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SUMMARY

The role of cyclic AMP (cAMP) in the control of growth and proliferation was 

investigated in Saccharomyces cerevisiae. After modification of an assay method 

for cAMP, it was found that the concentration of intracellular cAMP (i-cAMP) 

decreased throughout the growth of an asynchronous culture, and that the 

concentration of i-cAMP was in excess during exponential phase. It was also found 

that the concentration of i-cAMP was similar in cells that had been grown on rich, 

minimal, fermentable or non-fermentable carbon sources. Centrifugal elutriation 

experiments showed that there were no cell cycle-specific fluctuations in the i- 

cAMP concentration, but fluctuations were observed. The presence of extracellular 

e-cAMP (e-cAMP) was also observed, although it was subsequently found that the 

assay method used was not suitable. HPLC analysis of the growth medium was not 

conclusive either as a peak that eluted close to where cAMP eluted was found not to 

be cAMP. It is concluded form this work that feedback inhibition of cAMP 

synthesis is not operable during exponential growth of S. cerevisiae, i-cAMP is not 

an indicator of catabolite repression and the concentration of i-cAMP does not 

fluctuate during the cell cycle.
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CHAPTER 1. 

INTRODUCTION.

1.1. Cyclic nucleotides.

Cyclic nucleotides are reportedly ubiquitous. There are many pathways in 

which cyclic nucleotides are reported to be involved: these include the 

coordination of cellular growth and proliferation. Only two of the cyclic 

nucleotides, adenosine 3 ',5 '-cyclic monophosphate (cAMP) and guanosine 

3 ',5 '-cyclic monophosphate (cGMP) have been of significant interest; however, 

their precise roles and the way in which they achieve them are still uncertain. 

Cytosine 3 ',5 '-cyclic monophosphate (cCMP) has also been detected, along with 

its cyclase and phosphodiesterase (see Kuo et al. , 1978), and although there is 

only one report available, it is also involved in proliferation.

Cyclic AMP is composed of a purine ring linked to a ribose sugar moiety, 

which is itself attached to a phosphate group by 3'-5' bonds (Figure 1). It is 

synthesized from adenosine triphosphate (ATP) by adenylyl cyclase, which is 

usually situated in the plasma membrane, and is degraded to 5 '-AMP by a cyclic 

nucleotide-dependent phosphodiesterase. Cyclic AMP exerts its effects through 

a cAMP-dependent protein kinase.

1.2. The role of cAMP.

1.2.1. Intracellular cAMP.

Despite the reported ubiquity of intracellular cAMP (i-cAMP), it would be 

incorrect to say that the cAMP regulatory system has been entirely conserved 

throughout evolution (Pall, 1981; Gancedo et al., 1985). First, there is an 

apparent fundamental difference in the role of i-cAMP between prokaryotes and 

eukaryotes and between members of each category. Secondly, in prokaryotes 

the intracellular receptor for cAMP is a transcription regulation protein and in 

eukaryotes it is the cAMP-dependent protein kinase (PKA). Prokaryotes tend

1



Figure 1. The enzyme-catalysed synthesis and degradation of cAMP. Cyclic 

AMP is synthesized from ATP via adenylyl cyclase and causes the release of 

pyrophosphate. Cyclic AMP is degraded to 5 '-AMP by a hydrolysis reaction 

via phosphodiesterase.
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to be affected by glucose availability and membrane depolarization; in lower 

eukaryotes, i-cAMP concentrations reflect glucose availability, membrane 

depolarization and stimulation of membrane receptors, as in higher eukaryotes; 

both higher and lower eukaryotes have a PKA that affects processes such as 

transcription, cell proliferation, meiosis, translation, membrane permeability, 

degradation of reserves, hormone secretion and muscular relaxation.

Much of the attention drawn to prokaryotes concerning the role of cAMP 

has been towards catabolite repression in Escherichia coli. Catabolite repression 

is the process whereby a cell will preferably metabolize one sugar, for example 

glucose, rather than another, such as lactose. Cyclic AMP and a cAMP 

receptor protein (CRP) are required to interact for induction of carbon catabolite 

operons such as lac, gal, trp and ara, which are required for growth on 

alternative carbon sources. When E. coli is growing on a medium containing 

glucose, the synthesis of cAMP and the transcription of the above operons are 

suppressed. The activity of adenylyl cyclase is high if the components of the 

sugar transport pathway are phosphorylated, and this is the case in the absence 

of transportable sugars such as glucose and fructose. In E. coli, the presence of 

cAMP is indicative of a low energy status. In fact, cAMP and CRP are also 

required for induction of carbon starvation proteins (Schultz et al., 1988).

Cyclic AMP in fungi is involved in processes related to growth, 

proliferation and multicellular development such as the utilization of exogenous 

and endogenous carbon sources, conidiation, dimorphism, phototropism, 

regulation of hierarchical hyphal growth, control of hyphal branching and spore 

germination (for references see Dumbrava and Pall, 1987; Robson et al. , 1991). 

Cyclic AMP was also the first identified second messenger in hormone action. 

With respect to normal or non-tumour cells, cAMP can stimulate, inhibit or 

have no effect on proliferation. The effect of cAMP on cell growth appears to 

depend upon the differentiation state of the cell (for review see Dumont et al. , 

1989). Positive and negative regulatory elements that are affected by cAMP

3



have been found in the promoters of mammalian genes. It is believed that PKA 

or a protein that has been phosphorylated by PKA enters the nucleus and 

phosphorylates chromosomal proteins that regulate the transcription of genes.

There appears to be no paradigm for the role of cAMP in proliferation for 

both eukaryotes and prokaryotes. Despite this, and the two different modes of 

control of cAMP between them, there are reports of similarities. For example, 

the amino acid sequence of the regulatory subunit of PKA from bovine cardiac 

muscle and the CRP protein from E. coli show approximately 40% homology, 

with the cAMP-binding domain showing conservation. Also, in E. coli, slime 

moulds, fungi and mammals, adenylyl cyclase is membrane-bound and requires 

interaction of an effector with the membrane-bound adenylyl cyclase, and also 

may transmit the signal via a coupler (Peterkofsky, 1976).

From this brief account of the role of cAMP, it is clear that cAMP is 

required for essential programmes in the life cycle of a cell, enabling an 

organism to switch life style in order to exploit its environment or to coordinate 

with other cells to form a multicellular organism.

1.2.2. Extracellular cAMP.

The escape of cAMP from intact cells has been detected in cultures of both 

prokaryotic and eukaryotic cells (for references see Fehr et al. , 1990). Many 

reports suggest that cAMP is extruded from cells via an energy-dependent 

process. However, as yet, no carrier has been found; there is also no universal 

reason why cAMP should be extruded from any cell. The efflux of cAMP does 

not, however, have a consistent role in the regulation of i-cAMP concentrations; 

it may be part of a feedback loop. It has been reported that the amino acid 

sequence of adenylyl cyclase in bovine brain is topologically similar to several 

channels and transporters, possibly resulting in adenylyl cyclase transporting the 

cAMP out of the cell (Fehr et al. , 1990).
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The role that extracellular cAMP (e-cAMP) plays in Dictyostelium 

discoideum is clearly understood to be an intercellular signal. On starvation of 

D. discoideum, a programme of development is initiated resulting in 

differentiation from the free-living amoeba form to the multicellular slug form, 

eventually resulting in dispersal of spores. Extracellular cAMP is an essential 

requirement for differentiation of D. discoideum and is released from a cell 

under these conditions. Cyclic AMP serves as a chemoattractant and regulates 

the expression of genes essential for development and differentiation (for review 

see Saxe et a l., 1988). One class of developmentally regulated genes require 

oscillations in e-cAMP and others require either oscillatory or constant levels of 

e-cAMP for induction (Kessin, 1988). D. discoideum also possesses an 

extracellular phosphodiesterase that degrades e-cAMP in order to control 

concentrations of e-cAMP and therefore control its development and 

differentiation.

Extracellular cAMP has been found in the growth medium of cultured 

fibroblasts and avian erythrocytes. The release of cAMP from avian 

erythrocytes was found to be a significant mechanism for control of i-cAMP 

concentrations; however, the release of cAMP from cultured fibroblasts was not 

(for references see Fehr et a l., 1990). There is efflux of cAMP from WI-38 

fibroblasts also and the amount that is released from these cells is reported to be 

approximately 18% of cAMP turnover, therefore these cells also depend on 

e-cAMP as a significant factor in controlling the concentration of i-cAMP 

(Barber and Butcher, 1983). Cyclic AMP has also been found in the growth 

medium of pig aortic smooth muscle cells when inhibitors of phosphodiesterase 

activity were used, implying that extrusion of cAMP from these cells was a 

consequence of the i-cAMP concentration becoming too high due to lack of 

phosphodiesterase activity. It has also been reported that e-cAMP may function 

as an intercellular signal in mammalian cells (Boxer et a l., 1980). Other 

putative roles for e-cAMP may be its modification into another active compound
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or it may be coupled with the counterflow of an ion. It has been suggested that 

e-cAMP is rapidly degraded in the medium into adenosine monophosphate 

(AMP), inosine, adenine and hypoxanthine. It has been reported that the 

function of e-cAMP in bacteria, such as E. coli, is a function of i-cAMP 

concentration (Epstein et al., 1975), similar to mammalian cells.

In some filamentous fungi, basal levels of e-cAMP are required for 

normal mycelial development (Robson et al., 1991) and increases in e-cAMP 

cause decreases in hyphal extension rates and increases in the degree of 

branching.

The loss of cAMP from any cell type to the medium would be extremely 

biologically inefficient if it was not re-utilized. Alternatively, it is thought that 

extrusion of cAMP may be a biological mistake that cannot be corrected, usually 

resulting from abnormalities and pathological conditions (Hamet et al. , 1984).

1.3. The life and cell division cycles of S. cerevisiae.

S. cerevisiae cells can exist in either haploid {n DNA) or diploid (2n DNA) 

forms (Figure 2). Haploid cells of S. cerevisiae are one of two mating types, 

a or a . Only an a and an a cell can mate to form an a /a  diploid. Both haploids 

and diploids undergo budding and cell division, have the same mitotic cycle and 

can enter G0 upon starvation; only diploids can undergo meiosis and sporulation. 

The purpose of the cell division cycle (cell cycle) is to produce two cells 

genetically identical to the mother cell. The cell cycle of S. cerevisiae, which is 

typical of eukaryotes, comprises four major phases Gj, S, G2 and M (Figure 3). 

G1? initially just thought to be a preparation step for DNA synthesis, contains a 

major regulatory step in the cell cycle of S. cerevisiae; in S phase the entire 

DNA content of the cell is replicated; G2 is the phase in which chromosomes are 

prepared for separation; separation of chromosomes, or nuclear division, occurs 

in M phase; M phase is followed by cell separation.

6



Figure 2. The life and cell division cycles of S. cerevisiae. Reproduced 

from Russell (1986).

7



Ascus
Ascospores (N)

Haploid ascospore, 
a -mating type

Haploid ascospore, 
a-mating type |

Germination
Germination

Bud Bud

Meiosis

Vegetative 
life cycle

Vegetative 
life cycle

Vegetative 
life cycle

Induction by 
sex factors

Induction<by 
sex factorsa/ctn 2N

a / a

Fusion to form zygote



Figure 3. Major landmark events of the S. cerevisiae cell cycle. Abbreviations: 

SPBSF, spindle pole body satallite formation; SPBD, spindle pole body 

duplication; CRF, chitin ring formation (shown as a heavy line between the 

mother and daughter cells); MRF, microfilament ring formation; BE, bud 

emergence; iDS, initiation of chromosomal DNA synthesis; DS, chromosomal 

DNA synthesis; SPBS, spindle pole body separation; NM, nuclear migration; 

mND, medial stage of nuclear migration; SE, spindle elongation; 1ND, late 

stage of nuclear migration; CK, cytokinesis; CS, cell separation. Reproduced 

from Pringle and Hartwell (1981).
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So far, over one hundred mutations have been isolated that affect the cell 

cycle. The largest class of cell cycle mutants are known as cell division cycle 

(icdc) mutants and these have a stage-specific defect in the cycle. Conditional 

lethal cdc mutants at the restrictive condition uniformly arrest and accumulate at 

a particular stage in the cell cycle, known as the terminal phenotype. CDC 

genes help to mediate the control of the cell cycle and represent the various 

dependent, independent and interdependent pathways of the nucleus and 

cytoplasm that are necessary for a normal cell cycle. All of these pathways 

converge at Gj.

A S. cerevisiae cell begins the cell cycle as an unbudded mother cell or a 

newborn daughter cell. The first visibly detectable event is the emergence of a 

bud. This grows continually through nuclear division and cytokinesis until cell 

separation, when it becomes the daughter cell. At the beginning of the cell 

cycle in Gj, there is a major decision making process called Start (Hartwell, 

1974). At Start, a cell is unbudded, responsive to mating pheromone and has a 

spindle pole body satellite that has not yet replicated (Pringle and Hartwell,

1981). Start is the point at which the cell assesses its environmental status. It 

would be biologically efficient for the cell if it knew whether it should initiate 

and complete a new cycle or to follow an alternative developmental pathway. 

The pathway that a cell can follow is dependent on whether it is haploid or 

diploid and its environment: if a cell is haploid it will either enter into G0, a 

non-proliferative stage, or undergo conjugation and mating if mating pheromone 

is present; and if a cell is diploid it can undergo meiosis and sporulation. The 

coordination of cell division and growth at Start is achieved by the necessity to 

attain a critical cell size, the efficient monitoring of nutrient availability and the 

ability to detect the presence of mating pheromone. There are two classes of 

Start mutants, I and II. On arrest, class I mutants resemble mating pheromone- 

arrested cells that shmoo and include mutants such as cdc28, cdc36, cdc37 and 

cdc39. On arrest, Class II mutants such as cdc25, cdc33 and cdc35 are
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unbudded and resemble nutritionally-arrested cells. The reason for these 

controls is presumably so that a cell will not waste valuable resources by 

initiating a new cycle if there are insufficient nutrients available to complete it. 

Therefore it is clear that cells of S. cerevisiae are capable of coordinating 

growth and proliferation and this occurs in GP

According to Johnston et al. (1977), growth is the rate limiting step for 

continuation of the cell cycle of S. cerevisiae, as daughter cells can be 

distinguished from mother cells by the fact that they must undergo further 

growth until they can initiate a new cell cycle (Hartwell and Unger, 1977). The 

size of a cell is a function of its growth rate. A low growth rate supports a 

small cell size and a high growth rate supports a large cell size. Initiation of 

sporulation is also subject to size control (Calvert and Dawes, 1984). Size 

control is partly controlled by the WHI1 gene (Sudbery et al., 1980). whil-1 

mutants initiate the cell cycle at half the volume of wild type cells and deletion 

of WHI1 results in a larger than normal cell size (Nash et a l., 1988); 

overexpression of WHI1 results in a smaller cell size (Nash et a l., 1988). These 

observations indicate that the Whil protein is an activator of Start and the whil- 

1 mutation results in a hyperactive Whil protein (Nash et al., 1988). Whil is 

modulated by nutritional conditions and manipulation of WHI1 can affect the 

length of Glf but not the total length of the cell cycle. As a consequence of 

bypassing Start and possibly activating CDC28, whil-1 cells are immune to 

mating pheromones. It is possible that Whil and a  factor may be antagonists 

(Nash et a l., 1988). Whil has been found to have sequence homology with a 

class of proteins called cyclins, which are inducers of mitosis (see below). The 

Whil-1 mutation has been found to be co-dominant and subsequent to the 

original discovery of the mutant (Sudbery et al., 1980), it has been referred to 

as WHU-1.

Nutritional control of the cell cycle is mediated partly by the cAMP 

pathway, which is involved in sensing sugars (to be discussed later), and
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CDC33, which is involved in nitrogen signalling. CDC33 encodes a mRNA 

Cap-binding protein (Brenner et a l., 1988). The role of CDC33 is to activate 

PKA in order to repress genes that encourage Gi arrest (Brenner et a l., 1988). 

The cdc33-l mutation leads to preferential synthesis of certain proteins that 

promote Gj arrest.

WHI2 also plays an important part in the monitoring of the nutritional 

status of the cell (Sudbery et al., 1980; Saul et al., 1985; Rahman et al., 1988; 

Mountain and Sudbery, 1990a). Whereas the whil-1 mutation results in a small 

cell size during the logarithmic phase of growth, the whi2 mutation results in a 

small critical cell size in stationary phase (Sudbery et al., 1980). whi2 cells 

become committed to a new cell cycle as they are not capable of recognizing a 

lack of carbon source on which to grow; therefore whi2 cells arrest at all stages 

of the cell cycle when nutrients eventually run out (Saul et a l., 1985). As whi2 

cells have a higher specific growth rate and are smaller during growth on non- 

fermentable carbon sources compared with fermentable carbon sources (Rahman 

et a l., 1988), and overexpression of the wild type gene prevented growth on 

glycerol (Mountain and Sudbery, 1990b), it was proposed that the function of 

WHI2 is to repress functions that are only expressed in the absence of glucose.

It appears that WH12 expression and cell size are dependent on growth rate 

rather than catabolite repression/derepression (Mountain and Sudbery, 1990b).

One of the most obvious biochemical aspects of Gj is its regulation by a 

protein kinase cascade. For example CDC7 and DBF2, which are required for 

passage through this part of the cell cycle, encode protein kinases (Jazwinski, 

1988; Johnston et al., 1990). The Start gene, CDC28, isolated by Reed (1980) 

encodes a 34 kDa serine/threonine protein kinase and its activity is required for 

the traverse of Start. Cdc28 complexes with and phosphorylates a 40 kDa 

protein, which is necessary for the activation of Cdc28. p34CDC28 was thought 

to function only at the Gj-S transition. Subsequently it has been found that it 

has a role similar to that in other organisms was demonstrated (Reed and
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Wittenberg, 1990; Surana et a l., 1991). In other organisms the function of p34 

is to regulate the G2-M transition. It has also been found that p34CDC2S is 

phosphorylated in S phase on the Serl9 residue (Amon et a l., 1992; Sorger and 

Murray, 1992), similar to other p34 proteins. Although, mutations that affect 

the phosphorylation of Serl9 and an adjacent threonine do not accelerate mitosis 

or disrupt feedback controls that link cell division with completion of DNA 

synthesis.

Although the activity of the Cdc28-p40 complex in S. cerevisiae is 

regulated during the cell cycle, the concentration of the complex does not alter 

(Wittenberg et a l., 1990). The activity of Cdc28 is directly dependent on 

cyclins. Cyclins are proteins that ensure passage through particular transition 

points in the cell cycle and have been subdivided into two groups: mitotic and 

Gj cyclins.

Mitotic cyclins accumulate in G2 and are degraded at mitosis (Hunt, 1989; 

Pines, 1991). Recently, genes have been found in S. cerevisiae that encode 

proteins which are homologous to mitotic cyclins: SCB1 (Ghiara et al., 1991), 

CLB1, CLB2, CLB3 and CLB4 (Surana et a l., 1991). The level of SCB1 mRNA 

fluctuates during the cell cycle and maximum accumulation occurs in G2 (Ghiara 

et al., 1991). CLB1 and CLB2 are only expressed in late S, G2 and M phases, 

neither are essential but one must be functional (Surana et a l., 1991).

Gj cyclins are required at Start for entry into S phase (Hadwiger et al. , 

1989; Richardson et a l., 1989; Wittenberg et a l., 1990), after which time they 

are no longer required (Cross, 1990); they also associate with p34CDC25. Three 

such cyclins have been isolated from S. cerevisiae, Clnl, Cln2 and Cln3 and 

they are homologous to higher eukaryotic cyclin A types (Richardson et al. ,

1989). The CLN gene family is required for the Gj-S transition and is involved 

in the timing of Start. Elimination of all three cyclins is lethal. The mRNA of 

CLN I and CLN2 is cell cycle-dependent, whereas the mRNA of CLN3 is not. 

CLN3 was originally described as WHI1 (Sudbery et a l., 1980) and also DAF1
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(Cross, 1988). Cyclin gene expression can be controlled by either mating 

pheromones, as the mRNAs of CLN1 and CLN2 decrease on addition of mating 

pheromone (Richardson et al. , 1989; Wittenberg et al. , 1990), by nutrient 

limitation which decreases protein synthesis, or by modification of cyclin by 

Cdc28 (Wittenberg et al. , 1990). Cln3 is also affected by mating pheromones 

via two other proteins, Farl and Fusl (Cross and Tinkelenberg, 1991). Recent 

evidence (Lew et al. , 1992) shows that different cyclins act differently in 

mother and daughter cells. In daughter cells, transcription of CLN1 and CLN2 

is induced in a size-dependent manner, presumably so that daughters can only 

enter the cycle if the level of cyclin transcription is sufficient. CLN3 is not 

required in daughter cells, but is crucial for the traverse of Start in mother cells 

in which it is constitutively expressed.

Regulation of the cell cycle by cyclins and Cdc28 is extremely complex 

and there is a seemingly endless supply of proteins that participate in this 

pathway. For example it is possible that Swi4 and Swi6, which are transcription 

factors responsible for the Start-dependent transcription of the HO endonuclease, 

are involved in a positive feedback loop (Ogas et al. , 1991). This loop may be 

responsible for activation of Clnl and Cln2 transcription in order to activate the 

Cdc28-Cln complex. As both Swi4 and Swi6 contain potential sites for Cdc28 

phosphorylation, Cdc28-Cln may activate the activity of Swi4 and Swi6 

(Breeden and Nasmyth, 1987; Andrews and Herskowitz, 1989). Cln3 is also 

dependent on Swi4 and Swi6 proteins.

1.4. The cyclic AMP pathway in S. cerevisiae and its control.

1.4.1. The cAMP pathway.

An entire cAMP pathway has been found in S. cerevisiae, comprising adenylyl 

cyclase (Londesborough and Nurminen, 1972), both low Km and high Km 

phosphodiesterases (Londesborough, 1975, 1974, respecively) and aPKA 

(Hixson and Krebs, 1980). With the isolation of a considerable number of
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mutants of this pathway, an intricate control system has emerged. The latest 

model of this pathway is summarized in Figure 4. There are many more 

proteins that have been implicated in the cAMP pathway than are shown here, 

but only those of importance and interest to this work are discussed below.

The most upstream function of the cAMP pathway is encoded by CDC25. 

A temperature-sensitive mutant of this gene was first isolated by Pringle and 

Hartwell (1981) and at the non-permissive temperature for growth, this mutant 

arrests as an unbudded cell in G0, showing that a functional CDC25 is essential 

for traverse of Start. CDC25 was cloned and sequenced by Camonis et al. 

(1986) and encodes a 180 kDa polypeptide, which is tightly linked to the yeast 

plasma membrane (Garreau et al., 1990). The biochemical role of Cdc25 is 

thought to be a GTP-GDP exchange factor for the guanine nucleotide-binding 

proteins (G proteins) encoded by the RAS genes (Robinson et a l., 1987; Daniel 

et a l., 1987). It has been found that the C-terminus of Cdc25 was required for 

stabilizing the Ras-adenylyl cyclase complex (Daniel et al., 1987) and the C- 

terminal 13-domain is able to mediate the glucose-induced activation of Ras 

(Munder et al., 1988; Van Aelst et al., 1990). Mutations in CDC25 therefore 

result in a lack of response to glucose. Cdc25 is also thought to be involved in 

the mitosis-meiosis decision (Tripp and Pinon, 1986; Munder et a l., 1988) as 

cdc25 mutants sporulate in rich medium (Shilo et a l., 1978). It has been found 

that the N-terminus of Cdc25 is required for growth on non-fermentable carbon 

sources resulting in defective sporulation if altered (Munder et a l., 1988; Van 

Aelst et al., 1990) and the C-terminus is essential for sporulation to proceed.

In the absence of glucose, the glucose receptor is thought to interact with 

the C-terminal domain (Ramos et al., 1989b) of Cdc25 causing transduction of a 

signal to adenylyl cyclase via GTP-GDP exchange on Ras, resulting in synthesis 

of cAMP. The C-terminal of Cdc25 then interacts with another G protein, Iral, 

which stimulates the GTPase activity of the Ras proteins by causing the 

conversion of the active GTP-bound Ras protein to the inactive GDP-bound
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Figure 4. The cAMP pathway of S. cerevisiae. Reproduced from Broach 

(1991). Each component of the pathway is represented by its gene designation; 

P I, P2 and P3 represent targets of PKA; solid lines with arrows represent the 

direction in which a reaction occurs; broken lines with bars represent the control 

that the catalytic subunit of PKA has over particular components.
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form (Tamanoi et al., 1984). In the presence of glucose, the glucose receptor 

(as yet unknown) directly activates Ras independently of Cdc25 and Iral (Ramos 

et al., 1989b).

It is thought that Cdc25 could be a transmembrane protein sensing 

nutrients (Munder and Kiintzel, 1989) or it may rely on other glucose sensors 

for example hexose transporters. A functional CDC25 is also required for the 

pheromone response (Perlman et al., 1989). cdc35, cyrl, bcyl, rasl ras2 

bey 1-1, ras2 bey 1-1 and RA.S2,&n9 mutants all respond to pheromone, but cdc25 

mutants do not and transient intracellular alkalinization, which is the first 

biochemical event that is detectable after the addition of pheromone (Perlman et 

al., 1989), does not occur in these cells. CDC25 disruption strains can be made 

fertile by the overexpression of the gene encoding the catalytic subunit of PKA, 

TPK1, on a multicopy plasmid.

There have been reports that cdc25 mutations can result in a decrease in 

the concentration of i-cAMP (<cdc25-5; Camonis et a l., 1986; Broek et al. ,

1987) or no change (cdc25-l\ Martegani et al., 1986). Petitjean et al. (1990) 

characterized the cdc25-l and cdc25-5 missense mutations and concluded that 

both of the mutations occur within the C-terminus. Apart from the possibility 

that changes in i-cAMP concentration are due to differences in the genetic 

backgrounds (Van Aelst et a l., 1991), the observation that cdc25-5 is a 

temperature sensitive mutation, in which adenylyl cyclase is inactivated at the 

restrictive temperature only, and cdc25-l which has a constantly inactivated 

adenylyl cyclase, may be relevant. Both of these mutations can be suppressed 

by e-cAMP (Boutelet et al., 1985; Martegani et a l., 1986).

IRA1 was first isolated by Tanaka et al. (1989) and encodes a 350 kDa 

polypeptide; another gene IRA2 has since been isolated (Tanaka et a l., 1990b). 

Both Iral and Ira2 additively regulate the GTPase activity of Ras, although 

according to Tanaka et al. (1991), it is mainly Iral that is responsible for 

stimulating the GTPase activity of Ras2, and Ira2 for Rasl (Tanaka et al. ,
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1989). Both Iral and Ira2 have similarities to the human GAP (GTPase 

activating protein). 1RA1 was originally isolated as PPD1, which was 

supposedly deficient in phosphoprotein phosphatase (Matsumoto et al., 1985b). 

A functional IRA1 is required for regulating the concentration of cAMP via Ras 

and adenylyl cyclase in response to nutrient limitation. Usually, Rasl and Ras2 

are found in the GDP-bound form, however, in irar mutants they occur in the 

GTP-bound form (Tanaka et al., 1990a), i.e. the form that enables stimulation 

of adenylyl cyclase (Broek et al., 1985; Toda et al.y 1985), iral mutants also 

have an elevated i-cAMP concentration as there is no downregulation of Ras 

GTPase activity. Disruption of 1RA1 results in sensitivity to nitrogen starvation 

and heat shock, it can also lead to suppression of cdc25 mutations, but not rasl 

ras2 or cyrl.

There are two classes of G protein: the hormone-linked trimeric G 

proteins, which transduce signals from the cell surface to effectors on or near 

the plasma membrane, and the single subunit G proteins that are localized in the 

plasma membrane and are involved in cell division signalling. Ras proteins 

belong to the single subunit class and in S. cerevisiae are encoded by RAS1 and 

RAS2 (for review see Tamanoi, 1988). RAS1 and RAS2 show a high degree of 

sequence homology with human ras (Defeo-Jones et a l., 1983; Powers et al. ,

1984), which if mutated, can induce cancer. Unlike S. cerevisiae, however,

S. pombe, D. discoideum, Drosophila melanogaster and human ras do not 

regulate adenylyl cyclase (Gibbs and Marshall, 1989), although cells of 

S. cerevisiae that are deficient in both RAS genes can be revived by a human ras 

gene substitution.

Both Rasl and Ras2 possess a highly distinctive Cys-Ala-Ala-X tail. This 

consensus pattern of amino acids is found in proteins involved in signal 

transduction. Without this sequence, Ras proteins would not stably associate 

with membranes (Deschenes and Broach, 1987). Ras proteins are synthesized in 

the cytosol and are processed before attachment to the plasma membrane
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(Fujiyama and Tamanoi, 1986). Mutations in the genes encoding proteins that 

are responsible for correct processing of Ras, for example RAM I, RAM2 and 

DPR1 (Fujiyama et al., 1987), result in temperature sensitivity for growth and 

defective mating. Neither RAS1 nor RAS2 are essential, but one functional RAS 

gene is needed for growth and viability of S. cerevisiae (Kataoka et a l., 1984; 

Tatchell et a l., 1984) and this can be demonstrated by incubation of rasl- ras2P 

cells at the non-permissive temperature, which will fail to form buds 

(DeVendittis et al., 1986). If diploid, ras2 mutants will sporulate on rich 

media, but are still able to accumulate storage carbohydrates (Toda et al. ,

1985). Cells with an activated Ras2, where the amino acid at position 19 is 

substituted for a valine (RAS2*a119), fail to accumulate storage carbohydrates, are 

sensitive to heat shock and nutrient starvation, and diploids are defective in 

sporulation (Tatchell et a l., 1984). Therefore cells with oncogenic Ras fail to 

respond to deprivation and cells with disrupted RAS genes arrest in rich media, 

but are able to enter G0. This phenomenon is thought to be related to the 

concentration of i-cAMP as cells with disrupted RAS genes have a lowered 

concentration of i-cAMP and cells with activated RAS2 have an elevated 

concentration of i-cAMP.

Although both Rasl and Ras2 can activate adenylyl cyclase, it is thought 

that the major role of Ras2 is to perform this function (Toda et a l., 1985), 

whereas the major role of Rasl is to negatively control glucose-induced inositol 

phospholipid turnover (Kaibuchi et a l., 1986). This work has since been 

repeated and the original results have been disputed (S. Henry, R. Irvine and 

P. Hankins, personal communication). However, functional differences 

between Rasl and Ras2 have been found. When cells are grown on glucose, 

RAS2 mRNA is produced in larger amounts than RAS1 mRNA; on non- 

fermentable carbon sources, RAS1 mRNA is preferentially expressed (Breviario 

eta l.j 1986).
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In fact, critical size attainment may be affected by the CDC25 and RAS2 

gene products implying that the cAMP pathway can regulate size control (Baroni 

et a l , 1989). At the permissive temperature, cdc25-l mutants have a smaller 

critical size for traverse of Start and RAS2v&n9 mutants have an increased critical 

size. This increase in critical cell size was apparent in all types of growth 

medium, however, the change in critical cell size for cdc25-l was only apparent 

in rich medium.

Adenylyl cyclase was first isolated by Londesborough and Nurminen 

(1972). It is dependent on either Mg2+ or Mn2+ ions (Londesborough and 

Nurminen, 1972; Casperson et a l ,  1983). It was assumed that adenylyl cyclase 

was tightly anchored to the plasma membrane (Heidemann et a l , 1987). 

Recently, however, adenylyl cyclase activity was found not only in membrane 

preparations, but also in cytosolic fractions. It was then proposed that adenylyl 

cyclase is only peripherally attached to the plasma membrane (Mitts et a l ,

1990). The ability of adenylyl cyclase to bind to the membrane may be 

significant to its regulation as its binding to the membrane was inhibited by the 

addition of cAMP and in mutants with a constitutively active PKA (Mitts et a l ,

1990). The component that binds adenylyl cyclase to the membrane is still 

unknown, although Iral has been implicated (Mitts et a l , 1991). Other work 

supporting this idea has shown that in wild type cells, adenylyl cyclase is found 

in the membrane fraction, whereas in rasl ras2 bcyl mutants, adenylyl cyclase 

is found in the soluble fraction (Engelberg et a l , 1990). Overexpression of 

CDC25 relocalizes adenylyl cyclase to the membrane, thus revealing a possible 

link between CDC25 and adenylyl cyclase in the absence of RAS.

The structural gene for adenylyl cyclase, CYR1 (Matsumoto et a l , 1982a, 

1984) or CDC35 (Boutelet et a l ,  1985), has been cloned (Masson et a l ,  1984; 

Casperson et a l , 1985) and sequenced (Kataoka et a l , 1985; Masson et a l ,

1986). c d c 3 5 mutants have a similar phenotype to cdc25xs mutants (Camonis et 

a l , 1986). The catalytic domain of adenylyl cyclase is located at the
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N-terminus (Kataoka et a l., 1985) and a small region adjacent to this is involved 

in interacting with Ras proteins (Uno et a l., 1987). This region has been found 

to contain leucine-rich repeat sequences (Kataoka et a l., 1985; Field et al. , 

1990b) and loss of these repeats results in a loss of binding to Ras and therefore 

lack of activity (Colicelli et al., 1990). A Ras-responsive adenylyl cyclase has 

been isolated as a 200 kDa complex, although other researchers have isolated 

220 kDa (Kataoka et a l., 1985), 450 kDa (Varimo and Londesborough, 1976) 

and 594 kDa (Heidemann et a l., 1987) complexes. The larger sizes are 

probably due to the association of adenylyl cyclase with other proteins such as 

Ira and Cap.

Cap was first isolated by Field et al. (1988) as a 70 kDa polypeptide and 

without it adenylyl cyclase is not stimulated by Ras (Field et a l., 1990a). Cells 

that do not have a functional Cap protein are viable and resistant to heat shock, 

but are sensitive to nitrogen starvation, unable to grow on rich medium and have 

a swollen cell morphology. The N-terminal domain of Cap is required for 

response to Ras and the C-terminal domain is required for cell morphology and 

responses to nutrient extremes (Gerst et a l., 1991). Cap may interact with other 

proteins involved in nitrogen starvation. CAP is allelic to SRV2 (Fedor-Chaiken 

et a l., 1990). srv2-2 null mutations are lethal on their own, but can alleviate the 

lack of response to stress in RAS2?*n9 cells. The product of SRV2 may be 

responsible for the integrity of membranes as an unusually high amount of 

debris is observed in the growth medium of srv2-2 mutants. Srv2 may affect 

adenylyl cyclase either by acting as an intermediate or as a stabilizer.

Cyclic AMP exerts its effects through a cAMP-dependent protein kinase 

(PKA). Specific cellular proteins have their activities controlled by 

phosphorylation via PKA and dephosphorylation events via a phosphoprotein 

phosphatase. The target enzymes of PKA are involved in numerous pathways: 

carbohydrate and phospholipid metabolism, including trehalase (Uno et al., 

1983), phosphofructokinase and fructose 1,6-bisphosphatase (Purwin et al.,
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1982) (the first two enzymes are activated by PKA and the last enzyme is 

inactivated by PKA); the regulation of transcription factors (free catalytic 

subunits have been located in the nucleus) (Buechlet et a l., 1991); the control of 

strategic points in both glycolytic and gluconeogenic pathways; and regulation 

of proteins involved in the production of cAMP, for example Cyrl (Kataoka et 

al., 1985), Cdc25 (Camonis et al., 1986), Ras2 (Resnick and Racker, 1988) and 

Iral (Tanaka et a l., 1989). In S. cerevisiae, PKA comprises two catalytic and 

two regulatory subunits. In the absence of cAMP, the regulatory and the 

catalytic subunits are bound via interaction between a negatively charged residue 

on the catalytic subunit and a positively charged residue on the regulatory 

subunit. On binding to each of the regulatory subunits, cAMP causes the 

release of the catalytic subunit by stabilizing an altered conformation in which 

the positively charged residue is displaced (Levin and Zoller, 1990). The family 

of catalytic subunits of PKA encoded by SRAl, TPK1, TPK2 and TPK3, have 

been cloned and sequenced (Cannon and Tatchell, 1987; Toda et al., 1987b).

At first it was thought that CYR2 encoded the catalytic subunit of PKA 

(Matsumoto et a l., 1985a), however, CYR2 has now been identified to be 

CDC25 (I. Uno, personal communication). Expression of any of the TPK genes 

on multicopy plasmids results in the suppression of rasl ras2 and cyrl 

mutations. Haploid spores lacking all three Tpk proteins are able to germinate, 

but grow rather slowly. The non-lethal nature of tpk mutations may be due to 

the presence of other protein kinases, for example Sch9 (Toda et a l., 1988) and 

Yakl (Garrett and Broach, 1989). Neither Sch9 nor Yak 1 is essential, but Sch9 

can suppress tpkl tpk2 tpk3, rasl ras2 and cyrl mutations, and if YAK1 is 

expressed on a multicopy plasmid, it can also suppress all of these mutations 

(Toda et al., 1988; Garrett and Broach, 1989).

Matsumoto et al. (1982a) were first to isolate mutants defective in the 

regulatory subunit of PKA, which is encoded by BCY1 or SRAl (Cannon and 

Tatchell, 1987; Toda et al., 1987a). BCY1 was cloned and sequenced by Toda
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et al. (1987a). Due to the lack of a regulatory subunit, bcyl strains have an 

unregulated PKA and thus do not respond to nutrient limitation by arresting in 

Gj, fail to accumulate storage carbohydrates and do not survive heat shock 

(Matsumoto et a l., 1985a). bcyl mutants also do not require functional Ras 

proteins for growth and proliferation. Cells without the regulatory subunit, but 

possessing an attenuated catalytic subunit (tplc") are responsive to nutrient 

limitation and can sporulate, are resistant to heat shock and accumulate glycogen 

(even when other components of the cAMP pathway are absent).

Dephosphorylation of proteins is carried out by phosphoprotein 

phosphatase. PPD1 was first isolated by Matsumoto et al. (1985b) and was 

thought to encode such an enzyme, but it has since been found to be allelic to 

IRAL  The serine/threonine phosphatase superfamily includes types 1, 2A and 

2B; types 1 and 2A have been implicated in cell cycle control (Cyert and 

Thomer, 1989). S. cerevisiae possesses type 2A phosphoprotein phosphatases 

and these are encoded by PPH1 (S1T4) (Arndt et a l., 1989), PPH3, which is 

related to the mammalian PP2A enzyme, PPH21 and PPH22, which are 

homologues of the mammalian PP2A enzyme (Sneddon et a l., 1990; Ronne et 

al., 1991), and DIS2S1, which was isolated as a homologue of the S. pombe 

dis2+ gene (Ohkura et a l., 1989). Pphl/Sit4 performs an important function in 

the Gj phase of the cell cycle. A sit4 mutation results in cells that are unable to 

grow on non-fermentable carbon sources (Arndt et al., 1989) similar to bcyl 

mutants. It therefore appears that as a consequence of increased 

phosphorylation, a cell loses the ability of growth on non-fermentable carbon 

sources. A pph3 mutation does not affect growth and is therefore thought not to 

be essential, however, disruption of spores containing both pph21 pph22 

mutations is lethal (Sneddon et a l., 1990). Other researchers have found that 

disruption of spores containing both pph21 pph22 mutations results in a few 

viable, but very small colonies (Ronne et al., 1991), and disruption of spores 

lacking all three of these genes results in no growth. Therefore there is an
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essential role for phosphoprotein phosphatase activity in S. cerevisiae. As yet, 

no pph21 pph22 double mutants have been isolated which would allow the study 

of the cell cycle and the role of phosphoprotein phosphatases, but it has been 

found that pph mutants have a lengthened Gi (Sneddon et a l., 1990).

Phosphodiesterase, which is responsible for the breakdown of cAMP, has 

two isoenzymes, with low and high Km values. These are thought to be 

responsible for the total phosphodiesterase activity in S. cerevisiae. The low Km 

enzyme is active in actively growing cells especially with high glucose 

concentrations and the high Km enzyme is active in stationary phase cells. The 

low Km enzyme was first isolated by Londesborough (1975) and the gene 

encoding this enzyme, PDE2 (or SRA5; Wilson and Tatchell, 1988), was cloned 

and sequenced by Sass et al. (1986). It has a Km of 0.15 pM  between pH 6-9. 

The low Km enzyme is loosely bound to microsomal particles, whereas the high 

Km enzyme is cytosolic in location. The high Km enzyme was first isolated by 

Londesborough (1974) and the gene encoding this enzyme, PDE1, was cloned 

and sequenced by Nikawa et al. (1987b). The high Km enzyme has a Km of 

0.1 mM at pH 7.5 and is strongly pH-dependent.

The phenotypic effects of the RAS2v*n9 mutation can be suppressed by 

both PDE1 and PDE2 when expressed on a high copy number plasmid. Neither 

PDE1 nor PDE2 appear to be essential and unexpectedly, the concentration of i- 

cAMP in pdel pde2 cells is only two to three times higher than normal (Nikawa 

et al., 1987b), however, disruption of both phosphodiesterases suppresses the 

lethality of rasl ras2 mutations. The phenotype of pdel pde2 mutants 

resembles that of RAS2v*n9: cells do not endure starvation, are sensitive to heat 

shock and do not accumulate storage carbohydrates.

1.4.2. Control of cAMP concentration in S. cerevisiae.

The intracellular concentration of cAMP in S. cerevisiae is under tight feedback 

control. This control is capable of affecting the generation of cAMP, the rate of
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loss or both, can operate over a 10,000-fold range of i-cAMP concentration and 

requires an active PKA. Cdc25 and Ras are also required as they are the targets 

of PKA. CDC25, CYR1 and 1RA1 have multiple consensus sites for PKA 

phosphorylation in their N-terminal domains (Nikawa et a l., 1987a; Tanaka et 

a l., 1989) and they are also necessary for feedback to occur. No such sites have 

been found on PDE1 or PDE2 (Sass et al., 1986; Nikawa et al., 1987a). Ras 

proteins are also reported to be involved in this feedback control: RAS2V*U9 

mutants are able to override the control that PKA has, as the concentration of 

i-cAMP is modestly elevated in these cells. The concentration of i-cAMP in 

tpk" rasl ras2 mutants is reportedly below the limit of detection (Nikawa et a l., 

1987a), demonstrating the stringent control that Ras has over adenylyl cyclase.

A low concentration of i-cAMP is observed in cells with an unregulated PKA, 

for example bcyl mutants, and a high concentration of i-cAMP is observed in 

cells with an attenuated PKA, for example tpk" mutants. Attenuation of TPK 

genes increases cAMP concentrations more than disruption of both 

phosphodiesterase genes (Nikawa et a l., 1987b).

It has been discovered also that Rasl and Ras2 are phosphorylated. In 

fact, Resnick and Racker (1988) found that bacterially-produced Ras2 is 

phosphorylated by purified PKA and is 40-60% less effective than 

unphosphorylated Ras in stimulating adenylyl cyclase. Ras purified from yeast 

is also phosphorylated by PKA (Cobitz et a l., 1989) and the phosphorylated 

forms of Rasl and Ras2 are predominantly found in the membrane, where they 

are able to activate adenylyl cyclase when unphosphorylated. Sreenath et al. 

(1988) reported that Ras2 was phosphorylated by PKA and another protein 

kinase that was independent of the concentration of cAMP or active with a very 

low concentration i-cAMP. It is possible that Sch9 or Yakl is this protein 

kinase.
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1.5. The role of cAMP in S. cerevisiae.

1.5.1. Cyclic AMP and sensory mechanisms involved in nutrient detection.

On addition of glucose to derepressed (respiring) cells, germinating ascospores 

or stationary cells of S. cerevisiae, there is a transient increase in the 

concentration of i-cAMP (Van der Plaat and Van Solingen, 1974). This signal 

indicates that glucose, the preferred sugar for metabolism, is present and the 

increase in i-cAMP results in a phosphorylation cascade. Reports by Thevelein 

et al. (1987a, b) showed that the increase in i-cAMP concentration is partly 

caused by intracellular acidification and the optimum pH of adenylyl cyclase is 

pH 6. They also concluded that intracellular acidification occurred downstream 

of glucose phosphorylation and either at or upstream of Cdc25 (Van Aelst et al. ,

1991). This decrease in pH was thought to be due to the first three steps in the 

glycolysis pathway in which H + ions are generated (Ramos et al. , 1989a). The 

phosphorylation of sugars in these reactions depletes ATP availability, but the 

H + ions produced stimulate the plasma membrane H+-ATPase and restore the 

pH and ATP levels. Cyclic AMP is reported to be involved in the regulation of 

the H +-ATPase and acts as a positive effector: the addition of exogenous cAMP 

to arrested cdc35 or cdc25 cells restores the H +-ATPase activity (Ulaszewski et 

al. , 1989). It has been confirmed that Cdc25 is also involved in mediating the 

activity of the H+-ATPase but not Cyrl, Rasl or Ras2 (Mazdn et al. , 1989).

Mbonyi et al. (1988) proposed that the presence of either Rasl or Ras2 is 

required for the transmission of the glucose-induced cAMP signal. Cells with 

an oncogenic RASP*119 did not show a glucose-induced cAMP signal and were 

found to inhibit transmission of the signal. Possible reasons for this could stem 

from the fact that the RAS2?&m protein does not respond to PKA.

The transient nature of the glucose-induced cAMP signal can be explained 

in terms of a temporary override of feedback inhibition on lowering of pH.

This would explain the transient signal observed in bcyl mutants. Further 

evidence for the involvement of PKA-mediated feedback inhibition in the
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transient nature of the cAMP signal came from Mbonyi et al. (1990). They 

showed that cells having a reduced PKA activity, carrying the tpklwl, tpk?"1 or 

tpk3™x mutations, are defective in glucose repression and show 

hyperaccumulation of cAMP. Strains that only have one TPK gene still show 

the transient glucose-induced cAMP signal. Tpk2 caused greatest feedback 

inhibition and Tpk3 caused the least.

It was Munder and Kiintzel (1989) that first showed CDC25 to be involved 

in the glucose-induced cAMP signal. However, it was Van Aelst et al. (1990) 

who correctly concluded that the C-terminal was responsible for mediation of 

the glucose-induced cAMP signal and the glucose-induced cAMP signal is 

unnecessary for growth on glucose. The N-terminus of Cdc25 has been shown 

to possess multiple sites for PKA phosphorylation, which could be used in 

feedback control of the cAMP signal (Camonis et al., 1986).

Thevelein et al. (1987b), however, have subsequently found that since 

glucose did not cause a transient increase in the concentration of i-cAMP when 

cells were growing on glucose, and the cAMP signal was still present when the 

pH drop was abolished, another factor must be involved in the glucose-induced 

cAMP signal, i.e. a glucose-repressible protein. Van Aelst et al. (1991a) 

showed that in glucose grown cells where CDC25 is overexpressed, there is a 

cAMP signal. Using the catl mutation that prevents derepression, they 

concluded that Cdc25 was not the glucose repressible protein, but acts as a 

positive stimulator of derepression. Although the regulatory components of the 

glucose-induced cAMP pathway have been identified and assigned roles, the 

identity of the glucose repressible protein is still unanswered.

1.5.2. Catabolite repression and carbohydrate metabolism.

Growth of S. cerevisiae on glucose results in repression of transcription of a 

large number of genes necessary for alternative carbohydrate metabolism and 

respiration. As S. cerevisiae can utilize similar sugars to those of E. coli, it was
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thought that the same catabolite repression system may be present in yeast.

Early work by Singh et al. (1980) showed that exogenously added cAMP, which 

was thought to be taken up by the cells, could not relieve catabolite repression 

of the V-acetylglucosamine pathway. They concluded that catabolite repression 

does occur in S. cerevisiae, but is not under cAMP control. However, 

Matsumoto et al. (1982b) showed that cells of S. cerevisiae were not permeable 

to cAMP and required mutation before any uptake of cAMP could occur, thus 

placing the results of Singh et al. (1980) in doubt. By using the caml, cam2 

and cam3 mutations, which conferred permeability to cAMP, they also showed 

that cyclic AMP did not relieve catabolite repression of galactokinase. Eraso 

and Gancedo (1984) also demonstrated that catabolite repression in S. cerevisiae 

was not mediated by cAMP. They measured higher i-cAMP concentrations in 

cells that were grown on glucose medium compared with cells grown on ethanol 

medium. The demonstration that the addition of glucose causes an increase in 

the i-cAMP concentration (Van der Plaat and Van Solingen, 1974; Mazon et 

al., 1982; Purwin et al., 1982) also supports the theory that catabolite 

repression in S. cerevisiae is not connected with low concentrations of i-cAMP 

as in E. coli. However, there is controversy concerning whether i-cAMP are 

higher on glucose and other fermentable carbon sources than on non-fermentable 

carbon sources (Eraso and Gancedo, 1984; Olempska-Beer and Freese, 1987; 

Mbonyi et a l., 1990). Also there have been reports demonstrating that 

exogenous cAMP can derepress the synthesis of various mitochondrial enzymes 

and release cells from catabolite repression (Mahler and Lin, 1978) and low 

i-cAMP concentrations are associated with catabolite repression in other yeasts 

(Van Wijk and Konijn, 1971). So far, it appears that cAMP is either not 

involved in catabolite repression or it mediates an opposite effect to that seen in 

E. coli.

It has been well documented that cAMP is a key organizer in carbohydrate 

metabolism (Francois et a l., 1987). PKA phosphorylates various enzymes that
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are involved in carbohydrate metabolism: trehalase and 6-phosphofructose-2- 

kinase are activated by phosphorylation by PKA; fructose- 1,6-bisphosphatase 

and trehalase-6-phosphate synthase are inactivated by PKA. By using mutants 

of the cAMP pathway, it has been shown also that glycogen metabolism is 

regulated by the cAMP pathway and this occurs at the transcriptional level: a 

RASP*119 mutant, which has increased levels of cAMP, has reduced 

accumulation of GAC1 mRNA {GAC1 encodes glycogen synthase) (Francois et 

a l., 1992). However, it is probable that it is not increased i-cAMP 

concentrations but a regulated PKA which is a prerequisite for regulation of 

glycogen metabolism.

Nitrogen sources are also able to cause drastic activation or inactivation of 

enzymes that are regulated by PKA, however, nitrogen sources have no effect 

on cAMP concentrations in vegetative S. cerevisiae cells (see Thevelein, 1991).

1.5.3. cAMP and conjugation, meiosis and G0 cell cycle arrest.

Another signal transduction system in yeast is mediated by mating pheromones. 

However, there are two conflicting ideas about the role of cAMP in 

conjugation. Liao and Thomer (1980, 1981) found that a. factor inhibited 

adenylyl cyclase and exogenously added cAMP to pheromone-arrested cells 

shortened this arrest. However, this theory has since been disputed many times 

(Matsumoto et al., 1982a; Casperson et al., 1983; Sy and Tamai, 1986). In 

fact, Matsumoto et al. (1985a) reported that cAMP acts as a positive effector in 

conjugation as a cyrl mutant failed to conjugate, but a bcyl mutant did not.

Data that support a role for cAMP in conjugation include the responses of 

various mutants of the pathway to pheromone. Addition of pheromone to rasl 

ras2 bcyl, cdc35^, bcyl and cdc25xs mutants results in reduced shmoo 

formation. cdc2518 mutants were most severely affected.

Factors that are associated with the cAMP pathway and are thought to be 

important in the decision to sporulate are: a functional PKA that can regulate
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entry into meiosis; cAMP, which is known to be essential for particular 

sporulation events, for example completion of the spore wall (Matsumoto et al. , 

1985b); the N-terminal domain of adenylyl cyclase, which is negatively 

controlled by interaction with a factor in response to a signal for sporulation 

(Uno et al., 1990); and the initiation of IME1 transcription, which is usually 

inhibited by the presence of Ras2 (Smith and Mitchell, 1989). However, there 

is also conflicting evidence about a role for cAMP in this developmental 

pathway. According to Matsumoto et al. (1983a, 1985a), sporulation is 

dependent on inhibition of cAMP production and inactivation of PKA, as bcyl 

mutants do not sporulate in sporulation medium and a cyrl diploid sporulates in 

nutrient rich medium.

Olempska-Beer and Freese (1987) found that cAMP mutants that are 

derepressed for sporulation in nitrogen rich, gluconeogenic medium sporulate 

because they can utilize the carbon source at a rate that permits sporulation but 

not proliferation. They found that during sporulation, cAMP concentrations 

decreased by not more than 20% and not at all in the presence of 3-butyl-1- 

methylxanthine (IBMX; an inhibitor of phosphodiesterase; the sporulation 

efficiency was 76 or 100% in the presence or absence of IBMX, respectively). 

Cells also appeared to sporulate more efficiently if the concentration of i-cAMP 

levels was increased. Salmon et al. (1989) agreed with Olempska-Beer and 

Freese (1987) in that a cAMP decrease is not a requirement for sporulation to 

occur. Sporulation requires the appropriate nutritional conditions and Ras2 

plays a part in controlling meiosis through its regulation of adenylyl cyclase 

(Kao et a l., 1990).

A multicopy plasmid carrying 1ME1 relieves the sporulation defects of 

bcyl and RAS2?*n9 cells (Matsuura et a l., 1990). 1ME1 is a positive regulator of 

meiosis (Kassir et al., 1988) and its transcriptional regulation occurs via an 

intermediary protein that is probably phosphorylated by PKA (Matsuura et al. ,

1990). This can be demonstrated by the findings that the level of 1ME1
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transcription is affected by cdc25, cyrl and bcyl mutations, and addition of 

cAMP to cyrl-2 diploids suppresses 1ME1 transcription and prevents sporulation 

(Matsuura et al., 1990).

If cells are starved of cAMP they will arrest at Start; therefore cAMP is 

required for traverse of Start and to initiate a new cell cycle. When cells cease 

to divide due to decreased nutrient supply, they also arrest at Start, which is 

analogous to the G0 state in mammalian cells. Cells at this stage are still 

metabolically active, but become thermotolerant, acquire the ability to withstand 

nutrient deprivation and synthesize a set of G0 proteins, including a subset of 

heat shock proteins (Boorstein and Craig, 1990). The transition to this status is 

thought to be regulated by cAMP via PKA activity as RAS2w&n9 (Matsumoto et 

a l., 1985a) and bcyl (Matsumoto et a l., 1983) mutants are unable to arrest in 

G0, and they do not synthesize these particular proteins. Other evidence linking 

cAMP to the G0 and heat shock is that synthesis of heat shock proteins is 

suppressed by the addition of cAMP (Shin et al., 1987).

Other genes that participate in the heat shock response and are affected by 

cAMP and PKA include SSA3 and UBI4. SSA3 encodes a member of the 

HSP70 gene family of heat shock proteins, which is activated when the 

concentration of i-cAMP is lowered (Boorstein and Craig, 1990). The yeast 

polyubiquitin gene, UB14, is essential for resistance to high temperatures, 

starvation and other stresses; UB14 is also activated by decreases in the 

concentration of i-cAMP (Tanaka et a l., 1988).

Cyclic AMP is obviously not the sole regulator of all these pathways. 

Cameron et al. (1988) have suggested that there might be a cAMP-independent 

pathway for controlling responses to nutrient deprivation. By demonstrating that 

a cyrl~ bcyl~ tpk" mutant is viable and responsive to nutrient conditions, they 

concluded that modulation of cAMP concentration was not an absolute 

requirement for regulation of glycogen accumulation, sporulation and 

thermotolerance.
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1.6. Extracellular cAMP and S . cerevisiae.

Watson and Berry (1977a) were the first to measure extracellular cAMP from 

medium in which S. cerevisiae cells had been growing after release from 

sporulation. However, it was Olempska-Beer and Freese (1987) and Eraso and 

Gancedo (1984) that measured cAMP in the growth medium of vegetatively 

growing cells. They concluded that S. cerevisiae requires an optimal 

concentration of cAMP for growth and excretes the rest that may otherwise have 

a detrimental effect on the cell. A report from Jakubowski and Goldman (1988) 

stating that diploid yeasts cooperate during sporulation and meiotic development 

using purine and pyrimidine nucleotides and nucleosides as mediators, may 

demonstrate a role for cAMP outside the cell during exponential growth.

1.7. Other signal transduction systems in S. cerevisiae involving the cyclic 

AMP pathway.

It is thought that inositol-1,4,5-triphosphate (IP3) is rapidly turned over in 

proliferating yeast cells (Steiner and Lester, 1972) and cells that are in G0 and 

are deprived of a carbon source, induce this turnover in response to glucose 

addition (Kaibuchi et a l., 1986). It has been reported that when cells are 

rescued from G0 by the addition of glucose, it results in the incorporation of P4 

into phosphatidic acid, phosphatidylinositol (PI), phosphatidylinositol 4- 

phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2) (Kaibuchi et 

a l , 1986). Glucose-induced P; incorporation was reported to be greater in rasl, 

rasl ras2 bcyl or RAS2val19 mutants. However, this work has since been 

repeated and the original results have been disputed (S. Henry, R. Irvine and P. 

Hankins, personal communications). However, it has been found that PKA- 

mediated protein phosphorylation enhanced PI kinase and PIP kinase (Kato et 

a l., 1989) and incorporation of Pj into PIP, PIP2 and PI has also been recorded. 

The incorporation was reduced in ras2 mutants and increased in bcyl mutants.
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Incorporation was the same in wild type, rasl, ras2 and bcyl mutants. The 

activities of PI and PIP kinases was severely reduced in cyrl-2 and ras2 mutants 

but was high in rasl ras2 bcyl mutants. Other experiments have shown that an 

antibody to PIP2 inserted into yeast inhibited growth and PIP2 turnover to IP3, 

and diacylglycerol (DAG) was found to be essential for mitosis (Uno et al. ,

1988). Cyclic AMP added to a cyrl mutant resulted in an increase in the rate of 

PI synthesis.

Further evidence to suggest that cAMP has a connection with the 

phosphoinositide signal transduction pathway is that multicopy plasmids 

expressing the PFY gene, which encodes profilin and binds phosphoinositides, 

can suppress morphological and nutritional defects of cap cells (adenylyl cyclase 

is not bound to the membrane in these cells) (Vojtek et a l., 1991). This may be 

due to a restoration in the integrity of the plasma membrane or this may indicate 

that Cap (and cAMP) also has a role in the phosphoinositide signal transduction 

pathway.

Evidence to provide a link between the cAMP and Ca2+ pathways is not in 

great supply. It has been reported that the activation or inactivation of calcium 

influx depends on the addition or removal of glucose (Eilam and Othman,

1990), the concentration of which cAMP is an indicator. Also, as decreases in 

Ca2+ concentrations result in decreases in cAMP concentrations, there is thought 

to be some degree of cross-talk between the two pathways (Iida et a l., 1990).

Cyclic GMP has been found also in S. cerevisiae (Thevelein and Beullens, 

1985; Eckstein, 1988). The concentration of cGMP is reported to be 

approximately 10- to 50-fold lower than the concentration of cAMP (Thevelein 

and Beullens, 1985; Eckstein, 1988). Its concentration is reported to be affected 

by the concentration of glucose (Eckstein, 1988), but not by nitrogen sources.
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1.8. Cyclic AMP and cell cycle analysis.

Research concerning cAMP in S. cerevisiae has been largely directed towards 

genetic evidence, with the isolation of genes and their sequences being 

determined rather than activities and concentrations of key molecules being 

measured throughout the cell cycle. It is known that cAMP plays a role in the 

cell cycle, but the question of when exactly cAMP is required and what happens 

to cAMP throughout the cell cycle is still to be answered. Do the levels of 

i-cAMP directly regulate the onset of proliferation or is it a conditional control, 

with the actual control exerted elsewhere?

Cell cycle-dependent i-cAMP fluctuations have been observed in other 

organisms (Boynton and Whitfield, 1983), such as diatoms, actinomycetes and 

Tetrahymena pyriformis (Dickinson et al., 1976). However, these and a 

previous study of cAMP fluctuations in S. cerevisiae (Watson and Berry,

1977b), who found cell cycle-dependent fluctuations in the concentration of 

i-cAMP, used inadequate synchronization procedures.

Proteins have been found in S. cerevisiae whose concentrations fluctuate 

in relation to specific stages of the cell cycle. Many of the genes that are 

involved in DNA synthesis are expressed under cell cycle control (for a review 

see Johnston and Lowndes, 1992). As cAMP is involved in the regulation of 

the cell cycle, it may be that the i-cAMP concentration fluctuates similarly.

In order to study cell cycle stage-specific fluctuations in the concentration 

of i-cAMP, methods that select for a particular fraction of cells were used: 

synchronous cultures that are produced by selection methods are preferred to 

those created by induction methods as they do not interfere with the metabolic 

state of the cell and do not cause serious perturbations, cdc mutants that arrest 

at points of interest in the cell cycle were used in order to map the concentration 

of i-cAMP throughout the cell cycle and to reinforce observations obtained 

when using centrifugal elutriation (Figure 5; Creanor and Mitchison, 1979; Van 

Doom et al., 1988b), which is the preferred method for synchronization.
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Figure 5. Diagram of the centrifugal elutriation rotor. A, rotor; B, rotor cell;

C, peristaltic pump; D, bubble trap; E, culture flask; F, effluent flask. 

Reproduced from Creanor and Mitchison (1979). Briefly, 4 1 of an early 

exponentially growing culture of S. cerevisiae (E) is loaded into a Beckman 

JE10X elutriator rotor (A, B) in a Beckman JE-6M centrifuge, maintained at 

25°C. Cells should be loaded into the rotor cell as quickly as possible and when 

the rotor cell has filled, and a stable cell front has formed, the rotor speed and 

the flow rate should be lowered. The small unbudded cells that are expelled 

from the chamber are used as the synchronous culture (F). The growth medium 

in which the cells have been growing is continually recycled into the rotor. The 

remaining cells are removed, and after dilution with GM medium, should be 

used as an asynchronous control culture.
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Centrifugal elutriation is the preferred method for synchronization as cells are 

kept in their growth medium at their growth temperature and the 'selection' of 

the smallest unbudded cells, which comprise the synchronous culture, occurs by 

selection rather than induction. Related methods such as velocity sedimentation 

in zonal rotors, velocity separation in tubes and continuous flow centrifugation, 

can cause perturbations because cells are taken out of their growth medium, are 

bathed in sucrose or lactose and may not be kept at a constant growth 

temperature, and may not give sufficient yields. The disadvantages with 

centrifugal elutriation are that the equipment is expensive and yields may be 

lower than by using velocity sedimentation from a zonal rotor.

Cell cycle stage-specific fluctuations in the activities of some enzymes 

have been seen (Van Doom et al. , 1988a,b). However, these fluctuations were 

found to disappear when the concentration of protein in some of the samples, in 

particular those at both ends of the gradient, were taken into account. It was 

found that there were differences in the specific activities of the enzymes when 

the extracts were incubated in unusually low or high concentrations of protein 

(De Koning et al. , 1991). This should not be a problem for cAMP 

determinations as the concentration of i-cAMP is not dependent on the protein 

concentration of the cell harvest.

1.9. Aims of research.

Cyclic AMP is present in living tissues at extremely low concentrations, 

therefore a sensitive and reliable assay method has to be used. The most 

common and reliable method to achieve this is an immunoassay that employs a 

specific binding protein, which is competed for by bona fide  cAMP. The most 

widely used method of cAMP binding protein isolation is that of Brown et al. 

(1971, 1974); the binding protein is also commercially available as the BDH 

cAMP binding protein; the cAMP assay kit that can be obtained from 

Amersham International pic also uses a similar binding protein. The binding
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protein that is used in the assay protocol is isolated from bovine adrenal glands 

and is not affected by the addition of adenosine, adenosine monophosphate 

(AMP), adenosine diphosphate (ADP), adenosine triphosphate (ATP), guanosine 

monophosphate (GMP), 3 ',5 '-cyclic thymidine (cTMP) and 2',3'-cAM P at a 

concentration of 30 nmol/assay tube; cyclic inosine monophosphate (IMP), 

cGMP, cCMP and cyclic uridine monophosphate (cUMP) cross-react slightly, 

although the binding protein has 10-1000 times less affinity for cGMP. The 

probability that these nucleotides are present in S. cerevisiae at such 

concentrations is very small. Only cGMP has been detected (Thevelein and 

Beullens, 1985; Eckstein, 1988) and its concentration is reported to be 10- to 

50-fold lower than the i-cAMP concentration, thus not sufficient to interfere 

with the binding protein.

Once the assay method for cAMP had been developed for use in 

S. cerevisiae, experiments were performed that would enable examination, and 

perhaps clarification, of the role that cAMP has in the control of proliferation, 

growth and catabolite repression. For this, i-cAMP concentrations were 

obtained comparing time and various types of growth medium, including rich 

and minimal, and fermentative and non-fermentative carbon sources.

The possible existence of cell cycle stage-specific fluctuations in the

i-cAMP concentration was also examined by using centrifugal elutriation and 

cdc mutants. Observations from these experiments would show whether the 

concentration of i-cAMP fluctuates during particular stages of the cell cycle and 

if these fluctuations could control traverse of Start.

Although e-cAMP has been previously detected in the growth medium of 

S. cerevisiae (Eraso and Gancedo, 1984; Olempska-Beer and Freese, 1987), its 

role has not been extensively considered. Experiments were also undertaken in 

order to test the possibility that e-cAMP functions as a control mechanism for 

excess i-cAMP and whether its presence affects the rate of proliferation.
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CHAPTER 2. 

METHODS AND MATERIALS.

2.1. List of strains.

Saccharomyces cerevisiae.

D l: MATa/MATa adel/ADEl ade2/ADE2 ural/URAl his7/H!S7 

Iys2/LYS2 tyrl/TYRl gall/GAL] MET3/met3 LEU2/leu2 

A364A: MATa adel ade2 ural his7 lys2 tyrl gall 

GR57: MATa cdc5-l his6 ural leu2 

JL138: M/47a cdc28-Dl adel ade2 ural his7 lys2 tyrl gall 

DJ23-3C: MATa his3 leu2 ura3 trpl ade8pdel::LEU2pde2::URA3 

SP1: M/4 7a his3 leu2 ura3 trpl ade8 canl 

S7-7A: M/47a his3 leu2 ura3 trpl ade8 tpk2::HIS3 tpk3::TRPl 

S I8-ID: MATa his3 leu2 ura3 trpl ade8 tpklwl tpk2::H!S3 tpk3::TRPl 

GR2: MATa. his6 ural 

GR6X-7A: MATa ade2 ural

GRD-7A: MATa/MATa his6/H!S6 ural /ural ade2/ADE2

2.2. Maintenance of strains.

All chemicals were analytical grade and purchased from BDH unless otherwise 

stated.

2.2.1. Storage of strains.

Short-term storage of strains involved maintenance on agar plates made of 

suitable media for up to 1 month (see section 2.2.2). Strains could be kept on 

agar slopes of suitable media for up to 6 months. In both cases storage was at 

4°C. Strains were stored long-term on glycerol slopes (per litre: 0.63 g 

K2H P04, 0.18 g KH2P 0 4, 45 mg sodium citrate, 9 mg MgS04, 90 mg

37



(NH4)2S04, 20 ml glycerol and distilled water to 50 ml), made according to the 

following method. A fresh culture of the strain to be stored was grown 

overnight in suitable growth medium to a cell density of 1-2 x 106 cells/ml.

1 ml of culture was added to a small vial containing 1 ml of glycerol mixture. 

The vials were quickly frozen by immersion in liquid nitrogen. For use, vials 

were rapidly thawed at 37°C. Strains were checked frequently to test for strain- 

specific auxotrophic markers.

2.2.2. Media.

Yeast strains were grown on two basic types of medium: rich [YEP plus carbon 

source, per litre: 10 g yeast extract (Difco), 20 g Bacto-peptone (Difco), 20 g 

D-glucose or other carbon source, 0.1 g adenine (Sigma), 0.1 g uracil (Sigma), 

0.1 g supplements for auxotrophic markers, 20 g agar (Difco; for solid plates)] 

and minimal [M plus carbon source, per litre: 5 g (NH4)2S04, 1.67 g yeast 

nitrogen base (w/o amino acids; Difco), 20 g D-glucose or other carbon source, 

0.1 g supplements for auxotrophic markers, 20 g agar (for solid media plates)]. 

Cultures were grown in conical flasks containing suitable medium and the 

volume of the medium was 40% of the total volume of the flask. Cultures were 

shaken in a shaking water bath at a speed of 120 rev/min at 25°C unless 

otherwise stated.

2.3. Cell counting and sizing.

2.3.1. Determination of cell numbers using a particle counter.

In experiments performed at the University of Wales, College of Cardiff: 250 p\ 

of culture were taken and added to 5 ml of a 30% solution of Isoton II (Coulter 

Electronics Ltd) in filtered distilled water with 50 ml of formaldehyde added per 

litre. Solutions could be kept in this solution for at least 2 days without 

shrinkage of cells. Prior to cell counting a suitable amount of the cell solution 

was added to 20 ml of Isoton II. Cell numbers were obtained by the use of a
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Coulter Counter model ZM. An orifice with a diameter of 100 /xm was used.

In experiments performed at the University of Bath: cells were counted by 

essentially the same method, except that cells were counted with a Particle Data 

Electrozone and an LTSIII counter and analyser, and a 70 fim orifice was used.

2.3.2. Determination of cell numbers using a haemocytometer.

Samples were diluted in the same concentration of Isoton II and formaldehyde as 

in section 2.4.1., but cells were counted under a microscope using and 

haemocytometer chamber and a x40 objective. The total number of small 

squares counted per sample was 40. The total number of cells from the 40 

squares was multiplied by 1 x 10s to give the final concentration of cells per ml.

2.3.3. Fluorescent staining of cell nuclei.

A stock solution of 4,6-diamidino-2-phenylindole (DAPI; Sigma) was made up 

to a concentration of 1 mg/ml in distilled water and kept at -20°C. At all times 

it was protected from the light. 1 ml of cell culture to be stained was pipetted 

into a microfuge tube and spun briefly at 13,000 r.p.m. The supernatant was 

discarded and 100 /xl of 95% ethanol were added to the cell pellet. Cells were 

fixed in ethanol for 5 min, after which DAPI stock solution was added to a 

concentration of 1 fig/ml. Cells could be left in this solution for a few hours at 

room temperature in darkness. 200 cells were recorded and examined for DNA 

distributions (unbudded cells, budded cells with a single nucleus, cells with 

migrating nuclei and binucleate cells).

2.4. Quantification of cellular protein.

2.4.1. Sample preparation.

Samples prepared by the Braun homogenization were added directly to the 

assay, diluted appropriately. Proteins precipitated by treatment with 8%
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trichloroacetic acid (TCA) were resolubilized by boiling in 0.2 M NaOH for 

10 min according to Matsumoto et al. (1983b).

2.4.2. Assay for protein.

Protein was measured according to the method of Lowry et al. (1951) with 

bovine serum albumin (BSA; Sigma) at a concentration of 1 mg/ml as the 

standard. A standard curve was constructed using concentrations of BSA 

ranging from 10-200 /*g/ml. Reagent A contained 2% (w/v) Na2C 0 3 in 0.1 M 

NaOH; reagent B contained 1 % sodium potassium tartrate in 0.5 % CuS04; 

reagent C contained 1 ml of reagent B plus 49 ml of reagent A; reagent D 

contained Folin and Ciocalteu's phenol reagent diluted 1:1 with distilled water.

Briefly, 200 fi\ of sample or standard were mixed with 1 ml of reagent C. 

This was incubated for 10 min at room temperature and then 100 ytxl reagent D 

were added. Samples were incubated for a further 30 min at room temperature 

and then the absorbance at 750 nm was measured.

2.5. Construction of synchronous cultures by centrifugal elutriation and age 

fractionation.

This method has been previously described by Creanor and Mitchison (1979) 

and White et al. (1986). Briefly, 4 1 of an early exponentially growing culture 

(A60onm 0.3) of S. cerevisiae was loaded into a Beckman JE10X elutriator rotor 

in a Beckman JE-6M centrifuge, maintained at 25°C. Cells were loaded into 

the rotor cell as quickly as possible and when the rotor cell had filled, and a 

stable cell front had formed, the rotor speed and the flow rate were lowered.

The growth medium in which the cells had been growing was continually 

recycled into the rotor.

The small unbudded cells that were expelled from the chamber were used 

as the synchronous culture. The remaining cells were removed and after 

dilution with GM medium used as an asynchronous control culture. Both the
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synchronous and asynchronous cultures were transferred to conical flasks and 

reincubated at 25°C. Samples were taken at specific time intervals for cell 

numbers, i-cAMP and e-cAMP.

For age fractionation, the cells were loaded at a rotor speed of 4500 r.p.m 

and at a flow rate of 150 ml/min. These speeds were lowered to 2800 r.p.m. 

and 100 ml/min for removal of fractions. The flow rate was increased by 

approximately 3 ml increments until all cells had been washed out of the rotor 

cell. Samples for cell numbers, DAPI staining, i-cAMP and e-cAMP were 

taken immediately after elution.

2.6. Temperature shift-up experiments.

A 600 ml culture of S. cerevisiae was grown in suitable medium overnight at 

25°C to an approximate A600nm 0.1. This was then split into two parts, one was 

kept at 25 °C (the permissive temperature) and the other was transferred to the 

restrictive temperature of 36.5°C. Samples were taken immediately and at 

specific time intervals for cell numbers, budding index and i-cAMP 

measurements.

2.7. Cyclic AMP assay.

2.7.1. Introduction.

The method chosen was based on that of Brown et al. (1971, 1974). The assay 

is based on the competition between labelled and unlabelled (standard or sample) 

cAMP for binding sites on the regulatory subunit isolated from bovine adrenal 

glands. After a suitable period of incubation charcoal is added to remove all 

unbound material. In order to determine the amount of cAMP present in a 

particular sample, the resulting supernatant after the addition of charcoal is 

counted by liquid scintillation: the amount of cAMP present is inversely related 

to the c.p.m. To obtain an actual concentration of cAMP, the c.p.m. value of 

the blank control is subtracted from the sample value, then this value is divided
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by the total control value. This value is then inverted and read against the 

standard curve, which is constructed in a similar manner.

2.7.2. Preparation of assay constituents.

Preparation of the binding protein and buffers used in the assay were the same 

as Brown et al. (1971, 1974) with modifications.

Binding protein. This was extracted from fresh bovine adrenal glands from 

which traces of medulla and fat had been removed. The remaining cortices 

were homogenized with approximately 1.5 vol ice-cold homogenate buffer 

(0.25 M sucrose, 50 mM Tris-HCl pH 7.4, 25 mM potassium chloride and 

5 mM magnesium chloride). The homogenate was then spun at 2000 g for 5 

min, and the supernatant was spun at 5000 g for 15 min. The supernatant from 

this was stored as 1 ml aliquots at -20°C. Any subsequent dilution of the 

binding protein was by using assay buffer (50 mM Tris-HCl pH 7.4, 8 mM 

theophylline and 6 mM 2-mercaptoethanol).

The optimal concentration of binding protein for use in the assay was 

determined to ensure maximal sensitivity. (This was the concentration at which 

approximately 50% of the radioactive cAMP was bound.)

Charcoal suspension. The charcoal suspension was made up to 10% in assay 

buffer and then spun for 1 min at 10,000 g. The supernatant was discarded and 

the pellet was then made up to 10% in assay buffer containing 2% BSA 

(crystallized, lyophilized and globulin free; Sigma). Aliquots were stored at 

-20°C and were not reused after defrosting. During the assay the charcoal 

suspension was kept on ice.

[8-3H]cAMP. For each assay, 0.5 p\ of stock [8-3H]cAMP (Amersham) was 

added to 1 ml of assay buffer in lieu of a stock [8-3H]cAMP solution. From 

this solution, 50 pi were added to each assay tube.
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2.7.3. Assay protocol.

50 pi of either a known standard or an unknown sample were added to 150 gA of 

assay buffer and 50 yA of [8-3H]cAMP. Two control tubes (in duplicate) were 

set up: total control, which had assay buffer added instead of charcoal, and 

blank control, which had assay buffer added instead of binding protein. At time 

zero, 100 y\ of binding protein were added, the assay tubes were mixed and 

then incubated on ice. After 100 min, 100 /xl of charcoal suspension were 

added to eight tubes at a time. The tubes were mixed twice over a 2 min 

incubation period on ice. Then the tubes were centrifuged in a microfuge for 

1 min at 13,000 g. 150 y\ were then taken from the supernatant and mixed with 

3 ml of Optiphase Safe (LKB).

2.7.4. Sample preparation for cAMP assays.

For i-cAMP assays, per sample, 30 ml of cell culture were harvested by rapid 

filtration using 0.45 /xm pore size cellulose acetate filters (Sartorius) and washed 

with distilled water. It was found that potential contamination by e-cAMP was 

very slight and was only 4.926 ±  1.25 fmol (obtained from 10 samples). After 

collection, the cells were mixed with 500 y l of 8% TCA in a 1.5 ml microfuge 

tube and incubated on ice for 90 min. This mixture was freeze-thawed three 

times before spinning in a microfuge for 3 min at 13,000 r.p.m. The sediment 

was used in protein assays (see 2.4.1.). The supernatant was transferred to a 

10 ml Quickfit tube and washed five times with 2 vol of water-saturated 

diethylether. The washed supernatant was transferred to a 2 ml microfuge tube, 

freeze-dried and reconstituted in 200 y l of assay buffer.

For e-cAMP assays, the filtrate from a cell culture was used. This was 

collected before washing with distilled water.
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2.7.5. Evaluation of the assay for cAMP.

Enzymatic degradation of bona fide  and sample cAMP by phosphodiesterase 

would verify whether it was cAMP that was being assayed.

A suitable dilution of phosphodiesterase (3 ',5 '-cyclic nucleotide 5' 

nucleotidohydrolase; Sigma) that is capable of degrading approximately 80% of 

cAMP present, in buffer G (0.1 M glycyl glycine pH 7.5, 0.15 mM M gS04) 

was added to 1 ml of 100 pmol/ml. Bona fide  cAMP (Sigma) or sample extract 

were also in buffer G. Tubes were incubated along with control tubes 

containing no phosphodiesterase at 25°C for a few hours. Every hour a 100 /zl 

sample were taken from each tube and boiled for 3 min to destroy any 

remaining phosphodiesterase activity. Each sample was assayed for cAMP, 

using standards that were made in buffer G.

Control experiments using various dilutions of known amounts of cAMP 

were also performed to establish the validity of the cAMP assay.

2.8. Purification and assay of yeast phosphodiesterases.

2.8.1. Isolation of both yeast phosphodiesterases.

A 1 1 culture of S. cerevisiae was grown in appropriate medium and harvested 

by centrifugation for 1 min at 10,000 g. After discarding the supernatant 5 ml 

of breakage buffer [50 mM Tris-HCl, pH 7.4 (Sigma), 1.0 mM ethylene 

diamine tetraacetic acid (EDTA; Sigma), 1.0 mM 2-mercaptoethanol (Sigma), 

0.5 mM phenylmethylsulphonyl fluoride (PMSF; Sigma)] were added to the cell 

pellet. Cells were broken by Braun homogenization with 425-600 fim diameter 

glass beads (Sigma). Broken cells were spun for 10 min at 1000 g and the 

supernatant was spun for 30 min at 20,000 g. The supernatant was applied to a 

20 cm DEAE-cellulose (Merck) column equilibrated in breakage buffer.

Samples were eluted with buffer P and 0.5 M NaCl at a flow rate of 1 ml/min 

and with two linear gradients (50% of 0.5 M NaCl was reached after 124 min 

and 100% after 164 min). Each fraction had a volume of 4 ml.
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2.8.2. Assay for phosphodiesterase.

To 800 /d of sample, 10 /d of 0.02 M cAMP, 10 /d [8-3H]cAMP and 100 *d 

buffer P (46 mM MgCl2, 0.37 M Tris-HCl, pH 8.0, 34.5 mM

2-mercaptoethanol and 23 mg/ml BSA) were added. This mixture was 

incubated at 30°C for 30 min before boiling for 2.5 min to destroy 

phosphodiesterase activity. After the mixture had cooled, 100 jd (1 mg/ml) of 

King Cobra venom (Ophiophagus hannah; Sigma) in 0.1 M Tris-HCl pH 7.5 

were added. Tubes were re-incubated at 30°C for 10 min. To stop the 

reaction, 1 ml of 1:1 AG1-X8 (200-400 mesh; Sigma) anion exchange resin- 

water solution was added, mixed thoroughly and then the tubes were spun in a 

microfuge. 500 p\ supernatant were mixed with 3 ml of Optiphase Safe and 

counted in a liquid scintillation counter. As a background control, duplicate 

tubes were set up containing buffer P instead of sample. As a total count 

control, duplicate tubes were set up containing buffer P instead of sample and 

1 ml of distilled water was added instead of the resin-water mixture.

2.9. Identification of extracellular phosphodiesterase.

A culture of S. cerevisiae was grown to an A600nm 0.2 in GM medium. 1 ml 

samples of the culture were taken at various times and harvested by filtration 

through sterile Acrodisc filters (0.45 fxm pore size). Each sample was added to 

100 /d of 10 j-iM cAMP in lOx buffer G pH 8 and incubated at 30°C for 

120 min. A control was set up by using 1 ml of fresh sterile glucose medium 

and adding this to the cAMP in lOx buffer G. After specific times, samples 

were taken for cAMP measurements.

2.10. Construction of a pH range in glucose minimal medium.

2,2-dimethylglutaric acid (DMG; Aldrich) was used as a buffer in order to 

construct a pH range in GM medium between pH 3-7.5. DMG was added to a
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concentration of 0.1 M in 50 ml GM medium. This was adjusted with 1 M 

NaOH to the desired pH and then diluted to 100 ml. Cells were inoculated into 

flasks containing medium at specific pH values and also a control culture 

containing no DMG. At specific times, samples were taken for extracellular 

pH, e-cAMP measurements and A600nm values.

2.11. Identification of e-cAMP using high performance liquid 

chromatography.

2.11.1. Sample preparation.

Culture of S. cerevisiae was grown to an approximate A600nm 1.0 in either GM 

or YEPD medium made up with milli-Q water. Cells were filtered through 

0.45 cellulose acetate filters and the filtrate was used for HPLC 

chromatography. Samples were diluted in an appropriate amount of 7 mM 

KH2P 0 4 (HPLC grade; Sigma) before applying to the column.

2.11.2. Nucleotide separation using high performance liquid 

chromatography.

Nucleotides were separated by injecting a 20 /d sample and eluting with 7 mM 

KH2P 0 4 (HPLC grade; Sigma), adjusted to pH 4.0 with H3P 0 4, for 15 min. A 

strong anion exchange column (Partisil 10-SAX, 25 cm x 4.6 mm) was used in 

conjunction with a guard column (Partisil 10-SAX, 2.5 cm length). The column 

was regenerated by elution with 0.5 M KH2P 04 pH 3.3 for 10 min and 7 mM 

KH2P 0 4 for 15 min. The column was washed with 20 fi\ of HPLC grade 

methanol (Aldrich) after every chromatogram to remove organic impurities.

2.12. Rapid transformation of Escherichia coli.

For this, strain DH5a was used (Sambrook et al., 1989). This method is 

described in Sambrook et al. (1989). The following modifications were used 

after step 10. 1 ml of prewarmed LB broth was added to the cells and tubes
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were then placed at 37°C for 2 h to allow expression. Aliquots were then 

spread onto selective plates.

2.13. Extraction of DNA from E. coli.

Plasmid DNA was extracted from DH5a transformed in 2.12. This method is 

also described in Sambrook et al. (1989).

2.14. Lithium acetate transformation of S. cerevisiae,

A culture was grown to stationary phase in YEPD medium before inoculation 

into 50 ml of fresh YEPD; this was grown at 30°C until an A600nm 1.5-2.0 was 

reached. Cells were harvested by centrifugation in a bench centrifuge for 

10 min at 4,000 r.p.m. The pellet was first washed with 10 ml of TE buffer, 

pH 7.5 and re-centrifuged before being resuspended in 5 ml of 0.1 M lithium 

acetate in TE and incubated with agitation for 1 h at 30°C. Cells were 

centrifuged as before and the pellet was resuspended in an equal volume of 

0.1 M lithium acetate in TE. To 300 /xl of competent cells, 1-10 fig of DNA 

was added, isolated by the method in 2.13. Tubes were then left at 30°C for 

10 min. 1 ml of a 50% solution of polyethylene glycol (PEG 4000) was then 

added and tubes were inverted gently three times. Tubes were then incubated 

for 1 h at 30°C. After this incubation, cells were heated for 5 min to 42°C and 

then centrifuged in a microfuge by pulsing gently six times. The pellet was 

washed with 1 ml of water and centrifuged as before. The pellet was 

resuspended in 0.5 ml of YEPD for 15 min at 30°C. Cells were plated onto 

selective plates of GM medium. Transformants appeared after 2-3 days.
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CHAPTER 3. 

RESULTS.

3.1. The cAMP assay.

3.1.1. Introduction.

In order to evaluate the cAMP assay method of Brown et al. (1971, 1974), 

various checks had to be made to ensure that values represented true 

concentrations of i-cAMP in S. cerevisiae; this series of checks included 

rigorous examination of the reproducibility of the standard curve and ensuring 

that the concentrations of cAMP obtained from the standard curve were not 

artefactual.

3.1.2. Standard curve.

The binding protein that was to be used in the assay had to be tested in order to 

determine whether a sensitive and reproducible standard curve could be 

obtained. Not all of the bovine adrenal glands that were obtained performed 

satisfactorily; adrenal glands obtained from two abattoirs in Avon gave 

substandard binding protein, which resulted in a non-existent standard curve; 

whereas binding protein that had been isolated from adrenal glands obtained 

from an abattoir in South Glamorgan (coincidentally the same as that used by 

Amersham), gave sensitive and reproducible standard curves. A typical 

standard curve from this work is shown in Figure 6. The standard deviation 

from the mean values obtained gave percentage errors of 3.9 ±  3.0% (obtained 

using 28 samples from four standard curves n =  46). The percentage error 

decreased with increasing concentration of cAMP and the scintillation counter 

had an error of 1.6 ±  1.5%. By assay, the percentage recovery of cAMP after 

freeze-drying alone was 79.5 ±  8.1%, and after freeze-drying and ether 

extraction was 70.1 ±  6.2%; by weight, 89.4 ±  2.8% of cAMP was recovered 

after ether extraction.
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Figure 6. A typical standard curve for the assay of cAMP according to the 

method of Brown et al. (1971, 1974). Duplicate tubes were used for all 

standards, except 0 pmol, which was in quadruplicate. The error bars represent 

the range of cAMP that was measured from all tubes. The assay for cAMP was 

performed as described in section 2.7.

49



C
al

cu
la

te
d 

cA
M

P 
(p

m
ol

)

62 530 1 4
Theoretica l  cAMP (pmol)



3.1.3. Charcoal absorption capacity.

By adding increasing concentrations of cAMP to blank control tubes (see 

Materials and methods), the cAMP-absorbing capacity of the charcoal could be 

determined. The absorption capacity of the charcoal was found to be at least 

60 pmol/50 [i\ (Table I), far greater than any concentration of cAMP that was 

present in assays. Thus, it can be concluded that the amount of charcoal that 

was used in the assay, had the capacity to absorb any unbound cAMP.

3.1.4. Dilution of sample cAMP.

To determine whether the concentration of cAMP measured in assays was 

accurate and that there were no interfering substances present in the extracted 

sample, serial dilutions of samples were made (Table II).

Results show that the concentrations of cAMP measured closely reflected 

the successive dilutions of samples and the assay was accurately measuring 

cAMP and there were no artefacts. There were slight differences between the 

final concentrations of successive dilutions of the same sample, resulting in an 

average variation of 12 ±  6%.

3.1.5. Phosphodiesterase degradation of cAMP.

The final test of whether the assay for cAMP was really measuring cAMP and 

not artefacts, involved the use of the phosphodiesterase enzyme, which degrades 

cAMP to 5 '-AMP. A known amount of phosphodiesterase was added to tubes 

containing a known amount of cAMP. By previously assaying the sample and 

obtaining the specific activity of phosphodiesterase, it was possible to calculate 

the amount of enzyme that needed to be added in order to degrade 

approximately 80% of the cAMP. Table III shows that phosphodiesterase 

degraded both bona fide  and sample cAMP, with all six samples showing 

degradation. The bona fide cAMP samples had a lower percentage degradation
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Table I. The absorption capacity of charcoal used in the cAMP assay.

Amount of cAMP added (pmol) % c.p.m.*

0 (total) 100.0

0 (blank) 1.5

10 1.6

20 1.4

40 1.3

60 1.3

“This value is the percentage of c.p.m. of p-H]cAMP that the charcoal did not 

bind. The results suggest that the charcoal bound as much p-H]cAMP in the 

tubes that had the largest amount of p-H]cAMP than in the blank control tubes. 

The data shown here represent the mean values of one experiment.
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Table II. The effect of dilution upon cAMP measurements.

Sample

Dilution

None 1/2 1/4 1/8 1/16

1 2.1 2.2 2.3 2.4 2.5

2 1.0 1.1 1.2 - -

3 0.9 1.3 1.2 - -

4 2.7 3.0 - - -

5 2.0 2.0 - - -

6 2.1 2.2 2.7 - -

7 1.76 - 1.8 - -

The data presented here represent the amount of cAMP measured when 

multiplied by the dilution factor. Samples for cAMP assays were obtained from 

cultures of D1 cells grown at 25 °C in GM medium at various A6oonm and 

serially diluted.

- represents not determined.
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Table III. Phosphodiesterase degradation of bona fide and sample cAMP.

Sample

cAMP/50 fj\ assayed at time (h) 

0 4 4“
Percentage
degraded

Ab 4.6 2.6 4.3 43.5d

Bb 5.2 1.9 - 63d

Cb 5.0 2.0 - 60d

Dc 4.2 0.6 4.1 85

Ec 5.3 0.7 4.5 88

Fc 5.1 0.8 4.7 85

The amount of cAMP present in the assay tubes was comparable to the Km of the 

low Km phosphodiesterase at the beginning of the experiment.

“This is material that has been incubated for 4 h but has had no 

phosphodiesterase added. 

bBona fide  cAMP. 

cSample cAMP.

^Percentage degradation was lower than the predicted 80% as the incubation 

reaction with phosphodiesterase was designed to occur over a longer period of 

time.

- represents not determined.

53



as these experiments were designed to degrade 80% over a longer period of 

time.

3.2. Intracellular cAMP concentrations in batch cultures.

3.2.1. Introduction.

Prior to determining whether there were cell cycle stage-specific fluctuations in 

the concentration of i-cAMP, it was necessary to examine the behaviour of 

i-cAMP concentrations with particular reference to time, the proliferation rate 

and growth of cells, and glucose concentration.

3.2.2. Intracellular concentrations of cAMP from cells grown on glucose.

Figure 7 shows that in an exponentially growing asynchronous culture, as the 

cells were growing and proliferating from lag to exponential phase through to 

stationary phase utilizing glucose as the carbon source throughout, the i-cAMP 

concentration fell with time. Throughout both lag and exponential phases the 

concentration of i-cAMP fell continually. Throughout stationary phase the 

concentration of i-cAMP remained constant. Figure 7 also shows that although 

the proliferation rate remained constant throughout exponential phase, the 

i-cAMP concentration fell.

3.2.3. Intracellular concentrations of cAMP in different strains.

In order to determine whether it would be possible to compare results from 

various experiments, it was necessary to compare the i-cAMP concentrations 

within a family of closely related strains, according to the volume and the ploidy 

of the cell, and between various unrelated strains. GR2 and GR6X-7A are 

haploids and are closely related to GRD7A, which is a diploid resulting from the 

mating of the two haploids. D l, JL138, GR57 and A364A are unrelated strains. 

The results of this comparison are shown on Table IV.
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Figure 7. The relationship between the concentration of i-cAMP and cell 

density with time from a wild type strain of S. cerevisiae. Cells from a 

stationary culture of D l, which had been growing in GM medium at 25°C, were 

inoculated into fresh GM medium at t =  0, grown at 25°C in a shaking water 

bath and sampled at the time intervals indicated. Cell numbers and i-cAMP 

concentrations were measured as described in sections 2.3 and 2.7. All points 

represent the average of two values, the error bars represent the range of 

i-cAMP concentration obtained. Closed circles, cells/ml; open circles, 

i-cAMP/cell.
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Table IV. Comparison of i-cAMP concentrations between related and unrelated 

strains.

Strain Cells/ml 
(x 105)

i-cAMP
(pmol/ml)

Modal cell 
volume (jim3)

[cAMP]
OxM)

GR2 9.64 0.29 ±  0.03 77 3.9

GR6X-7A 13.2 0.30 ±  0.06 84 2.8

GRD7A 10.6 0.30 ±  0.01 149 1.9

JL138 10.7 0.17 ±  0.02 54 2.9

GR57 9.72 0.35 ±  0.04 76 4.7

A364A 13.8 0.20 ±  0.06 - -

D l 12.7 0.26 ±  0.05 58 3.5

The data represented here were obtained from two (GR2, JL138, A364A and 

D l), three (GR6X-7A and GRD7A) or four (GR57) separately grown cultures 

Cultures were grown in YEPD at 25 °C and harvested as close to an Aeoonm of 

0.1 as possible. The micromolar concentration was calculated by multiplying 

the number of cells/1 by the cell volume, and then dividing that value into the 

concentration of i-cAMP/1 culture.

- represents not determined.
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Referring to the related strains, when the concentration of i-cAMP was 

expressed per ml of culture harvested, concentrations between strains were very 

similar. When the concentration of i-cAMP was expressed as a function of 

volume, however, differences were apparent: the i-cAMP concentration was 

inversely related to the cell volume. This indicated that between related strains, 

the i-cAMP concentration was independent of cell volume, but not cell density.

When comparing the i-cAMP concentration per ml of culture harvested 

between all strains, a wider range (0.17-0.30) was observed. This represented a 

23 % variance compared with 2 % between the related strains. The i-cAMP 

concentrations, when expressed as a molar concentration, were similar to those 

of the related strains, and varied within a similar range to the cAMP/ml values.

To summarize, the data in Table IV demonstrate that differences between 

unrelated strains exist, but differences are within a 23 % variance band and are 

therefore not considered to be high enough to be significant. Also, when the 

i-cAMP concentration was expressed as a micromolar concentration, it was 

independent of the volume of the cell. The data do not indicate that a universal, 

absolute i-cAMP concentration was present.

3.3. Comparisons of i-cAMP concentrations from cells grown on rich or 

minimal media, and on different carbon sources.

There have been various reports stating that i-cAMP concentrations varied 

depending on the carbon source used and the concentration of the carbon source 

present in the growth medium (see Chapter 1). In an attempt to clarify the 

inconsistencies between these reports, a series of experiments was performed 

that enabled analysis of i-cAMP concentrations in rich and minimal media, with 

either fermentable or non-fermentable carbon sources.
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3.3.1. Comparisons of i-cAMP concentrations on rich and minimal media.

In order to determine whether there were significant differences in the i-cAMP 

concentration depending on whether cells were grown on rich or minimal media, 

a wild type strain was grown on rich and minimal glucose-based media.

The i-cAMP concentrations (Table V) obtained from one experiment 

were subjected regression analysis and a pooled t-test (this tested the constants 

and the gradients of the regression co-efficients), and it was found that there was 

no significance difference between i-cAMP concentrations from rich or minimal 

media at P = 0.001. The value of P gives an indication as to how significant a 

value is, and refers to the probability of observing a particular (r) value.

When i-cAMP concentrations from cultures grown on rich and minimal 

media, with both fermentative and non-fermentative carbon sources (Figure 8), 

were subjected to regression analysis and a pooled r-test, there was a significant 

difference between the constants and the gradients at P = 0.01. However, as 

the analysis may have been affected by differences between the different carbon 

sources, it was still possible that there were no significant differences between 

i-cAMP concentrations obtained on rich or minimal media.

3.3.2. Comparisons of i-cAMP concentrations on various carbon sources.

Cyclic AMP is not believed to be associated with catabolite repression in yeast 

(Eraso and Gancedo, 1984; Matsumoto et al. , 1982b), but evidence to prove 

this is inconclusive. Therefore in order to determine whether i-cAMP 

concentrations are dependent upon the carbon source present in the growth 

medium of the cells, experiments were performed to test possible differences in 

i-cAMP concentrations. Cells were grown in rich and minimal media, with 

various carbon sources (including glucose, fructose, glycerol and pyruvate).

In order to determine any relationships between fermentable and non- 

fermentable carbon sources (Figure 8), four experiments were combined as it
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Table V. Comparison of rich and minimal medium-grown cells.

Medium A600nm i-cAMP 
(pmol/10 ml)

YEPD 0.22 0.75

0.18 0.75

0.59 0.75

0.50 1.00

0.86 1.45

0.98 1.75

1.80 1.10

1.78 1.90

GM 0.27 0.50

0.29 0.70

0.51 0.80

0.78 1.25

1.29 1.60

1.70 1.50

2.04 2.20
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Figure 8. The relationship between the i-cAMP concentration of cells grown on 

fermentable and non-fermentable carbon sources, and cell density from a wild 

type strain of S. cerevisiae. Flasks of rich (YEP) or minimal (M) media 

containing 2% (w/v) of glucose, fructose, glycerol or pyruvate, were inoculated 

from an exponentially growing culture of strain D l that had been growing at 

25°C in GM medium. The cells were then incubated at 25°C in a shaking water 

bath. Samples were taken for cell numbers and i-cAMP concentration when the 

cells had reached early to mid-exponential phase. YEPD, closed circles; GM, 

open circles; YEPF, closed squares; FM, open squares; YEPG, closed triangles 

(pointed side up); GlyM, open triangles; YEPP, inverted closed triangles 

(pointed side down); PM, open inverted triangles. The data plotted here are 

from four separate experiments.
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was difficult to harvest cultures at the same cell density due to the different 

generation times that the wild type strain had in different carbon sources.

Cells were grown in a particular medium and harvested in exponential 

phase. Samples were taken for i-cAMP analysis and cells/ml. The data 

obtained were plotted (Figure 8). By studying Figure 8, it appeared that there 

were two separate relationships; one represented cells grown on fermentable 

carbon sources (lower band of co-ordinates) and the other represented the cells 

grown on non-fermentable carbon sources (upper band of co-ordinates).

The regression coefficients of both lines were then compared in order to 

statistically verify whether there was a significant difference between the two 

relationships. As it was found that there may be significant differences between 

cells that are grown on rich or minimal medium, the data was split into rich 

carbon sources and minimal carbon sources. The data were subjected to 

regression analysis and a pooled f-test.

It was found that there were no significant differences between i-cAMP 

concentrations from rich fermentable and rich non-fermentable carbon sources at 

P = 0.01. However, it was found that there was a significant difference 

between i-cAMP concentrations from minimal fermentable or minimal non- 

fermentable carbon sources at P = 0.001.

3.4. The relationship between i-cAMP concentrations and cell density.

From the results obtained so far (Figures 7 and 8), it was evident that there was 

a relationship between cell density and the i-cAMP concentration. Figure 8 

shows that there was a very significant relationship between i-cAMP 

concentration and cell density (P = 0.000), and the regression had an R2- 

adjusted value of 80.7% (this value indicated how well the data fits the 

regression co-efficient). Figures 7 and 8 also show that cell density and i-cAMP 

concentration per cell have an inverse relationship, the higher the i-cAMP 

concentration the lower the cell density and vice versa.



Table VI shows the regression analyses of i-cAMP concentration and 

A6oonm. Aeoonm reflects cell mass, including cell number and volume, unlike 

cells per ml, which only reflects the number of cells per ml of culture. All but 

one of the experiments showed a very significant relationship between A6oonm 

and i-cAMP concentration in both rich and minimal grown cells. However, 

despite a significant relationship between the tested variables, as shown by P, 

the closeness of fit of the regressions for GR57, D l and JL138 was poor. The 

low Readjusted values suggest that there could be some other factor or factors 

affecting i-cAMP concentrations.

Throughout the experiments described in this section it was assumed that 

there was no interstrain difference in possible relationships between Aeoonm or 

number of cells per ml and i-cAMP per ml of culture; even if there were 

interstrain differences, different strains will still show similar patterns.

3.5. Shift-up experiments using cell division cycle (cdc) mutants.

3.5.1. Introduction.

cdc mutants have a defect in stage-specific functions of cell cycle control and 

under restrictive conditions, for example an increase in growth temperature from 

25°C to 36.5°C, show a stage-specific arrest. The stage at which the original 

defect occurs is usually different from the stage at which the cell arrests, cdc 

mutants may be useful in attempting to map where any changes in 

concentrations of cAMP occur in the cell cycle.

Strains used here were: A364A, a CDC+ haploid; GR57, a haploid 

containing the cdc5-l mutation, the wild type gene encoding an as yet unknown 

protein that is essential for sporulation and for transfer of mitochondria during 

mating; and JL138, a haploid containing the cdc28-Dl mutation encoding a 

34 kDa protein that has kinase activity, associates with cyclins (Wittenberg et 

al. , 1990) and aids the control of Start (Reed, 1980). A functional CDC28 gene 

is a prerequisite for progression through Start and entering the cell cycle.
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Table VI. Regression analyses between Aeoonm and i-cAMP per ml of culture.

Strain Medium P value Readjusted (%) n

GR57 YEPD 0.029 24.5 18

JL138 YEPD 0.011 44.2 17

DJ23-3C GM 0.004 86.6 6

Dl YEPD + GM 0.000 64.2 16

DJ23-3C YEPD 0.002 78.9 8
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These strains were chosen because they arrest at points in the cell cycle 

that were useful for studying cell cycle stage-specific fluctuations of cAMP. 

Also, they have the execution point of their gene function close to the terminal 

phenotype and therefore their terminal phenotype represents the part of the cell 

cycle in which they are defective. cdc28-Dl arrests at the beginning of the 

cycle before Start, whereas cdc5~l arrests at the end of the cycle near 

cytokinesis or a late stage of nuclear reorganization.

3.5.2. A364A temperature shift-up.

Strain A364A was used as it does not arrest at 36.5°C and has only a slight 

increase in cell numbers due to the effect of temperature on the growth rate, and 

thus any changes in cAMP concentrations at this temperature would be used as a 

control. Figure 9 shows the concentration of i-cAMP, percentage buds and cell 

density for a shift-up experiment of A364A. The consistency of the percentage 

buds throughout the time-course of the experiment demonstrated the ability of 

A364A to maintain similar growth characteristics at 36.5°C as at 25°C, 

however, the cell density in the 36°C culture increased slightly. The 

concentration of i-cAMP at 25 °C before shift-up fell as expected and continued 

to do so in the culture remaining at 25°C. One hour after shift-up, the i-cAMP 

concentration in the 36.5°C culture was approximately twice that in the culture 

at 25°C. Two hours after shift-up, the concentration of i-cAMP in the 36.5°C 

culture began to decrease and resembled that in the 25 °C culture.

3.5.3. cdc28-Dl temperature shift-up.

cdc28-Dl arrested cells are unbudded uninucleate growing cells that shmoo, 

similar to when cells are subjected to mating pheromones. Figure 10 shows that 

when JL138 was transferred to 36°C, arrest occurred quickly; both the cell 

density and percentage buds fell quickly and dramatically in the 36 °C culture. 

Figure 10 also shows that before shift-up and in the culture that remained at
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Figure 9. Temperature shift-up experiment of A364A (CDC+). Flasks were 

inoculated with an exponentially growing culture of A364A and grown at 25 °C 

in a shaking water bath until a cell density of approximately 1 x 106 cells/ml 

was reached. Samples were taken for budded index, cell density and i-cAMP 

concentration. At t =  0, the culture was split into two and one-half was 

transferred to a shaking water bath at 36.5°C. Each point represents the 

average value of two measurements, the error bars represent the range of 

i-cAMP concentration obtained. This figure is representative of three separate 

cultures performed on two separate occasions. Closed circles, 25°C; open 

circles 36.5°C; arrow, shift-up time.
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Figure 10. Temperature shift-up experiment of JL138 (cdc28-Dl). Flasks were 

inoculated with an exponenially growing culture of JL138 and grown at 25 °C in 

a shaking water bath until a cell density of approximately 3 x 106 cells/ml was 

reached. Samples were taken for budded index, cell density and i-cAMP 

concentration. At t = 0, the culture was split into two and one-half was 

transferred to a shaking water bath at 36.5°C. Each point represents the 

average value of two measurements, the error bars represent the range of 

i-cAMP concentration obtained. Closed circles, 25°C; open circles 36.5°C; 

arrow, shift-up time. This figure is representative of four separate cultures 

performed on two separate occasions.
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25°C, the trends in i-cAMP concentration were similar to those in the wild type, 

with an increase in the concentration of i-cAMP occurring within the initial 

1.5 h. The concentration of i-cAMP in the 36.5°C culture eventually began to 

fall throughout the time-course of the experiment, but remained at a higher 

concentration than that of the 25 °C culture. Thus, although the cells had ceased 

to proliferate, cAMP was still being produced or not being degraded. The final 

concentration of i-cAMP was 5-fold higher in the 36.5°C culture than in the 

25 °C culture.

3.5.4. cdc5-l temperature shift-up.

Results similar to those of cdc28-Dl were found when performing a temperature 

shift-up on cdc5-l cells. Figure 11 shows that after transfer to 36.5°C, the cells 

began to arrest. This arrest was not as immediate as that observed for JL138, 

however, the cell density did not increase as much as in the 25 °C culture and 

the percentage buds rose; GR57 arrests with a dumbbell morphology and 

therefore percentage buds should be higher after arrest. Although the culture at 

25 °C showed a more erratic trend for percentage buds, the percentage buds for 

the 36.5°C culture remained higher throughout. Figure 11 also shows that after 

shift-up, the concentration of i-cAMP increased and remained at a high 

concentration, 5-fold higher, compared with the concentration from the culture 

grown at 25°C. However, because GR57 has a longer generation time than 

JL138, cdc5-l cells took longer to arrest.

3.6. Centrifugal elutriation and age fractionation experiments.

3.6.1 Introduction.

In a synchronous culture it should be possible to determine whether there are 

stage-specific cell cycle fluctuations in the concentration of i-cAMP. For this, a 

wild type strain (Dl) was used. To investigate how the enzyme responsible for 

the degradation of cAMP behaved during the cell cycle, a double
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Figure 11. Temperature shift-up experiment of GR57 (cdc5-l). Flasks were 

inoculated with an exponenially growing culture of GR57 and grown at 25 °C in 

a shaking water bath until a cell density of approximately 1 x 106 cells/ml was 

reached. Samples were taken for budded index, cell density and i-cAMP 

concentration. At t =  0, the culture was split into two and one-half was 

transferred to a shaking water bath at 36.5°C. Each point represents the 

average value of two measurements, the error bars represent the range of 

i-cAMP concentration obtained. Closed circles, 25°C; open circles 36.5°C; 

arrow, shift-up time. This figure is representative of four separate cultures 

performed on two separate occasions.
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phosphodiesterase mutant (DJ23-3C; pdel pde2) was used. If cell cycle stage- 

specific fluctuations occurred after elutriation of the double phosphodiesterase 

mutant then any changes in the i-cAMP concentration would have been due to 

another activity or mechanism, thus demonstrating its presence. Figure 12 

shows the phosphodiesterase activities of D l, SP1 and DJ23-3C.

Age fractionation, which utilizes the elutriator rotor to construct a size 

gradient, was also employed to produce synchronous fractions, but instead of 

just collecting the smallest unbudded cells, successive fractions of the size 

gradient were harvested.

3.6.2. Centrifugal elutriation using a wild type strain.

Four separate elutriations were performed on wild type strain D l. This strain is 

ideal for elutriation purposes as at cell separation the mother and daughter cells 

readily separate. Studying the plots of cell density and percentage buds, it can 

be seen that there was good first cycle synchrony, but this had deteriorated by 

the second cycle (Figure 13). As the time for cell separation to occur was long, 

daughters became delayed with respect to mothers cell cycle, resulting in a 

breakdown of synchrony; daughter cells require a longer period of time to 

traverse Start as they have to grow more. After an initial peak in the 

concentration of intracellular cAMP in the first three samples, the concentration 

of cAMP per cell assumed a straight line relationship with time. This 

relationship, except the initial peak, could also be seen in the asynchronous 

culture. This inferred that there were no obvious stage-specific fluctuations in 

the concentration of cAMP.

The second elutriation experiment (Figure 14) showed a slightly 

improved degree of synchrony compared with the first experiment, with the 

percentage buds reaching approximately 95 % and in the second cycle the 

percentage buds reached 80%, although after cell separation the percentage buds 

remained at approximately 45%, which was too high. However, by looking at
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Figure 12. The phosphodiesterase activities of D l, SP1 and DJ23-3C. The two 

separate peaks of activity shown are the low and the high Km isoenzymes, 

respectively. 1 1 cultures of D l, SP1 or DJ23-3C were grown in YEPD at 25°C 

in a shaking water bath and harvested in exponential phase. Upper panel: D l,

75 mg. Middle panel: D l, 150 mg. Lower panel: SP1, 60 mg (closed squares) 

and 40 mg (open squares); DJ23-3C, 60 mg (closed triangles) and 40 mg (open 

triangles).
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Figure 13. Centrifugal elutriation experiment of a wild type strain of 

S. cerevisiae. Strain D l was grown at 25°C in GM medium and used to 

produce the synchronous (closed circles) and asynchronous (open circles) 

cultures. The cells were loaded at 2170 r.p.m. at a flow rate of 68 ml/min and 

unloaded at 2000 r.p.m. at a flow rate of 56 ml/min. Experimental details are 

given in section 2.5.
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Figure 14. Centrifugal elutriation experiment of a wild type strain of 

S. cerevisiae. Strain D1 was grown at 25°C in GM medium and used to 

produce the synchronous (closed circles) and asynchronous (open circles) 

cultures. The cells were loaded at 2200 r.p.m. at a flow rate of 70 ml/min and 

unloaded at 2000 r.p.m. at a flow rate of 70 ml/min. Experimental details are 

given in section 2.5.
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the cell density plot, it is apparent that the synchronous curve is only slightly 

different from the asynchronous curve. Slight fluctuations were observed 

although they were not stage-specific. Unexpectedly, the concentration of 

cAMP per cell from the asynchronous culture did not follow an expected 

decline, but rose and fell before the end of sampling.

The third elutriation experiment (Figure 15) gave the best synchrony 

obtained so far, with a recognizable second cycle. With respect to 

concentrations of cAMP, the asynchronous culture behaved typically, whilst the 

synchronous culture had a high concentration of cAMP during the first cell cycle 

that fell at cell separation and then rose slightly for the second cycle, the rise not 

being of the same magnitude as the concentration before cell separation.

The fourth elutriation experiment also gave good cell cycle synchrony, 

but only for one cycle; despite this the results (Figure 16) were in sharp contrast 

to the previous experiment. For both the synchronous and asynchronous 

cultures there were no obvious stage-specific fluctuations with both the 

synchronous and the asynchronous fluctuating haphazardly.

3.6.3. Centrifugal elutriation using a phosphodiesterase mutant.

Problems were encountered when attempting to produce a size gradient in the 

rotor cell with strains DJ23-3C and SP1, due to the glutinous quality of the 

cells. Usually at cell separation, the mother and daughter cells fall apart, as 

demonstrated by D l. Both DJ23-3C and SP1 formed clumps in the rotor cell 

that resulted in a depletion of newborn cells and unbudded mothers at the top of 

the rotor cell. Mild sonication slightly improved the situation, but the yield of 

unbudded cells was still too low. In order to obtain a synchronous culture of 

sufficient volume, a larger fraction of the size gradient was taken although 

contamination by budded cells occurred. Due to the inevitable contamination, 

synchrony broke down rapidly and even a good synchronous first cycle was
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Figure 15. Centrifugal elutriation experiment of a wild type strain of 

S. cerevisiae. Strain D l was grown at 25°C in GM medium and used to 

produce the synchronous (closed circles) and asynchronous (open circles) 

cultures. The cells were loaded at 2200 r.p.m. at a flow rate of 68 ml/min and 

unloaded at 2000 r.p.m. at a flow rate of 68 ml/min. Experimental details are 

given in section 2.5.
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Figure 16. Centrifugal elutriation experiment of a wild type strain of 

S. cerevisiae. Strain D l was grown at 25°C in GM medium and used to 

produce the synchronous (closed circles) and asynchronous (open circles) 

cultures. The cells were loaded at 4500 r.p.m. at a flow rate of 150 ml/min and 

unloaded at 3300 r.p.m. at a flow rate of 100 ml/min. Experimental details are 

given in section 2.5.
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difficult to obtain. Despite these problems, two elutriations with DJ23-3C were 

analysed.

The first of these experiments is shown in Figure 17. The beginnings of 

good synchrony, apparent during the first cycle, rapidly broke down to 

asynchrony for the second cycle. Despite the poor synchrony, a pattern of 

increasing and decreasing i-cAMP concentration in tandem with the percentage 

buds emerged. If this pattern was true, then it would be in sharp contrast to D l, 

in which concentrations of cAMP remained at a high concentration and then 

dropped, and higher concentrations of cAMP occurred at Gi, not at the end of 

the cycle. However, the asynchronous control culture showed no fluctuations 

and fell steadily with time as expected.

Results from the second elutriation (Figure 18) were less promising 

although the synchrony in the first cycle was similar to the first experiment. 

Concentrations of cAMP per cell in the asynchronous culture were as expected, 

but the synchronous culture showed disorderly fluctuations of intracellular 

cAMP concentrations, unrelated to any stage in the cell cycle. However, 

synchrony became rather poor so stages were difficult to distinguish. It is 

notable that despite being unable to distinguish cell cycle stage-specific 

fluctuations, the concentration of cAMP in the asynchronous culture fell steadily 

during the course of the experiment whereas the concentration of cAMP from 

the synchronous culture did not. This may have been partly due to the 

synchronous culture not dividing synchronously.

3.6.4. Age fractionation of SP1.

Because of the difficulty in the construction of synchronous cultures for either 

SP1 or DJ23-3C, age fractionation was used.

The beginning of the cell cycle was well fractionated after age 

fractionation of SP1 (Figure 19). However, due to the original problem of 

adherent cells, unbudded cells were collected in the latter half of the gradient
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Figure 17. Centrifugal elutriation experiment of a double phosphodiesterase 

mutant. DJ23-3C was grown at 25°C in GM medium plus 2% YEPD and used 

to produce the synchronous (closed circles) and asynchronous (open circles) 

cultures. The cells were loaded at 4500 r.p.m. at a flow rate of 175 ml/min and 

unloaded at 3500 r.p.m. at a flow rate of 125 ml/min. Experimental details are 

given in section 2.5.
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Figure 18. Centrifugal elutriation experiment of a double phosphodiesterase 

mutant. DJ23-3C was grown at 25°C in GM medium plus 2% YEPD and used 

to produce the synchronous (closed circles) and asynchronous (open circles) 

cultures. The cells were loaded at 4500 r.p.m. at a flow rate of 175 ml/min and 

unloaded at 3500 r.p.m. at a flow rate of 125 ml/min. Experimental details are 

given in section 2.5.
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Figure 19. Age fractionation of a wild type stain of S. cerevisiae. SP1 was 

grown at 25°C in GM medium and prepared as described in section 2.5. Cells 

at different stages of the cell cycle could be distinguished by DAPI staining: 

unbudded, open circles; budded, open squares; undergoing nuclear division, 

open triangles; near to cell separation, open diamonds.
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thus distorting the amount of G2 and M cells. SP1 showed an erratic pattern of 

i-cAMP concentration, with an increase in cAMP concentration concomitant 

with the appearance of budded cells, although the cell possesses both 

phosphodiesterases. This may indicate that the i-cAMP concentration can 

fluctuate during the cell cycle, although whether there are stage-specific 

fluctuations cannot be determined from these data as the remainder of the cell 

cycle was not well fractionated.

3.6.5. Age fractionation of DJ23-3C.

The concentration of intracellular cAMP from an age fractionation of DJ23-3C 

(Figure 20) shows an erratic fluctuation in the third sample where the cell cycle 

was well separated, but there was no change in the composition of cells that 

were present in that sample. In contrast to SP1 (Figure 19), there were no 

fluctuations in the concentration of i-cAMP and once again, the beginning of the 

cell cycle was well fractionated. The smooth line representing the i-cAMP 

concentration pointed towards the idea that phosphodiesterase may be 

responsible for any fluctuations in the concentration of i-cAMP.

3.7. Extracellular cAMP.

3.7.1 Introduction.

As described in Chapter 1, extracellular nucleotides are known to be involved in 

cellular responses and differentiation. For this reason, and the possibility that if 

cAMP fluctuates then it may involve extrusion into the medium, the existence of 

extracellular cAMP (e-cAMP) in growth media of S. cerevisiae was 

investigated. If the concentration of cAMP does fluctuate then there are a 

number of possibilities of how this could be achieved: first, cAMP could be 

degraded by phosphodiesterase; secondly, feedback inhibition could affect the 

rate of cAMP synthesis and loss; and thirdly, cAMP could be extruded into the 

medium. If cAMP is present in the growth medium then why it is there and
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Figure 20. Age fractionation of a double phosphodiesterase mutant. DJ23-3C 

was grown at 25 °C in GM medium plus 2% YEPD and prepared as described in 

section 2.5. Cells at different stages of the cell cycle could be distinguished by 

DAPI staining: unbudded, open circles; budded, open squares; undergoing 

nuclear division, open triangles; near to cell separation, open diamonds.
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whether it has a positive or negative effect on proliferation should be 

determined.

3.7.2. The presence of cAMP in the growth medium of S. cerevisiae.

Figure 21 shows that in both the asynchronous and synchronous cultures 

e-cAMP was assayed to be present. There was between 20-100 times more 

cAMP outside a cell than inside per ml of culture analysed. However, 

expressed in relation to volume, i-cAMP and e-cAMP are of the order /xM and 

nM, respectively.

Due to the large quantities of e-cAMP assayed (Figure 21), any stage- 

specific fluctuations of cAMP would be masked, therefore it was impossible to 

determine whether the presence of e-cAMP was due to putative stage-specific 

extrusion. The concentration of e-cAMP from the synchronous culture was 

higher than that of the asynchronous culture. This could be due to the fact that 

the synchronous culture was diluted into medium in which cells had been 

growing overnight and had been possibly releasing cAMP. For both the 

synchronous and asynchronous cultures, the concentration of e-cAMP fell very 

slightly over the 5 h of the experiment.

3.7.3. Effect of extracellular cAMP on proliferation.

To determine whether the presence or absence of e-cAMP enhanced 

proliferation, various concentrations of cAMP were added to the medium in 

which cells were growing. A physiological concentration of cAMP 

(5 pmol/ml), as measured by the assay, was added to seven flasks out of a total 

of 13, which contained stationary phase cells that had been transferred to fresh 

medium to a cell density of 10^ cells/ml. Cells were then grown for a further 

6 h. The number of cells per ml was determined for each culture and a Mann- 

Whitney test was performed on the data in order to determine whether there was 

a significant difference between cells that had been growing in medium with or
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Figure 21. Extracellular cAMP from a wild type strain of S. cerevisiae. The 

medium of the synchronous (closed circles) and asynchronous (open circles) 

cultures from the third elutriation experiment was taken for e-cAMP 

determination. The upper panel represents cells/ml; the middle panel represents 

budded index; the lower panel represents e-cAMP/ml culture. For experimental 

details see section 2.7.
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without exogenously added cAMP. After 6 h there was a significant difference 

between the two types of medium (P = 0.001). The cells that had been grown 

in medium to which cAMP had been added had lower cell densities compared 

with the cells that had not been grown in medium to which cAMP had been 

added.

In a separate experiment, cells were diluted to 10° and 101 cells per ml 

and cAMP was again added at 5 pmol/ml (four flasks out of a total of eight had 

cAMP added to them). There was no significant difference between the two sets 

of cultures, showing that exogenously added cAMP had no effect on 

proliferation. However, for this experiment large dilution errors could 

obviously be obtained therefore diminishing the value of these results.

Another experiment that employed exponentially growing cells and had 

various concentrations of cAMP added to cultures also showed no effect on the 

percentage bud value (Figure 22). Any change in the percentage budded cells 

would indicate a change in the proliferation rate; an increase in this value would 

indicate an increase in the proliferation rate and a decrease would indicate a 

decrease in the proliferation rate.

The sequestering of cAMP from a growing culture would also enable the 

examination of any effects that e-cAMP had on proliferation or growth. 

However, a substance that would remove e-cAMP in sufficient amounts, for 

example charcoal or binding protein, but would not interfere with the yeast 

cells, could not be found.

3.7.4. The uptake of cAMP by 5. cerevisiae.

It may be possible that cells of S. cerevisiae take up cAMP from the medium in 

which they are growing as has been previously reported (Singh et al. , 1980; 

Matsumoto et al. , 1982b). In order to attempt to demonstrate this, [8-3H]cAMP 

was added to an exponentially growing culture of a wild type strain. At t =  0 

and subsequent time points, samples were harvested as usual for cAMP assays
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Figure 22. Effect of exogenous cAMP on the proliferation of a wild type strain 

of S. cerevisiae. Cells from an exponentially growing culture of D l were 

inoculated into fresh GM medium with (50 pmol/ml, stippled bars; 5 nmol/ml, 

open bars) or without (0 pmol, filled bars) exogenous cAMP. Cells were grown 

at 25°C in a shaking water bath. Samples for percentage buds were taken at the 

times indicated.

85



0  5 0  1 4 0  1 9 0  3 5 0

Time (h)



and the soluble fraction after TCA precipitation was counted for the presence of 

[8-3H]cAMP. It can be seen from Figure 23 that the c.p.m ., and therefore the 

amount of [8-3H]cAMP, increased with time before reaching an equilibrium. 

This result may demonstrate that S. cerevisiae can take up cAMP from the 

growth medium.

3.7.5. Extracellular cAMP from asynchronous batch cultures.

Extracellular cAMP was also found in asynchronous batch cultures of a wild 

type and a double phosphodiesterase mutant (Figure 24). In contrast to the 

results from section 3.7.2., the concentration of e-cAMP increased with time; 

the increase in e-cAMP concentration was found to be more characteristic of the 

relationship between e-cAMP concentration and time (data obtained from five 

separate cultures). There was no significant difference in e-cAMP 

concentrations between cells grown on GM or YEPD, but a 6 h lag period 

existed before the appearance of e-cAMP when cells were grown on YEPD. On 

approach to stationary phase, DJ23-3C cells in both GM and YEPD continued to 

have increased e-cAMP concentrations, whereas in D l the concentration of 

e-cAMP fell. Even though the cell density of DJ23-3C did not increase in GM 

medium, the pattern of increasing e-cAMP concentration was still apparent.

3.7.6. Construction of pH gradients using dimethylglutarate.

As the concentration of e-cAMP assayed by the method of Brown et al. (1971, 

1974) was higher than that due to extrusion alone, and e-cAMP appeared to 

increase with time and decreasing pH (the range of pH for GM and YEPD 

medium uninoculated to stationary phase was pH 4.8 to 2.7 and pH 6.1 to 5.9, 

respectively), a relationship between e-cAMP and the pH of the growth medium 

was examined. Dimethylglutarate (DMG) was chosen to buffer GM medium at 

specific pH values and Table VII shows that DMG was capable of maintaining a 

specific pH for at least 6 h.
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Figure 23. The uptake of cAMP from GM medium by a wild type strain of 

S. cerevisiae. [8-3H]cAMP was added at t = 0 to an exponentially growing 

culture of strain D l that had been growing in GM medium at 25°C in a shaking 

water bath. Samples were taken for determination of [8-3H]cAMP concentration 

as described in section 2.7., except that after the TCA precipitation stage, the 

supernatant was mixed with Optiphase Safe scintillation fluid for determination 

of [8-3H]cAMP c.p.m. The error bars represent the range of [8-3H]cAMP 

c.p.m. obtained. This figure is representative of two separate experiments.
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Figure 24. The relationship between e-cAMP and time for wild type and double 

phosphodiesterase mutant strains of S. cerevisiae. D1 (cicles) and DJ23-3C 

(squares) were grown on YEPD (closed symbols) and GM (open symbols) at 

25°C in a shaking water bath. Samples were taken for i-cAMP concentration 

and cell numbers at the times indicated.
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Table VII. The effect of DMG-buffered GM medium on growth rate.

Sample % increase in A6oonm

Oh

pH at 

1 h 6 h

Control 506 4.21 3.64 4.38

A 173 3.38 3.31 3.37

B 195 4.13 4.07 4.16

C 475 5.09 5.03 5.15

D 449 5.97 5.85 6.02

E 409 6.51 6.39 6.63

F 262 7.22 7.04 7.73
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Cells of a wild type diploid strain that had been growing in DMG- 

buffered medium at various pH values had different growth rates. The highest 

proliferation rates were found in the control culture and cultures grown at pH 5, 

6 and 6.5. It was found that e-cAMP concentration was inversely proportional 

to the pH of the medium in which cells grew (Figure 25). However, when 

DMG was incorporated into the standard curve, no such standard curve could be 

obtained, indicating that DMG or the pH interfered with the assay for cAMP.

To test which of these two factors interfered with the standard curve various 

concentrations of cAMP were added to DMG-buffered GM medium at different 

pH values. Table VIII shows that medium of a low pH interferes with the 

cAMP assay and values measured were either off the standard curve or non- 

responsive to any increase in added cAMP. Cyclic AMP measurements from 

pH 6-7 DMG-buffered medium resembled expected cAMP measurements best, 

i.e. DMG-buffered medium at particular pH values plus 0 pmol cAMP was 

approximately 0 pmol and when 0.5 pmol was added the value corresponded to 

approximately 0.5 pmol. An amount of cAMP was measured from pH 6 and 

pH 7 DMG-buffered GM medium that cells had been growing in and this may 

indicate the presence of cAMP in the medium. pH values measured from non- 

GM-buffered growth medium from 'normal' experiments were approximately 

pH 6-7, and therefore no interference should be present under 'normal' 

circumstances.

3.7.7. Degradation of extracellular cAMP by bona fide  phosphodiesterase.

As the results shown in section 3.7.6. pointed towards the possibility that the 

cAMP assay method of Brown et al. (1971, 1974) was not measuring e-cAMP, 

bona fide  cAMP and sample e-cAMP were incubated in the presence of 

phosphodiesterase. This would degrade any e-cAMP present and thus, if the 

assay method was measuring e-cAMP, a decrease in the concentration of 

e-cAMP obtained from the standard curve would occur.
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Figure 25. The relationship between e-cAMP concentration of a wild type 

strain and pH of the culture. Aliquots of an exponentially growing culture of 

D l, which had been growing at 25°C, were inoculated into fresh GM medium 

and buffered with DMG to the pH values shown. The data shown were 

obtained after 6 h. The error bars represents the range of e-cAMP 

concentrations obtained.
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Table VIII. The effect of DMG-buffered GM media at various pH values on 

e-cAMP concentrations.

Medium pH [e-cAMP]a 
(pmol/50 ptl)

[e-cAMP]b (pmol/50 /il)

+  0 pmolc -1-0.5 pmold

pH 3 NA NA NA

pH 4 3.38 4.92 4.58

pH 5 0.46 0.61 1.0

pH 6 0.10 0.03 0.48

pH 7 0.19 0.02 0.48

NA, not available due to values being off the standard curve.

“The concentration of e-cAMP in GM medium in which cells had been growing 

overnight.

bThe concentration of e-cAMP in 'blank' GM medium. 

c'Blank' GM medium plus normal constituents of cAMP assay tubes. 

d'Blank' GM medium plus 50 /d containing 0.5 pmol cAMP and only 100 fil of 

assay buffer.

92



Only one of the nine attempts (Table IX) gave any signs of e-cAMP 

degradation by phosphodiesterase. The principal problem was in obtaining 

sufficient e-cAMP for it to be detectably degraded because the concentration of 

cAMP assayed was low and close to 0 pmol, according to the assay. The 

medium was concentrated, but only bona fide  cAMP was degraded. This 

indicated that either something in the medium was preventing phosphodiesterase 

activity or that the assay method of Brown et al. (1971, 1974) identification of 

e-cAMP was giving misleading cAMP measurements and was therefore 

probably unusable.

3.7.8. Identification of extracellular cAMP using HPLC.

HPLC was used as an alternative method to determine whether e-cAMP was 

present in the growth medium of S. cerevisiae.

Figure 26 shows a series of chromatograms of 259nm-absorbing 

substances from the growth medium of a wild type strain of S. cerevisiae over a 

period of time. Chromatograms A-E show the concentration and appearance 

with time of those nucleotides that had a retention time of between 0 and 

12 min, when a wild type strain of S. cerevisiae was grown in GM medium. 

Cyclic AMP had a retention time of 9.2 min (marked by an arrow).

At t = 0, cAMP was already present in the medium. Also there was no 

visible change in the concentration of e-cAMP or any other nucleotides until 

23 h had elapsed. At this point, the range of nucleotides present in the medium 

increased; the concentration of e-cAMP at this point was approximately halved. 

The concentration of e-cAMP after 48 h was approximately the same compared 

with that after 23 h.

Due to the low sensitivity used for this set of chromatograms the amount 

of cAMP recorded in cAMP assays would not have been seen in this set of 

chromatograms. However, by adding a known amount of cAMP to the samples
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Table IX. Percentage degradation of cAMP by phosphodiesterase.

Experiment Percentage degradation

bona fide  cAMP medium8 +  bona fide  cAMP medium8

1 88.0 51.8 _b

2 97.6 97.4 _b

3 98.7 76.4 100c

4 99.8 97.7 0

5 98.3 98.2 _b

6 100.0 100.0 _b

7 90.7 92.0 _b

8 91.2 87.3 _b

9 93.9 0.0 0*

a'medium’ represents GM medium in which cells had been growing.

bThe concentration of cAMP measured was higher in the original sample where

enzyme had been added than when the enzyme had been omitted.

cThis was the only experiment to show degradation.

dGM medium had been concentrated 10-fold for this experiment.
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Figure 26. HPLC chromatograph of 259nm-absorbing substances with time 

from a wild type strain of S. cerevisiae. A flask containing GM medium was 

inoculated with cells from an exponentially growing culture of D1 that had been 

growing at 25°C. Cells were then grown overnight in a shaking water bath. 

Samples were taken after inoculation into fresh GM medium for analysis at the 

times indicated. All GM medium was filtered before being loaded onto the 

column. A, 'blank' medium, 0 h; B, 3 h; C, 6 h ;D, 23 h ; E, 48 h; F, 'blank' 

GM medium plus 1.3 nmoles bona fide  cAMP; G, same as F. Flow rate was

1.5 ml/min; sensitivity was 0.2; path length was 10 mm; chart recorder was set 

at 15 cm/h, except for F and G when it was 30 cm/h. Sample volume was 

20 n 1. The small arrow represents t =  0, the large arrow represents the time at 

which bona fide  cAMP elutes (except for chromoatogram F, where it represents 

a putative peak of e-cAMP).
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(chromatograms F and G), the concentration of cAMP present in peaks could be 

determined and this was found to be approximately 500 pmol.

Figure 27 shows a second set of chromatograms that also demonstrated 

the presence and release of cAMP into the medium. By spiking a sample with 

bona fide  cAMP in order to identify the cAMP peak (chromatogram B), it was 

apparent that cAMP was present in blank GM medium (chromatogram A). 

Chromatograms C and D both show the pattern of nucleotides that were released 

into the growth medium. By spiking these samples with bona fide  cAMP 

(chromatogram E), any cAMP that may have been extruded into the growth 

medium could be identified. A peak corresponding to the cAMP spike was 

identified in medium in which the cells had been growing and by comparing the 

area of the spike, the amount of cAMP in blank and used GM medium could be 

determined. For this batch of GM medium there was 20 pmol/20 /xl in blank 

medium and 60 pmol/20 fil in medium in which cells had been growing 

overnight.

Figure 28 shows a more sensitive measurement of putative e-cAMP. 

Unlike the other attempts, no e-cAMP was found in blank GM medium. 

However, for each sample run a spike of bona fide cAMP was included to 

ensure correct identification of e-cAMP. Chromatogram A shows a spike of 

bona fide  cAMP (32 pmol). Chromatogram B shows the elution profile of GM 

medium in which wild type yeast (A6oonm 1.06) had been growing, and it 

appears that there was a peak that eluted at the same time as bona fide  cAMP. 

However, when spiked with bona fide cAMP, this peak eluted just after the 

spike. Therefore it appeared that cAMP was not present in the medium in 

which wild type yeast had been growing.

Next, a strain that lacked any phosphodiesterase activity was tested 

(A6oonm 0.9). As the strain could not degrade cAMP, it was possible that excess 

cAMP may be extruded into the medium. Chromatogram D shows that not only 

was the elution pattern of this strain different from the wild type, but also, on
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Figure 27. HPLC chromatograph of 259nm-absorbing substances from a wild 

type strain of S. cerevisiae. A flask containing GM medium was inoculated 

with cells from an exponentially growing culture of D1 that had been growing at 

25°C. Cells were then grown overnight in a shaking water bath. A, 1/50 

'blank' GM medium; B, 1/50 'blank' GM medium plus 2.26 nmoles bona fide  

cAMP; C, 1/50 GM medium from a culture of D l; D, same as C; E, same as C 

plus 0.69 nmoles cAMP. All GM medium was filtered before being loaded 

onto the column. The flow rate was 1 ml/min. UV absorbance was measured 

at a sensitivity of 0.02; path length was 10 mm. Peaks were recorded onto a 

chart recorder with a running speed of 15 cm/h. The sample volume was 2 ml. 

The small arrow represents t =  0, the large arrow represents the time at which 

bona fide  cAMP elutes.
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Figure 28. HPLC chromatograph of 259nm-absorbing substances from the 

growth medium of two unrelated wild types (D1 and S7-7A) double 

phosphodiesterase mutant (DJ23-3C) and triple PKA catalytic subunit mutant 

(S18-1D) strains of S. cerevisiae. S18-1D was also transformed with the low 

Km phosphodiesterase or the TPK1 PKA catalytic subunit gene (pPDE2 and 

pTPKl, respectively). All strains had been grown in GM medium at 25°C in a 

shaking water bath to the Aeoonm indicated. All GM medium was filtered before 

being loaded onto the column. The flow rate was 1.5 ml/min. UV absorbance 

was measured at a sensitivity of 0.002; path length was 5 mm. Peaks were 

recorded using a chart recorder with a running speed of 15 cm/h. The samples 

were diluted by the addition of 0.5 vol of bona fide  cAMP or 'blank' elution 

buffer. The sample volume was 20 /A. The small arrow represents t =  0, the 

large arrow represents the time at which bona fide  cAMP elutes.

A, 'blank' GM medium plus 32 pmol bona fide  cAMP

B, D1 A600nml-06

C, D1 A6oonm1.06 plus 32 pmol bona fide  cAMP

D, DJ23-3C A6oonm0.803

E, DJ23-3C A6oonm0.803 plus 32 pmol bona fide  cAMP

F , S18-1D A600nml-05

G, SI 8-ID A6oonml.05 plus 32 pmol bona fide  cAMP

H, S7-7A AfiOOnm 1 • 05

I, S7-7A A6oonm1.05 plus 32 pmol bona fide  cAMP 

J, S7-7A(pPDE2) A6oonm0.902

K, S7-7A(pPDE2) A6oonm0.902 plus 32 pmol bona fide  cAMP 

L, S7-7A(pTPKl) A6oonm0.704

M, S7-7A(pTPKl) A6oonm0.704 plus 32 pmol bona fide  cAMP.
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checking with bona fide cAMP (chromatogram E), it appeared that e-cAMP was 

present. The concentration of e-cAMP was approximately 15 pmol/20 /xl 

medium).

Chromatograms F and G show the elution profiles of a strain that 

contained attenuated catalytic subunits of Tpkl. This attenuation results in an 

dramatic increase in i-cAMP concentrations and if similar to the 

phosphodiesterase mutant, e-cAMP may be present. Again the elution profile of 

this strain was different to any others and had a considerably increased 

concentration of 259nm-absorbing compounds. When spiked with cAMP, a 

peak of cAMP was identified and corresponded to approximately 90 pmol/20 pi 

medium.

Another test to determine whether the genotype and/or status of the 

i-cAMP-generating pathway of a strain had any effects of the presence of 

e-cAMP involved another wild type strain, S7-7A (this is related to S I8-ID). 

The elution profile of this strain was very similar to S I8-ID and indicated that 

the excess e-cAMP observed in that strain was probably not due to its phenotype 

but just a characteristic of this particular family of strains. When bona fide  

cAMP was added to S7-7A, the profile changed dramatically and the last peak 

decreased whist the previous one increased. This was a exceptional result, but it 

could be possible that cAMP was the second from last peak.

When S7-7A was transformed with a plasmid harbouring the PDE2 gene 

(Sass et al. , 1986), a different elution profile was observed. By spiking with 

bona fide  cAMP it was thought that the last peak probably corresponded to 

cAMP. However, when S7-7A was transformed with a plasmid carrying the 

TPK2 gene (Toda et a l ,  1987b), cAMP appeared to elute between the last and 

the second from last peak. Thus indicating that there was no cAMP present in 

the medium in which this strain had been growing. This may also mean that the 

cAMP observed in the previous chromatogram may not have been cAMP either.
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Due to the inconsistencies observed in the above experiments, i.e. cAMP 

may or may not be present in blank medium, cAMP is or is not extruded from 

cells, and the unexplainable changes in elution profile, it was necessary to 

determine whether the peaks of cAMP observed were e-cAMP and not another 

compound that co-eluted. For this, phosphodiesterase, which would degrade 

any e-cAMP, was added to samples and the appearance of the nucleotide that 

corresponded to e-cAMP was monitored. Figure 29 shows that as usual, there 

was a peak co-eluting or eluting very close to bona fide cAMP (chromatograms 

A, B and C). However, when phosphodiesterase was added to samples, no 

degradation of cAMP was observed. This lack of degradation was found not to 

be due to inactivity of phosphodiesterase, as chromatograms F and G indicated a 

disappearance of cAMP. From these data it appeared that the peaks observed 

were not e-cAMP, but something that co-eluted, possibly 2 '-3 ' cAMP, which is 

a breakdown product of RNA and can be found in the medium.

Concentrations of e-cAMP were also investigated on YEPD-grown cells 

(data not shown). However, as there was an increased number of nucleotides in 

blank YEPD than blank GM medium, the identification of e-cAMP was difficult 

to determine.
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Figure 29. HPLC chromatogram of phosphodiesterase degradation of bona fide 

and putative e-cAMP. Cells of strain D1 were grown in GM medium at 25 °C 

in a shaking water bath until a sufficient A6oonm had been reached. All GM 

medium was filtered before being loaded onto the column. The flow rate was

1.5 ml/min. UV absorbance was measured at a sensitivity of 0.002; path length 

was 5 mm. Peaks were recorded using a chart recorder with a running speed of 

15 cm/h. The samples were diluted by the addition of 0.5 vol of bona fide  

cAMP or 'blank' elution buffer. The sample volume was 20 pi. The small 

arrow represents t = 0, the large arrow represents the time at which bona fide  

cAMP elutes. A, blank GM medium; B, blank GM medium plus bona fide 

cAMP; C, D1 GM medium; D, D1 GM medium plus 32 pmol bona fide  cAMP; 

E, D1 GM medium plus phosphodiesterase; F, blank GM medium plus 

phosphodiesterase and 32 pmol bona fide  cAMP; G, water plus 

phosphodiesterase and 32 pmol bona fide  cAMP.
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CHAPTER 4. 

DISCUSSION.

4.1. The cAMP assay.

The control experiments, which included checking the standard curve, serial 

dilution and phosphodiesterase degradation of bona fide  and sample cAMP, 

clearly demonstrated that the assay method of Brown et al. (1971, 1974) was 

suitable for this work. Although the assay was extremely sensitive, and 

therefore showed minor differences in cAMP concentrations between 

experiments, the degree of reproducibility demonstrated that the assay was 

reliable.

This work expressed i-cAMP concentrations on a per cell basis; others 

have expressed i-cAMP concentration in relation to the amount of protein (pmol 

cAMP per mg protein), as a molar concentration (nM) or as a concentration in 

relation to dry or wet weight (nmol per g wet weight).

Although comparisons of i-cAMP concentrations were difficult due to 

the variety of ways in which they have been expressed, Table X shows that i- 

cAMP concentrations from this work compare well with the i-cAMP 

concentrations obtained by other researchers. The slight differences observed 

between values obtained from this work and those obtained from other 

researchers can be explained. First, there may be strain differences that cause 

different i-cAMP concentrations; this is known already (Van Aelst et al., 1991) 

and has been demonstrated here (see section 3.2.3.). Secondly, not only is there 

a variety of ways to express the concentration of i-cAMP, but there is a variety 

of extraction and assay methods that can be used, possibly resulting in slight 

concentration differences. Thirdly, most of the researchers that have measured 

i-cAMP concentrations have tended to use cells that have been harvested from 

high cell density cultures, whereas in this work cells have been harvested from 

low density cultures in which the cells are in early to mid exponential phase.
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Table X. Comparisons of cAMP concentrations.

Reference Range of [i-cAMP] This work

Frangois et al. (1987) 0.8-2.0 nmol/g dry wt 0.17-0.4®

Eraso and Gancedo (1984) 0.71-1.13 0.3-0.4b

Matsumoto et al. (1982a, 1984) 1.6-2.0 pmol/mg protein l.l-12 .2c»d

Tanaka et al. (1990b) «  5 pmol/mg protein l.l-12 .2c’d

Boutelet et al. (1985) « 5  pmol/mg protein at 
0.8-1.2 x 107 cells/ml

1.4-2.8

Fedor-Chaiken et al. (1990) 10 pmol/mg protein at 
1 x 107 cells/ml

1.4-2.8

Camonis et al. (1986) 0.7 pmol/2 x 107 cells 0.13-0.48

Watson and Berry (1977b) 35-55 pmol/5 x 107 cells 
at « 2 x  107 cells/ml

* 0 .4

Eilam et al. (1990) 0.02-0.04 pmol/106 cells 
at 1 x 108 cells/ml

e

“Frangois et al. (1987) expressed i-cAMP as a function of dry weight. Using 

their dry weight and optical density curve, a dry weight value was obtained for 

samples prepared in this work.

bThe molar concentration could be calculated using an i-cAMP concentration 

obtained in this work that corresponded to the cell density at which Eraso and 

Gancedo (1984) harvested the cells and the assumption that 1 g wet weight yeast 

contains 0.74 ml yeast cell sap.

cThe range of i-cAMP concentration was calculated using TCA-precipitated

protein and obtaining protein concentrations by micro Lowry assays.

dAs authors did not state the cell density at which they harvested the cells, the

range of i-cAMP concentration was obtained by using i-cAMP concentration

values from experiments over a wide range of cell density.

eNot determined, estimated to be between 1 and 3 pmol; authors harvested at a

cell density that was not often obtained in this work.
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Fourthly, most of the values obtained from other researchers reflect the i-cAMP 

concentration at only one time point or when the cells have been grown in 

medium containing buffers or depolarizing agents, therefore comparisons 

between patterns of i-cAMP concentrations or i-cAMP in similar growth 

medium were difficult to obtain.

Frangois et al. (1987) performed experiments that can be directly 

compared with this work. They measured i-cAMP concentrations over a long 

period of time and a wide cell density range. They also used TCA in order to 

extract the i-cAMP and the Amersham cAMP assay kit in order to measure 

i-cAMP. Their i-cAMP concentrations were 3-4.5 times higher than those 

found here, but considering the approximate calculation, concentrations were 

reasonably comparable.

Eraso and Gancedo (1984) also used the Amersham kit to assay i-cAMP 

and TCA in order to extract cAMP from the cell harvest. They also harvested 

cells at a low cell density and therefore their i-cAMP concentrations could also 

be compared with those obtained here. In order to calculate the concentration of 

i-cAMP, Eraso and Gancedo (1984) used the value of 0.6 ml yeast cell sap per 

gram of wet weight yeast (Conway and Downey, 1950). However, Conway and 

Downey had in fact concluded that 1 g of wet weight yeast corresponds to 

0.74 ml yeast cell sap per gram wet weight. Therefore the i-cAMP 

concentrations of Eraso and Gancedo (1984) should in fact be lower, 0.57- 

0.92 ixM. The corresponding i-cAMP concentration obtained here was lower 

than found by Eraso and Gancedo, but was still comparable.

Many researchers (Van Aelst et al., 1991; Thevelein et al., 1987a,b) 

harvested their cells at higher cell densities than those measured here and 

therefore could not be directly compared.

Another group that have measured cAMP was Matsumoto et al. (1982b, 

1984). Using either the method of Brown et al. (1971, 1974) or the Amersham 

cAMP kit, their i-cAMP concentrations were similar to those measured in this
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work. However, the authors did not state the cell density at which the cells 

were harvested, and as the i-cAMP concentration varies depending on the cell 

density of the culture (Francois et al., 1987; this work), values obtained in this 

work could not be compared with their values.

There have been many researchers that have measured i-cAMP 

concentrations and expressed them as pmol/mg protein (Boutelet et a l.y 1985; 

Toda et al. , 1985; Nikawa et al. , 1987a,b; Fedor-Chaiken et al. , 1990; Tanaka 

et al. , 1990b). All of the ranges in i-cAMP concentration obtained in the papers 

cited above corresponded to values that have been measured here, although 

Nikawa et al. (1987a,b) used the acetylation assay method, Camonis et al.

(1986) used the cAMP- succinyl-TME-125I kit and Fedor-Chaiken et al. (1990) 

used the New England Nuclear [125I]cAMP kit for measuring i-cAMP 

concentrations. The acetylation method is reportedly able to measure i-cAMP in 

the order of femtomoles per assay tube.

Whereas all of the researchers cited so far have measured i-cAMP 

concentrations that corresponded to those reported here, Eilam et al. (1990) and 

Watson and Berry (1977b) have reported concentrations of i-cAMP that are 

much lower and much higher, respectively, than any other values measured 

(despite Eilam et al. (1990) using the Amersham cAMP assay kit).

4.2. Intracellular cAMP concentrations in asynchronous batch cultures.

The majority of the experiments presented here involved the use of 

asynchronous batch cultures. The results of these experiments all showed a 

decrease in the concentration of i-cAMP with time. The i-cAMP concentration 

per ml of culture harvested increased with time, but not in proportion to the 

increase in cell numbers, therefore the i-cAMP concentration per cell decreased.

Francois et al. (1987) have suggested a theory as to why the i-cAMP 

concentration decreases with time. They proposed that the i-cAMP 

concentration mirrors glucose concentration and as glucose is metabolized and
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its concentration falls, the i-cAMP concentration falls. As discussed in Chapter 

1, the concentration of i-cAMP responds to nutritional conditions and when 

glucose is present, cAMP is synthesized. Therefore as the glucose concentration 

falls, so does the concentration of i-cAMP.

However, the results also showed that as the glucose was being 

metabolized and its concentration was decreasing along with the i-cAMP 

concentration, the cells were proliferating at the same rate, for example when 

the cells were in exponential phase. This means that although the i-cAMP 

concentration fell, there was no effect on the rate of proliferation. It could be 

inferred that the i-cAMP concentration in asynchronous cultures was much 

higher than any threshold concentration that is required for entry into the mitotic 

cycle and the traverse of Start, and the cell produced i-cAMP in excess of this 

amount. When the cells had stopped proliferating, the i-cAMP remained at a 

low but constant level, indicating that either the degradation or the synthesis of 

cAMP had not stopped altogether. However, this lower concentration of 

i-cAMP was not necessarily the putative threshold required for traverse of Start.

The concentration of i-cAMP is thought to act as a switch mechanism, 

probably in conjunction with other factors, governing when a cell can traverse 

Start. Data presented here suggest that this putative switch mechanism is 

gradual in the transition from the ability to the inability to traverse Start.

There is evidence to suggest that the i-cAMP concentration is controlled 

by feedback inhibition (Nikawa et al., 1987a), although as seen here, the 

i-cAMP concentration was not kept at a minimum level during the exponential 

phase of growth and therefore no feedback control appeared to be acting. 

Feedback inhibition (discussed in section 1.4.2.) is supposed to be able to 

control i-cAMP concentrations tightly over a 10,000-fold range. From the data 

obtained here, however, it appears that this is not the case and perhaps feedback 

inhibition only occurs when there are drastic changes in the i-cAMP 

concentration. Instead it appears that the amount of i-cAMP synthesized is far
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greater than that required for growth and proliferation; the apparent excess of 

i-cAMP may be related to the higher concentration of glucose present in the 

medium at the beginning of the experiment. It is possible that the i-cAMP 

concentration is related to the concentration of available carbon source and does 

not function solely as a signal, as it would not be economical to produce a signal 

molecule in excess, but only when required.

Other results presented here show that there was a strong relationship 

between cell density and i-cAMP per ml of culture harvested. A linear 

relationship existed and this can be seen in Figures 7 and 8, and Table IV. This 

is what would be expected if the i-cAMP concentration were dependent on the 

concentration of the carbon source. As the carbon source is utilized and the 

cells grow and increase in number, the i-cAMP concentration would be expected 

to decrease in proportion to the increase in cell number.

It was also found that the concentration of i-cAMP was not kept constant 

when related to changes in volume, possibly inferring that as long as there is 

i-cAMP, its actual concentration is not crucial for proliferation. There were 

also no significant differences in the i-cAMP concentration between different 

strains, which also displayed different volumes. The actual concentration of 

i-cAMP may not be important as it only takes one molecule of cAMP to activate 

PKA, which can then phosphorylate many proteins, thus producing a signal. 

Baroni et al. (1989) suggested that the critical size difference between RASP*119 

and cdc25-l mutants {RAS2?&n9 cells have to achieve a larger critical size before 

traverse of Start than cdc25-l cells) was due to the activity of adenylyl cyclase 

and cAMP concentrations. It would be agreeable if the control of cell size was 

linked to the cAMP pathway and this is still conceivable, however, the data 

obtained here do not provide evidence for or support any control that cAMP 

may have over cell size.

Although statistical analysis showed that there were significant 

differences in the i-cAMP concentrations between cells grown on rich and
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minimal media or fermentable or non-fermentable carbon sources, the difference 

was not too gross, for example more than 2-fold. In E. coli, the difference in 

i-cAMP concentrations between glucose and non-fermentable carbon sources is 

at least 4-fold: the shift from glucose- to succinate-containing medium results in 

a 10-fold increase and glucose- to glycerol-containing medium results in a 7.5- 

fold increase in i-cAMP concentration. It appeared that the i-cAMP 

concentrations were on a similar scale and therefore i-cAMP is not an indicator 

of catabolite repression, as in E. coli.

There have been many reports concerning the i-cAMP concentration with 

respect to catabolite repression (see section 1.5.2). Eraso and Gancedo (1984) 

concluded that catabolite repression was not associated with low i-cAMP 

concentrations. They found that the i-cAMP concentration was higher in cells 

that had been growing on glucose rather than ethanol. However, as they only 

tested one non-fermentable carbon source (ethanol), a definite conclusion from 

their data cannot be made. There are other reports that have compared i-cAMP 

concentrations between different carbon sources (Olempska-Beer and Freese, 

1987; Mbonyi et al. , 1990). Olempska-Beer and Freese (1987) found that the 

i-cAMP concentrations of cells grown on either glucose or acetate are similar, 

thus supporting similar results found here. Also, Mbonyi et al. (1990) found 

that although non-fermentable carbon sources do not result in the production of 

a cAMP signal, similar concentrations of i-cAMP exist in cells that have been 

grown on fermentable or non-fermentable carbon sources. Results from this 

work appear to agree with those of Olempska-Beer and Freese (1987) and 

Mbonyi et al. (1990) in that i-cAMP concentrations are similar when cells are 

grown on fermentable or non-fermentable carbon sources.

Although the i-cAMP concentrations were similar when cells were grown 

on fermentable or non-fermentable media, it is interesting to note that the 

proliferation rates were not. The proliferation rate of cells grown on glycerol 

was lower than that of cells grown on glucose, and also the cells were smaller.
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These data not only add to the theory that the i-cAMP concentration is size- 

independent, but also suggest that the i-cAMP concentration is not related to the 

growth rate and therefore unlike Whi2, whose transcription is sensitive to 

growth rate (Mountain and Sudbery, 1990b).

Theories (Thevelein, 1991) relating to the RAS-adenylyl cyclase pathway 

not being operative during growth on non-fermentable carbon sources and the 

RAS pathway is only triggered by fermentable sugars, and that this pathway is 

not operative on glucose and cAMP cannot be a signal for traverse of Start, are 

in contrast to results obtained in this work and by others, or there is confusion 

between the glucose-induced i-cAMP signal (a putative switch from non- 

fermentable to fermentable carbon sources) and i-cAMP synthesis that is present 

all of the time. The findings that show the requirement of Ras for growth on 

non-fermentable carbon sources {ras2 mutants cannot grow on such carbon 

sources) and the domain of cdc25 that allows growth on non-fermentable carbon 

sources, together with data obtained here, demonstrate that cAMP is synthesized 

on non-fermentable sources and this must occur via Cdc25, Ras and adenylyl 

cyclase.

4.3. Cell cycle stage-specific fluctuations in i-cAMP from S, cerevisiae.

It is well known that cAMP has an important role in the regulation of growth 

and also in the control of the cell cycle of S. cerevisiae. A series of experiments 

was performed in order to define this role more clearly and to determine 

whether the i-cAMP concentration fluctuates at specific stages in the cell cycle.

One method of determining whether there are cell cycle stage-specific 

fluctuations in the concentration of i-cAMP is to select cell cycle mutants that 

arrest at particular points in the cell cycle and study their patterns of i-cAMP 

concentration.

For this, a CDC+ control strain was compared with two other cell cycle 

mutants, one of which arrested at Start and the other arrested at the end of the
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cell cycle. On shifting to the higher temperature all three strains showed a 

transient increase in the concentration of i-cAMP. The reason for this increase 

and decrease in i-cAMP levels around shift-up could be explained by a number 

of reasons. First, adenylyl cyclase activity approximately doubles for every 

10 °C increase in temperature (Londesborough and Varimo, 1979) and the high 

Km phosphodiesterase is independent of increases in temperature 

(Londesborough and Lukkari, 1980); nothing is known of the effect of 

temperature on the low Km enzyme as yet. Secondly, feedback inhibition may 

shut down the synthesis of cAMP, although it appeared that feedback inhibition 

was not operative during normal growth on glucose, a temperature increase may 

stimulate feedback inhibition. Thirdly, cells at 36.5°C are proliferating faster 

and therefore use up glucose faster and may assume a lower level of i-cAMP 

sooner than slower proliferating cells at 25°C; i-cAMP concentrations at 36.5°C 

were soon similar to those in the 25°C cultures.

The control strain, A364A, showed a typical decreasing level of i-cAMP 

throughout the time-course of the experiment. However, cdc28-Dl had a 

constant i-cAMP concentration after the transient increase and cdc5-l cells 

showed an increase. A constant i-cAMP concentration may mean that synthesis 

of cAMP equals degradation or that there is no synthesis or degradation. An 

increasing i-cAMP concentration may mean that synthesis is greater than 

degradation.

It may be significant that cdc5-l cells have a continuously increasing 

level of i-cAMP, as opposed to the constant levels of cdc28-Dl. Neither of the 

mutations affect cAMP production or degradation directly. It is possible that the 

concentration of i-cAMP increases throughout the cell cycle and at cell 

separation, and it falls in preparation for Start, where a cell's environmental 

status is assessed (see section 1.3). A decrease at this stage of the cell cycle 

could function as a gate through Start: if there were nutrients present, then 

cAMP would be synthesized and the cell would traverse Start. The results from
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the temperature shift-up of cdc28-Dl, showing that there is a decrease in the 

i-cAMP compared with cdc5-l, may indicate that there is a lowering of i-cAMP 

concentration before Start. Table XI shows the ratio of intracellular cAMP at

36.5 °C to 25 °C, after a number of generations. After each generation of 

A364A, the ratio of cAMP remained close to a value of 1. However, for both 

cdc5-l and cdc28-Dl, this ratio increased with successive generations.

However, the ratio after two generations of arrest for cdc5-l is much higher 

than that of cdc28-Dl therefore it seems possible that this increase may be due 

to its position or timing of arrest in the cell cycle.

To reinforce any theory concerning cell cycle stage-specific fluctuations 

of i-cAMP concentrations, a technique that will produce true synchronous 

cultures and not affect the activities of enzymes that may effect the i-cAMP 

concentration should be used. For this, centrifugal elutriation was chosen as the 

best available method.

Although good synchrony was obtained for all centrifugal elutriation 

experiments of the wild type strain, there was no consistent pattern of i-cAMP 

cell cycle stage-specific fluctuations. There was, however, a high level of 

i-cAMP measured at the beginning of the first three elutriations, particularly the 

first two experiments. This may mean that cAMP is high in cells that have just 

separated from the mother cell or those at Start. The first two elutriations 

showed decreases on commencement of budding, the third showed a decrease on 

cell separation and a rise on commencement of budding and the fourth showed 

no fluctuations at all. (Differences in magnitude between the two high plateaux 

observed in the results from the third elutriation experiment may have been due 

to two factors: first, the concentration of cAMP decreases over a period of time 

in relation to glucose, but only approximately 2-fold; secondly, because cell 

separation occurs over a period of time, daughter cells become delayed in 

respect to the cell cycle of their mother.
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Table XI. The ratio of i-cAMP concentrations between cells grown at 36.5°C 

and 25 °C after successive generations.

Strain Number of generations

1 2 3

A364A 1.2 1.15 0.89

JL138 1.6 2.36 3.93

GR57 1.84 5.5 n.d.

n.d. represents not determined.
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The difficulty in interpreting the information from the centrifugal 

elutriation experiments is that 100% synchrony was impossible to achieve and so 

trends in i-cAMP levels were difficult to identify as no two experiments were 

the same. Even with a good first cycle synchrony, which was achieved in all 

elutriations, results from each elutriation were different from the next. The 

possibilities that could cause such differences could be (i) the elutriation 

procedure is interfering with the cells (ii) extraction procedures for cAMP are 

affected differently in the cell cycle and (iii) there are no cell cycle stage- 

specific fluctuations in the i-cAMP concentration. It is doubtful that the first 

possibility affected the results, as the asynchronous cultures, which have been in 

the rotor for longer, did not show any serious perturbations with reference to the 

cell density, budding index or concentration of i-cAMP throughout the time- 

course of the experiment. Also, the asynchronous batch cultures showed 

reproducibility and consistency between experiments. The second possibility 

that the extraction procedure for cAMP is affected stems from the observation 

that in the laboratory of M. Wigler, cAMP cannot be detected after extraction 

with TCA (J.M. Thevelein, personal communication). It is thought 

(J.M. Thevelein, personal communication) that the inability to detect cAMP in 

the third elutriation experiment may have been due to the TCA extraction 

method. However, i-cAMP was observed at this same stage in other 

experiments and similar fluctuations to those seen in the third elutriation 

experiment have been observed (J.M. Thevelein, personal communication). The 

third possibility that there are no cell cycle stage-specific fluctuations, is 

supported by unpublished observations (J.W.M. Oehlen, personal 

communication to J.M. Thevelein); although this group tend to use the 

technique of age fractionation, which does not produce well defined stages 

throughout the whole of the cell cycle. Watson and Berry (1977b) also 

measured i-cAMP concentrations, and although the technique that they used was 

incomparable with centrifugal elutriation, they observed an increase at bud

113



initiation and a decrease at nuclear separation and division. Also, there were 

increases before decreasing finally at cell separation. The results of the third 

elutriation experiment (only) also showed increases or high concentrations of 

i-cAMP during bud initiation and decreases at cell separation.

One assumes that any reduction in the concentration of i-cAMP is due to 

phosphodiesterase activity, but if none is present then either feedback inhibition 

or extrusion into the medium is responsible. Elutriation using a strain that was 

deficient in both phosphodiesterases did not make it easier to define any cell 

cycle stage-specific fluctuations of i-cAMP. In the first experiment, the i-cAMP 

concentration appeared to mirror the budded index and as the cells separated, 

the i-cAMP concentration decreased, as in the third experiment with the wild 

type. For the second experiment, when the synchronous culture was compared 

with the asynchronous control it appeared that the level of cAMP fluctuated but 

not in relation to the cell cycle. Obviously phosphodiesterase has a role in 

controlling i-cAMP concentrations, however, the concentration of i-cAMP did 

not appear to fluctuate 'wildly' in the phosphodiesterase mutant, possibly 

meaning that there may be another factor controlling i-cAMP concentrations.

The synchrony, however, was very poor for both experiments.

Age fractionation was also used to separate stages of the cell cycle. 

Interpretation of the results was extremely difficult as the cells were 

aggregating, forming clusters in the rotor and therefore a good separation could 

not be obtained. However, further evidence demonstrating that 

phosphodiesterase is not the only controlling element of i-cAMP concentrations 

was obtained, as the i-cAMP concentration did not fluctuate to a great extent 

overall compared with the i-cAMP concentration of the wild type. It is possible 

that extrusion of cAMP into the growth medium is an alternative method for 

control of i-cAMP concentrations (see sections 1.1.2 and 4.4).

From the centrifugal elutriation and age fractionation experiments it 

appears that there were fluctuations in the i-cAMP concentration, but these were
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not specific to any stage of the cell cycle. However, the results from the cdc 

mutants experiments matched those of the third elutriation experiment, when the 

concentration of i-cAMP built up during the cell cycle and decreased after cell 

separation and before Start.

Despite the lack of evidence for stage-specific fluctuations in the i-cAMP 

concentration, it does not, however, necessarily follow that i-cAMP has no role 

in the regulation of the cell cycle. Intracellular cAMP is required for activation 

of PKA in order to control various processes such as carbohydrate and 

phospholipid metabolism, transcriptional regulation, and control of strategic 

points in the glycolytic and gluconeogenic pathways, but i-cAMP may not be 

tightly regulated for this purpose. The theory that i-cAMP has a role as a 

signalling molecule during the cell cycle has been disputed (Thevelein, 1991) on 

the basis of the glucose-repressible cAMP signal and feedback inhibition 

information. Much of the work in this area has largely been directed towards 

studying 'moments in time' with mutants, rather than studying wild type strains 

(and mutants) over a long period of time. First, it has been demonstrated here 

that feedback inhibition does not appear to be operating efficiently, as the levels 

of i-cAMP were more than the minimum concentration required for 

proliferation. Secondly, the glucose-repressible cAMP signal has been confused 

with the normal regulation of the cAMP concentration. As this signal is 

reportedly glucose-repressible, its role has been confined to the respirative- 

gluconeogenic switch and according to Thevelein (1991) cannot operate as a 

trigger for traverse of Start. But their results are only concerned with the signal 

and in no way can be related to normal cAMP synthesis or control of 

proliferation. Thevelein concluded by stating that a role for i-cAMP is to 

provide a basal level for control of proliferation, however, they experimented 

with the addition of glucose to cells that were already growing on glucose, and 

not cells that are growing on glucose and are subject to normal cell cycle 

regulation and cAMP synthesis.
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4.4. Extracellular cAMP.

Results from centrifugal elutriation experiments, especially the third elutriation 

run (section 3.3.2.) showed possible stage-specific fluctuations in the level of 

i-cAMP. This result and those from the cdc mutants, may indicate that the 

i-cAMP concentration is high at end of the cycle and low at the beginning in 

preparation for Start. This led to the possibility that cells may actively release 

cAMP, perhaps at cell separation in preparation for Start. Disposal of cAMP, 

released at any stage of the cell cycle (specific or non-specific), may be part of 

the assessment of nutritional status. This could occur by phosphodiesterase, 

feedback inhibition or extrusion. In fact, it has been reported that cAMP is 

present in the medium of proliferating S. cerevisiae cells (Eraso and Gancedo, 

1984; Olempska-Beer and Freese, 1987) and sporulating cells (Watson and 

Berry, 1977a). Extracellular cAMP is continually excreted during vegetative 

growth during guanine starvation (Olempska-Beer and Freese, 1987) and it is 

thought that cells need an optimum i-cAMP concentration for growth and 

excrete the excess, which may otherwise be harmful for growth (Olempska-Beer 

and Freese, 1987). Both reports showed similar e-cAMP concentrations to 

those found in this work: approximately 2 nM (Eraso and Gancedo, 1984) and 

0-40 nM (Olempska-Beer and Freese, 1987). Watson and Berry found that 

e-cAMP was present in concentrations of the order of 50-800 nM.

Cyclic AMP was found in the media of synchronous and asynchronous 

cultures from the third elutriation experiment and in asynchronous batch cultures 

of a wild type and double phosphodiesterase mutant. A role for e-cAMP could 

not be assigned, however, as exogenously added cAMP did not appear to affect 

the proliferation of S. cerevisiae. Although, due to the design of both of the 

experiments, only large changes would have been detected. The role of 

e-cAMP could be to enable communication between cells, as found with other
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nucleotides during sporulation of S. cerevisiae (Jakubowski and Goldman, 

1988).

It also appeared that cells of S. cerevisiae possibly take up cAMP from 

the medium in which they are growing. This has been previously reported 

(Singh et al. , 1980; Matsumoto et al. , 1982b). Although uptake experiments 

were performed in a similar way to those of Matsumoto et al. (1982b) and 

Singh et al. (1980), the results may represent other phenomena. Cyclic AMP 

could have bound to a putative cAMP receptor protein on the wall of the cell 

and remained bound after washing, but then become unbound after TCA 

precipitation. It is possible that cAMP diffused into the intermembrane space 

and after TCA precipitation was mixed with the cytoplasmic solute. Therefore 

this observed uptake is not definite, but it may be useful to a cell if cAMP is 

extruded at some stage of the cell cycle.

The concentration of e-cAMP usually increased with time, perhaps 

increasing as cAMP was being extruded into the medium at cell separation. 

However, it was calculated that the e-cAMP concentration measured was higher 

than could possibly be present due to extrusion by cells at the end of the cell 

cycle. Perhaps the e-cAMP concentration was a function of the pH of the 

medium as the e-cAMP concentration increased with the decreasing pH of the 

medium with time. However, it was subsequently shown that the pH of the 

growth medium was found to interfere with the cAMP assay. This implied that 

values measured by this assay method were incorrect and unreliable, although 

control experiments had been performed that showed the concentration of 

e-cAMP correlated with the dilution factor, and addition of growth medium 

actually depressed the concentration of e-cAMP, as measured by the assay. It 

also meant that the e-cAMP concentrations measured by Eraso and Gancedo 

(1984), Olempska-Beer and Freese (1987) and Watson and Berry (1977a) were 

incorrect, as they used essentially the same method to assay e-cAMP.
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Due to the unreliability of the e-cAMP concentrations measured using 

the assay method of Brown et al. (1971, 1974), phosphodiesterase was added to 

used growth medium in order to see if e-cAMP could be identified by 

degradation. Only one experiment out of nine showed any degradation. This 

result indicated that no e-cAMP was present in the medium. The lack of 

observed phosphodiesterase activity may have been due to a constituent of the 

growth medium that interfered with its activity, although it was subsequently 

found that phosphodiesterase was able to function in GM medium.

It was then necessary to employ an alternative method of measuring the 

e-cAMP concentration. A technique was required that would not only ensure 

the accurate identification of cAMP, but also that there was minimal 

interference. The technique of HPLC was chosen, although, if by coincidence 

the range of concentration of e-cAMP measured by the Brown et al. (1971, 

1974) method was correct (approximately 1-10 pmol/ml), a peak of e-cAMP 

would be too small and difficult to determine. It is, however, possible that the 

concentration of e-cAMP is higher (or lower) than that determined by the assay 

method for cAMP.

Bona fide  cAMP was used in order to determine the elution time of 

cAMP on the chromatograph. A peak was observed that eluted at the same time 

as the bona fide  cAMP and the concentration of this peak varied between 15 and 

500 pmol/20 fi\, much higher than the concentration of e-cAMP measured by 

assay was between 1 and 10 pmol/ml. Not only were there large differences 

between the e-cAMP concentration measured between individual HPLC 

experiments, but sometimes there was e-cAMP and sometimes there was not. 

This may have been due to differences in batches of yeast nitrogen base, which 

is a constituent of GM medium, or it may be due to insufficient separation of 

nucleotides resulting in a false peak of cAMP. Yeast nitrogen base does in fact 

contain compounds that absorb at around 259 nm, for example folic acid, 

inositol, niacin, /?-aminobenzoic acid, pyridoxine hydrochloride, riboflavin and
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thiamine hydrochloride. Where these particular substances elute in relation to 

cAMP is not known.

The possibility that the e-cAMP observed may be another substance was 

tested by adding phosphodiesterase to growth medium. It was found that the 

enzyme could degrade cAMP present in the growth medium, but no degradation 

was observed of the putative e-cAMP. It therefore seems probable that the 

e-cAMP observed may be a compound that co-elutes with cAMP, thus giving 

misleading results. A possible candidate is 2 ',3 ' cAMP, which is a breakdown 

product of RNA and may be present in the medium due to break up of dead 

cells. Although the peak identified was probably not e-cAMP, it is still possible 

that cAMP is present in the growth medium of S. cerevisiae, but it is masked by 

other compounds.

4.5. Overall conclusions.

The assay method of Brown et al. (1971, 1974) and the modifications developed 

during this work show that cAMP can be reliably measured from cell extracts of 

S. cerevisiae. Results obtained showed that the i-cAMP concentration decreased 

during exponential growth on glucose and this concentration was in excess of a 

putative threshold level required for traverse of Start. Feedback inhibition also 

appeared not to exist. No gross differences were found between the i-cAMP 

concentrations from cells grown on either rich or minimal media and non- 

fermentable or fermentable carbon sources.

The results from the centrifugal elutriation experiments were not 

conclusive, but it would appear that no cell cycle stage-specific fluctuations in 

the i-cAMP concentration exist, although fluctuations were seen to occur. It 

appeared that there may be another factor controlling i-cAMP concentrations. 

The presence of e-cAMP is still questionable as the experiments performed 

could not conclusively state whether e-cAMP was present. However, it is now 

known that e-cAMP should not be measured by the use of an immunoassay, in
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particular that of Brown et al. (1971, 1974), unless interfering compounds have 

been completely removed.

4.6. Further work.

Although no differences could be found between cells grown on fermentable and 

non-fermentable carbon sources, useful information may be obtained if the 

i-cAMP concentration from cells that are growing on these carbon sources was 

monitored throughout the lag, exponential and stationary phases. Differences in 

concentration may be found due to the different metabolism of these carbon 

sources.

In order to complete the evidence for or against cell cycle stage-specific 

fluctuations in the i-cAMP concentration, it would be desirable to assay the 

activity of adenylyl cyclase or PKA. This could be achieved only if the yield 

obtained from elutriation is increased.

The presence of e-cAMP is yet to be confirmed, however, it has been 

subsequently found in the literature that a phenylboronate-agarose column can be 

used to remove interfering compounds from the growth medium (Fehr et al. , 

1990). The detection of cAMP may be additionally improved after removing all 

ribonucleotides from the medium by adding barium and zinc sulfates and then 

separating the growth medium on a reversed phase column (Perrett, 1986).

These modifications should be used to provide a more accurate method for 

determination of e-cAMP.
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