifurcation 
and the bifurcation point (A*,0) double.

E xam ple  3.15. Let /  : R2 —> R be given by

&l(t) — (A* +  t$q* +  7 (A* +  t$q*))

&2(t) = (A* +  +  7 (A* +  ^ 2(^)5t $ q*)) :

two transcritical C k 3 (or real-analytic) curves, ©1 and 932, as required.

Remarks similar to those at the end of the proof of Theorem 3.7 show that all

and have fundamental period 2ir/q*. □

/(A, y) = (A -  y)2 +  A -  2y +  1.
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Then /  is real-analytic, and for all A and y, / ( A,0) =  A2 +  A +  1, / ^ ’̂ (A,?/) =  

2y — 2A — 2 and /^0,1̂ (A, 0) =  —2 — 2A. It follows that

whence

A + 1
flW  =  a^ + a + I ’

A(A +  2) ,/ _  2(A3 +  3A2 - 1 )
9  “  _  / A 9  , \  , 1  \ 9  ’ ^  W  _(A2 +  A +  l ) 2’ y v ' (A2 -h A -h l )3

It follows that q(0) =  1, g'(0) =  0 and q"(0) =  —2. We also have that 

/(0 ,0 ) =  1 and for all A and y, /(°>2)(A, ?/) =  2 and f^°'3̂ {X,y) = 0; and hence 

B(0) =  -5 /2 .

Hence /  and A* =  0 satisfy the hypotheses of Theorem 3.13, so two distinct 

real-analytic curves of nonconstant even solutions of (1.4) of fundamental period 

27r bifurcate from the line of trivial solutions at (0 , 0). ■
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Chapter 4

Global Bifurcation Theory

In this chapter we show, using the global analytic bifurcation theorem (Theo­
rem 1.25), that if (A*,0) is a double bifurcation point or a bifurcation point of 
Crandall-Rabinowitz type of (1.4) and /  is real-analytic and bounded away from 
0 on a neighbourhood P  of (A*, 0) then a curve 05 of solutions of (1.4) bifurcating 
from (A*,0) may be continued globally.

In Section 4.1 we give conditions for the hypotheses of Theorem 1.25 to hold, 
and then apply the theorem to (1.4).

Theorem 1.25 v gives three possibilities for the continuation of 05. In Section 
4.2, we give, using the Bernoulli condition (Theorem 2.19 (/?)) and an observation 
about T , conditions which prevent the first two of these; so ensuring that the 
continuation of 05 forms a loop.

4.1 Application of the global analytic bifurca­

tion theorem

We exhibit first sufficient conditions on /  for hypothesis I  of Theorem 1.25 to be 
satisfied. Lemma 4.1 - Theorem 4.4 give conditions for d0,1F (A, 0) to be Fredholm 
with index 0.

L em m a 4.1. Suppose <j> £ L Sg. is even and essentially bounded away from zero. 

Then the operator ^  : Z\ -» Z q given by h) =  (Ch! +  h)<f> is a linear homeo-

72



morphism.

Proof. Let h G Z\.  Then

ll^W lh  < U\\oo\\Cti +  h\\2 < H^lloodl^lb +  IH h) < C'll^ll^1;2^

where C  is a constant independent of h\ so ^  : Z\  —> Z 0 is bounded. We show 

that it is a bijection.

Let u G Z q. Then for some coefficients an such that Y ^ = o an < 00 > u (x ) = 

an cos n x ‘ ^  ^ giyen by h(x) =  Y^=o ^+ian cos nx  ^ben h G Z\ since the 

weak derivative h' is given by h'(x) = —^ Z ^ L i ^ i an sin no; almost everywhere 

and 00 00n
E ^ r r an < E a' < o °-
7 1 = 1  71 =  1

Since then h + Ch' =  u, it follows that the map h i-> h +  Ch! is surjective from 

Z\  onto Z q.

Now since (f> is bounded and bounded away from zero, u/(j) G Z$ for all u G Z 0. 

It follows from the surjectivity of h i-» h+Ch' from Z\  onto Zq that is surjective 

also.

Suppose, for some h G Z\  (with h(x) = cn cos nx)  tha t h) = 0. Then 

for almost every x , h(x) +  Ch'(x) =  0 ; and so

/ 7r 00
h(x)(h(x)  +  Ch'ix)) da; =  2ircl 4- ir +  l)c^

^  71 =  1

if and only if cn = 0 for all n: i.e. if and only if h = 0. The injectivity of ^  

follows. □

L em m a 4.2. (generalisation of theorem 3.4 in [4]) Let J  be an open interval in 

R and f  G C^l(J) .  I f  v G T fi Z\ then T  is sequentially continuous at v from 

T n Z i  with the weak topology into the space of even -functions (1 < p < 00) 

with the strong topology.
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Proof. It will suffice to show, for each p, that if (vn) v in Z\  then, for a

subsequence, (F(vni)) —> F(v)  in In this case, suppose that {F{vn)) f t  T (v)  

in Z/Jtt Then there exists e > 0 and a subsequence (vnN) of (vn) such that for all 

n, \\^P(vnN) — F{y)\\p > e. But then (vnN) —̂ v in Z\,  so has a subsequence such 

that (iP{vnN.)) —> F(v)  in a contradiction.

Note first that if w G then T{w)  is even. Let (vn) —L v in Z\. Since W ^ 2

is compactly embedded in a subsequence converges strongly to v in and

we may choose a further subsequence such that Un€N^(v») c  w^ere 3  is a

compact subinterval of J. Also, (v'n) —» v' in L\v . Theorem 3.4 in [4] shows that 

the operator Q given by

is sequentially continuous from Z\ with the we^k topology into the space of even 

-functions (1 < p < oo) with the strong topology. It follows that for a further 

subsequence, {Q(vn){x)) —v Q(v)(x) for almost every x. For such x,

F(vn)(x) -  F(v)(x)1 r { / K W )  -  f M y ) ) } v h ( y )  -  {f{v{x)) -  f {v(y))}v \y)-  j _  r
27T J-n

1 r
2 T ri-vr

t a n ^
d y

d y
i  r  v'n(y) ly { f ' M t ) )  -  f {v{ t ) ) }  v'n(t) dt

t a n ^

i  r  vn(y) Jy f'Mt)) K W  -  « ' ( * ) }  &
L ---^  y

. 1 r  Wniv) -  v '(y)}{f(v(x))  -  f M y ) ) }
L ---^  dy

— Jn{ft) 4“ K n(x ) ’

We consider each of these terms in turn. By Holder’s inequality and Hardy’s
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inequality (1.5), as n -> oo,

I/-WI < * l k l b  ^ ---------------- J *

< h v n U { n v n) - f ' ( v ) } v ' J 2 
7r

<  - I K O / ' k ) - / ' ( » ) I U - * o ,7r

since f  is continuous and (v is bounded in Z q. Also K n(x) -> 0 as n —> oo, 

since by (B.2-B.4),
, , , ,  f ( v (x )) -  f(v(y))

^ —

is in L\^ and (v'n) —- v' in Now

T , ,  i  r  < ( j / )  Sy{f'(v(t)) -  / ' M * ) ) } K M  -  d< ,
U X )  =  T r L --------------------------------------------------------------- ^

f ' ( v (x )) r  < (j/)[{^n(j) -  t)(x)} -  f a f o )  -  «(y)}] 
2tt /_„ tan 2̂

d y
2

/7r

■7T

d?/
27T J —n tan ^2^

+/'Mz))(QK0(z) -  Q( )̂W)
/'(i/(a;)) [* {u(a?) -  v{y)}{v'n{y) -  v'(y)}

+ ^ r ~  L  ^  dy

Jl{x ) + Jl{x ) + Jl ( x )- (4-1)

We consider each of these terms in turn. By assumption, (Q{vn){x)) —>• Q(v)(x), 

so (J%(x)) —> 0. Let, for n G N and fixed x, gn : S 1 —> R be given as follows: 

9 n ( x )  =  0 and for y ^  x

, s f y i f ' W t ) )  -  f'{v(x)))(v'n(t) -  v'{t)) d t 
9n{y)= --------------- — ^ -----------------------•
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Then if y ^  x,

< C ,

for some constant C  independent of y , since /  G C^l(J)  and v G W2„ C  C2' ^ 2 

with 1Z(v) C J. Hence by Holder’s inequality,

so (gn) is uniformly bounded as a function of y. Also, (gn(y)) —>■ 0 since (v'n) v' 

in L27r; so (gn) -> 0 in L ^r An application of Holder’s inequality to (4.1) yields 

that (J„(x)) —> 0.

By (B.2-B.4), the map

is in L2n, so using Holder’s inequality, and the fact that (v'n) —L v1 in L 2in we 

have that (J„(x)) —»• 0, as required.

We have shown that, for a subsequence, (F(vn)(x)) —>■ F(v)(x)  pointwise 

almost everywhere. Now by (B.2-B.5), ^ (v^H oo < as (vn) *s weakly

convergent in L%n, F (vn) is uniformly bounded in LJJ. The result follows by 

dominated convergence. □

C o ro lla ry  4.3. Let J  be an open interval in R and 1 < p < oo. I f  f  G C ^ ( J )  

then IF is compact from Z\  fi T to the space of even L 2n-functions.

12 12 Proof. Since W2̂  is a Hilbert space, each bounded sequence in W2I  has a weakly

convergent subsequence. Now apply Lemma 4.2. □

T h e o rem  4.4. Let J  be an open interval in R and suppose f  G C^l(J)  is bounded
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away from 0. I f  F  : T  n  Z\ —> Z q is given by (3.3) then for all w E T  n  Z\, 

dF(w) : Z\ —> Z q is Fredholm with index 0 .

Proof Note first that T  ft Z\  is open in Z\  since given u E T n ^ i ,  there exists 

e > 0 such that dist(7Z(u),dJ) > e. Hence if u € Z\  with \\u — u ||^ 2i,2 < £/y/2n 

then

so IZ(u) C J: i.e. u € T  fl Z\.

It follows that we may differentiate F  on T D Z\. Since for w E T fl Zi,

F(w)  =  2 f(w)(Cw' +  w) — F(w)  +  f{w)(  1 — 2 w) — / ( 0),

Note that since F  and the map w f(w)(2Cw'  4-1) — /(0 ) are Frechet differ­

entiable on T n  Z \ , so too is T .  It follows (by a standard calculation similar to 

those in Appendix C) that for all h G Zi,

dF(w) h =  2 / (w) (Chf -f h)+ 2hf'(w) (Cw* H- w) — d!F(w) h — 2 h f  (w) +  hf'{w) (1 — 2w) 

= 2f(w)(Ch' + h ) — dF(w)h  +  hf(w)(2Cwl +  1) — 2hf(w).  (4.2)

By Lemma 4.1, the map 4' : Z\  —>> Z q given by 4>(h) =  f (w)(Ch1 +  h) is a 

homeomorphism. By Corollary 4.3, T  is compact from Z\ fl T  to Z0; so for 

w G Zi  n  T, dF(w)  is compact from Z\ to Zq (see Section 1.5).

We show that the remaining terms on the right-hand side of (4.2) are compact 

from Zi to Zq. Let (hn) be a bounded sequence in Z\. Since Z\  is compactly 

embedded in Lgi, (hn) —> h in L ^  for a subsequence and some h G Zi, and

\\(hn — h ) ( f ( w) ( 2Cw,+l)  — 2f ( w ))\\2 < | | h n - h | | 00 | | / / ( u ; ) ( 2 C u ; ' + l ) - 2 / ( u ; ) | | 2  ->> 0 ;

so h i-* hf(w)(2Cw'  +  1) — 2 hf(w)  is compact from Z\  into Z q.
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It follows that dF(w)  is the sum of a compact operator and a homeomorphism

We now give a condition on /  which ensures that hypothesis III  in Theorem 1.25 
holds.

T h e o rem  4.5. Let P  C R2 be open and let f  G C^l(P)  be such that f  /  0 

on P. I f  U is a closed bounded set of solutions of (1.4) contained in {(A,w) G 

R x Zi\IZ{w) C Pa} then U is compact in R x Z\.

Proof Let (Xniwn) be a sequence in U. Then there exist A G R and w G Z\  

such that for a subsequence (An) —>• A and (wn) —̂ w in W^ 2; and for a further 

subsequence (wn) -> w in L ^ .

Now 7Z(w) C P \  (otherwise there exists e > 0 and x  G S 1 such that for all 

n, |it;(a;) — wn(x)\ > e, which contradicts the fact that (wn) —> w in L§J). We 

show that for a further subsequence, (P(Xn,wn)) —> P(X,w)  in Z0, where T  : 

{(A, w) G Mx Z\ (R.(w) C Pa} —>■ Zq is given by P(A, w)(x) = /(A, (rc^Cu/(a;) — 

C(f(X,w)w')(x).  We have that for n G N,

By Lemma 4.2 we have that ||.P(A, iun) — P(A ,w ) ||2 -» 0 . If y : {(A, \ , y )  G 

R3 |(A,?/), (A,y) G P} -> R is given by g(\,~\,y) = f{X,y)  -  f (X ,y)  then by (2.6) 

and an argument similar to (B.2-B.5) we have that for all x,

from Zi  into Z q\ so is Fredholm with index 0 (see Section 1.5). 

For 5 c E 2 and A G R, let

□

Sx = { y e R \ { \ , y )  GS}.

P(An, wn) -  P(A, w) = {P(An, wn) -  P(A, wn)} +  (P(A, wn) -  P(A, it;)}.

|P(An, wn)(x) -  P(A, Wn)(x) I
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but as n -* oo,

||^(0’0,1)(An, A,Wn)||oo =  | | / (0,1)(An,^n) -  / (0,1)(A, Wn)||oo 0.

Since (w'n) —̂ w' in (u^) is bounded in so H-T̂ An, wn) —T { A, itfn )||oo —>■ 0 . 

It follows that H^An, wn) — T ( \ , w )\\2 —> 0.

Now by (2.19), for n G N,

r  , _  /(A n,0) +  ^(A n,u;n) 1
U/" “  2/(A n, u>n) 2

(note that since (An, u;n) € U, (An, 0) G P); so for m, n  G N,

r  , r  , _  / (An, 0) +  F ( X n, wn) f  (Am, 0) +  f ( X m, Wm)
Wn Wm ~  2/(A n, wn) 2f(Xm,wm)

_  /(A m, Wm){[/(An, o) -  Z(Am, 0)] +  [P{Xn, Wn )  -  P ( X m , Wm ) ] }

2 / (An? ^ n )  f  {Xjni  W m )

, [/(Am, Wm) -  /(A n, Wn)][/(Am, 0 )  +  ^(A m, W m )}

2 / (An, ^n)/(Am, Wm)

Now (7 is bounded in E x  IV^2, so (An) and (Halloo) are bounded; and f (X n,wn) 

is uniformly bounded away from 0. It follows that for some constants C i,C 2 and 

C3, independent of n and m,

II Cw'n -  Cw'm | | 2 <  C i | A n -  A m | +  C 2 | | 7 r ( A n ,U ; n )  -  ^ ( A m ,  W m ) | | 2

T C 3 ( |A n A m | -J- ||u7m Wn ||oo)  ̂ 0 ,

as n, m  —> 00 since /  G C ^ (P ) ;  so (Cw'n) is Cauchy in hence convergent. 

Hence as (w 'n) —1 w' in L ^ , we have by the theorem of M.Riesz (Theorem 1.7 

(A)) that w'n =  ^  < ( t )  d* -  C2<  w' in L \v [note that w’n(t) dt =  0

for all n]; and so (u;n) —► w in

Since f/ is closed, it now follows that (A,w) G U. The compactness of U
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follows. □

We are now in a position to apply the real-analytic bifurcation theorem (The­
orem 1.25) to (1.4)

T h e o rem  4.6. Let P  be an open neighbourhood of (A*,0) and let f  G C^l(P)  be 

such that f  is real-analytic and bounded away from 0 on P.

Suppose (A*,0) is either a Crandall-Rabinowitz type bifurcation point or a 

double bifurcation point of (1.4) (satisfying Theorem 3.13), and let 03 be a curve 

of nontrivial solutions of (1.4) which bifurcates from (A*,0). Let 03+ =  {B(t)\t G 

[0 ,e)> (see Theorem 3.7 for notation).

I f  {A*,0) is a bifurcation point of Crandall-Rabinowitz type, suppose also that 

there exists a neighbourhood of 0 on which p! ^  0 .

Then there exists a continuous locally injective extension, *B o/03+; as follows:

(i) 03 =  {B(t)\t G [0, oo)}, where B  : [0, oo) —> {(A, iu) G l x  Zi\H(w)  C Pa}-

(ii) F(B(t))  =  0 for all t >  0 .

(Hi) The set {£ > 0|Af(d0,1F(B(t))) ^  {0}} has no accumulation points.

(iv) For each t* > 0 there exists 5* G (0, t*) and a real-analytic map a* :

(—6*, 6*) —>■ {(A ,w) G l x  Z\\R(w)  C Pa} such that

{B(t)\\t -  | < 6*} = {<?*{t)\\t\ < 6*}.

(v) One of the following occurs:

a. ||#(£)||R ypi.2 oo as t —> oo.
2 tt

b. B(t) approaches d{ ( \ ,w )  G l x  Zi\1Z(w) C Pa} as t —> oo.

c. is a closed loop: i.e. for some T  > 0, % = {B(t)\t G [0, T1]}, where 

B{T) = B( 0) =  (A*,0).
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I f  instead of requiring that f  is bounded away from 0 on P  we require only that 

f  7̂  0 on P  then we have that there exists a continuous locally injective extension, 

fB of*B+ such that (i) and (ii) hold, and (v) holds, with a. replaced by

a'. ® contains a sequence (An,wn) such that ||(An, iyn)||M><;yi,2 —> oo.2tt

Proof Suppose first that /  is bounded away from 0 on P. Since /  is real-analytic, 

so too is F,  by Lemma 3.1. We check that conditions I-III in the real-analytic 

bifurcation theorem (Theorem 1.25) are satisfied on P.

By Theorem 4.4, d0,1F(A, w) is Fredholm index 0 for all (A, w) G R x Z\ with 

7Z(w) C Pa, so condition I  holds.

e may be chosen such th a t II (a) holds, since

dW (t ) l  = v* +  d1,07 (A* +  p(t), tv*)fj!{t) +  <90,17 (A* +  p(t), tv*)v*,

v* ^  0 , d1,07 (A*,0) =  0 , d0,17 (A*,0) =  0, and 7 and p are C l .

If (A*,0) is a bifurcation point of Crandall-Rabinowitz type then it is a hy­

pothesis that there exists a neighbourhood of 0 on which p' =  A' ^  0. If (A*,0) 

satisfies Theorem 3.13 then by (3.17) p'(0) ±  0. Hence II  (b) holds.

By Theorem 4.5 if U is a closed bounded subset of the set of solutions of (1.4) 

in {(A ,w)  G l x  Zi\R,{w) C P\}  then U is compact in R x Z\\ so condition III  

holds.

In the case where only /  /  0 on P  let, for n G N with n > A*, P n =  P  fl {z  G 

R2||z | <  n}. Then /  is bounded away from 0 on each P n and (A*,0) G P n. 

It follows that for each n there exists a continuous locally injective extension 

<Bn =  {Bn(t)\t G [0,oo)} C {(A,u>) G R x Zi\R,(w) C P ”} of Q3+ such that 

(i)-(v) hold with P n for P , 93n for and Bn for B.

Suppose for all n th a t (v) c does not occur, and Bn(t) does not approach 

d{(X ,w)  G R x Zi\1Z(w) C Pa} as t —> 0 0 .

By (iv), if m >  n > A* then 93n C It follows that there exists a
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common continuous reparametrization B  : [0,oo) —> R x Z\  of each *8 n such 

that Bn([0, oo)) =  B([0,n)). We consider the points B(n) = (An,wn). Since 

for all n, Bn(t) does not approach d{(A,it;) G R x Zi\IZ(w) C Pa} as t —>• oo, 

we have that IZ(wn) fl d{z  G M?11| < n } \n ^  0. Suppose |An| is bounded 

(otherwise (||(An,u;n)||ravWi,2) —» oo for a subseqence). Then for some Aq > 0,

4.2 Entrapment of curves of solutions

In this section we find conditions on /  and P  which prevent B(t) approaching 
d{(A, w) G R x Zi\1Z(w) C Pa} as t —>■ oo, and prevent A —► oo and —>•

The conditions in the following theorem do not achieve entrapment - they leave 
open the possibility that © “escapes” through one of two points. The theorem 
illustrates some of the difficulties which arise when /  vanishes.

T h e o rem  4.8. Let A i,. . . ,  A4 G R with Ai < • • • < A4? and suppose f  : R2 —> R 

is real-analytic on (Ai, A 4 )  x R. Let O = {(A,y) G (Ai, A 4 )  x R|/(A, y) > 0}, and 

suppose that O fl ([A2, A3] x R) =  ([A2, A3] x R ) \  {(A2, 0), (A3, 0)}.

I f  X* G (A2, A3) is such that (A*,0) is a bifurcation point of (1.4) of Crandall- 

Rabinowitz type, and the function p! ^  0 in a neighbourhood of 0, then there exists 

a continuous locally injective extension, 2$ o/Q5+, such that f (A( t) ,W(t)(s))  > 0 

and F(B(t)) = 0 for all t > 0 and s G S 1, and one of the following holds:

A. ® forms a closed loop.

B. ® contains a sequence (Xn,wn) such that ||itfn|lvpi.2 —> 00 .

□

R em a rk  4.7. If (A*,0) is a bifurcation point of Crandall-Rabinowitz type then 

sufficient conditions for the condition p! ^  0 are given in Theorems 3.9 (if q* ^  0)

and 3.11 (if q* = 0).

00 in (v)a. We give two sets of conditions which achieve such “entrapment” .
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C. 93 contains a sequence (An,w;n) such that either (An,wn) —> (A2, 0) or 

(An,wn) -> (A3,0) in R x

/ / /  25 bounded away from 0 on [A2,A3] x R away from {(A2, 0), (A3, 0)} then B. 

may be replaced with

S'. \\W(t)Wwl? - > a o

Figure 4-1: Diagram for Theorem 4.8. Note that the curve bifurcating from 
(A*,0) is for illustration only

Proof Let, for n G N, P n =  {(A, y) G (Ai,A4) x R|/(A,?/) > 1/n}. Then, O and 

each P n is open, f  ^  0 on each P n and for sufficiently large n (n > n0, say), 

(A*,0) G P n; so Theorem 4.6 applies.

Let n > n0. Then there exists a continuous extension 03n =  {Bn(t)\t G 

[0,oo)} C {(A,n;) G R x Zi\R(w)  C P ”} of 03+ such that either 03n forms a 

closed loop or contains a sequence (An,«;n) such that ||(An, n;n)||IR><Vj/i,2 —* oo [or
2 tt

II^WIIrxW1,2 00 as t —>• oo if /  satisfies the stronger set of hypotheses in the27T
theorem]; or as t -* oo, Bn(t) approaches <9{(A, w) G R x Zi\1Z(w) C P ”}.
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We show that 93n C {(A, w) 6 (A2, A3) x Zi\H(w)  C P™}. Suppose otherwise. 

Since Bn is continuous, we have that (without loss of generality) there exists 

w £ Z\ with lZ(w) C P™2 such that (A2,w) G 93n. Now f (X 2,w) > 0 almost 

everywhere, so by Theorem 2.19 w satisfies the Bernoulli condition (Theorem

2.19 (/?)); and /(A 2,w(t)) =  0 almost everywhere. Hence, as /(A 2,y) =  0 if and 

only if y = 0 , we have that w = 0 ; but 0 ^ P"2, a contradiction.

Suppose that neither A nor B  occurs (so neither A nor B  occurs for 55n 

(n > no)). Then each 93 n satisfies Theorem 4.6 (iv). Hence if m > n > n0 then 

93 n C 95m. It follows that there exists a common continuous reparametrization 

B  : [0, oo) —> [A2 , A3] x Z\  of each 93n (n > n0) such that Bn([0,0 0 )) =  B([0, n)). 

We show that there is a subsequence (A n , w n ) of {B{n)) such that either | | ( A n  — 

A2, n;n)||]RXi,oo —>• 0 or | | ( A n — A3, waOIIrxl^. —> 0.

Let B(n) =  (An,u;n). Then by Theorem 4.6 (v) b, dist(An, {A2, A3}) -* 0 . 

Hence there exists a subsequence such that either (An) —> A2 or (An) —> A3. 

Suppose that (An) -» A2. Also (wn) is bounded in (otherwise B  occurs), so 

for a subsequence and some w 6 (wn) w in W\% and (wn) —> w in

Now

/ ( A n ,  W n ) ( l  +  ^ n )  +  C ( / C * n ,  ^ n ) ^ n ) )

=  [/(An, ™n) “  / ( A2, Wn)](l +  Cw'n) +  C([/(An, U/n) -  / ( A2, Wn)Wn) 

/(A 2, wn)(l +  CwJJ +  C(/(A2, wn)w'n). (4.3)

It is easily seen, using the continuity of / ,  the convergence of (An), the bound­

edness in ẐTT °f (wn) an^ the theorem of M. Riesz (Theorem 1.7 (A)) that the 

terms on the first line of the right-hand side of (4.3) converge strongly in to

0 .

Since (wn) w in we have by the theorem of M.Riesz (Theorem 1.7 

(A)) that (Cw'n) —̂ Cw' in [recall that the image of a weakly convergent
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sequence under a bounded linear operator converges weakly to the image of the 

weak limit of the sequence under the same operator]. Now

/ ( A2, wn)(l + Cw'n) = [/(A2, wn) -  / ( A2, w)\(l+Cw'n) +  / ( A2l w )(1  +Cw’n). (4.4)

Since f {X2,wn) —> f (X 2,w) in the first term on the right-hand side of (4.4) 

converges strongly to 0 in L2̂ ; the second converges weakly to /(A 2, w )(l +Cw') 

in since f{X2,w) G L\v . Hence /(A 2, wn)(l  +  Cw'n) f (X 2,w)( l  + Cw') in 

L\v . Similarly, C{f{X2,wn)w'n) C(f{X2,w)w') in L\v .

It follows that in

/(An, Wn)( 1 +  Cw'n) +  C(/(An, wn)w'n)) / ( A2, w)(l  +  Cw') +  C(/(A2, w)w'));

but /(A n,lU „)(l+C w JJ+C (/(A n,W„)w;j) =  /(^n ,0 ) / ( A2,0); SO /(A 2,w )(l +

Cw') +  C(/(A2, w ) w ' ) )  =  /(A 2, 0) =  0 , and w =  0 by the argument above.

Hence © := Un>no93n contains a sequence (An,wn) such that (An,w n) —)> 

(A2, 0) in E x  L g .  The same argument covers the case (An) —> A3, as required. □

R em a rk  4.9. At the points (A2,0) and (A3, 0), we have /  =  0 =  so that 

d0,1F ( A2, 0) and d0,1F(A3, 0) are the zero operator from Z\  into Z q. In particular, 

50,1F(A2,0) and <90,1F(A3, 0) are not Fredholm. ■

E x am p le  4.10. Let /  : R2 —>• R be given by

/(A ,y) =  ( l  +  4 ((A +  y ) 2 -  l ) 2) ( l  + y 2 -  A2) .

Then /  is real-analytic on R2 and /(A ,y) > 0 if and only if (A,y)  lies between 

the two branches of the hyperbola X2 — y2 = 1, which cross the A axis at (—1, 0) 

and (1,0). We show that there is a bifurcation of nonconstant even solutions of 

(1.4) of Crandall-Rabinowitz type at some point (A*,0), where A* G (—1,1).
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By direct calculation it is found that

8A(A2 -  1)
5 ( A )  =

1 +  4(A2 -  l ) 2'

Since 1 +  4(A2 — l )2 ^  0 for all A, q is continuous. Now <7(1/ 2) =  12/13 < 1 and 

<7(3/ 5) =  1920/1649 > 1; so by the intermediate value theorem there exists A* G 

(1/2,3/5) such that q* = q(A*) =  1. By inspection, for all A G [1/2,3/5], q'(A) G 

[2.3,2.5]. It follows from Theorem 4.6 that a unique branch 03 of nonconstant 

even solutions of (1.4) bifurcates from the branch of trivial solutions at (A*,0). 

Also, by inspection, for A G (1/2,3/5), B ( A) G [ -6 ,-5 ] ;  so in particular by 

Theorem 3.7, //'(0) ^  0, so there exists a neighbourhood of 0 on which p! ^  0. 

It follows that /  and A* satisfy the hypotheses of Theorem 4.8; so *8 must either 

contain a sequence converging in E  x L to (—1,0) or (1,0), form a closed loop 

or be such that ||W (t)||jyi,2 —> 0 0  as t —» 0 0 . ■

The next set of conditions relies on the following result, due to Toland [21].

T h e o rem  4.11. Let f  G C l (J) and c G E  \  {0}. Suppose w G W.21; 1 «  a 

nonconstant solution of (1.1) which satisfies the Bernoulli condition (Theorem

2.19 (P)). Then f  /c  is strictly decreasing on an interval in 7Z(w).

Proof Suppose /  and c satisfy the hypotheses of the theorem, and let w G W ^ 1 be 

a solution of (1.1) which satisfies the Bernoulli condition. Then f (w(x)){w'(x)2-b 

(1 +  Cw’(x))2} =  c for almost every x. For such x ,

f (w (x )){w ,(x)2 +  (C w \x ))2} =  c — f(w(x))  — 2 f  (w(x))Cwr (x)

= C{f{w)w'){x) -  f(w(x))Cw'(x)  =  -F (w ) (x ) ,  (4.5)

since w satisfies (1.1). By the Bernoulli condition, f (w (x ) ) /c  > 0 ; so by (4.5), 

P(w)(x) /c  < 0.

Now by Lemma 2.16, if f / c  is monotone increasing on 7Z(w) then for almost



all x, T (w ) (x ) /c  > 0. Hence T(w){x) = 0 almost everywhere. Equation (4.5),

w'{x) = 0 for almost every x: i.e. w is a constant function.

Hence if w is nonconstant then f / c  is not monotone increasing on 7Z(w): i.e.

T h e o rem  4.12. Let Ai , . . . ,  A4 G R with Ai < ■ • • < A4 and suppose that f  : 

[Ai, A4] x R —> R is bounded away from 0, /  is real-analytic and

type and the function p! ^  0, then either the curve 55 found in Theorem 4-6 forms

a closed loop or ||W (i)||wi,2 —>• 00 as t —>■ 00 .

Proof. Note first that / ,  (Ai, A4) x R and (A*, 0) satisfy the hypotheses of Theorem 

4.6, and that q* ^  0 since / ^ ’̂ (A*,0)//(A * ,0) < 0 . Since /  is bounded away 

from 0 on (Ai, A4) x R, the curve 55 satisfies (i)-(v) in Theorem 4.6. We show that

(v) b cannot occur, and that if (v) a occurs then ||W(£)||jyi,2 —> 00 as t —>■ 00.

There is no nonconstant solution (X,w) of (1.4) with A G [Ai, A4] \  [A2 , A3], 

since for any solution (A, w) with A G [Ai, A4] \  [A2, A3], /^0,1̂ (A, w ( x ) ) / f ( A, 0) > 0

for all a;, so by Theorem 4.11, w is constant.

We show that 55 C [A2, A3] x . Suppose for a contradiction that for some 

A G [Ai,A4] \  [A2, A3], there exists w G Z\ such that (A, w) =  8(t)  G 5b By 

Theorem 4.6 iv, for each s G (0, t\ there exists Ss G (0 ,5 ) and a real-analytic map 

as : (—̂ s,(̂ s) —¥ I  x {w G Zi\1Z(w) C J}  such that

together with the fact that f (w (x )) /c  > 0 almost everywhere, now gives that

(since /  G C l (J)) f / c  is strictly decreasing on an interval in 7Z(w). □

^(A} y) ^ [Ai, A4] x R

where (A*,0) G fi. 7/(A*,0) is a bifurcation point of (1.4) of Crandall-Rabinowitz

Let > 0 be close to 0, and let {£0, • • •, tn} (tn = t) be a partition of [to, t] such
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that to < • • • < tn and

{B{t)\t e [t0,t]} c IJ^WHtl < ^ }
z=0

(this is possible since [to,t\ is compact, so the cover U s£[to ,t]W<)ll*l < <5.} of 

{B(t)\t € [fo,f]} has a finite subcover). Note that for i € { 1 , . . . , n},

<  < 5 t 4 - , } n  { < 7 ( 4 ( < ) | | t |  <  <St j }  ^ 0 .

Let, for i € {0 , . . . , ra},  au (t) = (Aj(f),Wi(t)), and let ip, : { -S ti,8u ) -> R be 

given by ipi(t) = ($q*,Wi(t))2. Since each ati is real-analytic, so too is Wi, and 

hence 'ipi also.

The remarks in the second paragraph of this proof show that for t in an open 

interval, Wn(t) is a constant function; and so r(pn{t) =  0 on an open interval, 

since q* ^  0 . Since is real-analytic, it follows that ipn = 0. Now for each 

t in an open interval, there exists t' G (—<5tn,<5tn) such that c r ^ ^ t )  = crtn(t'), 

so ipn-i( t)  = 'ipn{t') =  0 . It follows that tpn- i  is zero on an open interval, so is 

everywhere zero, since it is real-analytic. By an inductive argument it follows 

that each of • • •»V'n are everywhere zero. However, by (3.11) (4>g*, W0(0))2 =  

(4>g*, W(to))2 /  0 if t0 is sufficiently small. This is a contradiction.

It follows from Theorem 4.6 v that either forms a closed loop or M x , nWi,2 -  

oo as t —y oo. □

E x am p le  4.13. Let /  : R2 —» R be given by

f ( \ y )  =  1 +  4e3v(A2-1)

Then /  is real-analytic and bounded away from 0 . Also, (A, y) =  12(A2 — 

l)e3y(A2-1\  so / ( 0,1)(A,y) < 0 if and only if A G (—1,1). For all A we have 

q(A) =  6(1 — A2)/5  s o  q(X) =  1 if and only if A =  ± l / \ / 6 . Now q'{A) =  — 12A/5, so
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«'(±  1/V 6) =  =F2\/675 /  0 . Hence by Theorem 3.7, ( ± 0 7 6 ,0 )  are bifurcation 

points of (1.4) of Crandall-Rabinowitz type; and a unique real-analytic curve 

93 of nonconstant solutions of (1.4) bifurcates from the line of trivial solutions 

at (v /l76,0). Also, B(  1 / \ / 6) =  —105/4 ^  0 , so by Theorem 3.9, p"(0) ^  0; so 

^  0 in a neighbourhood of 0 . It follows that /  and l / \ / 6  satisfy the hypotheses 

for Theorem 4.12 to hold; so either must form a closed loop or ||M^(t)||^ 1.2 —> 002tt

as t —»> 00. Similarly for the curve bifurcating from (—I / a / 6 , 0). ■

A refinement of Theorem 4.12 is the following:

T h e o rem  4.14. Let f  : R2 —> R be real-analytic with | / |  > k > 0 everywhere, 

and suppose that
/ (lw(A,y) rn

/ ( A,0) <

orz a set Cl C R2 containing (A*,0). Suppose that for all A /o r which Cl\ ^  0, 

2/a := sup{|2/||2/ € ^a} < 00 .

Let

Cl'= { { \ , y ) t R 2
/(A ,0)

and suppose that either Cl' = 0 or /o r eac/i A /o r which ^a 7̂  0, ^a •= dist({A} x

n x, a ? ) > i r ^ $ k ± .

1. / /  (A*,0) zs a bifurcation point of (1.4) of Crandall-Rabinowitz type and 

p' =£ 0 then either forms a closed loop or A(t) —> 0 0  as t 0 0 .

I f  Cl is bounded then only the first of these possibilities is allowed.

2. I f  (A*,0) is a double bifurcation point of (1.4) (satisfying Theorem 3.13) 

and Cl is bounded, then the set of nontrivial solutions of (1.4) is at least 

triply connected.

Proof. Suppose first that /  > k everywhere, and let (A,w)  G R x be a
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solution of (1.4). Then by Theorem 2.21 (a) and Theorem 2.19 (/?),

/(A, 0) >  k{w'(t)2 +  (1 +  Cw'{t))2} = k{w'(t)2 +  1 +  2Cw'(t) +  {Cw'{t))2} (4.6)

for almost every t. Integrating we obtain that

27r(/(A, 0) — k) — 2 f  Cw\t) d t>k{ \ \v / \ \ l  + \\Cv/\\l}, (4.7)
J  —  7T

so that by the theorem of M. Riesz (Theorem 1.7 (A)),

Figure 4-2: Diagram for Theorem 4.14

(4.8)

(note that Cw' has zero mean, and recall that C2w' = —w'). A similar calculation 

shows that (4.8) holds if f  < —k also.

By (1.11) and (4.8),

Amp (w) < 7r l / (A ,0) |~ /c
2k

(4.9)
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Suppose now f2' =£ 0 and let (A, w) be a solution with 1Z(w) D Q,\ ^  0. We show

that dist({A} x 1Z(w),£l') > 0. Suppose otherwise. Then for each e > 0 there

exists y G lZ(w) such that dist((A, y), fl') < e. Hence for all e > 0,

h\  =  dist({A} x f1') < Amp(w) +  e :

i.e. h\ < Amp(iu). However it follows from the hypotheses of the theorem and 

from (4.9) that h\ > Amp(w): a contradiction. Hence dist({A} x 7Z(w),Q') > 0 , 

as required.

We now show that for each (A, it;) G 2$, lZ{w) n  Q,\ ^  0. Suppose by way of 

contradiction that for some positive t and e, 7Z(W(t))  fl f2A(t) 7̂  0, and that if 

t < s < t +  e then 7Z(W (5)) n  fiA(s) =  0. Let

d = dist({A(t)} x H ( W { t ) ) ,a )  > 0 .

The map s B(s) has, at each point s , a local real-analytic reparametrization, 

so is continuous. Hence for some e' > 0, if \s — t\ < e' then \A(t) — A(s)| < d/2 

and

\ \ w ( t )  -  WWIU < v ^ l lw ( t )  -  |

It follows that if \s — t\ < e' then 7l(W(s)) fl flA(s) =  an(  ̂ hence if t < s < 

14- m infe,^}  then 'JZ(W(s)) fl (flA(s) U flA(s)) =  0, so by Theorem 4.11 W(s) is a 

constant function. The required contradiction follows from an argument similar 

to the one in the proof of Theorem 4.12 (note that, as in Theorem 4.12, q* 7  ̂ 0).

It now follows from (4.8-4.9) that (whether or not fl' = 0) if (A, w) G 55, then 

for almost every x , |u;(^)| < +  2/a and
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Since /  is real-analytic, |/(A ,0)| < oo for all A; also y\ < oo for all A. Hence 

in particular /(A, 0) and y\  are bounded on bounded intervals, so by (4.10) we 

have that if ||W(£) 11̂ 1,2 —> oo as t —> oo then |A(t)| —>• oo as t —> oo also.
2 tt

Hence by Theorem 4.6, either forms a closed loop or is such that \A(t)\ —>

oo.

If Q, is bounded, then for sufficiently large A, = 0. However by the argu­

ment above, for each (A,w) G 55, lZ{w) flfi* ^  0. Hence only the first possibility 

is allowed.

In the case where (A*, 0) satisfies Theorem 3.13 and Q is bounded, each of the 

bifurcating curves must form a closed loop. Either the two loops are the same, in 

which case they form [a set at least as complicated as] a figure of eight; or the two 

curves are distinct, in which case their union is [at least] triply connected. □

Exam ple 4.15. Let /  : R2 —> R be given by

/(A, y) =  A2 +  ( ^ )  2 + 2 -  — ------------------  ,
V 10 /  10A4 + 10 (y -  1) + 1

The graph of /  is approximately a paraboloid of revolution with minimum at 

approximately (—10, 0), streched in the y direction, with a sharp indentation in 

the region [—1.1, 1.1] x [—1.0, 2.0]. /  attains its minimum value, (approximately) 

1.1 at (approximately) (0,0.4), so is bounded below by 1.

We shall show that the side of the dip closer to the minimum of the “paraboloid” , 

and the far side of the “paraboloid” satisfy the conditions given for and fi' re­

spectively in Theorem 4.14.

We have

,d (a v) _  % + 1Q) . 80 ( y  - 1)3y) — in  t  2’
10 (lOA4 +  10 ( y -  1) +  l )
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Figure 4.3: Plot of /  for (A, y) G [—1.6,1.6] x [—20,3]

so is negative on a set 11' contained in (—oo, — 9.9] x R and on a region 

fl contained in [-1,1] x [—0.9,0.4]. For A € [—1,1], /(A, 0) € [1.7,3.8], so 

^ [1.9,3.8], so for each A G R such that fl* /  0, â > 9-9 — 0.0 >

3.8 >

Now
6400A8 +  2080A4 -  3031

<?(A) = (4.11)
10(80A6 +  13A2 +  240A4 +  23)(80A4 +  13) ’ 

so g(0) =  3031/2990 whilst q ( ±  1/2) =  1438/3825. By inspection it is seen that 

if A € (—1/2,0) then q ' ( A) > 0, and if A G (0,1/2) then q ' ( A) < 0.

It follows that (1.4) has Crandall-Rabinowitz type bifurcations of solutions 

of fundamental period 27r in the intervals (—1/2,0) and (0,1/2), and since Q  

is bounded, a loop of nonconstant solutions bifurcates from the line of trivial 

solutions at each of these. ■
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A ppendix A  

P roof of Theorem  1.8

Choose a compact segment, E  of E°, and let £ =  £ (E ,E )  and f  =  £E g be as 
given in (2.10) and the remarks following. Note that u = fu  +  (1 — £)u.

(1) We shall show that C(^u) G and that C((l — £)«) is smooth on E.  
First,

f  |^(x)ii(x)|p da; =  /  / + /  1 |^(^)w(^)|p dx < f  \u(x)\p < oo,
J-TT I Je Js^e J Je

since £(x) =  0 on S 1 \  E. Hence £u G and C(£u) G by the theorem of 
M. Riesz (Theorem 1.7 (A)).

Next,

« < -  «”><■> -  ±  / :  -  s  l  llw M*  <“ >

so C((l — £)u) is smooth on E , since for y G S 1 \  £, x  ^  cot is smooth on E. 
It follows that Cu = C(£u) +  C((l — f)u) G £?(&), as required.
(2) By (A.l), C((l — £)u) is smooth on E. We show that C(£u) G C First 

by Leibnitz’ rule,

(c«) =  X I  £(r)“
(r) (n-r)

dxT- -—■ v r
r —0
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If x, t G E  or (without loss of generality) x  G E  and t G 5 1 \  E,  then

|f (r)0r)u(n- r)(o;) -  f(r) ( * y n- r)(*)|

< l$(r)WI|w(n“r)(a?) ~  u (n- r)(*)| +  |f (r)(*) -  £(r)(*)||u(n- r)(z)|. (A.2)

In either case, the second term on the right-hand side of (A.2) is bounded by 
C\x — t\a for some constant C, independent of x  and t (we denote any such 
constant by C  in this proof), since f  is smooth and, for r G { 0 , . . . ,  n}, u^n~r  ̂ is 
bounded on E. If t E E,  then the first term on the right-hand side of (A.2) is 
bounded by C\x — t\a, since u G Cn,a(E) and ^  is bounded; otherwise it is zero, 
since f  is zero on 5 1 \  E.

If x , t  & S 1 \  E , then

|f (r)(z)u(n- r)(z) -  f(r)(t)M(n- r)(i)| =  0.

It follows that £u G ; so ^rC(fw ) =  C (^r($w )) G C®’* by Privalov’s theorem 
(Theorem 1.7 (B)).

It follows that Cu =  C(£u) +  C(( 1 — f)it) G C n,a(E ), as required. □
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A ppendix B

B ootstrapping Argum ent for 

Chapter 2

L em m a B .l .  (generalisation of lemma 3.3 in [4]) Suppose f  G C°(J) n C 0,P(J) 

where J,  J  and j3 are as in Theorem 2.1. I f  u G W^ 1 fl W ^ ( E )  with IZ(u) C J, 

E  C u~l (J) and p G (1, oo) \  | ^ r } >  then

E{u) e  <

Proof Let E  be a compact segment of E°. Then for x  G E  we have that

= ± ( D ( x )  +  S(x)),

say, where E  = S ( E , E)  (as given in (2.10)) and X  =  S 1 \ E .  Note that if E  = S 1 

then E  = S 1 also, so D = E(u)  and S  =  0. We examine first the regularity of D. 

Since /  e u € W ^ ( E )  c  C ^~ '(E ) and E  c  u ~ \ j ) ,  there is a
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constant C  independent of x  and u (all such constants will be denoted C  in this 

proof) such that for all x  E E,

|0MI < 
s e t  !“W - “M'V(»)I <1.

Je \ x - y  I

< c w u ' w ^  f  \ x - »|fl(,- i)-V (»)| d», (B.i)
%} £/

since for y E E  C {x — 7r, x  +  t t ) , | tan ^  | >  | ^  | .

Now u' E LP(E), so by the Hardy-Littlewood-Sobolev inequality (see (1.6)), 

the map B  : E  —> R given by

B(x)  = f  \ u ' ( y ) \ \ x - y \ ^ ET L~E dy 
Je

is in Lr(E)  with <  C\\u'\\LP(e:), where

r = i-W r-i) ’P < n i

00 P >  jm

It follows from (B.I) that D  E Lr(E) also, as required.

Now suppose E  ^  S 1. For x  E E  and y E X ,  |tan | > |d is t(E ,dE)  > 0, 

so in all cases,

|5 (x) l - i ^ I ^ ) ll/lk“ w “) ) M l -

Hence S  E L°°(E), as required. □

For completeness, we include here the following result, which covers the 
boundary case p  =  1 and u E W^  f l W ^ ( E ) .  In this case we also have that 
E(u)  E L ^ C(E°), as follows.

By the argument at the end of the proof of Lemma B.I, S  E L™C(E0). We
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show that D  G L ^ C(E°) also. Let x  G E,  and for y G E,  let

'■(*■») (B.2)

We show that the map y ^  h(x, y) is in L 2(E) with norm bounded independently 
of x. We have that for some constant C, independent of x  (we denote all such 
constants C  here),

f  \2 j  f  { /(« (* )) -  / ( “ (y))}2 , ^  M .m2 f  l«(®) -  u (y)\2 ,J .  h{x, y) dy = J . ---------- ^ --------dy <  | | / | |c0,1(i) j_  { x _ y{2 dy,

( B 3 )
since /  G C 0,1(J) and if y G (x — tt, x  +  i r )  then |tan We now use
Hardy’s inequality (1.5) to dominate the integral on the right-hand side of (B.3)

r / . ( r v ( t ) d f ) 2
J U (* .! / ) 2 dy <  ll/ll2c . , (J-) J .  1 *|g _  y?  J dv < (B.4)

It now follows from Holder’s inequality that D  G L°°(E): for x  G E,  we have 

P ( z ) l  < J  W(y)\\h(x,y)\ dy <  C || / | |c<,,i(J-)||u '||*J(g), (B.5)

as required.
The following regularity result for solutions w G W^VrWioc (w~l (J)\J\f(f(w)))  

of (1.1) is a direct consequence of Lemma B.I.

C o ro lla ry  B. 2. Let f  G C°(J)  fl C 0,I3(J where J, J  and f3 are as in

Theorem 2.1, and c G E . I f w e  W ^  fl (u;_1(«7) \J \f{ f(w)))  is a solution of

(1.1) for some p > 1 then w G C£“ (it;“ :l(J) \A f ( f (w ) ) )  for each a  G (0,1).

Proof. We show first that w G W ^f(w  X(J) \J \ f ( f (w)))  for some q > .

If p > then there is nothing to prove. Suppose p < Let g :
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( l ,  -> R be given by

5(<?) =  i - f a — i)

and let n be the least natural number such that gn(p) = g o* • -og(p) > (SUch 

n  exists, since on ^1, g{q) > q and g is strictly convex). Let E^u+q be a 

compact segment of w~l (J) \J \ f ( f (w))  and let E\ D - • • D i?3n+6 be a string of 

nested compact segments of w-1(J) \J \ f ( f (w))  such that for i G { 2 , . . . ,  3n +  6}, 

Ei C E°_v  We show first that w G W 1,9n^ ( E s n)-

Let, for k G { 1 , . . . ,  3n +  5}, f* =  ^Ek,Ek+1 be as given below (2.10)

By Lemma B.I, E(w)  G L9̂ ( E i ) ;  so by (2.19), Cw' G L 9̂ ( E i )  also, since 

f (w )  is bounded away from 0 on Now Cw' =  C(fiu/) +C((1 — fi)u /). By the 

proof of Theorem 1.8, C(( 1 — fi)u /) is smooth on E 2. Hence C(£iw') G Lg(j>\ E 2). 

Now w' G / / ( ^ i ) ,  so w G LJir Hence by the theorem of M.Riesz, (Theorem 1.7 

(A)), C(fiu/) G L 2n C L\n- It follows from Theorem 1.8 (1) that f iw' G L9̂ ( E S). 

Hence w G W 1,9̂  (E3), since on E$, fi w' =  w'.

By an inductive argument it follows that w G W 1,9n^ ( E ^ n). Since as q /*  

^jri  9(q) + ° ° , fbe same argument as above shows that if gn(p) =  then

w G W hq(E3n+s) for some q > ^±I.

It now follows (in all cases) from Lemma B.I that E(w)  G L°°(E3n+4); and 

hence by (2.19) that Cw' G L°°(E$n+±). Hence, by the same argument as above, 

w G W 1,p(E^n+Q) for each p G (l,oo); so w G C0,a(E^n+o) for each a  G (0,1), as 

required. □
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A ppendix C

Calculation of the Taylor Series 

of (3 A bout (0,0) For Theorem s 

3.9 and 3.13

We calculate the third order Taylor polynomial about (0,0) of the bifurcation 
equation (3.12) in terms of partial derivatives of / .  We calculate first the partial 
Frechet derivatives of F.

C .l Calculation of partial Frechet derivatives of

F  at (A, 0)

T h e o rem  C .l .  Let m  G N U {0} and suppose f  € Cm(I  x J) where I  and 

J  are open intervals in R with 0 € J . Let w € T. Then F( ' ,w)  : I  —> L\^ 

(given by (3.1)) is m-times continuously differentiable on I,  and for A £ I  and 

Af, • • •, Am 6 R,

3m'°F(A,w)[A1, . . . ,A m]
m

= (A, w)(l+Cw’) +C(/<m'°)( A, w)w’) -  (A,0)} ]Q  Aj.(C.l)
i = l
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Proof. (C .l) holds for m  =  0 by definition of F  (3.1). Suppose that it holds 

for m  = k £ N U {0} and let /  £ C k+1(I  x J). Then for A £ / ,  w £ T and 

A i,. . . ,  A*; £ R and Xk+i in a neighbourhood of 0, we have that

d k-°F(X + A*+i, u>)[Ai,. . . ,  Xk] -  a*'°F(A, w) [Ai,. . . ,  Xk]

=  {C + ^k+i,w) -  f ( k , 0)(X,w)] w')

- [ f {k'°KX + Xk+1, 0 ) - f ^ ( X , 0 ) ]

+  [/<*'°)(A +  A*+1, w) -  / (M)(A,u>)] (1 +  Cw’) } f l  A*.
i = 1

Now by Taylor’s theorem (1.19) we have that for t £ S 1,

f <-k'°)(Xj-Xk+i,w(t))—f ( k’l>)(X,w(t)) = Xk+i f <-k+1'0\ \ ± X k+i, u)(t))+i?1(A+A*!+i, A)(t)

where Ri(X +  A^+i, A)(t) is given by (1.20) as

R t (X + Xk+U X)(t) = Xk+1 f  f (k+1’°)(X +  sXk+1) -  /<t+1-0>(A) ds (C.2)
Jo

We show tha t \\Ri{X +  Xk+i, A)Hoc =  o(|Ajfc+i|). It will suffice to consider A^+i E 

[A — e, X +  e] for some small e > 0. Since [A — e, A +  s] x lZ(w) is compact, 

j(k+i,o) uniformly continuous on this set. Hence as A^+i —> 0, the integral on

the right-hand side of (C.2) converges uniformly to 0 as a function of t. It follows 

that as Afc+i -> 0, \\Ri(X +  Afc+i, A)||oo/|Aa;+i| -> 0, as required.

By the same argument, / ( fc,°)(A +  A^+i, 0) — /^fc,0̂ (A, 0) =  Afc+i / ^ +1,0̂ (A, 0) +  5  

where ||S'||00/|A fc+i| -> 0 as Afc+i -> 0.
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It follows that

9M F(A +  A*+1, ™)[Ai,. . . ,  A,] -  a*’°F ( A, w)[\u 

= { \ k+1f t~k+1V ( \ , w ) ( l  + Cw') 

+  C (A*+1/<*+1-°> (A, w)w‘) -  Afc+1/<*+1'°>(A,0)} f jA ;
1 = 1

k
+  {/?i(A +  Afc+i, A)(l +  Cw1) +  C(i?i(A +  Afc+i, A)wr) — S}  Aj.

i = l

(C.3)

By Holder’s inequality, all the terms on the last line of the right-hand side of 

(C.3) are c? (|A^+i|) in L^-norm  as A^+i -» 0. Hence (C.l) holds for m  = k +  1 

also; and hence for all m  G N U {0} by induction. The continuity of the Frechet 

derivative of F  follows from the continuity of the derivative of / .  □

T h e o rem  C.2. Let m  G Nu{0} and n G N, and suppose f  G C m+n(I x J) where

I  and J  are open intervals in R with 0 G J. Then F  (given by (3.1)) is m  + n-

times continuously differentiable on I  x  T  and for A G I,  w G T, A i,. . . ,  Am G R 
1 2and w i , . . .  wn G W2̂  ,

drn'nF ( A, w)[Xu . . . ,  Am, w i , . . . ,  wn\

{ n /  n

/<"*■">(A, w )(l +  Cw') Y [ W]+C  I /<”*'">(A, w)w’ J ] w j

3= 1  V J= 1

n l j , n  /  n l,j>n \   ̂ m

+ / (m,„-l) J I lU' + C  / (m'n" 1> (A- E  “4 I l H  } I I
j=i V i=i /  J *=i

(C.4)

l,j,n

where denotes a product over all I G { 1 ,. . . ,  n)  \  {j}.

Proof Note first that, similarly to the remark made at the start of the proof of 

Theorem 4.4, T  is open in W ^ 2, so we may differentiate F(A, •) on this set.
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Let /  E Cm+1(I  x J); and let A E I  and w € T. By Theorem C .l, 5m’°F  exists 

and is continuous on I  x T. Let A i,. . . ,  Am E R and let w\ be in a neighbourhood 

of 0 in Wn’2. Then

dm’°F(A, w +  Wl)[Xu . . . ,  Am] -  a m’°F(A, ^)[A1?. . . ,  Am]

=  { { / (m’0)(A,w +  tt<1) -  / (m-°>(A,t«)} ( 1  +  Ck/)

+C ({ / (m’0)(X,w + wi) -  / (m'0)(A, w )} k/)
m

+/<"*'°> (A, u; +  u/OCu/ +  C (/<m'0)(A, w + w j w ' ) } J ]  A*.
1 = 1

By Taylor’s theorem (1.19), we have that for t E S 1,

/ ( ’"■0>(A>tt-W+tti1W ) - / ( ’"'°)(A,«;W) =  «;1W /(ra'1)(A ,a;(t))+i?1(ti) +  «;1)t(;)W,

where i?i(w +  wi, w)(t) is given by (1.20) as

Ri(w + w i t w)(t) = wi(t) [  +  swi(t)) -  f^m,1\X ,w ( t ) )  ds. (C.5)
Jo

We show that as ||t^i||vv1*2 ll-^i(w +  wh  ^)l|oo =  0 ( ll^illw1,2) • ^2 7T \  2tt /

suffice to restrict ourselves to the case ||wi||oo <  £ for some small e > 0. As 

\\wi\\w if  -> 0, Halloo -> 0; since / (m>1)(A, •) is uniformly continuous on {a +  6|a G 

R(w), |6| <  e}, the integral on the right-hand side of (C.5) converges uniformly 

to 0 as | | w i | | o o  0* ^  follows that as | | i u i |  1̂ 1,2 - >  0,

WRijw + w i i w ) ^  \\Ri{w +  w\, w ) | | o o

IKII W g ~  IMloo
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as required. Hence

a m'°F(A, w + WiJtAi,. . . ,  Am] -  dm'°F(A, w ) [ \ l t . . . ,  Am]

=  { iu i/(m'l)(A, w )(l +  Cw') +  C ( w J ^ V (A, w)w')
m

+ /(m'0) (A, w)Cw' + C ( (A, w) w ')} f j  Ai
2= 1

+ ^ R i (w  +  w)( 1 +  Cw' +  CiuJ) +  C(-Ri(w +  iui, w)(w' +  w[))
771

+w 1/ ( m,1>(A, w)Cw[ + C (w i/(m’1)(A, w)w o}n A;. (C.6)
2= 1

By Holder’s inequality, all the terms in the second set of curly brackets on the 

right-hand side of (C.6) are o ( ll^ ill^ 1’2) in L \^~norm as —v 0. Hence

(C.4) holds if n — 1. Suppose now that (C.4) holds if n = k € N U {0} and let 

/  e  C m+k+1(I  x J), w G T, iu i,. . . ,  Wk G Wk+i in a neighbourhood of 0 in 

W A E l  and A i,. . . ,  Am G R  We have that

d m 'k F ( A, w + w k + i ) [A i, . . . ,  Am, w i , . . . ,  W k \ - d m ’k F ( A, w )[A i,. . . ,  Am, w i , . . . ,  wfc] 

=  | / (m,fc)(A ,^  +  u;A:+i)Cu;k+1 n  %  +  c  «< +  w m -iK + i I I

k
+  [/<"*•*> (A, w +  W k + i )  -  / (ro'fc)(A, w)] (1 +  Cw')

j=1

+ c  ^ [ / (m',i)(A,w +  w*+1) -  /("■'*)(A, w)] w 'H w ,-

fc l,j,k
+  [ /(m'fc-1)(A, w  +  Wfc+1) — *)(a, w)] 5ZC w '

J = 1

[/(™'*:- i ) (A ,w + w )t+1) -  / ^ ( A . w ^ w ' n ^ j n ^

104



Now by Taylor’s theorem (1.18), we have that for t S 5 1

/<"*■*>(A,«,(*) +  t»*+iW) -  / ^ ( A .M * ) )

=  10*+l ( t ) /K,t+1)(u>W) +  +  Wk+l,w){t),
w(f) +  Wt+iW) _  / K*=-1)(A) „,(<))

= w k+i ( t ) f ( m'k)(w( t) )  +  R"(w +  Wk+u w ) ( t ) ,

where R[(w + wk+i,w)(t) and R ”(w + wk+i, w)(t) are the first order Taylor series 

remainders of the C^Jj-functions / ( m,fc)(A, •) and y(m>fc- 1)(A,-) respectively at 

Wk+i(t) about w(t), defined similarly to (C.5). Hence

dTn'kF{A, w + w k+i)[\u • • •, Am, Wi,. . . ,  ti/jfe]-dm,fcF(A, w)[Ai,. . . ,  Am, wu . . . ,  w*]

=  |  [ f {m'k)( \ ,w )  + wk+i f {rn'k+1){ \,w) + R'1{w + wk+1,w)] Cw’k+lY [ w j  
I 3=1

+c f  [ f (m,k)(A, w) +  Wfc+i/(m,fc+1)(A, w) +  F j (w +  wk+1, w)] u/*+1 ^  )
j=i

+  [u»jfc+ i / (m,fc+1 ) (A , w) +  i ? i  ( w  +  iy fc+i , « / ) ]  (1  +  Cw1) j j [  wj
j =i

+C ^[u/fc+1/ (m,A:+1)(A,u;) + R[(w + wk+uw)] w'

k l,j,k
+  [wk+i f {m'k)(\ ,  w) +  R!{(w +  wk+1, w)] ^  Cw\ f j  wt

j =i

(
fc \  'j rra

[u;fc+i / (m,fc)(A,u;) +  ^ 1 ^ +  ^ + 1 ,^ ) ]  ^  ^  J I I Ai

By arguments similar to the one below (C.5), R[(w-\-wk+i, w)(t) = o ^H^fc+illw^’2)  

and R"(w  +  wk+i,w)(t) = o • It follows, by an argument similar to

the one below (C.6) that (C.4) holds if n = k +  1 also. Hence (C.4) holds for all 

n € N by induction. The continuity of the Frechet derivative of F  follows from
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the continuity of the derivative of / . □

C o ro lla ry  C.3. Let I  and J  be intervals in R with 0 G J.

Let m  G N U {0}. I f  f  G Cm(I  x J) then for all A G I  and A i,. . . ,  Am G R, 

c>m,0F(A, 0)[Ax,. . . ,  Am] =  0.

Let m  € N U {0} and n € N. / /  /  e  C m+n(I  x J )  tten  /o r a// A 6 / ,
1 2A i,. . . ,  Am G R and iai, . . . ,  u/n G W2;  , 

d m 'n F { \  0)[Ai,. . . ,  Am, tu i,. . . ,  w„]
n

/<m'n>(A,0)JJu)J+ / ( m'n- 1)(A,0)
i= i

(C.7)

l,j,n 1,3,™

Y , Cwi H w‘+ c \ J 2 wi I l Wi
.3 = 1 J =1

fiAi
i = l

C.2 Calculation of partial Frechet derivatives of

7

In order to calculate the Taylor series of /? it is also necessary to compute partial 
derivatives of 7 up to second order. We assume that /  G C 3( /x  J) and <7* 0; and
we consider F  as a map from T n Z i into Z0. By the Lyapunov-Schmidt reduction 
(Lemma 1.23), 7 (A,0) =  0 for all A, so d1,07 (A,0) l =  0 =  d2,07 (A, 0)[1, 1]; also, 
d0,1y(A*,0) =  0. In order to compute other partial Frechet derivatives of 7  we 
differentiate the equation

QF(A* +  /x, t<&q* +  7 (^* d" ^5

where Q denotes projection onto 1Z(d0,lF(A*, 0)) (=  {w G Zo\ {w, $ q*)2 =  0}), 
which holds for all n and t (see (1.28)). Let 6 = (A* +  /i, t $ q* +  7 (A* +  7/, t $ q*)). 
Then

Qd0,1F(e)[^q. + 90,17 (A*+  = 0
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so that

Q(a°-2F ( 6i)[$,. + a ° '17 (A* +  / i , ^ , + a ° ' 17(A* +  /i,< ^ ,-)^* ] 

+9°'1F(0)[3°’27(A* + II, <*,.)[*„ *»]]) = 0-

oo
Hence if we let <90,27 (A*,0)[$g., <£q*] =  then by (C.7)

n=0

Q(SP'2F(  A*, 0)[* ,., * ,.]  +  3°'1F ( A*, 0)[a°-27 (A*, 0)[$,., $,.]]) 

=  Q (*2. / (0'2)(A*,0) +  /(°-1)(A*,0){2g*$2. +  2C($,.$ ;.)}  

+ / (0*1)( A*, 0)c>°'27(A*, 0 )[* ,., * ,.]+2/(A *, 0)C((a°-27(A*, 0 )[$ ,., * ,.]) '))

=  q !  | ( 1  +  $ 2 , . ) / (0'2 ) ( A * , 0 )  +  / ( ° ' 1> ( A * , 0 ) { g * ( l  +  2*2,.)}

OO oo \
+ /(° '1)(A*, 0 ) y > n* n +  2/(A*, 0) J =  0,

n = 0 n=0 /

so that a n =  0 for all n  € N U {0} \  {0, q*, 2g*} and

/ (°-I)(A, ,0) _  / (°’2)(A*,0) ( c  .
0 2/(A*,0) 2/(°’1)(A*,0)’ ' 1

_  /(°.2>(A»,0) / ( 0,1)(A*,Q)
v  2/<°’1)(A*, 0) /(A*,0) ' ( ' ’

Since 7 maps into 1l(d0,lF(\*,  0)) we have a 9* =  (<$9*, <90,27(A*, 0)[^>g*, $ 9*])2 =  0. 
Hence

d°’27(A *,0)[3y,$y]
/ ( 0|1)(A*, 0) /(° '2)(A«,0) f /(°-2HA*,0) / ^ ( A - . O ) )

2/(A*, 0) 2/(°'1)(A*,0) \2 /< ° 'l)(A*,0) /(A*,0) J 2,!' '

Also

Q (a1'1F (e )[* ,.+ a ° ’17(A *+ A t,t* ,.)* ,.,i]+ a° '1F(6i)[a1'17 (A * + ^ t$ ,.) [* , .) i]] 

+S°'2F (0)[* ,. + a 0'17(A* +  M ,< * ,.)* ,.,a1-07(A* +  /2 ,t* ,.)l]) =  0.
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oo
Hence if we let dl,lnf ( \* ,0)[$q*, 1] =  then by (C.7),

n= 0

Q i d ^ F i  A*, 0) [$ ,., 1] +  50'1 F (  A*, 0) [91'17 ( A*, 0) [3 y , 1]])
OO

/ ( M>(A*,0)$?. + 2 97 ( 1'°)(A*,0)$,. + ^ ^ „ ( / ( ° ' 1>(A*,0) +  2n/(A*,0))
n= 0  

=  0 .

Since /^0,1̂ (A*, 0) +  2n/(A*, 0) /  0 for n  G N U {0} \  {#*} we have that £n =  0; 
similarly to the remarks below (C.8) =  0. Hence d1,lry(X*,0)[^q*, 1] =  0.

C.3 Calculation of partial derivatives of (3

By (3.12) we have

PifJ'j t) = {®q* A* + Ab t$q* + 7(A* +  fl, t$ q»)))2 .

we differentiate this with respect to t and fi to find the partial derivatives of /3 of 
order up to three at (0,0). Again, we assume /  G C 3(I  x J) and q* ^  0; and we 
consider F  as a map from T fl Z\  into Z q. Note that because for all fi

/?(/b 0) =  ($ g*, F(A* +  fi, 7(A* +  fi, 0))>2 =  (3 v  ,F ( A* +  fi, 0)>2 =  0,

we have that (0,0) =  0 for all n. Now for all fi and t we have

/3(0'1)(^-<) =  ( i v . a 0'1̂ ) ^ , *  +  ^ ( a* + ,

so that

=  { % . , d l ’l F { e ) [ $ q. +aw7(A* + ^  1])2
+ ($,., d°'2F(0)[$,. + ^ (A *  + n, **,.)$,•, 91'°7(A* + H, i$,.)l])2
+ <$,., gP’1F(9)[6l^ (X t +  ti, , 1]])2

108



and

=  { $ ’ + a w 7(A *  +  / M M < V , 3 v  + 3 ° ’M A *  +  / * , « r ) ^ l > 2

+  ( $ , . , a o>lF(0)[a°'27(A* +  •

Hence we have the following:

/3(2,1)(M )
= ($ ,.,9 2,1F(0)[^,* + 9 0,17(^* +

+ ( $ , . ,^ ( 0 ) 1 $ , .  +9°'17(A* + + ^-t^ )ll>2

+ ($ ,-,91,lF(^)[91,17(V + fi, 9Jy)l^V’

+  +  M. +  1]>2
+ ($ ,., d°'3F(0)[$„- + a0,17(A* + M. 9*V )$«•-

gl.%(A* + ft,t$,*)l,31,07(A* + fM^gO1!^

+ ($ ,.,a°’2F(0)[91>1 + +
+ ($ ,. ,3°'2F(0)[3V + 3W7(A* + + M ,«g*)M ]}2

+ ($ ,.,a l,1F(0)[9l,17(A* + ■*■]> ^)2
+ ($ ,., 9°'2F(0)[9W7(A* +M.t$ 5')[^?->1l’9l’°7(A +
+ ($ ,.,9°’lF(0)[92’17(A* + fi, t$,*)[$g‘> ^ 1)2 >

= ( $ ’., a1'2F(0)[3y +90,17(A* +/*, ■+ 8 n,17 (^ *  +  /*• ‘ M ' V ' ^

+ (<S,.,9°’3F(0)[$,- + 9°,l7(A* + fi, *$,•)*«•>
+ ^'^(A* + fl, *$,<)$»*. 31,07(A* + M. i^g-)1])^

+  <$,.,3“'2FW[31’17(A *+fi,tV )[^--1l - ^ + a°'l7(A*+Al’i$ ,' )^ ' 1̂
+  ($ ,., 90,2 F(0) [$,< + a B,17 (A *  +  )*«* • 9 1,17 ( ^ ‘ +/*■ »«*)[*g* ' ^

+ ($ ,., au F(0) [90>27( a* + fi, t<M [$g*. $g‘ i> ^

+  ( ^ ^ 2F (6) [ d ^  7 (A* +  M M [ ^ ’M ’al,07(A* +
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and

Pm (fi,t)

=  ( $ , . , c>o'3f (0)[$,. +  9°-17 (a* + a*,

+ d°'xt(A* +  fi, < $ , . ) $ , • .  $ , •  +  3 0,17 ( A *  +  fi, < $ , • ) * « • ] )  

+ ( $ , . ,  d°'2F(0)[d°'27(A*+M, <$,•)[*,•. $,*]>*,• + a ° '17(A*+M, <*,-)*,•]) 

+ ( $ , . ,  a°'2F(e) [$,. + a ° '17(A*+/i, < $ ,.)$ ,., a°-27 (A*+/i, *$,.)[* ,•, *,•]]> 

+ ( # , . ,  a°'2F(0)[a°'27(A* +  fi, +  ^ '^ ( a *  +  fi, < * ,.)* ,•])

+  ( $ , . ,a ° '1F(6>)[a°'37(A* +  fl, M y )[**•■ 4 y , < M > 2 .

2

2 

2

These expressions simplify considerably if we take (//,£) =  (0,0). We use the 
results of Sections C .l and C.2 and find that

/ ^ ( o . o )  =  ($ ,.,a ° -1F(A*,o)[$,. +  a°'17 (A*,o)$,.])2 =  o,

( 3 ^ ( 0 , 0 )  =  ( $ , . ,5 1'1F (A * ,0 )[$ ,.+ a°-17 (A *,0 )$ ,.,l])2

+  <$,., a°'2F(A*, ojia'-^CA*, o)i, +  a°-17 (A*, o)$ ,.]}2

+  a°’1F(A*, o)[a1-17 (A*, o p , . ,  1]])2

=  ( $ , . ,a 1’1F (A *,0)[$ ,.,l])2 

=  ( $ , . , / (w)(A*,0)$,. + 2 g 7 (1'0)(A *,0)$,.)2

/3<°’2>(0,0) =  ( $ , . ,a ° '2F(A*,0)[$,. + a ° '17(A’ ,0 )$ g. ,$ , .  + 9 ° '17(A *,0)$,.])2 

+  ($ ,.  ,9 0,1F(A*, 0)[9°’27 (A*, O p,., $,*]]}2 

=  <$,.,a°-2F(A*,0)[3>,.,$,.])2

=  < $ , . , / (0'2)(A*,0)$2. +  /<m>(A*,0){2<P2. +  2 C ($ ,.$ ;.)} )2 

=  i / (°'2)(A*,0)(l +  $ 2,.)  +  g V '^ A ’ .OXl +  2 * * .) )

=  0 .
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By similar arguments we find that

p<-2»( 0,0) = <$,.,a2’1F(A*,0)[$,.,l,l])2

-  . ( / * ■ > ( v , . ) - -fM I(y ; g . y ( y ’0))

and

/ ^ ( o . o )  =  ( ^ 9- , a 1>2Jp(A*; 0)[$ ,., 1])2

+  , 3 MF ( A*, 0)[a°'27(A*, o)[$ ,., i])2

=  ($,.,3>2. / ( 1'2>(A*,0) +  / ( 1'1)(A*,0){2g*$2. + 2 C ($ ,.$ ; .)} )2
+  a w F(A*, 0)[a„ +  a 29. $ 2, . , 1])2

=  0.

(ao and a 2q* are given by (C.8-C.9)). Finally,

/?(0>3)(o,o)

=  ($ , . ,  a°’3F(A*, 0)[$9. , 4 y , $ , .] )2 

+3 ($ , . ,  a°'2F(A*, 0)[3°-27 (A*, 0)[$,. ,$,.)> * ,-] )2 

=  ( $ , . , $ 3./<°'3)(A*,0) +  {3<jr*$3. + 3 C ($ 2.$ ; . ) } / (0,2)(A*,0))2 

+3 (&q’ , ((*0 +  a 2q' $2q’ (A*, 0)

+ {(&0 + (*2q'^2q')Q*^q' + 2 Q*Q!2q, *&2q, *&q'

+C(c*o +  Cl2g*$24*)^9* a 2?, 4?*^l2«, )}/^0’1H^*> 0))2

=  $ 3.{/<°'3>(A*, 0) +  357 (0'2)(A*, 0)} +  3/<°’2>(A*, 0)C($2, $ ;.) ) ;

+3 a 0{ / (0'2)(A*, 0) +  297<°'1)(A*, 0)}$,.

+ « 2 ,-{ /(0’2)(A*,0) +  397 (0ll)(A*, 0)}3y * V  

+ a 2 ,7 (0'1)(A*,0)C($2, .$ ; .  +  )}2 •
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We now apply the triginometric identities sin3 x = J(3 sin x — sin 3x) and cos3 x  = 
\  (cos 3a; +  3 cos x) which give

cos2 x  sin x = \  (sin x +  sin 3a;), cos 2x sin x  =  \  (sin 3a; — sin x ), 
cos 2x cos x = \  (cos 3a; +  cos x ),

and find that

/?(°’3)(0,0)

=  i  {/<°'3> +  3<77<0'2> }($ 3?. +  3 $ , . )  +  39* (3 y  +  $ 3 , - ) / (°'2)) 2

+ 5 ( $ , . ,2 a 0{/<0-2) +  2g7 <0'1)}$ 9.

+<̂ 2g*{/̂ °’2̂ + 3g*/̂ °’1̂ }($3g* + 4>g*) + q*OL2q+{3$3q* + )/^°’̂  );

= 3?r | i / (0,3) + (^a0 + q* + ^ a 2g*"j f (0,2) +  2g*(a0 + a 2q* ) f {0'1)|

o f  1 f(0.3) / (0ll)/ (0’2) . / (0>2)2 , / (0’1)3 1
\  4 2 /  4/(04) 2 /2 J

where /  and its partial derivatives are evaluated at (A*,0).
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C.4 Calculation of the Taylor series of (5  around 

(0,0) in the case (/(A*) = 0

If (/(A*) =  0, then /JOA)(0,0) =  0 and so the Taylor series of ft about (0,0) is 
given by

t

A*
t

£ ( 2 ,1)

£ ( 1,2)

£(1.2)
£(0,3)

t

A*
t

(  (  /3(3,0)
_ 1 1
“ 3! /  p M

v V 0 (1,2)

=  ^ V 2'1* +  t3p (0'3)\  + p

j . , .  ( i  ,m > _  z 1” / 1" 1 . a ^ L  . a m
+  \4  2 /  2f 2 + p’

(c .io )

where partial derivatives of £ are evaluated at (0,0) and partial derivatives of £ 
are evaluated at (A*, 0). p and p’ =  ^  are sums of higher order terms. Note that 
because for all n, £(n’°)(0,0) =  0, all terms in the Taylor series of £ about (0,0) 
have a factor t.
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