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Summary

Modulation classification has been approached using non-deterministic and decision theoretic 

techniques. The majority of the published literature describes non-deterministic methods 

where many of the classifiers decompose the signal into the instantaneous envelope, phase and 

frequency. A wide variety of ad-hoc techniques can then translate these signals into features 

for classification.

A number of decision theoretic techniques have been developed for modulation classification, 

which apply statistical methods for pattern recognition. These are seen to be well suited to 

digitally modulated signals, which are generated in a deterministic fashion.

The thesis has focused on decision theoretic methods for PSK classification in additive 

Gaussian white noise, the foundations of which are based upon mathematical models. Such 

models are developed and may be applied directly to decision theoretic modulation 

classification, but may also be extended to provide a greater understanding of the feature 

extraction stage of non-deterministic modulation classification.

A number of these mathematical models have been developed for the decision theoretic 

classification of PSK signals, where statistical algorithms are used to determine the number of 

PSK states present in additive Gaussian white noise.

Existing decision theoretic techniques for PSK classification are examined and certain 

methods are further developed. The main contribution however, is the development of a 

number of new techniques, which have been divided into two categories. Firstly the carrier 

synchronous techniques which have been examined, in part within the published literature and 

secondly the asynchronous techniques which have not.

The thesis develops two novel synchronous phase based techniques, namely the “DFT of 

Phase Histogram” and “Maximum Likelihood DFT of Phase Histogram”. A globally 

optimum technique, the “Maximum Likelihood IQ Technique” is developed based on the 

received I and Q samples, and this method is found to have globally optimum performance. 

However, the different techniques require different a-priori information, which has a 

significant effect on the classifier implementation.

Classification performance therefore, is not the only consideration in the choice of a 

modulation classifier. The decision theoretic model is developed within a paradigm of 

assumptions, and errors in the estimation of a-priori parameters will cause the model to
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become inaccurate. A further consideration is the sensitivity of the techniques to estimation 

errors and paradigm degradation, and these are examined within the thesis.

The new carrier synchronous techniques which have been developed in this thesis are found to 

perform well compared to existing methods in terms of parametric sensitivity, classification 

performance, computational complexity and required a-priori information.

Three asynchronous techniques have been developed which do not require carrier 

synchronisation and are therefore much simpler to implement than the synchronous 

techniques. All three techniques are based on the phase difference between adjacent symbols, 

and are generally of low complexity. However, there is a substantial degradation in 

classification performance when the methods are compared with carrier synchronous 

techniques.
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1. Introduction

In order to transmit information across a radio channel, the information bearing signal is 

encoded into a modulation format, and is then transmitted at the desired radio frequency. 

There are applications where it is useful to determine automatically the form of the 

transmitted modulation scheme.

The work undertaken in this thesis looks into the automatic classification of the modulation 

type for communication signals. This forms the basis of a pattern recognition problem, where 

a signal presented to the system will be classified as one of a library of modulation formats. 

The complexity of the pattern recognition task increases and the reliability decreases as the 

number of candidate schemes is increased. There are a wide variety of modulation schemes 

which may be applied to an information bearing signal, and a practical classifier will 

generally take a limited subset of these for classification purposes in order to reduce the 

complexity of the system.

The task of modulation recognition suffers from drawbacks when compared with typical 

communication detection techniques due to the lack of a-priori information. As an example, a 

communications system may be transmitting four level PSK at 64 kbits/s and at around 

600MHz. The receiver will have knowledge of this, and so will apply a fourth power law to 

the signal. It will then search for a carrier component around four times the I.F. frequency, 

bandpass filter the signal and noise, and coherently demodulate the signal. This will then be 

followed by equalisation and matched filter detection. A modulation recognition system is 

unable to do the same, as it has no prior knowledge that the signal is digitally phase 

modulated, there is no knowledge of the symbol shaping, no equalisation techniques are 

available and there is no knowledge of the bit rate or carrier frequency of the signal.

This lack of a-priori information makes the modulation recognition problem a complicated 

task, and when noise, interference, distortion and multi-path effects are added, the problem 

becomes even more difficult to solve.

The modulation schemes considered within this work are frequency domain separated signals, 

which are the most common forms of modulation. Transmissions of these types may be found 

across the range of radio frequencies, although some modulation formats may be more 

popular in a particular frequency band due to frequency dependent propagation effects.

1.1 Applications



1.1 Applications
The primary applications of modulation recognition fall into the following categories :

A) Military and Civil Surveillance
In military and civil surveillance applications, modulation recognition is used as an aid in the 

monitoring of enemy transmissions and the identification of a threat. In general, the 

modulation type of the signal is one parameter in a complex problem. The significance of the 

transmission will depend upon a set of parameters including the modulation type. Other 

parameters may include the direction and frequency of transmission.

Examples of the ultimate goal are to either decode the information on the transmission or to 

jam a signal which may be linked to a terrorist detonator.

Modulation recognition has been conventionally achieved by manual means, with the aid of 

various equipment items such as different demodulators, an oscilloscope for time domain 

representation, a spectrum analyser and a modulation meter. This approach requires a human 

operator to continually monitor the radio channel, which is costly and for fast burst 

transmissions can be difficult to process effectively. One human operator cannot listen in to 

all the demodulated outputs simultaneously, so there will be a time delay associated with the 

switching between demodulators.

Whilst an automatic system is capable of improving the performance in certain areas, it is not 

always possible for it to outperform the discriminating capabilities of a human. This is 

emphasised in the classification of analogue signals, where a human will quickly and 

effectively be able to detect the presence of speech at the output of a correct demodulator. 

This is an extremely difficult process for an automatic system, and is illustrated by the 

complexity and lack of reliability of speech recognition algorithms in noisy environments.

In the case of digital transmissions, the signals may be more easily modelled and the 

discriminating capabilities of a human will not be as significant in these cases.

B) Spectrum Management & Interference Identification
It is essential to have tight control of transmissions over the radio spectrum in order that user 

transmissions are reliable. It is therefore important to be able to detect that transmissions have 

been approved by the relevant licensing authorities.
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In policing the airwaves, it is useful to be able to determine the modulation type of a signal 

being transmitted to determine if the transmission is authorised.

C) Radio Direction Finding
In radio direction finding systems, a particular signal is tracked. One descriptive property of a 

signal being tracked is the modulation type of the signal. Using modulation recognition, a user 

may determine when an incorrect transmission is being tracked.

D) Modulation Diverse Communication Systems
There are applications in mobile radio which enable the use of a range of modulation types. 

Two variants of this are in a variable rate digital communications system and the gradual 

migration from an analogue set of mobile radios to a digital platform.

Variable rate communication systems will adaptively alter the modulation scheme depending 

upon the channel characteristics. In a good noise free channel a large number of bits per 

symbol will be transmitted, and in a poor environment fewer bits will be transmitted. 

Modulation recognition is not a primary task in this form of system as the switching of the 

modulation scheme will be protocol driven. However, if a user is required to observe the 

information part way through the transmission, or if modulation synchronisation becomes 

lost, modulation recognition may provide a useful technique.

In private mobile radio infrastructures where users are upgrading from analogue to digital 

systems, it is often desirable to upgrade the mobile radios as a gradual process and spread the 

capital outlay. In such systems it would be desirable to enable the base-station and mobile 

units to have the capability of switching between analogue and digital transmissions according 

to what has been received.

The modulation recognition in this type of application tends to be considerably more simple 

than that of the military style of modulation recognition as the number of schemes will be 

considerably limited, and there will be additional a-priori information available.

E) Intelligent Commercial Receiver Equipment
Modulation recognition may be applied to intelligent receivers. One example is a commercial 

scanning receiver, which enables a user to eavesdrop on communications. Another example is 

within communication measurement equipment such as a communications analyser, which is 

generally switched manually to cater for the different modulation types.

1.3 Applications



1.2 Modulation Recognition Techniques
The general procedure for modulation recognition is shown in figure 1.1. The radio 

frequencies are scanned for a signal of interest and once a signal is detected, it is translated to 

an I.F. where a segment is captured digitally.

Mix to 
I.F.

Digitally
Sample

Classified
Signal

Capture 
Time frame 

of signal

D SP&
Pattern

Recognition

Scan R.F. for 
a Signal of  

Interest

Figure 1.1: Modulation Recognition Overview

Once the signal is captured digitally there is a great deal of scope to process the signal, and 

then classification may be performed. There are two broad approaches which may be applied 

to a pattern recognition problem, which are decision theoretic and non-deterministic methods. 

The literature has placed more emphasis on non-deterministic techniques, but both forms of 

pattern recognition are applicable to modulation recognition.

Non Deterministic Techniques
Figure 1.2 describes the techniques involved in the non-deterministic pattern recognition 

process. Before classification is performed, some parametric estimation may be applied to aid 

the subsequent pattern recognition process. Parameters which may be estimated are the signal 

bandwidth, approximate centre frequency and signal to noise ratio.

Estimate Decompose Extract Classify
Parameters Signal Features Signal

Figure 1.2 : Pattern Recognition Procedure

In modulation recognition, the signal is generally transformed into different forms, which 

enable a more effective classifier structure and emphasise the information bearing properties 

of the signal. This stage is termed the decomposition phase. Such transformations may include 

the envelope, instantaneous frequency and phase of the signal with respect to time. The vector 

transformations of each stage are described in figure 1.3, where it is seen that the one 

dimensional signal is transformed into d time dependent signals, which are then processed into 

n feature vectors to produce a decision of one in m candidate classes.
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Signal
Vector

Decision
Vector

Feature
Vector

Decomposed 
Signal Vector

Figure 1.3 : Vector Spaces in the Pattern Recognition Procedure

After the decomposition stage, the feature extraction is performed where the d decomposed 

signals are used to produce time invariant quantities as a descriptive measure of the signal 

characteristics. These quantities generally number between four and ten [4] [27] [29] and are 

known as features. The choice of features in non-deterministic pattern recognition is generally 

an intuitive exercise, and a number of these are discussed in the following literature review.

The features transform the decomposed signal into an n dimensional vector space, and a good 

choice of feature transformations will place the incoming signal into a set of separable 

clusters for each signal class in the feature space. A descriptive example is given in figure 1.4 

for a transformation into a three dimensional feature space, and clusters of features are 

illustrated for each modulation class. Generally the signals will not form regular and 

separable clusters, but will be distributed with different densities about the cluster centre.

Noise has the effect of spreading the features, thus making the clusters less separable and 

causes each signal class to look more similar. The different features have different levels of 

robustness to noise, and this is an aspect to be considered in the choice of feature.

Another consideration with the choice of features is that different signals within the same 

class will often have different parameters e.g. bandwidth, bit rate, frequency deviation and 

modulation index, and the features must be robust to these variations.

Amplitude Variance 

Figure 1.4 : Conceptual Example of three dimensional Feature Space
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From the n features, classification may be performed, and this is generally achieved through a 

decision function. The decision function effectively casts boundaries in feature space for each 

of the m classes and the signal is classified depending upon which boundary the feature vector 

lies within.

In order to determine the boundaries a set of example data is provided to the classifier where 

an algorithm adapts the decision function boundaries according to an optimisation algorithm. 

This is known as the training phase. Choosing a ‘typical’ set of training data is important and 

choosing the number of examples requires care, as the classifier may be over-trained.

An example of a decision function is given in figure 1.5. This example is a multi-layer 

perceptron back propagation neural network, which has received much attention since the 

1990’s [54]. The circles represent ‘nodes’ which are non-linear functions with multiple inputs 

that are summed together. The non-linear functions have certain mathematical properties 

which are required to implement the training algorithm. The connecting lines are gain terms 

which link the nodes in a feed-forward fashion.

The number of layers of nodes and the number of nodes in each layer are all variables which 

are often adjusted through trial and error to improve the performance. However, the 

processing requirements of the network training can be a problem as the number of nodes is 

increased. There are also problems where the training algorithm converges to local non 

optimal maxima.

Feature n

Feature 3

Feature 2 f ' Decision 2

Feature 1 Decision 1

Hidden Output Layer
Layer #1 Hidden

Layer #2

Figure 1.5 : MLP Neural Network Decision Function

The overall effect of the trained network is to produce a highly non-linear function. The 

outputs are generally trained towards different nodal extremes, which are threshold limited to

Decision m

Decision 3
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produce a binary decision. This action then has the effect of casting boundaries in feature 

space.

Decision Theoretic Techniques

The preceding discussion was based on non-deterministic methods which assumed no 

knowledge of the signal characteristics apart from some intuitive transformations. If 

parametric knowledge about the signal is available, decision theoretic techniques may be 

applied [54].

Figure 1.6 demonstrates the general procedure of decision theoretic classification. It is 

common, but not always necessary, to decompose the signal as before. The decomposed 

signal may be processed further, and an estimate of the signal parameters is made. Examples 

of such parameters include the signal to noise ratio, generic class of modulation and the 

amplitude of the signal.

A set of functions are then generated from the parametric data, and each observed 

decomposed time sample is operated on by the functions. The functions are mathematically 

derived for each class and represent the probability of the class given the observed data, which 

is denoted in figure 1.6 by p(class n\ data). The maximum of these then represents the 

classified signal.

Signal
Process 

I Signal J

Generate pdfs given 
parametric data

r-»(p(classl/Data))- 

r-4 p(class2/Data))-

—4p(class3/Datay

—*(p(class nVData)-
6

Classified! 
. Signal

Figure 1.6: Decision Theoretic Methods for Pattern Recognition

Pattern Recognition Techniques for Modulation Recognition

Modulation recognition is suited to both types of pattern recognition. Digital modulation 

schemes are generated using mathematical laws, and decision theoretic techniques may be 

applied for improved performance over non-deterministic methods. In practice the model is
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confined within the bounds of a set of assumptions to simplify the problem. Deviations from 

this paradigm are considered as ‘nuisance’ terms and will generally act to degrade the system 

performance.

Analogue signals tend to have short term stationary characteristics, consequently, non- 

deterministic techniques are generally more appropriate for analogue modulation 

classification.

In a system which requires the classification of analogue and digital modulation schemes, the 

pattern recognition may be split into a hierarchical structure as in figure 1.7, where an initial 

level of pattern recognition is applied to discriminate between analogue and digital modulation 

schemes and a secondary level is used to classify the individual modulation schemes. It may 

be feasible that further divisions are made to simplify the implementation.

First pass 
classification

Cyclostationary
analysis

Digital
Scheme

Analogue
Scheme

FM 
DSB-AM 
SC-AM 
SSB 
CW 
Noise

PSK
QAM
ASK
FSK
Noise

Decision theoretic 1 
pattern recognition J

Non deterministic j 
pattern recognition J

Classified signal

Figure 1.7: Separation o f the Problem

The digital signals possess cyclostationary statistics and under certain transformations the 

signals contain strong periodic components which may be detected [8] [58]. Such periodic 

components are generally exploited in carrier and symbol synchronisation, and some of these 

characteristics are discussed in Appendix I.
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1.3 Literature Review
The majority of the published literature has been presented from 1985 onwards, with the 

foundation papers from Leifdtke [25], Callaghan [24] and Jondral [27].

During the period in which the thesis was undertaken a large number of publications have 

arisen (approximately twenty out of fifty-five), and a discussion of these is included within 

this chapter. However, the work presented within this thesis is distinct from the other 

techniques, which is in part due to the broad scope of the problem.

Most of the published material is in the form of conference papers, and there are relatively 

few which are published in journals. Only three papers appear in IEEE transactions in 

communications [38][36][39], and all of these papers address a mathematical treatment of 

decision theoretic techniques. One appears in the IEE transactions [41], and several appear in 

the Signal Processing Journal [4] [6] [9] [11] [27] [25] [42]. The remaining published papers 

appear in various conferences, with a large number (approximately sixteen) in the IEEE 

MILCOM conferences.

The general technique used in the literature is to acquire the received signal through digital 

sampling. This digitally sampled signal is then applied to the pattern recognition techniques 

for analysis and classification.

The following review of the literature discusses the decision theoretic and non-deterministic 

methods in turn. The non-deterministic techniques are discussed first, encompassing the 

majority of the published literature. This is then followed by the decision theoretic techniques.

1.3.1 Non-deterministic Techniques
It has been identified that the non-deterministic techniques for pattern recognition tend to 

adopt signal decomposition, feature extraction and classification stages to achieve the task. 

These processes are discussed in this section within the context of automatic modulation 

recognition, with reference to the published literature. Also included is the scope of the 

modulation schemes covered within the literature, along with signal preconditioning and 

dimensionality reduction techniques

1.3.1.1 Range of Modulation types Considered
Table 1.1 provides a summary of the different modulation types which are classified within 

the literature. From this table it is seen that the main modulation schemes which are classified 

are 2ASK, 4ASK, BPSK, QPSK, 8PSK, MSK, 2FSK (Slow), 4FSK (Slow), QAM, SSB,
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SC-AM, DSB-AM, FM, CW and Noise. These represent some of the most common 

modulation schemes which are used across the radio frequencies.

It is also seen from table 1.1 that there is a large variation in the number and type of schemes 

which each published technique employs. Each scheme added to the classifier increases the 

dimensionality of the problem, and requires further classifier discriminating powers in order to 

maintain the classification performance, thus making the problem more difficult to solve 

effectively. From these wide ranging techniques it is very difficult to provide a useful 

comparison between the different methods.

CW [20] [25] [24] [33] [23] [31] [28] [22] [19] [18] [17] [14] [9] [7] [6] [12] [29]
[21] [41]

NOISE [25] [24] [28] [22] [18] [9] [7] [6] [13] [12] [27]
DSB-AM [24] [28] [18] [4] [14] [9] [10] [7] [6] [13] [12] [11] [51] [26]
SC-AM [23] [28] [22] [18] [4] [17] [9] [10] [7] [6] [13] [12] [11] [27] [51]
SSB [24] [33] [23] [28] [22] [18] [4] [14] [7] [6] [13] [12] [11] [27] [51]
FM [24] [23] [28] [22] [18] [4] [17] [14] [9] [10] [7] [6] [12] [11] [51] [26]
VSB [4]
FM-AM [4]
2ASK [8] [25] [24] [33] [23] [32] [22] [15] [18] [17] [16] [9] [7] [6] [29] [27] [51] 

[26]
4ASK [16] [7] [6]
BPSK [8] [20] [25] [34] [33] [23] [32] [31] [30] [19] [15] [18] [16] [7] [6] [29] [21] 

[27] [41] [51]
QPSK [8] [20] [25] [34] [33] [23] [31] [30] [3] [19] [16] [7] [12] [29] [21] [41]
8PSK [25] [34] [30] [41]
OQPSK [34] [52]
16QAM [34] [12]
64QAM [34]
2FSK [20] [25] [24] [34] [23] [32] [30] [22] [15] [18] [17] [16] [9] [7] [6] [13] [29]

[21] [27] [41] [51] [26]
4FSK [20] [34] [30] [16] [7] [6] [21] [27] [41]
8FSK [34] [30] [41]
MSK [8] [33] [17] [3] [52] [25] [34] [23]

Table 1.1 : A Breakdown o f Modulation Schemes Classified Using Non-deterministic

Methods

1.3.1.2 Techniques used for Signal Decomposition

The modulation schemes generally have the information bearing signal placed on the envelope 

or phase of the transmission carrier. The three most common signals used for analysis are the 

envelope, phase and instantaneous frequency signals. It should be noted that the instantaneous 

frequency and phase signals have an obvious dependency upon each other. The envelope 

signal will contain good characterising information for AM, ASK and QAM type signals. The
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phase relates in the same way to QAM and PSK type signals, and the frequency signal relates 

well to FM and FSK type signals.

Of the three mentioned parameters, the envelope is the most simple to derive. In [24] and [22] 

the envelope is obtained through analogue AM detector circuits, and is then digitally sampled 

for the subsequent pattern recognition. In most of the other techniques the incoming signal is 

digitally captured, and then converted into an analytic form. From this analytic representation 

the envelope is determined by the magnitude of the analytic vector [34] [15] [18] [16] [14] 

[10] [13] [12] [11] [29] [27] [51].

Using this analytic representation the phase may be deduced by the argument of the analytic 

vector [25] [19] [15] [18] [3] [16] [12] [27] [51]. The phase obtained through this method is, 

however, subjected to a modulo 2n transformation. This can be an undesirable effect as it 

introduces phase discontinuities when the phase moves outside the ( - 7 t ,  n] boundary.

The most difficult of the three parameters to estimate is the instantaneous frequency. This is 

because the instantaneous frequency is derived from the derivative of phase, and can at best 

only be an approximation to the true instantaneous frequency. The most common method of 

obtaining the instantaneous frequency is through a first order differential approximation to the 

phase [25] [34] [15] [18] [16] [14] [6] [12] [27]. Another common method is achieved by 

differentiating the phase in terms of the quadrature channels [28] [19] [10] [13] which 

provides a computationally simple solution. The zero crossing rate has been applied as an 

estimator [24] [7] [6] [41] [51] [59], which is one of the most simple estimators which can be 

applied. Two slightly more unusual techniques which have been applied are an autoregressive 

technique [20] [21] which is used to search for the peak of the spectrum, and a method based 

upon an approximation to the first order differential of phase [29].

The transformations of envelope frequency and phase provide a time domain transformation 

of the signal. Other transformations may be applied in the frequency domain and the time 

frequency domain.

The technique presented in [23] performs classification based solely on the frequency bins of 

a Welch averaged periodogram. Frequency domain parameters can be useful for averaging 

time dependent aspects of the signal, and they can also highlight features which are very 

difficult to isolate in the time domain. However, care must be taken when using spectral 

techniques, as classification in [23] is dependent upon the bandwidth of the signal, and may 

not prove to be a robust estimator.
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Two time-frequency techniques have been discussed, describing the use of the Wigner 

distribution for modulation classification [1] [2]. In [1] a brief discussion is provided to point 

out the pseudo-Wigner tool as a means for signal translation in modulation recognition. The 

continuous version of the Wigner distribution is discussed in [2], and a set of patterns is 

described for different modulation schemes, but no classification technique is applied. It 

should be noted that the generation of a continuous Wigner distribution is currently not a 

practical method to implement, and will probably rely on acousto-optical techniques in the 

future.

One problem with time frequency techniques is that the dimension of the pattern recognition 

process becomes extremely large, and problems of bandwidth scaling still exist. A problem 

with discrete time-frequency techniques is that unwanted effects occur due to a discrete time 

approximation.

The wavelet transform has been investigated in [30] [31] [32], and a different approach has 

been adopted in each case. In [30] a very simple wavelet function was used, and the wavelet 

transformation was simply due to the difference between a sum of seven samples on each side 

of a symbol.

In [32] the wavelet transform is achieved through a wavelet packet approach, which is similar 

to the use of sub-band decomposition with additional stages. The energy from each 

decomposition is used as a feature in a neural network to discriminate between PSK, ASK 

and FSK modulation schemes.

An interesting technique is presented in [31] where classification of PSK signals is based 

upon the number of observed symbol transitions. Assuming that symbols are equiprobable, 

higher order PSK types will have a higher probability of different symbol levels between 

adjacent symbols. In order to detect symbol changes, a continuous wavelet transform with a 

Morlet wavelet is used.

A spectral method based upon the cyclostationary behaviour of digitally modulated signals is 

proposed in [8], This uses a power transformation to transform the signal into one with a 

discrete spectral component. The component may then be detected, and depending upon the 

power law which was applied, the signal may be classified. This is similar to a classical 

carrier detection technique, and provides good discriminating capabilities in noise.

A interesting approach for the classification between OQPSK and MSK has been taken in

[52], where singular value decomposition (SVD) is applied to the signal in order to exploit the
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features of MSK. It is found that one of the SVD vectors is a useful discriminating feature 

between the two modulation schemes. This feature is illustrated in an ideal noiseless system 

where the vector is zero for OQPSK and a linearly increasing line for MSK. This noiseless 

MSK vector is correlated with a vector generated from the signal under test, and the result is 

compared against a threshold.

1.3.1.3 Signal Preconditioning
Part of the signal decomposition requires some preconditioning of the signal, and one very 

difficult requirement in most techniques is that the carrier frequency is removed from the 

signal.

In any technique performing the classification of PSK and QAM signals, it is essential to have 

an accurate knowledge of the carrier frequency of the signal, as a carrier offset causes the 

phase signal to become distorted. In some techniques it is assumed that the carrier is 

accurately known [25] [34] [30] [15] [4] [16] [7] [52], and in others techniques are described 

for carrier frequency estimation.

A digital phase locked loop is used in [27] to highlight a carrier frequency reference of BPSK 

signals. A similar method is applied in [18] except that the phase locked loop is replaced with 

a spectral search followed by a bandpass filter. In [41] [6] [19] [20] [21] [5] [12] the carrier 

frequency is estimated as the mean of the instantaneous frequency with the frequency spikes 

removed, and in [29] estimation is taken from the peak of an instantaneous frequency 

histogram.

The phase becomes meaningless when the signal level is zero and, in general, the phase is not 

useful when the envelope of the signal is small, as the effects of noise will dominate the phase. 

In [4] and [28] the phase samples are omitted when the envelope drops below a threshold. In 

[29] a similar technique is used, but the threshold is set by a fuzzy algorithm.

1.3.1.4 Feature Extraction
The feature extraction stage is the most important stage within the pattern recognition 

process, and many techniques are found within the literature. The aim of a feature extraction 

technique in traditional pattern recognition methods is to produce a quantitative value for the 

characteristics of the signal. A good choice of feature vector will enable a better separation of 

clusters within feature space for classification. The effects of noise will cause the feature 

clusters for each class to tend to merge together, and a good feature will be capable of 

suppressing the effects of noise in a relative capacity.
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The choice of features is generally an intuitive exercise, and a wide variety of techniques have 

been proposed. The most popular features are the moments of the decomposed signals. The 

variance of envelope is used in [251 [24] [28] [18] [16] [12] [3] [51] [26] [34] [13], but in all 

cases the signal energy is normalised in order to produce a result which is independent of the 

received signal strength. This feature is useful for discriminating amplitude modulated signals 

from constant envelope signals. In [11] the normalised envelope variance was analysed with 

respect to an uncorrelated Gaussian speech modulation, and was used to discriminate between 

different analogue amplitude modulated signals.

The frequency variance feature is employed in [20] [25] [24] [22] [14] [12] [21] [41] [51] 

[16] [26] [34] [13] in order to highlight the frequency modulated signals. The phase variance 

is used in [18] [4] [16] [12] [51] [34], but it should be noted that there will be overlap 

between the discriminating properties of the phase and frequency variance.

The third and fourth central moments (skewness and kurtosis) of envelope frequency and 

phase are applied to the methods in [34] [16] [12] [13, not phase]. These moments partly 

describe the shape of the probability density functions. In [16] the mean and median of the 

three signals are also used.

A set of features may be expressed through the histogram of envelope frequency and phase, 

which describes the probability density function of the modulation parameters, and can be 

argued to contain all the information of the corresponding central moments. The modes of 

digitally modulated signals are parameters which are emphasised through the histogram. This 

technique has been applied to [27] [6] [15] where the histogram bins are fed directly into the 

classifier. Other techniques perform a further process, which fringes upon that of 

classification [30] [7] [29] [41] [26], where the number of signal modes are determined. This 

reduces the dimensionality of the features, and there is more control over the method of mode 

determination.

In order to remove the requirement of a zero phase reference, a histogram of the phase 

difference between two symbols is applied in [25] [41] [19] where knowledge of the symbol 

rate and timing is required. A template is then used with [25] [41] to classify the number of 

modes, and a threshold is applied to [19]. This is a useful technique when classifying PSK 

signals.

In order to combat the effects of bias due to noise, a set of features were developed in [9] 

which were asymptotically unbiased in the presence of Gaussian noise. Three features were
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developed, and preliminary results were discussed in [9] and [10], The features were extended 

further in [13], where the second, third and fourth central moments were applied.

Spectral line detection has been used for feature detection in [8] [18] and [3]. In [8] a power 

law applied to an analytic signal is used to discriminate ASK, PSK, FSK and MSK 

modulated signals. In [18] the variance of signal spectrum is analysed through the signal and 

it’s square with components removed below a threshold. This essentially determines whether 

there is a discrete carrier component present. In [3] a power law is applied to the envelope of 

the signal following bandpass filtering in order to discriminate between MSK and PSK 

signals. The spectral line in this case is due to the cyclostationary behaviour of the envelope 

through the symbol transitions, and is prominent in PSK. In all three cases the FFT is used for 

frequency analysis.

Bandwidth information is used in [20] [21] where a short time analysis of the bandwidth is 

determined using autoregressive techniques. This is used to discriminate between analogue 

and digitally modulated signals.

1.3.1.5 Dimensional Reduction
In pattern recognition it can be tempting to apply a large number of features to a classifier in 

order to provide the classifier with as much information as possible. However, as the number 

of features is increased, the complexity of the classifier and the classifier training time will 

also increase. By introducing too many features it is usually found that some features may 

have no discriminating powers and other features may have a large amount of overlap.

In order to reduce the dimension and redundancy of the features, a technique known as 

Principal Component Analysis (PCA) may be applied. This is also known as the Karhunen- 

Loeve transform, which essentially performs a linear transformation on the feature vector to a 

new set of vectors, and the discriminating capabilities of each output from the transform may 

be quantified. The lower discriminating outputs may be identified and then omitted, thus 

reducing the dimension of the input. This technique has been performed in [15] and [27]. In 

[27] the features were reduced from 192 histogram bins to 93 features.

1.3.1.6 Classification Techniques
Classification is the final part of the pattern recognition process, and may be performed using 

a number of techniques. Two common techniques for classification are those employing 

decision functions and those classified through the distance from a class. Included in the
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decision function form of classification are neural networks which utilise highly non-linear 

functions.

The most simple decision function is the linear classifier, where hyper-planes are used to cast 

boundaries across classes. The placement of the planes may be performed using different 

algorithms, and this technique has been adopted in [17] [26] [6] [13] [27]. A more 

complicated arrangement derived from hyper-quadratics was implemented in [27] [18] [33], 

and in [27] a performance comparison is provided between the linear and quadratic classifiers.

Neural networks have been investigated in [34] [32] [23] [16] [12] [21], and in most cases a 

multi layer perceptron network is used. In [21] and [34] the complexity of the network is 

reduced by splitting the problem up using a hierarchical approach. The minimum distance 

classifier has not been a popular technique and is only suggested as an application in [24].

Most of the other classification techniques have been achieved through user determined 

thresholds on decision trees [19] [4] [14] [7] [29] [51] [20] [25] [8] [3] [30] [11]. This 

technique can enable flexibility in the classification process and the mixture of discrete 

features such as the number of modes with analogue features. In [14] [11] and [8] some 

analysis and theoretical reasoning has been applied to the thresholds, and in [41] a decision 

tree has been used in conjunction with some maximum likelihood methods.

1.3.1.7 Measurement Conditions
In most of the published literature the results are from simulations, the noise is Gaussian, no 

fading (frequency selective or Rayleigh) is included, non-linearity and bandlimiting effects are 

neglected and interference is assumed to be absent.

There are a small number of exceptions. [25] performs simulations of adjacent channel 

interference, carrier offset and symbol timing error, [33] and [27] use real signals stored on 

magnetic media, [8] generates digital signals using Gaussian pulse shapes, [34] applies 

filtering to the signal and [28] analyses the effect of non-Gaussian noise.

Most of the other published work assumes that an ideal signal is present in the presence of 

Gaussian white noise.

1.3.2 Decision Theoretic Techniques
The decision theoretic methods are based upon mathematical models, and a detailed 

description is difficult to achieve without a discussion of the mathematics. This section briefly
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discusses the development of the decision theoretic techniques in modulation recognition and a 

mathematical treatment of some of the methods is provided within chapter 3 of the thesis.

A number of decision theoretic techniques are found in the published literature and these have 

been applied to the classification of digitally modulated signals [44] [45] [46] [47] [38] [39]

[53] [35] [37] [36] [41] [42] [43] [40]. Most of these papers have been authored or co­

authored by A. Polydoros from the University of Southern California [44] [45] [46] [47] [38] 

[39] [53] and S. Soliman of Qualcomm [35] [37] [36] [41] [42] [43].

One final paper [40] is an extension of [36] which approximates the pdf of phase using a 

Tikhonov distribution instead of an exact distribution. The paper looks into a transformation 

of the phase signal through a cosine, and determines an exact distribution. However the 

authors of [36] provided an exact distribution without a transformation in [35] and [42].

Most of the papers have been applied to the classification of the number of levels on PSK 

signals [35] [37] [36] [41] [42] [38] [39] [40]. Two papers discuss the classification of the 

index pattern of continuous phase modulation [45] [47] and the rest are applied to QAM/PSK 

classification [44] [46] [53].

All of the decision theoretic techniques discussed assume that the signal is in AGWN and that 

the carrier frequency and symbol timing information is available.

The first paper to introduce PSK classification was [38] where a set of approximations are 

applied to a likelihood function for the discrimination of BPSK and QPSK. The classifier 

likelihood function is comprised of the in-phase and quadrature signals squared and a set of 

cross terms. This is then compared with a threshold for classification. The threshold for 

statistical comparison is not determined analytically, but instead the conditional pdf of the two 

classes is derived analytically. The threshold is presumed to be determined numerically by 

determining the intersection point of the two pdfs. Following this initial paper [44] [37] [36] 

were published in 1991/1992.

In [44] further work is provided along the lines of [38], and a more general likelihood function 

is presented for PSK and QAM signals at low SNR. An approximation to the likelihood 

function is proposed using an Af* law method and a threshold is analytically determined for 

discriminating between two PSK signals. Discrimination between PSK and QAM signals is 

also suggested using the M* law, but only certain constellations can be easily discriminated 

and there are no analytical methods described for determining the necessary decision 

thresholds.
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Two techniques based upon the phase samples instead of the quadrature samples are proposed 

in [36] and [37], which have the advantage of not requiring knowledge of the signal 

amplitude. Both techniques incorporate the flexibility to enable classification of a number of 

modulation schemes as opposed to only two in [44] and [38].

In [36] classification is based upon the statistical moments of the phase signal. The statistical 

moment of the phase is then compared to a set of thresholds for classification. In this paper 

the pdf of phase is approximated by a Tikhonov distribution in order to produce an analytical 

derivation of the thresholds. The Tikhonov approximation is replaced by an exact 

representation in [35] and [42].

Another phase based classifier is developed in [37] for the classification of PSK signals, and 

used maximum likelihood techniques for classification. The results from this paper enable 

better discriminating performance than those of [38] and [36], but the computational burden is 

high.

A recent paper [39] has described the derivation of some of the results in [44] in greater 

detail. This looks into the classification of PSK signals using an M* power law, and provides 

an extension which enables a number of PSK schemes to be classified instead of the binary 

example in [38] and [44].

An extension of the QAM classification techniques of [44] is discussed in [46], and it is found 

that methods for deriving thresholds are very difficult and a single term approximation is not 

always suitable. Some methods are applied here to model the distributions, determine 

thresholds and introduce additional terms in the approximation.

1.3.3 Summary of the Literature Search
The results of the literature search have highlighted the fact that there are many different 

approaches applied to modulation recognition. It has been seen that most of the non- 

deterministic techniques attempt to classify different modulation schemes, and will generally 

apply different techniques for feature extraction. The results are often difficult to compare, 

and in a number of reported techniques, information has been omitted from the paper which 

makes the implementation of the published technique difficult.

There are very few systems which have been implemented in a commercial product, and most 

of the published results are based upon system simulations, which makes the subject 

somewhat theoretical. However, there are still many techniques to explore before considerable 

effort is well spent in characterising the techniques under a large range of conditions.
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Most systems in the published literature digitally sample an analysis time frame and 

decompose the signal into the envelope, phase and instantaneous frequency from an analytic 

signal. It has been found that the generation of an analytic signal and the estimation of the 

instantaneous frequency has been achieved through a number of techniques, and there is very 

little justification provided for taking a particular approach.

The decision theoretic structures have been developed for digitally modulated signals, and 

have mainly been tackled in the published literature by two groups, and the majority of the 

literature is based on the classification of PSK signals.

1.4 Aspects Tackled by the Thesis
From the literature survey it has become apparent that there are a large number of classifiers 

implementing different techniques on an ad-hoc basis. The work undertaken in this thesis does 

not attempt to provide another such classifier, but attempts to isolate specific issues.

A) Signal Modelling
In this thesis, new signal models are developed, and the work is intended as a tool in the 

analysis of modulation recognition techniques. The main areas considered are the pdf and 

related statistics for a sinusoid in AGWN of the three primary decomposed signals in 

modulation recognition: the envelope, phase and instantaneous frequency.

A number of instantaneous frequency estimation techniques, including those in the published 

literature, are compared in terms of performance and complexity. An appropriate 

instantaneous frequency estimator is then selected for modulation recognition purposes, where 

the pdf and related statistics may then be modelled.

The work provides new results and a useful summary of existing results, and finds some 

direct use within the decision theoretic classification considered within this thesis.

B) PSK Classification
A number of decision theoretic PSK classification techniques have been developed mainly by 

two groups in the published literature. The various techniques require different a-priori 

information and have different characteristics, but they all assume that the carrier frequency is 

accurately known.

A number of novel techniques are developed for classifying PSK signals using decision 

theoretic methods. These are compared with existing techniques and have been found to have
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different characteristics and parametric knowledge requirements to those in the published 

literature.

Some of the developed techniques also assume that the carrier frequency is accurately known, 

but also a new set of decision theoretic techniques are developed which do not require 

accurate carrier frequency knowledge.

The published literature has generally provided a discussion of classifier performance under 

ideal conditions, and work is presented to analyse the classifier performance of the various 

techniques when non-ideal effects are introduced.

C) Other Aspects
The generation of an analytic signal is fundamental in the decomposition of the signal, and a 

number of techniques have been proposed in the published literature. Work has been 

undertaken to investigate four different techniques, and provides a direct comparison between 

each of them.

1.5 Thesis Organisation
The structure of the thesis is organised as follows :

Chapter 2 derives and outlines various mathematical models for different signals in the 

presence of AGWN. The results from the work in this chapter are applied to the decision 

theoretic methods for PSK classification in chapter 3. The primary results are summarised in 

the main body, and the derivations are provided in appendices held within the chapter. Also 

included in this chapter is a discussion of an appropriate digital instantaneous frequency 

estimator for modulation recognition applications, and the statistics are derived for this choice 

of estimator.

Chapter 3 discusses new decision theoretic techniques for the classification of the number of 

levels on PSK signals. The work derives new classifier structures and also summarises and 

improves aspects of some existing structures.

Chapter 4 provides a comparison of the different techniques in terms of classification 

performance when certain assumptions in the decision theoretic paradigm are broken down.

Conclusions of the work into decision theoretic PSK classification are presented in Chapter 5 

with an outline of key areas for future work. Also included within this chapter are some more 

general observations for future research into modulation recognition as a whole.
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Appendix I discusses the problems associated with the parametric estimation required for 

decision theoretic classification, including a description of carrier and symbol synchronisation 

techniques and methods for estimating the signal SNR. Appendix II discusses different DSP 

methods for the generation of an analytic signal, and the associated performance of each 

technique.

Finally, a list of the publications which have arisen from the work conducted within this thesis 

are provided in Appendix ID.
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2. Signal Models

2.1 Outline
Modulation classification is a pattern recognition problem, and it is important to have 

knowledge of the signal characteristics. The analysis of various aspects of the signal is 

therefore an essential component of modulation recognition.

These signal models may only be analysed within a limited range of conditions, which are 

generally confined to a signal in Additive Gaussian White Noise (AGWN). The models will 

attempt to describe the pdf and its associated moments for a particular signal components.

The aim of this section of the thesis is to summarise the various models which exist, and 

develop additional models. These models may then be applied to decision theoretic 

classification, or may be used to enhance the understanding of non-deterministic techniques.

The main attributes which are analysed are the pdf of envelope, phase and instantaneous 

frequency in AGWN for different signals. The instantaneous frequency may only be estimated 

using approximations, and a number of different techniques may be applied in the estimation. 

Section 2.3.6 compares a number of different instantaneous frequency models and concludes 

upon a suitable estimator for automatic modulation recognition applications. The statistical 

properties and pdf of the estimator are then discussed.

The specific areas which have been progressed by this research are the modelling of the pdf of 

phase for a sinusoid and PSK signals, and the pdf of instantaneous frequency for a sinusoid in 

Gaussian noise, which is reflected in the published papers [1] and [2]. Also, new numerical 

methods have been developed for the generation of various pdfs which provide efficient 

computational evaluation. These results have a direct impact on the system efficiency at the 

classification stage.

This chapter contains a number of Appendices describing the mathematical detail and 

derivations, with the main body of the chapter summarising the results. This is expected to 

provide a clearer picture of the work and will enable the reader easily to pick out results.

2.2 Assumptions
The models which are developed in this section assume a signal in AGWN. When multi-level 

PSK is examined, it is assumed that there are an equal number of occurrences of each symbol,
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and that the envelope is constant, which is a reasonable assumption with a system including a 

matched filter, but deteriorates in a bandlimited system without matched filtering.

An analytic signal is assumed present for the analysis of the envelope, phase and 

instantaneous frequency of the signal. Techniques for generating a digital analytic signal are 

described in Appendix n, where different practical aspects are discussed.

2.3 Development
The sinusoid is the starting point for the development of a number of different cases, and the 

pdf of envelope and phase of a sinusoid in AGWN has been investigated in some detail in the 

past [3].

The joint pdf of envelope z and phase <J> for a sinusoid of amplitude A in AGWN of variance 

a 2 is given by [3]:

p(z,<J>)=
2 k g  ‘

■exp z2 +A2 -2Arcos(<|>)
- 2 a '

(2.1)

2.3.1 PDF of Envelope
The pdf of phase or envelope may be expressed independently by eliminating the opposing 

variable. This may be achieved by integrating the expressions across the full range with 

respect to the opposing variable. For the pdf of envelope this yields :

2 k g
■exp z 2 + A 2

-2c ' • £ ) (2.2)

where I0(*) is the modified Bessel function of the first kind. The moments of the envelope are 

given by [3]:

E{Z"} = (2c2f r (f + l)1F ,( -f ;l;-p ) (2.3)

where {Fx(a\b\z) is the confluent geometric function [4] given by

F (n-fr-'I = 1 , a(a + l) =2 , a(a + l)-{a  + n - l)  zn 
1 l( ’ b(b +1)2! b(b + l)--(b + n - l )  nlb(b + l)-(b

(2.4)

using [5] the following moments for the envelope may be deduced as
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n Moment

1
° ^ e“f [(1 + p)Io ( t ) + p I l ( l ) ]

2 2 o 2(p + l)

4 8a4(2p4 + 4 p 2 + l)

6 48a6(^p6 +12p4 +3p2 + l)

Table 2.1 : Moments Of The Envelope o f a Sinusoid in Gaussian Noise

2.3.2 PDF of Phase
By integrating (2.1) with respect to the envelope, in the interval (0,<»), the pdf of phase for a 

sinusoid in AGWN is given by [3] :

/ (♦ )  = jU - " + |^ c o s ( < |) ) e - ,',,",l*>[l + erf (Vp cos(<t>))] (2-5)

where

X

erf(jf) = J  e-'2 dt (2.6)
o

The pdf of phase given in equation (2.5) is bound in the interval [-7t,7t). Such a function may 

be expressed in terms of a Fourier series [6] as :

/ M = ^ +- y X cosM>) <2-7)
2k"S

This form of pdf is less commonly used than (2.5), but it will be found that it yields some very 

useful results in modulation recognition. The Fourier coefficients are derived from special 

functions in [7], and from first principles in Appendix 2.A, which is a more detailed 

description of the account given in [1].

It is found that the Fourier coefficients may be written in three forms ,

Series form:

„ r ( * + f + i )  .
^ = g ' pPTX -r~ .  f  77 ?  (2-g)f ^ k \ r ( k  +  m  +  l )
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Hypergeometric form:

(2.9)

and modified Bessel function form:

b.m (2.10)

This final form is expressed in terms of Bessel functions of order integer and integer plus a

Appendix 2.B with reference to the Fourier coefficients.

In [9] the coefficients are evaluated using the series form of (2.8). A more useful technique for 

the evaluation of the function is the modified Bessel function form (2.10), and Appendix 2.C 

describes an efficient technique for generating the Fourier coefficients, which is also described 

in brief in [1].

A set of cosine evaluations is also required in order to generate the pdf and an efficient 

technique for generation which is upwardly stable is provided in Appendix 2.D.

The pdf may be extended to the pdf of phase for M  level PSK (Appendix 2.E) to give:

This result shows that MPSK signals have the same form of pdf of phase as that of a sinusoid 

in AGWN, except that the harmonics are decimated by a factor equal to the PSK type. On

functions of order integer plus a half, and evaluation requires only one of the two iterative 

algorithms detailed in Appendix 2.C.

half. Some properties of the Bessel functions of order integer plus a half are discussed in

(2.11)

closer inspection of (2.11) it is seen that the PSK Fourier harmonics will consist of Bessel
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2.3.3 Low SNR Development
The Fourier series expression for pdf of phase can obviously not be evaluated to an infinite 

number of terms, and so the series must be truncated.

The graph in figure 2.1 shows how the Fourier harmonic magnitudes vary against SNR for 

the harmonics 1,2,4 and 8. From the graph it can be seen that the separation between adjacent 

harmonic components increases as the SNR decreases. This indicates that the pdf may be 

defined accurately by a finite number of terms.

Figure 2.1: Plots of Fourier Harmonic Magnitude Against SNR

This effect can be seen visually in figure 2.2 for CW, BPSK, QPSK and 8PSK at different 

levels of SNR, where the more peaky distribution is at high SNR. At the lowest SNR the pdf 

looks sinusoidal, and can be seen to be modelled accurately by one harmonic term.

It is apparent from figure 2.1 that the higher order PSK signals have a larger spacing between 

adjacent harmonics at any SNR. This indicates that these will resemble more closely resemble 

a sinusoid at a higher SNR than that of a lower order PSK signal. This is also verified from 

figure 2.2, where 8PSK is seen to be sinusoidal for nearly all the SNR values examined.
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Figure 2.2 : Plots o f PDF of Phase For CW, BPSK, QPSK & 8PSK at p=7,4,7,10 dB SNR

The error involved in the approximation may be quantified through the mean squared error, 

and is given by :

n=r+l

(2 .12)

This reduces to

(2.13)
n=7’+l

A plot of RMS error against SNR is given in figure 2.3 for a one term approximation for 

CW, BPSK, QPSK and 8PSK. It can be seen from the plot that the pdf may be modelled well 

with a one term approximation at low SNR. It will be found in a later chapter that the 

approximation is excellent at the limit of detectability and is a useful tool in the analysis of 

PSK signals.

2.6 Development



l.e+OO

l.e-01 CW
l.e-02 BPS]
l.e-03

qps:5 l.e-04

s  l-e-05
^  l.e-06 8Ps:

l.e-07

l.e-08

l.e-09*

l.e-10
-10 0 10 205

SNR(dB)

Figure 2.3 : Plots of RMS PDF Error Against SNR for A One Harmonic Term 

Approximation

It is therefore found from figure 2.3 that:

1. As the SNR is decreased, fewer terms are required to maintain a given level of accuracy.

2. As the PSK order is increased, fewer terms are required to maintain a given level of 

accuracy.

3. In a practical system e.g. SNR <30dB, the pdf may be modelled accurately with a finite 

number of terms.

2.3.4 High SNR development
It has been seen that the Fourier series approximation to the pdf of phase of MPSK signals 

requires more terms as the SNR is increased. At high SNR ranges, it may be appropriate to 

use an alternative pdf approximation. The pdf of a sinusoid in AGWN has been modelled 

using a Tikhonov distribution [10], where :

/(<!>) =
exp[2pcos(<)))]

2iU„(2p)
(2.14)

This is seen to be a good approximation for a SNR>6dB, and improves with increasing SNR. 

The pdf may be extended to that of MPSK by using :
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A final, more simple approximation may be made for SNR>14dB using a normal distribution

[10], in which case the pdf of a sinusoid in AGWN is given b y :

/(<(,)=^ e xp[-p<t,2] (2.16)

2.3.5 Moments of the PDF of Phase
The moments of the pdf of phase for a sinusoid in Gaussian noise are derived in Appendix 2.F 

and are summarised below:

m, = — + 2n!n"-2Y i ( i 4 ^ - f ' -------—  w  (2.17)
" + 1 t f  i2 )!(*)“

where m„ is the n* moment. This has been extended to M  level PSK [9] by :

m„= —  + 2n!lt"-2Y&a, - t ^ - f ' -------- ^ w  (2.18)
n + 1 “ T (iM)2

2.3.6 PDF of Instantaneous Frequency
The instantaneous frequency of a signal may be defined in a number of ways, and the 

fundamental definition is derived from the phase <J)(0 :

< 11 ,)

The signal phase may be expressed in terms of the quadrature components by :

<J)(r)= tan-1(Q(r),/(0)) (2.20)

and the instantaneous frequency may be deduced through a direct differentiation of (2.20) to 

yield:

/ x i
7 W ( > )  ( 2 -2 1 >

Finally, a more unusual definition may be obtained through [19] as :
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These definitions describe continuous time relationships, and it is desirable in modulation 

recognition to achieve all the estimates through digital techniques.

Published work in modulation recognition has seen the use of a number of different digital 

instantaneous frequency operators, including estimation through Zero crossings

[22] [23] [24] [21] [22], finite central difference [25], finite backward difference

[26] [27] [28] [29] [30] [22] [32] [33], the analytic approximation [19] [34] [35] [36], 

autoregressive methods [37][38] and a unusual estimator, which will be termed the “Nagy” 

Estimator [39].

Each instantaneous frequency estimate requires at least two signal samples for analysis. This 

is because the estimate is approximating a derivative function (2.19). There is no fundamental 

upper limit on the samples in the analysis frame, but there are performance limitations which 

must be taken into account.

When the number of samples used in the estimate is increased, the variance of the error will 

decrease. A more precise relationship is found through the Cramer-Rao lower bounds [16] 

which determine the minimum attainable mean squared error. Much of the literature on 

instantaneous frequency estimation [12] [13] has looked into techniques which base the 

estimate on a large observation window and methods are used for filtering out the noise.

The gain in performance due to an increased observation window will be achieved at the cost 

of bandlimiting the signal. This is a reasonable constraint when the signal does not vary 

rapidly with time, but with unknown signals the time varying nature can become considerable 

and the transitions will become smeared in the time domain.

In modulation recognition the instantaneous frequency may be composed of sharp transitions, 

particularly in the digital modulation schemes such as FSK. It is therefore proposed that the 

modulation recognition system utilises the minimum number of samples within the 

instantaneous frequency estimate, and that error reduction should be achieved prior to 

sampling in the pre-processing section through the filtering of the noise from the signal. 

Therefore an observation of two samples is considered to be appropriate.

Appendix 2.H outlines a comparison of the different methods of instantaneous frequency 

estimation detailed within the published literature on modulation recognition. It concludes that 

the first order backward difference approximation is a good instantaneous frequency estimator
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for use in automatic modulation recognition. The estimator is found to have a good statistical 

performance and low computational complexity when compared with other techniques, and 

the statistics of this estimator are modelled for a sinusoid in AGWN within this section.

The backward difference approximation to the discrete time instantaneous frequency j{n) is 

given b y :

(2-23)

The pdf of phase difference \j/ for a sinusoid in AGWN is given by the auto-convolution of the 

pdf of phase [3], and has been derived in [11]:

it
Pm (v ) = J / M / ( v  -  <!>)# (2.24)

-n

This can be generated directly from (2.7) as :

P(V) = ~ + —y  ibn f  cos(/njf) (2.25)Z7C 7C *"7n=l

The range of \|r is (~k,k] due to the modulo 271 arithmetic. The pdf of instantaneous frequency 

is derived by scaling the variable \\r by where Ts is the sampling frequency, and offsetting

the expression by a factor of/c.

oo
P(f) = T,+2TsY ( b n f  cos(2jw[/Ts - / cJ) (2.26)

n=1

The statistics of this estimator have been published in [2] by the author of this thesis. 

Summarising some of the important results of this paper, the mean squared error of a sinusoid 

of frequency ,/c in AGWN is given b y :

MSE = 7 ^ T + )2 ̂ f-cos(2nn fc)+ f l f c -  {bn f  U f L sia(2m,fc)
12t;  n ‘T, V s n=1

n+1 N
(2.27)

When the circular variance is analysed, the mean squared error is found to be independent of 

the sinusoid frequency and the mean squared error is given b y :

P — 21n[# (l,(f )+!„($))]
MSEC&C---------- L 2n2j,2 -------------------------------------------------------------------------- (2.28)
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For a detailed derivation of these results, the reader is referred to [2], a copy of which appears 

in Appendix HI at the end of the thesis.

2.3.7 PDF of Phase Difference
The pdf of phase difference can be a useful statistic to evaluate in differential detection 

applications. Two cases are examined. The first is the most common, where the phase 

difference is applied to a modulo 271 operator. The second is where the modulo arithmetic is 

omitted.

The pdf of phase difference modulo 2tt for a sinusoid in AGWN is given in (2.25). This may 

be extended to MPSK from (2.11) as :

Pm^  = l n +n Z f o " ) 2cos(nM'1')  (2-29)
71=1

The autoconvolution of two independent phase samples when modulo 2tc is not applied 

becomes more difficult to analyse. In this case the phase difference £2 has a range in the 

interval (-2tc,7c]. This has been developed in Appendix 2.G in a high and low SNR form, and 

is summarised as follows:

1 f(7C_J?')fl + 2fe12cos(Q) + 2t|cos(2£2) + 2fc32 cos(3£2)]+l p<2dB (n.
g(£2) = — * 1 \ e(n\>n  (2>3°)

2tc [fcj sin(£2) + k2 sin(2£2) + k3 sin(3£2) J

g (a )  = 2 n % ( 2 p ) ]  {Io[4pC°Ŝ ^ - ? ) - 2X ^ M 4pcos(f)]sinK ) }  g(Q)>0 (231)

where ku k2 and fa are given in terms of b\, b2 and b  ̂ in (G.15) (G.16) and (G.17). The 

evaluation is applicable to positive indices, and for negative values evaluation is achieved 

through:

g(-Q) = g(a) (2.32)
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2.5 Appendix 2.A
Proof of the Fourier Series Expansion of a Sinusoid in AGWN

The following proof develops the Fourier series representation for the pdf of phase given b y : 

f M  = '^~e~P + ̂ - ^ G~P cos(<J>)epc08 ^ l  + erf^ /̂p cos(<|>))] (A.l)

The Fourier series form is given in (2.7) as

^  = n ^ bm (A*2)m=1

where

7t
b m = J /(<►)'cos(m<|>)d<|> (A.3)

-n

In order to evaluate this, the following integral must be performed:

71

Jcos<|>cos(m<|))exp[pcos2 <| >+ erf^jp cos<|> jjd<|) (A.4)
- 7 1

This integral is split into two parts :

71

I = Jcos<()cos(m(|))exp^pcos2 <|> \ r f^ jp cos <|> ]rf<|> (A.5)
-n

n
J = J  cos<j> cos(m<|>)exp[p cos2 <|>]d<|> (A.6)

—71

The error function may be expressed in series form by [4]:

1 - °° 2/1+2 2/1+1/ , i \ *

Therefore:

r 2 1 A r~ 1 1 V ' 22n+2 pn+1 cosm<b(cos$)2n+2(n +1)!cos<{>cos(m<}))exp|pcos (j) |grf|^p cos<j) ] = —=  y  --------------- -— v 7------------  (A.8)
* n  n=o ( w +  ).

Note the following expansion [8]
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cos(m<J>)(cos<t>)2”+2 = 2, l 2 | ^ 2 ^ 2n^~2Jcos(m<J>)cos[2(n +1 - k)fy]+ 2Jcos(m<|>)j (A.9)

Therefore through orthogonahty

It
J  cos(m<|>)(cos<J>)2n+2<i<f) =

1 7i(2n + 2)! Evenm
22n+l (n + l-f)!(n  + l + f)!

0 Oddm
n >

With some manipulation:

/  =
  jn _ ^  r(k + f  + \)

2Jpitp2 V  — -------- ^-p EvenK ^ k \ r ( k  + m + \y
0

k=0
m

Oddm

Now looking at the second part of the integral:

ft oo ft ^
J = Jcos<|><»s(m<|>)exp[pcos2<|>]c/<|> = J  cos(m<t>Xcos<t>)2w+1<i(})

n=0

Using

cos(m<|> Xcos <|> )2n+1 = — ^  f 2”^  *1 cos(m<|> )cos[(2n +1 -  2&)j> ]
2 k=0

It can be seen that:

71
PI cos(m<J>Xcos<J>),2n+2

i tc(2w + 1)!
22n (« + i - f ) ! ( «  + i  + f)! ° ddm n ^ mi L

0 Even m

Using

(2n+l)! 22"+1r (n + l+ | )

(»)!

It is found that:

J =
i—  r( K + f + i )

2Jnpp2 V — ---------—rp Oddm
^K!T(K + m +l)K

0 Even m

(A. 10)

(A. 11)

(A. 12)

(A. 13)

(A. 14)

(A. 15)

(A. 16)

which is the same result as (A.11), but for an odd m. Combining (A.l 1) and (A. 16) it is seen 

that:
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Using the definition for the Confluent Hypergeometric function 

1^1 \a> z) \ \ ,

The function (A. 17) may be simplified to

_ « r (f+ i)  , .
= e ~ p 2 +l;m + l;p)

bm " r r(m+l)

Using the Kummer transformation [4] this simplifies to

* r ( f  + l) / .

The relationship in terms of Bessel functions may be found by observing that

£ 7t
J = J* exp[yCos(2<|>) j(cos(m + 1)4> + cos(w -  l)<|>)d<|)

- 7 1

and using the identity

1 Jt
In(z) = l |V cos0 cos(nQ)dQ

7C J0

Comparing (A.l 1) and (A. 16) it is found that

(A. 18)

(A. 19)

(A.20)

(A.21)

(A.22)

(A.23)
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2.6 Appendix 2.B
Properties of the Even Fourier Harmonics

Bessel functions of integer order plus a half are related to the Modified Spherical Bessel 

function [4]. The following recurrence property is useful for evaluation:

W * )  = - — + (B.l)
X

Using the expression [4]:

11M  = sinh(*) (B-2)
2 V KX

I i (*) = J-^cosh(x) (B.3)
" i  \n x

The following properties may be deduced:

■ ^ - - I 1( 4 ) . 1- " ^ - P )  (B.4)

This property is used later in Appendix 2.C. Some final simple calculations yield the 

following:

b2 = P + exP(~P)-l (B.5)

^  p2 -4 p  + 6 —2[p + 3]exp(-p) ^  6)
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2.7 Appendix 2.C
Recursive Algorithm for Fourier Harmonic Generation

The following work discusses an efficient routine for calculating all of the Fourier 

coefficients. The evaluation of Bessel functions is usually performed using the recurrence 

relationship of (B.l), which is valid for integer order and integer plus a half order Bessel 

functions.

This process is upwardly unstable in terms of error and therefore, reverse recursion is 

generally used. With reverse recursion, arbitrary values are used to specify a high order 

Bessel function, and the algorithm is iterated downwards to a low order function.

The error reduces through each iteration, until the smallest order Bessel function (order >0) is 

reached. This smallest order Bessel function is determined using numerical approximations 

and a normalisation constant is determined by looking at the ratio of the approximation to the 

iterate. All the iterative values are then normalised by this constant.

The algorithm for Fourier coefficient generation is split into the Bessel functions of integer 

order and integer plus a half order. The algorithm is detailed below :

Algorithm for Fourier Coefficient Generation

~    4 /2  ~  ~  ~  4 /2  +  2 ~1. Formulae for iteration: Io„_, = Io„.1+y I o „  I e ^ . j  = I e(̂ l)+- ^ — I e(ji+|)

2. Set a maximum Bessel order MAX e.g. 80

3. Set l e MAX = = 0 and = \ o MAX_± = 1

4. Perform the recursions of line 1 for n=MAX-\...0 

. VP^exp(—j) l0(y)
5. Determine ro = ----------——  through a numerical approximation [4], and

2 1 o0

l-exp(-p)
re =  ^ J L L  from (B.4)

2Ie0

6. Perform ton = to To,, and te . =rele  . for n=MAX-\...0n n /!+■=• n+±

7. The final result is given by b2n+l = ton + Con+{ b 2n+1 =  + ff,, ■ (1 for n=0...MAX-\

Therefore a whole set of Bessel coefficients are generated through a simple iterative 

algorithm.
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2.8 Appendix 2.D
Iterative Algorithm for Generating Cosine and Sine of Multiple Angles

Using the following trigonometric identities:

cos [(*+ 1>I>] = cos(«<J>)cos((J))- sin(/i<J>)sin(<|>) (D. 1)

and

sin[(/i + 1)<J>]= sin(/i<t>)cos(<t>)—cos(/i<J>)sin(<J)) (D.2)

and using the notation

c0 = cos(<j>) (D.3)

and

s0 =sin(<))) (DA)

a recurrence relationship may be deduced for generating the cosine and sine of a series of 

multiple angles. Using the recurrence relationship below:

f»*is V o - V o  C15-5)

*n+l = SHC0 + C mS0

and for the range a = {0 ,1,2 ... L - 1} where L is the maximum number coefficients, the set of 

cosine terms is given by :

cos(/i<t>) = cn_j (D.7)
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2.9 Appendix 2.E
Fourier Series Expansion of the PDF of Phase for MPSK

The pdf of phase of a M  level PSK signal in the presence of Gaussian noise, may be 

developed from the pdf of phase of a sinusoid, as follows:

1 M - \

(E.i)
n=0

where

n[2n + l]
M

This is developed from (2.7) as :

(E-3)
/=1 n=0

The internal part of (E.3) may be expressed as follows : 

m - i  r m - i . )
y  cos(i[(j) -0  „ J) = Rej eJ(l*̂  ̂  {e~*°" j I (E.4)
n=0 I n=0

and by analysis of the phase vectors of PSK and the effect of phase rotation due to the power 

term, it can be seen that:

i = Mm
I 0 i*Mm

where m is an integer. Therefore the pdf of phase for MPSK may be written as :

n=1
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2.10 Appendix 2.F
Statistical Moments of the Phase of MPSK

The /Ith moment of the pdf of phase of a signal is given by :

it
m n =  (R 1 )

- i t

Using the identity from [8 , eqn. 3.76.10] it is found that:

—71 *=0 V ’

Using this in (2.7), the phase moments of a sinusoid in AGWN are given b y :

m „ = — + 2n!jt'-2y Y ^ - V --------— -------- u  C-3)n + 1 “  i ^ ( n - 2 k - \ ) \ ( i n )

and for M  level PSK this is given through (2.11) as :

1Zn n-2 V ' L. (” )̂* ^  (- 1)* r cmn =  +2n!7t > biM——-z-y  ---------- -— -------- zr- (F.4)
n + 1 ^  (*M) ^ |J(n-2fc-l)!(iA f7t)
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2.11 Appendix 2.G
PDF of Phase Difference Without 2n Wrapping

The auto-convolution when modulo 2n is not used, takes the form:

2k
g(V)=  J  f ( y ) m - y ) d y  

- In

and for Q> 0  this may be expressed as

« ( £ 2 ) =  J / O 0  m - y ) d y
£2-71

and g(-Q)=g(£2)

2.11.1.1 Fourier Series Form
Using the Fourier series representation for the pdf of phase (2.7) with b0 = 0.5 , 

shown that

.  o o  o o  f t

g(&) = btbn J cos(i(Q - y))cos(ny)dy
K  n=0 i=0

For the case where ten it can be shown that the integral term is given by

i lV+n+i nsin(nQ) -  isin(/Q)
* V  2 "-2rt - i

In the case where i=n*0 the integral term is given by

( £2 \  i sin(nS2)(Jt -f)cos(«£2)-----i - p i

Finally for i=n=0 the integral term is given by 

Combining all three cases

(G.l)

(G.2)

it can be

(G.3)

(G.4)

(G.5)

(G.6)
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(G.7)

Using the following identity:

tlnr*  6.A, ”si"^2> - f (/n) ■ 2 X |< K -y > .^ » n )t¥ ^  tits n ~i til ts* ~n (G.8)

(G.7) can be simplified to :

g m = In
(n —i£ ll + 2 ^ b ;  cos(/jfl)

/!=1
^ nbn sin(/j£2)
n=l

2i 2 - n  i=0 1 n
(G.9)

2.11.1.2 Tikhonov Approximation
Using the Tikhonov approximation (2.14) a high SNR form of the pdf may be written as :

- H
s(G )= — aT7 ~ vF J  exp[4p4n [I0(2p)J n_„

By a change of variable (G.10) may be expressed as :

1

4itJ[l0(2p)] ^ 2_a,
f exp[4pcos(^)cos(;t )]*

Using the expansion in[4]:

®(£i)=— ir 2, m2 J  II«[4pcos(^)]+ 2Y  I.[4pcos(f )]cos(nx)Lft 
4)t [I0(2 p)J o I ~i J

Finally through integration and simplification

(G.10)

(G. 11)

(G.12)

S(Q) = 2n2[l ^ p )]2 | l 0[4P c o s ( ~ ^ ) ] ( r c ( G . 1 3 )
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2.11.1.3 Combined Approach
The expression in (G.9) consists of a two dimensional infinite summation, and truncation is 

essential. The truncation will cause the model to be accurate at a low SNR. The pdf of phase 

difference may then be modelled for a full range of SNR using the two approximations, where 

the first three terms of (G.9) are used for a low SNR approximation and around eight terms of 

(G.13) for a high SNR approximation.

The results of the low SNR (p<2dB) approximation are

1 \(n “ ^Mfl + 2£i2 cos(£2) + 2*f cos(2fll) + 2^3 cos(3Q)l+l g(Q) = - - H v * 1 \ (G.14)
[fcj sin(£2) + k2 sin(2Q) + k3 sin(3£2) J

ki = -^-(l2-6*1-8*2+3*3) (G.15)

*2 = -^(-30  + 8 0 ^ -1 5 ^ -4 8 ^ )  (G.16)

k3 = - ^ ( 2 0  -  45*! + 72*2 “ l0b3) (° -17)

and the high SNR approximation (p>2dB)

g(&)= 27r i j-t ^ p ) f  {l ° [ 4 P ^ « » - » ) - 2g ^ - i . K ^ ) H - » ) |  (° -18)

The switch over threshold of 2dB has been chosen experimentally, and results in low peak 

error. This is shown graphically in figure 2.4, where the pdf and its approximation are shown 

in figure 2.4a and the error with the true pdf in figure 2.4b, where p=2dB.

It is seen that the model is good at this point, which is the result of maximum error.
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2.12 Appendix 2.H
Comparison of Instantaneous Frequency Estimation Techniques

In automatic modulation recognition the instantaneous frequency has been recognised to be a 

key parameter used to characterise frequency modulated signals. The instantaneous frequency 

of a signal may be derived in a number of ways, but all methods are merely an approximation 

to the true value.

This appendix outlines some of the methods which have been used to estimate the 

instantaneous frequency in the modulation recognition literature, and discusses the 

performance and complexity of each of them in turn. A comparison of the methods is made 

and the first order backward difference approximation is chosen as a suitable method for 

instantaneous frequency estimation in a modulation recognition environment.

Some results from the analysis in this section have been published in [2].

The modulo 271 is introduced to eliminate the effects due to phase wraps. This expression is 

often referred to as the central finite difference [12]. A more accurate approximation is given 

by the backward finite difference, expressed as :

The backward difference operator is often not used because of the group delay which is 

introduced through the half sample displacement [12]. However, this reasoning is not always 

well justified, as there are often over-riding benefits associated with the use of the backward 

finite difference operator. The first benefit is that the error in terms of a derivative function is 

smaller than the central difference. The second benefit is that the maximum instantaneous 

frequency which can be measured, is at the Nyquist rate, whereas the central finite difference 

operator measurements may only be measured up to half the Nyquist rate.

2.12.1 Instantaneous Frequency Estimators

2.12.1.1 First order difference approximation, mod 2n
The simplest approximation to the definition in (2.19) is achieved by approximating the 

differentiation of phase through a two point differential approximation:

(H.l)

(H.2)
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These difference operators are often associated with the effects of phase wrapping and 

frequency spikes. But this only occurs when the modulo 2k  is not used. The reason for using 

modulo 2k  arithmetic is seen when the equation H.2 is written in the following form:

h  (”) = W® (» “ !)] (H-3)

This is essentially the angle between adjacent analytic vectors, which has been scaled in order 

to map it to the instantaneous frequency. Equation (H.3) provides a computationally efficient 

method for instantaneous frequency estimation.

2.12.1.2 Zero crossing estimate
The zero crossing method is one of the simplest forms of instantaneous frequency estimation. 

The technique counts the number of zeros (k) which occur during a time interval Tz and 

estimates the instantaneous frequency by :

f z M = ^ r  (H.4)z 2TZ

It has been shown [12] that a signal with k zeros within the analysis time frame is equivalent 

to the average of k adjacent backward finite difference estimators, as in section 2 .12 .1.1.

This technique is subject to quantisation noise, which results from the fact that the number of 

cycles within the observation period is rounded down to the nearest integer. This is 

particularly prevalent at lower frequencies where there are a low number of cycles occurring 

within the observation period.

The method is not useful with digitally sampled signals, as the observation window length is 

required to be greater than two. The technique is only of any real use when estimation is 

performed on the analogue signal, and the result is then passed to the processor.

2.12.1.3 Analytic approximation
This technique has been derived from direct differentiation of the phase expression in terms of 

in-phase and quadrature components, and is then expressed in discrete form from (2 .21) as :

1 Kn)Q\n)-Q{n)r{n)
f a  W  -  ------ . 2 /  X , r , 2 (  x  V1-5)2kTs I (n) + Q (n)

where the ' operator represents the derivative with respect to time. It is noticed that this result 

does not require the implicit evaluation of the signal phase.
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The method has often been chosen because it does not incur phase wrapping, which was 

noticed in [40] where the result was derived using an alternative route through the application 

of a classic phase unwrapping algorithm [41] to the time domain. The invariance to phase 

wrapping is not a good reason to choose this method, as it was shown in section 2 .12 .1.1 that 

phase wrapping is not a real problem with the backward difference operator when modulo 271 

arithmetic is used on the phase difference.

The denominator of (H.5) is seen to be the instantaneous envelope of the signal and the 

numerator requires a mixture of in-phase, quadrature and associated derivatives. The problem 

here is in the evaluation of the derivative terms. This is not quite as straight forward as the 

evaluation in section 2 .12.1.1, as a group delay in the differentiator will mis-align other terms 

in the calculation.

The differential approximation has been achieved using a five point Taylor series 

approximation in [36]:

g's (”) -  ~ 2)~ ss(n -1) + 8 g(n +1) -  g(n + 2 )] (H.6)

and in a DFT form in [19]:

* > (« ) - IDFT^>G(*)“ j  (H.7)

where N  is the number of samples, and G(k) is the discrete Fourier transform of the signal 

g(n). This then gives a frequency domain approximation to the differentiation process.

The most common method for obtaining the differentiation approximation is through the 

central difference operator:

S i ' [$(« + !)- s (« - l) ]  (H.8)

It has been found that the estimation of the derivative function using (H.6 ) and (H.8), will 

result in poor results when the instantaneous frequency is above a certain value. This is due to 

the fact that the differentiators have associated frequency responses, which are good 

approximations at low frequency but poor at high frequency. The associated frequency 

responses may be determined by taking the differentiator approximations into the frequency 

domain, to leave:
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G1(lo) = jsin((ors) (H.9)

G5(co) = ^sin(toTJ )[4-cos((orj )] (H.10)

The responses of (H.9) and (H.10) are plotted in figure 2.5.

Desired Response.

5 Point

Point

-0.5 0.5

Figure 2.5 : Frequency Responses of a Three Point and Five Point Differentiator

The general overall effect of the frequency response error is that the instantaneous frequency 

is lower than desired, and will distort the signal at higher frequencies. The DFT method for 

approximating a differentiator is the most efficient in terms of frequency response, and an 

example is provided in figure 2.6, which shows a signal with a large range of instantaneous 

frequency values.
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Figure 2.6 : Plots o f Instantaneous Frequency against Time for a Sinusoidally Modulated 

FM Signal

The DFT method does however have drawbacks due to the windowing effects discussed in 

section 2.3.6. An example is provided in figures 2.7 and 2.8, where the instantaneous

frequency is subject to rapid variations.

0.2

0.15

0.1

& 0.05
I
3 0s
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I
* -0.15 

- 0.2

f t *  W rV  'M <Dj
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Figure 2.7 : Plots o f Instantaneous Frequency Estimate against Time for a Square Wave 

Modulated FM Signal, DFT Differentiator
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Figure 2.8 : Plots o f Instantaneous Frequency Estimate against Time for a Square Wave 

Modulated FM Signal, FIR Differentiators

From figure 2.7 it is found that the DFT method suffers the worst ringing at the transitions, 

and the ringing has a low damping factor. In figure 2.8 it is seen that the five point method is 

also subject to ringing which lasts just one sample either side of the transition. The three point 

method is not subjected to any ringing.

The analytic approximations therefore require more than a two sample observation frame to 

provide useful results.

2.12.1.4 Nagy Estimator

This technique was presented in [39] by P.A.J. Nagy. A personal correspondence with the 

author revealed that the method was derived intuitively. The author attempted to apply a 

bilinear transform operator to equation (2.22), which provides some useful results, but not a 

proof. The estimator is given by :

Following the correspondence, a proof was attempted, and an interpretation was derived based 

upon a geometric construction. It is shown in the following proof that the estimator 

approximates the backward finite difference estimator (equation H.2) when the envelope is not 

subject to fluctuations.

AM modulation is applied to the estimator. One example is provided in figure 2.9 where a

(H.ll)

In order to investigate the effects of envelope fluctuations, a signal with combined FM and
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signal with sinusoidal FM and sinusoidal AM of modulation frequency 0.1 Fs and AM 

modulation index of 0.8. It is seen that the instantaneous frequency is subject to large 

variations due to the AM component.

In general it is found that the fluctuations increase as the true instantaneous frequency and the 

rate of change of envelope are increased. This example highlights the problems associated 

with this estimator.

0.5 -| 

s0.25 -

|-0.25 -

•I
-0.5 ■

Figure 2.9 : Effect o f Amplitude Modulation on the Instantaneous Frequency Operator 

Analysis of the Nagy Instantaneous Frequency Estimator

Consider the vectors cast by two analytic signal vectors Z2 and Z1 where Z2 corresponds to 

s(n) and Z1 to s(n-1). The geometric construction in figure 2.10 shows a parallelogram with 

the two vectors and the angle between the two vectors \|r.

0.5 IZ1 +Z2ITan(\|f/2M>.5IZ 1 -Z2ISin(e)

Figure 2.10 : Geometric Construction

It should be noted that if the envelope does not go through a large envelope change between 

the two samples, the phase 8 cast by Z1+Z2 on Z2 is approximately given by Vi\\r. The

Sample Number

Backward Difference
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projection from the centre of the parallelogram, perpendicular to Z7+Z2, intersecting with Z2 

is expressed in the two forms below:

I = ̂ |Z1 -  Z2| sin(e) »^-|Zl + Z2| tanf^- (H.12)

where e is the angle between Z7+Z2 and Z1-Z2. This expression may be rearranged to give 

the following:

M sin(e)
2 J |Z1 + Z2| V '

(H.13)

Note the relationship between the phase difference \j/ and the backward difference 

approximation to instantaneous frequency from equation H.2. The estimate is then expressed 

by:

tan
2nf(n)Ts )  | j ( n ) - j ( « - l ) |  

2

= Im

——   Jlm{exp(je)}
5(n)+5(n-l^ 1 "

" f t )  +  - 1 ) }  e x p (-/ [ a r g ( 5 ( n )  ~  s (n ~  -  l ) ) ] ) j
(H.14)

\s(f

tan (Kf(n)Ts ) » Im
\s(n) -  s(rt - 1)| exp(./jarg(s(tt) -  s(n - 1))])

= Im

\s(n) + s(n - 1)| exp(y'[arg(j(n) + s(n - 1))])

s(n) -  s(n - 1) 
j(n )+ $ ( « - ! )

(H.15)

Therefore it follows that:

f (n ) »  tan
v ;  nT,

-l Im
j ( n ) - j ( n - l )  

s(n)+j ( n - l )
(H.16)

This derivation shows that the estimator approximates the backward difference operator when 

the envelope is approximately constant.

2.12.1.5 Autoregressive Estimate
A method has been presented for instantaneous frequency estimation using autoregressive 

techniques in two modulation recognition papers generated from the same establishment [37] 

and [38]. The technique determines the linear prediction coefficients (LPC) and then 

establishes a peak from the linear prediction spectrum. In order to ensure only one peak, the 

model order was set to two.
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The LPC coefficients aj and a2 are then given by the solution to :

(H.17)R0 rx V r*ii
_R0 Ro. _a2_ Ri.

where

M
Rk = y  x(n)x(n + k) (H.18)

n=0

and x(n) is the signal which has not been converted into analytic form. Generally this form of

equation will be solved using an iterative algorithm, but in this simple form the coefficients

may be evaluated through direct inversion of the matrix to give:

(Ro ~ R2 K  m  I o\
01 -  R l - R f  ^

<h -  R°*2_~Rf  (H.20)

This produces a frequency domain relationship characterised by the Z transform as : 

" ( 2 K " fl7 -? (H.21)l —OjZ —atL

where G is a constant. The instantaneous frequency is related to the roots of the denominator 

of H(Z) b y :

/ »  = ^ ra rg ( z „ )  (H.22)

and this may be represented in a simple form b y :

f a fa)= )  (r -23)

The smallest window which may be used with this technique is of length three. However, it is 

found that the estimator does not work well until the window size is greatly increased, e.g. of 

size thirty.

An example of the estimator is provided for a sinusoidally modulated FM signal in figure 

2.11. From the figure it can be seen that the estimator has a poor performance for a 6  sample 

window, and reasonably bad performance for a 21 sample window.
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It is concluded from these results that this is a poor estimator. The poor performance may be 

due to the number of poles used in the model, but more poles will increase the window length 

and will also secondly require a root searching function to solve the polynomial, where the 

dominant peak will have to be selected. It is therefore concluded that this method is unsuitable 

for modulation recognition.

jii;■' h

L=6

Sample Number

Figure 2.11 : 2-Pole Autoregressive Method of Instantaneous Frequency Estimation

2.12.1.6 Time-Frequency Methods of Estimation

It is possible to use the DFT and the Pseudo Wigner function [42] to estimate the 

instantaneous frequency of a signal.

The DFT method is often referred to as the Short Time Fourier Transform (STFT), and the 

minimum window length is two. The Pseudo Wigner distribution has a minimum length of 

three, but the frequency range is limited to a half of the Nyquist rate, which is half that of the 

STFT method. The peak of the distribution is often used as a basis for the instantaneous 

frequency estimate, as it is a simple means of estimation from the distribution.

The Pseudo Wigner function is calculated for frequency bin n and sample number i by :

N+1

W(i,n) = 2 ^ e J2bt(%,)\hN(k fx (i + k)x(i-k) (H.24)
*=-Ar+l

where hifk) is the windowing function, and in this case it is unity for the observation period, 

with a number of zeros to interpolate the spectrum. A technique is given in [42] for evaluation 

through the Fast Fourier transform (FFT), and the zero padding is therefore set such that the 

kernel function is a power of two.
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The zero padding determines the interpolation which may be present in the frequency estimate, 

and when the observation window is small, as in this case, the zero padding is essential to 

reduce quantisation noise in the estimate from the peak search.

The STFT is applied directly through a Fast Fourier transform, and zero padding is equally 

important in this technique. When evaluation is through the FFT, the magnitude squared 

component is used for peak searching. In this case the technique is called the Short Time Fast 

Fourier Transform technique (STFFT).

These techniques are computationally intensive, and their selection will require an 

improvement in performance over the other simpler techniques which have been described.

2.12.1.7 Comparison of the Techniques in Noise
It is difficult to provide a definitive comparison between the various techniques. A common 

method looks at the mean squared error of the estimator when a signal is present in Gaussian 

noise. This method is generally performed on a sinusoid, as the result may be compared with 

the Cramer-Rao lower bounds [43] [16].

Cramer-Rao lower bounds determine the minimum mean squared error which is theoretically 

possible to achieve in a given situation. This has been determined for a sinusoid in AGWN of 

SNR p for the case where the amplitude and phase of the signal are unknown [16] as :

requires further interpretation when applied to instantaneous frequency estimation. The reason

observations, which means that the signal is bound within a range.

At low SNR the noise components are bound within a region, and the mean square error tends 

towards a limiting value. The Cramer-Rao bounds assume that the noise is not bound, and 

suggest that the error continues to increase as the SNR is decreased. However, at a higher 

SNR there is no wrapping of the variable, and the comparison against the Cramer-Rao 

bounds is a valid one. A good estimator will reach the bounds at high SNR, and this is then 

termed a statistically efficient estimator [12].

(H.25)

where N  is the number of independent samples within the observation window. This limit

for this is that the instantaneous frequency is a circular quantity [6] when applied to discrete
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2.12.1.7.1 Comparison of the Backward Difference Method With Time- 
Frequency Techniques
As the Wigner method for estimation requires a minimum of a three point observation 

window, a three point comparison is made with the STFFT and phase difference techniques.

The phase difference technique has been extended to three points by averaging two adjacent 

backward difference estimates, and is a special case of the Kay Estimator [12].

The Cramer-Rao bounds for this estimate state that the minimum mean squared error is given 

by:

var(/)2i ^  (H-26)

Figure 2.12 shows the reciprocal of mean squared error as a function of SNR for a set of 

simulation runs with unity sampling frequency. From these results it is seen that the error 

approaches the Cramer-Rao bounds for each estimator between 6  and 8dB SNR. The Wigner 

and phase difference techniques are seen to outperform the STFFT method in terms of mean 

squared error.

The Wigner method looks to be the best at first sight, however it should be noted that the 

range of this method is a quarter of the Nyquist rate as opposed to a half in the other methods. 

The phase wrapping will therefore occur at a higher SNR than of the other techniques and it is 

seen that the rate of change of error decreases at around 4dB, which suggests that phase 

wrapping starts to occur.

The phase differencing technique is seen to be a better method in terms of performance and 

complexity, and is therefore a more suitable choice than the time-frequency techniques.
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Figure 2.12 : Plots o f 11Mean Squared Error against SNR for a Zero Frequency Sinusoid in 

Noise

2.12.1.7.2 Comparison of the Time Domain Techniques

The Analytic, Nagy and Backward phase difference techniques are compared using a two 

sample window. In the Analytic method the derivative is generated through a backward 

difference technique in order to preserve a two sample window.

The Cramer-Rao bounds for this case are given by :

(H.27)

The results in [2] describe a theoretical development for the mean squared error of the 

backward difference technique for a sinusoid in Gaussian noise.

Figure 2.13 shows plots of the reciprocal of mean squared error as a function of SNR for the 

three techniques. It is seen that the Nagy technique performs better in terms of mean squared 

error than the phase difference technique, and both are better than the Analytic technique.
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2.12.2 Conclusions
Various instantaneous frequency estimators have been compared, and it has been concluded 

that a two sample estimator is appropriate for modulation recognition.

The Analytic approximation has been found to yield poor results due to frequency dependent 

errors. The time-ffequency methods are computationally cumbersome and do not perform 

better in terms of mean squared error in AGWN than that of the phase difference method. The 

autoregressive method yields poor results for a small window length and is not recommended 

for use in any method for modulation recognition. The zero crossings method is not useful for 

an analysis window of two samples.

The Nagy estimator was found to perform well statistically for a sinusoid in noise. However, 

the effects of envelope fluctuations were seen to distort the frequency estimate.

The Central phase difference technique was found to limit the frequency range of the signal, 

and consequently the backward phase difference technique was chosen in preference. The 

statistical performance of this estimator was seen to be good and the computational efficiency 

is excellent and the estimator was seen to be independent of envelope fluctuations.

The backward difference method for instantaneous frequency estimation is therefore 

determined to be the best estimator for modulation recognition.
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3. The Classification of PSK Signals

3.1 Outline
This chapter examines new work on the classification of the number of levels on a PSK signal 

using decision theoretic methods.

This is an area of research that has received some attention in the published literature [1-7], 

with most of the work from A. Polydoros et. al. of the University of Southern California and

S. Soliman et al. of Qualcomm.

The chapter examines the published work, and further develops some of the techniques in 

terms of analysis and implementation. The most significant work within this chapter is the 

development of new methods for PSK classification.

The classifiers discussed from the literature require accurate carrier synchronisation. Included 

within this work is a new approach to PSK classification which avoids the requirement of 

carrier synchronisation. These techniques use a differential approach to the classification, 

which in many ways resembles that of non-coherent differential PSK demodulation. This is 

found to have a substantial performance degradation associated with it, but is still an 

attractive technique for PSK classification.

Most of the techniques assume different a-priori information, which will impose a level of 

attainable performance. This a-priori information has direct impact on the practical 

implementation of a working system, and in general the information must be estimated before 

the algorithm may be implemented.

The general direction of the work in this chapter is to develop new techniques which assume 

ideal conditions, and consequently takes a theoretical bias. Future research is required for the 

development of these techniques into a practical system, with particular emphasis on the 

estimation of PSK independent parameters. Some introductory discussion of these issues is 

provided in Appendix I, and Appendix II looks into the various methods of analytic signal 

generation which is fundamental in a digitally phase modulated system.

In all carrier coherent classifiers examined in this chapter, the signal is assumed to be a PSK 

signal of known carrier frequency in AGWN. The symbols are deemed to be equiprobable and 

of constant envelope. Any deviation from this ideal model is to be modelled as a nuisance 

factor, and some of the deviations are examined in the following chapter.
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3.2 Introduction to the Classifiers
The first decision theoretic PSK classifier apparent in the open literature was presented by A. 

Polydoros [1], and details a BPSK/QPSK classifier. The classifier statistics were derived 

from the in-phase and quadrature components of the received signal, and the classifier 

requires knowledge of the amplitude of the signal as well as the SNR.

The next development was made by S. Soliman [2], who presented a classifier structure which 

could incorporate a wide range of PSK signals. Classification is based upon the statistical 

moments of the detected phase. The performance of the technique was improved in subsequent 

papers [3] [4] by improving the accuracy of the model.

Soliman et al. then derived a classifier based on a maximum likelihood statistics for the phase 

[5], which is more robust and has better classification performance than the Statistical 

Moments Classifier, but at an increased computational overhead.

Huang and Polydoros improved the classification performance of their original technique [1] 

by using a power law to discriminate between different PSK types [6 ]. This was again based 

upon the in-phase and quadrature channels, and was a binary hypothesis technique. The work 

was advanced in [7] to incorporate a larger range of PSK classes.

The techniques discussed all require accurate knowledge of the carrier frequency of the signal, 

and assume that the carrier is removed. Some of the methods require accurate knowledge of 

the zero phase of the carrier so that the modes of the signal pdf are accurately aligned 

[2][5][7,cs]. All the methods require knowledge of the SNR of the signal, and those using the 

in-phase and quadrature signals [1][7] require knowledge of the signal amplitude.

3.2.1 New Classifier Structures Developed Within The Thesis
The work in this thesis develops some new forms of classifiers with different characteristics 

and assumptions. All of the methods developed have the flexibility to incorporate an arbitrary 

number of PSK classes within the structure.

The simplest classifier developed is the DFT of Phase Histogram classifier, which has been 

presented in [8]. This technique does not require knowledge of the carrier zero phase, 

amplitude or the SNR of the signal, and is a simple method to implement.

The next classifier which has been developed is an extension of the DFT method, and makes 

use of an SNR estimate to improve the classification performance. This method has been 

presented in [9], and has a computationally efficient structure.
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The globally optimum classifier is derived, which requires knowledge of carrier zero phase, 

amplitude and the SNR of the signal. The classification performance of the classifier is 

derived and methods for improving the computational efficiency are also examined. This work 

is to be presented in [10].

A set of non-coherent classifiers are examined within the thesis and do not require accurate 

knowledge of the carrier frequency of the signal. These methods are particularly useful, as the 

carrier frequency is one of the most difficult parameters to determine.

Three non-coherent (asynchronous) techniques have been proposed. The first two techniques 

perform classification based upon the phase difference modulo 2k, one method using 

maximum likelihood classification, requiring knowledge of the SNR of the signal, and the 

other using the DFT of phase difference histogram, which does not require knowledge of the 

SNR. The third technique performs maximum likelihood classification based upon the phase 

difference without the modulo 271 arithmetic imposed.

A summary of the various techniques is given in table 3.1, which also includes a summary of 

the a-priori information each method requires.

Accurate Carrier Frequency Knowledge
SNR Knowledge

Phase Calculation
Zero Phase Knowledge

Amplitude Knowledge
Existing Techniques
Statistical Moments V V V V X
Optimum Phase V V V V X
qLLR method, cs V V X V V
qLLR method, ns V V X X V
New Techniques
DFT of Phase Histogram V X V X X
Maximum Likelihood DFT 
of Phase Histogram

V V V X X

Maximum Likelihood IQ V V X V V
Maximum Likelihood Phase 
Difference Modulo 2k

X V V X X

Maximum Likelihood Phase 
Difference non- Modulo 2k

X V V X X

DFT of Phase Difference 
Histogram

X X V X X

Table 3.1 : Description o f Classifier Structures
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3.3 Chapter Structure
The synchronous phase based classifiers are examined first, starting with the “DFT of Phase 

Histogram” technique in section 3.4, where the structure and statistical performance of the 

method are examined in detail. This method is one of the new techniques presented within this 

thesis, and is then followed in section 3.5 with a maximum likelihood version of the same 

classifier.

The “Statistical Moments” classifier is discussed in section 3.6, and methods for 

computational efficiency are discussed with reference to the techniques in chapter 2. Some 

undesirable effects are attributed to computational inaccuracy, and methods for resolving this 

are discussed.

The “Optimum Phase” classifier is examined in section 3.7. New techniques are developed for 

the evaluation of the error performance for a general case and methods are discussed for 

improving the computational efficiency based upon a cubic spline look-up table.

The synchronous IQ methods follow, starting with the theoretically optimum classifier in 

section 3.8. This provides the development of the structure and classification performance of 

the technique and methods are examined for the improvement of the computational efficiency 

using Pade approximates.

The coherent power law techniques developed by A. Polydoros et al., which are termed qLLR 

(quasi log likelihood ratio) are examined in section 3.9. The classification performance of 

these techniques is examined.

Finally the non-coherent methods of PSK classification are developed, where the wrapped 

phase difference is considered for a maximum likelihood structure in 3.10.1, and a histogram 

DFT based method in 3.10.2. A further structure is developed in 3.10.3 for the case where the 

phase difference is not wrapped by 2n.
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3.4 DFT of Phase Histogram Classifier
This method has been presented and published in ICASSP ‘95 [8]. The general technique 

employed by this method results from an analysis of the pdf of phase of PSK signals at low

It is noticed in figure 2.2, chapter 2 that at low SNR the pdf of phase for MPSK tends 

towards a sinusoid of M cycles. From this observation an algorithm for PSK classification 

was derived, where the DFT is used to highlight the first Fourier harmonic in the pdf. The 

peak of the DFT may then be used as a means of classifying M. In order to establish the pdf 

of phase, the pdf is approximated through a histogram, which enables the DFT to be 

employed effectively.

The performance of the classifier is determined through mathematical analysis assuming that 

the PSK signal is in AGWN. This analysis places the classifier in a similar category to that of 

the decision theoretic classifiers.

The performance is developed using the assumption that the signal is modelled effectively by 

one harmonic at the SNR range of interest and above this, the classification error probability 

is so low that a multiple harmonic has negligible effect on the classification performance. This 

assumption is found to be a good one.

The incoming signal is digitally sampled and the phase <j)(n) is determined for L samples.

The L phase samples <j>(n) are used to build a phase histogram with N  bins which 

approximates the pdf. The following theory characterises the error between the true pdf and 

this histogram approximation.

SNR.

3.4.1 Development

3.4.2 Histogram Development

The probability of a phase sample entering the i* histogram bin is given b y :

(3.1)

where A is the bin width. This may be approximated for small bin widths b y :

(3.2)
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As there is a fixed probability of the phase samples entering any histogram bin, the pdf of a 

bin will be binomially distributed with mean Lp, and variance:

(3.3)

The area of the histogram is LA. The histogram is normalised to unity to give a mean p, and 

variance a,2 o f :

H/=/(4>,) (3.4)

#(<!>,)] (3.5)

For small A/(<J>,) the variance may be approximated b y : 

a ' (3-6)

By virtue of the central limit theorem, the errors of all the bins will be noimally distributed for 

large L. The mean variance of the error terms is expressed b y :

d 2 <3-7>
« = i

where d 2 is the noise variance of the N  bin histogram. This then gives

JL 2
NLAt ,i=i

IV
But a] T /(<(,,) = 1, therefore

i=i

a 2  l—r  (3.9)
NLA2

2tcThe histogram will have equally spaced points in the interval [~n,n], therefore A = — .
N

Placing this into (3.9), the noise variance is :

<j2 ~ - 4 -  (3.10)4n L

An example of a 1024 sample, 32 bin histogram for QPSK at 5dB SNR is given in figure 3.1.

The underlying sinusoidal nature of the pdf is prominent at this SNR. The pointwise error
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between the histogram and the pdf is seen in figure 3.2. This error series is the cause of 

misclassification, and transpires to the DFT stage.

0.3 T

Histogram  True pdf I Histogram Bin No.

Figure 3.1 : P lo ts o f  H istogram  and PD F o f  P hase fo r  

Q PSK  a t 5dB SNR, L=1024, N = 32

The error signal is modelled in subsequent sections as a zero mean Gaussian series with 

variance given from (3.10). However, each sample does not have the same variance, and by 

the nature of a histogram each sample will have some form of dependence. The effect of this 

will be discussed at a later stage, and the assumption that the noise series is AGWN is used to 

develop the model.
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Figure 3.2 : P lo t o f  H istogram  E rror fo r  Q PSK a t 5dB SNR, L = 1024, N = 32
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3.4.3 Discrete Fourier Transform
The signal presented to the classifier is modelled as a single sinusoid in the presence of 

AGWN resulting from the histogram error.

The N  points of the histogram are operated on by the discrete time Fourier transform to 

exploit spectral peaks corresponding to the harmonic terms. From (2.11) it is seen that M  level 

PSK is characterised by a series of spectral lines on the bins which are multiples of M. This 

indicates that the DFT will be subject to aliasing of harmonics.

When choosing the number of histogram bins N, two conditions must be satisfied. The first is 

to avoid aliasing of the fundamental harmonic of all potentially present PSK schemes, and the 

second is to avoid spectral leakage from the harmonics. If M Max  is the highest number of 

levels on all of the PSK schemes considered, then the two conditions are satisfied by setting N  

to an integer power of two, and greater than twice Mmax.

The phase of the frequency components is not required in order to characterise the PSK 

schemes, so magnitude squared of the DFT is used. The magnitude of the DFT is equally 

valid, but it requires extra processing whilst offering identical performance.

In the previous section it was seen that the histogram is built up from the true pdf plus 

AGWN. This noise presents a noise floor on the DFT in bins without a harmonic, and will 

perturb the magnitude of the bins with the harmonic terms. The DFT of the signal h(n) is

In order to normalise the DFT to reflect the magnitude squared of the harmonic components, 

S(k) is multiplied by the scaling factor -4? to give D(k)

From [11] it may be deduced that the noise signal away from the end points has a Chi 

Squared distribution with two degrees of freedom which is identical to the Rayleigh

given by :

H(Jk) = h(n) exp (3.11)

The magnitude squared of this signal is given by :

S(*) = x2(ifc) + y2(k) (3.12)

(3.13)
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distribution. For a noise signal z presented to the DFT with variance a 2 , the distribution is 

given b y :

~ Tr~2"expf r r r l  z>0 (3-14)N o1 V NoL

Placing in the expression for the noise variance of the histogram (3.10):

z>0 (3.15)PW = - ^ 2 - exp
N

It can be shown by a change of variable that the pdf of D(k), p(y) is : 

p(y)=7t2Lexp(-rc2Ly) y>0 (3.16)

where y  is the random variable of the noise signal.

This result shows that the noise floor is independent of the number of histogram bins N  and 

implies that AT may be made large enough to remove any significant effects of aliasing without 

affecting the noise floor. It can also be shown (Appendix 3.A) that using different N  with the 

same data presents approximately the same result for the same frequency bins, particularly at 

low k. Finally it can be shown that the mean noise floor level is given by :

^  floor ~ 2 j  (3.17)
71 L

When a frequency bin is occupied by a harmonic signal and the histogram noise, the bin is 

distributed with a non-central Chi-squared distribution, with two degrees of freedom [11]. It 

can be shown that the distribution g(x) of a bin D(k) containing a harmonic of amplitude b j n  

and the histogram noise is given b y :

g(x) = 7i2Lexp(-L[&2 +7t2x])l0(27tfcOTLVx) x>0 (3.18)

where I0(z) is the modified Bessel function of zero order. It should be noted that this 

expression is also independent of N. Examples of the characteristics of the two pdfs are given 

in figure 3.3.
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Figure 3.3 : Plots o f  PDF for the DFT o f  Phase Histogram fo r  QPSK at 5dB, 1024 Samples

3.4.4 Classification
The classification is achieved by finding the maximum DFT magnitude for the bins which are 

of interest, £>(a„) where a„ is the number of states in the n^  PSK signal. The classified 

signal is M-PSK where :

a  ueMAX[D(a„)] (3-19)

e.g. when 1,2,4 & 8 PSK are to be classified, bins 1,2,4 & 8 of D(k) are examined, and if bin 

4 is the maximum then the signal is classified as 4 PSK.

Phase

Histogram

Choose Maximum

Classified PSK Signal

Figure 3.4 : Algorithmic Structure

It can be seen that classification is based on the first harmonic of each PSK signal considered. 

The higher order harmonics do contain information on the signal class but only the first

3.10 DFT of Phase Histogram Classifier



harmonics are significant at low SNR, and as the classification procedure does not use the 

SNR information the higher order harmonics are not included. The overall algorithm is 

described schematically in figure 3.4.

3.4.5 Probability Of False Classification
Consider the bin containing the signal x  with distribution g(x), and n noise bins which are 

identically and independently distributed with distribution p(y). The probability that the signal 

lies in the interval x,x+&x is given by

g(*)8* (3.20)

Correct classification occurs when all the noise signals are less than x. The probability of 

correct classification in the interval is therefore :

*<x)[l-®(j0px (3.21)

where

oo

®W =Jp(y)^y (3.22)
X

When all of these contributions are summed and in the limit of Sx —»0, the probability of 

correct classification is given b y :

oo

Pcorr = JS(*)P ( * ) I ( 3‘23)
0

which can be re-written as :

Pcorr = | J  (3-24)
i=0 ' '* ' 0

The probability of error is then given by :

Pcrr = 1 -  Pcorr = f  8 ‘ 3̂*25^
i=l ' ’ 0

From (3.16), <£(*) is given b y :

O (x) = exp(-Ji 2Lx) (3.26)
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Using (3.18) and by manipulating the result in [12] it can be shown that

o
(3.27)

Therefore by placing (3.27) in (3.25),

(3.28)

For a two scheme classification (n= l):

(3.29)

For a four scheme classification (n=3):

-e x p
‘ 2b2mL 1

+ —exp
" 3b2mL

2 3 4 4

3.4.6 Results
The calculated results are plotted for the DFT classifier (figure 3.5) using the set CW-8PSK 

for classification and 1024 samples with the SNR ranging from -25dB to lOdB. Also included

results lie close to the theoretical results in the case of CW and BPSK but are slightly below 

the theoretical results for QPSK and more significantly below for 8PSK.

The error performance is seen to be better than that predicted by the model and becomes 

significant for QPSK and 8PSK. It is found that there is correlation between histogram error 

samples which causes the DFT spectrum to become non-uniform'.

The result is that at the lower frequency bins the variance is reduced and the higher frequency 

bins level out to that predicted from the approximations. This is not significant for CW and 

BPSK, but for QPSK and 8PSK at a higher SNR, the reduction in variance results in an 

improved performance. However, asymptotically the results tend towards the theory within 

0.1 dB at 1% misclassification probability. Figure 3.6 shows the error probability for 

classifying CW-16PSK.

on the plot in the dashed lines are the simulated results. It can be seen that the simulated
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Figure 3.5 : Plots of Misclassification Probability against SNR for CW, 

BPSK, QPSK and 8PSK, L=1024
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Figure 3.6 : Plots of Misclassification Probability against SNR for CW,

BPSK, QPSK, 8PSK, 16PSK, L=1024

3.5 Maximum Likelihood DFT Classifier
The DFT classifier in section 3.4 bases classification on the maximum of the DFT of Phase 

Histogram, which is independent of the signal SNR. If some SNR information is to be used, 

then a maximum likelihood structure may be developed. The following development has been 

presented at GLOBECOM ‘95 in [9].
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3.5.1 Development
When A/PSK is transmitted, the pdf of the DFT bin may be represented by gr,(.x), which 

was found in section 3.4.3 to be a non-central chi-squared distribution with two degrees of 

freedom. This is given b y :

Also, the pdf p(x) of the DFT bins without a harmonic component are Rayleigh distributed 

and are given by :

3.5.2 Maximum Likelihood Classifier
In the DFT classifier of section 3.4, classification was based on the maximum of a set of DFT 

bins, each of which corresponded to a PSK type. This method required no knowledge of the 

SNR of the signal, but is sub-optimal in the case when the SNR information is known. The 

technique presented here assumes that the SNR information is available, and uses a maximum 

likelihood technique to classify the PSK type.

Appendix 3.B shows the general foim of maximum likelihood classifier. In this particular 

problem there is only one set of data to be tested. The probability of the data given the 

hypothesis of a-PSK transmitted is given from (3.31) and (3.32) by :

p( xl,x2,...xa ,... la PSK) =n 2Lexp(-zj£2 + k 2xa ])l0 (2tc£0 7C2Lexp(-7t 2L*,) (3.33)

where Xi is the output of the i* DFT bin and P is the number of PSK types tested. This may be 

simplified to :

As the maximum is chosen, the terms independent of a  may be eliminated, and the classified 

PSK signal can be represented by :

gm(x)=n2Lcxv(-L[bl +7C2x])i0(2tc6jblV x ) x>0 (3.31)

(3.32)

p

p
p ( x l,x2,.. .xa , - x mJ a  PSK) = exp(-L&2 )l0 {lnbaL ^ [ x ^ \ n 2Lexp(-rc 1Lxi) (3.34)

i=i

MAx|exp(-£i>2 )l0 (2nbaL jx ^ y a  e all PSK typesj (3.35)
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increasing function), and applying asymptotic expansions for the Bessel function. For large 

values, the Bessel function may be represented [131 as:

ioM
1

V2tu
exp(.x) (3.36)

The likelihood function Xa may be represented by

Xa = lr,[l0(27C*a L V ^ ) ] - L ^  x<100 (3.37)

which may be evaluated using approximations in [13]. For a large argument the likelihood 

function is simply expressed by :

Xa = Lba [ ln jx ^  -fca )-4-ln[4rc26a ̂ V^a"] X>1°°

The overall structure for this classifier is given in figure 3.7.

Phase

I
Histogram

m
(Mag)2 D.F.T.

I0 ^ l|2 l3 |4 l5  16 17̂ 8 19 110

ln[l0(2it baL^/x^")]- Lb* 

a=l,2,4,8

Choose Maximum

Classified PSK Signal

Figure 3.7 : Classifier Structure

(3.38)

3.5.3 Misclassification Probability
The misclassification probability is unfortunately very difficult to calculate. In other similar 

problems the probability is simpler to calculate due to the a large number of samples being 

passed through the classifier, thus generating a Gaussian distribution. Therefore the error

3.15 Maximum Likelihood DFT Classifier



performance is evaluated through numerical simulation. Unfortunately this is not the case 

here, and mathematical evaluation is not practical.

Figures 3.8 and 3.9 show plots of error performance against SNR which have resulted from 

simulation trials. Figure 3.8 shows the case when L=1024 and CW, BPSK, QPSK and 8PSK 

are classified. Figure 3.9 shows the case where only BPSK and QPSK are classified.

It can be seen that there is divergence between the QPSK and 8PSK plots of figure 3.8 and 

the BPSK and QPSK plots of figure 3.9. In a true maximum likelihood classifier it would be 

found to be coincidental.

These deviations are due to the model deviating from the true pdf at low SNR, and this was 

observed from the previous DFT classifier (Section 3.4) where the error classification was 

better than that predicted from the model for QPSK and 8PSK. It was found that the plots 

converged to the model at a high SNR, and this is also seen in figures 3.8 and 3.9 where the 

plots converge together, thus indicating a reasonably good maximum likelihood characteristic.

l.e+0

.e-

l.e-2 ^
On

BPSKCW

.e-3

.e-4
-25 -20 -15 0 5-10 ■5

SNR (dB)

Figure 3.8: Plots o f Misclassification Probability against SNR for CW, 

BPSK, QPSK and 8PSK, L=1024
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Figure 3.9 : Plots of Misclassification Probability against SNR 

for BPSK and QPSK, L=1024

3.6 Statistical Moments Classifier
The Statistical Moments Classifier was proposed by Soliman and Hsue in [2]. This form of 

classifier uses the statistical moment of the phase sample as a feature for classification.

The original approach presented, calculated the theoretical statistical moments through a high 

SNR approximation. This was then extended to an exact distribution by Yang and Soliman 

[3], which based the moments on the Fourier series expansion of the phase pdf and was 

published in journal form in [4].

The moments were then shown to provide discriminating characteristics for an A/PSK signal, 

and classification is then based upon a set of calculated thresholds.

3.6.1 Development of Thresholds and Performance
The n* moment of a phase estimate from a discrete time signal <|>> is defined as :

'a „ = 4 y > ;  (3.39)
L i=1

The actual moments of an M level PSK signal are given by (Appendix 2.F):
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1tn _ , „-2V u (""I)1 V ' (“m.   +2nln y  biM- —-?■ > -------- -(-1)*
2* (3.40)

It has been found that approximately sixty terms are sufficient for the range of SNR under 

consideration, and the efficient generation of the Fourier coefficients are detailed in Appendix 

2.C.

The expression in (3.39) is the sum of a number of i.i.d. variables, and when L  is large the 

moment estimate becomes a normally distributed variable with mean and variance given b y :

=™„(A/) (3.41)

(3.42)

The thresholds are then considered as a binary hypothesis test between two classes. The 

hypothesis is given by :

p{a\x) _ p(a)gp
p(PI*) p(P)<*«

exp
( x - pg)2 

2a* 2a;

Ha

//«
(3.43)

where x  is the measured moment, a  and p are the two PSK classes which are tested. Equation

(3.43) may be re-arranged to give a threshold o f :

T =
-U p)' +(<*« -<*2p)ln

a :  - a ;
(3.44)

This is extended to multi level PSK by assuming that there is negligible influence from non- 

adjacent PSK types, and the thresholds are then determined from (3.44) as :

7; = 1 _ .
2 _  2 

C  X -l

(3.45)

where the number of PSK levels is 2X and the thresholds are performed for X>1. Classification 

of CW, BPSK, QPSK and 8PSK is then based upon the following thresholds :

: CW classified

: 2 PSK classified

3.18 Statistical Moments Classifier



m >7; . 2Xjrax p s k  classified

The probability of misclassification is then evaluated by examining the cases where the 

moments variable lies outside the threshold bands. This is evaluated as :

p(errorlXPSK Tx) = Q +Q (3.46)

p(eiroriCW Tx) = Q (3.47)

/?(errorlA, max PSK Tx) = Q Hx -  Tmax X max

X max

(3.48)

The classification performance is plotted in figures 3.10 and 3.11 for the case where CW, 

BPSK, QPSK and 8PSK are received with 1024 samples. Figure 3.10 shows the performance 

of the 8th statistical moment and figure 3.11 shows the 4th moment From these two plots it 

can be seen that the perfoimance is very much dependent upon the choice of statistical 

moment

A suitable choice of moment is one which is numerically equal to the highest PSK type [2], 

and any lower than this tends to have a severe performance penalty, which in certain cases can 

tend towards an error floor.

There are some implementation aspects which must be taken into account when using this 

technique. The first problem occurs at low SNR, where the variances in the denominator of 

(3.45) become similar in magnitude. This results in a threshold which is highly sensitive to 

numerical inaccuracy, and the threshold should be modified to the following approximation:

Hx-i<*x+ Hxgx-
a ,  - a

(3.49)
X -l

The thresholds must always be within the mean moment boundaries, and a check should be 

made to ensure that this is the case. In cases where this does not occur, the threshold should 

be set to the average of the two mean moments.
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Figure 3.10 : Plots of Misclassification Performance against SNR for CW, 

BPSK, QPSK & 8PSK, L=1024, 8th Statistical Moment
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Figure 3.11 : Plots of Misclassification Performance against SNR for CW,

BPSK, QPSK & 8PSK, L=1024, 4th Statistical Moment

3.7 Optimum Phase Classifier
The Optimum Phase technique is a maximum likelihood classifier based on the signal phase, 

and was proposed by Yang and Soliman [5]. The classifier requires knowledge of the carrier 

zero phase reference in order to operate correctly.
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This chapter provides a brief development of the classifier. A technique is developed for 

evaluating the classification probability which has been published in [14]. One drawback of 

this technique is the computational burden from the likelihood functions, and methods are 

examined for improving the computational efficiency.

3.7.1 Summary of the Classifier Structure
The pdf of phase of CW in AGWN was given in Chapter 2, equation 2.5 as :

Alternatively this may be represented in Fourier series form (Chapter 2, equation 2.7):

The log likelihood function for this form of classifier is detailed from Appendix 3.B as :

Each sample is then passed through a log likelihood function corresponding to each PSK type 

tested. The results are summed after each sample and the maximum at the end of the trials is 

the classified signal.

Each sample therefore requires the evaluation of the phase of the signal, followed by an 

AfPSK pdf evaluation and then a logarithm term. This is a computationally intensive task, and 

simplification techniques may be employed where speed is critical.

Appendix 3.C derives a technique for the efficient evaluation of the log likelihood function 

based upon a lookup table which is determined at the beginning of each trial. Cubic spline 

interpolation is then employed, to provide a computationally efficient method of likelihood 

function generation.

The performance of the classifier is analysed in Appendix 3.D, and the misclassification 

probability is plotted in figure 3.12 where CW, BPSK, QPSK and 8PSK are assumed 

potentially present at the receiver.

P^ =:t c e p+i $ cos^ e psm
(3.50)

and the pdf of phase of an M  level PSK signal is given b y :

(3.51)

(3.52)

^ M (fl*) -  h^/A/ (<|>)] (3.53)
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Figure 3.12 : Plots of Misclassijication Probability against SNR 

for CW, BPSK, QPSK and 8PSK, L=1024

3.8 Maximum Likelihood IQ Classifier
This section develops the theoretically optimum classifier. The results of this work are to be 

published in the MILCOM ‘96 conference proceedings.

This system performs maximum likelihood classification based on information from the in- 

phase and quadrature channels directly.

3.8.1 Development
Let x and y be random variables representing the in-phase and quadrature channels 

respectively. The channel is assumed to be perturbed by AGWN, and the joint pdf of x and y 

when a CW is transmitted with phase \\r is given by :

p(x,y) =
2no

-exp
(x -  A cos(y ))2 + (y -  A sin (v ) f  

2o2
(3.54)

Expanding this expression:

x2 +y2 +A2 -2A(xcos(y j + ysin^))
p(x>y) = - — f  exP

2 7 1 0 2o
(3.55)

For AfPSK the pdf consists of the scaled sum of phase shifted versions of the CW pdf 

(Chapter 2.3.2), given by :
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where 0, are the phase states of the AfPSK signal and:

6 '  = n ~ +M M  (3>57)

Using the maximum likelihood classifier of Appendix 3.B, the log likelihood function is given 

by:

XM(x-y)= ln| 2ng12M CTP +2o * A X e,tp[^'(j:cos(0;)  + 5’sin(e ^))]| (3-58)

As the maximum statistic is used, the multiplicative terms independent of M  may be removed 

to leave:

in|^ X exp[^(rcos(e/)+^sin(0/))]| 3̂‘59̂

This may be simplified for different foims of PSK signals (Appendix 3.E) to give:

^\(x,y) = -£rx (3.60)

^2  (*» y) = ln[cosh^V y)j (3.61)

^4  (x*y) = in jrosh^^rx)] + (3.62)

^8 (x*y) = ln^-j{cosh(ax)cosh(fty)+cosh(&r)cosh(ay)}j (3.63)

wherc a = J W m d

Each sample set is then placed through the likelihood function for each PSK type assumed 

present. This produces the likelihood output t } for j  level PSK. Gassification is then based

upon the maximum likelihood function at the end of a trial, i.e .:

< ;= !> /(*<•> '.) (3.64)
1=1
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and the classified PSK signal M is : 

M -  MAXff, , /I
1  J 1 yeAll PSK Types

(3.65)

The general structure of this technique is given in figure 3.13. This structure enables any 

number of PSK signals to be classified.

Choose
Maximum

Classified
PSK

Figure 3.13 : Maximum Likelihood Classifier Structure for PSK

It is seen from (3.60) to (3.63) that this method requires knowledge of the noise variance and 

the amplitude of the signal. The noise variance is related to the SNR of a signal by :

a 2 =-^- (3.66)
2p

3.8.2 C lassification  P erfo rm ance

The classification performance is derived for the case where BPSK and QPSK are 

discriminated, which provides a relatively simple solution. The expression for i M in (3.64) 

consists of the sum of a number of independent variables. If L is large enough, will tend 

towards a normally distributed variable by virtue of the central limit theorem. The mean and 

variance of the functions are derived for each likelihood function given a particular PSK type

transmitted. The correlation between the distributions is determined, from which the

probability of false classification may be obtained.

The statistics of the likelihood functions result from the statistics of x and y passed through 

the likelihood functions. In the case of BPSK there is one variable, and using an extension of 

[15] the /Ith moment is given by :

m(n) = j  gn (y)fy (y)dy (3.67)
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For QPSK the expression is given in a more general form a s :

M M

m(n) =  J  J V  ( x ^ ) ^  (x, y)dxdy  (3.68)

This is a two dimensional integral which may be simplified since the expression for X4 in 

(3.62) may be separated into two independent parts as :

K  ixi * y.) = ln[cosh(N/pX.)]+ln[cosh(^py.)] = ga (x) + (y) (3.69)

(3.68) may now be expressed as :

om om

”*(”) = J  f [ g a (x) + gp(y)J' f x(x)fy (y)dxdy  (3.70)

For the first moment, this simplifies to :

om om

'"(D = J* <?a (x)fx(x)dx + Jgp (y)fy(y)dy (3.71)
—00 —*0

and the second moment:

m om om om
™(2)= jg l ( x ) fx(x)dx+jgl(y)fy(y)dy + 2 jg a(x)fx(x)dxjg^(y)fy(y)dy (3.72)

These expressions cannot be evaluated analytically, but may be evaluated using numerical 

techniques to find the mean jily and variance a  ?, where j  level PSK is transmitted and is

tested against the / level PSK statistic.

The output statistics of t 2 and are not independent, and their correlation coefficient r} is 

given by [15] as :

= E[X;X4] - H 2,jH ^  (3 ?3)
a 2, p  4J

Using the definitions in (3.69) and (3.61) and the fact that x  and y are independent, the mean 

of the cross product terms may be expressed as :

e [x 2x 4 ] =  J Msp ( y ) f y W y  + j  ̂ 2 ( > %  ( y ^ y  J s a MA (3.74)
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As it is assumed that L is large, the central limit theorem states that the statistics of the 

likelihood function may be approximated by normally distributed variables, with mean and 

variance given b y :

V°U = LVij (3*75)

oofj = Lo ]j (3.76)

3.8.2.1 Error Probability given BPSK transmitted
For BPSK, the x  and y  statistics used to evaluate the likelihood function mean, variance and 

correlation coefficient are given by :

/ ,M  = -7 = e x p (-4 )  (3.77)

/,(>) = ̂ y= e‘p exp(-4)c°sh(V2p->') (3.78)

An error occurs when (x,2 -X,'4)<0. The statistics of this difference are normally distributed 

with mean and variance given by :

\id = (xo2,2 _ M̂4.2 (3.79)

ad2 = oo2 2 + oo22 ~ 2r2G02,2004,2 (3.80)

Finally, the probability of error is simply expressed as :

— >/Z|p2,2 _  M-4,2 ]p(error\BPSK) = 0[ | = O
2,2 ® 4,2 7rz O  2 ,2® 4,2

(3.81)

where <D(x) is the cumulative normal distribution function, and is given by 

.2  \

®w = 7 s r H - T
dt (3.82)

3.8.2.2 Error Probability given QPSK transmitted
When QPSK is transmitted the classification error statistics are derived in a similar way, 

using:
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/*M  = ̂ = *  * exp(-4)cx)sh(Vp.A:) (3.83)

A M  = ; ^ = e~’ exp(-^)cosh(Vp.y) 

and the probability of error is expressed as :

-Vl [p 4,4-^24]

(3.84)

p(error\QPSK) = <X>
v V °4-4 + ° 2-4 ^r4a  4 4a  24

(3.85)

The classification performance resulting from the above theory is provided in figure 3.14 for 

the BPSK/ QPSK case and is verified by the results from simulation. This is extended in 

figure 3.15 to the case where CW, BPSK, QPSK and 8PSK are potentially transmitted.
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Figure 3.14 : Plots of Mis classification Probability against 

SNR for CW & BPSK, L=1024
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Figure 3.15 : Plots o f Mis classification Probability against SNR 

for CW, BPSK, QPSK and 8PSK, L=1024

3.8.3 Im provem ent in C om putational Efficiency

The computation of the likelihood function requires the evaluation of a set of functions on 

each sample pair, which will cause the bulk of the computational complexity when a large 

number of samples is employed. We therefore examine these functions carefully, to see how 

the computational complexity can be reduced.

The evaluations of the BPSK and QPSK likelihood functions are dominated by the evaluation 

of a function in the form of ln(cosh(x)). For a large index, this may be expressed simply as :

ln(cosh(x)) = x -  ln(2) (3.86)

There are a number of low index expressions which may be applied, with a trade off between 

complexity and error. Each of these will have an optimum threshold point where the function 

error is equal to that of (36), where the decision is made to the high or low SNR 

approximation. Two examples are given using Pade approximations. The first results in a 

peak error of 0.4% :

J. r2 I 19 r4 I 211 6̂
ln(cosh(x)) = —  , 4 4  2̂ 2 + *<2-44 (3.87)

1 ■+■ 93 X  -I- 19530 X

A simpler expression which results in a peak error of 1.8% is :
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3.9 Coherent Power Law Classifier (qLLR)
This method was introduced by C. Huang and Polydoros in [7]. The technique is a simple M*

power law method. This is a common method used within communication systems to establish 

the carrier frequency of a digital signal, but there is a slightly different approach taken with

Two cases are examined, the carrier phase synchronous case (cs) and the phase non- 

synchronous case (ns). Both methods assume that the carrier frequency is accurately known, 

and the cs method assumes that the carrier reference phase is also known.

The ns statistic looks at the modulus of the transformed phase vector in order to determine a 

mean component, i.e.

The cs case uses the fact that the mean transformed signal will lie on the negative real axis 

when the power is the PSK type or greater. The statistic used for this is :

The general procedure is to consider the problem as a binary hypothesis test, and to analyse

decision is made at each stage. If the statistic is deemed to have a mean component, the test 

stops and the PSK type is classified according to the power used at this point. If it is not then 

the next highest power is applied until the highest PSK type is classified.

In the example given in figure 3.16, CW, BPSK, QPSK and 8PSK are considered potentially 

present at the receiver. Each PSK type is tested in turn, starting with CW. If the statistic is 

greater than a threshold then CW is classified, otherwise the test is performed for a power two 

and the test occurs for BPSK, and so on. If QPSK is not positive then 8PSK is classified.

this method. In this method the carrier frequency of the signal is assumed to be known.

(3.89)
i=i

N

(3.90)
i=i

the test statistic for adjacent PSK classes. This is performed in ascending order, where a
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Figure 3.16 : qLLR Classifier for CW, BPSK, QPSK & 8PSK Classification

The technique in [7] scales the signal at the output of the integrate and dump such that the 

noise variance is unity, and the signal amplitude is J lp  where p is the signal to noise ratio.

3.9.1 Carrier Phase Synchronous Threshold
It is found [7] that the noise variance at the output of the cs test statistic has a mean value of 

- N fe p  when the power is the same as the PSK order, and zero when the PSK order is

greater than the power. The distribution of the statistic is of a Gaussian form due to the 

central limit theorem and the variance of the noise is, approximately equal in both cases. The 

threshold is therefore set a t:

Tcs(M) = j ( 2 p f i (3.91)

Figure 3.17 shows plots of the classification performance for this technique for the cases of 

CW, BPSK, QPSK and 8PSK being potentially transmitted.

3.9.2 Carrier Phase Non-Synchronous Threshold
The distribution of the non-carrier synchronous statistic is of a non-central chi squared form 

of two degrees of freedom. When the power is less than that of the PSK type, the pdf is 

represented by a Rayleigh distribution. The variance is again assumed approximately equal in 

both cases and the threshold is determined by the intersection of the two pdfs to give :

Tns(M)~(2p)"vM V0' exp
N

2VM
(3.92)

where;
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Results of the simulated classification performance are provided in figure 3.18 for the same 

conditions as the cs case. A simplification has been proposed in [7] to apply the cs threshold 

to the ns case and figure 3.19 plots the simulated results from this simplified threshold. It can 

be seen that the plots are subject to sub-optimal performance. QPSK and BPSK reach a local 

minima at -6 and -17dB respectively, but eventually converge to a negative gradient above -2 

and -13dB respectively. The performance of 8PSK is poor for an SNR <OdB, but when the 

misclassification probability < 1 O'2, the performance is seen to be close to that of the complete 

threshold.

l.e+0

l.e-1

BPSK

l.e-3

l.e-4
-25 -20 -15 -10 -5 0 5

■■<>■•■ Simulated ^ B )   Calculated

Figure 3.17 : Plots o f Misclassification Performance against SNR for CW, 

BPSK, QPSK & 8PSK, L=1024, Carrier Phase Synchronous
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3.10 Non Coherent Techniques
The techniques in the previous section make the assumption that the carrier frequency of the 

incoming signal is accurately known. The following work develops a range of classifiers 

which do not require accurate knowledge of the carrier frequency, and are therefore referred 

to as non-coherent techniques. The published literature does not address this form of decision 

theoretic techniques for PSK, and all the work is of a novel aspect.

The phase difference of the PSK symbols is used for the classification, and requires 

knowledge of the symbol timing and rate. This is a desirable parameter to have in any PSK 

classifier as it enables noise reduction through a matched filter/ integrate and dump section. 

The symbol timing can however be estimated without coherent knowledge of the carrier 

frequency, and such techniques.

The technique of using the phase difference of PSK signals is a common technique in non­

coherent PSK demodulation and is known as differential PSK. The following development 

derives a set of PSK classifier structures in the presence of AGWN.

There are three classifiers developed. The first two use the phase difference of the signal 

modulo 2k , using a maximum likelihood and a DFT structure. The third uses a maximum 

likelihood structure on the phase difference without modulo 271.

3.10.1 Maximum Likelihood Phase Difference (Modulo 2n) 
Classifier
Let \jr be the phase difference of the signal modulo 2n of two adjacent symbols at the output 

of the matched filter. The relationship may be written as :

V/ =arg[jfJM] (3.94)

where i is the symbol number, and st is the i* complex output of the matched filter. Assuming 

that each sample is statistically independent the pdf of phase difference \|/ is described in 

(Chapter 2, equation 2.29):

PMm  = ^ + ^ ' Z ( b nMfcos{nMW) (3.95)
n=1

The graph in figure 3.20 compares the pdf of phase and pdf of phase difference for QPSK at 

lOdB SNR. It can be seen from the graph that the pdf of phase difference is less well defined, 

which suggests that there will be an inherent performance loss.
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Figure 3.20 : Plots of PDF of Phase and PDF of Phase Difference for 

QPSK at lOdB SNR

3.10.1.1 Maximum Likelihood Classifier

The log likelihood function for a maximum likelihood classifier is given by (Appendix 3.B):

Removing the constant terms, this is evaluated as :

(3.96)

M v ) = ln \ + 2 ^ ( b nM f  cos(nA/\|r)
n=l

(3.97)

Each likelihood function is applied to each sample in turn to produce a result for each PSK 

type considered. This is represented for j  PSK with L samples as :

(3.98)

This classifier can obviously not be evaluated for an infinite number of Fourier harmonic 

terms, and the series must be truncated. A single term classifier is investigated, which 

provides a simple likelihood function, i.e.:

* (V) = ln[l + 2(bM f  cos(Af\|/“)] (3.99)

3.34 Non Coherent Techniques



3.10.1.2 Simplification
The expressions for b2 and b4 may be evaluated directly from the results in Chapter 2, 

Appendix 2.B.

p  +  e ' p - l  ( 3 1 0 0 )
P

b4 = P2 ~ 4 P + ^ ~ 2 g  p(p + 3) (3 1 0 J )

The computational burden associated with the generation o f  the cosine terms may be greatly

reduced using the iterative techniques described in Chapter 2, Appendix 2.C and Appendix

2.D which requires one sine and cosine generation follow ed by a set of simple recurrences.

The evaluation of the first cosine term may be achieved by observing the trigonometric 

identity:

c°s(2i|r) = — — (3. 102)
1 + tan (\|r)

From (3.94) it is seen that:

Therefore:

= (3.104)
K v M ) f + [ 3 ( V M ) r

If a high order PSK signal is to be classified, the iterative algorithm will use:

sin(2vy)= ,  (3.105)

3.10.1.3 Evaluation of Classification Performance
The classification performance may be determined in much the same way as for the Optimum 

Phase classifier of section 3.7. This has been obtained for the BPSK/QPSK case for a one 

term and an eighty term classifier, and is shown in figure 3.21.
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It can be seen that the one term classifier has a performance which is as good as that of the 

eighty term classifier, which indicates that the approximation is an extremely good one. 

Simulation points are also included on the graph, and verify the theory.

l.e+00 

l.e-01 

l.e-02 
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Figure 3.21 : P lot o f  Misclassification Probability against SNR 

fo r the BPSK and QPSK case, L=1024

As the results of a one term classifier are indistinguishable from a multi-term classifier, the 

one term classifier is proposed for implementation. The structure of a one term BPSK/ QPSK 

classifier is described in figure 3.22, but can be readily extended to enable a range of PSK 

signals to be classified, as in all other PSK classifiers.

-o— BPSK 
-A— QPSK
 BPSK (1 term)
 QPSK (1 term)
X Simulated BPSK
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[p2 -4p  + 6-2e p(p + 3)]2

Figure 3.22 : Non-Coherent BPSK/QPSK classifier
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3.10.2 DFT of Phase Difference Histogram Classifier
The DFT of phase difference histogram may be achieved in the same way as the DFT of 

Phase Histogram. The classifier is identical, but the probability of error will be different.

The probability of error is then a modified form of (3.28) to give :

V  n *(- 0
i+1 ibtL

i + l
(3.106)

where there are /i+l classes presented to the classifier. For the BPSK/QPSK classification, 

the probability of error is given by :

2
(3.107)

The probability of misclassification is given in figure 3.23. It can be seen that a performance 

penalty is incurred due to the lack of SNR a-priori information.
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Figure 3.23 : Plots of Misclassification Probability against SNR for the DFT of 

Phase Difference Classifier, BPSK/QPSK Classified, L-1024
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3.10.3 Maximum Likelihood Phase Difference (Non*Modulo 

2k ) Classifier
In the previous non-coherent techniques, the phase difference was wrapped to modulo 2n. 

This has the effect of bounding the signal in the interval (-7c,tc]. The following work develops 

a classifier which does not apply modulo 2jt to the phase difference, and therefore increases 

the interval to (-27t,2jr].

The statistics of the phase are therefore different, and this work investigates to see if there is 

any advantage in adopting this approach.

The development starts by modelling the pdf of phase difference for a signal moving from one 

phase state to another. An average pdf is determined for a given phase shift between samples, 

which is then extended to M  level PSK. From this, a likelihood function is then developed, 

which is used for classification.

3.10.3.1 Development
The pdf of phase for CW in AGWN has been expressed in terms of a Fourier series (equation 

2.7), and the effects of series truncation were observed to improve as the SNR was decreased 

(Section 2.3.3).

A high SNR approximation for the pdf of phase for a zero phase signal in Gaussian noise may 

be expressed in terms of the Tikhonov distribution (Section 2.3.4), as :

The pdf of £2 may be expressed as the convolution of two pdfs. Assuming that the first phase 

signal starts at an angle a , and the second at an angle p, the pdf of the phase difference g(£2) 

is given b y :

<}> e (—7t,7c], 0 otherwise (3.108)

<J> € (—te,7U], 0 otherwise (3.109)

The non-wrapped phase difference 12 is defined by :

£2(/) = <j>(/)-<|>(/-l) (3.110)

gap(f2.a,p) = /(<}>-a)<8>/(<J) + p) 12 € (~2k ,2k ], 0 otherwise (3.111)
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which may be expressed analytically as :

K
Sajj(aa,p)=  J / ( y  + P ) /(n -y -a > /y  (3.112)

-1 C

In order to express the convolution without the boundary conditions on (j), the following may 

be used:

1C

£o|j(f t’a ’P)= j  f ( y +$)/(& -y -a )d y  &>o (3.ii3)
f l - 1 C

3.10.3.2 MPSK Development

The extension to M level PSK requires the analysis of the phase jumps which occur from 

symbol to symbol. The relative frequency of occurrence of each phase jump is not 

equiprobable even though each symbol is.

By looking at the phase states of an A/PSK signal it can be seen that the phase transitions A 

are given by :

A e0 .±— i / = 1*• • Af — 1 (3.114)
M

and the relative frequency of occurrence may be deduced by observing the PSK phase states, 

as in figure 3.24. From this it can be seen that there are M possibilities of zero phase change, 

M-l possibilities of ± ^  phase changes, and so on. The general result is summarised in Table

3.2.

I I 1---- 1— /---------- 1----- 1
0  2n 4 i l  6s. ' ( M - 2)2ic (A/-l)2ic

M M M A?--- ---M 

Figure 3.24 : PSK phase states

[Phase Transition 0 +1 ± 2 #

. . .

±(A M )#
Frequency of 

|| Occurrence
M M-l M-2 1 | Total -M 2 |

Table 3.2 : Summary of the Relative Frequency of Phase Transitions 

The phase transition A relates to a  and P of equation (3.113) by :
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A = a  -  p (3.115)

The pdf of phase in equation (3.113) may then be written in terms of A and p to give:

Sap P) = Sap (0,a, P)a=A+p (3.116)

As the system is detected in non-carrier synchronous mode, the starting phase P is not known, 

and will be time varying due to the absence of earner coherence. The overall pdf is then an 

average of equation (3.116) with respect to p, where & and A are constant This is given b y :

*A(fi,A) = E[s(£l,A,P>p]

The pdf of phase difference for AfPSK may then be expressed b y :

(3.117)

(3.118)

The general expression for the pdf gA(&,A) in (3.117) is derived in Appendix 3.F, and is given 

by:

*A(£l,A,) = ̂ r ( i t - f l l+ ^ 6 ^ c o s [n ( n -A ) ]  
L A=1

Q> 0 (3.119)

This is an infinite series, and a truncated version is used in practice. A three term series may 

be easily approximated using the Fourier coefficients in (Chapter 2, Appendix 2.B), and this 

is found to improve as the SNR is decreased (Section 2.3.3) A high SNR approximation is 

derived in Appendix 3.G, and is given by :

gA(n , A) = 1
27u2[/0(2p)J

(tc -•§-)l0(4pcos(^jA)) ft>0 (3.120)

A suitable switch-over point between the two approximations has been experimentally 

determined to be approximately 2dB. It should be noted that for negative arguments the pdf is 

calculated a s :

g(Q<0,A) = s ( - a - A ) (3.121)

Figure 3.25 shows plots of the pdf of phase difference for BPSK at 2dB SNR for the exact 

distribution, the high and low SNR approximations to the distribution. This is empirically 

determined as the changeover point between the high and low SNR algorithms. The 

approximation can be seen to be good at this worst case.
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Figure 3.25 : PDF of Phase Difference for BPSK at 2dB SNR

Figure 3.26 shows the pdf of phase difference for QPSK at 6dB SNR for the exact 

distribution and the high SNR approximation. It is seen that the model is an excellent 

approximation.
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CS'w'

0.05 -

2■2 11

Figure 3.26 : PDF of Phase Difference for QPSK at 6dB SNR

3.10.3.3 Classifier Development

The structure of the classifier is of a maximum likelihood form, where the log-likelihood 

function for each PSK type is given by the logarithm of the corresponding pdf (Appendix

3.B). Each sample is then passed through the log likelihood function, and summed in turn. 

The maximum is then reported as the classified PSK type.

The error probability is difficult to determine analytically. In the previous work, the multi- 

mode nature of the pdf was compensated for by using an aliased version of pdf. This relied

3.41 Non Coherent Techniques



upon symmetry about the modes, which is not present in this case. Therefore the error 

performance is computed through simulation.

Figure 3.27 shows plots of simulated classification error against SNR when BPSK and QPSK 

are considered potentially present. From this graph it is seen that the classification 

performance is similar to that of the classifier based on the phase difference modulo 2n.
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Figure 3.27 : Plots o f Misclassification Probability against 

SNR for the BPSK/QPSK case
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3.12 Appendix 3.A
Analysis of the Number of Histogram bins in the DFT of Phase Histogram Classifiers

Consider a histogram series xx(ri) of N  points in length, and a histogram x2(ri) consisting of 

the same data but with PN  bins. The data from x1 (n) is related to x2(n) by :

p-i
xi (fi) = ^ x 2(nP + m)

m=0

The DFT of the two series are

AM

n=0

PN- 1

X2(k)= Y X2 ( # '

(A.1)

(A.2)

(A.3)
n=0

where

W = expj( ty)

It can be shown that:

(A.4)

AM

n=0

P- 1
]> \x2(nP + m)Wz
m=0

(A.5)

which may be expressed as :

AM
x 2(k)=’£ w - kn

n=0

P- 1
x2 (nP + m ) e x p [ - ^ ]

m =0

(A.6)

In this problem it < # ,  and for k«N,

p-i p-i
^  x2 (nP + m ) e x p [ - ^ - ]  «  ^  x2 (nP + m) = x, («)
m=0 m=0

(A.7)

Therefore 

X2 (ft)-* ,(* ) (A.8)

This can be seen in figure 3.28, where the lower bins have noticeably similar magnitudes.
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3.13 Appendix 3.B
Maximum Likelihood Structure

This section develops the framework for a maximum likelihood classifier, and is used in a 

number of different classifiers. The content is adapted to the different techniques which are 

used.

The probability of an observed data sample given the hypothesis that signal type a  is 

transmitted is given by :

A set of AT independent data samples is presented to the classifier, and the joint probability 

of the data given the hypothesis a  is given by :

N

p(xl,x2...xN\a) = n x *  ,la) (B.2)
i=i

The probability of the hypothesis a  given the observed data may be determined through Bayes 

theorem a s :

Where P is the number of hypotheses and a; is the /* hypothesis and H} is the classified signal. 

Any constant terms in (B.4) may be removed, as :

Assuming that each PSK type is equiprobable, the classified signal may be deduced from 

(B.5) and (B.4) as :

p(x la) (B.l)

(B.3)

The maximum likelihood structure results from the most probable hypothesis i.e .:

(B.4)

MAX MAX (B.5)

(B.6)

Using (B.2), this may be written as :
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/ / ,  = MAX (B.7)
1=1

The implementation of (B.7) may run into mathematical overflow when implemented on a 

digital device. As the logarithm function is a monotonically increasing function, this may be 

used to reduce the possibility of mathematical overflow as :

MAX U M j
1=1

= MAX In
1=1

(B.8)

Rearranging (B.8), classification is based on :

" N

X  ln(H*.l<*,)pH, = MAX (B.9)

The classifier is constructed in a practical system in figure 3.29, where the log likelihood 

function for each signal class is given by A,/*,).

Choose
Maximum

Classified
PSK

Figure 3.29 : Maximum Likelihood Classifier Structure

3.47 Appendix 3.B



3.14 Appendix 3.C
Computational Improvement for the Optimum Phase Classifier

Cubic spline interpolation is an effective technique for evaluating a function when the signal 

and its derivative are known.

The cubic spline technique evaluates the function fj and its derivative kj at discrete points or 

bins j  of spacing h. The value x  to be evaluated lies between two bins Xj and xj+j and 

calculation is performed from the following equation :

Pj ( x )  = a j0 + a j l ( x - X j ) + a j2 ( x - X j f  + a j 3( x - X j f (C.1)

where: 

ai»=f>

aj>=kj

2 / \ 1 
aJ$ ~ f j+i

The pdf of phase for BPSK may be evaluated from (3.50) as :

Pi (40 = 2~ e _ P sin(<|>)epsm sin(<|))) +1J

Using [13] the derivative of this function may be evaluated as :

Pi(40 = 2jj”e_P -*-2psiii2(<J))]eps,n (̂ erf(Vpsin((l))) + 2psin((|))]

For AfPSK the pdf is given b y :

(C.2)

(C.3)

(C.4)

(C.5)

(C.6)

(C.7)

1=0

<!>-
7l(2i +1) 

M + P2 4>+
n{2i + \)

M

and the derivative is given by : 

tc(2/ + 1)
p'M =j} l i t e

/= o M + P2 4>+ti(2/ + 1)
M

(C.8)

(C.9)

3.48 Appendix 3.C



It is also possible to incorporate the logarithm function into the interpolation by using :

(<t>)] (C.10)

and:

<c.">

Therefore for each trial the log likelihood function and its derivative need only be computed 

for a number of interpolation points. Each sample is then passed through a very basic set of 

calculations (C.l) to interpolate the log-likelihood function.

An example of the log likelihood function is given in figure 3.30 for BPSK at lOdB SNR. A 

32 bin cubic spline interpolation is applied to this function, and the error is given in figure 

3.31. It is seen that the error from this is very low compared to the function itself.

There is some symmetry which may be exploited to reduce the number of coefficients, and 

occurs about each pdf mode. The function and derivative need only be stored in memory for 

the range (0,-^-). However the mapping of this transformation will result in a reduction in

computational efficiency.

0.0 n

- 2.0 -

-4.0 -

- © -  - 6.0 -

- 10.0 -

- 12.0
-0.5 01 0.5

<J)/tc

Figure 3.30 : Plot of Log likelihood Function against Phase for 

BPSK at lOdB SNR
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3.15 Appendix 3.D
Evaluation of the Classification Performance for the Optimum Phase Classifier

The output of each likelihood function (3.53) is summed over a trial, and the central limit 

theorem states that this will result in a Gaussian distributed variable when the number of 

samples is large.

Let a  be the PSK type transmitted, and P be PSK type tested. The output of the likelihood 

function y, is given b y :

y = ln[pp(<j))] (D.l)

Using a transformation of variable [16], the pdf of the output variable is given b y : 

pM=A,(<t>i,=P5,(e, )}ki (°-2)

Where J  is the Jacobian, defined by :

J - A p ? ( S )  (D.3)

The n* moment m(n,a,P) may then be defined by :

ymm ,

m(n,a,p)= J ynpa[pi](ey)}̂ [pi1(ey)yy (D*4)
3\nin

By a change of variable u = pp1 (ey) :

* = i h 'V ) l  (°-5)

The moments equation is then given b y :

n

m(n,a,p)= J(ln[pp(w)]) f a(u)du (D.6)
o

where f a (u) is f a (u) aliased about . This is required for MPSK as the distribution is multi-

moded, and therefore the inverse function of (D.4) can only be evaluated within a limited 

range. The mean and variance of the likelihood function are defined b y :
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Ppa = Lm(l,a,p) (D.7)

.|m(2fa,P)-[m (2fa,p)]2} (D.8)

where L is the number of samples. The evaluation of these functions does not lend itself to an 

analytical solution, therefore the functions are evaluated using numerical integration.

Correct classification occurs when the correct likelihood function is larger than all of the other 

likelihood functions. The probability of this occurring within the interval jc,x+8;c is given by 

kpa(x)&x where:

As 8x tends towards zero, the overall probability of correct classification is then given b y :

P*a

(D.9)

where:

(D.10)

oo

(D .ll)
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3.16 Appendix 3.E
Evaluation of the Likelihood Functions of the Maximum Likelihood IQ Classifier

The likelihood functions of (3.59) may be simplified by the following analysis:

^ i(x>y) = -£rx

X2(xty)= ln[|{exp(^-y)+ exp(-^-y)}j 

= ln[cosh(^-y)]

k 4(x,y) = ln |I{exp (_^ T [*  + y j j+  exp (-^ r[x  -  y ] ) + -  >>])+e x p ^ f - x  + y])} 

= ln^{[exp(7^ Tx)+exp(-:j ^ . ^ J ex p (^ 7>.)+ex p ( - ^ y  

= |n[cosh(-^r x)cosh(-?̂ ).)]

= In fc o s h ^ x )]+ ln fc o sh ^ y )]

a.8(*,y)=ln

where

a=cos( i ) £

P = si" (t )5

Therefore:

1 Jeaxepx+eare-py+ e^eay+epxe-ay+ 
8 I + e~^eay +

,(jc,y)=lnj^-i-|[eCtt+ e  ctt]cosh(Py)+j^ep,: + e ^  jcosh(ay)|j 

= ln |^{cosh(cu)cosh(py)+  cosh(fk)cosh(ay)}J

Note that:

cos((|))

-cos((J))

(E.1)

(E.2)

(E.3)

(E.4)

(E.5)

(E.6)

(E.7)

(E.8)

(E.9)
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Therefore:

i(x,y)= In -jlcosh^^T^jcosh^^-yj+cosh^^Yjcjcosh^^-yjl (E.10)

where:

V2+1
a ~ j  2V2

(E.11)

_ [W^i
“ V 2V2

(E.12)
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3.17 Appendix 3.F
Low SNR Approximation to the PDF of Phase Difference Non-Modulo 2n 

Using (3.108) and (3.113) die auto-convolution may be evaluated a s :

oo oo n
gap (Cl,CL, p) = -J -  ̂  ̂  bibn J cos(i(Q -  y -  a  ))cos(n(y + p ))dy

71 „=0 (=0 Q-Jt

where b ^ A  This may be written in terms of A and p by :

oo oo rc

ÂP (^»A* p) = —  X  X  J C0S(/(^  “  y “  A -  P ))cos(n(y + p ))dy
71 n=0 i=0 n~n

(F.l)

(F .2)

oo oo Tt

(£2, A, P) = - y  ̂  ̂  bibn J cos(/£2 + (n -  i)y -  /A  + (n -  i)P) + cos(j'£2 -  (n + i)y -  /A -  (n + i)P)rfy (F-3)
n=0 1=0 n-n

The average pdf is given by (3.117) as :

1 2n
g i (£J,A) = j -  j « 4p(Q ,A,P>lp (F.4)

- 2tc

It can be seen that the cosine terms from (F.3) are zero in all instances where n*i. The 

expression may therefore be simplified to :

- I t  oo

g A (£2, A,) = - y  J  dy £  bl cos[«(£2 -  A)] (F.5)
£1-71 n=0

and is finally given by :

i + ̂ b lca s lr tQ -A )]
n=l

(F.6)
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3.18 Appendix 3.G
High SNR Approximation to the PDF of Phase Difference Non-Modulo 2n

Using the Tikhonov approximation (3.109) to the pdf of phase, the pdf of phase difference 

given angles a  and p is deduced from (3.113) as :

n
«o6 (ft . a.p) =— , ',2  fexp[2p[cos(y+ P) + cos(£2 -  y-a)]]ly  

4Tt2[/„(2p)f aJ_„

71
 !_____ f
4rt2[/0(2P) f

exp . . Q  +  P - a ^ i  f  Q - a - p ^
4pcos ------^------|cos| y - dy

(G.l)

(G.2)

Using the expansion in [13], this may be re-written as :

Saf,(£2,a,P)------- ' « J I0( 4 p c o s ( i^ ) ) + 2 ^ I i ( 4 p c o s ( ^ ) ) c o sr * [ ( y - ^ ) ] U ( G . 3 )
An  [ /0 ( 2 p ) f  *=i v v

Using the expression in equation (3.116):

g^(Q,A,P) = —  *■ ^  J Io(4pcos(^)) + 2 ^ I t (4pcos(^))cosf*[(y--^^^)]]dy (G.4)
471 [ /0 (2p)J a _n *=i

The average pdf is given by (3.117) as :

(G.5)

A) =
27C2[/0(2p)f

(7C~ f ) Io (4 p co s(^ -)) (G.6)
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4. Classifier Comparison

4.1 O utline
This section attempts to provide a comparison of the different PSK classification techniques. 

This has previously been made in terms of a-priori information in section 3.2.1, but here a 

more detailed comparison is given in terms of non-ideal effects where the decision theoretic 

framework breaks down.

It is not practical to investigate every possible effect or combination of effects, and only a 

handful have been chosen to illustrate a level of robustness for each technique. These effects 

include symbol imbalance due to statistical variance, an error in the SNR estimate, a carrier 

frequency offset and an error in the symbol phase. These are all parameters which may be 

easily controlled independently.

In order to provide a concise and manageable comparison, the performance of a particular 

technique is quantified in terms of the SNR at which 1 % error classification occurs. In some 

cases the technique reaches an error floor above 1%. In these cases the performance is not 

quantified and the SNR at which 1 % error probability occurs is graphically placed to infinity.

In the tests 1024 samples have been used throughout, CW, BPSK, QPSK & 8PSK are 

classified in the coherent techniques and BPSK & QPSK are classified in the non-coherent 

methods. The Statistical Moments technique uses the 8th statistical moment, which has been 

found to be suitable for the classification case examined.

CW BPSK QPSK 8PSK Average
Maximum Likelihood IQ -19.8 -7.9 0.9 0.9 -6.5
qLLR cs -19.8 -7.8 1.4 1.4 -6.2
qLLR ns -19.8 -7 2 2 -5.7
Optimum Phase -18 -6 1.5 1.5 -5.3
Maximum Likelihood DFT -17.5 -6 2 2 -4.9
DFT of Phase Histogram -19 -7 1.5 8 -4.1
8th Statistical Moment -14 -3.5 5.9 6.1 -1.4

Table 4.1 : SNR (dB) at which 1% Misclassification Probability occurs for the various 

Synchronous PSK Modulation Classifiers when CW, BPSK, QPSK & 8PSK are transmitted, 

L=1024

Some of the results presented within this section were presented at IEE RRAS ‘96 and 

published in [1]. Table 4.1 summarises the classification performances of the various
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synchronous techniques under ideal conditions when CW, BPSK, QPSK and 8PSK are 

transmitted with 1024 samples.

In this table the classifiers are placed in order of average misclassification performance and it 

is seen that the Maximum Likelihood IQ classifier has the best performance, as would be 

expected. The qLLR methods follow this, making the top three performing techniques 

methods which require estimation of the signal amplitude. The Optimum Phase technique has 

the best performance out of the phase based methods, closely followed by the Maximum 

Likelihood DFT of Phase Histogram. Surprisingly the DFT of Phase Histogram method has a 

better performance than that of the Statistical Moments technique which requires more a- 

priori information.

These performances are valid under ideal conditions and the following work breaks down 

some of the assumptions made in the classifier paradigm.

4.2 Finite Effects
In the development of the classification algorithms it was assumed that the number of symbols 

was equally balanced for each trial. In practice this will not be the case as the symbols will be 

randomly distributed which results in a relative symbol imbalance. The consequence of this 

effect is that the pdf on which the classifier is modelled is no longer accurate, and a 

degradation in performance is expected. Figure 4.1 shows the classifier model for a QPSK 

pdf, whereas in practice the pdf resembles that of figure 4.2.

Figure 4.1 : Modelled pdf for QPSK

Random
Distribution

Figure 4.2 : Effect o f a Finite Signal Time Frame
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Assuming that N symbols are transmitted and the probability of each symbol occurrence is 

independent and equiprobable, the symbol has a one in M chance of taking a given value. 

From this definition the number of symbols will be binomially distributed with mean and 

variance:

N 2 J M - 1H = £  (4.1) = ( « )

This has now characterised the distribution of the number of symbols, and the overall 

distribution of each pdf mode may be determined after normalisation to give :

•‘• ■ i  (4-3) (44)

When the number of symbols becomes large, the distribution may be approximated by a 

normal distribution with mean and variance as above. Table 4.2 shows the 95% confidence 

intervals for the scaling of the pdf of phase peaks of different PSK signals for different 

numbers of symbol transmissions.

Symbols CW BPSK QPSK 8PSK
256 0 0.5±0.061 0.25±0.053 0.125±0.041
128 0 0.5±0.0866 0.25±0.075 0.125±0.0573
64 0 0.5±0.1225 0.25±0.1061 0.125±0.081
32 0 0.5±0.1732 0.25±0.15 0.125±0.115

Table 4.2 : 95% Confidence Intervals for PSK pdf Scaling

It is noticed that CW is not subjected to such a variance because there are no symbols present. 

The performance of the algorithms has been evaluated with 1024 symbols, and the number of 

symbols is given by the ratio of the total number of samples to the number of samples per 

symbol. This has been evaluated from 1024 symbols to 32 symbols, and is plotted in figures 

4.3-4.6.

The plots for the qLLR cs, Optimum Phase, and the non-coherent phase differencing 

techniques have been omitted, as the results have found no significant degradation in 

performance for the range of samples per symbol examined. They are therefore deemed 

insensitive to this parametric distortion.

From the results in figures 4.3-4.6 it is seen that the Statistical Moments classifier is the most 

sensitive to this parameter and fails to converge to a 1 % classification probability for QPSK 

and 8PSK at more than four samples per symbol.
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The DFT of Phase Histogram method is found to have a gradual degradation for BPSK, 

QPSK and 8PSK of up to 6dB for 32 samples/ symbol. The qLLR ns method suffers from a 

significant error with 8PSK, which reaches 4dB degradation at 4 samples per symbol. The 

Maximum Likelihood DFT method suffers a small degradation on 8PSK, with up to 2dB 

error for 32 samples per symbol.
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Figure 4.3 : 8>h Statistical Moment Figure 4.4 : DFT of Phase Histogram
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Figure 4.5 : Maximum Likelihood DFT Figure 4.6 : qLLR ns

Plots of SNR for 1 % Error Performance against Samples! Symbol for the f? Statistical 

Moments Classifier (Fig. 4.3), DFT of phase Histogram Classifier (Fig. 4.4) Maximum 

Likelihood DFT Classifier (Fig. 4.5) and qLLR ns Classifier (Fig. 4.6). L=1024
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4.3 SNR Offset
Most of the PSK classifiers described require knowledge of the SNR of the incoming signal. 

This parameter is difficult to estimate with accuracy and it is important to evaluate the 

sensitivity of the algorithms to this error. The DFT of Phase Histogram method is obviously 

not affected by this as it makes no use of the signal SNR. This method is therefore used as a 

bench-mark for comparison.

The qLLR and the Maximum Likelihood IQ methods require both amplitude and SNR 

knowledge. In order to provide a useful comparison of these three techniques and a more 

crude comparison of the phase based techniques, the signal is normalised as in [2] to produce 

a system which is dependent only upon the SNR.

Figures 4.7 to 4.14 show plots of the SNR for 1% classification performance against the ratio 

of estimated SNR to actual SNR. From these results it is seen that the qLLR cs and ns 

techniques do not converge when the SNR error is above ldB for QPSK and 2dB for both 

BPSK and QPSK. It is also seen that the 8PSK degrades rapidly when the estimate is below 

the true value.

The Maximum Likelihood DFT method is seen to be the least sensitive of the examined 

techniques to an SNR offset, with similar performance from the Maximum Likelihood IQ and 

the Optimum Phase method. The Statistical Moments classifier is seen to have poor 

performance when the SNR estimate is above the true value, but it is still convergent.

The two non-coherent techniques are seen to converge for the ranges of SNR offset examined, 

and the symmetrical method is seen to perform better for BPSK when the SNR estimate is 

above the true value.
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Figure 4.11 : qLLR cs
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Plots o f SNR for 1% Error Performance against Ratio of Estimate to True SNR (dB) for the 

#h Statistical Moments Classifier (Fig.4.7), Maximum Likelihood DFT classifier (Fig. 4.8), 

Optimum Phase Classifier (Fig. 4.9), Maximum Likelihood IQ classifier (Fig. 4.10), qLLR 

cs (Fig. 4.11), qLLR ns (Fig. 4.12), Symmetric Phase Difference (Fig. 4.13) and Non- 

symmetric Phase Difference (Fig. 4.14)

4.7 SNR Offset



4.4 Frequency Offset - Coherent Techniques
The synchronisation of the carrier is unlikely to be perfect due to noise and tracking errors, 

and there will be some variation through the signal analysis time-frame. This will have a 

significant effect on the synchronous techniques as a frequency offset causes the phase signal 

to be superimposed upon a linearly increasing phase, resulting in a distorted pdf.

If the frequency offset exhibits a number of cycles during the analysis time frame, the phase 

will approach a uniform distribution. As the signal observation time is increased, the overall 

phase shift due to a given frequency error is increased. The measurements which are 

performed in this section linearly increase the phase offset from zero to a given maximum and 

henceforth the maximum is termed the ‘End Phase Offset’.

Figures 4.15 to 4.21 show plots of the 1% classification performance against End Phase 

offset for a constant frequency offset, and 1024 points. It is seen that the qLLR cs, Maximum 

Likelihood IQ and Optimum Phase techniques fail to converge for a maximum phase greater 

than 0.171 for QPSK, and the Statistical Moments classifier fails to converge for a maximum 

phase greater than 0.157c. All these techniques require knowledge of the zero phase of the 

signal, and are expected to perform worse as the zero phase reference is moved with time.

The qLLR ns and the Maximum Likelihood DFT techniques perform well, but fail to 

converge with QPSK for a maximum phase greater than 0.25tc. The DFT of Phase Histogram 

technique does not perform quite as well, but does perform better than the zero phase 

synchronised techniques, and fails to converge with 8PSK for a maximum phase offset greater 

than 0.271.
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Plots o f SNR for 1% Error Performance against End Phase Offset for the qLLR ns (Fig. 

4.15), Maximum Likelihood DFT Classifier (Fig.4.16), DFT of Phase Histogram (Fig. 

4.17), 8>h Statistical Moments Classifier (Fig. 4.18), qLLR cs (Fig. 4.19), Maximum 

Likelihood IQ Classifier (Fig. 4.20), Optimum Phase classifier (Fig. 4.21)
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4.5 Frequency Offset - Non-coherent Techniques
The non-coherent techniques are examined under the effect of a frequency offset which is 

significantly larger than that examined in section 4.4. With the non-coherent classifiers a 

frequency offset is translated into a constant ‘phase’ shift in the classifier and hence the pdf 

does not become distorted.

Figures 4.22 and 4.23 show plots of the SNR for 1% classification performance against 

frequency offset for the symmetric and non-symmetric phase difference techniques. It is seen 

that the techniques degrade only on BPSK and they have a similar sensitivity up to 

approximately 0.3 radians offset. Finally, both techniques become severely degraded above

0.4 radians offset
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Figure 4.22 : Symmetric Phase Difference Figure 4.23 : Non-symmetric Phase Difference

Plots o f SNR for 1 % Error Performance against Frequency Offset for the non-coherent 

Symmetric Phase Difference Classifier (Fig. 4.22) and Non-symmetric Phase Difference 

Classifier (Fig. 4.23)
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4.6 P h a se  O ffset
The Statistical Moments, qLLR carrier synchronous, Optimum Phase and Maximum 

Likelihood IQ techniques all require knowledge of the zero phase of the signal and some of the 

effects of a changing zero phase reference have been examined in section 4.4.

In a practical system there is likely to be a phase error due to measurement inaccuracies. This 

error will be a function of the SNR of the signal, and the characteristics will depend upon the 

type of synchronisation performed. In order to estimate the sensitivity of the different 

techniques to phase error the error has been fixed across the SNR range, and the performance 

is again quantified as the SNR at which 1% classification error occurs.

The results have been plotted in figures 4.24 to 4.27 and it is seen that the all the techniques 

are non convergent above a zero phase error of 12.5°. All of the examined techniques appear 

to have a similar degree of sensitivity to this parameter, but the statistical moments classifier 

fails to converge above 10°.
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Plots o f SNR for 1 % Error Performance against Static Phase Offset for the Maximum 

Likelihood IQ Classifier (Fig. 4.24), qLLR cs (Fig. 4.25), Optimum Phase Classifier (Fig. 

4.26), 8>h Statistical Moments Classifier (Fig. 4.27)
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5. Conclusions and Future Work

5.1 Conclusions
This thesis has focused on the classification using decision theoretic techniques, of the number 

of levels on a PSK signal in additive Gaussian white noise. The foundation of the work has 

been established through mathematical models which have been developed within the thesis.

The work has produced new synchronous and non-synchronous decision theoretic techniques 

for PSK classification. The “DFT of Phase Histogram” and “Maximum Likelihood DFT” 

Classifiers are two new synchronous phase-based PSK classifiers which require different a- 

priori information to those examined within the published literature. The classification 

performance of these techniques was found to compare well with other methods and their 

sensitivity to parametric degradation was less than that for other techniques on a number of 

aspects.

Three new asynchronous techniques have been developed and their performance degradation 

compared to the synchronous methods was found to be substantial. However, as these 

techniques avoid the problem of carrier synchronisation, the associated performance 

degradation will be acceptable in certain applications.

5.1.1 Models
Chapter 1 has identified that decomposition of the incoming signal into envelope, phase and 

instantaneous-frequency components, provides three useful signals which may be simply 

processed to yield quantifiable characteristics of the signal.

In order to obtain these transformations, it was seen in chapter 2 that the signal had to be 

converted into analytic form. A number of techniques for obtaining a digital analytic signal 

were investigated in Appendix n. The performance of each was characterised in terms of a 

rejection ratio of wanted to unwanted components and computational efficiency and it was 

concluded that the DSP quadrature mixing technique in Appendix 1.5.3 achieved the best 

performance.

It was seen in chapter 2 that the instantaneous-frequency estimate may be achieved through a 

number of different techniques, each being an approximation to the true instantaneous 

frequency. A detailed comparison was made in Appendix 2.H of different instantaneous 

frequency estimators used in the modulation recognition literature and it was concluded that
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the finite backward-difference operator was the most suitable estimator for modulation 

recognition applications.

Using the finite backward-difference operator as the instantaneous-frequency estimator, 

mathematical models were developed in chapter 2 to characterise the statistics of the envelope, 

phase and instantaneous-frequency in AGWN. These results are a combination of existing 

work and new developments, and provide a useful summary for the development of 

modulation recognition algorithms.

The Fourier series expansion of the pdf of phase for CW and PSK in AGWN has been 

examined extensively in chapter 2, and iterative numerical methods have been developed for 

the efficient evaluation of the coefficients in Appendices 2.C and 2.D along with the simplified 

evaluation of low order Fourier coefficients in Appendix 2.B. These algorithms have been 

applied to improve the computational efficiency of decision theoretic techniques for PSK 

classification in sections 3.5, 3.6 and 3.10.

The analysis of the pdf of phase of a PSK signal in section 2.3.3 has developed some 

simplified properties at low SNR, which have been used extensively in sections 3.4, 3.5 and 

3.10 for the decision theoretic classification of PSK signals. New results on the modelling of 

the pdf of phase difference with and without a modulo 271 operator, have been successfully 

developed in 2.3.7, where the results were applied to the asynchronous decision theoretic 

classification of PSK signals in section 3.10.

The results from chapter 2 have provided a useful summary of mathematical models of signal 

statistics for use in modulation recognition applications. The chapter is useful as a tool in 

many modulation recognition applications and has provided the foundation for the following 

chapters, which cover the classification of PSK signals using decision theoretic techniques.

5.1.2 PSK Classification
There have been a number of aspects of PSK classification addressed within the thesis. Some 

work has been presented which streamlines existing techniques (Section 3.6, 3.8.3 and 

Appendix 3.C) and provides new areas of performance analysis (Section 3.8.2 and Appendix 

3.D) , but the most important areas of work have been the generation of new decision 

theoretic techniques.
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5.1.2.1 Carrier frequency Synchronous Techniques
The DFT of phase histogram and maximum likelihood DFT of phase histogram methods 

(Sections 3.4 and 3.5) are two new carrier synchronous methods for classifying the number of 

levels on a PSK signal. Both techniques are insensitive to a reference phase offset, which will 

be important in a practical system as most carrier synchronisation methods produce a phase 

reference ambiguity.

The classification performance of the DFT of phase histogram has been successfully modelled 

(Sections 3.4.2-3.4.5), the maximum likelihood DFT of phase histogram has been simulated, 

and the classification performance of both techniques has been found to be good in 

comparison with other methods.

The global maximum likelihood technique (Maximum Likelihood IQ Classifier) has been 

developed in section 3.8 and bases classification on the in-phase and quadrature signals. The 

a-priori information required for the different techniques is compared in table 3.1, where the 

maximum likelihood IQ classifier was shown to require knowledge of the carrier phase 

reference, SNR and amplitude information. In contrast, the two DFT methods do not require 

amplitude and carrier phase reference knowledge, and the DFT of phase histogram method 

does not require SNR knowledge.

The classification performance of the various techniques has been compared under ideal 

conditions in table 4.1, and it has been found that the average performance loss for a CW- 

8PSK classification problem is 1.6dB for the maximum likelihood DFT of phase histogram 

and 2.4dB for the DFT of phase histogram when compared to the Maximum Likelihood IQ 

classifier.

The qLLR ns method was the only method found in the literature which does not require a 

carrier phase reference. However, it was found to require more a-priori knowledge than the 

DFT methods, requiring knowledge of the amplitude and SNR of the signal. From Table 4.1 

the maximum likelihood DFT method was found to perform 0.8dB worse than the qLLR 

technique and the DFT of phase histogram method performed 1.6dB worse.

Some issues relating to the classifier sensitivity were examined in chapter 4. The first issue 

examined was the performance degradation due to statistical imbalance of the number of 

different symbols (Section 4.2), which violated the classifier assumption that an equal number 

of symbols are present in the analysis time frame. It was found that some classifiers were 

invariant to this imbalance. The statistical moments classifier was found to be particularly
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sensitive to this effect (figure 4.3), more gradual degradations were exhibited in the qLLR ns 

and the DFT of phase histogram (figures 4.4 and 4.6), and the maximum likelihood DFT was 

only slightly affected (figure 4.5).

The effects of an error in the SNR estimate were examined in section 4.3, and the DFT of 

phase histogram method was found to be invariant to this parameter. Figures 4.7-4.12 show 

that when the SNR estimate was above the true value CW-QPSK degraded and 8PSK 

improved, but the opposite was true when the SNR estimate was below the true value. The 

qLLR techniques were discovered to be particularly sensitive to this offset (figures 4.11 and 

4.12), especially when the SNR estimate was above the true value. The statistical moments 

classifier was also found to be sensitive to the offset (figure 4.7), but the other classifiers had 

less sensitive, similar characteristics.

The effect of a linear phase offset was examined in section 4.4. All the techniques which did 

not require a phase reference, failed to converge for QPSK when the end phase offset was

0.27C-0.257: radians (figures 4.15-4.17). The other techniques failed to converge above O.Itc 

radians (figures 4.18-4.21)

From the comparative sensitivity measurements of chapter 4, it was found that the maximum 

likelihood DFT classifier was on balance one of the least sensitive to parametric error. The 

DFT of phase histogram technique was found to perform well compared with the other 

techniques.

Based on their performance, required a-priori information, sensitivity and computational 

efficiency, the DFT of phase histogram and maximum likelihood DFT of phase histogram 

techniques represent two useful techniques in the development of carrier frequency 

synchronous decision theoretic PSK classification techniques.

5.1.2.2 Asynchronous Techniques
Three new carrier frequency non-synchronous methods of PSK classification have been 

developed in section 3.10 using decision theoretic techniques.

Two maximum likelihood structures were developed (Sections 3.10.1 and 3.10.3), one using 

the phase difference modulo-271 and the other using the phase difference which is not 

subjected to modulo-2jt arithmetic (Section 3.10.3). The pdf structures of the two methods 

were found to be substantially different and the phase difference modulo-271 technique was 

found to be significantly simpler in structure.

5.4 Conclusions



The performance of the techniques was compared in figure 3.27 and it was found that there 

was little perceivable difference in the classification performances. The penalty incurred 

through the use of an asynchronous compared to a frequency synchronous technique was 

found to be around 7dB when compared to that of the maximum likelihood IQ method in 

figure 3.14.

The sensitivity of the asynchronous techniques to the parametric distortion applied in chapter 

4 was found to be similar for both techniques, and they were both insensitive to symbol 

imbalance. This sensitivity to an SNR offset was found to be similar to the better synchronous 

techniques and their sensitivity to a frequency offset is characterised in figures 4.22 and 4.23.

The maximum likelihood phase difference modulo 2k was found to be the preferred technique, 

mainly due to its considerably simplified structure (figure 3.22).

The DFT of phase histogram structure was extended to the DFT of phase difference 

histogram classifier in section 3.10.2 and the classification performance was accurately 

modelled (figure 3.23). This classifier does not require knowledge of the SNR and is 

intolerant to small frequency offsets, but has a 3dB average penalty associated with it for a 

BPSK/QPSK classification case.

As the receiver structure for the asynchronous techniques does not require carrier 

synchronisation, the complexity is reduced considerably. The discussion in Appendix I has 

highlighted the difficulty of achieving carrier synchronisation when the number of PSK levels 

are unknown. It has also pointed out that the problems associated with blind symbol 

synchronisation are not as great, therefore the asynchronous methods provide a useful method 

for PSK classification despite the associated performance penalty.
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5.2 Future work
There is much work still required in decision theoretic PSK classification to take it from a 

theoretical technique to a practical one and some direction is provided in Appendix I for a 

number of these issues.

Using carrier frequency synchronous methods of classification, the ability to generate a carrier 

reference has been assumed. Some of the published literature [1-8] has attempted to provide 

techniques for carrier frequency estimation, but none provide sufficient accuracy for PSK 

type applications under noisy conditions. Other methods for blind synchronisation have been 

touched upon in this thesis in Appendix I, but further work is required to produce a robust 

method.

In both synchronous and asynchronous carrier frequency techniques it is desirable to have 

knowledge of the symbol rate and timing information. A blind timing recovery system is 

conceptually more simple to achieve than carrier recovery and has been discussed in brief in 

Appendix I of this thesis, but further work is clearly required in this area. Some work is also 

presented within the published literature for timing recovery [6-9] with the most valuable 

contribution from [9].

Once a set of carrier and symbol synchronisation techniques are developed for PSK 

classification, it will be important to evaluate the overall system performance with the effects 

of synchronisation errors, which will give a clearer idea of the system performance.

In a broad modulation recognition problem it has been identified that the generic split between 

analogue and the different digital methods is important, and research into such techniques is 

required. This then enables the decision theoretic methods to be evaluated independently of 

other modulation schemes outside the scope of the classifier. Some techniques for achieving 

this will most likely come from analysis of the cyclostationary characteristics of the digitally 

modulated signals which occur in the symbol timing information.

PSK classification has now been researched in some depth, and still requires further 

development. However, there is a lack of decision theoretic classification techniques for other 

forms of digitally modulated signals. Effort may then be spent in unifying the techniques such 

that e.g. FSK and PSK decision theoretic techniques may be combined.
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Methods for estimating the SNR of the signal require some development. The methods of 

deriving the SNR from the envelope statistics (Appendix I) require an analysis under non­

ideal conditions where the noise is not white.

The PSK classification schemes have been evaluated under the effects of AGWN and under a 

limited number of conditions within this thesis. It would be useful in future work to evaluate 

the effects under non-Gaussian noise, distortion, co-channel interference and multi-path.

In order to progress the research of analogue modulation recognition it is envisaged that 

speech characteristics are processed and analysed in more depth so that the pattern classifier 

can utilise the types of characteristic which a human is capable of discriminating.

The key to such an area may be held within the research into automatic speaker or language 

recognition, and could be a challenging problem to tackle. Some initial work into the area has 

been performed in [10].
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I. Techniques for Synchronisation and 

Parametric Estimation

1.1 Outline
This section provides a basic insight into the way in which decision theoretic PSK 

classification schemes may fit into a practical system.

It has been found that there is a lack of detail in the published literature addressing the 

problems of carrier synchronisation, symbol timing recovery and parametric estimation for 

PSK classification techniques. The work provided in this chapter provides merely a 

qualitative discussion of synchronisation and parametric estimation techniques, and helps to 

provide some direction for future work into these issues for decision theoretic PSK 

classification techniques.

The development of a modulation blind carrier synchronisation algorithm is by no means a 

trivial exercise, and there is no known work present within the published literature addressing 

such a problem.

A modulation blind PSK carrier reference is shown in section 1.2.1., where the analytic PSK 

signal is taken to a power equivalent to the maximum number of levels potentially present on 

the incoming signal. This then provides a discrete frequency component at a multiple of the 

carrier frequency which may be used for synchronisation. However, the performance of such 

a synchronisation technique is poor for the PSK classes less than the maximum PSK scheme. 

This example demonstrates that a modulation blind PSK synchronisation algorithm is 

achievable, but research is required in order to improve the performance of such a technique.

Other techniques for implementing carrier frequency synchronous modulation recognition 

methods without a modulation blind synchroniser are discussed. One is detailed in section

1.2.2 where power law synchronisation is applied for each PSK type which is assumed 

potentially present. The estimated carrier is then removed and the modulation recognition 

algorithm is applied to each case. The modulation recognition algorithm then reflects a degree 

of confidence for a particular PSK type, and the most likely PSK type is chosen.

It should be noted that these methods of carrier synchronisation introduce a phase ambiguity 

into the recovered carrier reference. The effect of this has implications on the implementation
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of the qLLR cs, maximum likelihood IQ, statistical moments and optimum phase classifiers, 

where this phase ambiguity is unacceptable (Section 4.6).

Section 1.3 shows that modulation blind symbol timing recovery is a great deal more straight 

forward than carrier recovery and three different techniques to generate a reference signal are 

discussed. The structure of each method is simple and remains the same for the different 

ranges of PSK signal which may be present.

Finally, section 1.4 details some methods for SNR and amplitude estimation. One of the 

methods is based on the receiver noise floor and the other is based upon the envelope statistics 

of the detected signal.

1.2 Carrier Synchronisation
The synchronous techniques for PSK classification require accurate knowledge of the carrier 

frequency of the signal. The accuracy of this estimate is required such that the overall phase 

offset at the end of a signal time frame is significantly less than 271 radians. i.e.

LaoffTs « 2 n  (1.1)

where is the offset angular frequency, Ts is the sampling interval and L is the number of 

samples. Section 4.6 shows the sensitivity of the various PSK classification techniques to a 

carrier frequency offset and it is seen that for a 1024 sample time frame, the maximum 

tolerable end of phase offset is 0.25jc for the qLLR ns and maximum likelihood DFT 

techniques.

The accurate estimation of the carrier frequency of a signal is an extremely difficult process 

when the modulation type is unknown, and this is the most significant drawback of the carrier 

frequency synchronous methods for PSK classification.

Techniques for the generation of a carrier reference have been extensively studied within 

communication systems theory and these generally rely upon the generation of a spectral 

component resulting from a transformation of the signal. A common method is to place the 

signal through a power law, which yields a discrete spectral component at multiples of the 

carrier frequency. This is then followed by a phase tracking device such as a phase locked 

loop to track the carrier frequency.

In modulation recognition, such a phase locking device is not always suitable, as the signal 

observation is of a limited duration and the device does not provide a confidence metric for the 

locking process. An alternative technique is to use spectral methods to detect the discrete
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component. One such method is the DFT, which has been found to be the optimum method for 

detecting a single sinusoid in AGWN [1]. Due to the simplicity of the DFT, this is an obvious 

starting point for the spectral estimation.

For a PSK signal, the /Ith law will rotate each constellation point by n times the phase. It is 

found that with a noise free rectangular signal the constellation of MPSK wraps to a single 

point when n>M. This produces a discrete spectral line at n times the carrier offset frequency. 

The power law applied in the communication systems, often uses an nth law device on the 

‘real’ signal. This does however have some undesirable effects due to unwanted components 

when n>2. These components are generated on a noise free signal and are demonstrated from

from the interference effects of (1.2). This should be achieved within the DSP, as it is difficult 

to implement in an analogue structure, which is the reason that the method of (1.2) has been 

extensively used in the past.

The transformation in (1.3) has been applied in [2]. Appendix I.A shows that the detection of 

the spectral line is worse than the performance of the decision theoretic classifiers. Therefore 

the decision theoretic classifiers may be used as an additional test of a PSK type being 

present.

Two methods linking this form of carrier recovery and decision theoretic PSK classification 

are discussed in the following sections.

1.2.1 Modulation Blind PSK Carrier Recovery
The method of carrier recovery shown in figure 1.1 establishes a carrier component based 

upon the analytic signal transformed with a power law equivalent to the maximum PSK 

number e.g. if 8PSK is the maximum PSK type assumed present, then an 8th power is applied.

(1.2).

Wanted

(1.2)

Unwanted

A better approach is to apply the /1th law device to the analytic signal, which does not suffer

[j4cos(<J>)+yAsin^)]" = A" cos(/u|>)+jA* sin(/i<t>) = A" expfymj)] (1.3)
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The discrete component is then divided by the power order and is used as the carrier reference, 

from which the phase may be detected. This is then followed by the PSK classification 

algorithm.
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PSK signal

exp

Figure 1.1 : Modulation Blind Carrier Recovery Algorithm

This technique for carrier recovery will perform well for the highest PSK type, but will 

increase the carrier noise level further from the optimum for the other PSK types. The method 

illustrates a modulation blind PSK carrier synchronisation algorithm, but the performance of 

the technique is not generally acceptable.

1.2.2 Decision Directed Carrier Recovery
As the detection of the spectral line is worse than the performance of the PSK classifiers, it is 

quite feasible that misclassification may result from spurious components in the spectrum. 

The PSK classification methods may be used to confirm the result from a spectral line in the 

power law.

The technique shown in figure 1.2 searches for discrete carrier components at each power of n 

and attempts classification from these. A level of classification confidence is then attributed to 

the PSK type corresponding to the power number. This is repeated for each power, and the 

most probable PSK type is classified.

A method for determining a measure of the classification confidence for maximum likelihood 

techniques is given in Appendix I.B. Using the maximum likelihood techniques reported in 

chapter 3, classification was performed on a scaled version of the class probability, as the 

only information which was sought after was the most likely class. The technique in Appendix

I.B describes the estimated probability of a class being correct given the observed data.
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Figure 1.2 : Decision Directed Carrier Recovery Algorithm

1.2.3 Other Combinations
Two techniques have been discussed for carrier synchronisation using the power law, and 

other combinations of processes may be devised for carrier recovery. As an example, the 

technique in 1.2.2 may be base modified to apply the carrier estimate on the three highest 

peaks.

1.2.4 Iterative Search
An alternative method for overcoming the carrier frequency estimation is to classify the PSK 

signal whilst sweeping through a range of carrier frequencies around the estimated carrier 

frequency. At each stage classification should be attempted, and it is assumed that the carrier 

is correctly placed when a high degree of confidence is obtained in the result.

One such technique is demonstrated in figure 1.3. It is assumed that the carrier frequency is 

approximately known and the signal is mixed down to approximately baseband. Classification 

is then performed and a decision is made from the classifier as to the significance of the result. 

If it is deemed that the result does not reflect a high significance, then the signal is mixed to a 

different frequency and the process is repeated.

The general performance of such an arrangement will be slow due to the number of complex 

mixing processes which occurs for a range of carrier frequencies.
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Figure 1.3 : Carrier Search Method

The required frequency resolution of such a technique may be calculated from the results in 

chapter 4 of figures 4.15-4.21. Assuming a transmission of e.g. 64Kb/s and classification 

based upon 1024 samples, the maximum end of phase offset is 0.25tl This corresponds to a 

frequency offset of ±8Hz in each step, i.e. the step size may be less than 16Hz.

The recovery of symbol timing enables the reduction of noise on the detected symbols, and 

may be performed as a matched filtering process. In the non-coherent techniques for PSK 

classification, knowledge of the symbol rate and time must be determined so that the phase 

differencing may be performed on adjacent symbols.

It is not always possible to have knowledge of the symbol characteristics and a general form 

of filtering must be assumed in such cases. An integrate and dump section is appropriate for a 

rectangular symbol, and will provide performance improvement for any symbol shape. The 

general structure is given in figure 1.4.

Figure 1.4 : Integrate and Dump Filter

This presents an analogue form of matched filter. A digital method would be to take a number 

of signal samples per symbol, followed by numerical integration on each symbol to 

approximate the integration process. A simple means for achieving this is to establish the
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arithmetic mean of the signal, which approximates to the trapezoidal method for numerical 

integration.

Figure 1.5 : Simplified Digital Integrate and Dump Filter

The integration process will average out the effects of noise, and if adjacent samples have a 

degree of independence, the output of the matched filter will appear more Gaussian in nature. 

This strengthens the classifier assumption that the noise is attributed to a Gaussian source.

replica in the digital implementation.

1.3.1 M ethods For Timing R ecovery

In order to perform the matched filtering of a signal, knowledge is required of the symbol rate 

and the phase (or timing) of the signal. A number of techniques for achieving this are detailed 

in [3]. Some useful techniques are detailed in the following discussion, which will produce a 

reference signal regardless of the number of PSK levels on the signal.

One such technique is to use a delay and multiply type structure [3], where the signal is taken, 

delayed by half a symbol period and is then multiplied by itself, or a conjugated version in an 

analytic system. The structure of this is given in figure 1.6 where a complex signal is assumed.

Figure 1.6 : Delay and Multiply Detector

Such a technique is useful for the detecting the presence of a digitally modulated signal, as it 

is valid for different modulation formats, including different QAM, PSK, ASK and FSK 

modulation formats. An example of this technique is given in figure 1.7 where 8PSK is 

applied at OdB SNR.

j2sin(2nfcnT})

If the symbol pulse shape is known, a similar structure may be applied, where the signal 

entering the integrate and dump is multiplied by a replica of the pulse shape, or a sampled

s(t)

*|DelayT/2 |-» [(7 ~ |-» (g )-» (S|̂ al1
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Figure 1.7 : Power Spectrum Plot fo r  8PSK at Fsym=0.25Fs at OdB SNR, 1024 Samples

Another method for generating timing information is to extract a spectral line from the 

envelope of a band-limited signal. In the case of PSK, the band-limiting of the signal causes 

the envelope to drop at the symbol transitions, where the instantaneous band-width is large. 

This then produces a periodic component at the bit rate.

1-1 Spectral 
m Line j

Figure 1.8 : Spectrum from the Band-Limited Envelope

A further technique is to extract the symbol information when the signal is close to base band, 

band-limit the signal and differentiate it. The rectification or other nonlinearities will cause a 

spectral line to appear at multiples of the bit rate. This method is similar to that of the non­

decision directed maximum likelihood timing estimate [3].
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Figure 1.9 : Derivative o f  Symbol with Non-Linearity

This has listed just some of the available methods for symbol synchronisation.
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1.4 SNR and Amplitude Estimation
In the parametric classification techniques knowledge of the SNR is assumed. This is a 

difficult parameter to estimate, especially as the modulation type is unknown.

One method for estimating the noise is to assume that it is all attributed to noise in the 

receiver, which then enables an estimate to be based on the received power. Many modem 

receivers enable measurement of the received signal power, which is attributed to the power of 

the signal plus the noise. The estimate of the signal power and noise power or noise spectral 

density may then be based upon the noise figure and temperature of the receiver.

Other techniques may assume that the envelope is constant with AGWN present upon it. The 

SNR is estimated by processing statistics of the observed sampled signal J{n), which is 

comprised of a wanted signal s(n) and AGWN of standard deviation o. The following results 

should first be noted from table 2.1 of chapter 2.

estimation in a modulation recognition environment. Some possible methods have been 

discussed, but future research is clearly required in these areas.

E [/M /* (« )]= E[s(n)s*(n)]+ 2 a 2 (1.4)

E[/(n)2 /* (n)2 ]= EJj(n)2 s* (rif ]+ 8a2 e[j(«)s*(/i)]+ 8o2 (1.5)

For a constant envelope signal

(1.6)

In order to solve for the SNR p, (1.6) is placed in (1.4) and (1.5) to give:

(1.7)

(1.8)

1.5 Conclusions
This section has looked into techniques for carrier synchronisation, symbol timing and SNR
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1.7 Appendix I.A
Power Law Classifier

The following development examines the effect of AGWN on a PSK signal when a power law 

is applied to the analytic signal. The examination is performed on a rectangular symbol in 

order to establish the greatest performance. When symbol shaping is included, the 

detectability will become reduced.

Consider an M  level PSK signal received in AGWN at a signal to noise ratio p. This may be 

written a s :

/(/) = Aexp(jtociT3 )exp(/3>(i))+n, (i)+jnQ(i) (A.l)

where 0 (0  is the PSK phase signal, and includes all the PSK symbol types. nt and nQ are 

Gaussian variables of variance a 2. When the signal component is taken to an n* power, the 

following transformation is observed:

tig (0 = exp(ynco ciTt )exp(;nO(*)) (A.2)

and for M  level PSK, where n is an integer multiple of M  the phase is represented b y : 

exp (jn® (0) = 1 (A.3)

which yields a spectral line at n times the carrier frequency. The unwanted signal has a power 

given b y :

( a -4)

This resembles the moments of the envelope of a sinusoid in Gaussian noise (Chapter 2, 

section 2.3.1), and the moments are given in terms of the Confluent Hypergeometric function 

a s :

- n’1;-oZT (a -5)V )

which may be simplified to

(A'6)
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Assuming that the spectral line is coincident with a DFT bin (this becomes valid in the general 

case when zero padding interpolation is used in the DFT), the DFT will consist of a signal bin 

and a set of noise bins. The magnitude squared DFT is used, where the DFT is scaled by the 

number of samples. With a large number of bins N, the distribution of the noise bins tends 

towards a Rayleigh distributed variable, with a mean given b y :

p*60= 7 T exp
r«

(A.7)

where

Var[ fL e ]
LL = - - - - - - - - - - - - - - - - -

N
(A.8)

The pdf of the signal is given by a non-central Chi squared distributed variable, with two 

degrees of freedom, given b y :

exP
f y + A2>

'n (2 a-V T |
I J I V' J

(A.9)

1.7.1.1 Case When n<M
If the tested PSK is not the true PSK, the spectrum of the transformed signal in (A.2) is no 

longer discrete in nature because the constellation is jumping from point to point. The overall 

effect is that the spectrum will have a component which is due to the autocorrelation of the 

digital signal, and this is raised by a noise floor attributed to the interaction of the AGWN.

The DFT spectrum of the noise free signal results from a random process, and the spectrum 

has a Rayleigh distribution similar to that of noise. The normalised DFT power spectrum of a 

noise-free base-band PSK signal is given b y :

A 2nT  
S ( k )  =  ? - J ±
v 1 NT.

sine
X% k-rm cTs)Tb

IT.
(A. 10)

The distribution of the signal and noise on each DFT bin is Rayleigh distributed with mean 

and standard deviation given b y :

-sine
T,)Tb

IT.

,2 n-1
+— Yn"

(A.11)
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1.7.1.2 Probability of Misclassifying a Peak
The calculation of the classification performance of the DFT power method may be evaluated 

for some simple cases. If it is known that a discrete component exists within the spectrum, 

then the probability of the peak being attributed to the carrier component may be calculated.

It was seen that, for a discrete component the pdf is non-central %2 distributed with two 

degrees of freedom, and the other DFT bins are Rayleigh distributed. The classification 

performance for a similar problem was evaluated for the DFT of phase histogram (Section 

3.4.5). From this, the probability of choosing the wrong peak is given b y :

(A. 12)
-  §(„-,)!(. +1)! “ PU 1 H .,

From (A.6) it was found that

f  ■ (A. 13)

*  " ' Z l N h v .1-0

This is difficult to evaluate for a large number of DFT bins N, as numerical error becomes a 

problem for iV>40. Therefore a simplifying approximation is used, which improves with 

increasing SNR.

The approximation looks at the probability of N-l independent events of the signal being in 

error with one noise bin. The true error considers the signal being in error with N-l noise bins. 

This is a subtly different approach which provides poor results at higher error probabilities. 

However, they are seen to converge for low error probabilities. The probability of error is 

approximated b y :

Pen= 1-
,  11— exp 

2 2V-n ,

N-l

(A. 14)

The SNR for 1% misclassification probability is described in table. Included in the table 1.1 

are the 1% misclassification probabilities for the DFT of phase histogram technique. The 

comparison of these two results must be made with caution.

In practice a peak searching algorithm will not distinguish between the peak from noise and 

the peak from a signal. Therefore more processing is required to establish the significance of a 

peak to provide a candidate for a PSK scheme. The performance of a power law classifier will 

degrade when the peak significance is used.
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CW Lb psk QPSK 8PSK
DFT power -16.7dB -6dB 2.8dB 10.4dB
DFT of Phase Histogram -19dB -7dB 1.5dB 8.0dB

Table 1.1:1% misclassification Probabilities

A further degrading factor occurs when the symbols are not rectangular, as the power in the 

discrete spectral line becomes reduced, and other lines are also formed at multiples of the bit 

rate.

It is therefore feasible that decision theoretic techniques may be used to enhance the 

performance of a power law classifier.
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1.8 Appendix I.B
Incorporating a Measure of Confidence in the Maximum Likelihood Classifier

In Appendix 3.B of chapter 3, the maximum likelihood criteria was established using :

K“ . )
• x N) =  p (x u x 2...* K l a , „ ) - T --------------- --------------------- --------------------- ---------------------

P \ X \ , X 2- . . XN )
(B.l)

and it was assumed that each hypothesis is equiprobable and the term p ( x •. -Xs) is 

common to all PSK types, and therefore no further use was made of it. However, this term 

may be of use to determine a meaningful numerical measure for p(od X\JCj...Xn), which can 

then be used as a metric for classification confidence.

The following may be used to determine the probability of the data :

c
p(x\>x2.-.xN)=  X  p(x i ,x2. . .xNl am )p(am) (B.2)

mm 1

where am is the n f  hypothesis and C is the number of candidate hypotheses. The maximum 

likelihood structure may be modified to enable the absolute probability of classification, and 

the result is shown in figure 1.10, where it is assumed that each class is equiprobable.

Pi(-)

Pi(')

Pc(’)

ln(-)

In(-)

ln(-)

ln()

exp(-

exp() ' 2

exp() rc

Choose Classified'
Maximum PSK

V  J

f

onfidence
Metric

Figure 1.10 : Maximum Likelihood Classifier with Confidence Metric
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II. Digital Methods for Analytic Signal 

Generation

11.1 Outline
In order to analyse the characteristics of a signal for modulation recognition, the signal is 

processed in an analytic form. This enables parameters such as the envelope, instantaneous

the analytic signal and some of the associated properties.

An analytic signal translates a signal into vector form through the Hilbert transform. There are 

various techniques for achieving the Hilbert transformation and a range of methods have been 

applied to modulation recognition. Various methods are discussed with respect to 

implementation and performance properties and this enables a useful comparison between the 

techniques from a modulation recognition perspective.

In the performance calculations of the Hilbert transform techniques in Appendices A-D it is 

assumed that the signal is comprises a large number of equal amplitude sinusoids spread 

across the pass band of the transformer.

where H(-) is the Hilbert transform operator. For convenience a Hilbert transformed signal is 

denoted b y :

frequency and phase of the signal to be estimated. This Appendix starts with a definition of

II.2 Definition
The definition of an analytic signal is given by [1][2]:

z\ (II.l)

(II-2)

The Hilbert transform is essentially a filter of impulse response given by :

(n.3)

and the frequency response of such a filter is given by :
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From (II.4) it can be seen that |G(/)| = 1 and Z G (/)= -sgn(/)

Some useful identities of the Hilbert transform are related to the transforms of the sinusoidal 

identities, given b y :

H[fl(f)cos(a)c/)] = fl(r)sin(tocr) (H.5)

H[a(r)sin(«cr)] = -a(/)cos(coc/) (H.6)

11.3 Analytic Signal Properties
The general form of a modulated signal with amplitude modulation A(t), phase modulation 

<b(0 and angular carrier frequency coc is given by :

s(f) = A(t)cos((oct +0(0) 01.7)

The analytic representation of this signal is denoted by z(t) and is given by (II. 1) applied to 

01.7) and (H.5) to give:

z{t) = i4(/)exp[y(co<:r +0(0)] 01-8)

In modulation recognition the envelope and phase of the signal are important parameters. The 

envelope is simply derived using the following property :

A(0 = |;« | = V R e[z(r)f+ Im[.-(0]2 (n.9)

In order to derive the phase 0 (0  of the signal the carrier must be removed. This may be 

achieved by multiplying the analytic signal by a complex phasor of opposite frequency:

z„(/) = = A(l)ei* i') 01-10)

The phase may then be deduced from (II. 10) as :

0 ( 0  = Zz0(t) = tan “! (lm[r0 (r) J Re[z0 (/)]) (ELI 1)

where the arctangent function includes all four quadrants of phase.
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The power spectral density of a Hilbert transformed signal is the same as that of the original 

signal [2], but the spectrum of an analytic signal is given by :

% w )=
25(co) a) > 0
S(co) a) = 0

0 co < 0
(11.12)

11.4 Implementation
There are a number of methods for achieving the Hilbert transformation, and four of the more 

practical methods are discussed in the following sections.

11.4.1 Finite Im pulse R esp o n se  Filter Im plem entation

This method uses an FIR Filter to perform the Hilbert transformation. The general structure of 

the FIR filter uses an odd number of coefficients and odd symmetry on the filter coefficients. 

This odd symmetry provides an exact 90° phase shift, but does not provide a perfect 

magnitude response.

The analytic structure of the FIR method is provided in figure II. 1. The delay is included to 

match the signal to the group delay of the filter and thus avoid a phase imbalance between the 

two channels. For this reason the FIR filter must contain an odd number of taps in order to 

avoid a half sample delay.

Real
Delay

Imag
FIR

Figure II.l : FIR Analytic Signal Generation

The equation for the generation of the Hilbert transformed components is given by :

N

y(n) = £  /,(')[•*(« + r) -  x(n-  r)] (11.13)
r= 1

where h(n) is the impulse response of the filter, ne {-N,-N+1,...(V}, and the filter therefore 

contains 2/V+l coefficients.

The FIR filter may be designed using a variety of methods, but the Parks-McGellan approach

[4] provides an iterative method to create a magnitude response which has equal ripple in the
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pass-band. This is a desirable response in many applications as the error is uniformly 

distributed across the pass-band.

The response of a practical FIR Hilbert transformer is described solely in terms of the 

amplitude response, as the phase response is always perfect. Using a Parks McClellan design 

the design parameters will specify the pass band ripple and the bandwidth of the pass band. 

The amplitude response drops to zero at D.C. and the Nyquist frequency, to give a set of 

design parameters characterised in figure II.2.

Psd 'Ripple

Bandwidth

0 Frequency

Figure II.2 : FIR Hilbert Transfotm Design

A desirable filter design will have maximum bandwidth and minimum pass-band ripple. The 

bandwidth parameter determines the available frequency band that a signal may occupy. The 

deviation due to the pass-band ripple causes unwanted signal components to be produced in 

the analytic signal.

The number of filter taps is traded off with the ripple and bandwidth of the filter. In order to 

illustrate this trade-off, two designs are illustrated in figure II.3. The first has 23 taps, ±0.1dB 

ripple and a pass band of 0.4FS. The second has 71 taps, ±0.0 ldB ripple and a pass band of

0.45FS.

0.05 -

|-0.05 - 
- 0.1 -  

^-0.15 - 
- 0 .2 -

0.1 0.4 0.50 (12 0.3
Frequency/Fs

Figure II.3 : Amplitude Response of 23 tap and 71 tap Hilbert transformers.
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The above responses are zero at the odd points of the impulse response. This is achieved when 

is an odd integer and enables a more computationally efficient solution, requiring half the

number of multiplications and additions that would otherwise be required.

r=0

The rejection ratio for the wanted to unwanted power has been calculated in Appendix II.A 

and is given by :

where ±a is the pass-band ripple. In the 23 tap transformer, the rejection ratio is 

approximately 45dB, and the 71 tap transformer, the rejection ratio is approximately 65dB.

11.4.2 D iscrete Fourier T ransform  m ethod

This technique uses frequency domain methods to achieve the Hilbert transform result in 

(II.4), and the process is described in figure II.4.

k / x(n)
FFT

m Multiply X(k)
IFFT x(n)

/ D Coefficients

Figure IIA Generation of the Hilbert Transform Using the FFT

jX(k) * = 4  + l...W -l

The DFT coefficient multiplication is described in (11.16), where it can be seen that the 

appropriate 72 phase shifts are introduced through the complex operator j.

The deviation of the DFT method from the ideal Hilbert transformer is different to that of the 

FIR Hilbert transformer. Using the FIR method the error was due to a linear amplitude 

imbalance at a frequency. Using the FFT method the signal becomes distorted in the time 

domain and the amount of distortion is related to the applied frequency.

This distortion occurs at frequencies which are not coincidental with the FFT bins, and the 

distortion is time varying, with maximum error at the ends of the transformation and minimum 

error at the centre.

(11.14)

Ydb “ 25- 20 log 10 (a) (11.15)

0 * =
X{k) = \-jX(k) k = l . . . f - l (11.16)
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An example of the distortion effect is provided in figure II.5 where a plot of error modulus 

against sample number is provided for a 64 point transform of a 64 point unity sinusoid at a 

frequency of $ F S. The modulus is used for clarity, but in practice the error changes sign 

every sample.

5  0.4 -

0.2 -

o 10 30 4020 50 60 70
Sample

Figure II.5 : A Plot of Error Modulus against Sample Number for a 64 point DFT Hilbert 

Transform

The frequency domain effects are observed in figure II.6, where the distortion error generally 

increases as the frequency moves either side of V*FS. Figure II.6 illustrates the normalised 

mean square error for a DFT Hilbert transformed sine wave against frequency for a 32 and a 

256 point process. It is seen from the plots that local maximum errors occur at frequencies 

mid-way between frequency bins.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Frequency IFs

Figure II.6 : Plots of Hilbert transform Mean Square Error against Frequency for the DFT 

Method
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Figure II.6 also shows that as the number of bins are increased, the number of maxima 

increases as would be expected, but the peaks are similar in magnitude when the frequency 

scales are normalised. Figure II.7 shows this more clearly where the two examples have the 

frequency scales warped to place the nulls in identical places.

N=256
N=32£  0.5

0.150.05 0.1 0.250 0.2
Warped Frequency

Figure 11.7: Comparison of Mean Square Error of Localised Peaks for N=32 and N-256

As the number of samples entered into the Hilbert transform is increased, the distorted 

components tend to become confined towards the zero frequency and Nyquist bands, thus 

providing a more desirable characteristic. This trend is similar to an increase in the number of 

taps used in the FIR technique, except that the FIR technique is not subject to time domain 

distortion.

As the number of samples is increased the number of floating point operations increases. The 

execution time of the FFT Texec for N points is roughly given by the following relationship

[5][6]:

Texec=»N\og2(N) (11.17)

where p is a processor related constant. When the number of samples is increased by a factor 

k, the execution time T  exec increases to :

K ec^kTcxec+ m iO ^k) (11.18)

i.e. the processing time is larger than k individual blocks. The number of samples which are 

processed in each block therefore has a direct impact on the overall system computational 

complexity.
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The wanted to unwanted signal power ratio has been derived in Appendix II.D, and a graph is 

provided in figure 11.14 of the appendix. For a 1024 sample transformation the rejection ratio 

was found to be approximately 30dB.

The DFT method is a simple technique for obtaining the Hilbert transform of a signal and the 

FFT of the signal is calculated as an intermediate process in many modulation recognition 

applications. The main drawback of the technique is the distortion involved in the process, 

producing unwanted signal components in the analytic signal. Another drawback is the delay 

involved when a large number of samples are processed. This is however not a major 

drawback in modulation recognition applications as the samples are generally post processed.

11.4.3 Q u ad ra tu re  Mixing m ethod  (DSP)

The sampled signal may be converted into analytic form by sampling the signal at an IF and 

then by mixing the signal by two quadrature components followed by low pass filtering. A 

block diagram of this is provided in figure II. 8.

D

cos(;ja),rJ

 K£) * FIR

FIR

Real

Imag

-sin(/i(o,T,

Figure II.8 : Quadrature Method for Generating an Analytic Signal 

The digitised signal may be represented by : 

s(n) = A(t)cos(n(OiTs + <£(/;))

and the two parallel processes in figure II.8 are as follows : 

sin )cos(/tco, Ts) = -2 A(i)cos(&(n)) +4 -40 )cos(2/ko1 Ts + 0(/i))

-  jOOsin îco, Ts) = 4 AO)sin(oOt)) -  4 A(/)sin(2/ico, 7̂  + 0(/i))

(11.20)

(11.21)

After low pass filtering, the two signals have been translated down in frequency by go, and 

satisfy the conditions of an analytic signal. In order to maximise the bandwidth of the signal, 

co, is set to approximately a quarter of the sampling rate. If it is set exactly at a quarter of the
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sampling rate, the generation of the sine and cosine coefficients becomes a set of repeated 

constants where one period is described below :

cos(2roi4'J’,)=  -1-̂.0.̂  } (11.22)

=....................................... ....... } (11.23)

Figure II.9 illustrates the transformation in signal spectrum in the frequency band ±xAFs. In

(a) the spectrum of the incoming signal is displayed and (b) shows the spectrum after the 

multiplication by the quadrature sinusoids when the two components are considered in analytic 

form. The dashed line represents the desired filter response.

Freq. ViFs

Figure II.9 : (a) Spectrum of the real input signal (b) Spectrum of the Analytic Signal Prior 

to Filtering

The filter may be implemented using an FIR filter which preserves linear phase, and again the 

Parks-McClellan equiripple filter design [4] may be applied. The number of filter taps 

increases when the pass-band ripple is decreased, stop-band attenuation is increased and the 

transition between pass and stop band is decreased (Ref. Figure 11.10). The design is therefore 

a compromise between computational complexity and performance.

Transition Band

Psd
Ripple

Stop Band 
Attenuation

0 Frequency

Figure 11.10 : FIR Filter Parameters
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Two examples of filter designs for such a task are shown in figure II.l 1. The 71 tap filter has 

±0.1 dB ripple and 70dB stop-band attenuation. The 23 tap filter has ±0.3dB ripple and 60dB 

stop-band attenuation. This provides an indication of trade between the number of filter taps 

and the transition bandwidth which may be attained.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
FrequencylF,

Figure 11.11 : FIR Filter Designs for Image Frequency Rejection for 23 and 71 Tap Filters

This method for Hilbert transforming the signal is a useful one, which balances out the 

response in the in-phase and quadrature channels due to two identical FIR filters, whereas the 

FFT method and FIR Hilbert transform method will experience an imbalance due to the 

distortion and non-ideal frequency responses. However, the method is restricted by the stop­

band and pass-band characteristics of the filter which are a function of computational 

complexity.

Following the frequency translation the signal may be decimated by a factor of two to reduce 

the sampling frequency of the signal. This is illustrated in figure 11.12 which follows from 

figure II.9 (b), where the filtered signal is decimated.

Psd*

-YiF,

(a)

Freq. VzFs -Fs -YiFs

Figure 11.12 : (a) Signal after translation (b) The Decimation Process
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The method is computationally intensive when compared to the Hilbert transform FIR method, 

as the technique requires two filtering operations along with a frequency translation. Also the 

Parks-McClellan type of filter design algorithm for the low-pass filter case does not lend itself 

to the possibility of creating every odd sample with a zero like the Hilbert transformer design.

Appendix II.C derives the ratio of wanted to unwanted signal power, and it is approximated

by:

(11.24)

Using the above filter designs as example parameters, the 23 tap filter yields a 63dB rejection 

ratio, and the 71 tap filter has a 73dB rejection ratio.

There are commercially available solutions which tackle the problem in this manner, where the 

signal is digitally sampled at a high I.F., filtered, translated in frequency, decimation filtered 

and is then decimated. Such a solution can be realised with the hardware in [7] which acts as a 

parallel DSP, and provides a means for using the frill bandwidth range of the signal as well as 

enabling an adaptive set of sampling frequencies.

11.4.4 Q uad ra tu re  receiver

The method in 11.4.3 performs the Hilbert transform after the sampling process. However, it is 

possible to perform this prior to the sampling, as shown in figure II. 13.

s ( t )

Figure 11.13 : Quadrature Receiver Implementation of an Analytic Signal

The theory behind this technique is identical to that of the DSP quadrature receiver in II.4.3, 

but there is a substantial difference in the implementation. The receiver takes the signal from 

the radio frequency or an I.F. and mixes it separately with two orthogonal carriers. One 

component will be at twice the carrier frequency and the other will be at an I.F. of 

approximately zero. The twice frequency component is then filtered out by the anti-alias filter 

and the signal at the wanted frequency is digitally sampled.
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Two A/D converters are required for this method, whereas the other techniques require only 

one. The main advantages of this technique is that the signal may be taken close to zero I.F. in 

one operation, and the bandwidth of the signal may span the Nyquist range.

A final benefit of this technique is that it requires little to no computational oveiiiead in order 

to evaluate the analytic signal, as all the processing is performed in the analogue sections.

The filters which are used require similar characteristics, otherwise there will not be a 

cancellation of the negative frequency terms associated with real signals. The phase between 

the two oscillators must be accurately set to provide a */2 phase shift and the amplitude of this 

source must be balanced.

Some typical amplitude and phase imbalance figures are given in [8] [9] [10], and some 

typical values of amplitude imbalance are 0.2dB and phase mismatch of 1°. The rejection ratio 

is derived in Appendix II.B as :

Four solutions have been analysed for the conversion of a signal into an analytic form, each 

with relative merits and disadvantages which have been discussed in the preceding sections.

It has been found that the Quadrature DSP and the Hilbert transform methods have a good 

rejection ratio performance. The FFT method and Quadrature Receiver techniques have both 

been found to have relatively poor rejection ratios.

A choice of solution for the modulation recognition process may be efficiently realised by a 

chip set solution similar to [7], which uses the method discussed in II.4.3 for analytic signal 

generation using DSP quadrature mixing. The sampling frequency of such a chip set can be 

high and decimation orders higher than 2:1 may be used to select a signal of interest within a 

band of signals.

The advantages of this solution are that the sampling frequency may be adaptively set, with 

appropriate anti-aliasing filtering. Signals within a wide bandwidth may then be analysed prior 

to the selection of an appropriate frequency band, which is useful in the surveillance aspect of 

modulation recognition. Finally, the chip sets represent a parallel processing technique, which 

enables additional processing performance within the modulation recognition DSP.

(n.25)

Using these figures, a rejection ratio of 37dB is obtained.

11.5 Conclusions
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11.7 Appendix II.A
Calculation of the Rejection Ratio for the FIR Hilbert Transform Method

The error in the Hilbert transformation causes unwanted signal components to be placed into 

the pass-band of the analytic signal. The following derivation will obtain an approximate 

expression for the ratio of wanted signal to unwanted signal power based on a Parics- 

McClellan design of Hilbert transformer.

The component of signal at frequency/, is given b y :

Zfin)= A(n)exp[j2nfhTs\+ jd(f)A(n)sin(2izJhTs) (A.1)

which contains a signal and an unwanted component The unwanted power is due to the 

frequency dependent pass-band ripple given by §(/). The FIR filter is kept to an equal ripple in 

the pass-band with the Parks-McClellan algorithm, and the ripple approximates a sinusoid 

when expressed in a logarithm (dB) scale. This may be modelled as :

where N is the number of filter taps, and the passband ripple is expressed as ±<x dB. The 

actual gain of this signal is given by :

Assuming that the signal is comprised of a large number of sinusoids across the filter pass- 

band, the average ratio of the mean power of the unwanted signal to the power of the wanted 

signal is deduced from (A.1) and (A.5) as :

The ratio of signal power to unwanted signal power ratio expressed in a dB scale is given b y :

Pdb ( / )  = - a  cos([N + l]rc/) (A.2)

(A.3)

In general the ripple is small, and the expression in (A3) may be approximated by :

Plin ( / ) “ l - - 4 ^ a  cqs{[N +1V ) (A.4)

6(/) may be deduced from (A.4) and (A.1) b y :

s ( / )  = -  JS2̂ a  cos([N +1 h f ) (A.5)

(A.6)

* 25-201og10(a) (A.7)
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11.8 Appendix II.B
Calculation of Rejection Ratio for the Quadrature Receiver Method

Assuming that the phase offset between channels is 0 radians and the fractional amplitude 

error is given by e, the signal s(r) at the output of the mixer is given by :

z(t) = s(/)[l -  e]cos(civ + 0) -  ;j(/)sin(o),/) (B. 1)

This may be expanded to :

z(t) = j(/)[1 -  e][cos(ov)cos(0) -  sin(to1r)sin(9)]- yj(/)sin(o),r) (B.2)

The signal may be decomposed into a baseband form and a twice frequency component as : 

j(0cos(ffltr) = 4-5* (/)+■£ j 2(D(r) (B.3)

-j(f )sin(co,/) = 4- sb (t)-  4- s2<0 (t) (B4)

Therefore at the output of the low pass filter, the signal is given by : 

z(O = 4'[l“ e][J(Ocos(®) + 3r(Osin( 0 ) ] + ( B . 5 )  

Using approximations for small 6, the expression simplifies to :

z(t) » +y?(/)]--J-e[j(0 + S*(O0]+ (B-6)
 ̂ v  11 ■ 1 " 4 v 1 1 v  11 1 ■■ 4

Wanted Unwanted

Using the approximation that e is small, the ratio of wanted to unwanted power is given b y :

(B.7)

Expressed in dB foim, this yields :

Y ^ -3 -1 0 Io g 10(e2 +e2) (B.8)
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11.9 Appendix II.C
Calculation of Rejection Ratio for the Quadrature Mixing Method (DSP)

In this case the I and Q channels are subject to the same pass band ripple, and there is no 

aliasing in the wanted band. However, there are components which are present at frequencies 

outside the wanted band, and when decimation is performed this unwanted signal will be in the 

wanted band. The following work describes the ratio of wanted to unwanted power assuming 

the signal consists of a large number of sinusoids uniformly distributed in frequency about the 

pass-band.

The magnitude response of a Parks-McClellan filter in the stop band may be approximated by:

where (3 is the stop-band attenuation (dB), N  is the number of filter taps and 0 is a constant 

phase offset. When a sinusoidal signal of amplitude A is present in the pass-band, it will 

become aliased in both the I and Q channels during the decimation process, and the unwanted 

signal is given by :

(C.1)

(C.2)

The average unwanted signal power in a channel is given b y :

p = E[j2(/./> r,/] = 4 l O ^ (C.3)

The wanted power to unwanted power ratio y is given b y :

(C.4)

and may be expressed in dB form as :

(C.5)
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11.10 Appendix II.D
Calculation of Rejection Ratio for the FFT Method

The normalised mean square error has been calculated against frequency for two cases in 

figure II.6, which is the ratio of the error signal to the signal power. It will be assumed that the 

frequency band of interest spans from the first null to the last null in the mean square error,

i.e.

(D.l)

The mean square error in figure II.6 is the power of the unwanted signal, and the overall 

power of the unwanted signal when the input signal comprised of a large number of sinusoids. 

This is given by :

F N~2

P., = j e ( f W  (D.2)
F,
IT

Note that the normalisation is with respect to the power of a single sinusoid, i.e. divided by Yi. 

The overall wanted signal power to unwanted signal power ratio is given by :

Idb =-10 log10

pJtzl* .  ■> kt
{  j s i f (D.3)

where gif) is the response given in the graph in figure II.6. This integral has been evaluated 

numerically, and results are shown in the graph of figure 11.14.

25

10 100 1000 
Number of Samples

10000

Figure 11.14 : A Plot of Rejection Ratio Against The Number of Samples for the FFT Method 

From this graph an empirical model may be deduced for determining the rejection ratio :

Yjb ~ 7.85 log 10 (AO+ 5.93 (D.4)

where N is the number of FFT points.
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Low SNR approximation to phase PDF for 
PSK signals

P.C. Sapiano, R.J. Holbeche and J.D. Martin

Indexing terms: Phase shift keying. Statistics for communications. 
Probability

The authors show that for a low SNR the probability density 
function of phase for multilevel PSK. signals may be 
approximated as a mean term plus a number of sinusoid terms. A 
relationship between the SNR and the accuracy of the 
approximation is developed.

Introduction: The analysis of PSK signals for signal detection often 
relies on the analysis of the probability density function of the sig­
nal under additive Gaussian white noise (AWGN). This analysis is 
often cumbersome, as the PDF is expressed using an extension of 
the classic phase distribution of a sinusoidal signal under noisy 
conditions [1].

— cos 4>epc ,2*(1 +  erf[v/pcos^])

(1)Where $ is the phase perturbation about zero and p is the SNR.
This is extended to'L level PSK signals by L—1

a w . P)
Approximations of the phase PDF have been made for a high 
SNR range using the Tikhonov PDF [2], which is a good approxi­
mation for p > 7dB, while for a larger SNR this may be taken to 
be a Gaussian PDF. The following reasoning will develop a model 
for the PDF at low SNR.

Analysis o f a sinusoid: As the phase PDF is defined between [-x, a] 
the function may be expressed over the full range as a Fourier 
series with period 2k.

(3)

where

(4)

The integrand is split up into the two parts shown in eqn. 1, and it 
can be shown that

cos(^) cos (rruj>) exp \p cos2 <j>]eTi[-Jp cos <j>\ 
rs(m
~~7*

_  cos(mtf,) ^  22(n+1V + i ( n + l)!r „2nJ.2 (5)
£  (2n +  2).

The (cosQf**1 term may be decomposed into a Fourier series using 
[4], and the product of this and cos(m$) form a set of orthogonal 
functions which integrate to zero except for one term when m is 
even. This yields

 (n + D!
bm ** '  n=5-i (" + 1-  ¥)>(» + 1 + t)!

= e-'p* £ r(k + f  + 1) t 
kir(fc +  m +  1)

(6)

The other part of the integral is determined using the following 
series representation:

co«(«eo.(ra*K“•■* = f ) P)

In a similar way to the above it can be shown that this integral is 
identical to eqn. 6 for odd m.

Therefore it is deduced that this expression is valid for all inte­
ger m. The integrand may be expanded as

e/,eom* * cos(iruf>) coa(<j>)

=  exp ^  cos(2</>)j (cos(m + \)<j> + cos(m — l)o)

(8)

which may be integrated in terms of modified Bessel functions to 
yield the result

From the previous argument this may be extended to include odd 
and even m.
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Multilevel PSK: As multilevel PSK is the sum o f  a  num ber o f  
phase shifted versions o f  the  sinusoidal P D F  as  in- eqn. 2, all the 
sinusoids will be cancelled except when m = nL. This is described 
as:

h  w  -  ^  At I  f > - 17" cos(nL4) (10),
' rt=:l

As L is even, only/ even  values o f  m, are used in  the. expression Cob 
bm. Therefore the expressiba is expuessed in term s o f modified Bes­
sel functions, o rder n + 1/2. This form o f  function is related to  the 
spherical Bessel function and has recurrence properties [4} tha t 
enable the function to  be ca ltu la ted  quickly and efficiently.

/<„+*-,)(*) = W i + l)(*) + *+*)(*> (11)
F or this type o f  function the recurrence is upw ardly unstable, 
therefore reverse recurrence using the M iller m ethod may be used. 
This result may then, be norm alised abou t / „ 2 to  give the correct 
result, where

'» © - ; £ * “ (!) <l2>
However a further sim plification may be introduced. By norm alis­
ing abou t (l-e~p)/2 a scaled set o f  Bessel functions tfx) are formed 
where

* .(* )  =  ^ e ' i l v (x l  (13),

and

( f ) * ^  (I) «“ »
From  eqn. 91 it can be show n that

&m+2 -A n  -  1 l e - 4 / a j ,  ( I )  (15).

It is evident from eqm  I15" th a t bm decreases as m increases. F o r a 
PSK signal with- targe- A, there are* few er harm onics required- as the 
am plitude ra tio  between the harm onics is larger. I t is also found 
tha t the spacing- between- 0m term s increases as the S N R  is 
decreased, there f e re  the* accuracy o f the approxim ation  im proves 
with decreasing SN R . T h e -e rro r  incurred in a  T  term- approxim a­
tion is given- by

1 1 T
e(Wt = M4>J X > i r V i >  « * C (16)

This may be expressed in m ean square e rro r form  using eqa. 10; as

= r  4  e  bu> d7)
J- w «=T-W,

Fig. 1 shows the RM S error as a function o f  S N R  fo r a on e  and 
three term  approxim ation: it can be seen th a t as the nu m b er o f 
terms is increased, the approxim ation becomes significantly  m ore 
accurate.

Conclusions: This Letter has shown tha t the phase P D F  o f  m ulti­
level PSK  may be expressed as a D C  com ponent and  a  sinusoid 
for low SN R, and a plot has been given for the R M S  e rro r  against 
SN R. F or an increased SN R  range, the num ber o f  s inuso id  term s 
may be increased. The scaling o f these sinusoids m ay be  deter­
mined using a simple recurrence property o f Bessel functions.
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Introtiuction: There have been a number of methods presented for 
classifying the number oflevels in a PSK signal [I -3]. All of these 
methods are capable of distinguishing between two types of PSK 
signal, and [1,3] show how a greater number of PSK types may be 
classified. The method in [I] is based on a maximum-likelihood 
approach and gives results for the error probability when BPSK 
and QPSK are compared in the classification process. The method 
in [3] uses statistical moments of the phase PDF and extends the 
results from CW to 8PSK.

This Letter describes a method for numerically evaluating the 
probability of misclassification using the algorithm in [I] when 
more than two PSK types are included in the classification proc­
ess. Calculated and simulated results are given for the cases of CW 
through to 8PSK. The results enable comparisons between the 
methods of [1,3] and other emerging methods.

Further results in the classification of PSK 
signals using the optimum method

P.C. Sapiano, J.D. Martin:and R.J. Holbeche

Indexing terms: Phase shift keying. Statistics for communications

The automatic classification of PSK signals using the maximum 
likelihood approach has been described by Tang and Soliman 
(1991). The Letter develops the results further from a two-class 
case into a multiclass case by examining techniques for deriving 
the probability of misclassification. Results are given for a four- 
class case which may be used to compare with other methods.

ELECTRONICS LETTERS 5th January 1995 Vol. 31

Development: The classification procedure takes a series of phase 
samples and passes each consecutive sample through a set of func­
tions related to each considered PSK type. The results are then 
summed against each considered PSK type, and the choice of clas­
sified signal is based on the maximum of these results. In the tech­
nique it is assumed that the carrier frequency is accurately known, 
the probability of occurrence of each class is identical, all the sam­
ples are i.i.d with zero mean and the noise is AGWN.

The PDF of phase $ of a carrier wave in the presence of 
AGWN is

/ (0 )  =  ^ ~ e ~P [* +  y/pnc°s<i>epcot2 +  erf[y /pcoso])j
(1.

and for L-level PSK signals the PDF is extended to

i  t  i s 1 V ' '  r  ( j. 2 t t(&  +  0 .5 )  \/ t W = 7 ^ / U + - L 7 i-irl (2:
k=0 ' '

Each of the M  incoming phase samples is tested against all possi­
ble PSK classes (3y, which is the number of PSK levels for the class. 
The classified modulation type is chosen from the maximum a pri­
ori probability which is expressed below using Bayes theorem and 
the assumption that all modulation types are equally likely:

max[p(/?j|0(t))] =  max[p(<0(*)l0j)] (3 :
which may be written in log-likelihood form as M

l0J = £ ln[p(*(O I/?> )] (4)
i=l

When M  is large, the distribution of /py tends towards a normal 
distribution by virtue of the central limit theorem, and the mean 
and variance of the distribution are characterised by

PPia =  M m 0 ja { 1) (5 )

<Tlj a = M { m 0 ja ( 2 ) - [ m 0 ja(l) \* }  (6)
where mpyo(n) is the nth moment of /py when a-level PSK is trans­
mitted. It can be shown that

£
m0ja = J ( ln[ f0i(u)])nf a(u)du (7J

o
where f  Jit) is the PDF of phase of the true PSK signal (£,(«)), ali­
ased about u -  Jt/Py and positive u. This is in order to take into 
account the fact that f ju )  is not a unique function. The mean and 
variance may be evaluated using eqns. 5 and 6 through the numer­
ical integration of eqn. 7.

Probability o f  error: The probability of correct classification when 
the signal is in the interval xpc + 8x with a-level PSK transmitted 
is given by kM(x)Sx, where

ka(x) = ^ ^ eXP [_( 2<tL°°)] ^ )
' (85

and

= (9i
—OO

No. 1 . 19
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The overall probability  o f  correct classification given tha t a-level 
PSK is transm itted  is given in the limit o f  5.v —> 0:

p(comM-t |a  7 \r)  =  J  kn (j')<l.v ( 10 )

As <t>(.x) is a linearly increasing function ranging from  0 to  1. k„(x) 
becomes insignificant w ithin the limits p*, -  20a„„ > v > +
20o<sa. Therefore eqn. 10 m ay be simplified to

I'.... +'20(t„„

/>(corroct.|o T  x )  =  £  k„(.r)dj- (11)

Finally the p robability  o f  e rro r may be num erically evaluated 
through eqn. 11 and using

p ( o i r o i |a r . r )  =  1 -  p (c o r rc c t |n 7 \r )  (12)

This m ethod has been used to  calculate the e rro r probability  for 
CW , BPSK, Q PSK  and 8PSK . which are given in Fig. I a and b. 
The erro r p robability  was also deduced through sim ulation o f 
10000 trials, and  these results are also shown in the Figures. The 
results for 8PSK  are given separately in Fig. lb as they lie close to 
the Q PSK  poin ts. A sim ilar effect was found in [I], where the 
BPSK and Q PSK  m isclassification probabilities were also num eri­
cally similar.
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Fig. 1 Misclassification probability against SNR for CW, BPSK. QPSK 
and 8PSK

a CW, BPSK, QPSK 
b 8PSK
—• — calculated results 
— o—  simulated results

com puter sim ulation and have been used to com pare w ith the 
m ethod o f  statistical mom ents for a four-class case, w here it is 
found tha t the optim um  method has improved perform ance.
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The evaluation o f  the P D F  functions in [1] was th rough  a F ou ­
rier series expansion. These coefficients may be evaluated effi­
ciently using the m ethod detailed in (4). O ther m ethods o f 
evaluation m ay be obta ined  by using numerical approxim ations to 
the e rro r function [5] and  evaluating the function directly from 
eqn. 2. W hen the expressions applied to  eqn. 2 are expanded and 
simplified, com puta tional speed im provem ents m ay be obtained.

T he results in Fig. la  and  b now enable a com parison  between 
the techniques in [1,3]. F o r the four-class case the optim um  
m ethod [1] ou tperfo rm s the m ethod o f statistical m om ents [3] in 
term s o f  e rro r perform ance. A numerical com parison is draw n 
between the two techniques when [3] uses the 8th statistical 
m om ent. This is expressed as the difference in S N R  required for 
1% erro r probability , and  is sum m arised in Table I.

Table 1: S N R  gain o f  optim um  method over 8th statistical 
m om ent for 1 %  erro r probability and four-class case

CW BPSK Q PSK 8PSK

| SN R gain [dB] 4.2 3.0 4.4 4.6

Conclusions: T he op tim um  m ethod for classifying multilevel PSK 
signals using the m axim um -likelihood m ethod has been examined.
A technique for evaluating  the probability o f m isclassification is 
derived for tw o classes in [1] and  for more than tw o classes in this 
Letter. Results are  produced which have been verified through

20 ELECTRONICS LETTERS 5th January 1995 Vol. 31 No. 1
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CLASSIFICATION OF PSK SIGNALS USING THE DPT OF PHASE HISTOGRAM

P.C. Sapiano, J.D. Martin and R.J. Holbeche 
School of Electronic Engineering, University of Bath, 

Bath, BA2 7AY, England

ABSTRACT

A method is presented for classifying multi-level PSK 
signals in the presence of additive white Gaussian noise 
(AGWN). The technique is based on the Discrete Fourier 
Transform (DFT) of a phase histogram. The probability of 
correct classification is given and it is found that the 
technique performs well at low SNR. The benefits of this 
technique are that it is simple to implement and requires 
no prior knowledge of the SNR of the signal for the 
classification.

1. INTRODUCTION

The automatic classification of modulation type of a 
communications signal finds applications in the fields of 
Electronic Surveillance, spectrum management and signal 
interception where it is an important sorting parameter in a 
complicated problem. There are also applications in 
modulation diverse communication systems in which the 
system may receive a variety of modulation types. The 
initial trend was to treat modulation recognition as a non- 
deterministic pattern recognition problem [1] which works 
well at a high SNR, but is poor at low SNR. Consequently 
some research effort has been applied to deterministic 
foims of pattern recognition [2][3][4]. Some of these 
methods rely upon knowledge of the SNR of the signal for 
decision parameters, but this is difficult to obtain in a true 
signal environment The method presented shows a 
technique for classifying PSK signals without using SNR 
information, and the performance is found to work well at 
low SNR.

Phase samples of the incoming signal are collected and 
placed in a histogram. After a sufficient number of these 
have been collected, the histogram is passed through a 
DFT in order to exploit the periodicity of the histogram. 
The DFT bin numbers correspond to the number of levels 
of each of the PSK types considered, and are converted into 
magnitude squared where the largest of these identifies the 
PSK type (figure 1).

The theoretical development given below shows that the 
number of bins should be a power of two to avoid the 
effects of spectral leakage, and a closed form expression 
for the probability of misclassification is derived. It is 
found that the number of histogram bins used in the

process does not affect the classification procedure when 
aliasing effects are made insignificant. Finally the error 
probability for this method is compared to that of the 
method of statistical moments, and it is found to compare 
favourably.

2. THEORETICAL DEVELOPMENT

A time frame of the signal of interest is captured and 
digitised. This signal is then converted into an analytic 
form, the carrier is removed by complex mixing and the 
phase samples are extracted. It is assumed that the carrier 
frequency component is accurately known. The received 
signal is the sum of an ideal PSK signal and AGWN. The 
phase p.d.f. of multi-level PSK in AGWN may be
developed from a carrier wave (CW) p.d.f. f(<p), which is 
described in Fourier series form as [5]:

f(<fr) = —-  + —S '  b0cos(n<|>) (1)
2n

When M level PSK is considered, the p.d.f. fM(<J>) becomes 

The Fourier series form of this p.d.f. is given by [6]

W ) “ h + ( _ 1 ) 0  b(nM) cos(nM<,,) (3)
The Fourier series coefficients bBare a function of the
SNR p, which is given by [5] a s :

+ <“>
Iv(x) is the modified Bessel function of order v, which is 
of an integer plus a half order. It is found that as m is 
increased b„, decreases, and as p is decreased the 
separation between harmonic magnitudes increases [6]. At 
low SNR the Fourier series is dominated by the mean and 
first harmonic. This final property will be used when 
evaluating the probability of false classification.

0-7803-2431 -5/95 $4.00 © 1995 IEEE 1868
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2.1 Histogram Representation

The phase samples $(n) are used to build up a phase 
histogram with N bins and L samples to approximate the 
p.d.f.. The following theory characterises the error between 
the true p.d.f. and the histogram approximation.

It is known [7] that the variance of between the true 
p.d.f. and the histogram estimate for a particular histogram 
bin i is :

° ? = ~ f 0fc) (5)

where L is the number of samples. A is the bin width, 
which is assumed to be small, and i is the histogram bin 
number. By virtue of the central limit theorem, the errors 
of all the bins will be normally distributed for large L. The 
mean variance of the error terms is expressed by :

(6)i Na! =±Yo?

where a 2 is the noise variance of the N bin histogram. As 
the histogram has equally spaced points in the interval 
Hue],

A = — . It can be shown that the noise variance is :
N

_N_
4ji2L

22  Discrete Fourier Transform

(7)

The N points of the histogram are operated on by the 
discrete time Fourier transform to exploit spectral peaks 
corresponding to the harmonic terms. N is made to be a 
power of 2 in order that the harmonic terms will coincide 
with the frequency bins, thus avoiding the effects of 
spectral leakage. The bin number corresponds to the 
harmonic number (where the D.C. component is on bin 0), 
and from (1) it is seen that M level PSK will be 
characterised by a series of spectral lines on the bins which 
are a multiple of M.

It can be shown by the sampling theorem that harmonics

of order and higher will be subjected to aliasing. In 
order to avoid the aliasing of the fundamental harmonics 
for any of the PSK schemes presented to the system for 
classification, N must be at least four times the highest 
symbol number.

The magnitude squared of the DFT is used as it is simple 

to calculate, and this is scaled by to produce D(k)

which will provide magnitude squared values for the 
harmonic terms. When a harmonic component is not 
present in a bin that bin has only AGWN present and D(k) 
will be Rayleigh distributed [8] with variable y and p.d.f.:

p(y) = ji2Lexp(-Jt2Ly) y>0 (8)
This result shows that the noise floor is independent of the 
number of histogram bins N and implies that N may be 
made large enough to remove any significant effects of 
aliasing without affecting the noise floor.

When a frequency bin is occupied by a harmonic signal 
with the histogram noise, the bin is distributed with a non- 
central Chi-squared distribution, with two degrees of 
freedom [9]. It can be shown that the distribution g(x) of a

bin D(k) containing a harmonic of amplitude and the 
histogram noise is given by :

g(x) = ji2Lexp(-L[b2 + Jt2x])l0(2rtbmLVx) x>0 (9)

Where I„(z) is the modified Bessel function of zero order. 
It should be noted that this expression is also independent 
of N.

23  Classification

The classification is achieved by finding the maximum
DFT magnitude for the bins which are of interest, D(a„)

where a B is the number of states in the n^1 PSK signal. 
The classified signal is M-PSK where:

Om e MAX[D(a„)] (10)
e.g. when 1,2,4 & 8 PSK are to be classified, bins 1,2,4 & 
8 of D(k) are examined, and if bin 4 is the maximum then 
the signal is classified as 4 PSK.

2.4 Probability Of False Classification

Consider the bin containing the signal x with distribution 
g(x), and n noise bins which are i.i.d. with distribution 
p(y). The probability that the signal lies in the interval 
x,x + 5x is given by
g(x)8x (11)
The condition for correct classification is that the noise 
signals are less than x. The probability of correct 
classification in the interval is therefore: 
g(x)[l-<I>(x)]8x (12)
where

(&W = Jp(y)dy (13)
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When all of these contributions are summed and in the 
limit of 8x —> 0 , the probability of correct classification is 
given by:

P«ht = Jg(x)[l-d>(x)]Bdx 
0

Which can be re-written as :

Pcorr =  Jg(x)<I>i (x )d x

The probability of error is given by:

P«rr =  i Pcofr “  • I J

From (8), <I>(x) is given by :

C>(x) = exp(-7t2Lx)
Using (9) and (17) and [10] it can be shown that

Therefore the error probability is givi 

^  n!(-l)i+1 T ib^Ll
P" =S(»-0«i+l)!'XP[ ~ J

(14)

(15)

(16)

(17)

(18)

(19)

3. RESULTS

Plots of error probability against SNR are given in figure 2 
for the case of CW. BPSK, QPSK and 8PSK being 
examined with a sample length of 1024 points. This is 
compared with simulated results, and it is found that the 
model is accurate for CW and BPSK, but QPSK deviates 
slightly, and 8PSK deviates further from the theory which 
indicates that the Gaussian assumption of the noise 
becomes less accurate. However the simulated results show 
that the error probability is better than that which the 
theoretical model suggests, and the two tend to converge at 
error probabilities less than 1% which are the main areas 
of interest

This is compared with classification using the 81*1 
statistical moment [2] (figure 3) and at a 1% error 
probability. The first column of Table 1 shows the SNR 
gain of the new technique and it is found that the new 
technique is better in every case except 8 PSK. This is 
because the statistical moments technique assumes that a 
signal with a moment greater than that of 8PSK will not be 
present. The second column is the same comparison when

16 PSK is also included, and it is found that the new 
technique performs better in all cases.

Finally a comparison is drawn with the method of 
maximum likelihood classification [4] (figure 4) and it is 
found that the proposed method is close in error 
performance in all cases except that of 8PSK where the 
method is outperformed by 6.5 dB and lies close to the 
error performance of QPSK. It should be noted that the 
'optimum' method requires a heavy computational 
overhead for each sample along with knowledge of the 
SNR of the signal.

4. CONCLUSIONS

A new method has been presented for the classification of 
multi-level PSK  signals which requires no prior knowledge 
of the SNR of the signal unlike other deterministic 
methods. The algorithm is extremely simple and fast to 
implement requiring no complicated thresholding 
calculations. The error performance is found to be good 
and in certain cases it out-performs more complicated 
techniques. The technique works well at high and low 
SNR, and is proposed as an attractive method for the 
classification of PSK  signals.
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Figure 2 : Plots of classification error probability 
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for the DFT of phase histogram method

Table 1 : SNR gain (dB) of presented method, compared to 
81*1 statistical moment when the error probability is 1 %
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IDENTIFICATION OF PSK SIGNALS

P C Sapiano, J D Martin, 

University of Bath, UK

ABSTRACT
PSK signals may be identified using decision theoretic 
techniques. This paper compares the performance of 
the optimum, the statistical moments, the DFT and the 
maximum likelihood DFT classifiers.

The robustness of each classifier is examined for the 
effects of symbol imbalance due to a finite signal time 
frame, error in the SNR estimate, channel filtering and 
phase error. Simulation results are presented in terms 
of the SNR at which 1% misclassification probability 
occurs, in order to provide a comparison between the 
techniques.

1. INTRODUCTION
Automatic modulation recognition finds applications in 
military and civil surveillance, spectrum management, 
interference identification, radio direction finding and 
modulation diverse communication systems [1][2].

Using decision theoretic techniques for automatic 
modulation recognition requires parametric modelling 
of the signal characteristics. It is useful in such cases to 
adopt a divide and conquer form of pattern 
classification where an analysis of the cyclostationary 
characteristics of the signal may identify the signal as a 
PSK form for example, indicating that the PSK 
classification algorithm should be implemented.

The classification of PSK signals using decision 
theoretic techniques determines the number of levels of 
the PSK signal [3],[4],[5] and [6]. In all of the 
algorithms it is assumed that the system has achieved 
carrier synchronisation, as a moderate frequency offset 
will obscure the phase signal. If perfect phase 
unwrapping is achievable, then the carrier component 
may be easily identified using linear regression on the 
mean phase ramp component. However phase 
unwrapping becomes extremely difficult to achieve 
under noisy conditions, and becomes even more 
difficult when there are phase transitions due to PSK 
signalling. This presents ■ a conceptually difficult 
problem to solve, particularly when the received signal 
may not solely be a PSK form of signal.

In the work presented the signal is of a PSK form and it 
is assumed that either CW, BPSK, QPSK or 8PSK are 
presented for classification, and performance is

evaluated through computer simulation with signal 
segments of 1024 points. Various PSK classification 
algorithms are evaluated under certain effects which 
have not previously been introduced in the literature. 
These effects will degrade the system in a broad 
manner, and the analysis is aimed to give an 
understanding of the robustness of the systems in a 
practical implementation.

The Optimum classifier [3], uses a likelihood function 
applied to the phase samples, and is based upon the pdf 
characteristics of the phase signal. The Statistical 
moments classifier [4] uses statistical moments to 
transform the signal into feature space, and is followed 
by a threshold process to determine the PSK type. In 
this work the 8th statistical moment is examined. The 
DFT classifier [5] is the simplest and fastest of the 
classifiers and analyses the pdf of phase through the 
DFT of the phase histogram. Finally the Maximum 
likelihood DFT classifier [6] uses a maximum 
likelihood function applied to analysis in [3].

The four effects which are considered are an asymmetry 
in symbol probabilities due to finite signal length (2.1), 
an error in the SNR estimate (2.2), band limiting on the 
signal and noise (2.3) and an error in the zero phase 
extraction (2.4).

2. DEVELOPMENT
2.1 Random Symbols
In the algorithms it is assumed that the symbol 
probabilities are equiprobable, where as in fact a finite 
time frame will cause the occurrence of each symbol to 
be unbalanced and consequently the effective 
probability of each symbol observed within the time­
frame is not equiprobable.

The signal has been captured within a finite time-frame 
where N symbol transitions will occur. Assuming that 
the occurrence of each symbol level is independent and 
equiprobable, the symbols will be Binomially 
distributed with mean:

and variance:
2 U M -n

a ‘ n I  M 2 J
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As N is in general >20, this tends towards a normal 
distribution of the same mean and variance.

With the DFT forms of classifier, the harmonic power 
is distributed across the pdf frequency band which 
reduces the fundamental harmonic and increases the 
power in the off-harmonic bins, which along with the 
histogram noise power, contribute to the 
misclassification probability.

With the statistical moment method the statistical 
moments will become altered under such effects, thus 
moving the mean value towards one of the thresholds, 
and consequently increasing the error probability.

The optimum classifier is expected to suffer the least 
under the effect of offset symbol probabilities as the 
symmetry in the likelihood estimation functions acts to 
reduce the offset, e.g. in the case of 8PSK, when placed 
through the functions of 8PSK and QPSK, there is no 
effect due to offset symbol probabilities. When 
compared to BPSK, the effect is that the effective 
variance is a quarter of the symbol variance, as half of 
the symbols are passed through an identical function 
and with CW the effective variance is a half of the 
individual symbol variance. Therefore the effect of 
symbol imbalance is reduced by the optimum classifier.

For the purposes of evaluation a 1024 point time frame 
and the sampling rate to symbol rate ratio is varied up 
to a factor of 32. As an example of the symbol variance, 
a ratio of 4 produces 256 symbol transitions, and the 
means and 95% confidence limit ranges are described

The results for this are shown in figures la,b,c for 
sampling frequency ratios up to 32. Note that the 
optimum classifier is not included. This is because 
there was no significant change in performance across 
the tests. The maximum likelihood DFT classifier 
appeared to be robust, suffering a maximum of 2dB loss 
in performance. The DFT classifier performed worse, 
with up to 6dB worth of degradation, and the statistical 
moments classifier performed the worst, where the 
QPSK and 8PSK would converge to an error greater 
than 1% at high SNR.

2.2 SNR offset
The classifiers in [3],[4] and [6] assume that the SNR is 
accurately known, but in practice only a crude estimate 
of the SNR may be made, and the effects of this error in 
the estimate are examined.

As the DFT classifier [5] does not use SNR 
information, its characteristics are fixed for this test. 
The penalty that this algorithm pays for the lack of

knowledge is an increased error probability for the 
highest PSK symbol, therefore the SNR error at which 
the DFT classifier outperforms the other classifiers is of 
interest.

This may be calculated for the optimum method using 
the technique in [7] by placing the estimated SNR in 
fj (.) of equation (7), and in the statistical moments

classifier by placing the estimated SNR into the 
threshold calculations.

The plots are presented in figures 2 a,b,c as the 
estimated offset against the SNR at which a 1% error 
probability occurs for a particular PSK type. This is 
plotted for an offset range of -5dB to 5dB. Overplotted 
on the graphs are the characteristics of the DFT 
classifier, which remain constant against SNR offset

The general trend is that the performance for 8PSK 
improves with an increased bias on the estimate, 
whereas all the other types perform worse. The 
statistical moments classifier is the most sensitive to 
this parameter. The maximum likelihood DFT 
classifier performs the best, but it can be seen that all 
are sensitive to this offset

23 Channel Filtering
The algorithms used for classification have assumed 
that the noise is white and the symbols are stepped. In a 
real system, this will not be the case due to 
bandlimiting and non-linearities.

An filter has been implemented as a raised cosine filter 
with impulse response {0.25,0.5,0.25}, which is simple 
to implement and applies significant filtering on the 
signal. The overall noise power is reduced by 4.26 dB 
with such a filter. The symbol rate of the filtered signal 
is a quarter of the sampling frequency. In order to 
isolate the effects of unbalanced symbols, a PRBS of 
length 256 is used to determine each of the symbols 
such that the resultant signal has equally balanced 
symbol probabilities.

Band-limiting will cause the noise samples to no longer 
be independent, but will instead be correlated by a 
factor determined by the impulse response of the 
channel at the sampling intervals. The edges of the 
PSK transitions will not be square, but will follow a 
path related to the previous symbols and the channel 
impulse response and adjacent samples will no longer 
be independent. However the effects of bandlimiting 
will cause the overall noise power will be reduced, 
which is in the favour of the classification.

These effects will cause the pdf to be altered and the 
true maximum likelihood functions to deviate from 
those implemented.

below:
CW BPSK QPSK 8PSK
0 0.5+0.061 0.25±0.053 0.125+0.041
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In order to examine the effects of (he filtering on the 
trajectory of the PSK signal in the absence of noise, the 
PSK signal may be considered as a narrowband 
process. The response of the channel g(t) to a step 
going from amplitude A, to A2 is defined by h(t) in :

(3)
h(0 = A2 jg(y)dy +A, jg(y)dy

= A . + A ,  + ^ A . - A ,
2 FW 2 

Where p(t) is a function extracted from h(t). It may be 
shown that the phase <Kt) follows a trajectory due to a 
step input given by :

sin(A)[l + p(t)] (4)$ (0  = <i>0 + tan-1
l-p(t)+cos(A X l + p(t)]/

where A is the phase shift between adjacent symbols 
and <()<} is the initial phase. In the particular example 
with a sampling frequency to symbol rate ratio of 4. no 
intersymbol interference is introduced and (4) may be 
used to determine the trajectory for each edge.

The simulation used the SNR prior to filtering. The 
results are given in table 1, where a general 
improvement in performance is observed, which may 
be attributed to the reduction in noise. From the results 
it may be deduced that parametric distortion is not 
present to a significant degree.

2.4 Phase Offset
The optimum [3] and statistical moments [4] classifiers 
assume that both the carrier frequency and phase are 
known. The phase may be recovered by removing the 
mean from the data set through post processing. This is 
however susceptible to error, which is attributed to two 
factors in an ideal system. The first is due to the finite 
number of samples used and the second error factor is 
related to the finite number of symbols as in section 
(2.1).

Each symbol is modelled by a mean phase perturbed by 
noise, and the pdf about the mean is that of the phase of 
a sinusoid in noise [8]. The variance of this is given in
(8] by:

< - r +4i i?tb. <5>i*=i
Where b-, is the Fourier series coefficient for the pdf of 
phase of a sinusoid in noise, described in [8]. As each 
sample is i.i.d. and the number of samples L is large, 
the central limit theorem may be applied, where the 
overall mean estimate is the true mean with a normally 
distributed error of variance given by :

oL = £  w
The second error due to the imbalance in symbol
probabilities alters what was termed as the true mean. It

is seen in section 2.1 that the mean probabilities of 
occurrence may be modelled as a binomial distribution. 
This may be taken to a limit of a normal distribution, 
and assuming that these are i.i.d., where the true mean 
is normally distributed about the desirable mean with 
variance given by :

1 f M -n  
n I  M j J (7)

where M is the PSK number. The overall error when 
the estimated mean is subtracted from the signal is 
given by the sum of the two individual errors and is 
again normally distributed, mean zero and variance 
given by:

Finally the standard deviation in radians:
(8)

= 1
Vl

(9)

where |3 is the sampling rate to bit rate ratio. Using 
P=4, a 95% confidence limit for the phase error ranges 
between 1.3° to 6.8° for BPSK and 0.4° to 3.3° for 
8PSK.

The results for phase shifts of 5° and 10° are given in 
table 2, and it can be seen that QPSK suffers the most 
under the measured conditions whereas the others 
remain relatively undisturbed. The Optimum classifier 
appears to be less susceptible than the statistical 
moments classifier.

3. CONCLUSIONS
The classifiers are robust to the effects of symbol 
probability imbalance for a typical case, but as the 
imbalance is increased, the statistical moments 
classifier has poor performance, the optimum classifier 
has little detectable performance loss, the maximum 
likelihood DFT classifier loses up to 2dB in 
performance and the DFT classifier looses up to 6dB.

The classifiers appear to be sensitive to an error in the 
SNR estimate, and in general an estimate biased below 
the true SNR performs better than one biased above.

With the filtering of the PSK symbols, there has been 
little loss in performance, and there is in general a gain 
in performance due to the reduction in the noise. The 
classifiers appear to be robust to the parametric 
distortion introduced.

Errors in the zero phase estimate appear to have little 
effect on performance for the ranges of error due to 
statistical averages, but for larger phase errors the 
classification performance will degrade significantly, 
and is prominent in the case of the statistical moments 
classifier.

III. 11 IEERRAS 1995



98

These conclusions indicate that the classifiers are 
robust enough to be introduced into a practical system, 
but care should be taken when implementing the 
statistical moments classifier which is the most 
sensitive to the parametric variations.
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CW BPSK QPSK 8PSK
Optimum 3 4 4 -0.5
DFT 2 2 2.5 2
Statistical 5.5 4 4 0
Opt DFT 4 4 4 -0.5
Table 1, SNR improvement with raised cosine filtering
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M A X IM U M  L IK E L IH O O D  P S K  C L A S S IF IC A T IO N  
U S IN G  T H E  D F T  O F  P H A S E  H IS T O G R A M
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A BSTR AC T

A method is presented for the classification of 
multilevel PSK signals which uses a maximum likelihood 
function on the DFT of phase histogram. An expression 
for this likelihood function is derived, which results in a 
simple function involving modified Bessel functions. The 
method has been evaluated for the classification of CW- 
8PSK and BPSK/QPSK and the error performance is 
comparable to or better than other methods used for 
comparison. However the method performs well in terms 
of computational complexity, which makes it attractive 
for the classification o f PSK signals.

I. IN TR O D U C TIO N

The automatic classification of the modulation type of 
communications signals finds applications in military and 
civil surveillance, interference identification, radio 
direction finding and modulation diverse mobile radio 
systems. It is an area of research which has picked up 
some attention over the past decade and has seen a 
variety of techniques adopted. One area which has 
received some considerable attention is the problem of 
PSK classification [1](2][3][4], where the number of 
symbol levels of tjie PSK signal are classified. In such a 
problem it is desirable to employ deterministic pattern 
recognition principles for classification, as this results in 
improved classification performance at low SNR. For a 
more detailed discussion on the contributions to 
automatic modulation recognition, the reader is referred 
to [1] and [2J.

The motivation of this paper is to introduce a new 
method for PSK classification which is based on a 
maximum likelihood classifier. In [1] the maximum 
likelihood classifier was based upon the phase samples 
directly. In this paper a further process is involved where 
the phase samples are placed into a histogram and the 
DFT of this histogram is used for the maximum 
likelihood estimation. It is found that the two methods 
have similar error performance, but the new method has 
significant gain in terms of computational complexity.

The technique is applied by collecting phase samples 
of the incoming signal and placing them into a histogram

(figure 1), and a DFT is then applied to exploit the 
periodic structure of the phase pdf. In [3] the maximum 
DFT output indicates the classified PSK type, but in this 
further advance in the technique a likelihood function is 
applied before the selection process.

This paper is divided into the following format : 
Section II covers the theoretical development of the 
classifier where the pdf of phase for a multilevel PSK 
signal in AGWN is analysed in section II.A. The 
characteristics of the phase signal when placed into a 
histogram is examined in section II.B and the pdf for the 
output of the DFT function is derived in II.C. This then 
forms the basis for the maximum likelihood function 
which is derived in section II.D. The analytical evaluation 
of error probability is examined in section II.E. The 
results are discussed in section III, where the error 
performance is compared to various methods and finally 
the complexity of the algorithm is compared with that of 
[1].

Phase

Histogram

Choose Maximum

Classified PSK Signal

Figure 1 : Algorithmic description of the classifier
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II. THEORETICAL ANALYSIS

The received signal r(r) may be considered as the sum 
of an ideal PSK signal s(t)  and AGWN n(t) with variance 
C 2as :
r(t) = s(t) + n(t) (2.1)

The PSK signal is received with envelope A, carrier 
frequency f c and a phase 0(r).

s(t) = A cos(2nfct  + 8 (0 )  (2.2)

The signal to noise ratio p may be expressed as :
A2

(2 -3 )

r(r) may be considered as a narrow band process [5] 
with envelope z(t) and phase <J>(r). 
r(/) = z(f) cos(2 n fet +  <{> (r)) (2.4)

The received signal is sampled with sampling interval 
Tt to produce a sampled signal r(n), and an analytic 
signal r(/i) may be formed using Hilbert transform 
techniques [5], w here:
r  («) = z(n) exp[j(2n fcnTt + <J>(/i))] (2.5)

Like all phase-based classifiers, it is assumed that fcis 
accurately known, so the carrier frequency may be 
removed from the signal, to give R(n)  where 
^(/i) = z(n)exp[y<j)(/i)] (2 .6)

The angle of R(ri) is used to produce the sampled 
estimate of phase <j>(n).

A. Phase Probability Density Function
The phase pdf of multilevel PSK in AGWN /(<}>) 

may be developed from a carrier wave (CW) pdf, which 
has been described in [5] by

+ V i x cos^, ĉxp[pcosJ^® 1+e'?r[^p C0S(*)D
-re < <j) < 7C (2.7)

This may be represented as an even term Fourier 
series [6] a s :

/(♦ )  = ^  + cos(/i<l>)
271 7C ~  —7C <  <J) <  7C (2.8)

It is assumed that each symbol has equiprobable 
occurrence. Therefore the pdf of M level P S K /w(<J>)may 
be described b y :

2n(k 
MM  J

(2 .11)

(2.9)
The Fourier series representation is given in [7] as :

/*($) = V" + - X ( - 1)',^ ) C0S('lW<t>) (2.10)

The Fourier series coefficients bm are a function of the 
SNR p. which are given in [6] as :

K = ^  [l~i(f)+ I-(f)]
I ¥ (x ) is the modified Bessel function of order v. An 

efficient method for generating these Bessel functions for 
the cases of multilevel PSK is described in [7] which uses 
reverse recursion techniques applied to spherical Bessel 
functions.

It is shown in [7] that as m is increased bm decreases,
and as p is decreased the separation between harmonic 
magnitudes increases. At low SNR the pdf may be 
represented by the mean and first harmonic term. This 
fact is used to derive the maximum likelihood classifier.

B. Histogram Probability Density Function
Each of L phase samples is placed into one of N 

histogram bins. This histogram is an approximation to the 
true pdf of phase for the incoming signal, and using 
certain assumptions the error between the histogram 
approximation and the true pdf may be characterised as 
AGWN [3] with variance a 2 given b y :

(2-12)
4tv L

C. DFT Bin Probability Density Function
The spectral components of the phase pdf Fourier 

series are revealed through a DFT on the histogram. N is 
set to be a power of two in order that the harmonic terms 
will coincide with the frequency bins, thus avoiding 
spectral leakage. The bin number of the DFT corresponds 
to the harmonic number of the phase pdf (where the D.C. 
component is on bin 0), and from (2.10) it is seen that M 
level PSK will be described by a series of spectral lines 
on the bins which are a multiple of M.

Harmonic terms of order ■§■ and higher will be 
subjected to aliasing. The first harmonic of each scheme 
is used in the evaluation of the likelihood function, and 
aliasing is avoided by placing N at least four times the 
highest symbol number..

As the process requires the detection of the harmonic 
components, the magnitude squared of the DFT is used. 
The DFT bin which corresponds to the number of symbol 
levels of the transmitted PSK signal will contain the 
fundamental harmonic component, and it is assumed that 
all other bins contain no significant contribution from the
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Fourier harmonics. This assumption improves at lower 
SNR. where it is critical. The DFT series is normalised 
about -jfr such that the resulting bin will equate to the

magnitude squared of the Fourier series harmonic. This 
normalised DFT bin will be denoted by ‘the DFT bin’ 
hereafter.

The pdf of the m* DFT bin with the Fourier series 
harmonic may be represented by gm(x), which is a non­
central chi-squared distribution with two degrees of 
freedom [3] a s :

8m(x) = n2Lexp(-L[bl + n 2x])l0(2nbmL j x )  x>0

(2.13)
The pdf p(x) of the DFT bins without a harmonic 

component are Rayleigh distributed and are given by [3]:
p(x) = 7t 2L e x p ( -7c2Z*x) x>0 (2.14)

D. Maximum Likelihood Classifier
In the DFT classifier [3] the classification was based 

on the maximum of a set of DFT bins, each of which 
corresponded to a PSK type. This method required no 
knowledge of the SNR of the signal, but is sub-optimal in 
the case when the SNR information is known. The 
technique presented here assumes that the SNR 
information is available, and uses a maximum likelihood 
technique to classify the PSK type.

The probability that 2“ level PSK is transmitted given 
the DFT data is denoted b y :
p(2° PSK I x0fx11: . . ^ f...jcin„ )  (2.15)

Where Xn is the random variable representing the n* 
DFT bin corresponding to 2" level PSK. Each PSK type 
is tested in turn using (2.15) and the type with the 
maximum result is chosen as the classified PSK type, i.e.

MAX[P(2“ PSK I
a  e  all PSK types (2.16)

As all modulation types are considered equally likely, 
Bayes theorem can be applied to express the classified 
signal a s :

MAX[p( PSK) ]

a  € all PSK types, (2.17)
As each of the DFT bins have independent signals, the 

expression in (2.17) is evaluated as :
max

p( x0txlt...xa,...xnax 12“ PSK) = ga(xa) j j p { x a)
i*CL

(2.18)
Therefore using (2.13) and (2.14):

p ( PSK)

= 7i!(.exp(-Z.[i>’ + h!j:„D
  max

exp(-7i2Lr,)
*■0
i M

max

= exp { - L b l ) I0 (2KbaL ^ ) U  k 2L e x p (-7i 2 L r f)
i-O

(2.19)
The terms independent of a  may be eliminated, and 

the classified PSK signal can be represented through :

M AX^exp(-Lft2) l 0(27t^aL>/jc7 ),a  € all PSK types j

(2.20)
Evaluating the Bessel function with large index can 

lead to mathematical overflow. This may be avoided by 
using the logarithm of the likelihood function (Which is a 
monotonically increasing function), and applying
asymptotic expansions for the Bessel function. For large 
values, the Bessel function may be represented as [8] :

Io( * ) ~ ;y = expW <2-21)
Therefore, the likelihood function i a  may be 

represented b y :
/ a = l n [ l , ( 27t* ,2 7 5 7 ) ] - £ 2.’ x<100 (2 2 2 )

Which may be evaluated using approximations in (8]. 
For large argument the likelihood function is simply :

l .  = L b , ( -*„)-Hn[4it!(7„LVv| *>100
(2.23)

E. Misclassification Probability
The evaluation of the error probability involves the 

following integral:

^  (124)
o j  lo J

Where r(x)  is the pdf of the output of the likelihood 
function for the DFT bin cc, corresponding to the 
transmitted signal. f j ( x )  is the pdf of the likelihood

function of DFT bin j  for bins without signal presence. 
This evaluates into an integral of the following form :

J e x p ( - v x ) f [ { l  - exp(x  I ,(y V ? ) { W  (2.25)
i

Where p, X, y and v are constants for the purpose of 
the evaluation. This integral is unfortunately extremely 
difficult to evaluate even using numerical methods, 
therefore the error performance has been evaluated
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through computer simulation, the results of which are 
shown in figures 2 and 3.

III. RESULTS
Figures 2 and 3 show plots of error performance 

against SNR which have resulted from simulation trials. 
Figure 2 shows the case when L=1024 and CW, BPSK, 
QPSK and 8PSK are classified. Figure 3 shows the case 
where just BPSK and QPSK are classified. From these 
plots it can be seen that the error performance is good at 
low SNR.

A comparison between the various techniques in terms 
of error performance for the case when CW, BPSK, 
QPSK and 8 PSK are transmitted is given in table 1. This 
comparison is based upon the SNR at which there is a 
1% misclassification probability. For a more detailed 
comparison, the reader is referred to the various texts
[1][2][3] for the full plots against SNR.

The methods compared are the optimum method [1], 
with the results in question being published in [9], the 
method of statistical moments [2 ], where the 8* statistical 
moment is used, and the DFT method [3].

It can be seen that the presented method performs 
better than the method of statistical moments in all cases, 
and the general performance is similar to that of the DFT 
method for CW-QPSK, but significantly better for the 
case of 8PSK. However, it should be noted that the DFT 
method does not require prior knowledge of the SNR of 
the signal unlike all the other methods considered.

Ftnally the performance is seen to be similar to that of 
the optimum classifier. This is also true of the case when 
BPSK and QPSK are used in the classification (table 2). 
Therefore the method looks to be potentially useful in 
terms of classification probability for PSK classification.

As the ‘Optimum Classifier’ and the new method have 
comparable error performance, a comparison on the 
algorithmic complexity is now given. The computation is 
divided into calculations which are required on a per 
sample basis and those which are required once off.

The new classifier requires only the phase samples to 
be placed into a histogram on a per sample basis, whereas 
the ‘Optimum’ classifier requires the evaluation of forty 
cosine terms and a logarithm for each class. On the once 
off calculations, both techniques require the generation of 
the Fourier series coefficients b m, but the new method 
has the additional overhead of the evaluation of a DFT 
bin, square root, log function and on occasion a zero 
order Bessel function for each PSK class. When figures 
such as 1024 samples are used, the presented method has 
significant speed improvement due to the per sample 
speed improvement

IV. CONCLUSIONS
A method has been presented which deals with the 

classification of multilevel PSK signals which is based 
upon the maximum likelihood classification of the DFT 
of phase histogram. The likelihood function has been 
derived in this paper and results of the algorithm are 
presented. It has been found that the algorithm performs 
well at low SNR, and has classification performance 
similar to that of the ‘Optimum Classifier’. For a typical 
number of phase samples there is a significant 
improvement in computational complexity with the new 
technique over the ‘Optimum Classifier’. Therefore the 
method is proposed as an attractive method for the 
classification of multilevel PSK signals.
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Figure 2 : Probability of misclassification when 
CW, BPSK, QPSK and 8PSK are transmitted. L=1024

CW BPSK QPSK 8PSK
Presented method -17.5 -5.9 2.2 2.0

Optimum Classifier 
[1.1I9J

-18.5 -6.5 1.5 1.5

8th Statistical Moment 
Classifier T21

-14.3 -3.5 5.9 6.1

DFT classifier(3] -19.0 -7.0 1.5 8.0

Table 1 : SNR (dB) for 1% Error Probability for CW- 
8PSK

BPSK QPSK
Presented method -6.0 -6.0
Optimum Classifier fl] -6.5 -6.5

Table 2 : SNR (dB) for 1% Error Probability for 
BPSK/QPSK classification
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O.t -
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Figure 3 : Probability of misclassification when 
BPSK and QPSK are transmitted, L=1024
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Statistical performance of the first order 
phase difference digital instantaneous 
frequency estimator

P.C. Sapiano and J.D. Martin

Indexing term: Frequency estimation

The authors derive exact analytical expressions for the PDF of 
instantaneous frequency estimate and the mean squared error 
(MSE) of a first order phase difference estimator in Gaussian 
white noise. The MSE is also derived in terms of linearised 
circular mean squared error, and is then compared to the Cramer- 
Rao bounds.

Introduction: The estimation of the instantaneous frequency of a sig­
nal using digital techniques is a problem which has received atten­
tion in many applications such as FM demodulation, seismic 
processing, radar processing and EEG signal analysis [1]. Various 
techniques have been proposed and examined (1 -3 ], each of which 
have different characteristics and implementation complexity.

One of the simplest estimators approximates the instantaneous 
frequency through a first order difference between phase samples. 
This technique and others derived from it have been found to be 
particularly useful due to their performance and computational 
effectiveness.

The performance of a frequency estimator is often characterised 
in terms of the mean square error (MSE) of the estimator to a 
sinusoid in additive Gaussian white noise (AGWN) [1, 3). The 
result may then be compared to the Cramer-Rao bounds (CRB) to 
determine if the estimator is statistically efficient [1],

The statistical performance of the phase difference estimator 
has been described using high signal to noise ratio (SNR) approx­
imations in [3]. The work presented here provides an exact analyt­
ical expression for the MSE, which is extended also to the circular 
MSE, and is compared to the CRB.

Development and results: The backward difference estimate of 
instantaneous frequency is defined by

Mn) =  2^fW-n) -  <t>(n -  l)lmod(21r) (1)

This may be rewritten in a more compact form as

/<(«) = j“if arg[s(n)5(n - 1)] (5)
The statistics of this instantaneous frequency estimator have been 
derived in an approximate form in [3] for the instantaneous fre­
quency of a sinusoid in noise, in which a wrapped normal distri­
bution was applied to approximate the PDF of phase for the 
signal. This approximation is valid only at high SNR >5dB, and 
at low SNR numerical methods were employed to generate point- 
wise approximations to the characteristic function.

The following work provides an analytic derivation of the PDF 
of phase difference, and MSE of the estimator.

The PDF of phase for a sinusoid in AGWN may be written in 
Fourier series form [4] as

fW  = ^   ̂ bn«*("*) (3)
Where the Fourier series coefficients are given by

v = ^ i [ ^ ( | ) + v (0] w
Assuming that each sample is statistically independent, the PDF 
of instantaneous frequency may be derived from the auto-convolu­
tion of phase, given by

pb!>) =  / ;  -  <t>)d<t> (5)

Owing to the orthogonality of the Fourier series, the cross terms 
in the product of eqn. 5 are zero, and the following simple expres­
sion remains:

ELECTRONICS LETTERS 29th A u gu st 1996 Vol. 32

PW =  ̂ cos(ni') (6)
An efficient iterative technique for generating a set of Fourier 
coefficients is provided in [5]. The PDF of instantaneous fre­
quency is derived by scaling the variable y  by l/2nT„ and offset­
ting the expression by a factor off .

OO *
p( f )  = T , +  2T.  £ ( t n)2 cos ( 2 - n [ / r s -  f c]) (7)

n = l

The MSE of this estimator is given by

m se  =  £ [ ( / -  / c )2] (8 )

It should be noted that the estimator is biased, and the variance 
may be calculated as

mse =  £ [ /2] + / c( /c - 2 E [ / ] )  (9)

The first and second moments of the instantaneous frequency (m,
and m2) may be deduced through eqn. 7 to give

l  f _ n n + i

mi = ^r — sin(2™/c) (l0)

m2 = d n  + £ ( 6")2 cos(2™/c) (11)
* * n= l

Using these results, the MSE is given from eqn. 9 by 

M S E = i % {bn? ̂ cos{2nnfc)

+  fc ^ /c  -  -----sin(27rn/c) j

(12)
This error may be compared with the Cramer-Rao (CR) bounds 
given in [6] as

ik fp  (l3)
In [3] it was pointed out that the CRB needs a further interpreta­
tion when applied to circular quantities such as the digital instan­
taneous frequency, and it is quite feasible for the variance to be 
less than the lower bounds. This is seen by inspection of eqn. 12, 
which shows that the MSE limits to 1/12 + f f  at zero SNR. How­
ever, as the SNR is increased, the wrapping of the phase difference 
within the 2n interval becomes lower, and the CRB becomes 
meaningful at these higher SNRs.

-1 0 0 JO 20 30
SNR.dB

Fig. 1 Mean square error and linearised circular variance against SNR  
for sinusoid in AGWN with Fr = 0. 0.25Fr and T , -  I
 Fc -  0 (X simulated)
 Fe = 0.25 (A  simulated)
 circular MSE (O simulated)
-  • -  Cram6r-Rao bounds

A plot of mean square error against SNR is given in Fig. 1 for 
two frequencies. Simulation points are also included on the plots 
and they are in excellent agreement with the analytic result The 
plots also tend to the CRB at an SNR >10dB.
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The variance may also be described in terms of circular statistics 
[7], where circular quantities are derived and are then transformed 
to the linear domain with an appropriate transformation [7]. 
When the circular variance is linearised, the variance of N  samples 
may be expressed as

1
2tr277

’ 1
N-l s(n)s(n —  1 )

N 1=0 |s (n ) s ( n -  1)|
(14)

This may be described in analytical form from the PDF as

, 1
271-277In e x PL?(V' -  Hd)}p{4>)dip (15)

Where \id is the mean direction given simply by 2n f  and p(y) is 
the PDF of phase difference. Therefore by using eqns. 6 and 15 
and a change of variable, the variance is given by

1
ln[6f]

l,n 2n2T j  

which may be re-written using eqn. 4 as

p - 2 l n [ 4 *  ( / i ( f ) + / o ( f ) ) ]
=   -2tr2T.2

(16)

(17)

This measure of MSE is independent of the frequency of the sinu­
soid. In the Appendix it can be seen that the variance asymptoti­
cally meets the CRB at high SNR and this may be verified from 
the plots in Fig. 1. A low SNR approximation is given by

.2  . .  -Mf/*]° u n -  2w2Tf (18)

Eqn. 18 shows that the circular MSE continues to increase as the 
SNR is decreased.

Conclusions: Analytical expressions have been derived for the PDF 
and the MSE of instantaneous frequency for the backward differ­
ence operator. The MSE is expressed in terms of linear and line­
arised circular variance for a sinusoid in AGWN. The results have 
been compared to the Cramer-Rao lower bounds, and it is has 
been shown that the estimator is statistically efficient

The PDF and linear variance are expressed in a series form, 
consisting of modified Bessel functions of integer and integer plus 
half order, and methods for efficiently generating the series are 
discussed. The linearised circular variance is described in a  simple 
form using a  zero and first order modified Bessel function.

These analytical results provide a  better understanding o f the 
statistics of the operator, and help to provide a clearer relationship 
between the frequency of the sinusoid and its associated linear 
mean squared error.
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Appendix: The mean square error for a sinusoid in noise, derived 
from circular statistics is given in eqn. 17. For a  high index, the 
modified Bessel function may be approximated by [8]

7.(1) a f l->/2trx [ 8 i
Therefore for high SNR eqn. 17 may be approximated by

(19)

(20)
Using the approximation ln[l-x] =* - x  for small index, eqn. 20 
may be re-written as

(21)
lm ~  4px2T }

When this is compared with eqn. 13, it is seen that the CR bounds 
are met at high SNR.
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MAXIMUM LIKELIHOOD PSK CLASSIFIER 
P.C. Sapiano, J.D. Martin,

School of Electronic Engineering, UNIVERSITY OF BATH.Claverton Down, Bath, U.K. BA2 7AY

ABSTRACT
A method is presented for the classification of the number 
of levels on a PSK signal in additive white Gaussian noise 
(AGWN). The technique uses maximum likelihood 
principles on the baseband quadrature samples, and has. 
the flexibility to incorporate an arbitrary number of PSK 
types. The classification performance is examined 
theoretically and is found to provide better performance 
than any of the other techniques known in the literature. 
This is compared in a graphical form with the qLLR and 
Optimum phase methods. The improvement over the 
qLLR technique is seen to be marginal, but sensitivity of 
the new technique due to parametric degradation is seen to 
be better in the cases examined. In order to improve 
computational efficiency, simplifying approximations for 
the likelihood functions are implemented through the use 
of Pad6 approximations.

1. INTRODUCTION
Automatic modulation recognition finds primary 
applications in military and civil surveillance, spectrum 
management, interference identification and modulation 
diverse communication systems. The problem is one of 
pattern recognition, and may be approached using either 
non-deterministic or decision theoretic techniques.

The method presented examines the problem of PSK 
classification in the presence of AGWN, where the number 
of levels on the PSK signal is classified using decision 
theoretic principles. This problem has received attention in 
the literature [l]-[7], but the solutions have some 
fundamental differences relating to the starting point for 
analysis, the information assumed available and the form 
of pattern recognition applied.

In [6] and [7], classification is based upon the information 
received from the in-phase and quadrature channels, 
which has the potential for optimum performance. In [1-5] 
classification is based upon the phase, and although these 
methods will not attain optimum performance, they may 
be within l-2dB of it. The advantage of the phase based 
methods is that they require the estimation of one less 
parameter than that of the quadrature channel approach. 
However, the evaluation of the phase of each sample can 
represent a high computational overhead in certain 
situations, and the classification performance is in general 
worse under ideal conditions.

Another distinction between the techniques may be made 
with [1],[2] and [5] which base classification upon the 
choice of a maximum statistic, and [3],[4],[6] and [7] 
which are based upon a feature compared with a set of 
thresholds. Although these different techniques may 
approach similar performance within the theoretical 
framework, they have been seen to differ in performance 
when the conditions are altered [8].

The technique described in this paper uses the same 
assumptions as [6] and [7,cs], but employs a different 
approach towards maximum likelihood classification 
which results in a technique that will provide optimum 
performance. This will outperform the techniques in [6] 
and [7,cs] by a small amount in terms of classification 
performance, as those methods use simplifying 
approximations to a classifier with optimum performance.

The paper is organised as follows : In section 2, the 
structure of the classifier is derived. The error performance 
of the classifier is examined for the BPSK/QPSK case in 
section 3. Techniques for improving the computational 
efficiency of the algorithm are discussed in section 4, and 
finally the classification performance is examined in 
section S, comparing the results of the theory, simulations 
and results from other techniques.

2. CLASSIFIER DEVELOPMENT
2.1 Definitions and Assumptions
The received signal r(t) is assumed to be comprised of a 
PSK signal s(t) buried in additive white Gaussian noise 
n(t), with two sided psd of -^-W/Hz. 
r(t) = s(t)+n(t) (1)

The PSK signal has a power of S, carrier frequency f c,
carrier phase 6C and PSK phase states given by 0*. 

v
i<O = V ^X oos(2,̂ '+0' +e*) (2)

*>i
The SNR p of the signal with a symbol duration of T, is

given by p = ^ L (3)
N o

The same assumptions are made as for the carrier 
synchronous case in [7], i.e. it is assumed that the signal 
power S, carrier frequency f c, signal to noise ratio p, 
symbol timing T, and carrier phase 6C are accurately 
known. The same receiver structure as [7] is implemented,
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and is described in figure 1. In this structure the signal is 
split up into the orthogonal components, x  and y which 
represent the in-phase and quadrature components of the 
signal.

2.2 Classifier Structure
The statistics of x  and y are independent, and the joint pdf 
of the variables when MPSK is applied is given by :

fu (*•>) = ---- '“ p[V2p(* «*(9 i) + >’sin(0;))]j=o
Where:
e,.=£[2;+i-3f] (5)
The classification is performed on an analysis of L sample 
pairs {jtf,y,-). As each sample is independent, the joint 
probability of the analysis frame with MPSK is given by :

i-O
Bayes theorem may be used to express the probability of 
MPSK being transmitted given the observed data. Each 
PSK type is assumed to be equiprobable, and as the 
maximum is chosen, the terms common to all PSK types 
may be removed. The log likelihood function for MPSK is 
represented by (u , and is given by :

L-l
[^ (fco .Jo  }. • • - { ^ 1 .^ - 1 }  MPSK)] = £

r*0
(7)
The classified signal is that M which maximises (7) with 
the observed data. This may be expressed using the 
relationship in (4), and may be simplified by eliminating 
the terms which are independent of the PSK type. i.e.

(8)

Where 0; is given in (5). The expression in (8) may be 
rewritten a s :

1'm = £*•*(*,O’/)
l-O

The log likelihood functions are thus summarised below :

0°) (*,.?.) = ln[cosh(V(2Ph)] oi)

X.4 (xf ,y-) =  In̂ cosĥ p̂x; )cosh (^py;)] (12)

|cosh(a^(2p)x,)cosh(p^(2p)y,^ 

|cosh(p̂ {2p)x()cosh(a7(2p)yi)
Xs(x,,y,) = ln

Where a  = and P =y 2V2 * V 2V2

(13)

The classifier will enable any number of PSK signals to be 
incorporated, and the classifier structure for CW-8PSK is 
described in figure 2.

3. CLASSIFICATION PERFORMANCE
The classification performance is derived for the case 
where BPSK and QPSK are discriminated. The expression 
for t'M in (9) is comprised of the sum of a number of 
independent variables. If L  is large enough, t'M will tend 
towards a normally distributed variable by virtue of the 
central limit theorem. The mean and variance of the 
functions are derived for each likelihood function given a 
particular PSK type transmitted. The correlation between 
the distributions is determined, from which the probability 
of false classification may be obtained.

The statistics of the likelihood functions result from the 
statistics of x  and y passed through the likelihood 
functions. In the case of BPSK there is one variable, and 
using an extension of [9] the n* moment is given b y :

«(»)= \  s n(y)f ,(y )^ (14)

For QPSK the expression is given in a more general form 
a s :

< n )  = J J  g m (x, y ) f „  (x, y)dxdy (15)

This is a two dimensional integral which may be 
simplified since the expression for X4 (12) may be 
separated into two independent parts as :

^4(^0i)=ln[cosh(VpJ:1)]+ln[cosh(>/pyI)]=fa (x)+8pO') (I6) 

(15) may now be expressed as :

«(n) = J j[s« (*) + gp Mj / ,  0c)fy (yjdxdy (17)

For the first moment, this simplifies to :

«U) = j  8a W/x (*)dr + ] g p  ( y ) f j  { y ) ^  08)

And the second moment is simplified to :

()))j£fydy (19)

These expressions cannot be evaluated analytically, but 
may be evaluated using numerical techniques to find the 
mean and variance c? , where j level PSK is 
transmitted and is tested against the i level PSK statistic. 

The output statistics of t \  and are not independent, 
and their correlation coefficient rj is giveh by [9] as :
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(20)

Using the definitions in (11) and (16) and the fact that x 
and y  are independent, the mean of the cross product 
terms may be expressed as :

e[*2x« ]=J*2<y)sp (y)j£ (yVy+ (ywj & (•*)/.(*>** (21)

As it is assumed that L  is large, the central limit theorem 
states that the statistics of the likelihood function may be 
approximated by normally distributed variables, with 
mean and variance given by :

= (22) oof j  = Lofj (23)

3.1 E rror Probability given BPSK transmitted
For BPSK, the x  and y statistics used to evaluate the 
likelihood function mean, variance and correlation 
coefficient are given by :

/*(•*)= ; ^ 7 « p( - 4 )  (24)

fy M  = Gxp(-£)cosh(V2p.y) (25)

An error occurs when i'2- t '4 <0. The statistics of this 
difference is normally distributed with mean and variance 
given b y :

(26) 2-2'2Co2t2a04t2 (27)

Finally, the probability of error is simply expressed as : 

p(error\BPSK) = _] (2g)

Where <D(x) is the cumulative normal distribution 
function, and is given b y :

<b(x) = - j L - 1exp(~4)* (29)

3.2 E rror Probability given QPSK transmitted
When QPSK is transmitted the classification error 
statistics are derived in a similar way, using :

/ *  ( * ) = e x p (- ^r)cosh(Vp"-x )  (3 ° )

3̂1)
and the probability of error is expressed as :

p(error\QPSK) = 4> -d1fn4.4-H2.4l
V ®  4 .4  *0 2 .4  - 2 r * C  4  , 0  l 4

(32)

4. COMPUTATIONAL COMPLEXITY
The computation of the likelihood function requires the 
evaluation of a set of functions on each sample pair, which 
will cause the bulk of the computational complexity when 
a large number of samples are employed. We therefore 
examine these functions carefully, to see how the 
computational complexity can be reduced.

The evaluations of the BPSK and QPSK likelihood 
functions are dominated by the evaluation of a function in 
the form of b(cosh(x)). For a large index, this may be 
expressed simply a s :
ln(cosh(jc)) = x -  ln(2) (33)

There are a number of low index expressions which may 
be applied, with a trade off between complexity and error. 
Each of these will have an optimum threshold point where 
the function error is equal to that of (36), where the 
decision is made to the high or low SNR approximation. 
Two examples are given using Pad6 approximations. The 
first results in a peak error of 0.4% :

1 , 2  + -1 2 -r4 + -211 r6
ln(cosh(jc)) = -2 !?4 x<2.44 (34)

A simpler expression which results in a peak error of 1.8% 
i s :

h(cosh(x)) = i * 2f f i .- x<l .9 (35)
l + 4Jx

Evaluation of Complexity
Using (35) for the low index arguments, the complexity 
for a BPSK/QPSK classifier may be broken down into 12 
floating point operations per sample when all the functions 
are evaluated with the low argument expression, and 9 
floating point evaluations per sample for the high index 
approximation in all cases. This compares with 10 floating 
point evaluations for the qLLR classifier [7]. However it 
should be noted that the presented method includes three 
divide operations due to the Pad6 approximation.

5. RESULTS AND COMPARISON
Extensive simulation provides the classification 
performance of a BPSK/ QPSK classifier for L=1024 in 
figure 3. It is seen that the two plots are coincidental, 
which is a general trait of a maximum likelihood classifier
[2][5], The SNR at which 1% misclassification probability 
occurs is around -7.8dB. The theoretical results are 
evaluated using the techniques from section 3, and are also 
plotted on figure 3. From this it is seen that the theoretical 
and simulated results agree.

3
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Figure 4 provides a comparison between different MPSK 
classifiers in terms of functional performance. The speed 
of operation does not include the time required to calculate 
each phase sample.

The results for CW-8PSK with L=1024 are given in figure
5. Also included on the graph are the results of the qLLR 
classifier [7] and the ‘Optimum’ classifier [5], and it is 
seen that the new method has improved performance over 
the other two methods examined.

This improvement is however slight, and the basis for 
choosing a particular classifier should not be made on 
classification performance alone, as this performance is 
only valid within the decision theoretic framework. Other 
factors to consider will be computational complexity, 
sensitivity of parameter degradation due to such effects as 
fading, SNR, power and phase offset, interference and 
multipath.

One example of parametric sensitivity can be given 
through the analysis of the classification performance 
when there is an error in the signal power estimate. This is 
made for the CW-QPSK case, and is quantified by the 
SNR at which 1% error performance occurs. When the 
estimate is ldB above the true value and QPSK is 
received, the presented technique moves from 0.9dB to 
2.7dB, and the qLLR method moves from 1.3dB to 5dB. 
The effect is more prominent when the offset is 3dB above 
the true value, where the error performance moves to 6.6 
dB for the presented method, and 100% error for the 
qLLR method.

Further comparisons of the classification performance are 
provided in figure 6 for the Maximum Likelihood DFT 
method [2], the DFT method [1] and the statistical 
moments classifier [3] using the 8th statistical moment. 
From these plots it is seen that the presented technique 
outperforms all of the other techniques in terms of 
classification performance. However, a more careful 
examination of the table in figure 4 is required for a fair 
comparison.

6. CONCLUSIONS
A method has been presented to classify the number of 
levels on a PSK signal. The method is based on maximum 
likelihood principles and provides marginally better 
classification performance than any other techniques in the 
literature. It has been shown that the characteristics are 
different to those of the qLLR classifier, and the 
performance has been found to be less sensitive in certain 
cases. The method has the flexibility to incorporate an 
arbitrary number of PSK types, and techniques have been 
provided to facilitate high computational speed.
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