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S u m m a ry

The term ‘granular media’ is used to describe a variety of differing materials in a wide 

range of circumstances. Many mathematical models describing granular media are avail­

able, each appropriate to the particular application envisaged. A large proportion of 

these models attem pt to relate macroscopic properties to microscopic quantities. Ex­

amples of the macroscopic quantities of interest are the effective elastic moduli, wave 

speeds and energy dissipation. Microscopic properties include the elastic moduli of the 

grain material, the grain sizes, the interaction between grains and the internal geometry 

of the medium.

The particular type of model studied in this thesis is one in which the grains are made 

up of discrete particles of solid matrix tightly packed together to form the granular 

medium. Many authors have studied the sphere as perhaps the simplest grain shape 

and chapter 1 includes a description of the random sphere packing model of Walton [67]. 

Chapter 2 makes a correction to this model required when the packing is under uniaxial 

compression.

The form of intergranular contact is very important in such models. One of the aims of 

this work is to  include a frictional contact law in the random sphere packing model, and 

in chapter 3 the required contact problem for two identical elastic spheres with a finite 

non-zero coefficient of friction between them is solved. The results of this frictional 

contact problem are used in chapter 4 to model waves propagating through a cubic 

packing of spheres. Obviously, a cubic packing is a highly simplified geometry for a 

model of a granular material and in chapter 5 we introduce an averaging scheme which 

allows us to consider frictional contacts within random packings. The addition of a 

saturating fluid is briefly discussed.

The final two chapters attem pt to model a granular material made up of aligned 

spheroidal grains instead of spheres. Although the equations are much more complex, 

it is still possible to write down expressions for the effective elastic moduli in terms of 

averaging integrals which may then be evaluated numerically.
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Chapter 1

Introduction

1.1 Overview o f Thesis

In recent years much progress has been made in the study of granular materials. Al­

though the subject can hardly be described as new, novel applications are constantly 

arising in fields as diverse as civil engineering, the pharmaceutical industry and petro­

chemical prospecting. Two major international and inter-disciplinary conferences, ‘Pow­

ders and Grains’, have been held in Clermont-Ferrand, France in 1989 [4] and at Aston 

University in 1993 [57], both of which were devoted to advances in the field of particu­

late systems. These conferences demonstrate the rapid growth of knowledge in the field 

and the large number of known and potential applications.

This thesis is concerned with modelling granular media e l s  an ensemble of particles 

or grains and predicting the overall behaviour from known microstructural properties. 

Examples of the properties we aim to predict are the effective elastic moduli, the atten­

uation properties of sound within the medium and the speed of propagation of elastic 

waves. Typical microstructural features affecting these overall properties are particle 

shape, elastic properties of the individual grains, packing density and the form of inter- 

granular contact. Two chapters are devoted to the study of the contact between solid 

particles. Chapter 3 examines the contact of two elastic spheres, extending the work 

of Walton [66] and Mindlin and Deresiewicz [45] to consider the most general oblique- 

oblique contact problem with a finite non-zero value of the coefficient of friction. In 

chapter 6 we change the particle geometry from spheres to oblate spheroidal particles. 

Many authors, such as Mindlin [44], Vermeulen and Johnson [61] and Sackfield and

12



C h a p t e r  1 In t r o d u c t i o n

Hills [49], have considered contact of non-spherical bodies; the work in chapter 6 is 

an extension of the more general oblique-oblique loading considered by Walton [66] for 

spheres. Explicit results are derived for the problem of contacting aligned spheroids.

The solutions of the two contact problems described above are used in chapters 4,5 

and 7. The results of the sphere contact problem with friction are used in chapter 4 

to model a cubic packing of spheres under uniaxial compression. Expressions for the 

average stresses under this strain are derived and the dynamic wave speeds are calculated 

for further incremental displacements. A random packing of spheres is considered in 

chapter 5. The contact laws of chapter 3 are used to extend the work of Walton [67], 

which previously treated only the case of zero friction or infinite friction, to a packing 

in which friction is finite and non-zero. The elastic wave speeds are derived and the 

effective elastic moduli are determined; in particular we examine the case of an initial 

uniaxial compression since it is shown th a t friction plays an im portant role under this 

loading.

The contact laws of chapter 6 are used in chapter 7 to model a random packing of aligned 

oblate spheroidal particles. The basic approach is similar to th a t seen in Walton [67]. 

However, due to the loss of many of the spherical symmetries, the equations and the 

effective properties of the medium are shown to be radically different.

Chapter 2 contains work relating to a correction of the random packing paper by Wal­

ton [67]. One specific case of initial loading, a uniaxial compression, was found to 

cause problems with the equilibrium of individual spheres. The solution should include 

rotations of each sphere thereby ensuring rotational equilibrium.

1.2 Contact Problem s

In this section we present some results which will be of use in later chapters concern­

ing the problems of contact of elastic bodies. First of all we consider the loading of a 

semi-infinite elastically isotropic half-space and give expressions for the resulting dis­

placements. These displacements are later required for the solution of certain contact 

problems using the Hertz theory of elastic contact [30], described in section (1.2.4).

The displacements are then calculated for the particular case of a circular region with

1.2. CONTACT PROBLEMS 13



C h a p t e r  1 In t r o d u c t i o n

Figure 1-1: The half-space z > 0 and region 7Z

parabolic distributions of pressure which, as we will see later, are required for the 

solution of the Hertzian contact of two elastic spheres.

1 .2 .1  S u rface D is p la c e m e n ts

Consider the set of rectangular Cartesian axes Oxyz  with the z -axis directed downwards 

as shown in figure 1-1. The elastic half-space is shown as the region z > 0 bounded by 

the plane z — 0. Normal and tangential tractions are applied to the closed region 7Z 

contained within the plane z = 0. Exterior to 7Z both normal and tangential tractions 

are zero, thus establishing the problem in elasticity as one in which the tractions are 

specified over the whole boundary z = 0. We use the well known potential functions 

of Boussinesq and Cerutti to obtain expressions for the displacements occurring on the 

surface of the half-space.

Since the solution may only be determined to within an arbitrary rigid body displace­

ment, we also require th a t the displacement tends to zero as the distance from the origin 

tends to infinity.

T he P oten tia l Functions o f B oussinesq  and C eru tti

The surface displacements due to concentrated normal and tangential point forces acting 

on the surface z — 0 may be determined using the potential functions of Boussinesq [7] 

and Cerutti [15]. A number of authors present the derivation of the potentials, see for 

example Love [42], Mai and Singh [43] and Westergaard [71]. Here we list the results of

1.2. CONTACT PROBLEMS 14



C h a p t e r  1 In t r o d u c t i o n

Walton [66] for point forces of the form

NS(x  -  x' )6 (y -  y’) (1.1)

acting normally (the 2-direction) and

PS(x -  x ’)6 ( y -  y!) (1.2)

acting tangentially (^-direction), where £(•) is the Dirac delta function. These concen­

trated forces act at the point {x' ,y'),  as shown in figure 1-1, and are of magnitudes N  

and P  respectively. The surface displacements due purely to the normal force (1.1) are, 

in the x —, y — and 2-directions respectively,

(.B -  C ) N Y  
2 S 2

/  x B N  /  Xw{x,y)  =  -77- (1.3)

v{x,y)  =  -

and similarly, those due to the tangential force( 1.2) are

. , ( B  C X 2\  „
.(*,*) =  ( 5 + - ^ ) ^

, , C P X Yv{x,y)  = S3

w ^ y )  =  — 252 "  (1-4)
(.B -  C ) P X  

2 S 2

where we have defined local Cartesian coordinates O ' X Y  with origin (x \ y ' )  as

X  — x — x'  and Y  = y — y ' . (1-5)

The quantity S  is defined as

S 2 = X 2 + Y 2 (1.6)

and the elastic constants B  and C  are given in terms of the Lame moduli A and fi by

1.2. CONTACT PROBLEMS 15



C h a p t e r  1 In t r o d u c t i o n

B  = ^ r ( -  + T ^ — )  and (L?)47T \fJ, A +  /2/  47T \ f l  X +  / / /

These constants are also included in the table of isotropic elastic constants found in 

appendix E.

D istributed  N orm al and Tangential Tractions

We now consider a general distribution of traction: N( x ,  y) in the normal direction and 

P ( x , y ), Q(x,y)  acting in the tangential x- and y- directions respectively. These forces 

may be considered as a continuous distribution of point forces acting over some region 

7Z and are defined to be zero outside 1Z. Integrating the displacements (1.3) and (1.4) 

due to the point forces over the loaded region, we obtain

u{x,y)  =

v ( x , y ) =

=  /,{

/.{BQ(x' , y ' )

+  C

+  c

X 2P (x ',y ')  +  X F Q (x ',y ')
S 3

(B - C ) X N ( x ' , y ')
2 S 2

X Y P { x \ y >) P Y ’2Q ( x \ y >)
S 3

(.B - C ) Y N ( x ' , y ')

w(x,y)  =
= i,{

2 S 2
(B - ^ [ X P ^ ^ y ^  + YQix^y ' ) ]  , BN(x ' , y ' )

|  dx 'dy'

dx 'dy1

2 S 2 + |  dx'dy'. (1.8)

For certain types of problems, the force distributions P (x ,y ), Q(x,y )  and N ( x , y )  will 

satisfy a number of symmetries which may be made use of. Walton [66] states tha t, for 

the distributions arising during the contact of two elastic spheres the centres of which 

move in the plane y — 0 only, the following symmetries must be satisfied:

1. P  and N  are symmetric and Q is antisymmetric in both x and y;

2. u and w are symmetric and v is antisymmetric in y.

With these properties in mind, the following definitions are made

us(x,y) = ^ { u (x ,y ) +  u { - x , y ) } ,  ua(x,y) = ^ { u ( x , y )  -  u ( - x , y ) }  ,

^ (^ 2 /)  =  \ { V(X,V) +  *>(-£> 2/)}, va{x,y) = ^ { v ( x , y ) - v ( - x , y ) } ,
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w*(x,y) = ]^{w(x,y)  + w ( - x , y ) } ,  wa{x, y) -  i  {w(s, y) -  w ( - x ,  y)} (1.9)

which splits the surface displacements u(x,  y), v(x,  y) and w(x, y)  into symmetric (sub­

script 5) and antisymmetric (subscript a) parts with respect to the coordinate x.  By 

substituting the above definitions into the integrals (1.8) and making use of the above 

symmetries, the displacements are given as

X N(x' , y ' )  
S 2

Ax' Ay'ua( x , y ) =  - ± ( B - C ) J

vs(x >y) = - \ ( B ~ c ) J n Y N % ' y ^ dx ' dy'

w a( x , y )  =  b !  N (x d x / Ay'
Jn &

(1.10)

and

us{x,y)

va{x,y)

wa{x,y)

J  B P { x \ y >) +  C [ X 2P ( x ' , y ' ) + X Y Q ( x ' , y ' ) \   ̂ ^  ^

J  | BQ{x^y ' )  , C [ XY P( x ' , y ' )  + Y*Q(x' ,y' )]
s  +  s3

[ XP( x ' , y ‘) + YQ(x' , y ' )]
S 2

da:' Ay'

Ax' Ay' (1-11)

which are uncoupled in the sense th a t the integrals (1.10) contain only the effects of 

normal forces and the integrals (1.11) contain only the effects of tangential forces. Later 

in this chapter we will make use of a similar decoupling by considering the relative and 

absolute displacements.

1 .2 .2  P r e ssu r e  A p p lie d  to  a C ircu lar R eg io n  

H ertz Pressure D istribution

Consider a normal force distribution of the form

N(r)  = < ( 1.12)
N 0(a2 — 7*2)1/ 2 ,0  < r < a

0 , r > a

where (r, 0) is a system of plane-polar coordinates in the a:y-plane sharing the common
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origin 0  as defined in section (1.2.1). The region 71 is a circle of radius a centred on O 

and N 0 is a constant. This is the Hertz distribution which will be of use in section (1.2.4) 

and the displacements on the region 71 are obtained from the integrals (1.10) as

ua(x,y)

vs{x,y)

ws{x,y)

7TiV0
( B - C ) y

a3 -  (a2 -  r2)3' 2

7T2iVn
B(2a2 -  r2). (1.13)

Similarly, for a distribution in the ^-direction of the form

P(r)  = <
K ( a 2 -  r 2)1/2 ,0 < r < a

0 , r  > a

(1.14)

where K  is a constant and the distribution in the y-direction Q(x,  y) is zero, the resulting 

displacements are found from the integrals (1.11) as

u, (x , y )  =  ^ - { 2B  + C ) K a 2 - ^ K { ( 4 B  + C ) x 2 + (4B + 3C)y2}
lb

va(x,y)  = — K C x y

(1.15)

Further details on the calculation of these displacements, interior or exterior to the 

region 71, may be obtained from Johnson [35] page 56.

Punch T yp e P ressure D istribution

When a flat frictionless punch, having a circular cross-section of radius a, is pushed 

normally into an elastic half-space, the type of normal pressure arising is

N(r)  =  <
N 0(a2 — r 2)-1/ 2 ,0 < r < a

(1.16)

, r  > a
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which causes uniform displacements over the contact region, in this case a circle of radius 

a. The normal displacements, on r < a only, may be obtained from equations (1.10) 

and (1.11) as

w, (x ,y)  =  tt2B N 0

wa{x,y) = 0. (1.17)

We will also make use of a tangential distribution of the same form, namely

K ( a 2 — r 2) -1/ 2 ,0  < r  < a
P(r) = < (1.18)

0 , r > a

in the ^-direction, the tangential force in the y-direction being zero. This type of 

tangential distribution does not occur in the normal punch problem but will be useful 

later on in section (1.2.5). The required displacements due to this distribution (1.18) 

are, on r < a only,

va(x,y) = 0. (1.19)

Johnson [35] page 71, discusses the punch problem and the derivation of the surface 

displacements in greater detail.

1 .2 .3  T h e  G e o m e tr y  o f  B o d ie s  in  C o n ta c t

Before examining Hertz theory for two contacting spheres, it is necessary to consider the 

geometry of non-conforming bodies of general profile. Non-conforming refers to bodies 

which curve outwardly from each other in all directions, and consequently will touch 

initially at a single point. Contact of conforming bodies which touch along a line or a 

large area of surface is considered by Johnson [35] page 114.

Hertz theory requires that the surface of each body may be represented satisfactorily as 

a second order expansion about some fixed point or origin. The point of first contact of
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the two bodies defines an origin of a rectangular Cartesian coordinate system in which 

the xy-plane is the common tangent plane and the z-axis is directed along the common 

normal into the lower solid. Johnson [35] gives the profile of the lower surface as

*=dr’+dr’ (1-20)
where R[ and R " are the principal radii of curvature of the surface a t the origin and

the x x- and yx-axes are chosen such tha t any terms in x xyx vanish. Similarly, for the

upper surface

22=- (dr>+dr’) ■ (1-21)
The separation between the two surfaces is given by h = zx — z2 and so relative to a 

common set of axes x and y

h = a x 2 +  f3y2 +  i x y  (1.22)

where a , (3 and 7 are constants depending on the four radii in equations (1.20) and (1.21). 

Choosing axes such tha t 7 becomes zero we obtain

h =  a z 2 +  py 2 = ^ - x 2 +  j ^ y 2 (1.23)

where R'  and R"  are the principal relative radii of curvature. If the x x- and ar2-axes are

inclined to each other at an angle 6 then it can be shown th a t

1 ( 1  1 \ _ 1 / 1  1 1 1 
a + P ~  2 \ R ’ +  R " )  ~  2 Vi*; +  R'{ +  R '2 +  R!{

from which the solutions for a  and (3 may be determined. For later convenience we 

introduce an equivalent radius defined by

R e = (.R’R " )112 =  \{ci(3)~112. (1.25)
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As an example of the above geometry, consider a pair of identical circular cylinders 

of radius R  with their axes inclined at 45°. The radius parameters in this case are 

J2' =  R '2 =  R ; R ” = R ” = oo, and the angle is 0 = 7r / 4 . The equations (1.24) give 

values for a  and (3 of

1 - 1 / V 2  J 1 + 1 / V 2
a  = ^ r ~  and 0  = (1-26)

and the effective radius is

Re = \(a /3 ) - 112 = R V 2 . (1.27)

For equal spheres of radius R  we have R[ = R 2 = R '[ = R 2 = R  and 6 = 0 giving values 

for a  and (3 of

a  =  i  and (3 = (1.28)

The equations (1.24) are useful in chapter 6 when considering the contact of bodies of 

a general profile. Also in chapter 6 , the constants a  and (3 are determined explicitly for 

two identical oblate spheroidal bodies having aligned axes.

Figure 1-2 shows the two elastic bodies deforming in the vicinity of the point of first 

contact O due to the application of a normal pressure. A contact area is formed which 

is assumed to be small in comparison with the sizes of the bodies. Points distant from

the contact region approach each other by an amount <$i The surface displacements

are denoted by w ^  for the lower body and w^> for the upper body. Thus we may write

+  w ^  +  h = 6-i +  S2 (1.29)

for points on the contact area, where h(x,y)  is the initial separation of the surfaces

given by equation (1.23), and a t points outside the contact area the displacements must

satisfy

u /1) +  w ^  +  h > <!>! +  S2. (1.30)

In terms of the constants a  and (3 from equation (1.23), these conditions of contact may 

be written as
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Body 2

Body 1

Figure 1-2: Cross-section of two contacting bodies

w(i) -f u>(2) =  6 — a x 2 — fly2 (1*31)

on the contact area, where 6 = Si +  62, and outside the contact area the displacements 

must satisfy

u /1) +  w ^  > S — a x 2 — fly2. (1.32)

1.2.4 H ertz Theory of E lastic C ontact

The first satisfactory treatment of the contact of non-conforming elastically isotropic 

bodies was given by Hertz [30] in 1882. The profiles of the two bodies is shown in 

figure 1-2. Initially, the two bodies are assumed to be in contact at a single point 0 , 

until there is an application of a loading pressure (perpendicular to the common tangent 

plane of the two bodies) which causes a deformation in the neighbourhood of the point 

of first contact. Thus a finite contact area is formed and, assuming the two bodies 

have identical elastic properties, the tractions acting on it are purely normal. When 

the elastic properties of the two bodies differ, tangential or shear tractions occur which
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may give rise to slip between the two surfaces.

For the purposes of this thesis, when considering specific contact problems (spheres 

and spheroids for example) the bodies will be assumed isotropic with equal elastic 

moduli. Johnson [35] page 90, considers contacting solids with differing elastic moduli 

and Willis [72] examines the effects of anisotropy within the bodies.

A number of assumptions are made by Hertz theory and are listed by Johnson [35] 

page 91, as:

1. The surfaces are smooth, continuous and non-conforming;

2. The strains are small;

3. Each solid may be approximated by an elastic half-space;

4. The surfaces are frictionless.

These assumptions are necessary to ensure tha t the surfaces in the region of the contact 

area approximate to a plane and th a t the strains are small enough to be within the 

scope of linear elasticity. By approximating the bodies as half-spaces the boundary 

conditions are greatly simplified and use can be made of the extensive theory available 

for half-space problems, such as the results seen in sections (1.2 .1) and (1.2 .2).

The problem in elasticity is now reduced to the determination of the normal pressure 

distributions acting on the contact area which will produce normal displacements of the 

form given by (1.31) and satisfy the condition (1.32) outside the contact area.

We take as an example of the application of Hertz theory the normal compression of 

two identical elastic spheres. By symmetry about the central axis of the two spheres, 

the shape of the contact area is circular and has radius a. The radius of the spheres is 

R  and, as we have already seen, the system (1.24) gives values for a  and {3 as

a = ^  and (1-33)

Since the spheres are identical and have equal elastic moduli, we may write w0 = Si =  S2 

so tha t 2w0 = Si + S2 where w0 is the relative compression of each sphere. Also the 

surface displacements may be w ritten as u /1) +• w ^  = 2ws(x,y)  where ws(x,y)  is given
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by equation (1.13) and wa(x, y ) =  0. Then the condition of contact (1.31) on the contact 

area is

2 2
2ws(x, y) =  2w0 -  ^  (1.34)

The problem in elasticity is to determine the distribution of pressure N( x , y )  on r < a 

which gives rise to  displacements of the above form. One such distribution is tha t given 

by equation (1.12) as

N( x , y )  = N 0(a2 -  r2) 1/2 (1.35)

with normal displacements

2 AT

ws(x,y)  = K 0 H(2a2 — r2) and wa(x,y) = 0. (1.36)

Substituting into equation (1.34) we obtain

^ - ^ - B ( 2 a 2 -  r2) =  2w0 -  ^  (1.37)

and matching the constant terms and the coefficients of r 2, we solve for N 0 and w0 as

N 0 = — - and a2 =  R w 0. (1.38)

Thus the normal force distribution (1.12) is given by

JVo(r) =  ^ b (fl2 _  r2)1/2 (1-39)

and the Hertzian contact area radius is given by

a2 = R w 0. (1.40)

1 .2 .5  H e r tz  L o a d in g  w ith  a T a n g en tia l C o m p o n e n t

As stated earlier, according to Hertz theory, tangential tractions do not occur when

bodies having the same elastic moduli are compressed normally. When the bodies are

displaced tangentially as well as normally, tangential tractions arise on the contact area. 

Mindlin [44] considered a loading in which a tangential force is imposed on the existing
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normal compressive force. Considerations of symmetry showed tha t the distribution 

of normal traction is not affected by the application of the tangential load as long 

as the two bodies have identical elastic properties. It was also shown th a t if no slip 

occurred (infinite friction) the tangential displacement was a rigid body displacement. 

The solution to such a boundary value problem, for the special case of spheres, was 

shown to be of the form (1.18); the tangential traction being proportional to (a2—r 2)-1/2.

Walton [66] also considered tangential loading of the Hertz problem but examined the 

more general oblique problem in which the normal and tangential displacements occur 

simultaneously from zero. By decoupling the problem into normal and tangential sys­

tems, as was seen for the half-space problem in section (1.2 .1), the normal and tangential 

problems were solved to obtain a distribution of traction (P, Q, N ) on the contact area. 

Using the notation of section (1.2.1), the force exerted on the lower sphere by the upper 

sphere is

N(r) =  (!-41)

where (u0, v0, — w0) is the displacement of the centre of the lower sphere relative to the 

origin O, and the radius of the contact area is a0. The solution to this problem may also 

be obtained from the results of Mindlin and Deresiewicz [45] by taking the initial normal 

compression to be zero. The addition of an incremental displacement (6u0, 6v0, — SwQ) on 

the above initial state is considered in Walton [67]. The cases of Sw0 > 0 (compression) 

and 8w0 < 0 (unloading) are solved—the incremental displacement is assumed small 

enough tha t separation of the spheres does not occur. The distribution of normal 

traction in both cases is

N+6N = iAi (“2-r2)1/2
where the initial contact area radius a0 has been replaced by the new radius for the 

incremental problem a (denoted b in reference [67]). An infinite value of the coefficient 

of friction ensures th a t there is no relative displacement between the contact areas.
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Considering first the case when 6w0 < 0, the form of tangential tractions arising are

P  + 6P  = K ^ a 2 -  r2) 1/2 + I (2(a2 -  r2)~1/2

Q + SQ = Li (a2 — r 2)1/2 +  L 2(a2 — r 2) -1/2 (1.43)

the K 2 and L 2 terms being the punch-type pressure of Mindlin [44] and section (1.2.2). 

Walton [67] gives no details of the calculation of the constants Ki ,  K 2, Li  and L 2 and 

since chapter 3 solves problems of this nature, the method is given here: To decouple 

the problem into normal and tangential systems, similar to those seen in section (1.2 .1), 

we define relative and absolute displacements by

ur{x,y)  =  ^  {u+{x,y)  -  u_(x , y) }

ua(x,y)  = ^ {u+{x , y )  + u_{x , y) }  (1.44)

with similar definitions for vr, va, wr and wa. The displacements u+( x , y ) are in the

z-direction on the surface of the half space z > 0 due to  the distribution (P ,Q ,N ) ,

and the displacements u_(x , y )  are in the z-direction on the surface of the half space

z > 0 due to the distribution (—P, — Q , — N) .  The decoupling of the displacement

integrals (1.8) and the interpretations of the relative and absolute displacements are 

discussed in chapter 3. The displacements ur(x,y)  and vr(x,y)  on the contact area at 

the end of the initial compression are calculated in chapter 3 as

7T2
ur(x,y) = uQ + — (2B + C ) K 0a20

2 2

-  ? - K 0 {(45 +  C ) x 2 +  (45 +  3 C V }  +  L 0Cxy  
io  o

7T2
vr (x,y)  =  v0 + — (2B + C ) L 0a20

2 2

-  ^ L 0 {(45 +  3C ) x 2 + (45 +  C) y 2} +  y K 0C x y . (1.45)

Recall th a t the half-space problem which gave rise to the displacements (1.15) requires 

tha t the displacements be zero at infinity. However, for the contact problem we require 

tha t the displacement a t infinity (for the lower sphere) be (iz0, v0, — w0) and this is
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included in the expressions above.

The constant K 0 is the force constants for the distributions (1.41) and is given by

K ° = - ^ m Z c ) W  (L46>

The displacements due to the distribution (1.43) are, from equations (1.15) and (1.19),

2 2 

ur(x ->y) =  uq-\-Su o — ( 2 B C ) K \ a 2 — ( 2 B C ) K 2

— 1 ((4-® 4" C)x2 +  (4B +  SC)y2} +  — LiCxy
2 2 

vr{x ->y) — vo +  V̂q H—~(2i? +  C) Ai<z2 -|—— {2B- \ -C)L2
2 2

-  ^ L ! {(4B +  3C)x2 +  (4B +  C) y2} +  ^ K , C x y .  (1.47)

The no-slip condition (no relative displacement of the surfaces) requires tha t this dis­

placement matches th a t at the end of the initial displacement. Matching the constant 

terms and the coefficients of x 2 and y2 we obtain equations for A’i and K 2 as

R \  = K
2 2 2 

«o +  Y ( 2 B  + C ) K 0a20 =  u0 + 6n0 + Y ( 2 B  + C ) K la2 + Y ( 2 B  + C ) K 2 (1-48)

and equations for L i and L 2 as

Li — L o
2 2 2 

Vo +  — (2B +  C)LqO^ = Vo +  Suo +  —  (2B +  C)L^a2 +  —  (2B -(- C )L 2. (1-49)

Solving for A’i, I{2, Li and L 2 the distribution obtained is

{2u0{a2 -  r 2)1/2 +  (a^ui -  a2u0)(a2 -  r2) 1/2}
P  + SP v 2R(2B + C)w0 

Q + SQ =  * 2R(2B + C)w0 i 2V° {a2 ~  r2)1' 2 + (alVl ~ Q2po)(° 2 ~  r2)~1/2}
(1.50)
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where Ui =  u0 +  5u0 and Vi = v0 +  bvo.

When Sw0 > 0 new contact area is being formed. The no-slip condition may be applied 

on the original contact area and a similar condition must apply on any new contact 

surfaces formed. This boundary condition plus an energy flux argument presented in 

Walton [66] is enough to make the solution unique. The tangential tractions are

P  + i P  = /^ (a 2 -  r2)1/2 +  K 2(al -  r2)1/2 

Q + 6Q = Z jfa’ - r Y ^  +  M a o - r 2)1̂ - (1-51)

Calculating the displacements due to  this distribution using equation (1.15) and match­

ing terms in the same way as before, results in the distributions

p  + s p  = ^ m ( 2 B  +  C )W0SWo {'[a2“ ° -  a°M°)(a° - f2)1/2

+  («! -  Uo)a20(a2 -  r 2)1/2}

Q + SQ =  +  C ) ^  ( (a2i)0 ~ g°t’o)(a° ~  r2)l' 2

+  (Vi -  v0)a2Q(a2 -  r 2)1/2} . (1.52)

1 .2 .6  F r ic tio n a l C o n ta c t

The first scientific study of friction was carried out by Guillaume Admontons (1663- 

1705) and in 1699 he published a paper in which he rediscovered two forgotten laws 

of friction, originally derived by Leonardo da Vinci (1452-1519). The first law states 

th a t for rigid bodies in sliding contact over some plane region the tangential force P  is 

proportional to the normal force N . The constant of proportionality is known as the 

coefficient of friction, denoted / ,  and so this law may be written as

P  -  f N .  (1.53)

When sliding does not occur, tha t is there is no relative displacement between the two 

surfaces, it is required that

P  < f N . (1.54)
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Admontons’ second law simply states th a t the coefficient of friction is independent of 

the size of the bodies. In addition to these two laws, we also require tha t the direction 

of relative slip (wr ,i;r) opposes the direction of the force causing it; this condition will 

be significant when examining the oscillating forces of section (1.2.9) and chapter 3.

Admontons recognised th a t the surfaces he worked with were not smooth and attributed 

friction to the work done in overcoming surface irregularities. The effects of surface 

roughness were studied by Charles Augustus Coulomb (1736-1806) in his book ‘The­

ory of Simple Machines’, published in 1781. Coulomb also published papers [18] on 

laws similar to tha t derived by Admontons. For a historical account of the work of 

Admontons, Coulomb and others who studied friction, see Bowden and Tabor [9].

Although widely accepted, Admontons’ law does not apply to contact between all ma­

terials. For example, Tiiziin and Walton [60] use a modified friction law in which the 

coefficient of friction depends on the normal load and the area of contact

P  = r0A + a N  (1.55)

where A  is the interfacial contact area, r0 is the interfacial shear strength and a  is 

a pressure coefficient. Laws of this form are often exhibited by highly polished metal 

surfaces (Bowden and Tabor [8]) and glass spheres, Winkler [74]. The above law is often 

used to describe the frictional properties of powders and powder flows. Kendall [37] 

examines the inadequacy of Coulomb’s law for fine powders and explains the increase in 

friction for smaller particles using the JK R  theory of adhesive contact, Johnson, Kendall 

and Roberts [36],

However, Tiiziin and Walton [60] also state th a t particles with rough surfaces show no 

such load dependence (see Briscoe, Pope and Adams [11], Tiiziin, Pope and Adams [59] 

and figure 1 of [60]). Therefore, for the purposes of this thesis, Admontons’ law will 

be adequate. Several authors have examined the frictional Hertz contact problem using 

Admontons’ law, including Raoof and Hobbs [47] and Bryant and Keer [12]. Both of 

these references considered the frictional contact of geometrically and elastically iden­

tical curved bodies with an elliptical contact area. Here we will examine the frictional 

Hertz contact problem for two identical elastic spheres.
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x

Figure 1-3: The annulus of slip c < r < a

1.2 .7  L o ad in g  w ith  P a r t ia l  S lip

Cattaneo [14] and Mindlin [44] independently studied the tangential loading of two

elastic bodies, initially compressed by a Hertzian normal pressure, with a finite non­

zero value of the coefficient of friction between the contact surfaces. By first assuming 

that no slip occurs on the contact area, as was seen in section (1.2.5), solutions of the 

form (1.18) were obtained. These solutions are physically unrealistic due to the square- 

root singularity occurring at the edge of contact. Because the tangential traction is 

unbounded as r approaches a, the application of Admontons’ law (1.54) requires that 

slip must occur at some point on the contact area. Mindlin’s solution was to assume 

that an annulus of slip progressed from r = a to some value r = c. Within this annulus 

the slip condition (1.53) is satisfied, and on the inner circle r < c, the condition (1.54) 

must be true with no slip between the two surfaces. The required distribution of traction 

is given as equations (98) and (99) of Mindlin [44], which in the notation of this section 

is

P(r )
c < r < a

(1.56)

the normal force being
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Figure 1-4: The tangential force distribution P(r)

3 N  I
(1-57)

where N  is the total applied normal force. The radius of slip c is calculated by balancing 

the total force due to the distribution above with the applied tangential force P to obtain

p \ 1/3
c = a ^ - j w )  (L58)

and the annulus c < r < a is shown in figure 1-3. Figure 1-4 plots the tangential 

force distribution (1.56) for r/a from 0 to 1 with a value of P / f N  =  0.6 (solid line). 

The dashed line is the function f N ( r ) where N  (r) is the normal force given by equa­

tion (1.57), and the dash-dotted line is the no-slip solution with a square-root singularity 

at r = a.

It is well known that the slip solution described above is only an approximate solution 

to the elastic boundary value problem. Within the slip annulus c < r < a, although the 

tangential force distribution is in the x-direction at any given point the direction of slip
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Figure 1-5: The tangential force-displacement relationship S(P)

is found to be slightly offset from the direction of the x-axis. Therefore the condition 

that the slip must be in the direction of the frictional traction is not precisely satisfied. 

However, Johnson [35] page 219, has calculated the deviation of the slip in the x- and 

^/-directions, denoted sx andsy respectively, and has shown that the ratio of sy to sx is 

of the order v /(2  — v) «  0.09, where v is Poisson’s ratio. The the inclination of the slip 

to the z-axis will not be more than a few degrees and consequently the approximation 

of tangential traction acting everywhere parallel to the £-axis is a good one.

1 .2 .8  U n lo a d in g  w ith  C o u n te r s l ip

Section 2 of a paper by Mindlin and Deresiewicz [45] considers the problem of loading 

with slip, as seen in the previous section, followed by an equal and opposite unloading. 

Again the spheres are held together with an initial Hertzian compression of magnitude 

N  which remains constant throughout. The distribution of tangential traction at the 

end of the initial loading is
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P(r)
[(a2 — r 2) 1/ 2 — (c2 — r 2) 1/ 2] , r < c

¥ ^ { a 2 ~ r2) l/2 I 2ira ’

(1.59)

, c < r < a

where the radius of slip has reached its fixed minimum value of

fi-—V/3
V fNJ

(1.60)

P  being the maximum value of the applied tangential load, 0 < P  < f N .  Unloading 

starts from P = P* and progresses to P  = —P*. Prevention of slip would again result 

in the infinite tractions (1.18) and so a radius of counterslip b is assumed to progress 

from r = a to r = b. The resulting tangential tractions are

27ta? ~~ r2)1/,2 ~ ^ 2 — r2)1!2 +  (c2 — r 2)1/2] , r < c

P{r) =

3 f N  
2ira3

- | ^  [(a2 -  r 2)1' 2 -  2(62 -  r 2)1̂ ]

- ¥ ^ s ( a 2 ~  r 2) 1/22ira v '

, c < r < b (- '̂^1) 

, b < r < a.

The radius b is found in the same way as before to be

V 2f N  )
(1.62)

Clearly we must have c < b < a. A t P = 0  the displacements calculated in [45] show 

tha t a permanent displacement or ‘se t’ has occurred. When the tangential load is fully 

reversed at P = —P* then b = c and the initial slip has been fully reversed.

1 .2 .9  O sc illa tin g  F orces

The tangential distribution (1.56) demonstrates tha t the determination of the tractions 

on the contact area depend not only on the initial state, but also on the entire history 

of loading. In section 5 of Mindlin and Deresiewicz [45] the tangential force is oscillated 

between — P* and ~P*. The result is th a t radii of slip and counterslip oscillate between 

r — a and r — c. The displacement of the centre of the top sphere is shown to follow a
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hysteresis path of the form

(1.63)

where <$,• denotes the displacement on the increasing cycle and 64 denotes the displace­

ment on the decreasing cycle. The elastic constants u and fi are Poisson’s ratio and the 

shear modulus respectively. This tangential force-displacement relationship is plotted 

in figure 1-5.

Oblique loading imposed on the initial normal compression is considered in subsequent 

sections of Mindlin and Deresiewic [45]; the normal and tangential forces are varied si­

multaneously. Many different cases are considered such as combinations of N  increasing 

or decreasing and P  increasing or decreasing from either P  = =tP or from any point on 

an unloading curve. These results are then used to derive the tangential tractions due 

to oscillating oblique forces. After a number of loading and unloading phases, stable 

cycles are established with a repeating pattern of slip or stick. These stable cycles are 

found to depend on the conditions d P / d N  < f  or d P / d N  > / .  When d P / d N  > f  a 

stable cycle of slip is established in which energy is dissipated, and when d P / d N  < f  a 

cycle in which no slip occurs (the surfaces stick together) is established.

The results of Mindlin and Deresiewicz [45] have been analysed experimentally by John­

son [34]. A steel ball is pressed normally onto a hard steel plate and oscillating oblique 

forces are cycled 10,000 times at varying angles of obliqueness. Damage due to surface 

fretting occurs in the form of an annulus; photographs are reproduced as figure 5 of [34] 

and also on page 228 of Johnson [35]. Experimental agreement of the expected energy 

losses due to  slip (past the critical angle of friction) and the observed radii of slip are 

described by Johnson as ‘surprisingly close’.

1.3 Granular Media

The elastic properties of granular media are of interest in a wide variety of research 

fields ranging from powder compaction in the pharmaceutical industry to the study of 

soil mechanics in civil engineering. Applications of the theory of granular media include 

rock mechanics, wave propagation within ocean sediments and geophysical exploration

Si = S d( - P )  = - 3(2 -  v ) f N  
16 fia

2 U - U Z Y ' - L  _ r f - .
I 2f N  J \ f N
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for petroleum. Many theories and models are available to predict the elastic properties 

of granular media depending on the type of media to be modelled and the application 

required. Wang and Nur [70] summarise and discuss a number of such theories under 

the chapter headings:

1. Effective medium theories;

2. Wave propagation theories;

3. Contact theories;

4. Anisotropy.

Our interests lie with the first three categories and mainly in the third: contact theories. 

Here we will say a few words about effective medium and wave propagation theories 

before concentrating on a description of contact models and how the results obtained 

in section (1.2) may be bought together to form a model of certain types of granular 

media.

Effective M edium  Theories

Effective medium theories are mainly applied to composite materials consisting of two 

or more phases with different elastic properties. The simplest types of effective medium 

theories are those in which the properties of each phase are averaged with a weight­

ing proportional to the volume fraction of each phase, for example Wood [75]. Other 

theories, such as those of Voigt [62] and Reuss [48], provide upper and lower bounds 

respectively for the effective elastic moduli of such a composite medium. Hashin and 

Shtrikman [29] used a variational principle to provide closer upper and lower bounds 

for an isotropic two-phase composite than the sometimes impractical values given by 

the Voigt and Reuss models. The values calculated by Hashin and Shtrikman give the 

least upper bound and highest lower bound and therefore will be much closer to the 

true values of the effective elastic moduli.

W ave Propagation and Self-C on sisten t Theories

Wave propagation theories generally consider the dynamic propagation of waves through 

a granular or porous medium. Often the medium is saturated with fluid such as in
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Biot [5] and [6] and W alton and Digby [69]. These models predict the speeds of prop­

agation of elastic waves through the medium accounting for both the solid m atrix and 

fluid properties and the relative motion between them.

The self-consistent method of Hill [31] may be used to estimate the elastic properties 

of multi-phase materials. Briefly, the method draws on the known solution to the 

problem of a loaded elastic medium containing an isolated ellipsoidal inclusion. For 

self-consistency, the properties of an appropriately chosen medium are assigned to the 

m atrix material and similarly for the inclusion. Thus the effective elastic moduli of the 

entire medium may be estimated from the solution of this inclusion problem giving the 

well known ‘self-consistent approximation’ or SCA.

C ontact Theories

Granular media modelled using contact theories are the main subject of this thesis. 

The major application is in the study of materials made of packings of distinct grains, 

sandstones and ocean sediments for example. The interactions of individual grains are 

described either by Hertz theory [30], in which only normal pressure between grains is 

applied, or by contact described by Mindlin [44], seen in section (1.2.5), in which the 

grains are compressed normally and then sheared tangentially or obliquely.

Perhaps the most natural grain shape to consider is th a t of the sphere. Early sphere 

packing models such as those of Duffy [25], Deresiewicz [21] and Walton [63], considered 

regular geometries such as the simple cubic packing or close-packed hexagonal packing. 

Chapter 4 of this thesis considers a cubic packing of elastic spheres under a uniaxial 

compression with a finite non-zero value of the coefficient of friction between each sphere. 

Brant [10] considered a random packing of spheres but only derived the effective bulk 

modulus. Digby [22] also considered a random packing model in which the spheres were 

bonded together.

The random packing model we summarise in the next section is tha t of Walton [67] 

which predicts the effective elastic moduli of the packing. The model considers the 

special cases of zero friction and infinite friction, tha t is the spheres are either perfectly 

smooth or infinitely rough. Chapter 5 extends these results to the intermediate case in 

which there is a finite non-zero value of the coefficient of friction.
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1 .3 .1  T h e  E ffec tiv e  E la s t ic  M o d u li o f  a  R a n d o m  P a ck in g  o f  S p h eres

The calculation of the effective elastic moduli of a random packing of spheres is consid­

ered in a paper by Walton [67]. Chapters 5 and 7 use methods derived in this paper 

and so in this section we present the main results and techniques used.

The spheres within the packing are identical in tha t they are of the same size and 

have the same elastic moduli. The sphere material is homogeneous and elastically 

isotropic. The packing is random in the sense th a t the distribution of contact points is 

uniform over the surface of each sphere. Initially, each sphere is in point contact with 

several of its neighbours. In order to  create contact areas between adjacent spheres 

and to ensure tha t no inter-granular separation occurs, the boundary of the medium is 

subjected to an initial confining strain. For simplicity, we assume tha t no new contacts 

are formed although Endres [26] examines the effects of contact generation in this model. 

The effective elastic moduli are calculated relative to this initial state by imposing a 

further incremental deformation which is assumed to be much smaller than the initial 

deformation. The relationship between the incremental stress and strain is determined 

and hence the effective moduli are obtained.

R esults o f th e  C ontact P roblem

The contact problem considered is one in which the spheres are compressed obliquely 

(corresponding to the initial compression) as seen in Walton [66] and section (1.2.5), 

followed by an oblique incremental compression as described above. In the initial de­

formation the centre of the lower sphere is displaced by an amount (u0,u0, — Wo) and 

the centre of the upper sphere is displaced by an amount (—u0, — v0, w0). Similarly, in 

the incremental phase the centres of the lower and upper sphere centres are displaced 

by amounts (6u0, 6v0, —6w0) and (—Su0, —Sv0,Sw0) respectively. The results of this two 

stage compression are considered for an infinite value of the coefficient of friction. The

total forces acting on the contact area at the end of the initial state are

—  _  Suq(Rwq) 1̂ 2 —  _  8v0(Rw0y / 2 —  _  4 R ^ 2ws0/2
0 3tt(2 B  + C ) '  Q° 3tt(2 B + C ) '  3ttB  ( ^

which are obtained by integrating the distributions (1.41) over the contact area. During 

the incremental phase, the total incremental forces when 6w0 < 0 are listed as
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SP = - 3*R(2B + C)w0 {3a°aSUo ~  (a° ~ 0)2(2a° +  a )“ o}

^  =  ~ SirR(2B + C)w0 {3a°a^ °  ~  (°° ~ ° )2(2a° +  a)Vo]

J N  =  (1.65)
SttR B

which may be obtained by integrating the distributions (1.42) and (1.43) over the contact 

area, and when 6w0 > 0 they are

j p = 8(a3 -  a30)6u0 —  ^  8(q3 -  al)6v0
3irR(2B + C)6w0' V 3irR{2B +  C)Sw0 K ]

and

which are found by integrating the distributions (1.42) and (1.51) over the contact area. 

The notation of Walton [67] has been changed slightly to be consistent with chapter 3: 

the initial radius is denoted a0 and the radius during the incremental phase is denoted a. 

The Hertz relationships in this case are

al = R wq and a2 =  R(w0 +  tftco)- (1.68)

The radius of the sphere is R  and the moduli B  and C are given in terms of the Lame 

moduli A and by equation (1.7).

When the incremental displacements are infinitesimal, the forces (1.65) and (1.66) both 

reduce to the same form

—  4(Rwoy / 28u0 —  4{Rw0y / 28v0 —  2{Rwoy / 26w0
SP = ~ ir(2B +  C) ’ SQ = — tJ 2 B T C ) - '  SN =  VB  ' (1'69)

The analogous results for perfectly smooth spheres are also listed as equations (2.15) 

and (2.16) of Walton [67]

P  = Q = 0, N  = - ^ °  (1.70)

and
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S P  =  SQ =  0, S N  =  2 (R w » y ' 2Swo _ (L71)
7TB

T he Initial D eform ed S tate

Considering the packing as a whole, we assume that it occupies a large volume and

contains many spheres. Relative to some fixed origin the n-th sphere has its centre

at position vector and is initially in point contact with several of its neighbours. 

In attaining the initial deformed state, the boundary of the packing is subjected to a 

displacement u  which is given in Walton [67] as

iij — CjjXj (1.72)

where e^ is a constant symmetric tensor relative to fixed axes. For a continuous medium 

eij would be the average strain within the medium and this is the interpretation retained 

for the granular case. The centre of the n-th sphere undergoes a displacement of u^n .̂ 

Here sphere rotations are neglected, however in chapter 2 we show th a t they are signif­

icant in one of the initial states considered in Walton [67]. For now we take rotations 

to be zero and consider a second sphere m, in contact with the n-th sphere, undergoing 

displacement u(m) from its initial position X(m). By symmetry, the position vector of 

the initial contact point is

x c =  i(X<"> +  X<”*>) (1.73)

and this undergoes a displacement of

i ( u ("> +  u (ra)). (1.74)

Thus relative to this point, the displacements of the sphere centres are

I ( U( « ) _ UM ) and i ( u ( m) - u (n)) (1.75)

respectively for spheres n and m. The unit vector along the line joining the centres of 

these two spheres is defined as

/ i X (n) -  X (m)
1 = ------- 2R  • (L76)
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During this initial compression contact areas are forming between spheres initially in 

point contact. Each sphere will be in contact with several of its neighbours and dis­

placements and forces caused by one contact will affect the others. For Hertzian contact 

theory to apply we need to consider each contact area in isolation. The Hertzian as­

sumptions require th a t the contact area is small in comparison with the sphere radius 

allowing each sphere to be approximated by an elastic half-space in the region of the 

contact area. Walton [63] examined these assumptions for the case of purely normal 

compression and showed tha t surface displacements are negligible except in some small 

neighbourhood of the contact area. It is reasonable to assume th a t this will also be the 

case when tangential tractions are present and therefore the effects of one contact area 

on the others are neglected.

It is now possible to apply the results of the Hertz-type contact problems of sec­

tion (1.2.5). The normal component of the relative displacement of the sphere m  may 

be identified as

Wo =  i ( u (m) -  u (n)) • I ("m) (1.77)

and is in the direction l(nm). The shear displacement is the remainder of the relative 

displacement (1.75) and is written as

I ( u (™) _  u (»)) _  wolf""*). (1.78)

Combining the above with the total normal and tangential forces (1.64), the total vector 

force exerted by sphere m  on sphere n across the contact area may be written as

p (n m )  _ (2 R ) 1' 2
Zk B ^ B  + C)

{ 1 / 2
2B  [(u(m) -  u (n)) • I (rim)] (u (m) -  u (n))

+  C
-i3 / 2

(u (”0 _  u(n)) • I(nm) I(nm) \ . (1.79)

The A veraging Schem e

In order to relate the average stress to the average strain, we define the average of 

quantities such as the Cauchy stress within the medium as
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M  = h t  ^ d v  = v ^ f  a^ AV  f1-80)V J spheres V n J V n

where V  is the volume of the entire medium (not just the spheres), Vn is the volume of 

an individual sphere, a\ i s  the Cauchy stress within a sphere and the summation is 

taken over all spheres within V . For the n-th sphere it is easily shown tha t

4*> d V = \ J s  (x ' t<•"> +  t f 1) dS  (1.81)

where x'  = x  — is the position vector of a material point on the sphere relative 

to its centre, S n denotes the surface of Vn and is the traction vector acting on S n. 

Since the contact area is small we may approximate x ' over the contact area as

x 7 =  i ( X (m)- X (n)). (1.82)

The integral of the traction over the contact area is given by F^nm .̂ The surface S n 

is traction free everywhere except where spheres are in contact, meaning th a t equa­

tion (1.81) may be written as

f  d V  = \  ~  X \ n))F\nm) +  -  X$n))F$nm)\  (1.83)
JVn * m ^   ̂ J

in which the summation in m  is over all spheres in contact with the n-th sphere. Sub­

stituting this into equation (1.80) we obtain the expression for the average stress within 

the medium as

= + (1. 84)
contacts

The summation is taken over all contacts between all spheres and since each contact 

appears twice in the summation over n and m, the factor of 1/2 does not appear. By 

assuming a packing dense enough th a t the summations may be written as averages, we 

obtain

R n N
("a) = - - 2 i r  W M  +  f1-85*

where n is the average number of contacts per sphere (sometimes known as the coordi­

nation number), and N  is the total number of spheres within V.
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Thus the average stress within the medium is given by the expression (1.85) in terms 

of the geometrical properties of the packing and the force between two spheres. Similar 

expressions have also been used by Christoffersen [17] and Cambou [13].

T he A verage Initial S tress

Calculating the average stress in the initial state involves substituting the force F^nm  ̂

into the expression (1.85). To achieve this it is necessary to make assumptions about the 

form of the relative displacement (1.75). Batchelor and O’Brien [2] considered thermal 

and electrical conduction in a medium with a large number of spherical inclusions. In 

this case it was assumed th a t the displacements of the centres of the spheres were 

consistent with the applied uniform strain. Digby [22] made the same assumption and 

in our case this may be written as

= €ijXjn  ̂ (1.86)

which is commonly known as the uniform strain assumption. The above is clearly 

consistent with equation (1.72) but, in general, it is not true for individual spheres. 

However, we would expect the displacements to be, on average, of the form (1.86) and 

so this is a reasonably good approximation to  make. Then substituting (1.86) into (1.75) 

we obtain

-  «{“>) =  ± e„ ( X ™  -  X<">) =  - R e ^  (1.87)

The average stress is now obtained by substituting the above and the force (1.79) into 

the expression (1.85) to obtain

{ati) =  B(2B + C ) ( ( - * •  V. ) 1 7 C  ((-<=*V . ) 8/V j ) }

(1.88)

where (f) is the volume fraction given by

N V  4irR3N  
* = ^ r  = ^ § r L ’ (1-89)

N  being the total number of spheres contained within V.
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Thus the average stress is obtained in terms of the applied strain and statistical prop­

erties such as n and <f>. For a discussion of the measurement of these quantities and 

the statistical properties of random packings in general, see Scott [53] and Bernal and 

Mason [3].

Two cases of practical interest were considered in Walton [67] for which the averages of 

equation (1.88) may be evaluated analytically. The first of these cases is a hydrostatic 

compression which may be written as

eij = e6ij (1.90)

where e < 0 for compression. Equation (1.88) simplifies to

The second case considered is th a t of a uniaxial compression in the ^-direction given by

— 3̂<!)j3<§j3 (1.92)

where e3 < 0 for a compression. The following stresses are obtained

({<n j )) =diag((<r1),(<71),(<73)) (1.93)

where

. <jmC(-e3f ' 2 4n(3B + C ) ( - e 3)V>
 ̂ ^  24w2B(2B + C) a"  ^  6n2B (2B  +  C) '  ̂ ^

T he Increm ental Problem

The medium is now subjected to a further incremental deformation. In analogy with 

equation (1.72), the boundary of the medium is subjected to an incremental displace­

ment <$u which is also consistent with a uniform strain of the form

Sui = Se^Xj.  (1.95)

An analogous method to tha t seen in the previous section may be used to show tha t

the average incremental stress is given by
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=  Y .  { l f m)6Fjnm) + l f m)6F}nm)} .  (1.96)
contacts

Following the methods seen in the previous section for deriving the force (1.79), but 

making use of the linearised incremental forces (1.69), the incremental force vector 

£F(nm) is calculated as

£F (nm> =  (2i?)1/2[(u(m) u (n)) -1^ ”°]—  |  2B ( S u ^  -  0u<">)
2ttB{2B + C) 1 v ;

+  C  [(tfu<m> -  6u(”)) • I(nm)] I<nm) }. (1.97)

Again, the uniform strain assumption is used and so, in analogy with equation (1.86),

=  SeijX}") (1.98)

which is consistent with equation (1.95). Thus the average incremental stress is obtained 

in the same way as equation (1.88) was derived as

{6aii) =  2w2B(2B + C) i B  + S e i th l i ) )

+ C t e kl)  (1.99)

and this relates the average incremental stress to the average incremental strain. Since 

the effective elastic moduli C*jk} are defined through the relationship

(Saij) = C*jk l (6ekl) (1.100)

we obtain, from equation (1.99),

Ct’k' =  W B % B  + C) { B  k,  +  B  ( ( - « „  V , ) ‘/ V » )  fj,

+  B  ( ( - e pqIpI t ) ll2Ish )  6ik +  B  ( ( - e p, IpI , y / 2I iI l)  Sjk 

+  2C (1.101)

where the symmetric part in indices k and I has been taken. Note tha t all the required
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symmetries are present. The elastic moduli are seen to depend strongly on the initial 

strain and the medium is, in general, anisotropic. Since it is difficult to say more without 

specifying the initial strain etJ-, the two special cases presented earlier are considered. 

For the hydrostatic compression (1.90) tie  moduli are given by

+  B ( I I , )  Sik +  B (IJj) 6jk +  2C ( I i l j h l , ) }  • (1-102)

The averaged quantities in the above expression are easily evaluated (see chapter 5 and 

appendix B) to give the effective Lame moduli

„  n<f ,C(-e )^  n<j>(5B + C ) (—e y t 2
10t 2B (2B  + C)  M 10tt2B (2B  + C)  ̂ ^

and so in this case the medium is statistically isotropic.

In the second case of an initial uniaxial compression (1.92), the moduli (1.101) reduce 

to

C^ ‘ = S b (2B + C) { B  { lh l I ih )  Sil +  B  { lh l I ih )
+  B  ( | /3|I jh )  Sit + B  { \h\ IJ, )  Sjk + 2C { \ h \ l i l j h l , ) } .

(1.104)

Averages of the type appearing in the above expression are evaluated in appendix B 

and in this case the only non-zero moduli are

in which

^ ii i i  — 3(a +  2 /3), Cli22~OL 2/3, G1 1 3 3  — 2C11225

Q 3 3 3  =  8 (a +  /3), ^ 1 3 1 3  =  2a +  5/3 (1.105)

_  </>n(-e3 ) 1 / 2  a <t>n(-e3y /2 , ,
a _  32tt2£  an ^  32tc2(2B +  C ) ' ( - 06)
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Thus in the case of an initial uniaxial compression the resulting medium is statistically 

transversely isotropic with the five elastic constants required to describe such a medium 

given by equation (1.105).

Note tha t the modulus C7313 listed here is different to th a t quoted in equation (4.14) of 

Walton [67], which gives the incorrect value of

C,*3i3 =  « +  7/3. (1.107)

Furthermore, although the modulus 3 given in equation (1.105) has been calculated 

correctly using equation (1.101) and the averages of appendix B, its value is still incorrect 

and in chapter 2 it is shown tha t individual sphere rotations need to be included in the 

calculation.

All of the results presented here apply when friction is infinite requiring tha t there be no 

slip between contacting spheres. Results are also derived in Walton [67] for the case of 

zero friction in which the spheres slide freely over each other. A finite non-zero value of 

the coefficient of friction for the simplified case of an initial uniaxial compression followed 

by an incremental uniaxial compression was considered in Slade and Walton [55]. The 

problem for the general form of an incremental strain with finite friction is examined in 

chapter 5.
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Chapter 2

Sphere R otations W ithin  

Random  Packings

2.1 Introduction

One assumption of Walton [67] is tha t, although individual spheres may rotate, the 

average rotations within the packing as a whole are zero and tha t the individual sphere 

rotations are negligible. However, for this assumption to be valid, certain symmetries 

must exist in the way the packing is deformed initially. In this chapter we examine which 

of the specific initial loadings considered in Walton [67] has the required symmetries, and 

we derive modified equations for general strains which do not have these symmetries.

The main results of Walton [67] were summarised in section (1.3.1). The spheres are 

assumed to be elastically identical, of equal radii and composed of a homogeneous, 

isotropic material. Equation (1.84) gives the average stress within the packing, at the 

end of the initial confining compression, as

(ffij) =  (2.1)
contacts

where R  is the sphere radius, V  is the volume of the entire packing, l(nm) is the unit 

vector in the direction of the line joining the n-th and the m-th sphere centres and F(nm) 

is the force at the m-th contact of the n-th sphere.

Equation (2.1) may also be written in term s of the averaging scheme (•), defined in
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section (1.3.1) by equation (1.80), replacing the summation over the contacts within the 

total packing volume V :

RnN
<*«} =  - - 2 +  </,*!)}■ (2-2)

The coordination number n is the average number of contacts per sphere and N  is the 

total number of spheres within V . The quantity (IiFj) is required to be symmetric if 

there is to be no resultant torque on individual spheres. This being the case, we may 

write the above as

= (2-3)

The incremental strain, which is now imposed on this initial state, gives rise to an 

average incremental stress denoted (Scrij). Equation (1.96) gives the incremental version 

of the expression (2.1):

R
{ /i"m)^ " m) +  / i nm)^ ("m)} (2.4)

contacts

and, in the same way as before, this may be written in terms of averages as

R n N
(Say) = - 2 J - ( I J F , )  (2.5)

where <5F(nm) is the incremental force on the contact area. However, when the quantity 

(.IiSFj) is calculated (given the form of the initial strain) using the incremental force 

given by equation (2.5), the result is found to be generally non-symmetric in i and j .  

Since the stress should always be symmetric we conclude th a t the force used must 

be incorrect. Furthermore, since a non-symmetric stress would imply th a t the average 

moment (I A <SF) within the medium is non-zero, individual spheres must suffer rotations 

to reach equilibrium.

When the term (IiFj) or (IiSFj) is calculated without considering rotations, if it is 

symmetric this confirms th a t the rotations are zero and (<7,j) or (S<Jij) may be calculated 

using equations (2.3) or (2.5) respectively. Otherwise, rotations occur and must be 

included in the expression for F(nm) or <SF(nm). Here we will show th a t rotations are not 

required when calculating the stress in the initial state but tha t they are significant in 

the incremental problem to ensure equilibrium of moments.
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( m )

Figure 2-1: Initial deformation with rotations

2.2 The Initial State

Figure 2-1 shows the n-th sphere in contact with the m-th sphere. Using the notation of 

section (1.3.1), the centre of sphere n is initially at and undergoes displacement 

The rotation of sphere n is denoted by about an axis through its centre.

In section (1.3.1) and Walton [67], two cases of practical interest were considered for 

the initial confining strain: a hydrostatic compression and a uniaxial compression. Here 

we show that, for both of these cases, the term (IiFj) is symmetric without the need to 

consider rotations.

Equation (3.6) of Walton [67] gives the force without rotations as

p ( n m )   _________ 4 jR ________  f  .__ j- (nm) r ( n m ) \  1 /2  A n m )

‘ “  ZnB(2B + C)  i. '  > e'k h

-  (2 .6)

from which we may calculate the averaged quantity
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{IiFj) = 3tBQB + g) ~ C ((-«« V .)* 'V j)}  (2-7)

where B  and C  are elastic moduli defined in terms of the Lame moduli A and // by

equation (1.7). We now consider the specific cases of confining strain mentioned above.

2 .2 .1  In it ia l H y d r o s ta t ic  C o m p ression

The hydrostatic compression is described in section (1.3.1) and may be written as

eaj =  eSij (2.8)

where e < 0 for compression. Substituting into equation (2.7), we calculate the quantity

4 £ 2 / _ e \3/2

( W )  = ' 3 ^  W i )  (2-9)

which is obviously symmetric in i and j .  Thus the average stress under an initial

hydrostatic strain is found by using the above in equation (2.3) as

M  & h )  (2-io)

where <fi is the solid volum e fraction, given in term s of N  and V  through the relationship

r 4* R3ff
*  = ^ r -  (2-11)

Therefore, the stress under the initial hydrostatic strain is given by equation (2.10) and 

is symmetric in indices i and j .  This symmetry can also be explained using geometric 

arguments since, under a hydrostatic loading, the forces attem pting to ro tate a given 

sphere clockwise would be exactly balanced by those turning it anticlockwise.

2 .2 .2  In it ia l U n ia x ia l C o m p ressio n

The uniaxial compression in the z-direction, as described in section (1.3.1), is given by

€ij =  €36^ 6j 3 (2.12)

where e3 < 0. Again, by substituting into equation (2.3) we obtain
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{IiFi) = " £ ^ 2 B +  C) {2B <|/3|/3/i> *'3 +  C  <|/3 |3/i/^ } • (2-13)

The second term within the brackets can be seen to  be symmetric in i and j .  The 

term ( |/3|/3/,) may be evaluated explicitly using the results of appendix B. When i = 1 

or i = 2 we have

(\I3\I3Ii) = (\I3\I3I2) = —  f d<f> [  d6 |cos 6\ cos <j) sin2# cos 6 = 0 (2-14)
47T J o  Jo

and when i = 3, we obtain

1 r2* 1
( |/3| / | )  =  —  I d(f> I d6 |cos 6\ cos26 sin 6 = (2.15)

47T J o  J o  4

We may write this term as

(141V . )  4-3 =  ( |4 |/ |>  &aSS3 (2.16)

which is symmetric in i and j , hence ensuring tha t (2.13) is symmetric in i and j .  The 

average stress under an initial uniaxial strain is now given by

K )  =  - J b (2B + C) {2B  3 +  c <l/ 3l34 4> }  • (2.17)

2.3 The Incremental Problem

In the previous section we showed th a t, for the two cases considered, the rotations were 

zero. Here we consider the incremental problem and show tha t rotations are significant 

when the initial state is the uniaxial compression, but tha t only one of the five moduli 

given in equation (1.105) is affected.

The position vector of the contact point is (X(n) +  X(m))/2, and relative to this point 

the incremental displacement of the centre of sphere m may be written as

i(<5u(m) -  W n)) +  +  6u>W) A Rl(nml  (2.18)

The normal component of the relative displacement of the upper sphere, denoted 6w0, 

is given by
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Sw0 = +  (2.19)

Noting that the term containing the vector cross product must be zero, the above 

expression reduces to

Sw0 = i ( # u (m) -  tfu(n)) ■ I<"m> (2.20)

which is the magnitude of the displacement in the normal direction l(nm). The shear 

displacement, which is the displacement in the plane to which l(nm) is perpendicular, is 

the remainder of the relative displacement, tha t is

^ (6 u (m) -  W n)) +  (̂<5u>(m) +  <$u>(n)) A R I(nm) -  <$w0I (rim). (2.21)

The incremental force vector is formed from the normal and shear displacements (2.20) 

and (2.21) respectively, and the incremental tangential and normal forces, as given in 

equations (1.69). The incremental vector force is found to be

( r „ ,  ,  W / .  [ ( . » -  . « )  j ■ '" !

+  2 +  6u / n>) A RI^nm) +  C  [(<5u(m) -  <5u(n)) • I (nm)] I (nm) } (2.22)

which can be seen to  be equation (1.97) with an extra term due to the rotation of 

the spheres. Making the assumption used in Walton [67] th a t the displacement of the 

centre of each sphere is consistent with the applied uniform field, we arrive at the 

approximations, also seen in section (1.3.1), tha t

u\n  ̂ = ei jX jn  ̂ and = 6ei jXjnK (2.23)

As discussed in section (1.3.1), individual spheres will not follow the above displacements 

precisely, but it is a reasonable approximation to assume th a t the overall displacements 

will be of these forms (2.23). A similar assumption may be made about the form of the 

rotations: we assume th a t they are equal for each sphere, th a t is
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6 u {n) =  W m) =  (2.24)

where individual spheres will rotate by this amount in the average sense only. Substi­

tuting equations (2.23) and (2.24) into (2.22) and using the definition of the unit normal 

vector

/ >. X<"> -  X<™>
1 =------- 2R  > (2-25)

the incremental force may be written in the form

^ ("m) =  — p { C S e u I M  +  2 B S e uI, -  2 B e ikl6u,„I,}
7rJjyZjj -+- G J

(2.26)

where each vector component should bear the superscripts (n m ) which has been 

omitted for brevity.

2 .3 .1  C o n d itio n s  o f  E q u ilib r iu m

For equilibrium of the n-th sphere we require th a t the sum of all the incremental forces 

be zero and also tha t the sum of the moments be zero, th a t is

^ 2 1(”m) A £F(nm) =  0 (2.27)
m

J 2 s F (nm) = 0. (2.28)
m

Substituting the incremental force (2.26) into equation (2.27) we obtain the condition 

for equilibrium of moments as

E  2 B ( - e p, I „ I , y i 2(6ik -  I J J S u t  =
m

Y .  \C€irs(~epqIpIqy / 2I sIrIkIi +  2B€irk(—epqIpIq)1/2IrIi Seki- (2.29)

where the summations are over all spheres m  in contact with the n-th sphere and the 

superscript (nm) has again been omitted. The first term in the right-hand sum is zero
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since it is the sum over the indices r and 5 of a symmetric tensor mutilplied by an 

anti-symmetric tensor. The condition reduces to

-  I i l t ) f u t  =  £ > , . k{ - e pqIpI qy ' 2IrhSekl (2.30)
m  m

or, by summing also over each sphere n and assuming a packing dense enough tha t the 

summation over m  and n may be written in terms of averages, the condition becomes

{ ( - e pqIpI , y ' 2(6it -  I i l t )) (Suk) = ejrt ( ( - e pqIpIqy / 2I rI , )  {6ekl) . (2.31)

The rotation vector See may now be determined, from the above, in terms of the given 

incremental strain Se^.

The condition for linear equilibrium of the incremental forces (2.28) becomes

( ( -« „ ,I , / , ) 1' 2 { C h h h  + BSi t Ii} Sett)  -  2B<iiU ( { - e p, IpI , y ' 2I,6ut )  =  0 (2.32)

and in section (2.4.1) we will show th a t this condition is satisfied for an initial uniaxial 

compression.

2 .3 .2  T h e  In crem en ta l S tr e ss

Having determined the rotation vector for any initial strain field, the incremental force is 

given by equation (2.26) and contains a term involving <5>u>. Substituting the incremental 

force (2.26) into (2.5) we obtain

=  2x»B?2B +  C)
+ 2B ( ( - e pqIpI , y / 2I, I i)  -  2Bejkl ( ( - e MV , ) 1/J/ (/ i )  «w4}

(2.33)

from which the effective moduli may be determined. Equation (2.31) may be used to 

find the required rotations in terms of the incremental strain. Walton [67] considered 

two confining strains of practical interest: a hydrostatic compression and a uniaxial 

compression. Here we consider only the uniaxial case since equation (3.16) of Walton [67]
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and equation (2.8) show th a t rotations play no part in the hydrostatic case.

2.4 Initial Uniaxial Compression

The initial uniaxial strain may be described by

^ij = e38i38j 3 (2.34)

where e3 < 0 for compression. Substituting into (2.26), the incremental force becomes

C jp(nm) _  R  (  6 3 )  I f .  DC T { n m ) , ^ p c  r(nm) j { n m )  r(nm)
or i ~  irB(2B +  C)  t z o o e prp Jg

-  4 ( 2 . 3 5 )

and the incremental stress (2.33) is given by

( ^ n )  =  [B +  B  Sjl +  C <«*»>

- 2 B e ipq{ \h \ I , I i) ^ p }.  (2.36)

2 .4 .1  C o n d itio n s  o f  E q u ilib r iu m

The rotation vector £u> may be found from equation (2.31) which, under the strain 

field (2.34), becomes

{ ( \h \ I i h )  ~  hk ( |/3|)} Suk = eiks (\I3\ IJi )  (6ekl) . (2.37)

We may evaluate directly the term

(\I3\) = ^ — f  d<f> [  dO |cos 6 \ sin 9 =  ^  (2.38)
47r Jo Jo 2

and notice tha t terms of the form (\I3\IiIj) are zero unless i = j , giving

(I W ; >  =

0 , i /  j

1/8 , i = j  = 1 or i = j  = 2 (2.39)

1/4 , i = j  = 3.
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Putting i = 1 ,2 ,3  in turn, we obtain the incremental rotation vector in terms of the 

incremental strain field as

6u i =  ——6e23y — 0* (2.40)

Finally, we return to the condition (2.32) which in this case becomes

{ C  ( \ h \ h h l i )  +  B  (| J3|/,) 6ik} (6ekl) -  2Beikl <|J3|/,) 6u:k =  0. (2.41)

The terms {\I3\IkIiIi) and (\I3\Ij) must be zero by symmetry, and so the condition holds.

2 .4 .2  T h e  E ffec tiv e  E la s tic  M o d u li

Now tha t the incremental rotation is known, the incremental stress and the effective 

elastic moduli for this initial state may be calculated. Comparing equation (2.36) for 

the incremental stress with its equivalent in Walton [67], it can be seen tha t there is an 

extra term, contained within the brackets, given by

ejpq(IiI<\h\)Sup. (2.42)

For this term to be non-zero the indices j ,  p  and q must be distinct, otherwise the 

permutation tensor will be zero. In particular, we must have j  ^  q. As already seen

in equation (2.39), for the averaged quantity to be non-zero we must have i — q and

so, taking these two requirements together, we must have i ^  j .  Therefore, whenever 

i = j  the extra term is zero and the result obtained is identical to tha t obtained in 

Walton [67]. However, when i ^  j  the extra term will affect the result; but, as will be 

shown, only one of the five independent elastic moduli is altered. The effective elastic 

moduli C*jkl are defined through the relationship

(6ai j) = C:jk, {6e ltl) .  (2.43)

Taking i = j  = 1 in equation (2.36) we obtain

<̂ n> = ^ 0 ^ ) {B(\h\IJl)6lk + B(\I3\IJk)6iI + C(l lhh\h\)}{6elll)

(2.44)
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from which we may evaluate the moduli

C 1111

C 1122

c 1133

3n^>(-e3)1/2(4B +  C) 
32-k2B(2B  +  C) 

n4>(-e3y / 2C 
32k 2B{2B  +  C ) 

n<t){-e3) ll2C 
l f o 2B(2B + C y

(2.45)

Similarly, when i = j  = 3,

<^33>= y y y (2f y c) {b  < i  w <> + b  a w *) «3, + c  ( i i i M m  (**,>
(2.46)

from which

n f l - e 3)1/a(3B +  C)
°3333 -  43r2£ (2 B  +  c )  •

The extra rotation term is non-zero when i — 1 and j  — 3 in which case the average 

incremental stress is given by

<«*i3> =  2^ ( 2j  +  c )  + B  ( \ W J t ) S a, + C  ( W t J , |/3|>] (Setl)

-  2B ^ ' S u ,  <|/3| / i / , »  • (2.48)

The extra term may be evaluated using (2.39) and (2.40) as

{ \ h \ I J q) = - 6u 2/ 8 =  - S e 31/ 24 (2.49)

and so the required modulus may be calculated from (2.48) as

n j> (-e3)1/2(4 B  + C)
1313 “  1 6 ^ B ( 2 B  + C) ' ( '

The five independent effective elastic moduli required to describe such a transversely 

isotropic medium can be written as
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C n
/ y *

— °  1111 — 3(a +  2/?)

f y *
° 1 2 — c *  —— '- '1 1 2 2  — a  — 2/1

s y *
'- '1 3

/nr*
—  1133

/ y *
—  2233 — 2 ( c * - 2 ) 3 )

/ y *
33

_ __
3333 — 8(a +  0)

° 4 4
s y  *

—  ° 1 3 1 3
/ y *

—  2323 — 2 (a +  2/1)

in which a  and /I are defined, as in Walton [67], by

(2.51)

_  < M (-e 3) 1/2 . r. _  <t>n(-e3y /2 , ,
32v2B  P 32jt2(2 B  + C ) '  * '

For completeness, we calculate the remaining non-zero modulus defined as

r -  - r *  -  ^ (—63) i n $ B  +  C)
° 66 -  °i2i2 -  32x 2B(2B  +  C) ( ’

which, for a transversely isotropic medium, can be expressed in term s of the other elastic

constants (see Mai and Singh [43]) as

C6*6 =  11 2 12- (2.54)

Therefore, there are five independent elastic moduli given by equation (2.51).
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Chapter 3

The Oblique Contact of Two 

Elastic Spheres w ith  Friction

3.1 Introduction

When considering deformations of sphere packings, a fundamental problem which arises 

is tha t of the compression of two of the component spheres. In general, the relative 

displacement of adjacent spheres will not be along the line joining the two centres 

but will be inclined a t an angle to this centre line. Therefore, the contact problem 

is one of oblique compression in which the centres of the two spheres are displaced 

both vertically and horizontally simultaneously. In particular, when an elastic wave 

propagates through the packing, the relative displacement is oscillatory and therefore 

the spheres are alternately loaded and unloaded.

This chapter considers the oblique compression of two identical elastic spheres with a 

finite non-zero value of the coefficient of friction between them. The spheres are of equal 

sizes and are made of a homogeneous and elastically isotropic material. Initially the two 

spheres are in contact a t a single point. The deformation proceeds in two stages: in the 

initial stage, the spheres are pushed together, obliquely, by equal amounts in opposite 

directions. The effect of this deformation is to create a finite contact area in the region 

of the initial contact point. Walton [66] considered this problem of oblique compression 

and showed tha t the resulting contact area was circular and described by the Hertz 

theory of elastic contact. Secondly, an oblique incremental deformation is considered
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and the effects of the initial deformation on the solution of the incremental problem 

are examined. The initial deformation corresponds to the initial compression of the 

packing, as described in section (1.3.1), and the incremental displacement corresponds 

to the deformation caused by an elastic wave propagating through the medium.

The method of solution follows th a t seen in section (1.2.5) where we considered the 

oblique sphere contact problem with an infinite value of the coefficient of friction; the 

no-slip displacement boundary condition was applied over the entire contact area. In 

the finite friction case however, this condition may only be applied over the part of 

the contact area which suffers no slip, and on the remainder of the contact region we 

must apply the slip conditions discussed in section (1.2.6). A number of different cases 

arise which are distinguished by the angle of compression and the coefficient of friction. 

The incremental displacement is oscillated along a straight line path; some cases re­

sult in an annulus of slip in which relative displacement of points on the contact area 

occurs, thereby establishing a cycle of slip. Otherwise, there is no relative displace­

ment of points on the contact area resulting in a cycle in which the surfaces adhere or 

stick together. These stable cycles are established over several phases of oscillation, as 

was seen in Mindlin and Deresiewicz [45] and Johnson [34]. The work in this chapter 

differs significantly to tha t of Mindlin and Deresiewicz since the initial compression is 

oblique rather than normal, and the influence of this initial compression appears in the 

incremental deformation.

After the stable cycles have been established, the total forces acting on the contact area 

at any stage in each cycle are calculated. Finally, these forces are linearised when the 

incremental deformation is much smaller than the initial deformation, and the linearised 

cycles are found to be equal within a constant displacement.

3.2 Surface Displacem ents

Before proceeding further, we list some useful results concerning the surface displace­

ments arising from both normal and tangential Hertz pressure distributions acting on 

an infinite elastic half-space. Consider a set of rectangular Cartesian axes O x y z  with 

the z-axis directed downwards. The half-space is defined as the region z > 0 (as shown 

in figure 3-1) and the force distributions act normally and tangentially on the xy-plane. 

We also define a system of plane polar coordinates (r, 9) in the xy-plane sharing the
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common origin 0 .  For force distributions of the form

N ( x , y )  = <
N 0(a2 — r 2)1/2 , 0 < r < a 

0 , r > a

acting normally (in the z-direction), ar.d

P ( x , y ) =  <
K (a2 — r2)112 , 0 < r < a

0 , r > a

(3.1)

(3.2)

acting tangentially (in the ^-direction), where N 0 and K  are force constants and a is the 

contact area radius, the displacements (u,v ,w)  are given in terms of the integrals (1.8) 

as

«(«.») =  “ o +  / r { ^ | ^  +  C

„ (* ,,)  =  V o + j ^ m ^ i + c

X 2P{x',y') + X Y Q ( x ' , y ' )
S 3

(.B - C ) X N ( x ' , y ' ) 
2S 2

[X Y P (x ' , y ' )  + Y 2Q(x' ,y ' ) l

|  dx'dy'

w(x,y)  = - w 0 + /.{

S 3
(B - C ) Y N ( x ' , y Q 

2 S 2
dx'dy'

{B-C)[XP{x>,y>) + YQ{x' ,y' )}  , B N (x ' , y ' )
2 S 2

dx'dy'

(3.3)

where the displacement of the sphere centre has been added to ensure th a t the displace­

ment is correct at infinity. Walton [66] made use of the symmetries of the problem to 

decouple the integrals into normal and tangential systems. In this chapter it is more 

convenient to consider the relative and absolute displacements defined as

wr{x,y)  = i  {w+(x,y) -  w_(x ,y)}

wa{x,y) = \ { w +(x ,y) - \-w_(x ,y)}  (3.4)

where w+(x,y)  is the displacement in the ^-direction on the surface of the half-space
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z  > 0 due to the distribution (P ,Q ,N )  and w _ ( x , y ) is the displacement on the surface 

of the half-space z < 0 due to the distribution (—P, — Q, —N ) i.e. the problem is rotated 

through 180°.

Similar definitions may be made for the tangential displacements u ( x , y ) and v(x ,y)  to 

form functions ur (x,y) ,  ua( x , y ), vr (x,y)  and va(x,y) .  By substituting these functions 

into the integrals (3.3), we obtain the systems

ur (x,y)

vr (x,y)

wa{x,y)

uQ +  

V0 - f -

f  ( B P (x ' ,y ' )  C[X*P(x ' ,y ' )  + X Y Q (x ' , y ' ) )
k \  s  s 3
J  f B Q (x ' , y ') , C [ X Y P ( x ' , y ' )  + Y 2Q(x',y')]

S  +  5 3
[ X P V ^ + Y Q j x ' r f ) ]

S 2

|  <\x'dy' 

Ax' Ay'

da;7 Ay' (3.5)

and

ua(x,v)  = ~ \ ( B ~ ]n * N~% ' V  ̂ dx ' dy'

va{x,y) = —\ ( B  -  C) - N- *2 Ax' Ay'

wr(x,y)  = - w 0 - \ - b [  ’ -■  ̂ da;7 Ay' (3.6)
J 71 <J

which are decoupled in the sense tha t equation (3.6) contains only the effects of normal 

forces and equation (3.5) contains only the effects of tangential forces. The splitting of 

the displacements in this way may be interpreted as follows: at a point where the two 

surfaces are adhered together there can be no further relative slip between them and 

therefore we must have

ur (x,y)  = 0, vr (a;,y) =  0, wr (x,y)  = 0 (3.7)

at any point where the surfaces were initially stuck together. The function wa(x ,y ) on 

the contact area gives the warping of the contact surface and is an odd function of x.

3.2. SURFACE DISPLACEMENTS 6 2



C h a p t e r  3 T h e  O b l i q u e  C o n t a c t  o f  T w o  E l a s t i c  S p h e r e s  w i t h  F r i c t i o n

3 .2 .1  D isp la c e m e n ts  In s id e  the L oad ed  R e g io n , r <  a

The displacements inside the loaded region (r < a) due to the distributions (3.1) 

and (3.2) may be calculated by evaluating the integrals (3.6) and (3.5) to obtain

2 2 

ur (x,y)  =  «o +  ~ r(2 B  +  C)Ka2 — jt-S" {(4B +  C )x 2 +  (4B +  3C)y2}

7T2
vr(x,y)  =  — K C x y

=  f ( ^ - C ) J °3 - ( a ; 2- r2)3/2} (3-8)

and

r 2
wr(x,y)  = - w 0 -  — . (3.9)

Note tha t for the half-space problem the displacement at infinity was required to be 

zero, but for the case of contacting spheres the displacement at infinity is (uQ, 0 , —w0).

3 .2 .2  D isp la c e m e n ts  O u ts id e  th e  L oad ed  R e g io n , r > a

Outside the loaded region the displacements are again given by the integrals (3.6) 

and (3.5) although the range of integration is different. Evaluation of the integrals 

for the force distributions (3.1) and (3.2) give the relative external displacements ur 

and vr as

(x,y) = uQ +  ^-K  {4(21? +  C)a2 -  (4B +  C )x 2 -  (4B +  ZC)y2} sin ^ a / r )

+  | / f a ( r 2 - a 2)1/2{ 4 5  +  ^ 2 . o 2 , o 2 ^ a'2 y x +  3 y +  2 a '

(x,y)  = - ^ A '^ p j r 4 sin 1(a/r)  +  a(2a2 — r2)(r2 — a2)1̂ 2J . (3.10)
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( m )

Figure 3-1: The initial undeformed configuration

3.3 T he Initial D eform ation

The spheres are shown in their initial undeformed configuration in figure 3-1. Their point 

of first contact O defines the origin of a rectangular Cartesian system of coordinates 

having the xy -axes lying in the common tangent plane and the z-axis being directed 

into the lower sphere along the line of centres. Each sphere has radius R  and the top 

and bottom centres are displaced obliquely by amounts (—wo?0,u;o) and (u0,0 ,—U70) 

respectively, relative to the point of first contact, causing them to deform in the vicinity 

of the origin and form a contact area. Whether or not the two contact surfaces displace 

relative to each other depends on the coefficient of friction and the angle of compression. 

We begin by assuming that no slip occurs between the two spheres and subsequently 

derive conditions under which slip must occur.

3.3.1 The No Sliding Solution

Walton [66] considered a similar problem and showed that the problem has a unique 

solution, namely that of Hertzian compression. The Hertz contact area is shown to be 

circular and of radius a0 with a normal force distribution of the form
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j V o ( r ) = d b (a° ~ r2)1/2 (3J1 )

where r is the radius in plane polar coordinates (r, 6) and B  is an elastic modulus defined 

in terms of the Lame moduli by equation (1.7). We will later make use of the similar

elastic modulus C  also defined in equation (1.7). The contact area radius is given by

the Hertz relationship

al = R wq. (3.12)

Tangentially, we assume a force distribution of the form

Po(r) = Ko(a20 - r 2)1/ 2 (3.13)

in the ^-direction only. The force constant K 0 is determined by considering the dis­

placements given by the integrals (3.6) and (3.5). Substituting the distribution (3.13) 

into equation (3.5) we obtain tangential displacements

4-(2  B + C ) K Qa l - ^ .  

vr(x,y)  = K 0C x y . (3.14)

ur{X',y) — uq H—~(2-H +  C)Kqo^ — ~ 7 io  {(42? +  C ) x 2 +  {AB +  SC)y2}

7r2

By applying the condition th a t no relative displacement occurs between the two surfaces, 

we require tha t -ur (0,0) =  0 and vr (0,0) =  0 in the above equations. Solving for the 

constant K 0 we find th a t

A ° =  ~ t 2R(2B + C ) w 0 3̂ '15^

giving the tangential force distribution (3.13) as

p ^  = - , m ( 2 B 0+ c )w^ - ^ /2- ^

When a finite non-zero value for the coefficient of friction exists between the two spheres, 

Admontons’ law (1.53) states th a t the magnitude of the tangential force can never exceed 

the coefficient of friction multiplied by the normal force at any point on the contact area. 

This condition may be written as
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I f t  I < /No ,  (3.17)

where /  is the coefficient of friction, and is satisfied when

U0

W  o

where the angle of compression is defined as

2 B  4- C
< ( —— —  ) f  or tan 90 < tan 6C (3.18)

tan 60 = —  (3.19)
w0

and the angle of friction 0C is defined as

tan  $c = ( 'lB2B ° )  ^  3̂ ‘20^

being the critical value for which equality holds in the inequality (3.18). If the magnitude 

of the calculated tangential forces violates the condition (3.18) at any point, then slip 

will occur with the tangential force being equal to  the coefficient of friction times the 

normal force at tha t point. The above condition can be seen to be independent of

position on the contact area, meaning th a t if slip does occur it is in the form of sliding,

th a t is slip over the entire contact area.

We now consider the problem when the condition (3.18) is violated and sliding occurs.

3 .3 .2  T h e  S lid in g  S o lu tio n

Sliding will occur for any values of u0, vQ and w0 satisfying

u0
(

‘I B  i d \
—— — J /  or tan 0O > tan 0C. (3.21)

During sliding, the magnitude of the tangential force must equal the coefficient of friction 

times the normal force which gives rise to the equation

1*01 =  ^  (3.22)

Secondly, to satisfy the laws of friction discussed in section (1.2.6), and to complete 

the specification of the boundary conditions on the contact area, we require th a t the 

direction of sliding opposes the tangential force. In this case we see th a t K 0 must be
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negative and thus we obtain

(3.23)

Po(r) =  _ ^ l f e (a“ “ r2)1/2 (3-24)

and the normal distribution for this sliding solution remains unchanged as

*o(r) =  ^ g ( ao ~ v2) 1' 2- (3-25)

The tangential displacements a t the end of this initial stage are given by

ur (x,y)  = u0 + ^ ( 2 B  + C ) K < , a l - ^ K 0 {(4B + C )x 2 + {4B + 3C)y2} 

Vr(x,y) = ^ - ~ C x y .  (3.26)

We conclude that two solutions may occur in attaining the initial sta te  depending on

the condition (3.18). When (3.18) is satisfied the solution which arises is th a t for which

there is no relative displacement between the two spheres ie. a ‘stick solution’ given 

by equation (3.16). Conversely, when the condition (3.18) is violated, the magnitude of 

the tangential force must be equal to  the coefficient of friction times the normal force 

and the ‘sliding solution’ (3.24) is obtained. The stick and sliding regions are shown in 

figure 3-4 separated by the dashed line through the origin. The normal component of 

the solution is given by the distribution (3.11) in each case.

3.4 The Incremental Deform ation

Any subsequent state will depend strongly on whether sliding occurred or not in attain­

ing the initial state. The cases of sliding originally and no sliding originally must now be 

considered separately when imposing a further incremental deformation (6u0, 0, — Sw0) 

on the initial state. The angle of compression in the incremental state is defined as

(3.27)tan 0 =
cu0
6w0'

K 0 =  — w2R B

giving the required tangential force distribution as
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1 2  5 6
8u*0

Figure 3-2: Path of sphere centres during the incremental loading cycle

A similar problem was considered by Walton [66] but friction was treated by assuming 

either a zero or infinite value of the coefficient of friction. The problem of finite friction 

to be considered here is considerably more complex due to both the influence of the 

initial state and the number of possibilities arising from stick or slip. The incremental 

problem consists of a sequence of loadings and unloadings, the stages of which are shown 

in figure 3-2. Eventually, after a number of loading and unloading cycles, a repeating 

stable cycle is established.

We begin by considering the incremental problem imposed on the initial state in which 

no sliding occurred. In the same way as before, we assume at first th a t no further

slip occurs and then derive conditions under which the no-slip condition (3.18) will be

violated.

3 .4 .1  N o  S lid in g  O rig in a lly , N o  F u rth er S lip  - 90 < 9C and 9 < 0C

Assuming tha t no further slip occurs, the form of normal force distribution remains tha t 

of Hertzian compression given by

N  + S N = ^ A b (o? -  r^ m  (3-28)

in which a is the varying contact area radius as opposed to the now fixed initial radius a0. 

The new radius now increases or decreases depending on the increments 8w0 through 

the Hertz relationship

a2 =  R (w 0 +  8w0). (3.29)
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a &Q

Figure 3-3: Phase 1 : Loading with no further slip 

P h a se  1 : L oading w ith  no fu r th e r  slip

Phase 1 consists of a loading from 8u0 =  0 to a maximum value of 8u0 = 8ug. The 

contact radius progresses from its initial value of a0 to  a maximum value of a* as shown 

in figure 3-3. The appropriate form of tangential force distribution is postulated to be, 

in the ^-direction,

P  +  8P  = I
Ki(a2 -  r 2)1/2 +  K 2(al — r 2)1/2 , 0 < r < a0

K\{a? — r 2)1/2 , aQ < r < a
(3.30)

and since the increment is purely in the x-direction, the force distribution in the y- 

direction remains as Q +  6Q = 0.

We now determine the force constants K \  and K 2 by considering the displacements over 

the contact area. Tangentially, the displacements due to the distribution (3.30) may be 

found from equation (3.8) and are calculated as

7T2
ur (x,y)  =  uQ +  6u0 +  - j- (2 5  +  C) { K xa2 +  K 2a20}

— — (i^1 +  K 2) {(4B  C )x 2 -(- (AB +  3C )y 2}

7T2
vr (x,y) = — (K 1 + K 2)Cxy .  (3.31)

Applying the no-slip condition on 0 < r < a we match term s of the above with the 

displacements at the end of the initial loading (3.14) to obtain

No Sliding Originally, No Further Slip - 0Q < 0C and 6 < 0C 69



C h a p t e r  3 T h e  O b l i q u e  C o n t a c t  o f  T w o  E l a s t i c  S p h e r e s  w i t h  F r i c t i o n

T,  , _  —4u0
M i2 ir2R(2B  +  C)w0 

2 2 

Uq +  — (2B  C)KqCl^ = uq +  Suq H— — {2B +  C) {K\CIq +  . (3.32)

Solving the above for K 1 and K 2 we obtain

4 6uc
A x =  - -

ir2R (2B  +  C) 6w0

V  -  4  ( S u °
2 "  ic*R(2B + C ) \ 6w0 w0J 1 j

which determines the force distribution (3.30).

The condition for slip considered in section (3.4.1) states tha t no slip will occur at any 

point on the contact area satisfying

\P + 6P\ < } ( N  + 6N),  (3.34)

Equivalently, by substituting the distribution (3.30) into the above, we obtain

Jw~ ~ ^  ° r tan ^ “  tan  (3.35)

where

tan 9 = (3.36)
OWq

and 0 is the angle of compression for the incremental problem. The critical angle of

friction 9C is the value of 8 for which equality occurs in equation (3.35).

Thus there are two possible solutions in the incremental solution with no initial sliding: 

Firstly, when (3.35) is satisfied there exists a stick solution, given by (3.33) in which the 

spheres suffer no relative displacement and secondly, when (3.35) is violated, there exists 

a solution in which a degree of slip must take place somewhere on the contact area. We 

continue here with the stick solution and examine the slip solution in section (3.4.2). 

These two cases are illustrated in figure 3-4, the letters SLP and STK denoting the slip 

and stick regions respectively.
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C/ 5

C/ 5

C/ 5

S5O

Figure 3-4: Path of sphere centres for initial and incremental displacements
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a _ . a o

Figure 3-5: Phase 2 : Unloading with no further slip

0 a~* ao a*

Figure 3-6: Phase 3 : Unloading with partial slip 

P h ase  2 : U nloading, reversa l o f phase 1

During phase 2, the displacement is unloaded from its maximum value of 6u0 = Suq to 

6u0 = 0. The contact radius decreases from a, to a0 as shown in figure 3-5. Since no slip 

occurred during the loading phase, we may take the same solution during unloading, 

that is the displacement is simply reversed along the phase 1 path. Thus at the end of 

phase 2 the force distributions are precisely those at the end of the initial stage (3.16), 

as if the loading and unloading had never occurred.

P h ase  3 : U nloading w ith  slip

Phase 3 covers the further unloading from 6u0 = 0 to 6u0 = 6uq *. The contact radius 

decreases throughout this phase, as shown in figure 3-6, and so terms of the form 

(ao — r2) 1̂ 2 cannot be considered because a is always less than or equal to a0 meaning 

that the force distribution at r = a would be non-zero. Instead it is necessary to consider 

a slip solution of the form
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K 1(a2 — r 2)1/2 +  ^ ( c 2 — r 2)1/2 , 0 < r < c
(3.37)

K i ( a 2 — r 2)1/2 , c < r < a

where r = c is the boundary separating the central region of stick 0 < r < c and the 

slip annulus c < r < a.

Since this section is concerned with establishing a no-slip stable cycle and because this 

particular slip phase will not occur during the stable cycle, we leave the details of the 

solution until section (3.4.2) and simply list the force constants as

K i  =  2 f
tt2R B

K  _   4^0 /oocA
2 7t 2R B  n 2R(2B  +  C)w0 ’ { }

The radius of slip is given by

£ l =  (3.39)
a2 T  «0+ ( 2 f ± £ ) / » „  '  ’

The minimum value of this radius is denoted c_* occurring when 6u0 = Suq * and may 

be calculated as

f L  _  z l I M  (3 40)
a 2 "  u0 +  ( « ± £ )  f w 0 ■ (SA0)

The corresponding final displacements on 0 < r < c_* are calculated as

ur *(x,y) = uQ + 8 u 0 * +  ^ - ( 2B  +  C) { K 1a2_. +  A'2c2*}

— —  (Ai +  A 2) |(4 A  +  C )x 2 +  (4B  +  3C)y2} 

v7 *(x,y) = ^ - ( K x + K 2)Cxy.  (3.41)

P hases 4 and 5 : R eloading w ith ou t slip
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c_. a _ , a0

Figure 3-7: Phases 4 and 5 : Loading with no further slip

Phases 4 and 5 consist of the reloading from Su0 = 6u3* to 6u0 = Su3 and may be 

considered together. The contact radius is shown in figure 3-7 progressing from a_* to 

a*. The no-slip solution has a force distribution of the form

P + SP =

K\{a2 — r 2)1/ 2 +  A'2(c2 „ — r 2) 1̂ 2 +  K 3(a2_m — r2)1/ 2 , 0 < r < c_* 

K\(a2 -  r2)112 + K 3(a2_„ -  r 2)1/2 , c_* < r < a_t

K\(a2 — r 2)1/ 2 , a_* < r < a.
(3.42)

The displacements on the central stick region 0 < r < c_* due to this distribution are

ur{x ',y) — U Q b u Q — (2B C )  {K\a2 K 2C2_+-\-K3a~_„}

-  — (Ki  +  K 2 +  K 3) {(4 +  C)*2 +  (4 +  3

7T̂
y) =  -s-f-K’i +  K 2 +  K 3)Cxy. (3.43)

We apply the no-slip condition (3.35) over the contact area by matching terms of the 

above displacements with the displacements at the end of phase 3 (3.41) to obtain

a  i +  a :2 +  a  3 — —4wq
tt2A(2£ + C)w0 (3.44)

and
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uq +  6uq -\— — [2B +  C ) {K id2 +  K 2(?_if +  K 3 } —

no + +  ^ ( 2 B  + C) {K [ a l , +  K'2d , } . (3.45)

The constants K[ and K 2 are the values of the constants during phase 3 given by 

equation (3.38). By matching the displacements on the annulus c_* < r < a_+ we 

obtain the extra equation

K 2 =  K'2. (3.46)

Details of the calculation of these external displacements and the matching of the terms 

on the annulus are left until section (3.4.2) which considers the solution of the problem 

with an evolving slip annulus as opposed to the static case seen here.

Solving the above equations for K 2 and K 3 we obtain

4 (  Su0 +  6u*0
A i —

IU =

n 2R(2B  +  C) \ 8 w q  -j-
2 / 4 U0

7r2R B i t 2 R(2B  +  C ) w q

4 (  8 u q + 8 uq }

Ks 7T2R{2B  +  C) U w 0 +  6w*0)  +  7t2R B  (3'4?)

Note that, since the centres of the two spheres are assumed to be displaced in a straight 

line, we may write the gradients as

6uq_ _  Sv^_ _  Sup* _  8u0 +  6u*0 
8 w 0 8 w q  8 w q *  S w q + S w q

Since no slip has occurred during phases 4 and 5, any subsequent loading or unload­

ing will follow the solution (3.47). Thus the stable cycle is established in which the 

displacement oscillates from 6u0 = Su3* to  8u0 = 8uq and back again with force distri­

bution (3.42).
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Figure 3-8: Phase 1 : Loading with partial slip

3 .4 .2  N o S lid in g  O rig in a lly , F u r th e r  S lip  - 0O < 9C and 9 > 0C

Continuing the loading for no original sliding, we now consider the case when condi­

tion (3.35) is violated, that is 0 > 6C and slip must occur somewhere on the contact 

area. The normal force remains unchanged from section (3.4.1) as

N  +  6N  =
2

i R B
(a2 -  r 2)1/2. (3.49)

P h ase  1 : Loading w ith  slip annu lus

During this loading from 6u0 =  0 to Su0 =  6ul, the contact area radius increases from 

a0 to its maximum value of a,. A radius of slip c is assumed to progress from a0 to its 

final value of c, as shown in figure 3-8. The appropriate tangential force distribution is

P + SP =
R \(a2 — r 2)1/ 2 +  Kz(c2 — r 2)1/2 , 0 < r < c 

R \(a2 — r 2)1/ 2 , c < r < a.

Since slip is occurring in the annulus c < r < a we apply the slip condition

(3.50)

\P +  6P\ =  f ( N  +  6N)

within this region giving R\  as

(3.51)

K \  =  -
2/ (3.52)

7T°~RB

where in this case, the sign is taken to be negative so that the tangential force opposes 

the direction of slip. Note that the solution obtained in this manner does not precisely 

satisfy the condition that the slip opposes the force causing it, but the deviation is very
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small as discussed in section (1.2.7).

In the region 0 < r < c we apply the no-slip condition of no relative displacement 

between the two surfaces. The displacements due to the distribution (3.50) are

7T2
ur (x,y)  = uQ +  6u0 +  —  {2B  +  C) {K\a2 +  AT2c2} -

t t ( K i  + K 2) {(4B  + C )x 2 + (4B  +  3C )y2} 
lo
7T2

vr (x,y)  =  — (K 1 + K 2)Cxy.  (3.53)

Equating coefficients with the displacement at the end of the initial loading (3.16), we 

obtain the equations

* 1 +  *»  =  * °  =  - , u ^  +  c k  (3'54)

and

2 2 
Uq -|—— (2B  +  C)Kq(Iq =  Uq -|- 8uq -|—— (2B  -(- C ) {A \0? +  A 2C2} . (3.55)

Substituting the value (3.52) we obtain, from equation (3.54),

V -  2f  4u°
2 7r2AA ir2R(2B  +  C)w0' 1 j

The values of A\ and K 2 substituted into the equation (3.55) gives the radius of slip as

4  =  x (3.57)
«o “ O - ^ - ) f w 0

Thus within the circle 0 < r < c there is no relative displacement of the two surfaces 

and we have a ‘stick’ region. Within the annulus c < r < a there occurs a region in 

which the tangential force equals the coefficient of friction times the normal force and 

slip is occurring.

When the displacement increment reaches its maximum value of 6u0 = the radius 

of slip is at its minimum value denoted
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cl _ K  -  ( ^ )  (3 58,
a2 "  +  «o -  W /» 0  • 1 }

The final displacement on the stick region 0 < r < c* at the end of phase 1 is given by

< ( z , v )  =  u0 +  6ul +  j { 2 B  +  C ) { K ia l +  K 2cl}  

-  1̂ ( K 1 +  K 2) {(4£ +  C ) x 2 +  (4B  +  3C) y 2} 
lo

K(x>y) = y ( A"i +  K 2)Cxy.  (3.59)

To calculate the displacement on the annulus c* < r < a* we must sum the displace­

ments within the loaded circle r  < a* due to the K i ( a 2 — r 2)1/ 2 term, calculated from 

equation (3.8), and the displacements due to the K 2(c1 — r 2)1/2 term outside the loaded 

region, calculated from equation (3.10), to obtain

2 2

u‘r (x,y)  =  Uo + Su'0 + ^ - ( 2B  + C ) K 1a l - ~ K 1 {(4B + C )x 2 + (4B + 3C)y2}
4 lb

+ l K 2 {4(2B + C ) c l - ( 4 B  + C )x 2 - ( 4 B  + 3C)y2} sin’ 1 (c ./r)

+ *-K2c.(r2 - c 2, Y l2{ i B  + ^

vr (x,y)  = Y K i C x y + j K 2^ ^ - { r 4 sin '(c*Ir) + c*(2c l ~ r 2)(r2 - c l ) 1/2} .

(3.60)

P h a se  2 : U n lo ad in g  w ith  co u n te rslip

During the unloading of phase 2, the contact radius reduces from a* to a0 and a radius 

of counterslip, th a t is slip in the opposite sense encountered in phase 1, progresses 

from a* to 60. Figure 3-9 shows the radius of counterslip during phase 2. The normal 

distribution is again given by (3.11) and the tangential distribution is of the form
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fr

i i

a

1 1 l
fro a _ , a o

Figure 3-9: Phase 2 : Unloading with counterslip

P + hP =

Ki(a2 -  r 2)1/2 +  A'2(c2 -  r 2)1/2 +  /v3(fr2 -  r 2)1/2 , 0 < r < c*

K 1(a2 -  r 2)1/2 +  A'3(62 -  r 2)1/2 , c* < r < b (3.61)

Ki(a2 — r2)1/ 2 , b < r < a.

Again, slip only occurs on an annulus, in this case b < r < a shown in figure 3-10, and 

therefore the value of R\  which satisfies the condition (1.53) and opposes the direction 

of slip is

2/
tt2R B '

The displacement on the inner circle 0 < r < c* is given by

(3.62)

ur(x iV) — uo T buo -|—— (2B  +  C) {Kid2 4- K 2c2 "b ^ 3fr2}

— — (A'i 4- A 2 4- A 3) {(4B  4- C )x 2 -f (4B  +  3C)y2}

7T̂
(a, y) = — (A'i +  K 2 4- K 3)Cxy. (3.63)

Matching terms of the above with the displacements at the end of phase 1 (3.53), we 

obtain

IU +  K 2 +  A'3 =  K[ +  A'', (3.64)

where K[ and K '2 are the values of these constants during phase 1, given by equa-
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Figure 3-10: The annulus c„ < r < b 

tions (3.52) and (3.56), and the constant terms equate to

2
Uq + 6uq +  —  {2B + C) {Aia2 + A2c* + A362} =

2
u0 +  Sul  ̂ -(2  +  [K[al  A ''^ } . (3.65)

On the annulus c» < r < b, the displacement due to the distribution (3.61) is made up 

of contributions from each of the three terms. The two terms Ky and K 3 contribute 

displacements inside the loaded circle r < b of the form given by equation (3.8). The 

remaining term I i2 contributes displacements external to the loaded region of the form 

of equation (3.10). Thus the total displacements are

2
ur{x->y) =  w0 +  6uo +  — (2B T C) { A }4

2

-  ^ ( A ’, +  K 3){(4B +  C V  +  (4 +  3C)t,2}

+  *-K2{4(2 B + C)cl -(4 (4 3 sin " ‘ (c ./r)
O
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3*2   y 2
x> + 3y2 + 2c l ' X V(S*)]}

vr (x,y)  = —  (K 1 + K 3)Cxy
o

7r Cxy
+  j K 2~ ^ ~  { r 4 sin 1(c*/t') +  c*(2c* — r 2) ( r2 — c^)1/2| . (3.66)

Equating coefficients of the above with the displacements at the end of phase 1, we 

obtain the system of equations

K 2 = K'2

K i T- Ii 3 = K[
2 2 

Uq +  Suo -f- —  { R i d 2 +  K^b2} =  Uq -f- Suq — (2B +  C)K[a2. (3.67)

Thus we have five equations for the remaining unknowns iif2, K 3 and b. However, by 

substituting 1sT2 =  K 2 into equations (3.64) and (3.65), we see tha t they are equivalent 

to two of the equations in (3.67) leaving only three equations for the three unknowns.

Using the value K i  from (3.62) and solving the above system, we obtain the solution as

2/
K 1 =  J

Kn  =

ir2R B  
2 /  4 Uq

7t2R B  tt2R(2B  +  C)w0

A' 3 =  ~ ^ W b - <3-68)

From these values and equation (3.67), the radius of counterslip is found to be

b2 _  6wq + 6w*0 B  . .
2^o +  (2B  + C ) f  wo {6U° “  K )  ’ (3'69)

At the end of phase 2, the values of 6u0 and 6w0 are zero, meaning tha t the above

counterslip has reached a value b0 of

^0 =  j  , ^ 0  _  BSu '0 
al 2wq (2B  + C ) f w Q

Comparing the above with equation (3.58) we see th a t
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c

i 1

a

\ 11 1 1 1 11 1 11 1
c_, bo a_* ao

Figure 3-11: Phase 3 : Unloading with counterslip

b2 r 2°o ^ c*
2 2a0 o-o

(3.71)

showing that the radius of counterslip does not relieve all of the phase 1 slip before the 

end of this phase.

P h ase  3 : U nloading w ith  coun terslip

During phase 3 the contact area reduces from a0 to a_„, as shown in figure 3-11. The 

radius of counterslip started during phase 2 continues from 60 and it is necessary to 

determine whether or not this counterslip reaches the radius c* before the end of this 

phase. To do this, we continue the tangential force distribution

A'i(a2 — r 2)1/2 +  /v2(c2 — r 2)1/ 2 +  I i3(b2 — r 2)1/2 , 0 < r < c*

P  -f SP =  < / ^ ( a 2 — r 2)1/2 +  K 3(b2 — r 2)1/2 , c* < r < b (3.72)

A'i(a2 — r 2)1/2 , b < r < a

with constants

K  i 

K 2

k 3

2/
TT'2 R B  

2/ 4wr
tt2A 5  tt2A ( 2 5  +  C)u;o  

4 /
ir*RB

and the radius of counterslip continues from b0 as

(3.73)
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&2 _  1 , Swo +  8w*0 , B  f M /o ^
" 2 w 0 +  (2B +  O M ( ° "  o)■ (3'7 }

Equating the above equation for &o/a2 with the equation for c2/ ^  (3.58), we calculate 

th a t b will pass c* for values of u0 and w0 satisfying

Up +  m $ r )  fwo _  Sup + (2|±g) fSwp
«o -  (2f s £) fw0 Sul -  fSwl'

The contact radius at which this occurs is denoted ax as shown in figure 3-11. Here we

will consider only the case in which b passes c* since the case when b does not reach c*

is very similar and the eventual linearised cycles, derived in section (3.6), are the same

to within a constant displacement.

Substituting b = c* into equation (3.72), we obtain the distribution

K i(a \  -  r 2)1/2 +  (Ar2 +  A'3)(c2 -  r 2)1/2 , 0 < r < c*
Pq bP — < (3.76)

K i { a l ~ r 2) 1/2 , c * < r < a x

where

Ki

A 2 +  K 3

2/
7r2R B  

2/ 4 Ur

7t2R B  tv2R{2B + C ) w 0
(3.77)

At this point, the slip of phase 1 has been totally relieved by the counterslip and so the 

radius c* will play no further part. Continuing the unloading, the slip continues from 

c* and progresses to c_* with force distribution

P + 6P =  {
K i ( a 2 — r 2) 1/2 +  K 2{c2 — r2)1!2 , 0 < r < c

K i ( a 2 — r 2)1/ 2 , c < r < a .

The slip condition requires a value for Â i of

(3.78)

K i  =
2/

7t2R B

By matching the displacements with those at the end of phase 2 we obtain

(3.79)
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1 1

a |b

i l l1 1 1I I I  l
c_* 6* c* br a_* a0

Figure 3-12: Phases 4 o,nd 5 : Re-loading with slip 

2/A , =  -
4 v,q

tt2AA ~~ ir2R('2B + C)w0
(3.80)

and the radius of slip is

+  (U- u r ) / ^ wo 
ao «o +  /w 0

(3.81)

At the end of this phase, when the unloading is complete, the radius of slip has reached 

its minimum value of

k + r a c )  _  1 _ - -U ■ V 2B______
<*o “ o +  ( ^ f j ^ )  /«"o

(3.82)

and the final displacements on c* < r < a are

ur *(x,y) = u0 +  6u0* +  ^ ( 2 A  +  C)Ar! a ^

-  y^A', {(4 B + C)x2+ (4 3

+ l l <2{4(2 B  +  C)c\ - ( 4  -  (4 +  3 sin"’ (c ./r)
O

+  ^A ’2c. (r2 — c^)1/214B +  ^ z* +  31/2 +  2 c*
2 2 g -  y

7*2

vr *(z>y) =  y A \ C z y  + A 2^ ^  {r4 sin 1(c„./r) +  c*(2cj -  r 2) (r2 -  cj)1/2} .

(3.83)

Phases 4 and  5 : R eload ing  w ith  coun terslip

Phases 4 and 5 cover the displacement from Su0 = 6uq* to 6u0 = bu*Q and may be
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considered together. Figure 3-12 shows the cross-section of the contact area during 

these phases. A radius of counterslip b s tarts a t r = a_* and progresses to r — 6* a t the 

end of loading. The tangential force is of the form

P  + 6P  =

K i ( a 2 -  r 2)1/2 +  K 2(c2_m -  r 2) 1/2 +  K 3(b2 -  r 2) 1/2 , 0 < r < c_.

K i(a 2 -  r 2)1/2 +  K 3(b2 — r 2)1/ 2 

K i(a 2 — r 2)1/ 2

, c_* < r < b

, b < r < a.

(3.84)

Slip is occurring on the annulus b < r < a and the value of A^ satisfying the slip 

condition (1.53) and opposing the direction of slip is

K x =  -
2/

tt2R B '

The displacements on the annulus c_* < r < b are given by

(3.85)

ur{x iy) — “h H— (2i? +  C) {K \ a 2 -f- K 3b2}

-  +  K 3) {(45 +  C ) x 2 +  (45  +  3C )y2}

+ *-K2 {4(25 +  c y _ ,  -  (4 5  +  C )x 2 -  (45  +  3C )y2} sin“ 1(c_ ./r)

+  -zK2C-*(r2 -  c2 4 5  +  ^ x 2 + 3y2 + 2 c l , ' X V

71

Vr(x,y) = -g-fA'i +  A' 3)Cxy

+  j K 2^ ~  { r4 sin_1(c_*/r) +  c_*(2c2* -  r2)(r2 -  c2_J 1/2} . (3.86)

Matching the displacements due to the above distribution with those at the end of 

phase 3, we obtain the equations

K 2

A"i -f I( 3 =  K[
7T

U q  +  6u o +  —  {K\d 2 +  A 362}
7T

(3.87)
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Figure 3-13: Phases 6 and 7 : Re-loading with counterslip

Solving the above system we obtain the solution

K\ = 

I<2 = 

K 3 =

and the radius of counterslip is

2/
7r25 5  

2/ 4 u0
7t2R B  tt2R{2B + C) w0
4 f

7t2RB
(3.88)

b2 — 6wq B
(Su o +  •

2tu0 (25 +  C ) f w 0

At the end of phase 5, the final radius of counterslip is given by

bl 2 B 6u*0
a2 ~  (25 +  C ) f  wo

which we note lies between c_* and c,.

(3.89)

(3.90)

P hases  6 and  7 : U nloading  w ith  coun terslip

During phases 6 and 7 the displacement is unloaded from 6u0 = bu*Q to Su0 = Suq* and 

the contact radius progresses from a* to a_*. A radius of slip b progresses from a* to 

at the end of the loading as shown in figure 3-13. The tangential distribution is of the 

form
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P  +  SP =

K ^ a 2 - r 2y i 2 + K 2(c2_ , - r 2y i 2

+ K 3(bl — r 2)1/2 +  K i(b 2 — r 2)1/2 , 0 < r < c_*

K i(a 2 -  r 2)1/2 +  K 3{bl -  r 2)1/2 +  K 4{b2 -  r 2)1/2 , c_* < r < b

K i (a 2 — r 2)1/2 +  K 4(b2 — r2)1!2

K \(a 2 — r 2)1/2 

The slip condition on b < r < a requires tha t we have

,6 < r < a.

(3.91)

P \  =
2/

ir2R B '

The displacements caused by this distribution on c_* < r < 6* are

(3.92)

u r{^c ' , y )  — U q - \ - 6 vlq-\— — {2B +  O )  { l i \cP  +  A 362 -+■ K 4b2}

-  ^ ( K i  +  I i 3 +  K<) {(4B +  C ) x 2 +  (4B  +  3C ) y 2} 

+  ~ K 2 {4(2B +  C)c2_,  -  (4B  +  C ) x 2 -  (4B  +  3C)t/2} sin’ V . / r )

+ —K 2c_*(r — c_ x * + 3y>+ 2c l l *2 - y 2)]}

(Ki  +  K 3)Cxy

7r Cxy
+  7 K 2- ^ - { r 4 sm 1{ c ^ / r )  +  c_*(2ci* -  r 2) ( r2 -  c2 J 1/2} . (3.93)

Matching terms of the above displacements with the displacements at the end of phase 5, 

we obtain the solution as

A7

K 2

k 3

2/
7r2R B  

2/ 4u(
ir2R B  tt2R{2B + C ) w 0 
4 /  

tt2R B
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=  -  J s  <3-94>

and the radius of slip is

62 _  i . ^ O  +  ^ o  , B  (z z +\
~  — 1 H x h / o r  i r>\ f— (' 0 ~ uo)• (3.95)Go 2^o (2B + C ) f w 0

At the end of the loading, the radius of counterslip is at its minimum value of

62 * 2 B 8u*0
1%  ~ (2B + C ) f w 0 ( ' }

which we note is equal to the radius of slip 6* a t the end of phase 5.

Thus all of the slip which occurred in phases 4 and 5 has been relieved in phases 6 

and 7. Consequently, the spheres are under the same conditions as they were a t the end 

of phase 4. Phases 4 /5  and 6/7 may now be repeated, thereby establishing the stable 

cycle.

3 .4 .3  S lid in g  O rig in a lly , F u r th e r  S lip  - 90 > 6C and 6 > 9C

We now turn attention to consider the incremental problem imposed on the initial state 

in which there was sliding originally. Here we examine the conditions under which 

further slip may occur for the case in which there was sliding in the initial deformation. 

At the end of the initial deformation, the surface displacements were

2 2 

ur {x,y)  =  u0 + ^ { 2 B  + C ) K aa l - ^ - K 0 { ( i B  + C ) x '1 + ( i B  + ZC)y'2}

vr (x,y)  = ^T-KoCxy. (3.97)
O

P h ase 1 : Sliding continues

The slip condition (3.35) shows tha t during phase 1, when the radius of contact increases

from a0 to  a* (see figure 3-14), sliding must continue with force distribution

P  +  6P  = K 1(a2 -  r 2) 1/2. (3.98)
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a ;

a_, a0

Figure 3-14: Phase 1 : Loading, sliding continues

c

a

0 c_„ a0

Figure 3-15: Phases 2 and 3 : Unloading with slip 

To satisfy the slip condition, the force constant must be

K -  2 f
1 7r2R B '

The displacements in 0 < r < a* a t the end of phase 1 are

(3.99)

2 2 

u'r (x,y) = Uo + 6u '0 + ~ ( 2 B + C ) K 1a l - ^ K l {(4B + C ) x 2 +  (

K(x,y) = Y KlCxy-

P hases 2 and  3 : U nloading w ith  slip

(3.100)

Phases 2 and 3 consist of an unloading from 6u0 = 6uq to 6u0 = Suq* . A radius of slip 

c is assumed to progress from r = a* to r = c_* as shown in figure 3-15. The force 

distribution is
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P  +  6P  = < (3.101)
K i ( a 2 — r 2) 1!2 +  A'2(c2 — r 2) 1̂ 2 , 0 < r < c

K i (a 2 — r 2) 1!2 , c < r < a.

Applying the slip condition (1.53) on the annulus c < r  < a, we obtain the value of Ki

as

K  i =
2/

tr2R B '

The displacements on the stick region 0 < r < c are

(3.102)

ur(x,y)  = U q  +  SUq -(- —  (2J5 +  C) {A \U2 +  A 2C2}

-  {(4B  +  C )x 2 +  (4B  +  3C)y2}
lb

7r
vr(x,y)  =  — (K l + K 2)Cxy (3.103)

and matching the displacements in the usual way we obtain

K* = - 4/
7r2R B

and the radius of slip as

(3.104)

a2
=  1 +

Sw0 +  6u>q + B
2Wq ' (2B + C ) f w 0

The minimum value of the radius of slip is

(6u0 -  6u*0), (3.105)

- 1  2B  *
(2B  + C ) f w 0 U°'

P hases 4 and 5 : R eloading w ith  counterslip

(3.106)

Phases 4 and 5 cover the displacement from Su0 = Suq* to  Su0 = Suq. A  radius of 

counterslip progresses from r = a_* to r = 6* as shown in figure 3-16. The appropriate 

force distribution is
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b

a

1 1 1
c_* 6* a_, o-o a*

Figure 3-16: Phases 4 ond 5 : Reloading with counterslip

P +  6P  =

R \ (a 2 — r 2y i 2 +  K 2(c2_„ — r2) 1̂ 2 +  Ji3(&2 — r 2)1/2 , 0 < r < c_*

K\(a2 — r2y i 2 -f- K 3(b2 — r2)1̂ 2 , c_* < r < b

R \ (a 2 — r 2)1/2 , b < r < a.

(3.107)

The value of R\  satisfying the slip condition is

2/K x =  - 7T2RB

and the displacements due to the distribution on the central region 0 < r < c_» are

(3.108)

ur(x,y) = u0 +  6u0* +  — (2B +  C) {R \a 2 + K 2c2_m +  K 3b2}
2

-  ~ ( K 1 + I( 2 + K 3){(45 +  (45 +  3 . ( 3 . 1 0 9 )

Matching with those at the end of phase 3 we obtain

R  i T R  3

Uq +  Suo -\—— (2B  +  C) {K \a2 +  R 3b2} 
4 uo +  S u f  +  - j  (25  +  C )K [a lm.

(3.110)

Solving the above we obtain the solution as
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Figure 3-17: Phase 1 : Loading without slip

K\  =  —

K o  =  -

tr2RB  
4 /  

ir2R B

*3 =  ^  (3 - in )

with radius of counterslip given by

b^ = l  + Sw2 - 6u ± _  
a-i 2w0 (2 B  +  C ) fw  0

The final value of the radius of counterslip is given by

6* 2Bfv j
(2B + C ) f w 0

which is equal to c_* at the end of phases 2 and 3 thereby establishing the stable cycle.

3 .4 .4  S lid in g  O rig in a lly , N o  F u r th e r  S lip  - 0o > 9C and 6 < 0C

The final case which we have to consider is that in which there was sliding originally 

followed by no further slip. The normal force distribution remains as (3.11) and the 

displacement at the end of the initial stage is given by (3.14).

P h ase  1 : Loading w ithou t slip

The contact radius is shown in figure 3-17 progressing from r = a0 to r = a*. The 

no-slip solution is of the same form as tha t used in section (3.4.2)
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1 Ii

a

i i1 I I I
a _ , a0

Figure 3-18: Phase 2 : Unloading, reversal of phase 1

P + SP =
K\(a2 — r2)1̂ 2 +  I i2(al — r 2)1/2 , 0 < r < a0

Ki(a2 -  r 2)1/2 , a0 < r < a.

The displacements caused by the above distribution on the region 0 < r < a0 are

3.114)

ur{x,y)  = Uq -j- 6uq +  — (2B +  C ) {K\a2 +  K^afy

-  +  K 2) {(4B +  C)x2 +  (4B  +  3C)y2}

vr («,y) =  — (Ifi + K 2)Cxy (3.115)

and matching terms of the above with the displacements at the end of the initial sliding 

phase (3.26) we obtain the constants

K  i 

K 2

6u0
ir2R(2B  +  C) 6w0

4 6u0 2 /
tt2R(2B + C) 6 w 0 tr2R B  

P h ase  2 : U nloading , rev ersa l o f phase  1

(3.116)

Since no slip occurred during phase 1, the unloading of phase 2 is simply reversed along 

the path of loading, exactly as was seen in section (3.4.1).

P h ase  3 : U nloading w ith  sliding

During phase 3, the condition (3.35) requires that sliding occurs on the entire contact
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p

a

1 1 1
0 c~* «-* «o a*

Figure 3-19: Phase 3 : unloading with sliding

c _ * a _ . a0

Figure 3-20: Phases 4 and 5 : Reloading without slip

area. As was the case in section (3.4.3), sliding must continue giving a solution of the 

form

P + 6P = K\{a2 - r 2)1' 2. (3.117)

Note that sliding only occurs at this stage in attaining the stable cycle. Once the cycle 

is established, there will be no further sliding.

P hases 4 and  5 : R eloading w ith o u t slip

Reloading occurs during phase 4 and 5, shown in figure 3-20, with a force distribution 

of the form

P + 6P =
Ki{a2 — r 2)1/2 +  / i 2( a ^  — r 2)1/2 , 0 < r < a_* 

Ki{a2 — r 2)1/2 , a_* < r < a.
(3.118)

Matching the displacement terms in the usual way, we obtain the force constants A'i 

and K-2 as
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_  4 /  8uq +  8uq
1 n 2R{2B + C) \ 6wo + 6wZ

V  = _______ 4 ( _^o+_^o_X _  2 /
tt2A (25  +  C) \ 6w0 + SwZJ tt2R B ’ }

Noting th a t any subsequent loading may be reversed along this path back to  the begin­

ning of phase 4, we conclude th a t this establishes the stable cycle.

3.5 Total Forces on the Contact Area

Now tha t the actual force distributions have been established for each stable cycle, we 

calculate the resultant total forces at each stage of the cycles. The total force due to  a 

distribution P ( x , y ) acting over a region % is given by the integral of P (x ,y )  over 7Z, 

written as

P  = [  P ( x , y ) d U .  (3.120)
Jn

When the force distribution is of the general Hertzian form

P (x ,y )  = K ( a 2 - r 2)1/ 2, (3.121)

K  being the usual force constant, then the region 1Z is the circular contact region of 

radius a and the above integral may be written in plane-polar coordinates (r, 6) as

P  =  f  (a2 — r2y t 2r d r  d0. (3.122)
Jr = 0

This is easily evaluated to give the to tal force in term s of a and K  as

P  = ? ttA V . (3.123)

Consider now some of the force distributions arising from the previous sections. The

total force due to the initial loading in which sliding did not originally occur may be

calculated by substituting a0 and K 0 from equation (3.16) into equation (3.123) to 

obtain
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*  =  i r f - * = - 3 (3' 124)

as the total tangential force in the x-direction. Similarly, the total force due to the 

initial loading during which sliding did occur is

T 0 = 2r K 0al = - ^ a ° .  (3.125)

In each of the above cases the total normal force is the same and may be found from 

the distribution (3.11) as

^ = 3S r  ^

The total forces in the incremental problem may be calculated by summing equa­

tion (3.123) for each of the component force distributions associated with the constants 

Ki,  K 2, K 3, etc. Here we list the total forces during the four stable cycles:

3 .5 .1  N o  S lid in g  O r ig in a lly  

Stick C ycle, 9 < 6C

The stick cycle is described by phases 4 and 5 in section (3.4.2). The force distribution 

during these phases is given by equation (3.42) with constants of equation (3.47). The 

total force may be calculated using equation (3.123) and the force increment found 

by subtracting the total initial force (3.124). Thus the total tangential force in the 

^-direction at any point of the cycle is given by

t 2R{2B  +  C) 
_  (  V  , 4 w 0

8uq +  Suq \  a
6w0 -f SwZ J a

\ i t2R B +

+

tt2R(2B + C)w0 
Suq -j- Suq

_ir2R(2B  +  C) \ 8w0 8wq J n2R B ,+ 2/ &— * 
al +

Aur
tt2R(2B + C)w0

(3.127)
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Slip C ycle, 9 > 9C

The slip cycle in this case is described by phases 4, 5, 6 and 7 of section (3.4.2). Using 

the force distributions (3.84) and (3.91) and the constants given by equations (3.88) 

and (3.94) we obtain the to tal incremental force during phases 4 and 5 as

I p  = V  V  4u0 V 3
3 " {  7T*RBa% \ w 2R B  tt2R{2B + C )J  a30

4 /  b3 4u0
4“ TTTT7 5" 4“ir2RBa% ir2R(2B + C)w 0

(3.128)

and during phases 6 and 7 the total incremental force is

—  _  2?r 3 /  2 /  a3 ( 2f  4u0 \
3 a° 1 7v2R B a 3 \ t 2R B  ir2R(2B + C)J

c3
3 ° \ i r 2R B a 3 \ t 2R B  tt2R(2B + C )J  a3 

, 4 /  b3 4 /  b3 t 4uQ
» OT-kj^Q o ¥-k n Q I | . (3.129)

7r2R B a 3 ir2R B  a3 7r2R ( 2B  +  C)w0

3 .5 .2  S lid in g  O r ig in a l ly  

S tick  C ycle , 9 < 9C

The stick cycle after initial sliding is described in section (3.4.4) and the total incre­

mental force during the stable cycle phases 4 and 5 may be calculated as

—  _  27t 3 f  4 /  Su0 +  K  A a3
3 a° I  tt2R ( 2B  +  C) \ S w 0 +  8w*0 J a3Q

4 (  8uq +  8uq ^ 2 /
n 2R(2B  +  C) \ 8wq + SwqJ 7t2RB_

Slip C ycle , 9 > 9 C

Phases 2 and 3 of section (3.4.3) have a total incremental force of

TP -  — n* f  2f  0,3 -  4/  c3 | 2/  \  ro nonx
3 0 17t2R B  a30 tt2R B  a% ir2R B  J ( • )

During phases 4 and 5 of the stable cycle, the to tal incremental force is given by
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^  2tt 3 f 2 f a 3 4 /  d .  4 /  b3 2 /  1
3 a° {  a% +  ir2R B  a30 + ir2R B j  ' ^

3 .5 .3  N o rm a l Forces

Throughout all the above cases the incremental normal force has the form given by 

equation (3.28). Therefore, the to tal normal force may be calculated as

4a3
N  + 6 N = 3^ .  (3-133)

Subtracting the initial normal force (3.11) and making use of equations (3.12) and (3.29) 

we obtain the total incremental force as

6N  =  |( w 0 +  Sw0)3/2 -  Wp/2} . (3.134)

3.6 Linearisation o f Total Forces

Since the incremental deformation is assumed to be infinitesimal in the sense th a t it 

is much smaller than the initial loading, it is sufficient to consider the linearised cy­

cles. In this section, the total forces will be expanded to first order in the incremental 

quantities 6u0 and SwQ.

3 .6 .1  N o rm a l Forces

The total normal force increment during all the incremental deformations is given by 

equation (3.133). The incremental Hertz radius is given by equation (3.29) and we may 

write

S - ( 5 f - ( » S ) "
Expanding to first order in the infinitesimal quantity 6w0 we obtain

a 3Sw0 , .
4  =  1 +  ^  +  " '  (3' 136)

where the dots (• • •) denote terms of higher order. Substituting the above into equa­

tion (3.133) and subtracting the initial to tal normal force N 0 (3.126), we obtain the

3.5. NORMAL FORCES 98



C h a p t e r  3 T h e  O b l i q u e  C o n t a c t  o f  T w o  E l a s t i c  S p h e r e s  w i t h  F r i c t i o n

linearised normal force-displacement relationship as

6N = 2('RW^ 1'2 Sw0. (3.137)
7TB

3 .6 .2  T an gen tia l F orces

The tangential incremental forces may be linearised as follows. As an example we 

consider the stable cycle of slip arising from section (3.4.2) in which no sliding occurred 

originally followed by further slip. The radii a, 6, c_* etc. are given by equations (3.29), 

(3.95) and (3.82) in term s of the increments 6u0 and 6w0 as

a_ _  i  +  Swo (3.138)
a? “ o

a% ~  Uo + ( ^ ) f m

~2 =  ! +  ~  Sw° -  m  -Br T f  (Su0 +  K )  • (3.140)ag 2u;0 [2B  +  C ) f w 0

We write the cubed radii in terms of the known squared values and expand the above

expressions to first order in 6w0 or 6u0 to obtain

a3 ( a2\ 3/2 3 Sw0 , .
-  U )  _  ~2wq ' (3 -141)

al \ al )  2w0 +  2 ( ^ § ^ )  f w 0

b3 f b 2\ m  n S(Sw0 - 6w*) SB  f
T  =  “ 9 = 1  +  —----:--------— -  7777777----777-7--- ( ^ 0  +  <K) +  " '  (3.143)a0 \ a 0/  4ta0 2(2 B-\ -C) fwo

where the dots (• • •) denote higher order terms. Substituting the above linearised values 

into the total force expression (3.128), and making use of the relationships (3.48), we 

obtain the linearised incremental force as

—  27rao f 6 , . S f 6w *0
~ S ~  { ir2R{2B + C )w 0( U° +  U°̂  it2R B w 0

+  ( M -  +  )  f 3K  +  3 ( * W ) f 6w l \  1
+  \ t t 2R B  +  ir2R ( 2B  +  C ) w J  \ 2«0 +  2 (2 f± £ ) f w 0 J * 1 * J
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This same result may be obtained for phase 6 and 7 of the same cycle and also from 

the results of section (3.4.1) in which no further slip occurred.

Now consider the cases in which sliding occurred originally. Sections (3.4.3) and (3.4.4) 

give the stable cycles for no further slip and further slip respectively and the total force 

is given by equation (3.132). Expanding the radii to first order gives the linearised force, 

in both cases of further slip or no further slip, as

j -  _  2>ra|r  6 , c ,  _ 3 / _ K ,  . ,
3 1 v 2R(2B + C)wa U * 2R B  w0 b  '

Examining the above equations it can be seen th a t the coefficients of 6u0 are the same 

in each case, the other term s being constant. Therefore we may regard the above 

equations as equivalent force-displacement relationships, each displaced from the others 

by a constant amount. The incremental tangential force may be written in terms of the 

tangential displacement as

^  4 (Rwoy / 2
6P = - *W + c ) Su° (3-146)

and the incremental normal force we recall is given by

SN  =  2 (t o °)‘/2 6w0. (3.147)
tvB

It is sufficient to consider the increments (3.146) and (3.147) regardless of whether or

not sliding originally took place, and therefore the eventual linearised stable cycles may

be regarded as independent of the initial state.

We also note that, to first order, there is no frictional energy loss during a cycle and 

consequently the incremental motion dissipates no energy.

3.7 Extension to Three-Dim ensions

For the two-dimensional problems considered so far, the incremental displacement of the 

lower sphere of amount (6u0, 0, — 6w0) is always in the same plane as the initial displace­
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ment (u0,Q,—w0). The general three-dimensional problem would have an initial dis­

placement of (u0, v0, —w0) followed by an incremental displacement of (£w0, 6v0, — 8w0). 

However, without loss of generality, we may take the increment to be (<!mo, 0, — 8w0), 

the ^-component being zero.

Following the method used to find the initial force constant (3.15), we find the initial 

force distributions in the x- and ^/-directions respectively as

=  - ^ ( 2 * + c ) Wo(a° - r2)1/2- ( 3 -1 4 8 )

The normal force remains as N 0 in equation (3.11). The magnitude of the tangential 

force is \ /P£  +  Q\  and the condition for no slip may be written as

\ J p $ + Ql < f N o (3.149)

which is satisfied when

4  +  4  (3 '15°)wo \  2B J

As was seen in the two-dimensional case, this condition is independent of position on the 

contact area meaning tha t if slip does occur it will be in the form of sliding. Therefore, 

when the condition (3.149) is violated, the sliding solution may be calculated as

D u °  /  _2 „ 2 \ l / 2

o( 1 ° ^

Q°(r) =  - J L  /  > ° ~ r2>i/2- (3-151)7T2R B  Uq -(- Vq

with the normal force distribution remaining as in equation (3.11).

Consider now the incremental deformation (£i/0, 0, — <5>iu0) which is purely in the in­

direction. If slip were to occur at any point on the contact area, Admontons’ Law 

would require
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(P  +  SP )2 +  (Q 4- SQ)2 = f 2(N  +  S N )2 (3.152)

at th a t point. However, it is not possible to obtain analytic solutions of the analogous 

form to those for the two-dimensional case by matching displacement terms in the slip 

and stick regions because any solution obtained in this way will violate the condition 

th a t slip opposes the direction of the force causing it.

In the two-dimensional case, we saw tha t the eventual linearised cycles were independent 

of the initial state and therefore it is reasonable to assume th a t in the three-dimensional 

case we will eventually reach a stable cycle of slip or stick similar to those we have 

already seen. Therefore, if we assume that the stable cycle has been established we 

must represent the force distributions on the contact area as a combination of unknown 

fixed forces P (r ) in the tangential ar-direction and Q(r) in the tangential ^-direction, 

together with oscillating forces.

3 .7 .1  A  3D  S tick  C y c le

When the stable cycle established is a stick cycle, such as those seen in sections (3.4.1) 

and (3.4.4), the form of force distribution during both loading and unloading phases is

P  + SP =
P (r) +  K i(a 2 — r 2)1/2 +  Ar2(a2 * — r 2)1/2 , 0 < r < a_*

K \(a 2 — r 2y i 2 , < r < a.

Q +  £>Q — Q- (3.153)

This gives rise to displacements on 0 < r < a_* of

ur(x,y) = ur(x,y)  +  6u*Q +  Su0 +  — (2P +  C) { R \ a 2 +  K 2a2_it}

+ ~ ( K ,  +  K 2) { (45  +  C )x 2 +  (45  +  3 C V }  
lo

7r2
vr(x,y) = vr(x,y)  + — (K 1 + K 2)Cxy  (3.154)

where ur (x , y) and vr{x, y) are the displacements due to the unknown force distributions 

P (r)  and Q(r). Stick occurs everywhere on the contact area and so the displacements
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ur and vr must be constant. Equating the displacements a t the beginning, the end and 

an intermediate point on this unloading cycle and solving for K \  and K 2, we obtain 

the same values as in equations (3.47) and (3.119). Since no slip has taken place, this 

loading is reversible thus establishing a stable stick cycle.

3 .7 .2  A  3D  S lip  C y c le

During a stable slip cycle, such as those seen in sections (3.4.2) and (3.4.3) a radius 

of slip c oscillates between a fixed value and the contact area radius a. The force 

distribution during the unloading phases of the cycle will be

P + 6P  =
P(r)  +  K[{a2 — r 2)1//2 +  K 2(c2 — r 2) 1!2 , 0 < r < c 

K[{a2 — r 2)1/ 2 , c < r < a.

(3.155)

giving displacements on 0 < r < c of

ur (x,y)  = ur (x,y)  +  6u0 +  — (2B  +  C) {K[a2 +  A^c2}

+  ^ ( K [  +  K'2) {(4B  +  C )x 2 +  (4B  +  3C)y2}

7r2
vr (x,y) = vr (x,y)  +  — (K[ +  K'2)Cxy.  (3.156)

The slip condition on c < r < a requires a value for K[ of

A~ =  <3-157>

giving K '2 as

=  (3-l58)

During the reloading phase the force distribution will be of the form
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P + 6P  =

P(r)  +  Ki{a2 — r 2)1/2 +  K 2{c2_^ — r 2)1/2 +  Kz(b2 — r2) 1̂ 2 , 0 < r < c_*

K 1(a2 -  r 2)1/2 +  K 3(b2 -  r 2)1/2 , c_* < r < b

K \ (a 2 — r2) 1!2 , b < r < a

Q  +  bQ — Q (3.159)

with displacements

ur{x iV) — ur ( x , y ) 6u o — (2B C )  {K ia 2 1( 2^ ^ K 3b2)

+  ~ ( K 1 +  K 2 +  K 3) {(4B  +  C )x 2 + (4B +  3C)y2} 
lo

7r2
vr (x,y)  = vr (x,y)  +  — (A"i +  K 2 +  K 3)Cxy. (3.160)

The slip condition on b < r < a gives

K 1 =  - 2/ (3.161)
7r2R B

Equating these displacements at each end of these loading cycles with the displace­

ments at an intermediate point gives values for K 1, K 2 and K 3 the same as those in 

section (3.4.3). Similary, we obtain the force constants for the varying terms of the 

stable cycle established in section (3.4.2).

An identical linearisation process as seen in section (3.6) for the two-dimensional cases 

may be applied to the above cycles to  obtain the incremental tangential forces gener­

alised to three-dimensions as

=
tt(2 B  + C) 
4(R w oy /2 
ir(2B  + C)

and the incremental normal force we recall is given by

SQ =  -  4i f r c ° ^ 2. fao (3.162)

SN  =  2 (R ™ £ - -Sw0. (3.163)irB
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Chapter 4

Wave Propagation in Cubic 

Packings

4.1 Introduction

This chapter considers wave propagation within a cubic packing of identical elastic 

spheres. A cubic packing is one of the simplest types of regular packings; each sphere 

may be thought of as being contained within a cube of side 2R  where R  is the sphere 

radius. The spheres are packed in an array such tha t each cube is face to face with 

its six nearest neighbours to form a cubic lattice, therefore each sphere has six point 

contacts. A small section of a cubic packing is shown in figure 4-1.

Obviously, any regular packing is a rather idealised model of a real granular media such 

as an ocean sediment, but there are several good reasons why such a model should be 

considered. The geometry of regular packings is easier to work with than the complex 

structure of a random packing and regular packings also exhibit many of the qualitative 

properties of random packings. For example, Kendall [38] considers the elastic properties 

of a variety of regular sphere packings, each of different packing densities. The required 

elastic modulus of a random packing is then estimated by interpolation of a plot of elastic 

modulus against packing density. Walton [64] and [65] considered a fluid saturated cubic 

packing as a simple model of an ocean sediment and discussed some of the qualitative 

properties of such a model. Duffy [25] examined the stress-strain relationships for a 

regular hexagonal close-packed array of elastic spheres.
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Figure 4-1: A section from a cubic packing

The work presented here considers elastic wave speeds within the cubic packing and 

derives conditions for propagation on the wave frequency. As usual, the sphere material 

is homogeneous, elastically isotropic and all deformations are taken to be small enough 

for linear elasticity and Hertz theory to apply. A finite and non-zero coefficient of friction 

exists between any two spheres and the results of chapter 3 will be used to describe the 

interaction of individual spheres within the packing.

For simplicity, we will be considering only deformations in which the displacement of 

the spheres’ centres are in the xz-plane. The packing deformation proceeds in two 

stages: an initial confining strain followed by an incremental deformation. The initial 

deformation is a uniaxial compression, as already seen in section (1.3.1) equation (1.92), 

which confines the packing and forms contact areas between spheres initially in point 

contact. A hydrostatic compression, such as that described by equation (1.90), could 

also be considered but as will be seen, no frictional effects would be observed. A 

uniaxial compression inclined at an angle to the coordinate axes ensures tha t the line of 

compression between two arbitrary spheres is not generally along their lines of centres, 

thereby ensuring that slip may occur between them. As was discussed in section (3.3), 

two possible cases of stick or sliding arise during such a compression and each needs to be 

considered separately. The average stresses for both sliding and stick combinations are 

calculated. The results of section (3.3) are essentially valid for quasi-static deformations 

and therefore the displacements and rotations in the initial state are treated as having
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n +  1

(f>, 0, cos <}>)

Figure 4-2: Sphere n with four contacting neighbours

no time dependencies. Therefore, the results obtained are appropriate for low frequency 

wave propagation.

The incremental problem consists of an infinitesimal deformation imposed on the initial 

state. This is the dynamic part of the problem, the time-dependency being the oscil­

latory nature of the incremental displacements and rotations. The dynamic equations 

of motion are analysed and the discrete nature of the packing gives rise to a system of 

difference equations which are solved to determine the required propagation conditions 

on the wave frequency.

4.2 The Initial S tate

Figure 4-2 shows sphere n of the packing surrounded by its four contacting neighbours 

in the xz-plane. The axis of strain m is in the zz-plane and therefore all displacements 

of the sphere centres are in the £2-plane. Also, the axes of any rotations must be in the 

y-direction. It is sufficient to consider only the plane of spheres shown in figure 4-2, and 

the two out of plane contacts of sphere n will suffer no relative motion between them. 

The spheres above and below sphere n are labelled n — 1 and n +  1 respectively. To the 

left is sphere n' and to the right is sphere n" .
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N t

Figure 4-3: Sphere n showing contact forces

In the usual notation, as used in section (1.3.1), the centre of sphere n is initially at 

position vector X(n) and undergoes a displacement in the xz-plane only. The sphere 

also undergoes a rotation about the axis e 2 passing through the centre The

unit vectors l(nm) joining the centres of two contacting spheres are defined in the usual 

way by

X<"> -  X<"»>
= ------ 2R   ( }

where m  takes values n — 1, n +  1, n' and n" . Because of the regular nature of the 

packing, l(nm) can take one of four possible values: ± e i or ± e 3.

The force exerted on sphere n by sphere m  across the contact area is denoted by F(nmL 

Each sphere has four contact areas with corresponding forces F^n,n+1l, F(n,n-1\  F(nn ) 

and F(nn").

The problem described has certain symmetries which may be made use of. Rotating 

figure 4-2 through 180° results in an identical problem to the one we are considering, 

and therefore the magnitudes of the top and bottom normal and tangential forces must 

be equal and in opposite directions. The same applies to the two side forces resulting 

in the relationships

N t  — N g ,  P t  =  P b  and N l =  N r , P l — P r  (4-2)
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where N  denotes the to tal normal force, P  the total tangential force and the subscripts 

L , R  and T, B  refer to the left, right and top, bottom contacts respectively. In vector 

notation this is

jp(n,n + l) _  _ p ( n , n  —1) an(j p(nn') _   ̂ (4.3)

By the same symmetries, the top and bottom contacts will either both stick or both 

slide. The same applies to the two side contacts. We also note tha t the rotation of each 

sphere must be equal, tha t is

fit") =  fit"*) =  fie2 (4.4)

for all values of n and m.

The normal and tangential contact forces are shown in figure 4-3. Since the sphere 

must be in linear and rotational equilibrium and considering the relationships (4.2), we 

deduce tha t

N t — N b , N l =  N r and P t — P b — P l — P r - (4.5)

The values of the above forces will be calculated in terms of the confining strain in 

sections (4.2.1) and (4.2.2).

The confining uniaxial strain, indicated by the arrows in the direction of the axis of 

strain m , is inclined to the vertical at an angle <f>. The strain tensor for this type of 

deformation is represented as

e,j =  emirrij (4.6)

where the axis of symmetry for this uniaxial strain is given by

m  =  (sin <f>, 0, cos <fi). (4.7)

The displacement of the centre of each sphere is consistent with the applied uniform 

strain (1.86), tha t is

(4.8)
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e3

ei

Figure 4-4: The vertical contact problem

The displacement of sphere n relative to  sphere m  may now be written, using equa­

tion (4.1), in terms of the unit vector l(nm) as

u\m  ̂ — Ui^  =  e m im j (X jm  ̂ — X j n )̂

= —2eRm im jI jnm\  (4-9)

When the confining strain is applied, spheres initially in point contact will be pressed 

together to form a contact area. As described in chapter 3, the spheres will either 

stick together during this deformation or sliding will occur over the entire contact area, 

depending on the angle of compression. Four contact problems may be identified from 

figure 4-2 when considering the central sphere n. Because of the symmetries previously 

mentioned, it is sufficient to consider only the lower and left contacts. We will refer to 

the problem of sphere n in contact with the left sphere n' as the horizontal problem and 

similarly, the contact between sphere n and the lower sphere n +  1 will be referred to  as 

the vertical problem. For each of these problems, we must also consider the two cases 

of the contact area sticking or sliding.

4 .2 .1  T h e  V ertica l P r o b le m

Here we consider the problem of the n-th sphere in contact with the lower or (n +  l)-th

n (n+j )
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sphere as shown in figure 4-4. The unit vector in the direction of the line joining the 

two centres is given by

j K n  +  l )  =  0 3

and the rotation of each sphere is of the form

= n {n)e 2. (4 .11)

The relative displacement of the two spheres becomes

w-n+1) -  =  - 2 R em im 3 (4.12)

and the compression in the normal direction is

^(n.n + 1) _  (4.13)

We now derive the expressions for the force vector between the spheres in the two cases 

of sliding or sticking on the contact area.

Stick on C ontact Area: u0/w 0 < (2B + C ) f  /2B

Recall from section (3.5) tha t, during a deformation in which the contact areas stick 

together, the to tal normal and tangential forces acting on the lower contact are, respec­

tively,

3irB 3tt(2B + C) k '

where B  and C  are elastic moduli given in terms of the Lame moduli by equation (1.7), 

and (w0?0,rco) is the displacement of the sphere centres relative to the point of first

contact O. For ease of notation we have written wq and u0 instead of Wol'n+1') and

w(n,n+i) -j. .g jmp0rt ant to note that these compressions depend on which contact 

problem we are considering. The force vector is derived by combining the above forces 

and the displacement of the contact area, as seen in section (1.3.1), to  obtain

p(n,n + l) _  4(flwg)1/2 - (ri|W + n 8(RW0)1/2 f l  (f> + i ) (n)
37tB ^  3ir{2B +  C ) \ 2 { }
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+  I(fi("+ i) +  ft(»)) A i2l("-n+1) -  w0I (n’n+1) j  • (4.15)

Substituting equations (4.10), (4.11), (4.12) and (4.13) into the above, we obtain the 

i-th component of the force vector as

■R<n’n+1) =  ( -« )3/2fc» +  3^ 2 B  + C) ^~e^ /2 {~ emim3 +  ^  +  em3^.3} •

(4.16)

S lid ing  on  C o n ta c t A rea : u0fw 0 > {2B -\- C ) f  J2B

In chapter 3, we saw tha t if the calculated tangential force exceeds the coefficient of 

friction times the normal force, then sliding occurs over the entire contact area and the 

tangential component of the force (4.14) no longer holds. Instead, the tangential force 

is equal to the coefficient of friction times the normal force, in this case P B = f N B • By 

considering the forces (4.14) we see th a t PB > f N B whenever

w(»,»+l) -  V 2 B y

and when this is satisfied, the normal and tangential forces are, respectively, 

y  _  4(R w *y/2 A f(R w l)1!2
N b  -  3 and P b ~ J N b -  i Ta  (4' 18)

In the same way as before we construct the force vector between the two sliding spheres 

as

p(n,n + l) _  ^ { R w p 1/2 f j(„ in + 1)
3 ?rB 1

+ /
u (»)) +  i ( n (n+1) +  a  i(n-n+i) -  w0i(n’n+1)

| I ( u ( n + l )  _  u (n) )  _J_ I ( n ( «  +  1 ) +  H ( n ))  A K « - »  +  1) -  W0 K n ’n + 1 )|
(4.19)

Substituting equations (4.10), (4.11), (4.12) and (4.13) into the above, we obtain

F J(n,n + 1) __ 4 R2m§ 
37tB

( ~ e ) 3/2 (« i3 +  /
—em,m3 +  Q<j)q +  emlSi3 

Q — erriims )■
(4.20)
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e 3

e i

Figure 4-5: The horizontal contact problem 

4 .2 .2  T h e  H o r izo n ta l P r o b le m

The next problem to be considered is the contact between the n-th sphere and the left 

or n '-th sphere as shown in figure 4-5. Again we have rotations of the form

n (n) =  fi(n)e 2 

and the vector joining the two centres is

I("n,) =  e i .

The relative displacement of the two centres is

u\n  ̂ — u\n  ̂ =  —2Remimi  

and the normal compression is given by

w(nn ) _  __ej£m 2

(4.21)

(4.22)

(4.23)

(4.24)

S tick  on  C o n ta c t A rea : u0/w 0 < (2B -{- C ) f  /2B

The total normal and tangential forces on the left-most contact area are, respectively,

(4.25)
3irB 3ir(2j5 +  C)

which are the same as the forces (4.14) except that u0 and wQ now refer to Uqin  ̂

and ^Qnn  ̂ respectively. Similarly we calculate the force vector between the two spheres 

as
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F (nn') _  4 ( R W % ) 1/2 (nf0 8 ( R W o Y ! 2 f ! /  („') _  („U
3irB 3ir(2B + C) \ 2  '

+  i ( n (n'} +  n (")) A it t (nn,) -  w0I (nn,)|  (4.26)

which, in index notation, may be written

(4.27)

S lid ing  on  C o n ta c t A rea : u0/w 0 > (2B + C ) f / 2 B  

Sliding will occur on the left contact when

ulnn,) ( 2 B  + C \  r
(4-28)

and the to tal normal and tangential forces are, respectively,

TTl =  «  and P L = f N L = m ^ .  (4.29)
L 37tB l j l 3ttB  k '

The force vector on the left contact is

p(nn') _

+ /

4(fitng)
SirB

3U /2 j(nn')

I(u(n') _ U(n)) + f (ft(n,) + fi(n)) A l(nn,) “ ™oI(nn,)
| |( u ( n') -  u(n)) +  +  ^ (n)) A Unn') -  u;oI(nn,)|

which may be written in index notation as

(4.30)

—erriimi — Q6i3 +  em \8n
Q +  erriim3 ) (4.31)

4 .2 .3  S p h e re  E q u ilib r iu m

Now tha t we have derived the required force vectors for all necessary sphere configura­

tions and cases of stick or sliding, we require that they are of a form which guarantees

4.2. SPHERE EQUILIBRIUM 114



C h a p t e r  4 W a v e  P r o p a g a t i o n  in  C u b i c  P a c k i n g s

equilibrium of individual spheres. To achieve this, the following conditions of linear and 

rotational equilibrium must be satisfied

F (n- n + !) _|_ f ( n.n_1) _|_ p (nn/) _|_ ]?(nn")  _  q  (4.32)

p ( n , n  +  l )  ^  j ( n , n  +  l) _|_ p ( n n ' )  ^  j ( n n ' )  _  q  (4.33)

Condition (4.32) is clearly satisfied since we have already deduced tha t

p ( n , n + l )  _  _ p ( n , n - l )  a n ( J ] p (n n ' )  _  _ ] ? ( « ” ")_ ( 4 - 3 4 )

In writing the condition (4.33) we have also made use of these relationships in the form

p ( n , n  + 1) ^  j ( n , n  +  l )  _  p ( n  +  l ,n)  ^  j ( n  +  l ,n)  a n ( j  p ( n n ' )  ^   ̂ ( 4 , 3 5 )

For rotational equilibrium, we must choose an appropriate value for Q such th a t con­

dition (4.33) is satisfied. Obviously the forces will depend on whether stick or sliding

occurs on the contacts and this in turn will affect the value of fi. Therefore, we must 

determine Q in each of the following three cases.

Stick on B ottom , Stick on Sides

At first we will assume tha t stick occurs on all contacts and subsequently derive condi­

tions for this assumption to break down. The moments of each force about the centre 

of sphere n are

[ F ( » , » + 1 ) A .R i < " , » + 1 > ] j  =  ( 4 . 3 6 )

on the bottom, and

A iCT<n"')]. =  (~ e )1/2 { -e m im sfa  -  flfe}  (4.37)

on the side. Substituting these moments into the condition (4.33) and rearranging, we
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find tha t the required value of is

Q = ( — — — ^ m im 3e. (4.38)
\ m 3 +  m x)

Substituting back into the force vectors (4.16) and (4.20), we find th a t the components 

of the force vector are

( n , n + l )  _  p{nn') _ 1 QR2ml ml { - e ) 3/2 -  —

— -r l  — r  t

F,(n,n +  l )  _

Fi
(nn1) _

37t (2  B  +  C)(rrii +  m 3) 
4R 2m l ( - e ) 3/ 2 _  —  

3irB T
AR2m \ ( —e)3/ 2 —
 ---- =  N  l •3irB L (4.39)

We now examine how this state in which all the contacts stick may give rise to contact 

sliding. The condition for the side contact to slide is

>/

or in terms of the components of m  the condition becomes

P l
p(nn')
r 3

N l Jp ( n n ')

2 rag
mi(mi +  ^ 3 ) V 2 B  

and when sliding does occur, the tangential force is

(4.40)

(4.41)

P b  =  } N b .

Similarly, the condition for the bottom contact to slide is

P b

which is equivalent to

with tangential force

Ni

2 m l

F t
n +1 )

F (» n +  1) > f

m 3(mi +  m 3) > < ^ U

(4.42)

(4.43)

(4.44)

P l = f N L (4.45)
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w o 7 r / 4

Sides Sliding

Tops Sliding

f  — ( tb

Uq

Sliding

Stick

Stick

Tops Sliding

/ >  (dfe)

Figure 4-6: Possible stick/slide combinations between two spheres 

when sliding occurs.

Suppose now that ra3 > Then \Pl / N l \ > \Pb / N b \ and therefore the left contact 

must slide before the bottom contact giving P l =  / N l - Then noting that P B = P L, 

we write

£ ^ .  = ^ j L x ^ j L = M < f  
N r  Nr.  N r  m3

(4.46)
B l y L ^y B m 3

showing tha t sliding will not occur on the upper or lower contacts. A similar argument 

when mi > m3 shows that sliding will never occur on the bottom and side contacts 

simultaneously.

Consider now the conditions for sliding when m3 > that is tan <j> < 1 or 0 < 7r/4. 

Then sliding will occur on the side contacts if

mi{mi  +  m3) > ' 1 =  U n 4,0
(4.47)

that is

2
> tan 4>c. (4.48)

tan <f> (1 +  tan 4>)

As the angle (f) varies from 0 to 7r/4, the value of tan (f> varies from 0 to 1 and so the 

left-hand side of the above expression varies from infinity to 1 monotonically. Therefore, 

if <f>c > 7r/4 there exists a unique value of for which

4.2. SPHERE EQUILIBRIUM 117



C h a p t e r  4 W a v e  P r o p a g a t i o n  in  C u b i c  P a c k i n g s

 ;——-----------—  =  tan <f>e (4.49)
tan </>* (1 +  tan 4>*)

and sliding will occur if (f> < </>*.

When 4>c < 7t/4, then sliding occurs for all values of (j> as shown in figure 4-6 by the 

left-hand diagram.

The corresponding condition when mi > m3 is

2 tan 2<̂>
1 +  tan (f>

or by defining tjj =  7 t /2  — <f> this becomes

> tan <pc (4.50)

> tan 4>c (4-51)
tan ^  (1 +  tan VO

and a similar argument shows tha t sliding occurs if ip < </>*, tha t is (f> > 7 t /2  — 0 * , and 

if <f>c < 7t/4 sliding occurs for all values of <f>.

Stick  on  B o tto m , S liding on  Sides: 2m3/[m1(m1 +  m3)] > (2B  + C ) f / 2 B

When sliding occurs on the left contact and stick on the lower contact, the moment of 

the sticking force is given by equation (4.36) and the moment of the sliding force (4.31) 

may be calculated as

[F (»"') a i2l("n')l =  — e)3/2A -2. . (4.52)
l » ottB

Substituting into the rotational equilibrium condition (4.33) yields a value for the rota­

tion of

m \ ( 2 B  +  C \  e (A coX
Q = em im 3 +  e—  —— —  / .  (4.53)

m 3 \  2B )

Substituting back into the force vectors (4.16) and (4.31), we find tha t

T̂ n.n + l) _  jp{nn')  _  4R 3m 1( e) ! — —
Fl ~ F3 ~ --------- 3wB------- I - P l - P b
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F („,„+1) =  4R3m l ( ^  =  W b

^  = 4R2m \{—e)3l2 ^

Sliding on B ottom , Stick on Sides: 2m |/[m 3(m 1 +  ra3)] > (2B  + C ) f / 2 B

When the bottom and top contacts slide and the side contacts stick, the required forces

are equations (4.20) and (4.27). The same calculations as carried out in the previous 

section yield a, value for of

Q = —em 1m 3 +  e-
m \ (  2 B  -f C

)  /■ (4.55)m 1 \  2 B

Substituting back into the force vectors (4.16) and (4.31), we find th a t

pKn+1) _  p(nn') _  4R3m 3( - e ) 3/ 2
Fl - F3 -  ------ 3Tb------- I - P l - P b

p <„,„+1) =  = W b

F{™’> =  = N L. (4.56)

4 .2 .4  T h e  I n i t ia l  S tre s s

In section (1.3.1), we derived the average stress within a sphere packing as

= E l \ nm)F lnm) (4.57)
contacts

where V  is the volume of the medium and the summation is taken over all contacts 

within V . This formula is equally valid for a cubic packing but the regular geometry 

makes the form of the resulting stresses much simpler. The volume of the medium is 

V  = N V n where N  is the total number of spheres in the packing and Vn =  8R 3 is the 

volume of an individual cube of side 2R  exactly enclosing a sphere. Since each contact 

is identical to the corresponding contact on any other sphere, the sum in (4.57) may be 

written as N  times the contribution of th a t contact from one sphere, th a t is

( G i j ) =  — X N  |i;("-n + 1>ir("<" + 1) +  /j(n,n-l)i ^(nln-l)
N V n

+  T ( nn ' ) F (n n ') +  7 (n»")   ̂ ^  ^
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Cancelling the IV’s and making use of the relationships

p ( n , n + l )  _  _ p ( n , n - l )  a n ( j p ( n n ' )  _  _ p ( n n " )

l ( n , n  +  l )  _  — j ( n , n —1) a n d  j (rm' )  =  _ j ( n n " )

we obtain

(aij) =  - 1 ^  +  / ( » » ' ) .  (4,60)

There are two stick or sliding combinations to consider, as below.

Stick on B o tto m , Stick on Sides

When all the contacts stick, the relevant forces are (4.16) and (4.27). Substituting into 

equation (4.57) gives the average stress components as

(^n )

(022)

(033)

(<t12) =  ( ^ l )  — (<723) — {^32) 

(<̂ 13) =  (°3l)

=  0

2 mf (—e)3/ 2 
3VB

2 m3( - e ) 3/ 2 
37tB

= 0
8m2m 2( - e ) 3/2 

37t(2J3 -f- T  7713)
(4.61)

The component of the force per unit area acting in the direction of m on a plane 

perpendicular to m may be calculated in terms of the average stress as

(4.62)

which evaluates to

F  = -
2 (—e)3/ 2 

SttB

, 3 , ^ 3

(2B  +  C )m \  +  SB  mi7ri3 +  (2B  +  C )m  
m 1 + m 3

(4.63)

This force, shown in figure 4-2, is the applied confining force. The lateral force acting 

perpendicular to m may be interpreted as the restraining force.
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Sliding on B ottom , Stick on Sides: 2m^/[m3(mi +  m3)] > (2B  -\- C ) f / 2 B  

Similarly, the forces (4.20) and (4.31) substituted into (4.57) yields stress components

2m \{—e)3/2
(CTll) = --------3^ B ~

{cr22) =  0
, V 2m K - e f H
(ff33> = --------3ttB

(^ 12 ) — (^ 2 1 ) — (0 2 3 ) =  (<̂ 3 2 ) — 0

{a13) = (v31) = (4-64)

The force (4.62) is given by

F  = +  2^ m im 3 +  m 3] ’ (4-65)

Stick on B ottom , Sliding on Sides: 2m |/[m i(m i +  m3)] > (2B  + C ) f / 2 B  

When sliding occurs on the side contacts, the average stress is calculated as

(<ru> =  U B ~

22)  =  0

2 m K - e f ' 2
37tB

(^1 2) — ( ^ i ) =  (^2 3 ) =  (0 3 2 ) =  0

with confining force

F  =  ~ ^37rg ^  ~~ 2f rn*m * + mil ' (4*67)

4.3 T he Incremental Problem

The incremental problem is imposed on the initial state and takes the form of an extra 

displacement of the centre of each sphere. As was the case in the initial state, for 

simplicity all displacements are taken to be in the x z -plane and the incremental rotation
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is of the form

=  <$u/n)e2. (4.68)

The incremental displacement and rotation are assumed to depend on time t purely 

through the factor e~lwt. Because of this time-dependence, the symmetry of the initial 

state is lost. However, because we will be seeking only waves travelling vertically down 

the packing, we may make the simplification tha t each sphere in the same row suffers 

the same displacement and undergoes the same rotation; tha t is

6u{n) = W " ;) and <5u>(n) =  6w{n' l  (4.69)

As was shown in chapter 3, the to tal incremental forces are

2(Rw0)1/2 £ j  -jj-jj 4(Rwoy / 2
t N = . - b — Sw0 and * f = T(2B +  c ) *«. (4-70)

where (6w0,0,6iUo) is the relative displacement of the centres of the two spheres. The 

above incremental forces are to first order and are valid for infinitesimal values of Su0 

and 6w0- As considered in section (3.6), partial slip and counterslip occurs in the 

incremental problem but friction, being a higher order effect, does not appear in the 

incremental forces. Hence we do not need to distinguish between the cases of slip or 

stick in the following two problems.

4 .3 .1  T h e  In crem en ta l V er tic a l P r o b le m

The incremental force vector may be derived in the same fashion as the force vector 

in the initial state. Combining the above incremental forces with the contact area 

displacements yields the force vector on the lower contact as

f F (»,»+1) _  f f y  / 2B  [ « u ("+1) -  f  u (n> +  ( W " +1) +  A .RI<n '"+1>l
ttB{2B  +  C ) t L J

+  C  [(<5u(n+1) -  £u(n)) • l(n’n+1)] l(«>«+1)} . (4.71)

Substituting the unit vector for the vertical problem (4.10) and the initial compres­

sion (4.13) into the above, we obtain
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£ F (n.n+l) =  e^  ( 2 B  ^ " +1) ~  fa,jn> +  R ( S J n+1) +  6 u {n])6
7rB{2B +  G) t L

+  c [ < 4 n+1) -* « 3 n)]«i3}-

i 1

(4.72)

Because of the dynamic nature of the incremental problem varies with position

within the packing. Therefore, the incremental force vector on the upper contact is

£ p ( r » , n - l )  _ 1 / 2

(2 B Uu'”- 1' -  iu (n) +  (6^ " -^  + tfw<n>) A JJlt" '" -1*' ttB (2B  +  G ) t L

+  C  [ (W ”- 1) -  W n)) • I*"-""1)] . (4 .73)

In index notation, with the appropriate unit vector and compression, this becomes

=  r f H 2B +  C) { 2B  “  4“ ‘”> “  R (Suln~l) +

+ c - «4n)] «i3}. (4.74)

4 .3 .2  T h e  In c r e m e n ta l H o r izo n ta l P ro b lem

The incremental force vector on the left hand contact is

£p(rm') _ \ 2B  k u(n,) -  ^u(n) +  ( ^ (n/) +  6<*>{n)) A # l(rm/)ttB[2B  -f- C ) t L

+  C  [ (W n'} -  W n)) • I (nn,)] I (nn'}} . (4.75)

The unit vector l(nn') is given by (4.22), the compression w0 is given by (4.24) and the 

above force becomes

and similarly, the force on the right-hand contact is

(4.76)

Sf i nn“> =  4R2mi( e)1/ 2fo (’»)fi 
w(2 B  + C) ,3

(4.77)
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4 .3 .3  L in ear M o tio n

Having now found all the required forces acting on the central sphere, we now consider 

the equations of motion satisfied by the time dependent and Newton’s

second law requires tha t

§ F (n,n +  l )  +  £ F ( n , n - l )  +  ^ ( n n ' )  +  £ F (nn")  =  ( 4  j g )

3

where p is the density of the sphere material. The side forces and ^F^nn ^ cancel

since equations (4.76) and (4.77) show tha t one is minus the other.

The displacements and the rotations 6 u ^  depend on time t purely through the

factor e~twt where a; is a wave frequency. Thus second derivatives of these quantities 

are of the forms

and 6 v (n) = -cv2S ^ nK (4.79)

Then the equation resulting from (4.78) is

wB(2B +r’c )  { 2 5  N " +1> “  26u^  +  6“ ‘n+1) +  •B(iiw(n+1) -

+  C  jtfi4n+1  ̂ — 2 6 u ^  +  1 — —^rKRzfj^ 2bu " \  (4.80)

Taking i = 1 we obtain

3 (—e)1̂ 2m 3(6uil+^ S u i *  ^) +  2 ir2(2B +  C )R 2pu?2 — 3(—e)1/,2m3 S u ^

+  3R { - e ) 1/2m 3(Su{n+1) -  = 0. (4.81)

Taking i = 2 yields no useful information and taking i = 3 results in the equation

3(—e)1/ 2m3 îZ3n+1  ̂ +  2 2ir2B R 2p u 2 — 3m3(—e)1̂ 2 6u (n)

+  3(—eY ^ m sS u ^ 1 ^  =  0. (4.82)

Equations (4.81) and (4.82) are difference equations involving unknowns 6ui, Su3 and 6u>.
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Note th a t equation (4.82) for Su3 may be solved alone without the need for further 

equations. This is due to the decoupling of the problem into normal and tangential 

systems. To obtain the extra tangential equation necessary to solve (4.81) for Sui 

and 8u>, we now consider the equations of rotational motion.

4 .3 .4  R o ta t io n a l M o tio n

The angular acceleration satisfies

£ p ( n , n  +  l )  ^  ^ l K n +  1)

■ +  £F (nn,) A R l {nn,) +  6F (nn//) A R l {nn,,) = I6u> (4.83)

where I  =  8TpR5/15 is the moment of inertia of a solid sphere about its centre. 

The moments of the incremental forces are, on the upper and lower contacts,

[^F("'"+1) A iJI("'n+1)] j =  2 r(2J9 +  {<ij3(*M'" +1) ~  6u‘n))

+  R6i2{6uj(n- 1'> +  tfw<n>)} (4.84)

and on the side contacts

[tfF*""'1 A R I<nn'>] =  [«F(m“"> A f l l1"""'] =  ^ ‘/ 2f o (n)fe .  (4.85)
l Ji L Jj 7T(2iJ +  C)

Substituting into equation (4.83) yields the required difference equation

15(—e)1|,2m3 {fjj3(«u<"+1) -  i u f - 1)) -  R(fo<n+1> + 26u (n) +

- 6 0 f l ( - e ) 1/2m 1«w(,,)«i2 =  -4 j t2(2B +  C )R 3p u 26u(n)6i2. (4.86)
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4 .3 .5  T h e  W ave S o lu tio n

We now have a complete system of difference equations: (4.81), (4.82) and (4.86). To 

solve them, we make the following trial solutions

8uj^ = Suj xne %<iJt (4.87)

Su[n) = 6ux xne~iuji (4.88)

6u{3 ] = 6u3 xne~iwt (4.89)

where z is a complex number of the form

x = el$ = cos 0 +  i sin 6. (4.90)

Substituting the trial solutions into the difference equations results in the following 

system of equations

— 15 R m 3(—e y / 2(x + x 1)6u

+  2 2tt2(2B +  C )R 3p u 2 — 15jR(m3 +  2m !)(—e )^ 2J 6u>

— 15 m3(—e)1/,2(x — x~ 1)6ui 

3m3(—e y / 2(x +  x~1)6u1 +  2 n 2(2B +  C )R 2p u 2 — 3m3(—e)1̂ 2 6ui

+  3 R m 3(—e y ^ 2(x — x ~1)6lj 

3m 3(—e)1/2(x +  x _1) +  2 2-K2B R 2pu>2 — 3m3(—e) 1/2

=  0

=  0 

=  0 . 

(4.91)

The third equation of this system may be solved alone: noting tha t

x -f- x 1 =  2cos 6

x — x -1 =  2i sin 9 (4.92)

we obtain
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. , 2w2B R 2p u 2
C0S ° =  1 -  3m ,(-e)»/»  • <4 '93)

This determines the required value of x giving the solution as

Su3^ =  £w3 exp [—i(u t  — n0)]. (4.94)

For wave-type solutions of this form we require th a t

-  1 < cos 6 < 1. (4.95)

Values of cos 6 outside this range would result in real values of x and exponential type 

solutions for the difference equation. Physically, this corresponds to total reflection 

of the wave. Considering cos 6 < 1 gives the trivial condition u 2 > 0. Considering 

cos 6 > — 1 gives the condition

, 3m3( - e )1/ 2 9 , .
=  ( 4 -9 6 )

We can compare this solution with a plane-wave of the form

exp [ik(z — ct)] (4.97)

where k is the wave-number, c is the wave speed and z  is the spatial coordinate in the 

direction of propagation. For a cubic packing with a wave propagating in the vertical 

direction the vertical distance z is given in terms of the central column sphere number n 

as z =  2Rn. Matching terms in the above two waves (4.94) and (4.97), we identify the 

wave speed as

2 Rjuj
c =  — . (4.98)

Equation (4.93) may now be re-written to relate the wave speed c to the frequency w, 

as the dispersion relation

2 i R o j \  'K2B R 2p u ) ,i
sin ----  =   ---- -— ——. (4.99)

V c J 3m3(—e) 1/ 2

Figures 4-7, 4-8, 4-9 and 4-10 show plots of this relationship with dimensionless fre­

quency against dimensionless wave speed where
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r2 ir2B R 2p
V -JZejd-  (4'10°)

The range of 9 plotted in each figure is from 9 = 0 to  9 =  3x, giving the three loops 

shown. Extending the range of 9 would result in more of these loops, each smaller than 

and below the previous one. Thus an infinite number of wave speeds may be found for 

any value of u  satisfying the condition (4.96).

The values of u>i can be picked out from the plots as the point at which each loop of 

the graph turns back on itself. Beyond this point, there are no real values of the wave 

speed c corresponding to each u

The same method applied to the remaining two equations of the system (4.91) yields

„ a(3 +  lSOmlRe
COS “  6(—e y / 2Tn3(5aR — j3) * ^

where a  and j3 depend on u> through the relationships

a  =  2 ^ ( 2 5  +  C)R?puj2 -  3m3(—e)1/2] (4.102)

/3 = 2 [2tt2{2B +  C )R 3p u 2 -  15{-e)1/2R {m 3 +  2 ^ 0 ]  . (4.103)

The dispersion relation obtained from (4.101) is

. J ( & 0 \  - v 4(2B +  C f R 4p2u 4 +  15(—e)1̂ 2(m 1 +  m 3)x 2(2B +  C)R?pu2
V c )  9(—e y / 2m 3T 2(2B + C )R 2pw2 +  90(—e)m,im3

which may also be written as

. 2 { R u \  —W 4oj4 + 15W2(m 1 + m 3)w2 „
Sm ( t J  = ------ 9m 3(W 2U2 +  lorn,)  (4-105)

where

,2 v 2(2B + C )R 2p

Solving cos 9 = 1 for w2 gives

4.3. THE WAVE SOLUTION 128



C h a p t e r  4 W a v e  P r o p a g a t i o n  i n  C u b i c  P a c k i n g s

, 15 ( - e ) 1',2(m 1 +  m3)
1 x 2(2 B  + C )R 2p ' '  '

Therefore the condition cos 6 < 1 requires tha t

W -  w2{2B + C )R 2p (4.108)

When considering cos 0 > — 1, two roots for u 2 occur

=  2x»(2B +  C )R 2p {2m3 +  5mi ±  (2m3 ~ 5m i)} (4' 109)

which gives

2 6 (—e)1/'2m3 2 lS f - e ) 1/ 2™!
W+ "  x 2(2B  + C )R 2p an U- ~  x 2(2B  + C )R 2p '  ̂ ' *

These two roots coincide when 2m3 =  5mi, and therefore u>+ > u;_ when 2m3 > 5m!. 

Similarly, w+ < w_ when 2m3 < 5m i. Comparing with lo\ as calculated above, we 

may write

=  ow+ + w- (4-in)

from which we may deduce th a t u>i > and uji > u>+. Considering the above conditions 

and inequalities we arrive at the following conditions on u>:

(1) W h e n  lj+ > (2m3 > 5mi)

1 5 (-e )1/2mi 6m3( - e ) ^ 2 2 +  m3)
-  x 2(2B  + C )R 2p x 2(2B  + C )R 2p ~  ~ x 2{2B + C )R 2p ’

(2) W h e n  u + < lj_ (2m 3 < 5mi)

n < 2 < 6ro3( - e ) 1/2 15(~e)1/2mi , 15(—e)‘^2(?«! +  m3)
“  x 2(2H +  C).ft2/> x 2(2B +  C )1J2/9 “  “  x 2(2S  +  C )i?2/!) ’

(3) W h en  lo+ = (2m3 — 5mi)

n < , ,2 <  15(~ e)1/2(m i +  m3) 
-  -  ir2{2B + C )R 2p '
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These conditions give the ranges of u  for which waves may propagate through the 

packing. Values of uj outside these ranges mean tha t the solutions obtained are of the 

exponential type associated with real roots; these solutions decay rapidly with depth 

and physically represent total reflection of the wave. The first two conditions relate to 

the displacement Sui and the rotation representing a shear wave. A compressional 

wave having displacements of amplitude Su3 propagates when the third condition is 

satisfied.

Figures 4-11 and 4-12 plot the shear wave dispersion relation (4.105) when </> is 0 or 7r/12 

respectively. The roots u;+ and u;_ coincide when (f> = ta n -1 (2/5) and this case is plotted 

in figure 4-13. Further plots are shown in figures 4-14, 4-15 and 4-16 for values of (f) 

being 7t / 6 , 7t / 3  and 97t /2 0  respectively.

In each plot, the range of 9 is from 6 =  0 to 9 =  37T. Again, there are an infinite number 

of wave speeds for each u  within the valid frequency ranges.

The effect of friction may be examined by rearranging equation (4.65) to obtain

(—e)1/2 =  (  3 2^ )  b i  +  2 M m ^  +  m® ]'1/3. (4.112)

As previously mentioned, friction is a higher order effect and does not appear in the force 

equations (4.70) for the incremental state. However, friction does appear in the disper­

sion relations (4.99) and (4.105) through the initial confining strain e: equation (4.65) 

may be substituted into the dispersion relations to give the wave speeds in terms of 

the frequency and the coefficient of friction. Equation (4.112) is for the case of sliding 

occurring on the top and bottom contacts with stick on the sides. Similar equations 

may be obtained for stick on the top and bottom contacts with sliding on the sides, or 

stick on all contacts. When all contacts stick, the coefficient of friction will not appear 

in the equations.
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Figure 4-7: A plot of dimensionless frequency against wave speed, (j> = 0
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Figure 4-8: A plot of dimensionless frequency against wave speed, <f> =  7r /6
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Figure 4-9: A plot of dimensionless frequency against wave speed, (f> =  7r/3
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Figure 4-10: A plot of dimensionless frequency against wave speed, (f> = 97t /20
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Figure 4-11: A plot of dimensionless frequency against wave speed, <j> = 0
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Figure 4-12: A plot of dimensionless frequency against wave speed, (j> = ir/12
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Figure 4-13: A plot of dimensionless frequency against wave speed, (f> = tan 1 (2/5)
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Figure 4-14: A plot of dimensionless frequency against wave speed, <f> = ir/6
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Figure 4-15: A plot of dimensionless frequency against wave speed, <f> = 7r/3

4.5

3.5

i r  2.5

0.5

0.5 3.5 4.5

n^R[p(2B +  C)Y^2uj/ (—e)1/4

Figure 4-16: A plot of dimensionless frequency against wave speed, (f) = 97T/20
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Chapter 5

A Random  Packing of Spheres 

with Frictional Contacts

5.1 Introduction

We now turn attention to the effects of inter-granular friction within random packings 

of spheres. The motivation behind studying the oblique contact of two spheres with a 

finite value of the coefficient of friction, seen in chapter 3, was to provide the contact 

laws required in this chapter. Our aim is to predict the effective elastic moduli of the 

packing and in doing so, the oblique contact problem and the study of the inter-granular 

contact play im portant roles in determining the overall properties.

The spheres or grains within the packing are made of a homogeneous and elastically 

isotropic material. Each sphere is identical to the others having equal radius and elastic 

moduli. The random packing is formed from a large number of such spheres, each 

initially in point contact with several of its neighbours, the position vectors of the 

centres being randomly and uniformly distributed over the volume occupied by the 

packing. Because of the random nature of the packing geometry, it is not possible 

to make many of the simplifications for the regular geometry of the cubic packing 

seen in chapter 4. Instead, we make use of statistical information such as the average 

number of contacts per sphere and the probability distribution of these contacts over the 

sphere surfaces. An averaging scheme is defined which allows us to determine average 

macroscopic quantities such as stress in terms of known statistical properties and other 

microstructural information.
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Figure 5-1: The compression of two elastic spheres

The effective elastic moduli are determined, in two stages, by considering an initial state 

followed by an incremental problem. To ensure th a t no inter-granular separation occurs 

in the packing, the boundary of the medium is first subjected to an initial confining 

strain. The spheres are compressed together, in general obliquely, and finite contact 

areas are formed. For simplicity, we assume th a t no new contacts occur. As discussed 

in section (3.3), two cases of stick or sliding are possible depending on the angle of 

compression. The averaging scheme is constructed by examining the range of angles 

for which sliding may or may not take place and performing the averaging integrals or 

summations over the required ranges. The average stress of the initial state is then 

determined in terms of the average strain.

A further incremental strain is imposed on the initial state and is infinitesimal in the 

sense th a t it is much smaller than the initial strain and small enough to permit use 

of the linearised force equations (3.162) and (3.163). The average incremental stress 

is determined in terms of this average incremental strain, and from this the effective 

elastic moduli are obtained.
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5.2 The Initial State

We start with the familiar description of the packing geometry, the centre of each sphere 

being at position vector relative to some fixed origin, and each centre undergoing 

displacement under the confining strain. The unit vector joining the centre of 

sphere m to the centre of sphere n is defined as

, x -  X<m)
1 =  2R   ( M )

where R  is the sphere radius and the initial contact point is located at position vector 

(X(n) +  X(m))/2. Figure 5-1 shows the oblique compression of sphere n and sphere m. 

The axes Oxyz  are defined as the origin 0  being the point of first contact, the a:y-plane 

being the common tangent plane of the two spheres, as shown in figure 3-1, and the 

z-axis being directed into the lower sphere. The centre of the upper sphere is displaced 

by an amount (—u0, —v0,w 0) relative to the initial contact point, while the lower sphere 

undergoes an equal and opposite displacement of (u0,v0, —w0).

In chapter 2 it was shown tha t on average rotations will not occur in the initial state 

when the confining strain is either a hydrostatic or uniaxial compression. As discussed 

in chapter 4, when the initial compression is hydrostatic, described by equation (1.90), 

the spheres are compressed normally and therefore no frictional effects occur. Therefore, 

we will only be considering a uniaxial compression and rotations will be neglected here.

For a uniaxial compression as given by equation (1.92), the spheres are compressed

obliquely and sliding between them may occur. Then the displacement of the upper 

sphere relative to the lower sphere is

u (m) -  u (n) (5.2)

and the compression of the top sphere, relative to 0 ,  is given by

w 0 =  i ( u (m> -  u (n>) • (5.3)

The confining strain e,-j takes the form of a displacement imposed on the boundary of the 

medium, described by equation (1.72). We make the assumption used by Walton [67], 

which was also discussed in section (1.3.1), tha t the displacement of the centre of each 

sphere is consistent with the applied uniform strain, meaning th a t we may write
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4"> =  e .,x M . (5.4)

Substituting the above into (5.2) and (5.3), we obtain the relative displacement as

„(■») _  „!”) =  (5.5)

and the normal displacement of the centre of each sphere is

Wo =  (5.6)

The form of strain for a hydrostatic compression is

— c&ij (5.7)

where e < 0 for compression. When equation (5.7) is substituted into equation (5.5) we 

obtain the relative displacement as

«<"*> -  «{”> =  - 2 R e l jnm) (5.8)

which is along the line of centres of the two spheres. Consequently, all the spheres

within the packing are compressed together normally along the vectors l(nm) meaning

tha t no sliding will occur during a hydrostatic deformation. For this reason we will be 

considering just the uniaxial compression which may be written as

€ij ^3^i3^j3 (^'^)

giving the relative displacement as

«!"*> -  „<“> =  - 2 R e 36i3l i nm) (5.10)

and the normal compression

w0 =  - R e 3I n̂m)2. (5.11)

To calculate the average stress in the initial state we will need to know the forces acting 

on each sphere across the contact areas. There are two possible forms of contact forces:
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th a t in which the contact surfaces remain stuck together throughout the deformation in 

the initial or original state; and that in which sliding will occur over the entire contact 

area. We will refer to these two possibilities as cases A  and B  respectively.

5 .2 .1  C ase  A: N o  S lid in g  O r ig in a lly

In chapter 3 we saw tha t the total contact area normal and tangential forces are given 

by

where B  and C  are elastic moduli given in term s of the Lame moduli A and /z by 

equation (1.7). The two contact areas remain stuck together as long as the calculated 

tangential force is less than the coefficient of friction /  times the normal force, th a t is 

P o 5: f N 0. This condition is true for u0 and w0 satisfying

s  < m  '■

The force vector is constructed in the way it was in section (1.3.1) by resolving the 

displacement of the contact area into normal and tangential components and combining 

with the above forces to obtain

r ( "m> =  +  l^ B  +  C) -  uW) -  W“l("m)} • <5-14>

Making the assumption (5.4) and using equations (5.5) and (5.6) we obtain the compo­

nents of the force vector as

p ( n m ) _  —  V "pq- 'p  ~q ) j

3 irB
4 r(nm) 

3irB
_ e  T ( n m ) T ( n

pq p

3tt(25 +  C)

8  R 2( - e  T ( n ™ ) T ( n m ) \ l / 2
J_______  ̂ pq_P______q /  f _p j { n m )  . r ( n m )  j { n m )
+  ZictO.RA-n I > +  pq ” ' ‘ J

(5.15)

Substituting the uniaxial compression (5.9) into the above, we obtain the force vector 

components as
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p ( n m )  __ 4 #  ( e 3) !  ( r n ( n m ) , 3 T( n m )  o p r M l r M l C  1 ( c  i
Fi ~  ZttB(2B + C) l C |/3 {Ii + 2 B h  14 1 i3J ' (5’16)

5 .2 .2  C ase B: S lid in g  O r ig in a lly

When condition (5.13) is not true, tha t is u0 and w0 satisfy

S  * *  (5-l7)
sliding will occur over the entire contact area and, as shown in section (3.5), the normal 

and tangential forces are respectively

4 ( R w i y v  4
No -  3* B  and P ° ~ f N o  ~  3txB ' (5’18)

By the same method described in the previous section, we obtain the force vector for 

sliding contacts as

p (.» l _  4(JJwg)1/ 2 f r(nm) , f 
F  =  3tt5  1 + /

I ( u (™) -  u (nl) -  w0I (nm)
(5.19)

|4(u(m) -  u.(n)) -  w0I (nm)|J J ’

Making the substitutions (5.10) and (5.11), we find the force components under a uni­

axial compression as

_  4Jj2(-e3)3/2|4 ’,m)l3 J H«m, , ,
3ttB  I * J

(5.20)
(1 _  j (nm)2)1/2

which we note is equal to equation (5.16) when 9 = 9C where 9 is the angle of compression 

defined by

tan 9 — —  (5.21)
w o

and 9C is the critical angle of friction for which equality occurs in the condition (5.17), 

th a t is

tan 6c =  ( 2^ 2R C )  4  5̂ '22^

5 .2 .3  A  M od ified  A v era g in g  S ch em e

We consider the averaging scheme used in section (1.3.1) which gives the average stress 

as
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Figure 5-2: Ranges of integration over sliding and stick regions

K >  = -7 7  E "» +  (5.23)
contacts

where V  is the total volume of the medium and the summation is over all contacts m 

and n. An extra consideration is that each contact may now either slide or stick de­

pending on the angle of compression and the summation must be written in a form 

which distinguishes between these two possible cases. By summing over the sliding and 

sticking contacts separately, it is possible to write the average stress in the form

/  T(nm) n(nm) . r(nm) n(nm) \
V »  * i ( B )  * i ( B)  /

(5.24)

where the first summation is over sticking contacts (case A) only and the second is over 

sliding contacts (case B) only. The forces subscripted (A) and (B ) represent the sticking 

and sliding forces (5.16) and (5.20) respectively.

Following the same argument as used in section (1.3.1), we now write the summations 

in terms of averaged quantities. By assuming that the unit vectors l(nm) are uniformly 

distributed (that is the contact points are distributed with uniform probability over the 

surface of each sphere) and since there are many spheres contained within the volume V, 

we may write the above summation as

R E{4(nm )
+ 1,

(nm)  n (n m )
i (A) } + E
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B n N
{aii) =  ~~2V“  +  +  {IiFi)B +  {IiFi)l>] (5-25)

where n is the average number of contacts per sphere and N  is the total number of 

spheres in the volume V.  The angled brackets (-}A denote tha t the average is taken 

only over those values satisfying the no-sliding condition (5.13). Similarly, (-)B denotes 

tha t the average is taken only over those values for which sliding occurs satisfying (5.17).

In Walton [67], the definition of the averaging scheme was given in terms of the integrals

(•) =  —  f 2 d(/> P  dd (•) sin 0 (5.26)
47T J o J o

in which the extra sin 6 is necessary since the surface element required when integrating 

over the surface of a unit sphere is d5 =  sin 0 d6 d<J>. Figure 5-2 shows the 9 range of 

integration from 0 to 7r split into regions A  and B  satisfying conditions (5.13) and (5.17) 

respectively. The above integral is split as follows:

=  i f  d f f + f - J ( - ) s i n * d *  ( 5 - 2 7 )

O b =  i f ^ f '  O s i n f ld * .  (5.28)

This definition is repeated in appendix B together with the explicit vector averages 

required later in this chapter.

5 .2 .4  T h e  In it ia l S tress

Using equation (5.25) and the force components (5.16) and (5.20), we calculate the 

initial stress as

_  ^ ( ~ e 3)3/2 f 1 /IT j3 r r  \
\aij) ~  IT2 { B  j '

2B  ( ( l - j 2 ) l / 2 (/^ 3  +  -  2 h I i I ^ ) \  (5-29>

where (f> is the sphere material volume concentration, not to be confused with the polar
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angle <fi in the averaging scheme integral. The first term within the braces does not 

have an A  or 5  subscript since it is required to average this quantity over the entire

range of 6. The quantities N  and V  in the above have been replaced by (f) through the

relationships

^ NV„ 4wR3N  N  Z4>
* = —  = - W -  or T  =  4T i e  (5'30)

where Vn denotes the volume of a single sphere.

Considering first the normal stresses we find th a t (<7n) =  (a22) and tha t

/ \ _  n<K  e 3 ) 3^2 f  1 / j - 2 \ j  13 \ _______ 2  l J 2 \ T  l3 \  /  /  \  \
( n> ^ 2  | 5 ( i l s | >  2 5  +  C 3 A B \ ( l - I $ y i 2/ B]

<*») = - n\ f 2 { | < I J3|5) +

+ 4((t4 ^ (W|)}J- (5'31)
The trace of the stress tensor may be found by summing over i = j  = 1, i = j  = 2 

and i = j  = 3 to give

{(?kk)  =  2  { ( 7 n )  +  ( < 7 3 3 )  =  ‘ ( 5 - 3 2 )

The shear stresses are all zero due to the symmetries of the averaging scheme as discussed 

in section (2.4.1). Then by rearranging equation (5.32) to obtain (on ) and substituting 

the averaged values from appendix B into equation (5.31) we find tha t

( ° a )  =

(*11} -

{033) =

The uniaxial displacement considered here may be interpreted as arising from the ap­

plication of a vertical compressive force of magnitude F,  where

0 for i /  j

n<f>(—e3)3/2 f J _  / 7T -  29
7T2 y 6 5  \  325

\  sin2 0C (3 — 2 sin2 8C) |
) f + ------ 24(2B  + C) J '  (5'33)
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F - t „  \ \  1 I , sin2 M 3 - 2  sin2 0C) \F  7i  ------ — ——— — -------j .  (5.34)

5.3 The Increm ental State

Recall from section (3.6) th a t the incremental forces due to the incremental displacement 

(8u0,8v0,6w0) are given, in the normal direction, by

I N  = 2(J?w°)1/% Wo (5.35)
irB

and, in the tangential directions, by

—  4(Rw0)1/2 s j  ^  4 (Rw0) l/2 £ , K oc^
S P = n(2B + C ) SU° ^  ~  +  C) ' (5'36)

In chapter 2 we showed tha t, for equilibrium of the packing, it is necessary to  consider 

the rotations of each sphere, denoted 8u>, in the incremental problem. Equation (2.22) 

gives the incremental force exerted by sphere m  on sphere n as

h B  +  ( W m> +  6<x>W) A RI^nmAnB{2B +  G) t l j

+  C  [(£u(m) -  £u(n)) • I (”m)] I (nm)} . (5.37)

We make the same assumptions about the form of the displacements and rotations as 

for the initial state tha t they are consistent with the applied uniform strain:

S u =  S e i j X ^  and 8us^  =  =  8u>. (5.38)

Substituting these and the compression for the uniaxial strain e,j =  e38i38j3, given by 

equation (5.9), into the force vector (5.37) we obtain the components of the incremental 

force as

S F (nm) R 2{ €3)1/2| 4  ! i j 4£ £ e . j(r
ttB ( 2B + C) \ * * 0e'r1P

+  2C8epqI ^ I ^ l \ nm) -  4Beipq8upI ^ }  . (5.39)
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Recall from section (2.2) tha t in order to ensure rotational equilibrium we imposed the 

condition

^ I (nm>A«F("n,) = 0 (5.40)
m

from which the required value of was determined. Section (2.4) considered the case

of an initial uniaxial compression which gave the incremental rotation vector as

<5u>i = — “ <̂ 23, Suj2 — “ <̂ 13, 8 0J3 =  0. (5'4:1)

5 .3 .1  T h e  In c r e m e n ta l S tress

The average incremental stress is given by the analogue of equation (5.23) which is

{ e = +  l f m)6F[nm)} .  (5.42)
contacts

Here there need be no distinction between sliding and sticking since, as already men­

tioned in section (3.6), friction is a higher order effect and does not appear in the force 

equations (5.35) and (5.36). Following the same procedure as for the initial stress of writ­

ing the summation as an average and substituting the force (5.37) into equation (5.42), 

we obtain

{6<rii) =  W % B  +  C) {[2B Sik +  C  1 J3|)] {6ek,)
- 2 5 < f jf,!fo p/ , / i |/3|)} . (5.43)

The rotations are given by equation (5.41) and so the above equation relates the average 

incremental stress to the average incremental strain.

5 .3 .2  T h e  E ffe c tiv e  E la stic  M o d u li

The stress given in equation (5.43) may also be written as

(6<Tii ) =  C;j t , (6el l ) (5.44)

where C*jk] are the effective elastic moduli. In chapter 2 we showed tha t five independent 

elastic moduli are required to describe this transversely isotropic medium. By taking
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the appropriate values for i and j  in equation (5.43) and using the calculated rotation 

vector (5.41), we obtain the elastic moduli as:

C u  =
S~1*
'-'1111

COII +  2/5)

C'12 = '-'1122 — a  — 2/5

r *'-'13 —  C* —
~  '“'1133 — '“'2233 = 2(a -2 /5 )

U 33 — U 3333 = 8(a +  f l

c*'“'44 —  r *  —
—  1313 — r *'“'2323 =  2 (a +  2/5)

in which a  and /5 are defined, as in Walton [67], by

(5.45)

_  <f>n(-e3) ^ 2 _  </>n(-e3)1/2
a  32ir2B  an ^  327t2(2F? +  C)  ̂ ^

which in terms of the confining force F  (5.34) may be written as

_  .. .  .  .. sin2 0C (3 -  2 sin2 flc) |  1/3
a  32tt25  I  n<j) )  6 5  1 32B  )  ^  24(2B + C) J  ̂ ^

and

n</> h r2F \ 1 /3 f 1 /  7r -  29c\  f . sin2 0C (3 -  2 sin2 6C)
32w2(2B + C)B  \  n(f) J ( 6 5  V 32B  24(25 +  C)

(5.48)

5 .3 .3  W ave S p eed s

We now consider a plane wave propagating in the direction of a unit vector m. The 

stresses are related to the displacement u through the relationship

= C;jkluktl (5.49)

where the moduli C ^ kl are given by equation (5.45) and ukj} denotes differentiation of

Uk with respect to the coordinate £/. The equation of motion is
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<7ijtj =  pUi (5.50)

where Ui denotes the second time derivative of u* and p is the effective density of the 

medium, that is p = <pps where ps is the density of the sphere material. Consider a 

plane-wave solution of the form

Ui = di exp {i(fcm • x  — u;f)} (5.51)

where d is the particle polarisation, k is the wave number and u> the frequency. Substi­

tuting this solution into the equations (5.49) and (5.50) we obtain

— C*jkldkk2mimj = -pu>2di (5.52)

and

pc2d{ =  (C£t/m,-m,)d* (5.53)

where c = uj/k is the wave speed. Then combining the above two equations, we may 

write

~ Pc2Sik)dk = 0 (5.54)

showing that pc2 must be an eigenvalue of C*jklmjmi with corresponding eigenvector d. 

By defining the matrix

D ik =  Cijklmjmi  (5.55)

we may write the components as

D u  =  d" C12l2m 2 4" ^1313m 3

D 22  —  ^ 2 1 2 i m i  4 "  C 222 2 m 2 4 "  ^ 2 3 2 3 m 3

D33 =  £3131^1 4" C 3232m 2 4" C3333ITI3 

D u  =  C7i22m i m 2 +  C ;221m im 2

D 2i = C,2112m1m2 +  C2*211m1m2
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A s  =  A * 1 3 3 m l m 3 +  A * 3 3 l m l m 3

A 1 =  < ^ 3 1 1 3 7 7 1 1 7 7 1 3  +  0 ^ 7 X 1 ^ ^

A 3  =  C ,2233m 27̂ 3  +  A > 3 3 2 m 2 m 3

D 32 = C3223^2^3 4“ C3322^2^3* (5.56)

Because of the symmetry of the transversely isotropic state, it is sufficient to consider 

a propagation direction of the form

m  =  (sin ip, 0, cos ip) (5.57)

where ip is the angle measured from the zy-plane. Then the m atrix (5.56) simplifies to

A i — A n 1 m \  + A 3 1 3 ^ 3

A 2 — A l 2 1 m l + A 3 1 3 ^ 3

D 33 — A l 3 1 m i + C3333m\

D 12 =  D 21 =  0

A 3 =  A i — ( A l 3 3  +  A 3 3 l ) m 1 ^ 3

COCM
Q

=  D 32 =  0

and the eigenvalue problem (5.54) may be written in m atrix form as

A i  — pc2 0  D 13

0  D 22 -  pc2 0

A 3 0 D 33 — pc2

=  0 (5.59)

and as a system of equations for the eigenvectors d:

(D u  ~  pc2)d  1 +  7^13^ 3 — 0

( A 2 — pc2 )d 2 — 0  

Di$di  -f- ( A 3  — pc2 )d,3 =  0 . (5.60)
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Figure 5-3: A plot of dimensionless wave speed against angle 

There are three solutions to consider, the first of which is an S-wave:

T h e  S-W ave Solution

From the middle equation of the above system we have that

Z)22 =  pc2 and =  d3 =  0. (5.61)

or writing in terms of the confining force F  (5.34)

The particle displacement is in the direction of e2 which is perpendicular to the direction 

of propagation, the resulting wave being recognised as an S-wave.

T h e  R em ain ing  Solutions

To determine the remaining two solutions, it is necessary to solve the quadratic obtained 

from the first and third equations of the system (5.60) as
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(Dn D 33 — D\  3) — (D u  +  D33)pc2 +  p2cA — 0. (5.63)

In general, the two waves arising from this quadratic will be neither purely longitudinal 

nor purely shear. We solve numerically for selected values of 4> and plot non-dimensional 

wave speed against angle of compression, as shown in figure 5-3. The dashed line 

represents the shear wave (5.61) and the two solid lines are obtained from the solution 

of equation (5.63). A value of B / C  =  1/3 was chosen.

Special Cases

Two special cases for which explicit expressions may be derived for wave speeds and

polarisations are considered here. The first is a uniaxial compression in the ^-direction

with axis of strain described by

m =  (1,0,0) (5.64)

for which ^  =  tt/ 2. The solutions obtained are an S-wave with wave speed given by

pc2 =  — C22) (5.65)

which may be written in terms of the confining force F  (5.34) as

2 _  6B + C  / n2F \  1/3 j  1 / 7r 2$c\  sin2 0C (3 2 sin2 $c) —1/3
C 32psB{2B  +  C) }6B  I  32B  24(2B  + C) ]

(5.66)

Two other waves are obtained from equation (5.63), with speeds

pc2 = C u n  and pc2 =  Cisis- (5.67)

The first of these is a P-wave with speed

3(4B + C) / n2F \ 1/3 I 1 
32psB(2B + C ) \ T r i <t>) 1 6B

7T -  26c 
32 B f  +

sin2 9C (3 — 2 sin2 0C) 
24(2J9 +  C)

- 1 / 3

(5.68)
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and the second is an S-wave with speed

2 _  4B  + C  / n2F \  1/3 f  1 / ? r - 2 0 c\  sin2 6C (3 -  2 sin2 0e) |  “ 1/3
C “  lQpsB(2B + C ) \ i r 4<f)) [ 6 5  +  V 325 )  * +  24(25 +  C) J

(5.69)

The second special case we consider is tha t seen in Slade and Walton [55], the axis of 

strain being in the z-direction as follows:

m =  (0,0,1) (5.70)

for which '0 =  0. The solutions obtained are an S-wave with speed

pc =  C23 2 3  =  ^ 1 3 1 3  (5*71)

which may also be written in terms of F  as equation (5.69), and two other waves with 

speeds

pc2 =  C isi3 and pc2 =  C3333. (5.72)

The first of these is an S-wave with speed given in terms of F  by equation (5.69) and the 

second is the P-wave seen in Slade and Walton [55] which examined an initial uniaxial 

compression followed by the incremental uniaxial compression Seij =  6e Si3Sj3. The 

wave speed obtained from the C3333 modulus is

2 3 B  + C  /  n2F \  1/3 f 1 / t t - 2 0 c\  sin2 9C (3 -  2 sin2 0C) \  " 1/3
C ~  4psB (2B  + C) ( 6 5  +  I  32B  J f +  24(25 + C) J

(5.73)

which is in agreement with the corrected equation (34) of Slade and Walton [55] given 

in appendix A as equation (A.5).

Figures 5-4 and 5-5 plot the dimensionless wave speed against the coefficient of friction 

varying from 0 to 1. In figure 5-5 the value of 0  is 7t /2  with the P-wave and S-wave 

speeds from equation (5.67) plotted by the dashed and dot-dashed lines respectively. 

The solid line is the P-wave speed from equation (5.65). The value of 0  in figure 5-4 

is 0 and shows the P-wave as a dot-dashed line and the two S-waves of equations (5.71)
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Figure 5-4: A plot of dimensionless wave speed against coefficient of friction, xp = 0
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Figure 5-5: A plot of dimensionless wave speed against coefficient of friction, xp = 7r/2
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and (5.72) as a solid line.

All of the results in this chapter are for the dry sphere packing only. The presence of fluid 

would create an additional hydrostatic pressure causing the spheres to be compressed 

normally. The Biot theory of porous media (see references [5] and [6]) provides one 

method of allowing for fluid effects by examining the relative motion between the solid 

and fluid phases, which in turn  requires parameters coupling solid and fluid properties. 

Walton [64] and [63] and Digby and Walton [23] have considered a fluid-saturated cubic 

packing by solving the linearised equations of solid and fluid motion within a single 

(cubic) cell of the packing.

A fluid-saturated random packing is examined in Walton and Digby [69]. A low fre­

quency expansion technique is used to obtain the linearised equations of solid and fluid 

motion, and an averaging scheme is defined to homogenise the medium. The effect 

of the hydrostatic fluid pressure is an additional displacement to th a t which would be 

experienced by the equivalent dry-frame problem. Thus the fluid effect may be added 

once the dry-frame moduli are known. Comparisons are also made with the equations 

of Biot [5] showing th a t either approach would be suitable for the addition of a fluid 

component in the frictional random packing model.
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Chapter 6

The Oblique Contact o f Two 

Oblate Spheroidal Bodies

6.1 Introduction

The normal Hertzian contact of non-spherical elastic bodies has been extensively studied 

and is reviewed by Sackfield and Hills [49]. The problem in which tangential forces are 

transm itted between the two bodies has been studied by Deresiewicz [20], Vermeulen and 

Johnson [61] and again is reviewed by Sackfield and Hills [50]. Rough contact between 

elastically and geometrically identical bodies are considered by Raoof and Hobbs [47] 

and Bryant and Keer [12].

The purpose of this chapter is to derive the oblique contact laws between two contacting 

spheroidal bodies which are aligned in the sense tha t their principal axes in the three 

coordinate directions are parallel. The geometry of this problem is treated as a special 

case of the general Hertz geometries seen in the above references, which was also pre­

sented in section (1.2.4). Here we will assume tha t the bodies are infinitely rough so 

tha t there is no relative slip between them. First, the oblique Hertz problem is solved 

for bodies of a general profile by extending the results of Walton [66] for spheres, in 

which the normal and tangential displacements are occurring simultaneously. Next, the 

incremental oblique displacement is imposed on this initial compression, as described in 

Walton [67] and section (1.3.1).
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6.2 Surface Displacem ents

Before considering the Hertzian contact of bodies of a general profile, it is necessary to 

calculate the displacements on a half-space due to distributions of the form

JV(x,,) =  JV „(l — J  — (6.1)

acting normally, with a similar Hertzian pressure distribution

' < * . * > = 4 - 5  - i f  < « ■ » >

acting in a general tangential direction and the elliptical punch pressure distribution

P(*,y) = K ( i - 5 - £ )  ^  (6-3)

also acting tangentially, where K  and N  are force constants. The half-space is defined as

z < 0 and the xy-plane forms the boundary of the half-space as seen in section (1.2.1).

These distributions act in the plane-elliptical region

where 2a and 26 are the lengths of the principal axes of the ellipse and a > 6. The load 

is zero outside this elliptical region. The eccentricity, e, of the ellipse is defined by

e2 =  1 — (6.5)
cr

In section (1.2.1) we saw tha t for force distributions satisfying the symmetries required 

in the contact problem, the surface displacement integrals (1.8) may be decoupled into 

normal and tangential systems by defining the relative and absolute normal displace­

ments as

wr (x,y) = i  {w+(x,y)  -  w_(x,y)}

wa(x,y) = ^{™+{x,y)  + w_(x ,y )}  (6 .6)

where w+(x,y)  is the displacement in the z-direction on the surface of the half-space
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z < 0 due to the distribution (P, Q , N )  and w_(x ,y)  is the displacement on the surface 

of the half-space z > 0 due to the distribution (—P , —Q , —N ). Similar definitions may 

be made for the functions ur (x,y) ,  ua( x , y ), vr (x,y)  and va(x,y)  where u (x , y ) and 

v(x ,y )  are the tangential displacements in the x- and y — directions respectively.

The surface displacements are given by the integrals (1.8) which were derived in sec­

tion (1.2.1) from the results of the Boussinesq and Cerutti problems. The decoupled 

displacements required in this chapter are:

M t , y) =  JK { + g I ™ « ) + X Y ^ n } a ,-  V

wr(x,y)  = ) &x ' dy\  (6.7)

Details of the method of calculation of these integrals for the pressure distributions of 

the forms (6.1), (6.2) and (6.3) over the region (6.4), are given in appendix C. For the 

Hertz distributions (6.1) and (6.2), the required displacements are:

ur { x , y )  =  Uo +  ^ K  l ( 5 e 2 +  C ) K ( e ) - C E ( e ) }

"  { [2°  + e^ B ~  C )1 K (e) -  (Be* +  2C>E (6) } 

"  v V K  { [2C +  e2{B ~  c)]  E ( e ) " (1 “ e2)[Be2 +  2 C )E (e )}

+  | J x c  { (2 -  e2)K(e) -  2E(e) } xy  (6.8)

vr (x,y)  = v0 + j [.Be2 — (1 — e2)C]K(e) +  C E (e ) |

-  (  [Be2 -  2(1 -  e2 -  2(1 -  e2)C]K(e) +  [(2 -  e2)C -  Be 2]E(e) 1
a1 e4 f J

-  V~ L  { [C(l -  e2) (2 -  a2) -  S e 2(l -  a2)]K(a) +  [Be2 -  2(1 -  e2)]E(e) }

+  | ^ f c { ( 2 - e 2) K (e ) -2 E (e )  }*!, (6.9)

/  ̂ i n 'at f „ ,  , x 2 K(e)  — E(e) y2 E(e) -  (1 -  e2)K(e) 1 ^wr(x,y)  = w0 +  irbBN0 |K (e )  — — ^  K ^  (6.10)

where K(e) and E(e) are complete elliptic integrals of the first and second kinds respec-
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tively, as defined in appendix C, and L is the force constant for the distribution of the

form (6.2) in the ^/-direction. For the tangential punch-type pressure (6.3), the required

displacements are:

ur { x , y )  =  u0 +  ^ j r { ( B e s +  C )K (e ) -C E (e )}  (6.11)

vr(x,y)  = v0 +  —J-L {[Be2 ~  C(1 — e2)]K(e) +  CE(e)} (6.12)
ez

which are uniform across the region on which the distribution acts.

6 .2 .1  T h e  N o r m a l H e r tz  P ro b lem

In section (1.2.3) the geometry of two bodies of general profiles was analysed; the point 

of first contact defined an origin 0  of a rectangular system of Cartesian coordinates 

O xyz  with the zy-plane being the tangent plane common to the two bodies, and the 

z-axis being directed into the lower body. Recall tha t when the bodies are compressed

normally to form a finite contact area, the conditions of contact on the contact area are

2wr(x, y) = 6 — a x 2 — (3y2 (6.13)

and outside the contact area we must have

2wr(x, y) < 8 — a x 2 — fly2 (6-14)

where a  and (3 may be obtained in terms of the principle radii of curvature for the two 

bodies from the system (1.24), and 6 is the approach of distant points in the two bodies. 

The usual Hertz assumptions of section (1.2.4) apply.

The shape of the contact area cannot be determined with certainty in advance. However, 

comparisons of the problem in elasticity may be made with an analogous problem in 

electrostatics. Hertz [30] recognised tha t a charge occupying an elliptical region on the 

surface of a conductor, the intensity of which varies as the ordinate of a semi-ellipsoid, 

gives rise to a potential throughout tha t surface which is parabolic. W ith this in mind, 

Hertz proposed tha t the contact area be an ellipse of the form
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x 2 v 2
?  +  ¥  - 1  ( 6 - 1 5 )®0 °0

where a0 and b0 are the lengths of the principle axes and a0 > b0. The eccentricity of

the ellipse is defined as e2 =  1 — b2/ a 2. The corresponding normal pressure distribution

is of the form (6.1):

/ 2 2\ 1/2 
N0(x,y) = N 0 ( l - ^ - l - J  (6.16)

where N 0 is a force constant. The displacements on the ellipse (6.4) due to the above 

distribution are

/ \ . f T„  . x2 K(e) — E(e) y2 E(e) -  (1 -  e2)K(e) )
Wr(*, y) =  Wo +  B N 07rb0  ̂K (e )  ^ --------  — --------------   \ . (6.17)

t ao e o0 e J

Applying the condition of contact (6.13), we require tha t

6 — a x 2 — fly2 =

2 „ 0 +  2 B N 0, b 0 ( K («) -  f ! K (e) -  E(e) _  g E(e) -  (1 -  e»)K (e)1
I ag e2 65 e2 J

(6.18)

By equating the constant terms and the coefficients of x 2 and y2 we obtain values for 

the constants 8, a  and fl as

8 =  2w0 = 27rBN0b0K(e)

a = 2wBN0b0

fl = 2irBN0b0
E ( e ) - ( l - e 2)K(e)

b20e2
(6.19)

The constant N 0 may be determined from the first equation of the above as

N 0 =
w o

7rf?60K(e)
(6 .20 )

giving a normal distribution of
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2 2\ !/2 wo 11 _  •*_ _  y _ \
■ (6'21)

To find the eccentricity e of the ellipse of contact, we write

i  E(e) -  (1 -  e2)K(e)
a  (1 -  e2) [K(e) -  E(e)] y ’

from which e can be found if a  and (3 are known. Note tha t this equation is inverted

compared to the equivalent equation (2.26) of reference [54]. Equation (2.26) of [54] is 

incorrect although the subsequent equations derived from it are believed to be correct. 

A similar expression to equation (6.22) may be found as equation (6) in Bryant and 

Keer [12].

To find the values of a0 and 60 in term s of the compression wQ we write

(«/?)1/2 =  - IT  =  ̂ 5 ? [K(e) “  E(e)]l/2 [E(e) ~ (1 “  e2)K <e)]1/2 (6-23>2Ke e ao

and so substituting for N 0 and writing in terms of R e, we obtain

2 4Rew0 ai =
e2K(e)

[K(e) E (e)l [E (e) -  (! -  e2)K (e)]1/2 (6.24)
1 — e:

where the geometrical parameter R e is defined in section (1.2.3) as

Re = \ { a p ) ~ 112- (6.25)

The value of b0 may be found using the eccentricity e2 =  1 — &o/ao-

6 .2 .2  T h e  T a n g e n tia l  P r o b le m

The addition of tangential displacements to the normal problem follows the same method 

used for the spherical contact problem as seen in section (1.2.5). The relevant tangential 

force distributions are of the forms:

Po(*,») =  * o ( l - J - J L )  (6.26)

/ 2 2\ 1/2 
Qo(x,y) = Z0 ^1 -  -  | f  J  (6.27)
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in the tangential x- and ^/-directions respectively, K q and L 0 being force constants. 

Relative to the point of first contact, the displacement of the centre of the upper body 

is (w0, v0, —w0). The values of the two constants K 0 and L 0 can be calculated by applying 

the condition tha t there is no relative displacement of the two surfaces on the contact 

area. The required tangential displacements are

ur {x,y)  =  U o + ^ A 'o  j ( S e 2 +  C ) K ( e ) - C E ( e ) }

-  { [2C  +  e2(B -  Q ]  K(e) -  (Be2 +  2C)E(e) )

-  { [2C +  e2(B -  C)] E(e) -  (1 -  e2) (Be2 +  2C) K( e)  J
+  C  { (2 -  e2)K(e)  -  2E(e) } xy

a q€  ̂ j
(6.28)

with a similar expression for the displacements vr (x,y) ,  derived from equation (6.9), 

and the no-slip condition gives values of K 0 and L 0 of:

Ac
jt60 {(Be2 +  C)K (e) -  CE(e)}

t —  ~ e v°________  29)
0 7t60 {[-Be2 — C(1 — e2)]K(e) +  CE(e)} ;

which determines the force tangential force distributions (6.26) and (6.27) during the 

initial state.

6.3 The Incremental Deform ation

An incremental displacement is now imposed on the initial state of the previous section. 

The increment is of amount (6u0, Sv0, —6w0) and is assumed to be small enough that

contact is maintained between the two bodies. Following the Hertz distribution (6.21),

the normal force becomes

N  + SN = f l  _  f !  _  | ! V /2 (6.30)
irBbK.(e) V a b2 J
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where the lengths of the principal axes of the contact ellipse are now 2a and 26, replacing 

the initial lengths 2a0 and 260. It is assumed th a t the eccentricity of the contact ellipse 

is independent of the applied load and depends only on the local geometry of the contact 

ellipse and therefore we may write a/6  =  a0/6 0. The semi-axis length for the incremental 

problem is

2 4 R e(w0 + 8w0) 
a =

e2K(e)
\K(e)  -  E(e)

1 — e2

1 / 2

[E(e) -  (1 -  e2)K(e)] 1 / 2 (6.31)

Analogous to the sphere problem of section (1.3.1), the incremental tangential force 

depends on the sign of 6w0. When 8w0 < 0 the tangential force distributions are of the 

forms

P  +  6P 

Q +  8Q

1 / 2 ■1 / 2

x* y2\ 1/2 (  %2 y 2\  1

(6.32)

(6.33)

which we note is the sum of a Hertz-type pressure (6.2) and a punch pressure (6.3). To 

find the tangential displacements we make use of equations (6.8) and (6.11) to obtain

ur(x,y)  = uQ -f Suq H— +  2K 2) {{Be2 +  C )K (e) — CE(e)}
€ z

-  { [2C + e2(B -  C)] K(e) -  (Be2 +  2C)E(e) }

-  (  [2C +  e2(B -  C)] E(e) -  (1 -  e2)(B e2 +  2C)E(e) }

+  ̂ i 1c (  (2 -  e2)K(e) -  2E(e) L j ,  (6.34)
a06 L )

7t6
vr{x iV) =  vo +  8vq -]— —[ L i 2 L2) {[Be2 — C (1 — e2)]J^(e) ez

-  (  [Be2 -  2C(1 -  e2)]K(e) +  [C(2 -  e2) -  Be2]E(e) 1

-  V~ L ,  { (1 -  e2)[C(2 -  e2) -  Be2]K(e) +  [Be2 -  2C(1 -  e2)]E(e) }

+  (  (2 -  e2)K(e) -  2E(e) 1 xy.  (6.35)
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The no-slip condition applied over the contact area requires force constants

—a2e2u0
h  i =

iralb {{Be2 +  C )K (e) -  CE(e)}

K  _  e2 [u0{a2 -  a2) -  a2Su0]
2 2-xa20b{(Be2 + C ) K { e ) - C E { e ) }  1 1

and

L i =
9 9—ore*v 0

ira20b {[Be2 -  C{ 1 -  e2)]K(e) +  CE(e)}

L,  =
e2 [vQ(a2 -  a§) -  aj^v0]

2wa2b {[Be2 -  C{ 1 -  e2)]K(e) +  CE(e)} *
(6.37)

When 6w0 > 0, new contact area is formed and the tangential force distributions are, 

in the x-direction,

P  +  6P = I

2 \  1/ 2 /  2 2 \  */2
+  , ( x , y ) e E °

6
i /2

and in the ^/-direction

, ( x , y ) e E \ E {

(6.38)

Q-\-bQ — <

( 2 2 \  I/ 2 /  2 2 \  i/ di
'  (- X ' y ) £ E

2 \  I / 2

2 \  ! / 2

(6.39)

, ( x , y ) e E \ E °

where the regions E° and E  are defined as the sets

(6.40)

The displacements on the inner region E°  are found by summing the displacements (6.8) 

due to the K\  and i i 2 terms of (6.38) to obtain
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ur{x i y ) — uo +  $uo +  -̂ 2 (PoKi +  bKz) ^ (Be2 +  C)K (e) — C E (e ) |

-  ^  ( | A ' i  +  ^ 2)  { [2C -  e \ B  -  C)\ K(e) -  (Be2 +  2C)E(e) }

-  +  p / f 2)  |  [2C +  e2(B -  C)\ E(e) -  (1 -  e2)(Be2 + 2C)E(e) }

+  ^  +  ^ £ 2)  c  |  (2 -  e2)K(e) -  2E(e) } xy  (6.41)

vr (x,y) = t>„ +  Sv0 + ^  (b0Li + bL2) |  [Be2 — C(1 — e2)]K(e) + C E (e ) |

-  (̂ 1 + ^ L*) { \.Be2 - 2C<̂ - e2)]R (e) + CE(e) }
-  ^  ( | l ,  +  { (1 _  e2)[C(2 -  e2) -  Be2]K(e) +  (Be2 -  2(1 -  e2)]E(e) }

+  ^  + L t f 2)  C  |  (2 -  e2)K(e) -  2E(e) } xy.  (6.42)

Applying the same no-slip condition over the original and newly created contact area, 

the force constants obtained are

r  _  ______ e2 {(a2 -  a20)u0 -  fljfou0}______
11 ”  Tb0(a2 - a 2) { ( B e 2 + C ) K ( e ) - C E ( e ) }

v  _   a2e26u0______________
7r6(a2 — a2) {{Be1 +  C)K (e) — CE(e)} K ' '

_  e2 {(a2 -  a20)v0 -  alSv0}
L 1 —

jr6o(<*o -  «2) {[5e2 -  C( 1 -  e2)]K(e) + C E(e)}

T _ __ a2e2Sv0_________________  .
2 "  7r6(ao — a2) {[Be2 — C(1 — e2)]K(e) +  C E(e)} ’

which determines the tangential force distributions (6.38) and (6.39).
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6.4 Calculation of the Total Forces

In section (3.5) the total forces acting between two contacting spheres were calculated by 

integrating the force distributions over the circular contact area. To calculate the total 

forces between two contacting bodies of arbitrary profiles, it is necessary to integrate 

the force distributions P ( x , y ) over the contact area 1Z as

P =  f P ( x , y ) d K . (6.45)
Jn

For force distributions of the form

P(x ,y )  = I { (  1 - ^ - f j )  (6-46)

the contact area is an ellipse given by equation (6.4) and may be represented in plane 

polar coordinates (r, 6) as

r = f(8)  =  (a2 sin2 6 +  62 cos2 0)-1/2a&. (6-47)

Then the integral (6.45) may be transformed to

_  /*2ir ff(e) / 2 y l \ 1/2

p=kL L  ( ^ - f )  ^  (6-48)
and using the results of appendix C, the integral is evaluated as

p  = ^ k . (6.49)

For the punch-type pressure

i >(®,») =  j r ( l - ^ - ^ )  (6.50)

the total force may be obtained by substituting P (x ,y )  into the integral (6.45) and

evaluated in the same way as before to obtain

P = 2irabK. (6.51)
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6 .4 .1  T ota l In it ia l Forces

In the initial state, the normal force distribution is given by equation (6.16) and by

using equation (6.49) the total normal force N 0 may be calculated as

* °  =  3 W  <6-52>

The total tangential forces P 0 and Q0 may be calculated from equations (6.26) and (6.27)

as

_  - 2  e2u0a0
-to — 3 {{Be2 +  C )K (e) — CE(e)}

77 _  ____________ —2e2u0a0___________
3 {[Be2 — <7(1 — e2)]K(e) +  C E (e)} ' 1 j

6 .4 .2  T ota l In crem en ta l F orces

Throughout the incremental deformation the normal force is given by equation (6.30) 

and the corresponding total force is

2(w0 +  £w0)a
N ° + t N =  3 B K ( e j  • <6-54)

By subtracting the total initial force (6.52) from the above, we obtain the actual force

increment 6N  as

  2
6N  =  ( a (^o +  <̂ ô) ~ a0^o} . (6.55)

The tangential force distributions depend on the sign of the displacement increment 6w0.

When Sw0 < 0, the total forces may be obtained from equations (6.32) and (6.33) as:

■p I c p _  ae2(u0a2 -  3u0al -  3a208u0)
+  3flS{(5c2 +  C )K (e ) -C E (c )}  ( j

T T T J n  -  ae2(v0a2 -  3v0a2 -  3a2Sv0)
3a2 { [5e2 -  C{ 1 -  e2)]K(e) +  CE(e)} 1 j

with force increments of:
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_  e2 {3aa2 -  u0(a0 -  a)2(a+ 2a0)8u0}
Sal { (Be2 +  C)K(e) -  CE(e)} 1 j

j -j  e2 {3aa2 - v 0(a0 -  a)2(a + 2a0)8v0}
W 3a2 {[Be2 -  C(  1 -  e2)]K(e) +  C E (e )} ' 1 j

For 8w0 > 0, the total forces are obtained from equations (6.38) and (6.39) as

p -j -c p  2e2 {(a2 +  aa0 +  a2)8u0 +  a0(a0 +  a)u0]
3(a +  a0) {(Be2 +  C)K(e) — E(e)} 1 j

q  , cq _  2e2 {(a2 +  gap +  apSvo +  Qq(qq +  q)^o} I'fifii'l
V V 3(a +  a 0){ [5 e 2 -  C(1 -  e2)]K(e) +  CE(e)} j

with force increments of:

J p  = 2e2(a2 + aa0 + a2)8u0
3(a +  a„) {(Be2 +  C)K (e) -  E(e)} '

t t t  __________2e2(a2 +  aa0 +  a2)<Su0__________
W 3(a +  a0){[B e2 - C ( l - e 2)]K(e) +  C E (e)} ‘ }

6.5 The Linearised Increments

When the incremental displacement is much smaller than the initial displacement, the 

increments SuQ, 8v0 and 8w0 may be regarded as infinitesimals. As such, the force 

increments (6.58), (6.59), (6.62) and (6.63) may be expanded in powers of 8u0, 8v0

and 8w0 in a similar way as was seen for spheres in section (3.6). Recall tha t the

incremental radius a is given by equation (6.31) and may be written as

1 / 2

=  (R*w0y /2 ( l  +  (6.64)
V w0 /

where we have defined

R* =
4 R f

e2K (e)
K ( e ) - E ( e )

1 — e2

1 / 2

[ E ( e ) - ( l - e 2)K (e)]1/2. (6.65)

Equation (6.64) may be expanded in powers of 8wq/ wq. For the normal increment 8N,
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we wish to expand the expression

  2
8N  =  2BK(e) ^ w° +  ~ a°w°} ' (6'66)

By replacing the radii a0 and a in the above, we obtain

+  <6-67>

which may be expanded to first order to give

(, S8)

Considering the tangential increment 6P when Sw0 > 0, it is necessary to expand the 

expression

a° +  aa° +  fl2. (6.69)
a +  ao

The 6w0 dependencies of the above may be expanded as

2wo + Sw0 + wl,2(w0 + 6w0y /2 3u>J/2 , 3  , n
 , . * m / 2 , V2-------= - 5 -  +  -T75<5“>o +  0 ( t o 0) (6.70)

(tO0 +  H )  ' +  W  1 %w0

from which the force increments (6.62) and (6.63) become

—  _  e2(R+w0)1/26u0
(Be2 +  C)K (e) — CE(e)

SO =   e2(R .w0y / 26v0_______
V [Be2 — C(1 — e2)]K(e) +  CE(e) ’ ( 1

The same expansion technique, when applied to the increments SP and 8Q in the 

case 6w0 < 0, yields the same equations as above. Thus, when the incremental displace­

ments are infinitesimal, equations (6.58), (6.59), (6.62) and (6.63) reduce to the same 

forms (6.71) regardless of the conditions 8w0 > 0 or 8w0 < 0. It may also be checked, us­

ing appendix D, tha t the above expressions reduce to the sphere force increments (3.162) 

and (3.163) as the eccentricity e tends to zero.
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6.6 The G eom etry of Spheroidal Bodies

6 .6 .1  O b la te  S p h ero id a l C o o rd in a te s

Having examined the contact problem for solids of a general profile, we apply the results 

obtained to oblate spheroidal bodies. Glad well [27] page 498, defines a system of oblate 

spheroidal coordinates (£, 77, 9) which are related to cylindrical polar coordinates (r, z, 9) 

by the equations

r = a' [(1 +  £2) (1 — t?2)] 1/2

z =  ^£77 (6.72)

where — 1 < 77 < 1 and £ > 0. The surfaces £ =  0 and 77 =  0 are respectively the interior

and exterior of the circle r = a', where a' is a constant, in the plane z = 0. The surfaces

on which £ is constant are given by the concentric ellipsoids

„2 z2
+ =  1 (6-73)

a ' 2 ( l  +  f 2 )  a ' 2 £ 2

from which the principal axes may be identified to be of length 2A  in the 7,-direction 

and of length 2C  is the z-direction, where

C£ =  . = and a' = V  A 2 — C 2. (6-74)
 ̂ s /A 2 -  C 2 V '

In terms of rectangular Cartesian coordinates, the system may be written as

x = a' [(1 +  £2)(1 — T]2)]1̂ 2 cos 9

y =  a' [(1 +  £2)(1 — 772)]1/2sin 9

z =  a'£ 77 (6.75)

and the scale factors of this transformation from ( x ,y , z )  to (£ ,77, 0) are given by

hi =
dr
d£

=  a f e  + r f"  1/2 
i + e
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h2 — 

h3 =

dr  
dr1 
dr
de

= a
2 \  1/2

1 — rf

« '[ ( i  +  a ( W ) ] 1/2 (6.76)

where r =  (x,y,z).  The unit tangent vectors to  the £-, rj- and ^-coordinate lines are, 

respectively,

1 dr
e£ = h~id£

1 dr
ev = h2 drj

1 dr
e* = h~3 d0

1 — Tj2 1/2
.f2 +  r]2)

l + e V ' 2
,£2 +  T}2)

-sin 0, cos 6, 0]

£ cos 6, £ sin 6

/ I  — 2\ lŷ2 
V cos - j]  sin 0, £ ^ 1 +  ^2 J

(6.77)

which are mutually perpendicular and form a right-handed orthonormal triad. On the 

surfaces of constant £, the vectors ev and are tangent to the surface and define the 

tangent plane at a point, and the vector is always normal to the surface as shown in 

figure 6-1.

6 .6 .2  C u rvatu re  o f  a S p h ero id a l S u rface

Let r =  r(s,t), where 5 and t are scalars, be a parameterisation of a smooth surface 

expressed in rectangular Cartesian coordinates relative to some origin O. The principal 

curvatures, Aj and A2, at a general point P  on the surface are the solutions of the 

generalised eigenvalue problem

r dr
m

dr
m

dr dr  1
V “

r d 2 r——* . Yi
d ? d 2 r  . n 1dsdt  n

dr
L ~5t

dr dr
~5i 1

H-k> 1 c-f. S3 d2 r——=- . n
w  .

(6.78)

where v  is a principal direction and n is the outward normal to the surface at P.  The 

partial derivatives are also evaluated a t the surface point P . The radii of curvature, 

denoted px and p2, are defined to be the reciprocal of the curvatures, th a t is

Pi — —  and p2 — — . 
Ai A2

(6.79)

We now wish to find the curvatures of the spheroidal surfaces defined by equations (6.74) 

and (6.73). The surface is parameterised by 77 and 9 with £ held constant. Solving the
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Figure 6-1: Unit tangent vectors on spheroidal surface

eigenvalue problem (6.78) with r  =  (x, y, z) as defined by equation (6.75) and identifying 

the unit normal n as being from equation (6.77), we obtain the curvatures

1 «'({2 +
A2 =   —  (6.80)

a '[ ( l  +  P ) ( f 2 +  02)]1/2

The radii of curvature may now be obtained from equations (6.79) and (6.80) and are 

negative since the surface curves away from the point P  at which they are evaluated. 

Also, there is no ^-dependence due to the rotational symmetry of the surface about 

the z-axis.

6.7 C ontact o f A ligned Spheroidal B od ies

Figure 6-2 shows two identical spheroidal bodies with aligned axes in contact. The point 

of first contact, relative to the centre of the upper spheroid, can be expressed in terms
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Figure 6-2: Two aligned oblate spheroidal bodies in contact

of the two varying parameters 77 and 6 and is taken as the origin in a rectangular system 

of cartesian coordinates in which the tangent lines e#, e,, and correspond to the a:-, 

y- and z-axes respectively. By symmetry, the radii of curvature at the contact point are 

the same for both bodies, that is

R[ = R'2 and R'l = R". (6.81)

Recall the constants a  and j3 which appear in the conditions of contact (6.13) and (6.14), 

the values of which were found in section (1.2.3) for bodies of arbitrary profile. In the 

case of spheroids, a  and (3 may be found in terms of the radii R \ and R ” by solving the 

equations (1.24). The angle between the two sets of axes of principal curvature for each 

body is 180° and so taking 9 =  tt in the equations (1.24) we obtain

« + / 3 =-S7 +  -^7 and -  /̂ l =  -ST -  -̂ 77 (6-82)i l |  ilj i l |  Jtj

which gives the values of a  and /3 as

a  = w 1 and i f  (6'83*
The principal radii of curvature are found from equations (6.79) and (6.80) as:
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= j [ ( i + m 2+v2r 2 

« -

The spheroid has planes of symmetry on which 6 is constant. The curvature R"  lies in 

one of these planes of symmetry (determined by the value of 9) and the curvature R[ 

lies in the perpendicular plane. The effective radius of curvature is defined as

=  =  (6.85)

Applying these values to the results of sections (6 .2 .1) and (6.2.2), equation (6.22) 

reduces to

f  +  )?2 (1 — e2) [K(e) — E(e)]
l +  £2 E(e) — (1 — e2)K (e) K ’

from which the eccentricity of the contact ellipse may be found in terms of the pa­

rameter 77 which is the scaled distance of the contact point from the plane z — 0 . 

Equation (6.24) becomes

dn -- 2w0 a ' ( e  + 7?2)3/2 [K(e) -  E(e)] (6.87)
0 e2K(e) ^ (l +  ^ J 1/2 

which gives a0 (and hence b0) in terms of 77 and the compression w0. Using the above 

equations (6.84), (6.22) and (6.87) the initial force distributions (6.26) and (6.27) may 

be determined.

The equivalent expression for the incremental radius a is

2 2(w0 +  £w0) a'(Z2 +  V2)3/2 r r ^  N T V  M  to  o o ^
a =  e2K(e) € (l +  P)>/» [K (e )" E(C)] (6'88)

from which, together with the equations (6.84) and (6.22) the linearised incremental

forces (6 .68) and (6.71) may be determined.
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Chapter 7

A Random  Packing of Oblate 

Spheroidal Particles

7.1 Introduction

In chapter 6, we derived contact laws for the compression of two aligned spheroidal 

bodies subjected to an initial oblique compression followed by a smaller incremental 

deformation. The results obtained are used in this chapter to  model a random packing 

of these spheroidal particles, the motivation being to apply the results to the study of 

shale-like rocks.

Scanning electron microphotographs of shale samples, such as th a t shown in figure 7-1, 

reveal a complex microstructure consisting of connected solid and fluid phases. The 

solid phase is comprised of several mineral components, mostly clay in the form of flat 

plate-like particles which make up the load bearing skeleton of the shale. Other minerals 

are present as isolated inclusions which are not connected and so are not load bearing 

and therefore have less effect than the clay platelets on the overall elastic properties of 

the shale. The platelets are seen to have a preferred direction of orientation which is 

horizontal with local misalignment in the vicinity of larger silt particles. The platelets 

tend to wrap around any inclusion causing only local disorder in particle alignment.

Shales make up 75 per cent of sedimentary basins and overlie most hydrocarbon bearing 

reservoirs. Successful seismic imaging of such reservoirs relies on a knowledge of the 

elastic properties of the overlying strata. At present, most models of hydrocarbon
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Figure 7-1: Scanning electron-micrograph of shale sample

reservoirs treat the shale as an isotropic fluid layer. However, shales are known to be 

elastically anisotropic and this anisotropy must be taken into account when using more 

advanced techniques of seismic imaging. Ideally, any proposed model of anisotropic shale 

behaviour would predict macro-seismic properties from micro-structural information 

such as the elastic moduli of the matrix material and the shale porosity. Due to the 

complex microstructure of shales, analysis of scanning electron microphotographs must 

be used to propose simplified models of shale structure. One such model is used by 

Hornby, Schwartz and Hudson [32] in which the clay platelets are treated as spheroids 

of high cross sectional aspect ratio and the elastic properties are determined using a 

combination of the self-consistent approximation (see Hill [31]) and differential effective 

medium theory. The work in this chapter models the platelets again as spheroids, but 

they are treated as interacting solid bodies rather than a collection of inclusions as 

in the self-consistent method. Hence the effects of inter-platelet contact will play an 

important role in determining the elastic properties of the medium. Similar work, with 

sphere packings, has already successfully modelled certain types of porous rocks and this 

work adapts the averaging scheme of Walton [67] which was described in section (1.3.1).
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The problem tha t we will be considering here is the determination of the effective elastic 

moduli of a random packing of oblate spheroidal bodies. The spheroids are taken to be 

identical in every way, the m atrix material is taken to be homogeneous and elastically 

isotropic and all spheroids are assumed to lie flat and be aligned in the same direction. 

The packing may be considered as a random sphere packing scaled down by a certain 

factor in the z-direction. For most shales the scale factor is about 20, see Hornby, 

Schwartz and Hudson [32], In such a model the effect of inter-granular contact will play 

an im portant role and, in particular, the coefficient of friction between the platelets is 

assumed to be infinite in analogy with section (1.3.1).

Using the results of the previous chapter, the packing is subjected to  an initial confining 

strain which is small enough tha t the equations of linear elasticity still apply in the 

spheroid material. The resulting stress is then determined in term s of this strain. An 

incremental strain is then imposed on this initial state and is assumed to be infinitesimal 

in the sense tha t it is much smaller than the confining strain. The resulting incremental 

stress is determined in terms of the incremental strain and from this relationship the 

effective elastic moduli can be determined.

The spheroidal contact problem was seen to be much more complex than the sphere 

contact problem considered in Walton [66] and consequently, the averaging procedure 

is harder to implement. The analogous integrals treated in section (3.2) cannot be 

evaluated analytically, but we are still able to write down the effective elastic moduli in 

terms of an averaging integral suitable for numerical integration.

7.2 The Random Packing

7 .2 .1  P ack in g  G e o m e tr y

The packing consists of a large number of oblate spheroids randomly packed together 

and initially in point contact. The axis of symmetry of each spheroid is taken to be 

aligned parallel to the z-axis as seen in chapter 6.

In the undeformed configuration, the centre of the n-th spheroid is at position vec­

tor relative to some fixed origin. Under the imposed deformation, the centre of the 

spheroid suffers a rigid body displacement u^nl. The rotation of each spheroid about 

its centre is denoted u>(n). Figure 7-2 shows the n-th and m-th spheroids, starting from
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( m )

Figure 7-2: Initial deformation with rotations

point contact, undergoing the initial deformation. The unit vector joining the centres 

of two touching spheroids is given by

, n X<n) -  X (m)l (n m )  ------------------------- ( 7  I )

and is directed from X^m  ̂ towards X ^ .  The scalar T)(nm) is the distance from the

centre of the spheroid to  a point on its surface (in this case the contact point). The

superscript (nm )  will be om itted from now on for brevity. By symmetry, we see that 

the initial position of the contact point is

X(n) -I- x ( m)
— 5—  (7-2)

and relative to  X (m) the contact point is located at

,  ̂ X<n) -  x<m)
x'"m) = ------ 2-------• (7-3)

We make use of the system  of oblate spheroidal coordinates described in section (6.6.1). 

The surfaces are parameterised by 77 and 9 with the third coordinate £ fixed and depen­

dent only on the geom etry o f the spheroids. The value o f £ and the constant a' are given 

in terms of the lengths o f the principal axes of the spheroids by equation (6.74). Each 

point on the surface has a unique coordinate pair (7 7 , 9) and therefore at the contact 

point there exist 77 and 9 such that
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=  (a' [(1 +  £2)(1 -  t ; 2 ) ] 1 / 2 c o s  0, a' [(1 +  f 2 ) ( l  -  r?2)]1/2sin 0, a ' fr )  (7.4)

which is also relative to the centre of the ra-th spheroid. At this point the unit normal 

is, from equation (6.77),

c<nm) = ( 1 -  v 2 y /z 
e U 2 +  W

£ cos 9, £ sin 9, rj ( i + e 2x1/2'

r (7.5)

Combining equations (7.1), (7.3) and (7.5) we obtain a relationship between the unit 

normal e["m  ̂ and the position vectors X(n) and X(mb

( n m )  _  
% ~

£
< * v ( i + m 2 +*?2)

Inverting the matrix we obtain

1 0 0 

0 1 0

0 0

x ( n) -

(7.6)

x(") -  x(”*> , >
 ---------  =  Afe<"m) (7.7)

where

M  = i + e ) ( e  +  72)

1 0 0

0 1 0

i i0 0
1 +  r

(7.8)

The left-hand side of equation (7.7) is equal to Z)l(nm) giving a relationship between the 

unit normal at the contact point and the unit vector between the two centres as

Finally, it is easily shown tha t the scalar D  is given by

(7.9)

D =  a!\J  1 +  £2 — t72. (7.10)
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7.3 The Averaging Scheme

The averaging scheme used here is similar to tha t used in section (1.3.1) when consid­

ering a random packing of spheres. Quantities such as the average Cauchy stress are 

defined as

(*«> = y  J  dV =  i  £  j v dV (7.11)

in which V  denotes the total volume of the medium and Vn denotes the volume of the

n-th spheroid. As was the case when considering spheres, it can be shown that, for a 

single spheroid, we may write

j f  4 ”> d F  =  i  j s +  *}<<">) d5 (7.12)

where x ' =  x — X(n) denotes the position vector of a material point of the spheroid

relative to its centre The traction across the spheroidal surface Sn is denoted

by t(n) and will be zero at all points on the surface except for where the spheroid is 

in contact with other spheroids. Furthermore, the dimensions of the contact area are 

assumed to be small when compared with the dimensions of the spheroids and so, when 

spheroid n is in contact with spheroid m, we may approximate the material point x ' by

x ' =  i ( X (m) -  X (n)). (7.13)

The integral of the traction of the contact area is now given by the force between the 

two bodies. The force exerted by spheroid m  on spheroid n is denoted by F ^ 77̂  and so 

equation (7.12) now reduces to

Jy  ’ d V = l  £  { ^ m) “  ~  "” } , (7-14)

the summation being over all spheroids in contact with the n-th spheroid. Substituting 

this into equation (7.11), and making use of equation (7.7), we obtain the average initial 

stress as

= E  { M « e $ r > F ^ + M i t e $r> F ?m)}  (7.15)
contacts

in which the summation is now taken over all contacts between all spheroids. Since
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each contact appears twice in the summation over both n and m,  the factor 1/2  in 

equation (7.14) does not appear. Assuming a packing dense enough, we may also write 

the above equation in terms of averaged quantities

n N
((Tij) = ~~2y  {(MiketkFj) +  (Mjke^kFi)} (7.16)

where n is the average number of contacts per spheroid and N  is the total number of 

spheroids within the volume V.

The volume concentration of spheroids is given by

i N V n
<t’ = ~ y L (7-17)

where the volume of the n-th spheroid is

Vn = ^ a '3£(£2 +  1) (7.18)

and so substituting these into (7.16), we obtain the average initial stress as

{(Tij) = i(MiketkFj) +  (Mjke^kFi)} . (7*19)

It now remains to determine the form of the force F(nm) acting between the two 

spheroids.

7 .3 .1  T h e  S y m m e tr y  P r o p e r t ie s  o f  th e  A v e r a g in g  S ch em e

First we discuss the symmetry properties of the averaging scheme as defined in sec­

tion (7.3) by equation (7.11). The ranges of integration are 77 from —1 to 1 and 6 

from —7r to ir. Therefore, for a non-zero result, the function which is integrated can be 

odd in neither 77 nor 6.

Typical expressions to  be averaged involve the components of the matrix Af,j (7.8), 

which are even in 77, and products of the components of the unit normal vector 

defined by

1/2

ef ' f 2 +  *r

1 +  £2' 1/2' 
£ cos 0, £ sin 0, r) (  ------ ;

1 — 77'
(7.20)

We construct the following table for the components of e^:
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Variable efi e£2 CO

V even even odd

9 even odd even.

It can be deduced from the above table th a t for a product of components to  be

even in both rj and 9, we must have i = j .  Thus for a non-zero result when products of 

this type are averaged, the components must appear in equal pairs.

7.4 The Initial Deformed State

The initial deformation takes the form of an applied strain which compresses the 

spheroids together to form contact areas between spheroids initially in point contact, as 

described for spheres in chapter 1.

To determine the form of the vector force between two spheroids, we consider the dis­

placement of the spheroids under the imposed deformation. The displacement of the 

contact area, relative to the centre of spheroid m, is

I ( u (™) -  u <n>) +  +  w(m)) A D l {nm). (7.21)

Resolving into components normal and tangential to the surface at the contact point 

we find th a t the displacement along denoted w0, is

Wo =  j ^ ( u (m) -  u (n)) +  A (7.22)

The tangential or shear displacement, being the remainder of the contact area displace­

ment (7.21), is

l ( u (m> -  u<°>) +  A m (nm> -  W0e ^ m). (7.23)

Each spheroid will initially be in contact with more than one other spheroid and the 

forces acting across any contact area will cause displacements which will affect other 

contacts. However, in using contact theory, we have made the Hertzian assumptions 

tha t the contact area is small in relation to the size of the body and tha t each body may 

be replaced by an elastic half space when considering the forces and displacements on 

the contact area. Consequently, it is a good approximation to assume tha t the effects 

of one contact area on the others are negligible.
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The total normal and tangential forces have previously been found in section (6.4) and 

so when combined with equations (7.21) and (7.23) we obtain

j n ( n m )  ___
2 a0Wo (nm) j S 2{uo/v0)2 +  S 2 

3BK(e) « + V 1 +  K / f o ) 2

{i(u<"» -  u<">) +  l ( w (n) +  ui(ra)) A J9I<nm> -  w0e<"ra))  (7.24)

where B  and C  are the elastic moduli given by equation (1.7), a0 is the initial contact 

area radius described by equation (6.87), e is the contact area eccentricity (6.5) and K(e) 

and E(e) are the elliptic integrals given in appendix C. The stiffnesses in the x- and 

y-directions, Sx and Sy, are respectively defined as

_  To _  2e2a0
^  x —  —u0 3 {(Be2 +  C)K (e) — CE(e)}

c _  Qo _  _____________ 2£ao_____________  , .
y v0 3 {[Be2 — C(1 — e2)]K(e) +  C E (e)} ' 1

In index notation the above force may be written as

(nm) =  2a 0u;o (nm) IS^ (u0/ v 0)2 +  5 y2 
j 3 B K (e)6(i + V 1 +  («o /f0)2

{^(«Sm) -  «!"’) +  + w ^ ) D I ^  -  w0e ^ m)}  ■ (7-26)

We now make some assumptions about the form of the relative displacement (u^ml — u^nl) 

and the rotations and We assume tha t the displacement of each spheroid

centre is consistent with the applied uniform strain, as discussed in section (1.3.1), tha t 

is

u |n) =  E i jX jn). (7.27)

Clearly this is not exactly correct for each spheroid but will be true in some average 

sense and is a reasonable approximation to make. We make a similar assumption about 

the form of the rotations: we assume tha t on average the rotations of the spheroids are 

equal, tha t is
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u,(») =  w(m) = ^ (7.28)

Then in terms of the applied strain we find tha t the relative displacement becomes

«!m) -  «Sn) = - 2 E ipM p, e $ m) (T.29)

and substituting this into equation (7.26) the force is given by

jp(nm) _  2a0w0
( n m )  . ls*(uo/v„y + s*

3 B K ( e ) 6(i + V l +  («o/«o)2

{ - E ipM v, e {™ ) +  -  ibo^"0 } • (7-30)

The normal displacement (7.22) becomes

... _  _ P  U  J n m )  J n m )  , w  ( n m )  ( n m )
U/o —  IL/pr i v l f q e ^ q  C ^ p  t p ?r l v l r s t . ^ s UJg

— A-kpEkp T CjcpqA-kq̂ p (7*31)

where, for later ease of notation, we have defined the tensors

0 ii = M ire $ m)Mi ,ejr,m) and Ay =  JMir>efpm) e%m). (7.32)

Note tha t (3^ is symmetric in i and j  but that A i s  not.

7 .4 .1  C o n d itio n s  o f  E q u ilib r iu m

For equilibrium of the n-th spheroid, we require tha t the sum of all the forces F(nm) be 

zero, and also th a t the sum of their moments be zero; th a t is

^ F (nm) =  (j (7>33)
m

F (nm) A D I(nm) =  0. (7.34)

In index notation, the condition (7.34) is equivalent to
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Y ,  =  0. (7.35)
m

Substituting the force (7.30) and the normal displacement (7.31) into equation (7.35) 

we obtain the condition for equilibrium of moments as

v —v f 2fl0 , ,  /SJ(m0/«o)2 +  Sy
^  \  35K(e) *' +  y  i  +  („0/„0)2 X

( fikk^ip “I- fipi îrs- -̂rs^kpq- -̂kp) ^ Ur, =

2a0 j S 2(u0/ v 0)2 -\-S2
^ \ 3 B K ( e ) eir3ArsAkp^ \ l  l + ( u 0/ v 0)2

y x

( îksfisp tirs- -̂rsA-kp) ^ E kp• (7.36)

By summing over all spheroids n and assuming a packing dense enough tha t the sum­

mation over m  and n may be written in terms of averages, this condition becomes

2ao , A , a ■ l S 2(uo / vo)2 + Sy w
’̂ ira^rs^kpq^kp > \ 1 1 / / \9\3 R K (e ) ra Kpq V 1 +  (^o/^o)2

( ftkh&ip ”f“ ft pi ^-irs^n^kpq^kp) )  ft~̂P) —

/  2a„ , , , IS}(u0/ v 0y  + S t  ..
\ 3 B K ( e ) eirsA' lAip + \J 1 +  («0/ t )0)2

(tiksfisp îrs Ar.A*,) )  (Eir) . (7.37)

It is im portant to note that, although the above condition has been written with the 

rotation and strain terms separated, the contact area major axis length a0, as defined 

by equation (6.87), depends on w0 and hence on u> and Eij.  Despite this, the following 

argument remains valid because we show th a t the right-hand side of (7.37) is zero using 

arguments of symmetry and since aQ is an even function of the scaled z-coordinate 77 

and is independent of the polar angle 6, the required symmetries remain.

The case of practical interest was tha t of a hydrostatic compression which may be 

written as
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Eij = ESij (7.38)

where E  < 0 for compression. Substituting the above into the condition (7.37), the 

right-hand side becomes

(7.39)

The term €iks(3sk is the sum over the indices k and s of a symmetric tensor multiplied by 

an anti-symmetric tensor and so must be zero. In section (7.3.1) we will show tha t the 

terms involving €irsArsA kk, when averaged are also zero due to the symmetry properties 

of the averaging scheme. Then we must have, from equation (7.39),

(w) =  0 (7.40)

showing that, for an initial hydrostatic compression, the spheroid rotations have no effect 

and therefore the confining stress is symmetric. This result is to be expected since, by 

symmetry, the forces attem pting to rotate a given spheroid clockwise about a horizontal 

direction will on average be balanced by those attem pting to turn it anti-clockwise.

Finally, we consider the condition of linear equilibrium given by equation (7.33). Sub­

stituting the force (7.30), summing over n and writing in terms of averages, we obtain

/  2a0w0 , /5J(M0/fo )2 +  5? , A _ n / ,  ,m\
\ 2 B K ( e ) e(i + \j l +  («0/o„)2 ( M ipeu  + (itpM rqe(pu q)'j -  0. (T.41)

The symmetry properties of the averaging scheme, discussed in section (7.3.1), show 

tha t each term in the left-hand side of the above is zero and hence the condition is 

satisfied.

7 .4 .2  T h e  A vera g e  In it ia l S tress

Substituting the force (7.30) into equation (7.16) gives the initial average stress as
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K )  =  / _  £ A  } S l ( u 0l v 0y  + ^ [ _ £ A  e k t tAi t]
\  t j f  y  \  3 B K ^  k k  j z - r y  1 +  ( U o / Vo) 2  L a a j t  Jt j

(7.42)

This equation relates the average stress to the average strain during the initial defor­

mation and is valid for an initial hydrostatic compression only.

7.5 The Increm ental Problem

We now consider the incremental problem and show th a t the rotations of the spheroids 

are significant, but th a t only one of the five non-zero elastic moduli necessary to de­

scribe a transversely isotropic medium is affected. In analogy with equation (7.21), the 

incremental displacement of the contact area, relative to spheroid m, is

-  6u<">) +  +  <5w(m>) A (7.43)

Then the incremental normal displacement is given by

Sw0 =  j ^ ( £ u (m) -  Su{n)) +  i(tfw<n) +  6u?(m)) A Z>I<nm> j -e[nm) (7.44) 

and the remainder of the displacement is the tangential component given by

i(<5u(m) -  Su{n)) +  ^(£u?(n) +  <Su>(rn)) A D l {nm) -  6w0e {”m). (7.45)

The incremental force is found by combining equations (7.43) and (7.45) with the total 

infinitesimal forces (6.68) and (6.71) to yield

cP (»m) _  (R.wo)l,26i»o M  j al(Sno/Svo^ +  sl
BK(e)  « + V l  +  («“ oA»o)2

| ( t f u (,n) -  SuM ) +  A D t nm) -  6wae f m) (7.46)

The incremental stiffnesses in the x- and y-directions, sx and sy, are respectively defined

as
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S»r --
SP e2(R^w0)1!2
6u~0 = (Be2 +  C )K (e) -  CE(e)

e2(R*w0)1/2SQ
6vo [Be2 -  C(  1 -  e2)]K(e) +  CE(c)

(7.47)

The radius-like quantity is defined by

iL  =
4iL

e2K(e)
K(e) -  E(e)

1 — el

1/2

[E(e) -  (1 -  e2)K(e)] 1 / 2 (7.48)

and varies with position on the spheroidal surface. The effective radius R e was defined 

in chapter 6, equation (6.85), as

R P = a ' i e  + V2)

In index notation, equation (7.44) may be written

(7.49)

Swo =  { ^ ( K m) -  «»<”>) + ,(&><"> +  e<7> (7.50)

and equation (7.46) becomes

SF (nm)  __ ( R * W q) 1 / 2 6 w 0 {nm) lsl(6uo/Svo)2 +  5
+

B  K(e) V 1 +  (< W < M 2

i(«u,'m) -  «u{n)) +  iU p?(fo4"> + (7.51)

Making the same assumptions about the forms of the incremental displacement and the 

rotations, as seen in the initial state, we may write

6tt\n) =  6EijX j n) and S u (n) =  f c (m) =  6u.  (7.52)

Substituting the above into the incremental force (7.51) we obtain

SF
(nm)  _  (R*W0)1/26w0 {nm) j  sl(SuQ/SvQ)2 +  S 2

BK(e)  + V l  + (Su0/6v0y  "

- 6 E ipMpqefqm) +  cipq6L>pM , J ™ ) -  6w0e%m) (7.53)
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and the incremental normal displacement is given by

fjw0 = - 6 E kpA kp +  epqrApr6ojq. (7.54)

7 .5 .1  C o n d itio n s  o f  E q u ilib r iu m

For equilibrium of each spheroid in the incremental problem, we require conditions 

analogous to (7.33) and (7.34) for the incremental force, tha t is

^ £ F (nm) =  o (7.55)
m

A D I(nm) =  0 (7.56)
m

or, in index notation, the condition (7.56) becomes

£  eipqS F ^ M , re{nrm) =  0. (7.57)
m

Substituting the incremental force (7.53) and the incremental compression (7.54) into 

the condition (7.57), we obtain the condition for the equilibrium of moments as

I —{R*wo)1̂ 2£iptA-pt€qsrAsr S2(SUq/6Vq)2 +  S2
BK(e)  + V 1 +  (W < K > 2

(/̂ *<7 f i k k ^ i q  4“  C i p t A - p t ^ q s r A s r }  ^  f i ^Jq  —

^  ( (R>w0)1/2ciarA trApq ( l s l (6u0/6v0)2 + s2y , o A t J  fp  ^  ccA
E |  flK (e) + V 1 +  (Su0/6vo)2 ( J (7'58)

Summing over all spheroids n and writing the summations as averages, we obtain

qfi^q — Xipq^ Rpq (7.59)

where the tensors $ iq and Xipq are defined as

.  /  - {R*w0)1/2€iptAptcqsrA sr sl(6u0/6v0)2 + sl

iq "  \  BK(e)  + V 1 +  (fao /too)2 X
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( P i q  P k k ^ i q  “I- ^iptApt€qsrAsr  ̂ ^ (7.60)

/  {R^w0) ^ 2€isrA srApq l s 2x{6u0/6v0)2 + sl
* "  =  \ — m ® —  +  V 1 + (6u0l6v0y  x

i p s P q s  îsr A srApg^ ^ . (7.61)

From this condition, the required rotations may, in principle, be determined by writing 

6u>i in terms of the applied strain as

Sui =  V ipq8Epq (7.62)

where =  3>-1x*

The condition (7.55) for linear equilibrium of the incremental forces can be shown to be 

satisfied in the same way as condition (7.33) was shown to be satisfied in the incremental 

state.

7 .5 .2  T h e  E ffect o f  th e  R o ta t io n  T erm

As we will see later, the equation for the effective elastic moduli will depend on the 

rotations through the term

Cip'VpktPqj- (7.63)

Recall th a t the definition of the tensor was

$  =  (7.64)

where x and $  are defined by equations (7.60) and (7.61). Here we will use the symmetry 

properties of the averaging scheme to simplify the tensors and Xijk- In particular, 

we will show tha t Xijk has only six non-zero components occurring when «, j  and k are 

distinct and tha t is diagonal.

7 .5 .3  T h e  T en sor Xijk

Consider just the term eisr (AsrAjk) from Xijk- Strictly speaking, we should consider the 

averages
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“ d (A"A» \n ?S §?) (”5>
but since the expressions

~{R*w0)1/2 j  sl(8u0/6v0)2 + s2
BK(e )  and V 1 + (6«„l6v0y  {7M )

are even functions of both 77 and 0, they have no effect on whether the averaged quantity 

is zero or not. The same applies to all terms considered here.

Expanding, using the definition of , we obtain

^isr (AsrAjk) — C»sr (Mrpe p̂e ŝMkqe^qe^j). (7.67)

We now determine the conditions required on the indices i , s, r , j ,  k in the above expres­

sion to give a non-zero result:

M atrix M  is diagonal 

The alternating tensor £* 

Properties of (•)

r = p , k  = q (z)

i 7̂  5 7̂  r 7  ̂ z (zz)

p , s , q , j  must be in equal pairs, (in)

Possible pairs satisfying (in') are: p = q and s = j  or p = j  and s = q. The remaining

pairs, p = s and q = j ,  will give a zero result since (z) states r = p — meaning the first

pair becomes s = r which contradicts (zz). We may construct the following table for 

both non-zero cases:

p -  q, s = j  => r — k, s =  j  k ±  j

or p — j-, s = q r = j ,  s = k =>- k ^ j .

The first implication follows from (z), the second from (zz). In both cases we conclude 

tha t j  7  ̂ k. Condition (zz) ensures tha t we must also have i ^  j  and i ^  k which 

shows tha t, for a non-zero result, the free indices z, j  and k of equation (7.67) must be 

distinct. A similar argument will show that, for the remaining term of (/?*,) in 

the indices z, j  and k must again be distinct.
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An alternative method of determining this restriction on the indices is to express the 

diagonal matrix M  in index notation as

Mij = Mi (SuSji +  ^ 2^ 2) 4* M 38i38j3 (7.68)

where Mi = M u  = M 22 and M 3 = M 33. Substituting M,-j and expanding, we obtain

t-isr {■̂ ■ar̂ -jk) — ( M i  {^isl^kl^^i^^s^^j 4“

4" Us2^kle(2e^le^seU 4” £i«2̂ Jfc2ef2ef«eO')

+  M l  M 3 ( € i s i 6 k 3 e ^ i e ^ 3 e^9e^j  +  £ja2^/fc3e f 2 e £ 3 e £ae £? 

+  ^ia3^kl^3^1^s^ j  +  e ,,3^2^2^3e^seo)

4" Ml{cis3Sk3^3^^s^u)S)  • (7.69)

By examining each term separately we may determine the required values of 5 and j .  

For example, the first term contains the alternating tensor €*al meaning th a t s can only

take values of 2 and 3. Also, we require tha t s = j  to ensure the pairs and

when the sum is taken over s. The second term is similar except th a t s may only take 

the value 2. This is because if s were 3 then it would not be possible for e^e^e^e^- to 

be written as pairs of components whatever the value of j .  Similar arguments may be 

applied to the other terms, resulting in the expression

U s r  (AsrAjjfc) = S i i 6 j 2 S k 3 ( { M l  — M i M 3 ) e 2£ 2 e 2̂

+  8n8j38k2 ( { M iM 3 — -&fi)e|2e |3  ̂

+  ^i2^ji^k3 {{M iM 3 — M ^ e ^ e 2̂

4- 8i28j38ki ( { M l  — M i M ^ e ^ e ^ ^  .

(7.70)

Applying the same argument to the second part of Xijk) we find tha t

Ujs (Pks) = (M lfa j iSk ie l i  +  €ij2Sk2^ 2)} 4- (Ml(€ij38k3el3)^ (7-71)
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showing th a t the indices must be distinct for a non-zero value of Xijjfc- This also proves 

the result required in section (7.4.1) tha t eirs (ArsA kk) = 0 by taking j  = k in equa­

tion (7.70).

7 .5 .4  T h e  T en sor

We now examine the tensor and, using the methods seen above, show th a t it is 

diagonal. The first term of we consider is €ipiApt€jsrA sr. Substituting the m atrix , 

as given by equation (7.8), and expanding, we obtain

Examining each term in turn, we choose the required values for p and s to obtain

(cjpt APf€jsrA sr) — (eipiej*ie! ie£peC* +  €ipi€j

2 \
+  f i p 2 ^ s l ^ 2 ^ i e f pe^3 +  Cjp2€js2ef2€Cpe £*)

+  M iM 3(eipi€j +  €ip2€j 43ef2e£3efpef«

+  tip3tj sie£3etieZpeZs +  €ip3€j S2€(3 (̂2^^pe ŝ)

(7.72)

(7.73)

The remaining part of $ij can similarly be shown to be

(Pij) ~ (Pkk) $ij — ( M \  +  8i2dj2^2 ~ (e|i  +  e|2)^u})

+  ( M l  { s i3Sj3e% -  e\3h j  } )  (7.74)

and we deduce tha t is diagonal.
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7 .5 .5  T h e  In c r e m e n ta l S tress

We now consider how the results of the previous section may be used to predict the 

average stress. The equation for the average incremental stress is, in analogy with 

equation (7.11) for the initial stress,

(**«> = - 7  E { M ike ^ 6 F ^  + Mi t e ^ i F ^ }  (7.75)
contacts

which may also be written as

V contacts

Substituting the incremental force (7.53) into equation (7.75) and writing the resulting 

expression as an averaged quantity, we obtain

,c > _  n N  / - ( - R . E A pp)1/2( E klA klAij , l s l(6u0/6v0)2 + s2t
'  ^  V  \  BK(e)  + V l  + (6uo/6v0)2 X

(—SEkjflijSik +  €ipqPqj6u)p +  SI£j[./Ajfc/Afj) J  . (7.77)

The above equation may be rewritten, using equation (7.83) to replace 6u>i and equa­

tions (7.17) and (7.18) to eliminate N / V ,  as

(fi ..\ = 3n<̂ > /  —(—R+EAppy / 2A kJA i:j sI(6uq/6 v0)* + s*
°*J' 47ra/3£(£2 +  1) \  BK(e)  y 1 +  (Su0/Sv0)2

(—fiijSik +  uPq ^ PkiPqj +  Afc/Ajj) SEki^ . (7.78)

7 .5 .6  T h e  E ffec tiv e  E la stic  M o d u li

The incremental stress and incremental strain are related through

(6<rij) = C;jk t (6Eki) (7.79)

from which we identify the effective elastic moduli as
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C* = _ _ _ 3 n 0 _ _  
ijkl 47ra'3£(£2 +  1)

- ( - R mE A pp)1t*AklAiL +  J sI(6uq/6 v0) * ^  ^
B  K(e) 1 +  ( S u q / S v  o )2

( Plj^ik T  îpq ̂  pkl fiqj “I- ^kl-^-ij ) (7.80)
Jfc.f

where the brackets [•] denote the symmetric part with respect to the indices k and I.

The rotation vector may be calculated by taking values for i and j  in equation (7.62) 

and using the relationship

^ i j  ^ p j q X i p q (7.81)

which is easily proved. Then substituting the above into the relationship between 8us 

and 8Epq (7.62), we obtain

Xipqi^pjqfi^j ^Epq) — 0. (7.82)

By taking i = 1 ,2 ,3  in the above and making use of the properties of the tensor Xijk, 

as derived in section (7.3.1), we obtain the rotation vector as

8u>i =

8oj 2 —

3 =

6EX l2 3  +  X l3 2  \
--------------- I V-&23
X l3 2  — X l2 3  /

( X213 +  X231"l 6E13
\X 2 1 3  ~  X231 J

( ^ 12 +  X321)  SEn
\X 3 2 1  — X 312 /

(7.83)

and we are now able to calculate specific moduli using the above values. Taking i — j  = 1 

in equation (7.78), we obtain

/c ( n N  j  ( - R , E A ppy / 26EklA klA n  , /S 2(«o/»o)2 +  5,2
11 = ~ \  me)  V 1+KK)2 x

\—8Eki(3n8ik +  t\pqfiq\8wp +  \ (7.84)

the rotation term being zero. Summing over the indices k and / and using the symmetry 

properties of the averaging scheme as discussed in section (7.3.1), we obtain the following
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moduli:

r . _  n N  /  ( - R ,E A PP)1I2A 21 lsU 6u0/ ( v 0)2 + sl , j , \
C u n  -  ~~y~  y ^  + V  1 +  ( K / M 2 h/?11 +  A llJ/

_  n N  /  ( - R ,E A ppy i 2A n A 22 , ls l(6 u 0/6v0)2 + s2y t A \
1122 V  \  B K ( e )  + V l  +  (««o /^o ) 2 U 22/

_  n N  I  ( - R , E A ppy l 2An A33 sl(6u0/6v0y  + s 2 \
Clua -  + V l +  ( W ^ o ) 2 U 33/ '  (7’M)

When i = j  = 3, we obtain, from equation (7.78),

/* V n N  I  ( - R ,E A pp)V 26EklA klA33 , ls l(S u 0/6v0)2 + s 2y
"  F "  \  B K W  + V 1 +  ( W ^ ) >  X

[— SEklPl3^3k +  €3pq/3q16u)p +  A33] ) (7.86)

and again summing over the indices fc and / we obtain

niV /  ( - f i^ A p p J ^ ^ n A s a  I s2x{6u0/6v0)2 + s2y 
V \  K(e) + V 1 +  (< W < K )2

_  nA  /  ( - iZ ^ A p p )1/ ^  lsl(6u0/6v0)2 + s i  \
3333 V \  K(e) V l +  ( ^ o / 6u0)2 *■ ™  337 '

(7.87)

Finally, when i =  1 and j  — 3, the rotation term is non-zero and the average incremental 

stress is given by

IP , n N  /  { - R .E A ppy iH E klA klA l3 , ls l{6u0/S v0)2 + s 2y
(Sa13) = { --------------- ^  +  ^ _ _ _ _ x

[—6EkiPi36ik + €ipqfiq36u>p + SEkiAkiAk3] \  .

(7.88)

The rotation term may be expanded by summing over the indices p and q and substi­

tuting the components Sup from equation (7.83). The modulus is obtained from

the above as
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C 1313
n N
2V

(—J t , E A pp) 1̂ 2(A 23 +  A13A31) , s 2( i u 0/ 6 v 0)2 +  s 2
----------- h \ I —:-----------——rrr- XB  K(e) 1 +  (8u0/6v0y

X 213 +  X231
—033 + 033 ( “-------“---  ) + A-13 + A1 3 A3 1

X 213 — X231

(7.89)

Equations (7.85), (7.87) and (7.89) give the five effective elastic moduli required to 

describe a transversely isotropic medium such as shale. It may also be shown th a t all 

other independent moduli are zero. Because of the complexity of the expressions for 

the moduli, given in terms of averages of the tensor A,-j, 0ij and other terms depending 

on e, any further progress will have to involve numerical integration of the averaging 

integrals. The averaging scheme (7.11) may be written as

(/(e)) = k  /  /  -f(e) ^ 3  d?7 d6O J Q — --k J r) = —l
(7.90)

where /(e ) is the function to be averaged, h3 and h3 are the scale factors (6.76) and 

S  is the surface area of a spheroid given by

S  = 27ra £ (1 +  £ ) sinh‘"(!) + (7.91)

(7.92)

However, the eccentricity e depends on 77 through the relationship (6 .86):

?  + rf  (1 _  e») [K (e) -  E(e)]
l  +  £2 E(e) -  (1 - e 2)K (e)

which may be solved numerically to find e for any value of 77 a t each stage of the 

numerical integration. Alternatively, equation (7.92) may be differentiated with respect 

to e to obtain

277 d77 3eE2(e) -  2e(2 -  e2)K (e)E(e) +  e(e2 -  l ) K 2(e)
[E(e) -  (1 -  eJ)K (e)]'

(7.93)

where we have used the results

K '(e) =  

E '(e) =

E ( e ) - ( l - e 2)K (e) 
e(l — e2)

E(e) -  K(e)
(7.94)
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The averaging integral (7.90) is transformed to

= i  ,  c : f ( e )  h2k3 & de Ae (7’95)

which may be evaluated without the need to  solve equation (7.92) at each numerical 

step, the limit emax being the largest value of e obtained from just one solution of 

equation (7.92) at r) = 0.

Clearly, the results obtained from this random packing of spheroids model cannot possi­

bly account for all of the elastic properties of a rock with such a complex microstructure. 

The model is very simplified and contains a number of assumptions. As mentioned in 

section (7.1), the shale contains many isolated silt inclusions and regions in the shale 

are locally misaligned from the average bedding direction. Ideally, the results of this 

chapter would be included in a more sophisticated shale model, such as tha t of Hornby, 

Schwartz and Hudson [32], which would average the properties of a representative shale 

element over the experimentally measured platelet alignment distribution, and make 

considerations for the presence of silt inclusions.
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A ppendix A

Inter-Granular Friction: 

Corrections

In Slade and Walton [55] a simplified case of the work covered in chapter 5 was con­

sidered. A number of typographical errors and one algebraic error have since been 

discovered, and so to allow comparison between the results of Slade and Walton [55] 

and those of chapter 5, the corrections are listed here.

The first term of equation (26), inside the braces, should read

(A.l)

The first line of equation (27) should be

{\I3\3)a =  J d</> sin 9 |cos 9 \3 d9 +  J sin 9 |cos 9\3 d0^ . (A.2)

Equation (28) is incorrect due to  an algebraic error during the calculation of the aver­

ages. The corrected version is

i _  <t>nc?l2 \  1 /jr -  20.A sin2 0C (3 -  2 sin2 0C) |
< « ' » > - — ^ - { 6 B  +  r 3 2 B “ J / + ------ 24(25 +  C )-------/ '  (A'3)

The left-hand side of equation (32) should be the incremental stress

{&&33) (A.4)
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Equation (34) is derived from equation (28) and as such should read

2   3 B + C f n 2F \ l ' 3 \  1 f i r - 2  0C\  sin2 6C (3 -  2 sin2 9C) |  ~’/3
C ~  ApB(2B + C ) \ i r i 4>) \ 6 5  +  V 32 B  ) f + 24(2 B  + C) J

(A.5)

where the modulus D  is defined in Slade and Walton [55] as 2D = 2B  -f C.
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A ppendix B

Calculation of the Averages

In chapter 5, we introduced the modified averaging scheme

^ = h C A*(C+L ) {-)AneA9 (ri)
i rn—Oc

(') B =  4~ l  W J '  ( - ) s m 0 d 0  (B.2)

where 0 < 9C < 7t/2, and 6C is the critical angle of friction. The scheme used by 

Walton [67], denoted (•), is defined as

1 />2 7T pTT
(.) =  — /  d<t> (•) sin 6 d0 (B.3)47T Jo Jo

and is equivalent to

(■) =  {■)* +  ( ■) „  (B.4)

Figure (5-2) shows the interval [0,7r] split into the ranges A  and B.

The unit vector l(nm) joining the centres of two spheres may be written in polar coor­

dinates as

j(n m ) _   ̂ s *n  q  c o s  ^  g -n  q  g jn  ^  c o s  q  ^  ( B . 5 )

The components of this vector then appear in the quantities to be averaged, for example
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( J 2 \I3\) = (sin2 9 cos2 (f) |cos 9 |) . (B.6)

This appendix lists the values for the averaging integrals required to calculate the initial 

stresses (5.33) from equation (5.31). Firstly, there are two averages over the entire range:

< m i 3> = 24

m 5) =  (B.7)

Over the range A  we calculate:

U iV sD a  =  ^  sin4 0c (3 ~ 2 sin2 9C)

<|/3|5)a =  g sin2 9C ( 3 - 3  sin2 9C +  sin4 9C)

<I-f313)a =  \  sin2 (2 — sin2 9C). (B.8)

Finally, the required B  ranges are:

14
3  ̂ J ° 1 — — 9C) — 5 sin 9C cos 9C +  2 sin3 9C cos 9C

n n
(1 -  i |) l /2

H’S
1̂ 2 {I2 (f  ” °c ) + 1° sin cos 0C

— 48 sin3 9C cos 9C +  24 sin5 9C cos 9C

^ — - 7: |  30 f 77 — 9C ) — 66 sin 9C cos 9C
(i - n y i y B 9 2 1  \2

+  52 sin3 9C cos 9C — 16 sin5 9C cos 9C j .

(B.9)

Further averages are calculated by Walton [67] using the scheme (B.3) and are listed 

here for reference. Equation (4.8) of Walton [67] uses the isotropy of the packing to 

deduce that
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and

(h l j l k h ) — +  b i k b j l  +  f iu f i j k ) '  (B . l l )

Further averages are calculated explicitly in equations (3.23) of Walton [67]:

<i^i/i> =  \

W Z )  = I

(B.12)

and from equation (4.13) of Walton [67]:
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A ppendix C

D etails of the Calculation of 

Surface D isplacem ents

C .l Definitions of Elliptic Integrals

Many of the integrals involved in the calculation of the surface displacements cannot 

be evaluated analytically and so are expressed in terms of elliptic integrals. Tables of 

elliptic integrals may be used to find numerical values as required. The definitions of 

the elliptic integrals used throughout this report are reproduced here for reference.

The complete elliptic integral of the first kind is defined as

K(e) =  r /2(l  -  e2 sin2 <9)'1/2 dd (C .l)
Jo

and the complete elliptic integral of the second kind is defined as

E(e) =  r ' 2( l - e 2 sin2 0)1/2 d0. (C.2)
Jo

>7r/2 

'0

Tabulated values of these functions may be found in Adams and Hippisley [1], together 

with useful results concerning elliptic functions and derivatives of K(e) and E(e).

C.2 Surface Displacem ent Integrals

The calculation of the surface displacements due to normal and tangential force distri­

butions involves the calculation of the integrals from equations (1.10) and (1.11). For a
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force distribution of the form

{ ' - b -  i )

the integrals arising are of the form

2 \ 1/2
(C.3)

II /Jn

ii [
Jn

ii f
Jn

(1 - x l2/a 2 - y ' 2/b2y 12 dx , , ,
[(*' -  x )2 +  (y' -  i/)2]1/2
(x' — x)(y> — t/)(l — x '2/a 2 — y'2/h2)1!2

[(x' -  x )2 +  (y' -  y)2f 2 
(x1 — x)2(l — x '2/a 2 — y'2/h2)1!2

da;' dy'

d x ' d  y'

and for force distributions of the form

r 2 ? / 2 \ - i / 2
P ( x , y)  =  K [ l - - - l L

the integrals are

h  = /
Jn

II fJn

II fJn

(1 -  -  y'2/6 2) - / 2

[(x' -  x)2 +  (y' -  y)2]112 
(x' -  x)(y ' -  y)(l  -  x '2Ja2 -  y,2/b 2) - ^ 2 

[(x' -  x)2 +  (y' -  y )2]3/2 
(x' — x)2(l — x ’2/a 2 -  t/'2/62) -1 2̂ j  , j  ,

777, 7 7 7 7 7 7 , 777m  y

da;' dt/'

(C.4)

(C.5)

(C.6)

(C.7)

(C.8)

(C.9)

(C.10)

To illustrate the method of integration we consider Ii in the case of Hertzian pressure. 

We change to the (s, 0) system of polar coordinates with the substitution

x* = r cos & +  s cos (V5 +  0) 

y' = r sin 0 +  s sin (tp +  0). (C .ll)

The Jacobian for this transformation is

J  =
d x '/d s  dx'/dip  

d y '/d s  dy'/dtp
= s (C.12)
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and the integral transforms to

Ii = J  | l  -  [r cos 9 +  s cos (ip +  9)]2 /a 2

o o') !/2
-  [r sin 9 -f s sin (ip +  0)] /& j  ds d^ . (C.13)

The squared term s in the above expression are expanded to give a quadratic expression 

in s. After some algebraic manipulation we obtain

h  =
- L

a2 sin2 (ip +  9) +  b2 cos2 (ip +  9)
a2b2

x

s +  r
a2 sin 9 sin (ip +  9) +  b2 cos 9 cos (ip +  9) \  

a2 sin2 (ip +  9) +  b2 cos2 (ip +  9) J

a2b2 {a2 sin2 (ip +  9) 4- b2 cos2 (ip +  9) — r2 sin2 ip) 
[a2 sin2 (ip +  9) +  b2 cos2 (ip +  9)]2

1 / 2

ds dip 

(C.14)

in which the square has been completed (variable s ) in the integrand. The integration 

with respect to s can now be performed by way of the substitution

a2 sin 9 sin (ip +  9) +  b2 cos 9 cos (ip 9)
a2 sin2 (ip +  9) +  b2 cos2 (ip +  9)

ab {a2 sin2 (ip +  9) +  b2 cos2 (ip +  9) — r2 sin2 ip} ^ 2
sin x

a2 sin (ip +  9) +  b2 cos2 (ip +  9)
(C.15)

and the integral simplifies to

y.Tr/2 /»*- a 2 s ' n 2 _|_ g\ _|_ £2 c o g 2 _|_ m  _  r 2 s ‘n 2 ^

Ii = ab / ----- -— —-!-------------- ^   /2 cos2 x dx dtp
Jo [/72 s in  (?/; 4- 9) 4- h"2 r n s 2 (ih -I--7r/2 J o [a2 sin (ip +  9) +  b2 cos2 (ip +  0)]

f  * a2 sin2 (ip +  9) +  b2 cos2 +  #) — r2 sin2 ip ^  

Jrh=0 o in 2 (>>li _1_ L2 m s 2 (th 4- # ^ 1 ^ 2
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irab r +d a2 sin2 <f> +  b2 cos2 (f> — r2 sin2 {6 — 6) .
— "TT” /  (C.16)2 [a2 sjn 2 (jy _j_ 52 cos2

where <f> = ip +  6. Note that, since the integrand is periodic, the limits may be changed 

to be between 0 and 7r/2 and the integral multiplied by an appropriate factor. The cross

term  obtained in the expansion of sin2 {(j) — 6) is an odd function in and so integrates

to zero over a period. Thus we obtain

I x — 7rab
«tt/2 d <j)

0 [a2 sin2 (j> +  b2 cos2 <f>]

"7r/2 sin2 4> d<pfir i
- x 2 /  -------

"'o fa2 si[a2 sin 0 +  b2 cos2 <f>]
3/2

f i r / 2

- y2 J  7- ■/o la
cos2 <f> d(f>

[a2 cos2 4> +  62 cos2 ^ j3^2 J
(C.17)

and using the results from appendix C.3 we obtain

I x = ira I K(e) -  -  
I a

x 2 E(e) -  (1 -  e2)K(e) y2 K(e) -  E(e)
(C.18)

e2 b2 e2 J

where K(e) and E(e) are the complete elliptic integrals of the first and second kinds 

respectively, as defined in appendix C .l, and e2 =  1 — a2/b2. Note th a t e has real values 

only when a < 6. If we wish to consider the case when a > b then we redefine e as 

e2 =  1 — 62/ a 2, and so we have

1 — b2/a 2 , a > b

z* =  0 , a = b (C.19)

1 — a2/b 2 , a < b.

In the case a > b, the integral form for I x may be re-written using the transformation

<f> h - r / 2  — (j) to give

I x — -jrab
•tt/2 d(l>

f i t - I

- *  / -Jo a

0 [a2 cos2 (f) +  b2 sin2 <f\

*!2 cos2 (j> d <f>

1 / 2

[a2 cos2 (f> + b2 sin2 (f>\
3/2

f i r / 2

-y21 r-Jo \a

cos2 (f> d(f>

[a2 cos2 <f> +  b2 cos2 <̂ ]3^2
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t J ™  z 2 K (e) - E (e) y2E ( e ) - ( l - e 2)K(e) l=         j .  (C.20)
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C.3 Integral Identities

e2 =  1 -------  where a > b
a1

r ' 2 __________ d̂ >____________  K(e)

0 [a2 sin2 4> + b2 cos2 4>\1̂ 2 a

r< 2 sin2 cj) d<f> _  E(e) -  (1 — e2)K(e)

o [a2 sin2 (j) +  b2 cos2 <f>]1̂  ae2

r ' 2 cos2 4> d<t> _  K(e) -  E(e)

0 [a2 sin2 4>-\-b2 cos2 4>]1̂ 2 ae2

r ' 2  _________ ____________  E(e)

0 [a2 sin2 <̂ >+ b2 cos2 <f>]3̂ 2 a3(^ e2)

r*!2 sin2 4> d4> _  K(e) -  E(e)

o [a2 sin2 <j> + b2 cos2 <f>\3̂ 2 0,3e2

t*!2 cos2 (f> d</> E(e) — (1 — e2)K(e)
0 [a2 sin2 (f> +  b2 cos2 </>]3̂ 2 a3e2( 1 — e2)

f* l2 sin4 <j> d4> (2 — e2)E(e) — 2(1 — e2)K(e)

o [a2 sin2 </> +  b2 cos2 ^ j3̂ 2 0,3e4

r> 2 cos4 <[> d<f) _  (2 — e2)E(e) — 2(1 — e2)K(e)

o [a2 sin2 (f>-\-b2 cos2 (f>\3̂ 2 a3e4( 1 — e2)

f*!2 cos2 (j> sin2 (f> d(j) (2 — e2)K (e) — 2E(e)

0 [a2 sin2 4>+b2 cos2 ^ j3̂ 2 0,3e4
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C.4 H ertzian Pressure D istribution ( a  >  b)

.2  „,2 \  1/ 2

h  =  /
Jn f(x' -  x)2 +  (y‘ -  y )2]

=  nab r  ( -------------------   ----- ^
Jo y [a2 cos2 (j) +  62 sin2 0]

x2 cos2 6 y2 sin2 <b I , ,
-------------------------------- 57? TF) ( ^

[a2 cos2 <f> + b2 sin2 (f>\ [a2 cos2 (f> + b2 sin2 4>] J

l a2 e2 b2 e2 I

f  (*' ~ x)(y ' - y ) (  1 -  x ,2/a 2 -  y,2/b 2) ^ 2 ^  
Jn  [(x ' — x)2 +  (y' — y )2]3̂ 2

t i
= 2nab xy I — 

Jo fa

7f/2 cos2 (j) sin2 (f) d<(>
• 2  n 3/ 2[a2 cos2 <̂5> +  b2 sin2 <fr]

2irb
2̂ 4a^e

{(2 — e2)K(e) — 2E(e)} xy

=  r ( x ' - x y ( i - x ”i a ? - y» i v y n  u ,
Jn f(x' — x)2 +  {y ' — y)2f /2

rit/2 a 2 C O g 2  ^  g j n 2  ^  _j_ p  g j n 4  ^  _  x 2  C O g 2  ^  g j n 2  (j) — y 2 SlŶ cf)
=  nab /   d<p

•'O [a2 cos2 4> +  b2 sin2 </>]

=  J { e» [ K ( e ) -E ( e ) ]

- ^ [ ( 2 - e 2)K (e ) -2 E (e ) ]
a*

-  f?  [(2 -  e2)E(e) -  2(1 -  e2)K (e ) ] |
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C.5 Punch Type Pressure ( a  >  b)

2 w2 \ —i/2
P ( , ,„ )  =  * ( !  L

=  r (1 -  *,2/a2 -  d x , dy
Jn [{x' -  x ) 2 +  (y ' -  y ) 2]

=  2irab
r* / 2

Jo

d <f>
• 2 i l l / 20 [a2 cos2 4> +  b2 sin2 (f>\

=  27r6K(e)

f  {x' -  x ) {y '  -  ?/)(l -  x'2/ a 2 -  y ,2/ b 2) ~ ^ 2 ^  

Jn [(x' -  x )2 +  (y' -  y)2f /2

=  7r ab fJo
sin 4> cos (f) d</>

[a2 cos2 <f> +  b2 sin2 <p\

= 0

h  = L (x ‘ -  x f (  1 -  x ’2/ a 2 -  y'V 62) - ' / 2 ^  d

=  ‘I k  ah I,
[(x' -  x ) 2 +  (?/' -  y )2]3/2 

7r/2 cos2 </> d</>
2 jlI 1 /  20 [a2 cos2 (j) +  b2 sin2 0]

2irb ,
=  - 3 - K e ) - E e )

(C.22)
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A ppendix D

Some U seful Limits Involving  

Elliptic Integrals

Since the spheroid packing model of chapter 7 uses an averaging scheme similar to that 

seen in Walton [67] and section (1.3.1), it is instructive to consider the case in which 

the spheroids tend, in the limit, to spheres. Some useful results to enable us to take 

this limit are considered here. Firstly, from the definitions of the elliptic integrals given 

in appendix C .l we may evaluate

K(0) =  E(0) =  (D.l)

By writing the integrands over a common denominator, we consider the limit

lim \  [K(e) -  E(e)l =  lim   T  U , , dg =  (D.2)
e —'0  e y )  WJ e-o/o (1 -  e W f l ) 1/2 4 ' ’

Similarly, we may obtain the limit

lim i  [(Be2 + C)K (e) -  CE(e)] =  1 (2 B  + C). (D.3)

Other frequently occurring limits are:

(D.4)
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=  1 (D.5)e—o (1 — e2) [K(e) — E(e)]
K(e) — E(e) 1 

lim — ■— t t-t '-  =  - .  (D.6)e_,o e2K(e) 2

As an example, consider the infinitesimal force increments arising from the contact of

two oblate spheroidal bodies given by equations (6.68) and (6.71). By taking the limit

as e tends to zero and using the results listed above, it is easily shown tha t these forces 

tend to those given as equation (1.69) for spheres.
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A ppendix E

Table of Isotropic Elastic 

Constants

E , v E, f i A , / / B , C

A E u H ( E - 2 f i ) A c
( l + * ) ( l - 2 * ) 3 n — E ir(B2 - C 2)

V
E

V P
1

2(1+*) 2i r (B+C)

E E E n(  3A+2^i) 
x+n

B + 2 C  
» ( B + C )

V V E - 2 u X C
2p 2(A+/i) B + C

K E HE A + 2 B + C
3 ( 1 - 2 * ) 3(3 n - E ) 3i r (B2 — C 2)

B 1 - *
wE

4 n —E
h  (jr +  i+^r) B

C *(1 + * )
irE

E-2f j ,  
4ir [i2 —  ( l  -  — ) 47T \ f i  A + f i j C

E* E 2 n2 2fi(X+ft) i
2(1 —*2) a.1 \+2fJ, 2 ttB

2 1 3
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